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Preface 

The investigation of grammars with context conditions represents an exciting trend 
within the formal language theory. Although this investigation has introduced 
a number of new grammatical concepts and brought many remarkable results, 
all these concepts and results are scattered in various journal papers. In effect, 
the formal language theory lacks any monograph systematically and compactly 
summarizing this important trend. The primary goal of the present book is to 
provide such a monograph. 

According to the types of context conditions, the present book classifies the 
grammars into three classes and sums up the crucial results about them. Specif- 
ically, this classification comes from the distinction between context conditions 
placed on (1) the domains of grammatical derivations, (2) the use of grammati- 
cal productions, and (3) the neighborhood of the rewritten symbols. In all three 
cases, the main attention is on establishing the grammatical generative power 
and important properties. In particular, this book studies how to reduce these 
grammars with respect to  some of their components, such as the number of gram- 
matical symbols or productions, in order to make the grammars small, succinct, 
and therefore easy to use. To demonstrate this practical use, it also discusses the 
applications and implementation of grammars with context conditions. Most of 
the applications are related to microbiology, which definitely belongs to the central 
application areas of computer science today. 

No previous knowledge concerning the subject of this book is assumed on the 
part of the reader. Indeed, this book is self-contained in the sense that no other 
sources are needed for understanding all the presented material. Almost every 
new concept defined in the text is immediately illustrated by some examples to 
give it grasp. Every complicated mathematical passage is preceded by its intuitive 
explanation, so the reader should easily follow every proof in the book. All the ap- 
plications given in the book are explained in a realistic way to clearly demonstrate 
the strong relation between the theoretical concept and its use in practice. Addi- 
tional information found at  http://www.fit.vutbr.cz/-meduna/books/gwccl.en. 
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Chapter 1 

Introduction 

Formal languages fulfill a crucial role in many computer science areas, ranging from 
compilers through mathematical linguistics to molecular genetics. In dealing with 
these languages, we face the problem of choosing appropriate models in order to 
capture their structure elegantly and precisely. By analogy with the specification 
of natural languages, we often base these models on suitable grammars. 

A grammar generates its language by performing derivation steps that change 
strings, called sentential forms, to other strings according to its grammatical pro- 
ductions. During a derivation step, the grammar rewrites a part of its current 
sentential form with a string according to one of its productions. If in this way 
it can make a sequence of derivation steps from its start symbol to a sentential 
form consisting of terminal symbols-that is, the symbols over which the language 
is defined-the resulting sentential form is called a sentence and belongs to the 
generated language. The set of all sentences made in this way is the language 
generated by the grammar. 

In classical formal language theory, we can divide grammatical productions into 
context-dependent and context-independent productions. Based on this division, 
we can make a natural distinction between context-dependent grammars, such as 
phrase-structure grammars, and context-independent grammars, such as context- 
free grammars. The derivation step by context-dependent productions depends 
on rather strict conditions, usually placed on the context surrounding the rewrit- 
ten symbol, while the derivation step by context-independent productions does 
not have any restrictions. For this reason, we tend to use context-independent 
grammars. Unfortunately, compared to context-dependent grammars, context- 
independent grammars are far less powerful; in fact, most of these grammars are 
incapable of grasping some basic aspects of common programming languages. On 
the other hand, most context-dependent grammars are as powerful as the Turing 
machines, and this remarkable power gives them an indisputable advantage. 

From a realistic point of view, the classical context-independent and context- 
dependent grammars have some other disadvantages. Consider, for instance, En- 
glish. Context-independent grammars are obviously incapable of capturing all the 
contextual dependencies in this complex language. However, we may find even the 
classical context-dependent grammars clumsy for this purpose. To illustrate, in 
an English sentence, the proper form of verb usually depends on the form of the 
subject. For instance, we write I do it, not I &a at, and it is the subject, I ,  that 
implies the proper form of do. Of course, there may occur several words, such as 
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2 Chapter 1: Introduction 

adverbs, between the subject and the verb. We could extend I do i t  to I often 
do at, I very often do  it and infinitely many other sentences in this way. At this 
point, however, the classical context-dependent productions, whose conditions are 
placed on the context surrounding the rewritten symbol, are hardly of any use. 
The proper form of the verb follows from a subject that does not surround the 
verb at all; it can occur many words ahead of the verb. 

To overcome the difficulties and, a t  the same time, maintain the advantages 
described above, modern language theory has introduced some new grammars that 
simultaneously satisfy these three properties: 

They are based on context-independent productions. 

Their context conditions are signfkantly more simple and flexible than the 
strict condition placed on the context surrounding the rewritten symbol in 
the classical context-dependent grammars. 

They are as powerful as classical context-dependent grammars. 

In the present book, we give an overview of the most essential types of these 
grammars. Their alternative context conditions can be classified into these three 
categories: 

Context conditions placed on derivation domains. 

Context conditions placed on the use of productions. 

Context conditions placed on the neighborhood of the rewritten symbols. 

As already pointed out, we want the context conditions to be as small as possible. 
For this reason, we pay a lot of attention to the reduction of context conditions 
in this book. Specifically, we reduce the number of their components, such as 
the number of nonterminals or productions. We study how to achieve this re- 
duction without any decrease of their generative power, which coincides with the 
power of the Turing machines. By achieving this reduction, we actually make 
the grammars with context conditions more succinct and economical, and these 
properties are obviously highly appreciated both from a practical and theoretical 
standpoint. Regarding each of the dicussed grammars, we introduce and study 
their parallel and sequential versions, which represent two basic approaches to 
grammatical generation of languages in today’s formal language theory. To be 
more specific, during a sequential derivation step, a grammar rewrites a single 
symbol in the current sentential form whereas during a parallel derivation step, 
a grammar rewrites all symbols. As context-free and EOL grammars represent 
perhaps the most fundamental sequential and parallel grammars, respectively, we 
usually base the discussion of sequential and parallel generation of languages on 
them. 
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Organization 

The text consists of the following chapters: 
Chapter 2 gives an introduction to formal languages and their grammars. 
Chapter 3 restricts grammatical derivation domains in a very simple and natu- 

ral way. Under these restrictions, both sequential and parallel context-independent 
grammars characterize the family of recursively enumerable languages, which are 
defined by the Turing machines. 

Chapter 4 studies grammars with conditional use of productions. In these 
grammars, productions may be applied on condition that some symbols occur in 
the current sentential form and some others do not. We discuss many sequential 
and parallel versions of these grammars in detail. Most important, new character- 
izations of some well-known families of L languages, such as the family of ETOL 
languages, are obtained. 

Chapter 5 studies grammars with context conditions placed on the neighbor- 
hood of rewritten symbols. We distinguish between scattered and continuous con- 
text neighborhood. The latter strictly requires that the neighborhood of the rewrit- 
ten symbols forms a continuous part of the sentential form while the former drops 
this requirement of continuity. 

Chapter 6 takes a closer look at grammatical transformations, many of which 
are mentioned in the previous chapters. Specifically, it studies how to transform 
grammars with context-conditions to some other equivalent grammars so that both 
the input grammars and the transformed grammars generate their languages in a 
very similar way. 

Chapter 7 demostrates the use of grammars with context conditions by several 
applications related to biology. 

Chapter 8 summarizes the main results of this book and presents several open 
problems. It makes historical notes and suggests some general references regarding 
the theoretical background of grammars with context conditions. In addition, it 
proposes new directions in the investigation of these grammars. 

Approach 

This book is theoretically oriented in its treatment of the grammars. It presents 
the formalism concerning grammars with enough rigor to make all results quite 
clear and valid. Every complicated mathematical passage is preceded by its in- 
tuitive explanation so that even the most complex parts of the book are easy to 
grasp. As most proofs of the results contain some transformations of grammars, 
the present book also provides an algorithmical approach to the gramatical mod- 
els under discussion and shows how they are used in practice. Several worked-out 
examples and real-world applications give further illustrations of the theoretical 
notions. 
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Use 

This book can be used by every computer scientist interested in formal languages 
and their grammatically based models as discussed in today’s theoretical computer 
science curricula. It can also be used as a textbook for advanced courses in theo- 
retical computer science at the senior levels; the text allows the flexibility needed 
to pick and choose different topics for discussion. 



Chapter 2 

Preliminaries and Definitions 

2.1 Basic Definitions 

This section reviews fundamental notions concerning sets, languages, and relations. 
A set C is a collection of elements taken from some prespecified universe. If 

C contains an element a,  then we symbolically write a E C and refer to a as a 
member of C. On the other hand, if a is not in C, we write a @ C. The cardinality 
of C, ICI, is the number of C’s members. The set that has no member is the empty 
set, denoted 8; note that 101 = 0. If C has a finite number of members, then C is 
a finite set; otherwise, C is an infinite set. 

A finite set C is customarily specified by listing its members; that is, 

C = {all a2,. . . , an} ,  

where a1 through a, are all members of C. An infinite set R is usually specified 
by a property T ,  so that Q contains all elements satisfying T ;  in symbols, this 
specification has the following general format: 

n = { a :  .(a)}. 

Sets whose members are other sets are usually called families of sets rather than 
sets of sets. 

Let C and R be two sets. C is a subset of 0, symbolically written as C C: R, if 
each member of C also belongs to 0. C is a proper subset of R ,  written as C c a, 
if C c R and 0 contains an element that is not in C. If C C R and R C C, C 
equals R, denoted by C = R. The power set of C, denoted by 2’, is the set of all 
subsets of C. For two sets C and 0, their union, intersection, and difference are 
denoted by C u 0, C n R,  and C - R, respectively, and defined as 

C U R =  { a :  a € C  or a~ R}, 

C n R  = {a  : a E C and a E R}, 

C - R = { a :  a E C and a @ Q}. 

For a set C over a universe U ,  the complement of C is denoted by and defined 
as c = U - C. A sequence is a list of elements from some universe. A sequence is 
finite if it represents a finite list of elements; otherwise, it is infinite. The length 

and 
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6 Chapter 2: Preliminaries and Definitions 

of a finite sequence x, denoted by 1x1, is the number of elements in x. The empty 
sequence, denoted by E ,  is the sequence consisting of no element; that is, I E ~  = 0. 
A finite sequence is usually specified by listing its elements. For instance, consider 
a finite sequence x specified as x = 0,1,0,0, and observe that 1x1 = 4. 

An alphabet T is a finite, nonempty set, whose members are called symbols. A 
finite sequence of symbols from T is a string or, synonymously, a word over T ;  
specifically, E is referred to as the empty string. By T* ,  we denote the set of all 
strings over T ;  T+ = T* - { E } .  Any subset T 2 T* is a language over T .  If L 
represents a finite set of strings, L is a finite language; otherwise, L is an infinite 
language. For instance, T*,  called the universal language over T ,  is an infinite 
language while 8 and { E }  are finite; notably, 8 # { E }  because 181 = 0 # I { E } /  = 1. 
For a finite language L, max(L) denotes the length of the longest word in L. By 
analogy with the set theory, sets whose members are languages are called families 
of languages. 

By convention, we omit all separating commas in strings. That is, we write 
a1a2.. .a ,  rather than al ,a2, .  . . , an .  

Let x ,  y E T* be two strings over an alphabet, T ,  and let L, K C T* be two 
languages over T .  As languages are defined as sets, all set operations apply to 
them. Specifically, L U K, L n K, and L - K denote the union, intersection, 
and difference of languages L and K ,  respectively. Perhaps most important, the 
concatenation of x with y, denoted by xy, is the string obtained by appending y 
to x. Notice that from an algebraic point of view, T* and T+ are the free monoid 
and free semigroup, respectively, generated under the operation of concatenation. 
Observe that for every w E T* ,  W E  = EW = w. The concatenation of L and K, 
denoted by LK,  is defined as 

L K  = {XY : x E L, y E K}. 

Apart from binary operations, we also make some unary operations with strings 
and languages. Let x E T* and L C T*. The complement of L is denoted by f, 
and defined as = T* - L. The reversal of x, denoted by rev(x), is x written in 
the reverse order, and the reversal of L, rev(L), is defined as 

rev(L) = {rev(x) : x E L}. 

For all i L 0 the ith power of x, denoted by xi, is recursively defined as (1) xo = E 

and (2) xi = xxi-', for i 2 1. Observe that this definition is based on the recursive 
definitional method. To demonstrate the recursive aspect, consider, for instance, 
the ith power of xi with i = 3. By the second part of the definition, x3 = xx2. 
By applying the second part to x2, we obtain x2 = xxl. By another application 
of this part to x l ,  x1 = xxo. By the first part of this definition, xo = E .  Thus, 
x1 = xxo = XE = x. Hence, x2 = xxl = xx. Finally, x3 = xx2 = xxx. By this 
recursive method, we frequently introduce new notions, including the ith power of 
L, Li, which is defined as (1) Lo = { E }  and ( 2 )  Li = LLZ-', for i 2 1. The closure 
of L, L*, is defined as 

L* = u LZ, 
i20 
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and the positive closure of L, L+, is defined as 

L+ = (J Li. 
i l l  

Notice that 
L+ = LL* = L*L 

and 
L* = L+ u { E } .  

If there is z E T* such that xz = y, x is a prefix of y; in addition, if x # {e,  y}, x 
is a proper prefix of y. By prefix(y), we denote the set of all prefixes of y. Set 

prefix(L) = { x  : x E prefix(w) for some w E L}. 

If there is z E T* such that zx = y, x is a sufix of y; in addition, if x # { E ,  y}, x 
is a proper sufix of y. By suffix(y), we denote the set of all suffixes of y. Set 

suffix(L) = { x  : x E suffix(w) for some w E L}.  

If there is u ,v  E T* such that uxv = y, x is a substring or a subword of y; in 
addition, if x # { E ,  y}, x is a proper substring or a proper subword of y. By sub(y), 
we denote the set of all substrings of y. Moreover, 

sub(y,k) = { X  : x E sub(y), 1x1 5 k}. 

Observe that for every word w, prefix(w) C sub(w), suffix(w) C sub(w), and 
{ E ,  w} C prefix(w) r l  suffix(w) n sub(w). Set 

sub(L) = {x : x E sub(w) for some w E L} .  

Let w be a nonempty word; then, first(w) denotes the left-most symbol of w. Given 
a word w, alph(w) is the set of all symbols occurring in w. Set 

alph(L) = u alph(y). 

For two words x and y, where IyI 2 1, #Yx denotes the number of occurrences of 
y in x. A generalized form #WX, where W is a finite language, E $? W ,  denotes 
the number of all occurrences of x's subwords that belong to W .  Let w = a1 . . . a, 
with ai E T for some n 2 0. The set of permutations of w, n(w), is defined as 

n(w) = {v : v = bl . . . b, with bi E alph(w) for i = 1,. . . ,n,  

YEL 

and ( b l ,  . . . , b,) is a permutation of ( a l ,  . . . ,a,)}. 

For two objects a and b, (a, b)  denotes the ordered pair  consisting of a and b in 
this order. Let A and B be two sets. The Cartesian product of A and B,  A x B,  
is defined as 

A x B = {(a,  b )  : a E A and b E B}.  
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A binary relation or, briefly, a relation p from A to B is any subset of A x B;  that 
is, 

p G A x B .  

The domain of p ,  denoted by domain(p), and the range of p, denoted by range(p), 
are defined by 

domain(p) = { a  : ( a ,  b )  E p for some b E B }  

and 
range(p) = { b  : ( a ,  b) E p for some a E A}.  

If A = B ,  then p is a relation on A. A relation u is a subrelation of p if u represents 
a subset of p. The inverse of p, denoted by p-', is defined as 

p-' = { ( b , a )  : ( a ,  b )  E p}.  

A function or, synonymously, a mapping from A to B is a relation q5 from A to B 
such that for every a E A,  

I{b : b E B,  (a ,  b) E q5}1 5 1. 

Let q5 be a function from A to B. If domain(q5) = A,  4 is total; otherwise, q5 is 
partial. If for every b E B,  \{a : a E A ,  (a ,b)  E $}I 5 1, q5 is an injection. If 
for every b E B ,  / { a  : a E A,  (a ,  b )  E q5}[ 2 1, q5 is a suy'ection. If q5 is both a 
surjection and an injection, 4 represents a bijection. 

Instead of ( a ,  b) E p, we often write a E p(b )  or apb; in other words, ( a ,  b) E p, 
apb, and a E p ( b )  are used interchangeably. If p is a function, we usually write 
a = p(b). 

Let p be a relation over a set, A.  For k 2 1, the k-fold product of p, pk, is 
recursively defined as (1) ap'b if and only if apb, and ( 2 )  apkb if and only if apc 
and cpk-'b, for some c and k 2 2. The transitive closure of p ,  p f ,  is defined as 
ap+b if and only if apkb for some k 2 1, and the reflexive and transitive closure of 
p ,  p*, is defined as ap*b if and only if apkb for some k 2 0. 

A total function T from T* to 2"' such 
that T ( W )  = T ( U ) T ( U )  for every u ,u  E T* is a substitution from T* to U*.  By 
this definition, T ( E )  = E and ~ ( a l a 2 . .  .a,) = T ( u ~ ) T ( u ~ ) .  . . ~ ( a , ) ,  where ai E T ,  
1 5 i 5 n, for some n 2 1, so T is completely specified by defining T ( U )  for every 
a E T .  A total function x from T* to U* such that ~ ( u v )  = x(u)x(v)  for every 
u, u E T* is a homomorphism or, synonymously and briefly, a morphism from T* 
to U*.  As any homomorphism is obviously a special case of a substitution, we 
specify x by analogy with the specification of r. If x is an injection, x is called an 
injective homomorphism. 

Let T and U be two alphabets. 

2.2 Grammars 

This section reviews the basics of grammars. Specifically, it provides definitions 
of context-free, context-sensitive, and phrase-structure grammars along with some 
related notions and basic results which are used throughout the book. 
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Definition 1. A phrase-structure grammar is a quadruple 

where 

V is the total alphabet, 

T is the set of terminals (T c V ) ,  

P C V*(V - T)V* x V* is a finite relation, 

S E V - T is the axiom of G. 

The symbols in V - T are referred to as nonterminals. In what follows, each 
( x ,  y )  E P is called a production or a rule and written as 

accordingly, P is called the set of productions in G. Given a production p = x ----) 

y E P ,  we set lhs(p) = x and rhs(p) = y .  The relation of a direct derivation in G 
is a binary relation over V* denoted by +G and defined in the following way. Let 
x 4 y E P,  u,v,z1,22 E V * ,  and u = 21x22, v = zly.22; then, 

2L =$'G %' [x -+ y ] .  

When no confusion exists, we simplify u =+G v [x 4 y ]  to u +G v. By +&, we 
denote the k-fold product of JG.  Furthermore, let +; and +& denote the tran- 
sitive closure of =+G and the transitive and reflexive closure of JG,  respectively. 
If S +& x for some x E V * ,  x is called a sentential form. Set 

F ( G )  = { X  E V* : S +; X }  

and 
A(G) = { X  E V *  : S +; x =+; y ,  y E T*} .  

If S +; w, where w E T * ,  S +& w is said to be a successful derivation of G. The 
language of G, denoted by L(G) ,  is defined as 

L(G) = {W E T* : S =+; w}. 

In the literature, the phrase-structure grammars are also often defined with pro- 
ductions of the form 

xAy -+ xuy, 

where u, x ,  y E V " ,  A E V - T (see [Sl]). Both definitions are interchangeable in 
the sense that the grammars defined in these two ways generate the same family 
of languages-the family of recursively enumerable languages, denoted by RE. 
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Definition 2. A context-sensitive grammar is a phrase-structure grammar, 

G = (V, T ,  p, S), 

such that each production in P is of the form 

xAy -+ xuy, 

where A E V - T ,  u E V+,  x , y  E V*.  A context-sensitive language is a lan- 
guage generated by a context-sensitive grammar. The family of context-sensitive 
languages is denoted by CS. 

Definition 3. A context-free grammar is a phrase-structure grammar, 

G = (V, T ,  p, S ) ,  

such that each production x -+ y E P satisfies x E V - T .  A context-free language 
is a language generated by a context-free grammar. The family of context-free 
languages is denoted by CF. 

For the families of languages generated by context-free, context-sensitive and 
phrase-structure grammars, it holds: 

Theorem 1 (see [l lS]).  CF c CS C RE. 

Lemma 1 (Chomsky Normal Form of Context-Free Grammars). Let L E 
CF, E # L. Then, there exists a context-free grammar, G = (V, T ,  P, S ) ,  such that 
L = L(G) and every production in P is either of the form A -+ BC or A -+ a,  
where A, B ,C E V - T and a E T .  

Lemma 2 (Penttonen Normal Form of Context-Sensitive Grammars, 
see [147]). Let L be a context-sensitive language. Then, there exists a context- 
sensitive grammar, G = (V, T ,  P, s),  such that L = L(G) and every production 
in P is either of the form A B  -+ AC or A + x, where A , B , C  E V - T ,  x E 
T U (V - T)2 .  

Lemma 3 (Penttonen Normal Form of Phrase-Structure Grammars, 
see [147]). Let L be a recursively enumerable language. Then, there exists a 
phrase-structure grammar, G = (V, T ,  P, S ) ,  such that L = L(G) and every pro- 
duction in P is either of the form A B  + AC or A + x ,  where A ,  B ,  C E V - T ,  
x E { E }  U T U (V - T ) 2 .  

Lemmas 2 and 3 can be further modified so that for every context-sensitive 
production of the form A B  -+ AC E P,  A ,  B ,  C E V - T ,  there exist no B + x or 
B D  + B E  in P for any x E V * ,  D , E  E V - T :  

Lemma 4. Every L E CS can be generated by a context-sensitive grammar G = 
( N C F U N C ~ U T ~ T ,  P, S ) ,  where NCF, Ncs, and T are pairwise disjoint alphabets, 
and every production in P is either of the form A B  -+ AC, where B E NCS,  
A, C E NCF,  or of the form A -+ x ,  where A E NCF, x E NCS U T U N6F. 
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Proof. Let 
G’ = (V, T ,  P’, S )  

be a context-sensitive grammar in Penttonen normal form (see Lemma 2) so that 
L = L(G). Then, let 

be the context-sensitive grammar defined as follows: 

G = (NCF U NCS U T,T,P, S )  

NCF = V - T ,  
N c s  = { E :  A B - + A C E P ’ ,  A , B , C € V - T } ,  
P = { A - + z :  A - + z E P ’ ,  A E V - T ,  X E T U ( V - T ) ~ } U  

{ B - + g ’ , A E - - + A C :  AB-+ACE P’, A , B , C E V - T } .  

Obviously, L(G’) = L(G) and G is of the required form. 0 

Lemma 5.  Every L E RE can be generated by  a phrase-structure grammar G = 
(NCF U Ncs U T ,  T ,  P, S ) ,  where NCF,  Ncs,  and T are pairwise disjoint alphabets 
and every production in P is either of the form AB -+ AC, where B E Ncs, 
A,C E NCF, or of the fo rm A -+ 2,  where A E NCF,  z E { E }  U N c s  U T  U N&F. 

0 

Besides context-free, context-sensitive and phrase-structure grammars, we also 

Proof. The reader can prove this lemma by analogy with Lemma 4. 

discuss ETOL grammars, EIL grammars and queue grammars in this book. 

Definition 4. An ETOL grammar (see [155], [156]) is a t+3-tuple, 

G = (V, T ,  pi , - - . , Pt, S), 

where t 2 1, and V ,  T ,  and S are the total alphabet, the terminal alphabet 
(T c V ) ,  and the axiom (S E V - T ) ,  respectively. Each Pi is a finite set of 
productions of the form 

where a E V and z E V*.  If a -+ 2 E Pi implies x # E for all i E {l,...,t}, 
G is said to be propagating (an EPTOL grammar for short). Let u ,v  E V*,  
u = (1102. .  .a,, v = v1v2.. . v,, q = IuI, aj E V ,  vj E V * ,  and p l , p 2 , .  . . , p ,  is a 
sequence of productions of the form p j  = aj -+ vj E Pi for all j = 1,. . . , q,  for 
some i E (1,. . . , t } .  Then, u directly derives v according to the productions p l  

through p, ,  denoted by 

In the standard manner, we define the relations +: (k 2 0), +$, and =+&. The 
language of G, denoted by L(G), is defined as 

a -+ z, 

*G v [Pl,P2,...rPq]. 

L(G) = (20 E T* : S =+& w}. 

The families of languages generated by ETOL and EPTOL grammars are denoted 
by ETOL and EPTOL, respectively. 
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Let G = (V, T ,  P I ,  . . . , Pt, S) be an ETOL grammar. If t = 1, G is called an EOL 
grammar. We denote the families of languages generated by EOL and propagating 
EOL grammars (EPOL grammars for short) by EOL and EPOL, respectively. 

An OL grammar is defined by analogy with an EOL grammar except that V = T 
and S E T*.  For simplicity, as V = T ,  we specify an OL grammar as a triple 
G = (T,  P, S) rather than a quadruple G = (T,T, P, S). By OL, we denote the 
family of languages generated by OL grammars. 

Theorem 2 (see [155]). 
CF 
C 

EOL = EPOL 
C 

ETOL = EPTOL 
C 

cs. 
Definition 5. Given integers m, n L 0, an E(m, n)L grammar (see [155], [156]) is 
defined as a quadruple 

G = (V, T ,  P, s), 

where V, T ,  and s are the total alphabet, the terminal alphabet T 
axiom s 6 V ,  respectively. P is a finite set of productions of the form 

V ,  and the 

(u, a,w) + Y 

such that a E V ,  u,w,y E V' ,  0 5 1uI I m, and 0 5 1w1 5 n. Let x, y E V'.  Then, 
x directly derives y in G, written as 

provided that 3: = ~ 1 ~ 2 . .  . a k ,  y = yly2 . .  . yk, k 2 1, and for all i, 1 5 i 5 k, 

. . . ai-1, ai ,  ai+1 . * . Ui+,) -+ yi E P. 

We assume aj = E for all j 5 0 or j 2 k + 1. In the standard way, +;, +;, and 
=+& denote the i-fold product of JG, i 2 0, the transitive closure of JG, and the 
transitive and reflexive closure of J G ,  respectively. The language of G, L(G),  is 
defined as 

L(G) = {W E T* : s +& w}. 

Let G = (V, T ,  P, s) be an E(0, n)L grammar, n 2 0, and p = ( E ,  A,  w) -+ y E P. 
We simplify the notation of p so that p = (A,v) --+ y throughout this book. By 
EIL grammars, we refer to E(m, n)L grammars for all m, n 2 0. 

Definition 6. A queue grammar (see [SS]) is a sixtuple, 
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where V and W are alphabets satisfying V n W = 0 ,  T C V ,  F 5 W ,  R E 
(V - T)(W - F ) ,  and 

g c (V x (W - F ) )  x (V* x W )  

is a finite relation such that for any a E V ,  there exists an element ( a ,  b, x, c )  E g .  
If there exist u, w E V*W,  a E V ,  r ,  z E V * ,  and b, c E W such that ( a ,  b, z ,  c )  E g ,  
u = arb, and w = rzc ,  then u directly derives w according to ( a ,  b, z ,  c)  in Q ,  

u JQ [(a, b,  2, c ) ]  

Define +$ (k 2 0), +$, and +; in the standard way. The language of Q, L(Q),  
is defined as 

L(Q) = { W E T *  : R +$ wf, f E F } .  

Theorem 3 (see [SS]). Every language in RE is generated by a queue grammar. 

If some grammars define the same language, they are referred to as equivalent 
grammars. This equivalence is central to this book because we often discuss how 
to transform some grammars to some other grammars so that both the original 
grammars and the transformed grammars are equivalent. 





Chapter 3 

Context Conditions Placed on 
Derivation Domains 

In the formal language theory, the relation of a direct derivation, +, is introduced 
over V * ,  where V is the total alphabet of a grammar. Algebraically speaking, + is 
thus defined over the free monoid whose generators are symbols. In this chapter, 
we modify this definition by using strings rather than symbols as the generators. 
More precisely, we introduce this relation over the free monoid generated by a finite 
set of strings; in symbols, =+ is defined over W*,  where W is a finite language. As 
a result, this modification represents a very natural context condition: a derivation 
step is performed on the condition that the rewritten sentential form occurs in W*.  
This context condition results into a large increase of generative power of both the 
sequential and parallel context-independent grammars, represented by context-free 
grammars and EOL grammars, respectively. In fact, even if W contains strings 
consisting of no more than two symbols, the resulting power of these grammars is 
equal to that of Turing machines. 

3.1 Sequential Grammars over Word Monoids 

Definition 7. A context-free grammar over word monoid, a wm-grammar for short 
(see [103], [ill]), is a pair 

where 
G = (V,T, P, S) 

is a context-free grammar, and W ,  called the set of generators, is a finite language 
over V .  (G, W )  is of degree i, where i is a natural number, if y E W implies IyI 5 i. 
(G, W )  is said to  be propagating if A -+ x E P implies x # E .  

Roughly speaking, such a production A -+ x of a wm-grammar can be applied 
to a word w only when w is in W*. 

Formally, the direct derivation +(G,w) on W* is defined as follows: if p = A -+ 

y E P,  X A Z ,  xyz E W* for some x, z E V*,  then xAz directly derives xyz, 

(G, W ) ,  

XAz * ( G , W )  XYz [PI 

in symbols. In the standard manner, we denote the k-fold product of +(G,w) (for 
some k 2 0) by +tG,w), the transitive closure of +(G,w) by +&w), and the 
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reflexive and transitive closure of +(G,w) by J T ~ , ~ ) .  The language of (G ,W) ,  
symbolically denoted by L(G, W ) ,  is defined as 

L ( G , W )  = {W E T* : s JTG,w) w}. 

We denote by WM the family of languages generated by wm-grammars. The 
family of languages generated by wm-grammars of degree i is denoted by WM(i). 
The families of propagating wm-grammars of degree i and propagating wm-gram- 
mars of any degree are denoted by prop-WM(i) and prop-WM, respectively. 

Let us examine the generative capacity of (propagating) wm-grammars. 

Theorem 4. prop-WM(0) = WM(0) = 0, prop-WM(1) = WM(1) = CF. 

Proof. Follows immediately from the definitions. rn 

Next, we prove that (i) a language is context-sensitive if and only if it is gener- 
ated by a propagating wm-grammar (of degree 2) and (ii) a language is recursively 
enumerable if and only if it is generated by a wm-grammar (of degree 2). 

Theorem 5. prop-WM(2) = CS. 

Proof. It is straightforward to prove that prop-WM(2) C CS; hence it suffices to 
prove the converse inclusion. 

Let L be a context-sensitive language. Without loss of generality we can assume 
that L is generated by a context-sensitive grammar 

G =  ( N c F U N C S U T , T , P , S )  

of the form described in Lemma 4. Let 

The propagating wm-grammar (G’, W )  of degree 2 is defined as follows: 

G’ = (V’, T ,  P’, S ) ,  

where 

V‘ = V U Q ,  
Q = { ( A ,  B ,C)  : AB -+ AC E P, A,C E N C F ,  B E N c s }  

Clearly, without loss of generality, we can assume that Q f l  V = 8. The set of 
productions P’ is defined in the following way: 

1. if A 4 z E P ,  A E N C F ,  II: E NCS U T U NgF, then add A + II: to P’; 

2. if AB -+ AC E P ,  A,C E NCF,  B E NCS, then add B -+ (A ,  B ,C)  and 
(A ,  B ,  C )  -+ C to P’. 
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The set of generators W is defined as follows: 

W = { A ( A , B , C ) :  (A ,B,C)  E Q ,  AENcF}UV.  

Obviously (G’,W) is a propagating wm-grammar of degree 2. Next, let h be a 
finite substitution from (V’)* into V *  defined as: 

1. for all D E V ,  h (D)  = D;  

2. for all ( X , D , Z )  E Q ,  h ( ( X , D , Z ) )  = D. 

Let h-l be the inverse of h. To show that L(G) = L(G’, W ) ,  we first prove that 

S +g w if and only if S +TGtw) v, 

where v E W* n h-l(w),  w E V+,  for some m, n 2 0. 

Only i f :  This is established by induction on the length m of derivations in G. 

Basis: Let m = 0. The only w is S because S a: S. Clearly, S +l)c,,w) S and 

Induction Hypothesis: Let us suppose that our claim holds for all derivations of 
length at most m, for some m 2 0. 

Induction Step: Consider a derivation 

s E h-l(S) .  

s =+Z+I 2, 

where z E V+.  Since m + 1 2 1, there is some y E V+ and p E P such that 

and by the induction hypothesis, there is also a derivation 

*TG/,W) Y“ 

for some y” E W* n h-l(y),  n 2 0. 

(i) Let us assume that p = D -+ y z ,  D E N C F ,  yz E NcsUTUN;,, Y = Y I D Y ~ ,  
y1,y3 E V * ,  and 2 = y1y2y3. Since from the definition of h-l it is clear 
that h-’(Z) = { Z }  for all 2 E NCF,  we can write y” = ~ 1 D t 3 ,  where 
z1 E h-’(yl) and z3 E h-’(y3), It is clear that D -+ y2 E P’ (see the 
definition of I”). 
Let 23 @ Q(V’)*. Then, 

s *:Gj,w) zlDz3 *(G’,W) 219223,  

and clearly, ~ 1 ~ 2 . ~ 3  E h-l(yy1~2~3) n W*.  
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Let z3 E Q(V’)*; that is, z3 = Y r  for some Y E Q,  T E (V‘)*. Thus, 
Dh(Y) -+ DC E P (for some C E N c F ) ,  y3 = h(Y)s ,  where T E h-’(s) and 
s E V*.  Hence, we have h ( Y )  -+ Y E P’ (see (2) in the definition of P’). 
Observe that h(Y)  -+ Y is the only production in P’ that has Y appearing on 
its right-hand side. Also it is clear thar r is not in Q(V‘)* (see the definition 
of W ) .  Thus, {zlDh(Y)r,  zlyzh(Y)r} G W * ,  and since 

s *:GI,+’) Z l D y T ,  

there must be also the following derivation in (G’, W ) :  

*;“c;tw, zlDh(Y)r =$‘(G’,W) ZlDYT [h(Y)  ---f Y ] .  

So we get 

s =$‘& zlDh(Y)r *(G’,W) z1y2h(Y)T [D -+ y2] 

such that z1y2h(Y)r is in h-’(s) n W*. 

(ii) Let p = AB -+ AC, A,C E NCF, B E Ncs ,  y = ylABy2, y1,y2 E V * ,  
x = y1ACy2, y” = z ~ A Y z ~ ,  zi E h-’(yi), i E {1,2}, and Y E h-’(B). 
Clearly, { B  -+ (A ,  B ,C) ,  (A ,  B ,C)  -+ C }  G P’ and A(A,  B ,  C) E W .  

Let Y = B. Since B E N c s ,  z2 $? Q(V’)*, and so zlA(A, B ,  C)z2 E W* (see 
the definition of W ) .  Thus, 

*TG’,W) ZlABzz 

*(G’,W) zlA(A,B,  c ) z 2  [ B  -+ ( A ,  B ,  c)] 
* (G’ , W) zlACz2 [ (A,B,C)  -+ CI 

and zlACz2 E h-l(z)  n W*.  

Let Y E Q. Clearly, h(Y)  = B and by the definitions of Q and P‘, we have 
B -+ Y E PI. Thus, we can express the derivation 

in the form 

Since zlA(A, B ,  C)z2 E W * ,  we get 

where zlACz2 E h-l(x) n W * .  
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I f :  This is also established by induction, but in this case on n 2 0. 

Basis: For n = 0 the only v is S because S 
w = S. Clearly, S JOG S. 

Induction Hypothesis: Let us assume the claim holds for all derivations of length 
at most n, for some n 2 0. 

Induction Step: Consider a derivation 

S. Since S E h- l (S) ,  we have 

where u E h-’(z) n W* and z E V+. Since n + 1 2 1, there is some p E PI, 
y E V+,  and w E h-’(y) n W* such that 

and by the induction hypothesis, 

s *; y. 

Let v = T’Ds’, y = TBS ,  T’ E h - ’ ( r ) ,  s’ E h-’(s), T , S  E V * ,  D E h-’(B), 
u = T‘z’s‘, and p = D -+ z’ E P’. Moreover, let us consider the following three 
cases: 

(i) Let h(z’) = B,  (see (2)). Then, u = T’Z’S’ E h-’(rBs); that is, z = rBs. By 
the induction hypothesis we have 

(ii) Let z’ E T U NCS U N;F. Then, there is a production B -+ z’ E P. Since 
z’ E h-l(z’), we have z = TZ’S.  Clearly, 

s +; TBs J G  TZ’S [B -+ 2’1. 

(iii) Let z’ = C E NCF,  D = (A ,  B ,  C )  E Q. By the definition of W ,  we have 
T’ = t’A, T = tA,  where t’ E h-’(t), t E V * ,  and so z = tACs. By the 
definition of Q, there is a production AB + AC E P. Thus, 

S =+; tABs J G  tACs [AB + AC]. 

By the inspection of P‘, we have considered all possible derivations of the form 

*T&,w) *(G’,W) 

in (GI, W ) .  Thus, by the principle of induction, we have established that 
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for some n 2 0 and u E W* implies 

s *& x ,  

where x E V* and u E h-’(x). Hence, 

S +; w if and only if S +TG,,w) v ,  

where ZI E W* n h-’(w) and w E V * ,  for some m, n 2 0. 
The proof of the equivalence of G and (G’, W )  can easily be derived from the 

above: by the definition of h-l ,  we have h-l(a) = { u }  for all a E T .  Thus, by the 
statement above and by the definition of W ,  we have for any x E T* ,  

S *& x if and only if S +TGc’,w) x ;  

that is, L(G)  = L(G’, W ) .  Thus, prop-WM(2) = CS, which proves the theorem. 
1 

Observe that the form of the wm-grammar in the proof of Theorem 5 implies 
the following corollary: 

Corollary 1. Let L be a context-sensitive language over an alphabet T .  Then, L 
can be generated by  a propagating wm-grammar (G, W )  of degree 2, where G = 

(V, T ,  P, S )  satisfies 

(i) T C W and (W - V )  

(ii) if A -+ x and 1x1 > 1, then x E (V - T)’. 

(V - T)’; 

Next, we study the wm-grammars of degree 2 with erasing productions. We 
prove that these grammars generate precisely RE. 

Theorem 6. WM(2) = RE. 

Proof. Clearly, we have WM(2) 2 RE; hence it suffices to show RE C WM(2). 
The containment RE C WM(2) can be proved by the techniques given in the proof 
of Theorem 5 because every language L E RE can be generated by a grammar 
G = (V, T ,  P, S )  of the form of Lemma 5 .  The details are left to the reader. 1 

Since the form of the resulting wm-grammar in the proof of Theorem 6 is 
analogous to  the wm-grammar in the proof of Theorem 5 (except that the former 
may contain some erasing productions), we have: 

Corollary 2. Let L be a recursively enumerable language over an alphabet T ,  
Then, L can be generated by  a wm-grammar (G,  W )  of degree 2, where G = 
(V, T ,  P, S )  such that 

(i) T 5 W and (W - V )  C (V - T)’; 

(ii) if  A -+ x and 1x1 > 1, then x E (V - T)’. 
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Summing up Theorems 4, 5, and 6, we obtain the following corollary: 

Corollary 3. 
prop-WM(1) = WM(1) = CF 

C 
prop-WM(2) = prop-WM = CS 

C 
WM(2) = WM = RE. 

So far we have demonstrated that propagating wm-grammars of degree 2 and 
wm-grammars of degree 2 characterize CS and RE, respectively. Next, we show 
that the characterization of RE can be further improved in such a way that even 
some reduced versions of wm-grammars suffice to generate all the family of recur- 
sively enumerable languages. More specifically, we can simultaneously reduce the 
number of nonterminals and the number of words of length two occurring in the 
set of generators without any decrease of the generative power (see [ill]). 

Theorem 7. Every L E RE can be defined by  a 10-nonteminal context-free 
grammar over a word monoid generated by  an alphabet and six words of length 
two. 

Proof. Let L E RE. By Geffert (see [69]), L = L(G) ,  where G is a phrase-structure 
grammar of the form 

G = (V, T ,  P U {AB --+ E ,  C D  -+ E } ,  S) 

such that P contains only context-free productions and 

V - T = {S ,A ,B ,C ,D} .  

Let us define a wm-grammar (GI, W )  of degree 2, where 

G’ = (V’, T ,  P’, S )  

and 

V’ = {S, A, B ,  C, D ,  ( A B ) ,  (CD) ,  ( le f t ) ,  (right), (empty)) U T ,  
P’ = P U { B  -+ (AB) ,  (AB)  -+ (right), 

D -+ (CD) ,  (CD)  -+ (right), 
A -+ ( le f t ) ,  C -+ ( le f t ) ,  
( l e f t )  -+ ( empty ) ,  (right) -+ (empty), (empty) -+ E } .  

The set of generators is defined as 

W = {A(AB) ,  C(CD),  ( le f t i (AB),  ( le f t ) (CD) ,  
(left)(right), (empty)(right), (empty)} U T  U {S ,A ,B ,C ,D} .  

Clearly, (G’ ,W)  is a wm-grammar with the required properties. 

L(G)  
To establish 

L(G’, W ) ,  we first prove the following claim: 
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Claim 1. S =+-E w implies S +TG,,w) w, where w E V* for some m 2 0. 

Proof. This is established by induction on m. 

Basis: Let m = 0. The only w is S because S 

Induction Hypothesis: Suppose that our claim holds for all derivations of length 
m or less, for some m 2 0. 

Induction Step: Consider a derivation of the form 

S. Clearly, S +!G’,w) S. 

s =$;+I w 

with w E V*.  As m + 1 2 1, there exists y E W+ and p E P such that 

by the induction hypothesis, there also exists a derivation 

*TG’,W) 9. 

Observe that y E W* because V 
forms: 

W .  The production p has one of these three 

(i) p is a context-free production in P ,  

(ii) p has the form A B  --+ E ,  

(iii) p has the form CD --f E .  

Next, we consider these three possibilites. 

(i) Let us assume that p = E -+ y2, y = YlEY3, E E {S,A, B,C,D}, y1, y3 E 
V*,  and w = y1y2y3. By the construction of PI, E -+ y2 E PI. Thus, 

(ii) Let p = A B  -+ E ,  y = ylABy2, y1,y2 E V * ,  w = y1y2. At this point, we 
construct the following derivation in (G’, W ) :  
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(iii) Let p = CD -+ E ,  y = y1CDy2,  y1, y2 E V*,  w = y1y2. By analogy with (ii), 
we can prove that 

*TG’,W) Y1Y2. 

Thus, Claim 1 now follows by the principle of induction. 0 

Next, we sketch how to verify L(G’, W )  2 L(G). First, we make two observa- 
tions, which follow from the definition of W .  

Observation 1. Let 

*TG‘,W) ylABY2 
*(G’,W) Y1A(AB)y2 [B  (AB)]  
*TG’,W) w, 

where w E T*.  Then, during the derivation 

ylA(AB)Y’2 *TG’,W) w l  

the following six derivation steps necessarily occur: 

1. A is rewritten according to A --$ ( l e f t ) ,  so ( l e f t ) ( A B )  is produced. 

2. (AB) is rewritten according to (AB) -+ ( r igh t ) ,  so ( l e f t ) ( r i g h t )  is produced. 

3. ( l e f t )  is rewritten according to ( l e f t )  -+ ( e m p t y ) ,  so ( e m p t y ) ( r i g h t )  is pro- 
duced. 

4. ( r i g h t )  is rewritten according to ( r i g h t )  -+ ( e m p t y ) ,  so ( e m p t y ) ( e m p t y )  is 
produced. 

5 .  One ( e m p t y )  in ( e m p t y ) ( e m p t y )  is erased according to ( e m p t y )  -+ e. 

6 .  The other ( e m p t y )  is erased according to ( e m p t y )  -+ E .  

Observation 2. Let 

*TG’,W) YlCDY2 
*(G’,W) Y1c(cD)Y2 I D  ( c D ) l  
*;G’,W) w 1  

where w E T*. Then, during the derivation 

Y1c(cD)Y2 *TG’,W) 1 

the following six derivation steps necessarily occur: 

1. C is rewritten according to C -+ ( l e f t ) ,  so ( l e f t ) ( C D )  is produced. 

2. (CD)  is rewritten according to  (CD) -+ ( r i g h t ) ,  so (left) ( r igh t )  is produced. 



24 Chapter 3: Conditions Placed on Derivation Domains 

3. ( l e f t )  is rewritten according to ( l e f t )  -+ ( empty ) ,  so ( empty ) ( r igh t )  is pro- 
duced. 

4. (right) is rewritten according to  (r ight)  -+ ( empty ) ,  so ( empty ) ( empty )  is 
produced. 

5 .  One ( empty )  in ( empty ) ( empty )  is erased according to (empty)  --+ E. 

6 .  The other ( empty )  is erased according to ( empty )  -+ E. 

Considering Observations 1 and 2, we can easily prove the following claim: 

Claim 2. S +>,,w) w implies S +; 20, where w E T*, for  some m 2 0.  

Proof. This proof is left to the reader. 

Therefore, L(G) = L(G’, W ) ,  and Theorem 7 holds. 

[I] 

L(G’,W). From Claim 2, we get L(G’,W) C L(G). 

Recall that for ordinary context-free grammars (which coincide with the wm- 
grammars of degree 1 in terms of the present chapter), Gruska [77] proved that for 
every natural number n 2 1, the context-free grammars with n+l nonterminals are 
more powerful that the context-free grammars with n nonterminals. Consequently, 
if we reduce the number of nonterminals in context-free grammars over letter 
monoids, then we also reduce the power of these grammars. On the other hand, 
by Theorem 7, context-free grammars defined over word monoids keep their power 
even if we reduce their number of nonterminals to 10. 

By Claim 1, L(G) 

3.2 Parallel Grammars over Word Monoids 

Definition 8. An EOL grammar on word monoid, a WMEOL grammar for short, 
is a pair 

where 

(G, W )  I 

G = (V, T ,  P, S) 

is an EOL grammar. The set of generators W is a finite language over V. By 
analogy with wm-grammars, (G, W )  has degree i ,  where i is a natural number, if 
every y E W satisfies IyI 5 i. If A -+ x E P implies x # E ,  (G, W )  is said to be 
propagating. Let x , y  E W* such that x = a1a2.. . an, y = ~ 1 ~ 2 . .  .yn,  ai E V ,  
yz E V * ,  1 I i 5 n, n 2 0. If ai -+ yi E P for all i = 1.. . n, then x directly derives 
y according to productions a1 -+ y1, a2 -+ y2, . . ., a,  -+ y,, 

17: *(G,w) Y [a1 -+Yl , . . . , an  --+ ~ n ]  

in symbols. As usual, the list of applied productions is omitted when no confusion 
arises. In the standard way, +tG,w), +TG,w), and +iG,w) denote the k-fold 
product of + ( ~ , w ) ,  k 2 0, the transitive closure of =+(G,w), and the transitive 
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and reflexive closure of =+(G,w), respectively. The language of (G,  W ) ,  denoted by 
L(G, W ) ,  is defined in the following way: 

L ( G , W )  = {W E T* : S +G,W) w}. 

By WMEOL(i), WMEPOL(i), WMEOL, and WMEPOL, we denote the fami- 
lies of languages generated by WMEOL grammars of degree i, propagating WMEOL 
grammars of degree i, WMEOL grammars, and propagating WMEOL grammars, 
respectively. 

Note that WMEOL grammars of degree 2 are called symbiotic EOL grammars 
in [105]. The families of languages generated by symbiotic EOL grammars and 
propagating symbiotic EOL grammars are denoted by SEOL and SEPOL; that is, 
SEOL = WMEOL(2) and SEPOL = WMEOL(2). 

Let us investigate the generative power of WMEOL grammars. Clearly, 

WMEPOL(0) = WMEOL(0) = 0. 
Recall that for ordinary EOL languages, EPOL = EOL (see Theorem 2.4 in [157]). 
Therefore, the following theorem follows immediately from the definitions: 

Theorem 8. WMEPOL(1) = WMEOL(1) = EPOL = EOL. 

Next, let us investigate WMEOL grammars of degree 2 (symbiotic EOL gram- 
mars). In Theorems 9 and 10, we demonstrate that these grammars have re- 
markably higher generative capacity than WMEOL grammars of degree 1. More 
specifically, propagating WMEOL grammars of degree 2 generate precisely the fam- 
ily of context-sensitive languages and WMEOL grammars of degree 2 generate all 
the family of recursively enumerable languages. 

Theorem 9. WMEPOL(2) = CS. 

Proof. It is straightforward to prove that WMEPOL(2) C_ CS; hence it suffices 
to prove the converse inclusion. Let L be a context-sensitive language generated 
by a context-sensitive grammar 

G = (NCF U N c s  U T,  T ,  P, S) 

of the form described in Lemma 4. Let 

v = N C F  u NCS u T 

and 
V’ = V U Q ,  

Q = { ( A ,  B,  C )  : AB + AC E P, A ,  C E N C F ,  B E Ncs}. 

The WMEPOL grammar of degree 2, (G’, W ) ,  is defined as follows: 

where 

Clearly, without loss of generality, we can assume that Q r l  V = 8. 

G’ = (V’, T ,  P’, S), 

where PI is constructed as 
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1. for all A E V’, add A --+ A to Y‘; 

2. if A -+ x E P,  A E NCF,  x E NCS u T U N6F,  then add A -+ x to P’; 

3. if AB -+ AC E P,  A,C E N C F ,  B E Ncs, then add B -+ (A ,B,C)  and 
(A,  B,  C )  -+ C to P’. 

The set of generators, W 5 (V U V2), is defined in the following way: 

W = { A(A, B ,  C )  : (A ,  B ,  C )  E Q ,  A E N C F }  U V. 

Obviously, (G’, W )  is a WMEPOL grammar of degree 2. Let us introduce a sub- 
stitution from (V’)* into V* as 

1. for all D E V, h(D) = D, 

2. for all ( X ,  D, 2)  E Q, h(  ( X ,  D, 2)) = D. 

Let h-’ be the inverse of h. To demonstrate that L(G) = L(G’, W ) ,  we first prove 
two claims: 

Claim 3. If S =+g w, w E V+, for some m 2 0, then S +TG,,w) v, where 
21 E h-l(z0). 

Proof. This is established by induction on the length m of derivations in G. 

Basis: Let m = 0. The only w is S because S J& S. Since S E W * ,  S J ! ~ , , ~ )  

S and by the definition of h-l, S E h-’(S). 

Induction Hypothesis: Let us suppose that our claim holds for all derivations of 
length at most m, for some m 2 0. 

Induction Step: Consider a derivation 

x E V*. Since m + 1 2 1, there is some y E V+ and p E P such that 

s * g  Y *G b] 
and, by the induction hypothesis, there is also a derivation 

for some y’ E h-’(y), n 2 0. By definition, y’ E W*. 

(i) Let us first assume that p = D -+ yz E P,  D E NCF,  y2 E Ncs U T U N&, 
y = y1Dy3, and x = y1y2y3, y1 = a l . .  .ail  y3 = bl . . . b j ,  where ak,bl  E V, 
1 L k L i, 1 L 1 L j ,  for some i , j  2 0 (i = 0 implies y1 = E and j = 0 implies 
y3 = E ) .  Since from the definition of h-’ it is clear that hA1(Z) = (2 )  for all 
2 E N C F ,  we can write y’ = Z l D Z 3 ,  where 21 E h-l(y1) and 23 E h-l(y3), 
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that is to say, z1 = c1 . . . ci, 23 = dl  . . . d j ,  where Ck E h-’(ak), dl E h-’(bl), 
for 1 I k 5 i, 1 L 1 5 j. It is clear that D -+ y2 E P’. 

Let d l  # Q. Then, it is easy to see that 2 1 ~ 2 ~ 3  E W”,  and so 

z ~ D z ~  +(Gt,w) ~ 1 ~ 2 ~ 3  [cI +. ~ 1 , .  . . ,ci + ~ i ,  D +. y z ,  d l  +. d l , .  . . , d j  +. d j ] .  

Therefore, 
s *TG!,w) Z l D Z 3  *(G’,W) Z l Y 2 Z 3  

and Z l Y 2 Z 3  E ~ - ‘ ( Y I Y ~ Y ~ ) .  

Let dl  E &. That is, Dh(d1) +. DC E P (for some C E NcF);  see the 
definition of h. Hence, we have h(d1) +. dl  E P’; see (3) (observe that 
this production is the only production in P’ that has dl  appearing on its 
right-hand side). It is clear, by the definition of W ,  that d2 $! Q. Thus, 

such that ~1y2h(dl)d2.. . d j  is in h-l(z) .  

(ii) Let p = AB +. AC E P ,  A,C E N C F ,  B E N c s ,  y = y1ABy2, y1,y2 E V*,  
2 = ylACy2, y‘ = 21AYz2, zi E h-l(yi), i E { l , 2 } ,  Y E h-’(B), and 
y1 = a1 . . . ai, y3 = bl . . . b j ,  a k ,  bl E V ,  1 5 k 5 i, 1 5 1 5 j, for some 
i , j  2 0. Let z1 = c1. ..ci, 23 = dl  .. . d j ,  Ck E h-’(Uk), dl E h-’(bi), 
1 5 k 5 i, 1 5 I 5 j .  Clearly, { B  -+ {A, B ,  C ) ,  (A,  B ,C)  +. C }  C P’, and 
A(A, B ,C)  E W ,  see the definition of W .  

Let Y = B. Since y‘ E W* and B E NCS,  we have d l  $! Q. Consequently, 
zlA(A, B ,  C)zz and zlACz2 are in W* by the definition of W .  Thus, 
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where 

= ~1 --+ ~ 1 , .  . . ,ci  -+ ci,A -+ A , B  -+ (A,B,C),dl  -+ d l , .  . . , d j  -+ d j ,  

TZ  = ~1 -+ ~ 1 , .  . .,ci -+ % , A  + A, (A ,B,C)  -+ Cldl -+ d l , .  . . , d j  + d j ,  

and zlACzz E h-l(s). 

Let Y E Q. Clearly, h ( Y )  must be equal to B. By (3) and the definition of 
Q, we have B -+ Y E Pi. Clearly, zlACzz is in W’ for dl  $2 Q as we have 
already shown. Thus, since 

the word zlAYzz can be derived in (GI, W )  as follows: 

*;“C;:w, ZlABzz 

*(G’,W) ZlAYzZ [TI1 

where 

T = ~1 + ~ 1 , .  .. ,ci -+ ci,A -+ A, B --+ Y , d 1  + d1 , .  . . , d j  -+ d j .  

where 

T I  = ~1 -+ ~ 1 , .  . . , ~ i  -+ ci,A -+ A, B + (A ,  B,C),di  -+ d l , .  . . , d j  -+ d j ,  

T Z  = ~1 -+ ~ 1 , .  . . r ~ i  -+ ci,A -+ A, (A,  B ,C)  -+ C,dl -+ d1 , .  . . , d j  -+ d j ,  

and zlACzz E h-l(z). 

Cases (i) and (ii) cover all possible rewriting of y in G. Thus, the claim now follows 
from the principle of induction. 0 

Claim 4. Let S +fG,,w) u, v E W * ,  v = rDs,  and p = D -+ z E P. Then, 

h(u) +,$ h(r)h(z)h(s) for some i = 0,1. 

Proof. To verify this claim, consider the following three cases: 

(i) Let h(z)  = h(D). Then, 

h(u) *; h(r)h(z)(s).  
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(ii) Let z E T U N c s  UN;,, D E NCF.  Then, there is a production B --t z E P ,  
and by the definition of h, we have B + z = h(B) --f h(z) .  Thus, 

h(r)h(D)h(s) *G h(r)h(z )h(s )  [h(B)  + h(z)] .  

(iii) Let z = C E NCF and D = (A,  B ,  C )  for some (A,  B ,  C) E Q; see (3). By 
the definition of W ,  we have r = tA, where t E W * ,  and so v = tACs. By 
the definition of Q, there is a production AB + AC E P. Thus, 

tABs =+-G tACs [AB -+ AC], 

where tABs = h(tA)h( ( A ,  B,  C))h(s )  and tACs = h(tA)h(C)h(s). 

By inspection of P’, cases (i) through (iii) cover all possible types of productions 
0 in PI, which proves the claim. 

Claim 5.  I f S  

Proof. 

Basis: For n = 0, the only u, is S because S 
S JOG S in G. 

Induction Hypothesis: Let us assume that the claim holds for all derivations of 
length at most n, for some n 2 0. 

Induction Step: Consider a derivation 

u, u E W*,  for  some n L 0, then S +: h(u). 

S. Since S = h(S )  we have 

where u E W*. Since n + 1 2 1, there is some v E W* such that 

*YG1,W) *(G’,W) u, 

and by the induction hypothesis 

s *; h(v).  

Return to the proof of Claim 4. It should be clear that by using (i) through (iii) 
from Claim 5, we can construct a derivation 

h(v)  =& Wu), 
for some i E ( 0 , .  . . , lul}, in the following way: first rewrite all occurrences of 
symbols corresponding to the case (iii) and then all occurrences of symbols corre- 
sponding to (ii); the technical details are left to the reader. 

Thus, 
s *& h(v) *& h(u) 

in G. Hence, by the principle of induction, we have established Claim 5. 0 
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Next, the proof of the equivalence of G and (GI, W )  can be derived from 
Claims 3 and 5: By the definition of h-’, we have h-l(a) = { a }  for all a E T .  
Thus, by Claim 3, we have for any x E T* ,  

S +; x implies S +TGc’,w) x; 

that is, L(G) G L(G’,W). 

x E T*, 
S +iG,,w) x implies S +; x; 

that is, L(G’, W )  C L(G). As a result, L(G) = L(G‘, W )  and so WMEPOL(2) = 

Conversely, since T* C W * ,  we get, by the definition of h and Claim 5, for any 

CS = SEPOL, which proves the theorem. 

Observe that Theorem 9 and the definitions yield the following normal form: 

Corollary 4. Let L be a context-sensitive language over an alphabet T .  Then, L 
can be generated by  an WMEPOL grammar (G, W )  of degree 2, G = (V,T, P, S ) ,  
where W is over an alphabet V such that T C W ,  (W - V )  C (V - T ) 2 ,  and if 
A -+ x and 1x1 > 1, then x E (V - T ) 2 .  

Let us turn the investigation to WMEOL grammars of degree 2 with erasing 
productions. 

Theorem 10. WMEOL(2) = RE. 

Proof. Clearly, WMEOL(2) C RE, hence it suffices to  show RE C_ WMEOL(2). 
Each language L E RE can be generated by a phrase-structure grammar G 

having the form of Lemma 5. Thus, the containment RE WMEOL(2) can be 
proved by analogy with the techniques used in the proof of Theorem 9. The details 
are left to the reader. 

Since the forms of the resulting WMEOL(2) grammar in the proofs of Theorem 9 
and Theorem 10 are analogous, we obtain the following corollary as an analogy to 
Corollary 4: 

Corollary 5. Let L be a recursively enumerable language over an alphabet T .  
Then, L can be generated by  an WMEOL grammar ( G , W )  of degree 2, G = 
(V, T ,  P, S ) ,  where W is over an alphabet V such that T G W ,  ( W - V )  G (V-T)2 ,  
and if A -+ x and 1x1 > 1, then x E (V - T ) 2 .  

Summing up Theorems 8, 9 and 10, we obtain the following corollary: 

Corollary 6. 

CF 
C 

WMEPOL( 1) = WMEOL( 1) = EPOL = EOL 
C 

WMEPOL(2) = CS 
C 

WMEOL(2) = RE. 
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Open Problems. In this chapter, we have discussed grammars with derivations 
over the word monoids rather than the letter monoids. From a broader algebraic 
perspective, we could consider many other modifications of the derivation domains. 
Specifically, what is the generative power of context-free grammars whose deriva- 
tions axe defined over free groups? 





Chapter 4 

Context Conditions Placed on the 
Use of Productions 

In this chapter, we discuss grammars with context conditions represented by 
strings associated with productions. We distinguish between two types of these 
conditions-forbidding conditions and permitting conditions. A production is ap- 
plicable to a sentential form if each of its permitting conditions occurs in the 
sentential form and any of its forbidding conditions does not. In Section 4.1, we 
study sequential grammars with context conditions, originally introduced by van 
der Walt [175] in 1970. Then, in Section 4.2, we introduce and discuss parallel 
versions of these grammars. In both sections, we demonstrate that this concept of 
context conditions attached to grammatical productions significantly increase the 
grammatical generative power. Furthermore, in some grammars, we explain how 
to reduce the number of conditional productions, the length of context conditions, 
and the number of nonterminals. 

4.1 Sequential Conditional Grammars 

Informally, a sequential conditional grammar is an ordinary context-free grammar 
in which the application of productions is regulated by the permitting and for- 
bidding context conditions. In every derivation step, such a grammar can rewrite 
only one nonterminal symbol in the given sentential form; that is, it works purely 
sequentially. Making use of this basic principle, the formal language theory has 
introduced a large number of variants of these grammars. In order to  unify the no- 
tations and definitions, we start with the basic definition of a context-conditional 
grammar in Section 4.1.1. Then, in Sections 4.1.2 through 4.1.5, we investigate 
some special cases of the context-conditional grammars. 

4.1.1 Context-Conditional Grammars 

Definition 9. A context-conditional grammar is a quadruple, 

G = (V, T ,  p, S), 

where V ,  T ,  and S are the total alphabet, the terminal alphabet (T c V ) ,  and 
the axiom (S E V - T ) ,  respectively. P is a finite set of productions of the form 
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( A  -+ x,Per,For), where A E V - T ,  x E V*,  and finite sets Per, For C V+. 
If Per # 0 or For # 0, the production is said to be conditional; otherwise, it 
is called context-free. G has degree (r,  s), where r and s are natural numbers, if 
for every ( A  -+ x,Per,For) E P ,  max(Per) 5 r and max(For) L: s. If ( A  4 

x ,  Per, For) E P implies x # E ,  G is said to be propagating. Let u, v E V *  and 
( A  -+ x ,  Per, For) E P. Then, u directly derives v according to ( A  -+ x ,  Per, For) 
in G, denoted by 

u JG Y [ ( A  --+ x ,  Per, For)], 

provided that for some ul ,  u2 E V*,  the following conditions hold: 

(a) u = u1Au2, 

(b) v = u1xu2, 

(c) Per C sub(u), 

(d) For n sub(u) = 0. 

When no confusion exists, we simply write u JG v instead of u JG Y [ ( A  -+ 

x ,  Per, For)]. By analogy with context-free grammars, we extend J G  to +& 
(where k 2 0), +& and +;. The language of G, denoted by L(G),  is defined as 

L(G) = {W E T* : S =+; w} .  

The families of languages generated by context-conditional grammars and prop- 
agating context-conditional grammars of degree (r,  s )  are denoted by CG(r ,  s )  and 
prop-CG(r, s), respectively. Furthermore, we define 

0 0 0 5  

C G  = u u CG(r ,s )  
r=O s=O 

and 
c o w  

prop-CG = u u prop-CG(r, s). 
r=O s=O 

Next, we establish several theorems dealing with the generative power of con- 
text-conditional grammars. Let us note, however, that a number of specializations 
of these grammars will be defined and investigated in Sections 4.1.2 through 4.1.5. 
Therefore, only the results concerning the general versions of context-conditional 
grammars are presented here. 

Theorem 11. prop-CG(0,O) = CG(0,O) = CF 

Proof. This theorem follows immediately from the definition. Clearly, context- 
conditional grammars of degree (0,O) are ordinary context-free grammars. 

Lemma 6. prop-CG C CS. 
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Proof. Let r = s = 0. Then, prop-CG(0,O) = CF c CS. The rest of the proof 
establishes the inclusion for degrees (r ,  s) such that r + s > 0. 

Consider a propagating context-conditional grammar 

G =  (V,T,P,S) 

of degree (r,  s ) ,  r + s > 0, for some r, s 2 0. Let k be the greater number of r and 
s. Set 

Next, define 

M = {z E v+ : 1x1 5 k}. 

cf(P) = { A  -+ IC : ( A  -+ z, Per, For) E P,  A E (V - T ) ,  z E V’}. 

Then, set 
NF = { ( X , Z ) :  X E M ,  z€MU{E}},  
NT = {[XJ: X C M } ,  

v’ 
T’ = TU{#}.  

NB = { [ P i  : PEcf(P)}U{r@I}l 
= v U NF U NT U NB U {D, 4, $,s’, #}, 

Construct the context-sensitive grammar 

G’ = (V’, T’, P‘, S’) 

with the finite set of productions P‘ defined as follows: 

1. Add S’ -+ D ( @ , & ) S a  to P’. 

2. For all X g M ,  z E (Vk U {E}) and y E Vkl add the next production to P’: 

(X,z)y -+ y(XUsub(zy,k),y). 

3. For all X C M ,  3c E (V’~{E}) and y E V+, IyI k ,  add the next production 
to P‘: 

( X , z ) y a  --i y[X Usub(zy,k)Ja. 

4. For all X G M and every p = A -+ z E cf(P) such that there exists 
( A  -+ x, Per, For) E P satisfying Per C X and For n X = 8, add the next 
production to P‘: 

lxJa -+ Tpla. 

5. For every p E cf(P) and a E V, add the next production to P’: 

arpi -+ rpia. 

6 .  For every p = A + z E cf ( P ) ,  A E (V - T),  z E V+, add the next production 
to P’: 

~ r p i  -+ raiz. 
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7. For every a E V ,  add the following production to P’: 

4 0 1  --+ [Sla. 

8. Add D[01 --+ D ( ~ , E )  to P’. 

9. Add D(@,E)  -+ #$, $a 4 ##, and $a 4 a$, for all a E T ,  to  P’ 

Claim 6 .  Every successful derivation in G’ has the f o r m  

s’ J G ~  D(8,E)Sa 

D(8,E)XQ 

+GI #$xa 

=$! #x$a 
*GI #x## 

such that x E T’, and during 

D(8,E)Sa +-;, D(8,&)SQ, 

everysententialformw satisfiesw E {D}H+{a}, whereH E V’-{D,Q,#,$,s’}. 

Proof. Observe that the only production that rewrites S‘ is S‘ --+ D(8, E)Sa; thus, 

s’ +GJ D(8,E)Sa. 

After that, every sentential form that occurs in 

D(8, &)Sa +;t D(8, E ) X a  

can be rewritten by using any of the productions (2) through (8) from the con- 
struction of P‘. By inspection of these productions, it is obvious that the edge 
symbols D and Q remain unchanged and no other occurrences of them appear 
inside the sentential form. Moreover, there is no production generating a symbol 
from {#,$, S’}. Therefore, all these sentential forms belong to  {D}H+{a}. 

Next, let us explain how G’ generates a word from L(G’). Only D(8,&) 4 #$ 
can rewrite D to a symbol from T (see (9) in the definition of P’). According to 
the left-hand side of this production, we obtain 

s‘ J G ~  D(8,E)SQ +&/ D(8,E)Xa +-G/ #$Xa, 

where x E H’. To rewrite Q, G‘ uses $a 4 ##. Thus, G’ needs $ as the left 
neighbor of a. Suppose that x = a1a2.. . a p ,  where q = 1x1 and ai E T ,  for all 
i E { 1, . . . , q } .  Since for every a E T there is $a 4 a$ E P’ (see (9)), we can 
construct 

#$ala2. . . a,a =+-Gt #al$az . . . a,a 
a G t  #alaz$.  . . a,a 
+:!-’ #alaz . .  . a,$a. 
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Notice that this derivation ca#be constructed only for x that belong to  T+. Then, 
$a is rewritten to ##. As a result, 

with the required properties. Thus, the claim holds. 0 

The following claim demonstrates how G’ simulates a direct derivation from 
G-the heart of the construction. 

Let x +$ y denote the derivation x y such that x = D(@,E)ua, y = 
D(0, & ) v d ,  u, Y E V+,  and there is no other occurrence of a string of the form 
D(!&&)za, z E V*,  during 2 +&, y. 

Claim 7. For every u, v E V*,  it holds that 

D(@,&)ua  +El D(0,E)vQ if and only zf u JG v. 

Pro0 f. 

Only if: Let us show how G’ rewrites D(@,&)ua  to  D(@,&)va. The simulation 
consists of two phases. 

During the first, forward phase, G’ scans u to  get all nonempty substrings of 
length k or less. By repeatedly using productions ( X ,  x)y -+ y(X U sub(zy, k), y), 
X C M ,  x E (Vk U { E } ) ,  y E V k  (see (2) in the definition of P’), the occurrence 
of a symbol with form (X,Z) is moved toward the end of the sentential form. 
Simultaneously, the substrings of u are collected in X .  The forward phase is 
finished by (X ,z )ya  -+ y[X U sub(zy, k)Ja, 2 E ( V k  u {E}), y E V+, IyI 5 k (see 
(3)); this production reaches the end of u and completes X = sub(u, k). Formally, 

such that X = sub(u, k). 
The second, backward phase simulates the application of a conditional produc- 

tion. Assume that u = u1Au2, u1,uz E V * ,  A E (V - T ) ,  and there exists a pro- 
duction A -+ x E cf(P) such that (A --+ x, Per, For) E P for some Per, For s M ,  
where Per G X ,  For n X = 0. Let u1xu2 = v. Then, G’ derives 

D u L x J a  D(@,&)va 

by performing the following five steps: 

(i) [XI  is changed to [ p l ,  where p = A -+ x satisfies the conditions above (see 
(4) in the definition of P‘). 

form arp] -+ [pla, a E V (see ( 5 ) ) .  
(ii) DulAu2[pla  is rewritten to DulA[plu2a by using the productions of the 

(iii) DulA[pluga is rewritten to ~ u l [ 8 1 x u ~ a  by using Arpl --t r0lx (see ( 6 ) ) .  
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(iv) Dul [@1xuza is rewritten to  D ~ @ ~ u l x u ~ a  bp using the productions of the 

(v) Finally, Dr01 is rewritten to D(0,&) by Dr01 -+ D(@,€E). 

form ar01 + [01a, a E V (see (7)). 

As a result, we obtain 

D(8, +a *+ DULX] a J G ’  DUrp1 a +5 D r s l v a  J G t  D(0,E)va. 

Observe that this is the only way of deriving 

D(0, € ) u a  *:, D(O, € )va .  

Let us show that u JG v. Indeed, the application of Alp] -+ 101. implies that 
there exists (A -+ x ,  Per, For)  E P ,  where Per C sub(u, k) and For n sub(u, k) = 
0. Hence, there exists a derivation 

‘LL *G v [PI, 

where u = ulAu2, v = u1xuz and p = ( A  + x,  Per, For)  E P.  

I f :  The converse implication is similar to the only-if part, so we leave it to the 
reader. 0 

Claim 8. S‘ +:, ~ ( 0 , ~ ) x a  if and only if S +; x,  for all x E V+.  

Pro0 f .  

Only if: The only-if part is proved by induction on the ith occurrence of the 
sentential form 20 satisfying w = D ( @ , E ) U ~ ,  u E V + ,  during the derivation in GI. 

Basis: Let i = 1. Then, S‘ 

Induction Hypothesis: Suppose that the claim holds for all i 5 h, for some h 2 1. 

Induction Step: Let i = h + 1. Since h + 1 2 2, we can express 

~ ( 0 , c ) S a  and S *; S. 

S’ +;, D(0, €)xis 

as 
S’ *;, D(0,E)Xi-la +:, D(0,&)xia,  

where xi-1,xi E V+. By the induction hypothesis, 

s *; xi-1. 

Claim 7 says that 

D ( ~ , E ) x ~ - I ~  +$ D(@,€)xiQ if and only if xi-1 +G xi.  

Hence, 
s *; xi-1 J G  xi,  
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and the only-if part holds. 

I f :  By induction on n, we prove that 

S +; x implies S' +& D ( 0 , ~ ) x a  

for all n 2 0, x E V+. 

Basis: For n = 0,  S 

Induction Hypothesis: Assume that the claim holds for all n or less, for some 
n 2 0. 

Induction Step: Let 

x E V+. Because n + 1 2 1, there exists y E V+ such that 

S and S' +GI D(@,&)Sa .  

s +;+l 2, 

and by the induction hypothesis, there is also a derivation 

s' *& D(0,E)ya. 

From Claim 7 we have 
~ ( 0 , a ) y a  ~ ( 0 , ~ ) x a .  

Therefore, 
S' *Ll  D(0,E)XQ,  

and the converse implication holds as well. 0 

From Claims 6 and 8 we see that any successful derivation in G' is of the form 

such that 
S +z x, x E T+. 

Therefore, we have for each x E T+,. 

S' +:, #x## if and only if S *z x. 

Define the homomorphism h over (T U {#})* as h(#) = E and h(a)  = a for 
all a E T .  Observe that h is 4-linear erasing with respect to L(G') (see page 98 
in [lSl]). Furthermore, notice that h(L(G')) = L(G). Because CS is closed under 
linear erasing (see Theorem 10.4 on page 98 in [lSl]), L E CS.  Thus, Lemma 6 
holds. 0 

Theorem 12. prop-CG = CS. 
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Proof. By Lemma 6, we have prop-CG G CS. CS C prop-CG holds true as 
well. In fact, later in this book, we introduce several special cases of propagating 
context-conditional grammars and prove that even these grammars generate CS 

W (see Theorems 26 and 28). As a result, prop-CG = CS. 

Lemma 7. CG C RE. 

Proof. This lemma follows from Church’s thesis. To obtain an algorithm convert- 
ing any context-conditional grammar to an equivalent phrase-structure grammar, 
use the technique presented in Lemma 6 .  

Theorem 13. CG = RE. 

Proof. By Lemma 7, CG C RE. Later on we define some special cases of context- 
conditional grammars and demonstrate that they characterize RE (e.g., see The- 

m orems 19, 27, and 29). Thus, RE C CG too. 

4.1.2 Random-Context Grammars 

This section discusses three special cases of context-conditional grammars whose 
conditions are nonterminal symbols, so their degree is not greater than (1,l). 
Specifically, random-context grammars, also known as permitting grammars, are 
of degree (1 ,O) .  Forbidding grammars are of degree (0 , l ) .  Finally, random-context 
grammars with appearance checking are of degree (1,l). 

Definition 10. Let G = (V, T ,  P, S )  be a context-conditional grammar. G is 
called a random-context grammar with appearance checking provided that every 
( A  -+ x ,  Per, For)  E P satisfies Per C N and For C N .  

Definition 11. Let G = (V, T ,  P, S )  be a random-context grammar with appear- 
ance checking. G is called a random-context grammar (an rc-grammar for short) or 
permitting grammar provided that every ( A  t x,  Per, For) E P satisfies For = 0. 

Definition 12. Let G = (V, T ,  P, S) be a random-context grammar with ap- 
pearance checking. G is called a forbidding grammar provided that every ( A  -+ 

x, Per, For)  E P satisfies Per = 0. 

The following convention simplifies productions in permitting grammars and 
forbidding grammars, respectively: 

Convention 1. Let G = (V, T ,  P, S) be a permitting grammar, and let p = ( A  --$ 

x, Per, For)  E P. Since by the definition For = 0, we usually omit the empty set 
of forbidding conditions. That is, we write ( A  + x, Per) when no confusion arises. 

Let G = (V, T ,  P, S )  be a forbidding grammar, and let p = ( A  -+ x, Per, For) E 
P. Analogously, we write ( A  --+ x ,  For) instead of ( A  t x, Per, For) because 
Per = 0 for all p E P. 
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The families of languages defined by random-context grammars, random-con- 
text grammars with appearance checking, and forbidding grammars are denoted 
by RC, RC(ac), and F, respectively. To indicate that only propagating grammars 
are considered, we use the prefix prop-. That is, prop-RC, prop-RC(ac), and 
prop-F denote the families of languages defined by propagating random-context 
grammars, propagating random-context grammars with appearance checking, and 
propagating forbidding grammars, respectively. 

Example 1 ([43]). Let 

G = ( {S ,  A, B ,  C, D, A’, B’, C’, a ,  b, c ) ,  {a ,  b, c ) ,  p, S) 

be a permitting grammar, where P is defined as follows: 

P = { ( S  + ABC,0), 
( A  -+ aA’, { B ) ) ,  
( B  + bB’, {C)), 
(C -+ CC’, {A’)), 
(A’ -+ A, {B’)),  
(B’ -+ B,  {C’)), 
(C’ + c, { A ) ) ,  
( A  + a ,  {W) ,  
( B  + b, {C)), 
(C + c, 0 ) ) .  

Consider the word aabbcc. G generates this word in the following way: 

S + ABC + aA’BC + aA’bB’C + aA’bB’cC‘ + 
aAbB’cC’ + aAbBcC‘ + aAbBcC + 
aabBcC + aabbcC + aabbcc. 

Observe that G is a propagating rc-grammar and L(G) = {anbncn : n 2 1). Recall 
that {anbncn : n 2 1) is a non-context-free language. 

Example 2 ([43]). Let 

be an rc-grammar with appearance checking. The set of productions P is defined 
as follows: 

.. 
( A  + B ,  0 ,  {S, D ) ) ,  
( B  + s, 0 ,  {A ,  D ) ) ,  
( A  -+ D, 0 ,  {S ,  B ) ) ,  
( D  -+ a,  0, { S ,  A,  B ) ) ) .  

Notice that G is a propagating forbidding grammar. For’aaaaaaaa, G makes the 
following derivation: 

S + AA + AB + BB + BS =+ SS + AAS + AAAA + BAAA + 
BABA =+ BBBA 
SSSS + AASSS j3 AAAAAAAA 

BBBB + SBBB =+ SSBB =+ SSSB + 
DDDDDDDD +g aaaaaaaa. 
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Clearly, G generates the non-context-free language L(G) = {a2” : TI 2 1). 

The generative power of random-context grammars is intensively studied in [43] 
and [148], which present the next two theorems. 

Theorem 14. CF c prop-RC C prop-RC(ac) C CS. 

Proof. CF c propRC follows from Example 1. By the definition of rc-grammars 
and rc-grammars with appearance checking, we have prop-RC 2 prop-RC(ac). 

I prop-RC(ac) c CS follows from Theorems 1.2.4 and 1.4.5 in [43]. 

Theorem 15. prop-RC C RC c RC(ac) = RE. 

Proof. prop-RC RC follows immediately from the definitions. By Theo- 
rem 1.2.5 in [43], RC(ac) = RE. Furthermore, from Theorem 2.7 in Chapter 
3 of Volume 2 of [157], it follows that RC C RC(ac); thus, the theorem holds. 

I 

Lemma 8. ETOL c prop-F. 

Proof (see 11481). Let L E ETOL, L = L(G) for some ETOL grammar, 

G=(V,T ,P i ,  . . . ,  Pt,S) .  

Without loss of generality we can assume that G is propagating. Now we introduce 
the alphabets 

v(i) 
V’ = {a ’ :  a €  V } ,  
V” = {a’) : a E V } ,  
P = { a :  U E T } .  

= {a(i)  : a E V } ,  16  2 5 t ,  

For w E V*,  by w ( ~ ) ,  w‘, w”, and t3 we denote the words obtained from w by 
replacing each occurrence of a symbol a E V by a( i ) ,  a’, a”, and C, respectively. 
Let P’ be the set of all random-context productions defined as 

1. for every a E V ,  add (a’ 4 a”, 0, v U V(’) U V ( 2 )  U . . . U V ( t ) )  to P’; 

2. for every a E V for all 1 5 i 5 t ,  add (a” + a(Z),@, v U V’ U V(’) U V ( 2 )  U 

3. for all i E (1,. . . , t }  for every a t u E Pi, add (a(i) -+ u’, 0 ,  V” U v) to P’; 

4. for all a E T ,  add (a’ -+ si, 0, V” U V(’) U V ( 2 )  U . . . U 

5. for all a E T ,  add (a -+ a ,  0, V’ U V” U V(’) U V ( 2 )  U . . . U V ( t ) )  to P’. 

... u V(i-1) u v(i+’) u.. . u V ( t ) )  to p’; 

to P’; 

Then, define the random-context grammar 

G’ = (V’ U V” U v U V ( l )  U U . . . U V(t),  T ,  PI, S’), 

which has only forbidding context conditions. 

side is in V’. 
Let x‘ be a string over V’. To x‘ we can apply only productions whose left-hand 
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(i) We use a’ + a’’ for some a’ E V’. Now the obtained sentential form contains 
symbols of V’ and V”. Hence we can use only productions of type (1). 
Continuing in this way we get x‘ +&, XI’. By analogous arguments we 
now have to rewrite all symbols of x” by productions of (2) with the same 
index (i). Thus, we obtain x ( ~ ) .  Now to each symbol of x(2) we apply a 
production + u’, where a + u E Pi. Since again all symbols of x ( ~ )  have 
to be replaced before starting with productions of another type, we simulate 
a derivation step in G and get z’, where x =+G z in G. Therefore, starting 
with a production of (l), we simulate a derivation step in G, and conversely, 
each derivation step in G can be simulated in this way. 

(ii) We apply to x‘ a production a’ + 6. Next, each a’ of T’ occurring in x’ has 
to be substituted by 7i and then by a using the productions of (5). Therefore, 
we obtain a terminal word only if x’ E (T’)*. 

By these considerations the successful derivations in G’ are of the form 

S’ JGl  S” JGI S(i0) 
2‘1 *&, 2:’ * & I  zl (il) 

and such a derivation exists if and only if 

is a successful derivation in G. In conclusion, L(G) = L(G’). 

and can be generated by a forbidding grammar. A language of this kind is 
In order to finish the proof, it suffices to find a language that is not in ETOL 

L = {b(ba”)n : m 2 n 1 O}, 

which can be generated by the grammar 

G = ({S,A,A’,B,B’,B”,C,D,E}, {a,b},  P , s )  

with P consisting of the following productions: 
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( D  + c10, { A ,  B)), 
(B’ -4 B10, { D ) ) ,  

-+ B101 { D } ) ,  

(A’ + A,  01 {D})l 
( D  + E, 0, {S, A, A’, B’, B”, C, E } ) ,  

(B --+ b, 0, {S, A, A’, B’, B”, C, D } ) ,  
( E  + b,0,~S,A,A’,B1B’,B’’,C,D}).  

First, we have the derivation 

S =+; SA” =+G CA” =+G DA”, 

and then we have to replace all occurrences of A. If we want to replace an A by a 
terminal word in some steps, it is necessary to use A --+ B“a. However, this can 

0 be done at most once in a phase that replaces all A.  Therefore, m 2 n. 

Theorem 16. CF c ETOL c prop-F C F c CS. 

Proof. According to Example 2, we already have CF c prop-F. By [155] and 
Lemma 8, CF C ETOL C prop-F. Moreover, in [148], Penttonen proved that 
prop-F C F C CS. Therefore, the theorem holds. 

The following corollary summarizes the relationships of language families gen- 
erated by random-context grammars: 

Corollary 7. 
CF C prop-RC C prop-RC(ac) c CS, 

prop-RC C RC c RC(ac) = RE, 

CF c ETOL C prop-F C F C CS, 

Open Problem. 
Which of them are, in fact, identities? 

Consider the inclusions that are not proper in Corollary 7. 

4.1.3 Generalized Forbidding Grammars 

Generalized forbidding grammars introduced by Meduna in [ 1041 represent a gen- 
eralized variant of forbidding grammars (see Section 4.1.2) in which forbidding 
context conditions are formed by finite languages. 

Definition 13. Let G = (V, T ,  P, S) be a context-conditional grammar. If every 
( A  -+ x, Per ,  For) satisfies Per = 0, then G is said to be a generalized forbidding 
grammar (a gf-grammar for short). 

The following convention simplifies the notation of gf-grammars: 
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Convention 2. Let G = (V, T ,  P, S) be a gf-grammar of degree ( T ,  s ) .  Since every 
(A -+ x,Per,For) E P implies Per = 0, we omit the empty set of permitting 
conditions. That is, we write (A -+ x ,For)  instead of (A -+ z,Per,For). For 
simplicity, we also say that G’s degree is s instead of ( T ,  s ) .  

The families generated by gf-grammars and propagating gf-grammars of degree 
s are denoted by GF(s) and prop-GF(s), respectively. Furthermore, 

00 

GF = U GF(s) 
s=o 

00 
and 

prop-GF = u prop-GF(s). 
s=O 

By analogy with Theorem 11, it is easy to see that gf-grammars of degree 0 are 
ordinary context-free grammars: 

Theorem 17. prop-GF(0) = GF(0) = CF. 

Futhermore, gf-grammars of degree 1 are as powerful as forbidding grammars: 

Theorem 18. GF(1) = F. 

Proof. This simple proof is left to the reader. 

Theorem 19. GF(2) = RE. 

Proof. It is straightforward to prove that GF(2) C_ RE; hence it suffices to prove 
the converse inclusion. 

Let L be a recursively enumerable language. Without loss of generality we can 
assume that L is generated by a phrase-structure grammar, 

G = (V,T, P, S), 

of the Penttonen normal form (see Lemma 3) and let N = V - T.  
Let @, $, S’ be new symbols and m be the cardinality of V U {@}. Clearly, 

m 2 1. Furthermore, let f be an arbitrary fixed bijection from V U {@} onto 
{ 1, . . . , m} and f-’ be the inverse of f . 

The gf-grammar, 
G’ = (V’ U {a, $, S’}, T,  P’, S‘), 

of degree 2 is defined as follows: 

V’ = W U  V, where 
W = { [AB-+AC, j ] :  A B - ~ A C E P ,  A , B , C E N , l _ < j i m + l ) ,  

W ,  {@, $, S’}, and V are painvise disjoint alphabets. The set of productions P’ is 
defined in the following way: 
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1. Add (S‘ -+ @S,8) to PI. 

2. If A -+ x E P ,  A E N ,  z E { E }  U T U  N 2 ,  then add ( A  -+ z, {$}) to P’. 

3. I f A B - + A C E P , A , B , C E N , t h e n :  

(a) add ( B  -+ $[AB -+ AC, 11, {$}) to  P’; 

(b) f o r a l l j = l ,  . . . ,  m , f ( A ) # j , a d d ( [ A B - + A C , j ] - + [ A B - + A C , j +  

(c) add ( [ A B  --+ A C , f ( A ) ]  -+ [AB -+ A C , f ( A )  + 11,s) and ( [ A B  -+ 

4. Add the following two productions (@ -+ E ,  N U  W U {$}) and ($ -+ E ,  W )  to 

11, {f-l(j)$H to P’; 

AC, m + 11 -+ C, 0) to  P’. 

P‘ * 

Basic Idea. Basically, the application of AB -+ AC in G is simulated in G‘ 
as follows: An occurrence of B is rewritten with $[AB -+ AC, 11. Then, the left 
adjoining symbol of $ is checked not to be any symbol from (V U {@}) except A.  
After this, the right adjoining symbol of $ is [AB -+ A C , m  + 11. This symbol is 
rewritten with C. Formal proof is given below. 

Immediately from the definition of P’ it follows: 

S’ +;, 2, 

where x E (V’ U { @, S’}) * , implies 

(I) S’ sub(x); 

(11) # ( S U b ( { $ } ~ ) - { E } ) z  5 1 such that if #WX = 1, then #{$}wx = 1; 

(111) if z # T* ,  then the left-most symbol of z is @. 

Next, we define a finite letter-to-letters substitution g from V* into (V’)* such 
that for all B E V ,  

g(B)  = { B } U { [ A B  + A C , j ]  E W : AB -+ AC E P, A , C  E N ,  j = 1, .  . . ,m+l} .  

Let g-’ be the inverse of g. 
To show that L(G) = L(G’), we first prove that 

S +; 2 if and only if S +$ x’, 

where z’ = @dXw’, X E { $ , E } ,  w’w’ E g(z), z E V * ,  for some n 2 0, n’ 2 1. 

Only if: This is established by induction on the length n of derivations; that is, 
we have to demonstrate that S +E x,  x E V * ,  n 2 0, implies S +;, x’ for some 
x’ such that z’ = @v’Xw’, X E { $ , E } ,  w’w’ E g(z). 
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Basis: Let n = 0. The only x is S because S *: S. Clearly, S’ J ~ I  @S and 

Induction Hypothesis: Suppose that our claim holds for all derivations of length 
at most n, for some n 2 0. 

Induction Step: Let us consider a derivation 

s E dS). 

s =+;+l 2, 

z E V*. Since n + 1 2 1, there is some y E V+ and p E P such that 

*: y *G 2 b], 
and by the induction hypothesis, there is also a derivation 

s *$ y’, 

for some n’ 2 1,  such that y’ = @r‘Ys’, Y E { $ , E } ,  and r’s’ E g(y). 

(i) L e t u s a s s u m e t h a t p = D - + y ~  E P , D E N , ~ ~  E { E } U T U N ~ , ~ = ~ ~ D ~ ~ ,  
Yl,Y3 E V * ,  2 = y1y2y3. From (2) it is clear that (D -+ y2,{$}) E P’. 

(a) Let $ $ alph(y’). Then, we have y’ = @r‘s’ = @y1&3, 

s’ *$ @?/1Dy3 *G’  @y192y3 [(D Y2, { $ ) ) I ,  
and yly293 E dYly2y3) = dX)* 

(b) Let Y = $ E sub(y’) and W n sub(y’) = 8. Then, there is the following 
derivation in G’: 

s’ =?‘$! @r’$s’ *G‘ [($ --$ &,W)] .  

By analogy with (a) above, we have @r’s’ = QylDy2 and so 

S’ g ’ + l  
G’ @ylDy3 *GI @!/1y2?/3 [(D * y2, {$))I7 

where yly2y3 E g(x). 
(c) Let $[AB --+ AC, 21 E sub(y‘) for some i E ( 1 , .  . . , m + l}, AB -+ AC E 

P, A , B , C  E N .  Thus, y’ = @r’$[AB -+ AC,i]t’, where s’ = [AB 4 

AC,i]t’. By inspection of the productions (see (3)) it can be seen (and 
the reader should be able to produce a formal proof) that we can express 
the derivation 

S’ *;, y’ 

in the following form: 

S’ +&, @r’Bt’ 
@r’$[AB -+ AC, l]t’ [ (B  -+ $[AB -+ AC, 11, {$})I 

+a-1 @r’$[AB -+ AC, ilt’. G’ 
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Clearly, r'Bt' E g(y) and $ @ sub(r'Bt'). Thus, r'Bt' = y1Dy3, and 
there is a derivation 

(ii) Let p = A B  -+ A C  E P ,  A , B , C  E N ,  y = ylAByz, y1,yz E V' ,  2 = 
Y l  ACY2. 

(a) Let $ # sub(y'). Thus, T'S' = y1AByz. By inspection of the productions 
introduced in (3) (technical details are left to  the reader), there is the 
following derivation in G': 

S' +$ Y1AByz 
+GI @ylA$[AB --+ AC, l]yz 

J G ~  @y,A$[AB -+ AC, 2]yz 
[(B -+ $[AB -+ AC, 11, {$)>I 

["AB -+ AC, 11 -+ [AB + AC, 21, {f-l(l)$H1 

+GJ @yiA$[AB -+ AC, m + l]y2 
[([AB -+ AC,rn] -+ [AB -+ A C , m +  l],{f-'(m)$})] 

[ ([AB --+ AC, m + 11 --+ C, S)] 
JG' @YlA$CyZ 

such that y1ACyz E g(ylACy2) = g(2). 

derivation 
(b) Let $ E sub(y'), sub(y') n W = 0. Using an analogue from (i.b), the 

S' * ; I  @?-Is', 

where @T's' = @y1ABy2, can be constructed in G'. Then, by analogy 
with (ii.a), one can construct the derivation 

S' @Y1AByz =+;, @yIA$Cyz 

such that y1ACy2 E g(z). 

derivation 
(c) Let #({$}w-{E})y' = 1. By analogy with (i.c), one can construct the 

S' +&t @Y1ABy2. 
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Next, using an analogue from (ii.a), the derivation 

can be constructed in G‘ such that y1ACyz E g(z). 

In (i) and (ii) above we have considered all possible forms of p .  In cases (a), (b), 
(c) of (i) and (ii), we have considered all possible forms of y’. In any of these cases 
we have constructed the desired derivation of the form 

S’ +;, 2’ 

such that z’ = @r’Xs’, X E {$, E } ,  r’s’ E g(z). So, we have established the only-if 
part of our claim by the principle of induction. 

I f :  This is also demonstrated by induction but in this case on n’. We have to 
demonstrate that if S’ +$, z’, 2’ = @r‘Xs’, X E { $ , E } ,  r’s’ E g(z),  z E V*,  for 
some n’ 1 1, then S +; z. 

Basis: For n’ = 1 the only z’ is @S since S’ + G ~  @S. Because S E g(S), we have 
2 = S. Clearly, S +$ S. 

Induction Hypothesis: Assume that the claim holds for all derivations of length at  
most n’ for some n’ 2 1. Let us show that it is also true for n’ + 1. 

Induction Step: Consider a derivation 

SI +n‘+l 
G’ 

z’ = @r’Xs’, X E { $ , E } ,  r’s’ E g(z), z E V*. Since n’ + 1 2 2, we have 

s’ *$! y’ J G ‘  2’ [ P I ]  

for some p’ = (Z’ ---f w’,For) E P’, y’ = @q’Yt’, Y E { $ , E } ,  q’t’ E g(y), y E V*,  
and by the induction hypothesis, 

Suppose: 

(i) 2’ E N ,  w’ E { E }  U T U N2. Inspecting P’ (see (2)) we have For = {$} 
and Z‘ + w’ E P. Thus, $ @ sub(y’) and so q‘t‘ = y. Hence, there is the 
following derivation 

s =$‘; y =$‘G 2 [z’ + w’]. 

(ii) g-l(Z’) = g-’(w’). But then y = z, and by the induction hypothesis, we 
have the derivation 

s +; y. 
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(iii) p’ = ( B  -+ $[AB -+ AC,l] ,{$});  that is, 2’ = B,  w’ = $[AB --+ AC,l],  
For = {$} and so w’ E {$}g(Z’), Y = E ,  X = $. By analogy with (ii) we get 

S*&Y 

and y = x. 

(iv) 2’ = Y = $; that is, p’ = ($ -+ c,W). Then, X = E ,  r’s’ = q’t’ E g(y), and 

s =+& y. 

( v )  p’ = ( [AB -+ AC, m + 11 -+ C, 0 ) ;  that is, 2’ = [AB -+ AC, m + 11, w’ = C ,  
For = 0.  From ( 3 )  it follows that there is a production of the form AB --+ 

AC E P. Moreover, on inspecting (3), it is not too difficult to see (technical 
details are left to the reader) that Y = $, r’ = q’, t’ = [AB -+ AC,m + 1]0’, 
s’ = Co‘, and the derivation 

s’ =$‘$I y’ JG‘ x’ [p’] 

can be expressed in the form 

S’ =+&, Qq’Bo’ 
@q’$[AB -+ AC, 110’ [ (B  -+ $[AB -+ AC, 11, { $ } ) I  

+m+l G’ @q’$[AB -+ AC, m + 110’ [h] 
=$‘GI @q‘$co’ [([AB -+ AC,m+ 11 -+ C,0)],  

where 

h =h i ( [AB-+AC, f (A) ]  -+ [AB--+AC,f(A)+l] , (d)hz ,  
hi = ( [AB -+ AC,1] -+ [AB -+ AC,2],{f-1(1)$}) 

( [AB  -+ AC,2] -+ [A13 -+ AC,3],{ f - l (2)$})  

([AB -+ AC,m] -+ [AB --+ AC,m+ l ] , { f - ’ (m)$} ) ,  

where f ( A )  = m implies h2 = E ;  that is, the right-most symbol of q’ = r’ 
must be A. 

Since q‘t’ E g(y), we have y = q‘Bo‘. Because the right-most symbol of q’ is 
A and AB -+ AC E P ,  we get 

S =+& q‘Bo’ JG q’C0’ [AB -+ AC], 

where q’Co’ = x. 
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Now, regarding (i) through (v) and inspecting P', we have considered all pos- 
sible derivations of the form 

and thus we have established that 

S =+-; x if and only if S' +:, x' ,  

where x' = @r'Xs', r's' E g(x ) ,  X E {$, E } ,  x E V * ,  by the principle of induction. 
The proof of the equivalence of G and G' can easily be derived from above. 

By the definition of g, we have g(a) = { a }  for all a E T .  Thus, we have for any 
x E T*,  

S +; x if and only if S' 3;) Q r X s ,  

where X E { $ , E } ,  T S  = x .  If X = E ,  then 

@x J G '  x [(@ -+ E ,  N u W u {Is})]. 

If X = $, then 

@r$s @x [($ -+ E ,  W ) ]  +-Gt x [(@ 3 E,N u W u {$})I. 
Hence, 

S 3 2  x if and only if S' +:, x 

for all x E T*,  and so L(G) = L(G'). Thus, RE = GF(2). 

Theorem 20. GF(2) = GF = RE. 

Proof. It follows immediately from the definitions and Theorem 19. 

Note that in G' in the proof of Theorem 19 only certain types of productions 
are used, establishing the following normal form: 

Corollary 8. Every recursively enumerable language L over some alphabet T can 
be generated by  a gf-grammar G = (V, T ,  P U {p l  , p 2 } ,  S )  of degree 2 such that 

(a) ( A  -+ x ,  For) E P implies 1x1 = 2 and the cardinality of For is at most 1; 

(ii) pi  = (Ai -+ E ,  Fori),  i = 1,2,  where Fori E V ;  that is, max(Fori) 5 1. 

In fact, the corollary above represents one of the reduced forms of gf-grammars 
of degree 2. Perhaps most important, it reduces the cardinality of the sets of 
forbidding conditions so that if a production contains a condition of length two, 
this condition is the only context condition attached to the production. Next, we 
study another reduced form of gf-grammars of degree 2. We show that we can 
simultaneously reduce the number of conditional productions and the number of 
nonterminals in gf-grammars of degree 2 without any decrease of their generative 
power (see [136]). 
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Theorem 21. Every recursively enumerable language can be defined by a general- 
ized forbidding grammar of degree 2 with no more than 19 forbidding productions 
and 15 nonterminals. 

Proof. Let L be a recursively enumerable language. By Geffert [69], without loss 
of generality we can assume that L is generated by a grammar G of the form 

G = (V, T ,  P U { A B  -+ E ,  CD -+ E } ,  S )  

such that P contains only context-free productions and 

V - T =  {S,A,B,C,D}.  

We construct a gf-grammar G’ of degree 2 as follows: 

G’ = (V‘, T ,  P‘, S‘), 
V’ = v u w, 
w = (s’, QX, E, ( & A ) ,  $, Z;, 5, ( E C ) ,  #}, v n w = 0.  

N’ = (V’ - T )  - {S’, @}. 

where 

Let 

Informally, N’ denotes the set of all nonterminals in G’ except S’ and @. Then, 
the set of productions P‘ is defined in the following way: 

1. If H -+ y E P ,  H E V - T ,  y E V * ,  then add ( H  -+ y , 0 )  to P’. 

2. Add (S’ -+ @S@,0) and (@ -+ E , N ’ )  to P’. 

3. Add 

to P‘ 

4. Add 

to P’. 

Next, we prove that L(G’) = L(G). 
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Basic Idea. Notice that G’ has degree 2 and contains only 13 forbidding pro- 
ductions and 15 nonterminals. The productions of (3) simulate the application of 
AB 4 E in G’ and the productions of (4) simulate the application of CD -+ E in 
G‘ . 

Let us describe the simulation of AB 4 E~ First, one occurrence of A and 
one occurrence of B are rewritten with i and B ,  respectively (no sentential form 
contains more than one occurrence of 2 or 5). The right neighbor of is checked 
to be g and 2 is rewritten with (&A) .  Then, analogously, the left neighbor of 5 is 
checked to be ( E A )  and g is rewritten with $. Finally, ( E A )  and $ are erased. The 
simulation of CD 4 E is analogical. 

To establish L(G) = L(G’), we first prove the following claims: 

Claim 9. S’ +:, w’ implies that w’ has one of the following two forms: 

(I) w‘ = QdQ, 2’ E (N’ u T)* ,  alph(z‘) n N’ # 0; 
(IZ) w’ = X d Y ,  d E T*, x, Y E {@,&}. 

Proof. Axiom S‘ is always rewritten with QS@. After this initial step, Q can 
be erased in a sentential form provided that any nonterminal occurring in the 
sentential form belongs to {@,S’}  (see N’ and (2) in the definition of P’). In 
addition, notice that only productions of (2) contain @ and S‘. Thus, any sentential 
form containing some nonterminals from N’ is of the form (I). 

Case (11) covers sentential forms containing no nonterminal from N’. At this 
point, @ can be erased, and we obtain a word from L(G’). 

I - - -  

Claim 10. S’ =+-;, w’ implies #zw‘ < 1 for all 2 E {A ,  B ,C,D}  and some 
w’ E (V’)*. 

proof. By inspection of iroductions in PI, the only production that can generate 
X is of the form (X --+ X ,  {z}). This production can be applied only when no 2 
occurs in the rewritten sentential form. Thus, it is impossible to derive w‘ from 

[I] 

Informally, next claim says that every occurrence of ( & A )  in derivations from S’ 
is always followed either by fi or $, and every occurrence of (EC)  is always followed 
either by 5 or #. 
Claim 11. It  holds that 

S’ such that #zw’ 2 2. 

(z) S’ +&, y;(EA)yh implies yh E (v)+ and first(yh) E {B,$) for  any y; E 

(II) S’ +&, y;(~c)y$ implies y& E (V’)+ and first(yh) E {E,#} for any y; E 

Proof. We establish the proof by examination of all possible forms of derivations 
that may occur when deriving a sentential form containing ( & A )  or ( E C ) .  

(V’)*; 

(If’)*. 
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(I) By the definition of P’, the only production that can generate ( & A )  is p = (x --+ ( E A ) ,  { i a  : a E V’ - {g}}). The production can be used provided 
that 2 occurs in a sentential form. It also holds that 2 has always a right 
neighbor (as follows from Claim 9), and according to the set of forbidding 
conditions in p ,  the only allowed rght  neighbor of 2 is E. Furthermore, by 
Claim 10, no other occurrence of A or E can appear in the given sentential 
form. Consequently, we obtain a derivation 

s’ *;! ui2gui  *@ ui(&A)Eua b] 

for some ui, uk E (V’)*, 2, E $! sub(u’,uL). Obviously, (EA)  is always followed 
by 5 in ui (&A)&;. 

Next, we discuss how G‘ can rewrite the subword (EA)E in U ; ( E A ) ~ L ~ .  There 
are only two productions having the nonterminals ( E A )  or g on their left- 
hand side, p l  = ( B  --+ $, {ag : a E V’ - { ( E A ) } } )  and p2 = ( ( E A )  -+ E ,  {g}). 
G’ cannot use p2 to erase ( E A )  in ui (&A)&; because p2 forbids an occurrence 
of with? because 
its set of forbidding conditions defines that the left neighbor of B must be 
just ( E A ) .  Hence, we obtain a derivation of the form 

- 

in the rewritten string. But we can use p l  to  rewrite 

s’ * & I  ui2Eu; *@ ui(&A)Eu; [PI 
*&t v i ( & A ) E V i  *G’ ‘Ui(&A)$’Ui [PI]. 

Notice that during this derivation, G’ may rewrite ui and with some v{ 
and vi, respectively (vi,v& E (V‘)*); however, ( E A ) ~  remains unchanged 
after this rewriting. 

In this derivation we obtained the second symbol $, which can appear as the 
right neighbor of ( E A ) .  It suffices to show that there is no other symbol that 
can appear immediately after ( E A ) .  By inspection of P’, only ($ -+ E ,  { ( E A ) } )  

can rewrite $. However, this production cannot be applied when ( E A )  occurs 
in the given sentential form. In other words, the occurrence of $ in the 
subword (&A)$  cannot be rewritten before ( E A )  is erased by p2.  Hence, ( E A )  

is always followed either by E or $, and thus the first part of Claim 11 holds. 

(11) By inspection of productions simulating AB --+ E and CD -+ E in G’ (see (3) 
and (4) in the definition of P’), these two sets of productions work analo- 
gously. Thus, part (11) of Claim 11 can be proved by analogy with part (I). 

0 

Let us return to the main part of the proof. Let g be a finite substitution from 
(N’ U T)* to V* defined as follows: 

1. For all X E V : g(X) = {X}. 

2. g(2) = {A} ,  g(E) = { B } ,  g ( ( E A ) )  = { A ) ,  g($) = {B,AB} .  
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3. g ( a  = {C) ,  g(@ = { D ) ,  d ( E C ) )  = {C) ,  9(#) = {C,CD).  

Having this substitution, we can now prove the following claim: 

Claim 12. S x if and only if S’ =+:, @z’@ for some x E g(z’), x E V*, 
2’ E (N’UT)*. 

Proof. The claim is proved by induction on the length of derivations. 

Only if: We show that 

S * g  x implies S’ +A, @x@, 

where m 2 0, x E V*; clearly x E g(x). This is established by induction on m. 

Basis: Let m = 0. That is, S 

Induction Hypothesis: Suppose that the claim holds for all derivations of length 
m or less, for some m 2 0. 

Induction Step: Let us consider a derivation 

S. Clearly, S’ + G ~  @S@. 

s *;+I 2, x E v*. 
Since m + 1 2 1, there is some y E V+ and p E P U {AB + E ,  C D  + E }  such that 

* g  Y *G 5 [PI. 

By the induction hypothesis, there is a derivation 

S’ *A, @y@. 

There are three cases that cover all possible forms of p: 

(i) p = H --+ y2 E P, H E V - T, y2 E V*. Then, y = Y1Hy3 and IC = y1y2y3, 
y1, y3 E V*.  Because we have ( H  + ~ 2 , s )  E PI, 

s’ *A, @YlHy3@ *Gf @Yly2Y3@ [ ( H  + Y27 011 

and ~ 1 ~ 2 ~ 3  = 2. 

(ii) p = AB -+ E .  Then, y = y1ABy3 and 2 = ~ 1 ~ 3 ,  y1,y3 E V*. In this case, 
there is the following derivation: 

s’ *A, @Y1ABy3@ 

*G’ @yliBY3@ [(A + 2, {i})] 
*GI @YliEYS@ [(F -+ E, {E>j 

@Yl(EA)EY3@ [(A + (EA), - {Aa : a E v’ - {E}))] 
@yl(&A)$y3@ [(E -i $ 7  {aBi a E v’ - {(&A)}})] *G’ 

*G’ @yl$y3@ [((&A) + E ,  {B})l 
*G‘ @Y1 Y3@ [($ + { ( & A ) } ) ] .  
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I f :  By induction on the length n of derivations in G‘, we prove that 

S’ =+-;, @z’@ implies S +; x 

for some x E g(x’), z E V*, x’ E (N’  u T)*,  n 2 1. 

Basis: Let n = 1. According to the definition of P‘, the only production rewriting 
S’ is (S’ -+ @S@,@), and thus S’ =+-Gi @S@. It is obvious that S =+-$ S and 

Induction Hypothesis: Assume that the claim holds for all derivations of length n 
or less, for some n 2 1. 

Induction Step: Consider a derivation 

s E 9(Sb 

S’ j n + l  G’ @x’@, 2’ E (N’UT)* .  

Since n + 1 2 2, there is some y’ E (N‘ u T)+ and p’ E P’ such that 

s’ *;, @y’@ j G t  @x’@ ”1, 
and by the induction hypothesis, there is also a derivation 

S*T:Y 

such that y E g(y’). 

forms of p’: 
By inspection of P’, the following cases (i) through (xiii) cover all possible 

(i) p’ = (H --$ y2,0) E P’, H E V-T,  y2 E V*. Then, y’ = yiHyi ,  x’ = yiy2y$, 
y i , y i  E ( N ’ U T ) * ,  and y has the form y = y1Zy3, where y1 E g(yi) ,  y3 E 
g(yi),  and 2 E g ( H ) .  Because for all X E V - T: g ( X )  = {X}, the only 
2 is H; thus, y = ylHy3. By the definition of P’ (see (l)), there exists a 
production p = H -+ y2 in P, and we can construct the derivation 

s *; YlHy3 JG YlY2Y3 b] 
such that y1y2y3 = x, x E g(x’). 
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- 
(ii) p’ = (A -+ 2, (2)). Then, y‘ = yiAyj, x’ = yiAyi, yi, y& E (N’  U T)* and 

Y = ylZY3, where YI E g(yi), y3 E g(y&) and Z E g(A). Because g(A) = {A}, 
the only Z is A, so we can express y = y1Ay3. Having the derivation S +& 
y such that y E g(y‘), it is easy to see that also y E g(x’) because A E g(x) .  

(iii) p’ = ( B  -+ 5, { g } ) .  By analogy with (ii), y’ = yiByi, x’ = yiByi, y = 
- 

YlBy3, where d,Yi E (N‘  u TI*, 91 E g(yi), Y3 E g(Yi); thus, y E g(x’) 
because B E g(5) .  

(iv) p’ = (2 -+ ( E A ) ,  ( 2 a  : u E V’ - {E}}). In this case, it holds that: 

(a) application of p’ implies 2 E alph(y’), and moreover, by Claim 10, 

(b) x has always a right neighbor in @y‘@; 

(c) according to the set of forbidding conditions in p’ ,  the only allowed right 

Hence, y’ must be of the form y’ = y i x g y i ,  where yi, yi E (N’ U T)* and 
A $ sub(yiyi). Then, x’ = Y ~ ( E A ) & ~  and y is of the form y = y1Zy3, where 
y1 E g(yi), y3 E g(&) and Z E g ( 2 g ) .  Because g ( 2 g )  = {AB}, the only 2 
is AB; thus, we obtain y = y1ABy3. By the induction hypothesis, we have 
a derivation S “2 y such that y E g(y’). According to the definition of g, 
y E g(x’) as well because A E g((&A)) and B E g(@. 

#,-Y‘ L 1; 

neighbor of is 5. 

- 

(v) p’ = (E -+ $, {ug : a E V’ - { ( E A ) } } ) .  Then, it holds that: 

(a) 5 E alph(y’) and, by Claim 10, # ~ y ’  5 1; 

(b) 5 has always a left neighbor in @y’@; 

(c) by the set of forbidding conditions in p’ ,  the only allowed left neighbor 
of 5 is ( & A ) .  

- 
Therefore, we can express y’ = y i ( ~ ~ ) B y i ,  where y i ,y& E (N’  U T)* and 
5 $! sub(y’,yi). Then, x’ = ~ { ( E A ) $ Y ~  and y = y1Zy3, where y1 E g(yi), 
y3 E g(yi>, and z E g((&A)g). BY the definition of g, g((&A)z) = {AB), so 
Z = AB and y = y1ABy3. By the induction hypothesis, we have a derivation 
S +& y such that y E g(y’). Because A E g((&A)) and B E g($), y E g(x’) 
as well. 

(vi) p’ = ( ( & A )  -+ E ,  {E}). An application of ( ( E A )  -+ E ,  (5) )  implies that ( E A )  

occurs in y’. Claim 11 says that ( & A )  has either g or $ as its right neighbor. 
Since the forbidding condition of p’ forbids an occurrence of E in y’, the 
right neighbor of ( E A )  must be $. As a result, we obtain y’ = Y { ( E A ) $ Y ~ ,  
where yi,yi E (N’UT)* .  Then, x’ = y’,$yi, and y is of the form y = y1Zy3, 
where y1 E g(yi), 513 E g(yi), and Z E g((&A)$). By the definition of g, 
g((&A)$) = {AB,AAB}. If 2 = AB, y = Y1ABy3. Having the derivation 
S +& y, it holds that y E g ( d )  because AB E g($). 
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(vii) p’ = ($ -+ E , { ( E ~ ) } ) .  Then, y’ = y:$yi and x’ = Y:&, where Y { , Y ~  E 
(N’ u T)* .  Express y = y1Zy3 so that y1 E g(y:), y3 E d y i ) ,  and z E d$), 
where g($) = {B,AB} .  Let Z = AB.  Then, y = 91ABy3, and there exists 
the derivation 

s *; 91ABy3 *G Y1Y3 [AB tE1, 

where Ply3 = x, x E g ( d ) .  

In cases (ii) through (vii) we discussed all six productions simulating the ap- 
plication of AB -+ E in G’ (see (3) in the definition of PI). Cases (viii) through 
(xiii) should cover the productions simulating the application of CD -+ E in G’ 
(see (4)). However, by inspection of these two sets of productions, it is easy to 
see that they work analogously. Therefore, we leave this part of the proof to the 
reader. 

We have completed the proof and established Claim 12 by the principle of 
induction. 0 

Observe that L(G) = L(G’) can be easily derived from the above claim. Ac- 
cording to the definition of g,  we have g(a)  = { a }  for all a E T .  Thus, from Claim 
12, we have for any x E T*: 

S +: x if and only if S’ +A, @x@. 

Since 
@z@ *;, x [(Q -+ E ,  ”)(@ -+ E ,  N ’ ) ] ,  

we obtain for any x E T*: 

S +; x if and only if S‘ +:, x. 

Consequently, L(G) = L(G’), so the theorem holds. 

4.1.4 Semi-conditional Grammars 

A semi-conditional grammar is a context-conditional grammar in which the cardi- 
nality of any context-conditional set is no more than one. These grammars were 
introduced and studied by Paun in [146]. 

Definition 14. Let G = (V, T ,  P, S )  be a context-conditional grammar. G is 
called a semi-conditional grammar (an sc-grammar for short) provided that every 
(A -+ x, Per, For) E P satisfies /Per1 5 1 and lForl 5 1. 

Convention 3. Let G = (V, T ,  P, S )  be a semi-conditional grammar, and let ( A  ---t 
x, Per, For) E P. In each (A -+ x, Per, For) E P we omit braces, and instead of 
0, we write 0. For instance, we write ( A  -+ x, BC, 0) instead of (A ---t 5, {BC},  0). 

The families of languages generated by sc-grammars and propagating sc-gram- 
mars of degree ( r ,  s) are denoted by SC(r, s) and prop-SC(r, s), respectively. The 
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families of languages generated by sc-grammars and propagating sc-grammars of 
any degree are defined as 

w w  

sc = u u SC(?-,s) 
r=O s=O 

and 
0 0 0 0  

prop-SC = U U prop-SC(r, s). 
r=O s=o 

First, we give examples of sc-grammars with degrees ( l , O ) ,  (0 ,  l), and (1,l). 

Example 3 ([146]). Let us consider an sc-grammar 

G = ({S, A, B, A’, B’, a, b},  {a ,  b}, p, S), 

where 
P = {(S + AB,O,O),(A -+ A’A’,B,O), 

( B  + bB’, O,O) ,  (A’ + A ,  B’, 0) ,  

(A’ + a,O,O),(A + a,O,O)}. 

Observe that A can be replaced by A’A’ only if B occurs in the rewritten string, 
and A’ can be replaced by A only if B‘ occurs in the rewritten string. If there is an 
occurrence of B,  the number of occurrences of A and A’ can be doubled. However, 
the application of ( B  + bB’, 0,O) implies an introduction of one occurrence of b. 
As a result, 

(B’ -+ B,  O , O ) ,  ( B  -+ b, O , O ) ,  

L(G) = {anbm : m 2 1, 1 5 5 2m}, 

which is not a context-free language. 

Example 4 ([146]). Let 

where 
P={(S+AB,O,O),(A-+A’,O,B’),  

(A’ -+ A”A”, 0, c ) ,  (A’’ + A,  0,  B) ,  
( B  + bB’;O,O),(B’ --$ B,O,O), 
( B  + c, O,O),  ( A  + a, 0 ,  O ) ,  
(A’’ -+ a, O , O ) } .  

In this case, we get a non-context-free language 

L(G) = {anbmc : m 2 0,  1 5 TI 5 2m+1}. 

Example 5. Let 
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be an sc-grammar, where the set of productions is defined as follows: 

P = {(S-+ PQR,O,O), 
( P  -+ Q, 21, 
(Q -+ cYd,  X ,  z), 
( R  -+ e z f ,  X ,  Q ) ,  
( X  -+ P, z, Q ) ,  
(Y -+ Q, P, R),  
(2 -+ R, p,  Y ) ,  
( P  -+ E ,  Q, 21, 
(Q  -+ E ,  R, PI, 
( R  -+ E ,  0, Y > ) .  

Note that this grammar is an sc-grammar of degree (1,l). Consider aabbccddeeff. 
For this word, G makes the following derivation: 

S + P Q R  + a X b Q R  + aXbcYdR + aXbcYdeZf  + 
aPbcYdeZf =+ aPbcQdeZf + aPbcQdeRf + 
aaXbbcQdeR f + aaXbbccYddeR f + aaXbbccYddee2 ff + 
aaPbbccYddeeZff + aaPbbccQddeeZff + aaPbbccQddeeR ff + 
aabbccQddeeRff =+ aabbccddeeR ff + aabbccddeeff . 

Clearly, G generates the following language: 

L(G) = {anbncndnenfn : n 2 0). 

As is obvious, this language is non-context-free. 

The following theorems deal with the generative power of semi-conditional 
grammars. 

Theorem 22. prop-SC(0, 0) = SC(0,O) = CF. 

Proof. Follows trivially from the definitions. 1 

Theorem 23. CF c prop-SC(l,O), CF c propSC(0,l). 

Proof. In Examples 3 and 4, we show propagating sc-grammars of degrees (1,O) 
and ( 0 , l )  that generate non-context-free languages. Therefore, the theorem holds. 

1 

Theorem 24. prop-SC(1,l) c CS. 

Proof. Consider a propagating sc-grammar of degree (1, l), 

G = (V, T ,  P,  S ) .  

If ( A  --+ z , A , p )  E P,  then the permitting condition A does not impose any 
restriction. Hence, we can replace this production by ( A  + z,O,p). If ( A  + 



4.1 Sequential Conditional Grammars 61 

3, a, A)  E P, then this production cannot ever by applied; thus, we can remove 
it from P. Let T’ = {a’ : a E T }  and V’ = V U T’ U { S ’ , X , Y } .  Define a 
homomorphism T from V* to ((V - T )  U (TI))* as .(a) = a’ for all a E T and 
T ( A )  = A for every A E V - T .  Furthermore, introduce a mapping w from 
V u {0} to 2((V-T)UT’) as g(0)  = 0 ,  g(a)  = {a’} for all a E T ,  and g(A) = { A }  
for4all A E V - T.  Next, construct a propagating random context grammar with 
appearance checking 

G’= (V’,TU{c},P’,S’),  

where 

It is obvious that L(G’) = L(G){c}. Therefore, L(G){c} E prop-RC(ac). Be- 
cause prop-RC(ac) is closed under restricted homomorphisms (see [43], page 48), 
and by Theorem 14 it holds that prop-RC(ac) c CS, we obtain prop-SC(1,l) C 
cs. 

The following corollary summarizes the generative power of propagating sc- 
grammars of degrees (1,0), (0, l), and (1 , l ) ;  that is, propagating sc-grammars 
containing only symbols as their context conditions. 

Corollary 9. 

CF c prop-SC(0,l) 5 prop-SC(1,l). 
CF c prop-SC(1,O) C prop-SC(1,l). 
prop-SC(1,l) prop-RC(ac) c CS. 

The next theorem says that propagating sc-grammars of degrees (1,2),  ( 2 , l )  
and propagating sc-grammars of any degree generate exactly the family of context- 
sensitive languages. Furthermore, if we allow erasing productions, these gram- 
mars generate even the family of recursively enumerable languages. Note that 
in the next section, we prove a stronger result in terms of a special variant of 
sc-grammars-simple semi-conditional grammars. Therefore, we omit the proof 
here; for a rigorous proof, see Theorems 28 and 29 in Section 4.1.5. 

Theorem 25. 

CF 
C 

prop-SC(2,I) = prop-SC(1,2) = prop-SC = CS 
C 

SC(2,l) = SC(1,2) = SC = RE. 
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4.1.5 Simple Semi-conditional Grammars 

Simple semi-conditional grammars, a special case of semi-conditional grammars, 
were introduced by Meduna and Gopalaratnam in 1994 (see [129]). Informally, 
a simple semi-conditional grammar is defined as an sc-grammar in which every 
production has no more than one condition. 

Definition 15. Let G = (V, T ,  P, S )  be a semi-conditional grammar. G is a simple 
semi-conditional grammar (an ssc-grammar for short) if ( A  --+ 2, a, p) E P implies 
0 E {a,@). 

The families of languages generated by ssc-grammars and propagating ssc- 
grammars of degree (r, s )  are denoted by SSC(r, s) and prop-SSC(r, s), respec- 
tively. Further more, 

w w  

ssc = u u SSC(r,s) 
T=o S=o 

and 

The following proposition provides an alternative definition based on context- 
conditional grammars. 

Proposition 1. Let G = (V,T,P,S) be a context-conditional grammar. G is 
a simple semi-conditional grammar if and only if every ( A  --+ 2, Per, For)  E P 
satisfies IPerl + /For1 5 1. 

Example 6. Let 

be an ssc-grammar, where 

G = ({S, A ,  x, c, y, a, b ) ,  {a, b) ,  p, S) 

P = { ( S  --+ AC,O,O), 
( A  --+ aXb, Y, 0) ,  
(C -+ y, A ,  01, 
(Y --+ c c ,  0, A ) ,  
( A  --+ ab, y, 01, 
(Y --+ c,  0747 
( X  --+ A,  c, 0)). 

Notice that G is propagating, and it has degree (1 , l ) .  Consider aabbcc. G derives 
this word as follows: 

S + AC + AY + aXbY + aXbCc + 
aAbCc + aAbYc + aabbYc + aabbcc 

Obviously, 
L(G) = {anbncn : n 2 1). 
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Example 7. Let 

be an ssc-grammar, where P is defined as follows: 

G = ((8, A, B ,  x, y, a ) ,  {a ) ,  P, S )  

P = { ( S  -+ a,O,O), 
(S -+ x,  O,O), 
( X  + YB,O,A), 
( X  -+ aB, 0, A) ,  
(Y + XA,  0, B) ,  
(Y -+ aA, 0, B) ,  

( B  -+ a,  a ,  0)). 

( A  -+ BB,XA,O), 
( B  + AA,YB,O), 

G is a propagating ssc-grammar of degree (2 , l ) .  Consider the word aaaaaaaa. G 
derives this word as follows: 

S =+ X =+ Y B  =+ Y A A  =+ XAAA =+- XBBAA + XBBABB + 
XBBBBBB + aBBBBBBB =+ aBBaBBBB j6 aaaaaaaa. 

It is obvious that G generates the following language: 

L(G)  = {a2" : n 2 0). 

Recall that {a2" : n 2 0) is not a context-free language. 

Theorem 26. prop-SSC(2,l) = CS. 

Proof. Because prop-SSC(2,l) G prop-CG and by Lemma 6 prop-CG C CS, 
it suffices to  prove the converse inclusion. 

Let G = (V, T ,  P, S )  be a context-sensitive grammar in Penttonen normal form 
(see Lemma 2). We construct an ssc-grammar, 

G' = (VU W,T,P',S), 

that generates L(G). Let 

W = { E  : AB -+ AC E P, A,B,C E V - T } .  

Define P' in the following way: 

1. I f A - + z E P , A E V - T , z E T U ( V - T ) 2 , t h e n a d d ( A - + z , 0 , 0 )  t o p ' .  

2. If AB -+ AC E P,  A, B ,  C E V-T, then add ( B  -+ E, 0 ,  E ) ,  (5 -+ C, AE, 0 ) ,  
( E  -+ B,O,O) to P'. 

Notice that G' is a propagating ssc-grammar of degree ( 2 , l ) .  Moreover, from (2), 
we have for any E E W ,  

S +&, w implies #gw 5 1 
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for all w E (V’)*, because the only production that can generate E is of the form 

Let g be a finite substitution from V* into (V U W)* defined as follows: for all 

1. if 5 E W ,  then g(D) = {D,E}; 

2. if 5 # W ,  then g(D) = {D}. 

( B  -+ B,O, E ) .  

D E V ,  

Claim 13. For any x E V+,  m,n 2 0 ,  S +-; x if and only if S *’& x’ with 
x’ E g(x). 

Pro0 f. 

Only i f :  This is proved by induction on m, m 2 0. 

Basis: Let m = 0. The only x is S as S S. Clearly, S =+;, S for n = 0 and 

Induction Hypothesis: Assume that the claim holds for all derivations of length m 
or less, for some m 2 0. 

Induction Step: Consider a derivation 

s E g(S) .  

s =+-;+l x, 

where x E V+. Because m + 1 2 1, there is some y E V *  and p E P such that 

By the induction hypothesis, 
s =+-;I y’ 

for some y’ E g(y) and n 2 0. Next, we distinguish between two cases: case (i) 
considers p with one nonterminal on its left-hand side, and case (ii) considers p 
with two nonterminals on its left-hand side. 
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If: This is established by induction on n 2 0; in other words, we demonstrate that 
if S +-El x’ with x‘ E g(x) for some x E V+,  then S J; x. 

Basis: For n = 0, x’ surely equals S as S a:, S. Because S E g(S), we have 
x = S. Clearly, S JOG S. 

Induction Hypothesis: Assume that the claim holds for all derivations of length n 
of less, for some n 2 0. 

Induction Step: Consider a derivation, 

s *y XI, 

x’ E g(x), x E V+. As n + 1 2 1, there exists some y E V+ such that 

s I.>:, 9’ *G’ 2’ b], 

y’ E g(y). By the induction hypothesis, 

S *;: y. 

Let Y‘ = yiB’Y;, Y = YlB92, Pi E d Y l ) ,  Y; E S(Y2), Y l , Y 2  E v*, B’ E 9(B), 
B E V - T ,  x’ = yiz’y;, and p = (B’ + z’, a, p) E P’. The following three cases 
cover all possible forms of the derivation step y’ JG~ x’ b]. 

(i) z’ E g(B). Then, 
s J;: Y l B Y 2 ,  

I ‘ I  where ylz y2 E g(y1By2); that is, 2’ E g(y1Byz). 

production, B -+ z’ E P,  so 
(ii) B’ = B E V - T ,  z’ E T U (V - T ) 2 ,  cx = ,B = 0. Then, there exists a 

s *& Y1By2 JG Ylz’y2 [B 2’1. 

Since z’ E g(z’), we have x = ylz’y2 such that x’ E g(x). 
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(iii) B’ = g, z’ = C,  a = Ag,  p = 0,  A, B ,  C E V - T. Then, there exists 
a production of the form AB + AC E P. Since #zy‘ 5 1, Z = 6, and 
AB E sub(y’), we have yi  = u’A, y1 = uA, u’ E g(u) for some u E V*.  Thus, 

S =+& uABY~ +G uACy2 [AB -+ AC], 

where uACy2 = ylCy2. Because C E g(C), we get x = y1Cy2 such that 

As cases (i) through (iii) cover all possible forms of a derivation step in G’, we 
have completed the induction step and established Claim 13 by the principle of 
induction. 17 

2’ E g(x).  

The statement of Theorem 26 follows immediately from Claim 13. Because for 
all a E T ,  g (a )  = { a } ,  we have for every w E T+, 

S +; w if and only if S +;, w. 

Therefore, L(G) = L(G’), so the theorem holds. 

Corollary 10. prop-SSC(2,l) = prop-SSC = prop-SC(2,l) = prop-SC = 
cs. 
Proof. It follows from Theorem 26 and the definitions of propagating ssc-gram- 
mars. 0 

Next, we turn our investigation to the ssc-grammars of degree ( 2 , l )  with eras- 
ing productions. We prove that these grammars generate precisely the family of 
recursively enumerable languages. 

Theorem 27. SSC(2,l) = RE. 

Proof. Clearly, SSC(2,l) E RE; hence it suffices to show that RE C SSC(2,l). 
Every recursively enumerable language, L E RE, can be generated by a phrase- 
structure grammar G in Penttonen normal form (see Lemma 3). That is, G’s 
productions are of the form AB + AC or A + x ,  where A,B,C E V - T ,  
2 E { E }  U T U (V - T ) 2 .  Thus, the inclusion RE E SSC(2,l) can be proved by 
analogy with the proof of Theorem 26. The details are left to the reader. 

Corollary 11. SSC(2,l) = SSC = SC(2,l) = SC = RE. 

To demonstrate that propagating ssc-grammars of degree (1,2) characterize 
CS, we first establish a normal form for context-sensitive grammars. 

Lemma 9. Every L E CS can be generated by a context-sensitive grammar, 

G = ({ s} u NCF u NCS u T ,  T ,  p, s) 3 

where { S } ,  NCF, Ncs, and T are pairwise disjoint alphabets, and every production 
in P is either of the form S + a D  or AB + AC or A + x ,  where a E T ,  
D E NCF U { E } ,  B E Ncs, A, C E NCF, x E Ncs U T U (ubl NhF). 
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Proof. Let L be a context-sensitive language over an alphabet, T .  Without loss of 
generality, we can express L as L = L1 U L2, where L1 E T and L2 G TT+. Thus, 
by analogy with the proofs of Theorems 1 and 2 in [146], L2 can be represented 
as L2 = UaETaLa,  where each La is a context-sensitive language. Let La be 
generated by a context-sensitive grammar, 

Ga = (NcF, U NCS, U T ,  T ,  p a ,  s a )  7 

of the form of Lemma 4. Clearly, we can assume that for all as, the nonterminal 
alphabets NCF, and Ncs, are pairwise disjoint. Let S be a new start symbol. 
Consider the context-sensitive grammar 

G = ( { S }  U NCF U N c s  U T ,  T ,  P, S )  

defined as 

NCF = Uae~NCF,,  
N c s  = UaETNCS,, 
P = UaETPaU{S+aSa: a € T } U { S + a :  u E L ~ } .  

Obviously, G satisfies the required form, and we have 

L(G) = L1 U (UacT aL(Ga)) = L1 U (UaET aLa) = L1 U L2 = La 

Consequently, the lemma holds. 0 

We are now ready to characterize CS by propagating ssc-grammars of degree 
(1,2).  

Theorem 28. CS = prop-SSC(l12). 

Proof. By Lemma 6, prop-SSC(1,2) 
the converse inclusion. 

assume that L is generated by a context-sensitive grammar, 

prop-CG CS; thus, it suffices to prove 

Without loss of generality, we can Let L be a context-sensitive language. 

G = ( { S }  U NCF U NCS U T ,  T ,  P, S )  

of the form of Lemma 9. Set 

V = { S }  U NCF U N C S U T .  

Let q be the cardinality of V ;  q 2 1. Furthermore, let f be an arbitrary fixed 
bijection from V onto (1,. . . , q } ,  and let f - '  be the inverse of f .  Let 

be a propagating ssc-grammar of degree (1,2), in which 

4 

V = (u Wi) u v, 
i=l 
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where 

Wi 
W2 = { k , A B - + A C , j ] :  U E T ,  A B - + A C € P ,  1 < j 5 ~ + 3 } ,  
Ws = {B,B’, B” : B E N c s } ,  
W, = {%:  u E T } .  

= { (u ,AB -+ AC,j)  : a E T,  AB --+ AC E P, 1 5 j 5 5}, 

is defined as follows: 

1. If S --+ aA E P,  a E T ,  A E (NCF U { E } ) ,  then add (S + %A,O,O) to 2;. 

2. If a E T ,  A -+ z E P ,  A E NCF,  z E (V - {S}) U ( N c F ) ~ ,  then add 
( A  -+ z,%,O) to F .  

3. If a E T ,  AB --+ AC E P, A,C E NCF,  B E NCS,  then add the following 
productions to P’ (an informal explanation of these productions can be found 
below) : 

(a) (si  -+ (a,AB -+ AC,1),0,0). 

(b) (B-+B’,(a,AB-,AC,l) ,O).  

(c) ( B  -+ g, (a,AB --+ AC, l ) , O ) .  

(d) ( ( a ,  AB -+ AC, 1)  -+ (a ,  AB -+ AC, 2 ) ,0 ,  B) .  

(e) (ii -+ B’’,O,B\’). 

( f )  ( (a ,AB --+ AC,2) -+ (a,AB -+ AC,3),0,@. 

( g )  (B” -+ [a, AB -+ AC, 11, (a ,  AB -+ AC,3),0). 

(h) ( [ a ,  AB -+ AC, j ]  -+ [a, AB -+ AC,j + 1],0, f-’(j)[a, AB -+ AC, j ] ) ,  

(i) ( [a ,  AB --+ AC, f ( A ) ]  -+ [a, AB -+ AC, f ( A )  + 1],0,0). 

(j)  ([a,AB -+ AC,q+l] -+ [a,AB -+ AC,q+2],0,B’[a,AB -+ AC,q+l]).  

for all j = 1 . .  . q, f ( A )  # j .  

(k) ( [ a ,  AB -+ AC, q + 21 -+ [a,AB -+ AC,q + 3],0, (a,AB -+ AC, 3)[a,  AB 

(1) ( (a ,AB -+ AC, 3 )  -+ ( a ,  AB -+ AC, 4 ) ,  [a, AB -+ AC,q + 31,O). 

-+AC,q+2]). 

(m) (B’-+B,(a,AB-+AC,4) ,0) .  

(n) ( (a ,  AB -+ AC,4) -+ (a ,  AB -+ AC, 5),0, B’). 

(0) ([a,AB-+AC,q+3]-+C,(a,AB-tAC,5),0). 
(p) ( ( a ,  AB -+ AC, 5 )  -+ s i ,O,  [a,  AB -+ AC, q + 31). 

4. If a E T ,  then add (si -+ a,O,O) to 2;. 
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Basic Idea. Let us informally explain the basic idea behind (3)-the heart of all 
the construction. The productions introduced in (3) simulate the application of 
productions of the form AB -+ AC in G as follows: an occurrence of B is chosen, 
and its left neighbor is checked not to belong to ? - {A}.  At this point, the left 
neighbor necessarily equals A, so B is rewritten with C. 

Formally, we define a finite letter-to-letters substitution g from V* into t* as 
follows: 

(a) If D E V ,  then add D to g(D). 

(b) If (a,AB -+ AC,j)  E W1, E T ,  AB -+ AC E P,  B E NCS,  A,C E NCF, 
j E ( 1 , .  . . ,5} ,  then add ( a ,  AB -+ AC,j)  to g(a). 

(c) If [a,  AB -+ AC, j ]  E W2, a E T ,  AB -+ AC E P,  B E NCS, A, C E NCF,  
j E ( 1 , .  . . , q + 3}, then add [a, AB --+ AC,j] to g(B).  

(d) If {g,  B’, B”} G W3, B E Ncs ,  then include { g ,  B’, B”} to g(B). 

(e) If 6 E W4, a E T ,  then add zi to g(a). 

Let 9-l be the inverse of g. To show that L(G) = L(@,  we first prove three 
claims. 

Claim 14. S =+A x, x E V*,  implies z E T(V - {S})*. 

Proof. Observe that the start symbol, S, does not appear on the right side of any 
production and that S -+ x E P implies z E T U T(V - { S } ) .  Hence, the claim 
holds. 0 

Claim 15. If S +$ x, x E ?*, then x has one of the following seven forms: 

(i)  z = ay ,  where a E T ,  y E (V - {S})* .  

(iz) x = ziy, where zi E W4, y E (V - {S})*. 

(iii) x = (a,AB -+ AC, l ) y ,  where (a,AB + AC,1) E Wl,  y E ((V - { S } )  U 

{B’, E, B”})*, #B”Y 5 1. 

(iv) x = (a,AB -+ AC,2)y, where (a,AB -+ AC,2) E W1, y E ((V - {S, B } )  U 
{B’,g,  B”})*, # B ~ Y  5 1. 

(v) x = (a,AB --+ AC,3)y, where (a,AB -+ AC,3)  E W1, y E ((V - { S , B } )  U 

(vz) x = (a,AB -+ AC,4)y, where (a,AB -+ AC,4) E W1, y E ((V - { S } )  U 

{B’})*({ [a,  AB -+ AC, j ]  : 1 5 j 5 q + 3) U { E ,  B”})( (V - {S ,  B} )  U {B’})*. 

{B’})*[a,AB -+ AC,q +3]((V - { S } )  U {B’})*. 

(via) x = (a ,  AB -+ AC, 5)y, where (a ,  AB -+ AC, 5) E Wi, 
y E (V - {S})*([a,AB -+ AC,q+3],&}(V - {S})*. 
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Proof. The claim is proved by induction on the length of derivations. 

Basis: Consider S x, x E ?*. By inspection of the productions, we have 

S =+B iiA [(S -+ iiA, 0, O ) ]  

for some zi E W4, A E ( { E }  u NcF) .  Therefore, x = si or x = iiA; in either case, x 
is a word of the required form. 

Induction Hypothesis: Assume that the claim holds for all derivations of length at 
most n,  for some n 2 1. 

Induction Step: Consider a derivation of the form 

where x E ?*. Since n 2 1, we have n + 1 2 2. Thus, there is some z of the 
required form, z E v*, such that 

s *; z * a  x [PI 

for some p E F. 
Let us first prove by contradiction that the first symbol of z does not belong to 

T.  Assume that the first symbol of z belongs to T .  As z is of the required form, 
we have z = ay for some a E (V - {S } ) * .  By inspection of P ,  there is no p E P 
such that ay +c x b], where x E v*. We have thus obtained a contradiction, so 
the first symbol of z is not in T .  

Because the first symbol of z does not belong to  T ,  z cannot have form (i); as 
a result, z has one of forms (ii) through (vii). The following cases (I) through (VI) 
demonstrate that if z has one of these six forms, then x has one of the required 
forms, too. 

(I) Assume that z is of form (ii); that is, z = iiy, ii E W4, and y E (V - {S} ) * .  
By inspection of the productions in F ,  we see that p has one of the following 
forms (a), (b), and (c): 

(a) p = ( A  4 u, z i ,O) ,  where A E NCF and u E (V - {S}) U NZF; 
(b) p = (ii -+ (a, AB -+ AC, l ) , O , O ) ,  where (a, AB -+ AC, 1) E W I ;  
(c) p = (si --+ a, O , O ) ,  where a E T .  

Note that productions of forms (a), (b), and (c) are introduced in construc- 
tion steps 2, 3, and 4, respectively. If p has form (a), then x has form (ii). 
If p has form (b), then x has form (iii). Finally, if p has form (c), then x 
has form (i). In any of these three cases, we obtain x that has one of the 
required forms. 

(11) Assume that z has form (iii); that is, z = (a ,AB -+ AC, 1)y for some 
(a ,AB -+ AC, 1) E W,, y E ( (V - { S } )  U {B' ,  6, B"})*, and # p y  5 1. By 
the inspection of F, we see that z can be rewritten by productions of these 
four forms: 
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(a) ( B  -+ B’, (a ,AB -+ AC, l ) , O ) .  

(b) ( B  -+ 6,  (a, AB -+ AC, l ) ,  0). 

(c) ( g  -+ B”, 0, B”) if B” 6 alph(y); that is, # p y  = 0. 

(d) ( ( u , A B  -+ AC, 1 )  -+ ( a , A B  -+ A C , 2 ) , 0 , B )  if B $ alph(y); that is, 
#BY = 0; 

Clearly, in cases (a) and (b), we obtain x of form (iii). If z =+-c z [PI, where 
p is of form (c), then #BUX = 1 ,  so we get z of form (iii). Finally, if we use 
the production of form (d), then we obtain x of form (iv) because #BZ = 0. 

(111) Assume that z is of form (iv); that is, z = (a ,AB -+ AC,2)y,  where 
(a ,AB -+ AC,2)  E W1, y E ((V - { S , B } )  U {B’,B^,B”})*, and # p y  5 1 .  
By inspection of F ,  we see that the following two productions can be used 
to rewrite z :  

(a) (6 -+ B”,O, B”) if B” $ alph(y). 

(b) ( ( a ,  AB -+ AC, 2) -+ (a, AB --+ AC, 3) ,  0, 6 )  if 6 $ alph(y). 

In case (a), we get x of form (iv). In case (b), we have # ~ y  = 0, so #EX = 0. 
Moreover, notice that # ~ I X  5 1 in this case. Indeed, the symbol B“ can 
be generated only if there is no occurrence of B” in a given rewritten word, 
so no more than one occurrence of B“ appears in any sentential form. As 
a result, we have #BU (a, AB -+ AC, 3)y 5 1 ;  that is, # ~ U X  5 1 .  In other 
words, we get x of form (v). 

(IV) Assume that z is of form (v); that is, z = ( a , A B  -+ AC,3)y for some 

1 5 j 5 q + 3)  U {B”,E})((V - { S , B } )  U {B’})*. Assume that y = y 1 Y y 2  
with y1,y2 E ((V-{S,B})U{B’})*.  If Y = E ,  then we can use no production 
from F to rewrite z .  Because z jz; x, we have Y # E. The following.cases 
(a) through ( f )  cover all possible forms of Y .  

(a) Assume Y = B”. By inspection of F, we see that the only production 

(a ,AB -+ AC,3)  E W1, y E ((V - { S , B } )  U { B ’ } ) * ( { [ a , A B  -+ A C , j ]  : 

that can rewrite z has the form 

(B” -+ [a ,AB -+ AC, 11, (a, AB -+ AC,3) ,0) .  

In this case, we get x of form (v). 

can be rewritten only according to the production 
(b) Assume Y = [a ,AB -+ A C , j ] w ,  j E ( 1 , .  . . , q } ,  and ! (A)  # j. Then, z 

( [ a , A B  -+ A C , j ]  -+ [a ,AB -+ A C , j  + l ] , O , f - ’ ( j ) [ a , A B  -+ A C , j ] ) ,  

which can be used unless the right-most symbol of (a, AB -+ AC, 3 ) y l  
is f - ’ ( j ) .  Clearly, in this case we again get x of form (v). 
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(c) Assume Y = [a,AB -+ AC,j] ,  j E (1 , .  . . , q } ,  f ( A )  = j .  This case 
forms an analogy to case (b), except that the production of the form 

( [a ,  AB -+ AC, f(-4)1 -+ [a, AB -+ AC, f ( A )  + 11,0,0> 

is now used. 

(b); the only change is the application of the production 

([u,AB -+ AC,q+l] -+ [a,AB -+ AC,q+2],O1B’[a,AB -+ AC,q+l]). 

(d) Assume Y = [a, AB --+ AC, q + 11. This case forms an analogy to case 

(e) Assume Y = [a, AB -+ AC, q + 21. This case forms an analogy to  case 
(b) except that the production 

( [a ,AB-+AC,q+2]  --+ [a,AB-+AC,q+3],0,  
( a ,  AB --t AC, 3) [a,  AB -+ AC, q + 21) 

is used. 

( f )  Assume Y = [a, AB -+ AC, q + 31. By inspection of F ,  we see that the 
only production that can rewrite z is 

( (a ,AB-+AC,3)  - t ( a , A B - + A C , 4 ) , [ a , A B - + A C , q + 3 ] , 0 ) .  

If this production is used, we get 2 of form (vi). 

(V) Assume that z is of form (vi); that is, z = (a ,  AB -+ AC, 4 ) y ,  where (a ,  AB -+ 

AC,4) EW1 a n d y e  ( (V-{S} )U{B’} )*[a ,AB-+AC,q+3] ( (V-{S} )U I 

{B’})*. By inspection of P,  these two productions can rewrite z: 

(a) (B’ -+ B ,  (a ,  AB -+ AC, 4 ) ,  0) .  

(b) ( (u ,AB-+AC,4)  -+ (a ,AB-+AC,5) ,0 ,B’)  ifB’@alph(y). 

Clearly, in case (a), we get IC of form (vi). In case (b), we get 2 of form (vii) 
because#B)y=O, S O Y E  ( V - { S } ) * { [ ~ , A B - + A C , ~ + ~ ] , E } ( V - { S } ) * .  

(VI) Assume that z is of form (vii); that is, z = (a,AB -+ AC,5)y, where 
(a,AB -+ AC,5) E W1 and y E (V - {S})*{[a,AB -+ AC,q + ~ ] , E } ( V  - 
{S } ) * .  By inspection of F ,  one of the following two productions can be used 
to rewrite z: 

(a) ( [a ,AB -+ AC, q + 31 -+ C, (a,AB -+ AC, 5),0). 

(b) ( (a ,  AB -+ AC, 5 )  -+ %, 0,  [a, AB -+ AC, q + 31) if [a,  AB -+ AC, q + 31 9 

In case (a), we get 2 of form (vii). Case (b) implies # ( a , ~ ~ + ~ ~ , q + 3 ~ ~  = 0; 
thus, II: is of form (ii). 

alph( z )  . 

This completes the induction step and establishes Claim 15. 0 
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Claim 16. It holds that 

S +; w i f  and only i f  S +: v 

where v E g(w) and w E V+,  for  some m,n 2 0. 

Proof. 

Only i f :  The only-if part is established by induction on m; that is, we have to 
demonstrate that 

S +g w implies S +; v 

for some 2) E g(w) and w E V+. 

Basis: Let m = 0. The only w is S because S =+$ S. Clearly, S +% S, and 

Induction Hypothesis: Suppose that our claim holds form all derivations of length 
m or less, for some m 2 0. 

Induction Step: Let us consider a derivation, 

s E m. 

s =+;+I z, 

where z E V+. Because m + 1 2 1, there are y E V+ and p E P such that 

s * g  Y +G 2 [PI, 

and by the induction hypothesis, there is also a derivation 

for some g E g ( y ) .  The following cases (i) through (iii) ,cover all possible forms of 
P: 

(i) Let p = S 4 aA E P for some a E T ,  A E NCF U { E } .  Then, by Claim 14, 
m = 0, so y = S and z = aA. By (1) in the construction of G, (S --+ 

tiA, 0,O) E F .  Hence, 

where ZA E g(aA). 

- 

S +e ZA, 

(ii) Let US assume that p = D 4 yz  E P,  D E NCF,  y2 E (V - { S } )  U 
y = y1Dy3, y1,  y3 E V*,  and z = y1yzy3. From the definition of g ,  it is clear 
that g ( 2 )  = { Z }  for all 2 E NCF; therefore, we can express = ZlDZ3, 
where z1 E g ( y 1 )  and 23 E g ( y 3 ) .  Without loss of generality, we can also 
assume that y1 = au, a E T ,  u E (V - {S})” (see Claim 14), so z1 = u”u’l, 
u” E g(a) ,  and u” E g ( u ) .  Moreover, by ( 2 )  in the construction, we have 
(D 4 y2,  zi, 0 )  E F. The following cases (a) through (e) cover all possible 
forms of a”. 



74 Chapter 4: Conditions Placed on the Use of Productions 

(a) Let a” = ii (see (ii) in Claim 15). Then, we have 

S =s$ iz~”Dz3 

and iiu”yZZ3 = ZlYZZ3 E g(yIyZY3) = g(x)* 

i i ~ l ’ y 2 ~ 3  [(D -+ yz,ii,O)], 

(b) Let a’’ = a (see (i) in Claim 15). By (4) in the construction of 5, we 
can express the derivation 

S +$ UU“DZ~ 

as 
s *;-I iiu/IDz3 * a  au”Dz3 [(z -+ a,  0 ,  O)]; 

thus, there exists the derivation 

s +-:-’ i i ~ ” ~ ~ 3  +a iiu”yZz3 [(D 4 yz, ii, 011 

with i i ~ ” y 2 ~ 3  E g(z). 

(c) Let a” = ( a , A B  -+ AC,5)  for some AB -+ AC E P (see (vii) in 
Claim 15), and let u”Dz3 E (V - { S } ) * ;  that is, [a ,AB -+ AC,q +3] g‘ 
alph(u”Dz3). Then, there exists the derivation 

S +E (a ,  AB -+ AC, 5)u”Dz3 

* E  Si~”Dz3 [ ( (a ,  AB --+ AC, 5) -+ 3, 0, [a, AB -+ AC, q + 3])] 
iiu”YZz3 [(D YZ,Z, o)], 

and h ~ ” ~ 2 ~ 3  E g(x). 

(d) Let a” = ( a ,  AB -+ AC, 5 )  (see (vii) in Claim 15). Let [a,  AB -+ AC, q+ 
31 E alph(u”Dz3). Without loss of generality, we can assume that 

= (a ,  AB -+ AC, 5)u”Do”[a, AB -+ AC, q + 3]t”, where ~ ” [ a ,  AB -+ 

AC, q+3]t” = z3, oBt = y3, o” E g(t), o, t E (V - {S} ) * .  By inspection 
of ?, (see (3) in the construction of G), we can express the derivation 

as 

S +; iiu“ Do“ Bt“ 

* a  

= s ~ ’ ~ ~ ~ ~ ’  ( a ,  AB -+ AC, l)u’Do’&’ 

(a ,  AB -+ AC, 1)u”Do”Bt” 

[(ii -+ (a ,AB -+ AC, l),O,O)] 

[ml(B -+ S, ( a ,  AB -+ AC, l ) ,  O)mz] 

* a  ( a ,  AB -+ AC, 2)u‘D0’&’ 

[ ( ( a ,  AB -+ AC, 1) -+ (a ,  AB -+ AC, 2 ) ,  0, B)] 
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*e (a ,  AB -+ AC, 2)u’Do’B”t’ 

( a ,  AB + AC, 3)u’Do’B”t’ 

[E  -+ B”, 0,  B’I] 

*e 
[( (a ,  AB -+ AC, 2 )  -+ (a,  AB -+ AC, 3 ) ,  0 ,  E ) ]  

[(B” + [a, AB + AC, 11, (a ,  AB -+ AC, 3 ) ,  O)] 
*e 

+pt2 

( a ,  AB -+ AC, 3)u’Do’[a, AB -+ AC, l]t’ 

(a ,  AB -+ AC, 3)u’Do’[a, AB -+ AC, q + 3]t’ 

(a ,  AB -+ AC,4)u’Do’[a,AB -+ AC,q + 3]t’ 
[ ( (a ,  AB -+ AC, 3)  + (a ,  AB + AC, 4 ) ,  

G 

[WI 

*e 

[a, AB + AC, q + 31,O)l 
+lm31 

2; 

*e 

(a ,  AB -+ AC,4)u”Do”[a, AB .--) AC, q + 3]t” 

[m31 

[ ( (a ,  AB -+ AC,4) -+ (a ,  AB -+ AC, 5 ) ,  0,  B’)], 
(a ,  AB -+ AC, 5)u”Do”[a, AB -+ AC, q + 3]t” 

where ml,m2 E { ( B  -+ B’,(a,AB -+ AC,l),O)}*, m3 E {(B’ -+ B,  

[a, AB -+ AC, 2],0,  f - ’ ( l ) [a ,  AB -+ AC, 11). . . ([a, AB -+ AC, f ( A )  - 

AB -+ AC, f (A)]  -+ [a,AB + AC,f(A)+l],O,O)([a,AB -+ AC,f(A)+ 
11 -+ [a,AB -+ AC, f (A)  + 2],O,f-’(f(A) + l)[a,AB -+ AC, f (A)  + 
11) ... ([a,AB -+ AC,q] -+ [a,AB -+ AC,q + l],O,f-’(q)[a,AB --+ 

AC,q])([a,AB -+ AC,q + 11 -+ [a,AB -+ AC,q + 2],0,B’[a,AB -+ 

AC, q + l ] ) ( [ a ,  AB -+ AC, q + 21 -+ [a, AB + AC,q + 3]) ,0 ,  (a,AB --+ 

AC,3)[a,AB --f AC,q+2]), u’ E ((alph(u”)-{B})U{B’})*, g-l(u’) = 
u, o’ E ((alph(o”) - { B } )  U {B”})*, g-’(o’) = g-l(o”) = o, t’ E 
((alph(t”) - { B } )  u {B’})*, g-’(t’) = g-’(t”) = t. 
Clearly, ziu”Do”Bt” E g(auDoBt) = g(auDy3) = g ( y ) .  Thus, there 
exists the derivation 

(a,AB -+ AC,4),0)}*, lm3l = Imim2l, w = ([a,AB -+ AC,l] -+ 

11 -+ [a, AB -+ AC, f(A)I,O, f - l ( f ( A )  - l”, AB -+ AC, f ( A )  - l I ) ( [a ,  

s *; iiu”Do”Bt” * E  iiu”y2ol’Btl/ [ (D  -+ y2, zi, O ) ] ,  

where ~ 1 ~ 2 ~ 3  = ziu”y20”Bt” E g(auy20Bt) = g(y1y2y3)  = g(z). 
(e) Let a” = (a ,  AB -+ AC, i) for some AB -+ AC E P and i E ( 1 , .  . . , 4 }  

(see (iii) - (vi) in Claim 15).  By analogy with (d), we can construct the 
derivation 

s *; ziu”Do”Bt/’ =+Z ziul/y20/1Btll [ ( D  -+ y2, a, O ) ]  

such that ziu”y2o”Bt” E g ( y 1 ~ 2 ~ 3 )  = g(z) (the details are left to the 
reader). 
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(iii) Let p = AB -+ AC E P,  A,C E NCF,  B E Ncs, y = YlABy3, y l , y3  E V*,  
z = yIACy3, = z ~ A Y z ~ ,  Y E g(B),  zi E g(yi) where i E {1,3}. Moreover, 
let y1 = au (see Claim 14), z1 = d’u”, a” E g(a), u” E g(u). The following 
cases (a) through (e) cover all possible forms of a”: 

(a) Let d’ = 2. Then, by Claim 15, Y = B. B y  (3 )  in the construction of 
e, there exists the following derivation: 

S =+z liu“ABz3 

+c (a ,  AB -+ AC, l)u”ABz3 

*?”” (a ,  AB -+ AC, l)u‘A6u3 

[(li -+ (a ,  AB -+ AC, I ) ,  0 ,  O ) ]  

[rnl(B -+ 6, ( a ,  AB -+ AC, l ) ,  O ) ]  

(a ,  AB -+ AC, 2 ) u ’ ~ Z u ~  

[ ( (a ,AB-+AC, l )  -+ (a,AB-+AC,2),0,B)] 

[(6 -+ B”, 0,  B”)] 

[((u,AB -+ AC,2) -+ (a,AB -+ AC,3),0,@] 

[(I?”-+ [a,AB--+AC,l],(a,AB-+AC,3),0)] 

(a ,  AB -+ AC, 2)u’ABt’u3 

(a ,  AB -+ AC, 3)u‘AB1‘u3 

(a, AB --+ AC, 3)u’A[a, AB -+ AC, 1]u3 

(a ,  AB -+ AC, 3)u’A[a, AB -+ AC, + 31.3 
[dl 

( a ,  AB -+ AC, 4)u’A[a, AB --+ AC, q + 31.3 
[((u,AB --+ AC,3) -+ (a,AB -+ AC,4), 

[a, AB -+ AC, + 31,O)l 

(a ,  AB -+ AC, 4)u”A[a, AB -+ AC, + 3123 

b 2 1  

(u ,  AB -+ AC, 5)d’A[a, AB -+ AC, q + 31.3 
[((a,AB -+ AC,4) -+ (a,AB -+ AC,5),0,B’)] 

[([a, AB -+ AC, q + 31 -+ C, (a ,  AB -+ AC, 5 ) ,0 ) ] ,  

( a ,  AB -+ AC, 5)u”ACz3 
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[a,AB --+ AC,f(A)+2],0,  f - ’ ( f (A)+l)[a ,AB -+ AC, f (A)+1]) .  . . ( [ a ,  
AB -+ AC,q] -+ [a,AB -+ AC,q + l ] ,o , f - ’ (d[a ,AB -+ AC,q])([a, 
AB -+ AC,q+l]  -+ [a,AB -+ AC,q+2],0,B’[a,AB -+ AC,q+ 
l] ) ( [a ,AB -+ AC,q + 21 --t [a,AB --+ AC,q + 3]) ,0 ,  (a,AB -+ AC,3)[a, 
AB --+ AC,q+2]), u3 E ((alph(z3)-{B})U{B’})*, g-l(u3) = g-’(z3) = 
y3, u’ E ((alph(u”) - { B } )  U {B‘})*, g-’(u‘) = g-’(u’’) = u. It is 
clear that (a,AB -i AC,5) E g(a ) ;  thus, (a,AB --+ AC,5)u1’ACz3 E 

(b) Let a’’ = a. Then, by Claim 15, Y = B. By analogy with (ii.b) and 
g(auACy3) = g(x) .  

(iii.a) in the proof of this claim (see above), we obtain 

S +-:-’ Eu”ABz3 +-E (a, AB --+ AC, 5)u”ACz3, 

SO (a, AB -+ AC, ~ ) u ” A C Z ~  E g(z). 

(c) Let a‘‘ = (a,AB -+ AC,5) for some AB -+ AC E P (see (vii) in 
Claim 15),  and let u”AYz3 E (V - {S})* .  At this point, Y = B. By 
analogy with (ii.c) and (iii.a) in the proof of this claim (see above), we 
can construct 

s *“1+1 au - 11 ABz3 =+; (a ,  AB --+ AC, 5)u”ACz3, 
G 

SO (a, AB -+ AC, 5)u”ACz3 E g(z). 

(d) Let a’’ = (a,AB -+ AC,5) for some AB -+ AC E P (see (vii) in 
Claim 15) ,  and let [a,  AB -+ AC, q + 31 E alph(u”AYz3). By analogy 
with (ii.d) and (iii.a) in the proof of this claim (see above), we can 
construct 

S +E EuIIABz~, 

and then 

S +-; EuI‘ABz~ +% (a, AB -+ AC, ~)uI IACZ~ 

so that (a ,  AB + AC, 5)u”ACz3 E g(auACy3) = g(z).  

(e) Let a” = (a ,  AB -+ AC, i) for some AB -+ AC E P ,  i E ( 1 , .  . . ,4}, see 
(111) - (IV) in Claim 15. By analogy with (ii.e) and (iii.d) in the proof 
of this claim, we can construct 

If: By induction on n, we next prove that if S +-: v with v E g(w) and w E V* 
for some n 2 0, then S +; w. 

Basis: For n = 0, the only v is S as S +-$ S. Because {S} = g(S),  we have 
w = S. Clearly, S +$ S. 
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Induction Hypothesis: Assume that the claim holds for all derivations of length n 
or less, for some n 2 0. Let us show that it is also true for n + 1. 

Induction Step: For n + 1 = 1, there only exists a direct derivation of the form 

S =+-B iiA [(S + iiA,O,O)], 

where A E NCF U { E } ,  a E T ,  and iiA E g(aA). By (l), we have in P a production 
of the form S + aA, and thus a direct derivation S JG aA. 

Suppose n + 1 2 2 (i.e., n 2 1) .  Consider a derivation 

where IC’ E g(x),  x E V*.  Because n + 1 2 2, there exist ii E Wq, A E NCF,  and 
y E V+ such that 

S =+z iiA +:-’ y‘ =+e X’ [PI, 

where p E p ,  y‘ E g ( y ) ,  and by the induction hypothesis, 

s *; y .  

Let US assume that y’ = ~ 1 2 ~ 2 ,  y = ~ 1 D y 2 ,  Z j  E g ( y j ) ,  y j  E (V - {S})*, 
j = 1,2 ,  2 E g(D) ,  D E V - {S}, p = (2 -+ u’, a,  p) E P’, a = 0 or ,8 = 0,  
x’ = z ~ u ’ z ~ ,  u’ E g(u) for some u E V*;  that is, x’ E g(y1uy2). The following cases 
(i) through (iii) cover all possible forms of 

y’ *z 5’ b]. 

(i) Let 2 E NCF. By inspection of F, we see that 2 = D ,  p = ( D  -+ u’, ii, 0 )  E - 
P,  D --+ u E P and u = u‘. Thus, 

(ii) Let u = D. Then, by induction hypothesis, we have the derivation 

s *; Y l D Y 2  

and y1 Dy2 = y1uy2 in G. 

(iii) Let p = ([a,AB -+ AC,q + 31 -+ C,(a,AB --+ AC,5),0), 2 = [a,AB + 

AC,q + 31. Thus, u’ = C and D = B E Ncs.  By case (VI) in Claim 15 
and the form of p ,  we have z1 = (a,AB -+ AC,5)t and y1 = ao, where 
t E g(o) ,  (a ,  AB -+ AC, 5 )  E g ( a ) ,  o E (V - {S})*, and a E T.  From (3) in 
the construction of e, it follows that there exists a production of the form 
AB --+ AC E P. Moreover, (3) and Claim 15 imply that the derivation 
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can be expressed in the form 

79 

iiA 
iit B z ~  
(a, AB -+ AC, 1)~tBzz  

[(ii -+ (a ,  AB --* AC, l ) ,  0 ,  O ) ]  
(a ,  AB -+ AC, 1)vEwz 

[W’I 
( a ,  AB -+ AC, 1 )vB”~z  

(a,  AB -+ AC, 2)vB”~z  

(a, AB -+ AC, 3)VB”Wz 

(a ,  AB -+ AC, 3 ) v [ ~ ,  AB -+ AC, l ] ~ z  

(a, AB -+ AC, 3)v[a, AB -+ AC, q + 3]wz 

( a ,  AB -+ AC, 4)v[a, AB -+ AC, q + ~ ] W Z  

[ ( E  -+ B”,O, B”)] 

[ ( (a ,  AB -+ AC, 1) -+ ( a ,  AB --t AC, 2 ) ,  0 ,  B ) ]  

[ ( ( a ,  AB -+ AC, 2)  -+ (a ,  AB --f AC, 3 ) ,  0, B^)] 

[(B”-+ [ a , A B - + A C , l ] , ( a , A B - - * A C , 3 ) , 0 ) ]  

[w I 
[ ( (a ,  AB -+ AC, 3) -+ (a ,  AB -+ AC, 4), 

[a, AB -+ AC, q + 31,O)l 
(a, AB -+ AC, 4)t[a,  AB -+ AC, q + 31.22 

(a, AB -+ AC, 5)t[a, AB + AC, q + 3122 

(a,  AB -+ AC, 5)tc.Z~ 

[W”l 

[ ( (a ,  AB -+ AC, 4 )  -+ (a ,  AB -+ AC, 5 ) ,  0,  B’)] 

[([a,  AB -+ AC, q + 31 -+ C, (a ,  AB --+ AC, 5 ) ,  O ) ] ,  

where w’ E { ( B  -+ B’,(a,AB -+ AC,l),O)}*{(B -+ E,(a,AB -+ AC,1),0)} 
{ ( B  -+ B’, (a,AB -+ AC,l),O)}*, g(B)  n alph(vwz) C {B’}, g-’(v) = 
g-’(t), g-’(wz) = g-’(Zz), w = wl([a,AB -+ AC,f(A)]  -+ [a,AB -+ 

AC,f(A)+l],O,O)wz([a,AB -+ AC,q+l] -+ [a,AB -+ AC,q+2],O,B’[a,AB 
-+ AC,q+l])([a,AB -+ AC,q+2] -+ [a,AB ---f AC,q+3],0,(a,AB -+ 

AC, 3 ) [ ~ ,  AB 4 AC, + 2 ] ) ,  ~1 = ( [a,  AB -+ AC, 11 -+ [a, AB -+ AC, 2] ,0 ,  
f-’(l)[a,AB -+ AC, I ] ) .  . . ([a,AB -+ AC,f(A)  - 11 -+ [a,AB -+ AC, f (A) ] ,  

wz  = ([a,AB -+ AC, f (A)  + 11 -+ [a,AB -+ AC, f (A)  + 2],O,f-’(f(A) + 
O,f-’(f(A) - l)[a,AB --, AC, f (A)  - l ] ) ,  where f ( A )  implies q1 = E ,  

l )[a,AB -+ AC, f (A)  + 11). . . ([a,AB -+ AC,q] -+ [a,AB -+ AC,q + 1],0,  
f-’(q)[a,AB -+ AC,q]), where f(A) = q implies qz = E ,  w” E {(B‘ -+ 

B,  (a ,  AB -+ AC, 4), O)}*. 

The derivation above implies that the right-most symbol oft  must be A. As 
t E g(o),  the right-most symbol of o must be A as well. That is, t = s’A, 
o = sA and s’ E g(s) for some s E (V - {S})* .  By the induction hypothesis, 
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there exists a derivation 
S +& asABy2. 

Because AB -+ AC E P, we get 

S *& asABy2 J G  asACy2 [AB -+ AC], 

where asACy2 = y1uy2. 

By (i), (ii), and (iii) and inspection of p ,  we see that we have considered all possible 
derivations of the form 

s *;+I XI, 

so we have established Claim 16 by the principle of induction. 0 

can be easily derived from Claim 16. By the 
definition of 9,  we have g(a) = { a }  for all a E T .  Thus, by Claim 16, we have for 
all 2 E T*,  

S =+& x if and only if S +; x. 

The equivalence of G and 

Consequently, L(G) = L(@, and the theorem holds. W 

Corollary 12. prop-SSC(1,2) = prop-SSC = prop-SC(1,2) = prop-SC = 
cs. 

We now turn to the investigation of ssc-grammars of degree (1,2) with erasing 
product ions. 

Theorem 29. SSC(1,2) = RE. 

Proof. Clearly, we have SSC(1,2) C_ RE. Thus, it suffices to show that RE G 
SSC(1,2). Every language L E RE can be generated by a grammar G = 
(V, T ,  P, S) in which each production is of the form AB -+ AC or A + x, where 
A, B, C E V - T ,  x E { E }  u T u (V - T)' (see Lemma 3). Thus, the inclusion can 
be established by analogy with the proof of Theorem 28 (the details are left to the 
reader). 

Corollary 13. SSC(1,2) = SSC = SC(1,2) = SC = RE. 

Corollaries 10, 11, 12, and 13 imply the following relationships of language 
families generated by simple semi-conditional grammars: 

Corollary 14. 

CF 
C 

prop-SSC = prop-SSC(2,l) = prop-SSC(1,2) 
= prop-SC = prop-SC(2,l) = prop-SC(1,2) = CS 

C 
SSC = SSC(2,l) = SSC(1,2) = SC = SC(2,l) = SC(1,2) = RE. 
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Next, we turn or attention to reduced versions of ssc-grammars. More specifically, 
we demonstrate that there exist several normal forms of ssc-grammars with a 
limited number of conditional productions and nonterminals. 

Theorem 30 ([135]). Every recursively enumerable language can be defined by a 
simple semi-conditional grammar of degree (2 , l )  with no more than 12 conditional 
productions and 13 nonterminals. 

Proof. Let L be a recursively enumerable language. By Geffert [69], we can assume 
that L is generated by a grammar G of the form 

G = (V,T, P U {AB -+ E,CD -+ E} ,S)  

such that P contains only context-free productions and 

v - = {S ,  A, B ,  C, D}. 

Construct an ssc-grammar G' of degree (2, l), 

G' = (V', T ,  P', S), 

where 
V' = v u W, 
w = {Z,E, ( E A ) , $ , E , ~ ~ , ( E C ) , # } ,  v n w  = 0. 

The set of productions P' is defined in the following way: 

1. If H -+ y E P, H E V - T ,  y E V " ,  then add ( H  --+ y,O,O) to P'. 

2. Add the following six productions to  P': 

( A  -+ z,O, X), 
( B  -+ E,o, E), 

(E -+ $ 1  ( E A ) E ,  O), 
(2 --* (€A), zg, 01, 

((€A) € 7  0,  g)i 
($ ---t € 7  0,  (€A)). 

3. Add the following six productions to P': 
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Basic Idea. Notice that G’ has degree (2,l)  and contains only 12 conditional 
productions and 13 nonterminals. The productions of (2) simulate the application 
of AB -+ E in G’ and the productions of (3) simulate the application of CD -+ E 

in G’. 
Let us describe the simulation_of AB-4 E .  First, one occurrence of A an_d one 

occurrence of B are rewritten to A and B ,  respectively (no more than one A and 
one g appear in any sentential form). The right neighbor of 2 is checked to  be g 
and z is rewritten to  ( E A ) .  Then, analogously, the left neighbor of E is checked 
to be ( E A )  and E is rewritten to $. Finally, ( E A )  and $ are erased. The simulation 
of C D  -+ E is analogous. 

To establish L(G) = L(G’), we first prove the following two claims. 

Claim 17. S +:, x’ implies #zx’ 5 1 for all 2 E {A ,  B ,C ,  D }  and some 
- - - -  

Ic’ E (V’)*. 

Proof. By inspection of groductions in P’, the only production that can generate 
2 is of the form ( X  4 X ,  0,Z).  This production can be applied only when no 2 
occurs in the rewritten sentential form. Thus, it is not possible to derive x’ from 

0 S such that #zx’ 2 2. 

Informally, the next claim says that every occurrence of ( E A )  in derivations 
from S is always followed either by g or $, and every occurrence of (EC)  is always 
followed either by 5 or #. 

Claim 18. It holds that 

( I )  s +&, yi ( E A ) ~ ;  implies yi E (v)+ andfirst(yi) E { E ,  $} for any yi E (v‘)*; 

Proof. We establish the proof by the examination of all possible forms of deriva- 
tions that may occur when deriving a sentential form containing ( E A )  or ( E C ) .  

(I) By the definition of P‘, the only production that can generate ( E A )  is p = 

(z -+ ( E A ) ,  ig ,  0). This production has the permitting condition zg, so it 
can be used provided that 25 occurs in a sentential form. Furthermore, by 
Claim 17, no other occurrence of or E can appear in the given sentential 
form. Consequently, we obtain a derivation 

-- 
S +kt u ~ A B u ;  +GI u ~ ( E A ) ~ u ~  [p] 

for some ui,ul, E (V’)*, z,g 
how to get ( E A ) .  Obviously, ( E A )  is always followed by 5 in ui ( E A ) ~ U ~ , .  

sub(uiul,), which represents the only way 
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Next, we discuss how G’ can rewrite the subword ( E A ) ~  in ui ( E A ) ~ U ~ .  There 
are only two productions having the nonterminals ( E A )  or E on their left- 
hand side, p l  = ( g  + $, (EA)E,O) and p z  = ( ( E A )  + E ,  0,g). G’ cannot 
use p z  to erase ( E A )  in u ~ ( E A ) E u ~ ,  because p z  forbids an occurrence of 
in the rewritten strint. Production pl  has also a context condition, but 
( E A ) ~  E sub(ui(EA)Buk), and thus p l  can be used to  rewrite with $. 
Hence, we obtain a derivation of the form 

s * ; I  UiAEu’, *GI U ; ( & A ) g U b  [p] 
*;, V i ( E A ) E V L  *Gf Vi(EA)$Vb [PI]. 

Notice that during this derivation, G’ may rewrite ui and ul, to some V; and 
vi, respectively (v;, V; E (V’)*); however, (EA)B remains unchanged after 
this rewriting. 

In this derivation we obtained the second symbol $, that can appear as the 
right neighbor of ( E A ) .  It suffices to show that there is no other symbol that 
can appear immediately after ( E A ) .  By inspection of P’, only ($ + E ,  0, ( E A ) )  

can rewrite $. However, this production cannot be applied when ( E A )  occurs 
in the given sentential form. In other words, the occurrence of $ in the 
subword ( € A ) $  cannot be rewritten before ( E A )  is erased by the production 
p ~ .  Hence, ( E A )  is always followed by either E or $, and thus the first part 
of Claim 18 holds. 

- 

(11) By inspection of productions simulating AB + E and CD + E in G’ (see (2) 
and (3) in the definition of P’), these two sets of productions work analo- 
gously. Thus, part (11) of Claim 18 can be proved by analogy with part (I). 

Let us return to the main part of the proof. Let g be a finite substitution from 
(V‘)* to V* defined as follows: 

1. For all X E V : g(X) = {X}. 

2. g(x) = { A ) ,  g(g) = { B ) ,  g((EA)) = { A ) ,  g($) = { B , A B ) .  

3. 9(E) = {CI, d a  = {Dl, S((EC)) = {C},  d#) = { G C D ) .  

Having this substitution, we can now prove the following claim: 

Claim 19. S +; z if and only if S +;, x’ for some x E g(x’), x E V*, x’ E (V’)*. 

Proof. The claim is proved by induction on the length of derivations. 

Only if: We show that 

S +g x implies S +-&, x, 

where m 2 0, x E V*; clearly x E g(x). This is established by induction on m. 
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Basis: Let m = 0. That is, S +; S. Clearly, S 

Induction Hypothesis: Suppose that the claim holds for all derivations of length 
m or less, for some m 2 0. 

Induction Step: Let us consider a derivation 

S. 

s *;+l x, x E v*. 
Since m + 1 2 1, there is some y E V+ and p E P U {AB -+ E ,  CD -+ E }  such that 

s *; Y *G 2 [PI. 

By the induction hypothesis, there is a derivation 

s * & I  y. 

The following three cases cover all possible forms of p: 

(i) p = H -+ y2 E P, H E V - T,  y2 E V*.  Then, y = y1Hy3 and x = y1y2y3, 
y1, y3 E V*.  Because we have ( H  -+ y2,0,0) E P’, 

s *;) 1/1Hy3 *GI Yly2y3 [ ( H  yZ,o,o)] 

and YlY2Y3 = x. 

(ii) p = A B  --+ E .  Then, y = ylABy3 and x = 9 1 ~ 3 ,  y1,y3 E V*.  In this case, 
there is the derivation 

(iii) p = CD -+ E .  Then, y = ylCDy3 and x = ~ 1 ~ 3 ,  yl ,  y3 E V*. By analogy 
with (ii), there exists the derivation 
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I f :  By induction on the length n of derivations in G’, we prove that 

S +;, x‘ implies S +; x 

for some x E g(x’), x E V*,  x’ E (V’)*. 

Basis: Let n = 0. That is, S +:, S. It is obvious that S 

Induction Hypothesis: Assume that the claim holds for all derivations of length n 
or less, for some n 2 0. 

Induction Step: Consider a derivation 

S and S E g(S). 

s +;$I XI, 2’ E (V’)*. 

Since n + 1 2 1, there is some y’ E (V’)+ and p’ E P’ such that 

s * ; I  y’ 2’ [p’], 

and by the induction hypothesis, there is also a derivation 

S*;Y 

such that y E g(y’). 

forms of p’: 
By inspection of P’, the following cases (i) through (xiii) cover all possible 

(i) p‘ = (H + yz,O,O) E P’, H E V - T ,  y2 E V*.  Then, y’ = yiHy$, 
x‘ = yiy2y$, yi,y$ E (V’)* and y has the form y = y1Zy3, where y1 E 
g(yi), y3 E g(y$) and 2 E g(H). Because for all X E V - T :  g(X) = {X}, 
the only Z is H, and thus y = y1Hy3. By the definition of P’ (see (l)) ,  there 
exists a production p = H t y2 in P, and we can construct the derivation 

s *& 31HY3 *G ?/1?/2y3 b] 
such that y1y2y3 = x, x E g(x’). 

(ii) p’ = (A t & O , i ) .  Then, y’ = yiAy$, x’ = yi&$, yi,y$ E (V’)*, and 

the only Z is A, so we can express y = y1Ay~.  Having the derivation S +; 
y such that y E g(y’), it is easy to see that also y E g(x’) because A E g(x). 

(iii) p’ = ( B  t Z,O,E). By analogy with (ii), y’ = yiBy$, x’ = yiBy$, y = 

y = YlZy3, where y1 E g(yi), y3 E g(&) E g(A). Becauseg(A) = {A), 

I 

91&3, where y’l,y$ E (V’)*, y1 E g(yi), y3 E g(y$), and thus E g ( 4  
because B E g(@. 

(iv) p’ = (2 + ( E A ) , ~ E , O ) .  By the permitting condition of this production, 
XE surely occurs in y’. By Claim 17, no rn2F than one can occur in y’. 
Therefore, y’ must be of the form y’ = yiABy$, where yi,y$ E (V’)* and 
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- 
2 $ sub(yiyi). Then, x’ = y i ( ~ ~ ) B y i  and y is of the form y = y1zy3, where 
y1 E g(yi), y3 E g(yi) and Z E g ( 2 g ) .  Because g(2E)  = {AB}, the only Z 
is AB; thus, we obtain y = y1ABy3. By the induction hypothesis, we have 
a derivation S +& y such that y E g(y’). According to the definition of g, 
y E g(x’) as well because A E g((EA)) and B E g(5 ) .  

(v) p’ = (5 -+ $, (EA)B,O). This production can be applied provided that 
( E A ) ~  E sub(y’). Moreover, by Claim 17, #,-y’ 5 1. Hence, we can express 
y’ = Y ~ ( E A ) & & ,  where yi,& E (V’)* and 3 # sub(yiyi). Then, x‘ = 

!/:(€A)$!/;  and Y = YizY3, where Pi E dd), Y3 E S(Yh) and z E g((EA)g). 
By the definition of g, g((EA)g) = {AB}, so 2 = AB and y = 91ABy3. By 
the induction hypothesis, we have a derivation S +; y such that y E g(y’). 
Because A E g((EA)) and B E g($), y E g(x’) as well. 

(vi) p’ = ( ( E A )  -+ E,O,B). Application of ((EA) -+ E , O , ~ )  implies that ( E A )  

occurs in y’. Claim 18 says that ( E A )  has either g or $ as its right neighbor. 
Since the forbidding condition of p‘ forbids an occurrence of in y‘, the 
right neighbor of ( E A )  must be $. As a result, we obtain y’ = Y ~ ( E A ) $ Y ~  

where yi, y$ E (V‘)*. Then, 2’ = yi$y$ and y is of the form y = y1Zy3, 
where y1 E g(y{), y3 E g(y4) and Z E g((EA)$). By the definition of g, 
g((EA)$) = {AB,AAB}. If 2 = AB, y = yIABy3. Having the derivation 
S a& y, it holds that y E g ( d )  because AB E g($). 

(vii) p’ = ($ -+ E , O ,  ( E A ) ) .  Then, y’ = yi$yi and x’ = yiy;, where yi,yi E (V’)*. 
Express y = y1Zy3 so that y1 E g(yi), y3 E g(y$) and Z E g($), where 
g($) = {B,AB}.  Let 2 = AB. Then, y = y1ABy3, and there exists the 
derivation 

s *; YlABy3 *G y1y3 [AB + E l ,  

where y1y3 = 2, 17: E g(2’). 

In cases (ii) through (vii) we discussed all six productions simulating the ap- 
plication of A B  -+ E in G’ (see (2) in the definition of I”). Cases (viii) through 
(xiii) should cover productions simulating the application of CD -+ E in G’ (see 
(3)). However, by inspection of these two sets of productions, it is easy to see that 
they work analogously. Therefore, we leave this part of the proof to  the reader. 

We have completed the proof and established Claim 19 by the principle of 
induction. 0 

Observe that L(G) = L(G’) follows from Claim 19. Indeed, according to the 
definition of g, we have g(a) = {a} for all a E T .  Thus, from Claim 19, we have 
for any x E T*: 

S +& x if and only if S +;3, x. 

Consequently, L(G) = L(G’), and the theorem holds. 
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Let us note that very recently Vaszil has improved Theorem 30 by demonstrat- 
ing that even 10 conditional productions and 12 nonterminals suffice to generate 
every recursively enumerable language (see [ 1741): 

Theorem 31. Eve y recursively enumerable language can be generated by a sim- 
ple semi-conditional grammar of degree (2 , l )  having no more than 10 conditional 
productions and 12 nonterminals. 

Continuing with the investigation of reduced ssc-grammars, Vaszil also proved 
that if we allow permitting conditions of length three-that is, ssc-grammars of 
degree (3,l)-the number of conditional productions and nonterminals can be 
further decreased. 

Theorem 32. Every recursively enumerable language can be generated by a sim- 
ple semi-conditional grammar of degree (3,l) with n o  more than 8 conditional 
productions and 11 nonterminals. 

Proof. Let L by a recursively enumerable language. Without any loss of generality, 
we can assume that L is generated by a phrase-structure grammar 

G = (V, T ,  P U {ABC -+ E } ,  S), 

where 

and P contains only context-free productions of the forms S -+ 25’2, z E { A ,  B}*, 
2 E T ,  S -+ S’, S’ -+ uS’v, u E { A , B } * ,  v E {B,C}* ,  S’ --+ E (see [68]). Every 
successful derivation in G consists of the following two phases: 

V - T = {S, S’,A,B,C) 

1. S +-;2 2,. . . zlSz1.. .z, =+-G 2, . . .z1S’z1.. .zn, zi E { A ,  B}*,  1 5 i I n. 

2. 2,. . .21s’Zl.. .z, %‘; 2,. . .21u,.. . ‘LL1s”u1.. . Vmx1..  .z, J G  2,. . . z1 
u, ... u1vl. . .vmzl . .  .z,, where uj E { A , B } * ,  v j  E {B,C}*,  1 5 j 5 rn, 
and the terminal word 21. . . x, is generated by G if and only if by using the 
erasing production ABC -+ E ,  the substring z, . . . zlu,. . . ~ 1 ~ 1 . .  .v, can 
be deleted. 

Next, we introduce the ssc-grammar 

G’ = (V’, T, P’, S) 

of degree (3, l), where 

V’ = { S, S‘, A,  A‘, A“, B, B’, B’l, C, C’, C”} U T 

and P’ constructed as 

1. for every H -+ y E P ,  add ( H  --f y,O,O) to  P‘; 

2. for every X E { A ,  B,C},  add (X -+ X’,O,X’) to P’; 
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3. add the following six productions to P’: 

(C’ -+ C”, A’B’C’, 0 ) ,  
(A’ -+ A”, A’B’C’’, 0 ) ,  
(B’ -+ B”, AI’B’C’’, 0 ) ,  
(A‘’ -+ E ,  0,  C”), 
(C” -+ E ,  0,  B’), 
(B” --f E,  0,O). 

Observe that G’ satisfies all the requirements of this theorem; that is, it contains 
only 8 conditional productions and 11 nonterminals. G‘ reproduces the first two 
phases of generating a terminal word in G by using the productions of the form 
( H  -+ y,O,O) E P’. The third phase, during which ABC -+ E is applied, is 
simulated by the additional productions. Examine these productions to see that 
all words generated by G can also be generated by G’. Indeed, for every derivation 
step 

YiABCyz JG yiy2 [ABC --+ € 1  
in G, y1,  y2 E V*,  there exists the following derivation in G’: 

[ (A  -+ A’, 0 ,  A’)] 
[ (B  --+ B’, 0, B’)1 
[(C -+ C’, 0, C’)l 
[(C’ -+ C”,A’B’C’,O)] 
[(A’ -+ A”, A’B’C’’ , O)] 
[(B’ -+ B”, AI‘B’C’’, O ) ]  
[(C” -+ E ,  0,  B’)] 
[(A’’ -+ E ,  0 ,  C”)] 
[(B” --+ € 7  0,O)l 

As a result, L(G) C L(G’). In the following we show that G’ does not generate 
words that cannot be generated by G; thus, L(G’) - L(G)  = 8, so L(G‘) = L(G). 

Let us study how G‘ can generate a terminal word. All derivations start from 
S. While the sentential form contains S or S’, its form is ZSW or zuS‘vw, z ,  u, v E 
{A,  B,C,A’, B’, C’}”, w E T*, where if g(X’) = X for X E {A,  B ,  C }  and g ( X )  = 
X for all other symbols of V, then g(zSw) or g(zuS’vw) are valid sentential forms 
of G. Furthermore, zu contains at most one occurrence of A’, v contains at most 
one occurrence of C’, and zuv contains at most one occurrence of B’ (see (2) in 
the construction of P’). After (S’ -+ E ,  0,O) is used, we get a sentential form zuvw 
with z ,  u, v,  and w as above such that 

s *& g(zuvw). 

Next, we demonstrate that 

zuv E implies g(zuv) =+-& E .  
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More specifically, we investigate all possible derivations rewriting a sentential form 
containing a single occurrence of each of the letters A’, B’, and C’. 

Consider a sentential form zuvw, where z ,  u, v E {A,  B,  C, A’, B‘, C’}*, w E T*, 
and # A ~ Z U  = #B~ZUV = # p v  = 1. By the definition of productions rewriting A’, 
B’, and C’ (see (3) in the construction of P’), we see that these three symbols 
must form a substring A’B’C’; otherwise, no next derivation step can be made. 
That is, zuvw = zBA’B’C’i7w for some i i , C  E {A ,  B ,  C}*. Next, observe that the 
only applicable production is (C’ + C”, A‘B’C‘, 0) .  Thus, we get 

ziiA‘B’C’i7~ +GI ZEA’B‘C’’~~W, 

This sentential form can be rewritten in two ways. First, we can rewrite A’ to A’’ 
by (A’ -+ A”,A’B’C”,O). Second, we can replace another occurrence of C with 
C’. Let us investigate the derivation 

ZBA’B‘C’‘BW +Gt ~f””B’C’’i7w [(A’ -+ A”, A’B‘C’’, O ) ] .  

As before, we can either rewrite another occurrence of A to  A’, or rewrite an 
occurrence of C to C’, or rewrite B‘ to B” by using (B’ + B”,A”B’C”,O). 
Taking into account all possible combinations of the above-described steps, we see 
that after the first application of (B’ + B”, AI’B’C’’, 0 )  the whole derivation is of 
the form: 

zBA‘ B‘C‘BW +;, Z U ~  X U ~ A “  B“C“u1 Y u ~  W ,  

where X E {A’ ,&} ,  Y E {C’,E}, ulg(X)u2 = B, and v1g(Y)v2 = 0. Let zulXu2 = 
x and vlYv2 = y .  The next derivation step can be made in four ways. By an 
application of ( B  -+ B’, 0,  B’), we can rewrite an occurrence of B in x or y. 
In both cases, this derivation is blocked in the next step. The remaining two 
derivations are 

xA”B”C”YW +GI xA“C“YW [(B” + E ,  0, O ) ]  

and 
xA”B”C”YW +GI xA”B”Yw [(C” + E ,  0,  B’)]. 

Let us examine how G’ can rewrite xA”C“yw. The following three cases cover all 
possible steps: 

(i) xA”C”yw =+Gt x1B’”A‘’C’’yw [ ( B  -+ B’,O,B’)], where xlBx2 = 2, and 
the derivation is blocked. 

(ii) xA”C”yw ~~t xA”C”ylB’y~w [ (B  -+ B’,O, B’)], where ylBy2 = y .  As 
before, no next derivation step can be made. 

(iii) xA”C”yw =+G~ xA”yw [(C” + E ,  0,  B’)]. Then, all the following derivations 

XA“yW +GI X Y W ,  

XA“YW +GI X~B’X~A’‘YW +GI x1B’xZYW, 
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where x1 Bx2 = x ,  and 

XA"YW +GI ~ A " y l B ' y 2 ~  +GI X Y ~  B ' Y ~ w ,  

where y1 By2 = y ,  produce a sentential form in which the substring A"B"C" 
is erased. This sentential form contains at most one occurrence of A', B', 
and C'. 

Return to 
xA"B"C"~W +GI xAI'BI'Yw. 

Observe that by analogy with case (iii), any rewriting of xA"B"yw removes the 
substring A"B", and produces a sentential form containing at most one occurrence 
of A', B', and C'. 

To summarize the considerations above, the reader can see that as long as there 
exists an occurrence of A", B", or C" in the sentential form, only the erasing 
productions or ( B  + B', 0 ,  B') can be applied. The derivation either enters a 
sentential form that blocks the derivation or the substring A'B'C' is completely 
erased, and new occurrences of A, B ,  and C can then be changed to A', B', and 
C'. That is, 

ziiA'B'C'Uw +:, xyw implies g(ziiA'B'C'bw) JG g(xyw), 

where z ,  2L,V E {A, B,C}*,  x ,  y E {A,  B,C,A', B',C'}*, w E T*, and zii = g(x),  
Vw = g(yw) .  In other words, the productions constructed in (2) and (3) correctly 
simulate the application of the only non-context-free production ABC --+ E. Recall 
that g ( a )  = a for all a E T .  Hence, g(xyw) = g(xy)w. Thus, L(G') - L(G) = 0. 

Having L(G) g L(G') and L(G') - L(G) = 0, we get L(G) = L(G'), and the 
theorem holds. 

Open Problems. Let us state several open problems regarding ssc-grammars. 
In Theorems 26, 27, 28, and 29, we proved that ssc-grammars of degrees (1,2) and 
( 2 , l )  generate the family of recursively enumerable languages, and propagating 
ssc-grammars of degrees (1,2) and ( 2 , l )  generate the family of context-sensitive 
languages. However, we discussed no ssc-grammars of degree (1 , l ) .  According to 
Penttonen (see Theorem 24), propagating sc-grammars of degree ( 1 , l )  generate 
a proper subfamily of context-sensitive languages. That is, prop-SSC(1,l)  C 
prop-SC(1,l)  c CS. Are propagating ssc-grammars of degree ( 1 , l )  as powerful 
as propagating sc-grammars of degree (1, l )?  Furthermore, consider ssc-grammars 
of degree ( 1 , l )  with erasing productions. Are they more powerful than propagating 
ssc-grammars of degree (1, l )?  Do they generate the family of all context-sensitive 
languages or, even more, the family of recursively enumerable languages? 

In Theorems 30 through 32, several reduced normal forms of these grammars 
were presented. These normal forms give rise to the following questions. Can 
any of the results be further improved with respect to the number of conditional 
productions or nonterminals? Are there analogical reduced forms of ssc-grammars 
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with degrees (2 , l )  and (3, l)? Moreover, reconsider these results in terms of prop- 
agating ssc-grammars. Is it possible to achieve analogical results if we disallow 
erasing productions? 

4.2 Parallel Conditional Grammars 

In this section, we study parallel grammars with permitting and forbidding con- 
text conditions. As ETOL grammars represent a very important type of parallel 
grammars in modern theoretical computer science (see [149], [150], [155], [156], 
[ISS]), we base our discussion on these grammars extended by context conditions. 
By analogy with sequential context-conditional grammars, we first define context- 
conditional ETOL grammars as ETOL grammars with finite sets of permitting 
and forbidding conditions. Then, we investigate the generative power of their 
two specific cases-forbidding ETOL grammars and simple semi-conditional ETOL 
grammars. 

4.2.1 Context-Conditional ETOL Grammars 

Definition 16. A context-conditional ETOL grammar (a CETOL grammar for 
short) is defined as a t+3-tuple, 

G = (V, T ,  s 1 . . . , Pt , S), 

where V ,  T ,  and S are the total alphabet, the terminal alphabet (T C V ) ,  and the 
axiom (S E V - T), respectively. Every Pi, 1 5 i 5 .t, for some t 2 1, is a finite 
set of productions of the form 

(a  + x ,  Per,  For) 

with a E V, z E V * ,  and Per,For E V+ are finite languages. A CETOL gram- 
mar without erasing productions is said to be propagating (a CEPTOL grammar 
for short). G has degree (r,s), where T and s are natural numbers, if for every 
i = 1 ,..., t and (a  + x ,Per ,For)  E Pi, max(Per) 5 T and max(For) 5 s 
(see Section 2.1 for the definition of m a ) .  Let u,v E V', u = a1a2.. .aq, 
v = 2 1 1 ~ 2  . . . vq, q = IuI, aj E V ,  vj E V*,  and pl ,pz , .  . . , p q  is a sequence of produc- 
tions p j  = (aj  + vj, Perj, Forj)  E P, for all j = 1 , .  . . , q and some i E (1 , .  . . , t} .  
If for every p j ,  Perj C sub(u) and Forj n sub(u) = 0, then u directly derives v 
according to p l , p 2 ,  . . . ,pq in G, denoted by 

u *G 21 b l ~ P 2 ,  * .  ,Pq].  

The language of G is defined as 

L(G) = { X  E T* : S +; x} .  

If t = 1, then G is called a context-conditional EOL grammar (a CEOL grammar 
for short). If G is a propagating CEOL grammar, then G is said to be a CEPOL 
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grammar. The families of languages defined by CEPTOL, CETOL, CEPOL, and 
CEOL grammars of degree ( r , s )  are denoted by CEPTOL(r,s), CETOL(r,s), 
CEPOL(r, s), and CEOL(r, s), respectively. Set 

0 0 0 0  0 0 0 0  

CEPTOL = U U CEPTOL(r,s), CETOL = U U CETOL(r,s), 
r=o s=o r=o s=o 

0 0 0 0  0 0 0 0  

CEPOL = U U CEPOL(r,s), CEOL = U U CEOL(T,S). 
r=o s=o r=o s=o 

The following lemmas and theorems establish several general results concering 
the generative power of context-conditional ETOL grammars: 

Lemma 10. CEPOL G CEPTOL C CETOL, CEPOL CEOL 2 CETOL. 
For any r, s 2 0, CEPOL(r, s) C CEPTOL(r, s) C CETOL(r, s), CEPOL(r, s) G 
CEOL(r,s) C CETOL(r,s). 

Proof. Follows trivially from the definitions. 0 

Theorem 33. 

CF 
C 

CEOL(0,O) = CEPOL(0,O) = EOL = EPOL 
C 

CETOL(0,O) = CEPTOL(0,O) = ETOL = EPTOL 
C 
cs 

Proof. Clearly, CEPOL and CEOL grammars of degree (0,O) are ordinary EPOL 
and EOL grammars, respectively. Analogously, CEPTOL and CETOL grammars of 
degree (0,O) are EPTOL and ETOL grammars, respectively. Because CF c EOL = 
EPOL C ETOL = EPTOL C CS (see Theorem 2), we get CF c CEOL(0,O) = 
CEPOL(0,O) = EOL c CETOL(0,O) = CEPTOL(0,O) = ETOL c CS; there- 
fore, the theorem holds. 

Lemma 11. CEPTOL(r,s) C CS, for any r 2 0, s 2 0. 

Proof. For r = 0 and s = 0, we have 

CEPTOL(0,O) = EPTOL c CS. 

The following proof demonstrates that the inclusion holds for any r and s such 
that r + s 2 1. 

Let L be a language generated by a CEPTOL grammar, 

G = (V,T,Pl,.  . * , P t , S ) ,  
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of degree (r,  s), for some r, s L 0,  r + s 2 1, t 2 1. Let k be the greater number of 
r and s. Let 

M = {z E v+ : 1x1 5 k}. 

For every Pi, 1 5 i 5 t ,  set 

cf(Pi) = { u  -+ z : (u -+ z ,  Per, For) E Pi, a E V, z E V+}. 

Construct the context-sensitive grammar 

G' = (V' ,  T' ,  P', S') 

with the finite set of productions P' defined as follows: 

1. Add S' -+ D(0,E)Sa  to P'. 

2. For all X 2 M ,  z E (Vk  U {E}) and y E V k ,  add the next production to P': 

(X,4Y --+ Y(X u sub(zy,k),d. 

3. For all X c M ,  z E (V"{E}) and y E V+, IyI 5 k, add the next production 
to P': 

( X ,  z)ya -+ y[X u sub(zy, k)Ja. 

4. For all X c M and Q C cf(Pi), where i E (1, .'. . , t } ,  such that for every 
a -+ z E Q, there exists (a -+ z, Per, For) E P, satisfying Per c X and 
For n X = 8, add the next production to PI: 

1x14 -+ [&la.  

5. For every Q 5 cf(Pi) for some i E (1, ..., t}, a E V and z E V +  such that 
u -+ z E Q, add the next production to PI: 

6.  For all Q c cf(Pi) for some i = {I,. . . , t } ,  add the next production to PI: 

DTQ1 -+ ~ ( 0 ~ 4 .  

7. Add D(0,E) --+ #$, $ a  -+ ##, and $a -+ a$, for all a E T, to PI. 
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Claim 20. Every successful derivation in G‘ has the form 

s’ J G ‘  D(Q),&)Sa 
J;, D(0,E)XQ 

=$! #x$a 

such that x E T+ and during ~ ( 0 , c ) S a  J+, D ( ~ , E ) x ~ ,  every sentential form w 
satisfies w E {D}H+{a}, where H C V’ - rD, 4, #, $, S’}. 

Proof. Observe that the only production that can rewrite the axiom is 5’’ -+ 

D(0, &)Sa; thus, 

After that, every sentential form that occurs in 

JQ #$xa 

*GI #x## 

s’ J G ‘  D ( @ , & ) S a .  

~ ( 0 , c ) S a  +;, ~ ( 0 , ~ ) x a  

can be rewritten by using any of the productions (2) through (6 )  from the con- 
struction of PI. By inspection of these productions, it is obvious that the edge 
symbols D and a remain unchanged and no other occurrences of them appear 
inside the sentential form. Moreover, there is no production generating a symbol 
from {#, $, S’}. Therefore, all these sentential forms belong to  {D}H+{a}. 

Next, let us explain how G’ generates a word from L(G’). Only D((~,E) -+ #$ 
can rewrite D to a symbol from T (see (7) in the definition of P’). According to  
the left-hand side of this production, we obtain 

s’ J G ~  D ( @ , & ) S a  *>, D(8,&)xQ JG~ #$za, 

where x E H+. To rewrite a, G’ uses $a -+ ##. Thus, G’ needs $ as the left 
neighbor of a. Suppose that x = a l a z . .  .ap,  where q = 1x1 and a, E T ,  for all 
i E (1,. . . , q } .  Since for every a E T there is $a -+ a$ E P’ (see (7)), we can 
construct 

#$alaz. .  . a,a JGJ # a l $ a z . .  . a,a 
J G ~  #alaZ$. . . a,a 
+:,!-’ # a l a z . .  . a,$a. 

Notice that this derivation can be constructed only for x that belong to T+. Then, 
$a is rewritten to ##. As a result, 

S’ JG~ D ( ~ , E ) s ~  D ( o , & ) X ~  +-Gj #$za J:! #x$a +-G/ #z## 

with the required properties. Thus, the claim holds. 0 

The following claim demonstrates how G’ simulates a direct derivation from 
G-the heart of the construction. 

Let x J:, y denote the derivation x +;, y such that x = D(&&)UQ, y = 
D(@,&)va ,  u,z, E V+, and there is no other occurrence of a string of the form 
D(@,&)Za ,  z E V*,  during x +:, y. 
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Claim 21. For every u, v E V * ,  

D ( 8 , ~ ) u a  +:, D(8,&)wa if and only if u +G v. 

Proof. 

Only if: Let us show how GI rewrites D ( 8 , ~ ) u a  to D ( 8 , ~ ) w a .  The simulation 
consists of two phases. 

During the first, forward phase, G’ scans u to  get all nonempty substrings of 
length k or less. By repeatedly using productions 

(X,+ -+ Y(X u s w z y ,  k),Y),  

where X S M ,  z E (Vk U { E } ) ,  y E V k  (see (2) in the definition of P’), the 
occurrence of a symbol with form (X, z) is moved toward the end of the sentential 
form. Simultaneously, the substrings of u are collected in X. The forward phase 
is finished by 

where z E (Vk  U {E}), y E V+, IyI 5 k (see (3)); the production reaches the end 
of u and completes X = sub(u, k). Formally, 

(X, -+ ylx u sub(zy, k)J 4, 

D(8,E)ua +zt D U l x J a  

such that X = sub(u, k). Then, LXJ is changed to rQ1, where 

Q = { a  -+ z : (a --+ z,  Per, For) E Pi, a E V, z E V+,  
Per, For C M ,  Per C X, For n X = a}, 

forsomeiE {l, ..., t } ,  by 

(see (4)). In other words, GI selects a subset of productions from Pi that could be 
used to rewrite u in G. 

The second, backward phase simulates rewriting of all symbols in u in parallel. 
Since 

for all a -+ z E Q, a E V, z E V+ (see ( 5 ) ) ,  

1x14 -+ rQla 

4Ql  -+ rQ1z E P’ 

Du[Qla +$ DrQlva 

such that FQ1 moves left and every symbol a E V in u is rewritten to some z 
provided that a -, z E Q. Finally, rQ1 is rewritten to ( 0 , ~ )  by 

~ 1 Q l  -+ D(0,E). 

As a result, we obtain 
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Observe that this is the only way of deriving 

D(O, € ) u a  =$, D(O, +a. 

Let us show that u JG u. Indeed, because we have (u -+ z ,  Per, For) E Pi for 
every a [Ql --+ [Q] z E P used in the backward phase, where Per C sub(u, k) and 
For n sub(u, k) = 0 (see the construction of Q), there exists a derivation 

*G [pl - * .Pp]r 

where IuI = q ,  and pj  = (a  t z,Per,For) E Pi such that a[Ql --+ [Qlz has been 
applied in the ( q  - j + 1)-th derivation step in 

Du[Qla *!! ~ [ Q l v a ,  

where a E V ,  z E V+, 1 5 j 5 q. 

I f :  The converse implication is similar to the only-if part, so we leave it to the 
reader. 0 

Claim 22. S' =+$, ~ ( 0 , ~ ) x a  i f  and only i f  S +& x, for all x E V+.  

Pro0 f. 

Only i f :  The only-if part is proved by induction on the ith occurrence of the 
sentential form w satisfying w = D(0, €)ua, u E V+, during the derivation in G'. 

Basis: Let i = 1. Then, S' aG' D ( ~ , E ) S Q  and S +% S. 

Induction Hypothesis: Suppose that the claim holds for all i 5 h, for some h 2 1. 

Induction Step: Let i = h + 1. Since h + 1 2 2, we can express 

S' +-&, ~ ( 0 , ~ ) x ~ a  

as 
s' +-:, D(fl,€)Xi-ia *,$ D(@,E)ZiQ, 

where xi-1, xi E V+. By the induction hypothesis, 

s *; xi-1. 

Claim 21 says that 

D(0 ,E)Zi - la  +$ D ( @ , E ) X ~ ~  if and only if Xi-1 *G Xi. 

Hence, 
s =$'& xi-1 *G xi 

and the only-if part holds. 
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I f :  By induction on n, we prove that 

s x implies s’ +:, D(@,&)xQ 

for all n 2 0, x E V+. 

Basis: For n = 0, S =+-: S and S’ =+GI D ( ~ , E ) S ~ .  

Induction Hypothesis: Assume that the claim holds for all n or less, for some 
n 2 0. 

Induction Step: Let 

Because n + 1 2 1, there exists y E V+ such that 

s +;+I 2 ,  x E v+. 

and by the induction hypothesis, there is also a derivation 

s’ +:, D(0,E)UQ. 

From Claim 21, we have 

Therefore, 
s’ =+&! D ( @ , € ) y a  +-:, D(@,E)Z4,  

and the converse implication holds as well. 0 

From Claims 20 and 22, we see that any successful derivation in G’ is of the 
form 

s‘ +:, D ( 8 , E ) z a  +:, #X## 

such that 
s =+*G 2, x E T+. 

Therefore, we have for each x E T+, 

S‘ +:, #x## if and only if S =+& x. 

Define the homomorphism h over (T U {#})* as h(#) = E and h(a) = a for 
all a E T. Observe that h is 4-linear erasing with respect to L(G’) (see page 98 
in [161]). Furthermore, notice that h(L(G’)) = L(G). Because CS is closed under 
linear erasing (see Theorem 10.4 on page 98 in [161]), L E CS.  Thus, Lemma 11 
holds. 0 

Theorem 34. CEPTOL = C S .  
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Proof. By Lemma 11, CEPTOL 5 CS. Later in this chapter we define two special 
cases of CEPTOL grammars and prove that they generate all the family of context- 
sensitive languages (see Theorems 38 and 41). Therefore, CS C CEPTOL, and 
hence CEPTOL = CS. 

Lemma 12. CETOL G RE. 

Proof. This lemma follows from Church’s thesis. To obtain an algorithm con- 
verting any CETOL grammar to an equivalent phrase-structure grammar, use the 

0 technique presented in Lemma 11. 

Theorem 35. CETOL = RE. 

Proof. By Lemma 12, CETOL c RE. In Sections 4.2.2 and 4.2.3, we introduce 
two special cases of CETOL grammars and demonstrate that even these grammars 
generate RE (see Theorems 39 and 40) and therefore RE c CETOL. As a result, 
CETOL = RE. rn 

4.2.2 Forbidding ETOL Grammars 

In this section, we discuss forbidding ETOL grammars (see [137]). First, we define 
forbidding ETOL grammars. Then, we establish their generative power. 

Definition 17. Let G = (V,T, Pl , .  . . , Pt, S) be a CETOL grammar. If every 
p = ( a  -+ 2, Per,For) E Pi, where i = 1,. . . , t ,  satisfies Per = 0, then G is 
said to be forbidding ETOL grammar (an FETOL grammar for short). If G is 
a propagating FETOL grammar, then G is said to be an FEPTOL grammar. If 
t = 1, G is called an FEOL grammar. If G is a propagating FEOL grammar, G is 
called an FEPOL grammar. 

Convention 4. Let G = (V, T ,  P I ,  . . . , Pt , S )  be an FETOL grammar of degree 
(r,  s). Clearly, (a  -+ 2, Per, For) E Pi implies Per = 0 for all i = 1 , .  . . ,t. By 
analogy with sequential forbidding grammars, we thus omit the empty set in the 
productions. For simplicity, we also say that G’s degree is s instead of (r,  s) .  

The families of languages generated by FEOL grammars, FEPOL grammars, 
FETOL grammars, and FEPTOL grammars of degree s are denoted by FEOL(s), 
FEPOL(s), FETOL(s), and FEPTOL(s), respectively. Moreover, 

a3 a3 

FEPTOL = u FEPTOL(s), FETOL = u FETOL(s), 
a=O a=O 

a3 00 

FEPOL = u FEPOL(s), FEOL = u FEOL(s). 
s=O s=O 
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be an FEPOL grammar, where 

P = { (S --+ ABA, 0), 
( A  --+ aA, {c)), 
( B  --+ bB, 01, 
( A  -+ 8, {GI) ,  
(3 --+ a, 01, 
( B  --+ C,0), 
(C --+ bC, { A ) ) ,  
(C --+ b, { A ) ) ,  
(a  --+ a ,  01, 
( b  --+ b , W .  

Obviously, G is an FEPOL grammar of degree 1. Observe that for every word from 
L(G),  there exists a derivation of the form 

S =+G ABA 
=+G aAbBaA 
=+ & am- 1 Abm- 1 Barn- 1 A 
+,G am-l- m-I m-l- ab Ca a 
J G  ambmCam 
a& ambn-'Cam 
+,G ambnam, 

with 1 5 m 5 n. Hence, 

L(G) = {ambnam : 15 m 5 TI}. 

Note that L(G) 6 EOL (see page 268 in Volume 1 of [157]); however, L(G) E 
FEPOL(1). As a result, FEPOL grammars (of degree 1) are more powerful than 
ordinary EOL grammars. 

Next, we investigate the generative power of FETOL grammars of all degrees. 

Theorem 36. FEPTOL(0) = EPTOL, FETOL(0) = ETOL, FEPOL(0) = 
EPOL, and FEOL(0) = EOL. 

Proof. It follows from the definition of FETOL grammars. 0 

Lemmas 13, 14, 15, and 16 inspect the generative power of forbidding ETOL 
grammars of degree 1. As a conclusion, in Theorem 37, we demonstrate that 
both FEPTOL(1) and FETOL(1) grammars generate precisely the family of ETOL 
languages. 

Lemma 13. EPTOL C FEPOL(1). 

Proof. Let 
G = (V, T, Pi,. . . , Pt, S)  
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be an EPTOL grammar, where t 2 1. Set 

w = { ( a , i )  : a E v, i = 1,. . . , t}  

and 
F ( i )  = { ( a , j )  E w : j # i}. 

Then, construct an FEPOL grammar of degree 1, 

G’ = (V’,T,P’,S),  

where 
v’ = v u w, (V n w = 0), 

and the set of productions P’ is defined as follows: 

1. For each a E V and i = 1,. . . , t ,  add ( a  -+ (a, i), 0) to PI. 

2 .  If a -+ z E Pi for some i E (1,. . . , t } ,  a E V ,  z E V+,  add ( (a , z )  -+ z , F ( i ) )  
to P‘. 

Let us demonstrate that L(G) = L(G’). 

Claim 23. For each derivation S +:, x, n 2 0,  

(I) if n = 2k + 1 f o r  some k 2 0, x E W+; 

(11) z f  n = 2k for some k 2 0 ,  x E V+. 

Proof. The claim follows from the definition of P’. Indeed, every production in P’ 
is either of the form (a -+ ( a , i ) , 0 )  or ( ( a , i )  -+ z , F ( i ) ) ,  where a E V ,  (a , i )  E W ,  
z E V+,  i E (1,. . . , t } .  Since S E V ,  

s +Zs1 x implies x E W+ 

s +$ x implies IC E v+; 
and 

thus, the claim holds. 0 

Define the finite substitution g from V* to (V’)* such that for every a E V ,  

g(a) = { a }  u { (a ,  i) E w : i = 1,. . . , t } .  

Claim 24. S +& x if and only if S +;, x’ for some x’ E g(x), x E V+, 

Pro0 f .  

Only I f :  By induction on n 2 0,  we show that for all x E V + ,  

5’ E (V’)+. 

S +; x implies s +$ x. 
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Basis: Let n = 0. Then, the only x is S; therefore, S *; S and also S +:, 
S. 

Induction Hypothesis: Suppose that 

s =+; x implies s =+$ x 

for all derivations of length n or less, for some n 2 0. 

Induction Step: Consider S +-;+’ x. Because n + 1 2 1, we can express 

s =+;+I x 

as 
s Y * G  [plrPZ,*..,pq] 

such that y E V+,  q = JyI,  and p j  E Pi for all j = 1,. . . , q and some i E (1,. . . , t } .  
By the induction hypothesis, 

Suppose that y = a1a2.. . a,, aj E V. Let G’ make the derivation 

*G I  (al,~)(u2,i)...(aq,~) [pi,pi,...,pbl 
*Gt zlzz.  zq [p’i,p;, . . * ,Pb’l, 

s =+$ y .  

S =+$ ala2 ... aq 

where p[i = (aj -+ (aj,i),@) and p y  = ((aj,i) -+ z j , F ( i ) )  such that p j  = aj -+ z j ,  
z j  E V+,  for all j = 1,. . . , q. Then, zlzz.. . zq = x, and therefore 

I f :  The converse implication is established by induction on the length of deriva- 
tions in GI. We prove that 

S x‘ implies S +: x 

for some x’ E g ( x ) ,  n 2 0. 

Basis: For n = 0, S =+:, S and S =s’& S; clearly, S E g(s). 

Induction Hypothesis: Assume that there exists a natural number m such that the 
claim holds for every 0 5 n 5 m. 

Induction Step: Let 

Express this derivation as 

s *g,? 2‘. 

s *El 9’ *GI 5’ [pi,ph,.**,pb], 
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where y’ E (V’)+, q = Iy’(, and p i , p a , .  . . , p i  is a sequence of productions from P’. 
By the induction hypothesis, 

where y E V+,  y’ E g(y). Claim 23 says that there exist the following two cases: 

s *& Y, 

(i) Let m = 2k for some k 2 0. Then, y‘ E V+,  x’ E W+, and every production 

p’. = ( U j  -+ ( U j ,  i), 01, 
3 

where aj E V ,  (aj,i) E W ,  i E (1,. .. ,t}. In this case, (aj,i) E g(aj) for 
every uj  and any i (see the definition of 9 ) ;  hence, x’ E g(y) as well. 

(ii) Let m = 2k + 1. Then, y’ E W+, 2‘ E V+, and each p[i is of the form 

where (aj,i) E W ,  zj E V+. Moreover, according to the forbidding condi- 
tions of p i ,  all (a j ,  i) in y’ have the same i. Thus, y’ = (al, i)(az, i) . . . (aq, i) 
for some i E (1,. . . , t} ,  y = g-’(y’) = a1uz . . .aq, and x’ = 2122 . . . zq. By 
the definition of PI, 

((aj,i) -+ z j , F ( i ) )  E P’ implies aj -+ zj E Pi. 

Therefore, 

where p j  = aj -+ z j  E Pi such that p[i = ( ( u j ,  i) -+ z j ,  F ( i ) ) .  Obviously, 
z1.22.. . zq = x = 2’. 

This completes the induction and establishes Claim 24. 0 

By Claim 24, for any x E T+, 

S +& x if and only if S +&, x 
Therefore, L(G) = L(G’), so the lemma holds. 0 

In order to simplify the notation in the following lemma, for a set of productions 

P c { ( a  -+ z , F )  : a E V, z E V * ,  F E V } ,  

define 
left(P) = { a  : (a -+ z , F )  E P}. 

Informally, left(P) denotes the set of left-hand sides of all productions in P. 

Lemma 14. FEPTOL(1) c EPTOL. 
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Proof. Let 
G = (V,T, P i , .  . . , Pt,S)  

be an FEPTOL grammar of degree 1, t 2 1. Let Q be the set of all subsets 0 G Pi, 
1 5 i 5 t, such that every (a  + z, F )  E 0, a E V ,  z E V+,  F V ,  satisfies 
F n left(0) = 0. Create a new set Q’ so that for each 0 E Q,  add 

{ a + z :  ( a - + z , F ) E O }  

to Q’. Express 
Q’ = {Qi, . . . , Qk}, 

where m is the cardinality of Q’. Then, construct the EPTOL grammar 

G’ = (V,T,Qi, .  . . ,Qk ,S ) .  

Basic Idea. To see the basic idea behind the construction of G‘, consider a 
pair of productions p l  = (a1 -+ z1,Fl) and pz = (a2 -+ zz,Fz) from Pi, for 
some i E {I,.. . ,t}. During a single derivation step, pl and pz can concurrently 
rewrite a1 and a2 provided that a2 # F1 and a1 # Fz, respectively. Consider any 
0 C Pi containing no pair of productions (a1 + 21, F1) and (a2 + ZZ, Fz)  such 
that a1 E F2 or a2 E F1. Observe that for any derivation step based on 0, no 
production from 0 is blocked by its forbidding conditions; thus, the conditions can 
be omitted. Formal proof is given next. 

Claim 25. S +E x if and only if S +-:, x, x E V * ,  n 2 0. 

Proof. The claim is proved by induction on the length of derivations. 

Only If: By induction on n, n 2 0, we prove that 

S J; x implies S +:, x 

for all x E V*.  

Basis: Let n = 0. Then, S +& S and S +:, S. 

Induction Hypothesis: Suppose that the claim holds for all derivations of length n 
or less, for some n 2 0. 

Induction Step: Consider a derivation 

Because n + 1 2 1, there exists y E V + ,  q = Iyl, and a sequence PI,. . . , p q ,  where 
p j E P i f o r a l l j = l ,  ..., q a n d s o m e i ~ ( 1 ,  ..., t} ,suchthat  

s *$ Y *G x b l ,***7Pq]*  
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By the induction hypothesis, 
s * ; I  y. 

0 = { p j  : 1 I j I 4). 
Let 

Observe that 
Y *G x [Plr...rPql 

implies alph(y) = left(0). Moreover, every p j  = (a  -+ 2, F )  E 0, a E V ,  z E V+,  
F C V ,  satisfies F n alph(y) = 8. Hence, (a -+ z ,  F )  E 0 implies F n left(0) = 8. 
Inspect the definition of G' to see that there exists 

Q k = { a + z :  ( a + z , F ) E O }  

for some r ,  1 5 r 5 m. Therefore, 

s * ; I  Y *GI [pi,...,pb], 

where p i  = a -+ z E Qk such that p j  = (a  -+ z ,  F )  E 0, for all j = 1,. . . , q. 

I f :  The if-part demonstrates for every n 2 0, 

S +-;, x implies S *$ x, 

where x E V*. 

Basis: Suppose that n = 0. Then, S =+:, S and S 

Induction Hypothesis: Assume that the claim holds for all derivations of length n 
or less, for some n 2 0. 

Induction Step: Let 

S. 

s =$1 x. 

As n + 1 2 1, there exists a derivation 

such that y E V+,  q = Iyl, each pi E Qh for some r E (1, ..., m}, and by the 
induction hypothesis , 

s *$ y. 

Then, by the definition of Qk, there exists Pi and 0 c Pi such that every (a 3 
z ,  F )  E 0, a E V ,  z E V+, F c V ,  satisfies a -+ z E Q L  and Fn le f t (0 )  = 0. Since 
alph(y) C left(O), (a -+ z ,  F )  E 0 implies F n alph(y) = 0. Hence, 

s *% Y *G [PI,...,&], 

where p j  = (a -+ z ,  F )  E 0 for all j = 1,. . . ,q. 0 
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From the claim above, 

S +; x if and only if S +&, x 
for all x E T*. Consequently, L(G) = L(G’). 0 

The following two lemmas can be proved by analogy with Lemmas 13 and 14. 
The details are left to the reader. 

Lemma 15. ETOL 5 FEOL(1). 

Lemma 16. FETOL(1) g ETOL. 

Theorem 37. FEPOL(1) = FEPTOL(1) = FEOL(1) = FETOL(1) = ETOL = 
EPTOL. 

Proof. By Lemmas 13 and 14, we have EPTOL C FEPOL(1) and FEPTOL(1) C 
EPTOL, respectively. Since FEPOL(1) C FEPTOL(l), we get FEPOL(1) = 
FEPTOL(1) = EPTOL. Analogously, from Lemmas 15 and 16, FEOL(1) = 
FETOL(1) = ETOL. However, EPTOL = ETOL (see Theorem V.1.6 on page 
239 in [155]). Therefore, 

FEPOL(1) = FEPTOL(1) = FEOL(1) = FETOL(1) = EPTOL = ETOL; 

thus, the theorem holds. 0 

Next, we investigate the generative power of FEPTOL grammars of degree 2. 
The following lemma establishes a normal form for context-sensitive grammars so 
that the grammars satisfying this form generate only sentential forms containing 
no nonterminal from Ncs as the left-most symbol of the string. We make use of 
this normal form in Lemma 18. 

Lemma 17. Every context-sensitive language, L E C S ,  can be generated by  a 
context-sensitive grammar, G = (N1 U NCF U Ncs U T, T, P, SI), where NI , NCF, 
NCS, and T are pairwise disjoint alphabets, S1 E N1, and every production in P 
has one of the following forms: 

(i)  AB + AC, where A E (N1 U NcF), B E Ncs, C E NCF. 

(ii) A ---f B,  where A E NCF, B E Ncs. 

(iii) A -+ a,  where A E (N1 U NcF), a E T. 

(iv) A -+ C, where A, C E NCF. 

(v) A1 -+ C1, where Al,C1 E NI. 

(vi) A -+ DE, where A, D, E E NCF. 

(vii) A1 DIE, where Al, D1 E N1, E E NCF. 
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Proof. Let 

be a context-sensitive grammar of the form defined in Lemma 4. From this gram- 
mar, we construct a grammar 

G’ = (NCF U N c s  U T,  T ,  P’, s) 

G = (Nl u N C F  u NCS u T,  T ,  p,  s1) 1 

where 

N1 = { X I  : x E N C F } ,  

P = P’ U { A1 B -+ AiC : A B  -+ AC E P’, A ,  C E NCF,  B E Ncs ,  A1 E N1 } 
U {A1 -+ a :  A -+ a E P’,A E NcF,Al E N1,a E T }  

U {A1 -+ D I E  : A -+ DE E P’,A,D,E E N c F , A ~ , D ~  E Ni} .  
U {A1 -+ C1 : A -+ C E P’,A,C E N c ~ , A i , c i  E Ni} 

Basic Idea. G works by analogy with G’ except that in G every sentential 
form starts with a symbol from N1 U T followed by symbols that are not in N1. 
Notice, however, that by A B  -+ AC, G‘ can never rewrite the left-most symbol 
of any sentential form. Based on these observations, it is rather easy to see that 
L(G) = L(G’); a formal proof of this identity is left to the reader. As G is of the 

Lemma 18. CS C FEPOL(2). 

Proof. Let L be a context-sensitive language generated by a grammar 

required form, Lemma 17 holds. 

of the form of Lemma 17. Let 

v = N1 u N C F  UNCs U T ,  
Pcs = { A B  -+ A C :  A B  -+ AC E P,A E (N1 UNCF), B E Ncs,C E NcF},  
PCF = P - PCS. 

Informally, Pcs and PCF are the sets of context-sensitive and context-free pro- 
ductions in P ,  respectively, and V denotes the total alphabet of G. 

Let f be an arbitrary bijection from V to (1,. . . , m},  where m is the cardinality 
of V, and let f -1 be the inverse of f .  

Construct an FEPOL grammar of degree 2, 

G’ = (V’,T, P’, Si), 

with V’ defined as 

Wo = { ( A , B , C )  : A B  -+ ACE Pcs},  
WS = { ( A , B , C , j )  : A B  -+ AC E PCS, 1 I j I m + l}, 
w =wouws, 
V’ = v u w ,  

where V, Wo, and Ws are pairwise disjoint alphabets. The set of productions P’ 
is defined as follows: 
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1. For every X E V ,  add (X + X,S) to  PI. 

Basic Idea. Let us informally explain how GI simulates the non-context-free pro- 
ductions of the form AB + AC (see productions of (3) in the construction of p’). 
First, chosen occurrences of B are rewritten with (A, B, C) by ( B  + (A ,  B,  C), W ) .  
The forbidding condition of this production guarantees that there is no simulation 
already in process. After that, left neighbors of all occurrences of (A, B ,  C) are 
checked not to be any symbols from V -  { A } .  In more detail, GI rewrites ( A ,  B,  C) 
with (A,B,C, i )  for i = 1. Then, in every (A,B,C, i ) ,  G’ increments i by one as 
long as i is less or equal to the cardinality of V ;  simultaneously, it verifies that the 
left neighbor of every (A,  B ,  C, i) differs from the symbol that f maps to i except 
for the case when f ( A )  = i. Finally, G’ checks that there are no two adjoining 
symbols (A,  B, C, m + 1). At this point, the left neighbors of (A ,  B ,  C, m + 1) are 
necessarily equal to A, so every occurrence of (A,  B ,  C, m + 1) is rewritten to C. 

Observe that the other symbols remain unchanged during the simulation. In- 
deed, by the forbidding conditions, the only productions that can rewrite sym- 
bols X $! W are of the form (X -+ X , 0 ) .  Moreover, the forbidding condition 
of ( (A ,B,C)  + (A,  B,C, 1) ,W - { (A ,  B ,C)} )  implies that it is not possible to 
simulate two different non-context-free productions at the same time. 

To establish the identity of languages generated by G and G‘, we first prove 
Claims 26 through 30. 

Claim 26. 5’1 +$, x’ implies first(s’) E (N1 U T )  for every n 2 0,  x’ E (Vl)*. 

Proof. The claim is proved by induction on n. 

Basis: Let n = 0. Then, S1 =+:, S1 and S1 E N I .  

Induction Hypothesis: Assume that the claim holds for all derivations of length n 
or less, for some n 2 0. 

Induction Step: Consider a derivation 
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where 2’ E (V’)*. Because n + 1 2 1, there is a derivation 

s1 *:I y’ *GI 2’ [ p l , * * * , P q ] ,  

y’ E (V’)*, q = ly’l, and by the induction hypothesis, first(y’) E (N1 U T) .  Inspect 
P’ to see that the production p1 that rewrites the left-most symbol of y’ is one of 

(A1 4 DlE,W),  where Al,C1,D1 E N1, a E T ,  E E NCF (see ( 1 )  and (2) in the 
definition of P’ and Lemma 17). It is obvious that the left-most symbols of the 
right-hand sides of these productions belong to (Nl U T ) .  Hence, 

the following forms: (A1 + A1,0), ( a  + a,@),  (A1 + a,W), (A1 + Cl ,W) ,  or 

first(%’) E (N1 uT) ,  

so the claim holds. 

Claim 27. S1 +:, yiXyi ,  X E Ws, implies yi E (V‘)+ for any y$ E (V’)*. 

Proof. Informally, the claim says that every occurrence of a symbol from Ws has 
always a left neighbor. Clearly, this claim follows from the statement of Claim 26. 
Since Ws f l  (N1 U T )  = 0 ,  X cannot be the left-most symbol in a sentential form 
and the claim holds. 0 

Claim 28. 5’1 x‘, n 2 0, implies that x’ has one of the following three forms: 

(I) 2’ E v*. 
(11) 2’ E (V U Wo)* and #wad > 0. 

2’ E ( V u { ( A , B , C , j ) ) ) * ,  #{ (A ,B ,C , j ) }x ’  > 0, and { f - ’ ( k ) ( A , B > c , j )  : 1 5  
k < j ,  k # f ( A ) }  n sub(z’) = 0 ,  where (A, B ,  C, j )  E WS,  A E ( N I  U NcF) ,  
B E N c s  , c E N C F  , 1 5 j 5 rn + 1. 

Proof. We prove the claim by the induction on n 2 0. 

Basis: Let n = 0. Clearly, S1 

Induction Hypothesis: Suppose that the claim holds for all derivations of length n 
or less, for some n 2 0. 

Induction Step: Let us consider any derivation of the form 

S1 and S1 is of type (I). 

Because n+l 2 1, there exists y’ E (V’)* and a sequence of productions p l ,  . . . , p q ,  
where pi E P’, 1 5 i 5 q,  q = Iy’J, such that 

s1 * ; I  y’ x’ bl,... > p q ] *  

Let y’ = 0102  . . .a,, ai E V’. 

the following three cases cover all possible forms of y’: 
By the induction hypothesis, y’ can only be of forms (I) through (111). Thus, 
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(i) Let y’ E V* (form (I)). In this case, every production pi  can be either of 
the form (ai + ai,O), ai E V ,  or (ai + u ,W)  such that ai + u E PCF, or 
(ai + (A ,  ai, C ) ,  W ) ,  ai E Ncs ,  (A ,  ai,  C) E WO (see the definition of P’). 

Suppose that for every i E { 1,. . . , q } ,  pi has one of the first two listed forms. 
According to the right-hand sides of these productions, we obtain x‘ E V * ;  
that is, x’ is of form (I). 

If there exists i such that pi  = (ai -+ ( A ,  ai,  C), W )  for some A E (N1 UNCF),  
ai E Ncs, C E NCF, (A ,  ai, C) E WO, we get x’ E (VUWo)* with #w0z’ > 0. 
Thus, x‘ belongs to (11). 

(ii) Let y’ E (V U WO)* and #way' > 0 (form (11)). At this point, pi is either 
(ui ---t ai ,0)  (rewriting ai E V to itself) or ( ( A ,  B, C )  -+ (A ,  B,C, l ) ,  W - 
{ ( A , B , C ) } )  rewriting ai = (A, B,C)  E WO to (A,B,C,l) E Ws, where 
A E (N1 UNCF) ,  B E Ncs ,  C E NCF.  Since #way' > 0, there exists a t  least 
one i such that ai = (A, B, C) E WO. The corresponding production pi can be 
used provided that # ( w - { ( A , B , c ) ) ) ~ ’  = 0. Therefore, y’ E (VU{(A ,  B,  C)} )* ,  
and hence x’ E ( V U { ( A , B , C ,  l)})*, #{(A,B,c,~))x’ > 0; that is, x’ is of type 
(111). 

(iii) Assume that y’ E (V U { ( A ,  B, C, j ) } ) * ,  # { ( A , B , c , ~ ) ) ~ ’  > 0, and 

sub(y’) n { f - ’ ( k ) ( A , B , C , j )  : 15 k < j ,  k # f ( A ) }  = 0, 

where (A ,  B,C , j )  E WS,  A E (NI U NcF),  B E Ncs, C E NCF, 1 I j L 
m + 1 (form (111)). By inspection of P’, we see that the following four forms 
of productions can be used to rewrite y’ to 5’: 

(a) (ai -+ ai ,0) ,  ai E V .  

(b) ( ( A , B , C , j )  + ( A , B , C , j  + 1 ) , { f - l ( j ) ( A , B , C , j ) } ) ,  1 I j I m, j # 

(c) ( ( A ,  B, c, f ( 4 )  -+ (A, B,  c, f (A)  + I), 0). 

( 4  ((’4 B, c, m + 1) -+ c, {(A, B, c, m + 1j2}). 

f ( A ) .  

Let 1 5 j 5 m, j # f ( A ) .  Then, symbols from V are rewritten to 
themselves (case (a)) and every occurrence of ( A , B , C , j )  is rewritten to 
( A , B ,  C, j  + 1) by (b). Clearly, we obtain x’ E (V U { (A,B,C,  j + 1)})* 
such that #{(A,B,C,~+~))X’ > 0. Furthermore, (b) can be used only when 
f-’(j)(A,B,C,j) sl sub(y’). As 

sub(y’) n { f - ’ ( k ) ( A , B , C , j )  : 1 I k < j ,  k # f(A)} = 0, 

it holds that 

sub(y’) n { f - ’ ( k ) ( A , B , C , j )  : 15 k I j ,  k # f ( A ) }  = 0. 
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Since every occurrence of (A, B, C, j )  is rewritten to  (A, B, C, j + l )  and other 
symbols are unchanged, 

sub(x’) n {f-’(k)(A, B, C , j  + 1) : 1 5 k < j + 1, k # f(A)} = 0; 

therefore, x’ is of form (111). 

Assume that j = f(A).  Then, all occurrences of (A, B, C, j )  are rewritten to 
(A, B, C, j + 1) by (c), and symbols from V are rewritten to themselves. As 
before, we obtain x’ E (V U { ( A , B , C , j  + 1)})* and #{(A,B,c,~+~))z‘  > 0. 
Moreover, because 

and j is just f (A),  

sub(%’) n {f-’(k)(A, B, C , j  + 1) : 1 5 k < j + 1, k # f(A)} = 0 

and x’ belongs to (111) as well. 

Finally, let j = m + 1. Then, every occurrence of (A, B, C, j )  is rewritten to 
C (case (d)), and therefore x’ E V*;  that is, x’ has form (I). 

In (i), (ii), and (iii) we have considered all derivations that rewrite y’ to  x’, and 
in each of these cases we have shown that x’ has one of the requested forms. 
Therefore, Claim 28 holds. 0 

To prove the following claims, we need a finite letter-teletters substitution g 
from V* into (V‘)* defined as 

g (X)  = {XI u { ( A , X , C )  : ( A , X , C )  E Wo} 
u { ( A , X , C , j ) :  ( A , X , C , j ) ~ W s , l l j L m + l }  

for all X E V, A E (N1 U NcF),  C E NCF. Let g-’ be the inverse of g. 

Claim 29. Let y’ = 0 1 ~ 2 . .  .ap, ai E V’, q = ly’l, and g-’(ai)  +? g-’(ui) for all 
i E {l,.. . , q }  and some hi E {O,l}, ui E (V’)+. Then, g-’(y’) +& g-’(x’) such 
that 2’ = ~ 1 ~ 2 . .  . uq, T = C:=’=, hi, r 5 4. 

Proof. First, consider a derivation 

X E V’, u E (V’)+, h E {0,1}. If h = 0, then g- l (X) = g-’(u). Let h = 1. Then, 
there surely exists a production p = g-’(X) -+ g-’(u) E P such that 
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Return to the statement of this claim. We can construct a derivation 

g-'(u1)g-'(u2). . .g-l(a,) *2 g-'(u1>g-'(u2). . .g-l(u,) 
=+2 g-'(u1)9-1(212). . .g-l(a,) 

*$ 9-1 (udg-Vu2).  * .g-'(u,), 
h 

where g-'(y') = g-l(a1). . .g-'(a,) and g-l(u1). . .g-'(u,) = g- ' (ul . .  . u,) = 
g-'(x'). In such a derivation, each g-l(ui) is either left unchanged (if hi = 0) or 
rewritten to g-'(ui) by the corresponding production g-l(ai) -+ g-'(ui). Obvi- 

0 

E V*,  2' E (V')*,  2' E g(2 ) .  

ously, the length of this derivation is C:='=, hi. 

Claim 30. S1 +& 
Pro0 f. 

Only if: The only-if part is established by induction on the length of derivations 
in G. That is, we show that 

if and only zf S1 +;, d, where 

S1 +; 2 implies S1 =+T;, 2, 

where 2 E V*,  for n 2 0. 

Basis: Let n = 0. Then, S1 

Induction Hypothesis: Assume that the claim holds for all derivations of length n 
or less, for some n 2 0. 

Induction Step: Consider a derivation 

S1 and S1 +-:, S1 as well. 

s1 *;+I 2. 

Because n + 1 > 0, there exists y E V* and p E P such that 

s1 *; y *G 2 [PI, 

and by the induction hypothesis, there is also a derivation 

s1 *;, y. 

Let y = ~ 1 0 2 . .  . a,, ai E V ,  1 I i 5 q, q = IyI. The following cases (i) and (ii) 
cover all possible forms of p: 

(i) p = A -+ u E PCF, A E (N1 U NcF),  u E V*.  Then, y = y l A ~ 3  and 
2 = ylUg3, y1,y3 E V*. Let s = lyll + 1. Since we have (A -+ u, W )  E P', 
we can construct a derivation 

s1 [Pl,*.*,P,I 

such that p ,  = (A -+ u, W )  and pi = (ui -+ ai, 8) for all i E (1,. . . , q } ,  i # s. 
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If: By induction on n, we prove that 

S1 +zt x’ implies S1 *& x, 

where x’ E (V’)*, z E V* and x’ E g(z) 

Basis: Let n = 0. The only x’ is S1 because S1 5‘1. Obviously, S1 
S1 and S1 E g(S1). 

Induction Hypothesis: Suppose that the claim holds for any derivation of length n 
or less, for some n 2 0. 

Induction Step: Consider a derivation of the form 

s1 *;?I XI. 

Since n + 1 2 1, there exists y’ E (V’)* and a sequence of productions p l ,  . . . ,pp 
from I”, q = IdI, such that 

s1 =$‘;! y’ +G’ x’ [PI,. . . ,pq]. 
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Let y‘ = u1u2.. . up, ai E V’, 1 5 i 5 q. By the induction hypothesis, we have 

4 *& Y, 

where y E V*, such that y’ E g(y). 
From Claim 28, y’ can have one of the following forms: 

(i) Let y’ E (V’)* (see (I) in Claim 28). Inspect P’ to see that there are three 
forms of productions rewriting symbols at in y’: 

(a) pi = (ui -+ ai ,0)  E P’, ai E V .  In this case, 

g-yai)  3; g-l(u2). 

We see that for all ai ,  there exists a derivation 

g - l ( q )  +-? g-l(zi) 

for some hi E (0, l}, where zi E (V‘)+, x’ = z l z ~  . . . zq. Therefore, by 
Claim 29, we can construct 

4 3;: Y =% 5, 

where 0 5 T 5 q, z = g-l(x’). 

(ii) Let y’ E (V U WO)* and #w,y’ > 0 (see (11)). At this point, the following 
two forms of productions can be used to rewrite ai in y’: 

(a) pi = (ui -+ ai,0) E P’, ai E V. As in case (i.a), 

g-l(a2) *; g-l(ai). 
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Thus, there exists a derivation 

s1*;: Y =4 2, 
where x = g-'(x'). 

(iii) Let Y' E (V U {(A, B,  C, j ) } ) * ,  #{(A,B,c,~)}Y' > 0,  and 

sub(y') n {f- ' (k)(A,B,C,j )  : 15 k < j ,  k # f(A)} = 8, 

where (A, B,C, j )  E Ws, A E ( N I  U NcF),  B E Ncs, C E NCF, 1 L j I 
m+ 1 (see (111)). By inspection of I", the following four forms of productions 
can be used to rewrite y' to 2': 

(a) pi  = (ai -, ai ,0) ,  ai E V. 

(b) Pi = ( (A ,B ,C , j )  -+ ( A , B , C , j +  1),{f-l(j)(A,B,C,j)}), 15 j 5 m, 

(c) Pi = ((4 B,  c, f(A)) -, (A, B,  c, f(A) + I) ,  0). 
j # f (A). 

(dl pi = ((A, B ,  C, m + 1) -, C, {(A, B ,  C,  m + 
Let 1 5 j 5 m. G' can rewrite such y' using only the productions (a) through 
(c). Becauseg-'((A,B,C,j)) = g-'((A, B , C , j + l ) )  andg-l(ai) = g-l(a,), 
by analogy with (ii), we obtain a derivation 

s1*;:y*;x 

such that x = g-'(x'). 

Let j = m + 1. In this case, only the productions (a) and (d) can be used. 
Since # { ( ~ , ~ , c , j ) ) y '  > 0, there is at least one occurrence of (A, B ,  C, m+l)  in 
y', and by the forbidding condition of the production (c), (A, B, C, m + 1)2 @ 
sub(y'). Observe that for j = m + 1, 

{f-l(k)(A, B , C , m  + 1) : 1 5 k < j ,  k # f(A)} 
= { X ( A , B , C , m + l ) :  X E V ,  X # A } ,  

and thus 

sub (y ' )n{X(A,B ,C ,m+l )  : X E V, X #A}  = O .  

According to Claim 27, (A ,B ,C ,m + 1) has always a left neighbor in y'. 
As a result, the left neighbor of every occurrence of (A, B,  C, m + 1) is A. 
Therefore, we can express: 
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JG g-'(Yl)ACg-'(yZ)ACg-'(y3) * -g-'(yr)ACg-'(%-+l) [PI, 

where g-'(y1)ACg-'(y2)ACg-'(y3). . .g-'(y,)ACg-'(y,+l) = g-'(x') = 
2. 

Because cases (i), (ii), and (iii) cover all possible forms of y', we have completed 
the induction and established Claim 30. 0 

The equivalence of G and G' follows from Claim 30. Indeed, observe that by 
the definition of g ,  we have g(a) = { a }  for all a E T. Therefore, by Claim 30, we 
have for any x E T*, 

S1 +; x if and only if 5'1 +>, x.  

Thus, L(G) = L(G'), and the lemma holds. 0 

Theorem 38. CS = FEPOL(2) = FEPTOL(2) = FEPOL = FEPTOL. 

Proof. By Lemma 18, CS C FEPOL(2) C FEPTOL(2) E FEPTOL. From 
Lemma 11 and the definition of FETOL grammars, it follows that FEPTOL(s) C_ 
FEPTOL C CEPTOL C CS for any s 2 0. Moreover, FEPOL(s) C FEPOL C 
FEPTOL. Thus, CS = FEPOL(2) = FEPTOL(2) = FEPOL = FEPTOL, and 
the theorem holds. 0 

Return to the proof of Lemma 18. Observe that the productions of the FEPOL 
grammar G' are of restricted forms. This observation gives rise to the next corol- 
lary. 

Corollary 15. Every context-sensitive language can be generated by  an FEPOL 
grammar G = (V, T ,  P, S )  of degree 2 such that every production from P has one 
of the following forms: 

(i) ( a  --+ a,S), a E V .  

(ii) ( X  --+ 2, F ) ,  X E V - T ,  1x1 E {1,2}, max(F) = 1. 

(iii) (X --+ Y, { z } ) ,  X, Y E V - T, 2 E V2. 

Next, we demonstrate that the family of recursively enumerable languages is 
generated by the forbidding EOL grammars of degree 2. 

Lemma 19. RE C FEOL(2). 



116 Chapter 4: Conditions Placed on the Use of Productions 

Proof. Let L be a recursively enumerable language generated by a phrase structure 
grammar 

G = (V, T ,  P, S )  

having the form defined in Lemma 5 ,  where 

Let $ be a new symbol and m be the cardinality of V U {$}. Furthermore, let f 
be an arbitrary bijection from V U {$} onto { 1,. . . , m}, and let f - l  be the inverse 
o f f .  

Then, we define an FEOL grammar 

G’ = (V’, T ,  PI, S‘) 

of degree 2 as follows: 

Wo = { ( A , B , C )  : AB -+ AC E P } ,  
Ws 
W = WOUWS, 
V’ = V U W U { S ’ , $ } ,  

= { (A ,B ,C , j )  : AB -+ A C E  P, 15 j I m}, 

where A,C E NCF, B E N c s ,  and V ,  Wo, Ws, and {S ’ ,$}  are pairwise disjoint 
alphabets. The set of productions P‘ is defined in the following way: 

1. Add (S’ -+ $S, S), ($ -+ $, 0) and ($ -+ E ,  V’ - T - {$}) to PI. 

2. For all X E V ,  add ( X  ---$ X,0) to P’. 

3. For all A -+ u E PCF, A E NCF, 21 E { E }  U N c s  U T U (U:=, N h F ) ,  add 
( A  -+ u, W )  to PI. 

4. If AB -+ AC E Pcs, A ,  C E NCF,  B E N c s ,  then add the following produc- 
tions to PI: 
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Basic Idea. Let us only sketch the proof that L(G) = L(G’). The construction 
above resembles the construction in Lemma 18 very much. Indeed, to simulate 
the non-context-free productions AB --+ AC in FEOL grammars, we use the same 
technique as in FEPOL grammars from Lemma 18. We only need to guarantee 
that no sentential form begins with a symbol from Ncs .  This is solved by an 
auxiliary nonterminal $ in the definition of GI. The symbol is always generated 
in the first derivation step by (S’ -+ $S,S) (see (1) in the definition of P’). After 
that, it appears as the left-most symbol of all sentential forms containing some 
nonterminals. The only production that can erase it is ($ -+ E ,  V’ - T - {$}). 

Therefore, by analogy with the technique used in Lemma 18, we can establish 

S +& x if and only if S’ +;, $x‘ 

such that x E V * ,  x’ E (V’ - {S’, $})*, x’ E g(x ) ,  where g is a finite substitution 
from V* into (V’ - {S’, $})* defined as 

g ( X )  = { X I  u { ( A , X , C )  : (A ,X ,C)  E Wo) 
U { ( A , X , C , j ) :  ( A , X , C , j )  E W s , l l j l m S 1 }  

for all X E V ,  A, C E NCF. The details are left to the reader. 
As in Lemma 18, we have g(a) = { a }  for all a E T ;  hence, for all x E T*,  

S +& x if and only if S’ =+;, $x.  

Since 
$ X  JG‘ Z [($ -+ E ,  I/‘ - T - {$})I, 

we obtain 
S +& x if and only if S’ a;, x .  

Consequently, L(G) = L(G’); thus, RE C FEOL(2). 0 

Theorem 39. RE = FEOL(2) = FETOL(2) = FEOL = FETOL. 

Proof. By Lemma 19, we have RE C FEOL(2) FETOL(2) C FETOL. From 
Lemma 12, it follows that FETOL(s) C FETOL C CETOL C RE, for any s 2 0. 
Therefore, RE = FEOL(2) = FETOL(2) = FEOL = FETOL, so the theorem 
holds. 0 

By analogy with Corollary 15, we obtain the following normal form: 

Corollary 16. Every recursively enumerable language can be generated by  an 
FEOL grammar G = (V, T ,  P, S )  of degree 2 such that every production from P has 
one of the following forms: 

(i) ( a  -+ a,0) ,  a E V .  

(ii) ( X  -+ x , F ) ,  X E V - T ,  1x1 5 2, and F # 0 implies max(F) = 1. 

(iii) ( X  -+ Y,  { z } ) ,  X , Y  E V - T ,  z E V 2 .  
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Theorems 36, 37, 38, and 39 imply the following relationships of FETOL lan- 
guage families: 

Corollary 17. 

CF 
C 

FEPOL(0) = FEOL(0) = EPOL = EOL 
C 

FEPOL(1) = FEPTOL(1) = FEOL(1) = FETOL(1) 
= FEPTOL(0) = FETOL(0) = EPTOL = ETOL 

C 
FEPOL(2) = FEPTOL(2) = FEPOL = FEPTOL = CS 

C 
FEOL(2) = FETOL(2) = FEOL = FETOL = RE. 

4.2.3 Simple Semi-conditional ETOL Grammars 

Simple semi-conditional ETOL grammars represent another variant of context- 
conditional ETOL grammars with restricted sets of context conditions. By analogy 
with sequential simple semi-conditional grammars (see Section 4.1.5), these gram- 
mars are context-conditional ETOL grammars in which every production contains 
no more than one context condition. 

Definition 18. Let G = (V, T, PI , .  . . , Pt, S) be a context-conditional ETOL gram- 
mar, for some t 2 1. If for all p = (a  -+ 2, Per, For)  E Pi for every i = 1 , .  . . , t 
holds lPerl + ]For1 5 1, G is said to be a simple semi-conditional ETOL gram- 
mar (SSC-ETOL grammar for short). If G is a propagating SSC-ETOL grammar, 
then G is called an SSC-EPTOL grammar. If t = 1, then G is called an SSC-EOL 
grammar; if, in addition, G is a propagating SSC-EOL grammar, G is said to be 
an SSC-EPOL grammar. 

Convention 5. Let G = (V, T ,  PI , .  . . , Pt, S) be an SSC-ETOL grammar of degree 
( r ,  s). By analogy with ssc-grammars, in each production ( a  -+ 2, Per, For)  E Pi, 
i = 1,. . . , t ,  we omit braces and instead of 0, we write 0. For example, we write 
( a  -+ 2, E F ,  0 )  instead of ( a  -+ 2, { E F } ,  0). 

The families of languages generated by SSC-EPTOL, SSC-ETOL, SSC-EPOL, 
and SSC-EOL grammars of degree (r,  s) are denoted by SSC-EPTOL(r, s), SSC- 
ETOL(r, s), SSC-EPOL(r, s), and SSC-EOL(r, s), respectively. Furthermore, 
the families of languages generated by SSC-EPTOL, SSC-ETOL, SSC-EPOL, and 
SSC-EOL grammars of any degree are denoted by SSC-EPTOL, SSC-ETOL, 
SSC-EPOL, and SSC-EOL, respectively. 

Next, let us investigate the generative power of SSC-ETOL grammars. The 
following lemma proves that every recursively enumerable language can be defined 
by an SSC-EOL grammar of degree (1,2): 
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Lemma 20. RE C SSC-EOL(1,2). 

Proof. Let 
G = (NCF U Ncs U T,T, P, S)  

be a phrase-structure grammar of the form of Lemma 5.  Then, let V = NCF U 
NCS UT and m be the cardinality of V .  Let f be an arbitrary (but fixed) bijection 
from V to (1,. . . , m}, and f-’ be the inverse of f .  Set 

M = {#I u 
{ ( A , B , C )  : AB -+AC E P , A , C  E N ~ F , B  E Ncs} U 
{ ( A ,  B,  C, i) : AB -+ AC E P, A,  C E NCF,  B E N c s ,  1 L i L m + 2) 

and 

Next, construct an SSC-EOL grammar of degree (1,2) 

W = { [ A , B , C ]  : AB -+ AC E P ,A,C E NcF,B E Ncs}. 

G’ = (V’,T, P’ ,S’ ) ,  

where 

Without any loss of generality, we assume that V ,  M ,  W ,  and {S’} are pairwise 
disjoint. The set of productions P’ is constructed in the following way: 

v’ = v u M u w u {S ’ } .  

1. Add (S’ -+ #S,O,O) to  P’. 

2. For all A -+ z E P ,  A E NCF, z E { E }  U Ncs  U T U N&, add ( A  -+ 2, #, 0) 
to PI. 

3. For every AB -+ AC E P,  A , C  E NCF, B E NCS, add the following 
productions to PI: 

( 4  (# --+ (A ,  B, C), 070). 
(b) ( B  -+ [A, B,  Cl, (-4, B,  C), 0). 

(c) ( ( A , B , C )  -+ (A,B,C,1),0,0). 

(d) ( [ A ,  B,  Cl -+ [A,  B,  C] ,  0, (A ,  B,  C, m + 2)). 
(e) ( ( A ,  B,C, i )  -+ ( A , B , C , i  + l),O, f - ’ ( i ) [ A ,  B , C ] )  for all 1 5 i 5 m, 

i # f (4. 
(f) ( ( A ,  B,  c, f ( A ) )  -+ ( A ,  B ,  c, f ( A )  + I), 030). 

(g) ( ( A ,  B,  c, m + 1) -+ ( A ,  B ,  C, m + 2), 0, [A,  B,  ~ 1 ’ ) ) .  
(h) ( ( A ,  B,  C, m + 2) -+ #, 0 ,  (A ,  B,  C, m + 2) [A, B,  CI 1. 
(i) ( [ A ,  B,  C] -+ C, ( A ,  B,  C, m + 2), 0). 

4. For all X E V ,  add ( X  -+ X,O,O) to PI. 

5 .  Add (# -+ #,O,O) and (# -+ &,O,O) to P’. 
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Basic Idea. Let us explain how G’ works. During the simulation of a derivation 
in G, every sentential form starts with an auxiliary symbol from M ,  called the 
master. This symbol determines the current simulation mode and controls the next 
derivation step. Initially, the master is set to # (see (1) in the definition of PI). 
In this mode, G’ simulates context-free productions (see (2)); notice that symbols 
from V can always be rewritten to themselves by (4). To start the simulation of 
a non-context-free production of the form AB -+ AC, G’ rewrites the master to 
(A,  B ,  C). In the following step, chosen occurrences of B are rewritten to [A, B ,  C ] ;  
no other productions can be used except productions introduced in (4). At the 
same time, the master is rewritten to (A ,  B,C, i )  with i = 1 (see (3c)). Then, i 
is repeatedly incremented by one until i is greater than the cardinality of V (see 
productions (3e) and (3f)). Simultaneously, the master’s conditions make sure that 
for every i such that f - l ( i )  # A, no f - ’ ( i )  appears as the left neighbor of any 
occurrence of [A, B,  C]. Finally, G’ checks that there are no two adjoining [A ,  B,  C] 
(see (3g)) and that [A, B ,  C] does not appear as the right neighbor of the master 
(see (3h)). At this point, the left neighbors of [A, B ,  C] are necessarily equal to A 
and every occurrence of [A, B ,  C] is rewritten to C. In the same derivation step, 
the master is rewritten to #. 

Observe that in every derivation step, the master allows G’ to use only a subset 
of productions according to the current mode. Indeed, it is not possible to combine 
context-free and non-context-free simulation modes. Furthermore, no two different 
non-context-free productions can be simulated at the same time. The simulation 
ends when # is erased by (# 4 E , O , O ) .  After this erasure, no other production 
can be used. 

The following three claims demonstrate some important properties of deriva- 
tions in G’ to establish L(G)  = L(G’): 

Claim 31. S’ +:, w’ implies that w’ E M ( V  U W ) *  or w’ E (V U W ) * .  Fur- 
thermore, if w’ E M ( V  U W ) * ,  every v’ such that s’ +:, v’ +;, w‘ belongs to 
M ( V  U W)*  as well. 

Proof. When deriving w‘, G‘ first rewrites S’ to #S by using (S’ -+ #S,O,O), 
where # E M and S E V .  Next, inspect P’ to see that every symbol from M is 
always rewritten to a symbol belonging to M or, in the case of #, erased by (# --t 
E ,  0,O). Moreover, there are no productions generating new occurrences of symbols 
from ( M  U (5’’)). Thus, all sentential forms derived from S’ belong either to 
M ( V U W ) *  or to (VUW)*. In addition, if a sentential form belongs to M ( V U W ) * ,  

0 

Claim 32. Every successful derivation in G‘ is of the form 

all previous sentential forms (except for S’) are also from M ( V  u W)*.  

s’ *GI #s +:! #u’ +GI w’ +;/ w’, 

where u’ E V*,  w’ E T*.  

Proof. From Claim 31 and its proof, every successful derivation has the form 

s’ +GI #s *:! #u’ +G’ v’ +;, w’, 
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where u’, u’ E (V U W ) * ,  w’ E T*. This claim shows that 

#u‘ J G ’  u’ JLt w‘ 

implies u’ E V and v’ = w’. 
Consider 

#u’ u’ =$‘>l w’, 

where u’,d E (V U W ) * ,  w’ E T*. Assume that u’ contains a nonterminal 
[A,B,C] E W .  There are two productions rewriting [A,B,C]: p l  = ([A,B,C] ---$ 

[A, B,  C], 0, (A ,  B,  C, m+2))  andpz = ( [ A ,  B,  C] + C, (A, B,  C, m+2), 0). Because 
of its permitting condition, p z  cannot be applied during #u’ J ~ !  u’. If [A, B,  C] 
is rewritten by pl-that is, [A, B ,  C] E alph(u’)-[A, B,  C] necessarily occurs in all 
sentential forms derived from u’. Thus, no u’ containing a nonterminal from W 
results in a terminal string; hence, u’ E V*. By analogical considerations, establish 
that also v’ E V*. Next, assume that u‘ contains some A E NCF or B E Ncs. 
The first one can be rewritten by (A .+ z,#,O),  z E V*, and the second one 
by ( B  -+ [A, B,C] ,  (A,B,C),O), [A,B,C] E W ,  (A ,B ,C)  E M .  In both cases, 
the permitting condition forbids an application of the production. Consequently, 
u’ E T*. It suffices to show that u’ = w’. Indeed, every production rewriting a 

0 

Claim 33. S’ J;, Zz’, Z E M ,  z’ E (V U W)*,  n 2 1, implies that Zz’ has one 
of the following forms: 

terminal is of the form ( a  -t a ,  O , O ) ,  a E T .  

(I) z = #, 2’ E v*. 
(11) Z = (A, B, C), 5’ E V*, for some A ,  C E NCF,  B E N c s .  

(111) Z = (A ,  B,  C, i ) ,  z’ E (VU{[A, B ,  C]})”, 1 5 i 5 m+l, and {f-’(j)[A, B,C]: 
1 5 j < i, j # f(A)} n sub(z’) = 0 for some A, C E NCF, B E Ncs.  

A} nsub(z’) = 0, and [A,  B,  CIz # sub(z’) for some A, C E NCF,  B E NCS. 
(IV) Z = ( A , B , C , m + 2 ) ,  z’E (VU{[A,B,C]})*, {X[A,B ,C] :  X E V, X # 

Proof. This claim is proved by induction on the length of derivations. 

Basis: Let n = 1. Then, S’ 

Induction Hypothesis: Suppose that the claim holds for all derivations of length n 
or less, for some n 2 1. 

Induction Step: Consider a derivation of the form 

# S ,  where # S  is of type (I). 

s‘ +n+l 
GJ Qx‘, 

Q E M ,  2’ E (V U W)*.  Because n + 1 2 2,  by Claim 31, there exists Zy’ E 
M(VUW)* and a sequence of productions po,p1,. . . , p q ,  where pi E P’, 0 L i 5 q,  
q = (y’l, such that 

s’ ZY’ JGJ &z‘ [PO, Pi, - . ,Pq]. 
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Let y’ = a1a2.. .ag, where ai E (V U W )  for all i = 1 , .  . . ,q. By the induction 
hypothesis, the following cases (i) through (iv) cover all possible forms of Zy’: 

(i) Let Z = # and y’ E V* (form (I)). According to the definition of P’, PO 
is either (# -+ (A ,  B,C),O,O), A , C  E NCF,  B E Ncs ,  or (# -+ # , O , O ) ,  
or (# -+ E,O,O) ,  and every pi  is either of the form (ai -+ z ,# ,O) ,  z E 
{ E }  U Ncs U T U N i F ,  or (ai -+ ai ,  0,O). Obviously, y’ is always rewritten 
to a string x’ E V*.  If # is rewritten to (A ,  B,  C), we get (A ,  B ,  C)x‘ that 
is of form (11). If # remains unchanged, #x‘ is of type (I). In case that # is 
erased, the resulting sentential form does not belong to  M ( V  U W ) *  required 
by this claim (which also holds for all strings derived from x’ (see Claim 31)) .  

(ii) Let 2 = (A ,  B,  C), y’ E V*,  for some A,  C E NCF,  B E Ncs (form (11)). In 
this case, PO = ( ( A ,  B ,  C )  -+ (A, B ,  C,  l), 0,O) and every pi  is either (ui -+ 

[ A , B , C ] , ( A , B , C ) , O )  or (ui -+ ai,O,O) (see the definition of P’). It is easy 
to see that ( A ,  B ,  C, 1)x’ belongs to (111). 

(iii) Let Z = (A ,  B,  C , j ) ,  y’ E (V U { [ A ,  B ,  C ] } ) ” ,  and y’ satisfies 

{ f - ’ ( k ) [ A , B , C ]  : 1 5 Ic < j ,  k # f ( A ) }  nsub(y’) = 8, 

1 5 j 5 m + 1 ,  for some A , C  E NCF,  B E Ncs (form (111)). The only 
productions rewriting symbols from y’ are (ui -+ ai,O,O), ai E V ,  and 
( [A ,  B,  C] --+ [A,  B ,  C],O, (A,  B ,  C,m + 2)); thus, y’ is rewritten to itself. 
By inspection of P’, PO can be of the following three forms: 

(a) If j # f ( A )  and j < m + 1 ,  

Po = ( ( A , B , C , j )  + ( A , B , C , j  + 1 ) , 0 , f - l ( j ” , B , C l ) .  

Clearly, po can be used only when f - ’ ( j ) [ A ,  B, C] 51 sub(2y’). As 

{ f - ’ ( k ) [ A , B , C ]  : 1 5 k < j ,  k # f ( A ) }  n sub(y’) = 8, 

it also 

{f-’(Ic)[A, B,  C] : 1 5 k 5 j ,  k # f ( A ) }  n sub(y’) = 0. 

Since (A ,  B,  C, j )  is rewritten to ( A ,  B ,  C, j  + 1 )  and y’ is unchanged, 
we get (A ,  B,  C, j + 1)y’ with 

{ f - ’ ( k ) [ A ,  B,  C ]  : 1 5 k < j + 1 ,  k # f ( A ) }  n sub(y’) = 8, 

which is of form (111). 

(b) I f j  = f ( A ) ,  

Po = ( ( A ,  B, c, f (4 )  -+ ( A ,  B ,  c, f ( A )  + I ) ,  070). 
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As before, Qx’ = ( A ,  B ,  C, j + 1)y’. Moreover, because 

{ f - ’ ( k ) [ A ,  B,  C] : 1 5 Ic < j ,  k # f ( A ) }  n sub(y’) = 0 

and j = f ( A ) ,  

{ f - ’ ( k ) [ A ,  B,C] : 1 I Ic < j + 1, k # f ( A ) }  n sub(x’) = 8. 

Consequently, Qx’ belongs to (111) as well. 

(c) I f j = m + l ,  

Po = ( ( A ,  B,  c, m + 1) + ( A ,  B,  c, 7-n + 2) ,0 ,  [A,  B,  C]”. 

Then, Qx‘ = ( A ,  B,  C, m + 2)y’. The application of PO implies that 
[A,  B,  CI2 $Z sub(x’). In addition, observe that for j = m + 1, 

{f-’(+4,B,CI : 1 I k < j ,  k # f ( A ) }  
= { X [ A ,  B,C] : X E V, X # A } .  

Hence, 

As a result, Qx’ is of form (IV). 

{ X [ A ,  B,  C] : X E V, X # A }  n sub(z’) = 0. 

(iv) Let 2 = ( A ,  B,C, m + 2),  y’ E (V U { [ A ,  B,  C]})*, [A,  B, CI2 # sub(y’), and 

{ X [ A ,  B,C] : X E V, X # A }  nsub(y’) = 0, 

for some A , C  E NCF,  B E Ncs (form (IV)). Inspect P’ to see that 

Po = ( ( A ,  B,  c, m + 2) + # , O ,  ( A ,  B,  C,m + 2)IA, B,  Cl) 

and pi is either 
(ai -+ ai,O,O), at E V, 

or 
( [ A ,  B ,  CI -+ c, ( A ,  B,  c, m + 2 ) ,  01, 

1 I i I q. According to the right-hand sides of these productions, Qx’ E 
{#}V*; that is, Qx’ belongs to (I). 

In cases (i) through (iv), we have demonstrated that every sentential form obtained 
in n + 1 derivation steps satisfies the statement of this claim. Therefore, we have 

To prove the following claims, define a finite substitution g from V* into (VUW)* 

g ( X )  = {X} U { [ A ,  B,  C] E W : A ,  C E NCF, B E NCS} 

finished the induction step and established Claim 33. 

as 

for all X E V. Let g-’ be the inverse of g. 
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Claim 34. Let yl = ~ 1 ~ 2 . .  .a,, ai E (vuw)*, q = ly'l, and g-'(ai) +? g-'(z;) 
for all i E {l,.  .. , q }  and some hi E { O , l } ,  z: E (V U W)'.  Then, g-'(y') +$ 
g-'(d) such that 2' = X ~ I C ~ .  . .X;, h = C:='=, hi, h 5 4. 

Proof. First, consider a derivation 

g - w  =& g-'(.), 
x E ( V U W ) ,  u E (vuw)* ,  1 E {o,I}. If 1 = 0, g-'(X) = g-'(u). Let 1 = 1. 
Then, there surely exists a production p = g-'(X) + g-'(u) E P such that 

g-'(X) *G g-'(u) [PI 
Return to the statement of this claim. We can construct a derivation 

g-'(a1)g-'(a2). . .g-'(a,) *: g-'(z;)g-'(a2). . .g-'(a,) 
g-'(z;)g-'(z;). . .g-'(a,) 

=$? g-1(IC;)g-'(x;). . . g-'(zk), 
where g-'(y') = g-'(al). . .g-'(a,) and g-'(z;). . .g-'(z;) = g-'(zi.. .z') 4 = 
g-'(z'). In such a derivation, each g-'(ai) is either left unchanged (if hi = 0) or 
rewritten to g-'(z;) by the corresponding production g-'(ai) .+ g-'(z:). Obvi- 

0 

Claim 35. S +; z if and only i f  S' +;, Qz', where g-'(z') = z, Q E M ,  

Pro0 f. 

Only if: By induction on the length of derivations in G, we show that 

ously, the length of this derivation is c:=, hi. 

5 E V', 2' E (V u W)" .  

S +; IC implies S' +;, #z, 

where z E V',  n 2 0. Clearly, g-'(z) = z. 

Basis: Let n = 0. Then, S 

Induction Hypothesis: Assume that the claim holds for all derivations of length n 
or less, for some n 2 0. 

Induction Step: Consider a derivation 

S. In G', S' +Gt #S  by using (S' --$ #S,  0,O). 

s +;+I 2. 

As n + 1 2 1, there exists y E V* and p E P such that 

s * z  Y *G Iz: b]. 
Let y = ( 3 1 ~ 2 . .  .a,, ai E V for all 1 5 i 5 q, where q = IyI. By the induction 
hypothesis, 

The following cases investigate all possible forms of p:  

S' *;, # y .  
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(i) p = A -+ z,  A E NCF,  I E { E }  U Ncs U T U N6F. Then, y = y1Ay3 and 
x = ylzy3, y1, y3 E V’. Let 1 = lyll + 1. In this case, we can construct 

8’ *:’ #y JG’ #x [pO,Pl,***,Pq] 

such that po = (# -+ # , O , O ) ,  pl = (A -+ z,#,O) ,  and pi = (ai -+ ai,O,O) 
for all 15 i 5 q, i # 1. 

(ii) p = A B  --+ AC, A , C  E NCF,  B E NCS. Then, y = y1ABy3 and x = 
At this point, there exists the y1ACy3, y1,y3 E V*. Let 1 = lyll + 2. 

following derivation: 

s’ ++,I #YlABy3 
*Gf (A, B,  C)ylABy3 
+G’ (A, B, c, l)YlA[A, B,  CIY3 
*G‘ (A, B,  c, 2)YlA[A, B,  c]Y3 

If: The if-part establishes that 

S’ +;! Qx‘ implies S +&, x, 
where g-’(x’) = x, Q E M ,  x’ E (V U W ) * ,  x E V * ,  n 2 1. This claim is proved 
by induction on the length of derivations in GI. 

Basis: Assume that n = 1. Because the only production that can rewrite S’ is 
(S’ --+ #S,O,O), S’ +GI #S. Clearly, S +’& S and g-l(S) = S. 

Induction Hypothesis: Suppose that the claim holds for any derivation of length n 
or less, for some n 2 1. 

Induction Step: Consider 

Qz’ E M(V U W)”.  Since n + 1 2 2, by Claim 31, there exists a derivation 

S’ +n+l G’ QX’, 

s’ +& ZY’ JG‘ QX’ [p~,Plr . . . rPq]r  

where Zy’ E M(V U W ) * ,  and pi E P’ for all i E { O , l , .  . . , q } ,  q = Iy’l. By the 
induction hypothesis, there is also a derivation 

s +;I Y, 

where y E V * ,  g-’(y’) = y. Let y’ = (1102 . .  . uq. Claim 33 says that Zy’ has one 
of the following forms: 
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(i) Let Z = # and y' E V*.  Then, there are two forms of productions rewriting 
ai in y'. 

(a) (ai -+ ai,O,O), ai E V .  In this case, 

g - l ( a i )  =$ g-yui). 

(b) (ai -+ xi,#,O), xi E { E }  U NCS U T U NgF.  Because ai = g-'(ui), 
xi = g-l(zi) and ai -+ xi E P,  

g - l ( U i )  J G  g - ' ( Z i )  [Ui  --$ xi]. 

We see that for all ai ,  there exists a derivation 

g-l(a2) +$ g-l(zi) 

for some hi E { O , l } ,  where xi E V * ,  x' = qz2 . . .  xq. 
Claim 34, we can construct 

Therefore, by 

S' =+.; y x ,  

where 0 5 h 5 q, x = g-l(x'). 

(ii) Let 2 = (A,  B ,C) ,  y' E V * ,  for some A,C E N C F ,  B E Ncs. At this point, 
the following two forms of productions can be used to rewrite ai in y': 

(a) (ui -+ a i ,0 ,0 ) ,  ai E V. As in case (i.a), 

g - y a i )  +; g-l(u2). 

(b) (ui -+ [A,B,C],(A,B,C),O),  ai = B. Since g- l ( [A,B,C])  = g-'(B),  
we have 

g - l ( a i )  +oG g-l([A, B ,  C ] ) .  

Thus, there exists the derivation 

0 s +& y J G  2, x = g-'(x').  

(iii) Let Z =  ( A , B , C , j ) ,  y' E ( V u { [ A , B , C ] } ) * ,  and 

( f - ' (k )[A,B,C]  : 1 5 k < j ,  k # f(A)} nsub(y') = 0, 
1 I j I m + 1, for some A, C E NCF, B E NCS. Then, the only productions 
rewriting symbols from y' are 

(a2 --i U i , O , O ) ,  a2 E v, 

( [ A ,  B ,  Cl -+ [ A ,  B,  C] ,  0, (A,  B ,  C,  m + 2)); 
and 

hence, x' = y'. Because we have 

s =+& Y ?  g-'(y') = Y, 

it also holds g-'(x') = y. 
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(iv) Let 2 = (A, B,C,m + 2), y’ E (V U {[A, B, C]})”, [A, B, CIz (2 sub(y’), 

{X[A, B, C] : X E V, X # A} n sub(y’) = 0, 

for some A, C E NCF,  B E Ncs .  G’ rewrites (A, B, C, rn + 2) by using 

( ( A , B , C , m + 2 )  -+ #,O,(A,B,C,m+2)[A,B,Cl), 

which forbids (A, B, C,m + 2)[A, B,C] as a substring of Zy’. As a result, 
the left neighbor of every occurrence of [A, B ,  C] in (A, B, C, m + 2)y’ is A. 
Inspect P’ to see that at can be rewritten either by (ui -+ ai ,0 ,0) ,  ui E V ,  
or by ([A, B ,  C] -+ C, (A, B ,  C, m + 2), 0). Therefore, we can express: 

Y’ = YlA[A, B,  CIYzA[A, B, CIY3 * .  . YlA[A, B ,  C]Yl+l, 
y = YlAByZABy3 .YlAByl+l, 
x’ = YlACyZACy3 . . . ?-hACyl+l, 

Because cases (i) through (iv) cover all possible forms of y’, we have completed 
the induction and established Claim 35. 

0 

Let us finish the proof of Lemma 20. Consider a derivation 

S +; w, w E T”. 

From Claim 35, it follows that 

S’ =.&, #w 

because g(a) = { a }  for every a E T .  Then, as shown in Claim 32, 

s’ #w J G ’  w, 

and hence 
S +; w implies S’ J:, w 

for all w E T*. To prove the converse implication, consider a successful derivation 
of the form 

s’ +&) #u J G ’  w *>, w, 
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u E V " ,  w E T* (see Claim 32). Observe that by the definition of PI, for every 

there also exists a derivation 

s' *:, #u +L.l #w =?'GI 'w. 

Then, according to Claim 35, S +; w. Consequently, we get for every w E T*, 

S +> w if and only if S' +Lt w; 

therefore, L(G) = L(G'). CI 

Lemma 21. SSC-ETOL(r, s) G RE for any r,  s 2 0. 

Proof. By Lemma 12, CETOL 
all r, s 2 0 (see Definition IS), SSC-ETOL(r, s) C RE for all r,  s 2 0 as well. 

RE. Because SSC-ETOL(r,s) C CETOL for 
0 

Inclusions established in Lemmas 20 and 21 result in the following theorem: 

Theorem 40. SSC-EOL(1,2) = SSC-ETOL(l12) = SSC-EOL = SSC-ETOL = 
RE. 

Proof. From Lemmas 20 and 21, RE C SSC-EOL(l12) and SSC-ETOL(r,s) C 
RE for any r , s  2 0. By the definitions, it also holds that SSC-EOL(1,2) C 
SSC-ETOL(l12) G SSC-ETOL and SSC-EOL(l12) C SSC-EOL C SSC-ETOL. 
Hence, SSC-EOL(l12) = SSC-ETOL(1,2) = SSC-EOL = SSC-ETOL = RE. 

Next, let us investigate the generative power of propagating SSC-ETOL gram- 
mars. 

Lemma 22. CS G SSC-EPOL(l12). 

Proof. We can base this proof on the same technique as in Lemma 20. However, 
we have to make sure that the construction produces no erasing productions. This 
requires some modifications of the original algorithm; in particular, we have to 
elliminate the production (# -+ E, 0,O). 

Let L be a context-sensitive language generated by a grammar 

G = (V, TI P, S) 

of the normal form of Lemma 4, where 
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Let m be the cardinality of V .  Define a bijection f from V to (1 , .  . . , m}.  Let f-' 
be the inverse o f f .  Set 

M = { ( # I X ) :  X E V } U  
{ ( A , B , C I X ) :  A B + A C E P ,  X E V } U  
{ ( A , B , C , i l X ) :  A B + A C E P ,  1 < i < m + 2 ,  X E V } ,  
{[A,B,C,X]  : AB -+ AC E P, X E V } ,  and W = 

V' = V U M U W ,  

where V ,  M ,  and W are pairwise disjoint. Then, construct the SSC-EPOL gram- 
mar of degree ( 1 , 2 ) ,  

G' = (V' ,  T ,  P', (# I S)) ,  

with the set of productions P' defined as follows: 

1. For all A -+ z E P,  A E N ~ F ,  z E T U Ncs  U 

(a) for all X E V ,  add ( A  -+ 2, (# I X ) ,  0 )  to P'; 

(b) i fzETUNcs,add((#IA)-+(#Iz) ,O,O) to P'; 

(c) if z = Y Z ,  Y 2 E N,$F, add ((# I A) -+ (# 1 Y ) Z ,  0,O) to P'. 

2. For all X E V for every AB -+ AC E P ,  A,C E NCF, B E Ncs ,  add the 
following productions to P': 

3. For all X E V ,  add ( X  -+ X ,  0,O) to P'. 

4. F o r a l l X E V , a d d ( ( # ~ X ) + ( # ~ X ) , O , O ) a n d  ( ( # I X ) - + X , O , O )  t o p ' .  
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Basic Idea. Consider this construction and the construction used in Lemma 20. 
Observe that the present construction does not attach the master as an extra 
symbol before sentential forms. Instead, the master is incorporated with its right 
neighbor into one composite symbol. For example, if G generates AabCadd, the 
corresponding sentential form in G’ is (# I A)abCadd, where (# I A) is one symbol. 
At this point, we need no production erasing #; the master is simply rewritten 
to the symbol with which it is incorporated (see productions of (4)). In addition, 
this modification involves some changes to the algorithm: First, G‘ can rewrite 
symbols incorporated with the master (see productions of ( lb) and (lc)) .  Second, 
conditions of the productions depending on the master refer to the composite sym- 
bols. Finally, G’ can make context-sensitive rewriting of the composite master’s 
right neighbor (see productions of (2h)). For instance, if 

ABadC JG ACadC [AB -+ AC] 

(# I A)BadC *:, (# I A)CadC. 
in G, G‘ derives 

Based on the observations above, the reader can surely establish L(G) = L(G’) 
0 by analogy with the proof of Lemma 20. Thus, the rigorous proof is omitted. 

Lemma 23. SSC-EPTOL(r, s )  5 CS for all r ,  s 2 0.  

Proof. By Lemma 11, CEPTOL(r,s) C CS, for any r 2 0, s 2 0. Since every 
SSC-EPTOL grammar is a special case of a CEPTOL grammar (see Definition 18), 

Theorem 41. CS = SSC-EPOL(1,2) = SSC-EPTOL(lI2) = SSC-EPOL = 

Proof. By Lemma 22, we have CS c SSC-EPOL(1,2). Lemma 23 says that 
SSC-EPTOL(T,S) C CS for all T , S  2 0. From the definitions it follows that 
SSC-EPOL(l12) C SSC-EPTOL(lI2) C SSC-EPTOL and SSC-EPOL(l12) c 
SSC-EPOL C SSC-EPTOL. Hence, SSC-EPOL(lI2) = SSC-EPTOL(lI2) = 
SSC-EPOL = SSC-EPTOL = CS. I 

The following corollary summarizes the established relationships between the 

we obtain SSC-EPTOL(r, s )  5 CS for all T ,  s 2 0. 

SSC-EPTOL. 

language families generated by SSC-ETOL grammars: 

Corollary 18. 

CF 
C 

SSC-EPOL(0,O) = SSC-EOL(0,O) = EPOL = EOL 
C 

SSC-EPTOL(0,O) = SSC-ETOL(0,O) = EPTOL =z ETOL 
C 

SSC-EPOL(1,2) = SSC-EPTOL(1,2) = SSC-EPOL = SSC-EPTOL 1 CS 
C 

SSC-EOL(1,2) = SSC-ETOL(1,2) = SSC-EOL = SSC-ETOL = RE. 
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Open  Problems. Notice that Corollary 18 does not include some related lan- 
guage families. For instance, it contains no language families generated by SSC- 
ETOL grammars with degrees (1, l), (1, 0), and (0 , l ) .  What is their generative 
power? What is the generative power of SSC-ETOL grammars of degree (2, l)? 
Are they as powerful as SSC-ETOL grammars of degree (1,2)? 

4.3 Global Context Conditional Grammars 

As a matter of fact, in the present section, we go beyond the topic of this chap- 
ter. Indeed, rather than associate context conditions with grammatical rules, we 
associate them with a grammar as a whole. 

Definition 19. Let r be a natural number. A global context conditional grammar 
(a gcc-grammar for short) of degree r is a sixtuple, 

G = (V, T ,  P, S, Per, For) ,  

where (V, T ,  P, S )  is a context-free grammar, For 
y E Per  implies IyI 5 r .  G is said to be propagating if A -+ x E P implies x # E .  

x, u1 , ug E V * ,  then we write 

V ,  and Pe r  V+ such that 

Let u,w E V*,  p E P, p = A -+ x, u = ulAug, w = ulxug, for some A E (V-T) ,  

(a) u P+G w [P] if A E alph(sub(u) n Per) ;  

(b) u f = + ~  w [PI if alph(u) n For = 8; 

(c) u =+G w Ip] if u p=+G w [PI or u f=+G v [PI. 

Roughly speaking, such a production as A --+ x E P can be applied to a 
sentential form w provided that (a) A occurs in a permitting word from P e r  which 
is a subword of w or (b) no forbidding symbol from For occurs in w. Note that (a) 
requires any occurrence of A to appear in a permitting word that is a subword of 
u; but not necessarily the occurrence of A ,  which is rewritten in a given derivation 
step u PJG V .  

In the standard manner, we define +b for i 2 0 ,  +&, and =+>. The language 
of G, denoted by L(G),  is defined as 

L(G) = {W E T* : S +& w}. 

The family of languages generated by gcc-grammars of degree r is denoted by 
GCC(r) .  Furthermore, 

00 

GCC = U GCC(i). 
i = O  

We use prefix prop- if we consider only propagating gcc-grammars. That is, 
prop-GCC(r) and prop-GCC denote the family of languages generated by prop- 
agating gcc-grammars of degree r and by propagating gcc-grammars of any degree, 
respectively. 
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Next, we prove two fundamental results regarding the generative power of gcc- 
grammars: 

(i) A language is context-sensitive if and only if it is generated by a propagating 
gcc-grammar of degree 2. 

(ii) A language is recursively enumerable if and only if it is generated by a gcc- 
grammar of degree 2. 

Theorem 42. CS = prop-GCC(2). 

Proof. It is straightforward to prove that prop-GCC(2) C CS, so it suffices-to 
prove the converse inclusion. 

Let L be a context-sensitive language. Without any loss of generality, we can 
assume that L is generated by a context-sensitive grammar 

G = (NCF U Ncs UT,T, P , S )  

of the form described in Lemma 4. Let V = NCF U NCS U T. Set 

For = {(A,B ,C)  : A B  -+ AC E P, A , C  E NCF,  B E Ncs} .  

The propagating gcc-grammar G’ of degree 2 is defined as 

G‘ = (V’, T ,  PI, S ,  Per, For), 

where V’ = V U For and 

Per = {A(A, B,C)  : A E N C F ,  (A,B,C) E For}. 

The set of productions PI is defined in the following way: 

1. I f A - z E  P , A E N c ~ , 2 € N c ~ U T U N ~ ~ , t h e n a d d A - , z t o P ’ .  

2. If A B  -+ AC E P ,  A , C  E NCF,  B E N C S ,  then add the following two 
productions B -+ (A, B,  C), ( A ,  B,  C) -+ C to PI. 

Obviously, G’ is a propagating gcc-grammar of degree 2. Moreover, observe 
that G is supposed to be of the form described by Lemma 4, so NCF and NCS are 
two disjoint alphabets. Thus, considering the construction of G’, we should see 
that there is at most one occurrence of a symbol from For in any word derived 
from S; that is, 

S +>, z implies # F ~ , - S  5 1. 

The formal proof is left to the reader. 

such that for all Y E V ,  
Next, define a finite letter-to-letters substitution g from V* into (V U For)* 

g ( Y )  = {Y} u { ( X , Y ,  2) : ( X , Y ,  2) E For, X , Z  E NcF}. 



4.3 Global Context Conditional Grammars 133 

Let g-’ be the inverse of g. 
To show that L(G) = L(G’), we prove that 

S +z x if and only if S +;, x‘, 

where x’ E g(x), x E V+,  for some m,n 2 0. 

Only if: This is established by induction on the length m of derivations; that is, 
we have to demonstrate that 

S +; x implies S +Lt x’ 

for some x’ E g(x), x E V+.  This is our claim. 

Basis: Let m = 0. The only x is S because S +: S. Clearly, S +:, S in G’ and 

Induction Hypothesis: Suppose that our claim holds for all derivations of length 
at  most m, for some m 2 0. 

Induction Step: Let us consider a derivation 

s E dS). 

s +g+1 2, x E v+. 
Since m + 1 2 1, there is some y E V+ and p E P such that 

s *g Y * G  2 [ p l y  

and by the induction hypothesis, there is also a derivation 

s +;, y’ 

for some y’ E g(yj. 

(i) Let us assume that p = D -+ yz E P ,  D E NCF, yz E Ncs U T U N i F ,  
y = y1Dy3, y1, y3 E V*,  and x = y1yzy3. Since from the definition of g it is 
clear that g (2 )  = (2)  for all 2 E NCF,  we can express y’ = yiDy&, where 
y: E g(y1) and yi E g(y3). Clearly, D -+ y~ E P’; see (1) in the definition of 
PI. 

(a) If For n alph(yiDyi) = 0, then 

s *;! YiDYi f*G’ Y:YZ$j [D YZ] 

and Y:YzYi E S(YlYZY3) = g(xc). 
(b) If For n alph(yiDy&) # 0, then # ~ ~ , . y i D y i  = 1. Next, suppose that 

( X , Y , Z )  E alph(yiDyi) n For, X Y  --+ X Z  E P ,  X , Z  E NCF,  Y E 
Ncs;  then, by (2), we have Y ---f ( X ,  Y, 2) E P’. Clearly, we can express 
the derivation 

S =+;, yiDyi 
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in the following way: 

where 

alph(g-'(y',Dy$)) n For = 0 and g-'(yiDy$) = y1Dy3. 

S ~ 1 A B y 2  * G I  yiA(A, B,  C)YZ *G I  YIACyzl 

where y1ACy2 E g(x).  

Thus, t he  only-if part now follows by the principle of induction. 

I f :  This is also established by induction, but in this case on n. We have to 
demonstrate that 

S J:, x' implies S x, 

where x E V+,  x = g-l(x') ,  and n 2 0. 

Basis: For n = 0 the only x' is S because S =+;, S. Since S = g-'(S), we have 
x = S. Clearly, S J'& S in G. 

Induction Hypothesis: Assume that the claim holds for all derivations of length at  
most n, for some n 1 0. 
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Induction Step: Consider a derivation 

s =$’ x‘, 

where x = g-l(x’) for some x E V+. Since n + 1 2 1, there is some y E V + ,  
y = g-’(y’), and p E P’ such that 

s =$’:/ y’ +GI x’ [p] 

in G‘. By the induction hypothesis, 

s *; y. 

Let y’ = T‘Ds’, y = rBs, r = g-l(r‘), s = g-’(s’), T , S  E V*, B = g-’(D), 
x’ = r’z’s‘ and p = D -+ z’ E P’. Moreover, let us consider the following three 
cases: 

(i) Let g-’(z’) = B;  see (2). Then, g-’(2’) = g-’(r’z’s’) = rBs. By the 
induction hypothesis, we have 

(ii) Let z’ E T U N c s  U N&, D = B E NCF. Then, there is a production 
B + z’ E P;  see (1). Hence, 

s rBs J G  Tz’s [B 4 z’]. 

Since z’ = g-’(z’), we have x = rz’s such that g-l(x’) = x. 

(iii) Let z’ = C ,  D = (A ,  B ,C)  E For; see (2). Clearly, 

9’ ’ J G ’  2’ [PI 

and A(A, B , C )  E sub(y’). By the definition of For, there is a production 
AB + AC E P. Since #F~,.Y‘ 5 1, we have T’ = u‘A, r = uA, where 
g-’(u’) = u and u E V*.  Thus, 

S +; UABS JG UACS [AB + AC], 

where uACs = rCs. Since C = g- ’ (C) ,  we get x = rCs such that g-’(x’) = 
2. 

By inspection of P’, we have considered all possible derivations of the form 

s +;! 9’ J G ’  x’ 

in G’. Thus, by the principle of induction, we have established that 

S +-kt x’ implies S +; x, 
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where x E V+,  g-’(x’) = x,  and n 2 0. 
The equivalence of G and G’ immediately follows from the statement above. 

Indeed, by the definition of g, we have g(a) = { u }  for all u E T .  Therefore, we 
have for any w E T* ,  

S +& w if and only if S +>, w; 

that is, L(G) = L(G’). Hence, prop-GCC(2) = CS. W 

Next, we turn to the investigation of gcc-grammars of degree 2 with erasing 
productions. We show that these grammars generate precisely the family of recur- 
sively enumerable languages. 

Theorem 43. RE = GCC(2). 

Proof. Clearly, GCC(2) C RE. Hence, it suffices to show that RE C GCC(2). 
This inclusion can be proved by the technique used in Theorem 42, because ev- 
ery language L E RE can be generated by a phrase-structure grammar whose 
productions are of the form AB -+ AC or A + x, where A, B ,  C E V - T and 
2 E { E }  U T U (V - T ) 2  (see Lemmas 3 and 5). The details are left to the reader. 

W 

The following corollary summarizes results established in Theorems 42 and 43: 

Corollary 19. 
prop-GCC(2) = prop-GCC = CS 

C 
GCC(2) = GCC = RE. 

Open Problem. Consider an alternative definition of gcc-grammars. Specifi- 
cally, define the notion of a forbidding gcc-grammar of degree r (for some nat- 
ural number T )  as a sixtuple G = (V, T ,  P, S,  Per, For), where (V, T ,  P, S )  is a 
context-free grammar, For C V +  such that x E For implies 1x1 5 T ,  Per C V ,  
and a production A + x can be applied to a word w when Per C alph(w) or 
0 = V*{A}V* n For n sub(w). What is the language generating power of these 
grammars? 



Chapter 5 

Context Conditions Placed on the 
Neighborhood of Rewritten 
Symbols 

This chapter studies grammars with context conditions placed on the neighborhood 
of rewritten symbols. In Section 5.1, we investigate grammars with context con- 
ditions that strictly require a continuous neighborhood of the rewritten symbols. 
We discuss both sequential and parallel grammars of this kind. The discussion of 
sequential grammars naturally leads to the study of classical context-dependent 
grammars, such as context-sensitive and phrase-structure grammars. Regarding 
parallel grammars, we base this discussion on EIL grammars. In Section 5.2, we 
study scattered context grammars in which rewriting depends on symbols occur- 
ring in the sentential form, but these symbols may not form a continuous substring 
of the sentential form. Rather, these symbols, which are simultaneously rewritten 
during a single derivation step, may be scattered throughout the sentential form. 
In all grammars discussed in this chapter, we make their context-dependency uni- 
form, reduced and easy-to-use in theory and practice. 

5.1 Continuous Context 

Consider the phrase-structure grammars based on productions of the form xAy -+ 

xuy, where A is a nonterminal and x,  y, u are strings (see Chapter 2). By using 
xAy -+ xuy, we rewrite A with u on the condition that in the current sentential 
form IC and y are substrings neighboring with the rewritten symbol A from the left 
and from the right, respectively. Consequently, the phrase-structure grammars 
can be quite naturally interpreted as grammars with context condition placed on 
the substrings neighboring with the rewritten symbols (see the note preceding 
Definition 2 in Section 2.2). Therefore, we discuss them in this chapter, although 
we are fully aware of the problems and difficulties that their use bring about 
(see Chapter 1). In fact, we intentionally concentrate our attention on some of 
the difficulties in order to make them more acceptable from both theoretical and 
practical viewpoint. 

More specifically, a phrase-structure grammar can produce a very broad variety 
of quite different sentential forms during the generation of their languages. This 
inconsistent generation represents a highly undesirable grammatical phenomenon. 
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In theory, the demonstration of properties concerning languages generated in this 
way lead to extremely tedious proofs. In practice, the inconsistent generation of 
languages is uneasy to analyze. Therefore, we next investigate how to make this 
generation of languages more uniform. Specifically, the phrase-structure grammars 
are transformed so that they generate only words that have a uniform permutation- 
based form. More precisely, in Section 5.1.1, we demonstrate that every recursively 
enumerable language L can be generated by a phrase-structure grammar so that 
during the generation of any sentence from L, every sentential form is based on a 
sequence of substrings, each of which represents a permutation of symbols over a 
very small alphabet. 

Besides phrase-structure grammars, we achieve analogical results for EIL gram- 
mars, which represent major parallel grammars with context condition placed on 
substrings continuously neighboring with the rewritten symbols (see Section 5.1.2). 

5.1.1 Sequential Uniform Rewriting 

The present section demonstrates that for every phrase-structure grammar G, 
there exists an equivalent phrase-structure grammar, G’ = ({S, 0 , l )  U T ,  T, P, S) 
so that every 2 E F(G’) satisfies 

2 E T*rI(w)*, 

2 E II(w)*T*. 

where 20 E ( 0 ,  l}*. Then, it makes this conversion so that for every 2 E F(G) ,  

Let 
G = ( V , T , P , S )  

be a phrase-structure grammar. Notice that alph(L(G)) C T .  If a E T - 
alph(L(G)), so a actually acts as a pseudoterminal because it appears in no word of 
L(G). Every transformation described in this section assumes that its input gram- 
mar contains no pseudoterminals of this kind, and does not contain any useless 
nonterminals either. 

Let j be a natural number. Set 

PS[.j] = {L : L = L(G), where G = (V,T, P , S )  is a phrase-structure 
grammar such that lalph(F(G)) - TI = j and 
F(G) C T*II(w)*, where w E (V - T)*}.  

Analogously, set 

PSlj.] = { L  : L = L(G), where G = (V,T,P, S) is a phrase-structure 
grammar such that lalph(F(G)) - TI = j and 
F(G) C II(w)*T*, where w E (V - T)*}.  

Lemma 24. Let G be a phmse-structure grammar. Then, there exists a phmse- 
structure grammar, G’ = ( { S ,  0,1} U T,T, P, S), satisfying L(G’) = L(G) and 
F(G’) C T*II(ln-200)*. 
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Proof. Let 
G = (V, T, Q, $) 

be a phrase-structure grammar, where V is the alphabet of G, T is the terminal 
alphabet of G, Q is the set of productions of G, and $ is the start symbol of 
G. Without any loss of generality, assume that V n {0,1} = 0. The following 
construction produces an equivalent phrase-structure grammar: 

G' = ({ S, 0,1} U T, T, P, S) 

such that F(G') C T*II(l"-200)*, for some natural number n. 
For some integers m , n  such that m 2 3 and 2m = n, introduce an injective 

homomorphism ,B from V to ({l}m{l}*{O}{l}*{O} n (0, 1)") - {ln-200}. Extend 
the domain of p to V*. Define the phrase-structure grammar, G' = ({S,O, 1) U 
T, T,  P, S), with 

P = {S  + l"-100p($)l"-100} u 
M.1 + P(Y) : 2 + Y E &I u 

{ 1"-2001"-200 --+ E}. 

{1"-200p(u) --f aln-200 : a E T} U 

Claim 36. Let S j h  w, where w E V* and h 2 1. Then, w E T*({E} U 
{ 1"-2oo}(p(v))*{ P-POO}). 

Proof. The claim is proved by induction on h, h 2 1. 

Basis: Let h = 1. That is, 

s *G' ln-lOO~($)ln-'OO [$ 4 l"-lOOp($)l"-lOO]. 

As 
ln-200p(S)ln-200 E T*({1"-200}(~(V))*{1"-200} U { E } ) ,  

the basis holds. 

Induction Hypothesis: Suppose that for some k 2 0, if S 
and w E V*, then w E T*({1"-200}(~(V))*{ln-200} U { E } ) .  

Induction Step: Consider 

where w E V* - T*. Express S =+-%' w as 

w, where i = 1,. . . , k 

S,*Zl w, 

S +:, ulhs(p)v 
*GI urhs(p)v [PI, 

where p E P and w = urhs(p)v. Less formally, after k steps, G' derives ulhs(p)v. 
Then, by using p, G' replaces lhs(p) with rhs(p) in ulhs(p)v, so it obtains urhs(p)v. 
By the induction hypothesis, 

ulhs(p)v E T*({1"-100}(~(V))*{1"-200} U {E}). 
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As lhs(p) $! T*,  ulhs(p)v $! T*. Therefore, 

ulhs(p)v E T*{1"-200}(~(V))*{1~-200}. 

ulhs(p)v E T*{1"-200}(~(V))~{ln-200} 
Let 

in GI, for some j 2 1. 
properties: 

By the definition of P ,  p satisfies one of these three 

(i) Let lhs(p) = P ( x )  and rhs(p) = p(y), where x -, y E Q, At this point, 

u E T*{l"-200}{p(V)}', 

2, E {p(  V)} ( j -  Ilh4P)l -'I { 1"-200}. 

for some T 2 0, and 

Distinguish between these two cases: 1x1 5 IyI and 1x1 > IyI. 

(a) Let 1x1 I IyI. Set s = IyI - 1x1. Observe that 

urhs(p)v E T*{1"-200}(~(V))~~+'~{ln-200}. 

As w = urhs(p)v, 

w E T*({1"-"0)(p(v))*{1"-200} u { E } ) .  

w E T*({1"-200}(p(v))*{1"-200} u { E } ) .  

(b) Let 1x1 > Iy(. By analogy with (a), prove that 

(ii) Assume that lhs(p) = 1"-'00P(a) and rhs(p) = aln-200, for some a E T .  
Notice that 

ulhs(p)v E T*{ 1"-200}(~(V))~{l"-200} 

implies u E T* and 

Then, 

As w = urhs(p)w, 

2, E (p(V))(j-'){1"-200}. 

urhs(p)v E T*{a}{  1"-200}(/3(V))(j-1){ ln-200}. 

w E T*({1"-200}(p(v))*(1"-200} u { E } ) .  

T*{ 1"-2oo}(p(v))~{ 1"-200}, 

(iii) Assume that lhs(p) = 1"-2001"-200 and rhs(p) = E .  Then, j = 0 in 

so 
ulhs(p)v E T*{ln-200}{ln-200} 

and urhs(p)v E T*.  As w = urhs(p)w, 

w E T*({1"-"0)(p(v))*{1"-200} u { E } ) .  
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0 

Claim 37. Let S +;, u 

Proof. Let S +&, u +>, z ,  where z E T*. By Claim 36, u E T*({1n-200}(~(V))* 
0 

z ,  where z E T*. Then, u E T*II(ln-200)*. 

{ln-200} U { E } ) ,  and by the definition of p, u E T*ll(1n-200)*. 

Claim 38. Let $ +g w, for some m 2 0. Then S +:, ln-200P(w)ln-200 in 
G' * 

Proof. The claim is proved by induction on m, m 2 0. 

Basis: Let m = 0. That is, $ $. As 

s J G '  ln-lOOp($)ln-'OO [s 4 ln-lOO,d($)ln-lOO], 

the basis holds. 

Induction Hypothesis: Suppose that for some j 2 1, if $ =+& w, where i = 1,. . . , j 
and w E V * ,  then S +zl p(w). 

Induction Step: Let $ w. Express $ +&+' w as 

$ +& U x V  +G Uyv [x + y ] ,  

where x -+ y E Q and w = uyv.  By the induction hypothesis, 

s +;, l~ -200p(Uzv) l~ -200 .  

Express P(uxv) as p(uxv) = P(u)/3(x)P(v). As x --+ y E P,  P(x )  -+ P ( Y )  E P. 
Therefore, 

s =+;, 1"-2Oop(u)p(z)p(v)l"-200 
*GI  ~ " - 2 ~ ~ ~ ( ~ ) ~ ( y ) ~ ( ~ ) ~ " - 2 ~ ~  [P(.) p ( Y ) ] .  

Because w = u y v ,  p(w) = P ( u ) p ( y ) p ( v ) ,  so 

s +;, l~ -200p(W) l~ -200 .  

Claim 39. L(G)  C L(G'). 

Proof. Let w E L(G). Thus, $ +; w with w E T*. By Claim 38, 

s =+&, 1*-200p(W)1~-200. 

Distinguish between these two cases: w = E and w # E. 

(i) If w = E ,  l n - 2 0 0 p ( ~ ) l n - 2 0 0  = ln-2001n-200. As ln-2001n-200 -+ E E P ,  

s +&, 1 ~ - 2 0 0 1 ~ - 2 0 0  
E [1n-2001n-200 + €1. 
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0,102.. . an-21n-200P(a~_l)P(an)ln-200 
[1"-20Op(an4) -+ a,-21"-200] 

[1"-2O0P(un-1) -+ a,-11"-200] 

[1"-200P(a,) -+ a,ln-200] 

[l"-2001"-200 + €1. 

*G' a1a2.. . an_2an-lln-200~(a~)l"-200 

ala2..  . a,-2a,-la,ln-2001"-200 

+GI a1a2.. . a,-za,-la, 

Therefore, w E L(G'). 

Claim 40. Let S *;, ln-200~1n-200, where w E { O , l } * ,  for some m 2 1. 
Then, $ +-& /3-'(w). 

Proof. This claim is proved by induction on m. 

Basis: Let m = 1. That is, 

s J G '  ln-200wln-200, 

where w E {O, l}* .  Then, w = /3($). As $ 

Induction Hypothesis: Suppose that for some j 2 1, if S +;, ln-200~ln-200, 
where i = 1,. . . , j and w E {0,1}*, then $ +$ P-l(w). 

Induction Step: Let 

where w E {O,l}*. As w E { O , l } * ,  

G' 

$, the basis holds. 

s *j+l G' 1"-200 w 1"-200, 

wln-200 s *j+1 1"-200 

can be expressed as 
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where x, y E V*, x y E Q, and w = up(y)v. By the induction hypothesis, 

s *;, 1~-200p-~(up(x)v)1~-200. 

p- 1 (up (.)V) = p- 1 (u)xp-l (v) . 

Express P-'(up(x)v) as 

Since x --+ y E Q, 

$ *; p-l(u)xp-'(v) 
*G p-'(u)Yp-'(v) -i Y1. 

Because w = up(y)v, p-'(w) = p-'(u)yp-'(v), so 

$ =+& p-'(w). 

Claim 41. L(G') G L(G). 

Proof. Let w E L(G'). Distinguish between w = E and w # E .  

(i) Let w = E. Observe that G' derives E as 

s *;, 1~-2001~-200 
*G' & [ln-2001n-200 --$ €1. 

Because 
s a;, 1~-2001~-200, 

Claim 40 implies that $ E .  Therefore, w E L(G). 

(ii) Assume that w # E .  Let w = 0102,. . a,-la, with ai E T for i = 1,. . . ,n, 
where n 2 1. Examine P to see that in G' there exists this derivation: 

s +, 1"-200p(u1)p(a2). . . ~(an-l)p(an)l"-200 

[1"-200p(a') -i a11"-200] 

[1"-200p(a2) -+ azln-200] 

JG' a11n-200P(a2). . ,d(an-l)p(an)ln-200 

J G '  ala21n-200p(a3) * * .  ~(an-1)p(an)ln-200 
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Because 
s +;, 1 n - 2 ~ ~ ~ ( u 1 ) ~ ( u 2 )  . . . P(an-1)P(an)ln-200, 

$ *& u1u2.. . U,-lU,, 
Claim 40 implies that 

so w E L(G). 

0 

By Claims 39 and 41, L(G) = L(G'). By Claim 37, F(G') c T*II(ln-200)*. 
Thus, Lemma 24 holds. 0 

Theorem 44. PS[.2] = RE. 

Proof. Clearly, PS[.2] C RE. By Lemma 24, RE c PS[.2]. Therefore, this 
theorem holds. w 

Lemma 25. Let G be a phrase-structure grammar. Then, there exists a phrase- 
structure grammar G' = ({S,O, 1) U T,T ,  P ,S)  satisfying L(G)  = L(G') and 
F(G' )  

Proof. Let 
G = (V, T ,  Q ,  $) 

be a phrase-structure grammar, where V is the total alphabet of G, T is the 
terminal alphabet of G, Q is the set of productions of G, and $ is the start symbol 
of G. Without any loss of generality, assume that V n (0, l} = 0. The following 
construction produces an equivalent phrase-structure grammar: 

II(ln-200)*T*, for some n 2 1. 

G'= ({S,O,l}UT,T,P,S)  

such that F(G') C II(ln-200)*T*, for some n 2 1. 
For some m 2 3 and n such that 2m = n, introduce an injective homomorphism 

p from V to ({l}m{l}*{O}{l}* n (0, l}n) - {ln-'OO}. Extend the domain of p to 
V*. Define the phrase-structure grammar G' = (T U {S, 0, l}, P, S, T )  with 

P = {S -+ l ~ - ' o o p ( $ ) l ~ - ~ o o }  u 
-+ P(Y) : 2 -+ Y E Q }  u 

{p(u)l"-'00 -+ 1n-200u : u E T }  u 
{1~-2001"-200 ---t E } .  

Complete this proof by analogy with the proof of Lemma 24. 0 

Theorem 45. PS[2.] = RE. 

Proof. Clearly, PS[2.] c RE. By Lemma 25, RE PS[2.]. Therefore, this 
theorem holds. w 
Corollary 20. PS[.2] = PS[2.] = RE. 
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Open Problems. There are some open problem areas related to the results 
above. Recall that in this section we converted any phrase-structure grammar, G, 
to an equivalent phrase-structure grammar, G’ = (V,T,P,S) ,  so that for every 
z E F(G’), x E T*II(w)*, where w is a word over V - T .  Then, we made this 
conversion so that for every z E F(G’), z E II(w)*T*. Take into account the 
length of w. More precisely, for j, k 2 1 set 

PS[.j,k] = {L : L = L(G), where G = (V, T ,  P, S )  is a phrase-structure 
grammar such that lalph(F(G)) - TI = j and 
F (G)  C T*II(w)*, where w E (V - T)*  and lwl = k}. 

Analogously, set 

PSb,k.] = {L : L = L(G), where G = (V, T ,  P, S )  is a phrase-structure 
grammar such that lalph(F(G)) - TI = j and 
F(G)  C II(w)*T*, where w E (V - T)* and IwI = k}. 

Reconsider Section 5.1.1 in terms of these families of languages. 

5.1.2 Parallel Uniform Rewriting 

The present section converts any EIL grammar G to an equivalent EIL grammar 
G’ = ({S, 0,1} U T ,  T ,  P, S ) ,  so that for every z E F(G’), 

2 E T*rI(w)*,  

where w E {O, l}* .  Then, it makes this conversion so that for every z E F(G’), 

z E II(w)*T*. 

Note that by analogy with Section 5.1.1, every transformation presented in 
this section assumes that its input grammar contains neither pseudoterminals nor 
useless nonterminals. Let j 2 0. Set 

EIL[.j] = {L : L = L(G), where G = (V,T, P, S )  is an EIL grammar 
such that lalph(F(G)) -TI = j and F(G) c T*rI(w)*, 
where w E (V - T)*} .  

Analogously, define 

EILIj.] = { L  : L = L(G), where G = (V, T ,  P, S )  is an EIL grammar 
such that lalph(F(G)) - TI = j and F(G) 
where w E (V - T)*}.  

II(w)*T*, 

Lemma 26. Let G be an E( 1 , O )  L grammar. Then, there excists an EIL grammar 
G‘ = ({S,O,l} U T , T , P , S )  such that L(G) = L(G’) and F(G’) C T*II(ln-200)*, 
for some n 2 1. 
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Proof. Let 

be an E( 1,O)L grammar. For some natural numbers m and n such that m 2 3 and 
2m = n, introduce an injective homomorphism p from V to ({l}m{l}*{O}{l}*{O} 
n (0, 1)") - {ln-200}; in addition, introduce an injective homomorphism x from 
T to ({l}m{l}*{0}{1}*{0}n{o,1}~)-{1~-200} sothat  { ~ ( a )  : a € T } n { P ( A ) :  
A E V }  = 0. Extend the domain of p and the domain of x to V* and T*,  
respectively. Define the E(2n - 1,O)L grammar 

G = (V, T ,  Q ,  $1 

G ' =  (TU{S,O,l),T,P,S) 

with 
P = Po u Px u P 6 ,  

where 

Po = { S  --f P ( $ ) )  
u { ( p ( x ) z , o )  -+ P(y) : x E v u { E } ,  2 E {O,l}n--l, y E v*, 
u {(p(a).,o) -+ X(b) : a E T U  { E } ,  2 E (0,1}n-l, 

ZO = p(Y) for some Y E V such that (X ,Y)  -+ y E Q} 

20 = P(b)  for some b E T } ,  

lyzl 5 2n - 1, 20 = ~ ( a ) }  

1x1 I n - 2, lyxl 5 2n - 1) 

121 2 n, lyzl I 2n - 1) 

(Po u Px) n {(z, x )  -+ z : z E (T u (0, I})*} = 0). 

Px = { ( Y Z , ~ )  -+ a : a E T ,  y E T*,  2 E (0, l}*, 

u {(yqg) -+ E : Y E (0, l}, y E T*,  2 E (0, l}*, 

u ((y2,Y) --+ Y : Y E (0, l}, y E T* ,  II: E (0, l}*, 

U { ( z , a )  -+ a : a 6 T ,  1x1 I 2 n  - l}, 
Ps = ( ( 2 , X )  -+ 1"-200 : 2 E (T u (0, 1})2"-1, x E (T u (0, l}), 

Claim 42. Let S =+-;, w, where w E V* and m 2 1. Then, w E T*11(1"-200)*. 

Proof. The claim is proved by induction on m, m 2 1. 

Basis: Let m = 1. That is, S =+Gt p($) [S -+ p($) ] .  As T*ll(l"-200)* contains 
p( $) , the basis holds. 

Induction Hypothesis: Suppose that for all i = 1,. . . , k, where k 2 1, if S +;, 
w, then w E T*11(ln-200)*. 

Induction Step: Consider 
s +-S' w, 

where w E V*.  Express S w as 

s *:! u J G '  21 [PI, 

where p E P. By the induction hypothesis, u E T*II(l"-200)*. Examine P to see 
that 21 E T*II(ln-200)* if u E T*rI(ln-200)*; the details are left to the reader. 

0 
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Claim 43. Let $ +z w, for some m 3 0. Then, S +;, P(w). 

Proof. This claim is proved by induction on m, m 2 0. 

Basis: Let m = 0. That is, $ +$ $. Observe that S *G! @($) [S + P($ ) ] ,  SO the 
basis holds. 

Induction Hypothesis: Suppose that for some j 2 1, if $ +b w, where i = 1,. . . , j ,  
and w E V*, then S a:, P(w). 

Induction Step: Consider a derivation 

$ +j+l 
G y .  

Express $ +$+’ y as 

Furthermore, express z as z = X l X 2 . .  . X k ,  where k = 1x1 and xj E v, for 
j = 1,. . . , k. Assume that G makes 

$336 2 *G 9. 

xlxz.. . Xk +G y 

according to (&,XI) -+ y1,  (X1 ,Xz )  --+ y z , .  . . , (Xk - l ,Xk )  + yk  so y = y i y z  . . . y k .  

By the induction hypothesis, 

Express P(z) as 

where X j  E V ,  for j = 1,. . . , k. Return to Pp. Observe that Pp contains (XI, 0) + 

p ( y 1 ) ,  where z10 = P ( X l ) ,  and (P(Xi-l)zi,O) -+ P(yi), where zi0 = @ ( X i )  for 
i = 2 , .  . . , k. Thus, 

s +-it P(z). 

P(.) = P(Xl>P(X2) * * * P(Xk)l 

P(xl)P(x2) * * . P ( X k )  *G’ P ( Y l ) P ( Y Z ) . . . P ( Y k ) *  

As y = ~ 1 ~ 2 . .  . Y k ,  P(z) =+-Gf P(y). Consequently, 

s *it P b ) .  

Claim 44. L(G) L(G’). 

Proof. Let w E L(G’). Thus, S +&, w and w E T*. By Claim 43, S 
Recall that Pp contains 

P(w). 

{ ( p ( a ) z ,  0 )  --+ ~ ( b )  : a E T ,  z E (0 ,  l}n-l, z0 = P(b) for some b E T }  C Po. 

Therefore, 

Examine Px to see that 

Hence, Claim 44 holds. 

P(w) *GI x(w)* 

x(w) +-;, w. 
0 
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Claim 45. L(G’) C L(G).  

Proof. Let w E L(G’), and let w = ala2 . .  . a,-la, with ai E T for i = 1, .  . . , n ,  
where n is a nonnegative integer (w = E if n = 0). Observe that 

In greater detail, by using productions from Pp,  G’ makes 

and by using productions from Px, G’ makes the rest of this derivation. Examine 
Pp to see that if G‘ makes 

by using productions from Pp, then $ =+; ala2 . .  . an-lan in G. Because w = 
0 ~ 1 ~ 2 . .  . a,-la,, w E L(G),  so Claim 45 holds. 

By Claims 44 and 45, L(G’) = L(G) ,  so Lemma 26 holds. 0 

Theorem 46. EIL[.2] = RE. 

Proof. Clearly, EIL[.2] C RE. By Theorem 6.1.3 in [155], for every L E RE, 
there exists an E(1,O)L grammar, G, such that L = L(G).  Thus, by Lemma 26, 
RE C EIL[.2]. As EIL[.2] C RE and RE C EIL[.2], RE = EIL[.2]. 

Lemma 27. Let G be an E ( 0 , l ) L  grammar. Then, there exists an EIL grammar 
G’ = ({SIOll},T,P,S) such that L(G) = L(G’) and F(G’) II(ln-200)*T*, for 
some n 2 6. 

Proof. Let 
G = (V, Tl &,$I 

be an E(0, l )L grammar. For some natural numbers m and n such that m 2 3 
and 2m = n,  introduce an injective homomorphism p from V to ({O}{l}*{O}{l}* 
{l}m n (0, l}n) - {ln-200}; in addition, introduce an injective homomorphism x 
f romT to ({0}{1}*{0}{1}*{l}mn{0,1}n)-{ln-200} so { ~ ( a )  : U E  T } n { P ( A )  : 
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A E V }  = 8. Extend the domain of P and the domain of x to V* and T* ,  
respectively. Define the E(O,2n - l ) L  grammar, 

G’=(TU{S,O,l} ,T,P,S) ,  

with 
P = Pp u Px u Pa, 

where 

Q = { S  -+ P ( V 1  
u {(O,zP(X)) -+ P(y) : x E v u { E } ,  2 E {0,1}n-l, y E v*, 

Oz = P(Y) for some Y E V such that ( Y , X )  + y E Q }  

Oz = P ( b )  for some b E T}, 

lzyl 5 2 n  - 1, Ox = ~ ( a ) }  

I -  21 < n - 2, Ixyl 5 2 n  - 1) 

1x1 2 n, lzyl 5 2 n  - 1) 

U {(O,zP(a)) + ~ ( b )  : a E T U { E } ,  z E (0, l}n-l, 

{(O,zy) -+ a : a E T, y E T*, z E {O, l}* ,  

U {(Y,zy) -+ E : Y E (0, l}, y E T*, z E {0,1}*, 

U {(Y, zy) -+ Y : Y E (0, l}, y E T*, x E (0, l}*, 

U { (a ,  x) + a : a E T,  1x1 5 2 n  - l}, 
{(X,Z) -+ ln-200 : z E (TU (0, l})2n-1, X E (T U ( 0 ,  l}), 

Px = 

Pd = 

(Po U Px) n { (X,Z)  + z : z E (T U {0,1})*} = 8). 

Complete this proof by analogy with the proof of Lemma 26. 

Theorem 47. EIL[2.] = RE. 

Proof. Clearly, EIL[2.] G RE. By Theorem 6.1.3 in [155], for every L E RE 
there exists an E(0, l )L grammar G such that L = L(G). Thus, by Lemma 27, 

a 
Corollary 21. EIL[.2] = EIL[.2] = RE. 

RE C EIL[2.]. As EIL[2.] 2 RE and RE EIL[2.], EIL[2.] = RE. 

5.2 Scattered Context 

The concept of scattered context was introduced by Greibach and Hopcroft in [75]. 
Scattered context grammars are semi-parallel grammars whose productions simul- 
taneously rewrite several symbols in parallel. These symbols must occur in a 
certain order that is given by the applied production. However, as opposed to the 
phrase-structure grammars, these symbols may not form a continuous sequence in 
the rewritten sentential form. 

We concentrate our attention on the reduction of scattered context grammars 
with respect to several measures of descriptional complexity. Moreover, we demon- 
strate that by analogy with continuous-context grammars studied in Section 5.1, 
scattered context grammars can generate their languages in a uniform and succint 
way. 
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5.2.1 

Definition 20. A scattered context grammar (see [75], [110], [122], [123], [127], 
[128]) is a quadruple G = (V, T ,  P, S), where V is the total alphabet, T is a finite 
set of terminals (T C V ) ,  and S E V - T is the axiom. P is a finite set of 
productions of the form 

Scattered Context Grammars and Their Reduction 

( A i , A z , .  . . , A,) .+ (xi ,xz, .  . . ,xn) 
where n 2 1, and for all i = 1 , 2 , .  . . ,n,  Ai E V - T and xi E V*. Instead of 
( A l ,  A2, .  . . , A , )  -+ ( 2 1  , x 2 , .  . . ,xn), the literature sometimes writes 

(A1 -+ 21,Ag -+ 2 2 , .  . . , A ,  -+ 2,). 

Let p = ( A l , A z , .  . . , A n )  -+ ( x 1 , x 2 ,  , . . ,x,) E P,  n 2 1. Then, scleft(p) = 
A l A z . .  . A ,  and scright(p) = ~ 1 x 2 , .  .x,. If xi E V+ for all i = 1 , .  . . , n ,  G is 
said to be propagating. Set n ( p )  = n. If ~ ( p )  2 2, p is said to be a context- 
sensitive production. If n ( p )  = 1, p is said to be context-free. Consider p = 
( A l ,  A 2 , .  . . , A , )  + (xl ,x2,  . . . ,xn) E P and u, v E V* of the form 

‘LL = u1A1u2A2.. . u,A,u,+~ 
v = u121u222.. . unx,u,+l 

where ui E V* for i = 1 , 2 , .  . , , n, n 2 1. Then, u directly derives v in G, or simply 

u *G’ v [PI. 

In the standard way, JG can be extended to +E (n 2 0), +$, and +&, respec- 
tively. The language of G, L(G),  is defined as 

L(G) = {W E T* : S +> w}. 

The family of languages generated by scattered context grammars is denoted by 
SCAT. 

Theorem 48. RE = SCAT. 

Proof. Let L E RE. By the first corollary on page 245 in [75], there exists a 
propagating scattered context grammar 

G = (V, T ,  p, S ) ,  

and a homomorphism h such that L = h(L(G)) .  Without any loss of generality, 
assume alph(L) f l  T = 8. Define the scattered context grammar 

G’ = (V U T U alph(L), alph(L), P U PI, S ) ,  

where 
P’ = { ( a )  -i (h (a ) )  : a E T } .  

Clearly, L(G’) = L. Therefore, RE C SCAT. Obviously, SCAT C RE, so 
RE = SCAT. 
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Next, we investigate the descriptional complexity of scattered context gram- 
mars. To do so, we first introduce several measures of this complexity. 

If G = (V, T ,  P, S) is a scattered context grammar, then its nonterminal com- 
plexity is the number of nonterminals in G. If G is a scattered context grammar, 
then its degree of context-sensitivity, symbolically written as b-CS(G), is defined as 
the number of context-sensitive productions in G. The maximum context sensitiv- 
i t y  of G is the greatest number in  pi) - 1 : 1 5 i 5 /PI) ,  symbolically denoted 
by max-CS(G). The overall context sensitivity of G, denoted by sum-CS(G), is 
the sum of all members in {n(pi) - 1 : 1 5 i 5 IPI). 

Lemma 28 (see [128]). There exists a scattered context grammar G such that G 
defines a non-context-free language and 6-CS(G) = max-CS(G) = sum-CS(G) = 1. 

Proof. Consider a scattered context grammar 

where the set of productions P is defined as 

p = { (S)  --+ (AC) ,  
( A )  -+ ( a A b B ) ,  
( A )  --+ ( E l ,  

(C)  --+ (CCD), 
(C)  --+ ( E l ,  

( B ,  0) --+ ( E ,  .)I. 
It is easy to verify that L(G) = {anbncn : n 2 0) and 6-CS(G) = max-CS(G) = 
sum-CS(G) = 1. 0 

Let SCAT[k, 1, m, n] denote the family of languages such that a language L 
is in SCAT[k, 1, m, n] if and only if there exists a scattered context grammar G 
such that L(G) = L and G’s nonterminal complexity is k or less, 6-CS(G) 5 1, 
max-CS(G) 5 m, and sum-CS(G) 5 n. In this book, we consider parameters k 
and 1 as the two major measures of descriptional complexity; on the other hand, 
parameters m and n are less important. 

First, we demonstrate that the number of nonterminals can be reduced to three 
or less. The proof of this statement makes use of a normal form of queue grammars 
(see Definition 6 ) ,  which is established in the following lemma: 

Lemma 29. For any queue grammar Q’ there exists an equivalent queue grammar 
Q = (V, T ,  W, F,  R, g )  such that Q generates every z E L(Q) by  the derivation of 
the form R +b u +-Q v w =+Q z ,  where i , k  2 1, and the derivation satisfies 
the following properties: 

1. Each derivation step in R =+b u has the f o r m  

a’y’b’ =+Q y’dc’ [(a’, b’, x’, c’)], 

where a’ E V - T ,  b’, c’ E W - F ,  x’, y’ E (V - T)” 
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2. In greater detail, the derivation step u +Q v has this form 

al/y/!b!/ j Q  yllh!/x!!CII bl/, h!!x/I, d / ) ] ,  

where a‘ E V - T ,  b’, c‘ E W - F, h“, y” E (V - T)* ,  x” E T*. 

3. Each derivation step in v +; w has the form 

a 111 111 h 111 b 111 ‘Q yl/!h/!/x!!/C!/! [(all/, bll’, x’l!, c l / l ) ]  , 

where a”‘ E V - T, b”’, c”’ E W - F ,  y”’ E (V - T)* ,  x“‘, y“‘ E T* 

4. In greater detail, the derivation step w +Q z has the form 

where all’’ E V-T, bllll E W-F,  y”l/, x~~~~ E T*, = a ~ l ~ ~ y ~ ~ ~ l b ~ ~ ~ ~ ,  = yI l l lx l l l l .  

Proof. Let 
Q‘ = (V‘, T’, W’, F‘, R‘, 9’) 

be any queue grammar. Introduce these four pairwise disjoint alphabets U, X, Y, 
and {@, $,#,I} so that IUI = IV’( and 1x1 = IYI = IW’I. Introduce any bijection 
Q from (V’ U U’) onto (U  U X). Furthermore, introduce another bijection ,B from 
W ’ t o Y .  Set V = U U T ’ U { @ , # } , T = T ’ ,  W = X U Y U { $ , I } ,  F = { I } , a n d  
R = @$. Define the queue grammar Q = (V, T, W, F, R, 9) with g constructed in 
the following five-step way: 

I. If R‘ = ab with a E V - T and b E W - F, then add (@, $, a, b) to 9. 

11. For every (a ,b ,x ,c)  E g’ with a E V, x E V*, and b,c  E W, add (cr(a),cr(b), 
Q ( X ) ,  44)  to 9. 

( 4 a ) ,  a@),  a(x)#y,  P(c>) to 9. 

P(c))  to 9. 

111. For every (a,b,xy,c) E g’ with a E V, x E V*, y E T*,  b,c E W ,  add 

IV. Forevery(a,b,y,c) ~ g ’ w i t h a ~  V , y ~ T * , a n d b , c ~  W,add(a(a) ,P(b) ,y ,  

V. For every c E F’, add (#, P(b), E, I) to 9, 

A formal proof that Q satisfies the properties required by this lemma is left to the 
reader. 0 

Theorem 49. RE = SCAT[3,oo, oo,00]. 

Proof. Obviously, SCAT[3,m, 00, m] C_ RE. Next, we prove the converse inclu- 
sion. Let L be a recursively enumerable language. By Theorem 2.1 in [88], there 
exists a queue grammar 

Q = (V, T,  W, F, R, 9) 
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such that L = L(Q). Witout any loss of generality, assume that Q satisfies 
the properties described in Lemma 29. The next construction produces a three- 
nonterminal scattered context grammar G satisfying L(G) = L(Q). 

Set n = (VU WI +2.  Introduce a bijection p from (VU W )  to ({l}+{O}{l}+n 
(0, l},). In the standard manner, extend the domain of p to  (V U W)*. Without 
any loss of generality, assume that (V U W )  n {0,1,2} = 0. Define the scattered 
context grammar 

where P is constructed in the following six-step way: 

G = (T u {0,1,2},T, p, 21, 

I. If R = ab with a E V - T and b E W - F, then add 

(2) + (01"-1p(b)22P(a)20) 

to P. 

11. For every (a,b,z,c) E g with a E V - T ,  z E (V - T)* ,  and b,c E W - F, 
add 

(d1,. * .  , & , h , . .  . , b n , 2 , a l j . .  ,a,-l,an,2,2) --t 

(4,. * * ,d,,Cl,. * ' ,c,,e1,e2, * * * ,en72,2,P(z)2) 

to P ,  where dl . . .d, = 01"-' (that is, dl = 0 and d h  = 1 for h = 2, .  . . , T I ) ,  

bl . . . b, = P ( b ) ,  a1 . . .a, = P(a), c l . .  .c, = P(c), ei = E for i = 1,. . . ,n. 

111. For every (a,b,zy,c) E g with a E V - T ,  2 E (V - T)* ,  y E T* ,  and 
b , c E W - - , a d d  

(d1,. * ,&,h,*.  ,bnr2,al , .  . . ,an-l,an,2,2) + 

( f l y . .  . , f,, c1,. . . , c,, e l ,  e2,. . . , en, 2, ~ , P ( z ) Y ~ )  

to P,  where dl . . . d, = O l n - l  (that is, dl = 0 and dh = 1 for h = 2 , .  . . , n), 
f1 ...f,= l n - l O ( t h a t i s , f , = O a n d f h = l f o r h ' = l  ,..., n - l ) , b l  . . .  b,= 
P(b) ,  a l  . . . ,a, = /?(a), c1 . .  . c, = p(c), ei = E for i = 1 , .  . . ,n. 

IV. For every (a,b,y,c) E g with a E V - T ,  y E T* ,  and b,cE W - F ,  add 

( f l , . . .  , fn ,b l , . . .  ,bn,2,a1, . .  . ,%l ,an ,2 ,2)  -+ 

( f l y .  . . , f n , c l , .  . . , cn,e1,e2,. . . ,en,2,2,y2) 

to P,  where f1.  . . f, = 1"-'0 (that is, f, = 0 and fh = 1 for h = 1,. . . ,n-1), 
bl . . . , b, = P(b) ,  a l , .  . . ,a, = ,t?(a), c1 . . .c, = P(c), ei = E for i = 1, .  . . ,n. 

V. For every (a, b, y, c) E g with a E V - T ,  y E T', b E W - F ,  and c E F, add 

( f l , .  . ., fn,bl,.  . ., b , , 2 , U l , .  . . ,a,-l,a,,2,2) --f 

(e l , .  . . , en, e,+l,. . . , e2,, e2,+1, e2,+2,. . . , e3,, c ,  E ,  Y) 

to P,  where f1 . . . f, = ln-10 (that is, f, = 0 and fh = 1 for h = 1,. . . , n-l), 
bl . . . b, = P ( b ) ,  al ... a, = P(a), ei = E for i = 1,. . . ,3n. 
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VI. Add (2,2, a, 2 )  -+ ( 2 , ~ , a 2 , 2 )  to P ,  where a E (0,l) .  

To keep this proof readable, we omit some obvious details from the rest of this 
proof whose completion is left to the reader. 

Claim 46. Let 2 +& x be a derivation in G during which G uses the productions 
introduced in step (I) i times, for some i 2 1. Then #zw = (1 + 2i)  - 3 j ,  
#IX = (TI - l ) k ,  and #OX = k + i - j ,  where k is a nonnegative integer and j 
is the number of applications of a production introduced in step (V) during 2 +& 
x such that j 2 1 and (1 + 2i) _> 3 j .  

Proof. The proof of this claim is left to the reader. 

Claim 47. Let 2 =+& x be a.derivation in G during which G uses the production 
introduced in step (I) two or more tames. Then, x # T * .  

Proof. Let 2 +& x. If G uses the production introduced in step (I) two or more 
times, then the previous claim implies that x contains some occurrences of 0. Thus, 

0 

Claim 48. G generates every w E L(G) as 2 J G  u [PI =+& v JG w [q], where p is 
the production introduced in (I), q is  a production introduced in (V), during u +& 
v, G makes every derivation step by a production introduced in (II)-(IV), or (VI). 

Proof. Let w E L(G).  Then, 2 +& w and w E T*. By Claim 46, as w E T*,  G 
uses the production introduced in (I) once. Because 2 +& w begins from 2, we 
can express 2 +& w as 

where p is the production introduced in (I), and during u J& w, G never uses 
the production introduced in (I). Observe that every production r introduced in 
(11)-(IV), and (VI) satisfies #zscleft(r) = 3 and #zscright(r) = 3. Furthermore, 
notice that every production q introduced in (V) satisfies #zscleft(q) = 3 and 
#zscright(q) = 0. These observations imply 

x @ T* because 0 is a nonterminal. 

2*G u [p] *& w, 

2 *G b] *& *G w [q ] ,  

where p is the production introduced in (I), q is a production introduced in (V), 
and during u *& v, G makes every step by a production introduced in (11)-(IV), 
or (VI). 0 

Basic Idea. Before describing the form of every successful derivation in G in 
greater detail, we make some observations about the use of productions introduced 
in (VI). 

During any successful derivation in G, a production introduced in step (VI) is 
always applied after using a production introduced in steps (I)-(IV) (the use of 
these productions is described below). More precisely, to continue the derivation 
after applying a production introduced in (1)-(IV), G has to shift the second 
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appearance of 2 right in the current sentential form. G makes this shift by using 
productions introduced in (VI) to generate a sentential form having precisely n 
appearances of d (d E (0 , l ) )  between the first appearance of 2 and the second 
appearance of 2.  Indeed, the sentential form has to contain exactly n appearances 
of d between the first appearance of 2 and the second appearance of 2;  otherwise, 
the successfulness of the derivation is contradicted by Observations 1 and 2 ,  which 
follow next. 

Observation 1. If there exist fewer than n ds between the first appearance of 2 
and the second appearance of 2 ,  no production introduced in (I)-(V) can be used, 
so the derivation ends. If the last sentential form contains nonterminals and if the 
derivation is not successful, it is a contradiction. 

Observation 2. Assume that there exist more than n ds between the first ap- 
pearance of 2 and the second appearance of 2 .  Then, after the next application 
of a production introduced in (1)-(V), more than 3n ds (d E (0,l))  appear before 
the first appearance of 2 .  Return to the construction of productions in G to make 
the following observations: 

(i) The production introduced in step (I) is always used only in the first step of 
a successful derivation (see Claim 48). 

(ii) All productions introduced in steps (11)-(IV) rewrite 3n nonterminals pre- 
ceding the first appearance of 2 with other 3n nonterminals. 

(iii) Recall that a production introduced in step (V) is always used in the last 
derivation step (see Claim 48); furthermore, observe that this production 
erases precisely 3n nonterminals preceding the first appearance of 2.  

By Observation 2 ,  the occurrence of more than 3n ds between the first and the 
second appearance of 2 gives rise to a contradiction of the successfulness of the 
derivation. 

By Observations 1 and 2 ,  we see that the sentential form has to contain precisely 
n appearances of d between the first and the second appearances of 2.  

Except for the use of productions introduced in step (VI) (this use is explained 
above), every successful derivation in G is made as 

2 JG rhs(pi) [pi] *& JG 21 [PSI +-k w JG 2 b51, 

where i, k 2 1, and the derivation satisfies the following properties (A) through 
(D): 

(A) Each derivation step in rhs(p1) J.”;: u has this form 

where p z  is a production introduced in (11), (u’, b’, d, c’ )  E g, y’ E (V - T)*.  
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(B) In greater detail, the derivation step u J G  u [p3] has this form 

Oln-’  P( b”) 2P( a”)2P( h”)20 J G  l“-’OP( c”) 22P( h”9”) ~ ” 2 0  [p3], 

where u = 01n-1~(b”)2P(a”)2~(h”)20, u = 1n-10~(c”)22~(h”y”)z”20, p 3  is 
a production introduced in (111), (a”, b”, y ” ~ ” ,  c”) E g, h”, y” E (V - T)”,  
x” E T*. 

(C) Each derivation step in u w has this form 

1“~~O~(b”’)2~(~”’)2~(y”’)t”’20 +G 1n-10~(~’)22~(~”’)t”’~”’20 [p4], 

where p4 is a production introduced in (IV), (a”’, b”’,s”’,c”’) E g,  9”’ E 
(V - T)* ,  t”’,d” E T*. 

(D) In greater detail, the derivation step w +G z [p5] has this form 

In- OP( b”” ) 2P (a””) 2t””20 =+-G t ”” d”’ [PSI , 

where w = 1n-10~“”“)2~(a‘”‘)2t’’’’20, z = t””x””, p5 is a production intro- 
duced in (V), (a””, b””, z””, c””) E g with c”” E F .  

Let 
2 JG rhs(p1) [pi] *& u * G  21 [P3] =+-& w +G 2 

be any successful derivation in G such that this derivation satisfies the properties 
above. Observe that at this point 

* Q  
R +b a I I  / I  b I /  JQ =+-Q yl/x/fblll +: a!f!~t!~/~b~!~f 

in Q, so z E L(Q) .  Consequently, L(G)  G L(Q) .  
A proof demonstrating that L(Q)  c L(G)  is left to the reader. Since L(Q)  = 

L(G)  and G has only three nonterminals 0, 1, and 2, RE c SCAT[S,m,m,m]. 
Having SCAT[3,oo,oo,oo] RE, we get SCAT[S,oo,oo,m] = RE, and the 
theorem holds. 

Rigorous proofs of the remaining theorems given in this section are tedious, so 
we describe them rather informally. In the next theorem, we demonstrate that the 
number of context-sensitive productions can be reduced to two or less (see [127]). 

Theorem 50. SCAT[oo, 2,3,6] = RE. 

Proof. It is well known that every recursively enumerable language L 2 C* can 
be represented as L = h(L1 n Lz) ,  where h is a homomorphism from T* onto C* 
and L1 and LZ are two context-free languages (see [79]). Let T = { a l ,  . . . , a,} and 
0,1, $ $! (T U C) be three new symbols. Let g(ai) = 10il and f(ai) = h(ai)g(ai)  
for all i E { 1 , .  . . , n}. By the closure properties of context-free languages, there are 
context-free grammars GI and Gz that generate f(L1) and f(LF),  respectively. 
Note that LF denotes the reversal of Lz. Without any loss of generality, assume 
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that the nonterminal alphabets of these grammars are disjoint. Let S1 and S2 
be the start symbols of GI and G2, respectively. Define another context-free 
grammar, GI, by putting together GI and G2 and adding a new production of the 
form S --t $S11111S2$, where $ and S are new nonterminals (S is the start symbol 
of GI). Observe that 

L(G’) = $f (Li) l l l lg(Lf)$.  

If we now consider the productions of GI as belonging to the scattered context 
grammar G ,  where 0,1,  $ are interpreted as nonterminal symbols and where we 
have three additional productions, namely r1 = ( $ , O , O , $ )  -+ ( E , $ , $ , E ) ,  7-2 = 
($, 1,1, $) + ( E ,  $, $, E ) ,  and 7-3 = ($) -+ ( E ) ,  then L(G)  = L is rather evident. 

Indeed, consider a word w E L.  There is a word v E L1 nL2 such that w = h(v) .  
Hence, u = $f (v) l l l lg (vR)$  E L(G’). By the construction, u is generated by the 
scattered context grammar G. The productions r1, 7-2, and 7-3 of G allow us to 
remove all occurrences of 0, 1 and $ to obtain w from u. Thus, L C L(G) .  

To prove L(G)  2 L ,  consider any w E L(G) .  Since 0,  1, and $ are terminals 
in GI on which G is based, we can assume that some generation of w exists that 
uses, in a first phase, only productions from GI and then, in a second phase, the 
productions r l ,  7-2, and 7-3. By the construction, there never exist more than two 
occurrences of $ in any sentential form generated by G. Since the productions r1 

and r2 test for the presence of two occurrences of $, r3 has to be the last production 
that is used. 

If r1 is applied so it does not rewrite the left-most or right-most appearance of 
0, then $ serves as a delimiter so that no terminal word is derivable. An analogical 
observation applies to 7-2. Hence, we can assume that in the second phase of the 
derivation of w, the productions 7-1 and 7-2 are used to test whether the word e(v) 
is a palindrome, where $v$ is generated by the first derivation phase and e is 
the homomorphism erasing all letters from V and mapping 0 and 1 to 0 and 1, 
respectively. Only in this case the second phase succeeds. 

By the way the codification of f and g works, this means that the first phase 
ends with $v$ = $ f (u) l l l lg (uR)$ .  Hence, GI derives f (u)  and G2 derives g(uR),  
yielding u E L1 n L2. Moreover, the codification ensures that w = h(u) .  Thus, 
L(G)  C L. 

As a result, L(G)  = L.  Observe that apart from r1 and r2, all productions 
in G are context-free. So, 

Unfortunately, in the construction of the proof of Theorem 50, the number of 
nonterminals is unbounded. The following theorem demonstates how to simulta- 
neously reduce both the number of context-sensitive productions and the number 
of nonterminals (see [128]). 

Theorem 51. SCAT[8,5,5,17] = RE. 

Proof. Let L C C* be a recursively enumerable language. L can be represented as 
L = h(L1 n L2), where h is a homomorphism from T* to C* and L1 and L2 are two 
context-free languages (see [79]). Let T = {al l . .  . ,a,} and 0 ,1 ,2 ,3 ,4 ,  #, $, S $Z 

Moreover, max-CS(G) = 3 and sum-CS(G) = 6. 
L(G)  E S C A T [ m ,  2,3,6]. Consequently, the theorem holds. 
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( T U  C) be eight new symbols. Let .(ai) = 10il and f(ai) = h(ai)c(ai) for all 
ai E T, 1 5 i 5 n. By the definition, c is a coding; that is, it is injective. By the 
closure properties of context-free languages, there are context-free grammars GI 
and G2 that generate f(L1) and f (LF) ,  respectively. More precisely, let 

for i = 1,2 .  Let N1 = (Vl - T), N2 = (V2 - T). Without any loss of generality, 
assume that the nonterminal alphabets Nl and N2 are disjoint. Let N = N1 U N2 
and let C be a coding from N to {43i4 : 1 5 i 5 IN[}.  Next, we extend the 
codings C and c in two different ways. Let C1 be a homomorphism defined as 
C1(A) = C ( A ) 2  for all A E N1 and C(a)  = f ( a )  for every a E T .  Moreover, let C2 
be a homomorphism such that C2(A) = C ( A ) 2  for all A E N2 and C2(a) = .(a) 
for all a E T .  Now consider the context-free grammar 

G = (V, C U {0,1,3,4, #, $1, p, s) 
with V - (C U {0,1,3,4, #, $}) = {S, 2 )  and where P contains the following pro- 
ductions: 

1. s 4 $C,(S1)1111C2(S2)##$. 

2.  2 -+ C(A)Ci(w) if A -+ w E Pi for i = 1,2. 

A word in L(G) starts with $ and ends with ##$. Moreover, it cannot contain 
any 2 ,  which means that the simulations of G1 and G2 have come to an end (no 
unresolved codings of nonterminals of the simulated grammars remain). The two 
simulations of G1 and G2 are separated by a sequence of four l’s, which cannot 
occur elsewhere by construction. The coding C ( A )  of the nonterminal A ,  which 
actually has to be replaced according to Gi, is placed before the coding Ci(w) of the 
right-hand side w of the production A + w E Pi. Therefore, a correct simulation 
can be detected by a sequence of two codings of A in the terminal word of G. 
Next, let n be a homomorphism from CU{O,l, 3,4, #, $} to {3,4}, where n(3) = 3, 
n(4) = 4, and .(a) = E for a $ {3,4}. Furthermore, let t be a homomorphism 
from C U {0,1,3,4, #, $} to C defined as t ( a )  = a for every a E C and t ( A )  = E for 
all A C .  Finally, let t’ be a homomorphism from C U {0,1,3,4, #, $} to (0, l}, 
where t’(a) = a ,  a E (0, l}, and t ’ (A)  = E ,  A $ {0,1}. 

Considering homomorphisms n, t ,  and t’, we can state: $w1llllw2##$ E L(G) 
represents a correct simulation of Gi if 

TX(W~) E { C ( A ) C ( A )  : A E Ni}’ 

If both w1 and w2 represent a correct simulation, then t’(wi) = .(xi) for a terminal 
word zi derivable by Gi, and, moreover, t(w1) = h(z1) in that case. Summarizing, 
we conclude that 

h(L1 n L2) = {t(w) : w = $wlllllw2##$ represents a correct simulation 
both of GI and of G2 and t’(w1) = t’(wF) = (t’(~2))~). 
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We will now design a scattered context grammar based on G that checks the 
conditions mentioned above. Consider the scattered context grammar 

G’ = (V’, C, PI, S) 

with 
V’ = {0 ,1 ,2 ,3 ,4 ,# ,$ ,  S} u c. 

P‘ contains, besides all the productions from P, the following checking productions: 

1. r, = ( $ , a , a , $ )  + ( E , $ , $ , E )  for a = 0 , l  allows G’ to skip the codings of 
terminal symbols; more precisely, if w is a word derived by G, then the zeros 
and ones are erased synchronously from both ends of the subwords wl and 
w2, this way checking whether t’(w1) = tl(w2). The four ones in the middle 
of the word are necessary to also check the boundary between the w1- and 
the w2-parts. 

2. Tinit = (4 ,4 ,4 ,  #, #) + (#, 4, #, E ,  E )  initializes the check of “neighbored 
codings” of nonterminals. 

3. 7-3 = (#, 3,4 ,3 ,  #) -+ ( E ,  #, 4, #, €1 and 7-4 = (#, 4,4,  #) -, (##, E ,  E ,  €1 for 

The checking of the codings of terminal strings works as in the case proved in 
Theorem 50. The checking of codings of neighbored nonterminals is performed by 
a right-to-left scan over the word derived by G. Assume that we are confronted 
with a word < = ~ 4 3 ~ 4 4 3 j 4 x # y # z  before applying rinit, where x does not contain 
any occurrence of a 4. If w contains some occurrences of 4’s and one of them 
is selected when applying Tinit,  then the indicated substring 43i443j4 is at least 
partially skipped, meaning that at least some of the occurrences of 4’s or 3’s cannot 
be erased anymore. 

When applying Tinit to < = ~ 4 3 ~ 4 4 3 j 4 x # y # z  by replacing the three displayed 
right-most 4’s, we arrive at  ~ 4 3 ~ # 4 3 j 4 # x y z .  Then, none of the productions Tinit,  

7-3, r4 are applicable. The replacement of the three displayed left-most 4’s can be 
symmetrically treated. 

Hence, the only possible next sentential form c’ derivable from c by applying 
Tinit which might finally lead to a terminal word in G’ yields <‘ = ~ # 3 ~ 4 4 3 j # x y z .  
Now, a sequence of applications of .r3 leads to El‘ = w#44#xyz if and only if 
i = j .  In that case, applying r4 once yields c”’ = w##xyz, and the checking can 
proceed by going into the next cycle. Assume that [‘I = ~ # 3 ~ 4 4 # x y z  or <‘I = 
~ # 4 4 3 ~ # x y z  for some f2 > 0 (this corresponds to the error case when neighbored 
codings do not coincide). Applying now r4 would skip over some occurrences of 
3’s (in the left direction) so that those 3’s would never be erased anymore. r3 and 
Tinit are not applicable here. 

Moreover, the simulating grammar contains context-free productions to get rid 
of the markers, ($) -+ ( E )  and (#) --f ( E ) .  

Observe that the construction works even if derivations of G are interleaved 

checking the neighbored codings. 

with checking steps in the derivation of GI. 
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At the expense of a larger context-sensing ability, we can merge both markers 
$ and # in the construction above, which gives us the following corollary: 

Corollary 22. SCAT[7,5,6,27] = RE. 

Proof. We only indicate the necessary modifications and comment on the correct- 
ness of the construction. In doing so, we make use of the same abbreviations as in 
the proof of the preceding theorem, especially regarding G I ,  Gz, G ,  and GI. 

The start production of GI and of G equals ( S )  -+ ($Cl(Sl ) l l l lC~(Sz)$$$) .  
GI contains the following context-sensitive productions: 

1. ($, o,o,  $, $, $) -+ ( E ,  $, $48, E , E , E ) .  

2. ($, 1,1 ,  $, $, $) -+ (El  $, $$$, E , E , E ) .  

3. ( $ , 4 , 4 , 4 , $ , $ , $ )  - + ( $ , $ , 4 , $ , E , E , $ ) .  

4. ($, $, 3,4 ,3 ,  $, $) -+ ($, E ,  $, 4, $ , E l  $). 

5.  ( $ , $ , 4 , 4 , $ , $ )  - + ( $ , $ $ , & , & , E l $ ) .  

At a further additional cost of enlarged context-sensing abilities and with a fur- 
ther context-sensitive production, we can improve the nonterminal complexity. To 
do that, however, we have to modify the construction of Theorem 51 considerably. 

Theorem 52. SCAT[6,6,12,44] = RE. 

Proof. We start again with the representation of a recursively enumerable language 
L C C* as L = h(L1 nLZ), where h is a homomorphism from T* to C* and L1 and 
Lz are two context-free languages. Let T = { a l ,  . . . , a,} and 0,1 ,2 ,3 ,  $, S # ( T U X )  
be six new symbols. Let c and f be two homomorphisms defined as c(ai)  = 
and f ( a i )  = h(ai)c(ai)  for all ai E T ,  1 5 i 5 n. Let 

Gi = (&,T,Pi ,Si)  

for i = 1 , 2  be two context-free grammars with L(G1) = L1# and L(G2) = ( L z ) ~ #  
and # $? T .  Let N1 = V1 - T and N2 = VZ - T .  Assume, without any loss of 
generality, that G I  and Gz are in Chomsky normal form and that N1 n NZ = 0. 
We modify G I  slightly so that we add a further production Si -+ S1 to PI and 
take Si as new start symbol of GI. Let us call this modified grammar again 
GI = (V1, T ,  P I ,  Si) in what follows. Let C be a coding that maps symbols from 
N1 to (02 : 1 5 i 5 “11) and symbols from NZ to (12 : 1 I i 5 INzl} . 

The scattered context grammar that generates L is defined as 

GI = (V’, T ,  PI, S )  

with 
V’ = {0 ,1 ,2 ,3 ,  $, S }  U T 

and P’ constructed as follows: 
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1. The start production is (S) ---t ($$C(si)2$C(S~)2$). 

2. The simulation productions are defined as: 

(a) for each A + X Y  E PI U Pz, introduce ( 2 )  -+ ($C(A)$C(X)SC(Y)S)  

(b) for each A -+ a E PI with # # a,  put ( 2 )  -+ ($C(A)$h(a)c(a))  into PI; 

(c) for each A -+ a E PZ with # # a,  add (2) + ( $ C ( A ) $ ( C ( U ) ) ~ )  into P’; 

(d) for every production A + # E PI U Pz, add ( 2 )  -+ ($C(A)$3$i3) into 

(e) add (2, $, $, $,$, $, $) -+ ($C(Si)$3C(S1)3,$,  $ , E , E ,  E , E )  to PI. 

into PI; 

P‘; 

3. Checking rules for matching nonterminals are: 
( $ 7  $, 0, $ 7  0, $ 7  3, $1 -+ ($, E ,  $7 $ 7  $, E ,  3, $), 
($, $ 7  1, $ 9  1, $, 3, $1 + ($, E ,  $ 7  $ 3  $ 7  E ,  3, $1, 
($7 $, $, $ 7  3, $) + ( $ 7  E ,  E ,  E ,  $2, $). 

($, 1, $,$, $, 1, $) -+ ( E ,  S6, $, $ 7  $ 3  $, E ) ,  

($, $ 7  $ 3  $ 7  $ 7  $7  0, $ 3  $ 7  $ 9  $ 7  0, $1 -+ ( E , E ,  E ,  € 3  € 9  E ,  $ 7  $ 7  $, $ 7  $7  $ 7  €1. 

4. Checking rules for matching terminals are: 

5. Erasing productions are ($) -+ ( E )  and (2) -+ ( E ) .  

The simulation proceeds again in several phases, different from the simulation 
described in the proof of Theorem 51. 

We start with the simulation of Gz.  Observe that the simulation of G1 cannot 
start at this point, since there are no 6 occurrences of $ to the right-hand side of 
any symbol 2 as required by the production designed to initiate a derivation of GI. 
Basically, a left-most derivation of G Z  is mimicked. This is accomplished in the fol- 
lowing way: after applying ( 2 )  -+ ($C(A)$C(X)3C(Y)3 ) ,  ( 2 )  -+ ( $ C ( A ) $ ( C ( U ) ) ~ )  
or ( 2 )  -+ ($C(A)$3$3),  there is no 2 needed to go on simulating Gz. There- 
fore, a checking production for matching nonterminals is to be applied. Then, 
($, $, $, $, 3, $) + ($, E ,  E ,  E ,  $2, $) terminates the checking phase and starts a new 
possible simulation with one of the productions having 2 as the left-hand side. If 
the checking phase fails or is ended prematurely, then there are leftover 1’s. These 
1’s will not be removed anymore, since the checking productions for matching ter- 
minals are designed in a way that only strings with an equal number of zeros and 
ones, occurring alternatively, pass this test. 

The simulation of grammar G1 starts after having applied ( 2 )  -+ ($C(A)$3$3) ,  
the checking productions for nonterminals, and the erasing production (2) -+ ( E )  

to end the simulation of Gz. Observe that the chosen codings of nonterminals for 
N1 and for Nz prevent that the use of nonterminal checking productions mingles 
simulations of G1 and Gz.  Most important, check that starting the simulation of 
GI immediately after applying ( 2 )  + ($C(A)$3$3)  will lead to an error situation, 
since there is a 3 to the right of the right-most occurrence of $ that cannot be 
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removed, so no successful derivation exists in this way. The simulation of grammar 
GI is also mimicking a left-most derivation. 

Finally, we can apply alternatingly both terminal checking productions. The 
production designed for checking 0’s cannot be applied twice in a row because too 
many $’s are erased. 

Open Problems. Recall that SCAT[l,m,m,m] C RE; in fact, the one- 
nonterminal scattered context grammars cannot even generate some context-sen- 
sitive languages (see [120]). In Theorem 49, we prove that SCAT[3, m, 00, m] = 
RE. What is the generative power of two-nonterminal scattered context gram- 
mars? 

By Theorem 50, scattered context grammars with two context-sensitive pro- 
ductions characterize RE. What is the generative power of scattered context 
grammars with one context-sensitive production? 

Theorems 50 through 52 reduce the number of context-sensitive productions 
and nonterminals of scattered context grammars in terms of the characterization 
of every recursively enumerable language, L,  by two context-free languages, L1 
and La, and a homomorphism, h, so that L = h(L1 n L z )  (see [79]). Recon- 
sider these results in terms of another characterizations of recursively enumerable 
languages. For instance, in [68], [69], and [70], Geffert established several nor- 
mal forms of phrase-structure grammars with a significantly reduced number of 
context-sensitive productions and nonterminals. Perhaps most interesting, some 
of these normal forms require only one context-sensitive production to characterize 
RE. Is it possible to improve the results above by using these normal forms? 

5.2.2 Semi-parallel Uniform Rewriting 

In this section, we discuss the uniform generation of languages by scattered context 
grammars (see [lal]) .  More precisely, we demonstrate that for every recursively 
enumerable language, L,  there exists a scattered context grammar, G, and two 
equally long words, z1 E {A,B,C}* and z2 E { A , B , D } * ,  where A ,  B,  C ,  and 
D are G’s nonterminals, so that G generates L and every word appearing in a 
generation of a sentence from L has the form y 1 . .  . ymu, where u is a word of 
terminals and each yi is a permutation of z j ,  where j E {1,2}. Furthermore, we 
achieve an analogical result so that u precedes y1 . . . ym. 

Recall that by SCAT, we denote the family of languages generated by scattered 
context grammars. Set 

SCAT[.i/j] = { L  : L = L(G) ,  where G = (V,T, P, S) is a scattered context 
grammar such that A(G) C T*II(K)*,  where K is 
a finite language consisting of equally long words 
with IK(1 = i and lalph(K)I = j } ,  
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and 

SCAT[i/j.] = { L  : L = L(G) ,  where G = (V,T, P, S) is a scattered context 
grammar such that A ( G )  C IT(K)*T*, where K is 
a finite language consisting of equally long words 
with IK(1 = i and (alph(K)( = j } .  

Lemma 30. Let L E RE. Then, there exists a queue grammar Q (see Definition 6, 
[88]), Q = (V, T ,  W, F, R, g), satisfying these two properties: 

(I) L = L(G) .  

(11) Q derives every w E L(Q)  in this way 

R =+b alulbl  
=+Q ~ 1 X l Y l C l  [ ( a l l b l l ~ l Y l l c l ) l  
=+& YlZld, 

where i , j  2 1, w = y1z1, x1,ul E V * ,  y1,zl E T*,  bl,c1 E W and d E F .  

Proof. Let L be a recursively enumerable language. By Theorem 2.1 in [88], there 
exists a queue grammar 

Q' = (V, T ,  w, F, R, 9) 
such that Q' derives every w E L(Q') as 

R =+kt alulbl  

+&' U l  X l  Y l  C l  [(a1 7 bl 1 X l  Y l  1 c1 )I 
=+;I Y l Z l d l  

where i , j  2 0, w = ylzl ,  x1,ul E V * ,  yl1z1 E T*,  bl,c1 E W ,  and d E F (i = 0 
implies alulbl = zllxlylcl and j = 0 implies ulzlylcl  = ylzld).  Transform Q' 
to an equivalent queue grammar, Q,  so that Q generates every w E L(Q') by a 
derivation of the form above, where i 2 1 and j 2 1. A detailed version of this 

0 

Lemma 31. Let L E RE. Then, there exists a scattered context grammar G = 
( { A , B , C ,  0 ,s )  u T,T ,  P ,S)  so that L(G)  = rev(L) and A ( G )  5 fl({AtB"-tC, 
AtBn-tD})*T* for some t,  n 2 1. 

Proof. Let L E RE. By Lemma 30, without any loss of generality, assume that 
there exists a queue grammar 

simple modification is left to the reader. 

Q = (V, T ,  W J', Rl 4 )  

such that L = L(Q)  and Q derives every w E L(Q)  in this way 

R +b alulbl  
*Q ~ l X l Y l C 1  [ ( a l , b l , ~ l Y l , c l ) l  
+& YlZld, 
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where i , j  2 1, w = y1z1, I C ~ , U ~  E V * ,  y l , z l  E T* ,  b1,cl E W and d E F .  The 
following construction produces a scattered context grammar 

G =  ( {A,B,C,D,S}UT,T ,P,S)  

satisfying 
L(G)  = rev(L(Q)) 

and 
A(Q) II({AtBn-tC, AtBn-tD})*T* 

for some t ,n  2 1. 

phism ,8 from (V U W )  to 2, where 
For some n 2 21vuwl and t E (1,. . . ,n - l}, introduce an injective homomor- 

Z = {W : w E ( {A ,  B}" - ({A}t{B}n-t  U {B}t{A}"-t)) ,  #AW = t } .  

Intuitively, ,O represents (V U W )  in binary. Furthermore, let x be the homomor- 
phism from (V u W )  to Z { D }  defined as x(a) = P(a){D}  for all a E (V U W ) .  
Extend the domain of P and x to (V u W ) *  in the standard manner. Define the 
scattered context grammar G = ( { A ,  B,  C, D, S }  U T ,  T ,  P, S )  with P constructed 
by performing the next six steps: 

1. For a E V - T and b E W - F such that ab = R, add 

( S  -+. AtBn-tCbl . . , b,Cal . . . u,CCA~B"-~)  

to P,  where bi,ai E { A , B }  for i = 1,. . . ,n, bl . . . b, = P(b) ,  a1 ... a, = P(a). 

2 .  For every ( a , b , z , c )  E g, add 

( d l , .  . . ,  d n ,  C, b l , .  . . ,  bn, C, a l , .  . * 7 an, C, C, d l ,  * * * 7 d n )  + 

( d l ,  . . . , d,, C, e l , .  . . , e,, E ,  e l , .  . . , en, P(c)CA~B*-~C,  x(Ic)C, dl  , .. . , d,) 

to P,  where ei = E ,  di, bi,ai E { A ,  B }  for i = 1,. . . , n, dl  . . . d, = AtB"-t, 
bl . . . b, = P ( b ) ,  ~ 1 . .  . a, = ,B(u). 

3. For every ( a ,  b, zy, c )  E g with IC E V+ and y E T*, add 

( d i , .  . . ,&,C,bi,.  
( f l  , . . . , fn, C, e l , .  . . , en, E ,  e l , .  . . , en, P(c)CAtB"% 
X(z)AtBn-tCrev(y), e l , .  . . , e n )  

b,, C,al , .  . . ,an,C,C,di,.  . ,&) + 

to P,  where ei = E ,  d i ,  fi, bi, ai E {A ,  B }  for i = 1,. . . , n, d l  . . . d, = AtBndt,  
f i  . . . f, = BtAn-t, bl . . . b, = P(b) ,  a1 . .  . a,  = P(u) .  

4. For every ( a ,  b ,y ,c)  E g with y E T* and c E W - F ,  add 

( f i t - .  . ,  fnjC,bl,.  . . tbn,C,al,. . . lan,C,C) + 

( f l , .  . . , fnr  C, e l , .  . . , en ,&,  e l , .  . . , e,,P(c)CAtBn-tC, Crev(y)) 

to P,  where ei = E ,  fi, bi,ai E {A ,  13) for i = 1,. . . ,n,  f l  . . . f, = 
bl . . . b, = P ( b ) ,  a1 . . .a ,  = /!I(.). 
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5. For every (a ,  b , y , c )  E g with y E T' and c E F ,  add 

( f i  * * * 7 f n ,  C, b l ,  . * . ,  bn, C, a1 , . . - 1 an, C, d l  7 * dn, C )  --.+ 

( e l , .  - .  , en,E,el , .  . . I en, & ,e l , .  . . ,en,  E ,  e l , .  . . ,en,  rev(y)) 

to P,  where ei = E ,  fi, bi, ai, di E {A,  B }  for i = 1,. . . ,n, d l  . . . dn = AtBn-t, 
fi . . . f n  = BtAn-t, bl . . . b, = P ( b ) ,  a1 . . . a ,  = p ( a ) .  

6. Add 
(C, C, d l ,  ... 7 d n ,  C, f, C )  -+ (C,C, e l , .  . * >en,  E ,  fc, C )  

to P ,  where ei = E ,  f , d i  E {A ,  B }  for i = 1,. . . ,TI, d l  . . . d ,  = AtBn-t. 

Next, we prove that A(G) 5 II({AtBndtC, AtBnVtD})*T* and L(G) = rev(L). 
For brevity, we omit some details in this proof; a complete version of this proof is 
left to the reader. 

Consider any z E L(G). G generates z in this way: 

S =+q AtBn-t Cbll . . . bl,Cal, . . . alnCCAtBn-t [ P I ]  
3 2  u 

J$ w 
JG 21 

J G  rev(w5) [PSI, 

where j , k  2 0, z = rev(wg), and the five subderivations satisfy the following 
properties: 

(i) In 
S JG AtBn-tCbl, . . . bl,Cal, . . . al,CCAtBn-t [ P I ] ,  

p l  is of the form 

( S  -+ A ~ B ~ - ~ c ~ ~ ,  . . . bl,Cal, . . . ~ ~ , C C A ~ B " - ~ ) ,  

where al , ,bl ,  E {A ,  B }  for i = 1 , .  ..,n, bl ,  .. .bl ,  = P(b1)  with bl E W ,  
all  . . . al ,  = P(a1) with a1 E V ,  and albl = R (see (1) in the construction 
of P ) .  

(ii) In 
At Bn-tCbl, . . . bl,Cal, . . . al,CCAtBn-t J' G I  u 

every derivation step that is not made by a production introduced in ( 6 )  has 
the form 

AtBnWtCbz, . . . b2,Caz1 . . . ~ ~ , C X ( U ~ ) C A ~ B " - ~  JG 

AtBn-tC~zl . . . c~,CA~B"-~CX(U~X~)CA~B~-~ b2], 

where p2 is of the form 

( d z , ,  . . . , d2,, C,  b2, , . .  . , bz,, C,  az l , .  . . a2,, C,  C, dzl 
( d z l ,  . . . , d2,, C,  e2,, . . . , e2, , E ,  ez , , .  . . , ez, , P(c)CA~B"-~C,  
X(ZZ)C,d21,...rd2,), 

, d z , )  + 
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where e2, = E ,  a2,, bz,,d2% E {A ,  B }  for i = 1,. . . , n, . . . a2, = P(a2) with 
a2 E V ,  6 2 ,  . . . b2, = P(b2)  with b2 E W ,  d z l  . . . b2, = AtBn-t (see ( 2 )  in the 
construction of P ) .  

Thus, 
AtBn-tCbll . . . bl,Call . . . u ~ , C C A ~ B ~ - ~  =& u 

can be expressed as 

J G  AtBnPtCb3, . . . b3,Ca3, . . . U ~ , C A ~ B ~ - ~ C ~ ( U ~ ) C A ~ B ~ - ~ ,  

where 

u = AtBn-tCb3, . . . b 3 , C ~ ~  . . . U ~ , C A ~ B ~ - ~ C ~ ( U ~ ) C A ~ B ~ - ~ .  

(iii) Step u J G  'u has the following form: 

AtBn-tCb3, . . . b3,Ca3, . . . u ~ , C A ~ B " - ~ C X ( U ~ ) C A ~ B ~ - ~  JG 

L3tAn-tCc31 . . . C ~ , C A ~ B ~ - ~ C ~ ( U ~ ~ ~ ) A ~ B ~ - ~ C ~ ~ V ( Y ~ )  [iD3],  

where 

'u = BtAn-tCc31 . . . C ~ , C A ~ B ~ - ~ C X ( U L ~ X ~ ) A ~ B ~ - ~ C T ~ V ( ~ ~ )  

and p3 is of the form 

(d317. .  .,d3,, C, b31,. - .  , b3,, C,  . . , a3,, C,  C,  d ~ ~ , .  . . , d3,) -+ 

( f 3 1 , .  . . , f3, ,  c, e s l , .  . . , e3,, E ,  e31, .  . . , e3,, P ( c ) C A ~ B ~ - ~ C ,  
X ( ~ ) A ~ B ~ - ~ C ~ ~ V ( Y ~ ) ,  e31 , . .  . , Q,) ,  

where e3< = E ,  asi,  b3%, d3 i ,  f3, E {A,  B }  for i = 1,. . . , n, a31 . . . a3, = @(a3) 

f 3 1  . . . f 3 ,  = BtAn-t (see ( 3 )  in the construction of P) .  

in (6) has the following form: 

with a3 E V ,  b 3 1 .  . .b3, = P(b3)  with b3 E W ,  d 3 1 .  . . d 3 ,  - - AtBn-t , 

(iv) In v J: w, any derivation step that is not made by a production introduced 

BtAn-tCb41 . . . b4,Cu4, . . . u ~ , C X ( U ~ ) A ~ B ~ - ~ C ~ ~ V ( ' ~ ~ )  JG 

BtAn-tCc41 . . . c ~ , C A ~ B ~ - ~ C X ( U ~ ) A ~ B ~ - ~ C ~ ~ V ( Y ~ ) ~ ~ V ( ~ ~ ) ,  [p4] 

where p4 is of the form 

( f 4 1 1  " .  > f 4 , ,  c, b41 * .  . b4,, c, a41 7 . .  . a4,, c, c) -+ 

( f 4 1  , .. . , f4,, C, q,.  . . , e4,, E ,  e41, .  . . , e4,, P(c4)CAtBn%', Crev(y)), 
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where e4, = E ,  u4,, b4,, f4, E {A, B} for i = 1,. . . ,n, f41 . . . f4, = BtAn-t, 
bQ1 . . . b4, = P(b4) with b4 E W ,  ~4~ . . . u4, = p(u4) with a4 E V ,  c4, . . . c4, = 

P(c4) with c4 E W .  

As a result, v *$ w can be expressed as 

BtA7Z-t Cc3, . . . C ~ , C A ~ B ~ - ~ C X ( U ~ L ~ Z ~ ) A ~ B ~ - ~ C ~ ~ ~ ( ~ ~ )  

*G BtAn-tCb51 . . . b5,Ca51 . . . ~ 5 , C A ~ B ~ - ~ C r e v ( w 5 ) ,  

where 

20 = BtAn-tCb51 . . . b5,Cu5, . . . ~5 , ,CA~B~-~Crev(w5) .  

and p5 is of the form 

In addition, during 

AtBn-tCbll . . . bl,Call . . . U ~ , C C A ~ B " - ~  +' G u  

and 
v *: w, 

G uses a production introduced in (6) to generate a sentential form that con- 
tains exactly n hs, where h E {A, B}, between the second appearance of C and 
the third appearance of C,  so G can use p2 and p4 as described above. Ob- 
serve that in the previous generation of z by G, every sentential form belongs to 
II({AtBn-tC, AtBn-tD})*T*, so 

A(G) C II({AtBn-tC, AtBn-tD})*T*. 

Furthermore, the form of this generation and the construction of P imply that 

R +-; rev(z)d 

with d E F .  Consequently, L(Q) contains rev(L(G)), so L(G) is in rev(L(Q)). 
0 Because L = L(Q) ,  L(G) = rev(L). 
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Lemma 32. RE C_ SCAT[2/4.] 

Proof. Let L be a recursively enumerable language. Set L’ = rev(L). As RE is 
closed under reversal, L’ is a recursively enumerable language. By Lemma 31, 
there exists a scattered context grammar 

G = ( {A ,B ,C ,D,S}  UT,T ,P,S)  

so that 
A(G) C II({AtBn-tC, A t I Y t D } ) * T *  

and L(G)  = rev(L’). Observe that L(G), rev(L(Q)), rev(L’), rev(rev(L)), and L 
0 

Theorem 53. SCAT[2/4.] = RE. 

Proof. Clearly, SCAT[2/4.] c RE. By Lemma 32, RE C SCAT[2/4.]. Thus, 

coincide. As L(G) E SCAT[2/4.], this lemma holds. 

SCAT[2/4.] = RE. 

Lemma 33. RE 2 SCAT[.2/4]. 

Proof. Let L be a recursively enumerable language. By Lemma 31, there exists a 
scattered context grammar, 

G’ = (V, T ,  P’, S), 

satisfying L(G’) E SCAT[2/4.] and L(G’) = rev(L). Introduce a scattered con- 
text grammar 

where P is defined by the equivalence 

G = (V, T ,  P, S), 

( A l , .  . . ,A , )  T-) (XI,. . . ,z,) E P 

if and only if 

( A n , . .  . , A l )  -+ (rev(x,), . . . ,rev(zl)) E P’. 

Observe that L(G)  E SCAT[.2/4] and L(G) = rev(rev(L)). As rev(rev(L)) = L,  
this lemma holds. 0 

Theorem 54. SCAT[.2/4] = RE. 

Proof. Clearly, SCAT[.2/4] C RE. By Lemma 33, RE C SCAT[.2/4]. Thus, 
SCAT(.2/4] = RE. rn 

Open Problem. All the uniform rewriting discussed in this chapter is obtained 
for grammars with erasing productions. In the techniques by which we achieved 
this uniform rewriting, these productions fulfill a crucial role. Therefore, we believe 
that these techniques cannot be straightforwardly adapted for grammars without 
erasing productions. Can we achieve some uniform rewriting for grammars without 
erasing productions by using completely different techniques? 



Chapter 6 

Grammatical Transformations and 
Derivation Simulations 

The previous parts of this book contain various transformations of some grammars 
with context conditions to other grammars so that both the input and the output 
grammars are equivalent. Taking a closer look at these grammars, we intuitively 
see that some grammars generate the language in a more similar way than others. 
Indeed, consider two grammars of this kind. If we can find a suitable substitution 
by which we change each string of every derivation in one grammar so that the 
sequence of strings resulting from this change represents a derivation in the other 
grammar, we tend to consider them as two grammars that closely simulate each 
other. On the other hand, if a substitution of this kind cannot be found, we do 
not consider them in this way. In the present chapter, we formalize this intuitive 
understanding of equivalent grammars that make similar derivations. First, we in- 
troduce the basic concept of a derivation simulation. Making use of this concept, 
we rigorously describe what we intuitively mean by grammatical transformations 
that convert some grammars to other equivalent grammars so that the output 
grammars closely simulate the input grammars. Specifically, we discuss this kind 
of grammatical transformations in terms of EIL grammars (see Chapter 2), point- 
ing out that an analogical discussion can be made for any equivalent grammars. 
Then, we present a grammatical transformation of EIL grammars to equivalent 
symbiotic EOL grammars (see Section 3.2) in order to illustrate the concept of 
close simulation. 

6.1 Derivation Simulation 

In this section, we conceptualize the derivation similarity of language models. 

Definition 21. A string-relation system is a quadruple 

* = (w, *, WO, WF)r 

where W is a language, + is a binary relation on W ,  WO c W is a set of start 
strings, and WF c W is a set of final strings. 

Every string, w E W ,  represents a 0-step string-relation sequence in 9. For 
every n 2 1, a sequence 

W O  I W1, . . . W n  7 
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wi E W ,  0 5 i 5 n, is an n-step string-relation sequence, symbolically written as 

WO + W1 + . . .  =+ Wn 

if, for each 0 I i 6 n - 1, wi + W i + l .  

If there is a string-relation sequence wo + w1 =+ . . . * w,, where n 2 0, 
we write wo J~ w,. Furthermore, wo a* w, means that wo jn w, for some 
n 2 0, and wo =+-+ w, means that wo j n  w, for some n 2 1. Obviously, from the 
mathematical point of view, =++ and J* are the transitive closure of + and the 
transitive and reflexive closure of +, respectively. 

Let 9 = (W, +, WO, W F )  be a string-relation system. A string-relation se- 
quence in 9, u J* v, where u, v E W ,  is called a yield sequence if u E WO. If u +* 
v is a yield sequence and v E W F ,  u +* v is successful. 

Let D ( 9 )  and S D ( 9 )  denote the set of all yield sequences and all successful 
yield sequences in 9, respectively. 

Example 9. To illustrate the way we use string-relation systems, consider a 
context-free grammar 

where V ,  T ,  P ,  and S are the total alphabet, the terminal alphabet, the set of 
productions, and the start symbol, respectively. In the standard way (see [IlS]), 
define the direct derivation + on V*,  the set of G’s sentential forms F ( G ) ,  and 
the language of G ,  L(G) .  Then, introduce a string-relation system 

G = (V, T ,  p, S),  

9 = (V*,  +, { S } , T * ) .  

Observe that wo + w1 * . .. =+ w, is a yield sequence in 9 if and only if 
w, E F(G) .  Furthermore, wo + w1 + . . . + w, is a successful yield sequence if 
and only if w, E L(G) .  

Definition 22. Let 9 = (W,=+,p,Wo, W F )  and 0 = (W’,+n, WA,W$) be two 
string-relation systems, and let cr be a substitution from W’ to W .  Furthermore, 
let d be a yield sequence in 9 of the form 

WO *Q w1 *Q . . . +Q w,-1 *Q w,, 

where Wi E W ,  0 5 i 5 n, for some n 2 0. A yield sequence h, in S l ,  simulates d 
with respect to  cr, symbolically written as 

h Do d ,  

if h is of the form 

yo *El yy1 +;z . . . yn-l +En y,, 

where y j  E W’, 0 I j 5 n, m k  2 1, 1 5 k 5 n, and wi E cr(yi) for all 0 I i I n. 
In addition, if there exists m 2 1 such that m k  5 m for each 1 5 k 5 n, then h 
m-closely simulates d with respect to  cr, symbolically written as 

h DF d.  
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Definition 23. Let 9 = (W,+,~ ,WO,WF)  and R = (W’,+n, W6,Wf.) be two 
string-relation systems, and let (T be a substitution from W’ to W .  Let X C D ( 9 )  
and Y C D(R). Y simulates X with respect to u, written as Y D, X ,  if the 
following two conditions hold: 

1. For every d E X ,  there is h E Y such that h D, d. 

2. For every h E Y ,  there is d E X such that h D, d. 

Let m be a positive integer. Y m-closely simulates X with respect to u, Y DF 
X ,  provided that: 

1. For every d E X ,  there is h E Y such that h D: d .  

2. For every h E Y ,  there is d E X such that h D: d. 

Definition 24. Let 9 = (W, +Q, Wo, W F )  and R = (W’, +a, W;, Wf.) be two 
string-relation systems. If there exists a substitution from W’ to W such that 
D(R) D, D ( 9 )  and S D ( R )  Do SO(!$), then 0 is said to be 9’s  derivation sim- 
ulator and successful-derivation simulator, respectively. Furthermore, if there is 
an integer, m 2 1, such that D ( n )  D ( 9 )  and S D ( R )  DF s D ( 9 ) ,  R is called 
an m-close derivation simulator and m-close successful-derivation simulator of 9,  
respectively. If there exists a homomorphism p from W’ to W such that D(R) D, 
D ( @ ) ,  s D ( n )  D, SD(\k),  D ( 0 )  DY I)(*), and SD(fl) DT SO(@), then 0 is 6 ’ s  
homomorphic derivation simulator, homomorphic successful-derivation simulator, 
m-close homomorphic derivation simulator and m-close homomorphic successful- 
derivation simulator, respectively. 

Example 10. Let us demonstrate the idea of derivation simulations on grammars 
generating the language L = {anbn : n 2 l}. Consider 

GI = (K,{a ,b} ,Pl ,S) ,  where 
Vl = {S,a,b) ,  
PI = { S +  ab, S -, aSb}. 

Clearly, every derivation in G1 has the form 

S J G ~  aSb +cl aaSbb +cl . . . + G ~  an-’Sbn-’ +cl anbn 

for some n 2 1. The language of G1 is L. Next, consider 

G2 = (V2, {a ,  b } ,  P2, S),  where 
vz = {S,A,B,a,b} ,  
Pz = { S - + a B ,  B- ,  Ab, A - + a B ,  B + b } .  

G2 makes every derivation in this way 

S +cZ aB +G* aAb + G ~  aaBb +cZ aaAbb +c2 . . . +cZ anBbn-’ +c2 anAbn, 
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where n 2 1. Furthermore, every sentential form anBb"-' can be rewritten to 
anbn. Obviously, L(G2) = L(G1) = L. 

Investigate the derivations in G1 and G2 in terms of derivation simulations. To 
do so, introduce the corresponding string-relation systems 

6 1  = (V;,*GI,{S},{a,b}*) and 6 2  = (V2*,*G21{S)1{a,b}*) 

by analogy with Example 9. Notice that 6 1  and Q2 are defined so that their yield 
sequences correspond to the derivations above in G1 and G2. Then, introduce a 
homomorphism a2 from Vg to V;C as 

1. 02(S) = gz(A) = S; 

2. g2(B) = gz (b )  = b; 

3. a2(a) = a .  

Let us show that q 2  is a 2-close homomorphic derivation simulator of 61 with 
respect to C T ~ .  First, inspect all steps of yield sequences in Ql: 

1. For S + - G ~  ab, there is S + - G ~  aB = S G ~  ab. 

2. For S + - G ~  aSb, 6 2  makes S + - G ~  aB J G ~  aAb, where az(aAb) = aSb. 

3. For an-'Sbn-' +-G~ anSbn, n 2 2, there is 

+ G ~  a"Bbn-' + - G ~  anAbn, an- 1 Abn- 1 

where a2(a"-'Abn-') = an-'Sbn-', a2(anAb") = anSbn. 

4. For an-'Sbn-' +-G~ anbn, n 2 2, there exists 

an-lAbn-l +c2 a"Bb"-' + - G ~  anbn 

with a2(an-1Abn-1) = an-lSbn-' and 02 (an b") = an b" . 

That is, every step in any yield sequence from 6' can be simulated by two steps 
in 6 2 .  Hence, by induction on the length of yield sequences in 61, prove that 
every d E D(q1) is 2-close-simulatable by some h E D ( 6 2 )  with respect to a ~ ;  in 
symbols, h DK d. Next, observe that every h E D(62)  is a 2-close homomorphic 
simulation of some d E D(61). Indeed, S =s& a"Ab" and S +-&2 anbn, n 2 1, are 
2-close simulations of yield sequences from 61. The other forms of yield sequences 
in 6 2  are of the forms S + - G ~  aB and 

S +-z2 anAbn + - G ~  an+lBbn, 

n 2 1. Because a2(B) = b, the first sequence is a l-close simulation of S = S G ~  

ab and the second sequence is a 2-close simulation of 

S +-zl a"Sbn +-c2 an+'bn+'. 
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Hence, for every h E D(Qz) ,  there exists d E D(Q1) such that h (>& d. As a result, 
D(Q2) D:, D(Q1); that is, Qz is a 2-close homomorphic derivation simulator of 
Q1. 

Return to the grammars G I  and Gz. Intuitively, the 2-closeness of their deriva- 
tions means that the grammars generate their sentential forms in a very similar 
way. Indeed, while G1 inserts new occurrences of symbols a and b in one derivation 
step, Gz does the same in two steps. 

Example 11. Consider G1 from Example 10. Let us demonstrate that the fol- 
lowing grammar G3 homomorphically simulates GI,  but the closeness of this sim- 
ulation is not limited by any number: 

and the set of productions P3 is defined as 

P3 = { S  -+ Z X M X Z ,  
Z A  -+ Z X a ,  B Z  -+ b X Z ,  
X u  -+ a x ,  bX --+ Xb,  
X M X  -+ A M B ,  X M X  -+ AB, 
a A  --f Aa,  Bb -+ bB, 
Z A  -+a, B Z  -+ b}. 

Introduce a string-relation system 

and a homomorphism (13 from V3 to V1 as: 

1. (13(S) = ( T B ( M )  = S; 

2. (13(A) = ( 1 3 ( ~ )  = a; 

3. (13(B) = (13(b) = b; 

4. (13(X) = 63(Z)  = E .  

Inspect the definition of P3 to see that for every derivation step 

J G ~  anSan, n 2 1, an- 1 Sbn- 1 

G3 makes a derivation 

ZXan-'Mbn-'XZ =+%-' Zan- lXMXbn- lZ  
*G3 Zan-lAMBbn-l Z 
+2n-2  ZAan-' Mbn-' B Z  G3 =G3 Z X  an M bnXZ.  
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Analogously, for every 

JG, anbn, n > 0 ,  an-lsbn-l 

there is 
ZXan- lMbn- lXZ =+$2 Zan-l XMXbn-' 2 

=-+-G~ Zan-'ABbn-'Z 
*2n-2 G3 ZAan-lMbn-lBZ 
=+g3 anbn 

in G J .  Informally, while GI inserts new occurrences of symbols a and b in the 
middle of a sentential form, G3 adds as and bs to the ends of the corresponding 
sentential form. It is rather easy to prove that if d E D(91), there exists h E D(93) 
such that h D~~ d.  Furthermore, it can be demonstrated that for every h E D ( 9 3 ) ,  
there is some d 6 D ( 9 1 )  such that h D~~ d .  However, observe that GJ simulates 
every derivation step of GI by a sequence of steps whose number depends on the 
length of the rewritten sentential form. Therefore, D(93)  DO3 D(91), but there 
exists no m satisfying D ( 9 3 )  D; D(91). 

Consider three string-relation systems 9, R, and 8. Assume, for instance, that 
52 is a q-close derivation simulator of 9 and Q is a r-close derivation simulator of 
52. The following two theorems establish a simulation-based relationship between 
9 and 0. 

Theorem 55.  Let 9 = (W, + q ,  WO, W F ) ,  R = (W',  +n, WA, W;), and Q = 
(W", ~ 0 ,  W:, WF) be string-relation systems, u be a substitution from W' to W ,  
and T be a substitution from W" to W' .  If for some X C D ( 6 ) ,  Y D(R), 
Z C D ( 0 )  holds Y D$ X and Z [>I; Y ,  q,  r 2 1, there exists a substitution 4 from 
W" to W such that Z by X .  

Proof. 

(i) Let d E X .  Then, there exist some g E Y and h E 2 such that g D: d and 
h D: g.  From the definition of g D: d ,  d and g can be expressed as 

and 
9 = y o  *: Y1 *: * . *  *: Ym, 

where xi E W ,  yi E W',  xi E u ( y i )  for all 0 5 i 5 m; furthermore, every 
Y k  *a Y k + i ,  0 5 k 5 rn - 1, consists of q or fewer steps. Therefore, each 
y k  

+ 
yk+l is a string-relation sequence 
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such that for every y k i  =+-a y k ( i + l ) ,  0 5 k 5 m - 1, 0 5 i 5 q k ,  y k i  = T ( Z k i ) ,  

and every Zk i  +-& z k ( i + l )  has r or fewer steps. Putting the simulations 
together, we get for every x k  +q Xk+l  a string-relation sequence 

Zko +& Z k l  *& . . . *$ Zkqk 

with at most qr steps so that X k  E O ( T ( Z k 0 ) )  and 2 k + l  E u ( T ( Z k q , ) ) .  Conse- 
quently, 

h DT d ,  

where 4 is defined as 

4 ( a )  = {v E u(u) : u E .(a)} 

for all a E W”. 

(ii) Let h E 2. By the definition of 2 ~ l ;  Y ,  there exists g E Y such that h ~ l ;  
g. Moreover, because Y D$ X ,  there is some d E X such that g D$ d.  Hence, 
by analogy with (i), 

h DT d .  

From (i) and (ii), for every d E X there is h E 2 such that h DT d ,  and for 
every h E 2 there exists some d E X such that h DT d .  As a result, 

2 DT x. 
1 

Theorem 56. Let 9 = (W, +q, Wo,Wp), R = (Wl, =+-n, Wh, Wb),  and 8 = 
(Wl’, ~ e ,  W{, Wg) be string-relation systems, u be a homomorphism from W’ to 
W ,  and r be a homomorphism from W” to W’. If for some X G D ( 9 ) ,  Y E D(R), 
2 g D ( 0 )  holds Y D: X and 2 D; Y ,  q,r  2 1, there exists a homomorphism q5 
from W” to W such that 2 

Proof. By Theorem 55,  2 DT X, where q5 is a substitution from W” to W defined 

X .  

as 
4 ( u )  = {v E u(u) : u E .(a)} 

for all a E W”. Clearly, if both u and T are homomorphisms, 4 is a homomorphism 
as well. 1 

6.2 Grammatical Simulation 

Return to Examples 10 and 11. To study the closeness of derivations in grammars 
GI and G2, the corresponding string-relation systems Si and Q 2  were introduced. 
More precisely, for grammars GI = (Vl, TI, PI,  SI) and G2 = (VZ, T2, Pz,S2), QI 
and 92 were defined as 91 = ( V ~ , + G ~ , { S ~ } , T ’ ~ )  and 9 2  = ( V ~ , * G ~ , { S ~ } , T $ ) .  
That is, in both Q1 and 9 2 ,  the set of start strings contained only the axiom and 
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the set of final strings was defined as a set of all words over the terminal alphabet. 
As demonstrated next, however, the study of grammatical simulations frequently 
requires a more general approach. 

Consider a typical transformation of a grammar G1 to another equivalent gram- 
mar G2; for example, see Theorems 19 and 21 in Section 4.1.3, Theorem 30 in 
Section 4.1.5, or Lemma 19 in Section 4.2.2. 

As a rule, G2 simulates derivations in G1 by performing these three phases: 

(A) Initialization that produces a string of a desired form by making a few initial 
steps. 

(B) Main phase that actually makes the derivation simulation. 

(C) Conclusion that removes various auxiliary symbols. 

Phase (B) almost always fulfills a crucial role while the other two phases are usually 
much less important. Furthermore, phases (A) and (C) usually correspond to no 
derivation steps in terms of this simulation. As a result, the simulation as a whole 
is less close than the main phase. Therefore, we next introduce string-relation 
systems that allow us to formally express phase (B) and, simultaneously, suppress 
the inessential phases (A) and (C). 

Making use of the notions introduced in the previous section, we formalize the 
grammatical simulation in terms of EIL grammars because this formalization is 
discussed throughout Section 6.3. Let us point out, however, that analogically this 
simulation can be formalized in terms of any grammatical models. 

Definition 25. Let G = (V, T ,  P, s )  be an EIL grammar. Let +G be the direct 
derivation relation in G. For +G and every 1 2 0, set 

A(+G, 1 )  = {X +G y : x +G y +; W ,  z,y E V * ,  w E T*,  i + 1 = 1 ,  i 2 o}. 

Next, let G I  = (V1,Tl ,Pl ,s l )  and G2 = (V2,T2,P2,s2) be EIL grammars. 
Let J G ~  and +c2 be the derivation relations of G1 and G2, respectively. Let a 
be a substitution from V2 to V1. G2 simulates G1 with respect to a ,  D(G2) Do 

D(G1) in symbols, if there exists two natural numbers k, 1 2 0 so that the following 
conditions hold: 

1. QJ1 = ( V ~ , + G ~ , { S ~ } , T ~ )  and Q2 = (V;,=s,p2,W0,W~) are string-relation 
systems corresponding to GI and G2, respectively, where WO = {X E V; : 
s2 +s2 x} and WF = {x E V,* : x +kz w, w E T,*, a(w) 5 T;}. 

2. Relation + Q ~  coincides with +cZ - A ( + G ~ , ~ ) .  

3. D(Q2) Du D(Q1). 

In case that SD(Q2) D~ S D ( Q J l ) ,  G2 simulates successful derivations of G1 
with respect to a;  in symbols, SD(G2) D, SD(G1). 
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Definition 26. Let GI and G2 be EIL grammars with total alphabets V1 and 
V2, terminal alphabets TI and T2, and axioms S1 and S2, respectively. Let CJ 

be a substitution from V2 to V1. G2 m-closely simulates GI  with respect to u 
if D(G2) D, D(G1) and there exists m 2 1 such that the corresponding string- 
relation systems Q 1  and Q 2  satisfy D(Q2) DZ D(Q1). In symbols, D(G2) DF 
D(Gi).  

Analogously, G2 m-closely simulates successful derivations of G1 with respect 
to CJ, denoted by SD(G2) DZ SD(G1), if SD(Q2) DF SD(Q1) and there exists 
m 2 1 such that SD(G2) DF SD(G1). 

Definition 27. Let G1 and G2 be two EIL grammars. If there exists a substitution 
CT such that D(G2) D~ D(G1), then G2 is said to be GI’s derivation simulator. 

By analogy with Definition 27, the reader can also define homomorphic, m- 
close, and successful-derivation simulators of EIL grammars. 

6.3 Simulation of E(0, l )L Grammars 

In this section, we investigate E(0, l )L grammars and symbiotic EOL grammars (see 
Section 3.2) in terms of the grammatical simulation. Recall that by Theorem 10 
and [155], these two types of EIL grammars have the same generative power. 
Indeed, both E(0, l )L grammars and symbiotic EOL grammars generate RE. From 
the simulation point of view, however, there exists no transformation of an E(0 , l )L  
grammar to an equivalent symbiotic EOL grammar that closely simulates the input 
one. Therefare, we improve the results concerning the generative power of these 
EIL grammars by proving that for any E(0, l )L grammar, there exists an equivalent 
symbiotic EOL grammar that 1-closely simulates the input grammar. 

First, we introduce a construction that transforms any E(0, l )L grammar, G = 
(V, T ,  P, s ) ,  satisfying s $! T*, to a symbiotic EOL grammar, (GI, W ) .  After that, 
we establish Theorems 57 and 58. Theorem 57 proves that L(G) = L(G’,W). 
Theorem 58 demonstrates that (GI, W )  is a 1-close homomorphic simulator of G. 
Then, we modify the construction for any s E V *  and show that the statements 
of Theorems 57 and 58 hold for G with s E T* as well. 

Construction 1. 

Input: An E(0 , l )L  grammar, G = (V, T ,  P, s), where s $! T* .  

Output: A symbiotic EOL grammar, (G‘, W ) .  

Algorithm: Introduce a new alphabet, V’, defined as 

V’ = V u { @ , # , S ’ ) u V u ~ U T ,  where 
v = {a  : a E v u {@,#}}, 
v - ={2: a E V U { @ , # } } ,  
A 

T = {Z :  u E T } .  
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Let 7 be a homomorphism from T to ? such that .(a) = Z for all a E T .  Define a 
language W over V’ as 

W = v u {@, #, S’} u ? u ({m,Z?, Qs, 62 : a E v u {@, #}} - {ti#}). 

Then, construct a symbiotic EOL grammar (GI, W )  with G’ = (V’, T ,  PI, S’), where 
the set of productions is defined in the following way: 

1. Add S’ -+ @s# to PI. 

2. For every ( a ,  b)  -+ x E P ,  add a -+ 6x6 to P’. 

3. For every (a ,&)  -+ x E P ,  add a -+ ax# to PI. 

4. For every (a ,  b )  -+ t E P ,  t E T*, add a -+ %r(t)x to PI. 

5. For every (a ,&)  -+ t E P ,  t E T*,  add a -+ &-(t)$ to PI. 

6 .  Add @ --f @a, # --+ ##, @ -+ 6, # -+ $ to P’. 

7. For every ii E v, add 6 -+ E to PI. 

8. For every 2 E p, add 2 -+ E to PI. 

9. For all a E T ,  add Z -+ a to PI. 

Theorem 57. Let G = (V, T ,  P, s )  be an E(0,l)L grammar satisfying s $! T* .  Let 
(GI, W )  be a symbiotic EOL grammar constructed by using Construction 1 with G 
as its input. Then, L(G) = L(G’, W ) .  

Proof. Let w be a homomorphism from V’ to V’ - (v U ?) defined as w(a)  = E 

for all a E v U and w(a)  = a for every a E V’ - (v U ?). Furthermore, let S be 
a homomorphism from V’ to V such that S ( a )  = a for all a E V ,  S(Z) = a for all 
a E T ,  and S(a)  = E for all V’ - (V U ?). Informally, w removes all occurrences of 
symbols of the forms ii and 2. In addition, S also removes (Q and #; moreover, it 
converts tilde-versions of terminals back to their originals. 

Claim 49. For every w E W*,  

- 

(I)  S‘ +fG,,w) w if and only if @s# +iG,,w) w; 
(11) S‘ +TG,,w) w implies S’ $! sub(w). 

Proof. By the definition of P’, it is easy to see that the very first derivation step 
always rewrites S’ to @s#. Moreover, no productions generate S’; thus, S‘ appears 
in no sentential form derived from S’. 

Claim 50. For all U , V  E W * ,  S’ $ sub(uu), 

u *(Gt,w) v i f  and only i f  W ( U )  ~ ( G t , w )  V .  
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Proof. Examine the definition of P’. Clearly, all occurrences of symbols from V U c  
are always erased during u +(Gt ,w)  v, so they play no role in the generation of v. 
By the definition of W and w,  W(U) E W * ;  therefore, ~ ( u )  +(Gf ,W)  v is a valid 
derivation in (G’, W ) .  

Note that this property of derivations in (G’, W )  allows us to ignore symbols 
0 

In Claims 51 and 52, we investigate some rewritings of sentential forms that 

of forms ti and 2 occurring in left-hand sides of derivation steps. 

belong to {@}V*{#}.  

Claim 51. Let @y# = = S ( C ~ , ~ )  @x#, where y = u1u2.. .a,  for some ui E V ,  
x E W*,  n 2 0. Then, @x# = @6~1x1zi2Si2x2Zi3.. . Sinxn###, where xi E V* for 
all i = 1 , .  . . ,n .  

Proof. Since x is surrounded by @ and # in @x#, (GI, W )  surely rewrites @y# in 
such a way that @ is rewritten to @@ and # is rewritten to ## (see the definition 
of PI). Every ui can be rewritten either to Bixi6i or i i iT( t i )bi ,  where bi E V ,  
xi E V * ,  and ti E T*. Thus, 

h 

@x# = @ @ a l z l p @ ~ Z 2 p 2 . .  . a,z,pn## 
- A 

with ai = B i ,  zi = xi, and pi = bi or ai = &, zi = T ( t i ) ,  and pi = bi for all 
i = 1 , .  . . , n. However, @x# must be a string over W .  Inspect the definition of W 
to see that @x# E W* if and only if a1 = B l ,  ,& = a2 = &, /32 = a3 = ii3, . . . , 
pn-l = an = zi,, and pn = #. As a result, we get 

- 

@2# = @ @ a 1 2 1 a 2 Z i 2 2 2 a 3 , .  . Si,x,###. 

0 

Claim 52. Let @y# =+(Gt,w) x, where y = u1u2.. .a ,  and {@, #} n sub(z) = 8 
for some U i  E v, x E W * ,  R. 2 0. Then, z = 6217(tl)&&T(t2)&. . .&T(tn)$$, 
where ti E T* for all i = 1 , .  . . , n. 

Proof. Prove this claim by analogy with the proof of Claim 51. 0 

The following claim shows that Claims 51 and 52 cover all possible ways of 
rewriting a string having the form @y#, y E V * ,  in (G’, W ) .  

Claim 53. Let @y# + ( G t , w )  u, y E V*.  Then, either u = @x#, z E W * ,  or 
u E W * ,  w ( u )  E T*, and {@, #} n sub(u) = 0. 

Proof. Return to the proof of Claim 51. Suppose that @ is rewritten to @6 and j,$ 
is rewritten to $. Inspect the resulting sentential form to see that either a1 E V 
or ,& E V or there exists i E (1 , .  . . , n- 1)  such that piai+l E vv; in all cases, the 
sentential form does not belong to W*.  Analogously, suppose that @ is rewritten 
to 6 and # is rewritten to ##. As before, such a sentential form is out of W .  0 
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Claim 54. Every derivation in (GI, W )  is a beginning of 

s’ *(G’,W) QW0# 

*(G’,W) @Wl# 

*(G’,w) @wn# 
*(G’,W) 

*(G’,W) t ,  

where wg = s, wi E W’, W ( U )  = T ( t ) ,  t E T*,  0 5 z I n, n L 0. 

Proof. By the proof of Claim 49, S’ is always rewritten to @wo#, where wo = s. 
Then, Claim 53 tells us that there are two possible forms of derivations rewriting 
w(@wi#) and, hence, @wi#. First, (G’, W )  can generate a sequence of n sentential 
forms that belong to {@}W*{#},  for some n 2 0 (their form is described in 
Claim 51). Second, (G’, W )  can rewrite @wn# to u E W’, satisfying ~ ( u )  E 
T’ (see Claim 52). By the definition of P’, iZ -+ a is the only production that 
can rewrite iT E T. Therefore, u +(Gt,w) t such that t E T* and W ( U )  = ~ ( t ) .  
After that, no other derivation step can be made from t because P‘ contains no 
production that rewrites terminals. 0 

Claim 55. For‘all x ,  y E V*,  u E W*, it holds that 

y j c  x zf and only if @y# j(G’,w) @u#, 

where x = w ( u ) .  

Proof. 

Only i f :  Let y =+G x .  Express y and x as y = a1a2.. .a ,  and x = x1x2.. . xn, 

respectively, so that (ai ,ai+l) -+ xi E P and (a,,&) -+ x ,  E P are applied during 
y JG x ,  i = 1,. . . , n - 1, n 2 0. Then, for every (ai,ai+1) -+ x i ,  there exists 
ui -+ ziixizii+l E P’, and for ( a n , € )  -+ x,, there exists a,  -+ zinXn# E P’. 
Therefore, taking into account Claim 51, we can construct 

@y# +(Gt,w) @6!lil~lzi2ii2~2zi3.. . zinxn###. 

Obviously, 
w ( G z i 1 ~ 1 z i 2 z i 2 ~ 2 ~ 3 . .  .ii,~,##) = ~ 1 ~ 2 . .  . x ,  = X .  

I f :  Let @y# =+(G’,w) @u#. Express y as y = a1a2.. .a,, ai E V ,  n 0. By the 
proof of Claim 51, every ai is rewritten to  Siizizii+l, xi E V*,  0 I i I n - 1, a, is 
rewritten to six,#, x ,  E V * ,  and 

@u# = @ 6 ~ 1 ~ 1 z i 2 z i 2 ~ 2 ~ 3 . .  . G,x,###. 

Examine the definition of P’. For every ai -+ ziixizii+l, there exists (ai ,ai+l) + 

xi E P ,  and for a,  -+ zinx,#, there is (an ,&)  -+ xn in P. Hence, G can derive 
0 y J G  x such that x = 21x2.. . x ,  = ~ ( u ) .  
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Claim 56. For all t E T * ,  y E V * ,  u E W*,  at holds that 

y * G  t if and only if @y# j(G!,w) u, 

where 7(t) = ~ ( u ) .  

Proof. Prove by analogy with the proof of Claim 55. 

From the claims above, it is easy to prove that 

s J ~ G  t if and only if S‘ =s&,,~) t 

for all t E T*. 

Only If: Let 
s JG ~1 JG 212 JG . . . +-G Un JG t 

for some n 2 0. Then, there exists 

s’ *(G’,W) @s# *(G‘,W) @wl# *(G’,W) @w2# *(G‘,W) * + *  

*(G’,w) @wn# *(G’,w) 21 *(G’,w) t ,  

where vi = w(wi)  for all i = 1,. . . , n and .(t) = w(u) .  

If: By Claim 54, S’ +TG,,w) t has the form 

s’ *(G’ ,W)  @s# *(G’,W) @wl# *(G’,W) @w2# *(G’,W) ” ’  

*(G‘,W) @%# *(G’>W) *(G’,W) t ,  

where n 2 0. For this derivation, we can construct 

so that vi = ~ ( w i )  for all i = 1,. . . , n. 

Therefore, L(G) = L(G’, W ) ,  and the theorem holds. 
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Theorem 58. Let G = (V,T,P,s) be an E(0 , l )L  grammar satisfying s $! T* .  
Let (GI, W )  with G‘ = (V’,T, P‘,S’) be a symbiotic EOL grammar constructed by 
using Construction 1 with G as its input. Then, there exists a homomorphism 5 
such that D(G’, W )  D; D(G) and SD(G’, W )  D; SD(G). 

Proof. Let 
* = (V*,  JG, { s } ,  T ” )  

’ 

be a string-relation system corresponding to G. 
defined in the proof of Theorem 57. Let 

Let S be the homomorphism 

*’ = ((V’)*, *qP, wo, WF) 
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be a string-relation system corresponding to (GI, W ) ,  where 
A -- 

=+,pt = +(Gt,w) - ( @ i i ; , ~ ( t l ) & i i 2 ~ ( t 2 ) i i 3 . .  .i?,~(t,)## +(Gt,w) tltz .. . t ,  : 
ai E V, ti E T’, 15 i 5 n, n 2 0); 

wo ={@s#);  A 

W F  = { @ ~ i T ( t l ) i i 2 ~ i 2 7 ( t 2 ) ~ 3 . .  .ii,T(t,)$$ : ai E V, ti E T* ,  1 5 i 5 n, 
n 2 0). 

It is easy to verify that 9 and 9’ satisfy (1) through (3) of Definition 25; of course, 
S’ +;G,,w) @s# and for every u E W F ,  u =+iG,,w) t ,  where t E T’ (see Claim 54 in 
the proof of Theorem 57). Next, we show that D(9’ )  D; D(9). By Definition 23, 
we have to establish that: 

(1) for every d E D ( 9 ) ,  there exists h E D(Q’) such that h D; d ;  

(2) for every h E D(9’) ,  there exists d E D ( Q )  such that h D; d. 

(Note that most of this proof is based on substitutions and claims introduced in 
the proof of Theorem 57). 

(1) Let d E D ( 9 ) .  Express d as 

where uo = s, for some n 2 0. For n = 0, there is @s# E Q’ such that the 
zero-length derivations s and @s# satisfy s D; @s#. Assume that n > 0. Then, 
according to Claims 50 and 55, 

zli JG wi+l if and only if @wi# + ( G t , w )  @wi+l#, 

where ui+l = w(wi+l) = W(@wi+l#), wi,wi+l E W’, 0 5 i 5 n -  1. Moreover, by 
the definition of 9‘, 

for all i = 0, . . . , n - 1. Hence, by induction on the length of derivations in G, the 
reader can easily establish that for every d E D ( Q ) ,  there exists h E D(Q’) such 
that h D& d. 

(2) Let h E D(Q) .  By the definition of =+*I and Claim 54, every yield sequence 
in Q’ is a prefix of 

@Wi# =+*I @Wi+l# 

@wo# +*/ @w1# **/ . . . + * r  @wn# +*/ u, 

where wo = s, wi E W * ,  u E W F ,  0 5 i 5 n, n 5 0. The zero-length derivation 
@s# is a 1-close simulation of s from G. Claims 50 and 55 imply that for every 
@wi# =+*/ @wi+l#, there exists Ui *G ~ i + l  for some UirVi+l E V * ,  ~ i + l  = 
w(wi+1) = ~ ( @ w i + l # ) ,  0 5 i 5 n - 1. Furthermore, according to Claims 52 
and 56, for @wn# +*! u, there exists v, +G t such that t E T*,  ~ ( t )  = w(u) ;  that 
is, W(u) = t. Clearly, every derivation step in h is a simulation of a corresponding 
derivation step in d ;  as a result, h D; d. 
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Next, we prove that SD(G’,W) D; SD(G). From (2), it follows that every 
successful yield sequence h E SD(P’) is a 1-close simulation of a derivation s +; 
t with t E T’. To prove that for every d E S D ( Q )  there exists h E S D ( W )  such 
that h Dk d, return to case (I) in this proof. Assume that vo +z ZJ,, v, E T* ,  
n 2 1. Then, there exists a derivation @w,-1# u, u E WF (see Claim 56) 
such that T(v,) = w ( u ) ,  which implies W(u) = v,. Therefore, we get h D; d, so 
SD(G’,W) D; SD(G). w 

Theorems 57 and 58 show that for every E(0,l)L grammar G = (V,T,P,s),  
s @ T*,  there exists a symbiotic EOL grammar (GI, W )  with G’ = (V’, T ,  PI, S’) 
such that: 

1. L(G) = L(G’, W ) ;  

2. (GI, W )  is a 1-close homomorphic derivation simulator of G; 

3. (GI, W )  is a 1-close homomorphic successful-derivation simulator of G; 

4. To simulate G, (GI, W )  uses one initial derivation step S’ +(Gj,w) @s#, and 
one derivation step that removes auxiliary symbols: 

A A h  

@ i ? 1 7 ( t i ) i ? 2 2 2 7 ( t 2 ) 2 3 . .  .2,7(tn)## +(Gi,w) t l t 2 . .  . t,, ai E V, ti E T’. 

To cover the entire family of E(0,l)L grammars, however, we have to demon- 
strate that the results above can also be established for any G with s E T*.  
First, introduce the following new part to Construction 1: if s E T * ,  add S’ + 

6%(s)$$, where a E V ,  to PI. Then, use this construction to create (G’,W). 
S’ + 6%(s)$$ adds the following new derivations S’ + ( G j , w )  6%r(s)$$ and 

S’ +(GJ,w)  6 i ? ~ ( ~ ) $ $  + ( ~ j , w )  s to (G’,W). By analogy with Theorem 57, it 
is easy to see that L(G)  = L(G’,W). Inspect the corresponding string-relation 
system W defined by analogy with P‘ in the proof of-T_heorem 58. Clearly, 
the only difference is that Wo and WF contain 6 i ? ~ ( s ) # # .  However, because 
3 ( 6 2 ~ ( ~ ) $ $ )  = s ,  the zero-length yield sequence ~ E T ( S ) $ $  is a 1-close simula- 
tion of s. Therefore, all results established for E(0,l)L grammars with s $! T* also 
hold for E(0 , l )L  grammars with any axiom. 





Chapter 7 

Applications and Implement at ion 

Although this book primarily represents a theoretically oriented treatment, most 
grammars discussed in the previous chapters have realistic applications. Indeed, 
these grammars are useful to every scientific field that formalizes its results by 
some strings and studies how these strings are produced from one another un- 
der some permitting or, in contrast, forbidding conditions. As numerous areas 
of science formalize and study their results in this way, any description of appli- 
cations that cover more than one of these areas would be unbearably sketchy, if 
not impossible. Therefore, we concentrate our attention on a single application 
area-microbiology, which appears of great interest at present. In this intensively 
investigated scientific field, we give three case studies that make use of L grammars 
with context conditions (see Chapter 4.2). Section 7.1 presents two case studies 
of biological organisms whose development is affected by some abnormal condi- 
tions, such as a virus infection. From a more practical point of view, Section 7.2 
discusses parametric OL grammars (see [150]), which represent a powerful and ele- 
gant implementation tool in the area of biological simulation and modeling today. 
More specifically, we extend parametric OL grammars by context conditions and 
demonstrate their use in models of growing plants. 

7.1 Applications 

Case Study 1. Consider a cellular organism in which every cell divides itself into 
two cells during every single step of healthy development. However, when a virus 
infects some cells, all of the organism stagnates until it is cured again. During 
the stagnation period, all of the cells just reproduce themselves without producing 
any new cells. To formalize this development by a suitable simple semi-conditional 
L grammar (see Section 4.2.3), we denote a healthy cell and a virus-infected cell 
by A and B, respectively, and introduce the simple semi-conditional OL grammar, 
G = ( { A ,  B} ,  P, A ) ,  where P contains the following productions: 

( A  -+ AAl 01 B), 
( A  -+ A,  Bl 01, 

(B + By01 01, 
( B  -+ A,O,O)l 

( A  -+ B ,  0,O). 

development with a stagnation period caused by the virus. 
Figure 7.1 describes G simulating a healthy development while Figure 7.2 gives a 
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Figure 7.1: Healthy development. 

Figure 7.2: Development with a stagnation period. 
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In the next case study, we discuss an OL grammar that simulates the devel- 
opmental stages of a red alga (see [161], [166]). Using context conditions, we can 
modify this grammar so that it describes some unhealthy development of this alga 
that leads to its partial death or degeneration. 

Case Study 2. Consider an OL grammar 

G = (V, P, 11, 

where 
v = {112,3,4,5,6,7,8, 1 1 1 1  

and the set of productions P contains 

1 -+ 23, 2 --+ 2, 3 + 24, 4 --t 54, [ --+ [, 
5 + 6, 6 --+ 7, 7 -+ 8[1], 8 -+ 8, ] -+ 1. 

From a biological viewpoint, expressions in fences represent branches whose 
position is indicated by 8s. These branches are shown as attached at alternate sides 
of the branch on which they are born. Figure 7.3 gives a biological interpretation of 
the developmental stages formally specified by the next derivation, which contain 
13 strings corresponding to stages (a) through (m) in the figure. 

1 JG 

JG 

JG 

=+G 
JG 

JG 

JG 

JG 

JG 

JG 

JG 

JG 

23 
224 
2254 
22654 
227654 
228 [l] 7654 
228[23]8[1] 7654 
228[224]8[23]8[1]7654 
228 [ 22541 8 [ 2241 8 [ 231 8 [ 1) 7654 
228[22654]8[2254]8[224]8[23]8[1]7654 
228[227654]8[22654]8[2254]8[224]8[23]8[1]7654 
228[228[1]7654]8[227654]8[22654]8[2254]8[224]8[23]8[1]7654. 

Death. Let us assume that the red alga occurs in some unhealthy conditions 
under which only some of its parts survive while the rest dies. This dying process 
starts from the newly born, marginal parts of branches, which are too young and 
weak to survive, and proceeds toward the older parts, which are strong enough 
to live under these conditions. To be quite specific, all the red alga parts become 
gradually dead except for the parts denoted by 2s and 8s. This process is specified 
by the following OL grammar, G, with forbidding conditions. Let W = {a’ : 
a E V}. Then, 

where the set of productions P contains: 

G =  ( V U W , P , l ) ,  
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N 

klff 
k l k l  

ff kl 

w w w w  w w 

B A7 

00mmmm00H0 

m 

klN 
0 0 m m m 0 0 0 0  

kl 
0 0 m m 0 0 0 0  

(1) 

Figure 7.3: Healthy development. 



7.1 Applications 189 

(1 --t 23,W),  (1’- 2’,{3’,4’,5’,6’,7’}), 

(3 --+ 24, W ) ,  
(2 2, w, (2’ -+ 2‘, 0), 

(4 -+ 54, W ) ,  (4’ -+ E ,  0), 
(5 -+ 6, W ) ,  (5’ -i E ,  {4’}), 
(6 7, W)i (6’ --+ E ,  {A’, 5’}), 

(8 -+ 81 W ) ,  
(I-+ 11 @)I 
(1 -11 @)I 

(3’ -+ E ,  {4’, 5’, 6’, 7’}), 

(7 --+ 8[1], W ) ,  (7’ -+ E ,  {4’15’,6’})1 

and for every a E V ,  

(a -+ a’,0), (a’ --+ a’,0). 

Figure 7.4 pictures the dying process corresponding to the next derivation, whose 
last eight strings correspond to stages (a) through (h) in the figure. 

1 +; 228[228[1]7654]8[227654]8[22654]8[2254]8[224]8[23]8[1]7654 
+G 2’2’8‘ [2’2’8’ [ 1’1 7’6’5’4’18’ [2’2’7’6’5’4’] 8’ [2‘2’6’5’4’] 8’ [2’2‘5’4’] 8’ [2’2’4’] 

+G 2’2’8’ [2’2’8’ [ 1’3 7’6’5’18’ [2’2’7’6’5’] 8’ [ 2’2’6’5’18’ [2’2’5’]8’ [ 2’2’18’ [ 2’3’1 

+G 2’2’8’[2’2’8’[ 1’1 7’6’1 8’[2’2’7’6’]8’[2’2’6’] 8’[2’2’] 8’ [2’2’] 8’[2‘3’] 8” 1’1 7’6’ 
=+-G 2’2’8’[2’2’8’[ 1’) 7’]8’[2’2’7’]8’[2’2’]8’ [2’2’]8’[2’2’]8’ [2’3’]8’[ 1/17’ 
+G 2’2’8’ [2’2’8’ [ 1’118’ [2’2’] 8’ [2’2’] 8’ [2’2’]8’ [2’2’] 8’ [2’3’] 8’ [ 1’1 
=+-G 2’2’8’ [ 2’2’8’ [ 1/11 8’ [ 2’2’18’ [ 2’2’1 8’ [2’2’] 8’ [ 2’2’1 8’ [2’] 8’ [ 1’1 
+G 2’2’8’ [2’2‘8’ [2’]]8’ [2’2’]8’ [2’2’] 8‘ [2’2’] 8’ [2’2’] 8’ [2’]8’ [2’]. 

8’ [2‘3’]8’[ 1’1 7’6’5’4’ 

8’[1’]7’6’5’ 

Degeneration. Imagine a situation where the red alga has degenerated. During 
this degeneration, only the main stem was able to give a birth to  new branches 
while all the other branches lengthened themselves without any branching out. 
This degeneration is specified by the forbidding OL grammar G = (VU{D, E } ,  P, l ) ,  
with P containing 

Figure 7.5 pictures the degeneration specified by the following derivation, in which 
the last 10 strings correspond to stages’(a) through (j) in the figure: 
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(9) (h) 

Figure 7.4: Death of marginal branch parts. 
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Figure 7.5: Degeneration. 
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1 =+> 227654 

=+G 228[0]7654 

=+ G 22 8 [ED] 8 [ D] 76 54 

=+G 228[E2D]8[ED]8[D]7654 

=+ G 2 2 8 [ E3 D] 8 [ E2 D]  8 [ED] 8 [ D] 7654 

=+G 228 [E4 D] 8 [ E3 D]8 [E2 D]8 [ED] 8[ D] 7654 

=+ G 22 8 [ E5 D]  8 [ E4 D] 8 [ E3 D] 8 [ E2 D] 8 [ED] 8 [ D] 7654 

=+ G 22 8 [ E6 D]  8 [ E5 D]  8 [ E4 D] 8 [ E3 D]  8 [ E2 D] 8 [ED] 8 [ D] 76 54 

=+ G 228 [E7 D ]  8 [E6 D] 8[E5 D] 8 [E4 D]8[E3 D] 8 [E2 D] 8[ED] 8[D] 7654 

=+ G 2 2 8 [ E8 D]  8 [ E7 D] 8 [ E6 D] 8 [ E5 D] 8 [ E4 D] 8 [ E3 D] 8 [ E2 D]  8 [ED] 8 [ D] 76 54. 

7.2 Implementation 

In this section, we describe parametric OL grammars (see [15O]) and their extension 
by context conditions. We make this description from a purely practical point of 
view to clearly demonstrate how these grammars are implemented and used. 

Case Study 3. Parametric OL grammars (see [15O], [149]) operate on strings 
of modules called parametric words. A module is a symbol from an alphabet 
with an associated sequence of parameters belonging to the set of real numbers. 
Productions of parametric OL grammars are of the form 

predecessor [ : logical expression ] -+ successor. 

The predecessor is a module having a sequence of formal parameters instead of real 
numbers. The logical expression is any expression over predecessor’s parameters 
and real numbers. If the logical expression is missing, the logical truth is assumed. 
The successor is a string of modules containing expressions as parameters; for 
example, 

Such a production matches a module in a parametric word provided that the sym- 
bol of the rewritten module is the same as the symbol of the predecessor module, 
both modules have the same number of parameters, and the value for the logical 
expression is true. Then, the module can be rewritten by the given production. 
For instance, consider A(4) .  This module matches the above production since A 
is the symbol of production’s predecessor, there is one actual parameter, 4, in 
A ( 4 ) ,  that corresponds to the formal parameter x in A ( x ) ,  and the value for the 
logical expression x < 7 with x = 4 is true. Thus, A(4)  can be rewritten to 

A(x )  : x < 7 -+ A ( x + l ) D ( l ) B ( 3 - ~ ) .  

A(5)D(  1)B( - 1). 
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As usual, a parametric OL grammar can rewrite a parametric word provided 
that there exists a matching production for every module that occurs in it. Then, 
all modules are simultaneously rewritten, and we obtain a new parametric word. 

Parametric OL grammars with context conditions. Next, we extend the para- 
metric OL grammars by permitting context conditions. Each production of a paru- 
metric OL grammar with permitting conditions has the form 

predecessor [ ? context conditions] [ : logical expression] -+ successor, 

where the predecessor, the logical expression, and the successor have the same 
meaning as in parametric OL grammars, and context conditions are some per- 
mitting context conditions separated by commas. Each condition is a string of 
modules with formal parameters. For example, consider 

A(%) ’? B(y),  C(r,  z )  : x < y + r -+ D(z)E(y  + r ) .  

This production matches a module in a parametric word w provided that the 
predecessor A ( x )  matches the rewritten module with respect to the symbol and 
the number of parameters and there exist modules matching to B(y) and C(r,  z )  
in w such that the value for logical expression x < y + r is true. For example, this 
production matches A ( l )  in C(3,8)D(- l )B(5)H(O,  O)A( l )F(3)  because there are 
C(3,8)  and B ( 5 )  such that 1 < 5 + 3 is true. If there are more substrings matching 
the context condition, any of them can be used. 

Having described the parametric OL grammars with permitting conditions, we 
next show how to use them to simulate the development of some plants. 

In nature, developmental processes of multicellular structures are controlled 
by the quantity of substances exchanged between modules. In the case of plants, 
growth depends on the amount of water and minerals absorbed by the roots and 
carried upward to the branches. The model of branching structures making use 
of the resource flow was proposed by Borchert and Honda in [24]. The model is 
controlled by a flux of resources that starts at the base of the plant and propagates 
the substances toward the apexes. An apex accepts the substances, and when the 
quantity of accumulated resources exceeds a predefined threshold value, the apex 
bifurcates and initiates a new lateral branch. The distribution of the flux depends 
on the number of apexes that the given branch supports and on the type of the 
branch-plants usually carry greater amount of resources to straight branches than 
to lateral branches (see [24] and [149]). 

The following two examples illustrate the idea of plants simulated by parametric 
OL grammars with permitting conditions: 

(I) Consider the model 

axiom : 1(1,1, eroot) A (1 )  
P I  : 

pa : 

A(id) ? l ( i dp , c ,  e )  : i d  == i d ,  A e 2 eth 
-+ [+(a) 1 (2  * id + 1, y, 0 )  A(2 * id + 1)]/(7r) 1 ( 2  * id,  1 - 7 , O )  A(2 * i d )  
1( id ,c ,e)  ? I(id,,c,,e,) : id ,  == Lid/2] 
--+ I ( id ,  c, c * e,) 
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This L grammar describes a simple plant with a constant resource flow from its 
roots and with a fixed distribution of the stream between lateral and straight 
branches. It operates on the following types of modules: 

0 I ( i d ,  c, e )  represents an internode with a unique identification number i d ,  a 
distribution coeficient c, and a flux value e. 

0 A ( i d )  is an apex growing from the internode with identification number equal 
to id. 

0 +(4) and /($) rotate the segment orientation by angle 4 (for more informa- 
tion, consult [149]). 

0 [ and ] enclose the sequence of modules describing a lateral branch. 

We standardly assume that if no production matches a given module X ( z 1 , .  . . , zn), 
the module is rewritten by an implicit production of the form 

that is, it remains unchanged. 
At the beginning, the plant consists of one internode 1(1,1, eroot) with apex 

A(1), where eroot is a constant flux value provided by the root. The first pro- 
duction, p1,  simulates the bifurcation of an apex. If an internode preceding the 
apex A ( i d )  reaches a sufficient flux e 2 eth, the apex creates two new internodes 
I terminated by apexes A.  The lateral internode is of the form 1 ( 2  * i d  + 1, y,O) 
and the straight internode is of the form 1(2 * id, 1 - y, 0). Clearly, the identifi- 
cation numbers of these internodes are unique. Moreover, every child internode 
can easily calculate the identification number of its parent internode; the parent 
internode has i d p  = Lid/2j. The coefficient y is a fraction of the parent flux to be 
directed to the lateral internode. The second production, p 2 ,  controls the resource 
flow of a given internode. Observe that the permitting condition l ( i d p ,  cp ,  e p )  with 
id,.= Lid/2] matches only the parent internode. Thus, p2 changes the flux value e 
of I ( i d ,  c, e )  to c * e p ,  where ep is the flux of the parent internode, and c is either y 
for lateral internodes or 1 - y for straight internodes. Therefore, p2 simulates the 
transfer of a given amount of parent’s flux into the internode. Figure 7.6 pictures 
12 developmental stages of this plant, with eroot, eth, and y set to 12,  0.9, and 0.4, 
respectively. The numbers indicate the flow values of internodes. 

It is easy to see that this model is unrealistically simple. Since the model 
ignores the number of apexes, its flow distribution does not depend on the size of 
branches, and the basal flow is set to  a constant value. However, it sufficiently 
illustrates the technique of communication between adjacent internodes. Thus, 
it can serve as a template for more sophisticated models of plants, such as the 
following model. 

(11) We discuss a plant development with a resource flow controlled by the number 
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Figure 7.6: Developmental stages of the plant generated by (I). 
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of apexes. This example is based on Example 17 in [149]. 

axiom : N ( l ) I ( l , s t r a i g h t , O ,  1) A ( l )  

P2 : 

Pl : N ( k )  -+ N ( k +  1) 
I ( i d ,  t ,  e ,  c)  ? N ( k ) ,  A(id) 

-+ I ( id ,  t ,  0 0 2 ( ~ - ' ) v ~ ,  1)  

: i d  == 1 A i d ,  == 2 * i d  A id l  == 2 * i d  + 1 
-+ I ( i d , t ,  a02("')vk, c, + cl) 

: i d ,  == Lid/2J A i d ,  == 2 * i d  A idl == 2 * i d  + 1 

Id( id ,  t ,  e ,c)  ? 1(id,, t,, e p , c p ) ,  A(id,) 
: id, == Lid/Z] A i d ,  == i d  

A(id) ? 1(id,, t,, e,, c,) 
: id == id ,  A e, 2 eth 
-+ [ + ( a ) 1 ( 2 * i d +  l,lateral,e,* ( 1  - X ) , l ) A ( 2 * i d + l ) ]  

: id  == 1 

P3 : I ( i d , t , e , c )  ? N ( k ) ,  l ( i d s l t s , e s , c s ) ,  I ( 4 , t l , e l , c l )  

p4 : I ( i d , t , e , c )  ? l ( id , , tprep ,cp) ,  l ( i d s , t s , e s , c s ) ,  I ( idl , t l ,e l ,c l )  

-+ I ( i d , t l  d ( t ,  ep, cp, c ) ,  cs + C l )  

-+ I(id,t ,S(t ,e, ,c, ,c) ,  1) 

P5 : 

P6 : 

/ ( T )  1(2 * i d ,  straight, e, * A, 1 )  A ( 2  * i d )  

This L grammar uses the following types of modules: 

I ( i d ,  t ,  e ,  c)  is an internode with a unique identification number i d ,  where t 
is a type of this internode, t E {straight, lateral}, e is a flux value, and c is 
a number of apexes the internode supports. 

A ( i d )  is an apex terminating the internode id. 

0 N ( k )  is an auxiliary module, where k is the number of a developmental cycle 
to be done by the next derivation. 

0 +(4), /($), [ and ] have the same meaning as in the previous example. 

The flux distribution function, S, is defined as 

e, - e,(l - X)((c,  - c ) / c )  
e,(l - 4 ( c / ( c ,  - c ) )  

if t = straight, 
if t = lateral. 

6(tl ep, C p ,  c )  = 

The development starts from the axiom N ( 1 )  1(1,  straight, 0 , l )  A ( l )  containing 
one straight internode with one apex. In each derivation step, by application of 
p4, every inner internode I ( id , t , e ,c )  gets the number of apexes of its straight 
(1(id,, t,, e,, c,)) and lateral ( I ( id l ,  tl ,  el, c l ) )  descendant. Then, this number is 
stored in c. Simultaneously, it accepts a given part of the flux ep  provided by 
its parent internode 1(id,, t,, e,, c,). The distribution function 6 depends on the 
number of apexes in the given branch and in the sibling branch, and on the type of 
this branch (straight or lateral). The distribution factor X determines the amount 
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8 

(4 (n) (0) 

Figure 7.7: Developmental stages of the plant generated by (11). 
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of the flux that reaches the straight branch in case that both branches support the 
same number of apexes. Otherwise, the fraction is also affected by the ratio of apex 
counts. Productions pz and p3 rewrite the basal internode, calculating its input 
flux value. The expression used for this purpose, 0 0 2 ( ~ - ' ) ~ ~ ,  was introduced by 
Borchert and Honda to simulate a sigmoid increase of the input flux; 00 is an initial 
flux, k is a developmental cycle, and 77 is a constant value scaling the flux change. 
Production p5 rewrites internodes terminated by apexes. It keeps the number of 
apexes set to  1, and by analogy with p 4 ,  it loads a fraction of parent's flux by using 
the 6 function. The last production, p6, controls the addition of new segments. 
By analogy with p l  in the previous example, it erases the apex and generates two 
new internodes terminated by apexes. Figure 7.7 shows 15 developmental stages 
of a plant simulation based on this model. 

Obviously, there are two concurrent streams of information in this model. The 
bottom-up (acropetal) stream carries and distributes the substances required for 
the growth. The top-down (basipetal) flow propagates the number of apexes that 
is used for the flux distribution. A remarkable feature of this model is the response 
of a plant to a pruning. Indeed, after a branch removal, the model redirects the 
flux to the remaining branches and accelerates their growth. 

Let us note that this model is a simplified version of the model described 
in [149], which is very complex. Under this simplification, however, cp  - c may be 
equal to zero as the denominator in the distribution function 6. If this happens, we 
change this zero value to the proper non-zero value so that the number of apexes 
supported by the parent internode corresponds to the number of apexes on the 
straight and lateral branches growing from the parent internode. Consult [149] for 
a more appropriate, but also complicated solution of this problem. 

From the presented examples, we see that with permitting conditions, paramet- 
ric OL grammars can describe sophisticated models of plants in a very natural way. 
Particularly, compared to the context-sensitive L grammars, they allow one to re- 
fer to modules that are not adjacent to the rewritten module, and this property 
makes them more adequate, succint, and elegant. 



Chapter 8 

Concluding and Bibliographical 
Notes 

Summary. The classical context-dependent grammars, such as context-sensitive 
and phrase-structure grammars, represent powerful generators of languages. How- 
ever, their strict conditions placed on the context surrounding the rewritten sym- 
bol during the generation of languages complicate their use both in theory and 
in practice. Therefore, in this book, we discuss a large variety of grammars with 
much less restrictive context conditions that are placed on derivation domains, 
use of productions, or the neighborhood of rewritten symbols. All the grammars 
under discussion also use context-independent productions so as to simplify the 
language generation process. Perhaps most important, we demonstrate that most 
of the grammars with alternative context conditions are as powerful as the classical 
context-dependent grammars. That is, they have the same generative power as 
the phrase-structure grammars, and if erasing productions are ruled out, they are 
as powerful as the context-sensitive grammars. As a result, the grammars studied 
in this book represent language generators based on context-independent produc- 
tions and very simple context conditions, yet they maintain the power of context- 
dependent grammars. All these advantages make their use obviously preferable to 
the classical context-dependent grammars both from a theoretical and practical 
point of view. From a theoretical viewpoint, they simplify the language genera- 
tion and its analysis, which usually turns out unbearably tedious and clumsy in 
terms of the classical context-dependent grammars. From a practical viewpoint, 
these easy-to-use grammars with flexible context conditions have their important 
applications in reality as we demonstrate in examples from microbiology. 

Historical Notes. Conditional grammars were introduced in [64]. Several vari- 
ants of these grammars were discussed in [41], [44], [52], [53], [84], [85], [87], [91], 
[141], [145], [146], [154], [158], [173], and 11741. The crucial concepts of these 
grammars and results concerning them are summarized in [126]. 

General References. Although the present treatment of conditional grammars 
is selfcontained, it assumes some background in the formal language theory. For 
an introduction to this theory, consult [7], [8], [16], [72], [79], [81], [SS], [118], [157], 
[160], [161], [162], or [182]. 
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Future Investigation. We suggest the following new directions of investigation 
concerning grammars with context conditions. 

(1) By context conditions, the grammars dicussed in this book actually restrict 
their derivations. In this sense, they are strongly related to regulated grammars, 
which make this restriction by various regulating mechanisms. Study how to re- 
place some of these mechanisms by suitable context conditions and vice versa. 
Regulated grammars are investigated, for instance, in [l], [2], [58], [83], [loll, 

and [157]. A good introduction to regulated grammars is [43]. 
(2) Introduce automata with context conditions. Concentrate on pushdown 

automata with some context conditions placed on their stacks. For a detailed 
discussion of automata, consult [4], [7], [8], [12], [16], [32], [34], [54], [55] [56], [71], 

or [182]. 
(3) Adapt the language models with context conditions for translation. De- 

velop translation grammars and automata working under these conditions. For an 
essential discussion of the translation models, see [4], [5], [6], [7], [8], [9], [22], [27], 

(4) Chapter 7 concentrates its attention on applications in terms of microbiol- 
ogy. Study some other applications of the language and translation models with 
context conditions. Specifically, apply these models in some classical application 
areas of computer science, such as the applications included in [3], [4], [9], [lo], 

[102], [103], [108], [111], 11131, [115], [125], [129], [1301, [1451, [1521, [1531, [1541, 

[78], [79], [80], [81], [86], [92], [W, [1321, 11341, [1511, [1571, [W, (1631, [171l, 

1351, [591, [601, 1761, [821, [891, [go], 1981, P431, P441, 11641, or 11831. 

[111, [W, [14], [IS], 1171, [W, [W, 1201, [211, 1231, 1251, 1261, 1281, [29l, WI, 1311, 
[321, [331, [351, [361, 1371, 1381, [391, [401, [42l, [451, [46l, 1471, [48l, [491, [Sol, 
[571, [591, WI, WI,  [991, [W, 
[140], [142], [159], [165], [172], [176], [177], [178], [179], [180], [181], and [183]. 

[621, 1631, [651, [661, [67l, [741, P31, [941, 
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Denotations of Language Families 

CEOL 
CEPOL 
CEPTOL 
CETOL 
CF 
CG 
cs 
EIL [.i], EIL [i.] 
EOL 
EPOL 
EPTOL 
ETOL 
F 
FEOL 
FEPOL 
FEPTOL 
FETOL 
GCC 
GF 
prop-CG 
prop-F 
prop-GCC 
prop-GF 
prop-RC 
prop-RC (ac) 
prop-SC 
prop-SSC 
prop-WM 
PS[.i], PS[i.] 
RC 
RC(ac) 
RE 
SEOL 
SEPOL 
sc 
SCAT 
SCAT [. i/  j] 
ssc 
SSC-EOL 

context-conditional EOL grammars (CEOL grammars) 
propagating CEOL grammars (CEPOL grammars) 
propagating CETOL grammars (CEPTOL grammars) 
context-conditional ETOL grammars (CETOL grammars) 
context-free grammars 
context-conditional grammars 
context-sensitive grammars 
EIL grammars with uniform rewriting 
EOL grammars 
propagating EOL grammars (EPOL grammars) 
propagating ETOL grammars (EPTOL grammars) 
ETOL grammars 
forbidding grammars 
forbidding EOL grammars (FEOL grammars) 
propagating FEOL grammars (FEPOL grammars) 
propagating FETOL grammars (FEPTOL grammars) 
forbidding ETOL grammars (FETOL grammars) 
global context conditional grammars 
generalized forbidding grammars 
propagating context-conditional grammars 
propagating forbidding grammars 
propagating global context conditional grammars 
propagating generalized forbidding grammars 
propagating rc-grammars 
propagating rc-grammars with appearance checking 
propagating semi-conditional grammars 
propagating simple semi-conditional grammars 
propagating context-free grammars over word monoids 
phrase-structure grammars with uniform rewriting 
random-context grammars 
random-context grammars with appearance checking 
phrase-structure grammars 
symbiotic EOL grammars (SEOL = WMEOL(2)) 
propagating symbiotic EOL gra.mmars 
semi-conditional grammars 
scattered context grammars 
scattered context grammars with uniform rewriting 
simple semi-conditional grammars 
simple semi-conditional EOL grammars 
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SSC-EPOL 
SSC-EPTOL 
SSC-ETOL simple semi-conditional ETOL grammars 
WM 
WMEOL 
WMEPOL 

propagating SSC-EOL grammars (SSC-EPOL grammars) 
propagating SSC-ETOL grammars (SSC-EPTOL grammars) 

context-free grammars over word monoids 
EOL grammars over word monoids 
propagating EOL grammars over word monoids 



Subject Index 

OL grammar, 12 

alph, 7 
Alphabet, 6 
Axiom, 9 

Bijection, 8 

Cardinality, 5 
Cartesian product, 7 
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CETOL grammar, 91 
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of language, 6 
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transitive, 8 
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Prefix, 7 

Product 

Production 

proper, 7 

k-fold, 8 

conditional, 34 

Queue grammar, 12 

Random-context grammar, 40 

range, 8 
rc-grammar, 40 
Red alga, 187 
Relation, 8 

binary, 8 
inverse, 8 

with appearance checking, 40 

rev, 6 
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Scattered context grammar, 150 
Semi-conditional grammar, 58 
Sentential form, 9 
Sequence, 5 

finite, 5 
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complement of, 5 
finite, 5 
member of, 5 
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of a yield sequence, 170 
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SSC-EPTOL grammar, 118 
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String, 6 

empty, 6 
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power of, 6 
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String-relation sequence, 170 
String-relation system, 169 
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proper, 5 
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Successful-derivation simulator, 

proper, 7 

suffix, 7 
proper, 7 
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Symbol, 6 
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parallel, 145 
semi-parallel, 162 
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Virus, 185 
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Simple semi-conditional ETOL grammar, Yield sequence, 170 
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