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Foreword 

Knighting in sequence biology 

Edward N. Trifonov 

Genome classification, construction of phylogenetic trees, became today a major 
approach in studying evolutionary relatedness of various species in their vast di-
versity. Although the modern genome clustering delivers the trees which are very 
similar to those generated by classical means, and basic terminology is the same, 
the phenotypic traits and habitats are not anymore the playground for the classifi-
cation. The sequence space is the playground now. The phenotypic traits are re-
placed by sequence characteristics, “words”, in particular. Matter-of-factually, the 
phenotype and genotype merged, to confusion of both classical and modern phy-
logeneticists. 

Accordingly, a completely new vocabulary of stringology, information theory 
and applied mathematics took over. And a new brand of scientists emerged – those 
who do know the math and, simultaneously, (do?) know biology.  

The book is written by the authors of this new brand. There is no way to test 
their literacy in biology, as no biologist by training would even try to enter into the 
elite circle of those who masters their almost occult language. But the army of in-
formaticians, formal linguists, mathematicians humbly (or aggressively) longing 
to join modern biology, got an excellent introduction to the field of genome clus-
tering, written by the team of their kin. 

The analogy genomic sequences – texts is both an immediate simple thought, 
and an open door to the depths of genetic information and intricacies of its organi-
zation. The most fascinating and unique features of these texts are multiplicity, 
degeneracy and overlapping of various codes carried by the genetic sequences. In 
this respect mere transfer of techniques used for analysis of familiar “monocode” 
texts to the “polycode” sequences would be naïve. But no one would deny impor-
tance of such transfer, to begin with, to reveal, at least, the amazing specifics of 
the new reality. Another interesting aspect of the genomes is the uncertainty of the 
species’ formal definition. Already in classical genetics this was a stumbling 
block. The fertile progeny based definition of Dobzhansky1, though broadly ac-
cepted, does not fit all diversity of species. In the genomics the matter becomes 
even more complicated, in particular, due to horizontal gene transfer. It appears 
that the species is not an elementary node of evolution. Rather, the gene, or (again 
uncertain) DNA segment in general, is the node.   
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Principally new techniques have to be introduced to cope with this very special 
language. The monograph is a rather comprehensive outline of the state of art in 
the field, introducing as well some original developments. The appreciation of the 
principal differences of the natural sequence language from all we knew before is 
an important merit of the book. 

 
1. Dobzhansky, T.: Genetics and the Origin of Species. Columbia Univ. Press, 
New York (1937) 

 

 



Preface 

People like to compare and do it in a great variety of fields and with all kinds of 
objects. In particular, comparative biological studies of different species of living 
beings lead us to better understanding of known biological phenomena and even to 
novel discoveries in the biological science. In modern biology, species are often 
presented by their genomes. Thus, instead of comparing external organisms’ fea-
tures such as the length of the tail, the shape of the wings, etc., it is possible now 
to compare organisms’ genomes, which are represented as long texts over the al-
phabet of four letters. 

There exist different methods of analyzing texts which are written in human 
languages or composed of special symbols (e.g., computer programs). Although 
these methods had been developed long before the discovery of genetic texts, 
many of them are applicable to the genomic text analysis as well, and some are 
described in this book. However, there also exist methods which were not bor-
rowed from the studies of natural languages, but were developed especially for the 
comparison of genomic texts. 

This book deals with the methods of text comparison which are based on  
different techniques of converting the text into a distribution on a certain finite 
support, be it a genetic text or a text of some other type. Such distribution is usu-
ally referred to as “spectrum”. The measure of dissimilarity of two texts is for-
mally expressed as a certain “distance” between the spectra of these texts. Such 
definition implies that the similarity of the texts results from the similarity of the 
random processes generating the texts. It is obvious, thus, that the zero distance 
between two texts does not necessarily imply their letter-by-letter coincidence; for 
example, the texts may be just different implementations of the same process. The 
spectrum support usually represents a finite set of words. In a natural language, 
the latter may be the words of the language, while in a genetic text, particular pat-
terns may be considered as words. The patterns range from the simplest signals to 
genes, which are parts of the genetic text. However, in the natural language analy-
sis, formal, meaningless words, which are called N-grams, are also successfully 
employed. Since the repertoire of different patterns in genetic texts is relatively 
small, the use of N-grams for the genetic text analysis appears to be still more 
beneficial. In certain applications, the spectrum support may be a set of relative 
positions in the text, but in this case, too, the distribution value in each position is 
evaluated as some function of words which are connected, in a certain way, with 
each position. The fact that these are the words, whatever their definition may  
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be, that are used as the basis for the spectrum evaluation, allows viewing the meth-
ods under consideration as a part of a more general field which may be called  
“DNA linguistics”. 

Genetic texts have certain features which are used for their analysis. The essen-
tial features, as well as some relevant information on the molecular biology of the 
cell, are presented in Chapter 1. Additionally, the reader can refer to several excel-
lent introductory courses such as [8], [297] and [184]. 

Since this book is dedicated to the methods of genetic sequence comparison or, 
in other words, to a particular approach to genetic text classification, we review 
some classical general approaches to classification in Chapter 2. This chapter pro-
vides a brief introduction to the Linnaean classification system, to modern taxon-
omy, and to the field of molecular evolution called phylogenetic systematics. In the 
text of this book, we often compare the described results with the above classifica-
tions. The following books may be recommended for further reading on the topic 
of molecular evolution: [95], [204] and [200]. 

Chapter 3 provides a review of the main data mining models generating the text 
spectra which were developed for the analysis of texts written in natural lan-
guages. In particular, in the framework of some models, the coincidence (or simi-
larity) of the spectra suggests the common author or the same topic of the two 
documents. The models which are based on the “letter-by-letter” comparison of 
texts are also described. They are further used in the book for constructing the 
spectra of genetic texts. 

In Chapter 4, the questions are discussed as to the standpoint from which the 
DNA molecule can be viewed as a certain text and how this text can be evaluated 
in terms of formal grammar. Another essential question considered in the chapter 
concerns the process of creating genetic texts. While texts in natural languages are 
written by people, countless numbers of genetic texts (a unique text for each spe-
cies and even, as it appears now, a unique text for each individual organism’s ge-
nome) are “written” in the course of evolution. The models of special mechanisms 
which evolution uses for writing genetic texts are also described in the chapter. 
Obviously, the fact that DNA texts are, actually, the result of the evolution process 
should be employed for the comparison of these texts. 

In Chapter 5, the particular case of digrams (N-gram with N=2) is described in 
detail, including the results of bacterial genome classification obtained by this 
method. Moreover, the concepts of fuzzy N-grams and of compositional spectra 
(CS) based on such N-grams are introduced. The evaluation of CS is a compli-
cated computational problem; hence some plausible algorithms for its solution are 
also discussed in the chapter. Quite a few examples of genetic texts are employed 
to assess the properties and the biological appropriateness of different distance 
functions. 

Chapter 6 elaborates on the application of the CS model to the genome classifi-
cation; in particular, the optimal parameters of the model are obtained. Finally, 
two possible classifications of species “across life” are derived and their relevance 
to the standard classification is discussed. 

In Chapter 7, a different profile-based approach to classification is presented. 
As a result of the suggested technique, the text is converted to a point in the  
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K-dimensional Euclidean space. The general description of the profile-construction 
method is followed by consideration of two important applications: in the first  
example, the linguistic complexity measure is employed, while in the second exam-
ple, the measure based on DNA curvature is used. 

In Chapter 8, the new approach to phylogenetics based on considering the 
whole-genome information is illustrated. This approach, called phylogenomics, is 
closely related to the main topic of the book since it also deals with embedding of 
the genome into a coordinate space. The sets of all the genes of particular pro-
karyotic genomes were used in the framework of the Information Bottleneck 
method adapted for genome clustering. The dendrogram of the genome classifica-
tion obtained by this method represents, actually, a phylogenetic tree. 

In Appendix A, the reader is introduced to the main ideas and techniques of the 
clustering approach to classification. 

In Appendix B, a short review of three sequence complexity measure methods 
is compiled. 

Appendix C is devoted to the introduction to the issue of DNA curvature. 
The book is written by four co-authors, whose fields of expertise are close, but 

still represent different lines of research. Therefore, it would be virtually impossi-
ble to bring in harmony a great many details and maintain a uniform style of the 
text without the help of our persistent and careful scientific editor, Tanya Pyati-
gorskaya, PhD in molecular biophysics, to whom the authors express their deep 
gratitude.  
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Chapter 1
Biological Background

This chapter is intended as a brief introduction to those fields of molecu-
lar biology which are essential for understanding the content of the book1.
We give here a general idea about the molecular basis of heredity, in other
words, the molecular mechanisms of storing and implementing information
about an organism’s traits and of transmitting genetic information to the
next generation. In this way, we also lay the foundation for those molecular
mechanisms of evolution that are relevant to the methods described in this
book. To achieve the above goals, we introduce the reader to the spectacular
process of the genetic information flow from DNA molecules. This process
directs the whole activity of the living cell, including duplication of genetic
material and protein synthesis.

1.1 The Cell

The cell is the smallest structural unit of an organism which is capable of
independent functioning. Its components are a nucleus, cytoplasm2, various
organelles, and a membrane, which surrounds the cell. There exist a lot of
various types of cells, but the main division is into prokaryotes and eukary-
otes. A prokaryotic cell usually represents a unicellular organism and thus
has to carry out all the organism’s functions. Some eukaryotic cells may also
represent unicellular organisms such as the famous Amoeba proteus, but most
of them constitute multicellular organisms such as plants, animals, fungi, hu-
mans and are differentiated with respect to their functions.

1.1.1 Prokaryotic Cell

The essential, defining feature of a prokaryotic cell is the lack of a membrane-
bound cell nucleus. The genetic material of prokaryotes is usually concen-
trated in a single circular double-stranded DNA molecule; besides, some
1 Those readers who have taken an elementary course in molecular biology can

turn directly to the next chapter.
2 Cytoplasm is a gelatinous, semi-transparent fluid that fills a cell.

A. Bolshoy et al.: Genome Clustering, SCI 286, pp. 1–16, 2010.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1.1 Prokaryotic cell

genes are stored on one or more plasmids (see section 1.5). Prokaryotic cells
(Fig. 1.1) are relatively small (usually 1 - 10 μm in diameter), being, how-
ever, larger than viruses (the size of about 0.1 μm). The internal structure of
prokaryotes is much simpler than that of eukaryotes in that the former lack
membrane-bound organelles except for ribosomes (see subsection 1.4.2.2).
Prokaryotes are traditionally classified (see Chapter 2) within two kingdoms:
Eubacteria (such as the well-known Escherichia coli, found, in particular,
in the human intestine) and Archaebacteria (initially, thought to live in ex-
treme environments), which differ biochemically and genetically in a number
of features.

1.1.2 Eukaryotic Cell

The characteristic feature of a eukaryotic cell which distinguishes it from a
prokaryotic one is the presence of a nucleus - a spherical body, surrounded by
a thin membrane, that contains the organism’s genetic material, structurally
organized in chromosomes (see Section 1.5). Typical eukaryotic cells have
linear dimensions (100 μm – 1 mm) much larger than those of prokaryotes
and, which is most important, the former are much more structurally and
functionally complex. In particular, the cytoplasm surrounding the nucleus
of a eukaryotic cell contains membrane-bound subunits, called organelles (see
Fig. 1.2), which carry out specialized reactions within their boundaries and,
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Fig. 1.2 Eukaryotic cell

thus comprise the metabolic machinery of the cell. For example, adenosine
triphosphate (ATP), the main source of the chemical energy of the cell, is
produced either within mitochondria in the process of cellular “respiration”
or within chloroplasts during photosynthesis. The two organelles are called,
therefore, the “power plants” of the cell.

1.2 Molecular Basis of Heredity - DNA and
Complementary Nucleotides

1.2.1 The Double Helix

Nucleic acids, DNA and RNA, are organic compounds, which play the central
role in the cell since they contain all the information required to duplicate and
maintain the organism. The universal basis of heredity consists in synthesizing
exact copies of the parent DNA (or RNA), which are transmitted from one
generation to the next. The universal mechanisms directing the processes
of protein3 and RNA synthesis and thus regulating the cell’s activities, also
3 Proteins are large organic molecules composed of amino acids polymerized in a

linear chain, which, in turn, forms more compact higher-order spatial structures.
Proteins act as enzymes, structural units, and regulators of metabolic processes
in a cell.
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include information transmission from DNA, serving as a template for RNA
synthesis. Thus, in order to understand the basics of the information flow in
a cell, we should get acquainted with two main types of nucleic acids.

DNA (deoxyribonucleic acid) and RNA (ribonucleic acid) represent long
chains of repeating monomers4, called nucleotides. Nucleotides are con-
structed of sugar molecules (ribose or deoxyribose in the case of RNA or
DNA, respectively) and phosphate groups, which make up the chain back-
bone, and of bases, which are attached to sugars. Three bases are pyrimidine
derivatives: cytosine (C), thymine (T) (found in DNA), and uracil (U) (found
in RNA); their single-ring structures are shown in Fig. 1.3A. Two bases, ade-
nine (A) and guanine (G), are purine derivatives, which have a two-ring
structure (Fig. 1.3B). Although the “building blocks” of DNA and RNA are
almost the same, the two molecules differ in their structure and function

In eukaryotes, bacteria, and in most viruses, DNA that stores genetic in-
formation has the structure of a double helix ; its canonical form is called
B-DNA. In 1953, Watson and Crick published their famous article [281],
where they suggested the structure of B-DNA as a right-handed helix formed
by sugar-phosphate backbones of two individual DNA strands, which are
wound around each other. Because of the chemical structure of the deoxyri-
bose residue, the two ends of the DNA strand are not equivalent – at one
end, the 3′-end, there is an exposed OH- group on the deoxyribose, while
at the other end, the 5′-end, there is an exposed phosphate group. In the
double helix, the two strands are antiparallel, one strand having the 5′ − 3′

direction and the complementary strand having the 3′− 5′ direction. We will
see further that the notion of the DNA (RNA) strand direction is essential
in the processes of DNA or RNA synthesis in a cell.

An idealized model of the DNA double helix is shown in Fig. 1.4. It can be
seen that the bases which belong to different strands and are situated opposite
to each other form base pairs, stabilized by hydrogen bonds. The vertical
distance between two nearest stacked base pairs is about 3.4 angstroms and
one helical turn contains approximately 10 base pairs. The width of the helix
is 20 angstroms.

The base pairs within the DNA double helix are formed in a very specific
way. Since the shapes and electrical charges of purines and pyrimidines are
complementary5, A binds only with T (U), while C binds only with G (see
Fig. 1.5).

1.2.1.1 Chargaff’s Rules

The Chargaff’s Parity Rule 1 states that, in a double-stranded DNA molecule
from any cell of any organism, the content of guanine equals that of cytosine,
4 A monomer (from Greek mono “one” and meros “part”) is a small molecule

that may become chemically bonded to other monomers to form a polymer.
5 Complementary means “matching opposite”.
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A. Pyrimidine bases

B.
Purine bases

Fig. 1.3 Chemical structure of nucleic acid bases

while the content of adenine equals that of thymine [42]. Obviously, this rule
is a direct consequence of the complementary base-pairing in DNA described
above.

The Chargaff’s Parity Rule 2 states that complementary nucleotides are
met with almost equal frequencies in each of the two DNA strands [43]. In
other words, sufficiently long (> 100 Kb6) natural DNA sequence contains
approximately equal amounts of guanine and cytosine and approximately
equal amounts of adenine and thymine.
6 The length of a single-stranded nucleic acid is measured in the number of

nucleotides. The length of a double-stranded sequence is measured in base
pairs (bp), thousands of base pairs (kilobases, Kb), millions of base pairs
(megabases, Mb), or billions of base pairs (gigabases, Gb).
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Fig. 1.4 DNA double helix

It is known that relative amounts of A, G, T, and C bases in DNA molecules
from different species may be quite different. According to the Chargaff’s
Rule 2, it is sufficient to know the content of one nucleotide in a long ge-
nomic sequence in order to calculate the content of any of the other three
nucleotides.

This rule was shown to hold for DNA fragments from eukaryotic, eubacte-
ria, archaebacteria genomes [291], [189], [192], and also for oligonucleotides7

- it was found that if a sufficiently long (> 100 Kb) strand of genomic DNA
contains N copies of an oligonucleotide, it also contains N copies of the
reverse-complementary oligonucleotide (Albrecht-Buehler, 2006).

7 Oligonucleotides are short sequences of nucleotides.
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Fig. 1.5 Complementary base pairs in DNA

1.3 Functional Structure of DNA within the Cell

1.3.1 Genes

A gene is a segment of DNA (or, in some viruses, RNA) that has specific lin-
ear sequence of nucleotide bases and a certain definite location on one strand
of DNA (RNA). When the gene is in an active state (is being expressed),
a complementary RNA segment is synthesized on one strand of the DNA
helix; this process is called transcription (see Sections 1.3.2 and 1.4.2). The
resulting single-stranded RNA molecules may further participate in protein
synthesis, carrying information about the amino-acid sequences (see footnote
3 above). Alternatively, RNA molecules may be used as regulatory or struc-
tural elements of the cell. For example, there exist several types of ribosomal
RNA molecules (rRNA), which, being incorporated in ribosomes, direct pro-
tein synthesis, or about 20 types of transport RNA (tRNA) molecules, which
supply specific amino acids to the ribosome (see Section 1.4.2.3 and Fig. 1.10).
Accordingly, genes are classified as protein-coding and RNA genes. Thus a
gene may be defined as a segment of DNA sequence corresponding to one or
more proteins or to a single catalytic or structural RNA molecule.
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Below, we describe the structures of prokaryotic and eukaryotic genes in
“functional” terms, that is, with respect to the process of transcription.

1.3.2 Structure of Genes

1.3.2.1 Prokaryotic Gene

There are two essential facts that one should know about the process of
nucleic acid synthesis in a cell. First, for chemical reasons, the synthesis
always occurs in the 5′−3′ direction. Second, a complementary RNA molecule
is synthesized only on one strand of the double helix, which is called the
template strand.

Schematic structure of the prokaryotic gene is shown in Fig. 1.6. The pro-
cess of transcription is initiated in the region called promoter. The first re-
gion of the promoter that is recognized by the enzyme DNA-dependent RNA
polymerase is centered at the distance of about 35 bp before the start of
transcription. Since the 5′−3′ direction is referred to as upstream (the 3′−5′

direction being called downstream), we can say that it is located at -35 bp
upstream from the start. In those cases when the nucleotide sequence of a
DNA region varies, it is often possible to determine the so-called consensus
sequence with the highest frequencies of nucleotide occurrences in each po-
sition. The consensus sequence of the -35 bp region is TTGACAT. When
the RNA polymerase binds to both strands of DNA at this site, the tran-
scription is initiated. Next, the enzyme, moving along the DNA, finds the
so-called Pribnow box region (with the TATAAT consensus sequence), cen-
tered at about -10 bp upstream from the start. Here the two DNA strands are
separated and RNA synthesis starts on the template strand at the position
of about 7 bp downstream from the Pribnow box. The process of templated
polymerization guided by the RNA polymerase consists in the synthesis of
the RNA chain where each subsequent nucleotide base is complementary to
the corresponding base on the template DNA strand. As a result, in the tran-
scribed fragment, the sequence of the four DNA bases (A, C, G, and T) is
preserved in the sequence of the four RNA bases (U, G, C, and A), respec-
tively. The polymerization proceeds until the RNA polymerase meets the
stop (terminator) signal. In prokaryotes, two types of transcription termina-
tors have been discovered, one of them being a (G,C)-rich sequence with the
secondary structure of a hairpin loop (see Fig. 1.6), which acts as a hindrance
for the RNA polymerase further movement. The part of the DNA sequence
between the promoter and the terminator is, actually, the gene. The length
of prokaryotic genes ranges from about 250 bp to as much as 100,000 bp.

1.3.2.2 Eukaryotic Gene

Schematic representation of a eukaryotic protein-coding gene is shown in
Fig. 1.7. It can be immediately seen that the gene’s structure is much more
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Fig. 1.6 Schematic representation of the prokaryotic gene structure

complicated than that of a prokaryotic gene. First of all, eukaryotic genes are
not directly accessible to the RNA polymerase due to the compact structure
of the DNA-histone complex in chromatin (see Section 1.5). Several proteins,
the so-called transcription factors, which are attached to different promoter
regions, help the enzyme find its binding site on the promoter. Since, besides
the RNA polymerase, quite a few proteins are assembled on the promoter,
the latter has a complex structure, which includes the core (basal) promoter
(the TATA box, located about -30 bp upstream from the start of transcrip-
tion) and several upstream regions (the CAAT and GC boxes, which may be
located as far as -200 bp upstream). After the preinitiation complex of the
transcription factors with the RNA polymerase is assembled on the promoter
and the DNA strands are separated, the transcription is initiated. However,
still other proteins such as enhancers, which may be located far away along
the DNA strand, are required to control the efficiency and the rate of the pro-
cess. According to the universal mechanism of information flow from DNA to
RNA, the RNA polymerase moves along the coding DNA strand, using it as
a template for unidirectional (5′ − 3′ or downstream) polymerization of nu-
cleotides, guided by their structural and chemical complementarity. However,
while in prokaryotes the coding part of the gene is a continuous sequence,
the transcribed part of a eukaryotic gene consists of exons, separated by non-
coding DNA stretches, called introns. The 3′-end of the first exon serves as the
transcription initiation site, while at the 5′-end of the gene the transcription
termination signals are located. The RNA primary transcript (pre-mRNA)
undergoes a few steps of processing, in particular, splicing, which results in
the removal of introns. The mature mRNA contains the exons, and the total
of those exons or their parts that are translated into a protein sequence are
referred to as the coding part of the gene.

The length range of eukaryotic genes is much larger than that of prokary-
otes. For example, the length of histone genes is about 1,000 bp, while that
of the dystrophine gene is 2,500,000 bp.

1.3.3 Non-coding DNA

Natural DNA molecules usually contain a great number of genes aligned on
the DNA strand. However, the genes do not have the end-to-end alignment,
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Fig. 1.7 Schematic representation of the structure of a eukaryotic protein-coding
gene

being separated by intergenic sequences of various lengths. The DNA in these
sequences is referred to as non-coding DNA. In eukaryotic organisms, this
term relates both to the intergenic regions and to introns located within
genes. The fraction of non-coding DNA is different for various species, e.g.,
for most bacteria, it is about 10-20% of the total DNA length in the cell, while
in humans it amounts to as much as about 95%. It has been established by
now that non-coding DNA comprises:

different types of regulatory regions such as the above-mentioned en-
hancers;

transposons - DNA sequences that can move to different positions within
a single cell, in particular, causing mutations. In eukaryotes, transposons
amount to a large fraction of the total DNA;

pseudogenes - sequences remaining from ancient genes which have lost their
protein-coding function;

introns - although these sequences are not translated, they were shown to
have an effect on the produced proteins;

virus relics that once joined the cell DNA and have been conserved ever
since.

Although the non-coding DNA is being extensively studied, the function
of most of its part is not known yet.

1.4 Protein Synthesis in a Living Cell

1.4.1 Genetic Code

Now let us return to the conception of the DNA as a sequence of nucleotides,
which may contain one of the four bases - A, C, T, or G. Each nucleotide
can be regarded as a letter in a four-letter alphabet so that the DNA strand
may be viewed as a sequence of letters, i.e., as a text. As we have already
seen above, the information required for the synthesis of protein molecules is
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written in those parts of the text which correspond to genes. The building
blocks of a protein chain are amino-acid residues. The establishment of the
genetic code, i.e., the way in which the sequence of amino acids constituting
a protein is encoded in the sequence of DNA (and, thus mRNA) nucleotides
was a major breakthrough of the 20th-century molecular biology. It turned
out that the elementary unit that encodes one amino acid - codon - is a
sequence of three nucleotides. Obviously, if a nucleotide sequence is viewed
as a text, then a codon, being the elementary chunk of information, should
be considered as a word. The maximum possible number of different words
in the DNA “language” is 44 = 64 (it was shown that all of them are code
words). Taking into account the existence of twenty different amino acids,
it can be concluded that one amino acid may be encoded by more than one
codon, which is, actually, the case. There also exist start and stop codons,
which designate the beginning and the end of the amino-acid chain synthesis.
The genetic code is the same in most organisms; yet it is not universal since
in some cases (e.g., for the mitochondrial DNA) the code differs from the
canonical (standard one (see Table 8.1).

Table 1.1 The Genetic Code

Amino Acid mRNA codons

Alanine (Ala) GCA, GCC, GCG, GCU

Arginine (Arg) AGA, AGG, CGA, CGC, CGG, CGU

Asparagine (Asn) AAC, AAU

Aspartic acid (Asp) GAC, GAU

Cysteine (Cys) UGC, UGU

Glutamic acid (Glu) GAA,GAG

Glutamine (Gln) CAA,CAG

Glycine (Gly) GGA, GGC, GGG, GGU

Histidine (His) CAC, CAU

Isoleucine (Ile) AUA, AUC, AUU

Leucine (Leu) CUA, CUC, CUG, CUU, UUA, UUG

Lysine (Lis) AAA, AAG

Methionine (Met) AUG*

Phenylalanine (Phe) UUC, UUU

Proline (Pro) CCA,CCC,CCG, CCU

Serine (Ser) AGC, AGU, UCA, UCC, UCG, UCU

Threonine (Thr) ACA, ACC, ACG, ACU

Tryptophan (Trp) UGG

Tyrosine (Tyr) UAC, UAU

Valine (Val) GUA, GUC, GUG, GUU

Stop codons UAA, UAG, UGA

*) At the beginning of a gene, AUG has the function of the start codon.
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1.4.2 Flow of Genetic Information in the Cell

1.4.2.1 The Central Dogma of Molecular Biology

If both the DNA and the protein sequences are viewed as texts or, in other
words, as messages containing certain information, the question arises as to
the directions in which this information may be transferred within the cell.
The answer to this question was formulated by Francis Crick as a fundamental
principle (the so-called central dogma) of molecular biology. According to this
principle, the possible directions of information transfer are from nucleic acid
to nucleic acid or from nucleic acid to protein, but not from protein to protein
or from protein to nucleic acid (see the scheme in Fig. 1.8).

Fig. 1.8 Scheme illustrating the central dogma of molecular biology

In other words, this means that a nucleotide sequence can determine the
sequence of another nucleic acid or of a protein, but the sequence of amino
acids cannot determine the sequence of another protein or of a nucleic acid.

1.4.2.2 Information Transfer from Nucleic Acid to Nucleic Acid

The process in which DNA serves as a template to reproduce itself is called
replication (see Fig. 1.8, arrow 1). The two DNA strands are unwound and,
on each of them, a new strand is synthesized by the DNA polymerase enzyme,
which adds subsequent nucleotides complementary to those on the template
strand. In this way, two exact copies of the original double-stranded DNA
molecule are produced, which is the molecular basis of the amazingly con-
servative phenomenon of heredity - transmission of genetic information from
ancestors to descendants.

It has been mentioned above that some viruses (e.g., those causing hepati-
tis C and influenza) contain RNA as the store of genetic information. When
such virus infects a cell, it reproduces itself (replicates) through RNA syn-
thesis on the RNA template (Fig. 1.8, arrow 2). This process is catalyzed by
the RNA-dependent RNA polymerase (called also RNA replicase) enzyme.
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Fig. 1.9 Transcription

The process of transcription (Fig. 1.8, arrow 3), in which an RNA molecule
is synthesized on the DNA template, has already been described above (see
Sections 1.3.2 and 1.4.2 and Fig. 1.9. The subsequent processing of the pro-
duced RNA molecules may result in the formation of a messenger RNA
(mRNA), which further serves as a template for either the target-protein
synthesis, or structural and regulatory RNA such as ribosomal RNA (rRNA)
or transport RNA (tRNA). There also exists a group of RNA viruses which
are not capable of RNA replication. When the virus infects the host cell,
it uses the enzyme called reverse transcriptase to synthesize DNA using its
RNA genome as a template. The DNA which is produced via such reverse
transcription is integrated into the host’s genome, after which the virus can
replicate as part of the host cell’s DNA.

1.4.2.3 Information Transfer from Nucleic Acid to Protein

The process in which proteins are built according to the information en-
coded in the DNA (RNA) sequence can be described, in linguistic terms,
as translation of the nucleic acid text written by means of the nucleotide
four-letter alphabet into the protein text written by means of the amino-acid
twenty-letter alphabet. For this reason, the process of protein synthesis on
the mRNA template is called translation. The general features of this process
are the same for all species on Earth.
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Fig. 1.10 Translation

The DNA coding regions are not directly used as templates for protein
synthesis – instead, an intermediate molecule, which has the same sequence
of codons, is transcribed from DNA. The mature form of the transcript, mes-
senger RNA (mRNA), comes out of the nucleus into the cytoplasm and gets
attached to special organelles, ribosomes. Ribosomes may be called “molecu-
lar machines”, which take, as an input, an mRNA molecule and produce, as
an output, a sequence of amino acids (a protein chain). The number of ribo-
somes in a cell ranges from thousands in bacteria to hundreds of thousands
in human cells. mRNA molecules bind between the two ribosome subunits,
which are composed of proteins and several types of rRNA molecules, the for-
mer having mainly structural functions and the latter catalyzing the process
of translation. The codons on the mRNA do not overlap and they are sequen-
tially read from the start codon to the stop codon in the 5′ − 3′ direction.
Each consequent amino acid is put in its right position with the aid of an
adaptor molecule, transfer RNA (tRNA). Since there exist 20 amino acids
and still more codons (see above), there also exists a whole family of tRNAs,
each kind of tRNA having affinity with and thus binding to its specific codon
on mRNA. On the other hand, each type of tRNA has the corresponding
amino acid attached to the opposite part of the molecule. As the ribosome
moves along mRNA, specific tRNAs bind to the consecutive codons and their
attached amino acids are polymerized to form the encoded amino-acid chain.

1.5 Chromosome

In a cell, DNA molecules exist in the form of chromosomes, which are mainly
localized in the cell’s nucleus. A eukaryotic chromosome is a complex of one
continuous DNA molecule with numerous copies of several types of histone
proteins (or histones) and with many different non-histone proteins, most of
which are transcription factors.
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Table 1.2 Diploid number of chromosomes in some species

Species Diploid number of chromosomes

Rye 14

Human 46

Goldfish 104

In most prokaryotes, a single circular chromosome is organized by pro-
teins in a distinct structure within a restricted region, called nucleoid. Some
prokaryotes and a few eukaryotes have DNA molecules outside the chro-
mosomes in the form of plasmids - circular, double-stranded DNA frag-
ments, which replicate within a cell independently of the chromosomal DNA.
Mitochondria in eukaryotic cells also have their own DNA, packed in a
chromosome.

DNA molecules in chromosomes are very long. For example, in prokary-
otes, their length may range between a hundred to ten thousand kilobases,
which would correspond to the length of a stretched DNA of about 10−3–
10−1cm. DNA in eukaryotic chromosomes is still longer - for example, the
length of DNA is about 5 × 107 bp in the smallest human chromosome and
2.5 × 108 bp in the largest, which corresponds to the length of an extended
DNA molecule 1.7 and 8.5 cm, respectively. It would be most impressive to
imagine that if all the DNA in a single human cell were stretched end-to-end,
it would have the length of 2 m! Taking into account the average prokary-
otic and eukaryotic cell dimensions (see Section 1.1), one can understand why
chromosomes have a perfectly compact ordered (supercoiled) structure, main-
tained by histones (or, in prokaryotes, by histone-like proteins). The degree of
chromosome condensation varies with the cell’s cycle, reaching its maximum
in the phase of cell division, when individual chromosomes are visible in an
optical microscope. Historically, these had been discovered long before the
DNA era and, for the sake of convenience, designated by numbers or letters.
Later, these chromosome identifiers were also applied to the corresponding
DNA molecules. Thus one should keep in mind that the phrase “a gene in
chromosome 3” refers to the gene in the DNA molecule which, together with
proteins, forms chromosome 3.

The number of different chromosomes in the nucleus varies from one to
more than a hundred for different species (see Table 1.2). Most bacteria have
one main chromosome and a variable number of plasmids and their copies (in
some cases, the single main chromosome may also exist in multiple copies).
Those species which reproduce asexually have the same, specific for each
species, set of chromosomes in each cell of the organism. The same is true for
reproductive cells of sexually reproducing species (including humans), while
in all the other (somatic) cells each chromosome has its pair, so that the set
is doubled (a diploid set).
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1.6 Genome, Proteome, and Phenome

If we consider DNA molecules as nucleotide sequences, it becomes clear that
the same chromosomes in two different organisms of the same species do not
contain identical DNA sequences. Indeed, in a particular organism, each gene
can be represented by one of its possible variations (alleles), having varied
nucleotide sequences. Nevertheless, the total set of genes, which includes all
types of alleles, can be considered to be constant for the same species and
it is this set that is usually referred to as the species’ genome (e.g., human
genome). Sometimes, this term is used in the (narrower) sense of the set of
all genes of a particular organism. In this book, we employ the first of the
above genome definitions.

In different species, genome sizes can differ considerably. For example,
the size of the H. influenzae bacterium genome is about 1.8x106 bp (for
different bacteria, this value lies within the approximate limits of 0.5-5x106

bp), while the Homo sapiens (human) genome size is as large as 3.2x109 bp.
The number of genes in the genome also varies, though not so dramatically - in
our example, the number of genes is about 1,700 in the H. influenzae genome
and 25,000 in the Homo sapiens genome (in bacteria, the total number of
genes may range from 0.5x103) to 4.3x103).

According to Norman G. Anderson [12], genes give the general plan of
the cell’s structure and function, while proteins determine the actual active
life of the cell. In other words, life is realized at the level of proteins. The
estimated number of different proteins in a human body is about 300,000 or
more, which is 10 times larger than the total number of genes. This is due
to variations in the mRNA sequence which are introduced during the pre-
mRNA processing (as a result, a single gene may, actually, code for a variety
of proteins) and to post-translational modifications of proteins. Consider also
the innumerable interactions between the proteins and one can imagine the
measure of complexity of the cell’s (organism’s) protein system. To deal with
such systems, the notion of proteome is introduced by analogy with that of
genome. There exist a few proteome types, in particular, a cellular proteome
(the set of proteins in a particular cell type under particular conditions) or a
complete proteome (the complete set of proteins composed of various cellular
proteomes).

As we have seen above, each particular organism of the same species has a
different genome and thus a different complete proteome, which results in a
variety of traits that are characteristic of different individuals. A limited set
of observable traits (such as height, color of eyes, or blood group) is usually
called a phenotype. The set of all organism’s traits constitutes another level
of an organism’s description, which is referred to as phenome.

In conclusion, just as the genome and proteome relate to the sets of an
organism’s genes and proteins, respectively, the phenome relates to the com-
plete set of an organism’s phenotypic traits.



Chapter 2
Biological Classification

It is no secret that people are fond of classifying everything. Biology is no ex-
ception. It is a lot easier to study living beings if we have a system that sepa-
rates them into specific groups. There exist a lot of characteristics and methods
which can be used for the purpose of classification. In this book, we will dis-
cuss a number of classification methods based on genome sequences. However,
before we start describing these methods, it may be useful to illustrate a few
classic approaches to classification by the example of microorganisms.

Example 1. All prokaryotes may be grouped on the basis of their optimal
growth temperature (see Fig. 2.1). Four temperature groups are defined in
the literature:

• Psychrophiles - organisms that are able to grow at temperatures below
0◦C;

• Mesophiles - organisms that grow best between 10 and 30◦C;
• Thermophiles - organisms that grow best in hot conditions, between 30

and 50◦C;
• Hyperthermophiles - organisms that thrive in environments hotter than

60◦C, the optimal growth temperatures ranging from 80 to 110◦C.

Example 2. Another criterion for classifying bacteria may be their belonging
to the aerobic or anaerobic type. Those bacteria that require free oxygen to
support life are refered to as aerobic. Those bacteria that are able to live in
the absence of oxygen are called anaerobic. The latter are, in turn, divided
into the following three groups:

• Obligate anaerobes will die when exposed to atmospheric levels of oxygen;
• Facultative anaerobes can use oxygen when it is present;
• Aerotolerant organisms survive in the presence of oxygen, but they do not

use it as a terminal electron acceptor.

Example 3. Still other example is the empirical Gram classification system,
which is largely based on the differences in the structure of cell walls. These

A. Bolshoy et al.: Genome Clustering, SCI 286, pp. 17–22, 2010.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 2.1 Classification of species according to their growth temperature

differences can be visualized using the technique of Gram staining. Gram-
positive bacteria appear blue or violet under a microscope, while Gram-
negative bacteria appear red or pink.

2.1 Biological Systematics

Biological systematics studies the relationships of species starting from the
origin of life on Earth up to the present days. Obviously, prior to studying
such relationships, it is crucial to be able to properly describe these organisms
themselves. Just this is the objective of taxonomy, the science which describes,
identifies, classifies living beings and gives them appropriate names.

The Swedish biologist Carl Linnaeus, who lived in the 18th century, is
considered to be the founder of modern taxonomy. The Linnaean classification
system is organized according to a hierarchical principle and comprises the
following main taxonomic ranks or taxa (singular taxon):
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1) Kingdom; 2) Phylum (division); 3) Class; 4) Order; 5) Family; 6) Genus;
7) Species.

To identify each species, Linnaeus introduced binomial nomenclature,
which uses the combination of the genus and the species name. According
to the current rules,

• Names must be in Latin and printed in italics.
• The genus name (Homo in Homo sapiens) is capitalized and must be a

single word.
• The species name (sapiens in Homo sapiens) can be either a single word

or a compound word.

For example, Escherichia coli is one of several types of bacteria that nor-
mally inhabit the intestine of humans; Helicobacter pylori is a human gastric
pathogen, causing peptic ulcers; Mus musculus is the common house mouse.

Originally, two Kingdoms of living beings were distinguished by Linnaeus:
animals (Animalia) and plants (Vegetabilia). In the next classification sys-
tem, the highest rank of Domain was introduced, while Kingdom became
a subdivision of Domain. The first two-domain system classified life into
Prokaryota and Eukaryota. In 1990, Carl Woese suggested a three-domain
system, dividing all cellular forms of life into Archaea, Bacteria, and Eukarya
domains. Currently, Archaea and Bacteria are viewed as single-kingdom do-
mains, while Eukarya is subdivided into four kingdoms. The resulting six-
kingdom system (Animalia, Plantae, Fungi, Protista, Archaebacteria, and
Eubacteria) is widely used in the United States (Fig. 2.2). However, many
biologists still employ the five-kingdom system (proposed by R. Whittaker in
1969), where Archaebacteria and Eubacteria constitute one Prokaryota king-
dom. Obviously, this system is based on just two domains - Eukarya and
Prokaryota.

2.2 Phylogenetics

Phylogenetics1 is the study of evolutionary relationships among various
groups of organisms. In other words, this branch of biology deals with the
evolutionary history of living organisms and its results are usually presented
in the form of the so-called evolutionary or phylogenetic trees . Before the
Genomic Era, such trees were constructed by studying, analyzing, and com-
paring all kinds of organisms’ traits. In our days, phylogenetic trees are built
on the basis of the data on genomic sequences. Various types of molecular
biological sequence have been used to reveal the phylogenetic relationships
“across life”.

The first phylogenetic trees, which were built on the basis of DNA, RNA,
and protein relatively small conserved sequences [284], [285], enabled the

1 The word is of Greek origine: phyle - tribe, race + genesis - relative to birth.
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Fig. 2.2 A schematic representation of the three-domain (six-kingdom) phyloge-
netic classification system. (Image from: Purves et al. Life: The Science of Biology,
fourth edition. Sinauer Associates and WH Freeman)

researchers to establish the Universal-Tree-of-Life concept (Fig.2.3). Such
trees demonstrate the evolutionary process in the direction of the current
diversity of life. Each node in the tree corresponds, actually, to a taxonomic
unit and represents the most recent common ancestor for the species which
diverge from the node.

The overall structure of the Universal Tree of Life corresponds to the three-
domain classification system described above (see also Fig. 2.2). However, it
was found out later that, if various genome characteristics, such as specific
genes, rRNA-coding sequences, intergenic spacers, and even the number of
genes in the genome, were taken as a reference for taxonomic reconstruction,
quite different taxonomic relationships could be obtained [32], [33], [286]. For
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Fig. 2.3 Phylogenetic tree of life

example, Tekaia [246] assessed common ancestry by comparing the contents
of whole genomes, their overall gene similarities, and the loss or acquisition
of genes. The phenograms obtained in this work showed remarkable corre-
spondence with the standard ribosomal phylogeny. By contrast, Golding and
Gupta [91], on the basis of seven protein-coding genes, obtained a phylo-
genetic tree which could not be explained by the traditional three-domain
scheme. Lin and Gerstein [172] built whole-genome trees based on the pres-
ence or absence of particular molecular features in the genomes of a number of
microorganisms. The authors found that their phenograms agreed fairly well
with the traditional ribosomal phylogeny. However, phylogenetic distribution
for certain classes of protein folds, e.g., all-beta ones, was quite different (see
Chapter 7 for further discussion).

It should be noted that the efforts to classify organisms on the basis of
phenotypical traits do not always result in adequate phylogeny, either. The
closeness of phenotypical traits of some species appears to be connected not



22 2 Biological Classification

so much with their evolutionary closeness, but rather with the convergence on
the basis of a similar function or, speaking more generally, of a similar ecolog-
ical pressure. There exist numerous examples of such common-function-based
similarity, one example being a far-gone convergence between such taxonomi-
cally distant species as Cephalopoda and Fish. The convergence is manifested
not only through structure and physiology, but also through the role of these
species in the ecology and general biology of the ocean. In other words, as E.
Packard remarked, ”Functionally, cephalopoda are fish” [194]. The observed
dissimilarities in classifications based on the comparison of various genome
parameters may be interpreted in the same way. Namely, if the resulting clas-
sification can be assessed as a ”non-phylogenic”, it can be suggested that its
fundamental parameters are prone not to the evolutionary, but to other types
of changes. In the case of genomes, apart from the ”ecological factor”, the
direct exchange of genetic material (parallel transfer) should also be taken
into account.



Chapter 3
Mathematical Models for the Analysis
of Natural-Language Documents

In this chapter, we describe some models for studying natural-language docu-
ments which are useful for the analysis of DNA texts. Although most models
for analyzing natural languages had appeared before molecular texts could
be decoded, these models were not always employed directly, but rather dis-
covered afresh. The relevance of each model for language and molecular text
analysis may be different. Nevertheless, in order to properly understand the
ideas underlying the models, it is helpful to introduce, first, the models for
the analysis of natural-language documents.

3.1 Direct Comparison of Texts

3.1.1 Distance between Two Strings

The concept of the distance between two strings can be applied to a) the
search and processing of records in search engines based on the record names;
b) the search in database with an incomplete or ambiguous preset name; c)
the correction of input errors or those which appear in the course of automatic
recognition of scanned documents or recorded speech, and d) other tasks
connected with automatic text processing.

The general basic idea is defining the distance between two strings as the
number (perhaps, the weighted number) of specific operations which trans-
form one string into the other. The particular set of these operations depends
on the type of the process which generates ”close” strings. For example, if
the text is being typed, the dominant mistakes will be deletions or insertions
of letters, substitution of one character for another, and transpositions of
adjacent characters. In this case, the above-mentioned ”specific operations”
involved in constructing the distance between the correct and the typed texts
would be all the sources of mistakes. The distance defined in such a way is
called the Damerau-Levenshtein distance [55].

Consider the following example. The words distance and distanse differ
only in one substitution (s is substituted for c), thus the distance between

A. Bolshoy et al.: Genome Clustering, SCI 286, pp. 23–42, 2010.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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the words equals 1. The words distance and ditsanse differ in one substitution
and one transposition; as a result, the distance between the words is 2 if the
mistake weights are 1.

If transpositions are not included in the set of specific operations, the
resulting distance between two strings is referred to as Levenshtein distance
[167], which was introduced for binary codes. In contrast to this, the Jaro-
Winkler distance [283] is a measure of dissimilarity between two strings which
predominantly considers the number of transpositions in a string.

3.1.2 Text Identification as an Authorship
Attribution Problem

Authorship attribution is the task of identifying the author of a given text.
It can be considered as a typical classification problem, in which a set of
documents with known authorship is used for training, the final goal being
automatic determination of the author of an anonymous text. In contrast to
other classification tasks, it is not clear which features of a text should be
used to identify the author. Consequently, the main concern of the computer-
assisted authorship attribution problem is defining such evaluation of docu-
ments which would unambiguously characterize the authors’ writing styles.
Note that it is the style peculiarities and not the specific topic of the doc-
ument which is essential for such type of classification. Therefore, different
formal parameters have to be suggested for the authorship characterization.
For example, the Markov chains (originally referred to as “trials linked in a
chain”) were first used [182] to determine the peculiarities of vowel and conso-
nant distributions in the poem “Evgeny Onegin” by A.S. Pushkin. Currently,
the methods of authorship attribution based on the Markov chain approach
are still in use.

To sum up, each method of document identification can be viewed as
an ”authorship attribution” method; however, the methods based on term
similarities should be rather regarded as document classification methods.

3.2 Text Representation

Text representation is supposed to facilitate efficient data processing. A sig-
nificant variety of methods and data processing models have been developed
for this purpose. The common term used to refer to all these techniques is
data mining, which, in the context of this book, means:

• Extraction and convenient representation of the non-structured informa-
tion implied in the data;

• Processing of a great body of data for the purpose of pattern recognition;
• Detection of new significant correlations and tendencies in large bodies of

data;
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• Automatic extraction of efficient information out of large datasets;
• Analysis of the information in a database with the aim of detecting anoma-

lies and trends without decoding the record meaning.

As a rule, all these different models are based on the representation of a text
as a set of sensible and formal words, extracted from the text. The first model
built on the basis of this approach was the Bag-of-Word (BoW) model.

3.2.1 Bag-of-Words Model

The The Bag-of-Words (BoW) model is a popular method for represent-
ing documents, which is based on the idea that ”the frequency of word oc-
currence in an article furnishes a useful measurement of word significance”
(H.P. Luhn, The automatic creation of literature abstracts, IBM J Res Dev
2 (1958), pp. 159165). Although the differences in word frequencies are con-
nected with the content of a particular document, they all obey to the well-
known Zipfs law, which will be discussed in detail in Chapter 5.

The BoW model disregards the grammar and even the word order: for ex-
ample, two semantically different phrases - She is a pretty girl, isnt she? and
She isnt pretty, is she a girl? - are considered as the same text. Thus, in this
model, each document looks like a ”bag” which contains some words from
the dictionary. In the simplest case, only the presence/absence of particular
words in the document is considered, the resulting model being called ”bi-
nary”. In a sophisticated version of the BoW model, not only the presence of
the words, but also each words weight is taken into account. In this way, the
simple model, which considers a set of words, is transformed into a model,
which considers a set of word-weight pairs.

In the case of human-language documents, the whole dictionary of the
language appears to be excessive for processing a particular text, so the size
of the set of words in the dictionary, the so-called feature space, should be
reduced appropriately. The BoW model usually employs those meaningful
words of the language, which are characteristic of the document. H. P. Luhn
proposed the Keyword-in-Context (KWIC) indexing technique to discrimi-
nate between keywords and non-keyword terms, which he referred to as stop
words. There is no universal list of stop words since such a list must be
language-oriented. For example, the word the is one of the first candidates
to be included in the list of English stop words, while in French it is quite
meaningful (being translated as tea). The University of Glasgow published a
list of 319 English stop words, e.g. a, an, above, you, yet. Dividing the words
into meaningful and stop words should be also based on a deep expertise in
the corpus comprehension. For example, in the above-mentioned phrase - She
is a pretty girl, isnt she? - only the words girl and pretty should be regarded
as meaningful.
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Another possible way to reduce the feature space is to use stemming. This
term is related to the fact that almost every word has many morphological
forms. Consider the following examples.

Example 1. The phrases She isnt pretty and She is not pretty have different
number of words, but they are, obviously, the same phrases since the two
forms - isn′t and is not - should be considered as one form.

Example 2. Such words as computing, computable, computation, compute,
computes, and computed have the same linguistic root. Treating them as one
word in calculations of word occurrences improves document classifications
in almost all cases.

One can see, thus, that preprocessing in the BoW model is a complicated
task. Another, closely related model, sometimes called Bag-of-Tokens, is free
from this drawback. Instead of meaningful words, this model, discussed in
detail below, employs strings of letters, which neednt have any definite sense
(the so-called N -grams).

3.2.2 N-Gram Technique

Another technique which provides embedding a text document into a ‘”bag
of words” is the N -gram technique. An N -gram is a subsequence of N items
from a given sequence. N -grams are widely used in statistical natural lan-
guage processing. N -grams containing 1, 2, 3, 4, or N characters are referred
to as a unigram, a bigram (or a digram), a trigram, and an N -gram, respec-
tively. Perhaps, N -grams were first applied by Shannon [233] for compar-
ison of texts (it was also Shannon who introduced the term N -gram). He
considered a “discrete source generating the message, symbol by symbol”.
According to this concept, the source could be a text written in a natural
language, a continuous information source (e.g., speech), represented in a dis-
crete manner, or an abstract stochastic process which produces a sequence
of symbols. Shannon’s N -grams were viewed as formal words, not related to
their real meaning. Thus, if an object is described as a sequence over a given
alphabet, feature extraction can be performed in terms of its subsequences.
Shannon was interested in predicting the next-symbol expectancy in a se-
quence, provided the previous N letters were known. Formally speaking, the
N -gram model is intended to predict the identity of the next letter, say xi,
based on {xi−n} , n = 1, ..., N , i.e., to calculate the conditional probabil-
ity P (xi|xi−1, xi−2, ..., xi−N ). According to the independence assumptions,
characteristic of language modeling, a word depends only on the last N char-
acters in the alphabet. Such an assumption simplifies the learning problem
for a language model.

Depending on the domain of interest, the current methodology can employ
N -grams of different lengths. The effect of N -gram lengths is the subject of
considerable discussion in the literature. For instance, the Stores system [102]
uses the value of N = 3 because it yields the best selectivity in the search
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access rate. In some other systems, trigrams were also used to save memory
or disk accesses [3], while Cavnar [38] employed both bigrams and trigrams.
It was suggested that bigrams provided better matching for individual words
and trigrams gave better connections between words to recover phrase match-
ing. Cohen [47] and Damashek [54] used 5-grams, while Robertson and Willett
[212] used bigrams and trigrams (the choices not being justified in any way).
It is also possible to use initially N -grams and then (N − 1)-grams to im-
prove the results. In this way, Huffman and Damashek [114] and Huffman
[113] achieved a nearly 20% improvement of a corrupted text. Bigrams were
applied in combination with N -grams for Korean text retrieval, providing the
best 11-point average precision [165].

3.3 Geometrical Approach

3.3.1 Vector Space Modeling

The Vector Space model (VSM), also called the Term Vector model), was
introduced by Salton and his colleagues [223] as further sophistication of the
BoW and the N -gram models. It is the most commonly used approach to
text document classification. In the Vector Space model, any document is
represented as a point in an M -dimensional space, where M is the number of
items (the size of the term vocabulary). Thus, an algebraic model is obtained,
which embeds text documents into a coordinate space. For this purpose, a
set of terms should be selected, the definition of the term depending on the
application. Typically, the terms are single words, keywords, or longer phrases
and each coordinate corresponds to a separate term. If a term occurs in the
document, the value of the corresponding coordinate is non-zero.

To give a more accurate description of the model, consider the document
set D, which is represented by a term-document matrix A, where each col-
umn stands for a document and each item aij ∈ A stands for the weighted
frequency of term i in the document j::

A = [t× D] →
⎡
⎣
a11 ... a1N

... ... ...
aM1 ... aMN

⎤
⎦ ,

where N = |D| is the corpus size and M is the total number of terms. A
row of the matrix corresponds to a term furnishing the term relation to the
documents:

t′i =
[
ai1 ... aiN

]
,

while a column of the matrix,

dj =
[
a1j ... aMj

]
,
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corresponds to a document, furnishing the relation of the document to the
terms. The suite of the terms is predefined, e.g., it may be the set of all unique
words occurring in the document group. Boolean Vector models consider doc-
ument vectors to have merely zeros and ones as coordinates. Zero corresponds
to the absence of the attribute and one appears if the attribute is present. The
widespread model fine-tuning is performed through term weighting, which
takes into account the occurrences of the attributes (such as keywords and
key phrases), the frequencies of all the attributes in the document collection,
and their positions in the text (e.g., in the title, header, abstract, or text
body). Commonly, the following matrix is considered:

Ã =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩
ãij =

aij
M∑
l=1

a2
lj

, i = 1, ...,M, j = 1, ..., N

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
.

Indeed, the matrix C = Ã ∗ Ã′
, with the elements

C =

{
cij =

N∑
l=1

ãilãjl, i, j = 1, ...,M

}
,

contains the correlations between the terms within the documents. In the
same way, the matrix Ã

′ ∗Ã contains the correlations between the documents
over the terms. For instance, if two terms, i and j, occur in all documents
with the same frequencies, cij = 1.

The success of the above representation largely depends on the model of
term weighting (the values of the vector coordinates). In the simplest model
of such type, the term weight refers to the weighted word frequency in the
document. However, the latter value does not consider the frequency of the
term occurrence in all the documents of the sample, i.e., the discriminating
ability of the term. To eliminate this drawback, it was proposed to use the
so-called tf − idf (term frequency - inverse document frequency) weighting,
where the weight of word i in document j is proportional to the number of the
word occurrences in the document and inversely proportional to the number
of the documents (in the sample) in which the word occurs at least once.
This value provides a statistical measure for estimating the word significance
in a document and in a text corpus. The term significance increases with the
increase of its frequency in the document, but it must be related to the total
word occurrence (which tends to decrease the significance). Modifications of
the tf − idf weighting method are usually used by search engines. The value
of tf − idf is calculated by multiplying two expressions. The first expression
equals the relative frequency of the term i in the document j, namely,
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tfij =
aij
M∑
l=1

alj

,

where the denominator is the total occurrence of all terms in the document
j. The relative frequency is considered in order to prevent a bias towards
large documents, which can produce high frequencies of all terms regardless
of their actual importance. The second expression emphasizes the general
term importance and is evaluated using the inverse document frequency

idfi = log
N

ti(D)
,

where
ti(D) = |{dj ∈ D : ti ∈ dj , j = 1, ..., N}|

is the number of documents which contain the term ti (obviously, a positive
value). Finally,

tfidfij = tfij ∗ idfi.
A high value of tfidfij is caused by a high frequency of the term (in a par-

ticular document) relatively to its frequency in the corpus. Thus, this index
has a tendency to sort out common terms. The model does not differentiate
among dissimilar contexts, as it is unable to account for different meanings
that the keyword may have. On the other hand, the “cost” of this model is
not great as compared to the methods based on Latent Semantic Analysis
(LSA)(see below), which are usually costly for large dynamic text collec-
tions. Moreover, the tf -idf approach has the following advantages (which
make VSM an attractive method):

• It is capable of providing consequence ranking of documents of varied
types (e.g., texts, multilingual texts, images, audios, videos) according to
the requirement that the document features be well-defined.

• It can handle documents in different languages.
• The Information Retrieval process based on this approach can be per-

formed automatically .

On the other hand, VSM has the following drawbacks:

1. Big documents are imperfectly characterized since they have poor similar-
ity values.

2. Keyword choice should be precisely consistent with the significant docu-
ment vocabulary, otherwise, a ”false positive match” may occur.

3. The model is non-sensitive to the term order in the document.
4. Documents on similar subjects which consist of different word sets are

not recognized as being linked. This situation leads to a ”false negative
match”.
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3.3.2 Latent Semantic Analysis

One of the main problems associated with the classification of text documents
is the high dimension of the term space. The number of the words in a
relatively small sample may be as great as thousand hundreds, which leads
to low effectiveness of many standard classification methods. In this context,
the problem of reducing dimensionality becomes especially important. One
possible solution for solving this problem is provided by the Latent Semantic
Analysis (LSA).

LSA is a theory and technique for extracting context-depending word
meanings, performed through statistical processing of large text datasets
(which reduces the term-space dimension) [56]. In this method, the basis
for the analysis is the matrix of the term occurrences in the documents, A,
which is referred to as a term-document matrix . It is known that any rectan-
gular matrix A can be factored into a product of three matrixes, A = UΔV ,
so that the matrixes U and V consist of orthonormalized columns, while Δ
is a diagonal matrix of singular values. The product UΔV is referred to as
a singular value decomposition (SVD) of matrix A. Such factorization has
a remarkable property: if only k largest singular values are preserved in Δ
and only the columns corresponding to these values are preserved in U and
V , the product of the resulting matrixes yields the best approximation (in
the Frobenius norm) of the original matrix A by a k-rank matrix. It should
be noted that matrix A is usually an excessively sparse matrix because it is
built on the terms present in all documents. It may be useful to take into
account synonyms so that the number of zero elements in the matrix is re-
duced. Moreover, 3the primary term-document matrix is commonly noisy,
which results from the fact that many words can have multiple unrelated
meanings. Due to the fact that A is noisy and sparse it may be replaced by
a low-rank approximation.

Now let us describe, in a more formal way, the reduction of the term-
document matrix according to the LSA method.

The LSA approach considers the SVD of matrix A,

A = UΔV ′,

where

• U is an M -by-M unitary matrix containing the eigenvectors of AA
′
;

• V is an N -by-N unitary matrix containing the eigenvectors of A′A;
• Δ is a diagonal matrix with monotonously decreasing diagonal elements
δi

(see, for example, [108]).
A truncated (approximated) version of the SVD method , which results

from the biggest singular values of Δ, is given by
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Ak = UkΔkV
′
k.

This expression is based merely on the column vectors of U and the row vec-
tors of V ′, the rest of matrix A being disregarded. In the LSA method, this
transformation is considered as translating term-document vectors into a con-
cept space. Thus, the coordinates of each vector represent the occurrences of
the term in the concepts. Truncated representations of term ti and document
dj are designated as t̂i and d̂j , respectively. After projecting the documents
into the concept space, they can be compared with each other using a vector
similarity function. The most common measure for this comparison is the
cosine similarity, which is defined as

cos(d̂1, d̂2) =

〈
d̂1, d̂2

〉
∣∣∣d̂1

∣∣∣
∣∣∣d̂2

∣∣∣
. (3.1)

In summary, LSA is carried out in two steps - projecting and matching.
In the first step, the documents are translated by the matrix Uk into pseudo-
documents in the concept space. The result is weighted by the corresponding
inverse singular values, which means that, for a vector q, the translation must
be performed before q is compared with the document vectors in the concept
space:

q̂k = Δ−1
k Ukq. (3.2)

In the second step, similarities between the pseudo-document q̂k and the
documents in the concept space are calculated using a similarity measure.

The LSA technique [163] is intended to examine the relationships between
a document set and document terms through the construction of a concept
collection. Establishing such relationships is often Latent Semantic Indexing
(LSI ).

3.4 Text Classification Problem

Text classification is usually aimed at identifying the main topic of the text
or attributing the document to a certain field of knowledge. First, let us
introduce the general notions of the classification problem: given a set of
classes, C={C 1, C2, . . . Cj}, we seek to determine which class (or classes) a
given object, d ∈ X , belongs to (d is the description of the document and X
is the document space. Classes are also called categories or labels.

The classification problem could be solved in the framework of the Bag-
of-Words model, using the Bayes approach. However, we will consider the
problem for data organized in terms of VSM. In this case, the theory of
linear and non-linear classificators can be applied.
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3.4.1 Linear Classification

In the linear classification approach, each text object is represented by a vec-
tor in an n-dimensional space xi, i = 1, . . . , p. In the simplest case, each point
in the vector space belongs only to one of the two classes, say, to the first or to
the second class. The typical problem of linear discrimination is whether the
points can be separated by a hyper-plane wx = d, where w is a fixed vector
and x is the corresponding variable. Since such hyper-planes may be quite
numerous, it would be reasonable to assume that the maximization of the
gap between the classes facilitates the classification. In other words, we must
find a hyper-plane located at the maximum distance from the nearest point.
Such hyper-plane is called the optimal discriminating hyper-plane, while the
corresponding linear classification is called the optimal discriminating clas-
sificator. The problem of finding the optimal discriminating hyper-plane can
be reduced to minimizing the length of a certain vector w under the con-
dition (wxi) − d ≥ 1 if xi belongs to the first class or under the condition
(wxi) − d ≤ 1 if xi belongs to the second class. The choice of the condition
depends on which of the two sets to be discriminated the point xi belongs
to. Let εi equal 1 if the item with the index i belongs to one particular set
of the two sets under consideration and −1 if the same item belongs to the
other set. Thus, we have a square optimization problem

||w||2 → min,
εi((wxi) − d) ≥ 1, 1 ≤ i ≤ p.

3.4.2 Non-linear Classification and Kernel Trick

The method of linear classification can be extended to the case of non-linear
separability. The non-linear classificator was designed on the basis of the
so-called kernel trick , where standard scalar products are substituted by ar-
bitrary kernels, which allow to build non-linear discriminators. The resulting
algorithm is similar to that of linear classification, the only difference be-
ing the replacement of each scalar product in the above expressions by a
non-linear kernel function (a scalar product in a higher-dimensional space).

Kernel methods are applied in order to simplify the problem by map-
ping the source space into a certain new space. This procedure can result
in reducing a non-linear problem to a linear one. The kernel stands for the
similarity between two objects (documents, terms, string, N -grams, etc.) and
is expressed by means of the dot product in the new vector space. Formally
speaking, we attempt to embed a non-empty set (the domain) which the pat-
terns are taken from into a Euclidean higher-dimensional feature space, where
suitable distance concepts can be applied. First, the objects are mapped by
the function

φ : X → F ;x→ φ(x) (3.3)

and, subsequently, are evaluated by means of the dot product
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K(x, y) = 〈φ(x), φ(y)〉 . (3.4)

The dimensionality of the feature space F is typically much higher than
that of the input space X . However, the dimensionality of a manifold in-
habited by expanded input vectors cannot be higher than that of the input
space. For instance, if the input space is two-dimensional and the feature
space is three-dimensional, the two-dimensional manifold of the input space
is embedded in the three-dimensional feature space. For high-dimensional
feature spaces, the mapping into and the computations within the feature
space can result in a computationally difficult task. On the other hand, by
means of mapping, various inner products, in particular, feature spaces, can
be efficiently obtained. It is important to note that the feature space and its
inner product needn’t be taken into consideration because all calculations are
performed using the kernel function. The only requirement that the kernel
function must meet is the existence of an inner product in the consequent
feature space. In what follows, we present several well-known kernels.

3.4.2.1 Polynomial Kernels

Mapping from R2 into the feature space R6 is defined as

φ1 = 1;
φ2 = 2

√
x1; φ3 = 2

√
x2;

φ4 = x2
1; φ5 =

√
2x1x2; φ6 = x2

2.

Calculating the Euclidian inner product of the input vectors mapped into
the feature space, one obtains

K(x, y) = φT (x)φ(y) = 1 + 2x1y1 − 2x2y2 + x2
1y

2
1 − 2x1y1x2y2 + x2

2y
2
2 =

= (1 + xT y)2.

This mapping can be generalized to higher exponents in the following way:

K(x, y) = φT (x)φ(y) = (1 + xT y)n.

3.4.2.2 Radial Basis Function (RBF)

In this case, the kernel has the form

K(x, y) = exp

(
−‖x− y‖2

σ2

)
, σ > 0.

The geometrical interpretation of the polynomial and the RBF kernels is
presented in Fig. 3.1.
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Fig. 3.1 The geometrical interpretation of the polynomial and the RBF kernels

3.4.2.3 Sigmoid Kernel

Sigmoid kernel can be represented by

K(x, y) = tanh(γxT y + c). (3.5)

For γ > 0, γ and c can viewed as the scaling and shifting parameter of the
input data, respectively. If γ < 0, the dot-product is reversed.

Let K be a real symmetric function, i.e., K(x, y) = K(y, x) for any x, y ∈
X. The function K is a positive definite kernel if, for any s ≥ 1 and any
x1, .., xs ∈ X, the matrix defined by Kij = K(xi, xj) is positive definite, i.e.,

s∑
i,j=1

Kijcicj ≥ 0, (3.6)

for any real c1, .., cs. If the equality is reached only at ci = 0, i = 1, .., s,
the kernel is called strongly positive definite. It is well-known that (3.6) holds
if and only if K is a Mercer kernel [187]. A real symmetric function S is
negative definite if, for any s ≥ 1 and any x1, .., xs ∈ X,

s∑
i,j=1

S(xi, xj)cicj ≤ 0

for any real c1, .., cs such that

s∑
i=1

ci = 0.

The kernel is called strongly negative definite if the equality is reached only
at ci = 0, i = 1, .., s . Obviously, if K is positive definite, (−K) is negative
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definite, but the opposite does not generally hold. Note that the kernel (−S)
is often called a conditionally positive definite kernel. The connection between
the so-called infinitely divisible kernels and the negative definite kernels has
been discussed in the literature (see, for example [101]). A similar connection
is well known in calculus and in the probability theory (see, for example [7]
and [173]). A generalization of this relationship was considered in [273].

If f is the characteristic function of a symmetric distribution Q on R1,
then the function

K(xi, xj) = f(xi − xj)

is a positive definite kernel. Moreover, if Q is an infinitely divisible distribu-
tion (see, for example [173], part 11), f can be written as

φ(x) = − log(f(x)) = −∫ (cos(tx) − 1)
t2

ν(dt),

where ν is a finite symmetric measure on R1 and the kernel

S(xi, xj) = φ(xi − xj)

is negative definite (see, for example [177]). In particular, functions of the
type

φ(x) = ‖x‖r, 0 < r ≤ 2

produce negative definite kernels, which are strongly negative definite if 0 <
r < 2. The case of r = 2 corresponds to the Gaussian law.

It is important to note that a negative definite kernel, S2, can be obtained
from another negative definite kernel, S1, through certain transformations,
for example: N2 = Sα

1 , 0 < α < 1 and S2 = ln(1 − S) [227].

3.4.3 Kernel N-Gram Techniques

A group of kernel functions which are defined on feature vectors obtained
from strings is called string kernels [280], [101]. These kernels are based on
the features derived from the occurrences of specified string subsequences.
There exist contiguous and non-contiguous kernels, which have bounded and
unbounded lengths, respectively.

3.4.3.1 N-Spectrum Kernels

It has been shown above that each string over an alphabet A can be described
by its possible contiguous substrings of length N , i.e., by means of N -grams.
Each sequence of letters defines a certain frequency distribution on a given
N -gram set, each frequency corresponding to a particular N -gram occurrence
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in the sequence S. This distribution can be considered as a vector of a certain
vector space. As a result, each string S over the alphabet A is mapped into
an N -gram feature space A(N) through the feature map

Φ(S) = {φu(S)} =
{
number of occurrences of u ∈ A(N) in S

}
.

This conversion makes it possible to compare the sequences in an efficient
way and consider each string as an item depicted by its coordinates indexed
in the N -gram space A(N). The similarity between two strings, S1 and S2, is
defined by

K(S1, S2) = 〈φu(S1), φu(S2)〉 .
Another kernel version is created by assigning binary values, 0 or 1, to the

coordinates depending on the presence of the appropriate N -gram.
In the N -gram approach, the feature space has a very high dimension even

for fairly small values of N . At the same time, the feature vectors are sparse
because, for each string S, the number of non-zero coordinates is bounded
by the value length(S) −N + 1 (which equals the total number of N -grams
in the sequence S). This property makes it possible to efficiently calculate
kernel values. The suffix tree for N -grams occurring in S1 and S2, which
is obtained by moving an N -length sliding window across S1 and S2, is a
powerful tool facilitating the determination of the similarity between S1 and
S2. The suffix tree can be created in time O(N ∗ length(S)), which is linear
both in S and N , according to the algorithm proposed in [263]. It is possible
to build a suffix tree for all considered sequences simultaneously and handle
all the kernel values in one traversal of the tree.

Let us consider the following simple example. Let the alphabet A consist
of four letters: A = {A, T,C,G}. The short sequences S1 = ACCGGC and
S2 = AACCTGGC are compared using 3-grams (N = 3). These sequences
are mapped onto the feature spaces

Φ(S1) = {ACC,CCG,CGG,GGC}

and
Φ(S2) = {AAC,ACC,CCT,CTG, TGG,GGC} .

In view of the fact that the 3-gramsAAC and GGC appear in both sequences,
we get

K(S1, S2) = 2.

Applying the above transformation, we lose, evidently, certain information
about the strings. Generally speaking, this technique may lead to a complete
loss of information. For example, given the alphabet {a, b, c}, both strings
”bcacb” and ”cacbc” produce exactly the same 2-grams.
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3.4.3.2 N-Weighted Subsequence Kernels

Feature space can be indexed by all elements of A(N). For a given sequence
S = {si, i = 1, ..., N}, we introduce an increasing sequence of indexes
i = {it, t = 1, . . . ,m,m ≤ N} and designate

s(i) = {sim , i ∈ i} ∈ A(m).

Note that this sequence is not necessarily contiguous. For instance, if S =
ABCDE and i = [1, 3, 5], S(i) = ACE. If we denote by l(i) the length
generated by S(i), then

l(i) = im − i1 + 1.

It can be seen that the length l(i) includes both matching symbols and gaps.
The gap-weighted feature map is defined as the sum of gap weights of the
N -gram occurrences, u, in a (non-contiguous) subsequence of S. If the gap
penalty is denoted by λ and the weight of the length penalty is λl(u), we
obtain the following expression for the gap-weighted feature map:

Φ(S) = {φu(S)} =
{

i:u=S(i)λ
l(u)

}
.

All possible subsequences of N symbols are being matched to one another
even if these subsequences are not consecutive and each considered subse-
quence is “discounted” by its total length. The decay factor is applied to the
gaps and to the matching symbols. So, if λ equals 1, the gaps are not taken
into account when the value of the feature is calculated. If λ is 0.5, each gap
symbol results in dividing the feature value by 2. To keep the kernel values
comparable for various values of N and to make them independent of the
string length, the normalized version of the feature map can be used:

K̂(S1, S2) =
K(S1, S2)√

K(S1, S1)K(S2, S2)
.

The normalized feature map is, actually, an extension of the “cosine normal-
ization” (3.1).

Example 1. Let

• A = {A, T,C,G};
• S1 : TTCGGAGAGTGTG;
• S2 : CTCTATCG.

It is easy to see that S1,CAT = 2
(
λ8 + λ10

)
and S2,CAT = λ4. Hence ,

K(S1, S2)CAT = 2λ4
(
λ8 + λ10

)
.

Example 2. This example is taken from [36]. Let

• A = {A, T,C,G};
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• S1 : CATG;
• S2 : ACATT .

For N = 3, we obtain:

u φu(S1) φu(S2) u φu(S1) φu(S2)
AAT 0 λ4 + λ3 CAG λ4 0
ACA 0 λ3 CAT λ3 λ3 + λ4

ACT 0 λ4 + λ5 CTG λ4 0
ATG λ3 0 CTT 0 λ4

ATT 0 λ3 + λ5 others 0 0

The fact that the only feature for which both sequences have non-zero
values is CAT leads to the following expression:

K(S1, S2) = λ3
(
λ3 + λ4

)
.

On the one hand, direct calculation of the above-mentioned kernels cannot be
performed even for small values of N ; on the other hand, it employs a more
efficient recursive dynamic-programming approach [174]. Another efficient
algorithm [217] is based on the following reasoning. Let us suppose that the
value of the kernel for two strings S1 and S2 is already known. How can we
calculate K(S1 ∪ {x}, S2) for a particular x ∈ A? It is easy to see that

• All subsequences common to S1 and S2 are also common to S1 ∪ {x} and
to S2.

• All new matching subsequences ending in x which are present in S1 and
whose (N − 1)-symbol prefix is found in S1 (possibly non-contiguously)
must be taken into account.

The proposed recursive implementation can be summarized in the following
way:

• K
′
0(S1, S2) = 1 for all S1 and S2;

• K
′
i(S1, S2) = 0 if min(length(S1), length(S2)) < i (i = 1, ..., N − 1);

• KN(S1, S2) = 0 if min(length(S1), length(S2)) < N ;
• K

′
i(S1 ∪ {x} , S2) = λK

′
i(S1, S2) +j:S2,j=x K

′
i−1(S1, S2[1 : j − 1])

λlength(S2)−j+2 (i = 1, ..., N − 1) ;
• KN(S1 ∪ {x} , S2) = KN (S1, S2) +j:S2,j=x K

′
N−1(S1, S2[1 : j − 1])λ2,

where S2[1 : j−1] is a substring of S2 composed of the items in the positions
from 1 to j− 1 and S2[j = x] is a subsequence of S2 in which x is the jth ele-
ment. The complexity of this computation is O(N ∗ length(S1)∗length(S2)2).
In the case of Example 2, we obtain:
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u S1 S2 u S1 S2

AA 0 λ5 GA 0 0
AC 0 λ5 GC 0 0
AG λ3 0 GG 0 0
AT λ3 2(λ3 + λ5) GT 0 0
CA λ4 λ4 TA 0 0
CC 0 0 TC 0 0
CG λ4 0 TG λ2 0
CT λ4 2λ4 TT 0 λ2

Note that the feature u = CT leads to the value 2λ4 for the string S2 =
ACATT . This results from the fact that the two occurrences of u begin in
the second symbol C which is located at the distance of four symbols from
the end of t. Thus,

K
′
2(CATG,ACATT ) = 2λ6 + 5λ8.

3.4.4 Euclidean Embeddings

Euclidean embeddings, similar to Lipschitz [105] and Bourgain [27] embed-
dings (the latter being an important special type of the former), offer an
alternative tool for mapping of non-Euclidean metric spaces into Euclidean
spaces. In this way, each object is associated with a Euclidean vector, such
that the distances between the items are related to Euclidean distances be-
tween the object images. Euclidean embeddings provide a means for decreas-
ing extensive retrieval time when the estimation of dissimilarities appears to
be computationally “expensive” in the source space.

Let us consider a distance function DX defined on a space X:

DX : X ×X → R+ .

Obviously, the following extension can be performed: if R is a subset of X,
then

DX (x,R) = min
r∈R

{DX (x, r)}

is the distance from x ∈ X to its closest neighbour in R. Given a subset R,
a simple one-dimensional Euclidean embedding is defined as

FR(x) = DX(x;R).

The set R is called a reference set. If R consists of a single object r, this
object is usually called a reference or a vantage object [105]. If DX satisfies
the triangle inequality, FR transforms close points in X into close points on
the real line. Quite often, DX disobeys the triangle inequality for some object
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triples. However, FR can still transform close points in X into close points
in R, at least, in most of the cases [14]. Unfortunately, far-away items can
also be transformed onto nearby points, while multidimensional embedding is
unlikely to produce such an effect. It is possible to select n different reference
sets {R1, R2, ..., Rn} and consider the embedding

F (x) =
{
FR1(x), FR2 (x), ..., FRn(x)

}
,

which is referred to as Lipschitz embeddings. Transformations of this kind
are, obviously, highly non-linear and can hardly be intuitively interpreted.
However, some information can be obtained if the points of X are close to
each other and constitute well-separated clusters. In this case, if a point
of a reference set R belongs to cluster C1 and does not belong to cluster
C2, DX (x,R) is relatively small for x ∈ C1 and relatively large for x ∈
C2. Thus, the coordinate induced by R accounts for large distances between
the points belonging to C1 and those belonging to C2. Obviously, we cannot
consider the set X as a union of well-separated sets arranged like a distinct
cluster pattern. Bourgain [27] demonstrated that there exists a reference set
collection which is suitable for general inputs. According to this approach,
reference sets are selected and the corresponding embedding is performed
by means of a randomized procedure. The suggested reference collection R
includes O(log2 |X|) sets Xij , which can be represented as a table organized
into columns and rows in the following way:

X11 = {x11,1 , x11,2} X12 = {x12,1 , x12,2} ... X1k = {x1k,1 , x1k,2}
X21 = {x21,1 , ..., x21,4} X22 = {x22,1 , ..., x22,4} ... X2k = {x2k,1 , ..., x2k,4}

....................... ........................ ... .......................

Xβ1 = {x
β1,1 , , ..., xβ1,2β

} Xβ2 = {x
β2,1 , ..., xβ2,2β

} ... Xβk = {x
βk,1 , ..., xβk,2β

}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
β

Here, k = β = O(log2 |X |).
In the above table, each set Xij is a random subset of X of size 2i, j =

1, ..., k. Thus, we obtain reference sets of sizes 2, 4, etc., up to the size of
approximately |X| and the Bourgain embedding peaks at O(log2

2 |X|) dimen-
sions. Bourgain embeddings have the advantage of minimizing the maximum
stretch of preset distances (the embedding distortion). Namely, if R is selected
as described above, the corresponding embedding distortion is O(log |X|).
Indeed,

D(xi, xj) ≤ C log2 |X| ∗ ∥∥FR(xi) − FR(xj)
∥∥

and

D(xi, xj) ≤
∥∥FR(xi) − FR(xj)

∥∥
C log2 |X|

for each pair (xi, xj) and a certain constant C > 0, ‖∗‖ being an Euclidian
metrics. The log2 |X| bound is tight in the sense that there exist spaces X
where smaller distortions cannot be achieved.
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Let us consider an example of the Bourgain embedding in which |X| =
{x1, x2, ..., x8} and the distances between the points are specified as

x1 x2 x3 x4 x5 x6 x7 x8

x1 0 10 9 8 7 6 5 4
x2 10 0 8 12 10 10 10 8
x3 9 8 0 10 12 8 9 5
x4 8 12 10 0 5 8 11 12
x5 7 10 12 5 0 10 11 12
x6 6 10 8 8 10 0 8 9
x7 5 10 9 11 11 8 0 11
x8 4 8 5 12 12 9 11 0

According to the Bourgain approach, 6 reference sets must be created at
random in such a way that 3 sets have 2 elements each and the other 3 sets
have 4 elements each. For instance, one can select

x1, x2 x3, x4 x5, x8

x2, x4, x6, x7 x1, x5, x7, x8 x3, x4, x5, x6

As an example, let us compute the embedding of x1 and x2:

FR(x1) =
0 8 4
5 0 6

, FR(x2) =
0 8 8
0 8 8
.

It follows from the above that
∥∥FR(x1) − FR(x2)

∥∥ ≈ 10.44.

The original distance between x1 and x2 is 10. Bourgain embeddings have
some serious drawbacks, namely:

• The number of dimensions, O(log2
2 |X|), produced by the embeddings is so

large that the computations become very “expensive”. For instance, a set
X of size 1024 links to 100 dimensions.

• It is highly probable that each item of X can be selected in some reference
set; as a result,

(|X|
2

)
distances must be calculated in order to construct

the embedding.

A heuristic embedding, SparseMap simplification [110], decreases the embed-
ding time by computing only O(log2

2 |X|) distances for each entity. Another
way of enhancing the embedding efficiency is using a relatively small random
subset X′ ⊂ X and choosing O(log2

2

∣∣∣X′
∣∣∣) reference subsets. Thus, any item is

mapped by calculating its distances from each object of X′ [13]. In this case,
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the embedding is optimal only for the objects belonging to X′ and may not
be optimal from the point of view of distortion in the entire set X. Although
the Bourgain embedding may be optimal, it is not necessarily superior to
other methods. However, the worst-case bound on the distortion is not very
tight and is not realized in actual applications.



Chapter 4
DNA Texts

4.1 DNA Information: Metaphor or Modus Operandi?

Throughout the history of mankind, its thinkers have speculated that, within
the sperm or egg, there exists a “draft” which ensures the development of a
frog from a frog egg and a human beeing as an offspring of humans. It may
have been Erwin Schrodinger who first coined the term “code” in the context
of heredity in his extremely influential book “What is life?” [228]. He wrote,
“It is these chromosomes, or probably only an axial skeleton fibre of what we
actually see under the microscope as the chromosome, that contain in some
kind of code-script the entire pattern of the individual’s future development
and of its functioning in the mature state. Every complete set of chromosomes
contains the full code; so there are, as a rule, two copies of the latter in the
fertilized egg cell, which forms the earliest stage of the future individual. In
calling the structure of the chromosome fibres a code-script we mean that the
all-penetrating mind ... could tell from their structure whether the egg would
develop, under suitable conditions, into a black cock or into a speckled hen,
into a fly or ... a woman. But the term code-script is, of course, too narrow.
The chromosome structures are, at the same time, instrumental in bring-
ing about the development they foreshadow. They are law-code and executive
power -or, to use another simile, they are architect’s plan and builder’s craft
- in one.” Watson and Crick [281] suggested that “the precise sequence of the
nucleotide bases in the code carries the genetical information.” This hypoth-
esis brought about, in 1950s, the emergence of cybernetics and information
theory. This theory formulated the scientific principle which holds that a se-
quence of a limited assortment of building blocks, represented by letters in
a text, can carry one or more messages. From this time on, the fundamental
processes of life have been described as information storage, copying, and
transfer. Yockey [289] noted that the genetic information system is similar to
the algorithmic language used in computers in that this system is segregated,
linear, and digital.

A. Bolshoy et al.: Genome Clustering, SCI 286, pp. 43–60, 2010.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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In many fields of computational biology, a DNA sequence (otherwise named
DNA primary structure) is considered as a plenipotentiary representative
of a DNA molecule. Is it the Absolute Truth, almost the Truth or just a
metaphor? (This question resembles the title of Mikhail Gelfand’s article
[89].) On the one hand, the DNA is commonly referred to as an information
storage or an information carrier. On the other hand, scientists from various
fields doubt the appropriateness of such borrowings in molecular biology, ar-
guing that the genome information content cannot be assessed since the key
parameters (e.g., signal, noise, message, channel) cannot be properly quan-
tified [136]. Linguists hold that the DNA text lacks such language features
as phoneme, punctuation marks, and intersymbol restrictions. Informaticians
do not accept the applicability of entropy-oriented information measures to
living entities. Statisticians wonder whether Markov models are applicable to
nonrandom sequences of nucleotides, etc.

The discussion of these interesting issues is out of the scope of our book.
However, because the main purpose of this section is clarifying our modus
operandi 1 in dealing with the DNA text, we could not avoid some elaboration
on the topic.

Similar to other computational biologists, we consider the DNA sequence
to be fully “qualified” to carry all genetic information, be it actually the truth
or just a metaphor. A DNA sequence presented as a string over the alphabet
A, C, G, T is called a DNA text.

In this book, by “DNA text” we often mean a genome (see Section 1.6)
or a fragment of a genome. Namely, a genome is the complete collection of
hereditary information “coded” as a certain sequence of DNA nucleotides.
The fact that DNA is a linear biopolymer allows us to assume that a linear
text serves as a rather adequate presentation of a DNA molecule from the
informational point of view. The DNA text is written using the alphabet
of four letters A, C, G, T; consequently, a genome is a long text over this
alphabet.

There are a lot of different meanings of the term “text”. According to one
definition, “Text is an arrangement of symbols in groups to express defined
and recognized meanings”. In the case of information encoded in DNA se-
quences, we would rather avoid the term “meaning” and replace it by the term
“instruction”, which is defined for and recognized by different “receivers”. A
CNC program is an example of a text that is a stream of instructions to
be performed by a machine. This stream of symbols is converted into a set
of defined instructions for the machine tools to perform certain defined op-
erations. So, we would rather reformulate the general text definition in the
following way: “A DNA text is an array of symbols designating DNA basic
elements, nucleotides. The symbols arranged in groups provide definite and
recognizable instructions.” These instructions are destined to rather different
“reading devices” (some of them were mentioned in Chapter 1). For example,
1 Modus operandi is a Latin phrase, which means “method of operating or func-

tioning”.
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we may say metaphorically that a ribosome gets an instruction to translate
a fragment of a DNA text into a string over the alphabet of 20 amino acids.
Actually, a ribosome gets, as an input, a fragment larger than the piece to
be translated, and recognizes the symbol where the translation should start
(it means that a ribosome reads and interprets the instruction designating
the start of translation). Another example is promoter recognition by RNA
polymerase, which receives instructions about the location of the transcrip-
tion starting point distributed in a pretty fuzzy way due to the involvement
of quite a few transcription factors (see Chapter 1). Such instructions are
sometimes called “biological codes” [257].

4.2 DNA Language: Metaphor or Valid Term?

In this section, we are going to discuss the term “language” together with the
previously suggested term “text” with reference to DNA. Indeed, it would
be natural to relate any text to the language that the text is written in.
However, there is no definition of the term “language” that would be equally
applicable to all its modern usages. The reason for this lies in the wide ex-
pansion of the number of objects that this term is applied to: language of
bees, dolphins’ language, programming language, queries language, DNA lan-
guage, etc. Consequently, one can find quite a few different definitions of the
term. Linguists define a language “as a system of visual, auditory, or tactile
symbols of communication and the rules used to manipulate them”. Mathe-
maticians define a language “as a set of strings over the given alphabet A,
including an empty string ε∅”. A formal language is often defined “as a full
set of character strings produced by a combination of formal grammar and
semantics of arbitrary complexity”. A programming language is a formal lan-
guage that can be used to control the behavior of a machine (for example, a
computer) in order to get it perform specific tasks. Programming languages
are defined on the basis of syntactic and semantic rules.

Sometimes, we prefer to describe a language without introducing any for-
mal grammar which would generate the strings of the language. For example,
pattern grammars2 present a way of language description. Here, we use “pat-
tern description” in a rather informal way, considering a pattern as a string
of characters which describes the way the strings should be generated. For
example, denoting by α and β two arbitrary strings over the alphabet A
(α, β ∈ A∗), one can define the pattern P1 = αY Ŷ αβ, where Y is a short
string (Y ∈ A∗ & |Y | < K) and Ŷ is a string similar to Y. Two strings
are considered similar if the distance between them is less than a certain
predefined threshold ε (Y ∈ A∗ & dist(Y, Y ) < ε).

2 Pattern grammar is a corpus-driven approach to English lexical grammar [115].
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4.3 Formal Grammars

A formal grammar (G) defines (or generates) a formal language (L), which
is a (possibly infinite) set of strings (L(G) ⊆ A∗). A formal grammar of this
type consists of

• a finite set A of terminal symbols (an alphabet, which is usually represented
by lower-case letters);

• a finite set N of non-terminal symbols (usually represented by upper-case
letters);

• a finite set P of production rules, which determine the rules by which the
string are created, namely: α→ β, where α, β ∈ (N ∪A)∗;

• a start symbol Si;
• A ∩N = ∅.

Thus, the language is a set of strings which is generated by applying pro-
duction rules to a sequence of symbols which initially contains only the start
symbol. A rule may be applied to a sequence of symbols by replacing the
symbols on the left-hand side of the rule with those that appear on the
right-hand side. A sequence of rule applications is called a derivation. Such
a grammar defines a formal language of all the words consisting solely of
terminal symbols; the language can be constructed by a derivation from the
start symbol.

4.3.1 Examples of Formal Languages

Example 1. Let A be the set {a,b} of terminal symbols, N be the set {S,A,B}
of non-terminal symbols, S be the start symbol, and ε be the empty string.
Seven production rules are introduced:

S → ABS;S → ε;

BA→ AB;BS → b;Bb→ bb;

Ab→ ab;Aa→ aa.

It can be shown that such a grammar defines the language of all words of the
form anbn (i.e., n copies of a followed by n copies of b).

Example 2. Let A be the set {a,b} of terminal symbols, N be the set {S} of
non-terminal symbols, and S be the start symbol. Two production rules are
introduced:

S → aSb;S → ε.

Similar to Example 1, such a grammar defines the language of all words of
the form anbn, but does so in a far more natural and simple way.

Example 3. Let A be the set {a,b, c} of terminal symbols, N be the set
{S,A,B} of non-terminal symbols, and S be the start symbol. Five production
rules are introduced:



4.3 Formal Grammars 47

S → B,A→ a,A→ ac,B → b,D → cb.

In such a grammar, there exist only 4 valid derivations:

(1) S → B → aB → ab;

(2) S → AB → aB → acb;

(3) S → AB → acB → acb;

(4) S → AB → acB → accb.

In this case, the language L produced by means of the grammar G is

L(G) = {ab, acb, accb}.

By the way, there are two derivations for the string acb.

4.3.1.1 Examples of Pattern Languages That Are Not Produced
by Formal Grammars

Example 4. Let A be the set {a, b, c, d}, N be the set {X,Y }, X and Y being
variables. Let R be the pattern X2aY 2bXY cd.

The production rule is: replace X and Y by any nonempty strings from
A∗ (all the occurrences of the same variable must be replaced by the same
chosen string of terminal symbols).

The following strings belong to the defined languageL(R): ddaccccbdcccd ∈
L(R) (replacements: X → d;Y → cc); a7b3a3bcd ∈ L(R) (replacements:
X → a3;Y → b), etc.

Example 5. Let A be the set {A, G, C, T}, N be the set {X, Y}. The pro-
duction rules are:

X → α, α ∈ A∗, |α| ≥ k1;Y → β, β ∈ A∗, |β| ≤ k2.

Let pattern R be the pattern XY YmirXpal, where Y mir is the mirror of Y
or, in other words, the string Y rewritten from right to left. Let Xpal be a
palindrome string obtained from X by rewriting it from right to left with
simultaneous complementary substitutions (A → U,U → A,C → G,G →
C). In the case of k1= 6, k2 = 4, the pattern R produces stem-loop structures
with symmetric loops3 (see Fig. 4.1).

In 1993, a pattern language, PALM, was proposed to describe the patterns
of the sequences dealt with in molecular biology [103]. There were a few

3 Stem-loop intramolecular base pairing is a pattern that can occur in a single-
stranded DNA or, more commonly, in RNA. The structure is also known as
a hairpin. It is observed when two regions of the same molecule base-pair to
form a double helix that ends in an unpaired loop. The resulting lollipop-shaped
structure is the key building block of many RNA secondary structures.
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Fig. 4.1 Examples of stem-loop structures with symmetric loops

attempts to invent formal grammars of DNA languages (reviewed by Collado-
Vides [49], [50], [51] and by Searls [230], [231], [232]). It seems, though, that
the corpus-driven approach is more naturally applicable to the case of DNA
languages. This approach is based on corpus compilation, which, in turn,
requires understanding of the DNA language words.

4.4 Evolution of DNA Texts

In this section, we discuss the question of how DNA (genetic) texts have
originated. The origin of all kinds of texts that appear in human society is
obvious and trivial: they are written by human beings. It can be added that
computer texts may also be considered as written by “human machines” and
we are not going to expand further on this issue. Instead, let us ask a provoca-
tive question: “Who writes genetic texts?” Since the time of Darwin, it has
been acknowledged that “it is Evolution that writes genetic texts”. Of course,
Darwin and Mendel were not able to formulate the mechanisms of evolution
as we understand them now, but they laid the basis for this, introducing
the fundamental conceptions of evolution and genes. The modern molecular
evolution theories claim that the original genetic texts, which existed billions
years ago, have been evolutionary changed since then. The common way to
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formulate the idea of the molecular evolution is to say that ”Evolution is an
adaptive process which transforms the genetic texts of organisms in such a
way that they become more adapted to the environment they live in”.

Evolution writes genetic texts according to certain laws, which are essen-
tially different from those of the texts written by people. It can be said that,
in the framework of these laws, not a single genetic text is written de novo;
instead, one text is transformed to another by means of insertions, deletions
or substitutions of letters as well as by transpositions of relatively large text
fragments. Insertions and deletions are collectively referred to as indels . A
fragment of one text may also be inserted into another text, the mechanism
being referred to as gene transfer . Possibly, there exist still other mechanisms
of genetic text transformations.

It should be emphasized that Evolution “rewrites” genetic texts very
slowly: for example, in a human genome, approximately one nucleotide is
changed (through a substitution, deletion, or insertion) in a year.

Below, we describe, the mechanisms of the genetic text evolution in more
detail. The basic assumption is that every genetic text has at least one im-
mediate predecessor (“at least one” means that one text can be generated
from different predecessors by different series of elementary transformations).
Currently, it is generally accepted that all modern genetic texts (the genomes
of all living organisms on Earth) are descendants of a common ancestor. This
idea was first formulated by Charles Darwin in The Origin of Species (1859)
in the following form: ”. . . probably all of the organic beings which have
ever lived on this earth have descended from some one primordial form, into
which life was first breathed.” However, at present, there is a controversy as
to whether there was a single common ancestor or more. In any case, all
genetic texts or, at least, large groups of texts must be interrelated.

It should be pointed out that we can fully observe only the genetic texts of
currently existing organisms. As a rule, we do not suppose that one modern
genetic text is an evolutionary offspring of another contemporary text. In
view of the above considerations, it would be natural to assume that both
texts have been generated from a single common ancestral text. Similar to
the case of formal languages, we could say that two texts, T′ and T′′, have
both evolved from the same ancestral text T. Although text T is not currently
available, we can reconstruct it according to certain theoretical models. All
these reconstruction models obey some common rules based on the formal
assumption according to which all elementary text transformations constitute
a basis with respect to mapping of a set of genetic texts onto itself.

However, since inverse mapping is polysemantic, the choice of a particular
predecessor text from the range of all possible texts is strongly dependent on
the model employed. The main objective of the reconstruction model is, ac-
tually, defining an inverse mapping of modern texts onto their predecessors.
Thus, the reconstruction model narrows the range of possible predecessors
to only one predecessor, converting an elementary text transformation to
an unambiguous mapping of one text onto another. In other words, if we
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know that text T1 has evolved from text T2 through a series of elemen-
tary evolutionary transformations t = (t1, t2, . . . tn), the model enables us
to reconstruct T2 from T1 unambiguously by means of (t−1

n , t−1
n−1, . . . t

−1
1 ).

Unfortunately, we are not able either to reconstruct the actual succession
of elementary transformations or to verify the employed model. Instead, we
introduce an additive scoring function (Sc(∗)) applicable to all elementary
transformations considered in this book. Accordingly, the score of the series

of elementery transformations t equals Sc(t) =
n∑
i=1

Sc(ti). Obviously, text T1

can be transformed to text T2 by different series of elementary transforma-
tions. It is assumed that the most likely series is the one with the minimal
penalty score Sc(t). Biological considerations play a major role both in the
selection of the basic set of elementary transformations and in the assignment
of the appropriate score to the elements of the set.

Historically, the proximity of two nucleotide sequences was first evaluated
by calculating the number of local DNA transformations for a particular
form of replacements. For example, the Jukes and Cantor model [124] as-
sumes independent changes of all letters which occur with equal probability.
According to this model, the proximity of two sequences is proportional to
the number of letter replacements. Thus, the ACTG sequence is closer to the
AATG sequence (one replacement) than to the ATT sequence (three replace-
ments: a deletion and two insertion). The Kimura “two-parameter” model is
almost as symmetric as that of Jukes and Cantor, yet it allows for a difference
between transition and transversion rates. Transversion is a type of substi-
tution where a purine is replaced with a pyrimidine(for example, GC with
TA) or vice versa. Transition is a type of substitution in which a pyrimidine
is replaced by another pyrimidine or a purine is replaced by another purine.
In the current models, the distances between sequences are calculated on
the basis of all three possible types of local transformations. Namely, one or
both sequences undergo local transformations which “equalize” the sequences
in a certain sense, the process being referred to as alignment . For example,
the sequences ATCA and ATTA can be obtained from one another via two
different series (i and ii) of local transformations (Fig. 4.2).

Fig. 4.2 Two possible ways of alignment of two sequences in the representation
widely accepted in molecular biology. It is implied that the pairs of nucleotides
which are located one above the other, correspond to the same nucleotides in the
ancestor sequence. Thus, this representation emphasizes the evolutionary history
of the sequences.
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The first way (i) of alignment employs the transformation in which letter C
of the upper sequence was replaced, in the course of evolution, by letter T (or
vice versa, depending on the relative ”age” of the two sequences). In any case,
the distance between these sequences equals one elementary transformation.

The second way (ii) of alignment can be viewed as two different types of
transformations. Namely, in one copy of the original ATA sequence, letter C
was inserted after letter T, while in the other copy letter T was inserted after
letter A. Thus, the ”offspring” of a single common ancestor, ATA, comprises,
in fact, two sequences - ATCA and ATTA, the distance between them being
equal to two transformations (insertions).

The same result could be obtained in a different way - the sequence ATTA
could lose one letter T (deletion) and acquire one letter C (insertion). In this
case, the distance between the sequences also equals two elementary trans-
formations. Since we are not aware of the actual ways of sequence evolution,
it is usually assumed that the ”actual” alignment is the one which is optimal
with respect to a certain quality function. The simplest quality function is
the number of elementary transformations required for sequence alignment:
∀i, j : Sc (ti) = Sc (tj). Thus, in the above example, the ”actual” way of
alignment should be (i), since it corresponds to one elementary transforma-
tion. However, in certain models, the quality function may be equal to the
sum of weighted elementary transformations. In this case, the actual way of
alignment may be (ii) if the total weight of insertion and deletion (or two
insertions) is less than that of one replacement.

The algorithm of evaluating the optimal alignment is based on the dynamic
programming technique. By using this technique, the problem of optimal
alignment is reduced to the search of the minimal-length way in a graph and
can be readily solved.

On the other hand, non-local mechanisms of genetic sequence evolution
have been known for quite a long time. They include transpositions of large
blocks inside chromosomes or insertions of different mobile elements into
genomes of higher organisms (eukaryotes).

Obviously, for such evolutionary mechanisms, alignment is not an adequate
method of comparing genome sequences. Indeed, suppose that the sequence
ΦΩΘ (Φ, Ω and Θ are sequences) has evolved into the sequence ΦΘΩ. The
alignment of these two sequences may result in the following scheme:

[
ΦΩΘ−
Φ−ΘΩ

]

i.e., in correct identification of merely two components, while the two se-
quences have much more in common. One can even formulate a certain “oper-
ational” criterion of alignment validity for nucleotide sequences: if the number
of elementary transformations which are required for the alignment is rela-
tively small, the alignment gives an informative result; otherwise, it is just a
formal procedure.
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4.4.1 Some Models of Sequence Evolution

The basic model for calculating the similarity between two texts is described
in Section 4.5. The model is based on assuming the existence of a common
predecessor for the two texts and a consequence of elementary operations
that transform one text into the other. The latter consequence, actually,
models a possible real evolutionary process if it meets certain optimization
requirements, which are usually referred to as minimal penalty score. In the
present section, we describe two simple models of the evolutionary process,
which consider only nucleotide substitutions. These examples not only give
the idea of the modeling technique, but also may be considered as basic since
they have been sophisticated and generalized by means of a more adequate
choice of the probabilities of nucleotide substitutions. In Appendix B, we de-
scribe the simplest version of the algorithm for finding the optimal sequence
of transformations, which converts one text into another in the general case.
This is, actually, the problem of finding the Levenshtein distance, considered
above (Chapter 3, Section 3.1.1). This time, however, the interpretation of el-
ementary transformations is different. In human language texts, substitutions
and indels are considered to be errors; therefore, one of the two compared
sequences is interpreted as the correct one, while the other is interpreted as
being wrong. In the case of genetic texts, mutations which are fixed in the
genome are no longer an errors, but rather urther evolution of the text. For
this reason, both compared sequences are equitable.

4.4.1.1 The Jukes-Cantor Model

The Jukes-Cantor model [124] is the earliest and the simplest model of molec-
ular evolution. It assumes that substitutions of all nucleotides occur indepen-
dently and with equal probability. Moreover, a base can be substituted by
each of the three other bases with equal probability. Table 1 shows the prob-
ability matrix for the mutation probability equal to 3adt, dt being a small
time interval.

Let a certain position be occupied by nucleotide A. Evaluate the proba-
bility, PA(t), of nucleotide A occupying the same position at some time t.

Table 4.1 Probability matrix for nucleotide substitutions in the Jukes -Cantor
model.

A T C G

A 1-3a a a a

T a 1-3a a a

C a a 1-3a a

G a a a 1-3a
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Fig. 4.3 Relationship between Hamming Distances (curve H) and Jukes-Cantor
Distances (curve JC)

Direct calculation, which employs the substitution of the above probability
matrix gives:

for t = 0, PA(0) = 1;
for t = 1, PA(1) = 1 − 3a;
for t = 2, PA(2) = (1 − 3a)PA(1) + a[1− PA(1)].

The last expression results from two possible scenarios: (1) the nucleotide
is not replaced; (2) some other nucleotide is substituted for A and, at t=2,
the inverse mutation occurs. Thus, the following recurrent expression is true:

PA(t+ 1) = (1 − 3a)PA(t) + a[1 − PA(t)]

or
PA(t+ 1) − PA(t) = −3aPA(t) + a[1 − PA(t)].

This equation could be solved directly, yet it appears preferable to use
continuous time:

dPA(t)
dt

= −4aPA(t) + a

The solution of the above differential equation, under condition PA(0) = 1), is

PA(t) = 1/4 + (3/4) exp(−4at).

For longer periods of time, the model gives the following probability of a
nucleotide substitution (mutation) in the time interval t:

p = 1 − PA(t) =
3
4
(1 − exp(−4at)).

If the value of p is measured experimentally, it is worth inverting the above
expression to obtain
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at = −1
4

ln(1 − 1
4
p),

where p is the proportion of sites which are different in the two sequences.
The value of at can be interpreted as the estimated distance, d, between the
sequences.

Consider a simple example. Let two 100-nucleotide-long sequences differ in
25 nucleotides. The Hamming distance (the number of non-coinciding posi-
tions) between these two sequences equals, obviously, 25 or, in relative units,
0.25. However, the estimation in the framework of the Jukes-Cantor model
gives the value of d=0.16. Fig. 4.3 shows the relationship between the Ham-
ming distance and the Jukes-Cantor distance. It can be seen that the simplest
consideration of the evolutionary mechanisms results in distances substan-
tially different from the unsophisticated Hamming estimates.

4.4.1.2 The Kimura Two-Parameter Model

The Kimura model [138] is the next step towards a more realistic description
of evolution. In this model, the probabilities of nucleotide substitutions are
not symmetrical as in the Jukes-Cantor model. It is well known that substi-
tutions of a purine for a purine or a pyrimidine for a pyrimidine (transitions)
occur more frequently than substitutions of a purine for a pyrimidine or vice
versa (transversions). Due to this fact, the probability diagram for nucleotide
substitutions in the Kimura model has the form shown in Fig. 4.4. Table 4.2
shows the corresponding matrix of substitutions which occur in small periods
of time. Obviously, it should be assumed that 1 − a − 2b > 0.

The Kimura two-parameter distance between two sequences is

d = −1
2
ln(1 − 2P − 2Q) − 1

4
ln(1 − 2Q),

where P and Q are proportions of sites that show transitional and transver-
sional differences, respectively.

Fig. 4.4 Different rates of transitions (a) and transversions (b) in the Kimura
model. A and G are purines, C and T are pyrimidines.
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Table 4.2 Matrix of nucleotide substitutions in the Kimura model.

A T C G

A 1-a-2b a b b

T a 1-a-2b b b

C b b 1-a-2b a

G b b a 1-a-2b

4.5 Optimal Alignment of Two Sequences

The problem of alignment of two sequences in the Jukes-Cantor and the
Kimura models can be reduced to considering only letter substitutions. From
the standpoint of the algorithm, such substitutions can be readily localized,
the specific difficulty of the problem being the evaluation of the substitu-
tion penalty scores. The latter are related to the probability of nucleotide
mutations and the relevance of mutations to the biological function of the
sequence. There exists a whole field of molecular biology which evaluates
penalty scores on the basis of a huge body of sequence databases.

The models discussed above do not take into consideration indel-type
mutations, because, from the “penalty point of view”, indel mutations are
relatively scarce (see above). The general model of the alignment of two se-
quences, which would account for mutations of all types and arbitrary penalty
scores, could be effectively used only on the basis of rather sophisticated al-
gorithmic techniques, which employ the method of dynamic programming.
It has been already mentioned in this chapter that we are interested not
in an arbitrary series of substitutions, which would convert one sequence
into another, but only in those which correspond to minimal penalty scores.
Provided the penalty scores for substitutions and indels are equal, the se-
ries we are looking for will be those of minimal length. In this section, we
describe just such simplest model, which evaluates the minimal-length series
of operations, converting one preset sequence into another preset sequence.

Table 4.3 Matrix M of letter correspondence for two sequences, S1 =
{AGGCCTGAG} and S2 = {AAGCTAG}.

A G G C C T G A G

A 1 1

A 1 1

G 1 1 1 1

C 1 1

T 1

A 1 1

G 1 1 1
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Table 4.4 Initialization of matrix M̃ .

A G G C C T G A G

0 0 0 0 0 0 0 0 0 0

A 0

A 0

G 0

C 0

T 0

A 0

G 0

Consider two sequences, S1 = {AGGCCTGAG} and S2 = {AAGCTAG},
which are to be globally aligned. The lengths of the sequences are |S1| = 9
and |S2| = 7, respectively.

Consider now the similarity matrix M for these two sequences (see Ta-
ble 4.3), of size |S1| × |S2|. In this matrix, element mij equals 1 if the
letter i in the sequence S1 is the same as the letter j in the sequence
S2; otherwise, mij = 0. Next, let us define another matrix, M̃ , of size
(|S1| + 1) × (|S2| + 1), in the following way. To facilitate the calculations,
we number the rows and the columns of the matrix starting from zero.
First, the zero-number row and column are filled with zeros (see Table 4.4).
Next step, matrix M̃ is successively filled in according to the following rule:
each element m̃ij = MAX [m̃(i−1)(j−1) + mij , m̃i(j−1), m̃(i−1)j ]. Moreover,
for each calculated value m̃ij , the “direction” which has lead to this partic-
ular result is remembered. In other words, the program remembers which
of the three values - m̃(i−1)(j−1) + mij , m̃i(j−1), m̃(i−1)j - is the largest and
thus, according to the algorithm rule, equals m̃ij . For example, the value of
m̃11 = MAX[0+ 1, 0, 0] = 1 is obtained as the sum m̃(i−1)(j−1) +mij , which
corresponds to the direction from the upper diagonal cell. The filled-in matrix
is shown in Table 4.5.

Table 4.5 Filled-in matrix M̃ , which is the basis for calculating the minimal se-
quence of elementary transformations.

A G G C C T G A G

0 0 0 0 0 0 0 0 0 0

A 0 1 1 1 1 1 1 1 1 1

A 0 1 1 1 1 1 1 1 2 2

G 0 1 2 2 2 2 2 2 2 2

C 0 1 2 2 3 3 3 3 3 3

T 0 1 2 2 3 3 4 4 4 4

A 0 1 2 2 3 3 4 4 5 5

G 0 1 2 3 3 3 4 4 5 6
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Starting from the maximal penalty value, which equals 6 in this case, we
build the inverse series of operations, passing from each cell to the one from
which we arrived to the first cell when building the matrix M̃ . The process
can detect several forms of alignments, e.g.,

A G G C C T G A G
| | | | | |
A A G C T A G

or

A G G C C T G A G
| | | | | |
A A G C T A G.

However, the number of operations converting one sequence into the other
is the same for all the alignments.

Finally, it should be noted that the minimum penalty alignment, actually,
yields a metric on the sequence space. This result was obteined by Ulam [264]
and also, for general gap functions, by Waterman et al. [279]. We do not cite
the whole proof here, but just explain the arguments for the case considered
by Ulam [264]. The crucial point is to show that the sequence distances obey
the triangle inequality rule, i.e.,

d(x, y) ≤ d(x, z) + d(y, z)

for three sequences, x, y, z, over the alphabet A. The minimal-distance align-
ment can be viewed as the minimum number of changes that convert one
sequence into another. Assume that for three sequences, x, y, z, d(x, z) +
d(y, z) is less than d(x, y). Consequently, the sequence z is a possible inter-
mediate in the process of converting x into y. The distance between the latter
two sequences can be d(x, z) + d(y, z) in the worst case.

4.6 Attributes of DNA Sequences as Outcomes of
Evolution Process

Using the information and communication terminology, it can be said that
any genomic DNA text has evolved in a two-level process: text transmission
and text change. Fragments of DNA texts (say, genes) may be transmitted
from parents to offspring (at a short timescale) or from ancestral to descen-
dant species (at a larger timescale). A much rarer event is horizontal gene
transfer (or lateral gene transfer) - the event of transferring genetic material
(a fragment of DNA text) from one organism to another which is not the off-
spring of the first one. On the other hand, a gene may be lost in the process
of genetic information transmission from the ancestor to the descendant, the
phenomenon being called a birth-death process [87].
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Recent studies of DNA sequences have shown that different kinds of “tex-
tual” changes may occur in the course of genetic information transmission.
Point changes, usually called point mutations, are substitutions (transitions
and transversions), insertions , and deletions . Among point mutations, rates
of substitutions are always higher than those of deletions or insertions. More
global changes include tandem duplication of a text fragment, inversion,
translocation and transmission between two sequences (horizontal transfer,
recombination, and conversion). The process of the sequence change is super-
imposed on the process of transmission [87]. When two sequences are com-
pared, it is impossible to tell whether a deletion has occurred in one sequence
or an insertion has occurred in the other. Indels are not necessarily point
mutations - the number of nucleotides in an indel may range from one to
thousands. Indel lengths are characterized by a bimodal frequency distribu-
tion. One mode, which corresponds to short indels (up to 20-30 nucleotides),
is caused by errors of DNA replication, while the other mode, corresponding
to long indels, is mainly caused by recombination, transposition, or horizontal
gene transfer.

Point mutations do not occur randomly throughout the genome. Some re-
gions, called hotspots, are more likely to undergo changes; besides, transitions
occur more frequently than transversions. For example, in animal nuclear
DNA, transitions account for about 70% of all mutations (the expected rate
of random transitions is 33%). In animal mitochondrial genomes, the ratio of
transitions to transversions is about 20% . The rate of mutation is dependent
on environmental conditions such as high radiation or extreme pollution. On
the other hand, mutations are expected to occur with the same frequency
regardless of whether they are beneficial or not to the organism. This aspect
of the mutation justifies modeling it as a semantics-independent text change.

It might seem that different strains of the same bacterial species repre-
sent an example of genomes which must be reasonably similar to each other.
However, bacteria were classified into species and strains on the basis of their
phenotypical features, which does not necessarily imply the corresponding
classification of the genomes. Since in bacterial systematics there is yet no
agreement on the definition of a bacterial species [46], we employ the following
“operational” definition: “A bacterial species may be regarded as a collection
of strains that share many features in common and differ considerably from
other strains.”

Thus, the essential attributes of bacterial genomes should be those ge-
nomic “textual” properties that are shared by different strains of the species.
One could suppose, for example, that such general genomic properties as the
genome size, the nucleotide composition, and the number of genes correlate
with the phenotypical strain classification. The data presented in Table 4.6
show that this supposition is wrong. One can easily notice significant differ-
ences in the above basic properties of the strains. Thus, these properties do
not reflect the close evolutionary or structural relationships among bacteria.
Furthermore, it was discovered that dinucleotide frequencies in natural DNA
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Table 4.6 Basic properties of Buchnera aphidicola and Escherichia coli bacterial
strains.

Genome
Length Number of genes GC content
(Mb) (proteins) (%)

Buchnera aphidicola str. APS 0.64 564 26.3

Buchnera aphidicola str. Bp 0.615 504 25.3

Buchnera aphidicola str. Cc 0.42 357 20.1

Escherichia coli K12 4.6 4243 50.8

Escherichia coli O157:H7 EDL933 5.53 5324 50.4

Escherichia coli O157:H7 Sakai 5.5 5253 50.5

Escherichia coli UTI89 5.1 5044 50.6

deviate from those expected in random sequences. On the other hand, bio-
chemical experiments [218] demonstrated that unrelated genetic sequences
may have very similar dinucleotide frequencies. We can see, thus, that the
above ” simple” approaches to genetic texts are not appropriate.

In Chapter 3, we described a few text-mining techniques that were devel-
oped for the characterization of human texts. In the following chapters, we
present some applications of “linguistic tools” to evaluation of genetic texts.
In the framework of such linguistic approach, a word is a basic linguistic unit
that carries meaning and consists of one or more morphemes. A morpheme is
the smallest meaningful unit of a language. The concept of morpheme differs
from that of a word since, contrary to words, many morphemes cannot stand
on their own. Such morphemes are called bound, while free morphemes can
stand alone (have certain meaning). In synthetic languages, a single word
stem (e.g., love) may have a number of derivatives (e.g., loves, loving, and
loved), which are viewed as different forms of the same word. In such lan-
guages, words are considered to be constructed from a number of morphemes
(in our example, the free morpheme love and the bound morphemes −s,
−ed, and −ing). In most languages, words are easily identified due to word
separators, which are most often spaces.

Having in mind to develop a linguistic approach to the analysis of ge-
nomic sequences, one can ask, ”What can be called a ”word” of a genetic
text?” In the DNA language, one type of a word/morpheme analog may be
a binding (or recognition) site. A DNA binding site is a region of chemical
bond formation with a specific protein. Such protein usually has a number of
binding sites, which differ by indel- or substitution-type mutations in a few
positions. For example, consider the following sequence of a recognition site
- A[CT]N{A}, where only the base A is always found in the first position.
[CT] stands for either C or T in the second position, N stands for any base,
and {A} means any base except for A. It should be noted that the notation
[CT] does not give any indication of the relative frequencies of C or T in this
position.
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In molecular biology and bioinformatics, the set of all binding sites of a
particular protein is characterized by its consensus sequence. The consensus
sequence is obtained by aligning all known “versions” of the recognition site
and is defined as an idealized sequence that contains, in each position, the
base that occurs in it most frequently. All the actual versions should not differ
from the consensus sequence by more than a few substitutions.

By analogy with synthetic languages discussed above, different versions
of a particular binding site may be viewed as derivatives of the same word
(constructed of the same ”stem” and additional different morphemes). There-
fore, in this example, a word of the DNA language is a consensus sequence
for a particular protein binding site. Such a word, indeed, has a significant
biological meaning.



Chapter 5
N-Gram Spectra of the DNA Text

It has been mentioned in Chapter 3 that text-mining techniques can be used
to classify genomes. Out of all the methods considered in the previous chapter,
the N -gram technique is one of the most appropriate for the genome text
classification. In the field of linguistics, the N -gram concept has always been
marginal and isolated. Similarly, in the case of genetic texts, a set of N -grams
is in no way a set of functional elements. However, for the needs of formal text
recognition, the N -gram technique proved to be exceptionally useful. On the
other hand, the notion of “word” has not yet been successfully used in the
genetic context. However, as it has been shown above, in this context, it is
possible to give a definition of a “word” as having certain functional meaning.
Nevertheless, the word as an element of the genetic text (similar to the case
of hieroglyphic written language) is not as much flexible and universal as it
can be in European languages.

5.1 Classification of Genomes on the Basis of
Short-Word Spectra

5.1.1 Definitions

Let T be a text over the alphabet A. In other words, T is a sequence of letters
from the given alphabet. For example, the DNA alphabet is A = A,C, G, T.
If we define an N -gram ξ of length N as a string of N characters over the
given alphabet A, a text can be viewed as a stream of overlapping N -grams
(see Fig. 5.1). A consecutive N -gram can be obtained from its predecessor by
dropping its first character and adding the next letter T at its end. In the
text T, there are |T| − N + 1 N -grams of length N . The length of a string
S is denoted by |S|. N -gram techniques are based on the reduction of the
whole text to one of the following vectors: the vector of N -gram observed fre-
quencies, the vector of the observed/expected frequency ratios, or the vector
of N -gram Usage Departures. For any N -gram ξ, let us denote the observed

A. Bolshoy et al.: Genome Clustering, SCI 286, pp. 61–85, 2010.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 5.1 Overlapping 4-grams ATTC, TTCA, TCAA

frequency of the N -gram ξ in T by f(ξ,T). The frequency of ξ is the number
of ξ occurrences in T divided by (|T| −N + 1).

Given the observed frequencies of the N -grams of size (N -2) and of size
(N -1), we can calculate the expected frequency of the N -grams of size N in
T as

E(a1. . .aN ,T) = f(a1. . .aN−1,T) ∗ f(a2. . .aN ,T)/f(a2. . .aN−1,T). (5.1)

In the case of N=2, the formula (5.1) is reduced to

E(a1a2,T) = f(a1,T) ∗ f(a2,T). (5.2)

There exist 4N different N -grams of length N . For example, for N=2 ,
there exist 16 N -grams: AA, AC, . . . , TT. Given the observed frequencies f
of bases x and y, the dinucleotide bias in T is defined by the ratio

ρxy(T) = f(xy,T)/[f(x,T) ∗ f(y,T)] (5.3)

and the contrast value is expressed as

qxy(T) = f(xy,T) − f(x,T) ∗ f(y,T). (5.4)

In view of the peculiarity of the chromosome secondary structure, for each
genetic sequence T, there is the complementary text T′′ on the other string
of the double-stranded DNA. In some applications, in order to accommodate
the double-stranded DNA, it is necessary to introduce symmetrized base fre-
quencies in the form

f∗
A = f∗

T =
1
2
(f(′A′,T)+f(′T ′,T)); f∗

C = f∗
G =

1
2
(f(′C′,T)+f(′G′,T)) (5.5)

and symmetrized dinucleotide frequencies in the form

f∗
xy(T) = f∗

ȳx̄(T) =
1
2

[f (xy,T) + f (ȳx̄,T)] , (5.6)

where Ā = T ; T̄ = A; C̄ = G; Ḡ = C.
The symmetrizations of formulas (5.2) and (5.3) are, respectively,
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ρ∗xy(T) = f∗
xy(T)/[f∗

x(T) ∗ f∗
y (T)] (5.7)

and

q∗xy(T) = f∗
xy(T) − [f∗

x (T) ∗ f∗
y (T)]. (5.8)

5.1.1.1 Linguistic Measure of Sequence Relatedness

One of the first attempts to reduce a long DNA sequence to a point in the
space of n dimensions for further sequence comparison was made in ([203]).
The authors suggested to use ”the linguistic similarity measure for fast and
simple preliminary nucleotide sequence characterization and for estimation
of relatedness to other sequences”. They knew that dinucleotide frequences
alone could not adequately represent genomic sequences because they were
aware of the biochemical experiments which demonstrated that unrelated
genetic sequences might have very similar base composition or even dinu-
cleotide frequencies. So, linguistic similarity was defined using the notion of
contrastwords and vocabularies. The contrastvalue of each N -gram ξ in
the sequence S is defined as the difference between its observed and expected
frequencies: q(ξ, S) = f(ξ, S)−E(ξ, S). Brendel etal. [31] suggested the term
contrast N − vocabulary, VN , for the set of the contrast values of all the N -
grams of length N . Since the size of the DNA alphabet is equal to four, the
size of the vocabulary |VN | = 4N . The sequence S of length |S| is transformed
into a point ||qi|| in the 4N -dimentional space: 1 ≤ i ≤ 4N . Instead of the
Euclidean distance between the points in such a space, the authors proposed
to measure similarity by the following correlation coefficient formula:

CN (S1, S2) =

∑4N

j=1 qj(S1)qj(S2)√∑4N

j=1 qj(S1)2
√∑4N

j=1 qj(S2)2
, (5.9)

where CN (S1, S2) is the correlation coefficient between the sequences S1

and S2, N is the chosen length, 4N is the number of all possible N -grams
of size N , and qj(s) is the contrast value of the N -gram j in the se-
quence s. On the basis of empirical observations, Pietrokovski et al. [203]
argued that the use of relatively small N (2 ≤ N ≤ 5) could satisfy
all practical needs of a researcher and proposed to use the integral value
C2−5(S1, S2) = 1

4 [C2(S1, S2) + C3(S1, S2) + C4(S1, S2) + C5(S1, S2)] for the
quantitative description of linguistic similarity between S1 and S2.

Applying the C2−5 measure to the data available at that time, the au-
thors were able to demonstrate the power of their method by quite a few
examples. They even declared that the vocabularies obtained from relatively
short genetic sequences contained taxonomic “signatures” sufficient for their
proper classification. Using these methods and employing C2−3 = 1

2
(C2 +

C3), Pietrokovski and Trifonov [202] identified imported sequences in the
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mitochondrial (mt) yeast genome in the following manner. Certain sequences
from the S. cerevisiae mt genome were selected; various correlation coeffi-
cients C2−3(S1, S2) were calculated for one of the above-mentioned mt se-
quences, S1,S2 being either a nuclear or a mt long chromosome. Among the
studied mt fragments, Pietrokovski and Trifonov identified several fragments
with the contrast vocabularies significantly similar to the nuclear vocabulary.

5.1.1.2 Vector of Dinucleotide Relative Abundances

In the early 1990s, Sam Karlin proposed to reduce a long genomic sequence to
a short vector by introducing dinucleotide relative abundance values, which
he has examined since then [127], [130], [129], [132], [131], [132], [128].

The dinucleotide relative abundance value of each N -gram ξ in the se-
quence S is calculated as the ratio of its observed and expected frequencies:
q(ξ, S) = f(ξ, S)/E(ξ, S). As a measure of the dinucleotide distance between
two sequences S and S′, Karlin chose the δ − distance δ(S,S′), which is,
actually, the Manhattan distance between the vectors ρ∗(S) and ρ∗(S′)):

δ(S, S′) = (1/16)Σ|ρ∗i (S) − ρ∗i (S
′)|. (5.10)

Similar to the case of equation 5.7, ρ∗i (S) traverses all the dinucleotides
in the range of 1 ≤ i ≤ 16. Karlin et al. [131] noted that the transformation
of a sequence to a vector of dinucleotide relative abundance values is essen-
tially different from the transformation to the vector of frequencies. Thus
the δ-distance 5.10 is in marked contrast to the non-normalized dinucleotide
frequency based on the Manhattan distance:

d(S, S′) = (1/16)Σ|f∗
i (S) − f∗i (S′)|. (5.11)

Karlin and Mrazek [132] studied bacterial genomes in order to determine
dinucleotide relative abundance values for DNA fragments. They found that
the sequences obtained from the same prokaryote are clustered together, while
the sequences obtained from distantly related bacteria are significantly sep-
arated from each other as judged by their dinucleotide relative abundance
values. Thus it can be suggested that these values may be affected by some
inherent genome factors such as replication and repair machinery functioning,
overall genomic superhelicity (see Section 1.5 and species-specific mutation
patterns. Karlin referred to the ensemble {ρ∗(xy)} of all dinucleotides counted
along a representatively long sequence of the genome G as the ”dinucleotide
relative abundance profile of the genome G” or the ”genomic signature”.

Having a method to measure dissimilarity between two genomes, one can
investigate whether clustering based on δ-distances makes any biological
sense. Some investigation was conducted by Sam Karlin and presented by
him in numerous publications (see, e.g., his review [127]). Several fragments
were randomly chosen from a number of prokaryotic genomes and δ-distances
between the nucleotide pairs were calculated. In particular, Karlin attempted
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to answer the question as to whether the Archaea genomes (see Chapter 2)
constitute a coherent group under the conditions of δ-distance-based cluster-
ing. The answer to this question was negative [127]. Indeed, the genome of the
Archaea Halobacterium1 sp. was found to be very distant from those of Ar-
chaea Sulfolobus2 and M.Jannaschii3 , while the Streptomyces sequences and
some fragments of M. tuberculosis appeared to be the closest to the Halobac-
terium. These findings seem to be totally absurd from the phylogenetic point
of view; however, they may be accounted for by certain biological effects.
According to Karlin’s global observation, thermophiles tend to be relatively
closer to vertebrate eukaryotes than to Eubacteria, whereas Halobacteria sp.
are very distant from vertebrates. It should be noted that, on the basis of
compositional spectra, thermophiles and vertebrates (see Chapter 6) are also
clustered together. Karlin [127] mentions many other discrepancies between
δ-distance-based clustering and conventional phylogeny.

5.1.1.3 Survey of Genome Signatures in Prokaryotes

Many prokaryotic genomes have been completely sequenced since 1998. In
order to assess the applicability of the genomic signature technique, Van
Passel etal. [196] calculated a great number of prokaryotic genomic signa-
tures using the Karlin’s methodology (without any modifications). The au-
thors compared the results of the genomic signature-based clustering with
the 16S rRNA-based phylogeny (see Chapter 2) for 334 prokaryotic genome
sequences. The δ-distances between all 334 ∗ 333/2 genomic pairs were calcu-
lated and the δ-distance values between chromosomes from the same genus
and those of prokaryotes with multiple chromosomes were compared. Gen-
era were defined as organisms with the same genus name, while species were
defined as organisms with the same genus name and the same specific desig-
nation. Average intrageneric δ-distances for 40 different genera consisting of
both Archaea and Bacteria indicated a large variation in the genomic signa-
tures. Four genera showed pretty high dissimilarity scores, while five genera
appeared to be extremely close.

The δ-distance values between chromosomes from the same species ap-
peared to be very close; however, four exceptions were found. As we have
mentioned above (Chapter 2), bacterial systematics has not yet reached a
consensus on the definition of a bacterial species [46]. Anyway, conventional
systematics considers some prokaryotes as strains of the same species, while
1 The genus Halobacterium (“Salt” or “Ocean Bacterium”) consists of several

species of Archaea, which require an environment with a high salt concentra-
tion.

2 Sulfolobus species grow in volcanic springs with the optimal growth temperatures
of about 75 − 80oC, which makes them thermophiles.

3 M. jannaschii can grow in habitats with pressure up to more than 200 atm and
temperatures ranging between 48 and 94oC, with the optimum growth temper-
ature of 85oC.
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Fig. 5.2 Intrageneric δ-distances for 40 prokaryotic genera.

the δ-distance method would classify them as separate species. Van Passel
et al. [196] concluded that δ-distances had strong phylogenetic relevance and
could be used to support or oppose a given phylogeny and the resulting
taxonomy.

5.1.1.4 Tetranucleotide Frequency Bias

The study of dinucleotide relative abundance values of prokaryotic chromo-
somes had a rather limited success. Pride et al. [207], [208] and Robins et al.
[213] tested whether tetranucleotide-based clustering would be of greater phy-
logenetic relevance than the dinucleotide-based clustering discussed above.
Pride et al. proposed to use tetranucleotide usage departures from expecta-
tions (TUD) - the vector of the ratios, F (W ), of the observed occurrence
value, O(W ), of a tetranucleotide W to its expected occurrence value E(W ),
i.e., F (= O(W )/E(W ). The ratios F (W ) are calculated for all 256 tetranu-
cleotides. The expected value E(W ) is determined either from equation 5.12
or from equation 5.13:

E(W = w1w2w3w4) = f(w1)f(w2)f(w3)|S|;F (W ) =
O(W )
E(W )

(5.12)
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E(W = w1w2w3w4) =
O(w1w2w3)O(w2w3w4)

O(w2w3)
;F (W ) =

O(W )
E(W )

, (5.13)

where wi is the ith nucleotide of W ; f(A), f(C), f(G), and f(T) are the
nucleotide frequencies for the sequence S which is evaluated; |S| is the length
of the sequence and O(X) is the observed occurrence of the N -gram X in the
sequence S [31], [133], [225]. The calculation of the expected occurrences was
discussed in detail in the previous chapter. It should be noted that Pride et
al. [207] proved the validity of the Chargaff’s second parity rule (see Section
1.2.1.1) for tetranucleotides in each of the analyzed genomes. The comparison
of O(W ) for each tetranucleotide combination with the corresponding value
for the reverse-complement of each combination, performed by means of linear
regression analysis, yielded the correlation coefficient values of 0.99. The same
effect was demonstrated in [141] for N -grams of length N=10. In numerous
recent studies it has been shown that the Chargaff’s second parity rule is
valid in most cases, except for certain special chromosome regions.

To perform the cluster analysis based on TUD, Pride et al. [207] used the
Manhattan distance. In this case, the distance between two organisms, 1 and
2, is calculated as

D1,2 =
1

256
||F1(W ) − F2(W )||, (5.14)

where F1(W ) and F2(W ) are vectors of departures for organisms 1 and 2, re-
spectively, obtained in the way similar to that of Cardon and Karlin [133] (see
equations 5.12 or 5.13). Pride et al [207] used the distances between tetranu-
cleotide frequencies calculated on the basis of the zero-order Markov model in
order to construct a phylogenetic tree for 27 bacterial genomes. The authors
concluded that the TUD patterns carry a phylogenetic signal. Teeling et al.
[244], [245] found that the above-mentioned results could be improved by
using whole-genome sequences as a distance measure. The expected tetranu-
cleotide frequencies were calculated on the basis of the maximal-order Markov
model (5.11). Next, the divergence between the observed and the expected
tetranucleotide frequencies was estimated using the z-scores (see equations
5.15, 5.16) and the approximation published by Schbath et al. [225], [224]:

Z(W = w1w2w3w4) =
O(w1w2w3w4) −E(w1w2w3w4)√

varO(w1w2w3w4)
, (5.15)

whereby the variance var(O(W )) can be approximated as follows:

varO(W ) = E(W )
|O(w2w3) −O(w1w2w3)||O(w2w3) −O(w2w3w4)|

O(w2w3)2
.

(5.16)
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The question as to whether two genomic fragments exhibit similar pat-
terns of over- and underrepresented tetranucleotides can be addressed by
calculating the Pearson correlation coefficient for their z-scores. Similar pat-
terns correlate with high correlation coefficients, whereas diverging patterns
have low correlation coefficients.

By means of clustering based on tetranucleotide frequency vectors and on
the above-mentioned distances between the vectors, the congruence between
the genome trees obtained by the conventional and by the N -gram-based
methods can be detected. Despite the presence of an evident phylogenetic
signal in the tetranucleotide frequencies, the methods proposed by Pride et al.
[207] and by Teeling et al. [244], [245] failed to reconstruct large phylogenetic
trees in a manner that would conform with the standard 16S rRNA-based
topology. It was found that closely related species were correctly grouped in
most cases, whereas more distant species often formed combinations opposing
the ”phylogenetic logics”. The authors concluded that distant relationships
cannot be evaluated on the basis of TUD patterns; partitions based on such
vectors only partially carry phylogenetic signals.

5.2 Fuzzy N -Grams and Compositional Spectra of
Sequences

In this chapter, the reader is introduced to the method which allows for
both local and global evolutionary mechanisms when being applied to the
comparison of nucleotide sequences [140], [141], [139], [197]. Consider a sim-
ple example. The sets of all possible 10-letter N -grams for two sequences,
ACGTTGACTTGG and AtGTTGACgTGG (small letters stand for replace-
ments), are

N1 = {ACGTTGACTT,CGTTGACTTG,GTTGACTTGG}

and
N2 = {AtGTTGACgT, tGTTGACgTG,GTTGACgTGG},

respectively. Although, formally speaking, these N -grams are not identical,
they may be considered evolutionary close since the difference between them
is of the order of one or two transformations (replacements, in this particular
case). In other words, the N -grams which belong to the sets N1 and N2

have the same frequency of occurrences in both sequences (with regard for
alignment). Thus, both sequences appear to be close, which is quite natural
for the situation under consideration.

Given a certain sequence S and a certain N -gram w, the N -gram can be
located within the sequence using the idea of alignment (Fig. 5.3).

In fact, the alignment is performed between the underlined word and
w. Transformations of the replacement type occur in the indicated boxes.
The example (i) shown in Fig. 5.3 bears, in a sense, negative connotation.
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Fig. 5.3 Different ways of locating the N -gram, w, within the sequence S using
the alignment strategies.

Although w has really been located in the sequence S, nine insertions and
deletions (indels) were used in the process, while the length of w is 10. This
example rather shows that any N -gram can be inserted into the sequence S
starting from any position under the condition that any required number of
elementary transformations is permissible. Obviously, such unlimited percep-
tion of “inclusion into sequence” makes this concept meaningless. In the next
example, (ii), only two indels are required to include w into S. Although we
have not defined the weight function of these transformations and, as a result,
are unable to score the alignment formally, it appears, from the standpoint
of meaningfulness, that we have found the proper position in the sequence.
In the last example,(iii), only two replacements are used for the alignment.
In what follows, we restrict ourselves to using the transformations of the re-
placement type; however, the main definitions are formulated in the general
form.

Definition 1. We assert that the N-gram y has an imperfect occurrence in the
sequence S if there exists such a substring x of S that the distance between x
and y is less than a predefined threshold (in the given metric).

This definition goes far beyond our current needs and allows us to substan-
tially generalize the concept of the N -gram occurrence in a sequence and,
consequently, the concept of the compositional spectrum [140]. However, still
remaining in the framework of the elementary transformation model, we will
constrict this definition to the following one:

Definition 2. The N -gram y has an imperfect occurrence in the sequence S if
there exists such a substring x of S that the smallest weighted sum of all the
replacements, insertions, and deletions between y and x is less than or equal
to a given threshold value r.
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This sequence metric, which is well known in sequence-alignment applications
[278], is discused in detail in Chapter 4.

If the alignment is performed using only replacements and the latter have
equal weights, the previous metric is reduced to the Hamming distance and
Definition 2 is converted into:

Definition 3. N-gram y has an imperfect occurrence in S if there exists such
a substring x of S that the Hamming distance between y and x is less than or
equal to a given threshold value r.

This approximate matching can be denoted as “r-mismatch”.
Let us consider a set W of n differentN -grams wi of length N . The number

of imperfect occurrences of wi in the target sequence S is mi = occ(wi|S).
Now let M = Σmi. The frequency distribution F (W,S) : {fi = mi/M} will
be referred to as the compositional spectrum[140] of the sequence S relative
to the set W .

5.2.0.5 Calculation of a Compositional Spectrum

Possible algorithms of the calculation of CS will be discussed below start-
ing with the simplest case which corresponds to Definition 3. In this case,
the calculation of imperfect N -gram occurrences in the sequence S does not
require any sophisticated algorithmical procedure. Indeed, according to the
definition, we look over all possible substrings x of size N . The number of
N -gram occurrences in S is equal to the number of such substrings x that
the Hamming distances from x to the particular N -gram do not exceed the
preset level r. Obviously, the number of operations in such an algorithm is
of the order of N |S| since the length of the sequence S is |S| and, for each
N -gram, N comparisons are executed.

Since the spectrum is calculated over a certain set W of N -grams, the total
number of operations for calculating the spectrum is of the order of N |S||W |,
where |W | is the number of elements in the set W . Thus, the calculations
which employ such a simple algorithm take a considerable amount of time.

The problem of looking for algorithms which allow to calculate compo-
sitional spectra much faster, in the case of a perfect N -gram occurrence in
the sequence, i.e., at the zero mismatch level (r=0), has been addressed in
a large body of research. Below we will mention just a few of the existing
algorithms, which are listed in Table 5.1.

The Brute Force algorithm (line 1) was, in fact, described by us at the
beginning of this Section.

The Knuth-Morris-Pratt algorithm, in its basic form, which is specified in
Table 5.1 (line 2), is very similar to the Brute Force algorithm.

The Karp-Rabin algorithm (line 3) employs two concepts - hashing and
windowing. Hashing is implemented by generating a “key” for the pattern
being searched; the subsequent windowing stage is performed by comparing
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Table 5.1 Some algorithms of searching for perfect occurrences of a substring in a
string.

Algorithm Pre-processing Average time
of search

The worst time
of search

Memory vol-
ume

Brute Force
algorithm

2*|S| O(|S| ∗ N)

Knuth-
Morris-Pratt
algorithm

O(L) O(|S| + N) O(|S| + N) O(L)

Karp-Rabin
algorithm

O(L) O(|S| + N) O(|S| ∗ N)

Boyer-Moore
algorithm

O(N + 4) O(|S| + N) O(|S| ∗ N) O(N + 4)

this “key” with the values generated by moving a “pattern-sized” window
along the target text.

The Boyer-Moore algorithm scans the pattern characters from right to
left. When a mismatch is found, the window is shifted to the right using two
precomputed functions, which are referred to as the “good-suffix shift” and
the “bad-character shift”.

A full description of the above algorithms can be found in [5], [4].
The well-known names which appear in Table 5.1 and a large number of al-

gorithms imply that the problem of constructing the time-optimal algorithm
for searching perfect occurrences of a substring in a string is quite difficult.
Finding the optimal algorithm to determine whether a substring occurs in
the string imperfectly is a still more complicated problem. There exist quite
a few algorithms which approach this problem in different ways.

For example, one can use the method of Landau and Vishkin [161] or
its modification [85] to find, during the time O(|S|r), all locations along
the sequence S where the N -gram coincides with the text with the allowed
mismatch r. These algoritms use the suffics tree for the problem of string
matching. The advantage of the Abrahamson algorithm [1] is that its run
time is independent of r. The algorithm developed in [10] is always faster
than all the above-mentioned algorithms. According to this method, at the
first, marking, stage, the text is marked in such a way that the position
number of a letter of the text is connected with the position number of the
same letter in the N -gram. At the second, verifivation, stage, the marks are
used to determine all the locations where the N -gram coincides with the text
with the mismatch not larger than r.

The Brute Force algorithm can also be improved (through the use of pre-
processing) to be applied to the same problem of searching for imperfect oc-
currences of substrings. Preprocessing can consist in lexicographical ordering
(similar to word ordering in a dictionary) of the N -grams which belong to the
vocabulary W . The comparison of an N -gram with each substring of length
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L of the sequence S employs about N ∗ ln(|W |) operations, which results
in approximately N |S|ln(|W |) operations required for the calculation of the
spectrum. Similarly, preprocessing can be performed through lexicographical
ordering of all the sub-strings of length N of the sequence S. According to
this method, each substring gets a certain index, which is equal to the number
of the substring copies in the sequence S. In this case, the comparison of each
N -gram of the vocabulary W will require N ∗ ln(|S|) operations and, conse-
quently, the calculation of the whole spectrum will require O(N ∗ ln(|S|)|W |)
operations. The choice of a particular preprocessing depends on the data
parameters.

Another algorithm with preprocessing can be effective in the case of rel-
atively small N -gram lengths (about 10-15). First, for each N -gram wi of
the preset vocabulary W , we obtain the set, Vi, of all possible N -grams of
length N , which differ from wi by no less than the preset mismatch level r.
This preprocessing, which is directly connected with the vocabulary, is the
first step of the algorithm. The second step is the evaluation of the perfect
occurrence frequencies for the preset sequence and for all possible N -grams
of length N . This step can be implemented in different ways.

Version 1. At the preprocessing stage, we reduce the problem of imperfect
occurrence of relatively small number of N -grams to that of perfect occur-
rence of a large number of N -grams. Therefore, it is possible to apply the
algorithms of searching for N -gram perfect occurrences, e.g., those from Ta-
ble 5.1.

Version 2. The original 4-letter alphabet is encoded using numerical sym-
bols 0,1,2,3. The sequence S is scanned with the N -length window, the unit
shift being one symbol. Each time, the contents of the window is used as the
address of the N -dimensional array and the corresponding cell of the array
increases by one. As a result, for each N -gram of length N , the number of
its perfect occurrences in the sequence is obtained. For example, let us sup-
pose, for the sake of simplicity, that N=3 and the sequence S has the form
S=1002311... in the digital code. Let this sequence be written in the array S[i]
so that S[1] = 1, S[2] = 0, S[3] = 0, S[4] = 2, S[5] = 3, .... All possible words
of length 3 are associated with the three-dimentional array v[0 : 3, 0 : 3, 0 : 3]
in such a way that the array element v[i1, i2, i3] corresponds to the word
i1, i2, i3. For each word, the number of perfect occurrences is calculated using
the following simple program cycle:

For i=1 to |S| − 3
v[S[i+ 0], S[i+ 1], S[i+ 2]] = v[S[i+ 0], S[i+ 1], S[i+ 2]] + 1

Next i

At the last stage, the frequencies should be summarized over each of the
sets Vi, which yields N -gram imperfect occurrence frequencies for the preset
vocabulary and mismatch level.
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Fig. 5.4 Two different possible ways of the occurrence of the N-gram CTTT in
the sequence S. (i) and (ii) dispositions differ by a one-position shift.

Let us consider now a more complicated problem of calculating a CS de-
fined on the basis of the more general Definition 2. According to this defi-
nition, a particular N -gram occurs in a sequence if, in this sequence, there
exists such a substring x that the alignment-based distance between x and
the N -gram is not more than the preset level r. It should be noted that the
distance of any other substring which contains the substring x does not ex-
ceed r, either. This fact does not contradict Definition 2; however, in order to
calculate the total number of N -gram occurrences in the sequence S, we need,
obviously, an additional definition. The following example demonstrates that,
directly applying Definition 2 to calculating the number of N -gram occur-
rences, one may overestimate it. Fig. 5.4 shows two different possible ways of
the occurrence of the N -gram CTTT in the sequence S.

The alignment of the substring ATTT (i) can be performed by substi-
tuting C for A (or viceversa). The alignment of the substring TTT (ii) re-
quires a proper insertion. In both cases, only one elementary transformation
is required and thus, according to Definition 2, each case signifies that the
N -gram CTTT occurs in the sequence. Taking these two cases into account
independently, one arrives at conclusion that the N -gram CTTT occurs in the
sequence twice. However, it is obvious that it can actually occur only once in
the considered fragment of S. Therefore, the correct way of reasoning should
be the following. Let us consider the set X(N -gram, S, r) of all the substrings
which can be aligned with theN -gram using no more than r elementary trans-
formations. On the set X(N -gram, S, r) we define partial order with respect
to inclusion in such a way that a > b if a ⊃ b, a, b ∈ X(N -gram, S, r). The
set of minimal elements in this order is designated as Xmin(N -gram, S, r).
Now we can represent the value Q of the N -gram occurrences in the sequence
S as the number of the elements of this set: Q = |Xmin(N−gram,S,r)|. In
the above example, the substring TTT represents, obviously, the minimal ele-
ment and thus the N - gram CTTT occurs only once in the sequence fragment
under consideration.

Now we can outline the Brute Force algorithm for calculating a CS on
the basis of Definition 2. First, it should be noted that it is impossible to
predefine the length of a substring of the sequence S, which the N -gram
of length N should be compared to. If, in the process of alignment, all r
transformations appear to be insertions in the substring, the initial substring
length may be N − r. If all the insertions occur in the N -gram, the substring
length may be N + r. Of course, all the intermediate lengths should also be
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considered. Next, according to the above definition, we look over all possible
sub-strings of S in the length range from N − r to N + r and perform the
procedure of alignment of each substring with the N -gram. If the alignment
requires no more than r elementary transformations, the substring is included
in the set X(N -gram, S, r). Obviously, the number of operations in such an
algorithm is of the order of (1 + r)N |S|. Next, we find the minimal elements
in the set X(N -gram, S, r) with respect to the established partial order. By
definition, the number of these elements is equal to the number of N -gram
occurrences in S. The total number of operations required for the calculation
of the spectrum is, obviously, of the order of O((1 + r)N |S||W |).

More complicated algorithms make it possible to solve the problem with
better estimation of the number of required operations. For example, using
the result obtained in [162], [160], we arrive at the estimate O(r|S||W |) for the
number of operations in the case of the mismatch r, the allowed operations
being both substitusions and indels. Ukkonen [262] and Galil and Park [86]
developed improved algorithms for the cases of a given bound on the number
of allowed extended substitusions and indels. In a recent paper, Cole and Har-
iharan [48] suggested an algorithm with the estimate O(|S| + (|S|r4)|W |/L)
for the case of r allowed substitusions and indels. Note that for small r the
algorithm is linear.

5.2.1 CS Visualization and Some Aspects of
Compositional Spectra Qualitative Analysis

The CS method is successfully applied to the problem of sequence compar-
ison. This comparison will be quantitatively considered by us in the next
Section 6, the consideration being not just formal, but rather performed with
regard to qualitative features that are shared by CS of different sequences.
In this connection, the CS visualization approach is of major importance, as
it allows to qualitatively estimate the correspondence between the spectra
of different sequences and observe the transformation of visual differences to
formal numerical relations. At this point, it is worthwhile reminding that our
field of science is essentially biological and, as such, may be investigated by
a method of observation as well as by calculations [140], [141], [139].

Let S1, S2, . . ., Sk be the genomic sequences that we are going to compare
using the given set W . The CS, which is, actually, a frequency distribution
on the set W , may be represented as a distribution plot, where X-axis cor-
responds to the running index j of N -grams wj , while Y -axis corresponds to
the frequencies fij of wi. It is clear that the preset order of N -grams wj in
W predetermines the shape of the CS of Si with respect to W . Of course, the
spectra of different sequences can be visually compared only if the N -grams
from the set W have the same order along the axis. For better visualization of
multiple spectra, one can choose to order the N -grams wi ∈ W non-randomly,
namely, the N -grams may be ordered by descending frequencies fij using any
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Fig. 5.5 Examples of compositional spectra obtained for various species on the
basis of a particular N-gram set, W . The length of each N-gram, N , is 10; the
number of N-grams, n, is 200; mismatch, r, is 2. A - spectra of long contigs from
human chromosomes (C+G content is in the range 0.36 - 0.50), ordered with re-
spect to the human X-chromosome (the specra numbers correspond to those of
human chromosomes). B - spectra of different contig pairs from four genomes,
ordered in each pair with respect to the first contig (A) (from top to bottom:
Caenorhabditis elegans, Drosophila melanogaster, Saccharomyces cerevisiae,
Streptococcus pyogenes). C - spectra of 7 contigs (a - Caenorhabditiselegans, b -
Saccharomyces cerevisiae, c - Escherichia coli, d - Porphyromonas gingivalis,
e - Mycobacterium tuberculosis, f - Halobacterium sp., plasmida), ordered with
respect to the human X-chromosome with different levels of similarity to the X-
chromosome.

S, say S = Sl. In other words, we can denote by Ord(W,S) such an arrange-
ment that the N -gram wi is followed by the N -gram wj (i > j) if and only if
mi ≥ mj (mi = occwi|S0)). In the case mi = mj , any reciprocal order of wi
and wj is permitted. This order of N -grams wi in W is non-random and can
be derived from the target sequence composition. Such ordering facilitates
the comparison of a given set of spectra with any particular spectrum (see
the CS of a few species in Fig. 5.5).
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One can see that all the considered contigs of human chromosomes display
approximately the same spectrum (Fig. 5.5A) in terms of relative N -gram oc-
currence frequencies. However, the shapes of these spectra are quite different.
For example, the frequency profiles for the chromosomes 1 and 3 decline in a
similar way, which is quite different from the profiles for the chromosomes 6
and 11. The same observation is true for the spectra of different contig pairs
from the four genomes shown in Fig. 5.5B, where the first contig (A) in each
pair is ordered. This observation prompts the question as to the qualitative
parameters which should be the basis for the quantitative comparison of the
spectra. Keeping in mind the possible applications to intergenomic compari-
son, we select such quantitative measure which emphasizes the similarity of
human contigs as parts of the same genome. Our visual estimation accentu-
ates similarities on the basis of word order, while the estimation based on the
spectra shapes should rather not be used. An example of a measure which
depends only on the reciprocal order and is independent of the amplitude
is the Spearman coefficient. At the same time, the common Euclidian dis-
tance measure is highly sensitive to the absolute values of the amplitude.
The distance choice which would be appropriate for the genome classification
problem will be discussed in detail in the next Section.

5.2.2 N-Grams and Zipf’s Law

Passing on to the comparison of different genomes, let us consider the spec-
tra of seven genomes (Fig. 5.5C), ordered with respect to the human X-
chromosome. It can be seen that the spectra of different genomes are rather
variable - they may be similar, neutral, or even opposite to each other. This
fact demonstrates high resolution of the spectra over the whole set of genomes
at the level of the N -gram order.

The shapes of the spectra have certain peculiarities. If we chose to draw
the analogy with natural languages (as we often do throughout the book),
we could suggest that the spectra shapes follow the well-known Zipf’s law,
which states that ”the probability of a word in a text, multiplied by the rank
of its frequency, is a constant”. Since it is the occurrence frequencies that are
ordered (ranked), there is only one value of the occurrence frequency which
is associated with a group of words having the same occurrence frequency.
Zipf’s law has the form ifi = C, where fi is the occurrence frequency of the
word in the text; i is the rank of the frequency; C is an empirical constant,
which is chosen on the basis of the requirement that Zipf’s relationships for
all the frequencies be as close to equlities as possible. Suppose, for exam-
ple, that the word the is the most frequent word, occurring in the text 17,186
times. Then, we would expect the second-most frequent word a to occur 8593
times (17,186/2). Similarly, we would expect the third-most frequent word of
to occur 5729 times (17,186/3), the fourth-ranked word to to occur 4297 times
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(17,186/4), and so on. As a result, Zipf’s law is represented graphically by a
hyperbola with a very long tail, accounted for by low-frequency words.

Actually, Zipf’s law is a general synergetic law and is, therefore, applicable
not only to genomic texts and natural languages, but also to a lot of other
fields. For example, Zipf’s distribution describes such varied events as scien-
tific article citing, family name occurrences, the power of earthquakes, and
the area of forest fires. It should be emphasized that, from a purely formal
point of view, if a rank distribution is described by an exponential (Zipf-like)
function, the distribution of the corresponding random value also follows an
exponential law. A great number of empirical distributions found in nature,
economics, sociology, and other fields of science, obey the exponential law.
Noteworthy, that this empirical fact can sometimes be derived from funda-
mental physical conceptions as well.

Zipf’s law was first discovered in a research in the field of linguistics [293],
but, in that case, the words were considered as merely elements of a statistical
ensemble. The same law would be true for the word distribution in a text
typed by a monkey, which presses the keys on the keyboard in a random
way [171]. The really surprising thing is that a text in a natural language,
which is primarily aimed at conveying a particular sense, also demonstrates
synergetic effects, if, of course, this text is not poetry. In conclusion, an
important pertinent fact should be noted: Zipf’s law also holds for DNA
nucleotides, their pairs, triplets, and higher-order groups [178], [183].

Let us consider now the standard version of Zipf’s law in more detail. If
all the words of the text have different frequencies, the constant C can be
readily obtained from the following obvious equation:

∑
fi = 1 = C

∑ 1
i
. (5.17)

Indeed, for each i, according to Zipf’s law, ifi = C, so that fi = C
i . The

subsequent summarizing gives (5.17) since the total sum of all the word fre-
quencies equals 1.

It is well-known, however, that the constant C is different for each lan-
guage, which is due to two reasons. 1) There always exist groups of words
which have the same occurrence frequency, so that the sum of the frequencies
(of course, without regard for multiplicity) is less than 1 and cannot be found
a priori. 2) The sum of inverse rank values in the right part of (5.17) depends
on the number of various words in the text, the number being different for
different texts.

Now it will be shown that Zipf’s law may, indeed, be applied to the de-
scription of the shape of compositional spectra.

The data presented in Table 5.2 suggest that Zipf’s law may adequately
describe the CS shapes since the calculated values of XY are approximately
constant (300 and 200) for both chromosomes.
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Table 5.2 Some N -gram frequencies (Y -coordinate) and positions (X-coordinate)
obtained from the X-chromosome spectrum (Fig. 5.5A) and from the A∗-spectrum
(Fig. 5.5B).

Fig. 5.5A, X Fig. 5.5B, A*

X-coordinate Y-coordinate XY X-coordinate Y-coordinate XY

12 25 300 8 25 200

19 15 285 15 15 225

31 10 310 31 7 217

46 8 368 52 6 312

71 4 284 80 3 240

5.2.3 Distances between Compositional Spectra

In the linguistic text theory, there exist a lot of various distance types, or, in
a more general sense, text dissimilarity measures. However, their efficiency
is not of universal nature, being connected with the peculiarities of a text
content. Naturally, in the case of genomic texts, other preferred distances
may be chosen. In this paragraph, we test certain possible types of distances
between CS with due regard for specific problems of genome classification.

By definition, the compositional spectrum of the sequence S relative to the
set W is a vector of frequencies F (W,S). There are various methods of mea-
suring the dissimilarity between two distribution-vectors, t = (t1, t2, ..., tn)
and u = (u1, u2, ..., un). In what follows, several distances considered in Ap-
pendix A, Section A.1.2 will be compared: the Euclidian distance, the Man-
hattan distance, the Max-distance, the KS-like distance, correlation dissimi-
larity, the Spearman dissimilarity, and the Kendall dissimilarity. Obviously,
the effectiveness of using distances for the analysis of genomic sequences can-
not be assessed theoretically and should be determined “empirically”. The
following example shows how the discriminating ability of various distances
can be assesed [274].

Example. Consider 38 particular species, which represent three kingdoms
of life (Archae, Bacteria, and Eucaria). Each species is represented not by
the full genome, but by two different genome sequences, 300-400 kb long.
Thus, the initial set (database) includes 76 sequences. Such structure of the
database (more than one sequence from each genome) allows to control the
grouping quality of the data.

Over the set of all the database sequences, each of the above-mentioned
functions generates a set of pair-wise distances. It is convenient to describe
each set by the corresponding histogram.

According to the obtained histograms, all the distance measures can be
divided into two groups. The first group includes the Euclidian, Manhattan,
Max-, and KS-like distances. The second group contains the dissimilarities
based on the Pearson, Spearman, and Kendall correlations. The Euclidian
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Fig. 5.6 Distribution of CS-distances based on three different distance measures.
A - the Euclidian distance; B - the Kendall rank correlation τ ; C - the Spearman
rank correlation ρ. The first column - the distributions of intragenomic distances,
the second column - the histograms of intergenomic distances. The N-gram length
N=10; the number of N-grams n=200; mismatch r=2.

distance (Fig. 5.6A) provides a typical example of a distance histogram for
the first group. A histogram of such type suggests the existence of a single
cluster. ensemble

An example of a histogram for the second group is shown in Fig. 5.6B,C,
where the distances were calculated using the Spearman and Kendall rank
correlation coefficients.

Three major local minima can be observed on the histograms, but the
disparities between the masses of the maxima are not so considerable as those
for the first group of distances. This result suggests the existence of three or
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Fig. 5.7 Distribution of the Euclidian distances and of the distances based on
Spearman correlation coefficients over the set of 1,000 randomly generated artificial
CS. 1 - Euclidian distances; 2 - distances based on Spearman correlation coefficients.
The number of N-grams n=200.

more clusters. It can be concluded, thus, that the second group of measures
is preferable for effective clustering. This group includes also a measure based
on the N -gram vector correlation, which is often employed to build distance
matrices.

Thus, using a CS set calculated for natural genomes, it can be shown
that the pairwise distance distribution substantially depends on the choice of
the distance function. However, this distribution also depends on the vector
distribution in the corresponding space, which, in turn, reflects the genomic
structure peculiarities. Indeed, consider a random vector, which is called ran-
dom since each of its coordinates is a realization of a random value such that
its distribution is uniform and independent of all other variables. Considering
a set of 1,000 random vectors of such type, we obtain the probability distribu-
tions of pairwise Euclidian distances and Spearman correlation coefficients,
which we have chosen as representatives of the two above-mentioned distance
groups (Fig. 5.7).

In this case, regardless of the distance function, unimodal distributions of
pairwise distances are obtained. In the next example, a set of vectors is gener-
ated by all kinds of permutations of a six-dimensional vector, the coordinates
of the vector being pairwise unequal. Under such conditions, the number of
the vectors in the set is equal to 720. Fig. 5.8 shows the histograms of the
pairwise distances for these vectors obtained with the Euclidian distance and
the distances based on the Spearman rank correlation.
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Fig. 5.8 Distribution of the Euclidian distances and of the distances based on
Spearman correlation coefficients over the set of 720 non-randomly generated arti-
ficial CS. The vector dimension is 6.

It can be seen that the distribution rank with the Spearman correlation dis-
tances is more extended than that of the Euclidian distances, but the results
are still quite different from those obtained for natural genomes (Fig. 5.5).
The fact that the pairwise distance distributions of more or less uniformly
simulated CS sets differ from each other means that, in the case of natural
genomes, CS sets have specific distributions, which may reflect some pecu-
liarities of the genomic text. It should also be taken into account that the
distance distributions are directly simulated due to the direct simulation of
the compositional spectra. However, not every distribution on a finite set can
be of a CS type, in other words, not every distribution can be viewed as the
frequencies of the N -grams which belong to the same sequence.

The determination of the distances between the spectra is the central point
of the whole CS approach. A “good distance” is supposed to be in line with
the natural perception of spectra proximity. However, there are formal cri-
teria of the distance quality as well. Indeed, it is desirable that parts of the
same genome should be close enough to each other, the same being true for
the strains of the same species. While this requirement seems to be quite
obvious, it is less clear, though no less important, that the distance distri-
bution on a great number of heterogeneous species should be nearly uniform
and completely cover the permissible range of distances. The necessity for
this condition can be demonstrated by reductio ad absurdum in the following
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way. Let the distance distribution be close to unimodal for a great number of
heterogeneous species. This ultimately means that the distance between any
pair of species is approximately equal to the mode value and the distribu-
tion is described by the dispersion around this value. Such distance scarcely
reflects the virtual correlations between genome pairs. For example, the Eu-
clidean distance is affected by the values ofN -gram frequencies in a sequence,
in other words, by the spectrum form.

Nevertheless, the frequency parameter may bear some “latent” informa-
tion, which is, actually, “noise” with respect to the spectrum characteristics
required for the distance determination. In this regard, the proximity mea-
sures such as the Spearman or the Kendall correlation coefficients are the
“minimal” ones because they depend only on the differences between the
N -gram order in the spectra of the two sequences being compared. We refer
to thess proximity measures as the ”minimal” ones for it seems impossible
to use less data on a spectrum if the distance calculation is based upon all
the N -grams of the set W (and not, for example, on any kind of subsam-
pling). Moreover, the meaning of such measures is obvious, namely, if all the
N -grams appear in the same place for both spectra, the distance is zero. On
the other hand, the more N -grams in one spectrum shift their places with
respect to the other spectrum and the greater the magnitude of these shifts,
the greater the distance is.

Of course, there may exist other ways of distance definition which we are
not aware of at present. Probably, some other distances could provide a more
effective processing of the spectrum.

Note that each measure has a certain range of values. For a predefined set
of objects, the measure which generates all the pair-wise distances between
the objects in the whole range of possible measure values appears to be more
sensitive than the measure which gives the pair-wise distances only in a part
of this range. Thus, the correlation-based distances between sequences seem
to be preferable to all the other distances discussed above. For this reason, it
would be sensible to use the d1 measure, related to the number of coordinate
permutations in a vector and based on the rank correlations ρ:

ρ = 1 − 6
∑
Δ2
i

n(n2 − 1)
, (5.18)

where Δi = xi − yi is the difference between the rank of the corresponding
values Xi and Yi; n is the number of coordinates in each dataset [137]. Let
us denote d1 = 1 − ρ, 0 ≤ d1 ≤ 2 [140]. Such distance is in accord with
heuristically acceptable understanding of the proximity between two order-
ings. Therefore, if the distance between two sequences d1(Si, Sj) = 0, their
spectra are identically ordered and we can say that “Si is compositionally
congruent to Sj”. In the case of the maximal distance d1(Si, Sj) = 2, the
spectra of the sequences Si and Sj are ordered in the strictly reverse way.

Though the Spearman and Kendall dissimilarities are defined for any pair
of vectors in a multi-dimensional linear space, they are not metrics on this
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space. Indeed, if the value of the distance d1 based on the Spearman rank
correlation equals zero on a pair of vectors, this just means that their co-
ordinates are identically ordered. A set of vectors with identically ordered
coordinates forms a linear space cone since a linear combination of such vec-
tors, with non-negative coefficients, generates a vector which has the same
order of coordinates as all the other elements of the cone. From the con-
sideration of a factor-space which identifies all the elements of the cone
a finite set is obtained. It is equivalent to the set of permutations which
have the corresponding dimension. On this set, the Kendall and Spearman
rank correlation do not produce metrics, either. As an example, three vec-
tors a=(1,2,3), b=(2,1,3), and c=(1,3,2) can be considered. It is not difficult
to calculate the distances d1(a, b)=6(1+1)/24=0.5, d1(a, c)=6(1+1)/24=0.5,
and d1(b, c)=6(1+4+1)/24=1.5 and see that the triangle inequality is not
fulfilled.

5.2.4 Compositional Spectra as Non-random and
Random Objects

To calculate the compositional spectra of genomes, any set W of N -grams
can be used. This set may possess unique features, which can account for the
spectra parameters and for the characteristics of the genome sets, based on
these parameters. Let us consider two examples of N -gram sets of such type,
which, are of considerable interest in themselves, too.

Example 1. All the sub-sequences of fixed length can be taken from a certain
genome G as N -grams and, according to some specific principle, the set W
can be formed using only these N -grams. For example, the set W may consist
of a number of the most common N -grams that can be found in the genome
G. Here, the spectra of other genomes and the distances between them are,
in a sense, transformed with respect to the reference genome G.

Example 2. The choice of the set W can be made in the framework of dense
spatial packing of spheres or, which is basically the same, of constructing an
effective code. First, we will consider this approach for an easier case which
corresponds to Definition 3. According to the definition, the occurrence of
the N -gram wi (wi ∈ W ) in the sequence S requires the existence of such
a substring y in S that the Hamming distance between y and wi does not
exceed the preset level r. However, it may well happen that the Hamming
distance between some other N -gram from W and y does not exceed r, either.
There are a number of reasons why this fact impairs the informational value of
the spectra. For example, if the described situations are relatively numerous,
the values of N -gram occurrences in S may become interdependent, and the
spectrum resolution will decrease. Therefore, it would be beneficial to use
such set W that the Hamming distance for each N -gram pair of the set is not
less than 2r + 1. This condition means that the distance of each substring y
of S is equal to or less than r from not more than one N -gram of W .
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The virtual construction of the set W is a separate problem. Generally
speaking, a similar problem for the Euclidian space has been known for a
long time (see, e.g. [52]). The geometrical interpretation of this problem is
dense spatial packing of equal-radii spheres. The solution of the problem in
an n-dimensional Euclidian space is mathematically equivalent to that of the
major problem of optimal encoding and, as such, is of great applied signifi-
cance. Moreover, in the cases of 24- and (more than 24)-dimensional spaces,
the dense-packing solutions which have been obtained lately have led to im-
portant discoveries in mathematics, in particular, in the field of group theory.
The main difficulty consists in finding the packing of maximum possible den-
sity because even heuristic algorithms of finding reasonably dense packing
require serious mathematical efforts. These problems may be substantially
simplified if only the most regular configurations, the so-called latticepacking,
are taken into consideration. Nevertheless, the problem, even in its simplified
version, still remains so complex that it was only recently that dense packing
of spheres was applied to the practical design of communication systems.

In an n-dimensional Hamming-distance space, a sphere of radius r com-
prises a join of a set of r-dimensional linear surfaces which intersect in a
single point, called the spherecenter. Each of the surfaces is parallel to a
certain subspace built on the coordinate axes. It is the dense, or optimally
dense, packing of such spheres that the problem of constructing the set W is
reduced to. Methodologically, this problem is equivalent to the one described
above for the Euclidian space. Thus, constructing the set W , which should
have certain preset properties and a relatively large volume, may present a
difficult task.

In a more general case of N -gram occurrences described by Definition 2
it is required that, for each pair wi, wj ∈ W , the sets of minimal elements
Xmin(wi, S, r) and Xmin(wj , S, r) should have an empty intersection for any
sequence S. The construction of such N -gram set is a complicated algorith-
mical task.

The sets W of the described-above types possess an intrinsic extremal
feature, which can account for the obtained result formulated in terms of,
e.g., non-intersecting covers. However, generally speaking, these sets are not
unique and the question arises as to whether the results depend on the set
choice. Due to the above-mentioned technical difficulties which arise in the
process of generating such sets, the answer cannot be readily obtained. There-
fore, it was proposed [140] to use a random set W (of course, with a certain
distribution) for calculating the spectrum and for the subsequent analysis.
Since W is a random set, all the functions that involve W have also ran-
dom values. Even in the case of a uniform distribution of W , the distribu-
tion of pair-wise distances between the spectra is of complex nature since
the compositional spectra are sequence-dependent. This means that, for a
fixed sequence, uniform W distribution does not necessarily result in uni-
form distribution of the compositional spectra viewed as vectors in the corre-
sponding vector space. Moreover, comparing the distributions of the vectors
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themselves, one can assess the dissimilarity of two sequences. Thus, the dis-
tance between two spectra is a random value and its distribution can be
calculated on the basis of the spectrum distribution. In this context, the
cluster structure is also random; for example, its stability depends on the
reciprocal distribution of pair-wise distances.

In the next chapter, the main technique used for generating an N -gram
set W is random uniform sampling from the entire N -gram set. It will be
shown later that the spectra parameters can be selected in such a way that
the pair-wise distances are almost independent of the random realization of
an N -gram set. Nevertheless, the results obtained on the basis of the compo-
sitional spectra approach are of statistical nature, so their proper evaluation
should be performed. This is of particular importance for the cluster analy-
sis, where minor distance variations can result in significant transformation
of the cluster structure.

The following simple models are examples of generating random spectra.
(1) Let N -grams be produced by sequentially adding new letters (of the

four-letter alphabet), each letter having equal probability of appearing in
the current position. We will refer to such stochastic procedure as uniformly
random and any random set W of N -grams produced in such a way will also
be referred to as a uniformly random set.

(2) Every probability vector {p1, p2, p3, p4}, (p1 + p2 + p3 + p4 = 1, pi ≥
0) can be used to generate a set of N -grams, W , so that the frequencies
of the letters A,C,G, T will be approximately equal to the corresponding
frequencies of the probability vector. Such a random set W will be referred
to as compositionally random. In these notations, the uniformly random set
(0.25, 0.25, 0.25, 0.25) is a compositionally random set.

(3) Markov random set W is created if each N -gram wi is generated by a
predefined Markov chain model, in which the probability of a letter in a given
position within an N -gram is a function of k previous letters of the N -gram.

Choosing different W -generating procedures, one can produce various
classes of compositional spectra. By analogy with optical spectra, each class
of CS can be associated with a certain combination of wave lengths. Similar
to illumination of a coloured object with monochromatic light, which makes
areas of certain colours more vague, while other areas can be seen more dis-
tinctly, the use of CS of different types makes some peculiarities of a sequence
obscure, while others become more prominent.



Chapter 6
Application of Compositional Spectra
to DNA Sequences

In Chapters 6-8, we bring examples of genome classifications based on dif-
ferent methods of genome presentation. In particular, in this chapter, the
compositional spectrum (CS) approach, introduced above, is employed. We
choose CS parameters for the application of the method to DNA sequences
and consider the main CS properties of the classification obtained. The reduc-
tion of the entire N -gram set is quite significant, as compared to the case of
corpus reduction, discussed in Chapter 3. The N -grams are chosen randomly
under the condition that any letter of the original alphabet can be found in
each position of each word with equal probability. Definition 3 (Chapter 5,
Section 2) is used for calculating N -gram occurrences in a sequence.

6.1 The Choice of Compositional Spectra Parameters

The approach of using compositional spectra for genome clustering, described
in the previous chapter, requires a reasonable choice of three parameters: the
length of N -grams (L), the number of N -grams (n) in the set W , and the
allowed mismatch (r). The choice of the parameter values is made with regard
for the following three constituents:

(1) the problem that is to be solved on the basis of CS; (2) the a priori
biological requirements imposed on the N -gram parameters, which follow
from the problem; (3) informational capacity of the N -gram set.

With regard to (1), the problem that we are going to solve is that of genome
classification. Any biologically meaningful genomic classification should re-
flect the relationships established between ancestors and descendants in the
course of evolution. The attempts to evaluate these relationships have been
undertaken more than once on various bases, e.g., on the basis of pheno-
typical traits (see Chapter 2). Since the evolution of phenotypical traits is,
ultimately, the evolution of genomes, the philogenetic classification based on
genome sequences is of particular interest. The currently adopted genomic
phylogeny is built on relatively short conservative (slowly changing) genome
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sequences (see Chapter 2). These small-length sequences can be compared
almost directly using the alignment technique.

The question arises, however, as to whether whole genomes or their large
parts actually reflect evolution. It is hardly possible to compare such se-
quences by the alignment method (see Chapter 4 for discussion). In this
chapter, we are going to describe the comparison of genomes by means of
CS technique and building, on this basis, proximity relations between the
genomes. The fact that the obtained system of relationships coincides or, at
least, is close to the standard genomic phylogeny, suggests that the memory
about the origin is distributed along the whole genome. If the obtained re-
lationships do not coincide with the genomic phylogeny, one should try to
reveal the source of such clustering, which, in any case, reflects the objective
reality.

The problem set up in this way determines the lines along which CS pa-
rameters should be searched for, with regard for certain biological consider-
ations, which sends us to item (2). The requirement of the problem is that
the N -gram length should be large enough so that the N -gram could not
be misidentified as some common universal signal, which does not reflect
the specific origin of a genome. For example, words of length 3, which are
present in coding sequences, encode 20 aminoacides. Since bacterial genomes
almost solely consist of genes, the N -gram frequencies for these genomes are,
to a great extent, determined by the frequencies of the aminoacides that the
genome encodes. From the philogenetic point of view, this factor is not of
major importance, being rather connected with the ecological aspects of the
species habitats. Moreover, the protein code impact makes it rather problem-
atic to compare bacterial genomes with those of mammals, where the portion
of genes is extremely small. There also exist other universal signals such as
two-letter codes of curvature.

The main models of genome evolution (see Chapter 4, Section 4) imply
that the comparison of N -grams with the text should allow for mismatches
of several letters. It was mentioned in the previous chapter that the allowed
mismatch, r. For example, if the original sequence consists of 10 letters T,
S = (TTTTTTTTTT), and, in the course of evolution, one mutation (sub-
stitution) has occurred, the resulting sequence S’ = (TTTTATTTTT). The
sequences S and S′ have no common words of, say, length 6 and, in the case
of no allowed mismatch, they would be in no way similar. However, if just
one mismatch of the words is allowed, the sequences appear to be identi-
cal. Such result is quite acceptable from the biological point of view since
one mutation is not a significant unit of evolution. However, it is not clear
what biological considerations could impose restrictions on the value r itself.
Indeed, when two protein sequences shown in Fig. 6.1 are compared, there
exist only 22 matches over 68 positions. The area marked in the centre of
the sequences does not have any matches at all. However, it is quite obvious,
that the compared sequences are closely related.
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Fig. 6.1 An example of the coincidence of two protein sequences with significant
mismatch [77].

The informational requirement (3) imposed on the N -gram length and on
the volume of the set W , with the allowance (1) made for the problem to be
solved, can be reduced to the requirement of sufficient frequency variability
of N -gram occurrences in the sequence, the latter requirement being directly
connected with the set W informational capacity. In this chapter, the in-
formational capacity of an N -gram set is defined as the number of different
N -gram frequencies in the sequence. For example, in a natural genomic se-
quence of length 500,000, at N=3, all the 3-grams have different occurrence
frequencies, but the number of all possible 3-grams is only 64. At N = 9, the
number of different N -grams is as large as 262,144, but the number of differ-
ent frequencies is only 102 because 9-grams occur very rarely. The optimal
informational capacity, i.e., the maximum number of different frequencies, is
reached at N = 5 or 6 and is equal approximately to 400. Obviously, the
requirements for a sufficiently large N -gram length and for a large infor-
mational capacity run counter to each other since the genomic text length
cannot be, even theoretically, infinite and, therefore, relatively long words
very rarely occur in a text. However, considering N -gram occurrences with
mismatch r makes it possible to use much greater values of N .

For further condideration, we need to introduce some formal definitions.
Namely, let I designate a set of positive integers, I = {i1,i2,. . . ,ir}, such that
all of them are pairwise different and do not exceed the value of N+ |I|. Next,
we define a distributed(N, I) − gram as a string of N + |I| symbols, where
a conventional symbol of a “gap” occurs in fixed positions i1,i2,. . . ,ip, while
all other symbols belong to the original alphabet. For example, the strings
TCGG and TC −GG are a 4-gram and a (4,I)-gram (I={3}), respectively.
We will say that a (N ,I)-gram occurs in the sequence if there is a match
in all the (N ,I)-gram positions occupied by the original alphabet symbols,
while the “gap” positions are disregarded (Fig. 6.2).

Fig. 6.2 The scheme of N-gram (A) and (N ,I)-gram (B) occurrences in the se-
quence S.
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Obviously, the distributed (N ,I)-gram with the empty set I (I = ∅) is
a usual N -gram ((N , ∅)-gram ≡ N -gram) and the number of all possible
(N ,I)-grams is independent of the set I and, with the four-letter alphabet,
is equal to 2(2N ) . Let us designate the average number of (N, I)-gram oc-
currences in the sequence S as M(N, I, S). This value is readily expressed
as: M(N, I, S)=(|S|-(N+|I |))/2(2N ). If the value of |I| is small enough (say,
does not exceed N), M(N ,I,S) is virtually independent of |I| and, for exam-
ple, at |S|=500000 and N=6, N=7, N=8, and N=9, M(N ,I,S) is equal to
122, 30, 7, and 2, respectively.

The distributed (N ,I)-gram provides the means to describe all the strings
which can be constructed in the case of mismatch between an N -gram and
the sequence being allowed. For example, let, as usual, the mismatch be r.
Then, for each N -gram, the question of its occurrence in the sequence S with
mismatch r is reduced to the question of the ideal-match occurrences of all
distributed (N − r, I, S)-grams at |I| = r.

Now we can formulate the following empirical estimation H of the mean
N -gram occurrence with the mismatch r:

H = CrN
∑
|I|=r

M(N − r, I, S).

Let, for example, N=10 and r = 1. Then, each N -gram generates 10 gen-
eralized (9,{i})-grams. Since, at N=9, the average number of (N+1)-gram
occurrences is equal to 2, the average number of 10-gram occurrences with
one allowed mismatch may be estimated as 20. With two allowed mismatches,
the number of possible generalized (8,{i,j})-grams is equal to 45 so that the
corresponding expected number of 10-gram occurrences may be estimated as
7*45=215, where 7 is the average number of 8-gram occurrences. Finally, with
three allowed mismatches, the average number of (7,{i,j,t})-gram occurrences
is equal to 30 ∗ 120 = 3600. The two latter values are sufficient for producing
a relatively large informational capacity of the 10-gram set. Using the above
estimation of H, we can calculate the preferable values of r at different N
values (Table 6.1) which should, presumably, give the required informational
capacity (the values of H are set to lie in the range 3,000-10,000).

Theoretically, the chosen value of N may lie in the range specified by Ta-
ble 6.1 or be even larger; however, there are some additional considerations
which allow to restrict the choice. For example, the N -gram length equal to
10 appears to be informative enough for the problem of reconstructing the

Table 6.1 Variation of the mismatch r with the N -gram length at the fixed range
(3,000-10,000) of average N -gram occurrences.

N 10 12 15 20 25

r 3 4 6 8 11
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whole sequence from its fragments [211]. The informational capacity of the
whole N -gram vocabulary was also defined as a certain relationship between
the characteristics of two consequent whole N -gram and (N -1)-gram vocabu-
laries [219]. The authors showed, as an example, that the Borrelia burgdorferi
genome informational capacity has its optimum at N=11-12. It also appears
that a too long N -gram does not have sufficient “flexibility” to appropriately
reflect the possible genome “fragmentary character“, while a too large value
of the allowed mismatch may lead to artifacts. Therefore, for the sake of def-
initeness, we choose the values of N=10 and r=2,3, although the values of
N=11 or 13 could well be considered, too.

Obviously, a priori checking the adequateness of the chosen values of CS
parameters and of the set W volume is impossible and the values should be
approved on natural genome texts. With that end in view, throughout this
chapter, we use a database that comprises the genomes of as many as 37
species which belong to all the three Kingdoms - Eukaryota, Eubacteria, and
Archaea.

The sequences represent large stretches sampled from the data on the
genomes; for each species, two different target 200-500 Kb sequences (referred
to as A and B) are produced. In a few cases, when the available material is
only sufficient to build one target sequence (A), the B sequence is taken equal
to A in order to maintain the same structure of the algorithms. In the case
of the Homo Sapience genome, 11 fragments of different chromosomes are
considered (see The List of Depicted Genomic Sequences).

From the fact that the CS method employs a random set of N -grams, W ,
it immediately follows that the compositional spectra F (W , S) and F (W , S’)
of the sequences S and S’, respectively, are also random; hence the distance
between the spectra of the sequences S and S’ is also a random value. Let
us analyze the distribution of the random variable d1 (see Chapter 5, Section
5.2.3 for the definition of d1) produced by a uniformly random set W . The
main empiric result is that, in this case, the measure d1(S, S′) is statistically
stable when S and S′ are genomic sequences. Indeed, the distribution of
d1(S, S ′) appears to be close to normal and its standard deviation decreases
with the increase of the number of words, n, in the set W . For 100 uniformly
random sets and for every pair of species, i and j (i, j belong to the collection
of 38 species, i �= j), σij is the standard deviation of the distances d1 over
all tested sets W . Then, the averaged standard deviation for all possible
pairs i, j,

σ̄ =

∑
i�=j σij
d

(where d is the number of different pairs of species), can be considered as an
indicator of the robustness of the measure d1 for given N , n, r.

The standard deviations of the distances d1 for N = 10 and r = 2 are
shown in Table 8.2 and in Fig. 6.3 for different n.
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Table 6.2 Deviation of the mean standard distance (d1) between two genomic
sequences as a function of the number of words, n, in the set W .

n 25 50 100 200 300

σ̄ 0.15 0.1 0.09 0.05 0.05

Fig. 6.3 The effect of the vocabulary size (n) on CS-distances. X-axis: the values
of all possible pair-wise CS-distances for a particular N -gram set Wo. Y -axis: for
each distance d1(i, j), its values, calculated for 100 random implementations of the
set W , are plotted along the vertical line which passes through the point d1(i, j)
on the X axis. As an example, such vertical line is drawn in (B).

From the data shown in Fig. 6.3, it can be seen that the variation of CS
decreases with increasing the W size for any pair of sequences. Thus, the
consistency of the genome comparison by means of compositional spectra
increases with n up to a certain point of saturation, which corresponds to
n ∼200. One can see that the size n=200 is, indeed, a reasonable asymptotic
choice. Similar results can be obtained for compositionally random variables
W and Markovian random sets. Thus, the distances between sequences esti-
mated on the basis of any random set W are sufficiently consistent.

To sum up, it should be emphasized that there is no unique criterion
for the optimal parameters of a compositional spectrum. However, the above
considerations show that these parameters can be chosen within certain limits
of the spectrum ”validity”. In what follows, we will use the parameter values
of N=10, n=200, and r=2.

The relatively small value of the W set volume with respect to all possible
N -grams is compensated by the fact that, due to the allowed mismatch, each
N -gram of the set generates a relatively large set of neighbouring N -grams.
For example, at N=10, the number of N -grams which differ from a particular
N -gram by exactly three mismatches is equal to 120 ∗ 81 = 9720, while at
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Table 6.3 Characteristics of sequence covering for L=10, n=200, and different
values of r.

r min % max % mean % 75%

1 0.17 0.76 0.45 0.25-0.5

2 3.1 13.1 7.2 3.4 – 9.0

3 31.0 87.0 57.0 45.0-60.0

n=200, the total number of such “close” N -grams is 2,000,000, the value
being larger than the number of different 10-grams. This result is, obviously,
produced by overlapping of neighbouring N -grams. In order to conceive the
volumes of the W set and of the neighbouring N -gram sets at the allowed
values of mismatch r, let us calculate the set covering, i.e., the total number
of the sequence letters which occur, in at least one N -gram which belongs to
this sequence.

For the N -gram length N=10 and n=200, the sequence covering charac-
teristics for three values of r (r=1, 2, 3) are presented in Table 6.3. In the
second column of the table, “min %” means the minimum percent of covering
by a random set of words for all sequences from a certain test set. Similarly,
“max %” is the maximum percent of covering for the same set of sequences,
while “mean %” is the mean value of covering for all sequences. However,
for the majority (75%) of the analyzed sequences, we may find a narrower
covering interval (min % – max %), which is shown in the last column of the
table.

6.2 The Effect of GC Content on Compositional
Spectra

Obviously, the variations in a particular N -gram occurrence in different
genomes may be accounted for by variations in the frequencies of the alpha-
bet letters in each of these genomes. It is the A+T or C+G frequencies that
are usually considered since, acording to the Chargaff’s rule 1 (see Chapter 1,
Section ), the letter A frequency is equal to that of letter T , the same being
true for the letters G and C. As the sum of the A+T and C+G frequencies
equals 1, the frequency of only one pair of letters, traditionally C+G, is usu-
ally specified. One could suppose that the observed variation of CS-distances
is related to the G+C content in different genomes. The results of the two
tests described below show that the effect of G + C content is too small to
account for the observed variations of CS-distances for different species.

Test 1. The results of this test are presented in Fig. 6.4 in the form of
a table with three columns and six rows. The arrangement of the top and
the bottom rows is different from that of the other rows. In the first (top)
row the spectrum related to a fragment of the H. Sapiens chromosome 1 is
repeated three times to appear in all three columns because this spectrum
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Fig. 6.4 H1-H4: Human contigs from different chromosomes; A1-A3, B1-B3,
C1-C3: contigs from other species. I: All contigs have approximately the same
G + C content; II: G + C content of H3 and B1-B3 is approximately the same and
higher than that of H1. III: G+C content of H4 and C1-C3 is approximately the
same and still higher than that of H3 and B1-B3. Values of CS-distances between
the Human contigs and all the other contigs are given in the tables at the top of
each column.

serves as a reference ranking. The second row comprises spectra related to
three different human chromosomes. The next three rows represent spectra
related to various organisms, which were selected in such a way that their
G+C contents are approximately equal to those of the corresponding human
genome fragments in the second row. The tables at the top of each column
show the distances d1 for two human genomes and other genomes from the
same column. It should be noted that the distances between all the pairs
of human genome fragments are always smaller than the distance between
a human genome fragment and an unrelated sequence although the G + C
content of the latter two sequences is the same.

Test 2. This test shows that the closeness of genomes depends rather on
the sequence composition than on the G+C content similarity. We will show
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that it is possible the change significantly the distances between sequences
by merely changing the sequence composition, while the G+C content and,
which is more, the G+C positions stay unchanged.

Let each species in the database be presented by two genome fragments,
A and B. For the purpose of this test, each B fragment may be randomized
in a few different ways. Namely, in the process of GC-reshuffling, G and C
letters may be transposed randomly, while the positions of G and C in the
sequences are preserved. The same procedure can be performed with A and T
letters (AT -reshuffling). A complete random mixing the letters, regardless
of their positions, can also be performed. The distributions of such ”pseudo-
intragenomic” distances between the original A segment and the reshuffled
B sequence are presented at the top of Fig. 6.5 (row I). From the comparison
of this figure with Fig. 5.6 in Chapter 5, it can be inferred that each of the
above reshufflings substantially increases the original CS-distances between
the fragments. For example, while the original intragenomic distances range
from 0 to 0.2 (Fig. 5.6A, Chapter 5), the pseudo-intragenomic distances fall
in the ranges 0.04-0.66 and 0.04-0.9 in the cases of GC- and (GC+AT )-
reshuffling, respectively.

The dependence of the distance d1 on G+C content at the intergenomic
level is assessed using the model of contig B-reshuffling described above,
with subsequent calculation of the pair-wise distances between the contigs.
The distributions of such ”pseudo-intergenomic” distances are presented in
Fig. 6.5, row II. It can be seen that the shapes of the histograms are notably
different from the original shape (Fig. 5.6, Chapter 5). The similarity of G+C
contents results in smaller distances, which corresponds to the peak at the
beginning of the histograms, while for significantly different G+C contents
the distances are large (the peak at the end of the histograms). In contrast to
this, in the original case, without reshuffling, the majority of the distances are
located in the central part of the histogram, which once again demonstrates
that the primary structure of a genomic sequence reduces the effect of G+C
content on the distances.

It should be pointed out that the differences among the compositional
spectra of the sequences compared above cannot be accounted for merely by
variations in G+C content. For example, if the difference between the G+C
content of two fragments from the same genome does not exceed 10%, the
distance between the fragments is almost independent of the G+C content
differences.

However, this is, definitely, not the case for intergenomic distances for
certain pairs of species. In order to assess the relationship between G + C
content and CS-distances, the distance DC+G is introduced as the absolute
value of the difference between the species G + C content. The results pre-
sented in Fig. 6.6 show that when the DC+G-distance is less than 20-25%,
there is almost no relationship between DC+G and distances d1, whereas
higher differences in G+C content have a profound effect on d1.
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Fig. 6.5 Distributions of pseudo intra- and intergenomic CS-distances based on
the Spearman rank correlation. Row I: distributions of pseudo intragenomic dis-
tances between the original fragment A and the reshuffled fragment B. Row II:
distributions of pseudo intergenomic distances between the reshuffled fragments B.

Fig. 6.6 Effect of C +G content on distance d1 between genomic sequences. Points
(DC+G(i, j), d1(i, j)) are presented for each of the two contigs, i and j. DC+G( i, j)
is the absolute value of the C+G content difference between the contigs i, j; d1(i, j)
is calculated for the spectra built on 100 randomly chosen sets W .

6.3 Associated Spectra and Projections of Sequences

6.3.1 Derivative Spectra

For any chosen set W , a related set W ∗ of reverted complementary
N -grams can be constructed. This means that each N -gram should be



6.3 Associated Spectra and Projections of Sequences 97

Fig. 6.7 The scheme of constructing the reverted complementary N-gram (w∗
i ) on

the basis of the N-gram wi.

inverted, i.e., written from left to write, each element of (A,T )- and (C,G)-
pairs being replaced by the other element of the same pair. For example, if
wi = ATCCGACGGT , then w∗

i = ACCGTCGGAT (Fig. 6.7).
Thus, for each sequence S, two spectra can be calculated - F (W ,S) and

F (W ∗,S). If the N -grams of the set W ∗ are ordered in the same way as
those of the set W , i.e., on the basis of the intrinsic correspondence between
the N -grams wi and w∗

i , the spectra can be compared directly. It is worth-
while noting that the spectra F (W,S) and F (W*,S) are, as a rule, highly
correlated.

One can also produce other derivatives of the chosen set W, for example, a
reverted, but not complementary, sequence w∗∗

i (i.e., w∗∗ = TGGCAGCCTA
for w = ATCCGACGGT ). It can be shown that the resulting set W ∗∗ also
produces informative spectra; however, in contrast to the foregoing situation
of the F (W,S) and F (W ∗, S) spectra being highly similar, the F (W,S) and
F (W ∗∗, S) spectra do not appear to be correlated at all. This indicates that,
in addition to some general species-specific structure in the genome organiza-
tion revealed by any set of words, some additional palindrome-like patterns
may also exist [90].

6.3.2 Two-Letter Alphabet

In Chapter 1, it was shown that the DNA sequence obeys certain empirical
rules, having, undoubtedly, by biological reasons, which are not quite clear
yet. For example, in the case of sufficiently large fragments, the frequencies
of A and T letters (as well as those of C and G letters) are approximately
equal. On the other hand, the letters of the DNA alphabet are, actually, four
nucleotides, which can be identified on the basis of their physico-chemical
properties. Purine derivatives, A and G molecules, have similar chemical
structure, while T and C molecules, being pyrimidine derivatives, are also
structurally similar. Identification of A and G as puines and T and C as
pyrimidines results in a two-letter purine/pyrimidine alphabet, which is des-
ignated here as (R,Y ). This alphabet is interesting, in particular, in that,
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R and Y letters almost always have the same frequencies (equal, obviously,
to 0.5).

With the two-letter (R,Y ) alphabet, it seems sensible to choose N=20 so
that the number of possible N -grams would be the same as with the four-
letter alphabet for N=10. Similar to the four-letter case, the conditions of
n=200 and r=2 are chosen for the two-letter alphabet. The similarity of the
parameters in the cases of the four- and the two-letter alphabets makes it
possible to compare the species classifications obtained by the compositional
spectra with the two types of alphabets. To produce a set of words, W , a
random generator can be employed under the assumption that each of the
four (or two) symbols appears at any current position with equal probability.

6.4 Different Genome Clusterings Obtained with the
Four- and the Two-Letter Alphabets

In this section, we describe the application of the CS technique to the problem
of genome classification. The results obtained in the form of dendrograms can
be directly compared to the phylogenetic trees described in Chapter 2.

6.4.1 Two Different Classifications of Organisms

A common technique of building statistically significant phylogenetic trees
is the method of constructing a consensus tree. This method is based on
building a certain set of phylogenetic trees, which is generalized in the form
of a consensus tree [2, 180]. In this chapter, two alphabets, a four-letter
(A,T ,C,G) and a two-letter (R,Y ) alphabet, are employed for CS calculation.
A hundred sets of random words are generated and the spectra resulting from
each set are used for calculating a matrix of pairwise distances between the
species under consideration. From the set of phylogenetic trees, the consensus
tree is, finally, obtained.

Fig. 6.8 shows a dendrogram obtained with the four-letter alphabet. This
structure differs considerably from the standard three-kingdom scheme (se
Chapter 2). It has proved convenient to analyse the dendrogram, distinguish-
ing three clusters on it (see Fig. 6.8). Cluster I contains all the considered
sequences from the human, mouse, and A. thaliana mitochondrial genomes
as well as the sequences from several Eukarya and thermophylic Archaea.
Cluster II contains a number of eukaryotes and prokaryotes, while cluster III
contains bacteria (both Eubacteria and Archaea) and a free-living eukaryote
Leishmania. We can see that, in the obtained clustering, Eukarya sequences
appear in two out of three clusters, whereas Archaea can be found in all the
three clusters. It can be supposed that the key factor in the classification
based on the (A,T ,G,C) alphabet is related to ecology: two ecological param-
eters, temperature and oxygen, almost perfectly account for the clustering
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peculiarities. For example, the composition of cluster I, which includes Eu-
karya, ,thermophilic bacteria, and a part of the studied Archaea, may have
resulted from two interdependent evolutionary processes: the evolutionary di-
vergence and the superimposed ecological convergence of the genomes, albeit
another process, horizontal transfer, cannot be excluded as a contributing
factor. The three clusters (I, II, III) and such partition structure shown in
Fig. 6.8) will be referred to as the main pattern (MP; see Table 6.4) and the
mixed-structure (or the m-structure), respectively (for details, see [139]).

Table 6.4 Mixed structure obtained on the basis of CS distances. Cluster I:
all considered sequences from the human, mouse, and A. thaliana mitochondrial
genomes and sequences from several Eukarya and thermophylic Archaea. Cluster
II: a number of eukaryotes and prokaryotes. Cluster III: bacteria (both Eubacteria
and Archaea) and the free-living Leishmania.

Cluster Eubacteria Archaebacteria Eukarya

I T. maritima P. horikoshii H. sapiens chr. X,Y

A. aeolicus P. abyssi M. musculus

A. fulgidus A. thaliana mitochon-
dria

M.thermoautotrophicum

II R. prowazekii M. jannaschii D. melanogaster

B. subtilis S. solfataricus C. elegans

M. genitalium A. thaliana

M. pneumoniane S. cerevisiae

E. faecalis

H. pylori

H. influenzae

S. pyogenes

C. acetbutylicum

B. burgdorferi

C. jejuni

Synechocystis sp.

III T. palladium A. pernix L. major

E.coli Halobacterium sp.
NRC-1

M. tuberculosis

N. gonorhhoneae

N. meningitides

D. radiodurans

A. actinomycetem-
comitans

P. aeruginosa

T. thermophilus
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From the data presented in Table 6.4 it can be inferred that, if the CS-
distances are obtained with the four-letter alphabet, the main-pattern sub-
division displays the essential features of clustering, while the traditional
three-kingdom scheme (Eukarya, Eubacteria, and Archaea) does not fit the
clustering criteria.

The dendrogram which is based on the compositional spectra obtained
with the two-letter alphabet (R,Y) is presented in Fig. 6.9 [142]. Similar to
the case of the four-letter alphabet, in this tree, it is also possible to distin-
guish the main pattern - the three main clusters (Table 6.5). The obtained
structure displays a much better similarity to the standard three-kingdom
scheme than the corresponding dendrogram obtained with the four-letter al-
phabet (see Fig. 6.9). Indeed, in Fig. 6.9, cluster I includes nearly all the con-
sidered Eukarya (with the exception of S. cerevisiae and Leishmania major).
Cluster II includes all the considered Archaea,, all thermophylic Eubacteria,
and three other bacteria. Cluster III consists of bacterial species. This three-
cluster partition will be referred to as the pattern of two-letter structuring.

Fig. 6.8 Dendrogram based on the four-letter compositional spectra.I-III are the
three main clusters; the numbers near the nodes are the robustness of the corre-
sponding fission based on the bootstrap analysis.
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Fig. 6.9 Dendrogram based on the two-letter compositional spectra. I-III - the
three main clusters obtained; the numbers near the nodes are the robustness of the
corresponding fission based on the bootstrap analysis.

The comparison with the traditional three-kingdom scheme considered
above is based on distinguishing three main clusters in each of the above
two dendrograms (Table 6.5).

However, distinguishing these clusters as sub-clusters of the dendrogram
(which is the main cluster) has been performed empirically. The point is that
the traditional methods of evaluating dendrograms are, actually, hierarchi-
cal (agglomerative) clustering methods. Such methods consist of subsequent
steps, each one uniting the two previously obtained clusters into a single clus-
ter. The process is finished after all the elements have been united into one
cluster, which is just the hierarchical tree. In contrast to the “partition” clus-
tering methods, the standard scheme of this process does not allow for the
definition of sub-clusters. Therefore, in the hierarchical clustering method,
we define a sub-cluster as a cluster that appears at some intermediate step
of the process. From the structure of the resulting hierarchical tree, it is
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Table 6.5 Cluster I: almost all considered Eukarya (with the exception of S.
cerevisiae and Leishmania major). Cluster II: all considered Archea (except for
Halobacterium), all thermophylic Eubacteria, and three other bacteria. Cluster III
consists of bacterial species.

Cluster Eubacteria Archaebacteria Eukarya

I H. sapiens chr. X,Y

M. musculus

A. thaliana mitochon-
dria

A. thaliana

D. melanogaster

C. elegans

II T. thermophilus M. jannaschii S. cerevisiae

T. maritima S. solfataricus

A. aeolicus M. thermoautotroph-
icum

H. pylori P. horikoshi

B. burgdorferi P. abyssi

C. acetbutylicum A. fulgidus

C. jejuni A. pernix

Synechocystis sp

III T. palladium Halobacterium sp.
NRC-1

L. major

E.coli

M. tuberculosis

N. gonorhhoneae

N. meningitides

D. radiodurans

A. actinomycetem-
comitans

P. aeruginosa

H. influenzae

S. pyogenes

R. prowazekii

B. subtilis

M. genitalium

M. pneumoniane

E. faecalis

impossible to determine whether a certain cluster appeared as an isolated
object at a particular step of the uniting process or it was constituted as an
isolated object from many other tree vertices. At the same time, observing
the agglomeration process, one can determine which clusters are formed at
each algorithm step. This is not possible, however, in the case of the consen-
sus tree. In what follows, we will describe a procedure which allows to answer
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the question as to whether a certain subset of the consensus tree represents
a sub-cluster. The algorithm employs the same datasets as those that were
used for building the consensus tree.

6.5 General Procedure of Cluster Verification

In order to make large-scale comparisons of different species, it is necessary,
first of all, to generate 100 sets of words, Wi (i=1,. . . ,100). Calculation of
the spectra for all the DNA sequences under consideration for each set Wi

results in a matrix Di of pairwise distances between the sequences Next,
by applying the described above methods of clustering to each matrix Di,
the hierarchic structures of embedded clusters are obtained. Such structures
appear automatically when an agglomerative technique is applied. The idea
of this technique is starting with the points as individual clusters and, at
each step, merging the two most similar (the closest) clusters.

First, a certain pre-selected group of species, which are supposed to be-
long to the same cluster, is marked. Second, the system of clusters is built
step-by-step by applying, e.g., the WPGMA method. By definition, at the
initial stage, each species is considered to be an elementary cluster. At each
subsequent stage, the algorithm joins the two nearest clusters (i.e., groups
of species), which is a regular way of agglomerative algorithm functioning.
However, in the considered test, the process of agglomeration is stopped at
the stage where no less than 75% of the marked group of species is united in
the same cluster, which is denoted as a U -cluster.

It should be noted that the U -cluster is the minimal (by volume) set in the
WPGMA integration process that includes no less than 75% of elements of
the selected group of species. It can be readily seen from the cluster structure
that, if the marked species are directly joined in the course of the clustering
process, the U -cluster will, probably, contain: (i) more than the required
75% of the marked species, but (ii) comparatively few species which do not
belong to this group. Moreover, if, in the process of cluster merging, the
marked species join the non-marked ones, the U−cluster will contain each of
the marked species, together with a number of non-marked ones. Thus, the
goal of the test is to evaluate the number of such non-marked species that are
absorbed by the U -cluster during the merging process required for uniting
“almost all” marked species. The above two possibilities of cluster merging
are demonstrated in Fig. 6.10.

Thus, for a fixed set of the marked elements, a hundred of U-clusters are
calculated. By definition, each of them contains no less than 75% of the
marked elements as well as some others. Averaging all these clusters, we can
evaluate the “real” cluster, which is, in a sense, “associated” with the set of
the marked elements. The procedure is illustrated by the following examples.
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Fig. 6.10 Schematic presentation of U -cluster formation. Marked and non-marked
elements are in black and in white, respectively. A: Marked elements are poorly
bound (many non-marked elements are required for binding). B: Marked elements
are well bound to each other. In both cases, the process of cluster merging is ter-
minated as soon as the first U -cluster (shaded) appears (harboring ≥75% of the
marked elements).

Consider seven elements, a1, a2, a3, a4, c1, c2, c3, the first four of them
being marked. Suppose that the following U -clusters were formed as a result
of three clusterizations: {a1, a2, a3, c1}, {a1, a3, a4, c2}, and {a2, a3, a4,
c3}. Obviously, each cluster includes 75% elements of the marked set and
one non-marked element. Averaging over all the three clusters shows that
the element a3 occurs in each cluster (the occurrence is 100%), the elements
a1, a2, a4 occur in two out of three clusters (the occurrence is 66%), while
the elements c1, c2, c3 occur in only 33% of all clusters. This result implies
that the occurrence of the latter three elements in each cluster is essentially
random, while the set {a1, a2, a3, a4} is, actually, a cluster though its elements
may not occur in some cluster samplings (also at random) .

Now let the result of three clusterizations be: {a1, a2, a3, c1}, {a1, a3, a4,
c1, c2}, and {a2, a3, c1, c3}. In this case, the occurrences of the elements
are the following: the element a3 occurs in all the clusters (the occurrence
is 100%), the elements a1, a2, c1 occur in two clusters out of three (the
occurrence is 66%), while the elements a4, c2, c3 occur in only 33% of all the
clusters. This result shows that, in this case, the elements {a1, a2, a3, a4} do
not constitute a cluster.

Note that the chosen threshold value of 75% for the clustering procedure
termination is an arbitrary one. However, its level should be higher than 50%
so that the U -cluster could absorb the majority of marked elements. On the
other hand, it should be less than 100% so that the associated non-marked
elements could be filtered out. Below, the described test is applied to the
evaluation of the cluster stability.
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6.5.1 Mixed-Structure and Its Stability

As an example, let us apply the described-above method to testing the cluster
structure of the species listed in Table 6.5. Let us mark all the elements of
cluster I (except for the mouse and the A. thaliana mitochondrial genomes),
which includes, mainly, human and thermophylic bacteria genomes (see Table
6.5). For each set of words W i (i=1,. . . ,100), the U -cluster is obtained and
denoted as Ui in order to emphasize its dependence on the set W i. Next, the
proportion of each species occurrences in the set of Ui-clusters is calculated
(Fig. 6.11A).

According to the results presented in Fig. 6.11A, all human sequences occur
in the Ui-clusters for each set W i. It should be noted that the same is true
for the mouse genome though it is not marked as a member of the “selected
group”. Other marked sequences from cluster I appear in more than 80% of
the Ui-clusters. Remarkably, the A. thaliana mitochondrial genome, which
is not marked, also belongs to nearly 70% of Ui-clusters. A certain number
of non-marked species that do not belong to cluster I also occur in different
Ui-clusters. However, in this case, the occurrence of each species does not
exceed 20% of all the Ui-clusters. The results of the same test conducted for
two other clusters, II and III, is shown in Figs. 6.12A and 6.13A, respectively.
The stability of these clusters, as manifested by the Ui-cluster pattern, is
similar to that found for cluster I. Thus, it can be concluded that the m-
structure, defined in Section 6.4.1, actually reflects some robust (objective)
relationships among the considered “across-life” species.

In order to illustrate the results of the test that would be obtained if the
assumed cluster structure did not actually exist, let us consider the following
two examples.

6.5.2 Effect of Mis-anchoring

In the first example, let us, again, consider cluster I, in which the four ther-
mophilic Archaea are substituted with other four Archaea from clusters II
and III. In other words, in addition to human sequences, four new Archaea
genomes, which actually should not belong to cluster I, are now “marked”.
The application of the described-above test to such mixed group gives the
result shown in Fig. 6.11B. In this case, in contrast to the previous distinct
clustering pattern (Fig. 6.11A), a significant number of non-marked species
occurs in each Ui-cluster with nearly the same frequency as those of the
marked species (Fig. 6.11B). As before, the same test was conducted for clus-
ters II and III and similar results were obtained (Figs. 6.12B and 6.13B).

6.5.3 GC-Permutation Test

The second example is aimed at testing the effect of G + C content on the
m-structure formation and on the patterns that are formed in the U -clusters.
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Fig. 6.11 Frequencies of the species occurrences in cluster I. X axis: names of
the species in decreasing order with respect to their occurrences in the clusters.
In each plot, the upper curve corresponds to the percentage of occurrences; the
lower curve indicates the “selected species group” (y=10 and 0 correspond to the
marked and non-marked species, respectively). Y axis: percentage of the species
occurrences in cluster I. The value of 100 corresponds to the occurrence of the
species in all clusters Ui, whereas the value of 0 demonstrates that the species
does not belong to any cluster. A: Stability of species occurrences in cluster I. The
results of averaging on 100 realizations of clusters Ui (see Section 3.1) are shown.
B: Reduced stability of species occurrences in cluster I after replacing a part of the
marked species by species from other clusters (four marked thermophilic Archaea -
P . horikoshii, P . abyssi, A. fulgidus, ans M . thermoautotrophicum were replaced by
three Archaea from clusters II and III - A. pernix, M . jannaschii, S. solfataricus,
and T . thermophilus). C: Reduced stability of species occurrences in cluster I after
reshuffling one of the two sequences which represent each genome (see the text for
the procedure of reshuffling).
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Fig. 6.12 Frequencies of species occurrences in cluster II.A: Stability of species
occurrences in cluster II. The results of averaging on 100 realizations of clusters Ui

(see section 3.1) are shown. B: Reduced stability of species occurrences in cluster
II after replacing a part of the marked species by species from other clusters (five
bacterial genomes - M . jannaschii, S. solfataricus, S. pyogenes, B. burgdorferi, and
E. faecalis were replaced with five genomes from cluster I - P . horikoshii, A. fulgidus,
A. aeolicus, T. maritima, and A. thaliana mit.). C: Reduced stability of species
occurrences in cluster II after reshuffling one of the two sequences representing each
genome(see the text for the procedure of reshuffling).

At this point, it should be noted that there exist, at least, two different
genome sequences, A and B, for all of the species in the employed database.
For human sequences, 6 out of 12 contigs are considered as A, and 6 as B.
In the test procedure, sequence B is not changed, whereas sequence A is
transformed in the following way. Let the frequencies of the letters G and C
relative to their total number (G+C) in sequence A equal pG and pC =1-pG,
respectively. The transformation of sequence A consists in substituting each
GC-position (the positions of G or C in sequence A) with the letters G and
C independently, the corresponding probabilities being pG and pC . Thus, we
randomly change the distribution of G and C letters in sequence A without
altering the G+C content and the GC positions. The letters A and T in the
same sequence A are interchanged in a similar way.

Next, the entire set of sequences A and B is tested in the described above
way. The “selected group of species” contains the original elements of clus-
ter I (see Fig. 6.11A). It can be seen in Fig. 6.11C that G↔C and A↔T
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Fig. 6.13 Frequencies of the species occurrences in cluster III. A: Stability of
species occurrences in cluster III. The results of averaging on 100 realizations of
clusters Ui (see section 3.1) are shown. B: Reduced stability of species occurrences
in cluster III after replacing a part of the marked species by species from other clus-
ters (two bacteria T.thermophilus, A.pernix were replaced with two bacteria from
cluster I and II, P.abyssi, T.pallidum). C: Reduced stability of species occurrences
in cluster III after reshuffling one of the two sequences representing each genome
(see the text for the procedure of reshuffling).

permutations totally destroy the previously revealed distinct cluster (com-
pare Figs. 6.11A and 6.11C). The comparison of Figs. 6.12A and 6.13A with
Figs. 6.12C and 6.13C, respectively, gives the same results for clusters II and
III. To sum up, the tests described above show that the m−structure and the
corresponding patterns which are formed in U−clusters, presumably reflect-
ing some important aspects of the genome similarities, cannot be accounted
for by merely the G+C content effects.

6.6 Verification of the Main Pattern in the Case of the
(R,Y) Alphabet

In this section, a different procedure of partition verification is described. For
the verification of the (R,Y) main pattern, the PAM method (see Appendix
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A) is applied for partitioning because this method is more robust and efficient
than the well-known k-means algorithm. The CS dataset is partitioned to s
clusters where 3 ≤ s ≤ 9. For each value of s, the CS is calculated for
each of the randomly chosen sets of words Wi(i=1,. . . ,100). Then, for each
s, the clusters with highly overlapping sets of species across Wi are detected.
Further, species with sporadic appearance (with the frequency lower than
a certain predefined threshold) are eliminated from the above clusters. The
resulting partitions Ps are compared with the main pattern (MP), which
was obtained using the WPGMA algorithm. The partition Ps which best
corresponds to the MP is selected on the basis of the Cramer correlation
coefficient (for the procedure, see [139]). The best correspondence is found
for the 8-cluster partition (Table 6.6). In this case, the Cramer correlation
coefficient between the U− and PAM-clusters is 0.9537.

Table 6.6 Robust clustering (P8 partition) of 39 species obtained on the basis of
compositional spectra which were calculated using the (R,Y) alphabet.

Cluster 1 % Cluster 4 %

H. sapiens chr. X 100 E. coli 100

H. sapiens chr. Y 97 D. radiodurans 99

Mus musculus 100

A. thaliana 100 Cluster 5

D. melanogaster 65 N. meningitidis 100

N. gonorrhoeae 100

A. actinomyc. 93

Cluster 2 H. influenzae 43

C. elegans 100

T. thermophilus 100 Cluster 6

P. horikoshii 100 S. pyogenes 100

P. abyssi 100 M. genitalium 100

A. fulgidus 100 M. pneumoniae 100

A. pernix 100 Synechocystis sp 100

B. burgdorferi 100

H. pylori 100 Cluster 7

M.thermoautotrophicum 100 B. subtilis 100

C. jejuni 100 C. acetobutylicum 96

A. aeolicus 100 S. cerevisiae 96

M. jannaschii 99 E. faecalis 71

T. maritima 98 R. prowazekii 65

S. solfataricus 51

Cluster 3

M. tuberculosis 100 Cluster 8

P. aeruginosa 100 Leishmania major 100

Halobacterium sp. 99 T. pallidum 75
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Fig. 6.14 The correspondence between the two clustering schemes of the consid-
ered 39 species: Clusters I-III: partitions from Fig. 6.9; clusters p1-p8 constitute
partition P8(Table 6.6).

We can now construct the MP using the components of P8 (Fig. 6.14). It
can be easily seen that each cluster of P8 (except for p2 and p7) occurs in
one of the clusters - I, II, IIIa, or IIIb - of the MP. In other words, with the
minor exception of a small part of p2 and p7, the main pattern can be viewed
as being constructed of elementary P8 blocks. This consistency verifies the
actual existence of the MP structure.

6.7 The List of Depicted Genomic Sequences

The notations of genome fragments in all the above figures corresponds to the
indexes of the genome sequences listed below. Every record in the list con-
sists of the species name and some data about the fragment (in brackets); an
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accession number for some fragments is shown to avoid wrong identification.
For a fragment of a complete genome, the starting point and the fragment
length are specified; for a fragment having an accession number, only its
length is specified. The value between 0 and 1 relates to the G + C content
of the fragment. For example, the record “Mycobacterium tuberculosis (A:
1199341 (358717), 0.65; B: 2579341 (358913), 0.65)” means that M. tubercu-
losis is presented by two fragments, A and B, from the complete genome; the
fragment A starts at position 1199341 and has the length of 358717 bp, while
the fragment B starts at position 2579341 and has the length of 358913 bp;
both fragments have the G+ C content equal to 65%.

Eukaryota
Homo sapiens chr. X (NT 011528) (539188, 0.40); Homo sapiens chr. Y
(NT011864) (539595, 0.40); Homo sapiens chr. 1 (NT 004302) (539495, 0.36);
Homo sapiens chr. 3 (NT 002444) (543554,0.46); Homo sapiens chr. 4 (NT
006051) (535847, 0.44); Homo sapiens chr. 6 (NT 007122) (599072, 0.43);
Homo sapiens chr. 7 (NT 007643) (447791, 0.36); Homo sapiens chr. 11
(NT 008933) (506578 , 0.37); Homo sapiens chr. 13 (NT 009796) (537882,
0.38); Homo sapiens chr. 20 (NT 011328) (540270, 0.44); Homo sapiens
chr. 22 (NT 001454) (701877, 0.50); Mus musculus (A: chr7, AC012382,
276523, 0.44; B: chr.11, AL603707, 234182, 0.49); Caenorhabditis elegans (A:
chr1, 1-438825, 0.36; B: chr2, 1-350000 , 0.36); Drosophila melanogaster
(A: chr.2 AE003641, 299556, 0.42; B: chr. X, AE003506, 300000, 0.43);
Arabidopsis thaliana (A: chr.1, NC 003071.1 100000-531319, 0.36; B: chr.1,
NC 003075.1, 400000-727859, 0.36); A. thaliana mitochondrial genome (A:
NC 001284.1, 366923, 0.45); Saccharomyces cerevisiae (A: chrii, 1-800000,
0.38; B: chrxv,1-800000, 0.39); Leishmania major (A: AE001274, 1-171770,
0.62). Eubacteria Bacillus subtilis (A: 1199941 (579647), 0.43; B: 2219941
(399002), 0.41); Streptococcus pyogenes (A: 239941 (690238), 0.38; B: 1079941
(696345), 0.39); Mycoplasma genitalium (A: 1 (287593), 0.33; B: 278581
(288000), 0.30); Mycoplasma pneumoniae (A: 239941 (199523), 0.40; B:
539941 (199523), 0.40); Mycobacterium tuberculosis (A: 1199341 (358717),
0.65; B: 2579341 (358913), 0.65); Synechocystis sp (A: 719941 (349960), 0.48;
B: 2699941 (350000), 0.47); Helicobacter pylori (A: 599941 (320335), 0.39;
B: 1439941 (320387), 0.39); Escherichia coli (A:599941 (519942), 0.51; B:
2999941 (542976), 0.51); Deinococcus radiodurans(A: 599941 (399971), 0.67;
B: 1799941 (399983), 0.66); Thermotoga maritima (A:59941 (370054), 0.46;
B:1259941 (366191), 0.46); Aquifex aeolicus (A: 599941 (399976), 0.43; B:
1199941 (400002 , 0.44); Neisseria meningitides (A: 599941 (361259), 0.51; B:
1199941 (373905), 0.52); Neisseria gonorrhoeae (A: 350020, 0.53 ; B : 355192,
0.54) ; Campylobacter jejuni (A: 59341 (399984), 0.31; B: 1079341 (400002),
0.30); Haemophilus influenzae (A: 119941 (399863), 0.38; B: 1139941
(399981), 0.38); Clostridium acetobutylicum (A: 315781 (347567), 0.32; B:
3000001 (340105), 0.31); Treponema pallidum (A: 59941 (275933), 0.52;
B: 719941 (275984), 0.53); Pseudomonas aeruginosa (A: 720001 (345206),



112 6 Application of Compositional Spectra to DNA Sequences

0.65; B: 1920001 (355163), 0.67); Actinobacillus actinomycetemcomitans
Strain HK1651 (A: 6000 (338681), 0.45; B: 800000 (344947), 0.45);
Rickettsia prowazekii (A: 239941 (276000), 0.29; B:719941 (276000), 0.29);
Borrelia burgdorferi (A: (1) 399967, 0.29; B: 400000 (399979), 0.29).
Archaea Halobacterium sp . NRC-1 (A: 240001 (191652), 0.62; B: 64001
(211652), 0.64); Pyrococcus horikoshii (A: 240001 (399992), 0.42; B: 840001
(400002), 0.42); Pyrococcus abyssi (A: 360000 (360000), 0.45; B: 1200001
(360000), 0.45); Archaeoglobus fulgidus (A: 12061 (399986), 0.48; B: 1200061
(400002), 0.48); Methanococcus jannaschii (A: 120001 (399868), 0.32; B:
840001 (399977), 0.31); Methanobacterium thermoautotrophicum(A:599941
(344374), 0.49; B: 1199941 (344455), 0.50); Aeropyrum pernix (A: 360061
(400002), 0.58; B: 960061 (400002), 0.57); Sulfolobus solfataricus AE006641
(A: 400001 (584947), 0.36; B: 1220002 (308779), 0.36)



Chapter 7
Marker-Function Profile-Based
Clustering

7.1 General Description of the Profile-Construction
Method

In Chapter 5, it was shown that any text can be viewed as a stream of
overlapping N -grams. We have seen that N -gram techniques of sequence
analysis are based on the reduction of the whole text to the vector of length
LN , where L is the size of the alphabet and N is a predefined length of the N -
grams. The coordinates of such vectors can be obtained from a certain formula
using either the observed N -gram frequencies or the ratios of observed to
expected frequencies. In what follows, we describe a different procedure - the
conversion of a text T to a point in the K-dimensional Euclidean space for
the purpose of further clustering.

• Consider a text T of size TN = |T|.
• M specified positions (markers) in the text T constitute a set mrk(T) =

(m1,m2, · · ·mi, · · ·mM ), where i is the index of markers m in the set of
markers mrk for ∀i, 1 ≤ i ≤ M, 1 ≤ mi ≤ TN . It is assumed that the
marker positions are non-random and that the sequence fragments in the
vicinity of the markers have some mutual lines of similarity.

• Two profile parameters, a and b, are introduced to set the margins of a
marker neighbourhood. Although the similarity between the marker neigh-
bourhood fragments is difficult to observe, it is assumed that there exists a
function f , defined on the sequence strings, which reflects the distribution
of a certain numerical feature of the substrings in the marker neighbour-
hood.

• Let the function f be such that for ∀s, f(s) → R, which means that for any
string s f(s) is defined and its value is a real number. It is our intention
to introduce an approach based on the characteristic distribution of the
function f around an averaged marker mi,mi ∈ mrk. Theoretically, any
function f defined on all strings s over an alphabet A can be used for
further mapping.

A. Bolshoy et al.: Genome Clustering, SCI 286, pp. 113–145, 2010.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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• The parameter w which represents the size of a sliding window is intro-
duced.

• Mapping F (f,T, i, w) is defined in such a way that the value of F is equal
to that of the function f , the argument being the string s of size w. F is
the mapping of the string T onto a numerical sequence X . In what follows,
substr(s, i, k) denotes the well-known function that returns the substring
of length k which starts from position i within s. Let us introduce function
Ψ(i) = F (f,T, i, w) = f(substr(T, i− [w/2], w)), which is defined over the
segment [[w/2] + 1, N − [w/2]]. The profile p(f,T,mrk(T), w) is defined
over the segment [−a, b] as

p(x) =

∑m
j=1 Ψ(mj + x)

M
=

∑M
j=1 f(substr(T,mj − [w/2], w)

M
. (7.1)

In this chapter, two examples of such profiles are presented: in the first
example, the function f(s) is chosen as the Linguistic Complexity mea-
sure [261], in the second example, the measure of DNA curvature [234] is
employed.

• After introducing the distance measure

d(p1(f,T1,mrk(T1), w), p2(f,T2,mrk(T2), w))

between two profiles p1 and p2, one can perform clustering of the set of
texts T1,T2,Tk,TL using any clustering method.

7.2 Eukaryotic Genome Tree Based on Linguistic
Complexity Profiles

7.2.1 Sequence Complexity Measures

Different methods based on sequence (compositional) complexity measure-
ments, which may be used for overall characterization and comparison of long
genomic sequences (see [21] and [149], [148] for review), have been proposed
since the early stages of bioinformatics [34], [150], [220], [221], [222], [235],
[258], [261]. These methods can be applied even in the case of low similarity of
sequences [147]. It was shown [149],[148] that the numerical value of compo-
sitional complexity of a sequence depends solely on the alphabet size and on
the frequencies of the occurrences of certain elements (monomers, dimmers,
or N -grams over the chosen alphabet). The degree of sequence interrelation
within the set is of major importance. For example, when a lot of sequences
in the set have a large number of short subsequences in common, the question
arises as to whether these sequences are functionally or evolutionary related.
The significance of the pertinent research results can be assessed by com-
paring them with those obtained for randomly generated data. There also
exists an alternative approach to the study of the compositional complexity
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of a sequence. According to this approach, the average behavior of a number
of distinct substrings in the text is studied, which allows introducing a spe-
cial measure, called the complexity index. This measure reflects the richness
of the language of the sequence. For example, sequences with relatively low
complexity indexes contain a large number of repeated substrings. To identify
text fragments of unusually low or high complexity, one should determine the
deviations of the complexities of the text fragments from the average or max-
imum sequence complexity. These position-dependent complexity deviations
can help characterize genomic sequences. In Section 7.1, the construction of
the profile p(f,T,mrk(T), w) was described. Genetic sequences may be char-
acterized using the function f based on the sequence complexity measure as
it will be shown below.

7.2.2 Construction of Genomic Linguistic
Complexity Profiles

To describe the procedure of profile construction (see above and Equation
7.1), the following parameters should be introduced: (i) text T; (ii) a set of
M specified positions {mi}; (iii) the size of the sliding window w; (iv) the
interval [−a, b]; and (v) function f . Below, we describe these parameters,
which are further used for clustering of chromosomes of several eukaryotic
genomes. Text T represents the sequence of one complete eukaryotic chromo-
some from the GenBank, e.g., chromosome 4 of Drosophila melanogaster.
In Table 7.1, we list all the chromosomes used for the linguistic complex-
ity (LC) study. The chromosome sequences of these 11 eukaryotic organisms
are taken from the site of the National Center of Biotechnology Informa-
tion (ftp : //ftp.ncbi.nih.gov/genbank/genomes). As the set of markers we
choose the set of all start codon positions. These starts are also obtained us-
ing the annotations of complete eukaryotic chromosomes in the GenBank. In
what follows, the average LC profiles around the starts of coding sequences
(CDS) will be called, for short, LC profiles. The terminology used below,
which is related to the gene structure, was introduced in Chapter 1.

The size of the sliding window w is set to be 50 bp. This value was empiri-
cally chosen from the tested sizes of 20, 50, 100, and 200 bp since it appears to
highlight in the best way the most common LC features for all the individual
genomes. The interval [−a, b] is chosen to be [−200,+200]. Generally speak-
ing, our goal is to use the LC variation around the start of translation. The
size of the translation start neighbourhood was determined empirically to be
[−200 : +200] for every gene. It appeared that the choice of the parameters a
and b had a minor effect on the results. It was much more important to strictly
distinguish between coding and non-coding regions (see Fig. 1.7). Thus, a and
b are equal to 200 only in the cases where all 200 downstream nucleotides
are located in a coding region, while all 200 upstream nucleotides are located
in a non-coding region. Otherwise, only the relevant downstream coding or
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Table 7.1 List of the employed species and the processed chromosomes.

N Name of organism Kingdom Number of
chromosomes

Processed chro-
mosomes

1 Arabidopsis thaliana Plant 5 1-5

2 Candida glabrata Fungi 13 1-13

3 Cryptococcus neoformans Fungi 14 1-14

4 Drosophila melanogaster Animal 5+X 2L, 2R, 3L, 3R

5 Homo sapiens Animal 22+XY 1-10

6 Mus musculus Animal 19+XY 1-10

7 Oryza sativa Plant 12 1-12

8 Ostreococcus lucimarinus Plant 10 1-10

9 P lasmodium falciparum Animal 10 1-14

10 Saccharomyces cerevisiae Fungi 16 1-16

upstream non-coding nucleotides are used. The start profile is constructed us-
ing only the genes with the first coding exon longer than 25 nucleotides (1/2
of the window size) flanked by an upstream non-coding region (see Fig. 1.7)
longer than 25 nucleotides. For example, if the length of the upstream region
is 723 bp and the length of the first coding exon is 115 bp, the LC profile
for such gene is obtained starting from position -200 and up to position +90.
The flanked windows that overlap with the neighbouring region are not con-
sidered in further calculations in order to prevent the impact of boundary
regions. Function f(s) is chosen as the Linguistic Complexity measure [261].
It is defined as the ratio of the actual number of different substrings present
in the string s to the maximum possible number of substrings in the string
s over the same alphabet. The maximum number of different substrings is
calculated according to the following formula:

m∑
k=1

min(4k,m− k + 1), (7.2)

where 4 is the number of letters in the DNA alphabet; m = |s|. The algorithm
used in (Troyanskaya et al., 2000) provides an effective way of calculating LC
profiles. Since the window size is 50 bp, the value of k from formula 7.2 is
equal to 50, which gives

50∑
k=1

min(4k, 50 − k + 1) = 4 + 16 +
5∑

k=3

0(51 − k) = 20 + 24× 47 = 1148.

The mean LC profiles of chromosomes are obtained by averaging the profiles
of all relevant genes from the same individual chromosome. The standard
errors are estimated by the bootstrap method using 1,000 runs.
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7.2.3 Peculiarities of Different Eukaryotic Genomes
Derived from Their LC Profiles

LC Profiles of Drosophila melanogaster and Caenorhabditis elegans
genomes. Fig.7.1 shows the LC profiles of the chromosomes 2L, 2R, 3L,
and 3R of D. melanogaster and of the chromosomes 1-5 of C. elegans. It
is easy to see that the LC profiles related to different chromosomes of the
same organism are very similar to each other. On the other hand, there are
certain features of LC profiles that are common to practically all eukaryotic
profiles studied by such techniques (see below). For example, a) the average
LC of upstream intergenic regions is typically lower than that of coding
regions; b) LC in the close vicinity of the translation start is lower due to
the increased number of regulatory signals in this area. Consequently, a
local minimum is observed close to zero (i.e., to the start of translation); c)
the global maximum of the function is typically located between zero and
+25 bp.

LC and GC composition of Upstream Non-translated Regions. It was
noted [261] that LC profiles exhibit significant shape peculiarity around
translation starts for GC-rich1 and AT genomes. The latter are genomes that
have the AT content of CDS higher than 48%. AT genomes demonstrate the
similar main feature of lower LC values for non-coding regions as compared
to coding regions. Similar to the case of AT prokaryotic genomes, eukary-
otic coding sequences have the AT content higher than 50%. Therefore,
upstream non-coding sequences are AT-richer, which automatically lowers
the LC values. By definition, sequences with the highest LC values have
the most balanced oligonucleotide composition. Non-coding sequences are
less balanced even at the level of mononucleotides. Thus, LC decreases with
the decrease of GC content. Of course, the trends of LC variation only
follow the trends of GC content variation, but are not necessarily identical
with them. For D. melanogaster, the average LC values at position -100
in the intergenic regions and at position +100 in the coding sequences are
0.969±0.0004 and 0.976±0.0003, respectively (Table 7.2). The difference
between these two regions for D. melanogaster is smaller than those for A.
thaliana and C. elegans, but still pretty significant.

Start Signals of Translation. First of all, we would like to compare LC
profiles constructed for prokaryotic genomes with those that characterize eu-
karyotic chromosomes. In many prokaryotic AT genomes there are local com-
plexity minima immediately before the start of CDS [261]. However, in some
cases (e.g., E. coli, H . influenzae, and M . pneumoniae), these minima are
not clearly manifested [261]. From the data presented in Figs. 7.1 and 7.2, it
can also be seen that, in contrast to the case of prokaryotic AT genomes, eu-
karyotic LC profiles do not show significant decline before the start of CDS.
The only exception is the LC profile of A. thaliana, which is slightly similar
1 Genomes, in which the total content of G and C in the genomic sequence is more

than 50% are called GC-rich genomes.
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Fig. 7.1 LC profiles in the neighbourhood of the start of the coding sequences
for A: D. melanogaster and B: C. elegans chromosomes. Black lines represent
average LC profiles of individual chromosomes. The bold red solid line represents
the LC profile averaged over all the chromosomes of the same organism. Standard
deviations are estimated by the bootstrap method using 1,000 runs.
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Table 7.2 Average linguistic complexity in coding and non-coding regions of par-
ticular species.

N Name of Organ-
ism

Average LC
value at position
-100 in non-
coding regions

Average LC
value at position
+100 in coding
regions

Local minimum
LC value and its
position in the
vicinity of the
CDS starts

Maximum LC
value and its
position in the
vicinity of the
CDS starts

1 Arabidopsis
thaliana

0.969±0.0004 0.976±0.0003 0.966 / -34 0.976 / +18

2 Caenorhabditis
elegans

0.970± 0.0003 0.977±0.0002 0.968 / -34 0.977 / +15

3 Candida
glabrata

0.974±0.0008 0.978±0.0007 0.972 / -23 0.979 / +16

4 Cryptococcus
neoformans

0.976±0.001 0.977±0.0009 0.974 / -41 0.979 / +9

5 Drosophila
melanogaster

0.975± 0.0003 0.977±0.0004 0.974 / -33 0.980 / +13

6 Homo sapiens 0.969±0.0008 0.973±0.0009 0.969 / -46 0.975 / +10

7 Mus musculus 0.970±0.0009 0.973±0.001 0.970 / -77 0.976 / +7

8 Oryza sativa 0.965±0.0009 0.964±0.0007 0.958 / -25 0.966 / +10

9 Ostreococcus
lucimarinus

0.944±0.002 0.960±0.002 0.944 / -50 0.959 / +16

10 P lasmodium
falciparum

0.882±0.006 0.961±0.001 0.870 / -69 0.964 / +24

11 Saccharomyces
cerevisiae

0.972±0.001 0.978±0.0007 0.973 / -23 0.979 / +24

to the prokaryotic profiles in that there is a definite decrease of LC values
from 0.969±0.0003 at position -100 to 0.966±0.0003 at positions -30 ±5.

Linguistic Complexity at the Starts of Translation. All four LC profiles of
D. melanogaster chromosomes (Fig. 7.1 A) have a global maximum at po-
sition +20 (which is also observed in the A. thaliana LC profiles). This
maximum can be accounted for by the difference in dinucleotide frequencies
for the coding and non-coding chromosome regions [31].

Average LC profiles. In Fig. 7.1, the LC profiles of all the chromosomes
of two organisms (D. melanogaster and C. elegans) are presented, while
the average LC profiles of 11 genomes are shown in Fig. 7.2. Such species-
consensus LC profiles reflect important LC profile characteristic features of all
chromosomes of the same genome. The species are divided into three separate
groups (A,B,C) according to the similarity of their LC profile shapes and
ranges. First, we will describe the P . falciparum profile (Fig. 7.2A), which
is essentially different from the profiles of other 10 species.

LC Profile of Plasmodium falciparum. Comparing the data, presented
Fig. 7.2A and in Figs. 7.2B,C, the difference in the Y -axis scale should
be noted (the range being [0.84:1.0] and [0.964:0.980], respectively). The
extremely low sequence complexity values for intergenic regions of P .
falciparum can be accounted for by a very high AT content of these re-
gions [82], [204]. The LC values in the non-coding region lie below the level
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Fig. 7.2 Average LC profiles of 11 eukaryotic organisms (see Table 7.1). A: P .
falciparum, O. lucimarinus, and O. sativa; B: A. thaliana, C. elegans, C.
glabrata, and S. cerevisiae; C: H . sapiens, M . musculus, C. neoformans, and D.
melanogaster. Standard deviations are estimated by the bootstrap method using
1,000 runs.
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of 0.9, being much lower than the corresponding values for other organisms
presented here. The LC values in the coding region are pretty similar to those
observed for O. sativa and O. lucimarinus. The difference between the LC
average values in the coding and the non-coding region is one-fold greater
than that for other genomes. The position of the minimum in intergenic re-
gion is located at 70 bp upstream from the translation start, which is also
different from the minimum positions for other genomes.

LC profiles of Oryza sativa and Ostreococcus lucimarinus. The average
LC profile of O. sativa is very different from those of all other species shown
in Fig. 7.2. First, there is practically no difference between the mean LC
values of the intergenic and the first exon regions; second, the profile exhibits
strong decline along the upstream region and strong rise along the first exon
region (see Table 7.1: 0.965±0.0009 at -100 position vs. 0.964±0.0007 at +100
position). These interesting features certainly require further investigation.
The LC values vary from 0.968 to 0.958 in the intergenic regions and are about
0.964 along the first exons. The average LC profile of O. lucimarinus also
differs from those of all the other 10 species under consideration. Contrary
to the LC profiles of O. sativa and A. thaliana, it has no minimum in the
intergenic region. The average LC values ofO. lucimarinus vary around 0.942
in the upstream region. In addition, the profile shows a significant continuous
rise (from 0.955 to 0.965) along the coding sequence (the first exons). The
local maximum at the border of the coding and the non-coding regions is
observed.

Comparison of Arabidopsis thaliana and Caenorhabditis elegans LC
profiles. The LC profiles of two well-annotated genomes, those of A.

thaliana and C. elegans appear in Fig. 7.2B. Although the two species
belong to different eukaryotic groups, their average LC profiles have some
significantly similar features. For both genomes, the LC values are in the
range of 0.969÷0.970 and 0.976÷0.977 in the 5′-noncoding and in the coding
regions, respectively. The shapes of the LC profiles in the neighbourhoods of
the translation starts also look very similar; in particular, their minima are
located at the same position (-30 bp).

LC Profiles of Saccharomyces cerevisiae, Candida glabrata, and
Cryptococcus neoformans fungi species S. cerevisiae and C. glabrata
(Fig. 7.2B), which are related organisms, have similar LC profiles. In par-
ticular, they have close LC values ( 0.974 and 0.978, respectively) in the
intergenic region along the first exons. Both profiles exhibit a minor decline
at the -25 bp position and show no significant maxima at the border of the
intergenic and the coding regions. The C. neoformans LC profile differs from
those of the two other fungi genomes. It is more similar to the profiles of
D. melanogaster, H. sapiens, and M . musculus and, therefore, appears in
Fig. 7.2C. The C. neoformans LC values are 0.976 in intergenic region and
0.977 along the upstream sequences. The LC profile has a minimum at the
-40 bp position and a dominating maximum at the +1 bp position. Unlike
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the average LC values, the shape of the C. neoformans profile is similar to
those of the of H. sapiens and M . musculus.

LC profiles of Homo sapiens and Mus musculus. The LC chromosome
profiles and the averagedHomo sapiens and Mus musculus genome profiles
are very similar to each other. Their LC values are practically identical in
the regions upstream and downstream from the translation starts: 0.970 in
the intergenic region and 0.973 in the coding sequences (Fig. 7.2C and Ta-
ble 7.1). The differences between the LC values in the intergenic and coding
sequences are smaller than those for the profiles presented in Fig. 7.2B. No
minimum is observed before the start of translation.

7.2.4 LC Dendrograms

A dendrogram is a tree diagram used to illustrate the nested structure of the
clusters produced by a clustering algorithm. Dendrograms are often used in
computational biology to illustrate clustering of genes. Here the clustering
of LC profiles is illustrated by means of dendrograms (see Chapter 2 for the
details of the dendrogram approach). The Euclidian distance d1,2 for each
pair of LC profiles is calculated as

d1,2 =

√∑L
i=1(x1,i − x2,i)2

L
, (7.3)

where x1,i and x2,i are the LC values in the i-th position of profiles 1 and 2,
respectively; L is the length of profiles, equal to 401. The Euclidean distance
or the squared Euclidean distance are used as the dissimilarity measures.
For data clustering, Unweighted Pair Group Arithmetic Average Clustering
(UPGMA) and the k-means method are used (for details, see Chapter A).
UPGMA, which is also called Average-Linkage Clustering, minimizes the ob-
jective function equal to the sum of squares of the distances to determine the
clustering that results in the lowest sum. Thus, UPGMA is an agglomeration
method, which employs a sequential clustering algorithm, identifying local
topological relationships in the order of similarity. UPGMA is applied to the
construction of dendrograms using the Software PHYLIP package [73].

The results of clustering are presented in Fig. 7.3 in the form of dendro-
grams. It appears that the Euclidian distances between LC profiles of different
organisms are of different order of magnitude (see Table 7.4). It could be ex-
pected, in particular, from the comparison of the LC profiles ofHomo sapiens
and Mus musculus chromosomes (see above) that LC profiles, corresponding
to chromosomes of the same species, should be similar to each other, thus
forming an individual cluster. It could be also expected that chromosome
LC profiles for different species should be dissimilar and belong to different
clusters. Indeed, the distances between LC profiles of two distantly related
species are one or two orders of magnitude bigger than the distances between
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Fig. 7.3 LC dendrograms. The abbreviations used: Arabidopsis thaliana = ad;
Caenorhabditis elegans = ce; Candida glabrata = ca; Cryptococcus neoformans
=cn; Drosophila melanogaster = dm; Homo sapiens = hs; Mus musculus = mm;
Oryza sativa = os; Ostreococcus lucimarinus = ol; P lasmodium falciparum =
pf; Saccharomyces cerevisiae = sc.
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Table 7.3 Construction of the four types of common profiles by combining profiles
of different organism.

Organism Included profiles
(chromosomes)

Label of common
profiles

Candida glabrata 1-4 a
5-7 b
8-10 c
11-13 d

Cryptococcus neoformans 1-3 a
4-6 b
7-10 c
11-14 d

Homo sapiens 1-3 a
4-6 b
7-10 c

Mus musculus 1-3 a
4-6 b
7-10 c

Saccharomyces cerevisiae 1-4 a
5-8 b
9-12 c
13-16 d

LC profiles of the same organism. However, the distances between LC pro-
files of closely related species can be comparable to or even smaller than the
interspecies distances. Four distinct groups are observed in the dendrogram
based on 113 profiles of 11 eukaryotic organisms (Fig. 7.3A), three groups
corresponding to individual organisms: P . falciparum, O. lucimarinus, and
O. sativa. A detailed dendrogram for the fourth group of other eight organ-
isms is shown in Fig. 7.3B, where four subgroups are clearly observed. One
can see that the composition of two subclusters appears to be quite natural.
The related organisms belong to the same subgroups: H. sapiens and M .
musculus chromosomes form cluster 1, while C. glabrata and S. cerevisiae
form cluster 4. Other two groups comprise taxonomically distant organisms,
even belonging to different kingdoms: A. thaliana and C. elegans (plant and
animal) form cluster 2; and C. neoformans, while D. melanogaster (fungi
and animal) form cluster 3.

Table 7.4 Euclidian distances between four general clusters of 113 profiles.

No No. 1 No. 2 No. 3 No. 4

No. 1 0.000000 0.038313 0.052859 0.059505

No. 2 0.038313 0.000000 0.015412 0.023597

No. 3 0.052859 0.015412 0.000000 0.010949

No. 4 0.059505 0.023597 0.010949 0.000000
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7.2.5 Comparison between LC Dendrograms and
Taxonomic Cladograms

Some of the above results are organized in Fig. 7.4A, B in the form that em-
phasizes the similarities and the differences between the obtained partitions
(Fig. 7.3) and the classical eukaryotic taxonomy. There are several differences
in the topology of the dendrograms A and B; for example, in contrast to the
dendrogram corresponding to the natural biological taxonomy (Fig. 7.4A),
the three considered plants, A. thaliana (ad), O. lucimarinus (ol), and
O. sativa (os), do not form a monophyletic group in the LC dendrogram
(Fig. 7.4.B). It should be noted that the LC profile of the O. lucimarinus
alga is very different from all other profiles. Ostreococcus is one of the small-
est known eukaryotic organisms, about 1 micron in size; it is a unicellular
organism belonging to an early-diverging class within the green plant lin-
eage. The most striking feature of O. lucimarinus and the related species is
their minimal cellular organization. It can be suggested that the properties
of the O. lucimarinus LC profile may be accounted for by the morphological
and taxonomic peculiarities of this species.

From the data presented in Fig. 7.2A and Fig. 7.3A it can be seen that
the LC profile of the rice genome (os) is quite different from all the other
profiles though it could be expected to be very similar to the A. thaliana

Fig. 7.4 LC dendrogram and phylogeny of 11 eukaryotic organisms listed in
Table 7.1.
A: The dendrogram corresponds to the widely accepted taxonomy of the selected
eukaryotes (NCBI taxonomy page http://www.ncbi.nlm.nih.gov/Taxonomy/).
B: The dendrogram corresponds to those presented in Fig. 7.3.
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profile. Among the possible reasons of such dissimilarity may be just incorrect
annotation. In any case, from the results of clustering presented in Fig. 7.4,
it can be concluded that further research should be done to establish the
reasons of differences between the natural taxonomy and the classification
based on the LC profiles of the plants A. thaliana (ad), O. lucimarinus (ol),
and O. sativa (os). In Fig. 7.4B, the plant A. thaliana (ad) is paired with
the worm C. elegans (ce), while the fly D. melanogaster is paired with the
encapsulated yeast-like fungus C. neoformans (cn). Future research should
answer the question as to whether there exists a biological explanation of
such partition.

Classification based on the Euclidean distances between LC profiles seems
to correlate with conventional taxonomy. We speculate that the sequence
structure manifested through average linguistic complexity profiles is closely
related to the evolution of various species and their genomes.

7.2.6 Discussion of the Results

In almost all LC profiles one can observe a sunken area in a pre-translation
region. The most likely explanation for the decrease in average LC values is
the presence of repetitive sequences that are utilized in the initiation of trans-
lation. The locations of these sunken areas point to species-specific upstream
regions that are especially “loaded” with repetitive regulatory sites related
to the regulation of translation. An alternative but less likely explanation
connects the repetitiveness of sequences with the regulation of transcription.

Most LC profiles have convex shapes around the start of translation (TS
region). For example, such a shape is very evident for the profiles presented
in Fig. 7.2C: for the profiles of H. sapiens and M. musculus, and for the
profiles of C. neoformans and D. melanogaster. “Pure” intergenic and “pure”
genic LC values are pretty comparable along the profiles of these species,
demonstrating a similarity in richness of genic and intergenic vocabularies;
mixed border regions of coding and intergenic sequences are characterized
by a rise (a convex shape) in LC values. One possible explanation is that by
merging two different vocabularies together when a running window overlaps
translation starts brings substantial enrichment of the repertoire of N-grams
into use. The genomes presented in Fig. 7.2B have different TS convex shapes
from those presented in Fig. 7.2C. The main characteristic of the profiles
presented in Fig. 72B is in the dramatic elevation of the curves from the
lower level (typical to intergenic regions) to a significantly greater complexity
(typical to first exons).

Interestingly, behaviors of LC profiles along the coding regions are differ-
ent for different genomes: there is complexity elevation (positive correlation
of LC with the distance from translation starts) for A. thaliana, O. luci-
marinus, and O. sativa; there is complexity decline (negative correlation)
for P. falciparum; and the most common behavior is expressed in insignif-
icant fluctuations around a mean LC value typical for genic sequences of a
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certain genome. Unfortunately, we cannot provide any biological explanation
for these genomic peculiarities at the moment.

It was expected that LC profiles corresponding to chromosomes of the same
species should be similar and form individual clusters, while chromosomal LC
profiles of varied species should be dissimilar and belong to different clusters.
This expectation was fulfilled only in part: the LC profile technique is not
able to separate chromosomes belonging to different mammals.

The observations reported here suggest that the average linguistic com-
plexity analysis of putative promoter structures can yield new insight into
the nature of the genome. The data reported here indicate that entire ge-
nomic sequences can be analyzed in efforts to gain an understanding of the
evolutionary relationship between various species and among chromosomes
within a single species. As described here, the average linguistic complexity
profile of genomic structure reveals a great deal of fine structure variations
in the various sequences available.

7.2.7 Conclusions

The results show both general and genome-specific linguistic features of the
promoter organization of eukaryotic genes. The most general feature found
in all genomes is lower average complexity of the regions upstream of the
translation start compared to the average complexity of the first exons. In
addition, in almost all of the genomes studied in this investigation, LC profiles
have convex shapes around the start of translation. While these statistical
laws of LC profile behaviors in promoter regions are quite general, clustering
based on the Euclidean distances between LC profiles, as a rule, results in
collecting chromosomes of the same species in an individual cluster; chro-
mosomal LC profiles of varied species appeared to be dissimilar as they are
located in different clusters.

Clearly, promoter structures of eukaryotic genes have many important pa-
rameters that were not considered in this Chapter; they are left for future
research.

7.3 Prokaryotic Species Classification Based on DNA
Curvature Distribution

In the previous section an example of classification of eukaryotic chromosomes
was introduced. Here, we present another example of the profile-construction
method. A description for a specific procedure of profile construction of a few
parameters should be introduced, including the function f on which the whole
procedure is based. In this subsection an estimation of the DNA curvature is
chosen as such a function.
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7.3.1 DNA Curvature Prediction

Among different local DNA characteristics there is a so-called “curved DNA”
property. A simple meaning of the term is that in a certain region of the
DNA molecule a curved (or a curvilinear) line describes the DNA helical axis
better than a straight line. There are a few different approaches to predict
the helical axis of the DNA molecule. Accordingly, there are a few software
products intended to predict a DNA path, which is, actually, a prediction
of the whole sequence-dependent static DNA structure. One of the most
widely used programs is CURVATURE [260, 256, 22, 234]. An algorithm
is based on the “nearest neighbor model” or the “wedge model” [260, 256,
22, 234] and is currently, broadly used [134, 11, 107, 276, 92]. The software
is applicable in plotting the sequence-dependent spatial trajectory of the
DNA double helix and/or distribution of curvature along the DNA molecule:
PATH and MAP options. In what follows we refer to the MAP option of
the software, which may be considered as a procedure of transformation of
strings into numerical sequences: every substring of an input DNA sequence
of a predefined size is converted into a numerical value that is a predicted
DNA curvature value. Many details related to the phenomenon of the intrinsic
DNA curvature and to the method of its prediction are compiled in Appendix
C of this manuscript.

The MAP option of the software CURVATURE is used to predict the
distribution of curvature along any DNA sequence. This program takes, as
input, the DNA sequence and calculates the likely degree of curvature at
each point along the molecule using a sliding window with a predefined size.
A curvature value at position icorresponds to a curvature of the arc in ap-
proximation to the predicted DNA path. The arc approximates a segment
of the predefined size with a center of the segment at position i. Details are
given in Appendix C.

To describe any profile construction procedure (see Section 1 in this chap-
ter), the following parameters should be introduced: (i) text T ; (ii) a set of M
specified positions {mi}; (iii) the size of the sliding window w; (iv) interval
[-a, b]; and (v) function f . Here are the descriptions of these parameters,
which are suitable for the clustering of several prokaryotic genomes (the de-
scriptions here are analogous to those introduced above for the construction
of eukaryotic LC profiles).

1. Text T represents the sequence of one complete prokaryotic genome, for ex-
ample, Campylobacter jejuni from the GenBank. A description of a genome
in the GenBank contains a lot of information on coding genes (see an ex-
ample in Table 7.5, where some data regarding loci 0702-0706 of C. jejuni
are presented):

2. A set of markers is the set of all suitable start codon positions of the
selected complete prokaryotic genome (see prokaryotic gene structure and
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the related terminology in Appendix C). In our study of curvature distri-
bution around the 5’-ends of the CDS, we processed only CDS longer than
125 nucleotides and flanked by upstream intergenic regions longer than
125 nucleotides. In the abovementioned example (Table 7.5) the markers
253642 and 255090 of the loci Cj8421 0703 and Cj8421 0705 are not in-
cluded in the set because of the overlap with previous CDS; the marker
254377 of the locus tag Cj8421 0704 is not included in the set because of
the short intergenic region; the marker 256521 of the locus tag Cj8421 0706
is included in the set.

3. The size of the sliding window is selected according to biological consider-
ations (see Appendix C). In [23, 155] it is equal to 150 bp (an alternative
window size of 63 bp was tested as well and was found less suitable). In
[155] a slightly different size of 120 bp is used.

4. More than a single variant of the parameters a and b for the interval
[-a, b] were used. For curvature profiles used in [23, 155] the interval
is defined as [-500, +500]; in Kozobay-Avraham et al. [155] the interval
is [-400, 400]. The authors aimed to take a neighborhood [-a, b] around
the start of CDS. However, the entire regions ±500 bases’ length around
the starts of translation were used exclusively in cases where all 500 nu-
cleotides upstream were located in an intergenic region and all 500 bases
downstream belonged to CDS. (The same statement is true regarding
the interval [-400, 400] used in [156, 155] and the interval [-200, 200]
used in [156].) Otherwise, only relevant downstream coding or upstream
noncoding pieces were used. For example, the considered neighborhood
of the start of the gene Cj8421 0706 /256521..256979/used in [23, 155]
is [-274, 458], because 256521-256247=274, and 256979-256521=458 (see
Table 7.5).

5. Two modifications of DNA curvature profiles have been used: curvature
profiles, based on absolute DNA curvature values [23, 155], and curvature
excess profiles [156].

Table 7.5 Excerpt of the annotation of Campylobacter jejuni subsp. jejuni CG8421.

CDS 252792..253655
/locus tag=“Cj8421 0702”

CDS 253642..254367
/locus tag=“Cj8421 0703”

CDS 254377..255093
/locus tag=“Cj8421 0704”

CDS 255090..256247
/locus tag=“Cj8421 0705”

CDS 256521..256979
/locus tag=“Cj8421 0706”
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7.3.2 Construction of Genomic DNA Curvature
Profiles

In [23, 155] curvature distributions around the 5’-ends of the CDS of 21
genomes were studied (see Fig.7.5). The expectation was that UCS would
be located upstream to starts of translation in regions of putative promot-
ers. In Fig.7.5 all curves are shown on the same scale but shifted along the
Y-axis for illustration purposes. The curvature values are presented in nucle-
osome units. Major ticks on the Y-axis correspond to the curvature of 0.02
nucleosome unit. The clustering of the genomes led to a division into three
groups: predominance of big mesophilic genomes in the first group (Fig.7.5a),
small mesophilic genomes in the second group (Fig. 7.5b), and all hyperther-
mophilic genomes (Fig.7.5c).

In the study based on a very small amount of complete prokaryotic genomes
there were two major statements:

1. Distribution analysis showed a substantial presence of more curved pieces,
100-200 bases upstream to the start of CDS in such mesophilic genomes as
Escherichia coli, Mycobacterium tuberculosis, Bacillus sp., Synechocystis,
Haemophilus influenzae, and Helicobacter pylori.

2. By contrast, both euryarchaeal and bacterial hyperthermophilic species
did not demonstrate such a property. DNA curvature probably does not
play any significant biological role in gene regulation of hyperthermophilic
species.

The concluding remarks in [23, 155] contained the prediction that analysis of
new complete prokaryotic genomes, as a rule, will show patterns of curvature
distribution dependent upon normal growth temperatures.

In the following study [155] the hypothesis that the DNA curvature plays
a biological role in gene regulation in mesophilic as compared to hyperther-
mophilic prokaryotes was verified. In Kozobay-Avraham’s study [155] 105
Bacterial genomes and 16 Archaeal genomes were analyzed (compared with
six euryarchaeal species and 15 bacterial in [23, 155]. Another hypothesis
was checked as well: whether a genomic dinucleotide composition completely
determines average curvature. Control genomes with the same dinucleotide
composition for genomic and intergenic sequences were constructed sepa-
rately. This was done to test the significance of results and to compare the
properties of natural and artificial genomes. The construction procedure con-
sisted of three steps: a) a genome was cut in separate genic and intergenic
pieces at every 5’ and 3’ gene junction; b) each piece was separately reshuf-
fled preserving dinucleotide composition; c) all the pieces were reassembled in
the original order. For every genome, 10 randomized control genomes, using
the abovementioned procedure of shuffling and rejoining randomly reshuf-
fled pieces, were prepared. Magnitude and standard deviation of curvature in
coding and noncoding sequences of artificial genomes by assuming and aver-
aging 10 randomized shuffled genomes were estimated. Using a comparison
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Fig. 7.5 Curvature distributions in the neighborhood of the starts of translation.
For each genome, the sets of region 500 bases in length around the starts of trans-
lation were compiled. All graphs are on the same scale; for better presentation
some of them were shifted along the Y-axis to prevent overlapping. Major ticks
on the Y-axis correspond to the curvature of 0.02 nucleosome unit. The number of
processed CDS fragments is shown in brackets. Every 50th point is marked by a cor-
responding symbol: circle, diamond, square, or triangle. A. Big Mesophilic Bac-
teria Haemophilus influenzae triangles up (503 CDS); Helicobacter pylori triangles
down (357 CDS); Escherichia coli circles (1522 CDS); Bacillus subtilis squares
(1439 CDS); Synechocystis sp. triangles right (1343 CDS); Mycobacterium tuber-
culosis triangles left (1078 CDS). B. Small Mesophilic Bacteria Chlamydia
pneumonia solid circles (384 CDS); Chlamydia trachomatis empty circles (326
CDS); Mycoplasma pneumoniae empty diamonds (210 CDS); Mycoplasma geni-
talium solid diamonds (73 CDS); Borrelia burgdorferi empty circles (137 CDS);
Rickettsia prowazekii triangles down (342 CDS); Treponema pallidum - triangles up
(176 CDS) C. Hyperthermophilic Archaea and Bacteria Methanococcus jan-
naschii triangles down (449 CDS); Pyrococcus abyssi empty diamonds (307 CDS);
Pyrococcus horikoshii triangles up (473 CDS); Methanobacterium thermoautotroph-
icum triangles left (360 CDS); Thermotoga maritima triangles right (233 CDS);
Archaeoglobus fulgidus solid squares (374 CDS); Aquifex aeolicus solid diamonds
(242 CDS); Aeropyrum pernix solid circles (749 CDS).
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Fig. 7.6 Curvature distributions of big mesophilic AT-rich genomes e.g., Pasteurella
multocida (757), Campylobacter jejuni (251), Helicobacter pylori (417), and Liste-
ria monocytogenes (1065). The mean distributions (solid line) were obtained by
averaging the distributions of all fragments from the same genome. The dash line
corresponds to distribution of expected random value. The standard errors were
estimated by bootstrap method using 1,000 runs. For better visibility, error bars
corresponding to several distances around the 5’-end are shown separately from cur-
vature maps. Many intergenic areas are shorter than 400 bp; therefore, standard
deviation is larger for intergenic positions that are more distant from the 5’-end of
gene. For this reason, the far upstream peak in the natural genome, as a rule, is not
significant. P. multocida shows the maximal curvature value of 0.125 in position
-88. C. jejuni shows the maximal curvature value of 0.141 in position -74. H. pylori
shows the maximal curvature value of 0.13 in position -73. L. monocytogenes shows
the maximal curvature value of 0.124 in position -100.
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between natural and randomized genomes, it was found that in almost every
complete prokaryotic genome the noncoding sequences were more curved than
their shuffled counterparts with the same dinucleotide composition. There-
fore, the conclusion presented in [155] was that genome curvature distribution
of a prokaryotic genome, in general, contains more information than may be
expected from its dinucleotide composition. This result is clearly visible from
plots of curvature distribution around starts of genes (see Fig.7.6).

The hypothesis regarding temperature influence on curved DNA distribu-
tion was proposed in [23, 155]. The results presented by Kozobay-Avraham
et al. in 2004 [155] are in full accordance with this theory: curvature peaks
were observed wherein loop formation was expected; and among the hyper-
thermophilic genomes, this phenomenon was not observed.

In the following studies of Kozobay-Avraham et al. [156, 156] curvature
excess distribution around the starts and ends of the annotated coding se-
quences was used instead of absolute values of DNA curvature.

Curvature excess is an apparent deviation between genomic (gi) and ran-
dom (ri) curvature values measured in standard deviation units and calcu-
lated as follows:

CE =
(gi − ri)

σi

In order to calculate random curvature value, randomized control genomes
were constructed. The randomization was done by genome reshuffling with-
out any change in dinucleotide composition. The procedure described below
is different from standard procedures of genome reshuffling. In standard pro-
cedures complete genome sequences are reshuffled while every genic or inter-
genic sequence dinucleotide composition was preserved separately. This kind
of reshuffling procedure was developed to keep local dinucleotide composition
unchanged. The construction procedure consists of three steps: a) a genome
is cut in separate genic and intergenic pieces at every 5’ and 3’ gene junction;
b) each piece is reshuffled separately preserving dinucleotide composition,
and c) all the pieces are reassembled in the original order. For every genome,
10 randomized control genomes are prepared using the above-mentioned pro-
cedure of shuffling and rejoining randomly reshuffled pieces. The magnitude
of curvature of coding and noncoding sequences of artificial genomes (ri) is
estimated by averaging 10 randomized shuffled genomes.

In Fig.7.7 the curvature excess profiles of genomes with clear UCS are
shown. As it was mentioned above, genomes of hyperthermophiles never have
this property. T. maritime (Eubacteria), P. horikoshii, P. abyssi, and A.
fulgidus (Archaea) are four representatives of a group of hyperthermophilic
prokaryotes.

7.3.3 Clustering of Prokaryotic Genomes

In [156] curvature excess profiles were used for K-means clustering of 170
genomes, and in [156] 205 genomes were clustered.
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Fig. 7.7 Curvature excess profiles of the AT-rich genomes: P. multocida, C. jejuni,
H. pylori, and L. monocytogenes in the neighborhood of the starts of coding se-
quences. The curvature excess plots correspond to the curvature plots presented in
Fig.7.6. P. multocida shows the maximal curvature excess value of +10 in position
-88. C. jejuni shows the maximal curvature excess value of +7.4 in position -74.
H. pylori shows the maximal curvature excess value of +9.0 in position -73. L.
monocytogenes shows the maximal curvature excess value of 11.5 in position -100.

7.3.3.1 Measuring a Distance between Profiles for Further
Clustering

In [156] three comparison parameters of Curvature Excess (CE) were cal-
culated: Maximal Curvature Excess (MCE) and Upstream Integral Excess
(UIE) – corresponding distances dMCE and dUIE based on MCE and UIE
were used for further clustering analyses.

The parameter MCE was determined by detecting maximal CE value. A
corresponding distance dMCE between two genomes is an absolute value of
the difference between two maximal CE values. The distance dUIE between
two genomes is an absolute value of the difference between two average CE
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Fig. 7.8 Curvature excess profiles of the representative hyperthermophilic genomes

values. UIE represents the average in CE over X base pairs upstream to a
start of translation:

UIE =

∑i=X
i=1

(gi − ri)
σi

X

X in the parameter UIE was determined as 125 base pairs (between –63 and
–188 nucleotides) upstream to the 5’-ends of CDS, wherein promoters are
usually located.

In [154] and [156] all profile data were used. In order to evaluate which of
the known distance calculations is the most suitable for our data, the follow-
ing distances were calculated between curvature excess profiles in promoter
regions: the squared Euclidean distance, the Manhattan distance, the max
distance, and three correlation distances of Spearman, Pearson, and Kendall
(see, Appendix A). Partitions have been provided by means of the PAM
algorithm using all of these distributions and by means of the k-means algo-
rithm using the squared Euclidean distance. The results clearly point to the
last approach as the most appropriate. Therefore, all further cluster analyses
[154, 156] were performed using this distance.

7.3.3.2 Cluster Analysis Based on dUIE Distance

K-means algorithm over 3 clusters using the distances dMCE and dUIE was
applied. Cluster analysis showed that the data variations in the clusters are
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Fig. 7.9 Cluster analysis. K-means algorithm over 3 clusters was carried out using
the parameter Integral Excess in (a) promoter (UIE) and (b) terminator (DIE)
regions of all 170 genomes. The numbers inside each of the pie’s pieces represent
the mean value of curvature excess of each cluster. An amount of the genomes in
each cluster is indicated outside of the pies pieces.

smaller with the UIE parameter than with those compared with the MCE
parameter. This result indicates that clustering based on the UIE parameter
is less biased and more reliable than the MCE. The mean values of UIE and
the amount of genomes in every cluster are summarized in Fig.7.9.

In [156] the authors tried to verify previous qualitative findings regarding
the factors that influence curvature distribution in promoter regions of a
quantitative manner.

Fig. 7.10 Mean profiles (centroids) of clusters. In (1) profiles were used for K-means
clustering of 170 genomes. Genomic profiles based on curvature excess distribution
in the neighborhood of the starts (a) and ends (b) of genes. The centroids are
obtained by averaging all profiles related to each of the three clusters obtained by K-
means algorithm. The y-axis represents the curvature excess in standard deviation
units and the x-axis represents the position around the start or end of translation.
The highest profiles are related to cluster 3, and the lowest profiles correspond to
cluster 1.
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From the data obtained by cluster analyses, three histograms of UIE curva-
ture excess were constructed (Fig.7.11). Each histogram is colored according
to one characteristic: A) growth temperature, B) genome size, and C) A+T
composition. Each pie plot presents the distribution of one characteristic in
a particular cluster.

Cluster 3 in Fig.7.11 has the highest mean values and includes only
mesophilic bacteria that have a relatively ‘big’ genome size (over 1.4 Mbp);
all of the genomes in this cluster are AT-rich (above 50% A+T content in
the noncoding region).

In Cluster 2, 75 out of the 76 organisms are mesophiles and 1 is a ther-
mophile. In this cluster, about 70% are ‘big AT-rich’ and the rest are ei-
ther GC-rich or ‘small’. Cluster 1, which represents the lowest mean value
of curvature excesses in promoter regions, contains the lowest percentage of
mesophiles compared to other clusters. The data based on the UIE show
that this cluster contains all the hyperthermophiles and 99% percent of the
thermophiles. Moreover, among the 51 mesophiles only 7 are ‘big AT-rich’.

Clusters 1 and 2 based on clustering, using curvature excess in terminator
regions (DIE), consist of 70 genomes each. While examining these clusters,
the most prominent difference from the clustering based on promoters is
the distribution of the thermophilic and hyperthermophilic genomes in the
clusters. This group shows homogeneous distribution: 12 genomes were in-
cluded in cluster 1 (which represents the lowest mean value) and 9 genomes
were included in cluster 2 (the medium). Another difference can be seen in
the distribution of the ‘small’ mesophilic genomes. While performing clus-
ter analysis on the promoters’ curvature (UIE), cluster 1 includes smaller
mesophilic genomes than cluster 2, which corresponds with the expectations
mentioned in Kozobay-Avraham et al. (2004). Performing the same analysis
on terminators (DIE), it was found that the relationship between genome size
and curvature in terminator regions is weaker than in promoter regions.

Another interesting picture can be seen when examining the phyla distri-
bution at every cluster. Clustering based on UIE curvature forms cluster 3
with 14 genomes out of 16 belonging to three groups that were known to
be AT-rich: Firmicutes and Proteobacteria gamma and epsilon subdivisions,
which are more AT-rich than the other members of the Proteobacteria phyla.
(A similar picture can be seen using the parameter DIE; about 70% of the
genomes presented in cluster 3 belong to these phyla.) At clusters 2 and 1,
based on the parameter UIE, the picture is more heterogenic. However, some
interesting points can still be drawn, i.e., all seven members of the phylum
Chlamydia belong to cluster 1. In this phylum, the variation in size is rel-
atively very small - from about 1 to 2.4 Mbp. On the contrary, if we look
at all seven genomes of Cyanobacteria wherein the variation of size is very
big - from about 1.6 to 6.4, or the 13 genomes of the Actinobacteria - from
0.9 to 9 Mbp, the cluster distribution is less homogeneous. This phenomenon
indicates a relationship between the size of the genomes and clustering, based
on curvature excess at the promoter regions. As was expected, all members
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Fig. 7.11 Histograms of curvature excess in promoter regions. The coloring of
each histogram represents distributions of one characteristic along the clusters:
(A) optimal growth temperature (OGT), (B) genome size, and (C) A+T compo-
sition. The parameter UIE, which was calculated for the purely upstream window
(from nucleotide -63 to 188), was used to build the histograms. In histogram A
all of the genomes are represented, excluding seven genomes with unknown OGT.
In histograms B and C only mesophilic genomes are represented. Curvature ex-
cess threshold of each cluster is indicated on the left side of the vertical dashed
line. Above each histogram three pie plots are presented for better visibility of the
character distribution in each cluster
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of the kingdom Archaea, except for two mesophilic Methanosarcina strains:
M. acetivorans and M. mazei appear in cluster 1, which was characterized
by the lowest mean UIE value.

The discussion on these findings is placed in Appendix C. Here we recount
a shorter version of this discussion.

In publication [155] it was shown that the most prominent phenomenon is
that an abundance of UCS in a genome was determined by the temperature
of its habitat. Other characteristics, such as genome size and A+T compo-
sition, also influence this phenomenon. When growth temperature, genome
size, and A+T composition are taken into consideration – peculiar observa-
tions influencing curvature at regulation sites can be explained. For example,
there was no representation of very AT-rich (above 70%) genomes found in
clusters with higher mean values, but underlying genome size revealed that
most of these are ’small’ genomes.

7.3.3.3 Cluster Analysis Based on the Squared Euclidean
Distance

In this section we describe an approach and results of the study [156] of
Kozobay-Avraham textitet al. (2009). The genomic database of [156] con-
sists of 205 prokaryotic genomes. The following genomic characteristics were
gathered from genomic annotations and from the literature: optimal growth
temperature, genome size, A+ T composition, and taxonomic description.

Optimal growth temperature - the organisms belong to four temperature
groups, as defined in the literature (see Chapter 2).

Taxonomy - prokaryotes fall into one of two groups, Archaebacteria
(ancient forms thought to have evolved separately from other bacteria) and
Eubacteria. Archaebacteria, sometimes called Archaea, emerged at least 3.5
billion years ago and lived in environments that existed when the earth was
young. Many hyperthermophiles belong to Archaea. The genomic database
of [156] consists of 23 Archaeal and 182 Bacterial genomes. Among the Ar-
chaeal genomes 19 representatives are thermophiles or hyperthermophiles;
four genomes are mesophiles.

Genome sizes - prokaryotes have relatively small genomes: from very short
genomes with lengths less than 1Mb - up to about 9Mb. The size of a genome
is a relevant factor because the smallest genome-sized prokaryotic species, the
obligate endocellular parasites, when compared to their free-living relatives,
have preferentially lost many regulatory elements, including many transcrip-
tional factors.
A + T composition - this feature is relevant to our analysis because the

magnitude of DNA curvature depends on it. In AT-rich segments curved
DNA fragments occur more frequently than in AT-poor segments. Moreover,
it was shown that strongly curved DNA fragments must possess high A+T
content.
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The cluster analyses were performed using the k-means and the PAM
methods. Two cluster stability indexes were applied: Krzanowski and Lai
index ([158]) and Sugar and James index ([241]). The graphs (Fig. 7.12)
of these two cluster stability indices (see Appendix A, Clustering methods
section) demonstrate that both indices provide evidence that the true number
of clusters is three. The possible number of clusters is presented on the X-
axis. On the Y-axis, the values of an appropriate index are plotted. From this
point on in the text the number of clusters is three.

(A)

(B)

Fig. 7.12 The cluster stability indices. Graphs of the Sugar and James index (A)
and Krzanowski and Lai index (B).
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Fig. 7.13 Mean profiles (centroids) of clusters. In Kozobay-Avraham et al. (2009)
profiles were used for K-means clustering of 205 genomes. Genomic profiles based
on curvature excess distribution in the neighborhood of the starts of genes. The
centroids are obtained by averaging all profiles related to each of the three clusters
obtained by the K-means algorithm. The y-axis represents the curvature excess in
standard deviation units, and the x-axis represents the position around the start
of translation. The highest profiles are related to cluster 1, and the lowest profiles
correspond to cluster 3.

Three clusters were obtained using k-means algorithm and the graphs
present centroid profiles related to each of three clusters. The highest profile
is related to cluster 1, and the lowest profile corresponds to cluster 3. Cluster
1, the smallest cluster containing genomes with the highest curvature excess
values in promoter regions is rather homogeneous. The cluster contains ex-
clusively mesophilic prokaryotes that have genome sizes larger than 1.4 Mb
and a high A + T composition. The PAM method gives rather similar results;
92% genomes in the smallest cluster are also big AT-rich mesophilic genomes.

Table 7.6 presents the results of clustering obtained by the K-means al-
gorithm cross-tabulated with temperature classifications. The FM correla-
tion coefficient is equal to 0.48 for the correlation between temperature and
curvature-based partitions. Cluster 1 contains only mesophilic prokaryotes;
all four psychrophiles are located in cluster 2; a majority of the thermophiles

Table 7.6 Cross-tabulation count between temperature and clusters

Cluster \ Temperature Psychrophiles Mesophiles Thermophiles Hyperthermophiles

1 0 48 0 0

2 4 67 4 4

3 0 57 8 13
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and hyperthermophiles is located in cluster 3. Mesophilic genomes have no-
table representation in all clusters.

The distribution of Archaea among three clusters is not shown but is
not surprising because the majority of the processed Archaea is hyperther-
mophiles, and hyperthermophiles are mainly Archaea. Therefore, the distri-
bution of archaeal genomes is similar to the above mentioned distribution of
hyperthermophiles. Indeed, it should be mentioned that mesophilic Archaea
are grouped together with mesophilic Eubacteria, while hyperthermophilic
Eubacteria are grouped together with hyperthermophilic Archaebacteria.

Genome size and A + T composition have already been found to have in-
fluence on curvature distribution [156]. In [156] the genomes were arbitrarily
divided into two groups with a threshold of 1.4 Mbp. Lengths of the prokary-
otic genomes processed in [156] range in size from 490,885 to 9,105,828 bp. In
order to verify the previous intuitively selected threshold of 1,400,000 bp, 2
t-tests were performed by Kozobay-Avraham et al. [156]: one according to the
median (2.4 Mbp) and the second according to the arbitrary value (1.4 Mbp).
It was found that the differences between the mean values of the groups were
significantly higher when the threshold of 1.4 Mbp was used. Thus, these
results verified the intuitive threshold between “small” and “big” genomes
used in previous publications [156, 155]. Correlation of A + T composition
with clustering described in [156, 155] was verified in Kozobay:2009c as well.

7.3.4 Sub-clustering of Coding Regions after
Clustering Based on the Squared Euclidean
Distance

Centroids of the three clusters in the neighborhood of the starts of genes
(from -200 bases to +200 bases) are shown in Fig. 7.13. The results of the
clustering were based on measuring squared Euclidian distance dij between
profiles xi and xj in the upstream region only:

d (x, y) = ‖x− y‖2 ⇒ dij =
0∑

l=−200

(
xli− xlj

)2

As a further step, sub-partitions for each one of the obtained clusters were
considered separately for the purpose of achieving a more detailed biological
interpretation. The k-means algorithm, accompanied by the Euclidian dis-
tance with the number of clusters equal to 3, has been used. The centroids
of all nine clusters are presented in Fig.7.14.

Several surprising features of curvature excess distributions in the coding
regions were observed. One of them is a sharp maximum immediately after
the start of translation typical for sub-clusters 1,1 and 1,2; 2,2 and 2,3; and
3,2. It is worthwhile to remind the reader that the curves are of a curvature
excess – this means that the presence of a sharp maximum of normalized
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Fig. 7.14 Mean profiles (centroids) of sub-clusters from Kozobay-Avraham et al.
(2009). The sub-clusters are notated with accordance to Fig.7.13: the first digit
from 1 to 3 is an index of a cluster, and the second digit is an index of a sub-cluster
in it.

Table 7.7 Correlation between taxonomy and G5MCC

Phylum Class Genomes
with
G5MCC

Genomes
without
G5MCC

Actinobacteria Actinobacteria 12 4

Chlamydiae Chlamydiae 1 6

Cyanobacteria 2 5

Firmicutes Bacilli 22 8

Firmicutes Mollicutes 2 8

Proteobacteria Alphaproteobacteria 15 5

Proteobacteria Betaproteobacteria 10 0

Proteobacteria Gammaproteobacteria 37 7

Proteobacteria Deltaproteobacteria 4 2

Proteobacteria Epsilonproteobacteria 6 0

Spirochaetes Spirochaetes 1 7
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Fig. 7.15 A diagram of clusters and sub-clusters. Cluster notation is as it ap-
peared in Fig.7.15, Table 7.7 Interestingly, A+T composition of G5MCC is rather
heterogeneous.

curvature values at a certain location, does not necessarily lead to the pres-
ence of a maximum of absolute curvature values at the same location. Let
us denote this group as “Genic 5’-end Maximum Characterized Clusters” or
G5MCC. The most surprising among these profiles is the sub-cluster 3,2,
which belongs to cluster number 3 with the lowest curvature excess values
in promoter regions. Sub-cluster 3,2 presents the sharpest inclination of cur-
vature excess profile immediately after the start of genes. Let us take notice
that G5MCCs are usually mesophiles: all thermophiles (including hyperther-
mophiles) are located in two of nine clusters - 22 thermophiles belong to the
cluster 3,1, which is not G5MCC, but 6 thermophiles also belong to cluster 2,2
(Geobacillus kaustophilus, Streptococcus thermophilus, Thermoanaerobacter
tengcongensis, and Thermobifida fusca - are thermophiles; Carboxydother-
mus hydrogenoformans and Pyrococcus horikoshii - are hyperthermophiles).

The profile of the sub-cluster 3 of cluster 1 with the highest curvature
excess values in promoter regions has a contrasting surprising feature: a
sharp descent after the start of genes. However, this group contained only
three genomes; therefore, to explain this phenomenon further investigation is
needed.

A few questions are still unanswered. Why was a surprisingly high DNA
curvature located immediately after the start of the gene? Why would
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evolution frequently keep an extensive curvature at the 5’-ends of many
protein-coding sequences? Why is the phenomenon of G5MCC so typical for
many representatives of proteobacteria but seemingly a rather rare episode
for Chlamydiae or Spirochaetes? Here, we can propose some speculations.

The absence of excessive curvature in promoter regions of almost all
“small” genomes probably reflects an adaptive selection. Small genomes are
usually obligate endocellular parasites that evolutionarily adapted to utilize
their genome host and consequentially lost nonfunctional sequences, such as
regulatory elements. Similar to our findings related to regulation regions, a
genome’s size seems to have influence on the curvature distribution in coding
regions as well.

7.3.5 Conclusions Pertaining to Prokaryotic Species
Classification Based on DNA Curvature
Distribution

The main factors influencing curvature distribution in promoter regions of
the prokaryotes were found, in order of importance, as: optimal growth tem-
perature, genome size, and A+T composition. The possible combinations
among these factors can explain, for example, the homogenous distribution
of mesophilic genomes along clusters with high, moderate, and low curvature
excess. The absence of excessive curvature in almost all thermophiles and hy-
perthermophiles brings them all together in a mutual cluster of low curvature
excess, while the majority of the mesophilic AT-rich genomes are located in
other clusters. Clusters containing genomes with the highest curvature ex-
cess values in promoter regions contain exclusively mesophilic prokaryotes
that have big AT rich genomes.



Chapter 8
Genome as a Bag of Genes – The
Whole-Genome Phylogenetics

In Chapter 3, we gave a short description of the Bag-of-Words and the Bag-
of-Tokens models. We also provided a few examples of the approach which,
employs, instead of meaningful words, strings of letters, which needn’t have
any definite sense (the so-called N -grams). In the present chapter, another
application of the Bag-of-Tokens model is described, - this time, the token
being a member of a set of genes Besides, as a token property, the gene length
is used instead of the token frequency,

8.1 Background

One of the main applications of the N -gram-based methods is comparison
of long genetic sequences, in particular, whole genomes. Such comparison
requires neither preliminary nor a posteriori alignments to reveal homologous
fragments in both sequences, being, therefore, also refered to as alignment-
free sequence comparison [272], [21]. An obvious advantage of the N -gram
frequency-based approach is its simplicity as compared to other computer-
intensive and operationally-complex techniques.

However, the methods based on the calculation of N -gram occurrences
cannot replace the methods based on the discovery and investigation of ho-
mologies. In this section, we present a method based on the annotations of
gene of whole genomes. This method is especially applicable to prokaryotic
taxonomy due to the fact that protein-coding material comprises the major
portion of a prokaryotic genome (see Chapter 1). It is shown in the present
chapter that the result of the genome classification produced by this method
is, actually, a phylogenetic tree (see Chapter 2 for the definitions). According
to Woese and colleagues [285], the phylogeny which is based on the molecu-
lar evolution data is usually obtained by the comparison of highly conserved
genes. In the framework of this approach, which was introduced by Zuck-
erkandl and Pauling ([295]), one gene family (usually rRNA genes) is chosen
to represent whole genomes, so the distance between two genomes is defined
as the distance between the appropriate representative genes.

A. Bolshoy et al.: Genome Clustering, SCI 286, pp. 147–160, 2010.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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Although the above approach led to a great progress in molecular evolu-
tion, the drawbacks of establishing a phylogeny on the basis of any single-gene
family are also well known. For instance, because of functional limitations
imposed on the number of possible mutations, there exists a phenomenon of
saturation, which results in a non-linear transformation of the distance scale.
Species phylogenies derived from the comparison of single genes are rarely
consistent with each other, in particular, with respect to horizontal gene
transfer [57], [238], [9], [201]. Another well-known problem associated with
the above approach relates to the possibility that the evolutionary history of
any single gene differs from that of the whole organism.

As more and more genomes are being completely sequenced, phylogenetic
analysis enters a new era - the era of phylogenomics. Recent studies have
demonstrated the power of this approach, which has the potential of giving
answers to some fundamental evolutionary questions. The whole genomes of
living organisms provide a large body of information on their phylogenetic
relationships. There are fewer approaches to deriving phylogenies on the ba-
sis of extensive genomic information than on the basis of a small number
of genes [243], [239]. According to one of such approaches, a genome phy-
logeny is established on the basis of gene content [274], [286], [156]. Snel
et al. [239] present a distance-based phylogeny of 13 completely sequenced
genomes of unicellular species. The similarity between two species is defined
as the number of common genes divided by the total number of genes. The
authors propose to interpret the distance introduced in such a way in terms
of evolutionary events of acquisition and loss of genes.

The research in the new field of phylogenomics - embedding of a genome
into a coordinate space - is closely related to the topic of our book. In Chapter
3 we defined a vector space model as an algebraic model for representing text
documents as vectors of identifiers, such as, for example, index terms; a doc-
ument is represented as a vector. Each dimension corresponds to a separate
term. The document set D is represented by a matrix A, in which each col-
umn stands for a document and item (i, j) stands for the frequency of term i
in document j. If we replace “text document” to “genome” and “index term”
to “gene” then we would get the following definition: a gene-content based
model for genomes is an algebraic model for representing genomes as vectors
of genes. The set of genomes D is represented as a matrix A, in which each
row stands for a genome, and each column stands for a gene, and each item
stands for the property of a member of a gene family i in a genome j. If the
rows and columns are binary, a row of the matrix A is referred to as a phylo-
genetic profile [152], [247]. Tekaia and Yeramian [247] defined a conservation
profile of a protein as an n-component vector of zeros and ones, which de-
scribes the protein’s conservation pattern across n species. As an illustration,
the authors analyzed a genome tree based on conservation profiles and found
significant correspondence between the tree and the traditionally recognized
taxonomies, along with a series of departures from the conventional cluster-
ing. As it was mentioned in a review of Snel et al. [238], the phylogenetic
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value of genome trees is not as commonly accepted as that of gene trees sim-
ply because different parts of a particular genome do not necessarily have the
same evolutionary history. This raises the question as to the effectiveness of
constructing a phylogeny at the genome level [153].

The method that was presented in [25], which we describe below, is closely
related to a group of methods based on the presence and absence of genes;
however, it may use the information related to different inherent properties
of genes also. The method is based on a methodologically novel concept of
a genome tree construction based on orthologous gene conservation profiles.
Suppose we have n genomes for which we would like to construct a genome
tree. We define an orthologous gene property conservation profile of a gene
x as an n-component vector of zeros and positive values, which reflects an
evolutionary conservation history of a property p across the n species. This is
a methodologically novel concept of genome trees based on orthologous gene
conservation profiles in multiple species. In [25] the property under consid-
eration is the length of genes. Namely, the value of the i−th component of
profile x equals zero, when gene x is absent from genome i; otherwise this
value is equal to the ratio of an average length of the paralogs related to the
family of genes of type x in genome i to the sum of all such averages over all
genomes. The average lengths are calculated using the database Clusters of
Orthologous Groups [214], [154]. It should be pointed out that other evolu-
tionary properties, such as the gene GC-content or a Codon Usage Index of
the gene, can also be used.

8.2 The Information Bottleneck Method

8.2.1 Clusters of Orthologous Groups

The data is chosen from the COGs of proteins with regard to the compari-
son of protein sequences. Bolshoy and Volkovich used the COG database in
[250] and we show in this chapter the results obtained on the database of
COGs [http : //www.ncbi.nlm.nih.gov/COG] that appeared to be the last
COG database officially presented at the COG page. The list of all genomes
and their partial taxonomy is shown in Tables 8.1 and 8.2. In the official
COG database employed here, 63 sequenced prokaryotic genomes and three
genomes of unicellular eukaryotes are included (38 orders, 28 classes, 14
phyla). An illustration to the typical COG data is presented in Table 8.3.
One can see that many genomes possess orthologous genes from the COG006
but not all of them. Some genomes have only one protein from the COG, but
other genomes have many paralogs. Some paralogs have very close protein
lengths, while, for example, Candida (cda) has a very heterogeneous set of
proteins.
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Table 8.1 List of all unicellular organisms presented in COG database

Archaea

Crenarchaeota

pya Thermoproteales - Pyrobaculum aerophilum

ape Desulfurococcales - Aeropyrum pernix

sso Sulfolobales - Sulfolobus solfataricus

Euryarchaeota

afu Archaeoglobales - Archaeoglobus fulgidus

hbs Halobacteriales - Halobacterium sp. NRC-1

mth Methanobacteriales - Methanothermobacter thermautotrophicus

mja Methanococcales - Methanococcus jannaschii

pab Thermococcales - Pyrococcus abyssi

pho Pyrococcus horikoshii

tac Thermoplasmales - Thermoplasma acidophilum -

tvo Thermoplasma volcanium

mka Methanopyrales - Methanopyrus kandleri AV19

mac Methanosarcinales - Methanosarcina acetivorans str.C2A

Bacteria

aae Aquificales - Aquifex aeolicus

tma Thermotogales - Thermotoga maritima

fnu Fusobacterales - Fusobacterium nucleatum

bbu Spirochaetales - Borrelia burgdorferi

tpa Treponema pallidum

dra Thermus/Deinococcus group - Deinococcus radiodurans

ctr Chlamydiales - Chlamydia trachomatis

cpn Chlamydophila pneumoniae CWL029

Firmicutes

Bacillales

bsu Bacillus subtilis

bha Bacillus halodurans

lin Listeria innocua

sau Staphylococcus aureus N315 Lactobacillales

lla Lactococcus lactis

spy Streptococcus pyogenes

spn Streptococcus pneumoniae TIGR4

Mycoplasmataceae

mge Mycoplasma genitalium

mpn Mycoplasma pneumoniae

mpu Mycoplasma pulmonis

uur Ureaplasma urealyticum

cac Clostridiales - Clostridium acetobutylicum

Actinobacteria

mtu Mycobacterium tuberculosis H37Rv

mtc Mycobacterium tuberculosis CDC1551

mle Mycobacterium leprae

cgl Corynebacterium glutamicum
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Table 8.2 List of all unicellular organisms presented in COG database (continue)

Proteobacteria

pae Pseudomonadales - Pseudomonas aeruginosa

eco Enterobacteriales - Escherichia coli K12

ecs Escherichia coli O157:H7

ecz Escherichia coli K12 O157:H7 EDL933

buc - Buchnera sp. APS

ype - Yersinia pestis

sty - Salmonella typhimurium LT2

xfa Xanthomonadales - Xylella fastidiosa 9a5c

vch Vibrionales - Vibrio cholerae

hin Pasteurellales - Haemophilus influenzae Rd

pmu - Pasteurella multocida

rso Burkholderiales - Ralstonia solanacearum

nme Neisseriales - Neisseria meningitidis NC58

nma - Neisseria meningitidis Z2491

cje Campylobacteriales - Campylobacter jejuni

hpy - Helicobacter pylori 26695

jhp - Helicobacter pylori J99

ccr Caulobacterales - Caulobacter vibrioides

rpx Rickettsiales - Rickettsia prowazekii

rco - Rickettsia conorii

mlo Rhizobiales - Mesorhizobium loti

atu Agrobacterium tumefaciens strain C58

sme Sinorhizobium meliloti

bme Brucella melitensis

syn Cyanobacteria - Synechocystis PCC6803

nos Nostoc sp. PCC 7120

Eukaria

sce Ascomycota - Saccharomyces cerevisiae

spo Schizosaccharomyces pombe

ecu Microsporidia - Encephalitozoon-cuniculi

Here, a brief description of the COG database construction follows. COGs
are constructed from the results of all-against-all BLAST [9] comparison
of proteins encoded in complete genomes by detecting consistent groups of
genome-specific best hits. The COG construction procedure does not rely on
any preconceived phylogenetic tree of the included species with the exception
of certain obviously related genomes (for example, two species of mycoplas-
mas or pyrococci). The related genomes are grouped prior to the analysis, to
eliminate strong interrelation of the best hits. Only the gene pairs, which are
conserved in three or more genomes, are considered.
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Table 8.3 An example of data on gene lengths. COG0006 contains aminopeptidase
proteins from different Archaeal and Eubacterial genomes. Only part of the genomes
in the study is shown here. The protein lengths are measured in a number of amino
acids

aful 363 ccre 603

hbsp 369 391 paer 405 444

mjan 347 ecoli 361 441 443

mthe 336 Zecoli 361 441 443

tacid 331 360 buch

tvol 360 vibrio 597

pyro 356 351 365 hinf 430

paby 351 355 365 pmul 441

aero 349 xfa 400 446

yeast 399 511 535 749 nmen 598

cda 642 425 490 699 450 nmenA 659

aquae 354 hpyl 357

tmar 359 hpyl99 357

drad 312 349 cjej 596

mtub 375 372 rpxx 591

mlep 376 ctra 356

llast 352 362 cpneu 355

spyo 361 357 tpal 774

bsub 363 353 bbur 592

bhal 360 406 355 364 uure 357

syne 441 mpn 354

mlot 395 403 389 377 386 597 383 362 375 391 mgen 354

8.2.2 Matrix Preparation

8.2.2.1 Gene-Content Matrix

The COG collection consists of 138,458 proteins, which form 4,873 COGs
and comprise 75% of the 185,505 (predicted) proteins encoded in 66 genomes
of unicellular organisms. Therefore, the data on orthologs is represented a
matrix of size [66:4,873], where the matrix element mij equals 1 if genome
iencodes a protein ortholog belonging to COGj and is 0 otherwise. It is well-
known that only a tiny fraction (about ∼1%) of the COGs are present in all
66 genomes, and even the COGs that are present in all Eubacteria or in all
Archaea constitute a minority This property of our matrix makes it a sparse
matrix.

8.2.2.2 Gene-Length Matrix

A gene-length matrix is a sparse matrix [66:4,873] similar to the described
above gene-content matrix. The matrix element mij is the average length
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of the protein orthologs of genome i belonging to COGj. The information
on orthologous genes in prokaryotic and yeast genomes was derived from the
COGs as described in the previous approach. An element mij of the [genome,
COG] matrix is obtained in two steps:

1. In the first stage, a cleanup procedure is applied to make the data more
consistent. For this purpose, we try to eliminate outliers1 from a COG
set of gene lengths. There is no rigid mathematical definition of what
constitutes an outlier; thus, we use a rather naive approach; outliers are
eliminated using the well known “three-sigma” rule. The mean μ and the
standard deviation σ of the lengths of each COG’s items were calculated
and the proteins having the length less than (μ − 3σ) or greater than
(μ − 3σ) were termed as “outliers”. The outliers were not counted up.
In general, about 3% of all protein lengths were excluded from further
calculations.

2. At the second step, every obtainable COG organism pair was presented
by one averaged protein size. It was done by averaging all paralog protein
sizes to keep only one representative size per protein per organism. Typi-
cal distribution of lengths of proteins in the COG is rather homogeneous.
Therefore, even the presence of “ill-defined” COGs cannot negatively af-
fect the results of our natural statistical procedure.

8.2.3 Information Bottleneck Algorithm

According to the fundamental Information Bottleneck (IB) approach [250],
the natural statistical measure of the information that variableX holds about
variable Y is the mutual information I(X ;Y ) of the random variables X
and Y :

I(X ;Y ) =
∑
∑

x ∈ X, y ∈ Y =
∑
∑

x ∈ X, y ∈ Y ,

where p(x, y) is the joint distribution of X and Y ; p(x) and p(y) are the
marginal distributions of X and Y , rewspectively; p(y|x ) is the conditional
distribution of Y givenX. It is easy to show that I(X ;Y ) is a symmetric
and non-negative function, which equals zero if and only if the variables are
independent. This parameter assesses the average number of bits needed to
express the information that Xhas about Y and vice versa. Given the joint
distribution p(X ; Y ), the IB method seeks for a compact representation of X ,
which keeps as much information as possible about variable Y . Typically, X is
the variable to be compressed, while Y is the variable to be predicted. The
idea of the trade-off between two types of information terms was formulated
[250] using the basic notions of the well-known Shannon’s information theory.
According to this idea, the goal is keeping only those features of Xwhich
1 An outlier is an item of a set that lies far from most other items in a set of data.
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are most useful for predicting Y . Optimum representations are constructed
by means of a supplementary variable Twhich stands for soft partitions of
Xvalues, so that I(T ;X) is minimized when I(T ; Y ) reaches its maximum.
The compressed representation Tof X(which, in our case, corresponds to
clustering of X) is defined by p(T|X ). Hence, the quality of the clusters is
calculated using the information which is covered by Y , namely, by I(T ;
Y )/I(X ; Y ). The distribution of T is determined given Xalone because T is a
compressed representation of this variable:

p(T |X,Y ) = p(T |X),

or
p(X,Y, T ) = p(X,Y )p(T |X).

The above expressions can be reformulated using the equivalent form of the
IB

Markovian relation:
T ↔ X ↔ Y.

The IB optimization task can be reduced to the minimization of the IB
functional:

L[p(T |X)] = I(T ;X) − βI(T ;Y ),

where β is a positive Lagrange multiplier. The minimization is performed
over all the p(T |X) distributions. The minimization problem has an ex-
act analytical formal solution without any assumption regarding the joint
distributionp(X,Y ). This solution is provided by means of the following three
distributions :

⎡
⎢⎢⎣
p(t|x) = p(t)

Z(β,x)
exp(−βDKL(p(y|x)||p(y|t)))

p(y|t) = 1
p(t)

∑
x
p(t|x)p(x)p(y|x)

p(t) =
∑
x
p(t|x)p(x)

⎤
⎥⎥⎦ ,

where

• p(t) is the prior cluster probability;
• p(t|x ) represents the membership probabilities;
• p(y|t) denotes the distribution of the relevant variable;
• Z(β, x ) is a normalization factor;
• β ≥ 0 is the Lagrangian multiplier parameter, which establishes the

tradeoff

between compression and accuracy and the partition.
In the context of genome clustering considered here, the similarity measure

of two genomes is defined as the similarity between the conditional distribu-
tions of the representative lengths of their genes. The latter distributions
have the following form:
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p(y|x) =
n(y|x)∑

yi∈Y
n(yi|x) ,

where n(y|x ) is the average length of the genes corresponding to COG y in
genome x. We also make use of the uniform prior distribution of the genomes,
p(x) = 1‖X‖.

It would be natural to suppose that genomes with similar conditional
length distributions belong to the same cluster. This supposition leads to the
hierarchical structure of genome clusters, which is based on the similarity of
their conditional distributions. The idea of cluster hierarchy of the set items
based on the similarity of their conditional distributions was first introduced
in [198], where the sets Xand Y were associated with a set of documents and
with a suitable collection of words, respectively. Such approach is referred
to as distributional clustering. Obviously, this method requires introducing
the definition of the distance between distributions which would reflect the
desired measure of similarity. The Information Bottleneck principle deter-
mines the distortion measure between the points by means of the known
Kullback-Leibler divergence between the conditional distributions p(y|x )
and p(y|t):

DKL(p(y|x)||p(y|t)) =
∑
y

p(y|x) log
p(y|t)
p(y|x) .

The membership probabilities, p(t|x), are generally “soft”, i.e., each element
can be assigned to each cluster with some (normalized) probability.

Bolshoy and Volkovich used the agglomerative Information Bottleneck
algorithm proposed in [237]. Let p(x, y) be the mutual distribution of the
genomes and the average length of the genes of the COGs. In this case, the
merging criterion is based on

DJS(x, t) = (p(x) + p(t)) ∗ JS(p(y|x), p(y, t)),

where JS(p, q) is the famous Jensen-Shannon divergence defined as

JS(p(y|x), p(y, t)) = π1DKL(p(y|x)||p) + π2DKL(p(y|t)||p),

where
π1 =

p(y|x)
p(y|x) + p(y|t) , π2 =

p(y|t)
p(y|x) + p(y|t)

and
p = π1p(y|x) + π2p(y|t).

The Jensen-Shannon divergence is non-negative and equals zero if and only if
both its arguments are identical. The following two procedures construct a
partition with exactly K clusters.
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Input: The joint probability distribution, p(x, y) - the mutual distribution of
the genomes X and the average length of the genes of the COGs Y .
Output: Partition of the genomes into K clusters, for each K : 1 ≤ K ≤ |X|.
Initialization:
• X̄ = X;
• for each i, j = 1, ..., |X|, i < j calculate dij = DJSD(p(y|xi)p(y|xj)))
Procedure:
• for m = |X| − 1 to 1
- Find the indices i, j; for which dij is minimized;
- Merge {xi, xj} to x̄;
- Update X̄ = (X − {xi, xj}) ∪ x̄
- Update dij with respect to X̄
• End for

Input: The joint probability distribution, p(x, y), and the average length of the
genes of the COGs Y .
Output: Partition of the genomes into K clusters, for each K : 1 ≤ K ≤ |X|.
Initialization:
• X̄ = X;
• for each i, j = 1, ..., |X|, i < j calculate dij = DJSD(p(y|xi)p(y|xj)))
Procedure:
• for m = |X| − 1 to 1
- Find the indices i, j; for which dij is minimized;
- Merge {xi, xj} to x̄;
- Update X̄ = (X − {xi, xj}) ∪ x̄
- Update dij with respect to X̄
• End for

8.3 Clustering Obtained Using the IB Methods and Its
Biological Significance

In the previous section the IB methods were described. We applied these
clustering procedures using distances based on the following two properties:

• presence-absence of genomes in COGs;
• distribution of protein lengths in COGs.

The answers to two questions were sought: whether usage of IB improves
former clustering results obtained in the framework of presence-absence of
orthologous genes; and, whether the addition of important evolutionary
information hidden in protein length distribution makes clustering more con-
ventional, more traditional? Distributions of the genomes among the clusters
are shown in Fig.8.1. First of all, let us compare the results with traditional
taxonomy. Both applications result in a clear separation of the two ma-
jor prokaryotic domains, Bacteria and Archaea (Figs. 8.1, 8.2). A comparison
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Fig. 8.1 Clustering to 10 groups based on gene lengths

of the species in the list presented in Table 8.1,8.2 and Fig.8.1 provides the
following results:

• All 13 Archaeal genomes are placed together in the union of clusters 2
and 3.

• Crenarchaeota – all three genomes appear together in one cluster.
• Eukaria – all three genomes appear together in one cluster.
• Cyanobacteria – both genomes appear together in one cluster.

Generally, taxonomically closely related species, such as four mycoplasmas
(M. genitalium, M. pneumoniae, M. pulmonis, and U. urealiticum), two spiro-
chetes (B. burgdorferi and T. pallidum), and two close organisms H. pylori
and C. jejuni, are found in the common clusters.
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Fig. 8.2 10Bool column corresponds to the clustering based on presence/absence
of genomes in COGs. 10Clusters correspond to the distribution of protein lengths
in COGs clustering.

8.3.1 The Root of the Tree

The agglomerative information variant of the information bottleneck al-
gorithm, as it follows from the name, sequentially divides the dataset in
2, 3 . . . |X | groups, which means that the complete genome tree may be easily
reconstructed. The root of the hidden genome tree and results of the partition
to ten clusters are present in Fig. 8.1, and Figs. 8.2 and 8.3. In the whole
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Fig. 8.3 The root of the genome tree of 66 unicellular genomes.

tree, clusters 1 and 10 (mycoplasmatales, campylobacterales, and bacterial
hyperthermophiles) belong to one clade; clusters 5 and 6 form one big “mix”
group, and clusters 4 and 8 belong to one unit as well. The application of
the sequential clustering supports the accepted paradigm of the evolution of
life expressed in the ”Archaea tree” hypothesis (Chapter 2, compare Fig. 8.3
with Figs. 2.2 and 2.3).

8.3.2 What Does Clustering Based on the
Presence-Absence of Genes Give Us

The data presented here in Fig. 8.2 in column “10Bool” are not identical
to those reported by Wolf et al. (Fig. 3 in [287]). It appears that the parti-
tions obtained using the IB method, which employs the presence-absence of
genomes in COGs, better reflect phylogenetic relations than the results ob-
tained in the methods of [287]. This may result from the fact that such par-
titions allow the avoidance of certain obstacles described in [287]. Therefore,
the application of the IB method has already provided better results within
the framework of gene-content clustering methods. However, usage of addi-
tional information related to gene attributes improves the results even more.
In general, the differences between the columns “10Clusters” and “10Bool”
(Fig. 8.2), which relate to the two different input datasets, are in favor of the
method based on gene lengths.

Wolf et al. [287] consider the evolutionary affinity between Cyanobacte-
ria (Synechocystis) and Actinomycetes (Mycobacterium) and also between
two hyperthermophilic bacteria, Aquifex and Thermotoga, as plausible. Ac-
cording to our approach, which is not related to any of the five methods
used in [287], Cyanobacteria (Synechocystis and Nostoc) and Actinomycetes
(Corynebacterium and Mycobacterium) are located in the same cluster (clus-
ter 7), while Aquifex and Thermotoga, together with three campylobacterales
are all found in Cluster 1 (see Fig. 8.2). Thus, our results confirm those
of Wolf et al. The position of Archaea in the genome tree (Fig. 8.3) is
noteworthy. On the one hand, Fig. 8.3 shows separation of Bacteria and
Archaea, Eukarya into two groups (which is in accordance with certain
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phylogenetic hypotheses); on the other hand, Archaea is split in a less tra-
ditional manner: (Euryarchaeota: (Archaeoglobi, Halobacteria, Methanobac-
teria, Methanococci, and Methanomicrobia), (Euryarchaeota: (Thermoplas-
mata, Thermococci, Crenarchaeota). To confirm previously obtained genome
trees [287], Buchnera aphidicola does not appear together with taxonomically
related Escherichia coli and Salmonella typhimurium, which is located in the
“mix”-cluster 5.

8.3.3 Summarizing Conclusions

The ability to correctly cluster representatives of the major bacterial sub-
divisions and the absence of obviously wrong groupings confer credibility to
non-trivial clades present in Table 8.2. In particular, convincing correspon-
dence among earlier results of [222] and presented here groupings (for ex-
ample, the Spirochete + Chlamydia + Rickettsia clade, non-trivial bacterial
groupings Aquifex and Thermotoga together in one cluster, and Cyanobac-
teria + Mycobacterium + Deinococcus together in one cluster), seem to make
the genome tree produced by the information bottleneck method a real rep-
resentative of a species tree. It was also mentioned that this genome tree
corresponds reasonably to the Archaea tree hypothesis. The results of the
present study suggest that genome trees based on new clustering techniques
and different types of whole-genome data may contribute to the further de-
velopment of the field. Bolshoy and Volkovich in [250] and we here narrowed
usage of genomic data to lengths of homologous proteins; however, there are
several research groups that plan to expand the approach to data related
with sequence similarity.



Appendix A
Clustering Methods

A.1 Clustering

A.1.1 Introduction

The objective of cluster analysis , or unsupervised classification, is dividing
the data (objects, instances, items) into groups (clusters) in such a way that
the items belonging to the same group are more similar to one another than to
all the other items. Thus, clustering can be informally defined as the procedure
of systematizing objects into groups whose elements are similar in some way.
How can the quality of clustering be assessed? Obviously, the quality criterion
should be dependent on the aim of the process and must be constructed in
such a way that the result of the clustering would meet the requirements.
Several goals could be relevant here. For example, it may be the determination
of homogeneous group characteristics (data reduction) or the identification
of “natural clusters” and the evaluation of their properties (“natural” data
types), or the detection of abnormal items (outlier identification).

Generally speaking, most of the existing clustering methods can be cat-
egorized into three groups: partitioning, hierarchical, and density-based
approaches. The advantage of partitioning methods is their ability to incor-
porate the knowledge about the cluster size by using certain templates and
the elements’ dissimilarity in the objective function. Such an algorithm in-
evitably produces clustering for any dataset, even if the data, have no cluster
structure. This is due to the fact that, currently, there is no generally accepted
way of testing the “null hypothesis” - the supposition about the absence of
the cluster structure. The existing hierarchical clustering procedures yield a
nested sequence of partitions and, as a rule, do not require the specification
of the number of appropriate clusters. Instead, the partition is achieved by
cutting the tree (dendrogram) at some level. Inner statistical tests (see the
review in [118]) can hardly serve as a guide to determine the point for cut-
ting the dendrogram. On the other hand, partitioning methods may produce
a tighter cluster structure than hierarchical ones and are computationally
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faster for a larger number of variables in the case of a small number of clus-
ters. Partitioning methods do not usually allow to obtain good results with
non-globular clusters and the difference between various methods lies in the
strategies of making a compromise in order to find suboptimal solutions. In
fact, different methods could yield diverse results and, even with a specific
method, the solutions are usually sensitive to initial conditions.

Except for the data itself, two essential input parameters are usually preset
at the beginning of an iterative clustering procedure: the number of clusters
and the initial partition. Usually, partitioning algorithms make various indi-
rect assumptions about the dataset structure. For instance, the well known
k-means clustering algorithm suggests that the considered set consists of a
number of separate subsets of data points, spherically distributed around
their average. One does not know whether these assumptions are true for
the data, and the final partition produced by this algorithm largely depends
on the initial partition of the data. Finding the ”correct” number of clusters
in a dataset is an ill-posed task of cluster analysis [118], [94]. For example,
this quantity can depend on the scale in which the data is measured (see, for
example, [40]). Many approaches have been suggested to handle the problem.
So far, none of them has been accepted as superior to others because cluster
configurations are often very complex.

The following notations are used below:

• X is a finite subset of the Euclidian space Rn to be clustered. The elements
of X are represented as x =(x1, .., xn);

• N = |X| is the size of the set X;
• R+ = [0,+∞);
• < ·, · > is the inner product of two elements of Rn;
• tr(A) is the trace of matrix A;
• k is the number of clusters assessed;
• Ck is the set {1, ..., k} ;
• Ψk is the set of all possible permutations of Ck;
• χ (A) is the indicator function of event A;
• For a clustering algorithm Cl, we suppose that the source data Z and

the assumed number of clusters k are included in the input parameters.
The output of the algorithm is the partition Πk(Z) of the set Z, which is
represented by a labeling function α(Πk) : Z → Ck;

• PX is the distribution of a random variable X , while PX,i designates the
probability of X being equal to i;

• φ is the density function of the standard normal distribution;
• Φ is the cumulative probability function of the standard normal distribu-

tion.

A.1.2 Dissimilarity Measures

An essential parameter of a clustering procedure is the dissimilarity measure
between the data items. The success of the method depends on the measure
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choice, which is not always obvious, especially in multi-dimensional spaces.
An appropriate way of introducing such a measure is using a metric function
d : X × X → R1 which satisfies the following conditions:

1. d(x,y) ≥ 0 (non-negativity);
2. d(x,y) = 0 if and only if x = y;
3. d(x,y) = d(y,x) (symmetry);
4. d(x, z) ≤ d(x,y) + d(y, z) (triangle inequality)

for all x,y, z ∈ X. Generally, in cluster analysis a metric is considered only as
a framework for dissimilarities. In many applications not all of the above con-
ditions are required. For instance, condition 2 may be replaced by: d(x,y) = 0
only if x = y (a semi-defined metric). Some of the well-known examples of
distance functions are:

• the Euclidian distance

d(x,y) =

√√√√
n∑
i=1

(xi − yi)
2;

• the Manhattan distance

d(x,y) =
n∑
i=1

|xi − yi| ;

• the Max distance
d(x,y) = max

i
|xi − yi| ;

• the Minkowski distance

d(x,y) =

(
n∑
i=1

|xi − yi|p
) 1

p

,

where p ≥ 1. Note that for p = 2, p = 1, and p = ∞ the Euclidian, the
Manhattan and the Max distances are, respectively, obtained as partial
cases.

• The correlation dissimilarity

d(x,y) = (1 −R(x,y)) /2,

where R(x, y) is a correlation coefficient. In particular, R(x,y) can be the
Pearson, the Spearman rank, or the Kendall rank correlation coefficient.

If the “items” to be clustered can be interpreted as probability distributions,
probability metrics can be employed, for example

• the Kolmogorov - Smirnov (KS) metric
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d(x,y) = max
i

|Xi − Yi| ,

where Xi and Yi are two relative cumulative distributions, namely,

Xi =
i∑

j=1

xj , Yi =
i∑

j=1

yj ;

• relative entropy or the Kullback-Leibler (KL) divergence

d(x,y) = DKL(x||y) =
n∑
i=1

xi log2

(
xi
yi

)
. (A.1)

The usual convention is that 0 log2

(
0
y

)
= 0 for all real y, and x log2

(
x
0

)
=

∞ for all real non-zero x. The relative entropy is not a metric since it is
not symmetric and does not satisfy the triangle inequality.

• The Jensen-Shannon (JS) divergence with respect to the positive weights
{η1, η2}

d(x,y) = DJS(x||y) = η1DKL(x||z) + η2DKL(y||z), (A.2)

where z = η1x + η2y. The metric DJS is symmetric, non-negative and
upper-bounded. It equals zero if and only if x = y. However, it does not
satisfy the triangle inequality.

A.1.3 Hierarchical Clustering

Hierarchical clustering procedures result in nested clusters, which may range
from a single cluster coinciding with the set X to N clusters, each con-
sisting of a single object. These procedures can be divided into agglomera-
tive (bottom-up) or divisive (top-down) stratergies. Divisive (top-down) algo-
rithms start from the whole set and successively separate the items into finer
partitions. Agglomerative (bottom-up) methods, which are more often used,
produce series of fusions of the data elements into groups. The traditional
representation of the cluster hierarchy is a two-dimensional diagram tree (a
dendrogram), which demonstrates the fusions or divisions that occur at each
stage. This diagram has individual elements at one end and a single cluster,
containing all the elements, at the other.

Given a distance matrix N ∗N , the agglomerative hierarchical clustering
process defined by S.C. Johnson [122] can be descried as follows:

1. Let us consider each element to be a cluster. In this case, there exist N
clusters and the intra-cluster distances coinside with the distances between
the items.
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2. The closest (in terms of distances) pair of clusters is determined and joined
into a common cluster. As a result, the number of clusters decreases by
one.

3. The distances between the new cluster and each of the other clusters are
calculated and the new (N−1)∗ (N−1) distance matrix is obtained. Note
that the distances between clusters consisting of more than one item should
be defined separately, the definition being another important parameter
of the clustering process.

4. Steps 2 and 3 are repeated until all the items are merged into a single
cluster.

An example of a dendrogram is given in Fig. A.1.
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Fig. A.1 Dendrogram which illustrates the hierarchical clustering process for 5
items.

Below, a few ways of defining the distances between clusters consisting of
more than one item are described. All the definitions are based on the initial
N ∗ N distance matrix and are illustrated in Fig.A.2. The distance between
item i, i = 1, 2, 3 of cluster 1 and item j, j = 1, 2 of cluster 2 is denoted by dij .
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Fig. A.2 Different definitions of inter-cluster distances.

A.1.3.1 Single-Linkage Clustering

In this method, the distance between two clusters is defined as the mini-
mal distance between any two items which belong to different clusters. For
example (see Fig.A.2),

d(C1, C2) = d32 = min{dij ; i = 1, 2, 3, j = 1, 2}.
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A.1.3.2 Complete Linkage Clustering

In this method, the distance between two clusters is defined as the great-
est distance between any two items in different clusters. For example (see
Fig. A.2),

d(C1, C2) = d21 = max{dij ; i = 1, 2, 3, j = 1, 2}.

A.1.3.3 Average Linkage Clustering

In this case, the distance between two clusters is defined as the average dis-
tance between any two items which do not belong to the same cluster. For
example (see Fig.A.2),

d(C1, C2) = d =
1
6

3∑
i=1

2∑
j=1

dij .

A.1.3.4 Ward’s Linkage Clustering

The linkage function defining the distance between any two clusters is evalu-
ated as the increase in the “error sum of squares” (ESS), caused by merging
two clusters. In the Ward’s method, two clusters are merged in such a way
that the increase in ESS is minimized at every step. For a given set X , ESS
is expressed as

ESS(X) =
∑
x∈X

‖x− x‖2
,

where x is the average of the set elements. Formally, the Ward’s distance
between clusters C1 and C2 is calculated as

d(C1, C2) = ESS(C1 ∪ C2) − ESS(C1) − ESS(C2).

Additional linkages are the sum of all intra-cluster variances and the V -
linkage. They relate to the probability of the candidate clusters coming from
the same distribution. Since these approaches are less common, we do not
describe them here.

A.1.4 Partitional Clustering

In contrast to the hierarchical approach, partitional clustering methods in-
volve a single partition of the data and do not produce dendrogram-like
structures. Such methods are often based on solving a certain optimization
problem. In particular, let us consider the partition
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Πk = {πi, i = 1, ..., k}
of the set X, i.e.,

X =
k⋃
i=1

πi and πi ∩ πj = ∅ if i �= j.

The elements of the partition are referred to as clusters. For a real-valued
function q, whose domain is the collection of all subsets of X , the quality of
the partition is given by

Q (Π) =
k∑
j=1

q(πj). (A.3)

A clustering problem is a particular case of a global optimization problem of
determining the partition

Π(0) = {π(0)
j , j = 1, ..., k}

which optimizes Q(Π). The function q can be built by means of a distance-
like function d(x, y) in the following way. Let us consider a predefined set of
k centroids (medoids) C=(c1 , ..., ck) as representatives of the clusters. The
partition of X is constructed by determining

πj = {x ∈ X : d(cj ,x) ≤ d(ci,x), for i �= j}, j = 1, ..., k.

(Ties are broken arbitrarily). On the other hand, for a given partition, the
centroid set satisfies the condition

c(πj) = arg min
c

{
∑
x∈πj

d(c,x)}.

Thus,
q(πj) =

∑
x∈πj

d(c(πj),x),

which links the above-mentioned optimization problem to finding the appro-
priate set of centroids satisfying the condition

C = arg min
c∈C

{
k∑
j=1

∑
x∈πj

d(cj ,x)}. (A.4)

A.1.4.1 k-Means Clustering

Let us suppose that d(·, ·) is the squared standard Euclidean distance func-
tion. In this case, the optimization problem (A.4) can be represented in the
form:
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min
C

R(C) =
k∑
j=1

∑
x∈X

min
cj

‖x − cj‖2 (A.5)

An approximate solution of this optimization problem is obtained with the
k-means algorithm, which includes the following steps [74]:

Input:
X - the set to be clustered;
k - the number of clusters;
Π(0)
k - an initial (optional) partition.

Output: the partition Πk of the set X into k clusters.

1. Initialization:
Unless Π(0)

k is not preset, an initial partition is constructed (items are
usually randomly assigned to clusters).

2. Minimization: the mean value (centroid) of each cluster is calculated.
3. Classification: each element is assigned to the nearest centroid.
4. Steps 2 and 3 are repeated until the partition is stable, i.e., the centroids

do not change any longer.

Proving the k-means clustering algorithm convergence is based on estab-
lishing the following two statements:

• Reassigning a point to a different group does not increase the error func-
tion.

• Updating the mean value of a group does not increase the error function.

However, the k-means algorithm often yields a partition consisting of the
so-called non-optimal stable clusters . To overcome this difficulty, the incre-
mental k-means algorithm can be used (see, e.g.,[68], [61], [59], [60], [145]).
This algorithm gives better results in the case of relatively small clusters and
it is often avoids local minima. Below, we briefly outline the main idea of the
approach described in the papers cited above.

To illustrate the convergence of the k-means algorithm to non-optimal
stable clusters, we consider the set X = {0, 4, 7}. It is easy to see that an
initial partition Π(0)

2 represented by π1 = {0, 4}, π2 = {7} in Fig. A.3 is not
changed by the k-means procedure described above. However, the partition
defined as π1 = {0}, π2 = {4, 7} is superior to Π(0)

2 . Thus, no partition better
than Π

(0)
2 has been detected by the algorithm in the case of the particular

initial partition algorithm.
For a given partition Πk, an incremental version of the algorithm checks

all the partitions Π̂k(x) produced from Πk by removing any point x from
the cluster πi and assigning it to the cluster πj . The change of the objective
function (A.3) is evaluated as
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Fig. A.3 Initial Partition.

Δij (Πk,x) = Q(Πk) −Q(Π̂
(ij)

k (x)) = (A.6)
|πi|

|πi| − 1
‖c(|πi|) − x‖2 − |πj |

|πj | + 1
‖c(|πj |) − x‖2

.

To calculate the value of Δij (Πk,x) , one needs to know the cluster sizes
and the distances from each point to all the centroids. The latter distances
are considered at each iteration of the k-means algorithm. This fact simplifies
the application of a series of k-means iterations followed by an incremental
iteration. Thus, the incremental step is performed when the k-means process
has converged to a local optimum solution.

Incremental step algorithm:
Input:
Πk - the initial partition;
Dis− the set of the distances from each point of X to the centroids of

Πk.
Output:
Refined partition Π̃k

Algorithm:
for i = 1 to k
for j = i+ 1 to k

for x ∈ X do
Calculate Δij (Πk,x) according to (A.6)

If Δij (Πk,x) < 0, then
Move the point x from the cluster πi to the cluster πj
Substitute Π̂

(ij)

k for Πk

end for
end for
end for
The meta algorithm can be described as follows:

Input:
X - the set to be clustered;
k - the number of clusters;
Tol - the tolerance.
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Output:

Final refined partition ˜̃
Πk.

Algorithm:
Choose randomly Π̃k

Q (Πk) = inf
Until Q (Πk) −Q( Π̃k) > Tol

[Πk, Dis] = kmeans(X, k, Π̃k)
Π̃k = Incremental step(Πk, Dis)

end˜̃
Πk = Π̃k

In the algorithm description, kmeans(X, k, Π̃k) and Incremental
step(Πk, Dis) denote the applications of the k-means procedure and the in-
cremental step described earlier, respectively. The version the k-means pro-
cedure provides the partition of the set X into k clusters on the basis of the
initial partition Π̃k. The incremental step receives, as its input parameters,
the final partition Πk, obtained by the k-means procedure, which employed
the distance matrix Dis.

A.1.4.2 Expectation-Maximization Algorithm

The k-means approach can be considered as a simplification of the well-known
Expectation-Maximization (EM) approach. The most widespread clustering
version of the algorithm assumes the Gaussian Mixture Model (GMM) of
data fitting (see, for example [16], [39], [76]):

f(x) =
k∑
j=1

pjG(x|μj , Γj), (A.7)

where G(x|μ, Γ ) is the Gaussian density with the mean value of μ and the
covariance matrix Γ . Mixture models can be built in using the EM algo-
rithm [58], which is a general iterative method, yielding maximum likelihood
estimates when the data can be viewed as incomplete [72], [185], [186].

The model parameters are usually estimated on the basis of the data and
may either vary for different clusters or be the same for all the clusters. The
classification of several covariance models can be found in [76], [16]. The EM
algorithm maximizes the following log likelihood function of parameters:

l =
∑
x∈X

log

⎛
⎝

k∑
j=1

pjG (x|μj , Γj)
⎞
⎠ .

In the EM clustering, the N × k matrix Z is introduced in such a way
that, for each item xi ∈ X, i = 1, ..., N , the coordinates of the row vector
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zi = (z1i, ..., zki) are the probabilities that the item belongs to each of the k
clusters under consideration.

Input:
X - the set to be clustered;
k - the number of clusters;
Π(0)
k − the initial partition (optional).

Output:
The partition Πk of the set X into k clusters.
Algorithm:

1. Initialization. Initialize the mixture model parameters, thus creating the
current model. The vectors zi can be initialized by randomly assigning the
value 1 to one element of each vector.

2. M-STEP. Recalculate model posterior parameters obtained by the E-
STEP or by the initialization step, as follows:

• The sample cluster sizes are calculated:

N̂j =
N∑
i=1

zij .

• The sample cluster probabilities are calculated:

p̂j =
N̂j
N
.

• The sample-cluster mean values are calculated:

μ̂j =
∑N
i=1 zijxi

N̂j
.

• The sample covariance matrix Γ̂j is calculated for each cluster.

3. E-STEP. Calculate the posterior probabilities from the Bayesian rule:

zij =
p̂jG

(
xi|μ̂j , Γ̂j

)

∑k
j=1 p̂jG

(
xi|μ̂j , Γ̂j

) .

4. Convergence criteria testing. Terminate if the current and new models
are sufficiently close, else go to 2.

It should be noted that the classification EM or the CEM algorithm
[39] already convert the values of zij to a discrete classification before the
M-step. The standard k-means algorithm can be viewed as a version of the
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CEM algorithm for the case of the uniform spherical Gaussian model with
Γj = σ2I, j = 1, ..., k. Consequently, the clusters are spherically centered
at the means μi, i = 1, .., k and the values of pj, j = 1, ..., k are implied to
be equal.

A.1.4.3 k−Medoids or Partitioning around Medoids Algorithm

The Partitioning Around Medoids algorithm (PAM) [135] is a clustering pro-
cedure where the input represents the preset N ∗N dissimilarity matrix. As
an output, the algorithm generates a set of cluster centers or medoids, which,
themselves, are the elements of the set being clustered. This is a beneficial
property of PAM owing to the fact that the algorithm can be applied to
any specified distance metric. In addition, the medoids are robust represen-
tations of the centroids. This is particularly important in the case when many
elements cannot be precisely assigned to any cluster.

Taking into consideration (A.4), the corresponding objective function to
be minimized may be represented in the form:

min
C∈X

R(C) =
k∑
j=1

∑
x∈X

min
cj∈X

d(cj ,x). (A.8)

The PAM algorithm, which provides an approximate solution of the problem
(A.8), consists of two phases. The first phase, BUILD, constructs the initial
partition, while the second phase, SWAP, refines the partition.

Input:
Dis - the N ∗N dissimilarity matrix of the items to be clustered;
k- the number of clusters;
Π(0)
k − the initial partition (optional).

Output:
The partition Πk of the set X into k clusters.
Algorithm:

1. Initialization: If Π(0)
k is not given, then consecutively build the medoid

set C which minmizes (A.8) (BUILD phase).
2. Until no change, do (SWAP phase)
3. Assign each element to the nearest medoid
4. for each c ∈ C and for each x ∈ X\C

a. compute the total cost, S, of swapping medoid c with x
b. if S < 0, then swap c with x to create the new set of medoids

5. end loop until
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A.1.5 The Comparison of the Algorithms

A.1.5.1 k-Means Algorithm

• Relatively efficient: O(kN ) for each iteration;
• Non-robust with respect to noisy data and outliers;
• Cannot be used to separate non-convex clusters;
• Often converges to a local optimum;
• Requires predefining the number of clusters;
• Resulting clusters can be unbalanced or even empty (in the Forgy’s ver-

sion).

A.1.5.2 PAM Algorithm

• PAM is more robust than the k-means algorithm in the case of noisy data
having outliers;

• PAM is efficient for small datasets, but does not scale well for large sets;
• Relatively inefficient: O(k(N − k)2) for each iteration;
• Requires predefining the number of clusters.

A.2 Information Clustering

A.2.1 Mixture Clustering Model

In this section, we discuss the Mixture Clustering model from the
information-theory point of view [215], [240]. The main assumption of the
model is that there is certain probability for each item in X to belong to
each cluster. Here, the partiting solution is given by the set of probability
distributions for the items which are associated in the same cluster. This
association is termed ”fuzzy membership in clusters”. The situation where
each item belongs to one cluster is the hard clustering case. Determining
the optimal association distribution is the goal of the probabilistic clustering
approach. From the information theory point of view, clustering is the basic
strategy for the data lost compression. According to this approach, the data
is divided into groups, which are described, in the most efficient way, in terms
of the bit rate, employing a representative of each group. In this section, we
use the following notations:

For two discrete random variables, X and Y , taking the values {xi} , i =
1, 2, ... and {yj} , j = 1, 2, ..., respectively, we use the mutual information

I(X,Y ) =
∑
i,j

p(xi, yj) log2

p(xi, yj)
p(xi)p(yj)

=
∑
i,j

p(xi, yj) log2

p(yi|xi)
p(yj)

,

where
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• p(xi, yj) is the joint probability function of X and Y ;
• p(xi) and p(yj) are the marginal probability functions of X and Y ;
• p(yi|xi) is the conditional probability function of Y on X .

The clustering procedure is intended to compress the initial data by elim-
inating insignificant information. The relevant information is identified with
the help of a distortion function, which usually measures the similarity of the
data items. Let us suppose that, in each cluster, the distortion function is
dj(x,y), j = 1, ..., k. Lossy compression can be generated by assigning the
data to the clusters so that the mutual information

I(Π,X) =
∑
x,j

P (πj |x)P (x) log2

P (πj |x)
P (πj)

(A.9)

is minimized. The minimization is constrained by fixing the expected distor-
tion

d(Π,X) =
∑
x,j

P (πj |x)P (x)dj(cj ,x),

where cj is the representative(centroid) of the cluster πj . In this case, the
formal solution is obtained using the Boltzmann distribution

P (πj |x) =
P (πj)
Z(x, T )

exp
(
−dj(cj ,x)

T

)
,

where

Z(x, T ) =
∑
j

P (πj) exp
(
−dj(cj ,x)

T

)

is the normalization constant and T is the Lagrangian multiplier. In the
hard-clustering case, the partition Π is defined by a set of associations

v(x, πj ) =
{

1 if x ∈ πj
0 otherwise .

Thus, the underlying distribution of X is given by

μX =
k∑
j=1

pjμπj , (A.10)

where pj , j = 1, .., k are the cluster probabilities and μπj , j = 1, .., k are
the inner cluster distributions. The marginal distribution of cluster centroids
equals

P (C) =
e−

F
T

∑
Y

e−
F
T

,

where
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F = −T
∑
x

ln

⎛
⎝∑

j

exp
(
−dj(cj ,x)

T

)⎞
⎠

is the so-called ”free energy” of the partition. Evidently, the most probable
values of the centroids minimize F. Therefore, the optimal estimates of the
cluster parameters can be achieved by minimizing the free energy. An im-
portant example of this construction is the partition that corresponds to the
distortions

dj(x, cj) = (x − cj)Γ−1
j (x − cj),

where cj is the centroid of the cluster πj and Γj is its covariance matrix. In
this case, the expression for F can be rewritten as

F = −T
∑
x

ln

⎛
⎝∑

j

exp

(
− (x − cj)Γ−1

j (x − cj)
T

)⎞
⎠ .

From the equations
∂F

∂cj
= 0, j = 1, ..., k,

at the fix matrices Γj , the final result can be obtained:

cj =

∑
x

xP (πj |x)
∑
x
P (πj |x)

, j = 1, ..., k.

It should be pointed out that this result is similar to the maximum-
likelihood estimation of normal mixture parameters obtained by means of the
EM algorithm (see section A.1.4.2). The significant feature of the free energy
optimization approach is that no prior information on the data distribution
is required. The distributions are directly derived from the corresponding
Bolzman and Gibbs distributions and the appropriate optimization task.

A.2.2 The Information Bottleneck Method

The Information Bottleneck method is a clustering technique which assumes
that clusters have to reflect only the relevant information on the data. Ac-
cording to this approach, each element of X is identified with a distribution
over its features and the partitions which are created on the basis of the
empirical conditional distributions of the features

p(xi|x) =
xi∑n
i=1 xi

are considered. The relevance of the information is established by the data
features. Co-occurrence data may be organized according to this principle.
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Some examples can be the occurrences of verbs and direct objects in sentences
[250], words, documents [15], [106], [237], or tissues and gene expression pat-
terns [251]. In the case of text clustering, X can be a set of documents and
Y can be a set of words. Each element of X is represented by conditional
distributions of words

p(y|x) =
n(y|x)∑

yi∈Y
n(yi|x) ,

where n(y|x) is the total occurrence of the word y in the document x. To
finalize the model, a uniform initial distribution of the documents

p(x) =
1
|X |

is assumed. It would be natural to suppose that the documents which have
close term conditional distributions belong to the same cluster. This sup-
position can lead to a cluster hierarchy structure based on the similarity of
conditional word distributions. Generally speaking, any clustering method
that employs such probability interpretation has to use a ”probability met-
ric” between distributions. The examples of such metrics are given in section
A.1.2. The creation of a cluster hierarchy based on the similarity of condi-
tional distributions was first introduced in [198].

Tishby, Pereira, and Bialek [250] suggested a method which avoids the
arbitrary choice of a distortion or a distance measure. Given the joint distri-
bution p(X ;Y ), the method allows to obtain a compact representation of X ,
which keeps as much information as possible on the applicable variable Y . It
is known that the mutual information between the random variables X and
Y (see (A.9)) represents the natural statistical measure of the information
that variable X holds about variable Y . The compressed representation T of
X (which is, in our case, the clustering of X) is defined by p(T |X). Hence,
the quality of the clusters is calculated on the basis of the information which
is covered by Y , namely, I(T ;Y )/I(X ;Y ).

The Information Bottleneck method allows to determine the distortion
measure between the points by means of the well-known Kullback-Leibler
divergence DKL(p(y|x)||p(y|t)) between the conditional distributions p(y|x)
and p(y|t). Generally, the membership probabilities, p(t|x), are “soft”, i.e.,
each element can be assigned to each cluster with some (normalized) proba-
bility. In the hard-clustering case, the agglomerative information bottleneck
algorithm, proposed in [237], [236], uses the merging criterion based on the
distortion:

DJS(x, t) = (p(x) + p(t)) ∗DJS(p(y|x), p(y, t)),

where DJS(p, q) is the Jensen-Shannon divergence with identical weights.
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A.3 Cluster Validation

One of the input parameters required by the iterative clustering algorithms
is the assumed number of clusters in the considered dataset. The estimation
of this number represents an ill-posed problem of crucial relevance in cluster
analysis [118], [94]. For instance, the ’correct’ number of clusters in a dataset
can depend on the scale on which the data is measured [40].

Solution methods for this problem can be roughly divided into two groups:

• Methods based on the geometrical properties of clusters, such as within-
and between-cluster dispersion.

• Methods based on the stability concept.

The methods that can be attributed to the first group were described
by Calinski-Harabasz [35], Hartigan [100], Krzanowski-Lai [158], and Sugar-
James [241], [93], [188], [94]; the Gap statistical method was proposed by
Tibshirani, Walter and Hastie [248].

The stability of clusters is usually estimated from their variability under
repeated application of a clustering algorithm to (random) samples from the
same data source. Low variability in partitions is interpreted as high validity
of the obtained result [44]. Thus, the number of clusters that corresponds to
the maximal cluster stability can serve as an estimate for the “true” number
of clusters.

Levine and Domany [168], Ben-Hur, Elisseeff, and Guyon [18], and Ben-
Hur and Guyon [19] measured stability as the relative number of cases when
a pair of elements occurs in the same cluster under repeated runs of the
clustering algorithm. Bel Mufti, Bertrand, and Moubarki [190] determined
the stability function based on the Loevinger’s measure of isolation. The
prediction-based resampling method (Clest) of Dudoit and Fridlyand [69],
uses, actually, the external partition correlation index as a stability measure.
Roth, Lange, Braun, and Buhmann [216] and Lange, Roth, M. Braun, and
Buhmann [164] theoretically justify the solution of cluster validation prob-
lem by means of the stability concept. In the suggested model, the pairs of
clustered samples are compared and the stability is defined as the relative
rate of an element occurrences in the same cluster. Jain and Moreau [119]
chose the dispersions of empirical distributions as the stability measure. Tib-
shirani and Walther [249] considered the cluster validation problem from the
prediction-strength point of view.

A.3.1 Geometrical Criteria

Given the partition Πk, k ≥ 2, the total dispersion matrix (the total scatter
matrix) is given by

Tk =
k∑
j=1

∑
z∈πj

(z − μ)(z − μ)t, (A.11)
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where μ is the arithmetic mean of the set X . Matrices Bk and Wk of between-
and within-k-cluster square sums are defined as

Bk =
k∑
j=1

|πj | (μj − μ)(μj − μ)t, Wk =
k∑
j=1

∑
z∈πj

(z − μj)(z − μj)
t, (A.12)

where μj is the arithmetic mean of πj , j = 1, ..., k. Note that Tk = Wk +Bk
[179].

The following inner indices are frequently used to estimate the number of
clusters in a dataset.

1. The Calinski and Harabasz index [35] is defined as

CHk =
tr(Bk)/(k − 1)
tr (Wk) /(N − k)

,

where N is the size of the dataset under consideration. The estimated
number of clusters is given by k, which corresponds to the maximum of
CHk.

2. The Krzanowski and Lai index [158] is defined as

diffk = (k − 1)2/ntr(Wk−1) − k2/ntr(Wk),

where n is the dimension of the dataset and

KLk = |diffk|/|diffk+1|.

The estimated number of clusters corresponds to the maximal value of the
index KLk.

3. The Hartigan index [100] is defined as

hk =
(

tr(Wk)
tr(Wk+1)

− 1
)

(N − k − 1).

The estimated number of clusters is the smallest k ≥ 1 such that hk ≤ 10,
where N , again, is the size of the dataset under study.

4. Sugar and James [241] proposed an informational theoretic approach for
finding the number of clusters in a dataset. According to their method,
the differences of transformed distortions are calculated. Namely,

Jk =
(
tr(Wk)−t − tr(Wk−1)−t

)
,

where t is the transformation power. The estimated number of clusters
corresponds to the maximal value of the index Jk.

5. In the case of the Gap index [248], the values of tr (Wk) are calculated
for each k ≥ 1. Reference datasets are generated under the null distri-
bution assumption (in [248], the reference dataset number, B=10). Each
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of the datasets is subjected to the clustering procedure and the values of
tr
(
W 1
k

)
, ..., tr

(
WB
k

)
are evaluated. The estimated gap statistics are:

gapk =
1
B

∑
b

log
(
tr
(
W b
k

))− log (tr (Wk)) .

Let sdk be the standard deviation of log
(
tr
(
W b
k

))
, 1 ≤ b ≤ B, and

ŝdk = sdk

√
1 +

1
B
.

The estimated number of clusters is the smallest k ≥ 1 such that

gapk ≥ gapk∗ − ŝdk∗ ,

where k∗ = argmaxk≥1(gapk). Two approaches are considered for con-
structing the region of support for the distribution (for details, see [248]).

A.3.2 Stability-Based Criteria

The determination of the possible number of clusters by means of resampling
procedures has been considered by many authors (see, e.g., several recent
contributions [168], [69], [81], and [216].) These approaches are based on
the cluster stability concept . We describe here the two most widespread
algorithms of this kind.

A.3.2.1 External Indexes

Below, we consider several external criteria used in cluster stability ap-
proaches. The calculation of these scores is based on the so-called cross-
tabulation or contingency tables. The membership of elements in two
partitions Πr and Πc of the same dataset is compared. Let Nij denote the
number of items which are the members of cluster i of Πr and of cluster
j of Πc (i = 1, ..., r, j = 1, ..., c). Note that the relationship between the
two partitions can be considered in the framework of the measures of nomi-
nal data associations. The most well-known of such measures is the Cramer
correlation coefficient, which is defined as follows. Let us introduce

N
(r)
i =

c∑
j=1

Nij , i = 1, ..., r, N (c)
j =

r∑
i=1

Nij , j = 1, ..., c. (A.13)

Obviously,

N =
r∑
i=1

N
(r)
i =

c∑
j=1

N
(c)
j ,
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and the chi-square statistic equals

χ2 =
r∑
i=1

c∑
j=1

(Nij − eij)2

eij
, eij =

N
(r)
i ∗N (c)

j

N
. (A.14)

The Cramer coefficient is

V =

√
χ2

N ∗ min(r − 1, c− 1)
. (A.15)

Several known external indexes employ the statistic

Z =
c∑
j=1

r∑
i=1

N 2
ij . (A.16)

Rand [210] introduced the index (R)

R = 1 +

⎛
⎜⎜⎝
Z − 0.5 ∗

(∑c
j=1

(
N

(c)
j

)2

+
∑r
i=1

(
N

(r)
i

)2
)

(
N
2

)

⎞
⎟⎟⎠ ;

Jain and Dubes [118] considered the index

JD =
(Z −N)(∑c

j=1

(
N

(c)
j

)2

+
∑r
i=1

(
N

(r)
i

)2

− Z −N

) ,

while Fowlkes and Mallows [75] proposed the following expression (FM):

FM =
(Z −N)

2

√
∑c
j=1

(
N

(c)
j

2

)∑r
i=1

(
N

(r)
i

2

) .

It is easy to see that two indexes, R and FM , are linear functions of Z;
consequently, either index is a linear function of the other one.

An external index is often standardized in such a way that its expected
value is 0 if the partitions are random and 1 when they match perfectly. The
general formula for the standartization of an index is:

Ind
′
=

(Ind− E(ind))
(Indmax −E(ind))

,

where Indmax denotes the maximal value of the index Ind.
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The most commonly used null model assumes that the contingency table
is created from the generalized hyper-geometric distribution and that the two
partitions are mutually independent. In this case, the adjusted index has to
be zero. The index values close to zero mean that nothing can be predicted
from each partition about the other.

The cluster stability problem has also been considered [18], [19] from the
point of view of the areas of concentration of an external index distribution
which is built on samples drawn from the dataset.

Next, we will consider the Clest method [69], which also uses an external
index as a stability magnitude.

A.3.2.2 Clest Algorithm

In this method, the true number of clusters is assessed through sequential
splitting the source dataset X into two non-overlapping subsets of the same
size. These subsets, Lb and T b, are referred to as a learning set and a test
set of the current iteration b, respectively. For each tested number of clus-
ters k, a partition of the learning set is provided. This partition is used to
predict the clustering of the test set, which is simultaneously divided into
clusters by the direct application of the clustering procedure. The two parti-
tions of the test set are evaluated using one of the external indices described
above. For each k, the indices are compared to their expected values, calcu-
lated within a suitable null distribution in the absence of cluster structure.
The true number of clusters corresponds to the largest significant “evidence”
against the null hypothesis. A version of this method was proposed earlier by
Breckenridge [30].

The algorithm can be described in the following way:
For each number of clusters k, 2 ≤ k ≤ k∗, perform steps 1-4.

1. Repeat the following B times:

a. Randomly split the original learning set into two non-overlapping sets,
a learning set Lb and a test set T b.

b. Apply the clustering procedure to the learning set Lb to obtain the
partition π (Lb).

c. Construct a classifier C(Lb), using π (Lb).
d. Apply the classifier C(Lb) to the test set T b.
e. Apply the clustering procedure to the test set T b to obtain the partition
π (T b).

f. Calculate an external index sk,b to compare the two sets of labels for T b.

2. Let
tk = median(sk,1, ..., sk,B)

be the observed median value of the external index for the k-cluster par-
tition of the data.
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3. Produce B0 datasets under an appropriate null hypothesis. For each
dataset, repeat the procedure described in steps 1 and 2 to obtain B0

statistics tk,1, ..., tk,Bo.
4. Consider the average of the B0 statistics:

t
(0)
k =

1
B0

B0∑
b=1

tk

and denote by pk the proportion of tk,b, 1 ≤ b ≤ B0 which are at least as large
as the observed statistic tk, i.e., the p-value for tk. Let dk = tk−t(0)k denote the
difference between the observed similarity statistic and its estimated expected
value under the null hypothesis. Introduce the set K as

K = {2 ≤ k ≤ k∗ : pk ≤ pmax, dk ≥ dmin},

where pmax and dmin are predefined parameters. If this set is empty, no clus-
ter structure is detected. Otherwise, the number of clusters, k, corresponds
to the largest significant difference statistic dk:

k = arg max
k∈K

dk.

The authors used the PAM algorithm, described in section A.1.4.3, the naive
Bayes classificator, the FM index (see section A.3.2.1), B = B0 = 20, and
pmax = dmin = 0.05.

A.3.2.3 Stability-Based Validation of Clustering Solutions

In what follows, we present the algorithm for the internal index calculation
described in [216].

1. Split the dataset of size 2t into two sets of equal size, Xt
1 and Xt

2.
2. Apply the algorithm to the first dataset. The result is the mapping α1 of

each item in Xt
1 onto one of the k clusters.

3. Apply the algorithm to the second dataset Xt
2. The result is the mapping

α2 of each item in Xt
2 onto one of the k clusters. Use α2 to predict the

cluster membership of all the items contained in the first set.
4. Now, the set Xt

1 has two different labelings. Find the correct permuta-
tion of the labels using the well-known Hungarian method for minimum
weighted perfect bipartite matching [159]. The costs for identifying labels
i and j are the number of misclassifications with respect to the labels α1,
which are assumed to be correct.

5. Normalize with respect to random stability.
6. Reiterate the whole procedure from step 1 to step 5, average over the

assignment costs, and calculate the expected (in-)stability value.
7. Reiterate the whole procedure for each k to be tested.
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The application of the Hungarian method is required since the cluster
labels can be permuted. The match between the labels can be generated by
solving the problem

τk(α1, α2) = minψ
1
t

t∑
j=1

χ{α1(xj) �= ψ(α2(xj))}, (A.17)

where ψ ∈ Ψk, Ψk is the set of all possible permutations of the set Ck (see
above). The Hungarian method has a computational complexity of O(k3).
Such a technique was applied in [216], [164] and also in the cluster-containing
area [252].

Normalization with respect to the random stability means:

Sk =
mean(τk(α1, α2))
mean(τk(ρ1, ρ2))

, (A.18)

where ρ1, ρ2 are random predictors which assign labels in a uniformly random
way. The estimated number of clusters is given by k, which enables us to
obtain the maximum of Sk.

The authors point out that splitting a dataset into two disjoint subsets is
recommended because the size of individual sets should be large. However,
this approach can be, formally applied for any sample size.

A.3.3 Probability Metric Approach

It has been noted earlier that the stability-based methods generate a variety
of partitions for the same number of clusters. In addition, the majority of the
known iterative clustering algorithms involve random initializations of the
suitable optimization processes. Consequently, the partitions obtained using
these algorithms can vary. From the statistical standpoint, these partitions
can be considered as estimates of the sought-for “true partition”. Thus, the
partitions are viewed (see ......) as instances of a unique random variable
such that the steadiest one of them is associated with the true number of
clusters. This stability is measured by means of probability distances within
the observed realization.

A.3.3.1 Probability Metric

In this section, we describe several facts from the probability metric the-
ory, which can be found in [209], [294]. In general, probability metrics are
introduced on the space of real-valued random variables, Λ, defined on the
probability space (Ω,B, P ). The functional dis : Λ → R+ is called a proba-
bility metric if it has the following additional properties:
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1. Identity: dis(X,Y ) = 0 ⇐⇒ P (X = Y ) = 1;
(Semi-Identity: P (X = Y ) = 1 ⇒ dis(X,Y ) = 0);

2. Symmetry: dis(X,Y ) = dis(Y,X);
3. Triangular inequality: dis(X,Z) � dis(X,Y ) + dis(Y, Z) for all random

variables X,Y, and Z.

If a probability metric identifies a distribution (i.e., dis(X,Y ) = 0 ⇐⇒
PX = PY )), the metric is called simple, otherwise the metric is called com-
pound. Simple and compound metrics differ in that simple metrics, unlike
compound ones, equal zero for two independent identically distributed ran-
dom variables. Moreover, if dis is a compound metric, dis

(
X1, X

′
1

)
= 0, and

X1, X
′
1 are independent realizations of X , then X is almost certain to be a

constan. On the other hand, a compound distance can be used as a measure
of uncertainty. In particular, dis

(
X1, X

′
1

)
= d(X) is called a concentration

measure index, derived from the compound distance dis [209]. The stability
of a random variable can be estimated by the average value of this index.

Obviously, the requirements for a probability metric are similar to those
for dissimilarity measures (see section (A.1.2)). Consequently, the distances
which can be considered here may not satisfy the triangular inequality. More-
over, this feature will not be required in what follows.

Examples of simple probability metrics which, indeed, measure the dis-
tances between appropriate marginal distributions can be provided by the
distances discussed in section (A.1.2). Many distances applicable to two-
sample tests are of simple metrics. For instance, the Kolmogorov-Smirnov
test is based on the max-distance between the probability functions in the
one-dimensional case. The Friedman-Rafsky test [80], the nearest-neighbour
test [104], the energy test [290], and the R-distance, proposed recently by
Klebanov [143], can be mentioned in the context of the multivariate case.

A famous example of a compound metric is given by Lp-metrics which
are similar to the Minkowski distance. For every p � 0, the Lp-metric is
defined by

disp(X,Y ) = E(|X − Y |p)min(1,1/p),

where

• dis∞(X,Y ) = inf{c > 0 : P (|X − Y | > c) = 0};
• dis0(X,Y ) = E(χ(X �= Y )) is the indicator metric.

A.3.3.2 Algorithm

Let us consider a cluster stability criterion based on probability metrics
for the case Ω = Ck. Realizations of an appropriate random variable are
simulated by rerunning a clustering algorithm on the same collection of
items, X . The correspondence between two different labels is provided by the
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solution of the optimization problem (A.17). The clustering algorithm can be
presented in the following way:

1. Choose the parameters:

• X - the set to be clustered;
• Ns - the number of samples;
• M - the sample size;
• k∗ - the maximal number of tested clusters;
• CL = {Cli, i = 1, ..., 2Ns} - the set of clustering algorithms.

2. for k = 2 to k∗

3. for n = 1 to Ns
4. S(n) = sample(X,M)
5. Π

(2n−1)
k (S(n)) = Cl2n−1(S(n) , k), Π(2n)

k (S(n)) = Cl2n(S(n) , k)
6. for

(
z ∈ S(n)

)

7. Xn(x) = α(Π(2n−1)
k ,x), Yn(x) = α(Π(2n)

k ,x)
8. end for
9. Permute Yn = ψ∗(Yn) according to (A.17) so that labels of Yn match

those of Xn
10. ̂DIS

(n)

k = 1
M

∑
x∈S(n)

dis(Xn(x), Yn(x))

11. end for
12. Normalize {̂DIS

(n)

k } with respect to the random stability

13. m(k) = mean( ̂

DIS
(n)
k )

14. end for
15. The estimate for the “true” number of clusters is the k which minimizes

m(k).

A.4 Feature Selection

In the process of data partitioning, we are interested in the recovery of any
cluster structure that arises in subspaces, especially, for the sake of facilitating
visualization, in two- or three- dimensional subspaces. Clustering techniques
usually employ information from all the features of elements which define
their similarities as well as the dimensionality of the data space. However,
using the full-dimentional space does not often prove to be the optimal clus-
tering method, mainly in the case when the cluster structure is enclosed in a
subspace. In this case, the ”residual” data may be very noisy and thus com-
plicate the analysis of the cluster structure. Moreover, many of the features
can be interdependent and, therefore, a new set of independent variables has
to be found. Thus in many cases the redundant information must be excluded
in order to obtain a more suitable representation of the data.

Other reasons for considering low-dimensional data projections are the so-
called curse of dimensionality and the empty space phenomena. Generally
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speaking, the curse of dimensionality consists in the exponential growth of
the full dimentionality with the number of the sample-size variables [17].
This growth is especially manifested in the case of estimating a function of
several variables to the given degree of accuracy. The related empty space
phenomenon usually shows as inherent sparsity of high-dimensional spaces
[229]. Apparently, the above two difficulties may result in the appearence of
an ”empty data projection” or in the presence of different item features in
orthogonal subspaces.

A.4.1 Principal Component Analysis

Principal Component Analysis (PCA) is a standard common approach to re-
ducing the dimensionality of a dataset. The aim of PCA is to determine linear
combinations of the element features that are operational in the description
of their variation. Let us suppose that the data is represented by the n×N
matrix X with a zero empirical mean value. Without loss of generality, the
empirical mean value can be eliminated from the data set. Construct the
n× n covariance matrix characterizing the data scatter in the form:

Γ =
1
N

(
X ∗ XT

)
.

Next, the eigenvalues λ1 > λ2 > ... > λn and the corresponding normed
eigenvectors u1,u2, ...,un of Γ are computed. he only eigenvectors that are
left are consequent to those which correspond to the m largest eigenvalues
and represent each vector by:

x =
m∑
i=1

biui. (A.19)

The value of m is usually chosen by taking into consideration only the eigen-
values greater than 1 or by using the criterion

∑m
i=1 λi∑n
i=1 λi

> Threshold(e.g., 0.8or0.9).

The PCA procedure can be formally described in terms of the spectral de-
composition of the covariance matrix :

Σ = UΛUT ,

where U is an orthogonal matrix having the eigenvectors u1,u2, ...,un as its
columns, and Λ is a diagonal matrix with the diagonal items λ1, λ2, ..., λn.
The transform (A.19), in a general case, has the form:

b =UT (x−x) .
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Fig. A.4 Normal scattered data together with the first two principal components.
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Fig. A.5 Scatter plot of bivariate data.

A few eigenvectors with the greatest eigenvalues are referred to as principal
components , the first greatest eigenvalue corresponding to the first princi-
pal component, the second greatest eigenvalue corresponding to the second
principal component , and so on.
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Fig. A.6 Histogram of the first principal component.
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Fig. A.7 Histogram of the second principal component.

An example of normal scattered data, together with the first and the sec-
ond principal components, is presented in Fig. A.4.

In many situations, the principal components account for a significant
part of the information which is contained in the source set. However, some
relevant information may be dropped out in this case. For instance, the
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information contained in a small set of components found by PCA can be
useless for clustering tasks. The bivariate data presented in Fig. A.5 provide
a famous example of such situation.

Histograms of the the first and the second principal components are shown
in Figs.A.6 and A.7, respectively.

From the data presented in Fig. A.5, it can be seen that the first principal
component coincides with the direction of the greatest data spread, while the
second component is orthogonal to the first one (which is an inherent feature
of proncipal components). The histogram of the first component (Fig. A.6)
appears to be uni-modal and, therefore, provides no information about the
cluster structure. The bi-modal histogram of the second component (Fig. A.7)
reveals the existence of two clusters, which is really the case. Thus, the above
example shows that, restricting the analysis to the first component, we lose
information about the real cluster structure.

A.4.2 Projection Pursuit Techniques

Projection pursuit techniques are intended to discover those data projections
that can best reveal the data structure. Such projections can be used for the
detection of the most demonstrative representations of the data clustering
structure. Projection pursuit is built by optimizing the predefined function
which is called a projection pursuit index. It apears that the idea of a projec-
tion pursuit index was first introduced in [157] and [79]. The projection on
a suitable low-dimensional subspace often makes it possible to overcome the
curse-of-dimensionality problem. PCA can be viewed as a particular projec-
tion pursuit route where the index is the total data variance. An arbitrarily
chosen projection of a high-dimensional dataset on a low-dimensional space
can bias the sample so that it becomes comparable to a sample drawn from a
normal distribution. It was demonstrated [62] that, in the high-dimensional
case, distributions of linear projections are approximately normal under cer-
tain weak assumptions. According to the well-known Cramer-Wold principle,
a multidimensional distribution having only normal one-dimensional projec-
tions is also normal. However, in a general case, a one-dimensional projection
can prove to be an informative characteristic of the dataset. For example, a
projection density distribution may exhibit peaks, each one corresponding to
a cluster. Therefore, in unsupervised classification tasks, indices based on the
so-called ”departure from normality” are preferred. Many indexes have been
introduced on the basis of various approaches. Below, we present only several
most widespread methods. A review of dimensionality reduction techniques
can be found, for instance, in [37].

A.4.3 L2 Distance-Based Indexes

Many pursuit indexes are based on the L2 distance between the projec-
tion density distribution and the appropriate normal distribution. The most
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well-known is the Friedman’s Pursuit Index [78]. Let X be centered and
sphered data. For a given direction a ∈ Rn, consider Y =< a,X > and
introduce a new random variable

R = 2Φ(Y ) − 1,

where Φ is the cumulative standard normal function. This variable is mapped
onto the interval [−1, 1]. If Y is the standard normal distribution, R is uni-
formly distributed on [−1, 1] and vice versa. The density of R is given by:

pR(x) =
1
2pY (Φ−1(x+1

2 ))
ϕ(Φ−1(x+1

2 ))
, (A.20)

where pY is the density of Y ; ϕ is the standard normal density. The direction
corresponding to the density pR(x) which differs most from 1

2 in the L2 norm
is derived by maximizing the functional

l(a) =

1∫

−1

(
pr(x) − 1

2

)2

dx =

1∫

−1

p2
r(x)dx − 1

2
.

The function pR(x) can be approximated by a series of the Legendre polyno-
mials Lk(x):

pr(x) =
∞∑
i=0

ciLi(x),

where

ci =
2i+ 1

2

1∫

−1

Li(x)pr(x)dx.

Substituting the approximations into the above expression for the index, we
obtain

l(a) =
∞∑
i=0

2i+ 1
2

E(Li(x))2 − 1
2
,

where E designates the expectation. This value can be estimated using the
empirical expectation

Ê(Li(x)) =
1
N

N∑
t=1

Li(2Φ(< a,xt >) − 1).

Since N is the size of the dataset under consideration, the required calculation
can be easily performed using the recursive relationships:
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L0(x) = 1, L1(x) = x,

Li(x) =
2i− 1
i

xLi−1(x) − i− 1
i

Li−2(x).

The series expansion in the expression for l(a) should be truncated to
avoid overfilling since the high-order estimated coefficients are unstable even
for large samples. Typically, no more than eight terms are usually considered
in the expansion. On the other hand, if the sample size is sufficiently large,
we can start from a small number of terms and subsequently improve the
local maxima by increasing the number of terms.

It was shown [53] that the Friedman index can be rewritten in the form:

l(a) =

∞∫

−∞

(f(x) − ϕ(x))2

2φ(x)
dx,

where f(x) is the normalized projection density. Hence, this index is a spe-
cial case of a general set of indexes based on the orthogonal polynomials
considered in [53]. For instance, the Hall index [99] is given by

lH(a) =

∞∫

−∞
(f(x) − ϕ(x))2 dx,

while the natural Hermit index has the form

lC(a) =

∞∫

−∞
(f(x) − ϕ(x))2 φ(x)dx.

The corresponding calculations can be performed using the orthogonal ex-
pansion of f(x) on the basis of Hermit polynomials.

A.4.4 Entropy-Based Indexes

Another technique to measure the deviation from normality employs differ-
ential entropy [112], [123]. The differential entropy H of a random vector
with the density f is defined as

H(f) = −
∫
f(x) log(f(x))dx.

The negentropy, which can be viewed as the natural information-theoretic
one-unit contrast function, is defined as

J(f) = H(pg) −H(f),
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where pg is the Gaussian density with the mean value and the covariance
equal to those of f . Several entropy properties related to the pursuit index
concept were discussed in [123]. In particular, Gibb’s second theorem states
that the multivariate Gaussian density maximizes the entropy with respect
to f over all distributions with the same mean value and the same covariance.
For any non-normal distribution, the consequent entropy is precisely smaller.
So, negentropy is positive for non-normal distributions and equals zero if the
distribution is Gaussian. Actually, the calculation of entropy is a complicated
task.

Estimates of entropy tend to use polynomial expansions of the density
or the Gram-Charlier-Edgworth approximations. For instance, negentropy
for standardized random values can be evaluated by means of higher-order
cumulants

J � − 1
12

(k2
3 +

1
4
k2
4)

where ki, i = 3, 4 are the i-th order cumulants. The approximations of ne-
gentropy suggested in [116] can be represented, in the simplest case, as

J � c (E(V (x)) − E(V (g))),

where V is any non-quadratic function, c is an arbitrary constant, and g
is a standardized Gaussian variable. For V (x) = x4, the kurtosis modulus
is obtained. The asymptotic variance and robustness of these estimations
can be improved by a suitable choice of V . The following options for V are
recommended:

V1 = log(cosh(a1x)), V2 = exp(−a2x
2

2
).

It was found empirically that the values 1 ≤ a1 ≤ 2, and a2 = 1 provide
especially good approximations.

A.4.5 BCM Functions

It was mentioned in the previous section that computationally attractive
projection indices based on polynomial moments cannot be applied directly
since they are extremely sensitive to the deviation from normality in the
tails of the distributions. Friedman tried to overcome this problem by using
a nonlinear projection of the data onto the interval [−1, 1] (see above). On
the other hand, the Friedman index is not sensitive to multi-modality in the
projected distribution in the case of significant differences between the pick
sizes. This insensitivity arises from the L2 norm approximation.

An approach for exploring the projection multi-modality was considered
in the framework of the synaptic modification neuron theory of Bienenstock,
Cooper, and Munro (BCM). It yields synaptic modification equations that
maximize the projection index l(a) as a function of the direction a. In this



A.4 Feature Selection 193

context, l(a), which measures the deviation from the Gaussian distribution,
is called a cost function. Synaptic modification equations are evaluated using
gradient ascent with respect to the weights (see, e.g., [20]).

Intrator and Cooper [117] introduced the following cost function to assess
the deviation from the Gaussian distribution in the multi-modality:

l(a) =
1
3
E(< a,X >3) − 1

4
E2(< a,X >2).

It was shown [20] that the cost function

l(a) = E

[
< a,X >2 (1 − 1

2
< a,X >2)

]

can be regarded as the cost function for PCA. Other cost functions based on
skewness and kurtosis of the projection can also be discussed.



Appendix B
Sequence Complexity

B.1 Motivation: Finding Zones of Low Complexity

One of the fundamental characteristics of any text is its complexity. Since
the early days of bioinformatics, different measures of sequence complexity
applicable to genetic texts have been proposed ([235, 258, 150, 151, 221, 222,
34, 261, 220]). Sequence-complexity-based methods may be used both for
overall characterization of long genomic sequences and for their comparison.
The repetitiveness of sequences in a genome may be visualized and studied
by constructing the map of sequence complexity along the genome ([261]). In
this way, it is possible to detect all zones of lower and higher complexity in
long genomic sequences. In ([261]), the authors presented plots of complexity
distribution along the H. influenzae genome using window sizes of 40, 100,
and 2000 bases. A small-size sliding window was used for the identification
of relatively short repeats, while a big window may cover long dispersed
and degenerate repeats and reveal their role in decreasing the complexity.
A sequence complexity map of a whole genome gives an overall view of its
organization.

B.2 Compositional Complexity

The term compositional complexity was introduced by Konopka ([150, 146,
147, 149]). The numerical value of compositional complexity of a sequence
depends solely on the size of the alphabet and on the frequencies of the
occurrences of certain elements (monomers, dimmers, or N-grams over the
chosen alphabet) in the sequence ([148]). One of the applications of com-
positional complexity to sequence analysis is finding functionally relevant
properties through studying large collections of functionally equivalent se-
quence fragments ([149]). The significance of the results should be assessed
relative to a background level expected only on the basis of chance. Usually,
the results of a run on real data are compared to numerous runs on ran-
dom data. In many applications, it is important to construct random data so
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that the local dinucleotide bias is preserved. Using the methods of shuffling
biological sequences ([126]), one can obtain numerous realizations of random-
ized sets with the dinucleotide composition identical to that of the set under
investigation. Therefore, to assess the difference between the compositional
complexities of the given set and the one related to random data, shuffled
sequences should be compared. Since multiple-fold shuffling may prove to
be a computationally time-consuming task, an entropy-based algorithm for
comparing compositional complexities of the given set and of random data
was proposed (Bolshoy:2008). Shannon uncertainty (entropy) is a function of
-log2 q , where, in our case, q is the frequency of a certain oligonucleotide of
length six (6-tuple, hexamer) in a given text. Sequence complexity originated
from the Shannon entropy and has at least three underlying elements: 1. The
number of symbols in the alphabet. (Four potential nucleotide alphabetic
symbols could occupy each mononucleotide position in a DNA sequence.)
2. The assumption that each symbol in any position has equal probabilistic
availability. (Generally speaking, this assumption is incorrect for genetic se-
quences, but it works well enough as a zero hypothesis.) 3. Sequence length.
(For the purpose of sequence comparison, all the above-mentioned measures
of sequence complexity may be applied only to sequences of nearly identical
sizes.) The Shannon information (entropy) has become a standard measure
for the order state of DNA sequences ([235, 150, 151, 222, 147, 149, 226]).
Shannon information has the form

I = log2 λ+
λ∑
i=1

pi log2 pi,

where λ is the size of the alphabet, pi is the probability to find symbol Ai in
an arbitrary position. For example, if λ = 4 (which is the case for the DNA
alphabet) and the length of words is 6 (hexamers), we obtain:

I6 = 12 +
4096∑
i=1

qi log2 qi,

where i is the index of the word Ai, qi is the probability to find the word
Ai in an arbitrary position, λm = 46 = 4096, log2(4096) = 12. This kind of
sequence complexity measure is called compositional complexity. Within the
framework of the compositional complexity approach, sequence order and
complexity are at the opposite ends of the scale. The most complex sequence
appears to be the most disorganized one, i.e., it has the minimum number of
recognizable repetitions.

B.3 Waterloo Complexity

Ming Li at the University of Waterloo, Canada ([169]) proposed to use
Kolmogorov sequence complexity as a similarity measure. K(X |Y ) is the
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conditional Kolmogorov complexity (or algorithmic entropy) of x given y.
K(x) is defined as the size of the smallest Turing machine (the length of the
shortest algorithm), which generates x as an output on the input of y. For
formal definitions, theorems, and discussions, see ([170]). The authors point
out that the Kolmogorov complexity, viewed as the ultimate lower bound of
all measures of information, can be just approximated, but not calculated in
the general case. Li et al. ([169]) applied a measure of compressibility as an
approximation of complexity. They used their own program GenCompress,
which was, certainly, a rather voluntary choice. To compare two sequences,
one has to calculate complexity values of both sequences, of the juxtaposition
of both sequences, and the conditional complexity as well. In this method,
sequence similarity is measured as a relative decrease of complexity or con-
ditional complexity K(X |Y ) ([170]). The approach seems to be very promis-
ing, however (as it was also mentioned also in their pioneer work ([169]),
an efficient procedure to compute a suitable estimation of the conditional
complexity K(X |Y ) has yet to be developed.

B.4 Linguistic Complexity

Linguistic complexity (LC) (the term first coined by Trifonov [258]) is a
measure based on counting all different overlapping words in the text. This
method has the following advantages: (1) it is conceptually simple, (2) the
calculations can be performed quickly, and (3) it has been successfully used
in computational linguistics. The essence of the approach is a comparison of
the actual number of different substrings to their maximal possible number
in a given string. Originally, the approach was used by Popov et al. ([206])
to compare biological sequences to natural language texts and by Bolshoy
et al. [24] to demonstrate that a weak pattern can be significantly enhanced
by subset selection according to the sequence complexity criterion. In [83].
The authors showed that the parallel analysis of sequence the authors showed
that the parallel analysis of sequence complexity and DNA curvature might
provide important information about the sequence-structure-function rela-
tionships in prokaryotic genomes. In Troyanskaya et al. [261], LC was defined
as the ratio of the actual number of substrings present in the string of interest
to the maximum possible number of substrings in a string of the same length
over the same alphabet. The actual number of different substrings in a string
was calculated using the suffix trees, while the maximum vocabulary over the
words of lengths in the range (1m) was calculated according to the following
formula (where l is the alphabet size and k is the word length):

m∑
k=1

min(lk,m− k + 1).

The algorithm, based on implicit suffix trees constructed with the Ukkonens
algorithm ([263]) in order to count the number of substrings in the string,
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provides an effective way to reveal variations in linguistic complexity of ge-
nomic texts. One useful application of this algorithm proved to be searching
for lower-complexity zones. These regions are dispersed along the genome
and manifest themselves by atypical pattern LC variation. The simplest, yet
a common case of a low-complexity zone in prokaryotes, is a region of sim-
ple sequence repeats (SSR), which usually consists of homopolymeric tracts,
predominantly of poly(A) or poly(T), and of more rare multimeric repeats of
longer length. Functionally, SSRs participate in regulating gene expression at
various levels ([270, 271, 269]). The examination of the patterns of sequence
complexity around the flanks of coding sequences ([261]) revealed potential
regulatory sites. It was found that the complexity profiles of GC-rich genomes
(D. radiodurans, M. tuberculosis, and T. pallidum) differ substantially from
those of AT-rich genomes. Frequent location of low-complexity zones in a
close proximity to the boundaries of coding sequences is one of the major
features of AT prokaryotic genomes. The construction of linguistic complex-
ity profiles proved to be a useful instrument for detecting various genomic
signals. For example, it was found that in AT prokaryotes, homopolymeric
A- and T-tracts downstream from many genes are characteristic features of
transcription terminators. Some of these tracts are traces of known intrinsic
terminators; however, the reduction of linguistic complexity in the down-
stream non-coding region is also indicative of the presence of additional,
earlier undetected transcription termination signals in this region.



Appendix C
DNA Curvature

C.1 DNA Curvature and Gene Regulation in
Prokaryotes

The double-stranded DNA structure, which predominates in cells and is ob-
served in many viruses, was introduced and discussed in Chapter 1. It is well
known now that the double helix (Fig. C.1) can adopt different conformations,
i.e. the parameters of the helix may vary within certain limits. It has been
demonstrated experimentally that the twist angle - the angle of the base-pair
rotation around the axis of the double helix - is not sequence-independent,
as originally assumed in the Watson-Crick model (Chapter 1, Section 2.1).
Actually, the twist angle of B-DNA may range between 30 and 40 degrees
and, consequently, the number of base pairs per one helical turn may also
vary depending on the environmental conditions and on the sequence of nu-
cleotides.

Many of these alternative DNA structures were shown to have biological
significance, e.g., they are recognized by proteins that regulate DNA replica-
tion and transcription (see Chapter 1, Section 4.2.2) [256, 259]. Consider, for
example, the control of transcription initiation in prokaryotes, which is one
of the major points of gene regulation. It has been shown that recognition
of specific DNA sequences by proteins plays a pivotal role in transcription
initiation. In Chapter 1, Section 3.2.1, the reader can find the description
of the transcription initiation region (promoter), which includes two main
fragments recognized by the enzyme DNA-dependent RNA polymerase (see
Fig. 1.6). One fragment is located at about 10 bp and the other one at
about 35 bp upstream from the transcription initiation site. It was shown
that proteins recognize these specific DNA sequences not only through direct
contacts between bases and amino acids, but also indirectly via DNA specific
sequence-dependent structure, the so-called intrinsic curvature [45, 275].

Comprehensive genome analysis of DNA curvature in regulatory regions
was presented in several studies [84, 23, 155, 109, 121, 120, 193]. For some
bacterial genomes, it was found that regulatory regions are significantly more
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Fig. C.1 DNA Double Helix. This simple illustration was made by Odile Crick,
the wife of Francis Crick.

Fig. C.2 Rotation degrees of freedom of planar base pairs

curved than their neighboring coding regions and as compared to the ex-
pectations based on their dinucleotide composition. For several particular
promoters of certain bacteria, it was established that DNA intrinsic curva-
ture upstream from the promoters is related to the activity of the promoter
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[200, 28, 184, 253, 88, 134]. However, the factors influencing the distribution
of DNA curvature have not been clearly identified and characterized yet.

The existence of an upstream intrinsic DNA curvature has become associ-
ated with the activity of the bacterial promoter since 1984 [26]. The influence
of phased A- and T-tracts (upstream curved sequences - UCS) on bacterial
promoters was reported in a number of publications [200, 28, 6, 199, 205, 234].
The prediction analysis showed that the participation of curved DNA se-
quences at nearly each stage of the transcription process is a rule rather than
an exception.

Not every function of DNA curvature is understood yet, but the DNA
curvature effects have been detected in a wide variety of bacterial promoters
subjected to positive or negative gene transcription control.

The conclusions that can be drawn from these kinds of small-scale char-
acterizations of curved sequences are limited to a family of genes, a specific
organism, and, at most, to close phylogenetic relatives.

The regulatory role of the sequence-dependent DNA curvature may be
studied not just in specific genes, but also in a broader genomic context. The
first studies of complete genome sequences [84, 121, 83] showed that E. coli
promoter regions have a tendency to be more curved than E. coli coding se-
quences. What is the mechanism by which curved DNA sequences upstream
from the core promoter activate transcription? The early model suggested
that curved sequences could act as docking regions for RNA polymerase so
that its local concentration in the proximity of the promoter increases [144].
However, many experiments that involved kinetics steps during the initiation
of transcription suggest a far more complex scenario, in which DNA curvature
plays an active role in the formation of complexes of transcription compo-
nents. For some promoters, the increased isomerization rate of the open RNA
polymerase-promoter complex as compared to the closed complex has been
attributed to the effect of UCS. It has also been noted that both the affinity
for RNA polymerase and the isomerization rate can be affected simultane-
ously by the presence of UCS.

Upstream curved sequences may also affect the promoter clearance. The
respective function may depend on the position and the extent of the up-
stream contacts between the RNA polymerase and the curved sequence, e.g.,
additional contacts could act as a spring, helping to release the transcribing
complex from the promoter. It was also demonstrated that specific proteins,
the so-called transcription factors, bind to the DNA in the promoter region
and change the efficiency of transcription even when they do not directly
interact with RNA polymerase. Probably, many of these proteins recognize
curved DNA regions rather than specific sequences. This means that even
a small intrinsic region of curvature may enhance the protein-DNA bind-
ing affinity. This might lead to speculations that local curvature serves to
fine-tune the interaction of promoters with regulatory factors [242, 275].

To sum up the above, curved DNA sequences commonly participate in
prokaryotic gene expression and are often found within promoters and/or
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upstream from the promoters. In each location, curved DNA can serve dif-
ferent important functions in the process of transcription initiation.

C.2 History of DNA Curvature

The process of discovering DNA curvature was quite slow. Twenty years
after the paper of Watson and Crick [29] on the double-helix DNA structure
had been published, the evidence of the influence of base composition on
the average twist between adjacent base- pairs came from DNA X-ray fiber
diagrams. In 1980, Trifonov and Sussman [260] came up with the idea that
non-parallel adjacent base pairs, if repeated at a distance close to the full
turn of the DNA double helix, will cause the inclination of the DNA axis
in the same direction and thus could facilitate DNA bending in chromatin.
Indeed, it was found [260] that the spacing of certain dinucleotides (especially
AA and TT) correlates with the DNA helical repeat in eukaryotes.

It was suggested that this weak periodicity might reflect a phased curving
of the molecule due to the wedge-like structure of each dinucleotide (see
Fig. C.3). To the best of our knowledge, this was the first publication stating
the sequence-dependent nature of the intrinsic overall DNA structure. The
wedge model is also called the ”nearest neighbor model” since the geometry
of a stack of two base pairs is defined by the two constituent nucleotides as if a
”wedge” were inserted between the base pairs, the influence of more distant
neighbors being ignored [266]. The term ”curved DNA” was first used by
Trifonov [255] with referrence to a molecule which is curvilinear rather than
straight in the absence of any external forces (in contrast to ”bent DNA” ,
which is deformed by applying certain force).

Subsequent experimental studies which employed gel-electrophoresis as
well as X-ray diffraction supported the hypothesis of sequence-dependent

Fig. C.3 Curving of DNA molecule by periodical disposition of non-parallel (wedge-
like) combinations of base-pairs (arrows). (From Trifonov, E. N. and Sussman, J.L.,
Proc. Natl. Acad. Sci. U.S.A., 77, 3816, 1980)
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DNA structure [64, 63]. Marini et al. [181] observed anomalous behavior of
DNA fragments which contained phased adenine tracts and, in line with the
Trifonov’s hypothesis [260, 255], attributed the anomaly to the curvature of
the fragments. Hagerman’s studies [97, 98] also confirmed the hypothesis that
phased A-tracts produce intrinsic curvature, while eliminating alternative ex-
planations based on unusual rigidity and/or flexibility caused by A-tracts.
Hagerman and other groups clarified the principle role played by the runs of
adenines in the DNA curvature [98, 288, 66, 166]. However, all these pioneer
studies gave only indirect evidence of the existence of DNA curvature, which
was directly confirmed in 1986 by two research groups. Griffith et al. [96] ex-
amined cloned (presumably curved) DNA fragments, 200 bp long, by means
of electron microscopy and observed that they were, indeed, strongly curved
(while the control fragment showed no unusual curvature). Ulanovsky et al.
[265] used another method of studying curved DNA, namely, ring formation
with a 21-residue synthetic duplex expected to be curved. Indeed, the diam-
eters of the rings formed were substantially smaller than those usually ob-
served for “straight” DNA molecules. The researches that used the method of
cryo-electron microscopy, especially those of Prof. Dubochet’s group [67, 70]
made it possible to reconstruct the DNA trajectory in vitreous ice and led
to a reasonable representation of 3-D shapes of DNA molecules [67]. By the
mid-1990s, the concept of DNA curvature had become generally accepted.

C.3 Prediction of DNA Curvature

The studies presented in this section are based on the “nearest-neighbor
model” or the “wedge model”, which provides a realistic approximation of
the intrinsic DNA trajectory [256, 234, 255, 22] and is currently widly used
[134, 11, 107, 277, 92]. According to this model, the intrinsic DNA trajectory
is adequately represented by a series of DNA axis deflections. It is well known
from mechanics that the angular position (orientation) of an axis may be de-
scribed by three Euler angles. The Euler angles were introduced by the famous
mathematician Leonhard Euler to describe the orientation of a rigid body in
a 3-dimensional Euclidean space. A specific orientation may be depicted by a
sequence of three rotations presented by the Euler angles (see, e.g., Wolfram
Mathworld http://mathworld.wolfram.com/EulerAngles.html). Different au-
thors use different sets of angles or different names for the same angles. In
[292] and later in [234, 22], a nonconventional set of Euler angles was in-
troduced: the helical twist angle Ω, the deflection (wedge) angle σ and the
direction of deflection angle δ. The nearest-neighbor set of angles consists of
26 independent values corresponding to mutual orientations of stacked base
pairs. These 26 angles (10 helical twist angles, 10 deflection angles, and 6
direction-of-deflection angles) were derived from experimental data [22]. An
algorithm based on the calculation of geometric transformations according
to these 26 angles was used to construct a CURVATURE computer program
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(Shpigelman, Trifonov, and Bolshoy [234]). The software allows to plot a
sequence-dependent spatial trajectory of the DNA double helix and/or the
curvature distribution along the DNA molecule. The program can be used
to investigate possible roles of curvature in gene expression, for example,
by locating curved portions of DNA, which may play an important role in
sequence-specific protein-DNA interactions.

Let us start with some classical definitions. The osculating circle is the
best circle that approximates the curve at point P. If we ignore degenerate
curves such as straight lines, the osculating circle of a given curve at a given
point is unique. Curvature K at point P is calculated from the formula R =
1

|K| , where R is the radius of the osculating circle at point P. However, this
classical curvature is not an appropriate measure of DNA intrinsic curvature
[234]. Shpigelman et al. proposed to use a measure dependent on the arc
size. Instead of taking the best circle that approximates the curve at point
the authors used the circle best approximating a path segment of the length
equal to the arc size, which is the program parameter. The DNA curvature
is usually measured in DNA curvature units (cu) evaluated by Trifonov and
Ulanovsky [254]:

κ =
K

Knucleosome
=

42.8 Å
radius of the approximating arc

For example, a 125 bp-long segment with the shape close to a half-circle has
the curvature value of about 0.34 cu. Such strongly curved fragments (cu
values of more than 0.3) sometimes appear in genomic sequences.

C.4 Environmental Effects on DNA Curvature

Temperature and other environmental influences on the intrinsic DNA curva-
ture, as manifested by electrophoretic anomalies, were studied in the 1980s -
1990s (see, e.g., [65, 268]). Ussery et al. compared the anomalous migration of
11 specifically-designed oligonucleotides in polyacrylamide gels. At low tem-
peratures (25◦C and below), most of the sequences exhibited some degree of
anomalous migration. Increased temperature had a significant effect on the
anomalous migration of some (curved) sequences, while a limited effect on
others was observed; at 50◦C, only one sequence migrated anomalously. Chan
et al., using a variety of physical methods, detected a temperature-dependent
“premelting” event, which eliminates DNA curvature as well. The authors
suggested that this event corresponds to a specific curved DNA structure
[41]. Lopez-Garcia [176] came up with the hypothesis that the distinctive
DNA topology in hyperthermophilic Archaea has appeared as a result of
evolution and plays an important role in gene regulation in response to envi-
ronmental changes. In the context of the paper, the term “DNA topology” is
almost a synonym of “DNA supercoiling”. In our book, we consider the DNA
curvature as a simplified feature of the DNA overall structure. Nevertheless,
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the conclusions of Lopez-Garcia are very close to those which we arrive at in
Chapter 7. This is not surprising because DNA topology and DNA spatial
trajectory are directly related.

The prokaryotes’ cell components, including DNA, are influenced by the
environmental conditions of their habitat. For example, it is very interesting
to look at the three strains of Prochlorococcus marinus genomes from the
point of view of their size. The strain that adapted to high light intensities
has the smallest genome of all oxygenic phototrophs, while the strain that
adapted to low light intensities has the largest genome [267].

The influence of temperature on DNA conformation might explain the
distribution of DNA topoisomerases and DNA-binding proteins in extant or-
ganisms and may provide information on the early stages of evolution and
temperature adaptation. Most probably, the primary reason for which the
topoisomerases evolved was the release of local torsion stress generated dur-
ing transcription, replication, and recombination. On the one hand, all the
mesophilic Eubacteria and most of the Archaea use the gyrase enzyme to
create negative DNA supercoiling in addition to local unwinding for the pur-
pose of initiating DNA activity [184]. Such additional local unwinding can
be accounted for by the UCS since curved DNA structures mimic a negative
supercoil. On the other hand, hyperthermophiles use reverse gyrase to create
positive supercoiling since thermophilic temperatures supply the energy of
activation required for releasing DNA strands without introducing excessive
denaturation. It has been universally proved that the effect of DNA curvature
disappears with rising temperature. This relationship between the temper-
ature and the DNA curvature may suggest a functional significance of the
latter in mesophilic prokaryotes only.

The relationships between some other environmental conditions and DNA
curvature were studied as well. Ussery et al. [268] found that Mg2+ had a
strong influence on the migration of certain sequences, while spermine en-
hanced the anomalous migration of a different set of sequences. Sequences
with the GGC motif exhibit greater curvature than it is predicted on the
basis of the currently-used angles for the nearest-neighbor wedge model and
are especially sensitive to Mg2+.
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rRNA sequence, 20, 65, 68

search engines, 23, 28
Single linkage clustering, 165
singular value decomposition, 30
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suffix tree, 36, 71
Sugar and James index, 178

term-document matrix, 30
term-document matrix, 30
term-document matrix , 27, 30
total dispersion matrix, 177
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Ward’s linkage clustering, 166
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