
Grammars with
Context Conditions
and Their Applications

Grammars with
Context Conditions
and Their Applications

Alexander Meduna

Martin gvec
Brno University of Technology
Faculty of Information Technology
Bmo, Czech Republic

@ E E i C i E N C E
A JOHN WILEY & SONS, INC., PUBLICATION

Copyright 0 2005 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means. electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 1 1 1 River Street, Hoboken, NJ 07030, (201) 748-601 1, fax (201) 748-
6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representation or warranties with respect to the accuracy or completeness of
the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a
particular purpose. No warranty may be created or extended by sales representatives or written sales materials.
The advice and strategies contained herein may not be suitable for your situation. You should consult with a
professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department
within the US. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however,
may not be available in electronic format.

Library of Congress Cataloging-in-Publieation Data:

Meduna, Alexander, 1957-
Grammars with context conditions and their applications /by Alexander Meduna and Martin Svec.

p. cm.
Includes bibliographical references (p.) and indexes.
ISBN 0-471-71831-9 (acid-free paper)
I . Generative grammar. 2. Context (Linguistics) 3. Grammar, Comparative and
general-Conditionals. 4. Computational linguistics. 5. Formal languages. I.
Svec, Martin. 11. Title.

P158.M43 2005
41 5-dc22 2004028737

Printed in the United States of America.

1 0 9 8 7 6 5 4 3 2 1

To Professor Maroslav Novotny’

Contents

Preface ix

Acknowledgments ix

1 Introduction 1

2 Preliminaries and Definitions 5
2.1 Basic Definitions . 5
2.2 Grammars . 8

3 Conditions Placed on Derivation Domains 15
3.1 Sequential Grammars over Word Monoids 15
3.2 Parallel Grammars over Word Monoids 24

4 Conditions Placed on the Use of Productions 33
4.1 Sequential Conditional Grammars 33

4.1.1 Context-Conditional Grammars 33
4.1.2 Random-Context Grammars 40
4.1.3 Generalized Forbidding Grammars 44
4.1.4 Semi-conditional Grammars 58
4.1.5 Simple Semi-conditional Grammars 62

4.2 Parallel Conditional Grammars . 91
4.2.1 Context-Conditional ETOL Grammars 91
4.2.2 Forbidding ETOL Grammars 98
4.2.3 Simple Semi-conditional ETOL Grammars 118

4.3 Global Context Conditional Grammars 131

5 Conditions Placed on the Neighborhood of Rewritten Symbols 137
5.1 Continuous Context . 137

5.1.1 Sequential Uniform Rewriting 138
5.1.2 Parallel Uniform Rewriting 145

5.2 Scattered Context . 149
5.2.1 Scattered Context Grammars and Their Reduction 150
5.2.2 Semi-parallel Uniform Rewriting 162

6.1 Derivation Simulation . 169
6.2 Grammatical Simulation . 175
6.3 Simulation of E(0, l) L Grammars 177

6 Grammatical Transformations and Derivation Simulations 169

vii

viii Contents

7 Applications and Implementation 185
7.1 Applications . 185
7.2 Implementation . 192

8 Concluding and Bibliographical Notes 199

Bibliography 201

Denotations of Language Families 213

Subject Index 215

Preface

The investigation of grammars with context conditions represents an exciting trend
within the formal language theory. Although this investigation has introduced
a number of new grammatical concepts and brought many remarkable results,
all these concepts and results are scattered in various journal papers. In effect,
the formal language theory lacks any monograph systematically and compactly
summarizing this important trend. The primary goal of the present book is to
provide such a monograph.

According to the types of context conditions, the present book classifies the
grammars into three classes and sums up the crucial results about them. Specif-
ically, this classification comes from the distinction between context conditions
placed on (1) the domains of grammatical derivations, (2) the use of grammati-
cal productions, and (3) the neighborhood of the rewritten symbols. In all three
cases, the main attention is on establishing the grammatical generative power
and important properties. In particular, this book studies how to reduce these
grammars with respect to some of their components, such as the number of gram-
matical symbols or productions, in order to make the grammars small, succinct,
and therefore easy to use. To demonstrate this practical use, it also discusses the
applications and implementation of grammars with context conditions. Most of
the applications are related to microbiology, which definitely belongs to the central
application areas of computer science today.

No previous knowledge concerning the subject of this book is assumed on the
part of the reader. Indeed, this book is self-contained in the sense that no other
sources are needed for understanding all the presented material. Almost every
new concept defined in the text is immediately illustrated by some examples to
give it grasp. Every complicated mathematical passage is preceded by its intuitive
explanation, so the reader should easily follow every proof in the book. All the ap-
plications given in the book are explained in a realistic way to clearly demonstrate
the strong relation between the theoretical concept and its use in practice. Addi-
tional information found at http://www.fit.vutbr.cz/-meduna/books/gwccl.en.

Acknowledgments

We are indebted to many people for their assistance in various aspects of creating
this book. We greatly benefited from conversations with our colleagues at the
Brno University of Technology. Our special thanks go to Vladimir Cech. We
are grateful to our Editor, Val Molihre and Editorial Assistant, Emily Simmons at
John Wiley & Sons, who were very encouraging and helpful during the preparation
of this book. We gladly acknowledge support of GACR grant 201/04/0441. Most
important, we thank our families for their constant patience and encouragement.

Alexander Meduna and Martin Svec

ix

Chapter 1

Introduction

Formal languages fulfill a crucial role in many computer science areas, ranging from
compilers through mathematical linguistics to molecular genetics. In dealing with
these languages, we face the problem of choosing appropriate models in order to
capture their structure elegantly and precisely. By analogy with the specification
of natural languages, we often base these models on suitable grammars.

A grammar generates its language by performing derivation steps that change
strings, called sentential forms, to other strings according to its grammatical pro-
ductions. During a derivation step, the grammar rewrites a part of its current
sentential form with a string according to one of its productions. If in this way
it can make a sequence of derivation steps from its start symbol to a sentential
form consisting of terminal symbols-that is, the symbols over which the language
is defined-the resulting sentential form is called a sentence and belongs to the
generated language. The set of all sentences made in this way is the language
generated by the grammar.

In classical formal language theory, we can divide grammatical productions into
context-dependent and context-independent productions. Based on this division,
we can make a natural distinction between context-dependent grammars, such as
phrase-structure grammars, and context-independent grammars, such as context-
free grammars. The derivation step by context-dependent productions depends
on rather strict conditions, usually placed on the context surrounding the rewrit-
ten symbol, while the derivation step by context-independent productions does
not have any restrictions. For this reason, we tend to use context-independent
grammars. Unfortunately, compared to context-dependent grammars, context-
independent grammars are far less powerful; in fact, most of these grammars are
incapable of grasping some basic aspects of common programming languages. On
the other hand, most context-dependent grammars are as powerful as the Turing
machines, and this remarkable power gives them an indisputable advantage.

From a realistic point of view, the classical context-independent and context-
dependent grammars have some other disadvantages. Consider, for instance, En-
glish. Context-independent grammars are obviously incapable of capturing all the
contextual dependencies in this complex language. However, we may find even the
classical context-dependent grammars clumsy for this purpose. To illustrate, in
an English sentence, the proper form of verb usually depends on the form of the
subject. For instance, we write I do it, not I &a at, and it is the subject, I , that
implies the proper form of do. Of course, there may occur several words, such as

1

Grammars with Context Conditions and Their Application.
Alexander Meduna and Martin Svec

Copyright 0 2005 John Wiley & Sons, Inc.

2 Chapter 1: Introduction

adverbs, between the subject and the verb. We could extend I do i t to I often
do at, I very often do it and infinitely many other sentences in this way. At this
point, however, the classical context-dependent productions, whose conditions are
placed on the context surrounding the rewritten symbol, are hardly of any use.
The proper form of the verb follows from a subject that does not surround the
verb at all; it can occur many words ahead of the verb.

To overcome the difficulties and, a t the same time, maintain the advantages
described above, modern language theory has introduced some new grammars that
simultaneously satisfy these three properties:

They are based on context-independent productions.

Their context conditions are signfkantly more simple and flexible than the
strict condition placed on the context surrounding the rewritten symbol in
the classical context-dependent grammars.

They are as powerful as classical context-dependent grammars.

In the present book, we give an overview of the most essential types of these
grammars. Their alternative context conditions can be classified into these three
categories:

Context conditions placed on derivation domains.

Context conditions placed on the use of productions.

Context conditions placed on the neighborhood of the rewritten symbols.

As already pointed out, we want the context conditions to be as small as possible.
For this reason, we pay a lot of attention to the reduction of context conditions
in this book. Specifically, we reduce the number of their components, such as
the number of nonterminals or productions. We study how to achieve this re-
duction without any decrease of their generative power, which coincides with the
power of the Turing machines. By achieving this reduction, we actually make
the grammars with context conditions more succinct and economical, and these
properties are obviously highly appreciated both from a practical and theoretical
standpoint. Regarding each of the dicussed grammars, we introduce and study
their parallel and sequential versions, which represent two basic approaches to
grammatical generation of languages in today’s formal language theory. To be
more specific, during a sequential derivation step, a grammar rewrites a single
symbol in the current sentential form whereas during a parallel derivation step,
a grammar rewrites all symbols. As context-free and EOL grammars represent
perhaps the most fundamental sequential and parallel grammars, respectively, we
usually base the discussion of sequential and parallel generation of languages on
them.

Chapter 1: Introduction 3

Organization

The text consists of the following chapters:
Chapter 2 gives an introduction to formal languages and their grammars.
Chapter 3 restricts grammatical derivation domains in a very simple and natu-

ral way. Under these restrictions, both sequential and parallel context-independent
grammars characterize the family of recursively enumerable languages, which are
defined by the Turing machines.

Chapter 4 studies grammars with conditional use of productions. In these
grammars, productions may be applied on condition that some symbols occur in
the current sentential form and some others do not. We discuss many sequential
and parallel versions of these grammars in detail. Most important, new character-
izations of some well-known families of L languages, such as the family of ETOL
languages, are obtained.

Chapter 5 studies grammars with context conditions placed on the neighbor-
hood of rewritten symbols. We distinguish between scattered and continuous con-
text neighborhood. The latter strictly requires that the neighborhood of the rewrit-
ten symbols forms a continuous part of the sentential form while the former drops
this requirement of continuity.

Chapter 6 takes a closer look at grammatical transformations, many of which
are mentioned in the previous chapters. Specifically, it studies how to transform
grammars with context-conditions to some other equivalent grammars so that both
the input grammars and the transformed grammars generate their languages in a
very similar way.

Chapter 7 demostrates the use of grammars with context conditions by several
applications related to biology.

Chapter 8 summarizes the main results of this book and presents several open
problems. It makes historical notes and suggests some general references regarding
the theoretical background of grammars with context conditions. In addition, it
proposes new directions in the investigation of these grammars.

Approach

This book is theoretically oriented in its treatment of the grammars. It presents
the formalism concerning grammars with enough rigor to make all results quite
clear and valid. Every complicated mathematical passage is preceded by its in-
tuitive explanation so that even the most complex parts of the book are easy to
grasp. As most proofs of the results contain some transformations of grammars,
the present book also provides an algorithmical approach to the gramatical mod-
els under discussion and shows how they are used in practice. Several worked-out
examples and real-world applications give further illustrations of the theoretical
notions.

4 Chapter 1: Introduction

Use

This book can be used by every computer scientist interested in formal languages
and their grammatically based models as discussed in today’s theoretical computer
science curricula. It can also be used as a textbook for advanced courses in theo-
retical computer science at the senior levels; the text allows the flexibility needed
to pick and choose different topics for discussion.

Chapter 2

Preliminaries and Definitions

2.1 Basic Definitions

This section reviews fundamental notions concerning sets, languages, and relations.
A set C is a collection of elements taken from some prespecified universe. If

C contains an element a, then we symbolically write a E C and refer to a as a
member of C. On the other hand, if a is not in C, we write a @ C. The cardinality
of C, ICI, is the number of C’s members. The set that has no member is the empty
set, denoted 8; note that 101 = 0. If C has a finite number of members, then C is
a finite set; otherwise, C is an infinite set.

A finite set C is customarily specified by listing its members; that is,

C = {all a2,. . . , an} ,

where a1 through a, are all members of C. An infinite set R is usually specified
by a property T , so that Q contains all elements satisfying T ; in symbols, this
specification has the following general format:

n = { a : .(a)}.

Sets whose members are other sets are usually called families of sets rather than
sets of sets.

Let C and R be two sets. C is a subset of 0, symbolically written as C C: R, if
each member of C also belongs to 0. C is a proper subset of R , written as C c a,
if C c R and 0 contains an element that is not in C. If C C R and R C C, C
equals R, denoted by C = R. The power set of C, denoted by 2’, is the set of all
subsets of C. For two sets C and 0, their union, intersection, and difference are
denoted by C u 0, C n R, and C - R, respectively, and defined as

C U R = { a : a € C or a~ R},

C n R = {a : a E C and a E R},

C - R = { a : a E C and a @ Q}.

For a set C over a universe U , the complement of C is denoted by and defined
as c = U - C. A sequence is a list of elements from some universe. A sequence is
finite if it represents a finite list of elements; otherwise, it is infinite. The length

and

5

Grammars with Context Conditions and Their Applications.
Alexander Meduna and Martin Svec

Copyright 0 2005 John Wiley & Sons, Inc.

6 Chapter 2: Preliminaries and Definitions

of a finite sequence x, denoted by 1x1, is the number of elements in x. The empty
sequence, denoted by E , is the sequence consisting of no element; that is, I E ~ = 0.
A finite sequence is usually specified by listing its elements. For instance, consider
a finite sequence x specified as x = 0,1,0,0, and observe that 1x1 = 4.

An alphabet T is a finite, nonempty set, whose members are called symbols. A
finite sequence of symbols from T is a string or, synonymously, a word over T ;
specifically, E is referred to as the empty string. By T* , we denote the set of all
strings over T ; T+ = T* - { E } . Any subset T 2 T* is a language over T . If L
represents a finite set of strings, L is a finite language; otherwise, L is an infinite
language. For instance, T*, called the universal language over T , is an infinite
language while 8 and { E } are finite; notably, 8 # { E } because 181 = 0 # I { E } / = 1.
For a finite language L, max(L) denotes the length of the longest word in L. By
analogy with the set theory, sets whose members are languages are called families
of languages.

By convention, we omit all separating commas in strings. That is, we write
a1a2.. .a , rather than al ,a2, . . . , an .

Let x , y E T* be two strings over an alphabet, T , and let L, K C T* be two
languages over T . As languages are defined as sets, all set operations apply to
them. Specifically, L U K, L n K, and L - K denote the union, intersection,
and difference of languages L and K , respectively. Perhaps most important, the
concatenation of x with y, denoted by xy, is the string obtained by appending y
to x. Notice that from an algebraic point of view, T* and T+ are the free monoid
and free semigroup, respectively, generated under the operation of concatenation.
Observe that for every w E T* , W E = EW = w. The concatenation of L and K,
denoted by LK, is defined as

L K = {XY : x E L, y E K}.

Apart from binary operations, we also make some unary operations with strings
and languages. Let x E T* and L C T*. The complement of L is denoted by f,
and defined as = T* - L. The reversal of x, denoted by rev(x), is x written in
the reverse order, and the reversal of L, rev(L), is defined as

rev(L) = {rev(x) : x E L}.

For all i L 0 the ith power of x, denoted by xi, is recursively defined as (1) xo = E

and (2) xi = xxi-', for i 2 1. Observe that this definition is based on the recursive
definitional method. To demonstrate the recursive aspect, consider, for instance,
the ith power of xi with i = 3. By the second part of the definition, x3 = xx2.
By applying the second part to x2, we obtain x2 = xxl. By another application
of this part to x l , x1 = xxo. By the first part of this definition, xo = E . Thus,
x1 = xxo = XE = x. Hence, x2 = xxl = xx. Finally, x3 = xx2 = xxx. By this
recursive method, we frequently introduce new notions, including the ith power of
L, Li, which is defined as (1) Lo = { E } and (2) Li = LLZ-', for i 2 1. The closure
of L, L*, is defined as

L* = u LZ,
i20

2.1 Basic Definitions 7

and the positive closure of L, L+, is defined as

L+ = (J Li.
i l l

Notice that
L+ = LL* = L*L

and
L* = L+ u { E } .

If there is z E T* such that xz = y, x is a prefix of y; in addition, if x # {e, y}, x
is a proper prefix of y. By prefix(y), we denote the set of all prefixes of y. Set

prefix(L) = { x : x E prefix(w) for some w E L}.

If there is z E T* such that zx = y, x is a sufix of y; in addition, if x # { E , y}, x
is a proper sufix of y. By suffix(y), we denote the set of all suffixes of y. Set

suffix(L) = { x : x E suffix(w) for some w E L}.

If there is u ,v E T* such that uxv = y, x is a substring or a subword of y; in
addition, if x # { E , y}, x is a proper substring or a proper subword of y. By sub(y),
we denote the set of all substrings of y. Moreover,

sub(y,k) = { X : x E sub(y), 1x1 5 k}.

Observe that for every word w, prefix(w) C sub(w), suffix(w) C sub(w), and
{ E , w} C prefix(w) r l suffix(w) n sub(w). Set

sub(L) = {x : x E sub(w) for some w E L} .

Let w be a nonempty word; then, first(w) denotes the left-most symbol of w. Given
a word w, alph(w) is the set of all symbols occurring in w. Set

alph(L) = u alph(y).

For two words x and y, where IyI 2 1, #Yx denotes the number of occurrences of
y in x. A generalized form #WX, where W is a finite language, E $? W , denotes
the number of all occurrences of x's subwords that belong to W . Let w = a1 . . . a,
with ai E T for some n 2 0. The set of permutations of w, n(w), is defined as

n(w) = {v : v = bl . . . b, with bi E alph(w) for i = 1,. . . ,n,

YEL

and (b l , . . . , b,) is a permutation of (a l , . . . ,a,)}.

For two objects a and b, (a, b) denotes the ordered pair consisting of a and b in
this order. Let A and B be two sets. The Cartesian product of A and B, A x B,
is defined as

A x B = {(a, b) : a E A and b E B}.

8 Chapter 2: Preliminaries and Definitions

A binary relation or, briefly, a relation p from A to B is any subset of A x B; that
is,

p G A x B .

The domain of p , denoted by domain(p), and the range of p, denoted by range(p),
are defined by

domain(p) = { a : (a , b) E p for some b E B }

and
range(p) = { b : (a , b) E p for some a E A}.

If A = B , then p is a relation on A. A relation u is a subrelation of p if u represents
a subset of p. The inverse of p, denoted by p-', is defined as

p-' = { (b , a) : (a , b) E p}.

A function or, synonymously, a mapping from A to B is a relation q5 from A to B
such that for every a E A,

I{b : b E B, (a , b) E q5}1 5 1.

Let q5 be a function from A to B. If domain(q5) = A, 4 is total; otherwise, q5 is
partial. If for every b E B, \{a : a E A , (a ,b) E $}I 5 1, q5 is an injection. If
for every b E B , / { a : a E A, (a , b) E q5}[2 1, q5 is a suy'ection. If q5 is both a
surjection and an injection, 4 represents a bijection.

Instead of (a , b) E p, we often write a E p(b) or apb; in other words, (a , b) E p,
apb, and a E p (b) are used interchangeably. If p is a function, we usually write
a = p(b).

Let p be a relation over a set, A. For k 2 1, the k-fold product of p, pk, is
recursively defined as (1) ap'b if and only if apb, and (2) apkb if and only if apc
and cpk-'b, for some c and k 2 2. The transitive closure of p , p f , is defined as
ap+b if and only if apkb for some k 2 1, and the reflexive and transitive closure of
p , p*, is defined as ap*b if and only if apkb for some k 2 0.

A total function T from T* to 2"' such
that T (W) = T (U) T (U) for every u ,u E T* is a substitution from T* to U*. By
this definition, T (E) = E and ~ (a l a 2 . . .a,) = T (u ~) T (u ~) . . . ~ (a ,) , where ai E T ,
1 5 i 5 n, for some n 2 1, so T is completely specified by defining T (U) for every
a E T . A total function x from T* to U* such that ~ (u v) = x(u)x(v) for every
u, u E T* is a homomorphism or, synonymously and briefly, a morphism from T*
to U*. As any homomorphism is obviously a special case of a substitution, we
specify x by analogy with the specification of r. If x is an injection, x is called an
injective homomorphism.

Let T and U be two alphabets.

2.2 Grammars

This section reviews the basics of grammars. Specifically, it provides definitions
of context-free, context-sensitive, and phrase-structure grammars along with some
related notions and basic results which are used throughout the book.

2.2 Grammars 9

Definition 1. A phrase-structure grammar is a quadruple

where

V is the total alphabet,

T is the set of terminals (T c V) ,

P C V*(V - T)V* x V* is a finite relation,

S E V - T is the axiom of G.

The symbols in V - T are referred to as nonterminals. In what follows, each
(x , y) E P is called a production or a rule and written as

accordingly, P is called the set of productions in G. Given a production p = x ----)

y E P , we set lhs(p) = x and rhs(p) = y . The relation of a direct derivation in G
is a binary relation over V* denoted by +G and defined in the following way. Let
x 4 y E P, u,v,z1,22 E V * , and u = 21x22, v = zly.22; then,

2L =$'G %' [x -+ y] .

When no confusion exists, we simplify u =+G v [x 4 y] to u +G v. By +&, we
denote the k-fold product of JG. Furthermore, let +; and +& denote the tran-
sitive closure of =+G and the transitive and reflexive closure of JG, respectively.
If S +& x for some x E V * , x is called a sentential form. Set

F (G) = { X E V* : S +; X }

and
A(G) = { X E V * : S +; x =+; y , y E T*} .

If S +; w, where w E T * , S +& w is said to be a successful derivation of G. The
language of G, denoted by L(G) , is defined as

L(G) = {W E T* : S =+; w}.

In the literature, the phrase-structure grammars are also often defined with pro-
ductions of the form

xAy -+ xuy,

where u, x , y E V " , A E V - T (see [Sl]). Both definitions are interchangeable in
the sense that the grammars defined in these two ways generate the same family
of languages-the family of recursively enumerable languages, denoted by RE.

10 Chapter 2: Preliminaries and Definitions

Definition 2. A context-sensitive grammar is a phrase-structure grammar,

G = (V, T , p, S),

such that each production in P is of the form

xAy -+ xuy,

where A E V - T , u E V+, x , y E V*. A context-sensitive language is a lan-
guage generated by a context-sensitive grammar. The family of context-sensitive
languages is denoted by CS.

Definition 3. A context-free grammar is a phrase-structure grammar,

G = (V, T , p, S) ,

such that each production x -+ y E P satisfies x E V - T . A context-free language
is a language generated by a context-free grammar. The family of context-free
languages is denoted by CF.

For the families of languages generated by context-free, context-sensitive and
phrase-structure grammars, it holds:

Theorem 1 (see [l lS]). CF c CS C RE.

Lemma 1 (Chomsky Normal Form of Context-Free Grammars). Let L E
CF, E # L. Then, there exists a context-free grammar, G = (V, T , P, S) , such that
L = L(G) and every production in P is either of the form A -+ BC or A -+ a,
where A, B ,C E V - T and a E T .

Lemma 2 (Penttonen Normal Form of Context-Sensitive Grammars,
see [147]). Let L be a context-sensitive language. Then, there exists a context-
sensitive grammar, G = (V, T , P, s), such that L = L(G) and every production
in P is either of the form A B -+ AC or A + x, where A , B , C E V - T , x E
T U (V - T)2 .

Lemma 3 (Penttonen Normal Form of Phrase-Structure Grammars,
see [147]). Let L be a recursively enumerable language. Then, there exists a
phrase-structure grammar, G = (V, T , P, S) , such that L = L(G) and every pro-
duction in P is either of the form A B + AC or A + x , where A , B , C E V - T ,
x E { E } U T U (V - T) 2 .

Lemmas 2 and 3 can be further modified so that for every context-sensitive
production of the form A B -+ AC E P, A , B , C E V - T , there exist no B + x or
B D + B E in P for any x E V * , D , E E V - T :

Lemma 4. Every L E CS can be generated by a context-sensitive grammar G =
(N C F U N C ~ U T ~ T , P, S) , where NCF, Ncs, and T are pairwise disjoint alphabets,
and every production in P is either of the form A B -+ AC, where B E NCS,
A, C E NCF, or of the form A -+ x , where A E NCF, x E NCS U T U N6F.

2.2 Grammars 11

Proof. Let
G’ = (V, T , P’, S)

be a context-sensitive grammar in Penttonen normal form (see Lemma 2) so that
L = L(G). Then, let

be the context-sensitive grammar defined as follows:

G = (NCF U NCS U T,T,P, S)

NCF = V - T ,
N c s = { E : A B - + A C E P ’ , A , B , C € V - T } ,
P = { A - + z : A - + z E P ’ , A E V - T , X E T U (V - T) ~ } U

{ B - + g ’ , A E - - + A C : AB-+ACE P’, A , B , C E V - T } .

Obviously, L(G’) = L(G) and G is of the required form. 0

Lemma 5. Every L E RE can be generated by a phrase-structure grammar G =
(NCF U Ncs U T , T , P, S) , where NCF, Ncs, and T are pairwise disjoint alphabets
and every production in P is either of the form AB -+ AC, where B E Ncs,
A,C E NCF, or of the fo rm A -+ 2, where A E NCF, z E { E } U N c s U T U N&F.

0

Besides context-free, context-sensitive and phrase-structure grammars, we also

Proof. The reader can prove this lemma by analogy with Lemma 4.

discuss ETOL grammars, EIL grammars and queue grammars in this book.

Definition 4. An ETOL grammar (see [155], [156]) is a t+3-tuple,

G = (V, T , pi , - - . , Pt, S),

where t 2 1, and V , T , and S are the total alphabet, the terminal alphabet
(T c V) , and the axiom (S E V - T) , respectively. Each Pi is a finite set of
productions of the form

where a E V and z E V*. If a -+ 2 E Pi implies x # E for all i E {l,...,t},
G is said to be propagating (an EPTOL grammar for short). Let u ,v E V*,
u = (1102. . .a,, v = v1v2.. . v,, q = IuI, aj E V , vj E V * , and p l , p 2 , . . . , p , is a
sequence of productions of the form p j = aj -+ vj E Pi for all j = 1,. . . , q, for
some i E (1,. . . , t } . Then, u directly derives v according to the productions p l

through p, , denoted by

In the standard manner, we define the relations +: (k 2 0), +$, and =+&. The
language of G, denoted by L(G), is defined as

a -+ z,

*G v [Pl,P2,...rPq].

L(G) = (20 E T* : S =+& w}.

The families of languages generated by ETOL and EPTOL grammars are denoted
by ETOL and EPTOL, respectively.

12 Chapter 2: Preliminaries and Definitions

Let G = (V, T , P I , . . . , Pt, S) be an ETOL grammar. If t = 1, G is called an EOL
grammar. We denote the families of languages generated by EOL and propagating
EOL grammars (EPOL grammars for short) by EOL and EPOL, respectively.

An OL grammar is defined by analogy with an EOL grammar except that V = T
and S E T*. For simplicity, as V = T , we specify an OL grammar as a triple
G = (T, P, S) rather than a quadruple G = (T,T, P, S). By OL, we denote the
family of languages generated by OL grammars.

Theorem 2 (see [155]).
CF
C

EOL = EPOL
C

ETOL = EPTOL
C

cs.
Definition 5. Given integers m, n L 0, an E(m, n)L grammar (see [155], [156]) is
defined as a quadruple

G = (V, T , P, s),

where V, T , and s are the total alphabet, the terminal alphabet T
axiom s 6 V , respectively. P is a finite set of productions of the form

V , and the

(u, a,w) + Y

such that a E V , u,w,y E V' , 0 5 1uI I m, and 0 5 1w1 5 n. Let x, y E V'. Then,
x directly derives y in G, written as

provided that 3: = ~ 1 ~ 2 . . . a k , y = yly2 . . . yk, k 2 1, and for all i, 1 5 i 5 k,

. . . ai-1, ai , ai+1 . * . Ui+,) -+ yi E P.

We assume aj = E for all j 5 0 or j 2 k + 1. In the standard way, +;, +;, and
=+& denote the i-fold product of JG, i 2 0, the transitive closure of JG, and the
transitive and reflexive closure of J G , respectively. The language of G, L(G), is
defined as

L(G) = {W E T* : s +& w}.

Let G = (V, T , P, s) be an E(0, n)L grammar, n 2 0, and p = (E , A, w) -+ y E P.
We simplify the notation of p so that p = (A,v) --+ y throughout this book. By
EIL grammars, we refer to E(m, n)L grammars for all m, n 2 0.

Definition 6. A queue grammar (see [SS]) is a sixtuple,

2.2 Grammars 13

where V and W are alphabets satisfying V n W = 0 , T C V , F 5 W , R E
(V - T)(W - F) , and

g c (V x (W - F)) x (V* x W)

is a finite relation such that for any a E V , there exists an element (a , b, x, c) E g .
If there exist u, w E V*W, a E V , r , z E V * , and b, c E W such that (a , b, z , c) E g ,
u = arb, and w = rzc , then u directly derives w according to (a , b, z , c) in Q ,

u JQ [(a, b, 2, c)]

Define +$ (k 2 0), +$, and +; in the standard way. The language of Q, L(Q),
is defined as

L(Q) = { W E T * : R +$ wf, f E F } .

Theorem 3 (see [SS]). Every language in RE is generated by a queue grammar.

If some grammars define the same language, they are referred to as equivalent
grammars. This equivalence is central to this book because we often discuss how
to transform some grammars to some other grammars so that both the original
grammars and the transformed grammars are equivalent.

Chapter 3

Context Conditions Placed on
Derivation Domains

In the formal language theory, the relation of a direct derivation, +, is introduced
over V * , where V is the total alphabet of a grammar. Algebraically speaking, + is
thus defined over the free monoid whose generators are symbols. In this chapter,
we modify this definition by using strings rather than symbols as the generators.
More precisely, we introduce this relation over the free monoid generated by a finite
set of strings; in symbols, =+ is defined over W*, where W is a finite language. As
a result, this modification represents a very natural context condition: a derivation
step is performed on the condition that the rewritten sentential form occurs in W*.
This context condition results into a large increase of generative power of both the
sequential and parallel context-independent grammars, represented by context-free
grammars and EOL grammars, respectively. In fact, even if W contains strings
consisting of no more than two symbols, the resulting power of these grammars is
equal to that of Turing machines.

3.1 Sequential Grammars over Word Monoids

Definition 7. A context-free grammar over word monoid, a wm-grammar for short
(see [103], [ill]), is a pair

where
G = (V,T, P, S)

is a context-free grammar, and W , called the set of generators, is a finite language
over V . (G, W) is of degree i, where i is a natural number, if y E W implies IyI 5 i.
(G, W) is said to be propagating if A -+ x E P implies x # E .

Roughly speaking, such a production A -+ x of a wm-grammar can be applied
to a word w only when w is in W*.

Formally, the direct derivation +(G,w) on W* is defined as follows: if p = A -+

y E P, X A Z , xyz E W* for some x, z E V*, then xAz directly derives xyz,

(G, W) ,

XAz * (G , W) XYz [PI

in symbols. In the standard manner, we denote the k-fold product of +(G,w) (for
some k 2 0) by +tG,w), the transitive closure of +(G,w) by +&w), and the

15

Grammars with Context Conditions and Their Application.
Alexander Meduna and Martin Svec

Copyright 0 2005 John Wiley & Sons, Inc.

16 Chapter 3: Conditions Placed on Derivation Domains

reflexive and transitive closure of +(G,w) by J T ~ , ~) . The language of (G ,W) ,
symbolically denoted by L(G, W) , is defined as

L (G , W) = {W E T* : s JTG,w) w}.

We denote by WM the family of languages generated by wm-grammars. The
family of languages generated by wm-grammars of degree i is denoted by WM(i).
The families of propagating wm-grammars of degree i and propagating wm-gram-
mars of any degree are denoted by prop-WM(i) and prop-WM, respectively.

Let us examine the generative capacity of (propagating) wm-grammars.

Theorem 4. prop-WM(0) = WM(0) = 0, prop-WM(1) = WM(1) = CF.

Proof. Follows immediately from the definitions. rn

Next, we prove that (i) a language is context-sensitive if and only if it is gener-
ated by a propagating wm-grammar (of degree 2) and (ii) a language is recursively
enumerable if and only if it is generated by a wm-grammar (of degree 2).

Theorem 5. prop-WM(2) = CS.

Proof. It is straightforward to prove that prop-WM(2) C CS; hence it suffices to
prove the converse inclusion.

Let L be a context-sensitive language. Without loss of generality we can assume
that L is generated by a context-sensitive grammar

G = (N c F U N C S U T , T , P , S)

of the form described in Lemma 4. Let

The propagating wm-grammar (G’, W) of degree 2 is defined as follows:

G’ = (V’, T , P’, S) ,

where

V‘ = V U Q ,
Q = { (A , B ,C) : AB -+ AC E P, A,C E N C F , B E N c s }

Clearly, without loss of generality, we can assume that Q f l V = 8. The set of
productions P’ is defined in the following way:

1. if A 4 z E P , A E N C F , II: E NCS U T U NgF, then add A + II: to P’;

2. if AB -+ AC E P , A,C E NCF, B E NCS, then add B -+ (A , B ,C) and
(A , B , C) -+ C to P’.

3.1 Sequential Grammars over Word Monoids 17

The set of generators W is defined as follows:

W = { A (A , B , C) : (A ,B,C) E Q , AENcF}UV.

Obviously (G’,W) is a propagating wm-grammar of degree 2. Next, let h be a
finite substitution from (V’)* into V * defined as:

1. for all D E V , h (D) = D;

2. for all (X , D , Z) E Q , h ((X , D , Z)) = D.

Let h-l be the inverse of h. To show that L(G) = L(G’, W) , we first prove that

S +g w if and only if S +TGtw) v,

where v E W* n h-l(w), w E V+, for some m, n 2 0.

Only i f : This is established by induction on the length m of derivations in G.

Basis: Let m = 0. The only w is S because S a: S. Clearly, S +l)c,,w) S and

Induction Hypothesis: Let us suppose that our claim holds for all derivations of
length at most m, for some m 2 0.

Induction Step: Consider a derivation

s E h-l(S) .

s =+Z+I 2,

where z E V+. Since m + 1 2 1, there is some y E V+ and p E P such that

and by the induction hypothesis, there is also a derivation

*TG/,W) Y“

for some y” E W* n h-l(y), n 2 0.

(i) Let us assume that p = D -+ y z , D E N C F , yz E NcsUTUN;,, Y = Y I D Y ~ ,
y1,y3 E V * , and 2 = y1y2y3. Since from the definition of h-l it is clear
that h-’(Z) = { Z } for all 2 E NCF, we can write y” = ~ 1 D t 3 , where
z1 E h-’(yl) and z3 E h-’(y3), It is clear that D -+ y2 E P’ (see the
definition of I”).
Let 23 @ Q(V’)*. Then,

s *:Gj,w) zlDz3 *(G’,W) 219223,

and clearly, ~ 1 ~ 2 . ~ 3 E h-l(yy1~2~3) n W*.

18 Chapter 3: Conditions Placed on Derivation Domains

Let z3 E Q(V’)*; that is, z3 = Y r for some Y E Q, T E (V‘)*. Thus,
Dh(Y) -+ DC E P (for some C E N c F) , y3 = h(Y)s , where T E h-’(s) and
s E V*. Hence, we have h (Y) -+ Y E P’ (see (2) in the definition of P’).
Observe that h(Y) -+ Y is the only production in P’ that has Y appearing on
its right-hand side. Also it is clear thar r is not in Q(V‘)* (see the definition
of W) . Thus, {zlDh(Y)r, zlyzh(Y)r} G W * , and since

s *:GI,+’) Z l D y T ,

there must be also the following derivation in (G’, W) :

*;“c;tw, zlDh(Y)r =$‘(G’,W) ZlDYT [h(Y) ---f Y] .

So we get

s =$‘& zlDh(Y)r *(G’,W) z1y2h(Y)T [D -+ y2]

such that z1y2h(Y)r is in h-’(s) n W*.

(ii) Let p = AB -+ AC, A,C E NCF, B E Ncs , y = ylABy2, y1,y2 E V * ,
x = y1ACy2, y” = z ~ A Y z ~ , zi E h-’(yi), i E {1,2}, and Y E h-’(B).
Clearly, { B -+ (A , B ,C) , (A , B ,C) -+ C } G P’ and A(A, B , C) E W .

Let Y = B. Since B E N c s , z2 $? Q(V’)*, and so zlA(A, B , C)z2 E W* (see
the definition of W) . Thus,

*TG’,W) ZlABzz

*(G’,W) zlA(A,B, c) z 2 [B -+ (A , B , c)]
* (G’ , W) zlACz2 [(A,B,C) -+ CI

and zlACz2 E h-l(z) n W*.

Let Y E Q. Clearly, h(Y) = B and by the definitions of Q and P‘, we have
B -+ Y E PI. Thus, we can express the derivation

in the form

Since zlA(A, B , C)z2 E W * , we get

where zlACz2 E h-l(x) n W * .

3.1 Sequential Grammars over Word Monoids 19

I f : This is also established by induction, but in this case on n 2 0.

Basis: For n = 0 the only v is S because S
w = S. Clearly, S JOG S.

Induction Hypothesis: Let us assume the claim holds for all derivations of length
at most n, for some n 2 0.

Induction Step: Consider a derivation

S. Since S E h- l (S) , we have

where u E h-’(z) n W* and z E V+. Since n + 1 2 1, there is some p E PI,
y E V+, and w E h-’(y) n W* such that

and by the induction hypothesis,

s *; y.

Let v = T’Ds’, y = TBS , T’ E h - ’ (r) , s’ E h-’(s), T , S E V * , D E h-’(B),
u = T‘z’s‘, and p = D -+ z’ E P’. Moreover, let us consider the following three
cases:

(i) Let h(z’) = B, (see (2)). Then, u = T’Z’S’ E h-’(rBs); that is, z = rBs. By
the induction hypothesis we have

(ii) Let z’ E T U NCS U N;F. Then, there is a production B -+ z’ E P. Since
z’ E h-l(z’), we have z = TZ’S. Clearly,

s +; TBs J G TZ’S [B -+ 2’1.

(iii) Let z’ = C E NCF, D = (A , B , C) E Q. By the definition of W , we have
T’ = t’A, T = tA, where t’ E h-’(t), t E V * , and so z = tACs. By the
definition of Q, there is a production AB + AC E P. Thus,

S =+; tABs J G tACs [AB + AC].

By the inspection of P‘, we have considered all possible derivations of the form

*T&,w) *(G’,W)

in (GI, W) . Thus, by the principle of induction, we have established that

20 Chapter 3: Conditions Placed on Derivation Domains

for some n 2 0 and u E W* implies

s *& x ,

where x E V* and u E h-’(x). Hence,

S +; w if and only if S +TG,,w) v ,

where ZI E W* n h-’(w) and w E V * , for some m, n 2 0.
The proof of the equivalence of G and (G’, W) can easily be derived from the

above: by the definition of h-l , we have h-l(a) = { u } for all a E T . Thus, by the
statement above and by the definition of W , we have for any x E T* ,

S *& x if and only if S +TGc’,w) x ;

that is, L(G) = L(G’, W) . Thus, prop-WM(2) = CS, which proves the theorem.
1

Observe that the form of the wm-grammar in the proof of Theorem 5 implies
the following corollary:

Corollary 1. Let L be a context-sensitive language over an alphabet T . Then, L
can be generated by a propagating wm-grammar (G, W) of degree 2, where G =

(V, T , P, S) satisfies

(i) T C W and (W - V)

(ii) if A -+ x and 1x1 > 1, then x E (V - T)’.

(V - T)’;

Next, we study the wm-grammars of degree 2 with erasing productions. We
prove that these grammars generate precisely RE.

Theorem 6. WM(2) = RE.

Proof. Clearly, we have WM(2) 2 RE; hence it suffices to show RE C WM(2).
The containment RE C WM(2) can be proved by the techniques given in the proof
of Theorem 5 because every language L E RE can be generated by a grammar
G = (V, T , P, S) of the form of Lemma 5 . The details are left to the reader. 1

Since the form of the resulting wm-grammar in the proof of Theorem 6 is
analogous to the wm-grammar in the proof of Theorem 5 (except that the former
may contain some erasing productions), we have:

Corollary 2. Let L be a recursively enumerable language over an alphabet T ,
Then, L can be generated by a wm-grammar (G, W) of degree 2, where G =
(V, T , P, S) such that

(i) T 5 W and (W - V) C (V - T)’;

(ii) if A -+ x and 1x1 > 1, then x E (V - T)’.

3.1 Sequential Grammars over Word Monoids 21

Summing up Theorems 4, 5, and 6, we obtain the following corollary:

Corollary 3.
prop-WM(1) = WM(1) = CF

C
prop-WM(2) = prop-WM = CS

C
WM(2) = WM = RE.

So far we have demonstrated that propagating wm-grammars of degree 2 and
wm-grammars of degree 2 characterize CS and RE, respectively. Next, we show
that the characterization of RE can be further improved in such a way that even
some reduced versions of wm-grammars suffice to generate all the family of recur-
sively enumerable languages. More specifically, we can simultaneously reduce the
number of nonterminals and the number of words of length two occurring in the
set of generators without any decrease of the generative power (see [ill]).

Theorem 7. Every L E RE can be defined by a 10-nonteminal context-free
grammar over a word monoid generated by an alphabet and six words of length
two.

Proof. Let L E RE. By Geffert (see [69]), L = L(G) , where G is a phrase-structure
grammar of the form

G = (V, T , P U {AB --+ E , C D -+ E } , S)

such that P contains only context-free productions and

V - T = {S ,A ,B ,C ,D} .

Let us define a wm-grammar (GI, W) of degree 2, where

G’ = (V’, T , P’, S)

and

V’ = {S, A, B , C, D , (A B) , (CD) , (le f t) , (right), (empty)) U T ,
P’ = P U { B -+ (AB) , (AB) -+ (right),

D -+ (CD) , (CD) -+ (right),
A -+ (le f t) , C -+ (le f t) ,
(l e f t) -+ (empty) , (right) -+ (empty), (empty) -+ E } .

The set of generators is defined as

W = {A(AB) , C(CD), (le f t i (AB), (le f t) (CD) ,
(left)(right), (empty)(right), (empty)} U T U {S ,A ,B ,C ,D} .

Clearly, (G’ ,W) is a wm-grammar with the required properties.

L(G)
To establish

L(G’, W) , we first prove the following claim:

22 Chapter 3: Conditions Placed on Derivation Domains

Claim 1. S =+-E w implies S +TG,,w) w, where w E V* for some m 2 0.

Proof. This is established by induction on m.

Basis: Let m = 0. The only w is S because S

Induction Hypothesis: Suppose that our claim holds for all derivations of length
m or less, for some m 2 0.

Induction Step: Consider a derivation of the form

S. Clearly, S +!G’,w) S.

s =$;+I w

with w E V*. As m + 1 2 1, there exists y E W+ and p E P such that

by the induction hypothesis, there also exists a derivation

*TG’,W) 9.

Observe that y E W* because V
forms:

W . The production p has one of these three

(i) p is a context-free production in P ,

(ii) p has the form A B --+ E ,

(iii) p has the form CD --f E .

Next, we consider these three possibilites.

(i) Let us assume that p = E -+ y2, y = YlEY3, E E {S,A, B,C,D}, y1, y3 E
V*, and w = y1y2y3. By the construction of PI, E -+ y2 E PI. Thus,

(ii) Let p = A B -+ E , y = ylABy2, y1,y2 E V * , w = y1y2. At this point, we
construct the following derivation in (G’, W) :

3.1 Sequential Grammars over Word Monoids 23

(iii) Let p = CD -+ E , y = y1CDy2, y1, y2 E V*, w = y1y2. By analogy with (ii),
we can prove that

*TG’,W) Y1Y2.

Thus, Claim 1 now follows by the principle of induction. 0

Next, we sketch how to verify L(G’, W) 2 L(G). First, we make two observa-
tions, which follow from the definition of W .

Observation 1. Let

*TG‘,W) ylABY2
*(G’,W) Y1A(AB)y2 [B (AB)]
*TG’,W) w,

where w E T*. Then, during the derivation

ylA(AB)Y’2 *TG’,W) w l

the following six derivation steps necessarily occur:

1. A is rewritten according to A --$ (l e f t) , so (l e f t) (A B) is produced.

2. (AB) is rewritten according to (AB) -+ (r igh t) , so (l e f t) (r i g h t) is produced.

3. (l e f t) is rewritten according to (l e f t) -+ (e m p t y) , so (e m p t y) (r i g h t) is pro-
duced.

4. (r i g h t) is rewritten according to (r i g h t) -+ (e m p t y) , so (e m p t y) (e m p t y) is
produced.

5 . One (e m p t y) in (e m p t y) (e m p t y) is erased according to (e m p t y) -+ e.

6 . The other (e m p t y) is erased according to (e m p t y) -+ E .

Observation 2. Let

*TG’,W) YlCDY2
*(G’,W) Y1c(cD)Y2 I D (c D) l
*;G’,W) w 1

where w E T*. Then, during the derivation

Y1c(cD)Y2 *TG’,W) 1

the following six derivation steps necessarily occur:

1. C is rewritten according to C -+ (l e f t) , so (l e f t) (C D) is produced.

2. (CD) is rewritten according to (CD) -+ (r i g h t) , so (left) (r igh t) is produced.

24 Chapter 3: Conditions Placed on Derivation Domains

3. (l e f t) is rewritten according to (l e f t) -+ (empty) , so (empty) (r igh t) is pro-
duced.

4. (right) is rewritten according to (r ight) -+ (empty) , so (empty) (empty) is
produced.

5 . One (empty) in (empty) (empty) is erased according to (empty) --+ E.

6 . The other (empty) is erased according to (empty) -+ E.

Considering Observations 1 and 2, we can easily prove the following claim:

Claim 2. S +>,,w) w implies S +; 20, where w E T*, for some m 2 0.

Proof. This proof is left to the reader.

Therefore, L(G) = L(G’, W) , and Theorem 7 holds.

[I]

L(G’,W). From Claim 2, we get L(G’,W) C L(G).

Recall that for ordinary context-free grammars (which coincide with the wm-
grammars of degree 1 in terms of the present chapter), Gruska [77] proved that for
every natural number n 2 1, the context-free grammars with n+l nonterminals are
more powerful that the context-free grammars with n nonterminals. Consequently,
if we reduce the number of nonterminals in context-free grammars over letter
monoids, then we also reduce the power of these grammars. On the other hand,
by Theorem 7, context-free grammars defined over word monoids keep their power
even if we reduce their number of nonterminals to 10.

By Claim 1, L(G)

3.2 Parallel Grammars over Word Monoids

Definition 8. An EOL grammar on word monoid, a WMEOL grammar for short,
is a pair

where

(G, W) I

G = (V, T , P, S)

is an EOL grammar. The set of generators W is a finite language over V. By
analogy with wm-grammars, (G, W) has degree i , where i is a natural number, if
every y E W satisfies IyI 5 i. If A -+ x E P implies x # E , (G, W) is said to be
propagating. Let x , y E W* such that x = a1a2.. . an, y = ~ 1 ~ 2 . . .yn, ai E V ,
yz E V * , 1 I i 5 n, n 2 0. If ai -+ yi E P for all i = 1.. . n, then x directly derives
y according to productions a1 -+ y1, a2 -+ y2, . . ., a, -+ y,,

17: *(G,w) Y [a1 -+Yl , . . . , an --+ ~ n]

in symbols. As usual, the list of applied productions is omitted when no confusion
arises. In the standard way, +tG,w), +TG,w), and +iG,w) denote the k-fold
product of + (~ , w) , k 2 0, the transitive closure of =+(G,w), and the transitive

3.2 Parallel Grammars over Word Monoids 25

and reflexive closure of =+(G,w), respectively. The language of (G, W) , denoted by
L(G, W) , is defined in the following way:

L (G , W) = {W E T* : S +G,W) w}.

By WMEOL(i), WMEPOL(i), WMEOL, and WMEPOL, we denote the fami-
lies of languages generated by WMEOL grammars of degree i, propagating WMEOL
grammars of degree i, WMEOL grammars, and propagating WMEOL grammars,
respectively.

Note that WMEOL grammars of degree 2 are called symbiotic EOL grammars
in [105]. The families of languages generated by symbiotic EOL grammars and
propagating symbiotic EOL grammars are denoted by SEOL and SEPOL; that is,
SEOL = WMEOL(2) and SEPOL = WMEOL(2).

Let us investigate the generative power of WMEOL grammars. Clearly,

WMEPOL(0) = WMEOL(0) = 0.
Recall that for ordinary EOL languages, EPOL = EOL (see Theorem 2.4 in [157]).
Therefore, the following theorem follows immediately from the definitions:

Theorem 8. WMEPOL(1) = WMEOL(1) = EPOL = EOL.

Next, let us investigate WMEOL grammars of degree 2 (symbiotic EOL gram-
mars). In Theorems 9 and 10, we demonstrate that these grammars have re-
markably higher generative capacity than WMEOL grammars of degree 1. More
specifically, propagating WMEOL grammars of degree 2 generate precisely the fam-
ily of context-sensitive languages and WMEOL grammars of degree 2 generate all
the family of recursively enumerable languages.

Theorem 9. WMEPOL(2) = CS.

Proof. It is straightforward to prove that WMEPOL(2) C_ CS; hence it suffices
to prove the converse inclusion. Let L be a context-sensitive language generated
by a context-sensitive grammar

G = (NCF U N c s U T, T , P, S)

of the form described in Lemma 4. Let

v = N C F u NCS u T

and
V’ = V U Q ,

Q = { (A , B, C) : AB + AC E P, A , C E N C F , B E Ncs}.

The WMEPOL grammar of degree 2, (G’, W) , is defined as follows:

where

Clearly, without loss of generality, we can assume that Q r l V = 8.

G’ = (V’, T , P’, S),

where PI is constructed as

26 Chapter 3: Conditions Placed on Derivation Domains

1. for all A E V’, add A --+ A to Y‘;

2. if A -+ x E P, A E NCF, x E NCS u T U N6F, then add A -+ x to P’;

3. if AB -+ AC E P, A,C E N C F , B E Ncs, then add B -+ (A ,B,C) and
(A, B, C) -+ C to P’.

The set of generators, W 5 (V U V2), is defined in the following way:

W = { A(A, B , C) : (A , B , C) E Q , A E N C F } U V.

Obviously, (G’, W) is a WMEPOL grammar of degree 2. Let us introduce a sub-
stitution from (V’)* into V* as

1. for all D E V, h(D) = D,

2. for all (X , D, 2) E Q, h((X , D, 2)) = D.

Let h-’ be the inverse of h. To demonstrate that L(G) = L(G’, W) , we first prove
two claims:

Claim 3. If S =+g w, w E V+, for some m 2 0, then S +TG,,w) v, where
21 E h-l(z0).

Proof. This is established by induction on the length m of derivations in G.

Basis: Let m = 0. The only w is S because S J& S. Since S E W * , S J ! ~ , , ~)

S and by the definition of h-l, S E h-’(S).

Induction Hypothesis: Let us suppose that our claim holds for all derivations of
length at most m, for some m 2 0.

Induction Step: Consider a derivation

x E V*. Since m + 1 2 1, there is some y E V+ and p E P such that

s * g Y *G b]
and, by the induction hypothesis, there is also a derivation

for some y’ E h-’(y), n 2 0. By definition, y’ E W*.

(i) Let us first assume that p = D -+ yz E P, D E NCF, y2 E Ncs U T U N&,
y = y1Dy3, and x = y1y2y3, y1 = a l . . .ail y3 = bl . . . b j , where ak,bl E V,
1 L k L i, 1 L 1 L j , for some i , j 2 0 (i = 0 implies y1 = E and j = 0 implies
y3 = E) . Since from the definition of h-’ it is clear that hA1(Z) = (2) for all
2 E N C F , we can write y’ = Z l D Z 3 , where 21 E h-l(y1) and 23 E h-l(y3),

3.2 Parallel Grammars over Word Monoids 27

that is to say, z1 = c1 . . . ci, 23 = dl . . . d j , where Ck E h-’(ak), dl E h-’(bl),
for 1 I k 5 i, 1 L 1 5 j. It is clear that D -+ y2 E P’.

Let d l # Q. Then, it is easy to see that 2 1 ~ 2 ~ 3 E W”, and so

z ~ D z ~ +(Gt,w) ~ 1 ~ 2 ~ 3 [cI +. ~ 1 , . . . ,ci + ~ i , D +. y z , d l +. d l , . . . , d j +. d j] .

Therefore,
s *TG!,w) Z l D Z 3 *(G’,W) Z l Y 2 Z 3

and Z l Y 2 Z 3 E ~ - ‘ (Y I Y ~ Y ~) .

Let dl E &. That is, Dh(d1) +. DC E P (for some C E NcF); see the
definition of h. Hence, we have h(d1) +. dl E P’; see (3) (observe that
this production is the only production in P’ that has dl appearing on its
right-hand side). It is clear, by the definition of W , that d2 $! Q. Thus,

such that ~1y2h(dl)d2.. . d j is in h-l(z) .

(ii) Let p = AB +. AC E P , A,C E N C F , B E N c s , y = y1ABy2, y1,y2 E V*,
2 = ylACy2, y‘ = 21AYz2, zi E h-l(yi), i E { l , 2 } , Y E h-’(B), and
y1 = a1 . . . ai, y3 = bl . . . b j , a k , bl E V , 1 5 k 5 i, 1 5 1 5 j, for some
i , j 2 0. Let z1 = c1. ..ci, 23 = dl .. . d j , Ck E h-’(Uk), dl E h-’(bi),
1 5 k 5 i, 1 5 I 5 j . Clearly, { B -+ {A, B , C) , (A, B ,C) +. C } C P’, and
A(A, B ,C) E W , see the definition of W .

Let Y = B. Since y‘ E W* and B E NCS, we have d l $! Q. Consequently,
zlA(A, B , C)zz and zlACz2 are in W* by the definition of W . Thus,

28 Chapter 3: Conditions Placed on Derivation Domains

where

= ~1 --+ ~ 1 , . . . ,ci -+ ci,A -+ A , B -+ (A,B,C),dl -+ d l , . . . , d j -+ d j ,

TZ = ~1 -+ ~ 1 , . . .,ci -+ % , A + A, (A ,B,C) -+ Cldl -+ d l , . . . , d j + d j ,

and zlACzz E h-l(s).

Let Y E Q. Clearly, h (Y) must be equal to B. By (3) and the definition of
Q, we have B -+ Y E Pi. Clearly, zlACzz is in W’ for dl $2 Q as we have
already shown. Thus, since

the word zlAYzz can be derived in (GI, W) as follows:

*;“C;:w, ZlABzz

*(G’,W) ZlAYzZ [TI1

where

T = ~1 + ~ 1 , . .. ,ci -+ ci,A -+ A, B --+ Y , d 1 + d1 , . . . , d j -+ d j .

where

T I = ~1 -+ ~ 1 , . . . , ~ i -+ ci,A -+ A, B + (A , B,C),di -+ d l , . . . , d j -+ d j ,

T Z = ~1 -+ ~ 1 , . . . r ~ i -+ ci,A -+ A, (A, B ,C) -+ C,dl -+ d1 , . . . , d j -+ d j ,

and zlACzz E h-l(z).

Cases (i) and (ii) cover all possible rewriting of y in G. Thus, the claim now follows
from the principle of induction. 0

Claim 4. Let S +fG,,w) u, v E W * , v = rDs, and p = D -+ z E P. Then,

h(u) +,$ h(r)h(z)h(s) for some i = 0,1.

Proof. To verify this claim, consider the following three cases:

(i) Let h(z) = h(D). Then,

h(u) *; h(r)h(z)(s).

3.2 Parallel Grammars over Word Monoids 29

(ii) Let z E T U N c s UN;,, D E NCF. Then, there is a production B --t z E P ,
and by the definition of h, we have B + z = h(B) --f h(z) . Thus,

h(r)h(D)h(s) *G h(r)h(z)h(s) [h(B) + h(z)] .

(iii) Let z = C E NCF and D = (A, B , C) for some (A, B , C) E Q; see (3). By
the definition of W , we have r = tA, where t E W * , and so v = tACs. By
the definition of Q, there is a production AB + AC E P. Thus,

tABs =+-G tACs [AB -+ AC],

where tABs = h(tA)h((A , B, C))h(s) and tACs = h(tA)h(C)h(s).

By inspection of P’, cases (i) through (iii) cover all possible types of productions
0 in PI, which proves the claim.

Claim 5. I f S

Proof.

Basis: For n = 0, the only u, is S because S
S JOG S in G.

Induction Hypothesis: Let us assume that the claim holds for all derivations of
length at most n, for some n 2 0.

Induction Step: Consider a derivation

u, u E W*, for some n L 0, then S +: h(u).

S. Since S = h(S) we have

where u E W*. Since n + 1 2 1, there is some v E W* such that

*YG1,W) *(G’,W) u,

and by the induction hypothesis

s *; h(v).

Return to the proof of Claim 4. It should be clear that by using (i) through (iii)
from Claim 5, we can construct a derivation

h(v) =& Wu),
for some i E (0 , . . . , lul}, in the following way: first rewrite all occurrences of
symbols corresponding to the case (iii) and then all occurrences of symbols corre-
sponding to (ii); the technical details are left to the reader.

Thus,
s *& h(v) *& h(u)

in G. Hence, by the principle of induction, we have established Claim 5. 0

30 Chapter 3: Conditions Placed on Derivation Domains

Next, the proof of the equivalence of G and (GI, W) can be derived from
Claims 3 and 5: By the definition of h-’, we have h-l(a) = { a } for all a E T .
Thus, by Claim 3, we have for any x E T* ,

S +; x implies S +TGc’,w) x;

that is, L(G) G L(G’,W).

x E T*,
S +iG,,w) x implies S +; x;

that is, L(G’, W) C L(G). As a result, L(G) = L(G‘, W) and so WMEPOL(2) =

Conversely, since T* C W * , we get, by the definition of h and Claim 5, for any

CS = SEPOL, which proves the theorem.

Observe that Theorem 9 and the definitions yield the following normal form:

Corollary 4. Let L be a context-sensitive language over an alphabet T . Then, L
can be generated by an WMEPOL grammar (G, W) of degree 2, G = (V,T, P, S) ,
where W is over an alphabet V such that T C W , (W - V) C (V - T) 2 , and if
A -+ x and 1x1 > 1, then x E (V - T) 2 .

Let us turn the investigation to WMEOL grammars of degree 2 with erasing
productions.

Theorem 10. WMEOL(2) = RE.

Proof. Clearly, WMEOL(2) C RE, hence it suffices to show RE C_ WMEOL(2).
Each language L E RE can be generated by a phrase-structure grammar G

having the form of Lemma 5. Thus, the containment RE WMEOL(2) can be
proved by analogy with the techniques used in the proof of Theorem 9. The details
are left to the reader.

Since the forms of the resulting WMEOL(2) grammar in the proofs of Theorem 9
and Theorem 10 are analogous, we obtain the following corollary as an analogy to
Corollary 4:

Corollary 5. Let L be a recursively enumerable language over an alphabet T .
Then, L can be generated by an WMEOL grammar (G , W) of degree 2, G =
(V, T , P, S) , where W is over an alphabet V such that T G W , (W - V) G (V-T)2 ,
and if A -+ x and 1x1 > 1, then x E (V - T) 2 .

Summing up Theorems 8, 9 and 10, we obtain the following corollary:

Corollary 6.

CF
C

WMEPOL(1) = WMEOL(1) = EPOL = EOL
C

WMEPOL(2) = CS
C

WMEOL(2) = RE.

3.2 Parallel Grammars over Word Monoids 31

Open Problems. In this chapter, we have discussed grammars with derivations
over the word monoids rather than the letter monoids. From a broader algebraic
perspective, we could consider many other modifications of the derivation domains.
Specifically, what is the generative power of context-free grammars whose deriva-
tions axe defined over free groups?

Chapter 4

Context Conditions Placed on the
Use of Productions

In this chapter, we discuss grammars with context conditions represented by
strings associated with productions. We distinguish between two types of these
conditions-forbidding conditions and permitting conditions. A production is ap-
plicable to a sentential form if each of its permitting conditions occurs in the
sentential form and any of its forbidding conditions does not. In Section 4.1, we
study sequential grammars with context conditions, originally introduced by van
der Walt [175] in 1970. Then, in Section 4.2, we introduce and discuss parallel
versions of these grammars. In both sections, we demonstrate that this concept of
context conditions attached to grammatical productions significantly increase the
grammatical generative power. Furthermore, in some grammars, we explain how
to reduce the number of conditional productions, the length of context conditions,
and the number of nonterminals.

4.1 Sequential Conditional Grammars

Informally, a sequential conditional grammar is an ordinary context-free grammar
in which the application of productions is regulated by the permitting and for-
bidding context conditions. In every derivation step, such a grammar can rewrite
only one nonterminal symbol in the given sentential form; that is, it works purely
sequentially. Making use of this basic principle, the formal language theory has
introduced a large number of variants of these grammars. In order to unify the no-
tations and definitions, we start with the basic definition of a context-conditional
grammar in Section 4.1.1. Then, in Sections 4.1.2 through 4.1.5, we investigate
some special cases of the context-conditional grammars.

4.1.1 Context-Conditional Grammars

Definition 9. A context-conditional grammar is a quadruple,

G = (V, T , p, S),

where V , T , and S are the total alphabet, the terminal alphabet (T c V) , and
the axiom (S E V - T) , respectively. P is a finite set of productions of the form

33

Grammars with Context Conditions and Their Application.
Alexander Meduna and Martin Svec

Copyright 0 2005 John Wiley & Sons, Inc.

34 Chapter 4: Conditions Placed on the Use of Productions

(A -+ x,Per,For), where A E V - T , x E V*, and finite sets Per, For C V+.
If Per # 0 or For # 0, the production is said to be conditional; otherwise, it
is called context-free. G has degree (r, s), where r and s are natural numbers, if
for every (A -+ x,Per,For) E P , max(Per) 5 r and max(For) L: s. If (A 4

x , Per, For) E P implies x # E , G is said to be propagating. Let u, v E V * and
(A -+ x , Per, For) E P. Then, u directly derives v according to (A -+ x , Per, For)
in G, denoted by

u JG Y [(A --+ x , Per, For)],

provided that for some ul , u2 E V*, the following conditions hold:

(a) u = u1Au2,

(b) v = u1xu2,

(c) Per C sub(u),

(d) For n sub(u) = 0.

When no confusion exists, we simply write u JG v instead of u JG Y [(A -+

x , Per, For)]. By analogy with context-free grammars, we extend J G to +&
(where k 2 0), +& and +;. The language of G, denoted by L(G), is defined as

L(G) = {W E T* : S =+; w} .

The families of languages generated by context-conditional grammars and prop-
agating context-conditional grammars of degree (r, s) are denoted by CG(r , s) and
prop-CG(r, s), respectively. Furthermore, we define

0 0 0 5

C G = u u CG(r ,s)
r=O s=O

and
c o w

prop-CG = u u prop-CG(r, s).
r=O s=O

Next, we establish several theorems dealing with the generative power of con-
text-conditional grammars. Let us note, however, that a number of specializations
of these grammars will be defined and investigated in Sections 4.1.2 through 4.1.5.
Therefore, only the results concerning the general versions of context-conditional
grammars are presented here.

Theorem 11. prop-CG(0,O) = CG(0,O) = CF

Proof. This theorem follows immediately from the definition. Clearly, context-
conditional grammars of degree (0,O) are ordinary context-free grammars.

Lemma 6. prop-CG C CS.

4.1 Sequential Conditional Grammars 35

Proof. Let r = s = 0. Then, prop-CG(0,O) = CF c CS. The rest of the proof
establishes the inclusion for degrees (r , s) such that r + s > 0.

Consider a propagating context-conditional grammar

G = (V,T,P,S)

of degree (r, s) , r + s > 0, for some r, s 2 0. Let k be the greater number of r and
s. Set

Next, define

M = {z E v+ : 1x1 5 k}.

cf(P) = { A -+ IC : (A -+ z, Per, For) E P, A E (V - T) , z E V’}.

Then, set
NF = { (X , Z) : X E M , z€MU{E}},
NT = {[XJ: X C M } ,

v’
T’ = TU{#}.

NB = { [P i : PEcf(P)}U{r@I}l
= v U NF U NT U NB U {D, 4, $,s’, #},

Construct the context-sensitive grammar

G’ = (V’, T’, P‘, S’)

with the finite set of productions P‘ defined as follows:

1. Add S’ -+ D (@ , &) S a to P’.

2. For all X g M , z E (Vk U {E}) and y E Vkl add the next production to P’:

(X,z)y -+ y(XUsub(zy,k),y).

3. For all X C M , 3c E (V’~{E}) and y E V+, IyI k , add the next production
to P‘:

(X , z) y a --i y[X Usub(zy,k)Ja.

4. For all X G M and every p = A -+ z E cf(P) such that there exists
(A -+ x, Per, For) E P satisfying Per C X and For n X = 8, add the next
production to P‘:

lxJa -+ Tpla.

5. For every p E cf(P) and a E V, add the next production to P’:

arpi -+ rpia.

6 . For every p = A + z E cf (P) , A E (V - T), z E V+, add the next production
to P’:

~ r p i -+ raiz.

36 Chapter 4: Conditions Placed on the Use of Productions

7. For every a E V , add the following production to P’:

4 0 1 --+ [Sla.

8. Add D[01 --+ D (~ , E) to P’.

9. Add D(@,E) -+ #$, $a 4 ##, and $a 4 a$, for all a E T , to P’

Claim 6 . Every successful derivation in G’ has the f o r m

s’ J G ~ D(8,E)Sa

D(8,E)XQ

+GI #$xa

=$! #x$a
*GI #x##

such that x E T’, and during

D(8,E)Sa +-;, D(8,&)SQ,

everysententialformw satisfiesw E {D}H+{a}, whereH E V’-{D,Q,#,$,s’}.

Proof. Observe that the only production that rewrites S‘ is S‘ --+ D(8, E)Sa; thus,

s’ +GJ D(8,E)Sa.

After that, every sentential form that occurs in

D(8, &)Sa +;t D(8, E) X a

can be rewritten by using any of the productions (2) through (8) from the con-
struction of P‘. By inspection of these productions, it is obvious that the edge
symbols D and Q remain unchanged and no other occurrences of them appear
inside the sentential form. Moreover, there is no production generating a symbol
from {#,$, S’}. Therefore, all these sentential forms belong to {D}H+{a}.

Next, let us explain how G’ generates a word from L(G’). Only D(8,&) 4 #$
can rewrite D to a symbol from T (see (9) in the definition of P’). According to
the left-hand side of this production, we obtain

s‘ J G ~ D(8,E)SQ +&/ D(8,E)Xa +-G/ #$Xa,

where x E H’. To rewrite Q, G‘ uses $a 4 ##. Thus, G’ needs $ as the left
neighbor of a. Suppose that x = a1a2.. . a p , where q = 1x1 and ai E T , for all
i E { 1, . . . , q } . Since for every a E T there is $a 4 a$ E P’ (see (9)), we can
construct

#$ala2. . . a,a =+-Gt #al$az . . . a,a
a G t #alaz$. . . a,a
+:!-’ #alaz . . . a,$a.

4.1 Sequential Conditional Grammars 37

Notice that this derivation ca#be constructed only for x that belong to T+. Then,
$a is rewritten to ##. As a result,

with the required properties. Thus, the claim holds. 0

The following claim demonstrates how G’ simulates a direct derivation from
G-the heart of the construction.

Let x +$ y denote the derivation x y such that x = D(@,E)ua, y =
D(0, &) v d , u, Y E V+, and there is no other occurrence of a string of the form
D(!&&)za, z E V*, during 2 +&, y.

Claim 7. For every u, v E V*, it holds that

D(@,&)ua +El D(0,E)vQ if and only zf u JG v.

Pro0 f.

Only if: Let us show how G’ rewrites D(@,&)ua to D(@,&)va. The simulation
consists of two phases.

During the first, forward phase, G’ scans u to get all nonempty substrings of
length k or less. By repeatedly using productions (X , x)y -+ y(X U sub(zy, k), y),
X C M , x E (Vk U { E }) , y E V k (see (2) in the definition of P’), the occurrence
of a symbol with form (X,Z) is moved toward the end of the sentential form.
Simultaneously, the substrings of u are collected in X . The forward phase is
finished by (X ,z)ya -+ y[X U sub(zy, k)Ja, 2 E (V k u {E}), y E V+, IyI 5 k (see
(3)); this production reaches the end of u and completes X = sub(u, k). Formally,

such that X = sub(u, k).
The second, backward phase simulates the application of a conditional produc-

tion. Assume that u = u1Au2, u1,uz E V * , A E (V - T) , and there exists a pro-
duction A -+ x E cf(P) such that (A --+ x, Per, For) E P for some Per, For s M ,
where Per G X , For n X = 0. Let u1xu2 = v. Then, G’ derives

D u L x J a D(@,&)va

by performing the following five steps:

(i) [XI is changed to [p l , where p = A -+ x satisfies the conditions above (see
(4) in the definition of P‘).

form arp] -+ [pla, a E V (see (5)) .
(ii) DulAu2[pla is rewritten to DulA[plu2a by using the productions of the

(iii) DulA[pluga is rewritten to ~ u l [8 1 x u ~ a by using Arpl --t r0lx (see (6)) .

38 Chapter 4: Conditions Placed on the Use of Productions

(iv) Dul [@1xuza is rewritten to D ~ @ ~ u l x u ~ a bp using the productions of the

(v) Finally, Dr01 is rewritten to D(0,&) by Dr01 -+ D(@,€E).

form ar01 + [01a, a E V (see (7)).

As a result, we obtain

D(8, +a *+ DULX] a J G ’ DUrp1 a +5 D r s l v a J G t D(0,E)va.

Observe that this is the only way of deriving

D(0, €) u a *:, D(O, €)va .

Let us show that u JG v. Indeed, the application of Alp] -+ 101. implies that
there exists (A -+ x , Per, For) E P , where Per C sub(u, k) and For n sub(u, k) =
0. Hence, there exists a derivation

‘LL *G v [PI,

where u = ulAu2, v = u1xuz and p = (A + x, Per, For) E P.

I f : The converse implication is similar to the only-if part, so we leave it to the
reader. 0

Claim 8. S‘ +:, ~ (0 , ~) x a if and only if S +; x, for all x E V+.

Pro0 f .

Only if: The only-if part is proved by induction on the ith occurrence of the
sentential form 20 satisfying w = D (@ , E) U ~ , u E V + , during the derivation in GI.

Basis: Let i = 1. Then, S‘

Induction Hypothesis: Suppose that the claim holds for all i 5 h, for some h 2 1.

Induction Step: Let i = h + 1. Since h + 1 2 2, we can express

~ (0 , c) S a and S *; S.

S’ +;, D(0, €)xis

as
S’ *;, D(0,E)Xi-la +:, D(0,&)xia,

where xi-1,xi E V+. By the induction hypothesis,

s *; xi-1.

Claim 7 says that

D (~ , E) x ~ - I ~ +$ D(@,€)xiQ if and only if xi-1 +G xi.

Hence,
s *; xi-1 J G xi,

4.1 Sequential Conditional Grammars 39

and the only-if part holds.

I f : By induction on n, we prove that

S +; x implies S' +& D (0 , ~) x a

for all n 2 0, x E V+.

Basis: For n = 0, S

Induction Hypothesis: Assume that the claim holds for all n or less, for some
n 2 0.

Induction Step: Let

x E V+. Because n + 1 2 1, there exists y E V+ such that

S and S' +GI D(@,&)Sa .

s +;+l 2,

and by the induction hypothesis, there is also a derivation

s' *& D(0,E)ya.

From Claim 7 we have
~ (0 , a) y a ~ (0 , ~) x a .

Therefore,
S' *Ll D(0,E)XQ,

and the converse implication holds as well. 0

From Claims 6 and 8 we see that any successful derivation in G' is of the form

such that
S +z x, x E T+.

Therefore, we have for each x E T+,.

S' +:, #x## if and only if S *z x.

Define the homomorphism h over (T U {#})* as h(#) = E and h(a) = a for
all a E T . Observe that h is 4-linear erasing with respect to L(G') (see page 98
in [lSl]). Furthermore, notice that h(L(G')) = L(G). Because CS is closed under
linear erasing (see Theorem 10.4 on page 98 in [lSl]), L E CS. Thus, Lemma 6
holds. 0

Theorem 12. prop-CG = CS.

40 Chapter 4: Conditions Placed on the Use of Productions

Proof. By Lemma 6, we have prop-CG G CS. CS C prop-CG holds true as
well. In fact, later in this book, we introduce several special cases of propagating
context-conditional grammars and prove that even these grammars generate CS

W (see Theorems 26 and 28). As a result, prop-CG = CS.

Lemma 7. CG C RE.

Proof. This lemma follows from Church’s thesis. To obtain an algorithm convert-
ing any context-conditional grammar to an equivalent phrase-structure grammar,
use the technique presented in Lemma 6 .

Theorem 13. CG = RE.

Proof. By Lemma 7, CG C RE. Later on we define some special cases of context-
conditional grammars and demonstrate that they characterize RE (e.g., see The-

m orems 19, 27, and 29). Thus, RE C CG too.

4.1.2 Random-Context Grammars

This section discusses three special cases of context-conditional grammars whose
conditions are nonterminal symbols, so their degree is not greater than (1,l).
Specifically, random-context grammars, also known as permitting grammars, are
of degree (1 ,O) . Forbidding grammars are of degree (0 , l) . Finally, random-context
grammars with appearance checking are of degree (1,l).

Definition 10. Let G = (V, T , P, S) be a context-conditional grammar. G is
called a random-context grammar with appearance checking provided that every
(A -+ x , Per, For) E P satisfies Per C N and For C N .

Definition 11. Let G = (V, T , P, S) be a random-context grammar with appear-
ance checking. G is called a random-context grammar (an rc-grammar for short) or
permitting grammar provided that every (A t x, Per, For) E P satisfies For = 0.

Definition 12. Let G = (V, T , P, S) be a random-context grammar with ap-
pearance checking. G is called a forbidding grammar provided that every (A -+

x, Per, For) E P satisfies Per = 0.

The following convention simplifies productions in permitting grammars and
forbidding grammars, respectively:

Convention 1. Let G = (V, T , P, S) be a permitting grammar, and let p = (A --$

x, Per, For) E P. Since by the definition For = 0, we usually omit the empty set
of forbidding conditions. That is, we write (A + x, Per) when no confusion arises.

Let G = (V, T , P, S) be a forbidding grammar, and let p = (A -+ x, Per, For) E
P. Analogously, we write (A --+ x , For) instead of (A t x, Per, For) because
Per = 0 for all p E P.

4.1 Sequential Conditional Grammars 41

The families of languages defined by random-context grammars, random-con-
text grammars with appearance checking, and forbidding grammars are denoted
by RC, RC(ac), and F, respectively. To indicate that only propagating grammars
are considered, we use the prefix prop-. That is, prop-RC, prop-RC(ac), and
prop-F denote the families of languages defined by propagating random-context
grammars, propagating random-context grammars with appearance checking, and
propagating forbidding grammars, respectively.

Example 1 ([43]). Let

G = ({S , A, B , C, D, A’, B’, C’, a , b, c) , {a , b, c) , p, S)

be a permitting grammar, where P is defined as follows:

P = { (S + ABC,0),
(A -+ aA’, { B)) ,
(B + bB’, {C)),
(C -+ CC’, {A’)),
(A’ -+ A, {B’)),
(B’ -+ B, {C’)),
(C’ + c, { A)) ,
(A + a , {W) ,
(B + b, {C)),
(C + c, 0)) .

Consider the word aabbcc. G generates this word in the following way:

S + ABC + aA’BC + aA’bB’C + aA’bB’cC‘ +
aAbB’cC’ + aAbBcC‘ + aAbBcC +
aabBcC + aabbcC + aabbcc.

Observe that G is a propagating rc-grammar and L(G) = {anbncn : n 2 1). Recall
that {anbncn : n 2 1) is a non-context-free language.

Example 2 ([43]). Let

be an rc-grammar with appearance checking. The set of productions P is defined
as follows:

..
(A + B , 0 , {S, D)) ,
(B + s, 0 , {A , D)) ,
(A -+ D, 0 , {S , B)) ,
(D -+ a, 0, { S , A, B))) .

Notice that G is a propagating forbidding grammar. For’aaaaaaaa, G makes the
following derivation:

S + AA + AB + BB + BS =+ SS + AAS + AAAA + BAAA +
BABA =+ BBBA
SSSS + AASSS j3 AAAAAAAA

BBBB + SBBB =+ SSBB =+ SSSB +
DDDDDDDD +g aaaaaaaa.

42 Chapter 4: Conditions Placed on the Use of Productions

Clearly, G generates the non-context-free language L(G) = {a2” : TI 2 1).

The generative power of random-context grammars is intensively studied in [43]
and [148], which present the next two theorems.

Theorem 14. CF c prop-RC C prop-RC(ac) C CS.

Proof. CF c propRC follows from Example 1. By the definition of rc-grammars
and rc-grammars with appearance checking, we have prop-RC 2 prop-RC(ac).

I prop-RC(ac) c CS follows from Theorems 1.2.4 and 1.4.5 in [43].

Theorem 15. prop-RC C RC c RC(ac) = RE.

Proof. prop-RC RC follows immediately from the definitions. By Theo-
rem 1.2.5 in [43], RC(ac) = RE. Furthermore, from Theorem 2.7 in Chapter
3 of Volume 2 of [157], it follows that RC C RC(ac); thus, the theorem holds.

I

Lemma 8. ETOL c prop-F.

Proof (see 11481). Let L E ETOL, L = L(G) for some ETOL grammar,

G=(V,T ,P i , . . . , Pt,S) .

Without loss of generality we can assume that G is propagating. Now we introduce
the alphabets

v(i)
V’ = {a ’ : a € V } ,
V” = {a’) : a E V } ,
P = { a : U E T } .

= {a(i) : a E V } , 16 2 5 t ,

For w E V*, by w (~) , w‘, w”, and t3 we denote the words obtained from w by
replacing each occurrence of a symbol a E V by a(i) , a’, a”, and C, respectively.
Let P’ be the set of all random-context productions defined as

1. for every a E V , add (a’ 4 a”, 0, v U V(’) U V (2) U . . . U V (t)) to P’;

2. for every a E V for all 1 5 i 5 t , add (a” + a(Z),@, v U V’ U V(’) U V (2) U

3. for all i E (1,. . . , t } for every a t u E Pi, add (a(i) -+ u’, 0 , V” U v) to P’;

4. for all a E T , add (a’ -+ si, 0, V” U V(’) U V (2) U . . . U

5. for all a E T , add (a -+ a , 0, V’ U V” U V(’) U V (2) U . . . U V (t)) to P’.

... u V(i-1) u v(i+’) u.. . u V (t)) to p’;

to P’;

Then, define the random-context grammar

G’ = (V’ U V” U v U V (l) U U . . . U V(t), T , PI, S’),

which has only forbidding context conditions.

side is in V’.
Let x‘ be a string over V’. To x‘ we can apply only productions whose left-hand

4.1 Sequential Conditional Grammars 43

(i) We use a’ + a’’ for some a’ E V’. Now the obtained sentential form contains
symbols of V’ and V”. Hence we can use only productions of type (1).
Continuing in this way we get x‘ +&, XI’. By analogous arguments we
now have to rewrite all symbols of x” by productions of (2) with the same
index (i). Thus, we obtain x (~) . Now to each symbol of x(2) we apply a
production + u’, where a + u E Pi. Since again all symbols of x (~) have
to be replaced before starting with productions of another type, we simulate
a derivation step in G and get z’, where x =+G z in G. Therefore, starting
with a production of (l), we simulate a derivation step in G, and conversely,
each derivation step in G can be simulated in this way.

(ii) We apply to x‘ a production a’ + 6. Next, each a’ of T’ occurring in x’ has
to be substituted by 7i and then by a using the productions of (5). Therefore,
we obtain a terminal word only if x’ E (T’)*.

By these considerations the successful derivations in G’ are of the form

S’ JGl S” JGI S(i0)
2‘1 *&, 2:’ * & I zl (il)

and such a derivation exists if and only if

is a successful derivation in G. In conclusion, L(G) = L(G’).

and can be generated by a forbidding grammar. A language of this kind is
In order to finish the proof, it suffices to find a language that is not in ETOL

L = {b(ba”)n : m 2 n 1 O},

which can be generated by the grammar

G = ({S,A,A’,B,B’,B”,C,D,E}, {a,b}, P , s)

with P consisting of the following productions:

44 Chapter 4: Conditions Placed on the Use of Productions

(D + c10, { A , B)),
(B’ -4 B10, { D)) ,

-+ B101 { D }) ,

(A’ + A, 01 {D})l
(D + E, 0, {S, A, A’, B’, B”, C, E }) ,

(B --+ b, 0, {S, A, A’, B’, B”, C, D }) ,
(E + b,0,~S,A,A’,B1B’,B’’,C,D}).

First, we have the derivation

S =+; SA” =+G CA” =+G DA”,

and then we have to replace all occurrences of A. If we want to replace an A by a
terminal word in some steps, it is necessary to use A --+ B“a. However, this can

0 be done at most once in a phase that replaces all A. Therefore, m 2 n.

Theorem 16. CF c ETOL c prop-F C F c CS.

Proof. According to Example 2, we already have CF c prop-F. By [155] and
Lemma 8, CF C ETOL C prop-F. Moreover, in [148], Penttonen proved that
prop-F C F C CS. Therefore, the theorem holds.

The following corollary summarizes the relationships of language families gen-
erated by random-context grammars:

Corollary 7.
CF C prop-RC C prop-RC(ac) c CS,

prop-RC C RC c RC(ac) = RE,

CF c ETOL C prop-F C F C CS,

Open Problem.
Which of them are, in fact, identities?

Consider the inclusions that are not proper in Corollary 7.

4.1.3 Generalized Forbidding Grammars

Generalized forbidding grammars introduced by Meduna in [1041 represent a gen-
eralized variant of forbidding grammars (see Section 4.1.2) in which forbidding
context conditions are formed by finite languages.

Definition 13. Let G = (V, T , P, S) be a context-conditional grammar. If every
(A -+ x, Per , For) satisfies Per = 0, then G is said to be a generalized forbidding
grammar (a gf-grammar for short).

The following convention simplifies the notation of gf-grammars:

4.1 Sequential Conditional Grammars 45

Convention 2. Let G = (V, T , P, S) be a gf-grammar of degree (T , s) . Since every
(A -+ x,Per,For) E P implies Per = 0, we omit the empty set of permitting
conditions. That is, we write (A -+ x ,For) instead of (A -+ z,Per,For). For
simplicity, we also say that G’s degree is s instead of (T , s) .

The families generated by gf-grammars and propagating gf-grammars of degree
s are denoted by GF(s) and prop-GF(s), respectively. Furthermore,

00

GF = U GF(s)
s=o

00
and

prop-GF = u prop-GF(s).
s=O

By analogy with Theorem 11, it is easy to see that gf-grammars of degree 0 are
ordinary context-free grammars:

Theorem 17. prop-GF(0) = GF(0) = CF.

Futhermore, gf-grammars of degree 1 are as powerful as forbidding grammars:

Theorem 18. GF(1) = F.

Proof. This simple proof is left to the reader.

Theorem 19. GF(2) = RE.

Proof. It is straightforward to prove that GF(2) C_ RE; hence it suffices to prove
the converse inclusion.

Let L be a recursively enumerable language. Without loss of generality we can
assume that L is generated by a phrase-structure grammar,

G = (V,T, P, S),

of the Penttonen normal form (see Lemma 3) and let N = V - T.
Let @, $, S’ be new symbols and m be the cardinality of V U {@}. Clearly,

m 2 1. Furthermore, let f be an arbitrary fixed bijection from V U {@} onto
{ 1, . . . , m} and f-’ be the inverse of f .

The gf-grammar,
G’ = (V’ U {a, $, S’}, T, P’, S‘),

of degree 2 is defined as follows:

V’ = W U V, where
W = { [AB-+AC, j] : A B - ~ A C E P , A , B , C E N , l _ < j i m + l) ,

W , {@, $, S’}, and V are painvise disjoint alphabets. The set of productions P’ is
defined in the following way:

46 Chapter 4: Conditions Placed on the Use of Productions

1. Add (S‘ -+ @S,8) to PI.

2. If A -+ x E P , A E N , z E { E } U T U N 2 , then add (A -+ z, {$}) to P’.

3. I f A B - + A C E P , A , B , C E N , t h e n :

(a) add (B -+ $[AB -+ AC, 11, {$}) to P’;

(b) f o r a l l j = l , . . . , m , f (A) # j , a d d ([A B - + A C , j] - + [A B - + A C , j +

(c) add ([A B --+ A C , f (A)] -+ [AB -+ A C , f (A) + 11,s) and ([A B -+

4. Add the following two productions (@ -+ E , N U W U {$}) and ($ -+ E , W) to

11, {f-l(j)$H to P’;

AC, m + 11 -+ C, 0) to P’.

P‘ *

Basic Idea. Basically, the application of AB -+ AC in G is simulated in G‘
as follows: An occurrence of B is rewritten with $[AB -+ AC, 11. Then, the left
adjoining symbol of $ is checked not to be any symbol from (V U {@}) except A.
After this, the right adjoining symbol of $ is [AB -+ A C , m + 11. This symbol is
rewritten with C. Formal proof is given below.

Immediately from the definition of P’ it follows:

S’ +;, 2,

where x E (V’ U { @, S’}) * , implies

(I) S’ sub(x);

(11) # (S U b ({ $ } ~) - { E }) z 5 1 such that if #WX = 1, then #{$}wx = 1;

(111) if z # T* , then the left-most symbol of z is @.

Next, we define a finite letter-to-letters substitution g from V* into (V’)* such
that for all B E V ,

g(B) = { B } U { [A B + A C , j] E W : AB -+ AC E P, A , C E N , j = 1, . . . ,m+l} .

Let g-’ be the inverse of g.
To show that L(G) = L(G’), we first prove that

S +; 2 if and only if S +$ x’,

where z’ = @dXw’, X E { $, E } , w’w’ E g(z), z E V * , for some n 2 0, n’ 2 1.

Only if: This is established by induction on the length n of derivations; that is,
we have to demonstrate that S +E x, x E V * , n 2 0, implies S +;, x’ for some
x’ such that z’ = @v’Xw’, X E { $, E } , w’w’ E g(z).

4.1 Sequential Conditional Grammars 47

Basis: Let n = 0. The only x is S because S *: S. Clearly, S’ J ~ I @S and

Induction Hypothesis: Suppose that our claim holds for all derivations of length
at most n, for some n 2 0.

Induction Step: Let us consider a derivation

s E dS).

s =+;+l 2,

z E V*. Since n + 1 2 1, there is some y E V+ and p E P such that

*: y *G 2 b],
and by the induction hypothesis, there is also a derivation

s *$ y’,

for some n’ 2 1, such that y’ = @r‘Ys’, Y E { $, E } , and r’s’ E g(y).

(i) L e t u s a s s u m e t h a t p = D - + y ~ E P , D E N , ~ ~ E { E } U T U N ~ , ~ = ~ ~ D ~ ~ ,
Yl,Y3 E V * , 2 = y1y2y3. From (2) it is clear that (D -+ y2,{$}) E P’.

(a) Let $ $ alph(y’). Then, we have y’ = @r‘s’ = @y1&3,

s’ *$ @?/1Dy3 *G’ @y192y3 [(D Y2, { $)) I ,
and yly293 E dYly2y3) = dX)*

(b) Let Y = $ E sub(y’) and W n sub(y’) = 8. Then, there is the following
derivation in G’:

s’ =?‘$! @r’$s’ *G‘ [($ --$ &,W)] .

By analogy with (a) above, we have @r’s’ = QylDy2 and so

S’ g ’ + l
G’ @ylDy3 *GI @!/1y2?/3 [(D * y2, {$))I7

where yly2y3 E g(x).
(c) Let $[AB --+ AC, 21 E sub(y‘) for some i E (1 , . . . , m + l}, AB -+ AC E

P, A , B , C E N . Thus, y’ = @r’$[AB -+ AC,i]t’, where s’ = [AB 4

AC,i]t’. By inspection of the productions (see (3)) it can be seen (and
the reader should be able to produce a formal proof) that we can express
the derivation

S’ *;, y’

in the following form:

S’ +&, @r’Bt’
@r’$[AB -+ AC, l]t’ [(B -+ $[AB -+ AC, 11, {$})I

+a-1 @r’$[AB -+ AC, ilt’. G’

48 Chapter 4: Conditions Placed on the Use of Productions

Clearly, r'Bt' E g(y) and $ @ sub(r'Bt'). Thus, r'Bt' = y1Dy3, and
there is a derivation

(ii) Let p = A B -+ A C E P , A , B , C E N , y = ylAByz, y1,yz E V' , 2 =
Y l ACY2.

(a) Let $ # sub(y'). Thus, T'S' = y1AByz. By inspection of the productions
introduced in (3) (technical details are left to the reader), there is the
following derivation in G':

S' +$ Y1AByz
+GI @ylA$[AB --+ AC, l]yz

J G ~ @y,A$[AB -+ AC, 2]yz
[(B -+ $[AB -+ AC, 11, {$)>I

["AB -+ AC, 11 -+ [AB + AC, 21, {f-l(l)$H1

+GJ @yiA$[AB -+ AC, m + l]y2
[([AB -+ AC,rn] -+ [AB -+ A C , m + l],{f-'(m)$})]

[([AB --+ AC, m + 11 --+ C, S)]
JG' @YlA$CyZ

such that y1ACyz E g(ylACy2) = g(2).

derivation
(b) Let $ E sub(y'), sub(y') n W = 0. Using an analogue from (i.b), the

S' * ; I @?-Is',

where @T's' = @y1ABy2, can be constructed in G'. Then, by analogy
with (ii.a), one can construct the derivation

S' @Y1AByz =+;, @yIA$Cyz

such that y1ACy2 E g(z).

derivation
(c) Let #({$}w-{E})y' = 1. By analogy with (i.c), one can construct the

S' +&t @Y1ABy2.

4.1 Sequential Conditional Grammars 49

Next, using an analogue from (ii.a), the derivation

can be constructed in G‘ such that y1ACyz E g(z).

In (i) and (ii) above we have considered all possible forms of p . In cases (a), (b),
(c) of (i) and (ii), we have considered all possible forms of y’. In any of these cases
we have constructed the desired derivation of the form

S’ +;, 2’

such that z’ = @r’Xs’, X E {$, E } , r’s’ E g(z). So, we have established the only-if
part of our claim by the principle of induction.

I f : This is also demonstrated by induction but in this case on n’. We have to
demonstrate that if S’ +$, z’, 2’ = @r‘Xs’, X E { $, E } , r’s’ E g(z), z E V*, for
some n’ 1 1, then S +; z.

Basis: For n’ = 1 the only z’ is @S since S’ + G ~ @S. Because S E g(S), we have
2 = S. Clearly, S +$ S.

Induction Hypothesis: Assume that the claim holds for all derivations of length at
most n’ for some n’ 2 1. Let us show that it is also true for n’ + 1.

Induction Step: Consider a derivation

SI +n‘+l
G’

z’ = @r’Xs’, X E { $, E } , r’s’ E g(z), z E V*. Since n’ + 1 2 2, we have

s’ *$! y’ J G ‘ 2’ [P I]

for some p’ = (Z’ ---f w’,For) E P’, y’ = @q’Yt’, Y E { $, E } , q’t’ E g(y), y E V*,
and by the induction hypothesis,

Suppose:

(i) 2’ E N , w’ E { E } U T U N2. Inspecting P’ (see (2)) we have For = {$}
and Z‘ + w’ E P. Thus, $ @ sub(y’) and so q‘t‘ = y. Hence, there is the
following derivation

s =$‘; y =$‘G 2 [z’ + w’].

(ii) g-l(Z’) = g-’(w’). But then y = z, and by the induction hypothesis, we
have the derivation

s +; y.

50 Chapter 4: Conditions Placed on the Use of Productions

(iii) p’ = (B -+ $[AB -+ AC,l] ,{$}); that is, 2’ = B, w’ = $[AB --+ AC,l],
For = {$} and so w’ E {$}g(Z’), Y = E , X = $. By analogy with (ii) we get

S*&Y

and y = x.

(iv) 2’ = Y = $; that is, p’ = ($ -+ c,W). Then, X = E , r’s’ = q’t’ E g(y), and

s =+& y.

(v) p’ = ([AB -+ AC, m + 11 -+ C, 0) ; that is, 2’ = [AB -+ AC, m + 11, w’ = C ,
For = 0. From (3) it follows that there is a production of the form AB --+

AC E P. Moreover, on inspecting (3), it is not too difficult to see (technical
details are left to the reader) that Y = $, r’ = q’, t’ = [AB -+ AC,m + 1]0’,
s’ = Co‘, and the derivation

s’ =$‘$I y’ JG‘ x’ [p’]

can be expressed in the form

S’ =+&, Qq’Bo’
@q’$[AB -+ AC, 110’ [(B -+ $[AB -+ AC, 11, { $ }) I

+m+l G’ @q’$[AB -+ AC, m + 110’ [h]
=$‘GI @q‘$co’ [([AB -+ AC,m+ 11 -+ C,0)],

where

h =h i ([AB-+AC, f (A)] -+ [AB--+AC,f(A)+l] , (d)hz ,
hi = ([AB -+ AC,1] -+ [AB -+ AC,2],{f-1(1)$})

([AB -+ AC,2] -+ [A13 -+ AC,3],{ f - l (2)$})

([AB -+ AC,m] -+ [AB --+ AC,m+ l] , { f - ’ (m)$}) ,

where f (A) = m implies h2 = E ; that is, the right-most symbol of q’ = r’
must be A.

Since q‘t’ E g(y), we have y = q‘Bo‘. Because the right-most symbol of q’ is
A and AB -+ AC E P , we get

S =+& q‘Bo’ JG q’C0’ [AB -+ AC],

where q’Co’ = x.

4.1 Sequential Conditional Grammars 51

Now, regarding (i) through (v) and inspecting P', we have considered all pos-
sible derivations of the form

and thus we have established that

S =+-; x if and only if S' +:, x' ,

where x' = @r'Xs', r's' E g(x) , X E {$, E } , x E V * , by the principle of induction.
The proof of the equivalence of G and G' can easily be derived from above.

By the definition of g, we have g(a) = { a } for all a E T . Thus, we have for any
x E T*,

S +; x if and only if S' 3;) Q r X s ,

where X E { $, E } , T S = x . If X = E , then

@x J G ' x [(@ -+ E , N u W u {Is})].

If X = $, then

@r$s @x [($ -+ E , W)] +-Gt x [(@ 3 E,N u W u {$})I.
Hence,

S 3 2 x if and only if S' +:, x

for all x E T*, and so L(G) = L(G'). Thus, RE = GF(2).

Theorem 20. GF(2) = GF = RE.

Proof. It follows immediately from the definitions and Theorem 19.

Note that in G' in the proof of Theorem 19 only certain types of productions
are used, establishing the following normal form:

Corollary 8. Every recursively enumerable language L over some alphabet T can
be generated by a gf-grammar G = (V, T , P U {p l , p 2 } , S) of degree 2 such that

(a) (A -+ x , For) E P implies 1x1 = 2 and the cardinality of For is at most 1;

(ii) pi = (Ai -+ E , Fori), i = 1,2, where Fori E V ; that is, max(Fori) 5 1.

In fact, the corollary above represents one of the reduced forms of gf-grammars
of degree 2. Perhaps most important, it reduces the cardinality of the sets of
forbidding conditions so that if a production contains a condition of length two,
this condition is the only context condition attached to the production. Next, we
study another reduced form of gf-grammars of degree 2. We show that we can
simultaneously reduce the number of conditional productions and the number of
nonterminals in gf-grammars of degree 2 without any decrease of their generative
power (see [136]).

52 Chapter 4: Conditions Placed on the Use of Productions

Theorem 21. Every recursively enumerable language can be defined by a general-
ized forbidding grammar of degree 2 with no more than 19 forbidding productions
and 15 nonterminals.

Proof. Let L be a recursively enumerable language. By Geffert [69], without loss
of generality we can assume that L is generated by a grammar G of the form

G = (V, T , P U { A B -+ E , CD -+ E } , S)

such that P contains only context-free productions and

V - T = {S,A,B,C,D}.

We construct a gf-grammar G’ of degree 2 as follows:

G’ = (V‘, T , P‘, S‘),
V’ = v u w,
w = (s’, QX, E, (& A) , $, Z;, 5, (E C) , #}, v n w = 0.

N’ = (V’ - T) - {S’, @}.

where

Let

Informally, N’ denotes the set of all nonterminals in G’ except S’ and @. Then,
the set of productions P‘ is defined in the following way:

1. If H -+ y E P , H E V - T , y E V * , then add (H -+ y , 0) to P’.

2. Add (S’ -+ @S@,0) and (@ -+ E , N ’) to P’.

3. Add

to P‘

4. Add

to P’.

Next, we prove that L(G’) = L(G).

4.1 Sequential Conditional Grammars 53

Basic Idea. Notice that G’ has degree 2 and contains only 13 forbidding pro-
ductions and 15 nonterminals. The productions of (3) simulate the application of
AB 4 E in G’ and the productions of (4) simulate the application of CD -+ E in
G‘ .

Let us describe the simulation of AB 4 E~ First, one occurrence of A and
one occurrence of B are rewritten with i and B , respectively (no sentential form
contains more than one occurrence of 2 or 5). The right neighbor of is checked
to be g and 2 is rewritten with (&A) . Then, analogously, the left neighbor of 5 is
checked to be (E A) and g is rewritten with $. Finally, (E A) and $ are erased. The
simulation of CD 4 E is analogical.

To establish L(G) = L(G’), we first prove the following claims:

Claim 9. S’ +:, w’ implies that w’ has one of the following two forms:

(I) w‘ = QdQ, 2’ E (N’ u T)* , alph(z‘) n N’ # 0;
(IZ) w’ = X d Y , d E T*, x, Y E {@,&}.

Proof. Axiom S‘ is always rewritten with QS@. After this initial step, Q can
be erased in a sentential form provided that any nonterminal occurring in the
sentential form belongs to {@,S’} (see N’ and (2) in the definition of P’). In
addition, notice that only productions of (2) contain @ and S‘. Thus, any sentential
form containing some nonterminals from N’ is of the form (I).

Case (11) covers sentential forms containing no nonterminal from N’. At this
point, @ can be erased, and we obtain a word from L(G’).

I - - -

Claim 10. S’ =+-;, w’ implies #zw‘ < 1 for all 2 E {A , B ,C,D} and some
w’ E (V’)*.

proof. By inspection of iroductions in PI, the only production that can generate
X is of the form (X --+ X , {z}). This production can be applied only when no 2
occurs in the rewritten sentential form. Thus, it is impossible to derive w‘ from

[I]

Informally, next claim says that every occurrence of (& A) in derivations from S’
is always followed either by fi or $, and every occurrence of (EC) is always followed
either by 5 or #.
Claim 11. It holds that

S’ such that #zw’ 2 2.

(z) S’ +&, y;(EA)yh implies yh E (v)+ and first(yh) E {B,$) for any y; E

(II) S’ +&, y;(~c)y$ implies y& E (V’)+ and first(yh) E {E,#} for any y; E

Proof. We establish the proof by examination of all possible forms of derivations
that may occur when deriving a sentential form containing (& A) or (E C) .

(V’)*;

(If’)*.

54 Chapter 4: Conditions Placed on the Use of Productions

(I) By the definition of P’, the only production that can generate (& A) is p = (x --+ (E A) , { i a : a E V’ - {g}}). The production can be used provided
that 2 occurs in a sentential form. It also holds that 2 has always a right
neighbor (as follows from Claim 9), and according to the set of forbidding
conditions in p , the only allowed rght neighbor of 2 is E. Furthermore, by
Claim 10, no other occurrence of A or E can appear in the given sentential
form. Consequently, we obtain a derivation

s’ *;! ui2gui *@ ui(&A)Eua b]

for some ui, uk E (V’)*, 2, E $! sub(u’,uL). Obviously, (EA) is always followed
by 5 in ui (&A)&;.

Next, we discuss how G‘ can rewrite the subword (EA)E in U ; (E A) ~ L ~ . There
are only two productions having the nonterminals (E A) or g on their left-
hand side, p l = (B --+ $, {ag : a E V’ - { (E A) } }) and p2 = ((E A) -+ E , {g}).
G’ cannot use p2 to erase (E A) in ui (&A)&; because p2 forbids an occurrence
of with? because
its set of forbidding conditions defines that the left neighbor of B must be
just (E A) . Hence, we obtain a derivation of the form

-

in the rewritten string. But we can use p l to rewrite

s’ * & I ui2Eu; *@ ui(&A)Eu; [PI
*&t v i (& A) E V i *G’ ‘Ui(&A)$’Ui [PI].

Notice that during this derivation, G’ may rewrite ui and with some v{
and vi, respectively (vi,v& E (V‘)*); however, (E A) ~ remains unchanged
after this rewriting.

In this derivation we obtained the second symbol $, which can appear as the
right neighbor of (E A) . It suffices to show that there is no other symbol that
can appear immediately after (E A) . By inspection of P’, only ($ -+ E , { (E A) })

can rewrite $. However, this production cannot be applied when (E A) occurs
in the given sentential form. In other words, the occurrence of $ in the
subword (&A)$ cannot be rewritten before (E A) is erased by p2. Hence, (E A)

is always followed either by E or $, and thus the first part of Claim 11 holds.

(11) By inspection of productions simulating AB --+ E and CD -+ E in G’ (see (3)
and (4) in the definition of P’), these two sets of productions work analo-
gously. Thus, part (11) of Claim 11 can be proved by analogy with part (I).

0

Let us return to the main part of the proof. Let g be a finite substitution from
(N’ U T)* to V* defined as follows:

1. For all X E V : g(X) = {X}.

2. g(2) = {A} , g(E) = { B } , g ((E A)) = { A) , g($) = {B,AB} .

4.1 Sequential Conditional Grammars 55

3. g (a = {C) , g(@ = { D) , d (E C)) = {C) , 9(#) = {C,CD).

Having this substitution, we can now prove the following claim:

Claim 12. S x if and only if S’ =+:, @z’@ for some x E g(z’), x E V*,
2’ E (N’UT)*.

Proof. The claim is proved by induction on the length of derivations.

Only if: We show that

S * g x implies S’ +A, @x@,

where m 2 0, x E V*; clearly x E g(x). This is established by induction on m.

Basis: Let m = 0. That is, S

Induction Hypothesis: Suppose that the claim holds for all derivations of length
m or less, for some m 2 0.

Induction Step: Let us consider a derivation

S. Clearly, S’ + G ~ @S@.

s *;+I 2, x E v*.
Since m + 1 2 1, there is some y E V+ and p E P U {AB + E , C D + E } such that

* g Y *G 5 [PI.

By the induction hypothesis, there is a derivation

S’ *A, @y@.

There are three cases that cover all possible forms of p:

(i) p = H --+ y2 E P, H E V - T, y2 E V*. Then, y = Y1Hy3 and IC = y1y2y3,
y1, y3 E V*. Because we have (H + ~ 2 , s) E PI,

s’ *A, @YlHy3@ *Gf @Yly2Y3@ [(H + Y27 011

and ~ 1 ~ 2 ~ 3 = 2.

(ii) p = AB -+ E . Then, y = y1ABy3 and 2 = ~ 1 ~ 3 , y1,y3 E V*. In this case,
there is the following derivation:

s’ *A, @Y1ABy3@

*G’ @yliBY3@ [(A + 2, {i})]
*GI @YliEYS@ [(F -+ E, {E>j

@Yl(EA)EY3@ [(A + (EA), - {Aa : a E v’ - {E}))]
@yl(&A)$y3@ [(E -i $ 7 {aBi a E v’ - {(&A)}})] *G’

*G’ @yl$y3@ [((&A) + E , {B})l
*G‘ @Y1 Y3@ [($ + { (& A) })] .

56 Chapter 4: Conditions Placed on the Use of Productions

I f : By induction on the length n of derivations in G‘, we prove that

S’ =+-;, @z’@ implies S +; x

for some x E g(x’), z E V*, x’ E (N’ u T)*, n 2 1.

Basis: Let n = 1. According to the definition of P‘, the only production rewriting
S’ is (S’ -+ @S@,@), and thus S’ =+-Gi @S@. It is obvious that S =+-$ S and

Induction Hypothesis: Assume that the claim holds for all derivations of length n
or less, for some n 2 1.

Induction Step: Consider a derivation

s E 9(Sb

S’ j n + l G’ @x’@, 2’ E (N’UT)* .

Since n + 1 2 2, there is some y’ E (N‘ u T)+ and p’ E P’ such that

s’ *;, @y’@ j G t @x’@ ”1,
and by the induction hypothesis, there is also a derivation

S*T:Y

such that y E g(y’).

forms of p’:
By inspection of P’, the following cases (i) through (xiii) cover all possible

(i) p’ = (H --$ y2,0) E P’, H E V-T, y2 E V*. Then, y’ = yiHyi , x’ = yiy2y$,
y i , y i E (N ’ U T) * , and y has the form y = y1Zy3, where y1 E g(yi) , y3 E
g(yi), and 2 E g (H) . Because for all X E V - T: g (X) = {X}, the only
2 is H; thus, y = ylHy3. By the definition of P’ (see (l)), there exists a
production p = H -+ y2 in P, and we can construct the derivation

s *; YlHy3 JG YlY2Y3 b]
such that y1y2y3 = x, x E g(x’).

4.1 Sequential Conditional Grammars 57

-
(ii) p’ = (A -+ 2, (2)). Then, y‘ = yiAyj, x’ = yiAyi, yi, y& E (N’ U T)* and

Y = ylZY3, where YI E g(yi), y3 E g(y&) and Z E g(A). Because g(A) = {A},
the only Z is A, so we can express y = y1Ay3. Having the derivation S +&
y such that y E g(y‘), it is easy to see that also y E g(x’) because A E g(x) .

(iii) p’ = (B -+ 5, { g }) . By analogy with (ii), y’ = yiByi, x’ = yiByi, y =
-

YlBy3, where d,Yi E (N‘ u TI*, 91 E g(yi), Y3 E g(Yi); thus, y E g(x’)
because B E g(5) .

(iv) p’ = (2 -+ (E A) , (2 a : u E V’ - {E}}). In this case, it holds that:

(a) application of p’ implies 2 E alph(y’), and moreover, by Claim 10,

(b) x has always a right neighbor in @y‘@;

(c) according to the set of forbidding conditions in p’ , the only allowed right

Hence, y’ must be of the form y’ = y i x g y i , where yi, yi E (N’ U T)* and
A $ sub(yiyi). Then, x’ = Y ~ (E A) & ~ and y is of the form y = y1Zy3, where
y1 E g(yi), y3 E g(&) and Z E g (2 g) . Because g (2 g) = {AB}, the only 2
is AB; thus, we obtain y = y1ABy3. By the induction hypothesis, we have
a derivation S “2 y such that y E g(y’). According to the definition of g,
y E g(x’) as well because A E g((&A)) and B E g(@.

#,-Y‘ L 1;

neighbor of is 5.

-

(v) p’ = (E -+ $, {ug : a E V’ - { (E A) } }) . Then, it holds that:

(a) 5 E alph(y’) and, by Claim 10, # ~ y ’ 5 1;

(b) 5 has always a left neighbor in @y’@;

(c) by the set of forbidding conditions in p’ , the only allowed left neighbor
of 5 is (& A) .

-
Therefore, we can express y’ = y i (~ ~) B y i , where y i ,y& E (N’ U T)* and
5 $! sub(y’,yi). Then, x’ = ~ { (E A) $ Y ~ and y = y1Zy3, where y1 E g(yi),
y3 E g(yi>, and z E g((&A)g). BY the definition of g, g((&A)z) = {AB), so
Z = AB and y = y1ABy3. By the induction hypothesis, we have a derivation
S +& y such that y E g(y’). Because A E g((&A)) and B E g($), y E g(x’)
as well.

(vi) p’ = ((& A) -+ E , {E}). An application of ((E A) -+ E , (5)) implies that (E A)

occurs in y’. Claim 11 says that (& A) has either g or $ as its right neighbor.
Since the forbidding condition of p’ forbids an occurrence of E in y’, the
right neighbor of (E A) must be $. As a result, we obtain y’ = Y { (E A) $ Y ~ ,
where yi,yi E (N’UT)* . Then, x’ = y’,$yi, and y is of the form y = y1Zy3,
where y1 E g(yi), 513 E g(yi), and Z E g((&A)$). By the definition of g,
g((&A)$) = {AB,AAB}. If 2 = AB, y = Y1ABy3. Having the derivation
S +& y, it holds that y E g (d) because AB E g($).

58 Chapter 4: Conditions Placed on the Use of Productions

(vii) p’ = ($ -+ E , { (E ~) }) . Then, y’ = y:$yi and x’ = Y:&, where Y { , Y ~ E
(N’ u T)* . Express y = y1Zy3 so that y1 E g(y:), y3 E d y i) , and z E d$),
where g($) = {B,AB} . Let Z = AB. Then, y = 91ABy3, and there exists
the derivation

s *; 91ABy3 *G Y1Y3 [AB tE1,

where Ply3 = x, x E g (d) .

In cases (ii) through (vii) we discussed all six productions simulating the ap-
plication of AB -+ E in G’ (see (3) in the definition of PI). Cases (viii) through
(xiii) should cover the productions simulating the application of CD -+ E in G’
(see (4)). However, by inspection of these two sets of productions, it is easy to
see that they work analogously. Therefore, we leave this part of the proof to the
reader.

We have completed the proof and established Claim 12 by the principle of
induction. 0

Observe that L(G) = L(G’) can be easily derived from the above claim. Ac-
cording to the definition of g, we have g(a) = { a } for all a E T . Thus, from Claim
12, we have for any x E T*:

S +: x if and only if S’ +A, @x@.

Since
@z@ *;, x [(Q -+ E , ”)(@ -+ E , N ’)] ,

we obtain for any x E T*:

S +; x if and only if S‘ +:, x.

Consequently, L(G) = L(G’), so the theorem holds.

4.1.4 Semi-conditional Grammars

A semi-conditional grammar is a context-conditional grammar in which the cardi-
nality of any context-conditional set is no more than one. These grammars were
introduced and studied by Paun in [146].

Definition 14. Let G = (V, T , P, S) be a context-conditional grammar. G is
called a semi-conditional grammar (an sc-grammar for short) provided that every
(A -+ x, Per, For) E P satisfies /Per1 5 1 and lForl 5 1.

Convention 3. Let G = (V, T , P, S) be a semi-conditional grammar, and let (A ---t
x, Per, For) E P. In each (A -+ x, Per, For) E P we omit braces, and instead of
0, we write 0. For instance, we write (A -+ x, BC, 0) instead of (A ---t 5, {BC}, 0).

The families of languages generated by sc-grammars and propagating sc-gram-
mars of degree (r , s) are denoted by SC(r, s) and prop-SC(r, s), respectively. The

4.1 Sequential Conditional Grammars 59

families of languages generated by sc-grammars and propagating sc-grammars of
any degree are defined as

w w

sc = u u SC(?-,s)
r=O s=O

and
0 0 0 0

prop-SC = U U prop-SC(r, s).
r=O s=o

First, we give examples of sc-grammars with degrees (l , O) , (0 , l), and (1,l).

Example 3 ([146]). Let us consider an sc-grammar

G = ({S, A, B, A’, B’, a, b}, {a , b}, p, S),

where
P = {(S + AB,O,O),(A -+ A’A’,B,O),

(B + bB’, O,O) , (A’ + A , B’, 0) ,

(A’ + a,O,O),(A + a,O,O)}.

Observe that A can be replaced by A’A’ only if B occurs in the rewritten string,
and A’ can be replaced by A only if B‘ occurs in the rewritten string. If there is an
occurrence of B, the number of occurrences of A and A’ can be doubled. However,
the application of (B + bB’, 0,O) implies an introduction of one occurrence of b.
As a result,

(B’ -+ B, O , O) , (B -+ b, O , O) ,

L(G) = {anbm : m 2 1, 1 5 5 2m},

which is not a context-free language.

Example 4 ([146]). Let

where
P={(S+AB,O,O),(A-+A’,O,B’),

(A’ -+ A”A”, 0, c) , (A’’ + A, 0, B) ,
(B + bB’;O,O),(B’ --$ B,O,O),
(B + c, O,O), (A + a, 0 , O) ,
(A’’ -+ a, O , O) } .

In this case, we get a non-context-free language

L(G) = {anbmc : m 2 0, 1 5 TI 5 2m+1}.

Example 5. Let

60 Chapter 4: Conditions Placed on the Use of Productions

be an sc-grammar, where the set of productions is defined as follows:

P = {(S-+ PQR,O,O),
(P -+ Q, 21,
(Q -+ cYd, X , z),
(R -+ e z f , X , Q) ,
(X -+ P, z, Q) ,
(Y -+ Q, P, R),
(2 -+ R, p, Y) ,
(P -+ E , Q, 21,
(Q -+ E , R, PI,
(R -+ E , 0, Y >) .

Note that this grammar is an sc-grammar of degree (1,l). Consider aabbccddeeff.
For this word, G makes the following derivation:

S + P Q R + a X b Q R + aXbcYdR + aXbcYdeZf +
aPbcYdeZf =+ aPbcQdeZf + aPbcQdeRf +
aaXbbcQdeR f + aaXbbccYddeR f + aaXbbccYddee2 ff +
aaPbbccYddeeZff + aaPbbccQddeeZff + aaPbbccQddeeR ff +
aabbccQddeeRff =+ aabbccddeeR ff + aabbccddeeff .

Clearly, G generates the following language:

L(G) = {anbncndnenfn : n 2 0).

As is obvious, this language is non-context-free.

The following theorems deal with the generative power of semi-conditional
grammars.

Theorem 22. prop-SC(0, 0) = SC(0,O) = CF.

Proof. Follows trivially from the definitions. 1

Theorem 23. CF c prop-SC(l,O), CF c propSC(0,l).

Proof. In Examples 3 and 4, we show propagating sc-grammars of degrees (1,O)
and (0 , l) that generate non-context-free languages. Therefore, the theorem holds.

1

Theorem 24. prop-SC(1,l) c CS.

Proof. Consider a propagating sc-grammar of degree (1, l),

G = (V, T , P, S) .

If (A --+ z , A , p) E P, then the permitting condition A does not impose any
restriction. Hence, we can replace this production by (A + z,O,p). If (A +

4.1 Sequential Conditional Grammars 61

3, a, A) E P, then this production cannot ever by applied; thus, we can remove
it from P. Let T’ = {a’ : a E T } and V’ = V U T’ U { S ’ , X , Y } . Define a
homomorphism T from V* to ((V - T) U (TI))* as .(a) = a’ for all a E T and
T (A) = A for every A E V - T . Furthermore, introduce a mapping w from
V u {0} to 2((V-T)UT’) as g(0) = 0 , g(a) = {a’} for all a E T , and g(A) = { A }
for4all A E V - T. Next, construct a propagating random context grammar with
appearance checking

G’= (V’,TU{c},P’,S’),

where

It is obvious that L(G’) = L(G){c}. Therefore, L(G){c} E prop-RC(ac). Be-
cause prop-RC(ac) is closed under restricted homomorphisms (see [43], page 48),
and by Theorem 14 it holds that prop-RC(ac) c CS, we obtain prop-SC(1,l) C
cs.

The following corollary summarizes the generative power of propagating sc-
grammars of degrees (1,0), (0, l), and (1 , l) ; that is, propagating sc-grammars
containing only symbols as their context conditions.

Corollary 9.

CF c prop-SC(0,l) 5 prop-SC(1,l).
CF c prop-SC(1,O) C prop-SC(1,l).
prop-SC(1,l) prop-RC(ac) c CS.

The next theorem says that propagating sc-grammars of degrees (1,2), (2 , l)
and propagating sc-grammars of any degree generate exactly the family of context-
sensitive languages. Furthermore, if we allow erasing productions, these gram-
mars generate even the family of recursively enumerable languages. Note that
in the next section, we prove a stronger result in terms of a special variant of
sc-grammars-simple semi-conditional grammars. Therefore, we omit the proof
here; for a rigorous proof, see Theorems 28 and 29 in Section 4.1.5.

Theorem 25.

CF
C

prop-SC(2,I) = prop-SC(1,2) = prop-SC = CS
C

SC(2,l) = SC(1,2) = SC = RE.

62 Chapter 4: Conditions Placed on the Use of Productions

4.1.5 Simple Semi-conditional Grammars

Simple semi-conditional grammars, a special case of semi-conditional grammars,
were introduced by Meduna and Gopalaratnam in 1994 (see [129]). Informally,
a simple semi-conditional grammar is defined as an sc-grammar in which every
production has no more than one condition.

Definition 15. Let G = (V, T , P, S) be a semi-conditional grammar. G is a simple
semi-conditional grammar (an ssc-grammar for short) if (A --+ 2, a, p) E P implies
0 E {a,@).

The families of languages generated by ssc-grammars and propagating ssc-
grammars of degree (r, s) are denoted by SSC(r, s) and prop-SSC(r, s), respec-
tively. Further more,

w w

ssc = u u SSC(r,s)
T=o S=o

and

The following proposition provides an alternative definition based on context-
conditional grammars.

Proposition 1. Let G = (V,T,P,S) be a context-conditional grammar. G is
a simple semi-conditional grammar if and only if every (A --+ 2, Per, For) E P
satisfies IPerl + /For1 5 1.

Example 6. Let

be an ssc-grammar, where

G = ({S, A , x, c, y, a, b) , {a, b) , p, S)

P = { (S --+ AC,O,O),
(A --+ aXb, Y, 0) ,
(C -+ y, A , 01,
(Y --+ c c , 0, A) ,
(A --+ ab, y, 01,
(Y --+ c, 0747
(X --+ A, c, 0)).

Notice that G is propagating, and it has degree (1 , l) . Consider aabbcc. G derives
this word as follows:

S + AC + AY + aXbY + aXbCc +
aAbCc + aAbYc + aabbYc + aabbcc

Obviously,
L(G) = {anbncn : n 2 1).

4.1 Sequential Conditional Grammars 63

Example 7. Let

be an ssc-grammar, where P is defined as follows:

G = ((8, A, B , x, y, a) , {a) , P, S)

P = { (S -+ a,O,O),
(S -+ x, O,O),
(X + YB,O,A),
(X -+ aB, 0, A) ,
(Y + XA, 0, B) ,
(Y -+ aA, 0, B) ,

(B -+ a, a , 0)).

(A -+ BB,XA,O),
(B + AA,YB,O),

G is a propagating ssc-grammar of degree (2 , l) . Consider the word aaaaaaaa. G
derives this word as follows:

S =+ X =+ Y B =+ Y A A =+ XAAA =+- XBBAA + XBBABB +
XBBBBBB + aBBBBBBB =+ aBBaBBBB j6 aaaaaaaa.

It is obvious that G generates the following language:

L(G) = {a2" : n 2 0).

Recall that {a2" : n 2 0) is not a context-free language.

Theorem 26. prop-SSC(2,l) = CS.

Proof. Because prop-SSC(2,l) G prop-CG and by Lemma 6 prop-CG C CS,
it suffices to prove the converse inclusion.

Let G = (V, T , P, S) be a context-sensitive grammar in Penttonen normal form
(see Lemma 2). We construct an ssc-grammar,

G' = (VU W,T,P',S),

that generates L(G). Let

W = { E : AB -+ AC E P, A,B,C E V - T } .

Define P' in the following way:

1. I f A - + z E P , A E V - T , z E T U (V - T) 2 , t h e n a d d (A - + z , 0 , 0) t o p ' .

2. If AB -+ AC E P, A, B , C E V-T, then add (B -+ E, 0 , E) , (5 -+ C, AE, 0) ,
(E -+ B,O,O) to P'.

Notice that G' is a propagating ssc-grammar of degree (2 , l) . Moreover, from (2),
we have for any E E W ,

S +&, w implies #gw 5 1

64 Chapter 4: Conditions Placed on the Use of Productions

for all w E (V’)*, because the only production that can generate E is of the form

Let g be a finite substitution from V* into (V U W)* defined as follows: for all

1. if 5 E W , then g(D) = {D,E};

2. if 5 # W , then g(D) = {D}.

(B -+ B,O, E) .

D E V ,

Claim 13. For any x E V+, m,n 2 0 , S +-; x if and only if S *’& x’ with
x’ E g(x).

Pro0 f.

Only i f : This is proved by induction on m, m 2 0.

Basis: Let m = 0. The only x is S as S S. Clearly, S =+;, S for n = 0 and

Induction Hypothesis: Assume that the claim holds for all derivations of length m
or less, for some m 2 0.

Induction Step: Consider a derivation

s E g(S) .

s =+-;+l x,

where x E V+. Because m + 1 2 1, there is some y E V * and p E P such that

By the induction hypothesis,
s =+-;I y’

for some y’ E g(y) and n 2 0. Next, we distinguish between two cases: case (i)
considers p with one nonterminal on its left-hand side, and case (ii) considers p
with two nonterminals on its left-hand side.

4.1 Sequential Conditional Grammars 65

If: This is established by induction on n 2 0; in other words, we demonstrate that
if S +-El x’ with x‘ E g(x) for some x E V+, then S J; x.

Basis: For n = 0, x’ surely equals S as S a:, S. Because S E g(S), we have
x = S. Clearly, S JOG S.

Induction Hypothesis: Assume that the claim holds for all derivations of length n
of less, for some n 2 0.

Induction Step: Consider a derivation,

s *y XI,

x’ E g(x), x E V+. As n + 1 2 1, there exists some y E V+ such that

s I.>:, 9’ *G’ 2’ b],

y’ E g(y). By the induction hypothesis,

S *;: y.

Let Y‘ = yiB’Y;, Y = YlB92, Pi E d Y l) , Y; E S(Y2), Y l , Y 2 E v*, B’ E 9(B),
B E V - T , x’ = yiz’y;, and p = (B’ + z’, a, p) E P’. The following three cases
cover all possible forms of the derivation step y’ JG~ x’ b].

(i) z’ E g(B). Then,
s J;: Y l B Y 2 ,

I ‘ I where ylz y2 E g(y1By2); that is, 2’ E g(y1Byz).

production, B -+ z’ E P, so
(ii) B’ = B E V - T , z’ E T U (V - T) 2 , cx = ,B = 0. Then, there exists a

s *& Y1By2 JG Ylz’y2 [B 2’1.

Since z’ E g(z’), we have x = ylz’y2 such that x’ E g(x).

66 Chapter 4: Conditions Placed on the Use of Productions

(iii) B’ = g, z’ = C, a = Ag, p = 0, A, B , C E V - T. Then, there exists
a production of the form AB + AC E P. Since #zy‘ 5 1, Z = 6, and
AB E sub(y’), we have yi = u’A, y1 = uA, u’ E g(u) for some u E V*. Thus,

S =+& uABY~ +G uACy2 [AB -+ AC],

where uACy2 = ylCy2. Because C E g(C), we get x = y1Cy2 such that

As cases (i) through (iii) cover all possible forms of a derivation step in G’, we
have completed the induction step and established Claim 13 by the principle of
induction. 17

2’ E g(x).

The statement of Theorem 26 follows immediately from Claim 13. Because for
all a E T , g (a) = { a } , we have for every w E T+,

S +; w if and only if S +;, w.

Therefore, L(G) = L(G’), so the theorem holds.

Corollary 10. prop-SSC(2,l) = prop-SSC = prop-SC(2,l) = prop-SC =
cs.
Proof. It follows from Theorem 26 and the definitions of propagating ssc-gram-
mars. 0

Next, we turn our investigation to the ssc-grammars of degree (2 , l) with eras-
ing productions. We prove that these grammars generate precisely the family of
recursively enumerable languages.

Theorem 27. SSC(2,l) = RE.

Proof. Clearly, SSC(2,l) E RE; hence it suffices to show that RE C SSC(2,l).
Every recursively enumerable language, L E RE, can be generated by a phrase-
structure grammar G in Penttonen normal form (see Lemma 3). That is, G’s
productions are of the form AB + AC or A + x , where A,B,C E V - T ,
2 E { E } U T U (V - T) 2 . Thus, the inclusion RE E SSC(2,l) can be proved by
analogy with the proof of Theorem 26. The details are left to the reader.

Corollary 11. SSC(2,l) = SSC = SC(2,l) = SC = RE.

To demonstrate that propagating ssc-grammars of degree (1,2) characterize
CS, we first establish a normal form for context-sensitive grammars.

Lemma 9. Every L E CS can be generated by a context-sensitive grammar,

G = ({ s} u NCF u NCS u T , T , p, s) 3

where { S } , NCF, Ncs, and T are pairwise disjoint alphabets, and every production
in P is either of the form S + a D or AB + AC or A + x , where a E T ,
D E NCF U { E } , B E Ncs, A, C E NCF, x E Ncs U T U (ubl NhF).

4.1 Sequential Conditional Grammars 67

Proof. Let L be a context-sensitive language over an alphabet, T . Without loss of
generality, we can express L as L = L1 U L2, where L1 E T and L2 G TT+. Thus,
by analogy with the proofs of Theorems 1 and 2 in [146], L2 can be represented
as L2 = UaETaLa, where each La is a context-sensitive language. Let La be
generated by a context-sensitive grammar,

Ga = (NcF, U NCS, U T , T , p a , s a) 7

of the form of Lemma 4. Clearly, we can assume that for all as, the nonterminal
alphabets NCF, and Ncs, are pairwise disjoint. Let S be a new start symbol.
Consider the context-sensitive grammar

G = ({ S } U NCF U N c s U T , T , P, S)

defined as

NCF = Uae~NCF,,
N c s = UaETNCS,,
P = UaETPaU{S+aSa: a € T } U { S + a : u E L ~ } .

Obviously, G satisfies the required form, and we have

L(G) = L1 U (UacT aL(Ga)) = L1 U (UaET aLa) = L1 U L2 = La

Consequently, the lemma holds. 0

We are now ready to characterize CS by propagating ssc-grammars of degree
(1,2).

Theorem 28. CS = prop-SSC(l12).

Proof. By Lemma 6, prop-SSC(1,2)
the converse inclusion.

assume that L is generated by a context-sensitive grammar,

prop-CG CS; thus, it suffices to prove

Without loss of generality, we can Let L be a context-sensitive language.

G = ({ S } U NCF U NCS U T , T , P, S)

of the form of Lemma 9. Set

V = { S } U NCF U N C S U T .

Let q be the cardinality of V ; q 2 1. Furthermore, let f be an arbitrary fixed
bijection from V onto (1,. . . , q } , and let f - ' be the inverse of f . Let

be a propagating ssc-grammar of degree (1,2), in which

4

V = (u Wi) u v,
i=l

68 Chapter 4: Conditions Placed on the Use of Productions

where

Wi
W2 = { k , A B - + A C , j] : U E T , A B - + A C € P , 1 < j 5 ~ + 3 } ,
Ws = {B,B’, B” : B E N c s } ,
W, = {%: u E T } .

= { (u ,AB -+ AC,j) : a E T, AB --+ AC E P, 1 5 j 5 5},

is defined as follows:

1. If S --+ aA E P, a E T , A E (NCF U { E }) , then add (S + %A,O,O) to 2;.

2. If a E T , A -+ z E P , A E NCF, z E (V - {S}) U (N c F) ~ , then add
(A -+ z,%,O) to F .

3. If a E T , AB --+ AC E P, A,C E NCF, B E NCS, then add the following
productions to P’ (an informal explanation of these productions can be found
below) :

(a) (si -+ (a,AB -+ AC,1),0,0).

(b) (B-+B’,(a,AB-,AC,l) ,O).

(c) (B -+ g, (a,AB --+ AC, l) , O) .

(d) ((a , AB -+ AC, 1) -+ (a , AB -+ AC, 2) ,0 , B) .

(e) (ii -+ B’’,O,B\’).

(f) ((a ,AB --+ AC,2) -+ (a,AB -+ AC,3),0,@.

(g) (B” -+ [a, AB -+ AC, 11, (a , AB -+ AC,3),0).

(h) ([a , AB -+ AC, j] -+ [a, AB -+ AC,j + 1],0, f-’(j)[a, AB -+ AC, j]) ,

(i) ([a , AB --+ AC, f (A)] -+ [a, AB -+ AC, f (A) + 1],0,0).

(j) ([a,AB -+ AC,q+l] -+ [a,AB -+ AC,q+2],0,B’[a,AB -+ AC,q+l]).

for all j = 1 . . . q, f (A) # j .

(k) ([a , AB -+ AC, q + 21 -+ [a,AB -+ AC,q + 3],0, (a,AB -+ AC, 3)[a, AB

(1) ((a ,AB -+ AC, 3) -+ (a , AB -+ AC, 4) , [a, AB -+ AC,q + 31,O).

-+AC,q+2]).

(m) (B’-+B,(a,AB-+AC,4) ,0) .

(n) ((a , AB -+ AC,4) -+ (a , AB -+ AC, 5),0, B’).

(0) ([a,AB-+AC,q+3]-+C,(a,AB-tAC,5),0).
(p) ((a , AB -+ AC, 5) -+ s i ,O, [a, AB -+ AC, q + 31).

4. If a E T , then add (si -+ a,O,O) to 2;.

4.1 Sequential Conditional Grammars 69

Basic Idea. Let us informally explain the basic idea behind (3)-the heart of all
the construction. The productions introduced in (3) simulate the application of
productions of the form AB -+ AC in G as follows: an occurrence of B is chosen,
and its left neighbor is checked not to belong to ? - {A}. At this point, the left
neighbor necessarily equals A, so B is rewritten with C.

Formally, we define a finite letter-to-letters substitution g from V* into t* as
follows:

(a) If D E V , then add D to g(D).

(b) If (a,AB -+ AC,j) E W1, E T , AB -+ AC E P, B E NCS, A,C E NCF,
j E (1 , . . . ,5} , then add (a , AB -+ AC,j) to g(a).

(c) If [a, AB -+ AC, j] E W2, a E T , AB -+ AC E P, B E NCS, A, C E NCF,
j E (1 , . . . , q + 3}, then add [a, AB --+ AC,j] to g(B).

(d) If {g, B’, B”} G W3, B E Ncs , then include { g , B’, B”} to g(B).

(e) If 6 E W4, a E T , then add zi to g(a).

Let 9-l be the inverse of g. To show that L(G) = L(@, we first prove three
claims.

Claim 14. S =+A x, x E V*, implies z E T(V - {S})*.

Proof. Observe that the start symbol, S, does not appear on the right side of any
production and that S -+ x E P implies z E T U T(V - { S }) . Hence, the claim
holds. 0

Claim 15. If S +$ x, x E ?*, then x has one of the following seven forms:

(i) z = ay , where a E T , y E (V - {S})* .

(iz) x = ziy, where zi E W4, y E (V - {S})*.

(iii) x = (a,AB -+ AC, l) y , where (a,AB + AC,1) E Wl, y E ((V - { S }) U

{B’, E, B”})*, #B”Y 5 1.

(iv) x = (a,AB -+ AC,2)y, where (a,AB -+ AC,2) E W1, y E ((V - {S, B }) U
{B’,g, B”})*, # B ~ Y 5 1.

(v) x = (a,AB --+ AC,3)y, where (a,AB -+ AC,3) E W1, y E ((V - { S , B }) U

(vz) x = (a,AB -+ AC,4)y, where (a,AB -+ AC,4) E W1, y E ((V - { S }) U

{B’})*({ [a, AB -+ AC, j] : 1 5 j 5 q + 3) U { E , B”})((V - {S , B}) U {B’})*.

{B’})*[a,AB -+ AC,q +3]((V - { S }) U {B’})*.

(via) x = (a , AB -+ AC, 5)y, where (a , AB -+ AC, 5) E Wi,
y E (V - {S})*([a,AB -+ AC,q+3],&}(V - {S})*.

70 Chapter 4: Conditions Placed on the Use of Productions

Proof. The claim is proved by induction on the length of derivations.

Basis: Consider S x, x E ?*. By inspection of the productions, we have

S =+B iiA [(S -+ iiA, 0, O)]

for some zi E W4, A E ({ E } u NcF) . Therefore, x = si or x = iiA; in either case, x
is a word of the required form.

Induction Hypothesis: Assume that the claim holds for all derivations of length at
most n, for some n 2 1.

Induction Step: Consider a derivation of the form

where x E ?*. Since n 2 1, we have n + 1 2 2. Thus, there is some z of the
required form, z E v*, such that

s *; z * a x [PI

for some p E F.
Let us first prove by contradiction that the first symbol of z does not belong to

T. Assume that the first symbol of z belongs to T . As z is of the required form,
we have z = ay for some a E (V - {S }) * . By inspection of P , there is no p E P
such that ay +c x b], where x E v*. We have thus obtained a contradiction, so
the first symbol of z is not in T .

Because the first symbol of z does not belong to T , z cannot have form (i); as
a result, z has one of forms (ii) through (vii). The following cases (I) through (VI)
demonstrate that if z has one of these six forms, then x has one of the required
forms, too.

(I) Assume that z is of form (ii); that is, z = iiy, ii E W4, and y E (V - {S}) * .
By inspection of the productions in F , we see that p has one of the following
forms (a), (b), and (c):

(a) p = (A 4 u, z i ,O) , where A E NCF and u E (V - {S}) U NZF;
(b) p = (ii -+ (a, AB -+ AC, l) , O , O) , where (a, AB -+ AC, 1) E W I ;
(c) p = (si --+ a, O , O) , where a E T .

Note that productions of forms (a), (b), and (c) are introduced in construc-
tion steps 2, 3, and 4, respectively. If p has form (a), then x has form (ii).
If p has form (b), then x has form (iii). Finally, if p has form (c), then x
has form (i). In any of these three cases, we obtain x that has one of the
required forms.

(11) Assume that z has form (iii); that is, z = (a ,AB -+ AC, 1)y for some
(a ,AB -+ AC, 1) E W,, y E ((V - { S }) U {B' , 6, B"})*, and # p y 5 1. By
the inspection of F, we see that z can be rewritten by productions of these
four forms:

4.1 Sequential Conditional Grammars 71

(a) (B -+ B’, (a ,AB -+ AC, l) , O) .

(b) (B -+ 6, (a, AB -+ AC, l) , 0).

(c) (g -+ B”, 0, B”) if B” 6 alph(y); that is, # p y = 0.

(d) ((u , A B -+ AC, 1) -+ (a , A B -+ A C , 2) , 0 , B) if B $ alph(y); that is,
#BY = 0;

Clearly, in cases (a) and (b), we obtain x of form (iii). If z =+-c z [PI, where
p is of form (c), then #BUX = 1 , so we get z of form (iii). Finally, if we use
the production of form (d), then we obtain x of form (iv) because #BZ = 0.

(111) Assume that z is of form (iv); that is, z = (a ,AB -+ AC,2)y, where
(a ,AB -+ AC,2) E W1, y E ((V - { S , B }) U {B’,B^,B”})*, and # p y 5 1 .
By inspection of F , we see that the following two productions can be used
to rewrite z :

(a) (6 -+ B”,O, B”) if B” $ alph(y).

(b) ((a , AB -+ AC, 2) -+ (a, AB --+ AC, 3) , 0, 6) if 6 $ alph(y).

In case (a), we get x of form (iv). In case (b), we have # ~ y = 0, so #EX = 0.
Moreover, notice that # ~ I X 5 1 in this case. Indeed, the symbol B“ can
be generated only if there is no occurrence of B” in a given rewritten word,
so no more than one occurrence of B“ appears in any sentential form. As
a result, we have #BU (a, AB -+ AC, 3)y 5 1 ; that is, # ~ U X 5 1 . In other
words, we get x of form (v).

(IV) Assume that z is of form (v); that is, z = (a , A B -+ AC,3)y for some

1 5 j 5 q + 3) U {B”,E})((V - { S , B }) U {B’})*. Assume that y = y 1 Y y 2
with y1,y2 E ((V-{S,B})U{B’})*. If Y = E , then we can use no production
from F to rewrite z . Because z jz; x, we have Y # E. The following.cases
(a) through (f) cover all possible forms of Y .

(a) Assume Y = B”. By inspection of F, we see that the only production

(a ,AB -+ AC,3) E W1, y E ((V - { S , B }) U { B ’ }) * ({ [a , A B -+ A C , j] :

that can rewrite z has the form

(B” -+ [a ,AB -+ AC, 11, (a, AB -+ AC,3) ,0) .

In this case, we get x of form (v).

can be rewritten only according to the production
(b) Assume Y = [a ,AB -+ A C , j] w , j E (1 , . . . , q } , and ! (A) # j. Then, z

([a , A B -+ A C , j] -+ [a ,AB -+ A C , j + l] , O , f - ’ (j) [a , A B -+ A C , j]) ,

which can be used unless the right-most symbol of (a, AB -+ AC, 3) y l
is f - ’ (j) . Clearly, in this case we again get x of form (v).

72 Chapter 4: Conditions Placed on the Use of Productions

(c) Assume Y = [a,AB -+ AC,j] , j E (1 , . . . , q } , f (A) = j . This case
forms an analogy to case (b), except that the production of the form

([a , AB -+ AC, f(-4)1 -+ [a, AB -+ AC, f (A) + 11,0,0>

is now used.

(b); the only change is the application of the production

([u,AB -+ AC,q+l] -+ [a,AB -+ AC,q+2],O1B’[a,AB -+ AC,q+l]).

(d) Assume Y = [a, AB --+ AC, q + 11. This case forms an analogy to case

(e) Assume Y = [a, AB -+ AC, q + 21. This case forms an analogy to case
(b) except that the production

([a ,AB-+AC,q+2] --+ [a,AB-+AC,q+3],0,
(a , AB --t AC, 3) [a, AB -+ AC, q + 21)

is used.

(f) Assume Y = [a, AB -+ AC, q + 31. By inspection of F , we see that the
only production that can rewrite z is

((a ,AB-+AC,3) - t (a , A B - + A C , 4) , [a , A B - + A C , q + 3] , 0) .

If this production is used, we get 2 of form (vi).

(V) Assume that z is of form (vi); that is, z = (a , AB -+ AC, 4) y , where (a , AB -+

AC,4) EW1 a n d y e ((V-{S})U{B’})*[a ,AB-+AC,q+3] ((V-{S})U I

{B’})*. By inspection of P, these two productions can rewrite z:

(a) (B’ -+ B , (a , AB -+ AC, 4) , 0) .

(b) ((u ,AB-+AC,4) -+ (a ,AB-+AC,5) ,0 ,B’) ifB’@alph(y).

Clearly, in case (a), we get IC of form (vi). In case (b), we get 2 of form (vii)
because#B)y=O, S O Y E (V - { S }) * { [~ , A B - + A C , ~ + ~] , E } (V - { S }) * .

(VI) Assume that z is of form (vii); that is, z = (a,AB -+ AC,5)y, where
(a,AB -+ AC,5) E W1 and y E (V - {S})*{[a,AB -+ AC,q + ~] , E } (V -
{S }) * . By inspection of F , one of the following two productions can be used
to rewrite z:

(a) ([a ,AB -+ AC, q + 31 -+ C, (a,AB -+ AC, 5),0).

(b) ((a , AB -+ AC, 5) -+ %, 0, [a, AB -+ AC, q + 31) if [a, AB -+ AC, q + 31 9

In case (a), we get 2 of form (vii). Case (b) implies # (a , ~ ~ + ~ ~ , q + 3 ~ ~ = 0;
thus, II: is of form (ii).

alph(z) .

This completes the induction step and establishes Claim 15. 0

4.1 Sequential Conditional Grammars 73

Claim 16. It holds that

S +; w i f and only i f S +: v

where v E g(w) and w E V+, for some m,n 2 0.

Proof.

Only i f : The only-if part is established by induction on m; that is, we have to
demonstrate that

S +g w implies S +; v

for some 2) E g(w) and w E V+.

Basis: Let m = 0. The only w is S because S =+$ S. Clearly, S +% S, and

Induction Hypothesis: Suppose that our claim holds form all derivations of length
m or less, for some m 2 0.

Induction Step: Let us consider a derivation,

s E m.

s =+;+I z,

where z E V+. Because m + 1 2 1, there are y E V+ and p E P such that

s * g Y +G 2 [PI,

and by the induction hypothesis, there is also a derivation

for some g E g (y) . The following cases (i) through (iii) ,cover all possible forms of
P:

(i) Let p = S 4 aA E P for some a E T , A E NCF U { E } . Then, by Claim 14,
m = 0, so y = S and z = aA. By (1) in the construction of G, (S --+

tiA, 0,O) E F . Hence,

where ZA E g(aA).

-

S +e ZA,

(ii) Let US assume that p = D 4 yz E P, D E NCF, y2 E (V - { S }) U
y = y1Dy3, y1, y3 E V*, and z = y1yzy3. From the definition of g , it is clear
that g (2) = { Z } for all 2 E NCF; therefore, we can express = ZlDZ3,
where z1 E g (y 1) and 23 E g (y 3) . Without loss of generality, we can also
assume that y1 = au, a E T , u E (V - {S})” (see Claim 14), so z1 = u”u’l,
u” E g(a) , and u” E g (u) . Moreover, by (2) in the construction, we have
(D 4 y2, zi, 0) E F. The following cases (a) through (e) cover all possible
forms of a”.

74 Chapter 4: Conditions Placed on the Use of Productions

(a) Let a” = ii (see (ii) in Claim 15). Then, we have

S =s$ iz~”Dz3

and iiu”yZZ3 = ZlYZZ3 E g(yIyZY3) = g(x)*

i i ~ l ’ y 2 ~ 3 [(D -+ yz,ii,O)],

(b) Let a’’ = a (see (i) in Claim 15). By (4) in the construction of 5, we
can express the derivation

S +$ UU“DZ~

as
s *;-I iiu/IDz3 * a au”Dz3 [(z -+ a, 0 , O)];

thus, there exists the derivation

s +-:-’ i i ~ ” ~ ~ 3 +a iiu”yZz3 [(D 4 yz, ii, 011

with i i ~ ” y 2 ~ 3 E g(z).

(c) Let a” = (a , A B -+ AC,5) for some AB -+ AC E P (see (vii) in
Claim 15), and let u”Dz3 E (V - { S }) * ; that is, [a ,AB -+ AC,q +3] g‘
alph(u”Dz3). Then, there exists the derivation

S +E (a , AB -+ AC, 5)u”Dz3

* E Si~”Dz3 [((a , AB --+ AC, 5) -+ 3, 0, [a, AB -+ AC, q + 3])]
iiu”YZz3 [(D YZ,Z, o)],

and h ~ ” ~ 2 ~ 3 E g(x).

(d) Let a” = (a , AB -+ AC, 5) (see (vii) in Claim 15). Let [a, AB -+ AC, q+
31 E alph(u”Dz3). Without loss of generality, we can assume that

= (a , AB -+ AC, 5)u”Do”[a, AB -+ AC, q + 3]t”, where ~ ” [a , AB -+

AC, q+3]t” = z3, oBt = y3, o” E g(t), o, t E (V - {S}) * . By inspection
of ?, (see (3) in the construction of G), we can express the derivation

as

S +; iiu“ Do“ Bt“

* a

= s ~ ’ ~ ~ ~ ~ ’ (a , AB -+ AC, l)u’Do’&’

(a , AB -+ AC, 1)u”Do”Bt”

[(ii -+ (a ,AB -+ AC, l),O,O)]

[ml(B -+ S, (a , AB -+ AC, l) , O)mz]

* a (a , AB -+ AC, 2)u‘D0’&’

[((a , AB -+ AC, 1) -+ (a , AB -+ AC, 2) , 0, B)]

4.1 Sequential Conditional Grammars 75

*e (a , AB -+ AC, 2)u’Do’B”t’

(a , AB + AC, 3)u’Do’B”t’

[E -+ B”, 0, B’I]

*e
[((a , AB -+ AC, 2) -+ (a, AB -+ AC, 3) , 0 , E)]

[(B” + [a, AB + AC, 11, (a , AB -+ AC, 3) , O)]
*e

+pt2

(a , AB -+ AC, 3)u’Do’[a, AB -+ AC, l]t’

(a , AB -+ AC, 3)u’Do’[a, AB -+ AC, q + 3]t’

(a , AB -+ AC,4)u’Do’[a,AB -+ AC,q + 3]t’
[((a , AB -+ AC, 3) + (a , AB + AC, 4) ,

G

[WI

*e

[a, AB + AC, q + 31,O)l
+lm31

2;

*e

(a , AB -+ AC,4)u”Do”[a, AB .--) AC, q + 3]t”

[m31

[((a , AB -+ AC,4) -+ (a , AB -+ AC, 5) , 0, B’)],
(a , AB -+ AC, 5)u”Do”[a, AB -+ AC, q + 3]t”

where ml,m2 E { (B -+ B’,(a,AB -+ AC,l),O)}*, m3 E {(B’ -+ B,

[a, AB -+ AC, 2],0, f - ’ (l) [a , AB -+ AC, 11). . . ([a, AB -+ AC, f (A) -

AB -+ AC, f (A)] -+ [a,AB + AC,f(A)+l],O,O)([a,AB -+ AC,f(A)+
11 -+ [a,AB -+ AC, f (A) + 2],O,f-’(f(A) + l)[a,AB -+ AC, f (A) +
11) ... ([a,AB -+ AC,q] -+ [a,AB -+ AC,q + l],O,f-’(q)[a,AB --+

AC,q])([a,AB -+ AC,q + 11 -+ [a,AB -+ AC,q + 2],0,B’[a,AB -+

AC, q + l]) ([a , AB -+ AC, q + 21 -+ [a, AB + AC,q + 3]) ,0 , (a,AB --+

AC,3)[a,AB --f AC,q+2]), u’ E ((alph(u”)-{B})U{B’})*, g-l(u’) =
u, o’ E ((alph(o”) - { B }) U {B”})*, g-’(o’) = g-l(o”) = o, t’ E
((alph(t”) - { B }) u {B’})*, g-’(t’) = g-’(t”) = t.
Clearly, ziu”Do”Bt” E g(auDoBt) = g(auDy3) = g (y) . Thus, there
exists the derivation

(a,AB -+ AC,4),0)}*, lm3l = Imim2l, w = ([a,AB -+ AC,l] -+

11 -+ [a, AB -+ AC, f(A)I,O, f - l (f (A) - l”, AB -+ AC, f (A) - l I) ([a ,

s *; iiu”Do”Bt” * E iiu”y2ol’Btl/ [(D -+ y2, zi, O)] ,

where ~ 1 ~ 2 ~ 3 = ziu”y20”Bt” E g(auy20Bt) = g(y1y2y3) = g(z).
(e) Let a” = (a , AB -+ AC, i) for some AB -+ AC E P and i E (1 , . . . , 4 }

(see (iii) - (vi) in Claim 15). By analogy with (d), we can construct the
derivation

s *; ziu”Do”Bt/’ =+Z ziul/y20/1Btll [(D -+ y2, a, O)]

such that ziu”y2o”Bt” E g (y 1 ~ 2 ~ 3) = g(z) (the details are left to the
reader).

76 Chapter 4: Conditions Placed on the Use of Productions

(iii) Let p = AB -+ AC E P, A,C E NCF, B E Ncs, y = YlABy3, y l , y3 E V*,
z = yIACy3, = z ~ A Y z ~ , Y E g(B), zi E g(yi) where i E {1,3}. Moreover,
let y1 = au (see Claim 14), z1 = d’u”, a” E g(a), u” E g(u). The following
cases (a) through (e) cover all possible forms of a”:

(a) Let d’ = 2. Then, by Claim 15, Y = B. B y (3) in the construction of
e, there exists the following derivation:

S =+z liu“ABz3

+c (a , AB -+ AC, l)u”ABz3

*?”” (a , AB -+ AC, l)u‘A6u3

[(li -+ (a , AB -+ AC, I) , 0 , O)]

[rnl(B -+ 6, (a , AB -+ AC, l) , O)]

(a , AB -+ AC, 2) u ’ ~ Z u ~

[((a ,AB-+AC, l) -+ (a,AB-+AC,2),0,B)]

[(6 -+ B”, 0, B”)]

[((u,AB -+ AC,2) -+ (a,AB -+ AC,3),0,@]

[(I?”-+ [a,AB--+AC,l],(a,AB-+AC,3),0)]

(a , AB -+ AC, 2)u’ABt’u3

(a , AB -+ AC, 3)u‘AB1‘u3

(a, AB --+ AC, 3)u’A[a, AB -+ AC, 1]u3

(a , AB -+ AC, 3)u’A[a, AB -+ AC, + 31.3
[dl

(a , AB -+ AC, 4)u’A[a, AB --+ AC, q + 31.3
[((u,AB --+ AC,3) -+ (a,AB -+ AC,4),

[a, AB -+ AC, + 31,O)l

(a , AB -+ AC, 4)u”A[a, AB -+ AC, + 3123

b 2 1

(u , AB -+ AC, 5)d’A[a, AB -+ AC, q + 31.3
[((a,AB -+ AC,4) -+ (a,AB -+ AC,5),0,B’)]

[([a, AB -+ AC, q + 31 -+ C, (a , AB -+ AC, 5) ,0)] ,

(a , AB -+ AC, 5)u”ACz3

4.1 Sequential Conditional Grammars 77

[a,AB --+ AC,f(A)+2],0, f - ’ (f (A)+l)[a ,AB -+ AC, f (A)+1]) . . . ([a ,
AB -+ AC,q] -+ [a,AB -+ AC,q + l] ,o , f - ’ (d[a ,AB -+ AC,q])([a,
AB -+ AC,q+l] -+ [a,AB -+ AC,q+2],0,B’[a,AB -+ AC,q+
l]) ([a ,AB -+ AC,q + 21 --t [a,AB --+ AC,q + 3]) ,0 , (a,AB -+ AC,3)[a,
AB --+ AC,q+2]), u3 E ((alph(z3)-{B})U{B’})*, g-l(u3) = g-’(z3) =
y3, u’ E ((alph(u”) - { B }) U {B‘})*, g-’(u‘) = g-’(u’’) = u. It is
clear that (a,AB -i AC,5) E g(a) ; thus, (a,AB --+ AC,5)u1’ACz3 E

(b) Let a’’ = a. Then, by Claim 15, Y = B. By analogy with (ii.b) and
g(auACy3) = g(x) .

(iii.a) in the proof of this claim (see above), we obtain

S +-:-’ Eu”ABz3 +-E (a, AB --+ AC, 5)u”ACz3,

SO (a, AB -+ AC, ~) u ” A C Z ~ E g(z).

(c) Let a‘‘ = (a,AB -+ AC,5) for some AB -+ AC E P (see (vii) in
Claim 15), and let u”AYz3 E (V - {S})* . At this point, Y = B. By
analogy with (ii.c) and (iii.a) in the proof of this claim (see above), we
can construct

s *“1+1 au - 11 ABz3 =+; (a , AB --+ AC, 5)u”ACz3,
G

SO (a, AB -+ AC, 5)u”ACz3 E g(z).

(d) Let a’’ = (a,AB -+ AC,5) for some AB -+ AC E P (see (vii) in
Claim 15) , and let [a, AB -+ AC, q + 31 E alph(u”AYz3). By analogy
with (ii.d) and (iii.a) in the proof of this claim (see above), we can
construct

S +E EuIIABz~,

and then

S +-; EuI‘ABz~ +% (a, AB -+ AC, ~)uI IACZ~

so that (a , AB + AC, 5)u”ACz3 E g(auACy3) = g(z).

(e) Let a” = (a , AB -+ AC, i) for some AB -+ AC E P , i E (1 , . . . ,4}, see
(111) - (IV) in Claim 15. By analogy with (ii.e) and (iii.d) in the proof
of this claim, we can construct

If: By induction on n, we next prove that if S +-: v with v E g(w) and w E V*
for some n 2 0, then S +; w.

Basis: For n = 0, the only v is S as S +-$ S. Because {S} = g(S), we have
w = S. Clearly, S +$ S.

78 Chapter 4: Conditions Placed on the Use of Productions

Induction Hypothesis: Assume that the claim holds for all derivations of length n
or less, for some n 2 0. Let us show that it is also true for n + 1.

Induction Step: For n + 1 = 1, there only exists a direct derivation of the form

S =+-B iiA [(S + iiA,O,O)],

where A E NCF U { E } , a E T , and iiA E g(aA). By (l), we have in P a production
of the form S + aA, and thus a direct derivation S JG aA.

Suppose n + 1 2 2 (i.e., n 2 1) . Consider a derivation

where IC’ E g(x), x E V*. Because n + 1 2 2, there exist ii E Wq, A E NCF, and
y E V+ such that

S =+z iiA +:-’ y‘ =+e X’ [PI,

where p E p , y‘ E g (y) , and by the induction hypothesis,

s *; y .

Let US assume that y’ = ~ 1 2 ~ 2 , y = ~ 1 D y 2 , Z j E g (y j) , y j E (V - {S})*,
j = 1,2 , 2 E g(D) , D E V - {S}, p = (2 -+ u’, a, p) E P’, a = 0 or ,8 = 0,
x’ = z ~ u ’ z ~ , u’ E g(u) for some u E V*; that is, x’ E g(y1uy2). The following cases
(i) through (iii) cover all possible forms of

y’ *z 5’ b].

(i) Let 2 E NCF. By inspection of F, we see that 2 = D , p = (D -+ u’, ii, 0) E -
P, D --+ u E P and u = u‘. Thus,

(ii) Let u = D. Then, by induction hypothesis, we have the derivation

s *; Y l D Y 2

and y1 Dy2 = y1uy2 in G.

(iii) Let p = ([a,AB -+ AC,q + 31 -+ C,(a,AB --+ AC,5),0), 2 = [a,AB +

AC,q + 31. Thus, u’ = C and D = B E Ncs. By case (VI) in Claim 15
and the form of p , we have z1 = (a,AB -+ AC,5)t and y1 = ao, where
t E g(o) , (a , AB -+ AC, 5) E g (a) , o E (V - {S})*, and a E T. From (3) in
the construction of e, it follows that there exists a production of the form
AB --+ AC E P. Moreover, (3) and Claim 15 imply that the derivation

4.1 Sequential Conditional Grammars

can be expressed in the form

79

iiA
iit B z ~
(a, AB -+ AC, 1)~tBzz

[(ii -+ (a , AB --* AC, l) , 0 , O)]
(a , AB -+ AC, 1)vEwz

[W’I
(a , AB -+ AC, 1)vB”~z

(a, AB -+ AC, 2)vB”~z

(a, AB -+ AC, 3)VB”Wz

(a , AB -+ AC, 3) v [~ , AB -+ AC, l] ~ z

(a, AB -+ AC, 3)v[a, AB -+ AC, q + 3]wz

(a , AB -+ AC, 4)v[a, AB -+ AC, q + ~] W Z

[(E -+ B”,O, B”)]

[((a , AB -+ AC, 1) -+ (a , AB --t AC, 2) , 0 , B)]

[((a , AB -+ AC, 2) -+ (a , AB --f AC, 3) , 0, B^)]

[(B”-+ [a , A B - + A C , l] , (a , A B - - * A C , 3) , 0)]

[w I
[((a , AB -+ AC, 3) -+ (a , AB -+ AC, 4),

[a, AB -+ AC, q + 31,O)l
(a, AB -+ AC, 4)t[a, AB -+ AC, q + 31.22

(a, AB -+ AC, 5)t[a, AB + AC, q + 3122

(a, AB -+ AC, 5)tc.Z~

[W”l

[((a , AB -+ AC, 4) -+ (a , AB -+ AC, 5) , 0, B’)]

[([a, AB -+ AC, q + 31 -+ C, (a , AB --+ AC, 5) , O)] ,

where w’ E { (B -+ B’,(a,AB -+ AC,l),O)}*{(B -+ E,(a,AB -+ AC,1),0)}
{ (B -+ B’, (a,AB -+ AC,l),O)}*, g(B) n alph(vwz) C {B’}, g-’(v) =
g-’(t), g-’(wz) = g-’(Zz), w = wl([a,AB -+ AC,f(A)] -+ [a,AB -+

AC,f(A)+l],O,O)wz([a,AB -+ AC,q+l] -+ [a,AB -+ AC,q+2],O,B’[a,AB
-+ AC,q+l])([a,AB -+ AC,q+2] -+ [a,AB ---f AC,q+3],0,(a,AB -+

AC, 3) [~ , AB 4 AC, + 2]) , ~1 = ([a, AB -+ AC, 11 -+ [a, AB -+ AC, 2] ,0 ,
f-’(l)[a,AB -+ AC, I]) . . . ([a,AB -+ AC,f(A) - 11 -+ [a,AB -+ AC, f (A)] ,

wz = ([a,AB -+ AC, f (A) + 11 -+ [a,AB -+ AC, f (A) + 2],O,f-’(f(A) +
O,f-’(f(A) - l)[a,AB --, AC, f (A) - l]) , where f (A) implies q1 = E ,

l)[a,AB -+ AC, f (A) + 11). . . ([a,AB -+ AC,q] -+ [a,AB -+ AC,q + 1],0,
f-’(q)[a,AB -+ AC,q]), where f(A) = q implies qz = E , w” E {(B‘ -+

B, (a , AB -+ AC, 4), O)}*.

The derivation above implies that the right-most symbol oft must be A. As
t E g(o), the right-most symbol of o must be A as well. That is, t = s’A,
o = sA and s’ E g(s) for some s E (V - {S})* . By the induction hypothesis,

80 Chapter 4: Conditions Placed on the Use of Productions

there exists a derivation
S +& asABy2.

Because AB -+ AC E P, we get

S *& asABy2 J G asACy2 [AB -+ AC],

where asACy2 = y1uy2.

By (i), (ii), and (iii) and inspection of p , we see that we have considered all possible
derivations of the form

s *;+I XI,

so we have established Claim 16 by the principle of induction. 0

can be easily derived from Claim 16. By the
definition of 9, we have g(a) = { a } for all a E T . Thus, by Claim 16, we have for
all 2 E T*,

S =+& x if and only if S +; x.

The equivalence of G and

Consequently, L(G) = L(@, and the theorem holds. W

Corollary 12. prop-SSC(1,2) = prop-SSC = prop-SC(1,2) = prop-SC =
cs.

We now turn to the investigation of ssc-grammars of degree (1,2) with erasing
product ions.

Theorem 29. SSC(1,2) = RE.

Proof. Clearly, we have SSC(1,2) C_ RE. Thus, it suffices to show that RE G
SSC(1,2). Every language L E RE can be generated by a grammar G =
(V, T , P, S) in which each production is of the form AB -+ AC or A + x, where
A, B, C E V - T , x E { E } u T u (V - T)' (see Lemma 3). Thus, the inclusion can
be established by analogy with the proof of Theorem 28 (the details are left to the
reader).

Corollary 13. SSC(1,2) = SSC = SC(1,2) = SC = RE.

Corollaries 10, 11, 12, and 13 imply the following relationships of language
families generated by simple semi-conditional grammars:

Corollary 14.

CF
C

prop-SSC = prop-SSC(2,l) = prop-SSC(1,2)
= prop-SC = prop-SC(2,l) = prop-SC(1,2) = CS

C
SSC = SSC(2,l) = SSC(1,2) = SC = SC(2,l) = SC(1,2) = RE.

4.1 Sequential Conditional Grammars 81

Next, we turn or attention to reduced versions of ssc-grammars. More specifically,
we demonstrate that there exist several normal forms of ssc-grammars with a
limited number of conditional productions and nonterminals.

Theorem 30 ([135]). Every recursively enumerable language can be defined by a
simple semi-conditional grammar of degree (2 , l) with no more than 12 conditional
productions and 13 nonterminals.

Proof. Let L be a recursively enumerable language. By Geffert [69], we can assume
that L is generated by a grammar G of the form

G = (V,T, P U {AB -+ E,CD -+ E} ,S)

such that P contains only context-free productions and

v - = {S , A, B , C, D}.

Construct an ssc-grammar G' of degree (2, l),

G' = (V', T , P', S),

where
V' = v u W,
w = {Z,E, (E A) , $, E , ~ ~ , (E C) , # } , v n w = 0.

The set of productions P' is defined in the following way:

1. If H -+ y E P, H E V - T , y E V " , then add (H --+ y,O,O) to P'.

2. Add the following six productions to P':

(A -+ z,O, X),
(B -+ E,o, E),

(E -+ $ 1 (E A) E , O),
(2 --* (€A), zg, 01,

((€A) € 7 0, g)i
($ ---t € 7 0, (€A)).

3. Add the following six productions to P':

82 Chapter 4: Conditions Placed on the Use of Productions

Basic Idea. Notice that G’ has degree (2,l) and contains only 12 conditional
productions and 13 nonterminals. The productions of (2) simulate the application
of AB -+ E in G’ and the productions of (3) simulate the application of CD -+ E

in G’.
Let us describe the simulation_of AB-4 E . First, one occurrence of A an_d one

occurrence of B are rewritten to A and B , respectively (no more than one A and
one g appear in any sentential form). The right neighbor of 2 is checked to be g
and z is rewritten to (E A) . Then, analogously, the left neighbor of E is checked
to be (E A) and E is rewritten to $. Finally, (E A) and $ are erased. The simulation
of C D -+ E is analogous.

To establish L(G) = L(G’), we first prove the following two claims.

Claim 17. S +:, x’ implies #zx’ 5 1 for all 2 E {A , B ,C , D } and some
- - - -

Ic’ E (V’)*.

Proof. By inspection of groductions in P’, the only production that can generate
2 is of the form (X 4 X , 0,Z). This production can be applied only when no 2
occurs in the rewritten sentential form. Thus, it is not possible to derive x’ from

0 S such that #zx’ 2 2.

Informally, the next claim says that every occurrence of (E A) in derivations
from S is always followed either by g or $, and every occurrence of (EC) is always
followed either by 5 or #.

Claim 18. It holds that

(I) s +&, yi (E A) ~ ; implies yi E (v)+ andfirst(yi) E { E , $} for any yi E (v‘)*;

Proof. We establish the proof by the examination of all possible forms of deriva-
tions that may occur when deriving a sentential form containing (E A) or (E C) .

(I) By the definition of P‘, the only production that can generate (E A) is p =

(z -+ (E A) , ig , 0). This production has the permitting condition zg, so it
can be used provided that 25 occurs in a sentential form. Furthermore, by
Claim 17, no other occurrence of or E can appear in the given sentential
form. Consequently, we obtain a derivation

--
S +kt u ~ A B u ; +GI u ~ (E A) ~ u ~ [p]

for some ui,ul, E (V’)*, z,g
how to get (E A) . Obviously, (E A) is always followed by 5 in ui (E A) ~ U ~ , .

sub(uiul,), which represents the only way

4.1 Sequential Conditional Grammars 83

Next, we discuss how G’ can rewrite the subword (E A) ~ in ui (E A) ~ U ~ . There
are only two productions having the nonterminals (E A) or E on their left-
hand side, p l = (g + $, (EA)E,O) and p z = ((E A) + E , 0,g). G’ cannot
use p z to erase (E A) in u ~ (E A) E u ~ , because p z forbids an occurrence of
in the rewritten strint. Production pl has also a context condition, but
(E A) ~ E sub(ui(EA)Buk), and thus p l can be used to rewrite with $.
Hence, we obtain a derivation of the form

s * ; I UiAEu’, *GI U ; (& A) g U b [p]
*;, V i (E A) E V L *Gf Vi(EA)$Vb [PI].

Notice that during this derivation, G’ may rewrite ui and ul, to some V; and
vi, respectively (v;, V; E (V’)*); however, (EA)B remains unchanged after
this rewriting.

In this derivation we obtained the second symbol $, that can appear as the
right neighbor of (E A) . It suffices to show that there is no other symbol that
can appear immediately after (E A) . By inspection of P’, only ($ + E , 0, (E A))

can rewrite $. However, this production cannot be applied when (E A) occurs
in the given sentential form. In other words, the occurrence of $ in the
subword (€ A) $ cannot be rewritten before (E A) is erased by the production
p ~ . Hence, (E A) is always followed by either E or $, and thus the first part
of Claim 18 holds.

-

(11) By inspection of productions simulating AB + E and CD + E in G’ (see (2)
and (3) in the definition of P’), these two sets of productions work analo-
gously. Thus, part (11) of Claim 18 can be proved by analogy with part (I).

Let us return to the main part of the proof. Let g be a finite substitution from
(V‘)* to V* defined as follows:

1. For all X E V : g(X) = {X}.

2. g(x) = { A) , g(g) = { B) , g((EA)) = { A) , g($) = { B , A B) .

3. 9(E) = {CI, d a = {Dl, S((EC)) = {C}, d#) = { G C D) .

Having this substitution, we can now prove the following claim:

Claim 19. S +; z if and only if S +;, x’ for some x E g(x’), x E V*, x’ E (V’)*.

Proof. The claim is proved by induction on the length of derivations.

Only if: We show that

S +g x implies S +-&, x,

where m 2 0, x E V*; clearly x E g(x). This is established by induction on m.

84 Chapter 4: Conditions Placed on the Use of Productions

Basis: Let m = 0. That is, S +; S. Clearly, S

Induction Hypothesis: Suppose that the claim holds for all derivations of length
m or less, for some m 2 0.

Induction Step: Let us consider a derivation

S.

s *;+l x, x E v*.
Since m + 1 2 1, there is some y E V+ and p E P U {AB -+ E , CD -+ E } such that

s *; Y *G 2 [PI.

By the induction hypothesis, there is a derivation

s * & I y.

The following three cases cover all possible forms of p:

(i) p = H -+ y2 E P, H E V - T, y2 E V*. Then, y = y1Hy3 and x = y1y2y3,
y1, y3 E V*. Because we have (H -+ y2,0,0) E P’,

s *;) 1/1Hy3 *GI Yly2y3 [(H yZ,o,o)]

and YlY2Y3 = x.

(ii) p = A B --+ E . Then, y = ylABy3 and x = 9 1 ~ 3 , y1,y3 E V*. In this case,
there is the derivation

(iii) p = CD -+ E . Then, y = ylCDy3 and x = ~ 1 ~ 3 , yl , y3 E V*. By analogy
with (ii), there exists the derivation

4.1 Sequential Conditional Grammars 85

I f : By induction on the length n of derivations in G’, we prove that

S +;, x‘ implies S +; x

for some x E g(x’), x E V*, x’ E (V’)*.

Basis: Let n = 0. That is, S +:, S. It is obvious that S

Induction Hypothesis: Assume that the claim holds for all derivations of length n
or less, for some n 2 0.

Induction Step: Consider a derivation

S and S E g(S).

s +;$I XI, 2’ E (V’)*.

Since n + 1 2 1, there is some y’ E (V’)+ and p’ E P’ such that

s * ; I y’ 2’ [p’],

and by the induction hypothesis, there is also a derivation

S*;Y

such that y E g(y’).

forms of p’:
By inspection of P’, the following cases (i) through (xiii) cover all possible

(i) p‘ = (H + yz,O,O) E P’, H E V - T , y2 E V*. Then, y’ = yiHy$,
x‘ = yiy2y$, yi,y$ E (V’)* and y has the form y = y1Zy3, where y1 E
g(yi), y3 E g(y$) and 2 E g(H). Because for all X E V - T : g(X) = {X},
the only Z is H, and thus y = y1Hy3. By the definition of P’ (see (l)) , there
exists a production p = H t y2 in P, and we can construct the derivation

s *& 31HY3 *G ?/1?/2y3 b]
such that y1y2y3 = x, x E g(x’).

(ii) p’ = (A t & O , i) . Then, y’ = yiAy$, x’ = yi&$, yi,y$ E (V’)*, and

the only Z is A, so we can express y = y1Ay~. Having the derivation S +;
y such that y E g(y’), it is easy to see that also y E g(x’) because A E g(x).

(iii) p’ = (B t Z,O,E). By analogy with (ii), y’ = yiBy$, x’ = yiBy$, y =

y = YlZy3, where y1 E g(yi), y3 E g(&) E g(A). Becauseg(A) = {A),

I

91&3, where y’l,y$ E (V’)*, y1 E g(yi), y3 E g(y$), and thus E g (4
because B E g(@.

(iv) p’ = (2 + (E A) , ~ E , O) . By the permitting condition of this production,
XE surely occurs in y’. By Claim 17, no rn2F than one can occur in y’.
Therefore, y’ must be of the form y’ = yiABy$, where yi,y$ E (V’)* and

86 Chapter 4: Conditions Placed on the Use of Productions

-
2 $ sub(yiyi). Then, x’ = y i (~ ~) B y i and y is of the form y = y1zy3, where
y1 E g(yi), y3 E g(yi) and Z E g (2 g) . Because g(2E) = {AB}, the only Z
is AB; thus, we obtain y = y1ABy3. By the induction hypothesis, we have
a derivation S +& y such that y E g(y’). According to the definition of g,
y E g(x’) as well because A E g((EA)) and B E g(5) .

(v) p’ = (5 -+ $, (EA)B,O). This production can be applied provided that
(E A) ~ E sub(y’). Moreover, by Claim 17, #,-y’ 5 1. Hence, we can express
y’ = Y ~ (E A) & & , where yi,& E (V’)* and 3 # sub(yiyi). Then, x‘ =

!/:(€A)$!/; and Y = YizY3, where Pi E dd), Y3 E S(Yh) and z E g((EA)g).
By the definition of g, g((EA)g) = {AB}, so 2 = AB and y = 91ABy3. By
the induction hypothesis, we have a derivation S +; y such that y E g(y’).
Because A E g((EA)) and B E g($), y E g(x’) as well.

(vi) p’ = ((E A) -+ E,O,B). Application of ((EA) -+ E , O , ~) implies that (E A)

occurs in y’. Claim 18 says that (E A) has either g or $ as its right neighbor.
Since the forbidding condition of p‘ forbids an occurrence of in y‘, the
right neighbor of (E A) must be $. As a result, we obtain y’ = Y ~ (E A) $ Y ~

where yi, y$ E (V‘)*. Then, 2’ = yiy and y is of the form y = y1Zy3,
where y1 E g(y{), y3 E g(y4) and Z E g((EA)$). By the definition of g,
g((EA)$) = {AB,AAB}. If 2 = AB, y = yIABy3. Having the derivation
S a& y, it holds that y E g (d) because AB E g($).

(vii) p’ = ($ -+ E , O , (E A)) . Then, y’ = yi$yi and x’ = yiy;, where yi,yi E (V’)*.
Express y = y1Zy3 so that y1 E g(yi), y3 E g(y$) and Z E g($), where
g($) = {B,AB}. Let 2 = AB. Then, y = y1ABy3, and there exists the
derivation

s *; YlABy3 *G y1y3 [AB + E l ,

where y1y3 = 2, 17: E g(2’).

In cases (ii) through (vii) we discussed all six productions simulating the ap-
plication of A B -+ E in G’ (see (2) in the definition of I”). Cases (viii) through
(xiii) should cover productions simulating the application of CD -+ E in G’ (see
(3)). However, by inspection of these two sets of productions, it is easy to see that
they work analogously. Therefore, we leave this part of the proof to the reader.

We have completed the proof and established Claim 19 by the principle of
induction. 0

Observe that L(G) = L(G’) follows from Claim 19. Indeed, according to the
definition of g, we have g(a) = {a} for all a E T . Thus, from Claim 19, we have
for any x E T*:

S +& x if and only if S +;3, x.

Consequently, L(G) = L(G’), and the theorem holds.

4.1 Sequential Conditional Grammars 87

Let us note that very recently Vaszil has improved Theorem 30 by demonstrat-
ing that even 10 conditional productions and 12 nonterminals suffice to generate
every recursively enumerable language (see [1741):

Theorem 31. Eve y recursively enumerable language can be generated by a sim-
ple semi-conditional grammar of degree (2 , l) having no more than 10 conditional
productions and 12 nonterminals.

Continuing with the investigation of reduced ssc-grammars, Vaszil also proved
that if we allow permitting conditions of length three-that is, ssc-grammars of
degree (3,l)-the number of conditional productions and nonterminals can be
further decreased.

Theorem 32. Every recursively enumerable language can be generated by a sim-
ple semi-conditional grammar of degree (3,l) with n o more than 8 conditional
productions and 11 nonterminals.

Proof. Let L by a recursively enumerable language. Without any loss of generality,
we can assume that L is generated by a phrase-structure grammar

G = (V, T , P U {ABC -+ E } , S),

where

and P contains only context-free productions of the forms S -+ 25’2, z E { A , B}*,
2 E T , S -+ S’, S’ -+ uS’v, u E { A , B } * , v E {B,C}* , S’ --+ E (see [68]). Every
successful derivation in G consists of the following two phases:

V - T = {S, S’,A,B,C)

1. S +-;2 2,. . . zlSz1.. .z, =+-G 2, . . .z1S’z1.. .zn, zi E { A , B}*, 1 5 i I n.

2. 2,. . .21s’Zl.. .z, %‘; 2,. . .21u,.. . ‘LL1s”u1.. . Vmx1.. .z, J G 2,. . . z1
u, ... u1vl. . .vmzl . . .z,, where uj E { A , B } * , v j E {B,C}*, 1 5 j 5 rn,
and the terminal word 21. . . x, is generated by G if and only if by using the
erasing production ABC -+ E , the substring z, . . . zlu,. . . ~ 1 ~ 1 . . .v, can
be deleted.

Next, we introduce the ssc-grammar

G’ = (V’, T, P’, S)

of degree (3, l), where

V’ = { S, S‘, A, A‘, A“, B, B’, B’l, C, C’, C”} U T

and P’ constructed as

1. for every H -+ y E P , add (H --f y,O,O) to P‘;

2. for every X E { A , B,C}, add (X -+ X’,O,X’) to P’;

88 Chapter 4: Conditions Placed on the Use of Productions

3. add the following six productions to P’:

(C’ -+ C”, A’B’C’, 0) ,
(A’ -+ A”, A’B’C’’, 0) ,
(B’ -+ B”, AI’B’C’’, 0) ,
(A‘’ -+ E , 0, C”),
(C” -+ E , 0, B’),
(B” --f E, 0,O).

Observe that G’ satisfies all the requirements of this theorem; that is, it contains
only 8 conditional productions and 11 nonterminals. G‘ reproduces the first two
phases of generating a terminal word in G by using the productions of the form
(H -+ y,O,O) E P’. The third phase, during which ABC -+ E is applied, is
simulated by the additional productions. Examine these productions to see that
all words generated by G can also be generated by G’. Indeed, for every derivation
step

YiABCyz JG yiy2 [ABC --+ € 1
in G, y1, y2 E V*, there exists the following derivation in G’:

[(A -+ A’, 0 , A’)]
[(B --+ B’, 0, B’)1
[(C -+ C’, 0, C’)l
[(C’ -+ C”,A’B’C’,O)]
[(A’ -+ A”, A’B’C’’ , O)]
[(B’ -+ B”, AI‘B’C’’, O)]
[(C” -+ E , 0, B’)]
[(A’’ -+ E , 0 , C”)]
[(B” --+ € 7 0,O)l

As a result, L(G) C L(G’). In the following we show that G’ does not generate
words that cannot be generated by G; thus, L(G’) - L(G) = 8, so L(G‘) = L(G).

Let us study how G‘ can generate a terminal word. All derivations start from
S. While the sentential form contains S or S’, its form is ZSW or zuS‘vw, z , u, v E
{A, B,C,A’, B’, C’}”, w E T*, where if g(X’) = X for X E {A, B , C } and g (X) =
X for all other symbols of V, then g(zSw) or g(zuS’vw) are valid sentential forms
of G. Furthermore, zu contains at most one occurrence of A’, v contains at most
one occurrence of C’, and zuv contains at most one occurrence of B’ (see (2) in
the construction of P’). After (S’ -+ E , 0,O) is used, we get a sentential form zuvw
with z , u, v, and w as above such that

s *& g(zuvw).

Next, we demonstrate that

zuv E implies g(zuv) =+-& E .

4.1 Sequential Conditional Grammars 89

More specifically, we investigate all possible derivations rewriting a sentential form
containing a single occurrence of each of the letters A’, B’, and C’.

Consider a sentential form zuvw, where z , u, v E {A, B, C, A’, B‘, C’}*, w E T*,
and # A ~ Z U = #B~ZUV = # p v = 1. By the definition of productions rewriting A’,
B’, and C’ (see (3) in the construction of P’), we see that these three symbols
must form a substring A’B’C’; otherwise, no next derivation step can be made.
That is, zuvw = zBA’B’C’i7w for some i i , C E {A , B , C}*. Next, observe that the
only applicable production is (C’ + C”, A‘B’C‘, 0) . Thus, we get

ziiA‘B’C’i7~ +GI ZEA’B‘C’’~~W,

This sentential form can be rewritten in two ways. First, we can rewrite A’ to A’’
by (A’ -+ A”,A’B’C”,O). Second, we can replace another occurrence of C with
C’. Let us investigate the derivation

ZBA’B‘C’‘BW +Gt ~f””B’C’’i7w [(A’ -+ A”, A’B‘C’’, O)] .

As before, we can either rewrite another occurrence of A to A’, or rewrite an
occurrence of C to C’, or rewrite B‘ to B” by using (B’ + B”,A”B’C”,O).
Taking into account all possible combinations of the above-described steps, we see
that after the first application of (B’ + B”, AI’B’C’’, 0) the whole derivation is of
the form:

zBA‘ B‘C‘BW +;, Z U ~ X U ~ A “ B“C“u1 Y u ~ W ,

where X E {A’ ,&} , Y E {C’,E}, ulg(X)u2 = B, and v1g(Y)v2 = 0. Let zulXu2 =
x and vlYv2 = y . The next derivation step can be made in four ways. By an
application of (B -+ B’, 0, B’), we can rewrite an occurrence of B in x or y.
In both cases, this derivation is blocked in the next step. The remaining two
derivations are

xA”B”C”YW +GI xA“C“YW [(B” + E , 0, O)]

and
xA”B”C”YW +GI xA”B”Yw [(C” + E , 0, B’)].

Let us examine how G’ can rewrite xA”C“yw. The following three cases cover all
possible steps:

(i) xA”C”yw =+Gt x1B’”A‘’C’’yw [(B -+ B’,O,B’)], where xlBx2 = 2, and
the derivation is blocked.

(ii) xA”C”yw ~~t xA”C”ylB’y~w [(B -+ B’,O, B’)], where ylBy2 = y . As
before, no next derivation step can be made.

(iii) xA”C”yw =+G~ xA”yw [(C” + E , 0, B’)]. Then, all the following derivations

XA“yW +GI X Y W ,

XA“YW +GI X~B’X~A’‘YW +GI x1B’xZYW,

90 Chapter 4: Conditions Placed on the Use of Productions

where x1 Bx2 = x , and

XA"YW +GI ~ A " y l B ' y 2 ~ +GI X Y ~ B ' Y ~ w ,

where y1 By2 = y , produce a sentential form in which the substring A"B"C"
is erased. This sentential form contains at most one occurrence of A', B',
and C'.

Return to
xA"B"C"~W +GI xAI'BI'Yw.

Observe that by analogy with case (iii), any rewriting of xA"B"yw removes the
substring A"B", and produces a sentential form containing at most one occurrence
of A', B', and C'.

To summarize the considerations above, the reader can see that as long as there
exists an occurrence of A", B", or C" in the sentential form, only the erasing
productions or (B + B', 0 , B') can be applied. The derivation either enters a
sentential form that blocks the derivation or the substring A'B'C' is completely
erased, and new occurrences of A, B , and C can then be changed to A', B', and
C'. That is,

ziiA'B'C'Uw +:, xyw implies g(ziiA'B'C'bw) JG g(xyw),

where z , 2L,V E {A, B,C}*, x , y E {A, B,C,A', B',C'}*, w E T*, and zii = g(x),
Vw = g(yw) . In other words, the productions constructed in (2) and (3) correctly
simulate the application of the only non-context-free production ABC --+ E. Recall
that g (a) = a for all a E T . Hence, g(xyw) = g(xy)w. Thus, L(G') - L(G) = 0.

Having L(G) g L(G') and L(G') - L(G) = 0, we get L(G) = L(G'), and the
theorem holds.

Open Problems. Let us state several open problems regarding ssc-grammars.
In Theorems 26, 27, 28, and 29, we proved that ssc-grammars of degrees (1,2) and
(2 , l) generate the family of recursively enumerable languages, and propagating
ssc-grammars of degrees (1,2) and (2 , l) generate the family of context-sensitive
languages. However, we discussed no ssc-grammars of degree (1 , l) . According to
Penttonen (see Theorem 24), propagating sc-grammars of degree (1 , l) generate
a proper subfamily of context-sensitive languages. That is, prop-SSC(1,l) C
prop-SC(1,l) c CS. Are propagating ssc-grammars of degree (1 , l) as powerful
as propagating sc-grammars of degree (1, l)? Furthermore, consider ssc-grammars
of degree (1 , l) with erasing productions. Are they more powerful than propagating
ssc-grammars of degree (1, l)? Do they generate the family of all context-sensitive
languages or, even more, the family of recursively enumerable languages?

In Theorems 30 through 32, several reduced normal forms of these grammars
were presented. These normal forms give rise to the following questions. Can
any of the results be further improved with respect to the number of conditional
productions or nonterminals? Are there analogical reduced forms of ssc-grammars

4.2 Parallel Conditional Grammars 91

with degrees (2 , l) and (3, l)? Moreover, reconsider these results in terms of prop-
agating ssc-grammars. Is it possible to achieve analogical results if we disallow
erasing productions?

4.2 Parallel Conditional Grammars

In this section, we study parallel grammars with permitting and forbidding con-
text conditions. As ETOL grammars represent a very important type of parallel
grammars in modern theoretical computer science (see [149], [150], [155], [156],
[ISS]), we base our discussion on these grammars extended by context conditions.
By analogy with sequential context-conditional grammars, we first define context-
conditional ETOL grammars as ETOL grammars with finite sets of permitting
and forbidding conditions. Then, we investigate the generative power of their
two specific cases-forbidding ETOL grammars and simple semi-conditional ETOL
grammars.

4.2.1 Context-Conditional ETOL Grammars

Definition 16. A context-conditional ETOL grammar (a CETOL grammar for
short) is defined as a t+3-tuple,

G = (V, T , s 1 . . . , Pt , S),

where V , T , and S are the total alphabet, the terminal alphabet (T C V) , and the
axiom (S E V - T), respectively. Every Pi, 1 5 i 5 .t, for some t 2 1, is a finite
set of productions of the form

(a + x , Per, For)

with a E V, z E V * , and Per,For E V+ are finite languages. A CETOL gram-
mar without erasing productions is said to be propagating (a CEPTOL grammar
for short). G has degree (r,s), where T and s are natural numbers, if for every
i = 1 ,..., t and (a + x ,Per ,For) E Pi, max(Per) 5 T and max(For) 5 s
(see Section 2.1 for the definition of m a) . Let u,v E V', u = a1a2.. .aq,
v = 2 1 1 ~ 2 . . . vq, q = IuI, aj E V , vj E V*, and pl ,pz , . . . , p q is a sequence of produc-
tions p j = (aj + vj, Perj, Forj) E P, for all j = 1 , . . . , q and some i E (1 , . . . , t} .
If for every p j , Perj C sub(u) and Forj n sub(u) = 0, then u directly derives v
according to p l , p 2 , . . . ,pq in G, denoted by

u *G 21 b l ~ P 2 , * . ,Pq].

The language of G is defined as

L(G) = { X E T* : S +; x} .

If t = 1, then G is called a context-conditional EOL grammar (a CEOL grammar
for short). If G is a propagating CEOL grammar, then G is said to be a CEPOL

92 Chapter 4: Conditions Placed on the Use of Productions

grammar. The families of languages defined by CEPTOL, CETOL, CEPOL, and
CEOL grammars of degree (r , s) are denoted by CEPTOL(r,s), CETOL(r,s),
CEPOL(r, s), and CEOL(r, s), respectively. Set

0 0 0 0 0 0 0 0

CEPTOL = U U CEPTOL(r,s), CETOL = U U CETOL(r,s),
r=o s=o r=o s=o

0 0 0 0 0 0 0 0

CEPOL = U U CEPOL(r,s), CEOL = U U CEOL(T,S).
r=o s=o r=o s=o

The following lemmas and theorems establish several general results concering
the generative power of context-conditional ETOL grammars:

Lemma 10. CEPOL G CEPTOL C CETOL, CEPOL CEOL 2 CETOL.
For any r, s 2 0, CEPOL(r, s) C CEPTOL(r, s) C CETOL(r, s), CEPOL(r, s) G
CEOL(r,s) C CETOL(r,s).

Proof. Follows trivially from the definitions. 0

Theorem 33.

CF
C

CEOL(0,O) = CEPOL(0,O) = EOL = EPOL
C

CETOL(0,O) = CEPTOL(0,O) = ETOL = EPTOL
C
cs

Proof. Clearly, CEPOL and CEOL grammars of degree (0,O) are ordinary EPOL
and EOL grammars, respectively. Analogously, CEPTOL and CETOL grammars of
degree (0,O) are EPTOL and ETOL grammars, respectively. Because CF c EOL =
EPOL C ETOL = EPTOL C CS (see Theorem 2), we get CF c CEOL(0,O) =
CEPOL(0,O) = EOL c CETOL(0,O) = CEPTOL(0,O) = ETOL c CS; there-
fore, the theorem holds.

Lemma 11. CEPTOL(r,s) C CS, for any r 2 0, s 2 0.

Proof. For r = 0 and s = 0, we have

CEPTOL(0,O) = EPTOL c CS.

The following proof demonstrates that the inclusion holds for any r and s such
that r + s 2 1.

Let L be a language generated by a CEPTOL grammar,

G = (V,T,Pl,. . * , P t , S) ,

4.2 Parallel Conditional Grammars 93

of degree (r, s), for some r, s L 0, r + s 2 1, t 2 1. Let k be the greater number of
r and s. Let

M = {z E v+ : 1x1 5 k}.

For every Pi, 1 5 i 5 t , set

cf(Pi) = { u -+ z : (u -+ z , Per, For) E Pi, a E V, z E V+}.

Construct the context-sensitive grammar

G' = (V' , T' , P', S')

with the finite set of productions P' defined as follows:

1. Add S' -+ D(0,E)Sa to P'.

2. For all X 2 M , z E (Vk U {E}) and y E V k , add the next production to P':

(X,4Y --+ Y(X u sub(zy,k),d.

3. For all X c M , z E (V"{E}) and y E V+, IyI 5 k, add the next production
to P':

(X , z)ya -+ y[X u sub(zy, k)Ja.

4. For all X c M and Q C cf(Pi), where i E (1, .'. . , t } , such that for every
a -+ z E Q, there exists (a -+ z, Per, For) E P, satisfying Per c X and
For n X = 8, add the next production to PI:

1x14 -+ [&la.

5. For every Q 5 cf(Pi) for some i E (1, ..., t}, a E V and z E V + such that
u -+ z E Q, add the next production to PI:

6. For all Q c cf(Pi) for some i = {I,. . . , t } , add the next production to PI:

DTQ1 -+ ~ (0 ~ 4 .

7. Add D(0,E) --+ #$, $ a -+ ##, and $a -+ a$, for all a E T, to PI.

94 Chapter 4: Conditions Placed on the Use of Productions

Claim 20. Every successful derivation in G‘ has the form

s’ J G ‘ D(Q),&)Sa
J;, D(0,E)XQ

=$! #x$a

such that x E T+ and during ~ (0 , c) S a J+, D (~ , E) x ~ , every sentential form w
satisfies w E {D}H+{a}, where H C V’ - rD, 4, #, $, S’}.

Proof. Observe that the only production that can rewrite the axiom is 5’’ -+

D(0, &)Sa; thus,

After that, every sentential form that occurs in

JQ #$xa

*GI #x##

s’ J G ‘ D (@ , &) S a .

~ (0 , c) S a +;, ~ (0 , ~) x a

can be rewritten by using any of the productions (2) through (6) from the con-
struction of PI. By inspection of these productions, it is obvious that the edge
symbols D and a remain unchanged and no other occurrences of them appear
inside the sentential form. Moreover, there is no production generating a symbol
from {#, $, S’}. Therefore, all these sentential forms belong to {D}H+{a}.

Next, let us explain how G’ generates a word from L(G’). Only D((~,E) -+ #$
can rewrite D to a symbol from T (see (7) in the definition of P’). According to
the left-hand side of this production, we obtain

s’ J G ~ D (@ , &) S a *>, D(8,&)xQ JG~ #$za,

where x E H+. To rewrite a, G’ uses $a -+ ##. Thus, G’ needs $ as the left
neighbor of a. Suppose that x = a l a z . . .ap, where q = 1x1 and a, E T , for all
i E (1,. . . , q } . Since for every a E T there is $a -+ a$ E P’ (see (7)), we can
construct

#$alaz. . . a,a JGJ # a l $ a z . . . a,a
J G ~ #alaZ$. . . a,a
+:,!-’ # a l a z . . . a,$a.

Notice that this derivation can be constructed only for x that belong to T+. Then,
$a is rewritten to ##. As a result,

S’ JG~ D (~ , E) s ~ D (o , &) X ~ +-Gj #$za J:! #x$a +-G/ #z##

with the required properties. Thus, the claim holds. 0

The following claim demonstrates how G’ simulates a direct derivation from
G-the heart of the construction.

Let x J:, y denote the derivation x +;, y such that x = D(&&)UQ, y =
D(@,&)va , u,z, E V+, and there is no other occurrence of a string of the form
D(@,&)Za , z E V*, during x +:, y.

4.2 Parallel Conditional Grammars 95

Claim 21. For every u, v E V * ,

D (8 , ~) u a +:, D(8,&)wa if and only if u +G v.

Proof.

Only if: Let us show how GI rewrites D (8 , ~) u a to D (8 , ~) w a . The simulation
consists of two phases.

During the first, forward phase, G’ scans u to get all nonempty substrings of
length k or less. By repeatedly using productions

(X,+ -+ Y(X u s w z y , k),Y),

where X S M , z E (Vk U { E }) , y E V k (see (2) in the definition of P’), the
occurrence of a symbol with form (X, z) is moved toward the end of the sentential
form. Simultaneously, the substrings of u are collected in X. The forward phase
is finished by

where z E (Vk U {E}), y E V+, IyI 5 k (see (3)); the production reaches the end
of u and completes X = sub(u, k). Formally,

(X, -+ ylx u sub(zy, k)J 4,

D(8,E)ua +zt D U l x J a

such that X = sub(u, k). Then, LXJ is changed to rQ1, where

Q = { a -+ z : (a --+ z, Per, For) E Pi, a E V, z E V+,
Per, For C M , Per C X, For n X = a},

forsomeiE {l, ..., t } , by

(see (4)). In other words, GI selects a subset of productions from Pi that could be
used to rewrite u in G.

The second, backward phase simulates rewriting of all symbols in u in parallel.
Since

for all a -+ z E Q, a E V, z E V+ (see (5)) ,

1x14 -+ rQla

4Ql -+ rQ1z E P’

Du[Qla +$ DrQlva

such that FQ1 moves left and every symbol a E V in u is rewritten to some z
provided that a -, z E Q. Finally, rQ1 is rewritten to (0 , ~) by

~ 1 Q l -+ D(0,E).

As a result, we obtain

96 Chapter 4: Conditions Placed on the Use of Productions

Observe that this is the only way of deriving

D(O, €) u a =$, D(O, +a.

Let us show that u JG u. Indeed, because we have (u -+ z , Per, For) E Pi for
every a [Ql --+ [Q] z E P used in the backward phase, where Per C sub(u, k) and
For n sub(u, k) = 0 (see the construction of Q), there exists a derivation

*G [pl - * .Pp]r

where IuI = q , and pj = (a t z,Per,For) E Pi such that a[Ql --+ [Qlz has been
applied in the (q - j + 1)-th derivation step in

Du[Qla *!! ~ [Q l v a ,

where a E V , z E V+, 1 5 j 5 q.

I f : The converse implication is similar to the only-if part, so we leave it to the
reader. 0

Claim 22. S' =+$, ~ (0 , ~) x a i f and only i f S +& x, for all x E V+.

Pro0 f.

Only i f : The only-if part is proved by induction on the ith occurrence of the
sentential form w satisfying w = D(0, €)ua, u E V+, during the derivation in G'.

Basis: Let i = 1. Then, S' aG' D (~ , E) S Q and S +% S.

Induction Hypothesis: Suppose that the claim holds for all i 5 h, for some h 2 1.

Induction Step: Let i = h + 1. Since h + 1 2 2, we can express

S' +-&, ~ (0 , ~) x ~ a

as
s' +-:, D(fl,€)Xi-ia *,$ D(@,E)ZiQ,

where xi-1, xi E V+. By the induction hypothesis,

s *; xi-1.

Claim 21 says that

D(0 ,E)Zi - la +$ D (@ , E) X ~ ~ if and only if Xi-1 *G Xi.

Hence,
s =$'& xi-1 *G xi

and the only-if part holds.

4.2 Parallel Conditional Grammars 97

I f : By induction on n, we prove that

s x implies s’ +:, D(@,&)xQ

for all n 2 0, x E V+.

Basis: For n = 0, S =+-: S and S’ =+GI D (~ , E) S ~ .

Induction Hypothesis: Assume that the claim holds for all n or less, for some
n 2 0.

Induction Step: Let

Because n + 1 2 1, there exists y E V+ such that

s +;+I 2 , x E v+.

and by the induction hypothesis, there is also a derivation

s’ +:, D(0,E)UQ.

From Claim 21, we have

Therefore,
s’ =+&! D (@ , €) y a +-:, D(@,E)Z4,

and the converse implication holds as well. 0

From Claims 20 and 22, we see that any successful derivation in G’ is of the
form

s‘ +:, D (8 , E) z a +:, #X##

such that
s =+*G 2, x E T+.

Therefore, we have for each x E T+,

S‘ +:, #x## if and only if S =+& x.

Define the homomorphism h over (T U {#})* as h(#) = E and h(a) = a for
all a E T. Observe that h is 4-linear erasing with respect to L(G’) (see page 98
in [161]). Furthermore, notice that h(L(G’)) = L(G). Because CS is closed under
linear erasing (see Theorem 10.4 on page 98 in [161]), L E CS. Thus, Lemma 11
holds. 0

Theorem 34. CEPTOL = C S .

98 Chapter 4: Conditions Placed on the Use of Productions

Proof. By Lemma 11, CEPTOL 5 CS. Later in this chapter we define two special
cases of CEPTOL grammars and prove that they generate all the family of context-
sensitive languages (see Theorems 38 and 41). Therefore, CS C CEPTOL, and
hence CEPTOL = CS.

Lemma 12. CETOL G RE.

Proof. This lemma follows from Church’s thesis. To obtain an algorithm con-
verting any CETOL grammar to an equivalent phrase-structure grammar, use the

0 technique presented in Lemma 11.

Theorem 35. CETOL = RE.

Proof. By Lemma 12, CETOL c RE. In Sections 4.2.2 and 4.2.3, we introduce
two special cases of CETOL grammars and demonstrate that even these grammars
generate RE (see Theorems 39 and 40) and therefore RE c CETOL. As a result,
CETOL = RE. rn

4.2.2 Forbidding ETOL Grammars

In this section, we discuss forbidding ETOL grammars (see [137]). First, we define
forbidding ETOL grammars. Then, we establish their generative power.

Definition 17. Let G = (V,T, Pl , . . . , Pt, S) be a CETOL grammar. If every
p = (a -+ 2, Per,For) E Pi, where i = 1,. . . , t , satisfies Per = 0, then G is
said to be forbidding ETOL grammar (an FETOL grammar for short). If G is
a propagating FETOL grammar, then G is said to be an FEPTOL grammar. If
t = 1, G is called an FEOL grammar. If G is a propagating FEOL grammar, G is
called an FEPOL grammar.

Convention 4. Let G = (V, T , P I , . . . , Pt , S) be an FETOL grammar of degree
(r, s). Clearly, (a -+ 2, Per, For) E Pi implies Per = 0 for all i = 1 , . . . ,t. By
analogy with sequential forbidding grammars, we thus omit the empty set in the
productions. For simplicity, we also say that G’s degree is s instead of (r, s) .

The families of languages generated by FEOL grammars, FEPOL grammars,
FETOL grammars, and FEPTOL grammars of degree s are denoted by FEOL(s),
FEPOL(s), FETOL(s), and FEPTOL(s), respectively. Moreover,

a3 a3

FEPTOL = u FEPTOL(s), FETOL = u FETOL(s),
a=O a=O

a3 00

FEPOL = u FEPOL(s), FEOL = u FEOL(s).
s=O s=O

4.2 Parallel Conditional Grammars 99

be an FEPOL grammar, where

P = { (S --+ ABA, 0),
(A --+ aA, {c)),
(B --+ bB, 01,
(A -+ 8, {GI) ,
(3 --+ a, 01,
(B --+ C,0),
(C --+ bC, { A)) ,
(C --+ b, { A)) ,
(a --+ a , 01,
(b --+ b , W .

Obviously, G is an FEPOL grammar of degree 1. Observe that for every word from
L(G), there exists a derivation of the form

S =+G ABA
=+G aAbBaA
=+ & am- 1 Abm- 1 Barn- 1 A
+,G am-l- m-I m-l- ab Ca a
J G ambmCam
a& ambn-'Cam
+,G ambnam,

with 1 5 m 5 n. Hence,

L(G) = {ambnam : 15 m 5 TI}.

Note that L(G) 6 EOL (see page 268 in Volume 1 of [157]); however, L(G) E
FEPOL(1). As a result, FEPOL grammars (of degree 1) are more powerful than
ordinary EOL grammars.

Next, we investigate the generative power of FETOL grammars of all degrees.

Theorem 36. FEPTOL(0) = EPTOL, FETOL(0) = ETOL, FEPOL(0) =
EPOL, and FEOL(0) = EOL.

Proof. It follows from the definition of FETOL grammars. 0

Lemmas 13, 14, 15, and 16 inspect the generative power of forbidding ETOL
grammars of degree 1. As a conclusion, in Theorem 37, we demonstrate that
both FEPTOL(1) and FETOL(1) grammars generate precisely the family of ETOL
languages.

Lemma 13. EPTOL C FEPOL(1).

Proof. Let
G = (V, T, Pi,. . . , Pt, S)

100 Chapter 4: Conditions Placed on the Use of Productions

be an EPTOL grammar, where t 2 1. Set

w = { (a , i) : a E v, i = 1,. . . , t}

and
F (i) = { (a , j) E w : j # i}.

Then, construct an FEPOL grammar of degree 1,

G’ = (V’,T,P’,S),

where
v’ = v u w, (V n w = 0),

and the set of productions P’ is defined as follows:

1. For each a E V and i = 1,. . . , t , add (a -+ (a, i), 0) to PI.

2 . If a -+ z E Pi for some i E (1,. . . , t } , a E V , z E V+, add ((a , z) -+ z , F (i))
to P‘.

Let us demonstrate that L(G) = L(G’).

Claim 23. For each derivation S +:, x, n 2 0,

(I) if n = 2k + 1 f o r some k 2 0, x E W+;

(11) z f n = 2k for some k 2 0 , x E V+.

Proof. The claim follows from the definition of P’. Indeed, every production in P’
is either of the form (a -+ (a , i) , 0) or ((a , i) -+ z , F (i)) , where a E V , (a , i) E W ,
z E V+, i E (1,. . . , t } . Since S E V ,

s +Zs1 x implies x E W+

s +$ x implies IC E v+;
and

thus, the claim holds. 0

Define the finite substitution g from V* to (V’)* such that for every a E V ,

g(a) = { a } u { (a , i) E w : i = 1,. . . , t } .

Claim 24. S +& x if and only if S +;, x’ for some x’ E g(x), x E V+,

Pro0 f .

Only I f : By induction on n 2 0, we show that for all x E V + ,

5’ E (V’)+.

S +; x implies s +$ x.

4.2 Parallel Conditional Grammars 101

Basis: Let n = 0. Then, the only x is S; therefore, S *; S and also S +:,
S.

Induction Hypothesis: Suppose that

s =+; x implies s =+$ x

for all derivations of length n or less, for some n 2 0.

Induction Step: Consider S +-;+’ x. Because n + 1 2 1, we can express

s =+;+I x

as
s Y * G [plrPZ,*..,pq]

such that y E V+, q = JyI, and p j E Pi for all j = 1,. . . , q and some i E (1,. . . , t } .
By the induction hypothesis,

Suppose that y = a1a2.. . a,, aj E V. Let G’ make the derivation

*G I (al,~)(u2,i)...(aq,~) [pi,pi,...,pbl
*Gt zlzz. zq [p’i,p;, . . * ,Pb’l,

s =+$ y .

S =+$ ala2 ... aq

where p[i = (aj -+ (aj,i),@) and p y = ((aj,i) -+ z j , F (i)) such that p j = aj -+ z j ,
z j E V+, for all j = 1,. . . , q. Then, zlzz.. . zq = x, and therefore

I f : The converse implication is established by induction on the length of deriva-
tions in GI. We prove that

S x‘ implies S +: x

for some x’ E g (x) , n 2 0.

Basis: For n = 0, S =+:, S and S =s’& S; clearly, S E g(s).

Induction Hypothesis: Assume that there exists a natural number m such that the
claim holds for every 0 5 n 5 m.

Induction Step: Let

Express this derivation as

s *g,? 2‘.

s *El 9’ *GI 5’ [pi,ph,.**,pb],

102 Chapter 4: Conditions Placed on the Use of Productions

where y’ E (V’)+, q = Iy’(, and p i , p a , . . . , p i is a sequence of productions from P’.
By the induction hypothesis,

where y E V+, y’ E g(y). Claim 23 says that there exist the following two cases:

s *& Y,

(i) Let m = 2k for some k 2 0. Then, y‘ E V+, x’ E W+, and every production

p’. = (U j -+ (U j , i), 01,
3

where aj E V , (aj,i) E W , i E (1,. .. ,t}. In this case, (aj,i) E g(aj) for
every uj and any i (see the definition of 9) ; hence, x’ E g(y) as well.

(ii) Let m = 2k + 1. Then, y’ E W+, 2‘ E V+, and each p[i is of the form

where (aj,i) E W , zj E V+. Moreover, according to the forbidding condi-
tions of p i , all (a j , i) in y’ have the same i. Thus, y’ = (al, i)(az, i) . . . (aq, i)
for some i E (1,. . . , t} , y = g-’(y’) = a1uz . . .aq, and x’ = 2122 . . . zq. By
the definition of PI,

((aj,i) -+ z j , F (i)) E P’ implies aj -+ zj E Pi.

Therefore,

where p j = aj -+ z j E Pi such that p[i = ((u j , i) -+ z j , F (i)) . Obviously,
z1.22.. . zq = x = 2’.

This completes the induction and establishes Claim 24. 0

By Claim 24, for any x E T+,

S +& x if and only if S +&, x
Therefore, L(G) = L(G’), so the lemma holds. 0

In order to simplify the notation in the following lemma, for a set of productions

P c { (a -+ z , F) : a E V, z E V * , F E V } ,

define
left(P) = { a : (a -+ z , F) E P}.

Informally, left(P) denotes the set of left-hand sides of all productions in P.

Lemma 14. FEPTOL(1) c EPTOL.

4.2 Parallel Conditional Grammars 103

Proof. Let
G = (V,T, P i , . . . , Pt,S)

be an FEPTOL grammar of degree 1, t 2 1. Let Q be the set of all subsets 0 G Pi,
1 5 i 5 t, such that every (a + z, F) E 0, a E V , z E V+, F V , satisfies
F n left(0) = 0. Create a new set Q’ so that for each 0 E Q, add

{ a + z : (a - + z , F) E O }

to Q’. Express
Q’ = {Qi, . . . , Qk},

where m is the cardinality of Q’. Then, construct the EPTOL grammar

G’ = (V,T,Qi, . . . ,Qk ,S) .

Basic Idea. To see the basic idea behind the construction of G‘, consider a
pair of productions p l = (a1 -+ z1,Fl) and pz = (a2 -+ zz,Fz) from Pi, for
some i E {I,.. . ,t}. During a single derivation step, pl and pz can concurrently
rewrite a1 and a2 provided that a2 # F1 and a1 # Fz, respectively. Consider any
0 C Pi containing no pair of productions (a1 + 21, F1) and (a2 + ZZ, Fz) such
that a1 E F2 or a2 E F1. Observe that for any derivation step based on 0, no
production from 0 is blocked by its forbidding conditions; thus, the conditions can
be omitted. Formal proof is given next.

Claim 25. S +E x if and only if S +-:, x, x E V * , n 2 0.

Proof. The claim is proved by induction on the length of derivations.

Only If: By induction on n, n 2 0, we prove that

S J; x implies S +:, x

for all x E V*.

Basis: Let n = 0. Then, S +& S and S +:, S.

Induction Hypothesis: Suppose that the claim holds for all derivations of length n
or less, for some n 2 0.

Induction Step: Consider a derivation

Because n + 1 2 1, there exists y E V + , q = Iyl, and a sequence PI,. . . , p q , where
p j E P i f o r a l l j = l , ..., q a n d s o m e i ~ (1 , ..., t} ,suchthat

s *$ Y *G x b l ,***7Pq]*

104 Chapter 4: Conditions Placed on the Use of Productions

By the induction hypothesis,
s * ; I y.

0 = { p j : 1 I j I 4).
Let

Observe that
Y *G x [Plr...rPql

implies alph(y) = left(0). Moreover, every p j = (a -+ 2, F) E 0, a E V , z E V+,
F C V , satisfies F n alph(y) = 8. Hence, (a -+ z , F) E 0 implies F n left(0) = 8.
Inspect the definition of G' to see that there exists

Q k = { a + z : (a + z , F) E O }

for some r , 1 5 r 5 m. Therefore,

s * ; I Y *GI [pi,...,pb],

where p i = a -+ z E Qk such that p j = (a -+ z , F) E 0, for all j = 1,. . . , q.

I f : The if-part demonstrates for every n 2 0,

S +-;, x implies S *$ x,

where x E V*.

Basis: Suppose that n = 0. Then, S =+:, S and S

Induction Hypothesis: Assume that the claim holds for all derivations of length n
or less, for some n 2 0.

Induction Step: Let

S.

s =$1 x.

As n + 1 2 1, there exists a derivation

such that y E V+, q = Iyl, each pi E Qh for some r E (1, ..., m}, and by the
induction hypothesis ,

s *$ y.

Then, by the definition of Qk, there exists Pi and 0 c Pi such that every (a 3
z , F) E 0, a E V , z E V+, F c V , satisfies a -+ z E Q L and Fn le f t (0) = 0. Since
alph(y) C left(O), (a -+ z , F) E 0 implies F n alph(y) = 0. Hence,

s *% Y *G [PI,...,&],

where p j = (a -+ z , F) E 0 for all j = 1,. . . ,q. 0

4.2 Parallel Conditional Grammars 105

From the claim above,

S +; x if and only if S +&, x
for all x E T*. Consequently, L(G) = L(G’). 0

The following two lemmas can be proved by analogy with Lemmas 13 and 14.
The details are left to the reader.

Lemma 15. ETOL 5 FEOL(1).

Lemma 16. FETOL(1) g ETOL.

Theorem 37. FEPOL(1) = FEPTOL(1) = FEOL(1) = FETOL(1) = ETOL =
EPTOL.

Proof. By Lemmas 13 and 14, we have EPTOL C FEPOL(1) and FEPTOL(1) C
EPTOL, respectively. Since FEPOL(1) C FEPTOL(l), we get FEPOL(1) =
FEPTOL(1) = EPTOL. Analogously, from Lemmas 15 and 16, FEOL(1) =
FETOL(1) = ETOL. However, EPTOL = ETOL (see Theorem V.1.6 on page
239 in [155]). Therefore,

FEPOL(1) = FEPTOL(1) = FEOL(1) = FETOL(1) = EPTOL = ETOL;

thus, the theorem holds. 0

Next, we investigate the generative power of FEPTOL grammars of degree 2.
The following lemma establishes a normal form for context-sensitive grammars so
that the grammars satisfying this form generate only sentential forms containing
no nonterminal from Ncs as the left-most symbol of the string. We make use of
this normal form in Lemma 18.

Lemma 17. Every context-sensitive language, L E C S , can be generated by a
context-sensitive grammar, G = (N1 U NCF U Ncs U T, T, P, SI), where NI , NCF,
NCS, and T are pairwise disjoint alphabets, S1 E N1, and every production in P
has one of the following forms:

(i) AB + AC, where A E (N1 U NcF), B E Ncs, C E NCF.

(ii) A ---f B, where A E NCF, B E Ncs.

(iii) A -+ a, where A E (N1 U NcF), a E T.

(iv) A -+ C, where A, C E NCF.

(v) A1 -+ C1, where Al,C1 E NI.

(vi) A -+ DE, where A, D, E E NCF.

(vii) A1 DIE, where Al, D1 E N1, E E NCF.

106 Chapter 4: Conditions Placed on the Use of Productions

Proof. Let

be a context-sensitive grammar of the form defined in Lemma 4. From this gram-
mar, we construct a grammar

G’ = (NCF U N c s U T, T , P’, s)

G = (Nl u N C F u NCS u T, T , p, s1) 1

where

N1 = { X I : x E N C F } ,

P = P’ U { A1 B -+ AiC : A B -+ AC E P’, A , C E NCF, B E Ncs , A1 E N1 }
U {A1 -+ a : A -+ a E P’,A E NcF,Al E N1,a E T }

U {A1 -+ D I E : A -+ DE E P’,A,D,E E N c F , A ~ , D ~ E Ni} .
U {A1 -+ C1 : A -+ C E P’,A,C E N c ~ , A i , c i E Ni}

Basic Idea. G works by analogy with G’ except that in G every sentential
form starts with a symbol from N1 U T followed by symbols that are not in N1.
Notice, however, that by A B -+ AC, G‘ can never rewrite the left-most symbol
of any sentential form. Based on these observations, it is rather easy to see that
L(G) = L(G’); a formal proof of this identity is left to the reader. As G is of the

Lemma 18. CS C FEPOL(2).

Proof. Let L be a context-sensitive language generated by a grammar

required form, Lemma 17 holds.

of the form of Lemma 17. Let

v = N1 u N C F UNCs U T ,
Pcs = { A B -+ A C : A B -+ AC E P,A E (N1 UNCF), B E Ncs,C E NcF},
PCF = P - PCS.

Informally, Pcs and PCF are the sets of context-sensitive and context-free pro-
ductions in P , respectively, and V denotes the total alphabet of G.

Let f be an arbitrary bijection from V to (1,. . . , m}, where m is the cardinality
of V, and let f -1 be the inverse of f .

Construct an FEPOL grammar of degree 2,

G’ = (V’,T, P’, Si),

with V’ defined as

Wo = { (A , B , C) : A B -+ ACE Pcs},
WS = { (A , B , C , j) : A B -+ AC E PCS, 1 I j I m + l},
w =wouws,
V’ = v u w ,

where V, Wo, and Ws are pairwise disjoint alphabets. The set of productions P’
is defined as follows:

4.2 Parallel Conditional Grammars 107

1. For every X E V , add (X + X,S) to PI.

Basic Idea. Let us informally explain how GI simulates the non-context-free pro-
ductions of the form AB + AC (see productions of (3) in the construction of p’).
First, chosen occurrences of B are rewritten with (A, B, C) by (B + (A , B, C), W) .
The forbidding condition of this production guarantees that there is no simulation
already in process. After that, left neighbors of all occurrences of (A, B , C) are
checked not to be any symbols from V - { A } . In more detail, GI rewrites (A , B, C)
with (A,B,C, i) for i = 1. Then, in every (A,B,C, i) , G’ increments i by one as
long as i is less or equal to the cardinality of V ; simultaneously, it verifies that the
left neighbor of every (A, B , C, i) differs from the symbol that f maps to i except
for the case when f (A) = i. Finally, G’ checks that there are no two adjoining
symbols (A, B, C, m + 1). At this point, the left neighbors of (A , B , C, m + 1) are
necessarily equal to A, so every occurrence of (A, B , C, m + 1) is rewritten to C.

Observe that the other symbols remain unchanged during the simulation. In-
deed, by the forbidding conditions, the only productions that can rewrite sym-
bols X $! W are of the form (X -+ X , 0) . Moreover, the forbidding condition
of ((A ,B,C) + (A, B,C, 1) ,W - { (A , B ,C)}) implies that it is not possible to
simulate two different non-context-free productions at the same time.

To establish the identity of languages generated by G and G‘, we first prove
Claims 26 through 30.

Claim 26. 5’1 +$, x’ implies first(s’) E (N1 U T) for every n 2 0, x’ E (Vl)*.

Proof. The claim is proved by induction on n.

Basis: Let n = 0. Then, S1 =+:, S1 and S1 E N I .

Induction Hypothesis: Assume that the claim holds for all derivations of length n
or less, for some n 2 0.

Induction Step: Consider a derivation

108 Chapter 4: Conditions Placed on the Use of Productions

where 2’ E (V’)*. Because n + 1 2 1, there is a derivation

s1 *:I y’ *GI 2’ [p l , * * * , P q] ,

y’ E (V’)*, q = ly’l, and by the induction hypothesis, first(y’) E (N1 U T) . Inspect
P’ to see that the production p1 that rewrites the left-most symbol of y’ is one of

(A1 4 DlE,W), where Al,C1,D1 E N1, a E T , E E NCF (see (1) and (2) in the
definition of P’ and Lemma 17). It is obvious that the left-most symbols of the
right-hand sides of these productions belong to (Nl U T) . Hence,

the following forms: (A1 + A1,0), (a + a,@), (A1 + a,W), (A1 + Cl ,W) , or

first(%’) E (N1 uT) ,

so the claim holds.

Claim 27. S1 +:, yiXyi , X E Ws, implies yi E (V‘)+ for any y$ E (V’)*.

Proof. Informally, the claim says that every occurrence of a symbol from Ws has
always a left neighbor. Clearly, this claim follows from the statement of Claim 26.
Since Ws f l (N1 U T) = 0 , X cannot be the left-most symbol in a sentential form
and the claim holds. 0

Claim 28. 5’1 x‘, n 2 0, implies that x’ has one of the following three forms:

(I) 2’ E v*.
(11) 2’ E (V U Wo)* and #wad > 0.

2’ E (V u { (A , B , C , j))) * , #{ (A ,B ,C , j) }x ’ > 0, and { f - ’ (k) (A , B > c , j) : 1 5
k < j , k # f (A) } n sub(z’) = 0 , where (A, B , C, j) E WS, A E (N I U NcF) ,
B E N c s , c E N C F , 1 5 j 5 rn + 1.

Proof. We prove the claim by the induction on n 2 0.

Basis: Let n = 0. Clearly, S1

Induction Hypothesis: Suppose that the claim holds for all derivations of length n
or less, for some n 2 0.

Induction Step: Let us consider any derivation of the form

S1 and S1 is of type (I).

Because n+l 2 1, there exists y’ E (V’)* and a sequence of productions p l , . . . , p q ,
where pi E P’, 1 5 i 5 q, q = Iy’J, such that

s1 * ; I y’ x’ bl,... > p q] *

Let y’ = 0102 . . .a,, ai E V’.

the following three cases cover all possible forms of y’:
By the induction hypothesis, y’ can only be of forms (I) through (111). Thus,

4.2 Parallel Conditional Grammars 109

(i) Let y’ E V* (form (I)). In this case, every production pi can be either of
the form (ai + ai,O), ai E V , or (ai + u ,W) such that ai + u E PCF, or
(ai + (A , ai, C) , W) , ai E Ncs , (A , ai, C) E WO (see the definition of P’).

Suppose that for every i E { 1,. . . , q } , pi has one of the first two listed forms.
According to the right-hand sides of these productions, we obtain x‘ E V * ;
that is, x’ is of form (I).

If there exists i such that pi = (ai -+ (A , ai, C), W) for some A E (N1 UNCF),
ai E Ncs, C E NCF, (A , ai, C) E WO, we get x’ E (VUWo)* with #w0z’ > 0.
Thus, x‘ belongs to (11).

(ii) Let y’ E (V U WO)* and #way' > 0 (form (11)). At this point, pi is either
(ui ---t ai ,0) (rewriting ai E V to itself) or ((A , B, C) -+ (A , B,C, l) , W -
{ (A , B , C) }) rewriting ai = (A, B,C) E WO to (A,B,C,l) E Ws, where
A E (N1 UNCF) , B E Ncs , C E NCF. Since #way' > 0, there exists a t least
one i such that ai = (A, B, C) E WO. The corresponding production pi can be
used provided that # (w - { (A , B , c))) ~ ’ = 0. Therefore, y’ E (VU{(A , B, C)})* ,
and hence x’ E (V U { (A , B , C , l)})*, #{(A,B,c,~))x’ > 0; that is, x’ is of type
(111).

(iii) Assume that y’ E (V U { (A , B, C, j) }) * , # { (A , B , c , ~)) ~ ’ > 0, and

sub(y’) n { f - ’ (k) (A , B , C , j) : 15 k < j , k # f (A) } = 0,

where (A , B,C , j) E WS, A E (NI U NcF), B E Ncs, C E NCF, 1 I j L
m + 1 (form (111)). By inspection of P’, we see that the following four forms
of productions can be used to rewrite y’ to 5’:

(a) (ai -+ ai ,0) , ai E V .

(b) ((A , B , C , j) + (A , B , C , j + 1) , { f - l (j) (A , B , C , j) }) , 1 I j I m, j #

(c) ((A , B, c, f (4) -+ (A, B, c, f (A) + I), 0).

(4 ((’4 B, c, m + 1) -+ c, {(A, B, c, m + 1j2}).

f (A) .

Let 1 5 j 5 m, j # f (A) . Then, symbols from V are rewritten to
themselves (case (a)) and every occurrence of (A , B , C , j) is rewritten to
(A , B , C, j + 1) by (b). Clearly, we obtain x’ E (V U { (A,B,C, j + 1)})*
such that #{(A,B,C,~+~))X’ > 0. Furthermore, (b) can be used only when
f-’(j)(A,B,C,j) sl sub(y’). As

sub(y’) n { f - ’ (k) (A , B , C , j) : 1 I k < j , k # f(A)} = 0,

it holds that

sub(y’) n { f - ’ (k) (A , B , C , j) : 15 k I j , k # f (A) } = 0.

110 Chapter 4: Conditions Placed on the Use of Productions

Since every occurrence of (A, B, C, j) is rewritten to (A, B, C, j + l) and other
symbols are unchanged,

sub(x’) n {f-’(k)(A, B, C , j + 1) : 1 5 k < j + 1, k # f(A)} = 0;

therefore, x’ is of form (111).

Assume that j = f(A). Then, all occurrences of (A, B, C, j) are rewritten to
(A, B, C, j + 1) by (c), and symbols from V are rewritten to themselves. As
before, we obtain x’ E (V U { (A , B , C , j + 1)})* and #{(A,B,c,~+~))z‘ > 0.
Moreover, because

and j is just f (A),

sub(%’) n {f-’(k)(A, B, C , j + 1) : 1 5 k < j + 1, k # f(A)} = 0

and x’ belongs to (111) as well.

Finally, let j = m + 1. Then, every occurrence of (A, B, C, j) is rewritten to
C (case (d)), and therefore x’ E V*; that is, x’ has form (I).

In (i), (ii), and (iii) we have considered all derivations that rewrite y’ to x’, and
in each of these cases we have shown that x’ has one of the requested forms.
Therefore, Claim 28 holds. 0

To prove the following claims, we need a finite letter-teletters substitution g
from V* into (V‘)* defined as

g (X) = {XI u { (A , X , C) : (A , X , C) E Wo}
u { (A , X , C , j) : (A , X , C , j) ~ W s , l l j L m + l }

for all X E V, A E (N1 U NcF), C E NCF. Let g-’ be the inverse of g.

Claim 29. Let y’ = 0 1 ~ 2 . . .ap, ai E V’, q = ly’l, and g-’(ai) +? g-’(ui) for all
i E {l,.. . , q } and some hi E {O,l}, ui E (V’)+. Then, g-’(y’) +& g-’(x’) such
that 2’ = ~ 1 ~ 2 . . . uq, T = C:=’=, hi, r 5 4.

Proof. First, consider a derivation

X E V’, u E (V’)+, h E {0,1}. If h = 0, then g- l (X) = g-’(u). Let h = 1. Then,
there surely exists a production p = g-’(X) -+ g-’(u) E P such that

4.2 Parallel Conditional Grammars 111

Return to the statement of this claim. We can construct a derivation

g-'(u1)g-'(u2). . .g-l(a,) *2 g-'(u1>g-'(u2). . .g-l(u,)
=+2 g-'(u1)9-1(212). . .g-l(a,)

*$ 9-1 (udg-Vu2). * .g-'(u,),
h

where g-'(y') = g-l(a1). . .g-'(a,) and g-l(u1). . .g-'(u,) = g- ' (ul . . . u,) =
g-'(x'). In such a derivation, each g-l(ui) is either left unchanged (if hi = 0) or
rewritten to g-'(ui) by the corresponding production g-l(ai) -+ g-'(ui). Obvi-

0

E V*, 2' E (V')*, 2' E g(2) .

ously, the length of this derivation is C:='=, hi.

Claim 30. S1 +&
Pro0 f.

Only if: The only-if part is established by induction on the length of derivations
in G. That is, we show that

if and only zf S1 +;, d, where

S1 +; 2 implies S1 =+T;, 2,

where 2 E V*, for n 2 0.

Basis: Let n = 0. Then, S1

Induction Hypothesis: Assume that the claim holds for all derivations of length n
or less, for some n 2 0.

Induction Step: Consider a derivation

S1 and S1 +-:, S1 as well.

s1 *;+I 2.

Because n + 1 > 0, there exists y E V* and p E P such that

s1 *; y *G 2 [PI,

and by the induction hypothesis, there is also a derivation

s1 *;, y.

Let y = ~ 1 0 2 . . . a,, ai E V , 1 I i 5 q, q = IyI. The following cases (i) and (ii)
cover all possible forms of p:

(i) p = A -+ u E PCF, A E (N1 U NcF), u E V*. Then, y = y l A ~ 3 and
2 = ylUg3, y1,y3 E V*. Let s = lyll + 1. Since we have (A -+ u, W) E P',
we can construct a derivation

s1 [Pl,*.*,P,I

such that p , = (A -+ u, W) and pi = (ui -+ ai, 8) for all i E (1,. . . , q } , i # s.

112 Chapter 4: Conditions Placed on the Use of Productions

If: By induction on n, we prove that

S1 +zt x’ implies S1 *& x,

where x’ E (V’)*, z E V* and x’ E g(z)

Basis: Let n = 0. The only x’ is S1 because S1 5‘1. Obviously, S1
S1 and S1 E g(S1).

Induction Hypothesis: Suppose that the claim holds for any derivation of length n
or less, for some n 2 0.

Induction Step: Consider a derivation of the form

s1 *;?I XI.

Since n + 1 2 1, there exists y’ E (V’)* and a sequence of productions p l , . . . ,pp
from I”, q = IdI, such that

s1 =$‘;! y’ +G’ x’ [PI,. . . ,pq].

4.2 Parallel Conditional Grammars 113

Let y‘ = u1u2.. . up, ai E V’, 1 5 i 5 q. By the induction hypothesis, we have

4 *& Y,

where y E V*, such that y’ E g(y).
From Claim 28, y’ can have one of the following forms:

(i) Let y’ E (V’)* (see (I) in Claim 28). Inspect P’ to see that there are three
forms of productions rewriting symbols at in y’:

(a) pi = (ui -+ ai ,0) E P’, ai E V . In this case,

g-yai) 3; g-l(u2).

We see that for all ai , there exists a derivation

g - l (q) +-? g-l(zi)

for some hi E (0, l}, where zi E (V‘)+, x’ = z l z ~ . . . zq. Therefore, by
Claim 29, we can construct

4 3;: Y =% 5,

where 0 5 T 5 q, z = g-l(x’).

(ii) Let y’ E (V U WO)* and #w,y’ > 0 (see (11)). At this point, the following
two forms of productions can be used to rewrite ai in y’:

(a) pi = (ui -+ ai,0) E P’, ai E V. As in case (i.a),

g-l(a2) *; g-l(ai).

114 Chapter 4: Conditions Placed on the Use of Productions

Thus, there exists a derivation

s1*;: Y =4 2,
where x = g-'(x').

(iii) Let Y' E (V U {(A, B, C, j) }) * , #{(A,B,c,~)}Y' > 0, and

sub(y') n {f- ' (k)(A,B,C,j) : 15 k < j , k # f(A)} = 8,

where (A, B,C, j) E Ws, A E (N I U NcF), B E Ncs, C E NCF, 1 L j I
m+ 1 (see (111)). By inspection of I", the following four forms of productions
can be used to rewrite y' to 2':

(a) pi = (ai -, ai ,0) , ai E V.

(b) Pi = ((A ,B ,C , j) -+ (A , B , C , j + 1),{f-l(j)(A,B,C,j)}), 15 j 5 m,

(c) Pi = ((4 B, c, f(A)) -, (A, B, c, f(A) + I) , 0).
j # f (A).

(dl pi = ((A, B , C, m + 1) -, C, {(A, B , C, m +
Let 1 5 j 5 m. G' can rewrite such y' using only the productions (a) through
(c). Becauseg-'((A,B,C,j)) = g-'((A, B , C , j + l)) andg-l(ai) = g-l(a,),
by analogy with (ii), we obtain a derivation

s1*;:y*;x

such that x = g-'(x').

Let j = m + 1. In this case, only the productions (a) and (d) can be used.
Since # { (~ , ~ , c , j)) y ' > 0, there is at least one occurrence of (A, B , C, m+l) in
y', and by the forbidding condition of the production (c), (A, B, C, m + 1)2 @
sub(y'). Observe that for j = m + 1,

{f-l(k)(A, B , C , m + 1) : 1 5 k < j , k # f(A)}
= { X (A , B , C , m + l) : X E V , X # A } ,

and thus

sub (y ')n{X(A,B ,C ,m+l) : X E V, X #A} = O .

According to Claim 27, (A ,B ,C ,m + 1) has always a left neighbor in y'.
As a result, the left neighbor of every occurrence of (A, B, C, m + 1) is A.
Therefore, we can express:

4.2 Parallel Conditional Grammars 115

JG g-'(Yl)ACg-'(yZ)ACg-'(y3) * -g-'(yr)ACg-'(%-+l) [PI,

where g-'(y1)ACg-'(y2)ACg-'(y3). . .g-'(y,)ACg-'(y,+l) = g-'(x') =
2.

Because cases (i), (ii), and (iii) cover all possible forms of y', we have completed
the induction and established Claim 30. 0

The equivalence of G and G' follows from Claim 30. Indeed, observe that by
the definition of g , we have g(a) = { a } for all a E T. Therefore, by Claim 30, we
have for any x E T*,

S1 +; x if and only if 5'1 +>, x.

Thus, L(G) = L(G'), and the lemma holds. 0

Theorem 38. CS = FEPOL(2) = FEPTOL(2) = FEPOL = FEPTOL.

Proof. By Lemma 18, CS C FEPOL(2) C FEPTOL(2) E FEPTOL. From
Lemma 11 and the definition of FETOL grammars, it follows that FEPTOL(s) C_
FEPTOL C CEPTOL C CS for any s 2 0. Moreover, FEPOL(s) C FEPOL C
FEPTOL. Thus, CS = FEPOL(2) = FEPTOL(2) = FEPOL = FEPTOL, and
the theorem holds. 0

Return to the proof of Lemma 18. Observe that the productions of the FEPOL
grammar G' are of restricted forms. This observation gives rise to the next corol-
lary.

Corollary 15. Every context-sensitive language can be generated by an FEPOL
grammar G = (V, T , P, S) of degree 2 such that every production from P has one
of the following forms:

(i) (a --+ a,S), a E V .

(ii) (X --+ 2, F) , X E V - T , 1x1 E {1,2}, max(F) = 1.

(iii) (X --+ Y, { z }) , X, Y E V - T, 2 E V2.

Next, we demonstrate that the family of recursively enumerable languages is
generated by the forbidding EOL grammars of degree 2.

Lemma 19. RE C FEOL(2).

116 Chapter 4: Conditions Placed on the Use of Productions

Proof. Let L be a recursively enumerable language generated by a phrase structure
grammar

G = (V, T , P, S)

having the form defined in Lemma 5 , where

Let $ be a new symbol and m be the cardinality of V U {$}. Furthermore, let f
be an arbitrary bijection from V U {$} onto { 1,. . . , m}, and let f - l be the inverse
o f f .

Then, we define an FEOL grammar

G’ = (V’, T , PI, S‘)

of degree 2 as follows:

Wo = { (A , B , C) : AB -+ AC E P } ,
Ws
W = WOUWS,
V’ = V U W U { S ’ , $ } ,

= { (A ,B ,C , j) : AB -+ A C E P, 15 j I m},

where A,C E NCF, B E N c s , and V , Wo, Ws, and {S ’ ,$} are pairwise disjoint
alphabets. The set of productions P‘ is defined in the following way:

1. Add (S’ -+ $S, S), ($ -+ $, 0) and ($ -+ E , V’ - T - {$}) to PI.

2. For all X E V , add (X ---$ X,0) to P’.

3. For all A -+ u E PCF, A E NCF, 21 E { E } U N c s U T U (U:=, N h F) , add
(A -+ u, W) to PI.

4. If AB -+ AC E Pcs, A , C E NCF, B E N c s , then add the following produc-
tions to PI:

4.2 Parallel Conditional Grammars 117

Basic Idea. Let us only sketch the proof that L(G) = L(G’). The construction
above resembles the construction in Lemma 18 very much. Indeed, to simulate
the non-context-free productions AB --+ AC in FEOL grammars, we use the same
technique as in FEPOL grammars from Lemma 18. We only need to guarantee
that no sentential form begins with a symbol from Ncs . This is solved by an
auxiliary nonterminal $ in the definition of GI. The symbol is always generated
in the first derivation step by (S’ -+ $S,S) (see (1) in the definition of P’). After
that, it appears as the left-most symbol of all sentential forms containing some
nonterminals. The only production that can erase it is ($ -+ E , V’ - T - {$}).

Therefore, by analogy with the technique used in Lemma 18, we can establish

S +& x if and only if S’ +;, $x‘

such that x E V * , x’ E (V’ - {S’, $})*, x’ E g(x) , where g is a finite substitution
from V* into (V’ - {S’, $})* defined as

g (X) = { X I u { (A , X , C) : (A ,X ,C) E Wo)
U { (A , X , C , j) : (A , X , C , j) E W s , l l j l m S 1 }

for all X E V , A, C E NCF. The details are left to the reader.
As in Lemma 18, we have g(a) = { a } for all a E T ; hence, for all x E T*,

S +& x if and only if S’ =+;, $x.

Since
$ X JG‘ Z [($ -+ E , I/‘ - T - {$})I,

we obtain
S +& x if and only if S’ a;, x .

Consequently, L(G) = L(G’); thus, RE C FEOL(2). 0

Theorem 39. RE = FEOL(2) = FETOL(2) = FEOL = FETOL.

Proof. By Lemma 19, we have RE C FEOL(2) FETOL(2) C FETOL. From
Lemma 12, it follows that FETOL(s) C FETOL C CETOL C RE, for any s 2 0.
Therefore, RE = FEOL(2) = FETOL(2) = FEOL = FETOL, so the theorem
holds. 0

By analogy with Corollary 15, we obtain the following normal form:

Corollary 16. Every recursively enumerable language can be generated by an
FEOL grammar G = (V, T , P, S) of degree 2 such that every production from P has
one of the following forms:

(i) (a -+ a,0) , a E V .

(ii) (X -+ x , F) , X E V - T , 1x1 5 2, and F # 0 implies max(F) = 1.

(iii) (X -+ Y, { z }) , X , Y E V - T , z E V 2 .

118 Chapter 4: Conditions Placed on the Use of Productions

Theorems 36, 37, 38, and 39 imply the following relationships of FETOL lan-
guage families:

Corollary 17.

CF
C

FEPOL(0) = FEOL(0) = EPOL = EOL
C

FEPOL(1) = FEPTOL(1) = FEOL(1) = FETOL(1)
= FEPTOL(0) = FETOL(0) = EPTOL = ETOL

C
FEPOL(2) = FEPTOL(2) = FEPOL = FEPTOL = CS

C
FEOL(2) = FETOL(2) = FEOL = FETOL = RE.

4.2.3 Simple Semi-conditional ETOL Grammars

Simple semi-conditional ETOL grammars represent another variant of context-
conditional ETOL grammars with restricted sets of context conditions. By analogy
with sequential simple semi-conditional grammars (see Section 4.1.5), these gram-
mars are context-conditional ETOL grammars in which every production contains
no more than one context condition.

Definition 18. Let G = (V, T, PI , . . . , Pt, S) be a context-conditional ETOL gram-
mar, for some t 2 1. If for all p = (a -+ 2, Per, For) E Pi for every i = 1 , . . . , t
holds lPerl +]For1 5 1, G is said to be a simple semi-conditional ETOL gram-
mar (SSC-ETOL grammar for short). If G is a propagating SSC-ETOL grammar,
then G is called an SSC-EPTOL grammar. If t = 1, then G is called an SSC-EOL
grammar; if, in addition, G is a propagating SSC-EOL grammar, G is said to be
an SSC-EPOL grammar.

Convention 5. Let G = (V, T , PI , . . . , Pt, S) be an SSC-ETOL grammar of degree
(r , s). By analogy with ssc-grammars, in each production (a -+ 2, Per, For) E Pi,
i = 1,. . . , t , we omit braces and instead of 0, we write 0. For example, we write
(a -+ 2, E F , 0) instead of (a -+ 2, { E F } , 0).

The families of languages generated by SSC-EPTOL, SSC-ETOL, SSC-EPOL,
and SSC-EOL grammars of degree (r, s) are denoted by SSC-EPTOL(r, s), SSC-
ETOL(r, s), SSC-EPOL(r, s), and SSC-EOL(r, s), respectively. Furthermore,
the families of languages generated by SSC-EPTOL, SSC-ETOL, SSC-EPOL, and
SSC-EOL grammars of any degree are denoted by SSC-EPTOL, SSC-ETOL,
SSC-EPOL, and SSC-EOL, respectively.

Next, let us investigate the generative power of SSC-ETOL grammars. The
following lemma proves that every recursively enumerable language can be defined
by an SSC-EOL grammar of degree (1,2):

4.2 Parallel Conditional Grammars 119

Lemma 20. RE C SSC-EOL(1,2).

Proof. Let
G = (NCF U Ncs U T,T, P, S)

be a phrase-structure grammar of the form of Lemma 5. Then, let V = NCF U
NCS UT and m be the cardinality of V . Let f be an arbitrary (but fixed) bijection
from V to (1,. . . , m}, and f-’ be the inverse of f . Set

M = {#I u
{ (A , B , C) : AB -+AC E P , A , C E N ~ F , B E Ncs} U
{ (A , B, C, i) : AB -+ AC E P, A, C E NCF, B E N c s , 1 L i L m + 2)

and

Next, construct an SSC-EOL grammar of degree (1,2)

W = { [A , B , C] : AB -+ AC E P ,A,C E NcF,B E Ncs}.

G’ = (V’,T, P’ ,S’) ,

where

Without any loss of generality, we assume that V , M , W , and {S’} are pairwise
disjoint. The set of productions P’ is constructed in the following way:

v’ = v u M u w u {S ’ } .

1. Add (S’ -+ #S,O,O) to P’.

2. For all A -+ z E P , A E NCF, z E { E } U Ncs U T U N&, add (A -+ 2, #, 0)
to PI.

3. For every AB -+ AC E P, A , C E NCF, B E NCS, add the following
productions to PI:

(4 (# --+ (A , B, C), 070).
(b) (B -+ [A, B, Cl, (-4, B, C), 0).

(c) ((A , B , C) -+ (A,B,C,1),0,0).

(d) ([A , B, Cl -+ [A, B, C] , 0, (A , B, C, m + 2)).
(e) ((A , B,C, i) -+ (A , B , C , i + l),O, f - ’ (i) [A , B , C]) for all 1 5 i 5 m,

i # f (4.
(f) ((A , B, c, f (A)) -+ (A , B , c, f (A) + I), 030).

(g) ((A , B, c, m + 1) -+ (A , B , C, m + 2), 0, [A, B, ~ 1 ’)) .
(h) ((A , B, C, m + 2) -+ #, 0 , (A , B, C, m + 2) [A, B, CI 1.
(i) ([A , B, C] -+ C, (A , B, C, m + 2), 0).

4. For all X E V , add (X -+ X,O,O) to PI.

5 . Add (# -+ #,O,O) and (# -+ &,O,O) to P’.

120 Chapter 4: Conditions Placed on the Use of Productions

Basic Idea. Let us explain how G’ works. During the simulation of a derivation
in G, every sentential form starts with an auxiliary symbol from M , called the
master. This symbol determines the current simulation mode and controls the next
derivation step. Initially, the master is set to # (see (1) in the definition of PI).
In this mode, G’ simulates context-free productions (see (2)); notice that symbols
from V can always be rewritten to themselves by (4). To start the simulation of
a non-context-free production of the form AB -+ AC, G’ rewrites the master to
(A, B , C). In the following step, chosen occurrences of B are rewritten to [A, B , C] ;
no other productions can be used except productions introduced in (4). At the
same time, the master is rewritten to (A , B,C, i) with i = 1 (see (3c)). Then, i
is repeatedly incremented by one until i is greater than the cardinality of V (see
productions (3e) and (3f)). Simultaneously, the master’s conditions make sure that
for every i such that f - l (i) # A, no f - ’ (i) appears as the left neighbor of any
occurrence of [A, B, C]. Finally, G’ checks that there are no two adjoining [A , B, C]
(see (3g)) and that [A, B , C] does not appear as the right neighbor of the master
(see (3h)). At this point, the left neighbors of [A, B , C] are necessarily equal to A
and every occurrence of [A, B , C] is rewritten to C. In the same derivation step,
the master is rewritten to #.

Observe that in every derivation step, the master allows G’ to use only a subset
of productions according to the current mode. Indeed, it is not possible to combine
context-free and non-context-free simulation modes. Furthermore, no two different
non-context-free productions can be simulated at the same time. The simulation
ends when # is erased by (# 4 E , O , O) . After this erasure, no other production
can be used.

The following three claims demonstrate some important properties of deriva-
tions in G’ to establish L(G) = L(G’):

Claim 31. S’ +:, w’ implies that w’ E M (V U W) * or w’ E (V U W) * . Fur-
thermore, if w’ E M (V U W) * , every v’ such that s’ +:, v’ +;, w‘ belongs to
M (V U W)* as well.

Proof. When deriving w‘, G‘ first rewrites S’ to #S by using (S’ -+ #S,O,O),
where # E M and S E V . Next, inspect P’ to see that every symbol from M is
always rewritten to a symbol belonging to M or, in the case of #, erased by (# --t
E , 0,O). Moreover, there are no productions generating new occurrences of symbols
from (M U (5’’)). Thus, all sentential forms derived from S’ belong either to
M (V U W) * or to (VUW)*. In addition, if a sentential form belongs to M (V U W) * ,

0

Claim 32. Every successful derivation in G‘ is of the form

all previous sentential forms (except for S’) are also from M (V u W)*.

s’ *GI #s +:! #u’ +GI w’ +;/ w’,

where u’ E V*, w’ E T*.

Proof. From Claim 31 and its proof, every successful derivation has the form

s’ +GI #s *:! #u’ +G’ v’ +;, w’,

4.2 Parallel Conditional Grammars 121

where u’, u’ E (V U W) * , w’ E T*. This claim shows that

#u‘ J G ’ u’ JLt w‘

implies u’ E V and v’ = w’.
Consider

#u’ u’ =$‘>l w’,

where u’,d E (V U W) * , w’ E T*. Assume that u’ contains a nonterminal
[A,B,C] E W . There are two productions rewriting [A,B,C]: p l = ([A,B,C] ---$

[A, B, C], 0, (A , B, C, m+2)) andpz = ([A , B, C] + C, (A, B, C, m+2), 0). Because
of its permitting condition, p z cannot be applied during #u’ J ~ ! u’. If [A, B, C]
is rewritten by pl-that is, [A, B , C] E alph(u’)-[A, B, C] necessarily occurs in all
sentential forms derived from u’. Thus, no u’ containing a nonterminal from W
results in a terminal string; hence, u’ E V*. By analogical considerations, establish
that also v’ E V*. Next, assume that u‘ contains some A E NCF or B E Ncs.
The first one can be rewritten by (A .+ z,#,O), z E V*, and the second one
by (B -+ [A, B,C] , (A,B,C),O), [A,B,C] E W , (A ,B ,C) E M . In both cases,
the permitting condition forbids an application of the production. Consequently,
u’ E T*. It suffices to show that u’ = w’. Indeed, every production rewriting a

0

Claim 33. S’ J;, Zz’, Z E M , z’ E (V U W)*, n 2 1, implies that Zz’ has one
of the following forms:

terminal is of the form (a -t a , O , O) , a E T .

(I) z = #, 2’ E v*.
(11) Z = (A, B, C), 5’ E V*, for some A , C E NCF, B E N c s .

(111) Z = (A , B, C, i) , z’ E (VU{[A, B , C]})”, 1 5 i 5 m+l, and {f-’(j)[A, B,C]:
1 5 j < i, j # f(A)} n sub(z’) = 0 for some A, C E NCF, B E Ncs.

A} nsub(z’) = 0, and [A, B, CIz # sub(z’) for some A, C E NCF, B E NCS.
(IV) Z = (A , B , C , m + 2) , z’E (VU{[A,B,C]})*, {X[A,B ,C] : X E V, X #

Proof. This claim is proved by induction on the length of derivations.

Basis: Let n = 1. Then, S’

Induction Hypothesis: Suppose that the claim holds for all derivations of length n
or less, for some n 2 1.

Induction Step: Consider a derivation of the form

S , where # S is of type (I).

s‘ +n+l
GJ Qx‘,

Q E M , 2’ E (V U W)*. Because n + 1 2 2, by Claim 31, there exists Zy’ E
M(VUW)* and a sequence of productions po,p1,. . . , p q , where pi E P’, 0 L i 5 q,
q = (y’l, such that

s’ ZY’ JGJ &z‘ [PO, Pi, - . ,Pq].

122 Chapter 4: Conditions Placed on the Use of Productions

Let y’ = a1a2.. .ag, where ai E (V U W) for all i = 1 , . . . ,q. By the induction
hypothesis, the following cases (i) through (iv) cover all possible forms of Zy’:

(i) Let Z = # and y’ E V* (form (I)). According to the definition of P’, PO
is either (# -+ (A , B,C),O,O), A , C E NCF, B E Ncs , or (# -+ # , O , O) ,
or (# -+ E,O,O) , and every pi is either of the form (ai -+ z ,# ,O) , z E
{ E } U Ncs U T U N i F , or (ai -+ ai , 0,O). Obviously, y’ is always rewritten
to a string x’ E V*. If # is rewritten to (A , B, C), we get (A , B , C)x‘ that
is of form (11). If # remains unchanged, #x‘ is of type (I). In case that # is
erased, the resulting sentential form does not belong to M (V U W) * required
by this claim (which also holds for all strings derived from x’ (see Claim 31)) .

(ii) Let 2 = (A , B, C), y’ E V*, for some A, C E NCF, B E Ncs (form (11)). In
this case, PO = ((A , B , C) -+ (A, B , C, l), 0,O) and every pi is either (ui -+

[A , B , C] , (A , B , C) , O) or (ui -+ ai,O,O) (see the definition of P’). It is easy
to see that (A , B , C, 1)x’ belongs to (111).

(iii) Let Z = (A , B, C , j) , y’ E (V U { [A , B , C] }) ” , and y’ satisfies

{ f - ’ (k) [A , B , C] : 1 5 Ic < j , k # f (A) } nsub(y’) = 8,

1 5 j 5 m + 1 , for some A , C E NCF, B E Ncs (form (111)). The only
productions rewriting symbols from y’ are (ui -+ ai,O,O), ai E V , and
([A , B, C] --+ [A, B , C],O, (A, B , C,m + 2)); thus, y’ is rewritten to itself.
By inspection of P’, PO can be of the following three forms:

(a) If j # f (A) and j < m + 1 ,

Po = ((A , B , C , j) + (A , B , C , j + 1) , 0 , f - l (j ” , B , C l) .

Clearly, po can be used only when f - ’ (j) [A , B, C] 51 sub(2y’). As

{ f - ’ (k) [A , B , C] : 1 5 k < j , k # f (A) } n sub(y’) = 8,

it also

{f-’(Ic)[A, B, C] : 1 5 k 5 j , k # f (A) } n sub(y’) = 0.

Since (A , B, C, j) is rewritten to (A , B , C, j + 1) and y’ is unchanged,
we get (A , B, C, j + 1)y’ with

{ f - ’ (k) [A , B, C] : 1 5 k < j + 1 , k # f (A) } n sub(y’) = 8,

which is of form (111).

(b) I f j = f (A) ,

Po = ((A , B, c, f (4) -+ (A , B , c, f (A) + I) , 070).

4.2 Parallel Conditional Grammars 123

As before, Qx’ = (A , B , C, j + 1)y’. Moreover, because

{ f - ’ (k) [A , B, C] : 1 5 Ic < j , k # f (A) } n sub(y’) = 0

and j = f (A) ,

{ f - ’ (k) [A , B,C] : 1 I Ic < j + 1, k # f (A) } n sub(x’) = 8.

Consequently, Qx’ belongs to (111) as well.

(c) I f j = m + l ,

Po = ((A , B, c, m + 1) + (A , B, c, 7-n + 2) ,0 , [A, B, C]”.

Then, Qx‘ = (A , B, C, m + 2)y’. The application of PO implies that
[A, B, CI2 $Z sub(x’). In addition, observe that for j = m + 1,

{f-’(+4,B,CI : 1 I k < j , k # f (A) }
= { X [A , B,C] : X E V, X # A } .

Hence,

As a result, Qx’ is of form (IV).

{ X [A , B, C] : X E V, X # A } n sub(z’) = 0.

(iv) Let 2 = (A , B,C, m + 2), y’ E (V U { [A , B, C]})*, [A, B, CI2 # sub(y’), and

{ X [A , B,C] : X E V, X # A } nsub(y’) = 0,

for some A , C E NCF, B E Ncs (form (IV)). Inspect P’ to see that

Po = ((A , B, c, m + 2) + # , O , (A , B, C,m + 2)IA, B, Cl)

and pi is either
(ai -+ ai,O,O), at E V,

or
([A , B , CI -+ c, (A , B, c, m + 2) , 01,

1 I i I q. According to the right-hand sides of these productions, Qx’ E
{#}V*; that is, Qx’ belongs to (I).

In cases (i) through (iv), we have demonstrated that every sentential form obtained
in n + 1 derivation steps satisfies the statement of this claim. Therefore, we have

To prove the following claims, define a finite substitution g from V* into (VUW)*

g (X) = {X} U { [A , B, C] E W : A , C E NCF, B E NCS}

finished the induction step and established Claim 33.

as

for all X E V. Let g-’ be the inverse of g.

124 Chapter 4: Conditions Placed on the Use of Productions

Claim 34. Let yl = ~ 1 ~ 2 . . .a,, ai E (vuw)*, q = ly'l, and g-'(ai) +? g-'(z;)
for all i E {l,. .. , q } and some hi E { O , l } , z: E (V U W)'. Then, g-'(y') +$
g-'(d) such that 2' = X ~ I C ~ . . .X;, h = C:='=, hi, h 5 4.

Proof. First, consider a derivation

g - w =& g-'(.),
x E (V U W) , u E (vuw)* , 1 E {o,I}. If 1 = 0, g-'(X) = g-'(u). Let 1 = 1.
Then, there surely exists a production p = g-'(X) + g-'(u) E P such that

g-'(X) *G g-'(u) [PI
Return to the statement of this claim. We can construct a derivation

g-'(a1)g-'(a2). . .g-'(a,) *: g-'(z;)g-'(a2). . .g-'(a,)
g-'(z;)g-'(z;). . .g-'(a,)

=$? g-1(IC;)g-'(x;). . . g-'(zk),
where g-'(y') = g-'(al). . .g-'(a,) and g-'(z;). . .g-'(z;) = g-'(zi.. .z') 4 =
g-'(z'). In such a derivation, each g-'(ai) is either left unchanged (if hi = 0) or
rewritten to g-'(z;) by the corresponding production g-'(ai) .+ g-'(z:). Obvi-

0

Claim 35. S +; z if and only i f S' +;, Qz', where g-'(z') = z, Q E M ,

Pro0 f.

Only if: By induction on the length of derivations in G, we show that

ously, the length of this derivation is c:=, hi.

5 E V', 2' E (V u W)" .

S +; IC implies S' +;, #z,

where z E V', n 2 0. Clearly, g-'(z) = z.

Basis: Let n = 0. Then, S

Induction Hypothesis: Assume that the claim holds for all derivations of length n
or less, for some n 2 0.

Induction Step: Consider a derivation

S. In G', S' +Gt #S by using (S' --$ #S, 0,O).

s +;+I 2.

As n + 1 2 1, there exists y E V* and p E P such that

s * z Y *G Iz: b].
Let y = (3 1 ~ 2 . . .a,, ai E V for all 1 5 i 5 q, where q = IyI. By the induction
hypothesis,

The following cases investigate all possible forms of p:

S' *;, # y .

4.2 Parallel Conditional Grammars 125

(i) p = A -+ z, A E NCF, I E { E } U Ncs U T U N6F. Then, y = y1Ay3 and
x = ylzy3, y1, y3 E V’. Let 1 = lyll + 1. In this case, we can construct

8’ *:’ #y JG’ #x [pO,Pl,***,Pq]

such that po = (# -+ # , O , O) , pl = (A -+ z,#,O) , and pi = (ai -+ ai,O,O)
for all 15 i 5 q, i # 1.

(ii) p = A B --+ AC, A , C E NCF, B E NCS. Then, y = y1ABy3 and x =
At this point, there exists the y1ACy3, y1,y3 E V*. Let 1 = lyll + 2.

following derivation:

s’ ++,I #YlABy3
*Gf (A, B, C)ylABy3
+G’ (A, B, c, l)YlA[A, B, CIY3
*G‘ (A, B, c, 2)YlA[A, B, c]Y3

If: The if-part establishes that

S’ +;! Qx‘ implies S +&, x,
where g-’(x’) = x, Q E M , x’ E (V U W) * , x E V * , n 2 1. This claim is proved
by induction on the length of derivations in GI.

Basis: Assume that n = 1. Because the only production that can rewrite S’ is
(S’ --+ #S,O,O), S’ +GI #S. Clearly, S +’& S and g-l(S) = S.

Induction Hypothesis: Suppose that the claim holds for any derivation of length n
or less, for some n 2 1.

Induction Step: Consider

Qz’ E M(V U W)”. Since n + 1 2 2, by Claim 31, there exists a derivation

S’ +n+l G’ QX’,

s’ +& ZY’ JG‘ QX’ [p~,Plr . . . rPq]r

where Zy’ E M(V U W) * , and pi E P’ for all i E { O , l , . . . , q } , q = Iy’l. By the
induction hypothesis, there is also a derivation

s +;I Y,

where y E V * , g-’(y’) = y. Let y’ = (1102 . . . uq. Claim 33 says that Zy’ has one
of the following forms:

126 Chapter 4: Conditions Placed on the Use of Productions

(i) Let Z = # and y' E V*. Then, there are two forms of productions rewriting
ai in y'.

(a) (ai -+ ai,O,O), ai E V . In this case,

g - l (a i) =$ g-yui).

(b) (ai -+ xi,#,O), xi E { E } U NCS U T U NgF. Because ai = g-'(ui),
xi = g-l(zi) and ai -+ xi E P,

g - l (U i) J G g - ' (Z i) [Ui --$ xi].

We see that for all ai , there exists a derivation

g-l(a2) +$ g-l(zi)

for some hi E { O , l } , where xi E V * , x' = qz2 . . . xq.
Claim 34, we can construct

Therefore, by

S' =+.; y x ,

where 0 5 h 5 q, x = g-l(x').

(ii) Let 2 = (A, B ,C) , y' E V * , for some A,C E N C F , B E Ncs. At this point,
the following two forms of productions can be used to rewrite ai in y':

(a) (ui -+ a i ,0 ,0) , ai E V. As in case (i.a),

g - y a i) +; g-l(u2).

(b) (ui -+ [A,B,C],(A,B,C),O), ai = B. Since g- l ([A,B,C]) = g-'(B),
we have

g - l (a i) +oG g-l([A, B , C]) .

Thus, there exists the derivation

0 s +& y J G 2, x = g-'(x').

(iii) Let Z = (A , B , C , j) , y' E (V u { [A , B , C] }) * , and

(f - ' (k)[A,B,C] : 1 5 k < j , k # f(A)} nsub(y') = 0,
1 I j I m + 1, for some A, C E NCF, B E NCS. Then, the only productions
rewriting symbols from y' are

(a2 --i U i , O , O) , a2 E v,

([A , B , Cl -+ [A , B, C] , 0, (A, B , C, m + 2));
and

hence, x' = y'. Because we have

s =+& Y ? g-'(y') = Y,

it also holds g-'(x') = y.

4.2 Parallel Conditional Grammars 127

(iv) Let 2 = (A, B,C,m + 2), y’ E (V U {[A, B, C]})”, [A, B, CIz (2 sub(y’),

{X[A, B, C] : X E V, X # A} n sub(y’) = 0,

for some A, C E NCF, B E Ncs . G’ rewrites (A, B, C, rn + 2) by using

((A , B , C , m + 2) -+ #,O,(A,B,C,m+2)[A,B,Cl),

which forbids (A, B, C,m + 2)[A, B,C] as a substring of Zy’. As a result,
the left neighbor of every occurrence of [A, B , C] in (A, B, C, m + 2)y’ is A.
Inspect P’ to see that at can be rewritten either by (ui -+ ai ,0 ,0) , ui E V ,
or by ([A, B , C] -+ C, (A, B , C, m + 2), 0). Therefore, we can express:

Y’ = YlA[A, B, CIYzA[A, B, CIY3 * . . YlA[A, B , C]Yl+l,
y = YlAByZABy3 .YlAByl+l,
x’ = YlACyZACy3 . . . ?-hACyl+l,

Because cases (i) through (iv) cover all possible forms of y’, we have completed
the induction and established Claim 35.

0

Let us finish the proof of Lemma 20. Consider a derivation

S +; w, w E T”.

From Claim 35, it follows that

S’ =.&, #w

because g(a) = { a } for every a E T . Then, as shown in Claim 32,

s’ #w J G ’ w,

and hence
S +; w implies S’ J:, w

for all w E T*. To prove the converse implication, consider a successful derivation
of the form

s’ +&) #u J G ’ w *>, w,

128 Chapter 4: Conditions Placed on the Use of Productions

u E V " , w E T* (see Claim 32). Observe that by the definition of PI, for every

there also exists a derivation

s' *:, #u +L.l #w =?'GI 'w.

Then, according to Claim 35, S +; w. Consequently, we get for every w E T*,

S +> w if and only if S' +Lt w;

therefore, L(G) = L(G'). CI

Lemma 21. SSC-ETOL(r, s) G RE for any r, s 2 0.

Proof. By Lemma 12, CETOL
all r, s 2 0 (see Definition IS), SSC-ETOL(r, s) C RE for all r, s 2 0 as well.

RE. Because SSC-ETOL(r,s) C CETOL for
0

Inclusions established in Lemmas 20 and 21 result in the following theorem:

Theorem 40. SSC-EOL(1,2) = SSC-ETOL(l12) = SSC-EOL = SSC-ETOL =
RE.

Proof. From Lemmas 20 and 21, RE C SSC-EOL(l12) and SSC-ETOL(r,s) C
RE for any r , s 2 0. By the definitions, it also holds that SSC-EOL(1,2) C
SSC-ETOL(l12) G SSC-ETOL and SSC-EOL(l12) C SSC-EOL C SSC-ETOL.
Hence, SSC-EOL(l12) = SSC-ETOL(1,2) = SSC-EOL = SSC-ETOL = RE.

Next, let us investigate the generative power of propagating SSC-ETOL gram-
mars.

Lemma 22. CS G SSC-EPOL(l12).

Proof. We can base this proof on the same technique as in Lemma 20. However,
we have to make sure that the construction produces no erasing productions. This
requires some modifications of the original algorithm; in particular, we have to
elliminate the production (# -+ E, 0,O).

Let L be a context-sensitive language generated by a grammar

G = (V, TI P, S)

of the normal form of Lemma 4, where

4.2 Parallel Conditional Grammars 129

Let m be the cardinality of V . Define a bijection f from V to (1 , . . . , m}. Let f-'
be the inverse o f f . Set

M = { (# I X) : X E V } U
{ (A , B , C I X) : A B + A C E P , X E V } U
{ (A , B , C , i l X) : A B + A C E P , 1 < i < m + 2 , X E V } ,
{[A,B,C,X] : AB -+ AC E P, X E V } , and W =

V' = V U M U W ,

where V , M , and W are pairwise disjoint. Then, construct the SSC-EPOL gram-
mar of degree (1 , 2) ,

G' = (V' , T , P', (# I S)) ,

with the set of productions P' defined as follows:

1. For all A -+ z E P, A E N ~ F , z E T U Ncs U

(a) for all X E V , add (A -+ 2, (# I X) , 0) to P';

(b) i fzETUNcs,add((#IA)-+(#Iz) ,O,O) to P';

(c) if z = Y Z , Y 2 E N,$F, add ((# I A) -+ (# 1 Y) Z , 0,O) to P'.

2. For all X E V for every AB -+ AC E P , A,C E NCF, B E Ncs , add the
following productions to P':

3. For all X E V , add (X -+ X , 0,O) to P'.

4. F o r a l l X E V , a d d ((# ~ X) + (# ~ X) , O , O) a n d ((# I X) - + X , O , O) t o p ' .

130 Chapter 4: Conditions Placed on the Use of Productions

Basic Idea. Consider this construction and the construction used in Lemma 20.
Observe that the present construction does not attach the master as an extra
symbol before sentential forms. Instead, the master is incorporated with its right
neighbor into one composite symbol. For example, if G generates AabCadd, the
corresponding sentential form in G’ is (# I A)abCadd, where (# I A) is one symbol.
At this point, we need no production erasing #; the master is simply rewritten
to the symbol with which it is incorporated (see productions of (4)). In addition,
this modification involves some changes to the algorithm: First, G‘ can rewrite
symbols incorporated with the master (see productions of (lb) and (lc)) . Second,
conditions of the productions depending on the master refer to the composite sym-
bols. Finally, G’ can make context-sensitive rewriting of the composite master’s
right neighbor (see productions of (2h)). For instance, if

ABadC JG ACadC [AB -+ AC]

(# I A)BadC *:, (# I A)CadC.
in G, G‘ derives

Based on the observations above, the reader can surely establish L(G) = L(G’)
0 by analogy with the proof of Lemma 20. Thus, the rigorous proof is omitted.

Lemma 23. SSC-EPTOL(r, s) 5 CS for all r , s 2 0.

Proof. By Lemma 11, CEPTOL(r,s) C CS, for any r 2 0, s 2 0. Since every
SSC-EPTOL grammar is a special case of a CEPTOL grammar (see Definition 18),

Theorem 41. CS = SSC-EPOL(1,2) = SSC-EPTOL(lI2) = SSC-EPOL =

Proof. By Lemma 22, we have CS c SSC-EPOL(1,2). Lemma 23 says that
SSC-EPTOL(T,S) C CS for all T , S 2 0. From the definitions it follows that
SSC-EPOL(l12) C SSC-EPTOL(lI2) C SSC-EPTOL and SSC-EPOL(l12) c
SSC-EPOL C SSC-EPTOL. Hence, SSC-EPOL(lI2) = SSC-EPTOL(lI2) =
SSC-EPOL = SSC-EPTOL = CS. I

The following corollary summarizes the established relationships between the

we obtain SSC-EPTOL(r, s) 5 CS for all T , s 2 0.

SSC-EPTOL.

language families generated by SSC-ETOL grammars:

Corollary 18.

CF
C

SSC-EPOL(0,O) = SSC-EOL(0,O) = EPOL = EOL
C

SSC-EPTOL(0,O) = SSC-ETOL(0,O) = EPTOL =z ETOL
C

SSC-EPOL(1,2) = SSC-EPTOL(1,2) = SSC-EPOL = SSC-EPTOL 1 CS
C

SSC-EOL(1,2) = SSC-ETOL(1,2) = SSC-EOL = SSC-ETOL = RE.

4.3 Global Context Conditional Grammars 131

Open Problems. Notice that Corollary 18 does not include some related lan-
guage families. For instance, it contains no language families generated by SSC-
ETOL grammars with degrees (1, l), (1, 0), and (0 , l) . What is their generative
power? What is the generative power of SSC-ETOL grammars of degree (2, l)?
Are they as powerful as SSC-ETOL grammars of degree (1,2)?

4.3 Global Context Conditional Grammars

As a matter of fact, in the present section, we go beyond the topic of this chap-
ter. Indeed, rather than associate context conditions with grammatical rules, we
associate them with a grammar as a whole.

Definition 19. Let r be a natural number. A global context conditional grammar
(a gcc-grammar for short) of degree r is a sixtuple,

G = (V, T , P, S, Per, For) ,

where (V, T , P, S) is a context-free grammar, For
y E Per implies IyI 5 r . G is said to be propagating if A -+ x E P implies x # E .

x, u1 , ug E V * , then we write

V , and Pe r V+ such that

Let u,w E V*, p E P, p = A -+ x, u = ulAug, w = ulxug, for some A E (V-T) ,

(a) u P+G w [P] if A E alph(sub(u) n Per) ;

(b) u f = + ~ w [PI if alph(u) n For = 8;

(c) u =+G w Ip] if u p=+G w [PI or u f=+G v [PI.

Roughly speaking, such a production as A --+ x E P can be applied to a
sentential form w provided that (a) A occurs in a permitting word from P e r which
is a subword of w or (b) no forbidding symbol from For occurs in w. Note that (a)
requires any occurrence of A to appear in a permitting word that is a subword of
u; but not necessarily the occurrence of A , which is rewritten in a given derivation
step u PJG V .

In the standard manner, we define +b for i 2 0 , +&, and =+>. The language
of G, denoted by L(G), is defined as

L(G) = {W E T* : S +& w}.

The family of languages generated by gcc-grammars of degree r is denoted by
GCC(r) . Furthermore,

00

GCC = U GCC(i).
i = O

We use prefix prop- if we consider only propagating gcc-grammars. That is,
prop-GCC(r) and prop-GCC denote the family of languages generated by prop-
agating gcc-grammars of degree r and by propagating gcc-grammars of any degree,
respectively.

132 Chapter 4: Conditions Placed on the Use of Productions

Next, we prove two fundamental results regarding the generative power of gcc-
grammars:

(i) A language is context-sensitive if and only if it is generated by a propagating
gcc-grammar of degree 2.

(ii) A language is recursively enumerable if and only if it is generated by a gcc-
grammar of degree 2.

Theorem 42. CS = prop-GCC(2).

Proof. It is straightforward to prove that prop-GCC(2) C CS, so it suffices-to
prove the converse inclusion.

Let L be a context-sensitive language. Without any loss of generality, we can
assume that L is generated by a context-sensitive grammar

G = (NCF U Ncs UT,T, P , S)

of the form described in Lemma 4. Let V = NCF U NCS U T. Set

For = {(A,B ,C) : A B -+ AC E P, A , C E NCF, B E Ncs} .

The propagating gcc-grammar G’ of degree 2 is defined as

G‘ = (V’, T , PI, S , Per, For),

where V’ = V U For and

Per = {A(A, B,C) : A E N C F , (A,B,C) E For}.

The set of productions PI is defined in the following way:

1. I f A - z E P , A E N c ~ , 2 € N c ~ U T U N ~ ~ , t h e n a d d A - , z t o P ’ .

2. If A B -+ AC E P , A , C E NCF, B E N C S , then add the following two
productions B -+ (A, B, C), (A , B, C) -+ C to PI.

Obviously, G’ is a propagating gcc-grammar of degree 2. Moreover, observe
that G is supposed to be of the form described by Lemma 4, so NCF and NCS are
two disjoint alphabets. Thus, considering the construction of G’, we should see
that there is at most one occurrence of a symbol from For in any word derived
from S; that is,

S +>, z implies # F ~ , - S 5 1.

The formal proof is left to the reader.

such that for all Y E V ,
Next, define a finite letter-to-letters substitution g from V* into (V U For)*

g (Y) = {Y} u { (X , Y , 2) : (X , Y , 2) E For, X , Z E NcF}.

4.3 Global Context Conditional Grammars 133

Let g-’ be the inverse of g.
To show that L(G) = L(G’), we prove that

S +z x if and only if S +;, x‘,

where x’ E g(x), x E V+, for some m,n 2 0.

Only if: This is established by induction on the length m of derivations; that is,
we have to demonstrate that

S +; x implies S +Lt x’

for some x’ E g(x), x E V+. This is our claim.

Basis: Let m = 0. The only x is S because S +: S. Clearly, S +:, S in G’ and

Induction Hypothesis: Suppose that our claim holds for all derivations of length
at most m, for some m 2 0.

Induction Step: Let us consider a derivation

s E dS).

s +g+1 2, x E v+.
Since m + 1 2 1, there is some y E V+ and p E P such that

s *g Y * G 2 [p l y

and by the induction hypothesis, there is also a derivation

s +;, y’

for some y’ E g(yj.

(i) Let us assume that p = D -+ yz E P , D E NCF, yz E Ncs U T U N i F ,
y = y1Dy3, y1, y3 E V*, and x = y1yzy3. Since from the definition of g it is
clear that g (2) = (2) for all 2 E NCF, we can express y’ = yiDy&, where
y: E g(y1) and yi E g(y3). Clearly, D -+ y~ E P’; see (1) in the definition of
PI.

(a) If For n alph(yiDyi) = 0, then

s *;! YiDYi f*G’ Y:YZ$j [D YZ]

and Y:YzYi E S(YlYZY3) = g(xc).
(b) If For n alph(yiDy&) # 0, then # ~ ~ , . y i D y i = 1. Next, suppose that

(X , Y , Z) E alph(yiDyi) n For, X Y --+ X Z E P , X , Z E NCF, Y E
Ncs; then, by (2), we have Y ---f (X , Y, 2) E P’. Clearly, we can express
the derivation

S =+;, yiDyi

134 Chapter 4: Conditions Placed on the Use of Productions

in the following way:

where

alph(g-'(y',Dy$)) n For = 0 and g-'(yiDy$) = y1Dy3.

S ~ 1 A B y 2 * G I yiA(A, B, C)YZ *G I YIACyzl

where y1ACy2 E g(x).

Thus, t he only-if part now follows by the principle of induction.

I f : This is also established by induction, but in this case on n. We have to
demonstrate that

S J:, x' implies S x,

where x E V+, x = g-l(x') , and n 2 0.

Basis: For n = 0 the only x' is S because S =+;, S. Since S = g-'(S), we have
x = S. Clearly, S J'& S in G.

Induction Hypothesis: Assume that the claim holds for all derivations of length at
most n, for some n 1 0.

4.3 Global Context Conditional Grammars 135

Induction Step: Consider a derivation

s =$’ x‘,

where x = g-l(x’) for some x E V+. Since n + 1 2 1, there is some y E V + ,
y = g-’(y’), and p E P’ such that

s =$’:/ y’ +GI x’ [p]

in G‘. By the induction hypothesis,

s *; y.

Let y’ = T‘Ds’, y = rBs, r = g-l(r‘), s = g-’(s’), T , S E V*, B = g-’(D),
x’ = r’z’s‘ and p = D -+ z’ E P’. Moreover, let us consider the following three
cases:

(i) Let g-’(z’) = B; see (2). Then, g-’(2’) = g-’(r’z’s’) = rBs. By the
induction hypothesis, we have

(ii) Let z’ E T U N c s U N&, D = B E NCF. Then, there is a production
B + z’ E P; see (1). Hence,

s rBs J G Tz’s [B 4 z’].

Since z’ = g-’(z’), we have x = rz’s such that g-l(x’) = x.

(iii) Let z’ = C , D = (A , B ,C) E For; see (2). Clearly,

9’ ’ J G ’ 2’ [PI

and A(A, B , C) E sub(y’). By the definition of For, there is a production
AB + AC E P. Since #F~,.Y‘ 5 1, we have T’ = u‘A, r = uA, where
g-’(u’) = u and u E V*. Thus,

S +; UABS JG UACS [AB + AC],

where uACs = rCs. Since C = g- ’ (C) , we get x = rCs such that g-’(x’) =
2.

By inspection of P’, we have considered all possible derivations of the form

s +;! 9’ J G ’ x’

in G’. Thus, by the principle of induction, we have established that

S +-kt x’ implies S +; x,

136 Chapter 4: Conditions Placed on the Use of Productions

where x E V+, g-’(x’) = x, and n 2 0.
The equivalence of G and G’ immediately follows from the statement above.

Indeed, by the definition of g, we have g(a) = { u } for all u E T . Therefore, we
have for any w E T* ,

S +& w if and only if S +>, w;

that is, L(G) = L(G’). Hence, prop-GCC(2) = CS. W

Next, we turn to the investigation of gcc-grammars of degree 2 with erasing
productions. We show that these grammars generate precisely the family of recur-
sively enumerable languages.

Theorem 43. RE = GCC(2).

Proof. Clearly, GCC(2) C RE. Hence, it suffices to show that RE C GCC(2).
This inclusion can be proved by the technique used in Theorem 42, because ev-
ery language L E RE can be generated by a phrase-structure grammar whose
productions are of the form AB -+ AC or A + x, where A, B , C E V - T and
2 E { E } U T U (V - T) 2 (see Lemmas 3 and 5). The details are left to the reader.

W

The following corollary summarizes results established in Theorems 42 and 43:

Corollary 19.
prop-GCC(2) = prop-GCC = CS

C
GCC(2) = GCC = RE.

Open Problem. Consider an alternative definition of gcc-grammars. Specifi-
cally, define the notion of a forbidding gcc-grammar of degree r (for some nat-
ural number T) as a sixtuple G = (V, T , P, S, Per, For), where (V, T , P, S) is a
context-free grammar, For C V + such that x E For implies 1x1 5 T , Per C V ,
and a production A + x can be applied to a word w when Per C alph(w) or
0 = V*{A}V* n For n sub(w). What is the language generating power of these
grammars?

Chapter 5

Context Conditions Placed on the
Neighborhood of Rewritten
Symbols

This chapter studies grammars with context conditions placed on the neighborhood
of rewritten symbols. In Section 5.1, we investigate grammars with context con-
ditions that strictly require a continuous neighborhood of the rewritten symbols.
We discuss both sequential and parallel grammars of this kind. The discussion of
sequential grammars naturally leads to the study of classical context-dependent
grammars, such as context-sensitive and phrase-structure grammars. Regarding
parallel grammars, we base this discussion on EIL grammars. In Section 5.2, we
study scattered context grammars in which rewriting depends on symbols occur-
ring in the sentential form, but these symbols may not form a continuous substring
of the sentential form. Rather, these symbols, which are simultaneously rewritten
during a single derivation step, may be scattered throughout the sentential form.
In all grammars discussed in this chapter, we make their context-dependency uni-
form, reduced and easy-to-use in theory and practice.

5.1 Continuous Context

Consider the phrase-structure grammars based on productions of the form xAy -+

xuy, where A is a nonterminal and x, y, u are strings (see Chapter 2). By using
xAy -+ xuy, we rewrite A with u on the condition that in the current sentential
form IC and y are substrings neighboring with the rewritten symbol A from the left
and from the right, respectively. Consequently, the phrase-structure grammars
can be quite naturally interpreted as grammars with context condition placed on
the substrings neighboring with the rewritten symbols (see the note preceding
Definition 2 in Section 2.2). Therefore, we discuss them in this chapter, although
we are fully aware of the problems and difficulties that their use bring about
(see Chapter 1). In fact, we intentionally concentrate our attention on some of
the difficulties in order to make them more acceptable from both theoretical and
practical viewpoint.

More specifically, a phrase-structure grammar can produce a very broad variety
of quite different sentential forms during the generation of their languages. This
inconsistent generation represents a highly undesirable grammatical phenomenon.

137

Grammars with Context Conditions and Their Application.
Alexander Meduna and Martin Svec

Copyright 0 2005 John Wiley & Sons, Inc.

138 Chapter 5: Conditions on the Neighborhood of Rewritten Symbols

In theory, the demonstration of properties concerning languages generated in this
way lead to extremely tedious proofs. In practice, the inconsistent generation of
languages is uneasy to analyze. Therefore, we next investigate how to make this
generation of languages more uniform. Specifically, the phrase-structure grammars
are transformed so that they generate only words that have a uniform permutation-
based form. More precisely, in Section 5.1.1, we demonstrate that every recursively
enumerable language L can be generated by a phrase-structure grammar so that
during the generation of any sentence from L, every sentential form is based on a
sequence of substrings, each of which represents a permutation of symbols over a
very small alphabet.

Besides phrase-structure grammars, we achieve analogical results for EIL gram-
mars, which represent major parallel grammars with context condition placed on
substrings continuously neighboring with the rewritten symbols (see Section 5.1.2).

5.1.1 Sequential Uniform Rewriting

The present section demonstrates that for every phrase-structure grammar G,
there exists an equivalent phrase-structure grammar, G’ = ({S, 0 , l) U T , T, P, S)
so that every 2 E F(G’) satisfies

2 E T*rI(w)*,

2 E II(w)*T*.

where 20 E (0 , l}*. Then, it makes this conversion so that for every 2 E F(G) ,

Let
G = (V , T , P , S)

be a phrase-structure grammar. Notice that alph(L(G)) C T . If a E T -
alph(L(G)), so a actually acts as a pseudoterminal because it appears in no word of
L(G). Every transformation described in this section assumes that its input gram-
mar contains no pseudoterminals of this kind, and does not contain any useless
nonterminals either.

Let j be a natural number. Set

PS[.j] = {L : L = L(G), where G = (V,T, P , S) is a phrase-structure
grammar such that lalph(F(G)) - TI = j and
F(G) C T*II(w)*, where w E (V - T)*}.

Analogously, set

PSlj.] = { L : L = L(G), where G = (V,T,P, S) is a phrase-structure
grammar such that lalph(F(G)) - TI = j and
F(G) C II(w)*T*, where w E (V - T)*}.

Lemma 24. Let G be a phmse-structure grammar. Then, there exists a phmse-
structure grammar, G’ = ({ S , 0,1} U T,T, P, S), satisfying L(G’) = L(G) and
F(G’) C T*II(ln-200)*.

5.1 Continuous Context 139

Proof. Let
G = (V, T, Q, $)

be a phrase-structure grammar, where V is the alphabet of G, T is the terminal
alphabet of G, Q is the set of productions of G, and $ is the start symbol of
G. Without any loss of generality, assume that V n {0,1} = 0. The following
construction produces an equivalent phrase-structure grammar:

G' = ({ S, 0,1} U T, T, P, S)

such that F(G') C T*II(l"-200)*, for some natural number n.
For some integers m , n such that m 2 3 and 2m = n, introduce an injective

homomorphism ,B from V to ({l}m{l}*{O}{l}*{O} n (0, 1)") - {ln-200}. Extend
the domain of p to V*. Define the phrase-structure grammar, G' = ({S,O, 1) U
T, T, P, S), with

P = {S + l"-100p($)l"-100} u
M.1 + P(Y) : 2 + Y E &I u

{ 1"-2001"-200 --+ E}.

{1"-200p(u) --f aln-200 : a E T} U

Claim 36. Let S j h w, where w E V* and h 2 1. Then, w E T*({E} U
{ 1"-2oo}(p(v))*{ P-POO}).

Proof. The claim is proved by induction on h, h 2 1.

Basis: Let h = 1. That is,

s *G' ln-lOO~($)ln-'OO [$ 4 l"-lOOp($)l"-lOO].

As
ln-200p(S)ln-200 E T*({1"-200}(~(V))*{1"-200} U { E }) ,

the basis holds.

Induction Hypothesis: Suppose that for some k 2 0, if S
and w E V*, then w E T*({1"-200}(~(V))*{ln-200} U { E }) .

Induction Step: Consider

where w E V* - T*. Express S =+-%' w as

w, where i = 1,. . . , k

S,*Zl w,

S +:, ulhs(p)v
*GI urhs(p)v [PI,

where p E P and w = urhs(p)v. Less formally, after k steps, G' derives ulhs(p)v.
Then, by using p, G' replaces lhs(p) with rhs(p) in ulhs(p)v, so it obtains urhs(p)v.
By the induction hypothesis,

ulhs(p)v E T*({1"-100}(~(V))*{1"-200} U {E}).

140 Chapter 5: Conditions on the Neighborhood of Rewritten Symbols

As lhs(p) $! T*, ulhs(p)v $! T*. Therefore,

ulhs(p)v E T*{1"-200}(~(V))*{1~-200}.

ulhs(p)v E T*{1"-200}(~(V))~{ln-200}
Let

in GI, for some j 2 1.
properties:

By the definition of P , p satisfies one of these three

(i) Let lhs(p) = P (x) and rhs(p) = p(y), where x -, y E Q, At this point,

u E T*{l"-200}{p(V)}',

2, E {p(V)} (j - Ilh4P)l -'I { 1"-200}.

for some T 2 0, and

Distinguish between these two cases: 1x1 5 IyI and 1x1 > IyI.

(a) Let 1x1 I IyI. Set s = IyI - 1x1. Observe that

urhs(p)v E T*{1"-200}(~(V))~~+'~{ln-200}.

As w = urhs(p)v,

w E T*({1"-"0)(p(v))*{1"-200} u { E }) .

w E T*({1"-200}(p(v))*{1"-200} u { E }) .

(b) Let 1x1 > Iy(. By analogy with (a), prove that

(ii) Assume that lhs(p) = 1"-'00P(a) and rhs(p) = aln-200, for some a E T .
Notice that

ulhs(p)v E T*{ 1"-200}(~(V))~{l"-200}

implies u E T* and

Then,

As w = urhs(p)w,

2, E (p(V))(j-'){1"-200}.

urhs(p)v E T*{a}{ 1"-200}(/3(V))(j-1){ ln-200}.

w E T*({1"-200}(p(v))*(1"-200} u { E }) .

T*{ 1"-2oo}(p(v))~{ 1"-200},

(iii) Assume that lhs(p) = 1"-2001"-200 and rhs(p) = E . Then, j = 0 in

so
ulhs(p)v E T*{ln-200}{ln-200}

and urhs(p)v E T*. As w = urhs(p)w,

w E T*({1"-"0)(p(v))*{1"-200} u { E }) .

5.1 Continuous Context 141

0

Claim 37. Let S +;, u

Proof. Let S +&, u +>, z , where z E T*. By Claim 36, u E T*({1n-200}(~(V))*
0

z , where z E T*. Then, u E T*II(ln-200)*.

{ln-200} U { E }) , and by the definition of p, u E T*ll(1n-200)*.

Claim 38. Let $ +g w, for some m 2 0. Then S +:, ln-200P(w)ln-200 in
G' *

Proof. The claim is proved by induction on m, m 2 0.

Basis: Let m = 0. That is, $ $. As

s J G ' ln-lOOp($)ln-'OO [s 4 ln-lOO,d($)ln-lOO],

the basis holds.

Induction Hypothesis: Suppose that for some j 2 1, if $ =+& w, where i = 1,. . . , j
and w E V * , then S +zl p(w).

Induction Step: Let $ w. Express $ +&+' w as

$ +& U x V +G Uyv [x + y] ,

where x -+ y E Q and w = uyv. By the induction hypothesis,

s +;, l~ -200p(Uzv) l~ -200 .

Express P(uxv) as p(uxv) = P(u)/3(x)P(v). As x --+ y E P, P(x) -+ P (Y) E P.
Therefore,

s =+;, 1"-2Oop(u)p(z)p(v)l"-200
*GI ~ " - 2 ~ ~ ~ (~) ~ (y) ~ (~) ~ " - 2 ~ ~ [P(.) p (Y)] .

Because w = u y v , p(w) = P (u) p (y) p (v) , so

s +;, l~ -200p(W) l~ -200 .

Claim 39. L(G) C L(G').

Proof. Let w E L(G). Thus, $ +; w with w E T*. By Claim 38,

s =+&, 1*-200p(W)1~-200.

Distinguish between these two cases: w = E and w # E.

(i) If w = E , l n - 2 0 0 p (~) l n - 2 0 0 = ln-2001n-200. As ln-2001n-200 -+ E E P ,

s +&, 1 ~ - 2 0 0 1 ~ - 2 0 0
E [1n-2001n-200 + €1.

142 Chapter 5: Conditions on the Neighborhood of Rewritten Symbols

0,102.. . an-21n-200P(a~_l)P(an)ln-200
[1"-20Op(an4) -+ a,-21"-200]

[1"-2O0P(un-1) -+ a,-11"-200]

[1"-200P(a,) -+ a,ln-200]

[l"-2001"-200 + €1.

*G' a1a2.. . an_2an-lln-200~(a~)l"-200

ala2.. . a,-2a,-la,ln-2001"-200

+GI a1a2.. . a,-za,-la,

Therefore, w E L(G').

Claim 40. Let S *;, ln-200~1n-200, where w E { O , l } * , for some m 2 1.
Then, $ +-& /3-'(w).

Proof. This claim is proved by induction on m.

Basis: Let m = 1. That is,

s J G ' ln-200wln-200,

where w E {O, l}* . Then, w = /3($). As $

Induction Hypothesis: Suppose that for some j 2 1, if S +;, ln-200~ln-200,
where i = 1,. . . , j and w E {0,1}*, then $ +$ P-l(w).

Induction Step: Let

where w E {O,l}*. As w E { O , l } * ,

G'

$, the basis holds.

s *j+l G' 1"-200 w 1"-200,

wln-200 s *j+1 1"-200

can be expressed as

5.1 Continuous Context 143

where x, y E V*, x y E Q, and w = up(y)v. By the induction hypothesis,

s *;, 1~-200p-~(up(x)v)1~-200.

p- 1 (up (.)V) = p- 1 (u)xp-l (v) .

Express P-'(up(x)v) as

Since x --+ y E Q,

$ *; p-l(u)xp-'(v)
*G p-'(u)Yp-'(v) -i Y1.

Because w = up(y)v, p-'(w) = p-'(u)yp-'(v), so

$ =+& p-'(w).

Claim 41. L(G') G L(G).

Proof. Let w E L(G'). Distinguish between w = E and w # E .

(i) Let w = E. Observe that G' derives E as

s *;, 1~-2001~-200
*G' & [ln-2001n-200 --$ €1.

Because
s a;, 1~-2001~-200,

Claim 40 implies that $ E . Therefore, w E L(G).

(ii) Assume that w # E . Let w = 0102,. . a,-la, with ai E T for i = 1,. . . ,n,
where n 2 1. Examine P to see that in G' there exists this derivation:

s +, 1"-200p(u1)p(a2). . . ~(an-l)p(an)l"-200

[1"-200p(a') -i a11"-200]

[1"-200p(a2) -+ azln-200]

JG' a11n-200P(a2). . ,d(an-l)p(an)ln-200

J G ' ala21n-200p(a3) * * . ~(an-1)p(an)ln-200

144 Chapter 5: Conditions on the Neighborhood of Rewritten Symbols

Because
s +;, 1 n - 2 ~ ~ ~ (u 1) ~ (u 2) . . . P(an-1)P(an)ln-200,

$ *& u1u2.. . U,-lU,,
Claim 40 implies that

so w E L(G).

0

By Claims 39 and 41, L(G) = L(G'). By Claim 37, F(G') c T*II(ln-200)*.
Thus, Lemma 24 holds. 0

Theorem 44. PS[.2] = RE.

Proof. Clearly, PS[.2] C RE. By Lemma 24, RE c PS[.2]. Therefore, this
theorem holds. w

Lemma 25. Let G be a phrase-structure grammar. Then, there exists a phrase-
structure grammar G' = ({S,O, 1) U T,T , P ,S) satisfying L(G) = L(G') and
F(G')

Proof. Let
G = (V, T , Q , $)

be a phrase-structure grammar, where V is the total alphabet of G, T is the
terminal alphabet of G, Q is the set of productions of G, and $ is the start symbol
of G. Without any loss of generality, assume that V n (0, l} = 0. The following
construction produces an equivalent phrase-structure grammar:

II(ln-200)*T*, for some n 2 1.

G'= ({S,O,l}UT,T,P,S)

such that F(G') C II(ln-200)*T*, for some n 2 1.
For some m 2 3 and n such that 2m = n, introduce an injective homomorphism

p from V to ({l}m{l}*{O}{l}* n (0, l}n) - {ln-'OO}. Extend the domain of p to
V*. Define the phrase-structure grammar G' = (T U {S, 0, l}, P, S, T) with

P = {S -+ l ~ - ' o o p ($) l ~ - ~ o o } u
-+ P(Y) : 2 -+ Y E Q } u

{p(u)l"-'00 -+ 1n-200u : u E T } u
{1~-2001"-200 ---t E } .

Complete this proof by analogy with the proof of Lemma 24. 0

Theorem 45. PS[2.] = RE.

Proof. Clearly, PS[2.] c RE. By Lemma 25, RE PS[2.]. Therefore, this
theorem holds. w
Corollary 20. PS[.2] = PS[2.] = RE.

5.1 Continuous Context 145

Open Problems. There are some open problem areas related to the results
above. Recall that in this section we converted any phrase-structure grammar, G,
to an equivalent phrase-structure grammar, G’ = (V,T,P,S) , so that for every
z E F(G’), x E T*II(w)*, where w is a word over V - T . Then, we made this
conversion so that for every z E F(G’), z E II(w)*T*. Take into account the
length of w. More precisely, for j, k 2 1 set

PS[.j,k] = {L : L = L(G), where G = (V, T , P, S) is a phrase-structure
grammar such that lalph(F(G)) - TI = j and
F (G) C T*II(w)*, where w E (V - T)* and lwl = k}.

Analogously, set

PSb,k.] = {L : L = L(G), where G = (V, T , P, S) is a phrase-structure
grammar such that lalph(F(G)) - TI = j and
F(G) C II(w)*T*, where w E (V - T)* and IwI = k}.

Reconsider Section 5.1.1 in terms of these families of languages.

5.1.2 Parallel Uniform Rewriting

The present section converts any EIL grammar G to an equivalent EIL grammar
G’ = ({S, 0,1} U T , T , P, S) , so that for every z E F(G’),

2 E T*rI(w)*,

where w E {O, l}* . Then, it makes this conversion so that for every z E F(G’),

z E II(w)*T*.

Note that by analogy with Section 5.1.1, every transformation presented in
this section assumes that its input grammar contains neither pseudoterminals nor
useless nonterminals. Let j 2 0. Set

EIL[.j] = {L : L = L(G), where G = (V,T, P, S) is an EIL grammar
such that lalph(F(G)) -TI = j and F(G) c T*rI(w)*,
where w E (V - T)*} .

Analogously, define

EILIj.] = { L : L = L(G), where G = (V, T , P, S) is an EIL grammar
such that lalph(F(G)) - TI = j and F(G)
where w E (V - T)*}.

II(w)*T*,

Lemma 26. Let G be an E(1 , O) L grammar. Then, there excists an EIL grammar
G‘ = ({S,O,l} U T , T , P , S) such that L(G) = L(G’) and F(G’) C T*II(ln-200)*,
for some n 2 1.

146 Chapter 5: Conditions on the Neighborhood of Rewritten Symbols

Proof. Let

be an E(1,O)L grammar. For some natural numbers m and n such that m 2 3 and
2m = n, introduce an injective homomorphism p from V to ({l}m{l}*{O}{l}*{O}
n (0, 1)") - {ln-200}; in addition, introduce an injective homomorphism x from
T to ({l}m{l}*{0}{1}*{0}n{o,1}~)-{1~-200} sothat { ~ (a) : a € T } n { P (A) :
A E V } = 0. Extend the domain of p and the domain of x to V* and T*,
respectively. Define the E(2n - 1,O)L grammar

G = (V, T , Q , $1

G ' = (TU{S,O,l),T,P,S)

with
P = Po u Px u P 6 ,

where

Po = { S --f P ($))
u { (p (x) z , o) -+ P(y) : x E v u { E } , 2 E {O,l}n--l, y E v*,
u {(p(a).,o) -+ X(b) : a E T U { E } , 2 E (0,1}n-l,

ZO = p(Y) for some Y E V such that (X ,Y) -+ y E Q}

20 = P(b) for some b E T } ,

lyzl 5 2n - 1, 20 = ~ (a) }

1x1 I n - 2, lyxl 5 2n - 1)

121 2 n, lyzl I 2n - 1)

(Po u Px) n {(z, x) -+ z : z E (T u (0, I})*} = 0).

Px = { (Y Z , ~) -+ a : a E T , y E T*, 2 E (0, l}*,

u {(yqg) -+ E : Y E (0, l}, y E T*, 2 E (0, l}*,

u ((y2,Y) --+ Y : Y E (0, l}, y E T* , II: E (0, l}*,

U { (z , a) -+ a : a 6 T , 1x1 I 2 n - l},
Ps = ((2 , X) -+ 1"-200 : 2 E (T u (0, 1})2"-1, x E (T u (0, l}),

Claim 42. Let S =+-;, w, where w E V* and m 2 1. Then, w E T*11(1"-200)*.

Proof. The claim is proved by induction on m, m 2 1.

Basis: Let m = 1. That is, S =+Gt p($) [S -+ p($)] . As T*ll(l"-200)* contains
p($) , the basis holds.

Induction Hypothesis: Suppose that for all i = 1,. . . , k, where k 2 1, if S +;,
w, then w E T*11(ln-200)*.

Induction Step: Consider
s +-S' w,

where w E V*. Express S w as

s *:! u J G ' 21 [PI,

where p E P. By the induction hypothesis, u E T*II(l"-200)*. Examine P to see
that 21 E T*II(ln-200)* if u E T*rI(ln-200)*; the details are left to the reader.

0

5.1 Continuous Context 147

Claim 43. Let $ +z w, for some m 3 0. Then, S +;, P(w).

Proof. This claim is proved by induction on m, m 2 0.

Basis: Let m = 0. That is, $ +$ $. Observe that S *G! @($) [S + P($)] , SO the
basis holds.

Induction Hypothesis: Suppose that for some j 2 1, if $ +b w, where i = 1,. . . , j ,
and w E V*, then S a:, P(w).

Induction Step: Consider a derivation

$ +j+l
G y .

Express $ +$+’ y as

Furthermore, express z as z = X l X 2 . . . X k , where k = 1x1 and xj E v, for
j = 1,. . . , k. Assume that G makes

$336 2 *G 9.

xlxz.. . Xk +G y

according to (&,XI) -+ y1, (X1 ,Xz) --+ y z , . . . , (Xk - l ,Xk) + yk so y = y i y z . . . y k .

By the induction hypothesis,

Express P(z) as

where X j E V , for j = 1,. . . , k. Return to Pp. Observe that Pp contains (XI, 0) +

p (y 1) , where z10 = P (X l) , and (P(Xi-l)zi,O) -+ P(yi), where zi0 = @ (X i) for
i = 2 , . . . , k. Thus,

s +-it P(z).

P(.) = P(Xl>P(X2) * * * P(Xk)l

P(xl)P(x2) * * . P (X k) *G’ P (Y l) P (Y Z) . . . P (Y k) *

As y = ~ 1 ~ 2 . . . Y k , P(z) =+-Gf P(y). Consequently,

s *it P b) .

Claim 44. L(G) L(G’).

Proof. Let w E L(G’). Thus, S +&, w and w E T*. By Claim 43, S
Recall that Pp contains

P(w).

{ (p (a) z , 0) --+ ~ (b) : a E T , z E (0 , l}n-l, z0 = P(b) for some b E T } C Po.

Therefore,

Examine Px to see that

Hence, Claim 44 holds.

P(w) *GI x(w)*

x(w) +-;, w.
0

148 Chapter 5: Conditions on the Neighborhood of Rewritten Symbols

Claim 45. L(G’) C L(G).

Proof. Let w E L(G’), and let w = ala2 . . . a,-la, with ai E T for i = 1, . . . , n ,
where n is a nonnegative integer (w = E if n = 0). Observe that

In greater detail, by using productions from Pp, G’ makes

and by using productions from Px, G’ makes the rest of this derivation. Examine
Pp to see that if G‘ makes

by using productions from Pp, then $ =+; ala2 . . . an-lan in G. Because w =
0 ~ 1 ~ 2 . . . a,-la,, w E L(G), so Claim 45 holds.

By Claims 44 and 45, L(G’) = L(G) , so Lemma 26 holds. 0

Theorem 46. EIL[.2] = RE.

Proof. Clearly, EIL[.2] C RE. By Theorem 6.1.3 in [155], for every L E RE,
there exists an E(1,O)L grammar, G, such that L = L(G). Thus, by Lemma 26,
RE C EIL[.2]. As EIL[.2] C RE and RE C EIL[.2], RE = EIL[.2].

Lemma 27. Let G be an E (0 , l) L grammar. Then, there exists an EIL grammar
G’ = ({SIOll},T,P,S) such that L(G) = L(G’) and F(G’) II(ln-200)*T*, for
some n 2 6.

Proof. Let
G = (V, Tl &,$I

be an E(0, l)L grammar. For some natural numbers m and n such that m 2 3
and 2m = n, introduce an injective homomorphism p from V to ({O}{l}*{O}{l}*
{l}m n (0, l}n) - {ln-200}; in addition, introduce an injective homomorphism x
f romT to ({0}{1}*{0}{1}*{l}mn{0,1}n)-{ln-200} so { ~ (a) : U E T } n { P (A) :

5.2 Scattered Context 149

A E V } = 8. Extend the domain of P and the domain of x to V* and T* ,
respectively. Define the E(O,2n - l) L grammar,

G’=(TU{S,O,l} ,T,P,S) ,

with
P = Pp u Px u Pa,

where

Q = { S -+ P (V 1
u {(O,zP(X)) -+ P(y) : x E v u { E } , 2 E {0,1}n-l, y E v*,

Oz = P(Y) for some Y E V such that (Y , X) + y E Q }

Oz = P (b) for some b E T},

lzyl 5 2 n - 1, Ox = ~ (a) }

I - 21 < n - 2, Ixyl 5 2 n - 1)

1x1 2 n, lzyl 5 2 n - 1)

U {(O,zP(a)) + ~ (b) : a E T U { E } , z E (0, l}n-l,

{(O,zy) -+ a : a E T, y E T*, z E {O, l}* ,

U {(Y,zy) -+ E : Y E (0, l}, y E T*, z E {0,1}*,

U {(Y, zy) -+ Y : Y E (0, l}, y E T*, x E (0, l}*,

U { (a , x) + a : a E T, 1x1 5 2 n - l},
{(X,Z) -+ ln-200 : z E (TU (0, l})2n-1, X E (T U (0 , l}),

Px =

Pd =

(Po U Px) n { (X,Z) + z : z E (T U {0,1})*} = 8).

Complete this proof by analogy with the proof of Lemma 26.

Theorem 47. EIL[2.] = RE.

Proof. Clearly, EIL[2.] G RE. By Theorem 6.1.3 in [155], for every L E RE
there exists an E(0, l)L grammar G such that L = L(G). Thus, by Lemma 27,

a
Corollary 21. EIL[.2] = EIL[.2] = RE.

RE C EIL[2.]. As EIL[2.] 2 RE and RE EIL[2.], EIL[2.] = RE.

5.2 Scattered Context

The concept of scattered context was introduced by Greibach and Hopcroft in [75].
Scattered context grammars are semi-parallel grammars whose productions simul-
taneously rewrite several symbols in parallel. These symbols must occur in a
certain order that is given by the applied production. However, as opposed to the
phrase-structure grammars, these symbols may not form a continuous sequence in
the rewritten sentential form.

We concentrate our attention on the reduction of scattered context grammars
with respect to several measures of descriptional complexity. Moreover, we demon-
strate that by analogy with continuous-context grammars studied in Section 5.1,
scattered context grammars can generate their languages in a uniform and succint
way.

150 Chapter 5: Conditions on the Neighborhood of Rewritten Symbols

5.2.1

Definition 20. A scattered context grammar (see [75], [110], [122], [123], [127],
[128]) is a quadruple G = (V, T , P, S), where V is the total alphabet, T is a finite
set of terminals (T C V) , and S E V - T is the axiom. P is a finite set of
productions of the form

Scattered Context Grammars and Their Reduction

(A i , A z , . . . , A,) .+ (xi ,xz, . . . ,xn)
where n 2 1, and for all i = 1 , 2 , . . . ,n, Ai E V - T and xi E V*. Instead of
(A l , A2, . . . , A ,) -+ (2 1 , x 2 , . . . ,xn), the literature sometimes writes

(A1 -+ 21,Ag -+ 2 2 , . . . , A , -+ 2,).

Let p = (A l , A z , . . . , A n) -+ (x 1 , x 2 , , . . ,x,) E P, n 2 1. Then, scleft(p) =
A l A z . . . A , and scright(p) = ~ 1 x 2 , . .x,. If xi E V+ for all i = 1 , . . . , n , G is
said to be propagating. Set n (p) = n. If ~ (p) 2 2, p is said to be a context-
sensitive production. If n (p) = 1, p is said to be context-free. Consider p =
(A l , A 2 , . . . , A ,) + (xl ,x2, . . . ,xn) E P and u, v E V* of the form

‘LL = u1A1u2A2.. . u,A,u,+~
v = u121u222.. . unx,u,+l

where ui E V* for i = 1 , 2 , . . , , n, n 2 1. Then, u directly derives v in G, or simply

u *G’ v [PI.

In the standard way, JG can be extended to +E (n 2 0), +$, and +&, respec-
tively. The language of G, L(G), is defined as

L(G) = {W E T* : S +> w}.

The family of languages generated by scattered context grammars is denoted by
SCAT.

Theorem 48. RE = SCAT.

Proof. Let L E RE. By the first corollary on page 245 in [75], there exists a
propagating scattered context grammar

G = (V, T , p, S) ,

and a homomorphism h such that L = h(L(G)) . Without any loss of generality,
assume alph(L) f l T = 8. Define the scattered context grammar

G’ = (V U T U alph(L), alph(L), P U PI, S) ,

where
P’ = { (a) -i (h (a)) : a E T } .

Clearly, L(G’) = L. Therefore, RE C SCAT. Obviously, SCAT C RE, so
RE = SCAT.

5.2 Scattered Context 151

Next, we investigate the descriptional complexity of scattered context gram-
mars. To do so, we first introduce several measures of this complexity.

If G = (V, T , P, S) is a scattered context grammar, then its nonterminal com-
plexity is the number of nonterminals in G. If G is a scattered context grammar,
then its degree of context-sensitivity, symbolically written as b-CS(G), is defined as
the number of context-sensitive productions in G. The maximum context sensitiv-
i t y of G is the greatest number in pi) - 1 : 1 5 i 5 /PI) , symbolically denoted
by max-CS(G). The overall context sensitivity of G, denoted by sum-CS(G), is
the sum of all members in {n(pi) - 1 : 1 5 i 5 IPI).

Lemma 28 (see [128]). There exists a scattered context grammar G such that G
defines a non-context-free language and 6-CS(G) = max-CS(G) = sum-CS(G) = 1.

Proof. Consider a scattered context grammar

where the set of productions P is defined as

p = { (S) --+ (AC) ,
(A) -+ (a A b B) ,
(A) --+ (E l ,

(C) --+ (CCD),
(C) --+ (E l ,

(B , 0) --+ (E , .)I.
It is easy to verify that L(G) = {anbncn : n 2 0) and 6-CS(G) = max-CS(G) =
sum-CS(G) = 1. 0

Let SCAT[k, 1, m, n] denote the family of languages such that a language L
is in SCAT[k, 1, m, n] if and only if there exists a scattered context grammar G
such that L(G) = L and G’s nonterminal complexity is k or less, 6-CS(G) 5 1,
max-CS(G) 5 m, and sum-CS(G) 5 n. In this book, we consider parameters k
and 1 as the two major measures of descriptional complexity; on the other hand,
parameters m and n are less important.

First, we demonstrate that the number of nonterminals can be reduced to three
or less. The proof of this statement makes use of a normal form of queue grammars
(see Definition 6) , which is established in the following lemma:

Lemma 29. For any queue grammar Q’ there exists an equivalent queue grammar
Q = (V, T , W, F, R, g) such that Q generates every z E L(Q) by the derivation of
the form R +b u +-Q v w =+Q z , where i , k 2 1, and the derivation satisfies
the following properties:

1. Each derivation step in R =+b u has the f o r m

a’y’b’ =+Q y’dc’ [(a’, b’, x’, c’)],

where a’ E V - T , b’, c’ E W - F , x’, y’ E (V - T)”

152 Chapter 5: Conditions on the Neighborhood of Rewritten Symbols

2. In greater detail, the derivation step u +Q v has this form

al/y/!b!/ j Q yllh!/x!!CII bl/, h!!x/I, d /)] ,

where a‘ E V - T , b’, c‘ E W - F, h“, y” E (V - T)* , x” E T*.

3. Each derivation step in v +; w has the form

a 111 111 h 111 b 111 ‘Q yl/!h/!/x!!/C!/! [(all/, bll’, x’l!, c l / l)] ,

where a”‘ E V - T, b”’, c”’ E W - F , y”’ E (V - T)* , x“‘, y“‘ E T*

4. In greater detail, the derivation step w +Q z has the form

where all’’ E V-T, bllll E W-F, y”l/, x~~~~ E T*, = a ~ l ~ ~ y ~ ~ ~ l b ~ ~ ~ ~ , = yI l l lx l l l l .

Proof. Let
Q‘ = (V‘, T’, W’, F‘, R‘, 9’)

be any queue grammar. Introduce these four pairwise disjoint alphabets U, X, Y,
and {@, $,#,I} so that IUI = IV’(and 1x1 = IYI = IW’I. Introduce any bijection
Q from (V’ U U’) onto (U U X). Furthermore, introduce another bijection ,B from
W ’ t o Y . Set V = U U T ’ U { @ , # } , T = T ’ , W = X U Y U { $, I } , F = { I } , a n d
R = @$. Define the queue grammar Q = (V, T, W, F, R, 9) with g constructed in
the following five-step way:

I. If R‘ = ab with a E V - T and b E W - F, then add (@, $, a, b) to 9.

11. For every (a ,b ,x ,c) E g’ with a E V, x E V*, and b,c E W, add (cr(a),cr(b),
Q (X) , 44) to 9.

(4 a) , a@), a(x)#y, P(c>) to 9.

P(c)) to 9.

111. For every (a,b,xy,c) E g’ with a E V, x E V*, y E T*, b,c E W , add

IV. Forevery(a,b,y,c) ~ g ’ w i t h a ~ V , y ~ T * , a n d b , c ~ W,add(a(a) ,P(b) ,y ,

V. For every c E F’, add (#, P(b), E, I) to 9,

A formal proof that Q satisfies the properties required by this lemma is left to the
reader. 0

Theorem 49. RE = SCAT[3,oo, oo,00].

Proof. Obviously, SCAT[3,m, 00, m] C_ RE. Next, we prove the converse inclu-
sion. Let L be a recursively enumerable language. By Theorem 2.1 in [88], there
exists a queue grammar

Q = (V, T, W, F, R, 9)

5.2 Scattered Context 153

such that L = L(Q). Witout any loss of generality, assume that Q satisfies
the properties described in Lemma 29. The next construction produces a three-
nonterminal scattered context grammar G satisfying L(G) = L(Q).

Set n = (VU WI +2. Introduce a bijection p from (VU W) to ({l}+{O}{l}+n
(0, l},). In the standard manner, extend the domain of p to (V U W)*. Without
any loss of generality, assume that (V U W) n {0,1,2} = 0. Define the scattered
context grammar

where P is constructed in the following six-step way:

G = (T u {0,1,2},T, p, 21,

I. If R = ab with a E V - T and b E W - F, then add

(2) + (01"-1p(b)22P(a)20)

to P.

11. For every (a,b,z,c) E g with a E V - T , z E (V - T)* , and b,c E W - F,
add

(d1,. * . , & , h , . . . , b n , 2 , a l j . . ,a,-l,an,2,2) --t

(4,. * * ,d,,Cl,. * ' ,c,,e1,e2, * * * ,en72,2,P(z)2)

to P , where dl . . .d, = 01"-' (that is, dl = 0 and d h = 1 for h = 2, . . . , T I) ,

bl . . . b, = P (b) , a1 . . .a, = P(a), c l . . .c, = P(c), ei = E for i = 1,. . . ,n.

111. For every (a,b,zy,c) E g with a E V - T , 2 E (V - T)* , y E T* , and
b , c E W - - , a d d

(d1,. * ,&,h,*. ,bnr2,al , . . . ,an-l,an,2,2) +

(f l y . . . , f,, c1,. . . , c,, e l , e2,. . . , en, 2, ~ , P (z) Y ~)

to P, where dl . . . d, = O l n - l (that is, dl = 0 and dh = 1 for h = 2 , . . . , n),
f1 ...f,= l n - l O (t h a t i s , f , = O a n d f h = l f o r h ' = l ,..., n - l) , b l . . . b,=
P(b) , a l . . . ,a, = /?(a), c1 . . . c, = p(c), ei = E for i = 1 , . . . ,n.

IV. For every (a,b,y,c) E g with a E V - T , y E T* , and b,cE W - F , add

(f l , . . . , fn ,b l , . . . ,bn,2,a1, . . . ,%l ,an ,2 ,2) -+

(f l y . . . , f n , c l , . . . , cn,e1,e2,. . . ,en,2,2,y2)

to P, where f1. . . f, = 1"-'0 (that is, f, = 0 and fh = 1 for h = 1,. . . ,n-1),
bl . . . , b, = P(b) , a l , . . . ,a, = ,t?(a), c1 . . .c, = P(c), ei = E for i = 1, . . . ,n.

V. For every (a, b, y, c) E g with a E V - T , y E T', b E W - F , and c E F, add

(f l , . . ., fn,bl,. . ., b , , 2 , U l , . . . ,a,-l,a,,2,2) --f

(e l , . . . , en, e,+l,. . . , e2,, e2,+1, e2,+2,. . . , e3,, c , E , Y)

to P, where f1 . . . f, = ln-10 (that is, f, = 0 and fh = 1 for h = 1,. . . , n-l),
bl . . . b, = P (b) , al ... a, = P(a), ei = E for i = 1,. . . ,3n.

154 Chapter 5: Conditions on the Neighborhood of Rewritten Symbols

VI. Add (2,2, a, 2) -+ (2 , ~ , a 2 , 2) to P , where a E (0,l) .

To keep this proof readable, we omit some obvious details from the rest of this
proof whose completion is left to the reader.

Claim 46. Let 2 +& x be a derivation in G during which G uses the productions
introduced in step (I) i times, for some i 2 1. Then #zw = (1 + 2i) - 3 j ,
#IX = (TI - l) k , and #OX = k + i - j , where k is a nonnegative integer and j
is the number of applications of a production introduced in step (V) during 2 +&
x such that j 2 1 and (1 + 2i) _> 3 j .

Proof. The proof of this claim is left to the reader.

Claim 47. Let 2 =+& x be a.derivation in G during which G uses the production
introduced in step (I) two or more tames. Then, x # T * .

Proof. Let 2 +& x. If G uses the production introduced in step (I) two or more
times, then the previous claim implies that x contains some occurrences of 0. Thus,

0

Claim 48. G generates every w E L(G) as 2 J G u [PI =+& v JG w [q], where p is
the production introduced in (I), q is a production introduced in (V), during u +&
v, G makes every derivation step by a production introduced in (II)-(IV), or (VI).

Proof. Let w E L(G). Then, 2 +& w and w E T*. By Claim 46, as w E T*, G
uses the production introduced in (I) once. Because 2 +& w begins from 2, we
can express 2 +& w as

where p is the production introduced in (I), and during u J& w, G never uses
the production introduced in (I). Observe that every production r introduced in
(11)-(IV), and (VI) satisfies #zscleft(r) = 3 and #zscright(r) = 3. Furthermore,
notice that every production q introduced in (V) satisfies #zscleft(q) = 3 and
#zscright(q) = 0. These observations imply

x @ T* because 0 is a nonterminal.

2*G u [p] *& w,

2 *G b] *& *G w [q] ,

where p is the production introduced in (I), q is a production introduced in (V),
and during u *& v, G makes every step by a production introduced in (11)-(IV),
or (VI). 0

Basic Idea. Before describing the form of every successful derivation in G in
greater detail, we make some observations about the use of productions introduced
in (VI).

During any successful derivation in G, a production introduced in step (VI) is
always applied after using a production introduced in steps (I)-(IV) (the use of
these productions is described below). More precisely, to continue the derivation
after applying a production introduced in (1)-(IV), G has to shift the second

5.2 Scattered Context 155

appearance of 2 right in the current sentential form. G makes this shift by using
productions introduced in (VI) to generate a sentential form having precisely n
appearances of d (d E (0 , l)) between the first appearance of 2 and the second
appearance of 2. Indeed, the sentential form has to contain exactly n appearances
of d between the first appearance of 2 and the second appearance of 2; otherwise,
the successfulness of the derivation is contradicted by Observations 1 and 2 , which
follow next.

Observation 1. If there exist fewer than n ds between the first appearance of 2
and the second appearance of 2 , no production introduced in (I)-(V) can be used,
so the derivation ends. If the last sentential form contains nonterminals and if the
derivation is not successful, it is a contradiction.

Observation 2. Assume that there exist more than n ds between the first ap-
pearance of 2 and the second appearance of 2 . Then, after the next application
of a production introduced in (1)-(V), more than 3n ds (d E (0,l)) appear before
the first appearance of 2 . Return to the construction of productions in G to make
the following observations:

(i) The production introduced in step (I) is always used only in the first step of
a successful derivation (see Claim 48).

(ii) All productions introduced in steps (11)-(IV) rewrite 3n nonterminals pre-
ceding the first appearance of 2 with other 3n nonterminals.

(iii) Recall that a production introduced in step (V) is always used in the last
derivation step (see Claim 48); furthermore, observe that this production
erases precisely 3n nonterminals preceding the first appearance of 2.

By Observation 2 , the occurrence of more than 3n ds between the first and the
second appearance of 2 gives rise to a contradiction of the successfulness of the
derivation.

By Observations 1 and 2 , we see that the sentential form has to contain precisely
n appearances of d between the first and the second appearances of 2.

Except for the use of productions introduced in step (VI) (this use is explained
above), every successful derivation in G is made as

2 JG rhs(pi) [pi] *& JG 21 [PSI +-k w JG 2 b51,

where i, k 2 1, and the derivation satisfies the following properties (A) through
(D):

(A) Each derivation step in rhs(p1) J.”;: u has this form

where p z is a production introduced in (11), (u’, b’, d, c’) E g, y’ E (V - T)*.

156 Chapter 5: Conditions on the Neighborhood of Rewritten Symbols

(B) In greater detail, the derivation step u J G u [p3] has this form

Oln-’ P(b”) 2P(a”)2P(h”)20 J G l“-’OP(c”) 22P(h”9”) ~ ” 2 0 [p3],

where u = 01n-1~(b”)2P(a”)2~(h”)20, u = 1n-10~(c”)22~(h”y”)z”20, p 3 is
a production introduced in (111), (a”, b”, y ” ~ ” , c”) E g, h”, y” E (V - T)”,
x” E T*.

(C) Each derivation step in u w has this form

1“~~O~(b”’)2~(~”’)2~(y”’)t”’20 +G 1n-10~(~’)22~(~”’)t”’~”’20 [p4],

where p4 is a production introduced in (IV), (a”’, b”’,s”’,c”’) E g, 9”’ E
(V - T)* , t”’,d” E T*.

(D) In greater detail, the derivation step w +G z [p5] has this form

In- OP(b””) 2P (a””) 2t””20 =+-G t ”” d”’ [PSI ,

where w = 1n-10~“”“)2~(a‘”‘)2t’’’’20, z = t””x””, p5 is a production intro-
duced in (V), (a””, b””, z””, c””) E g with c”” E F .

Let
2 JG rhs(p1) [pi] *& u * G 21 [P3] =+-& w +G 2

be any successful derivation in G such that this derivation satisfies the properties
above. Observe that at this point

* Q
R +b a I I / I b I / JQ =+-Q yl/x/fblll +: a!f!~t!~/~b~!~f

in Q, so z E L(Q) . Consequently, L(G) G L(Q) .
A proof demonstrating that L(Q) c L(G) is left to the reader. Since L(Q) =

L(G) and G has only three nonterminals 0, 1, and 2, RE c SCAT[S,m,m,m].
Having SCAT[3,oo,oo,oo] RE, we get SCAT[S,oo,oo,m] = RE, and the
theorem holds.

Rigorous proofs of the remaining theorems given in this section are tedious, so
we describe them rather informally. In the next theorem, we demonstrate that the
number of context-sensitive productions can be reduced to two or less (see [127]).

Theorem 50. SCAT[oo, 2,3,6] = RE.

Proof. It is well known that every recursively enumerable language L 2 C* can
be represented as L = h(L1 n Lz) , where h is a homomorphism from T* onto C*
and L1 and LZ are two context-free languages (see [79]). Let T = { a l , . . . , a,} and
0,1, $ $! (T U C) be three new symbols. Let g(ai) = 10il and f(ai) = h(ai)g(ai)
for all i E { 1 , . . . , n}. By the closure properties of context-free languages, there are
context-free grammars GI and Gz that generate f(L1) and f(LF), respectively.
Note that LF denotes the reversal of Lz. Without any loss of generality, assume

5.2 Scattered Context 157

that the nonterminal alphabets of these grammars are disjoint. Let S1 and S2
be the start symbols of GI and G2, respectively. Define another context-free
grammar, GI, by putting together GI and G2 and adding a new production of the
form S --t $S11111S2$, where $ and S are new nonterminals (S is the start symbol
of GI). Observe that

L(G’) = $f (Li) l l l lg(Lf)$.

If we now consider the productions of GI as belonging to the scattered context
grammar G , where 0,1, $ are interpreted as nonterminal symbols and where we
have three additional productions, namely r1 = ($, O , O , $) -+ (E , $, $, E) , 7-2 =
($, 1,1, $) + (E , $, $, E) , and 7-3 = ($) -+ (E) , then L(G) = L is rather evident.

Indeed, consider a word w E L. There is a word v E L1 nL2 such that w = h(v) .
Hence, u = $f (v) l l l lg (vR)$ E L(G’). By the construction, u is generated by the
scattered context grammar G. The productions r1, 7-2, and 7-3 of G allow us to
remove all occurrences of 0, 1 and $ to obtain w from u. Thus, L C L(G) .

To prove L(G) 2 L , consider any w E L(G) . Since 0, 1, and $ are terminals
in GI on which G is based, we can assume that some generation of w exists that
uses, in a first phase, only productions from GI and then, in a second phase, the
productions r l , 7-2, and 7-3. By the construction, there never exist more than two
occurrences of $ in any sentential form generated by G. Since the productions r1

and r2 test for the presence of two occurrences of $, r3 has to be the last production
that is used.

If r1 is applied so it does not rewrite the left-most or right-most appearance of
0, then $ serves as a delimiter so that no terminal word is derivable. An analogical
observation applies to 7-2. Hence, we can assume that in the second phase of the
derivation of w, the productions 7-1 and 7-2 are used to test whether the word e(v)
is a palindrome, where v is generated by the first derivation phase and e is
the homomorphism erasing all letters from V and mapping 0 and 1 to 0 and 1,
respectively. Only in this case the second phase succeeds.

By the way the codification of f and g works, this means that the first phase
ends with v = $ f (u) l l l lg (uR)$. Hence, GI derives f (u) and G2 derives g(uR),
yielding u E L1 n L2. Moreover, the codification ensures that w = h(u) . Thus,
L(G) C L.

As a result, L(G) = L. Observe that apart from r1 and r2, all productions
in G are context-free. So,

Unfortunately, in the construction of the proof of Theorem 50, the number of
nonterminals is unbounded. The following theorem demonstates how to simulta-
neously reduce both the number of context-sensitive productions and the number
of nonterminals (see [128]).

Theorem 51. SCAT[8,5,5,17] = RE.

Proof. Let L C C* be a recursively enumerable language. L can be represented as
L = h(L1 n L2), where h is a homomorphism from T* to C* and L1 and L2 are two
context-free languages (see [79]). Let T = {al l . . . ,a,} and 0 ,1 ,2 ,3 ,4 , #, $, S $Z

Moreover, max-CS(G) = 3 and sum-CS(G) = 6.
L(G) E S C A T [m , 2,3,6]. Consequently, the theorem holds.

158 Chapter 5: Conditions on the Neighborhood of Rewritten Symbols

(T U C) be eight new symbols. Let .(ai) = 10il and f(ai) = h(ai)c(ai) for all
ai E T, 1 5 i 5 n. By the definition, c is a coding; that is, it is injective. By the
closure properties of context-free languages, there are context-free grammars GI
and G2 that generate f(L1) and f (LF) , respectively. More precisely, let

for i = 1,2 . Let N1 = (Vl - T), N2 = (V2 - T). Without any loss of generality,
assume that the nonterminal alphabets Nl and N2 are disjoint. Let N = N1 U N2
and let C be a coding from N to {43i4 : 1 5 i 5 IN[}. Next, we extend the
codings C and c in two different ways. Let C1 be a homomorphism defined as
C1(A) = C (A) 2 for all A E N1 and C(a) = f (a) for every a E T . Moreover, let C2
be a homomorphism such that C2(A) = C (A) 2 for all A E N2 and C2(a) = .(a)
for all a E T . Now consider the context-free grammar

G = (V, C U {0,1,3,4, #, $1, p, s)
with V - (C U {0,1,3,4, #, $}) = {S, 2) and where P contains the following pro-
ductions:

1. s 4 $C,(S1)1111C2(S2)##$.

2. 2 -+ C(A)Ci(w) if A -+ w E Pi for i = 1,2.

A word in L(G) starts with $ and ends with ##$. Moreover, it cannot contain
any 2 , which means that the simulations of G1 and G2 have come to an end (no
unresolved codings of nonterminals of the simulated grammars remain). The two
simulations of G1 and G2 are separated by a sequence of four l’s, which cannot
occur elsewhere by construction. The coding C (A) of the nonterminal A , which
actually has to be replaced according to Gi, is placed before the coding Ci(w) of the
right-hand side w of the production A + w E Pi. Therefore, a correct simulation
can be detected by a sequence of two codings of A in the terminal word of G.
Next, let n be a homomorphism from CU{O,l, 3,4, #, $} to {3,4}, where n(3) = 3,
n(4) = 4, and .(a) = E for a $ {3,4}. Furthermore, let t be a homomorphism
from C U {0,1,3,4, #, $} to C defined as t (a) = a for every a E C and t (A) = E for
all A C . Finally, let t’ be a homomorphism from C U {0,1,3,4, #, $} to (0, l},
where t’(a) = a , a E (0, l}, and t ’ (A) = E , A $ {0,1}.

Considering homomorphisms n, t , and t’, we can state: $w1llllw2##$ E L(G)
represents a correct simulation of Gi if

TX(W~) E { C (A) C (A) : A E Ni}’

If both w1 and w2 represent a correct simulation, then t’(wi) = .(xi) for a terminal
word zi derivable by Gi, and, moreover, t(w1) = h(z1) in that case. Summarizing,
we conclude that

h(L1 n L2) = {t(w) : w = $wlllllw2##$ represents a correct simulation
both of GI and of G2 and t’(w1) = t’(wF) = (t’(~2))~).

5.2 Scattered Context 159

We will now design a scattered context grammar based on G that checks the
conditions mentioned above. Consider the scattered context grammar

G’ = (V’, C, PI, S)

with
V’ = {0 ,1 ,2 ,3 ,4 ,# ,$, S} u c.

P‘ contains, besides all the productions from P, the following checking productions:

1. r, = ($, a , a , $) + (E , $, $, E) for a = 0 , l allows G’ to skip the codings of
terminal symbols; more precisely, if w is a word derived by G, then the zeros
and ones are erased synchronously from both ends of the subwords wl and
w2, this way checking whether t’(w1) = tl(w2). The four ones in the middle
of the word are necessary to also check the boundary between the w1- and
the w2-parts.

2. Tinit = (4 ,4 ,4 , #, #) + (#, 4, #, E , E) initializes the check of “neighbored
codings” of nonterminals.

3. 7-3 = (#, 3,4 ,3 , #) -+ (E , #, 4, #, €1 and 7-4 = (#, 4,4, #) -, (##, E , E , €1 for

The checking of the codings of terminal strings works as in the case proved in
Theorem 50. The checking of codings of neighbored nonterminals is performed by
a right-to-left scan over the word derived by G. Assume that we are confronted
with a word < = ~ 4 3 ~ 4 4 3 j 4 x # y # z before applying rinit, where x does not contain
any occurrence of a 4. If w contains some occurrences of 4’s and one of them
is selected when applying Tinit, then the indicated substring 43i443j4 is at least
partially skipped, meaning that at least some of the occurrences of 4’s or 3’s cannot
be erased anymore.

When applying Tinit to < = ~ 4 3 ~ 4 4 3 j 4 x # y # z by replacing the three displayed
right-most 4’s, we arrive at ~ 4 3 ~ # 4 3 j 4 # x y z . Then, none of the productions Tinit,

7-3, r4 are applicable. The replacement of the three displayed left-most 4’s can be
symmetrically treated.

Hence, the only possible next sentential form c’ derivable from c by applying
Tinit which might finally lead to a terminal word in G’ yields <‘ = ~ # 3 ~ 4 4 3 j # x y z .
Now, a sequence of applications of .r3 leads to El‘ = w#44#xyz if and only if
i = j . In that case, applying r4 once yields c”’ = w##xyz, and the checking can
proceed by going into the next cycle. Assume that [‘I = ~ # 3 ~ 4 4 # x y z or <‘I =
~ # 4 4 3 ~ # x y z for some f2 > 0 (this corresponds to the error case when neighbored
codings do not coincide). Applying now r4 would skip over some occurrences of
3’s (in the left direction) so that those 3’s would never be erased anymore. r3 and
Tinit are not applicable here.

Moreover, the simulating grammar contains context-free productions to get rid
of the markers, ($) -+ (E) and (#) --f (E) .

Observe that the construction works even if derivations of G are interleaved

checking the neighbored codings.

with checking steps in the derivation of GI.

160 Chapter 5: Conditions on the Neighborhood of Rewritten Symbols

At the expense of a larger context-sensing ability, we can merge both markers
$ and # in the construction above, which gives us the following corollary:

Corollary 22. SCAT[7,5,6,27] = RE.

Proof. We only indicate the necessary modifications and comment on the correct-
ness of the construction. In doing so, we make use of the same abbreviations as in
the proof of the preceding theorem, especially regarding G I , Gz, G , and GI.

The start production of GI and of G equals (S) -+ ($Cl(Sl) l l l lC~(Sz)$$$) .
GI contains the following context-sensitive productions:

1. ($, o,o, $, $, $) -+ (E , $, $48, E , E , E) .

2. ($, 1,1 , $, $, $) -+ (El $, $$$, E , E , E) .

3. ($, 4 , 4 , 4 , $, $, $) - + ($, $, 4 , $, E , E , $) .

4. ($, $, 3,4 ,3 , $, $) -+ ($, E , $, 4, $, E l $).

5. ($, $, 4 , 4 , $, $) - + ($, $ $, & , & , E l $) .

At a further additional cost of enlarged context-sensing abilities and with a fur-
ther context-sensitive production, we can improve the nonterminal complexity. To
do that, however, we have to modify the construction of Theorem 51 considerably.

Theorem 52. SCAT[6,6,12,44] = RE.

Proof. We start again with the representation of a recursively enumerable language
L C C* as L = h(L1 nLZ), where h is a homomorphism from T* to C* and L1 and
Lz are two context-free languages. Let T = { a l , . . . , a,} and 0,1 ,2 ,3 , $, S # (T U X)
be six new symbols. Let c and f be two homomorphisms defined as c(ai) =
and f (a i) = h(ai)c(ai) for all ai E T , 1 5 i 5 n. Let

Gi = (&,T,Pi ,Si)

for i = 1 , 2 be two context-free grammars with L(G1) = L1# and L(G2) = (L z) ~ #
and # $? T . Let N1 = V1 - T and N2 = VZ - T . Assume, without any loss of
generality, that G I and Gz are in Chomsky normal form and that N1 n NZ = 0.
We modify G I slightly so that we add a further production Si -+ S1 to PI and
take Si as new start symbol of GI. Let us call this modified grammar again
GI = (V1, T , P I , Si) in what follows. Let C be a coding that maps symbols from
N1 to (02 : 1 5 i 5 “11) and symbols from NZ to (12 : 1 I i 5 INzl} .

The scattered context grammar that generates L is defined as

GI = (V’, T , PI, S)

with
V’ = {0 ,1 ,2 ,3 , $, S } U T

and P’ constructed as follows:

5.2 Scattered Context 161

1. The start production is (S) ---t ($$C(si)2$C(S~)2$).

2. The simulation productions are defined as:

(a) for each A + X Y E PI U Pz, introduce (2) -+ ($C(A)$C(X)SC(Y)S)

(b) for each A -+ a E PI with # # a, put (2) -+ ($C(A)$h(a)c(a)) into PI;

(c) for each A -+ a E PZ with # # a, add (2) + ($ C (A) $ (C (U)) ~) into P’;

(d) for every production A + # E PI U Pz, add (2) -+ ($C(A)$3$i3) into

(e) add (2, $, $, $,$, $, $) -+ ($C(Si)$3C(S1)3,$, $, E , E , E , E) to PI.

into PI;

P‘;

3. Checking rules for matching nonterminals are:
($ 7 $, 0, $ 7 0, $ 7 3, $1 -+ ($, E , $7 $ 7 $, E , 3, $),
($, $ 7 1, $ 9 1, $, 3, $1 + ($, E , $ 7 $ 3 $ 7 E , 3, $1,
($7 $, $, $ 7 3, $) + ($ 7 E , E , E , $2, $).

($, 1, $,$, $, 1, $) -+ (E , S6, $, $ 7 $ 3 $, E) ,

($, $ 7 $ 3 $ 7 $ 7 $7 0, $ 3 $ 7 $ 9 $ 7 0, $1 -+ (E , E , E , € 3 € 9 E , $ 7 $ 7 $, $ 7 $7 $ 7 €1.

4. Checking rules for matching terminals are:

5. Erasing productions are ($) -+ (E) and (2) -+ (E) .

The simulation proceeds again in several phases, different from the simulation
described in the proof of Theorem 51.

We start with the simulation of Gz. Observe that the simulation of G1 cannot
start at this point, since there are no 6 occurrences of $ to the right-hand side of
any symbol 2 as required by the production designed to initiate a derivation of GI.
Basically, a left-most derivation of G Z is mimicked. This is accomplished in the fol-
lowing way: after applying (2) -+ ($C(A)$C(X)3C(Y)3) , (2) -+ ($ C (A) $ (C (U)) ~)
or (2) -+ ($C(A)$3$3), there is no 2 needed to go on simulating Gz. There-
fore, a checking production for matching nonterminals is to be applied. Then,
($, $, $, $, 3, $) + ($, E , E , E , $2, $) terminates the checking phase and starts a new
possible simulation with one of the productions having 2 as the left-hand side. If
the checking phase fails or is ended prematurely, then there are leftover 1’s. These
1’s will not be removed anymore, since the checking productions for matching ter-
minals are designed in a way that only strings with an equal number of zeros and
ones, occurring alternatively, pass this test.

The simulation of grammar G1 starts after having applied (2) -+ ($C(A)$3$3) ,
the checking productions for nonterminals, and the erasing production (2) -+ (E)

to end the simulation of Gz. Observe that the chosen codings of nonterminals for
N1 and for Nz prevent that the use of nonterminal checking productions mingles
simulations of G1 and Gz. Most important, check that starting the simulation of
GI immediately after applying (2) + ($C(A)$3$3) will lead to an error situation,
since there is a 3 to the right of the right-most occurrence of $ that cannot be

162 Chapter 5: Conditions on the Neighborhood of Rewritten Symbols

removed, so no successful derivation exists in this way. The simulation of grammar
GI is also mimicking a left-most derivation.

Finally, we can apply alternatingly both terminal checking productions. The
production designed for checking 0’s cannot be applied twice in a row because too
many $’s are erased.

Open Problems. Recall that SCAT[l,m,m,m] C RE; in fact, the one-
nonterminal scattered context grammars cannot even generate some context-sen-
sitive languages (see [120]). In Theorem 49, we prove that SCAT[3, m, 00, m] =
RE. What is the generative power of two-nonterminal scattered context gram-
mars?

By Theorem 50, scattered context grammars with two context-sensitive pro-
ductions characterize RE. What is the generative power of scattered context
grammars with one context-sensitive production?

Theorems 50 through 52 reduce the number of context-sensitive productions
and nonterminals of scattered context grammars in terms of the characterization
of every recursively enumerable language, L, by two context-free languages, L1
and La, and a homomorphism, h, so that L = h(L1 n L z) (see [79]). Recon-
sider these results in terms of another characterizations of recursively enumerable
languages. For instance, in [68], [69], and [70], Geffert established several nor-
mal forms of phrase-structure grammars with a significantly reduced number of
context-sensitive productions and nonterminals. Perhaps most interesting, some
of these normal forms require only one context-sensitive production to characterize
RE. Is it possible to improve the results above by using these normal forms?

5.2.2 Semi-parallel Uniform Rewriting

In this section, we discuss the uniform generation of languages by scattered context
grammars (see [lal]) . More precisely, we demonstrate that for every recursively
enumerable language, L, there exists a scattered context grammar, G, and two
equally long words, z1 E {A,B,C}* and z2 E { A , B , D } * , where A , B, C , and
D are G’s nonterminals, so that G generates L and every word appearing in a
generation of a sentence from L has the form y 1 . . . ymu, where u is a word of
terminals and each yi is a permutation of z j , where j E {1,2}. Furthermore, we
achieve an analogical result so that u precedes y1 . . . ym.

Recall that by SCAT, we denote the family of languages generated by scattered
context grammars. Set

SCAT[.i/j] = { L : L = L(G) , where G = (V,T, P, S) is a scattered context
grammar such that A(G) C T*II(K)*, where K is
a finite language consisting of equally long words
with IK(1 = i and lalph(K)I = j } ,

5.2 Scattered Context 163

and

SCAT[i/j.] = { L : L = L(G) , where G = (V,T, P, S) is a scattered context
grammar such that A (G) C IT(K)*T*, where K is
a finite language consisting of equally long words
with IK(1 = i and (alph(K)(= j } .

Lemma 30. Let L E RE. Then, there exists a queue grammar Q (see Definition 6,
[88]), Q = (V, T , W, F, R, g), satisfying these two properties:

(I) L = L(G) .

(11) Q derives every w E L(Q) in this way

R =+b alulbl
=+Q ~ 1 X l Y l C l [(a l l b l l ~ l Y l l c l) l
=+& YlZld,

where i , j 2 1, w = y1z1, x1,ul E V * , y1,zl E T*, bl,c1 E W and d E F .

Proof. Let L be a recursively enumerable language. By Theorem 2.1 in [88], there
exists a queue grammar

Q' = (V, T , w, F, R, 9)
such that Q' derives every w E L(Q') as

R =+kt alulbl

+&' U l X l Y l C l [(a1 7 bl 1 X l Y l 1 c1)I
=+;I Y l Z l d l

where i , j 2 0, w = ylzl , x1,ul E V * , yl1z1 E T*, bl,c1 E W , and d E F (i = 0
implies alulbl = zllxlylcl and j = 0 implies ulzlylcl = ylzld). Transform Q'
to an equivalent queue grammar, Q, so that Q generates every w E L(Q') by a
derivation of the form above, where i 2 1 and j 2 1. A detailed version of this

0

Lemma 31. Let L E RE. Then, there exists a scattered context grammar G =
({ A , B , C , 0 ,s) u T,T , P ,S) so that L(G) = rev(L) and A (G) 5 fl({AtB"-tC,
AtBn-tD})*T* for some t, n 2 1.

Proof. Let L E RE. By Lemma 30, without any loss of generality, assume that
there exists a queue grammar

simple modification is left to the reader.

Q = (V, T , W J', Rl 4)

such that L = L(Q) and Q derives every w E L(Q) in this way

R +b alulbl
*Q ~ l X l Y l C 1 [(a l , b l , ~ l Y l , c l) l
+& YlZld,

164 Chapter 5: Conditions on the Neighborhood of Rewritten Symbols

where i , j 2 1, w = y1z1, I C ~ , U ~ E V * , y l , z l E T* , b1,cl E W and d E F . The
following construction produces a scattered context grammar

G = ({A,B,C,D,S}UT,T ,P,S)

satisfying
L(G) = rev(L(Q))

and
A(Q) II({AtBn-tC, AtBn-tD})*T*

for some t ,n 2 1.

phism ,8 from (V U W) to 2, where
For some n 2 21vuwl and t E (1,. . . ,n - l}, introduce an injective homomor-

Z = {W : w E ({A , B}" - ({A}t{B}n-t U {B}t{A}"-t)) , #AW = t } .

Intuitively, ,O represents (V U W) in binary. Furthermore, let x be the homomor-
phism from (V u W) to Z { D } defined as x(a) = P(a){D} for all a E (V U W) .
Extend the domain of P and x to (V u W) * in the standard manner. Define the
scattered context grammar G = ({ A , B, C, D, S } U T , T , P, S) with P constructed
by performing the next six steps:

1. For a E V - T and b E W - F such that ab = R, add

(S -+. AtBn-tCbl . . , b,Cal . . . u,CCA~B"-~)

to P, where bi,ai E { A , B } for i = 1,. . . ,n, bl . . . b, = P(b) , a1 ... a, = P(a).

2 . For every (a , b , z , c) E g, add

(d l , . . . , d n , C, b l , . . . , bn, C, a l , . . * 7 an, C, C, d l , * * * 7 d n) +

(d l , . . . , d,, C, e l , . . . , e,, E , e l , . . . , en, P(c)CA~B*-~C, x(Ic)C, dl , .. . , d,)

to P, where ei = E , di, bi,ai E { A , B } for i = 1,. . . , n, dl . . . d, = AtB"-t,
bl . . . b, = P (b) , ~ 1 . . . a, = ,B(u).

3. For every (a , b, zy, c) E g with IC E V+ and y E T*, add

(d i , . . . ,&,C,bi,.
(f l , . . . , fn, C, e l , . . . , en, E , e l , . . . , en, P(c)CAtB"%
X(z)AtBn-tCrev(y), e l , . . . , e n)

b,, C,al , . . . ,an,C,C,di,. . ,&) +

to P, where ei = E , d i , fi, bi, ai E {A , B } for i = 1,. . . , n, d l . . . d, = AtBndt,
f i . . . f, = BtAn-t, bl . . . b, = P(b) , a1 . . . a, = P(u) .

4. For every (a , b ,y ,c) E g with y E T* and c E W - F , add

(f i t - . . , fnjC,bl,. . . tbn,C,al,. . . lan,C,C) +

(f l , . . . , fnr C, e l , . . . , en ,&, e l , . . . , e,,P(c)CAtBn-tC, Crev(y))

to P, where ei = E , fi, bi,ai E {A , 13) for i = 1,. . . ,n, f l . . . f, =
bl . . . b, = P (b) , a1 . . .a , = /!I(.).

5.2 Scattered Context 165

5. For every (a , b , y , c) E g with y E T' and c E F , add

(f i * * * 7 f n , C, b l , . * . , bn, C, a1 , . . - 1 an, C, d l 7 * dn, C) --.+

(e l , . - . , en,E,el , . . . I en, & ,e l , . . . ,en, E , e l , . . . ,en, rev(y))

to P, where ei = E , fi, bi, ai, di E {A, B } for i = 1,. . . ,n, d l . . . dn = AtBn-t,
fi . . . f n = BtAn-t, bl . . . b, = P (b) , a1 . . . a , = p (a) .

6. Add
(C, C, d l , ... 7 d n , C, f, C) -+ (C,C, e l , . . * >en, E , fc, C)

to P , where ei = E , f , d i E {A , B } for i = 1,. . . ,TI, d l . . . d , = AtBn-t.

Next, we prove that A(G) 5 II({AtBndtC, AtBnVtD})*T* and L(G) = rev(L).
For brevity, we omit some details in this proof; a complete version of this proof is
left to the reader.

Consider any z E L(G). G generates z in this way:

S =+q AtBn-t Cbll . . . bl,Cal, . . . alnCCAtBn-t [P I]
3 2 u

J$ w
JG 21

J G rev(w5) [PSI,

where j , k 2 0, z = rev(wg), and the five subderivations satisfy the following
properties:

(i) In
S JG AtBn-tCbl, . . . bl,Cal, . . . al,CCAtBn-t [P I] ,

p l is of the form

(S -+ A ~ B ~ - ~ c ~ ~ , . . . bl,Cal, . . . ~ ~ , C C A ~ B " - ~) ,

where al , ,bl , E {A , B } for i = 1 , . ..,n, bl , .. .bl , = P(b1) with bl E W ,
all . . . al , = P(a1) with a1 E V , and albl = R (see (1) in the construction
of P) .

(ii) In
At Bn-tCbl, . . . bl,Cal, . . . al,CCAtBn-t J' G I u

every derivation step that is not made by a production introduced in (6) has
the form

AtBnWtCbz, . . . b2,Caz1 . . . ~ ~ , C X (U ~) C A ~ B " - ~ JG

AtBn-tC~zl . . . c~,CA~B"-~CX(U~X~)CA~B~-~ b2],

where p2 is of the form

(d z , , . . . , d2,, C, b2, , . . . , bz,, C, az l , . . . a2,, C, C, dzl
(d z l , . . . , d2,, C, e2,, . . . , e2, , E , ez , , . . . , ez, , P(c)CA~B"-~C,
X(ZZ)C,d21,...rd2,),

, d z ,) +

166 Chapter 5: Conditions on the Neighborhood of Rewritten Symbols

where e2, = E , a2,, bz,,d2% E {A , B } for i = 1,. . . , n, . . . a2, = P(a2) with
a2 E V , 6 2 , . . . b2, = P(b2) with b2 E W , d z l . . . b2, = AtBn-t (see (2) in the
construction of P) .

Thus,
AtBn-tCbll . . . bl,Call . . . u ~ , C C A ~ B ~ - ~ =& u

can be expressed as

J G AtBnPtCb3, . . . b3,Ca3, . . . U ~ , C A ~ B ~ - ~ C ~ (U ~) C A ~ B ~ - ~ ,

where

u = AtBn-tCb3, . . . b 3 , C ~ ~ . . . U ~ , C A ~ B ~ - ~ C ~ (U ~) C A ~ B ~ - ~ .

(iii) Step u J G 'u has the following form:

AtBn-tCb3, . . . b3,Ca3, . . . u ~ , C A ~ B " - ~ C X (U ~) C A ~ B ~ - ~ JG

L3tAn-tCc31 . . . C ~ , C A ~ B ~ - ~ C ~ (U ~ ~ ~) A ~ B ~ - ~ C ~ ~ V (Y ~) [iD3],

where

'u = BtAn-tCc31 . . . C ~ , C A ~ B ~ - ~ C X (U L ~ X ~) A ~ B ~ - ~ C T ~ V (~ ~)

and p3 is of the form

(d317. . .,d3,, C, b31,. - . , b3,, C, . . , a3,, C, C, d ~ ~ , . . . , d3,) -+

(f 3 1 , . . . , f3, , c, e s l , . . . , e3,, E , e31, . . . , e3,, P (c) C A ~ B ~ - ~ C ,
X (~) A ~ B ~ - ~ C ~ ~ V (Y ~) , e31 , . . . , Q,) ,

where e3< = E , asi, b3%, d3 i , f3, E {A, B } for i = 1,. . . , n, a31 . . . a3, = @(a3)

f 3 1 . . . f 3 , = BtAn-t (see (3) in the construction of P) .

in (6) has the following form:

with a3 E V , b 3 1 . . .b3, = P(b3) with b3 E W , d 3 1 . . . d 3 , - - AtBn-t ,

(iv) In v J: w, any derivation step that is not made by a production introduced

BtAn-tCb41 . . . b4,Cu4, . . . u ~ , C X (U ~) A ~ B ~ - ~ C ~ ~ V (' ~ ~) JG

BtAn-tCc41 . . . c ~ , C A ~ B ~ - ~ C X (U ~) A ~ B ~ - ~ C ~ ~ V (Y ~) ~ ~ V (~ ~) , [p4]

where p4 is of the form

(f 4 1 1 " . > f 4 , , c, b41 * . . b4,, c, a41 7 . . . a4,, c, c) -+

(f 4 1 , .. . , f4,, C, q,. . . , e4,, E , e41, . . . , e4,, P(c4)CAtBn%', Crev(y)),

5.2 Scattered Context 167

where e4, = E , u4,, b4,, f4, E {A, B} for i = 1,. . . ,n, f41 . . . f4, = BtAn-t,
bQ1 . . . b4, = P(b4) with b4 E W , ~4~ . . . u4, = p(u4) with a4 E V , c4, . . . c4, =

P(c4) with c4 E W .

As a result, v *$ w can be expressed as

BtA7Z-t Cc3, . . . C ~ , C A ~ B ~ - ~ C X (U ~ L ~ Z ~) A ~ B ~ - ~ C ~ ~ ~ (~ ~)

*G BtAn-tCb51 . . . b5,Ca51 . . . ~ 5 , C A ~ B ~ - ~ C r e v (w 5) ,

where

20 = BtAn-tCb51 . . . b5,Cu5, . . . ~5 , ,CA~B~-~Crev(w5) .

and p5 is of the form

In addition, during

AtBn-tCbll . . . bl,Call . . . U ~ , C C A ~ B " - ~ +' G u

and
v *: w,

G uses a production introduced in (6) to generate a sentential form that con-
tains exactly n hs, where h E {A, B}, between the second appearance of C and
the third appearance of C, so G can use p2 and p4 as described above. Ob-
serve that in the previous generation of z by G, every sentential form belongs to
II({AtBn-tC, AtBn-tD})*T*, so

A(G) C II({AtBn-tC, AtBn-tD})*T*.

Furthermore, the form of this generation and the construction of P imply that

R +-; rev(z)d

with d E F . Consequently, L(Q) contains rev(L(G)), so L(G) is in rev(L(Q)).
0 Because L = L(Q) , L(G) = rev(L).

168 Chapter 5: Conditions on the Neighborhood of Rewritten Symbols

Lemma 32. RE C_ SCAT[2/4.]

Proof. Let L be a recursively enumerable language. Set L’ = rev(L). As RE is
closed under reversal, L’ is a recursively enumerable language. By Lemma 31,
there exists a scattered context grammar

G = ({A ,B ,C ,D,S} UT,T ,P,S)

so that
A(G) C II({AtBn-tC, A t I Y t D }) * T *

and L(G) = rev(L’). Observe that L(G), rev(L(Q)), rev(L’), rev(rev(L)), and L
0

Theorem 53. SCAT[2/4.] = RE.

Proof. Clearly, SCAT[2/4.] c RE. By Lemma 32, RE C SCAT[2/4.]. Thus,

coincide. As L(G) E SCAT[2/4.], this lemma holds.

SCAT[2/4.] = RE.

Lemma 33. RE 2 SCAT[.2/4].

Proof. Let L be a recursively enumerable language. By Lemma 31, there exists a
scattered context grammar,

G’ = (V, T , P’, S),

satisfying L(G’) E SCAT[2/4.] and L(G’) = rev(L). Introduce a scattered con-
text grammar

where P is defined by the equivalence

G = (V, T , P, S),

(A l , . . . ,A ,) T-) (XI,. . . ,z,) E P

if and only if

(A n , . . . , A l) -+ (rev(x,), . . . ,rev(zl)) E P’.

Observe that L(G) E SCAT[.2/4] and L(G) = rev(rev(L)). As rev(rev(L)) = L,
this lemma holds. 0

Theorem 54. SCAT[.2/4] = RE.

Proof. Clearly, SCAT[.2/4] C RE. By Lemma 33, RE C SCAT[.2/4]. Thus,
SCAT(.2/4] = RE. rn

Open Problem. All the uniform rewriting discussed in this chapter is obtained
for grammars with erasing productions. In the techniques by which we achieved
this uniform rewriting, these productions fulfill a crucial role. Therefore, we believe
that these techniques cannot be straightforwardly adapted for grammars without
erasing productions. Can we achieve some uniform rewriting for grammars without
erasing productions by using completely different techniques?

Chapter 6

Grammatical Transformations and
Derivation Simulations

The previous parts of this book contain various transformations of some grammars
with context conditions to other grammars so that both the input and the output
grammars are equivalent. Taking a closer look at these grammars, we intuitively
see that some grammars generate the language in a more similar way than others.
Indeed, consider two grammars of this kind. If we can find a suitable substitution
by which we change each string of every derivation in one grammar so that the
sequence of strings resulting from this change represents a derivation in the other
grammar, we tend to consider them as two grammars that closely simulate each
other. On the other hand, if a substitution of this kind cannot be found, we do
not consider them in this way. In the present chapter, we formalize this intuitive
understanding of equivalent grammars that make similar derivations. First, we in-
troduce the basic concept of a derivation simulation. Making use of this concept,
we rigorously describe what we intuitively mean by grammatical transformations
that convert some grammars to other equivalent grammars so that the output
grammars closely simulate the input grammars. Specifically, we discuss this kind
of grammatical transformations in terms of EIL grammars (see Chapter 2), point-
ing out that an analogical discussion can be made for any equivalent grammars.
Then, we present a grammatical transformation of EIL grammars to equivalent
symbiotic EOL grammars (see Section 3.2) in order to illustrate the concept of
close simulation.

6.1 Derivation Simulation

In this section, we conceptualize the derivation similarity of language models.

Definition 21. A string-relation system is a quadruple

* = (w, *, WO, WF)r

where W is a language, + is a binary relation on W , WO c W is a set of start
strings, and WF c W is a set of final strings.

Every string, w E W , represents a 0-step string-relation sequence in 9. For
every n 2 1, a sequence

W O I W1, . . . W n 7

169

Grammars with Context Conditions and Their Application.
Alexander Meduna and Martin Svec

Copyright 0 2005 John Wiley & Sons, Inc.

170 Chapter 6: Grammatical Transformations and Derivation Simulations

wi E W , 0 5 i 5 n, is an n-step string-relation sequence, symbolically written as

WO + W1 + . . . =+ Wn

if, for each 0 I i 6 n - 1, wi + W i + l .

If there is a string-relation sequence wo + w1 =+ . . . * w,, where n 2 0,
we write wo J~ w,. Furthermore, wo a* w, means that wo jn w, for some
n 2 0, and wo =+-+ w, means that wo j n w, for some n 2 1. Obviously, from the
mathematical point of view, =++ and J* are the transitive closure of + and the
transitive and reflexive closure of +, respectively.

Let 9 = (W, +, WO, W F) be a string-relation system. A string-relation se-
quence in 9, u J* v, where u, v E W , is called a yield sequence if u E WO. If u +*
v is a yield sequence and v E W F , u +* v is successful.

Let D (9) and S D (9) denote the set of all yield sequences and all successful
yield sequences in 9, respectively.

Example 9. To illustrate the way we use string-relation systems, consider a
context-free grammar

where V , T , P , and S are the total alphabet, the terminal alphabet, the set of
productions, and the start symbol, respectively. In the standard way (see [IlS]),
define the direct derivation + on V*, the set of G’s sentential forms F (G) , and
the language of G , L(G) . Then, introduce a string-relation system

G = (V, T , p, S),

9 = (V*, +, { S } , T *) .

Observe that wo + w1 * . .. =+ w, is a yield sequence in 9 if and only if
w, E F(G) . Furthermore, wo + w1 + . . . + w, is a successful yield sequence if
and only if w, E L(G) .

Definition 22. Let 9 = (W,=+,p,Wo, W F) and 0 = (W’,+n, WA,W$) be two
string-relation systems, and let cr be a substitution from W’ to W . Furthermore,
let d be a yield sequence in 9 of the form

WO *Q w1 *Q . . . +Q w,-1 *Q w,,

where Wi E W , 0 5 i 5 n, for some n 2 0. A yield sequence h, in S l , simulates d
with respect to cr, symbolically written as

h Do d ,

if h is of the form

yo *El yy1 +;z . . . yn-l +En y,,

where y j E W’, 0 I j 5 n, m k 2 1, 1 5 k 5 n, and wi E cr(yi) for all 0 I i I n.
In addition, if there exists m 2 1 such that m k 5 m for each 1 5 k 5 n, then h
m-closely simulates d with respect to cr, symbolically written as

h DF d.

6.1 Derivation Simulation 171

Definition 23. Let 9 = (W,+,~ ,WO,WF) and R = (W’,+n, W6,Wf.) be two
string-relation systems, and let (T be a substitution from W’ to W . Let X C D (9)
and Y C D(R). Y simulates X with respect to u, written as Y D, X , if the
following two conditions hold:

1. For every d E X , there is h E Y such that h D, d.

2. For every h E Y , there is d E X such that h D, d.

Let m be a positive integer. Y m-closely simulates X with respect to u, Y DF
X , provided that:

1. For every d E X , there is h E Y such that h D: d .

2. For every h E Y , there is d E X such that h D: d.

Definition 24. Let 9 = (W, +Q, Wo, W F) and R = (W’, +a, W;, Wf.) be two
string-relation systems. If there exists a substitution from W’ to W such that
D(R) D, D (9) and S D (R) Do SO(!$), then 0 is said to be 9’s derivation sim-
ulator and successful-derivation simulator, respectively. Furthermore, if there is
an integer, m 2 1, such that D (n) D (9) and S D (R) DF s D (9) , R is called
an m-close derivation simulator and m-close successful-derivation simulator of 9,
respectively. If there exists a homomorphism p from W’ to W such that D(R) D,
D (@) , s D (n) D, SD(\k), D (0) DY I)(*), and SD(fl) DT SO(@), then 0 is 6 ’ s
homomorphic derivation simulator, homomorphic successful-derivation simulator,
m-close homomorphic derivation simulator and m-close homomorphic successful-
derivation simulator, respectively.

Example 10. Let us demonstrate the idea of derivation simulations on grammars
generating the language L = {anbn : n 2 l}. Consider

GI = (K,{a ,b} ,Pl ,S) , where
Vl = {S,a,b) ,
PI = { S + ab, S -, aSb}.

Clearly, every derivation in G1 has the form

S J G ~ aSb +cl aaSbb +cl . . . + G ~ an-’Sbn-’ +cl anbn

for some n 2 1. The language of G1 is L. Next, consider

G2 = (V2, {a , b } , P2, S), where
vz = {S,A,B,a,b} ,
Pz = { S - + a B , B- , Ab, A - + a B , B + b } .

G2 makes every derivation in this way

S +cZ aB +G* aAb + G ~ aaBb +cZ aaAbb +c2 . . . +cZ anBbn-’ +c2 anAbn,

172 Chapter 6: Grammatical Transformations and Derivation Simulations

where n 2 1. Furthermore, every sentential form anBb"-' can be rewritten to
anbn. Obviously, L(G2) = L(G1) = L.

Investigate the derivations in G1 and G2 in terms of derivation simulations. To
do so, introduce the corresponding string-relation systems

6 1 = (V;,*GI,{S},{a,b}*) and 6 2 = (V2*,*G21{S)1{a,b}*)

by analogy with Example 9. Notice that 6 1 and Q2 are defined so that their yield
sequences correspond to the derivations above in G1 and G2. Then, introduce a
homomorphism a2 from Vg to V;C as

1. 02(S) = gz(A) = S;

2. g2(B) = gz (b) = b;

3. a2(a) = a .

Let us show that q 2 is a 2-close homomorphic derivation simulator of 61 with
respect to C T ~ . First, inspect all steps of yield sequences in Ql:

1. For S + - G ~ ab, there is S + - G ~ aB = S G ~ ab.

2. For S + - G ~ aSb, 6 2 makes S + - G ~ aB J G ~ aAb, where az(aAb) = aSb.

3. For an-'Sbn-' +-G~ anSbn, n 2 2, there is

+ G ~ a"Bbn-' + - G ~ anAbn, an- 1 Abn- 1

where a2(a"-'Abn-') = an-'Sbn-', a2(anAb") = anSbn.

4. For an-'Sbn-' +-G~ anbn, n 2 2, there exists

an-lAbn-l +c2 a"Bb"-' + - G ~ anbn

with a2(an-1Abn-1) = an-lSbn-' and 02 (an b") = an b" .

That is, every step in any yield sequence from 6' can be simulated by two steps
in 6 2 . Hence, by induction on the length of yield sequences in 61, prove that
every d E D(q1) is 2-close-simulatable by some h E D (6 2) with respect to a ~ ; in
symbols, h DK d. Next, observe that every h E D(62) is a 2-close homomorphic
simulation of some d E D(61). Indeed, S =s& a"Ab" and S +-&2 anbn, n 2 1, are
2-close simulations of yield sequences from 61. The other forms of yield sequences
in 6 2 are of the forms S + - G ~ aB and

S +-z2 anAbn + - G ~ an+lBbn,

n 2 1. Because a2(B) = b, the first sequence is a l-close simulation of S = S G ~

ab and the second sequence is a 2-close simulation of

S +-zl a"Sbn +-c2 an+'bn+'.

6.1 Derivation Simulation 173

Hence, for every h E D(Qz) , there exists d E D(Q1) such that h (>& d. As a result,
D(Q2) D:, D(Q1); that is, Qz is a 2-close homomorphic derivation simulator of
Q1.

Return to the grammars G I and Gz. Intuitively, the 2-closeness of their deriva-
tions means that the grammars generate their sentential forms in a very similar
way. Indeed, while G1 inserts new occurrences of symbols a and b in one derivation
step, Gz does the same in two steps.

Example 11. Consider G1 from Example 10. Let us demonstrate that the fol-
lowing grammar G3 homomorphically simulates GI, but the closeness of this sim-
ulation is not limited by any number:

and the set of productions P3 is defined as

P3 = { S -+ Z X M X Z ,
Z A -+ Z X a , B Z -+ b X Z ,
X u -+ a x , bX --+ Xb,
X M X -+ A M B , X M X -+ AB,
a A --f Aa, Bb -+ bB,
Z A -+a, B Z -+ b}.

Introduce a string-relation system

and a homomorphism (13 from V3 to V1 as:

1. (13(S) = (T B (M) = S;

2. (13(A) = (1 3 (~) = a;

3. (13(B) = (13(b) = b;

4. (13(X) = 63(Z) = E .

Inspect the definition of P3 to see that for every derivation step

J G ~ anSan, n 2 1, an- 1 Sbn- 1

G3 makes a derivation

ZXan-'Mbn-'XZ =+%-' Zan- lXMXbn- lZ
*G3 Zan-lAMBbn-l Z
+2n-2 ZAan-' Mbn-' B Z G3 =G3 Z X an M bnXZ.

174 Chapter 6: Grammatical Transformations and Derivation Simulations

Analogously, for every

JG, anbn, n > 0 , an-lsbn-l

there is
ZXan- lMbn- lXZ =+$2 Zan-l XMXbn-' 2

=-+-G~ Zan-'ABbn-'Z
*2n-2 G3 ZAan-lMbn-lBZ
=+g3 anbn

in G J . Informally, while GI inserts new occurrences of symbols a and b in the
middle of a sentential form, G3 adds as and bs to the ends of the corresponding
sentential form. It is rather easy to prove that if d E D(91), there exists h E D(93)
such that h D~~ d. Furthermore, it can be demonstrated that for every h E D (9 3) ,
there is some d 6 D (9 1) such that h D~~ d . However, observe that GJ simulates
every derivation step of GI by a sequence of steps whose number depends on the
length of the rewritten sentential form. Therefore, D(93) DO3 D(91), but there
exists no m satisfying D (9 3) D; D(91).

Consider three string-relation systems 9, R, and 8. Assume, for instance, that
52 is a q-close derivation simulator of 9 and Q is a r-close derivation simulator of
52. The following two theorems establish a simulation-based relationship between
9 and 0.

Theorem 55. Let 9 = (W, + q , WO, W F) , R = (W', +n, WA, W;), and Q =
(W", ~ 0 , W:, WF) be string-relation systems, u be a substitution from W' to W ,
and T be a substitution from W" to W' . If for some X C D (6) , Y D(R),
Z C D (0) holds Y D$ X and Z [>I; Y , q, r 2 1, there exists a substitution 4 from
W" to W such that Z by X .

Proof.

(i) Let d E X . Then, there exist some g E Y and h E 2 such that g D: d and
h D: g. From the definition of g D: d , d and g can be expressed as

and
9 = y o *: Y1 *: * . * *: Ym,

where xi E W , yi E W', xi E u (y i) for all 0 5 i 5 m; furthermore, every
Y k *a Y k + i , 0 5 k 5 rn - 1, consists of q or fewer steps. Therefore, each
y k

+
yk+l is a string-relation sequence

6.2 Grammatical Simulation 175

such that for every y k i =+-a y k (i + l) , 0 5 k 5 m - 1, 0 5 i 5 q k , y k i = T (Z k i) ,

and every Zk i +-& z k (i + l) has r or fewer steps. Putting the simulations
together, we get for every x k +q Xk+l a string-relation sequence

Zko +& Z k l *& . . . *$ Zkqk

with at most qr steps so that X k E O (T (Z k 0)) and 2 k + l E u (T (Z k q ,)) . Conse-
quently,

h DT d ,

where 4 is defined as

4 (a) = {v E u(u) : u E .(a)}

for all a E W”.

(ii) Let h E 2. By the definition of 2 ~ l ; Y , there exists g E Y such that h ~ l ;
g. Moreover, because Y D$ X , there is some d E X such that g D$ d. Hence,
by analogy with (i),

h DT d .

From (i) and (ii), for every d E X there is h E 2 such that h DT d , and for
every h E 2 there exists some d E X such that h DT d . As a result,

2 DT x.
1

Theorem 56. Let 9 = (W, +q, Wo,Wp), R = (Wl, =+-n, Wh, Wb), and 8 =
(Wl’, ~ e , W{, Wg) be string-relation systems, u be a homomorphism from W’ to
W , and r be a homomorphism from W” to W’. If for some X G D (9) , Y E D(R),
2 g D (0) holds Y D: X and 2 D; Y , q,r 2 1, there exists a homomorphism q5
from W” to W such that 2

Proof. By Theorem 55, 2 DT X, where q5 is a substitution from W” to W defined

X .

as
4 (u) = {v E u(u) : u E .(a)}

for all a E W”. Clearly, if both u and T are homomorphisms, 4 is a homomorphism
as well. 1

6.2 Grammatical Simulation

Return to Examples 10 and 11. To study the closeness of derivations in grammars
GI and G2, the corresponding string-relation systems Si and Q 2 were introduced.
More precisely, for grammars GI = (Vl, TI, PI, SI) and G2 = (VZ, T2, Pz,S2), QI
and 92 were defined as 91 = (V ~ , + G ~ , { S ~ } , T ’ ~) and 9 2 = (V ~ , * G ~ , { S ~ } , T $) .
That is, in both Q1 and 9 2 , the set of start strings contained only the axiom and

176 Chapter 6: Grammatical Transformations and Derivation Simulations

the set of final strings was defined as a set of all words over the terminal alphabet.
As demonstrated next, however, the study of grammatical simulations frequently
requires a more general approach.

Consider a typical transformation of a grammar G1 to another equivalent gram-
mar G2; for example, see Theorems 19 and 21 in Section 4.1.3, Theorem 30 in
Section 4.1.5, or Lemma 19 in Section 4.2.2.

As a rule, G2 simulates derivations in G1 by performing these three phases:

(A) Initialization that produces a string of a desired form by making a few initial
steps.

(B) Main phase that actually makes the derivation simulation.

(C) Conclusion that removes various auxiliary symbols.

Phase (B) almost always fulfills a crucial role while the other two phases are usually
much less important. Furthermore, phases (A) and (C) usually correspond to no
derivation steps in terms of this simulation. As a result, the simulation as a whole
is less close than the main phase. Therefore, we next introduce string-relation
systems that allow us to formally express phase (B) and, simultaneously, suppress
the inessential phases (A) and (C).

Making use of the notions introduced in the previous section, we formalize the
grammatical simulation in terms of EIL grammars because this formalization is
discussed throughout Section 6.3. Let us point out, however, that analogically this
simulation can be formalized in terms of any grammatical models.

Definition 25. Let G = (V, T , P, s) be an EIL grammar. Let +G be the direct
derivation relation in G. For +G and every 1 2 0, set

A(+G, 1) = {X +G y : x +G y +; W , z,y E V * , w E T*, i + 1 = 1 , i 2 o}.

Next, let G I = (V1,Tl ,Pl ,s l) and G2 = (V2,T2,P2,s2) be EIL grammars.
Let J G ~ and +c2 be the derivation relations of G1 and G2, respectively. Let a
be a substitution from V2 to V1. G2 simulates G1 with respect to a , D(G2) Do

D(G1) in symbols, if there exists two natural numbers k, 1 2 0 so that the following
conditions hold:

1. QJ1 = (V ~ , + G ~ , { S ~ } , T ~) and Q2 = (V;,=s,p2,W0,W~) are string-relation
systems corresponding to GI and G2, respectively, where WO = {X E V; :
s2 +s2 x} and WF = {x E V,* : x +kz w, w E T,*, a(w) 5 T;}.

2. Relation + Q ~ coincides with +cZ - A (+ G ~ , ~) .

3. D(Q2) Du D(Q1).

In case that SD(Q2) D~ S D (Q J l) , G2 simulates successful derivations of G1
with respect to a; in symbols, SD(G2) D, SD(G1).

6.3 Simulation of E(0, l)L Grammars 177

Definition 26. Let GI and G2 be EIL grammars with total alphabets V1 and
V2, terminal alphabets TI and T2, and axioms S1 and S2, respectively. Let CJ

be a substitution from V2 to V1. G2 m-closely simulates GI with respect to u
if D(G2) D, D(G1) and there exists m 2 1 such that the corresponding string-
relation systems Q 1 and Q 2 satisfy D(Q2) DZ D(Q1). In symbols, D(G2) DF
D(Gi).

Analogously, G2 m-closely simulates successful derivations of G1 with respect
to CJ, denoted by SD(G2) DZ SD(G1), if SD(Q2) DF SD(Q1) and there exists
m 2 1 such that SD(G2) DF SD(G1).

Definition 27. Let G1 and G2 be two EIL grammars. If there exists a substitution
CT such that D(G2) D~ D(G1), then G2 is said to be GI’s derivation simulator.

By analogy with Definition 27, the reader can also define homomorphic, m-
close, and successful-derivation simulators of EIL grammars.

6.3 Simulation of E(0, l)L Grammars

In this section, we investigate E(0, l)L grammars and symbiotic EOL grammars (see
Section 3.2) in terms of the grammatical simulation. Recall that by Theorem 10
and [155], these two types of EIL grammars have the same generative power.
Indeed, both E(0, l)L grammars and symbiotic EOL grammars generate RE. From
the simulation point of view, however, there exists no transformation of an E(0 , l)L
grammar to an equivalent symbiotic EOL grammar that closely simulates the input
one. Therefare, we improve the results concerning the generative power of these
EIL grammars by proving that for any E(0, l)L grammar, there exists an equivalent
symbiotic EOL grammar that 1-closely simulates the input grammar.

First, we introduce a construction that transforms any E(0, l)L grammar, G =
(V, T , P, s) , satisfying s $! T*, to a symbiotic EOL grammar, (GI, W) . After that,
we establish Theorems 57 and 58. Theorem 57 proves that L(G) = L(G’,W).
Theorem 58 demonstrates that (GI, W) is a 1-close homomorphic simulator of G.
Then, we modify the construction for any s E V * and show that the statements
of Theorems 57 and 58 hold for G with s E T* as well.

Construction 1.

Input: An E(0 , l)L grammar, G = (V, T , P, s), where s $! T* .

Output: A symbiotic EOL grammar, (G‘, W) .

Algorithm: Introduce a new alphabet, V’, defined as

V’ = V u { @ , # , S ’) u V u ~ U T , where
v = {a : a E v u {@,#}},
v - ={2: a E V U { @ , # } } ,
A

T = {Z : u E T } .

178 Chapter 6: Grammatical Transformations and Derivation Simulations

Let 7 be a homomorphism from T to ? such that .(a) = Z for all a E T . Define a
language W over V’ as

W = v u {@, #, S’} u ? u ({m,Z?, Qs, 62 : a E v u {@, #}} - {ti#}).

Then, construct a symbiotic EOL grammar (GI, W) with G’ = (V’, T , PI, S’), where
the set of productions is defined in the following way:

1. Add S’ -+ @s# to PI.

2. For every (a , b) -+ x E P , add a -+ 6x6 to P’.

3. For every (a ,&) -+ x E P , add a -+ ax# to PI.

4. For every (a , b) -+ t E P , t E T*, add a -+ %r(t)x to PI.

5. For every (a ,&) -+ t E P , t E T*, add a -+ &-(t)$ to PI.

6 . Add @ --f @a, # --+ ##, @ -+ 6, # -+ $ to P’.

7. For every ii E v, add 6 -+ E to PI.

8. For every 2 E p, add 2 -+ E to PI.

9. For all a E T , add Z -+ a to PI.

Theorem 57. Let G = (V, T , P, s) be an E(0,l)L grammar satisfying s $! T* . Let
(GI, W) be a symbiotic EOL grammar constructed by using Construction 1 with G
as its input. Then, L(G) = L(G’, W) .

Proof. Let w be a homomorphism from V’ to V’ - (v U ?) defined as w(a) = E

for all a E v U and w(a) = a for every a E V’ - (v U ?). Furthermore, let S be
a homomorphism from V’ to V such that S (a) = a for all a E V , S(Z) = a for all
a E T , and S(a) = E for all V’ - (V U ?). Informally, w removes all occurrences of
symbols of the forms ii and 2. In addition, S also removes (Q and #; moreover, it
converts tilde-versions of terminals back to their originals.

Claim 49. For every w E W*,

-

(I) S‘ +fG,,w) w if and only if @s# +iG,,w) w;
(11) S‘ +TG,,w) w implies S’ $! sub(w).

Proof. By the definition of P’, it is easy to see that the very first derivation step
always rewrites S’ to @s#. Moreover, no productions generate S’; thus, S‘ appears
in no sentential form derived from S’.

Claim 50. For all U , V E W * , S’ $ sub(uu),

u *(Gt,w) v i f and only i f W (U) ~ (G t , w) V .

6.3 Simulation of E(0 , l)L Grammars 179

Proof. Examine the definition of P’. Clearly, all occurrences of symbols from V U c
are always erased during u +(Gt ,w) v, so they play no role in the generation of v.
By the definition of W and w, W(U) E W * ; therefore, ~ (u) +(Gf ,W) v is a valid
derivation in (G’, W) .

Note that this property of derivations in (G’, W) allows us to ignore symbols
0

In Claims 51 and 52, we investigate some rewritings of sentential forms that

of forms ti and 2 occurring in left-hand sides of derivation steps.

belong to {@}V*{#}.

Claim 51. Let @y# = = S (C ~ , ~) @x#, where y = u1u2.. .a, for some ui E V ,
x E W*, n 2 0. Then, @x# = @6~1x1zi2Si2x2Zi3.. . Sinxn###, where xi E V* for
all i = 1 , . . . ,n .

Proof. Since x is surrounded by @ and # in @x#, (GI, W) surely rewrites @y# in
such a way that @ is rewritten to @@ and # is rewritten to ## (see the definition
of PI). Every ui can be rewritten either to Bixi6i or i i iT(t i)bi , where bi E V ,
xi E V * , and ti E T*. Thus,

h

@x# = @ @ a l z l p @ ~ Z 2 p 2 . . . a,z,pn##
- A

with ai = B i , zi = xi, and pi = bi or ai = &, zi = T (t i) , and pi = bi for all
i = 1 , . . . , n. However, @x# must be a string over W . Inspect the definition of W
to see that @x# E W* if and only if a1 = B l , ,& = a2 = &, /32 = a3 = ii3, . . . ,
pn-l = an = zi,, and pn = #. As a result, we get

-

@2# = @ @ a 1 2 1 a 2 Z i 2 2 2 a 3 , . . Si,x,###.

0

Claim 52. Let @y# =+(Gt,w) x, where y = u1u2.. .a , and {@, #} n sub(z) = 8
for some U i E v, x E W * , R. 2 0. Then, z = 6217(tl)&&T(t2)&. . .&T(tn)$$,
where ti E T* for all i = 1 , . . . , n.

Proof. Prove this claim by analogy with the proof of Claim 51. 0

The following claim shows that Claims 51 and 52 cover all possible ways of
rewriting a string having the form @y#, y E V * , in (G’, W) .

Claim 53. Let @y# + (G t , w) u, y E V*. Then, either u = @x#, z E W * , or
u E W * , w (u) E T*, and {@, #} n sub(u) = 0.

Proof. Return to the proof of Claim 51. Suppose that @ is rewritten to @6 and j,$
is rewritten to $. Inspect the resulting sentential form to see that either a1 E V
or ,& E V or there exists i E (1 , . . . , n- 1) such that piai+l E vv; in all cases, the
sentential form does not belong to W*. Analogously, suppose that @ is rewritten
to 6 and # is rewritten to ##. As before, such a sentential form is out of W . 0

180 Chapter 6: Grammatical Transformations and Derivation Simulations

Claim 54. Every derivation in (GI, W) is a beginning of

s’ *(G’,W) QW0#

*(G’,W) @Wl#

*(G’,w) @wn#
*(G’,W)

*(G’,W) t ,

where wg = s, wi E W’, W (U) = T (t) , t E T*, 0 5 z I n, n L 0.

Proof. By the proof of Claim 49, S’ is always rewritten to @wo#, where wo = s.
Then, Claim 53 tells us that there are two possible forms of derivations rewriting
w(@wi#) and, hence, @wi#. First, (G’, W) can generate a sequence of n sentential
forms that belong to {@}W*{#}, for some n 2 0 (their form is described in
Claim 51). Second, (G’, W) can rewrite @wn# to u E W’, satisfying ~ (u) E
T’ (see Claim 52). By the definition of P’, iZ -+ a is the only production that
can rewrite iT E T. Therefore, u +(Gt,w) t such that t E T* and W (U) = ~ (t) .
After that, no other derivation step can be made from t because P‘ contains no
production that rewrites terminals. 0

Claim 55. For‘all x , y E V*, u E W*, it holds that

y j c x zf and only if @y# j(G’,w) @u#,

where x = w (u) .

Proof.

Only i f : Let y =+G x . Express y and x as y = a1a2.. .a , and x = x1x2.. . xn,

respectively, so that (ai ,ai+l) -+ xi E P and (a,,&) -+ x , E P are applied during
y JG x , i = 1,. . . , n - 1, n 2 0. Then, for every (ai,ai+1) -+ x i , there exists
ui -+ ziixizii+l E P’, and for (a n , €) -+ x,, there exists a, -+ zinXn# E P’.
Therefore, taking into account Claim 51, we can construct

@y# +(Gt,w) @6!lil~lzi2ii2~2zi3.. . zinxn###.

Obviously,
w (G z i 1 ~ 1 z i 2 z i 2 ~ 2 ~ 3 . . .ii,~,##) = ~ 1 ~ 2 . . . x , = X .

I f : Let @y# =+(G’,w) @u#. Express y as y = a1a2.. .a,, ai E V , n 0. By the
proof of Claim 51, every ai is rewritten to Siizizii+l, xi E V*, 0 I i I n - 1, a, is
rewritten to six,#, x , E V * , and

@u# = @ 6 ~ 1 ~ 1 z i 2 z i 2 ~ 2 ~ 3 . . . G,x,###.

Examine the definition of P’. For every ai -+ ziixizii+l, there exists (ai ,ai+l) +

xi E P , and for a, -+ zinx,#, there is (an ,&) -+ xn in P. Hence, G can derive
0 y J G x such that x = 21x2.. . x , = ~ (u) .

6.3 Simulation of E(0, l)L Grammars

Claim 56. For all t E T * , y E V * , u E W*, at holds that

y * G t if and only if @y# j(G!,w) u,

where 7(t) = ~ (u) .

Proof. Prove by analogy with the proof of Claim 55.

From the claims above, it is easy to prove that

s J ~ G t if and only if S‘ =s&,,~) t

for all t E T*.

Only If: Let
s JG ~1 JG 212 JG . . . +-G Un JG t

for some n 2 0. Then, there exists

s’ *(G’,W) @s# *(G‘,W) @wl# *(G’,W) @w2# *(G‘,W) * + *

*(G’,w) @wn# *(G’,w) 21 *(G’,w) t ,

where vi = w(wi) for all i = 1,. . . , n and .(t) = w(u) .

If: By Claim 54, S’ +TG,,w) t has the form

s’ *(G’ ,W) @s# *(G’,W) @wl# *(G’,W) @w2# *(G’,W) ” ’

*(G‘,W) @%# *(G’>W) *(G’,W) t ,

where n 2 0. For this derivation, we can construct

so that vi = ~ (w i) for all i = 1,. . . , n.

Therefore, L(G) = L(G’, W) , and the theorem holds.

181

Theorem 58. Let G = (V,T,P,s) be an E(0 , l)L grammar satisfying s $! T* .
Let (GI, W) with G‘ = (V’,T, P‘,S’) be a symbiotic EOL grammar constructed by
using Construction 1 with G as its input. Then, there exists a homomorphism 5
such that D(G’, W) D; D(G) and SD(G’, W) D; SD(G).

Proof. Let
* = (V*, JG, { s } , T ”)

’

be a string-relation system corresponding to G.
defined in the proof of Theorem 57. Let

Let S be the homomorphism

’ = ((V’), *qP, wo, WF)

182 Chapter 6: Grammatical Transformations and Derivation Simulations

be a string-relation system corresponding to (GI, W) , where
A --

=+,pt = +(Gt,w) - (@ i i ; , ~ (t l) & i i 2 ~ (t 2) i i 3 . . .i?,~(t,)## +(Gt,w) tltz .. . t , :
ai E V, ti E T’, 15 i 5 n, n 2 0);

wo ={@s#); A

W F = { @ ~ i T (t l) i i 2 ~ i 2 7 (t 2) ~ 3 . . .ii,T(t,)$$: ai E V, ti E T* , 1 5 i 5 n,
n 2 0).

It is easy to verify that 9 and 9’ satisfy (1) through (3) of Definition 25; of course,
S’ +;G,,w) @s# and for every u E W F , u =+iG,,w) t , where t E T’ (see Claim 54 in
the proof of Theorem 57). Next, we show that D(9’) D; D(9). By Definition 23,
we have to establish that:

(1) for every d E D (9) , there exists h E D(Q’) such that h D; d ;

(2) for every h E D(9’) , there exists d E D (Q) such that h D; d.

(Note that most of this proof is based on substitutions and claims introduced in
the proof of Theorem 57).

(1) Let d E D (9) . Express d as

where uo = s, for some n 2 0. For n = 0, there is @s# E Q’ such that the
zero-length derivations s and @s# satisfy s D; @s#. Assume that n > 0. Then,
according to Claims 50 and 55,

zli JG wi+l if and only if @wi# + (G t , w) @wi+l#,

where ui+l = w(wi+l) = W(@wi+l#), wi,wi+l E W’, 0 5 i 5 n - 1. Moreover, by
the definition of 9‘,

for all i = 0, . . . , n - 1. Hence, by induction on the length of derivations in G, the
reader can easily establish that for every d E D (Q) , there exists h E D(Q’) such
that h D& d.

(2) Let h E D(Q) . By the definition of =+*I and Claim 54, every yield sequence
in Q’ is a prefix of

@Wi# =+*I @Wi+l#

@wo# +*/ @w1# **/ . . . + * r @wn# +*/ u,

where wo = s, wi E W * , u E W F , 0 5 i 5 n, n 5 0. The zero-length derivation
@s# is a 1-close simulation of s from G. Claims 50 and 55 imply that for every
@wi# =+*/ @wi+l#, there exists Ui *G ~ i + l for some UirVi+l E V * , ~ i + l =
w(wi+1) = ~ (@ w i + l #) , 0 5 i 5 n - 1. Furthermore, according to Claims 52
and 56, for @wn# +*! u, there exists v, +G t such that t E T*, ~ (t) = w(u) ; that
is, W(u) = t. Clearly, every derivation step in h is a simulation of a corresponding
derivation step in d ; as a result, h D; d.

6.3 Simulation of E(0,l)L Grammars 183

Next, we prove that SD(G’,W) D; SD(G). From (2), it follows that every
successful yield sequence h E SD(P’) is a 1-close simulation of a derivation s +;
t with t E T’. To prove that for every d E S D (Q) there exists h E S D (W) such
that h Dk d, return to case (I) in this proof. Assume that vo +z ZJ,, v, E T* ,
n 2 1. Then, there exists a derivation @w,-1# u, u E WF (see Claim 56)
such that T(v,) = w (u) , which implies W(u) = v,. Therefore, we get h D; d, so
SD(G’,W) D; SD(G). w

Theorems 57 and 58 show that for every E(0,l)L grammar G = (V,T,P,s),
s @ T*, there exists a symbiotic EOL grammar (GI, W) with G’ = (V’, T , PI, S’)
such that:

1. L(G) = L(G’, W) ;

2. (GI, W) is a 1-close homomorphic derivation simulator of G;

3. (GI, W) is a 1-close homomorphic successful-derivation simulator of G;

4. To simulate G, (GI, W) uses one initial derivation step S’ +(Gj,w) @s#, and
one derivation step that removes auxiliary symbols:

A A h

@ i ? 1 7 (t i) i ? 2 2 2 7 (t 2) 2 3 . . .2,7(tn)## +(Gi,w) t l t 2 . . . t,, ai E V, ti E T’.

To cover the entire family of E(0,l)L grammars, however, we have to demon-
strate that the results above can also be established for any G with s E T*.
First, introduce the following new part to Construction 1: if s E T * , add S’ +

6%(s)$$, where a E V , to PI. Then, use this construction to create (G’,W).
S’ + 6%(s)$$ adds the following new derivations S’ + (G j , w) 6%r(s)$$ and

S’ +(GJ,w) 6 i ? ~ (~) $ $ + (~ j , w) s to (G’,W). By analogy with Theorem 57, it
is easy to see that L(G) = L(G’,W). Inspect the corresponding string-relation
system W defined by analogy with P‘ in the proof of-T_heorem 58. Clearly,
the only difference is that Wo and WF contain 6 i ? ~ (s) # # . However, because
3 (6 2 ~ (~) $ $) = s , the zero-length yield sequence ~ E T (S) $ $ is a 1-close simula-
tion of s. Therefore, all results established for E(0,l)L grammars with s $! T* also
hold for E(0 , l)L grammars with any axiom.

Chapter 7

Applications and Implement at ion

Although this book primarily represents a theoretically oriented treatment, most
grammars discussed in the previous chapters have realistic applications. Indeed,
these grammars are useful to every scientific field that formalizes its results by
some strings and studies how these strings are produced from one another un-
der some permitting or, in contrast, forbidding conditions. As numerous areas
of science formalize and study their results in this way, any description of appli-
cations that cover more than one of these areas would be unbearably sketchy, if
not impossible. Therefore, we concentrate our attention on a single application
area-microbiology, which appears of great interest at present. In this intensively
investigated scientific field, we give three case studies that make use of L grammars
with context conditions (see Chapter 4.2). Section 7.1 presents two case studies
of biological organisms whose development is affected by some abnormal condi-
tions, such as a virus infection. From a more practical point of view, Section 7.2
discusses parametric OL grammars (see [150]), which represent a powerful and ele-
gant implementation tool in the area of biological simulation and modeling today.
More specifically, we extend parametric OL grammars by context conditions and
demonstrate their use in models of growing plants.

7.1 Applications

Case Study 1. Consider a cellular organism in which every cell divides itself into
two cells during every single step of healthy development. However, when a virus
infects some cells, all of the organism stagnates until it is cured again. During
the stagnation period, all of the cells just reproduce themselves without producing
any new cells. To formalize this development by a suitable simple semi-conditional
L grammar (see Section 4.2.3), we denote a healthy cell and a virus-infected cell
by A and B, respectively, and introduce the simple semi-conditional OL grammar,
G = ({ A , B} , P, A) , where P contains the following productions:

(A -+ AAl 01 B),
(A -+ A, Bl 01,

(B + By01 01,
(B -+ A,O,O)l

(A -+ B , 0,O).

development with a stagnation period caused by the virus.
Figure 7.1 describes G simulating a healthy development while Figure 7.2 gives a

0

185

Grammars with Context Conditions and Their Application.
Alexander Meduna and Martin Svec

Copyright 0 2005 John Wiley & Sons, Inc.

186 Chapter 7: Applications and Implementation

Figure 7.1: Healthy development.

Figure 7.2: Development with a stagnation period.

7.1 Applications 187

In the next case study, we discuss an OL grammar that simulates the devel-
opmental stages of a red alga (see [161], [166]). Using context conditions, we can
modify this grammar so that it describes some unhealthy development of this alga
that leads to its partial death or degeneration.

Case Study 2. Consider an OL grammar

G = (V, P, 11,

where
v = {112,3,4,5,6,7,8, 1 1 1 1

and the set of productions P contains

1 -+ 23, 2 --+ 2, 3 + 24, 4 --t 54, [--+ [,
5 + 6, 6 --+ 7, 7 -+ 8[1], 8 -+ 8,] -+ 1.

From a biological viewpoint, expressions in fences represent branches whose
position is indicated by 8s. These branches are shown as attached at alternate sides
of the branch on which they are born. Figure 7.3 gives a biological interpretation of
the developmental stages formally specified by the next derivation, which contain
13 strings corresponding to stages (a) through (m) in the figure.

1 JG

JG

JG

=+G
JG

JG

JG

JG

JG

JG

JG

JG

23
224
2254
22654
227654
228 [l] 7654
228[23]8[1] 7654
228[224]8[23]8[1]7654
228 [22541 8 [2241 8 [231 8 [1) 7654
228[22654]8[2254]8[224]8[23]8[1]7654
228[227654]8[22654]8[2254]8[224]8[23]8[1]7654
228[228[1]7654]8[227654]8[22654]8[2254]8[224]8[23]8[1]7654.

Death. Let us assume that the red alga occurs in some unhealthy conditions
under which only some of its parts survive while the rest dies. This dying process
starts from the newly born, marginal parts of branches, which are too young and
weak to survive, and proceeds toward the older parts, which are strong enough
to live under these conditions. To be quite specific, all the red alga parts become
gradually dead except for the parts denoted by 2s and 8s. This process is specified
by the following OL grammar, G, with forbidding conditions. Let W = {a’ :
a E V}. Then,

where the set of productions P contains:

G = (V U W , P , l) ,

188 Chapter 7: Applications and Implementation

N

klff
k l k l

ff kl

w w w w w w

B A7

00mmmm00H0

m

klN
0 0 m m m 0 0 0 0

kl
0 0 m m 0 0 0 0

(1)

Figure 7.3: Healthy development.

7.1 Applications 189

(1 --t 23,W), (1’- 2’,{3’,4’,5’,6’,7’}),

(3 --+ 24, W) ,
(2 2, w, (2’ -+ 2‘, 0),

(4 -+ 54, W) , (4’ -+ E , 0),
(5 -+ 6, W) , (5’ -i E , {4’}),
(6 7, W)i (6’ --+ E , {A’, 5’}),

(8 -+ 81 W) ,
(I-+ 11 @)I
(1 -11 @)I

(3’ -+ E , {4’, 5’, 6’, 7’}),

(7 --+ 8[1], W) , (7’ -+ E , {4’15’,6’})1

and for every a E V ,

(a -+ a’,0), (a’ --+ a’,0).

Figure 7.4 pictures the dying process corresponding to the next derivation, whose
last eight strings correspond to stages (a) through (h) in the figure.

1 +; 228[228[1]7654]8[227654]8[22654]8[2254]8[224]8[23]8[1]7654
+G 2’2’8‘ [2’2’8’ [1’1 7’6’5’4’18’ [2’2’7’6’5’4’] 8’ [2‘2’6’5’4’] 8’ [2’2‘5’4’] 8’ [2’2’4’]

+G 2’2’8’ [2’2’8’ [1’3 7’6’5’18’ [2’2’7’6’5’] 8’ [2’2’6’5’18’ [2’2’5’]8’ [2’2’18’ [2’3’1

+G 2’2’8’[2’2’8’[1’1 7’6’1 8’[2’2’7’6’]8’[2’2’6’] 8’[2’2’] 8’ [2’2’] 8’[2‘3’] 8” 1’1 7’6’
=+-G 2’2’8’[2’2’8’[1’) 7’]8’[2’2’7’]8’[2’2’]8’ [2’2’]8’[2’2’]8’ [2’3’]8’[1/17’
+G 2’2’8’ [2’2’8’ [1’118’ [2’2’] 8’ [2’2’] 8’ [2’2’]8’ [2’2’] 8’ [2’3’] 8’ [1’1
=+-G 2’2’8’ [2’2’8’ [1/11 8’ [2’2’18’ [2’2’1 8’ [2’2’] 8’ [2’2’1 8’ [2’] 8’ [1’1
+G 2’2’8’ [2’2‘8’ [2’]]8’ [2’2’]8’ [2’2’] 8‘ [2’2’] 8’ [2’2’] 8’ [2’]8’ [2’].

8’ [2‘3’]8’[1’1 7’6’5’4’

8’[1’]7’6’5’

Degeneration. Imagine a situation where the red alga has degenerated. During
this degeneration, only the main stem was able to give a birth to new branches
while all the other branches lengthened themselves without any branching out.
This degeneration is specified by the forbidding OL grammar G = (VU{D, E } , P, l) ,
with P containing

Figure 7.5 pictures the degeneration specified by the following derivation, in which
the last 10 strings correspond to stages’(a) through (j) in the figure:

190 Chapter 7: Applications and Implementation

(9) (h)

Figure 7.4: Death of marginal branch parts.

7.1 Applications 191

Figure 7.5: Degeneration.

192 Chapter 7: Applications and Implementation

1 =+> 227654

=+G 228[0]7654

=+ G 22 8 [ED] 8 [D] 76 54

=+G 228[E2D]8[ED]8[D]7654

=+ G 2 2 8 [E3 D] 8 [E2 D] 8 [ED] 8 [D] 7654

=+G 228 [E4 D] 8 [E3 D]8 [E2 D]8 [ED] 8[D] 7654

=+ G 22 8 [E5 D] 8 [E4 D] 8 [E3 D] 8 [E2 D] 8 [ED] 8 [D] 7654

=+ G 22 8 [E6 D] 8 [E5 D] 8 [E4 D] 8 [E3 D] 8 [E2 D] 8 [ED] 8 [D] 76 54

=+ G 228 [E7 D] 8 [E6 D] 8[E5 D] 8 [E4 D]8[E3 D] 8 [E2 D] 8[ED] 8[D] 7654

=+ G 2 2 8 [E8 D] 8 [E7 D] 8 [E6 D] 8 [E5 D] 8 [E4 D] 8 [E3 D] 8 [E2 D] 8 [ED] 8 [D] 76 54.

7.2 Implementation

In this section, we describe parametric OL grammars (see [15O]) and their extension
by context conditions. We make this description from a purely practical point of
view to clearly demonstrate how these grammars are implemented and used.

Case Study 3. Parametric OL grammars (see [15O], [149]) operate on strings
of modules called parametric words. A module is a symbol from an alphabet
with an associated sequence of parameters belonging to the set of real numbers.
Productions of parametric OL grammars are of the form

predecessor [: logical expression] -+ successor.

The predecessor is a module having a sequence of formal parameters instead of real
numbers. The logical expression is any expression over predecessor’s parameters
and real numbers. If the logical expression is missing, the logical truth is assumed.
The successor is a string of modules containing expressions as parameters; for
example,

Such a production matches a module in a parametric word provided that the sym-
bol of the rewritten module is the same as the symbol of the predecessor module,
both modules have the same number of parameters, and the value for the logical
expression is true. Then, the module can be rewritten by the given production.
For instance, consider A(4) . This module matches the above production since A
is the symbol of production’s predecessor, there is one actual parameter, 4, in
A (4) , that corresponds to the formal parameter x in A (x) , and the value for the
logical expression x < 7 with x = 4 is true. Thus, A(4) can be rewritten to

A(x) : x < 7 -+ A (x + l) D (l) B (3 - ~) .

A(5)D(1)B(- 1).

7.2 Implementation 193

As usual, a parametric OL grammar can rewrite a parametric word provided
that there exists a matching production for every module that occurs in it. Then,
all modules are simultaneously rewritten, and we obtain a new parametric word.

Parametric OL grammars with context conditions. Next, we extend the para-
metric OL grammars by permitting context conditions. Each production of a paru-
metric OL grammar with permitting conditions has the form

predecessor [? context conditions] [: logical expression] -+ successor,

where the predecessor, the logical expression, and the successor have the same
meaning as in parametric OL grammars, and context conditions are some per-
mitting context conditions separated by commas. Each condition is a string of
modules with formal parameters. For example, consider

A(%) ’? B(y), C(r, z) : x < y + r -+ D(z)E(y + r) .

This production matches a module in a parametric word w provided that the
predecessor A (x) matches the rewritten module with respect to the symbol and
the number of parameters and there exist modules matching to B(y) and C(r, z)
in w such that the value for logical expression x < y + r is true. For example, this
production matches A (l) in C(3,8)D(- l)B(5)H(O, O)A(l)F(3) because there are
C(3,8) and B (5) such that 1 < 5 + 3 is true. If there are more substrings matching
the context condition, any of them can be used.

Having described the parametric OL grammars with permitting conditions, we
next show how to use them to simulate the development of some plants.

In nature, developmental processes of multicellular structures are controlled
by the quantity of substances exchanged between modules. In the case of plants,
growth depends on the amount of water and minerals absorbed by the roots and
carried upward to the branches. The model of branching structures making use
of the resource flow was proposed by Borchert and Honda in [24]. The model is
controlled by a flux of resources that starts at the base of the plant and propagates
the substances toward the apexes. An apex accepts the substances, and when the
quantity of accumulated resources exceeds a predefined threshold value, the apex
bifurcates and initiates a new lateral branch. The distribution of the flux depends
on the number of apexes that the given branch supports and on the type of the
branch-plants usually carry greater amount of resources to straight branches than
to lateral branches (see [24] and [149]).

The following two examples illustrate the idea of plants simulated by parametric
OL grammars with permitting conditions:

(I) Consider the model

axiom : 1(1,1, eroot) A (1)
P I :

pa :

A(id) ? l (i dp , c , e) : i d == i d , A e 2 eth
-+ [+(a) 1 (2 * id + 1, y, 0) A(2 * id + 1)]/(7r) 1 (2 * id, 1 - 7 , O) A(2 * i d)
1(id ,c ,e) ? I(id,,c,,e,) : id , == Lid/2]
--+ I (id , c, c * e,)

194 Chapter 7: Applications and Implementation

This L grammar describes a simple plant with a constant resource flow from its
roots and with a fixed distribution of the stream between lateral and straight
branches. It operates on the following types of modules:

0 I (i d , c, e) represents an internode with a unique identification number i d , a
distribution coeficient c, and a flux value e.

0 A (i d) is an apex growing from the internode with identification number equal
to id.

0 +(4) and /($) rotate the segment orientation by angle 4 (for more informa-
tion, consult [149]).

0 [and] enclose the sequence of modules describing a lateral branch.

We standardly assume that if no production matches a given module X (z 1 , . . . , zn),
the module is rewritten by an implicit production of the form

that is, it remains unchanged.
At the beginning, the plant consists of one internode 1(1,1, eroot) with apex

A(1), where eroot is a constant flux value provided by the root. The first pro-
duction, p1, simulates the bifurcation of an apex. If an internode preceding the
apex A (i d) reaches a sufficient flux e 2 eth, the apex creates two new internodes
I terminated by apexes A. The lateral internode is of the form 1 (2 * i d + 1, y,O)
and the straight internode is of the form 1(2 * id, 1 - y, 0). Clearly, the identifi-
cation numbers of these internodes are unique. Moreover, every child internode
can easily calculate the identification number of its parent internode; the parent
internode has i d p = Lid/2j. The coefficient y is a fraction of the parent flux to be
directed to the lateral internode. The second production, p 2 , controls the resource
flow of a given internode. Observe that the permitting condition l (i d p , cp , e p) with
id,.= Lid/2] matches only the parent internode. Thus, p2 changes the flux value e
of I (i d , c, e) to c * e p , where ep is the flux of the parent internode, and c is either y
for lateral internodes or 1 - y for straight internodes. Therefore, p2 simulates the
transfer of a given amount of parent’s flux into the internode. Figure 7.6 pictures
12 developmental stages of this plant, with eroot, eth, and y set to 12, 0.9, and 0.4,
respectively. The numbers indicate the flow values of internodes.

It is easy to see that this model is unrealistically simple. Since the model
ignores the number of apexes, its flow distribution does not depend on the size of
branches, and the basal flow is set to a constant value. However, it sufficiently
illustrates the technique of communication between adjacent internodes. Thus,
it can serve as a template for more sophisticated models of plants, such as the
following model.

(11) We discuss a plant development with a resource flow controlled by the number

7.2 Implementation 195

Figure 7.6: Developmental stages of the plant generated by (I).

196 Chapter 7: Applications and Implementation

of apexes. This example is based on Example 17 in [149].

axiom : N (l) I (l , s t r a i g h t , O , 1) A (l)

P2 :

Pl : N (k) -+ N (k + 1)
I (i d , t , e , c) ? N (k) , A(id)

-+ I (id , t , 0 0 2 (~ - ') v ~ , 1)

: i d == 1 A i d , == 2 * i d A id l == 2 * i d + 1
-+ I (i d , t , a02("')vk, c, + cl)

: i d , == Lid/2J A i d , == 2 * i d A idl == 2 * i d + 1

Id(id , t , e ,c) ? 1(id,, t,, e p , c p) , A(id,)
: id, == Lid/Z] A i d , == i d

A(id) ? 1(id,, t,, e,, c,)
: id == id , A e, 2 eth
-+ [+ (a) 1 (2 * i d + l,lateral,e,* (1 - X) , l) A (2 * i d + l)]

: id == 1

P3 : I (i d , t , e , c) ? N (k) , l (i d s l t s , e s , c s) , I (4 , t l , e l , c l)

p4 : I (i d , t , e , c) ? l (id , , tprep ,cp) , l (i d s , t s , e s , c s) , I (idl , t l ,e l ,c l)

-+ I (i d , t l d (t , ep, cp, c) , cs + C l)

-+ I(id,t ,S(t ,e, ,c, ,c) , 1)

P5 :

P6 :

/ (T) 1(2 * i d , straight, e, * A, 1) A (2 * i d)

This L grammar uses the following types of modules:

I (i d , t , e , c) is an internode with a unique identification number i d , where t
is a type of this internode, t E {straight, lateral}, e is a flux value, and c is
a number of apexes the internode supports.

A (i d) is an apex terminating the internode id.

0 N (k) is an auxiliary module, where k is the number of a developmental cycle
to be done by the next derivation.

0 +(4), /($), [and] have the same meaning as in the previous example.

The flux distribution function, S, is defined as

e, - e,(l - X)((c, - c) / c)
e,(l - 4 (c / (c , - c))

if t = straight,
if t = lateral.

6(tl ep, C p , c) =

The development starts from the axiom N (1) 1(1, straight, 0 , l) A (l) containing
one straight internode with one apex. In each derivation step, by application of
p4, every inner internode I (id , t , e ,c) gets the number of apexes of its straight
(1(id,, t,, e,, c,)) and lateral (I (id l , tl , el, c l)) descendant. Then, this number is
stored in c. Simultaneously, it accepts a given part of the flux ep provided by
its parent internode 1(id,, t,, e,, c,). The distribution function 6 depends on the
number of apexes in the given branch and in the sibling branch, and on the type of
this branch (straight or lateral). The distribution factor X determines the amount

197 7.2 Implementation

8

(4 (n) (0)

Figure 7.7: Developmental stages of the plant generated by (11).

198 Chapter 7: Applications and Implementation

of the flux that reaches the straight branch in case that both branches support the
same number of apexes. Otherwise, the fraction is also affected by the ratio of apex
counts. Productions pz and p3 rewrite the basal internode, calculating its input
flux value. The expression used for this purpose, 0 0 2 (~ - ') ~ ~ , was introduced by
Borchert and Honda to simulate a sigmoid increase of the input flux; 00 is an initial
flux, k is a developmental cycle, and 77 is a constant value scaling the flux change.
Production p5 rewrites internodes terminated by apexes. It keeps the number of
apexes set to 1, and by analogy with p 4 , it loads a fraction of parent's flux by using
the 6 function. The last production, p6, controls the addition of new segments.
By analogy with p l in the previous example, it erases the apex and generates two
new internodes terminated by apexes. Figure 7.7 shows 15 developmental stages
of a plant simulation based on this model.

Obviously, there are two concurrent streams of information in this model. The
bottom-up (acropetal) stream carries and distributes the substances required for
the growth. The top-down (basipetal) flow propagates the number of apexes that
is used for the flux distribution. A remarkable feature of this model is the response
of a plant to a pruning. Indeed, after a branch removal, the model redirects the
flux to the remaining branches and accelerates their growth.

Let us note that this model is a simplified version of the model described
in [149], which is very complex. Under this simplification, however, cp - c may be
equal to zero as the denominator in the distribution function 6. If this happens, we
change this zero value to the proper non-zero value so that the number of apexes
supported by the parent internode corresponds to the number of apexes on the
straight and lateral branches growing from the parent internode. Consult [149] for
a more appropriate, but also complicated solution of this problem.

From the presented examples, we see that with permitting conditions, paramet-
ric OL grammars can describe sophisticated models of plants in a very natural way.
Particularly, compared to the context-sensitive L grammars, they allow one to re-
fer to modules that are not adjacent to the rewritten module, and this property
makes them more adequate, succint, and elegant.

Chapter 8

Concluding and Bibliographical
Notes

Summary. The classical context-dependent grammars, such as context-sensitive
and phrase-structure grammars, represent powerful generators of languages. How-
ever, their strict conditions placed on the context surrounding the rewritten sym-
bol during the generation of languages complicate their use both in theory and
in practice. Therefore, in this book, we discuss a large variety of grammars with
much less restrictive context conditions that are placed on derivation domains,
use of productions, or the neighborhood of rewritten symbols. All the grammars
under discussion also use context-independent productions so as to simplify the
language generation process. Perhaps most important, we demonstrate that most
of the grammars with alternative context conditions are as powerful as the classical
context-dependent grammars. That is, they have the same generative power as
the phrase-structure grammars, and if erasing productions are ruled out, they are
as powerful as the context-sensitive grammars. As a result, the grammars studied
in this book represent language generators based on context-independent produc-
tions and very simple context conditions, yet they maintain the power of context-
dependent grammars. All these advantages make their use obviously preferable to
the classical context-dependent grammars both from a theoretical and practical
point of view. From a theoretical viewpoint, they simplify the language genera-
tion and its analysis, which usually turns out unbearably tedious and clumsy in
terms of the classical context-dependent grammars. From a practical viewpoint,
these easy-to-use grammars with flexible context conditions have their important
applications in reality as we demonstrate in examples from microbiology.

Historical Notes. Conditional grammars were introduced in [64]. Several vari-
ants of these grammars were discussed in [41], [44], [52], [53], [84], [85], [87], [91],
[141], [145], [146], [154], [158], [173], and 11741. The crucial concepts of these
grammars and results concerning them are summarized in [126].

General References. Although the present treatment of conditional grammars
is selfcontained, it assumes some background in the formal language theory. For
an introduction to this theory, consult [7], [8], [16], [72], [79], [81], [SS], [118], [157],
[160], [161], [162], or [182].

199

Grammars with Context Conditions and Their Application.
Alexander Meduna and Martin Svec

Copyright 0 2005 John Wiley & Sons, Inc.

200 Chapter 8: Concluding and Bibliographical Notes

Future Investigation. We suggest the following new directions of investigation
concerning grammars with context conditions.

(1) By context conditions, the grammars dicussed in this book actually restrict
their derivations. In this sense, they are strongly related to regulated grammars,
which make this restriction by various regulating mechanisms. Study how to re-
place some of these mechanisms by suitable context conditions and vice versa.
Regulated grammars are investigated, for instance, in [l], [2], [58], [83], [loll,

and [157]. A good introduction to regulated grammars is [43].
(2) Introduce automata with context conditions. Concentrate on pushdown

automata with some context conditions placed on their stacks. For a detailed
discussion of automata, consult [4], [7], [8], [12], [16], [32], [34], [54], [55] [56], [71],

or [182].
(3) Adapt the language models with context conditions for translation. De-

velop translation grammars and automata working under these conditions. For an
essential discussion of the translation models, see [4], [5], [6], [7], [8], [9], [22], [27],

(4) Chapter 7 concentrates its attention on applications in terms of microbiol-
ogy. Study some other applications of the language and translation models with
context conditions. Specifically, apply these models in some classical application
areas of computer science, such as the applications included in [3], [4], [9], [lo],

[102], [103], [108], [111], 11131, [115], [125], [129], [1301, [1451, [1521, [1531, [1541,

[78], [79], [80], [81], [86], [92], [W, [1321, 11341, [1511, [1571, [W, (1631, [171l,

1351, [591, [601, 1761, [821, [891, [go], 1981, P431, P441, 11641, or 11831.

[111, [W, [14], [IS], 1171, [W, [W, 1201, [211, 1231, 1251, 1261, 1281, [29l, WI, 1311,
[321, [331, [351, [361, 1371, 1381, [391, [401, [42l, [451, [46l, 1471, [48l, [491, [Sol,
[571, [591, WI, WI, [991, [W,
[140], [142], [159], [165], [172], [176], [177], [178], [179], [180], [181], and [183].

[621, 1631, [651, [661, [67l, [741, P31, [941,

Bibliography

[l] S. Abraham. Compound and serial grammars. Information and Control,
20:432-438, 1972.

[2] A. V. Aho. Indexed grammars: An extension of context-free grammars.
Journal of the ACM, 15:647-671, 1968.

[3] A. V. Aho. Ccrrents in the Theory of Computing. Prentice-Hall, Englewood
Cliffs, New Jersey, 1973.

[4] A. V. Aho. Pattern matching in strings. In R.V., ed., Formal Language
Theory: Perspectives and Open Problems. Academic Press, New York, 1980,
pp. 325-247.

[5] A. V. Aho and J . D. Ullman. Properties of syntax directed relations. Journal
of Computer and System Sciences, 3:319-334, 1969.

[6] A. V. Aho and J. D. Ullman. Syntax directed translations and the pushdown
assembler. Journal of Computer and System Sciences, 3~37-56, 1969.

[7] A. V. Aho and J . D. Ullman. The Theory of Parsing, Translation and
Compiling, Volume I: Parsing. Prentice-Hall, Englewood Cliffs, New Jersey,
1972.

[8] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation and
Compiling, Volume II: Compiling. Prentice-Hall, Englewood Cliffs, New
Jersey, 1973.

[9] A. V. Aho and J. D. Ullman. Principles of Compiler Design. Addison-Wesley,
Reading, Massachusetts, 1977.

[lo] S. Alagic and M. A. Arbib. The Design of Well-structured and Correct
Programs. Springer-Verlag, Heidelberg, 1978.

[ll] R. B. Anderson. Proving Programs Correct. Wiley, New York, 1979.

[12] M. A. Arbib, A. J . Kfoury, and R. N. Moll. A Basis for Theoretical Computer
Science. Springer-Verlag, New York, 1981.

[13] E. A. Ashcroft and W. W. Wadge. Lucid, a formal.system for writing and
proving programs. SIAM Journal on Computing, 5:336-354, 1976.

[14] J. W. Backus. The syntax and semantics of the proposed international alge-
braic language of the Zurich ACM-GAMM conference. In Proceedings of the
International Conference on Informnation Processing. UNESCO, 1959, pp.
125-132.

201

Grammars with Context Conditions and Their Application.
Alexander Meduna and Martin Svec

Copyright 0 2005 John Wiley & Sons, Inc.

202 Bibliography

[15] C. B. Becker. Software Testing Techniques. Van Nostrand Reinhold, New
York, 1983.

[16] R. Beige1 and R. W. Floyd. The Language of Machines. Freeman, New York,
1994.

[17] R. E. Bellmann and S. E. Dreyfus. Applied Dynamic Programming. Princeton
University Press, Princeton, 1962.

[18] J. L. Bentley and Th. Ottmann. The complexity of manipulating hierarchi-
cally defined sets of rectangles. In Mathematical Foundations of Computer
Science 1982. Springer-Verlag, Heidelberg, 1981, pp. 1-15.

[19] J . L. Bentley, Th. Ottmann, and P. Widmayer. The complexity of manipu-
lating hierarchically defined sets of rectangles. In F. P. Preparata, ed., Ad-
vances in Computing Research 1. JAI Press, Greenwich, Connecticut, 1983,
pp. 127-158.

[20] R. Berger. The undecidability of the domino problem. In Memoirs of the
American Mathematical Society, vol. 66. American Mathematical Society,
Providence, Rhode Island, 1966.

[21] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways, Volume 2:
Games in Particular. Academic Press, New York, 1982.

[22] J. Berstel. Transductions and Context-Free Languages. Teubner, Stuttgart,
1979.

[23] J. Berstel and L. Boasson. Une suite decroissante de cones rationnels.
Springer- Verlag Lecture Notes in Computer Science, 14:383-397, 1974.

[24] R. Borchert and H. Honda. Control of development in the bifurcating branch
system of Tabebuia Rosea: A computer simulation. Botanical Gazette,
145(2): 184-195, 1984.

[25] S. R. Bourne. The UNIX System. Addison-Wesley, Reading, Massachussetts,

[26] P. Braffort and D. Hirschberg (eds.). Computer Programming and Formal

1983.

Systems. North-Holland, Amsterdam, 1963.

[27] J. G. Brookshear. Theory of Computation. Benjamin/Cummings, Redwood
City, California, 1989.

[28] J . A. Brzozowski. A survey of regular expressions and their applications.
IEEE Transactions on Electronic Computers, 11:324-335, 1962.

[29] J. A. Brzozowski and E. J. McCluskey Jr. Signal flow graph techniques for
sequential circuit state diagrams. IEEE Transactions on Electronic Comput-
ers, EC-12:67-76, 1963.

Bibliography 203

[30] J. A. Brzozowski and M. Yoeli. Digital Networks. Prentice-Hall, Englewood

[31] W. Bucher and H. A. Maurer. Teoretische Grundlagen der Programmier-
sprachen: Automatem und Sprachen. Bibliographisches Institut, Zurich,
1984.

Cliffs, New Jersey, 1976.

[32] A. W. Burks. Essays in Cellular Automata. University of Illinois Press,
Champaign, 1970.

[33] A. W. Burks, W. D. Warren, and J . B. Wright. An analysis of a logical
machine using parenthesis-free notation. Mathematical Tables and Other
Aids to Computation, 8:55-57, 1954.

[34] J. Carroll and D. Long. Theory of Finite Automata. Prentice-Hall, Engle-
wood Cliffs, 1989.

[35] N. Chomsky. Syntactic Structures. The Hague, Netherlands, 1957.

[36] A. Church. The calculi of lambda-conversion. In Annals of Mathematics
Studies 6. Princeton University Press, Princeton, New Jersey, 1941.

[37] W. F. Clocksin and C. S. Mullish. Programming in PROLOG. Springer-
Verlag, Heidelberg, 1981.

[38] A. Cobham. The intrinsic computational difficulty of functions. In Proceed-
ings of 1964 Congress for Logic, Mathematics, and Philosophy of Science.
North-Holland, Amsterdam, 1964, pp. 24-30.

[39] M. E. Conway. Design of a separable transition-diagram compiler. Commu-
nications of the ACM, 6:396-408, 1963.

[40] S. A. Cook. Linear-time simulation of deterministic two-way pushdown au-
tomata. In Proceeding of the 1971 IFIP Congress. North-Holland, Amster-
dam, 1971, pp. 75-80.

[41] E. Csuhaj-Varju. On grammars with local and global context conditions.
International Journal of Computer Mathematics, 47: 17-27, 1992.

[42] G. B. Dantzig. On the significance of solving linear programming problems
with integer variables. Econometrica, 28:30-44, 1960.

[43] J . Dassow and Gh. Paun. Regulated Rewriting in Formal Language Theory.
Akademie-Verlag, Berlin, 1989.

[44] J. Dassow, Gh. Paun, and A. Salomaa. Grammars based on patterns. Inter-
national Journal of Foundations of Computer Science, 4(1)-14, 1993.

[45] J. W. de Bakker. Semantics of programming languages. In J. Tou, ed.,
Advances in Information Systems and Sciences, vol. 2. Plenum Press, New
York, 1969, pp. 173-227.

204 Bibliography

[46] R. A. DeMillo, D. P. Dobkin, A. K. Jones, and R. J . Lipton (eds.). Founda-
tions of Secure Computation. Academic Press, New York, 1978.

[47] R. A. DeMillo, R. J. Lipton, and A. J . Perlis. Social processes and proofs of
theorems and programs. Communications of the ACM, 22:271-280, 1979.

[48] A. K. Dewdney. Computer recreations: A computer trap for the busy beaver,
the hardest-working turing machine. Scientific American, 251:19-23, 1984.

[49] A. K. Dewdney. Computer recreations. Scientific American, 252:23, 1985.

[50] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood
Cliffs, New Jersey, 1976.

[51] J. Edmonds. Covers and packings in a family of sets. Bulletin of the American
Mathematical Society, 68:494-499, 1962.

I521 A. Ehrenfeucht, J. Kleijn, and G. Rozenberg. Adding global forbidding
context to context-free grammars. Theoretical Computer Science, 37:337-
360, 1985.

[53] A. Ehrenfeucht, P. Pasten, and G. Rozenberg. Context-free text grammars.
Acta Inforrnatica, 31:161-206, 1994.

[54] S. Eilenberg. Automata, Languages, and Machines, vol. A. Academic Press,
New York, 1974.

[55] S. Eilenberg. Automata, Languages, and Machines, vol. B. Academic Press,
New York, 1976.

[56] J. Engelfriet, E. M. Schmidt, and J. van Leeuwen. Stack machines and classes
of nonnested macro languages. Journal of the ACM, 27:6-17, 1980.

[57] J . Evey. Application of pushdown store machines. In Proceedings 1963 Fall
Joint Computer Conference. AFIPS Press, Montvale, New Jersey, 1963, pp.
215-227.

[58] M. J . Fischer. Grammars with macro-like productions. In Proceedings of
the Ninth Annual Symposium on Switching and Automata Theory. IEEE,
Schenectady, New York, 1968, pp. 131-142.

[59] R. W. Floyd. The syntax of programming languages-a survey. IEEE Trans-
actions on Electronic Computers, EC-133346-353, 1964. Reprinted in S.
Rosen (ed.) , Programming Systems and Languages, McGraw-Hill, New York,
1967; and 13. W. Pollack, Compiler Techniques, Auerbach Press, Philadel-
phia, Pensylvania, 1972.

1601 R. W. Floyd and J . D. Ullman. The compilation of regular expressions into
integrated circuits. Journal of the ACM, 29:603-622, 1984.

Bibliography 205

[61] L. D. Fosdick and L. J. Osterweil. Data flow analysis in software reliability.
Computing Surveys, 8:305-330, 1976.

[62] J. M. Foster. A syntax-improving program. Computer Journal, 11:31-34,
1968.

[63] J. M. Foster. Automatic Syntactic Analysis. American Elsevier, New York,
1970.

[64] I. Fris. Grammars with partial ordering of the rules. Information and Con-
trol, 12~415-425, 1968.

[65] B. A. Galler and A. J. Perlis. A View of Programming Languages. Addison-
Wesley, Reading, Massachusetts, 1970.

[66] M. Gardner. Wheels, Life and Other Mathematical Amusements. Freeman,
San Rancisco, 1983.

[67] M. Gardner. The traveling saleman's travail. Discover, 6237-90, 1985.

[68] V. Geffert. Context-free-like forms for the phrase-structure grammars. In
Proceedings of the Mathematical Foundations of Computer Science 1988.
Springer-Verlag, New York, 1988, pp. 309-317.

[69] V. Geffert. How to generate languages using only two pairs of parentheses.
Journal of Information Processes in Cybernetics EIK, 27:303-315, 1991.

[70] V. Geffert. Normal forms for phrase-structure grammars. Informa-
tique the'orique et Applications/Theoretical Informatics and Applications,
25(5) :473-496, 1991.

[71] F. Gesceg and M. Steinby. Tree Automata. Akademia Kiado, Budapest,
1984.

[72] S. Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-
Hill, New York, 1966.

[73] J. Gonczarowski and M. K. Warmuth. Scattered and context-sensitive rewrit-
ing. Acta Informatica, 20:391-411, 1983.

[74] M. G. Gouda and L. E. Rosier. Priority networks of communicating finite
state machines. SIAM Journal on Computing, 14:569-584, 1985.

[75] S. Greibach and J. Hopcroft. Scattered context grammars. Journal of Com-

[76] D. Gries. Compiler Construction for Digital Computers. Wiley, New York,

puter and System Sciences, 3:233-247, 1969.

1971.

[77] J. Gruska. On a classification of context-free languages. Kybernetika, 13:22-
29, 1967.

206 Bibliography

[78] M. Harrison. Introduction to Switching and Automata Theory. McGraw-Hill,
New York, 1965.

[79] M. Harrison. Introduction to Formal Language Theory. Addison-Wesley,
Reading, Massachusetts, 1979.

[80] J. E. Hopcroft. An nlogn algorithm for minimizing the states in a finite
automaton. In 2. Kohavi and A. Paz, eds., Theory of Machines and Com-
putations. Academic Press, New York, 1971, pp. 189-196.

[81] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation, 2nd ed. Addison-Wesley, Reading, Massachusetts,
1979.

[82] P. M. Lewis 11, D. J. Rosenkrantz, and R. E. Stearns.
Theory. Addison-Wesley, Reading, Massachusetts, 1976.

Compiler Design

[83] J. H. Johnson. Formal Models for String Similarity. PhD thesis, Department
of Computer Science, University of Waterloo, 1983.

[84] J. Kelemen. Conditional grammars: Motivations, definition, and some prop-
erties. In I. Peak and J. Szep, eds., Proceedings on Automata, Languages and
Mathematical Systems. K. Marx University of Economics, Budapest, 1984,
pp. 110-123.

[85] J . Kelemen. Measuring cognitive resources use (a grammatical approach).
Computers and Artificial Intelligence, 8(1):29-42, 1989.

[86] D. Kelley. Automata and Formal Languages. Prentice-Hall, Englewood Cliffs,
New Jersey, 1995.

[87] H. C. M. Kleijn and G. Rozenberg. Context-free-like restrictions on selective
rewriting. Theoretical Computer Science, 16:237-239, 1981.

[88] H. C. M. Kleijn and G. Rozenberg. On the generative power of regular
pattern grammars. Acta Informatica, 20:391-411, 1983.

[89] D. E. Knuth. On the translation of languages from left to right. Information
and Control, 8:611-618, 1967.

[go] A. J. Korenjak and J. E. Hopcroft. Simple deterministic languages. In
Proceedings of the Seventh Annual Symposium on Switching and Automata
Theory. IEEE, Berkeley, California, 1966, pp. 36-46.

[91] J. Kral. A note on grammars with regular restrictions. Kybernetika, 9(3):159-
161, 1973.

[92] W. Kuich and A. Salomaa. Semirings, Automata, Languages. Springer-
Verlag, New York, 1985.

Bibliography 207

[93] L. C. Larson. Problem-Solving through Problems. Springer-Verlag, New York,

[94] P. E. Lauer, P. R. Torrigiani, and M. W. Shields. Cosy: A system specifica-
tion language based on paths and processes. Acta Informatica, 12:109-158,
1979.

1983.

[95] R. C. Linger, H. D. Mills, and B. I. Witt. Stmctured Programming: Theory

[96] J. Loeckxx and K. Sieber. The Foundations of Program Verification. Wiley,

and Practice. Addison-Wesley, Reading, Massachusetts, 1979.

New York, 1978.

[97] J. S. Mallozi and N. J. De Lillo. Computability with PASCAL. Prentice-Hall,
Englewood Cliffs, New Jersey, 1984.

[98] J. McCarthy. A basis for a mathematical theory of computation. In P. Braf-
fort and D. Hirschberg, eds., Programming and Formal Systems. North-
Holland, Amsterdam, 1963, pp. 33-70.

[99] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5:115-133, 1943.

[loo] A. Meduna. A note on exponential density of ETOL languages. Kybernetika,
22: 5 14-5 18, 1986.

[loll A. Meduna. Characterization of the Chomsky hierarchy through sequential-
parallel grammars. Rostocker Mathematische Kolloquium, 32:4-14, 1987.

[lo21 A. Meduna. Evaluated grammars. Acta Cybernetika, 8:169-176, 1987.

[lo31 A. Meduna. Context-free derivations on word monoids. Acta Informatica,
27:781-786, 1990.

[lo41 A. Meduna. Generalized forbidding grammars. International Journal of
Computer Mathematics, 36:31-38, 1990.

[lo51 A. Meduna. Symbiotic EOL systems. Acta Cybernetica, 10:165-172, 1992.

[lo61 A. Meduna. Canonical scattered rewriting. International Journal of Com-
puter Mathematics, 51:122-129, 1993.

[lo71 A. Meduna. A formalization of sequential, parallel and continuous rewriting.
International Journal of Computer Mathematics, 47:153-161, 1993.

[lo81 A. Meduna. Matrix grammars under leftmost and rightmost restrictions.
In Gh. Paun, ed., Mathematical Linguistics and Related Topics. Romanian
Academy of Sciences, Bucharest, 1994, pp. 243-257.

[log] A. Meduna. Syntactic complexity of scattered context grammars. Acta
Informatica, 32:285-298, 1995.

208 Bibliography

[110] A. Meduna. A trivial method of characterizing the family of recursively
E A T C S Bulletin, enumerable languages by scattered context grammars.

56:104-106, 1995.

[I l l] A. Meduna. Syntactic complexity of context-free grammars over word
monoids. Acta Informatica, 33:457-462, 1996.

[I121 A. Meduna. Four-nonterminal scattered context grammars characterize the
family of recursively enumerable languages. International Journal of Com-
puter Mathematics, 63:67-83, 1997.

[113] A. Meduna. On the number of nonterminals in matrix grammars with left-
most derivations. LNCS, 1217:27-38, 1997.

[114] A. Meduna. Six-nonterminal multi-sequential grammars characterize the
family of recursively enumerable languages. International Journal of Com-
puter Mathematics, 65:179-189, 1997.

[115] A. Meduna. Descriptional complexity of multi-continuous grammars. Acta
Cybernetica, 13:375-384, 1998.

[116] A. Meduna. Economical transformation of phrase-structure grammars to
scattered context grammars. Acta Cybernetica, 13:225-242, 1998.

[117] A. Meduna. Prefix pushdown automata. International Journal of Computer
Mathematics, 71:215-228, 1999.

[118] A. Meduna. Automata and Languages: Theory and Applications. Springer,
London, 2000.

[119] A. Meduna. Generative power of three-nonterminal scattered context gram-
mars. Theoretical Computer Science, 246:276-284, 2000.

[120] A. Meduna. Terminating left-hand sides of scattered context productions.
Theoretical Computer Science, 237:423-427, 2000.

[121] A. Meduna. Uniform generation of languages by scattered context grammars.
Fundamenta Informaticae, 44:231-235, 2001.

[122] A. Meduna. Descriptional complexity of scattered rewriting and multirewrit-
ing: An overview. Journal of Automata, Languages and Combinatorics,
7:571-577, 2002.

[123] A. Meduna. Coincidental extension of scattered context languages. Acta
Informatica, 39:307-314, 2003.

[124] A. Meduna. Simultaneously one-turn two-pushdown automata. International
Journal of Computer Mathematics, 80:679-687, 2003.

[125] A. Meduna, C. Crooks, and M. Sarek. Syntactic complexity of regulated
rewriting. Kybernetika, 30:177-186, 1994.

Bibliography 209

[126] A. Meduna and E. Csuhaj-Varju.
EATCS Bulletin, 32:112-124, 1993.

Grammars with context conditions.

[127] A. Meduna and H. Fernau. On the degree of scattered context-sensitivity.
Theoretical Computer Science, 290:2121-2124, 2003.

[128] A. Meduna and H. Fernau. A simultaneous reduction of several measures of
descriptional complexity in scattered context grammars. Information Pro-
cessing Letters, 86:235-240, 2003.

[129] A. Meduna and A. Gopalaratnam. On semi-conditional grammars with pro-
ductions having either forbidding or permitting conditions. Acta Cybernetica,
11 ~307-323, 1994.

[130] A. Meduna and G. Horvath. On state grammars. Acta Cybernetica, 8:237-
245, 1988.

[131] A. Meduna and D. Koldf. Descciptional complexity of multi-parallel gram-
mars with respect to the number of nonterminals. In Grammars and Au-
tomata for String Processing: from Mathematics and Computer Science to
Biology and Back. Francis and Taylor, London, 2000, pp. 724-732.

[132] A. Meduna and D. Kol6E. Regulated pushdown automata. Acta Cybernetica,
18: 653-664 , 2000.

[133] A. Meduna and D. Kol6.f. Homogenous grammars with a reduced number of
non-context-free productions. Information Processing Letters, 81:253-257,
2002.

[134] A. Meduna and D. Kol6.f. One-turn regulated pushdown automata and their
reduction. Fundamenta Informaticae, 16:399-405, 2002.

[135) A. Meduna and M. Svec. Reduction of simple semi-conditional grammars
with respect to the number of conditional productions. Acta Cybernetica,
15 ~353-360, 2002.

[136] A. Meduna and M. Svec. Descriptional complexity of generalized forbidding
grammars. International Journal of Computer Mathematics, 80(1):11-17,
2003.

[137] A. Meduna and M. Svec. Forbidding ETOL grammars. Theoretical Computer
Science, 306:449-469, 2003.

[138] A. Meduna and P. Vurm. Multisequential grammars with homogeneous se-
lectors. Fundamenta Informaticae, 34:l-7, 2001.

[139] G. B. Moore, J. L. Kuhns, J. L. Trefftzs, and C. A. Montgomery. Accessing
Individual Records from Personal Data Files Using Non- Unique Identifiers.
NBS Special Publication 500-2, US Department of Commerce, National Bu-
reau of Standards, Washington, DC, 1977.

210 Bibliography

[140] P. Naur. Report on the algorithmic language ALGOL 60. Communications
of the ACM, 3:299-314, 1960. Revised in Communications of the ACM 6
(1963), 1-17.

[141] E. Navr6til. Context-free grammars with regular conditions. Kybernetika,
6(2):118-125, 1970.

[142] W. Newman and R. Sproul. Principles of Interactive Computer Graphics,
2nd ed. McGraw-Hill, New York, 1979.

[143] A. G. Oettinger. Automatic syntactic analysis and pushdown store. In Pro-
ceedings of the Symposia in Applied Mathematics, vol. 12. American Math-
ematical Society, Providence, Rhode Island, 1961 , pp. 104-109.

[144] F. G. Pagan. Formal Specification of Programming Languages L: A
Panoramic Primer. Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[145] Gh. Paun. On the generative capacity of conditional grammars. Information
and Control, 43:178-186, 1979.

[146] Gh. Paun. A variant of random context grammars: Semi-conditional gram-
mars. Theoretical Computer Science, 4l:l-17, 1985.

[147] M. Penttonen. One-sided and two-sided context in formal grammars. Infor-
mation and Control, 25:371-392, 1974.

[148] M. Penttonen. ETOL-grammars and N-grammars. Information Processing
Letters, 4:ll-13, 1975.

[149] P. Prusinkiewicz, M. Hammel, J. Hanan, and R. M6ch. L-systems: From the
theory to visual models of plants. In M. T. Michalewicz, ed., Proceedings of
the 2nd CSIRO Symposium on Computational Challenges in Life Sciences.
CSIRO Publishing, Collingwood, Victoria, Australia, 1996.

[150] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants.
Springer-Verlag, New York, 1990.

[151] G. E. Revesz. Introduction to Formal Language Theory. McGraw-Hill, New
York, 1983.

[152] D. J. Rosenkrantz. Matrix equations and normal forms for contex-free gram-
mars. Journal of the ACM, 14:501-507, 1967.

[153] D. J. Rosenkrantz. Programmed grammars and classes of formal languages.
Journal of the ACM, 16:107-131, 1969.

[154] G. Rozenberg. Selective substitution grammars (towards a framework for
rewriting systems), Part I: Definitions and examples. Journal of Information
Processes in Cybernetics, 13:455-463, 1977.

Bibliography 211

[155] G. Rozenberg and A. Salomaa. The Mathematical Theory of L Systems.
Academic Press, New York, 1980.

[156] G. Rozenberg and A. Salomaa. The Book of L. Springer-Verlag, Berlin, 1986.

[157] G. Rozenberg and A. Salomaa. Handbook of Formal Languages, vols. 1-3.
Springer, Berlin, 1997.

[158] G. Rozenberg and S. H. von Solms. Priorities on context conditions in rewrit-
ing systems. Information Sciences, 14:15-50, 1978.

[159] R. Rustin. Formal Semantics of Programming Languages. Prentice-Hall,
Englewood Cliffs, New Jersey, 1972.

[160] A. Salomaa. Theory of Automata. Pergamon Press, London, 1969.

[161] A. Salomaa. Formal Languages. Academic Press, New York, 1973.

[162] A. Salomaa. Computation and Automata. Cambridge University Press, Cam-
bridge, 1985.

[163] C. E. Shannon and J. McCarthy (eds.). Automata Studies. Princeton Uni-
versity Press, Princeton, New Jersey, 1956.

[164] S. Sippu and E. Soisalon-Soininen. Parsing Theory. Springer-Verlag, New
York, 1987.

[165] A. R. Smith. Plants, fractals, and formal languages. Computer Graphics,
18:1-10, 1984.

[166] S. H. von Solms. Modelling the growth of simple biological organisms using
formal language theory. Manuscript.

[167] S. H. von Solms. Random context grammars with sequential rewriting and
priorities on conditions. Manuscript.

[168] S. H. von Solms. Rewriting systems with limited distance permitting context.
International Journal of Computer Mathematics, 8 , 1979.

[l69] S. H. von Solms. Random context array grammars. Informution Processing,
80:59-64, 1980.

[170] S. H. von Solms. Rewriting systems with limited distance forbidding context.
International Journal of Computer Mathematics, 15:39-49, 1984.

[171] T. A. Sudkamp. Languages and Machines. Addison-Wesley, Reading, Mas-
sachuset ts , 1988.

[172] R. E. Tarjan. A unified approach to path problems. Journal of the ACM,
281577-593, 1981.

212 Bibliography

[173] F. J. Urbanek. A note on conditional grammars. Revue Roumaine de
Mathe'matiques Pures at Applique'es, 28:341-342, 1983.

[174] G. Vaszil. On the number of conditional .rules in simple semi-conditional
grammars. Theoretical Computer Science, 2004 (in press).

[175] A. P. J. van der Walt. Random context grammars. In Proceedings of the
Symposium on Formal Languages, 1970.

[176] P. Wegner. Programming language semantics. In R. Rustin, ed., Formal
Semantics of Programming Languages. Prentice-Hall, Englewood Cliffs, New
Jersey, 1972, pp. 149-248.

[177] A. van Wijngaarden, B. J. Mailloux, J . E. L. Peck, C. H. A. Koster, M. Sint-
zoff, C. H. Lindsey, L. G. L. T. Meertens, and R. G. Fisker (eds.). Revised
report on the algorithmic language ALGOL 68. Acta Informatica, 5:l-236,
1974.

[178] P. H. Winston. Artificial Intelligence. Addison-Wesley, Reading, Mas-
sachuset ts, 1977.

[179] N. Wirth. Systematic Programming: An Introduction. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1973.

[180] N. Wirth. Data structures and algorithms. Scientific American, 251:60-69,
1984.

[181] D. Wood. Paradigms and Programming with PASCAL. Computer Science
Press, Rockville, Maryland, 1984.

[182] D. Wood. Theory of Computation. Harper and Row, New York, 1987.

[183] D. H. Younger. Recognition and parsing of context-free languages in time n
3. Information and Control, 10:189-208, 1976.

Denotations of Language Families

CEOL
CEPOL
CEPTOL
CETOL
CF
CG
cs
EIL [.i], EIL [i.]
EOL
EPOL
EPTOL
ETOL
F
FEOL
FEPOL
FEPTOL
FETOL
GCC
GF
prop-CG
prop-F
prop-GCC
prop-GF
prop-RC
prop-RC (ac)
prop-SC
prop-SSC
prop-WM
PS[.i], PS[i.]
RC
RC(ac)
RE
SEOL
SEPOL
sc
SCAT
SCAT [. i/ j]
ssc
SSC-EOL

context-conditional EOL grammars (CEOL grammars)
propagating CEOL grammars (CEPOL grammars)
propagating CETOL grammars (CEPTOL grammars)
context-conditional ETOL grammars (CETOL grammars)
context-free grammars
context-conditional grammars
context-sensitive grammars
EIL grammars with uniform rewriting
EOL grammars
propagating EOL grammars (EPOL grammars)
propagating ETOL grammars (EPTOL grammars)
ETOL grammars
forbidding grammars
forbidding EOL grammars (FEOL grammars)
propagating FEOL grammars (FEPOL grammars)
propagating FETOL grammars (FEPTOL grammars)
forbidding ETOL grammars (FETOL grammars)
global context conditional grammars
generalized forbidding grammars
propagating context-conditional grammars
propagating forbidding grammars
propagating global context conditional grammars
propagating generalized forbidding grammars
propagating rc-grammars
propagating rc-grammars with appearance checking
propagating semi-conditional grammars
propagating simple semi-conditional grammars
propagating context-free grammars over word monoids
phrase-structure grammars with uniform rewriting
random-context grammars
random-context grammars with appearance checking
phrase-structure grammars
symbiotic EOL grammars (SEOL = WMEOL(2))
propagating symbiotic EOL gra.mmars
semi-conditional grammars
scattered context grammars
scattered context grammars with uniform rewriting
simple semi-conditional grammars
simple semi-conditional EOL grammars

213

Grammars with Context Conditions and Their Application.
Alexander Meduna and Martin Svec

Copyright 0 2005 John Wiley & Sons, Inc.

214 Denotations of Language Families

SSC-EPOL
SSC-EPTOL
SSC-ETOL simple semi-conditional ETOL grammars
WM
WMEOL
WMEPOL

propagating SSC-EOL grammars (SSC-EPOL grammars)
propagating SSC-ETOL grammars (SSC-EPTOL grammars)

context-free grammars over word monoids
EOL grammars over word monoids
propagating EOL grammars over word monoids

Subject Index

OL grammar, 12

alph, 7
Alphabet, 6
Axiom, 9

Bijection, 8

Cardinality, 5
Cartesian product, 7
CEOL grammar, 91
CEPOL grammar, 91
CEPTOL grammar, 91
CETOL grammar, 91
Chomsky normal form, 10
Closure

of language, 6
reflexive and transitive, 8
transitive, 8

Concatenation, 6
Context-conditional ETOL grammar, 91
Context-conditional grammar, 33
Context-free grammar, 10

over word monoid, 15
Context-sensitive grammar, 10

Degree, 15, 34, 91, 131
Derivation, 9
Derivation simulator, 171

Direct derivation, 9
domain, 8

homomorphic, 171

E(m,n)L grammar, 12
EOL grammar, 12

over word monoid, 24
symbiotic, 25

EIL grammar, 12
simulation of, 176

EPOL grammar, 12

EPTOL grammar, 11
Equivalent grammars, 13
ETOL grammar, 11

forbidding, 98
simple semi-conditional, 118

Family, 5
FEOL grammar, 98
FEPOL grammar, 98
FEPTOL grammar, 98
FETOL grammar, 98
first, 7
Forbidding ETOL grammar, 98
Forbidding grammar, 40
Function, 8

partial, 8
total, 8

gcc-grammar, 131
Generalized forbidding grammar, 44
gf-grammar, 44
Global context conditional grammar, 131
Grammatical simulation, 175

Homomorphism, 8
injective, 8

Injection, 8

Language, 6
complement, 6
context-free, 10
context-sensitive, 10
family, 6
finite, 6
recursively enumerable, 9
reversal of, 6

lhs, 9

Mapping, 8
max, 6

215

Grammars with Context Conditions and Their Application.
Alexander Meduna and Martin Svec

Copyright 0 2005 John Wiley & Sons, Inc.

216 Subject Index

Microbiology, 185
Morphism, 8

Nonterminal, 9

Penttonen normal form, 10
Permitting grammar, 40
Phrase-structure grammar, 9
Power set, 5
Prefix, 7

Product

Production

proper, 7

k-fold, 8

conditional, 34

Queue grammar, 12

Random-context grammar, 40

range, 8
rc-grammar, 40
Red alga, 187
Relation, 8

binary, 8
inverse, 8

with appearance checking, 40

rev, 6
rhs, 9

sc-grammar, 58
Scattered context grammar, 150
Semi-conditional grammar, 58
Sentential form, 9
Sequence, 5

finite, 5
length, 5

complement of, 5
finite, 5
member of, 5

Set, 5

of a yield sequence, 170
SSC-EOL grammar, 118
SSC-EPOL grammar, 118
SSC-EPTOL grammar, 118
SSC-ETOL grammar, 118
ssc-grammar, 62
String, 6

empty, 6
permutation, 7
power of, 6
reversal of, 6

String-relation sequence, 170
String-relation system, 169
Subrelation, 8
Subset, 5

proper, 5
Substitution, 8
Substring, 7

Subword, see Substring
Successful-derivation simulator,

proper, 7

suffix, 7
proper, 7

Surjection, 8
Symbiotic EOL grammar, 25
Symbol, 6

Terminal, 9

Uniform rewriting
parallel, 145
semi-parallel, 162
sequential, 138

Virus, 185

wm-grammar, 15
WMEOL grammar, 24
Word, see String

Simple semi-conditional ETOL grammar, Yield sequence, 170

Simple semi-conditional grammar, 62 successful, 170
Simulation

118 simulation of, 170

grammatical, 175
rn-close, 170

171

	booktext
	booktext01
	booktext02
	booktext03
	booktext04
	booktext05
	booktext06
	booktext07
	booktext08
	booktext09
	booktext10
	booktext11

