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mistake that may remain is our entire responsibility.

In addition, we are grateful to our students who have been testing and

experimenting our lectures for so many years. Parts of the material provided here

have been taught at the Bachelor and Master levels, in France and abroad. Several

students and former students have been helping us improve the book. We really

appreciated their efforts and are very grateful to them: Erwan AUTIN, Benoı̂t
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Statistical Tools for Program Evaluation:
Introduction and Overview 1

1.1 The Challenge of Program Evaluation

The past 30 years have seen a convergence of management methods and practices

between the public sector and the private sector, not only at the central government

level (in particular in Western countries) but also at upper levels (European

commission, OECD, IMF, World Bank) and local levels (municipalities, cantons,

regions). This “new public management” intends to rationalize public spending,

boost the performance of services, get closer to citizens’ expectations, and contain

deficits. A key feature of this evolution is that program evaluation is nowadays part

of the policy-making process or, at least, on its way of becoming an important step

in the design of public policies. Public programs must show evidence of their

relevance, financial sustainability and operationality. Although not yet systemati-

cally enacted, program evaluation intends to grasp the impact of public projects on

citizens, as comprehensively as possible, from economic to social and environmen-

tal consequences on individual and collective welfare. As can be deduced, the task

is highly challenging as it is not so easy to put a value on items such as welfare,

health, education or changes in environment. The task is all the more demanding

that a significant level of expertise is required for measuring those impacts or for

comparing different policy options.

The present chapter offers an introduction to the main concepts that will be used

throughout the book. First, we shall start with defining the concept of program

evaluation itself. Although there is no consensus in this respect, we may refer to the

OECD glossary which states that evaluation is the “process whereby the activities
undertaken by ministries and agencies are assessed against a set of objectives or
criteria.” According to Michael Quinn Patton, former President of the American

Evaluation Association, program evaluation can also be defined as “the systematic
collection of information about the activities, characteristics, and outcomes of
programs, for use by people to reduce uncertainties, improve effectiveness, and
make decisions.” We may also propose our own definition of the concept: program

evaluation is a process that consists in collecting, analyzing, and using information

# Springer International Publishing AG 2017
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to assess the relevance of a public program, its effectiveness and its efficiency.

Those concepts are further detailed below. Note that a distinction will be made

throughout the book between a program and its alternative and competing strategies

of implementation. By strategies, we mean the range of policy options or public

projects that are considered within the framework of the program. The term

program, on the other hand, has a broader scope and relates to the whole range of

steps that are carried out in order to attain the desired goal.

As shown in Fig. 1.1, a program can be described in terms of needs, design,

inputs and outputs, short and long-term outcomes. Needs can be defined as a desire

to improve current outcomes or to correct them if they do not reach the required

standard. Policy design is about the definition of a course of action intended to meet

the needs. The inputs represent the resources or means (human, financial, and

material) used by the program to carry out its activities. The outputs stand for

what comes out directly from those activities (the intervention) and which are under

direct control of the authority concerned. The short-term and long-term outcomes

stand for effects that are induced by the program but not directly under the control

of the authority. Those include changes in social, economic, environmental and

other indicators.

Broadly speaking, the evaluation process can be represented through a linear

sequence of four phases (Fig. 1.1). First, a context analysis must gather information

and determine needs. For instance, it may evidence a high rate of school dropout

among young people in a given area. A program may help teachers, families and

children and contribute to prevent or contain dropout. If the authority feels that the

consequences on individual and collective welfare are great enough to justify the

design of a program, and if such a program falls within their range of competences,

then they may wish to put it forward. Context analysis relies on descriptive and

inferential statistical tools to point out issues that must be addressed. Then, the

assessment of the likely welfare changes that the program would bring in to citizens

is a crucial task that uses various techniques of preference revelation and

measurement.

Second, ex-ante evaluation is interested in setting up objectives and solutions to

address the needs in question. Ensuring the relevance of the program is an essential

part of the analysis. Does it make sense within the context of its environment?

Coming back to our previous example, the program can for instance consist of

EffectivenessEffectivenessEf�iciency

Short & long-term outcomesShort & long-term outcomes
Result and impact indicators

Outputs
Indicators of 

realization

Inputs
Indicators of 

means

Needs
Indicators of 

context

Relevance

Design
Objectives/target

Fig. 1.1 Program evaluation frame

2 1 Statistical Tools for Program Evaluation: Introduction and Overview



alternative educational strategies of follow-up for targeted schoolchildren, with

various projects involving their teachers, families and community. Are those

strategies consistent with the overall goal of the program? It is also part of this

stage to define the direction of the desired outcome (e.g., dropout reduction) and,

sometimes, the desired outcome that should be arrived at, namely the target (e.g., a

reduction by half over the project time horizon). Another crucial issue is to select a

particular strategy among the competing ones. In this respect, methods of ex-ante

evaluation include financial appraisal, budget impact analysis, cost benefit analysis,

cost effectiveness analysis and multi-criteria decision analysis. The main concern is

to find the most efficient strategy. Efficiency can be defined as the ability of the

program to achieve the expected outcomes at reasonable costs (e.g., is the budget

burden sustainable? Is the strategy financially and economically profitable? Is it

cost-effective?)

Third, during the implementation phase, it is generally advised to design a

monitoring system to help the managers follow the implementation and delivery

of the program. Typical questions are the following. Are potential beneficiaries

aware of the program? Do they have access to it? Is the application and selection

procedure appropriate? Indicators of means (operating expenditures, grants

received, number of agents) and indicators of realization (number of beneficiaries

or users) can be used to measure the inputs and the outputs, respectively. Addition-

ally, a set of management and accounting indicators can be constructed and

collected to relate the inputs to the outputs (e.g., operating expenditures per user,

number of agents per user). Building a well documented data management system

is crucial for two reasons. First, those performance indicators can be used to report

progress and alert managers to problems. Second, they can be used subsequently for

ex-post evaluation purposes.

Last, the main focus of ex post evaluation is on effectiveness, i.e. the extent to

which planned outcomes are achieved as a result of the program, ceteris paribus.

Among others, methods include benchmarking, randomized controlled experiments

and quasi-experiments. One difficulty is the time frame. For instance, the informa-

tion needed to assess the program’s outcomes is sometimes fully available only

several years after the end of the program. For this reason, one generally

distinguishes the short-term outcomes, i.e. the immediate effects on individuals’

status as measured by a result indicator (e.g., rate of dropout during mandatory

school time) from the longer term outcomes, i.e. the environmental, social and

economic changes as measured by impact indicators (e.g., the impact of dropout on

unemployment). In practice, ex post evaluation focuses mainly on short-term

outcomes, with the aim to measure what has happened as a direct consequence of

the intervention. The analysis also assesses what the main factors behind success or

failure are.

We should come back to this distinction that we already pointed out between

efficiency and effectiveness. Effectiveness is about the level of outcome per se and

whether the intervention was successful or not in reaching a desired target.

Depending on the policy field, the outcome in question may differ greatly. In

health, for instance, the outcome can relate to survival. In education, it can be

1.1 The Challenge of Program Evaluation 3



school completion. Should an environmental program aim at protecting and restor-

ing watersheds, then the outcome would be water quality. An efficiency analysis on

the other hand has a broader scope as it relates the outcomes of the intervention to

its cost.

Note also that evaluation should not be mistaken for monitoring. Roughly

speaking, monitoring refers to the implementation phase and aims to measure

progress and achievement all along the program’s lifespan by comparing the inputs

with the achieved outputs. The approach consists in defining performance

indicators, routinely collect data and examine progress through time in order to

reduce the likelihood of facing major delays or cost overruns. While it constitutes

an important step of the intervention logic of a program, monitoring is not about

evaluating outcomes per se and, as such, will be disregarded in the present work.

The remainder of the chapter is as follows. Section 1.2 offers a description of the

tools that can be used to assess the context of a public program. Sections 1.3 and 1.4

are about ex-ante and ex-post evaluations respectively. Section 1.5 explains how to

use the book.

1.2 Identifying the Context of the Program

The first step of the intervention logic is to describe the social, economic and

institutional context in which the program is to be implemented. Identifying

needs, determining their extent, and accurately defining the target population are

the key issues. The concept of “needs” can be defined as the difference, or gap,

between a current situation and a reasonably desired situation. Needs assessment

can be based on a cross-sectional study (comparison of several jurisdictions at one

specific point in time), a longitudinal study (repeated observations over several

periods of time), or a panel data study (both time and individual dimensions are

taken into account). Statistical tools which are relevant in this respect are numerous.

Figure 1.2 offers an illustration.

First, a distinction is made between descriptive statistics and inferential statis-

tics. Descriptive statistics summarizes data numerically, graphically or with tables.

The main goal is the identification of patterns that might emerge in a sample. A

sample is a subset of the general population. The process of sampling is far from

straightforward and it requires an accurate methodology if the sample is to ade-

quately represent the population of interest. Descriptive statistical tools include

measures of central tendency (mean, mode, median) to describe the central position

of observations in a group of data, and measures of variability (variance, standard

deviation) to summarize how spread out the observations are. Descriptive statistics

does not claim to generalize the results to the general population. Inferential

statistics on the other hand relies on the concept of confidence interval, a range of

values which is likely to include an unknown characteristic of a population. This

population parameter and the related confidence interval are estimated from the

sample data. The method can also be used to test statistical hypotheses, e.g.,

whether the population parameter is equal to some given value or not.

4 1 Statistical Tools for Program Evaluation: Introduction and Overview



Second, depending on the number of variables that are examined, a distinction is

made between univariate, bivariate and multivariate analyses. Univariate analysis is

the simplest form and it examines one single variable at a time. Bivariate analysis

focuses on two variables per observation simultaneously with the goal of

identifying and quantifying their relationship using measures of association and

making inferences about the population. Last, multivariate analyses are based on

more than two variables per observation. More advanced tools, e.g., econometric

analysis, must be employed in that context. Broadly speaking, the approach consists

in estimating one or several equations that the evaluator think are relevant to

explain a phenomenon. A dependent variable (explained or endogenous variable)

is then expressed as a function of several independent variables (explanatory or

exogenous variables, or regressors).

Third, program evaluation aims at identifying how the population would fare if

the identified needs were met. To do so, the evaluator has to assess the indirect costs

(negative externalities) as well as benefits (direct utility, positive externalities) to

society. When possible, these items are expressed in terms of equivalent money-

values and referred to as the willingness to pay for the benefits of the program or the

willingness to accept its drawbacks. In other cases, especially in the context of

health programs, those items must be expressed in terms of utility levels (e.g.,

quality adjusted life years lived, also known as QALYs). Several methods exist

with their pros and cons (see Fig. 1.3). For instance, stated preference methods

(contingent valuation and discrete choice experiment) exploit specially constructed

questionnaires to elicit willingness to pay. Their main shortcoming is the failure to

properly consider the cognitive constraints and strategic behavior of the agents

participating in the experiment, leading to individuals’ stated preferences that may

not totally reflect their genuine preferences. Revealed preference methods use

information from related markets and examine how agents behave in the face of

real choices (hedonic-pricing and travel-cost methods). The main advantage of

those methods is that they imply real money transactions and, as such, avoid the
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potential problems associated with hypothetical responses. They require however a

large dataset and are based on sets of assumptions that are controversial. Last,

health technology assessment has developed an ambitious framework for

evaluating personal perceptions of the health states individuals are in or may fall

into. Contrary to revealed or stated preferences, this valuation does not involve any

monetization of the consequences of a health program on individual welfare.

Building a reliable and relevant database is a key aspect of context analysis.

Often one cannot rely on pre-existing sources of data and a survey must be

implemented to collect information from some units of a population. The design

of the survey has its importance. It is critical to be clear on the type of information

one needs (individuals and organizations involved, time period, geographical area),

and on how the results will be used and by whom. The study must not only concern

the socio economic conditions of the population (e.g., demographic dynamics, GDP

growth, unemployment rate) but must also account for the policy and institutional

aspects, the current infrastructure endowment and service provision, the existence

of environmental issues, etc. A good description of the context and reliable data are

essential, especially if one wants to forecast future trends (e.g., projections on users,

benefits and costs) and motivate the assumptions that will be made in the

subsequent steps of the program evaluation.

1.3 Ex ante Evaluation Methods

Making decisions in a non-market environment does not mean the absence of

budget constraint. In the context of decisions on public projects, there are usually

fixed sectoral (healthcare, education, etc.) budgets from which to pick the resources

required to fund interventions. Ex ante evaluation is concerned with designing
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public programs that achieve some effectiveness, given those budget constraints.

Different forms of evaluation can take place depending on the type of outcome that

is analyzed. It is therefore crucial to clearly determine the program’s goals and

objectives before carrying out an evaluation. The goal can be defined as a statement

of the desired effect of the program. The objectives on the other hand stand for

specific statements that support the accomplishment of the goal.

Different strategies/options can be envisaged to address the objectives of the

program. It is important that those alternative strategies are compared on the basis

of all relevant dimensions, be it technological, institutional, environmental, finan-

cial, social and economic. Among others, most popular methods of comparison

include financial analysis, budget impact analysis, cost benefit analysis, cost effec-

tiveness analysis and multi-criteria decision analysis. Each of these methods has its

specificities. The key elements of a financial analysis are the cost and revenue

forecasts of the program. The development of the financial model must consider

how those items interact with each other to ensure both the sustainability (capacity

of the project revenues to cover the costs on an annual basis) and profitability

(capacity of the project to achieve a satisfactory rate of return) of the program.

Budget impact analysis examines the extent to which the introduction of a new

strategy in an existing program affects the authority’s budget as well as the level

and allocation of outcomes amongst the interventions (including the new one). Cost

benefit analysis aims to compare cost forecasts with all social, economic and

environmental benefits, expressed in monetary terms. Cost effectiveness analysis

on the other hand focuses on one single measure of effectiveness and compares the

relative costs and outcomes of two or more competing strategies. Last, multi-

criteria decision analysis is concerned with the analysis of multiple outcomes that

are not monetized but reflect the several dimensions of the pursued objective.

Financial flows may be included directly in monetary terms (e.g., a cost, an average

wage) but other outcomes are expressed in their natural unit (e.g., success rate,

casualty frequency, utility level).

Figure 1.4 underlines roughly the differences between the ex ante evaluation

techniques. All approaches account for cost considerations. Their main difference is

with respect to the outcome they examine.

Financial Analysis Versus Cost Benefit Analysis A financial appraisal examines

the projected revenues with the aim of assessing whether they are sufficient to cover

expenditures and to make the investment sufficiently profitable. Cost benefit analy-

sis goes further by considering also the satisfaction derived from the consumption

of public services. All effects of the project are taken into account, including social,

economic and environmental consequences. The approaches are thereby different,

but also complementary, as a project that is financially viable is not necessarily

economically relevant and vice versa. In both approaches, discounting can be used

to compare flows occurring at different time periods. The idea is based on the

principle that, in most cases, citizens prefer to receive goods and services now

rather than later.
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Budget Impact Versus Cost Effectiveness Analysis Cost effectiveness analysis

selects the set of most efficient strategies by comparing their costs and their

outcomes. By definition, a strategy is said to be efficient if no other strategy or

combination of strategies is as effective at a lower cost. Yet, while efficient, the

adoption of a strategy not only modifies the way demand is addressed but may also

divert the demand for other types of intervention. The purpose of budget impact

analysis is to analyze this change and to evaluate the budget and outcome changes

initiated by the introduction of the new strategy. A budget impact analysis measures

the evolution of the number of users or patients through time and multiplies this

number with the unit cost of the interventions. The aim is to provide the decision-

maker with a better understanding of the total budget required to fund the

interventions. It is usually performed in parallel to a cost effectiveness analysis.

The two approaches are thus complementary.

Cost Benefit Versus Cost Effectiveness Analysis Cost benefit analysis compares

strategies based on the net welfare each strategy brings to society. The approach

rests on monetary measures to assess those impacts. Cost effectiveness analysis on

the other hand is a tool applicable to strategies where benefits can be identified but

where it is not possible or relevant to value them in monetary terms (e.g., a survival

rate). The approach does not sum the cost with the benefits but, instead, relies on

pairwise comparisons by valuing cost and effectiveness differences. A key feature

of the approach is that only one benefit can be used as a measure of effectiveness.
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For instance, quality adjusted life years (QALYs) are a frequently used measure of

outcome. While cost effectiveness analysis has become a common instrument for

the assessment of public health decisions, it is far from widely used in other fields of

collective decisions (transport, environment, education, security) unlike cost

benefit analysis.

Cost Benefit Versus Multi-criteria Decision Analysis Multi-criteria decision

analysis is used whenever several outcomes have to be taken into account but yet

cannot be easily expressed in monetary terms. For instance, a project may have

major environmental impacts but it is found difficult to estimate the willingness to

pay of agents to avoid ecological and health risks. In that context, it becomes

impossible to incorporate these elements into a conventional cost benefit analysis.

Multi-criteria decision analysis overcomes this issue by measuring those

consequences on numerical scales or by including qualitative descriptions of the

effects. In its simplest form, the approach aims to construct a composite indicator

that encompasses all those different measurements and allows the stakeholders’

opinions to be accounted for. Weights are assigned on the different dimensions by

the decision-maker. Cost benefit analysis on the other hand does not need to assign

weights. Using a common monetary metric, all effects are summed into a single

value, the net benefit of the strategy.

1.4 Ex post Evaluation

Demonstrating that a particular intervention has induced a change in the level of

effectiveness is often made difficult by the presence of confounding variables that

connect with both the intervention and the outcome variable. It is important to keep

in mind that there is a distinction between causation and association. Imagine for

instance that we would like to measure the effect of a specific training program,

(e.g., evening lectures) on academic success among students at risk of school

failure. The characteristics of the students, in particular their motivation and

abilities, are likely to affect their grades but also their participation in the program.

It is thereby the task of the evaluator to control for those confounding factors and

sources of potential bias. As shown in Fig. 1.5., one can distinguish three types of

evaluation techniques in this matter: randomized controlled experiment,

benchmarking analysis and quasi-experiment.

Basically speaking, a controlled experiment aims to reduce the differences

among users before the intervention has taken place by comparing groups of similar

characteristics. The subjects are randomly separated into one or more control

groups and treatment groups, which allows the effects of the treatment to be

isolated. For example, in a clinical trial, one group may receive a drug while

another group may receive a placebo. The experimenter then can test whether the

differences observed between the groups on average (e.g., health condition) are

caused by the intervention or due to other factors. A quasi-experiment on the other

hand controls for the differences among units after the intervention has taken place.
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It does not attempt to manipulate or influence the environment. Data are only

observed and collected (observational study). The evaluator then must account

for the fact that multiple factors may explain the variations observed in the variable

of interest. In both types of study, descriptive and inferential statistics play a

determinant role. They can be used to show evidence of a selection bias, for

instance when some members of the population are inadequately represented in

the sample, or when some individuals select themselves into a group.

The main goal of ex post evaluation is to answer the question of whether the

outcome is the result of the intervention or of some other factors. The true challenge

here is to obtain a measure of what would have happened if the intervention did not

take place, the so-called counterfactual. Different evaluation techniques can be put

in place to achieve this goal. As stated above, one way is through a randomized

controlled experiment. Other ways include difference-in-differences, propensity

score matching, regression discontinuity design, and instrumental variables. All

those quasi-experimental techniques aim to prove causality by using an adequate

identification strategy to approach a randomized experiment. The idea is to estimate

the counterfactual by constructing a control group that is as close as possible to the

treatment group.

Another important aspect to account for is whether the program has been

operated in the most effectual way in terms of input combination and use. Often,

for projects of magnitude, there are several facilities that operate independently in

their geographical area. Examples include schools, hospitals, prisons, social

centers, fire departments. It is the task of the evaluator to assess whether the

provision of services meets with management standards. Yet, the facilities involved

in the implementation process may face different constraints, specific demand
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settings and may have chosen different organizational patterns. To overcome those

issues, one may rely on a benchmarking analysis to compare the cost structure of

the facilities with that of a given reference, the benchmark.

Choosing which method to use mainly depends on the context of analysis. For

instance, random assignment is not always possible legally, technically or ethically.

Another problem with random assignment is that it can demotivate those who have

been randomized out, or generate noncompliance among those who have been

randomized in. In those cases, running a quasi-experiment is preferable. In other

cases, the outcome in question is not easily observable and one may rely instead on

a simpler comparison of outputs, and implement a benchmarking analysis. The time

horizon and data availability thus also determine the choice of the method.

1.5 How to Use the Book?

The goal of the book is to provide the readers with a practical guide that covers the

broad array of methods previously mentioned. The brief description of the method-

ology, the step by step approach, the systematic use of numerical illustrations allow

to become fully operational in handling the statistics of public project evaluation.

The first part of the book is devoted to context analysis. It develops statistical

tools that can be used to get a better understanding of problems and needs: Chap. 2

is about sampling methods and the construction of variables; Chap. 3 introduces the

basic methods of descriptive statistics and confidence intervals estimation; Chap. 4

explains how to measure and visualize associations among variables; Chap. 5

describes the econometric approach and Chap. 6 is about the estimation of welfare

changes.

The second part of the book then presents ex ante evaluation methods: Chap. 7

develops the methodology of financial analysis and details several concepts such as

the interest rate, the time value of money or discounting; Chap. 8 includes a detailed

description of budget impact analysis and extends the financial methodology to a

multiple demand structure; Chaps. 9, 10 and 11 relate to the economic evaluation of

the interventions and successively describe the methodology of cost benefit analy-

sis, cost-effectiveness analysis, and multi-criteria decision analysis, respectively.

Those economic approaches offer a way to compare alternative courses of action in

terms of both their costs and their overall consequences and not on their financial

flows only.

Last but not least, the third part of this book is about ex post evaluation, i.e. the

assessment of the effects of a strategy after its implementation. The key issue here is

to control for all those extra factors that may affect or bias the conclusion of the

study. Chapter 12 introduces follow up by benchmarking. Chapter 13 explains the

experimental approach. Chapter 14 details the different quasi-experimental

techniques (difference-in-differences, propensity score matching, regression dis-

continuity design, and instrumental variables) that can be used when faced with

observational data.
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We have tried to make each chapter as independent of the others as possible. The

book may therefore be read in any order. Readers can simply refer to the table of

contents and select the method they are interested in. Moreover, each chapter

contains bibliographical guidelines for readers who wish to explore a statistical

tool more deeply. Note that this book assumes at least a basic knowledge of

economics, mathematics and statistics. If you are unfamiliar with the concept of

inferential statistics, we strongly recommend you to read the first chapters of

the book.

Most of the information that is needed to understand a particular technique is

contained in the book. Each chapter includes its own material, in particular numeri-

cal examples that can be easily reproduced. When possible, formulas in Excel are

provided. When Excel is not suitable anymore to address specific statistical issues,

we rely instead on R-CRAN, a free software environment for statistical computing

and graphics. The software can be easily downloaded from internet. Codes will be

provided all along the book with dedicated comments and descriptions. If you have

questions about R-CRAN like how to download and install the software, or what the

license terms are, please go to https://www.r-project.org/.

Bibliographical Guideline
The book provides a self-contained introduction to the statistical tools required for

conducting evaluations of public programs, which are advocated by the World

Bank, the European Union, the Organization for Economic Cooperation and Devel-

opment, as well as many governments. Many other guides exist, most of them being

provided by those institutions. We may name in particular the Magenta Book and

the Green Book, both published by the HM Treasury in UK. Moreover, the reader

can refer to the guidance document on monitoring and evaluation of the European

Commission as well as its guide to cost benefit analysis and to the evaluation of

socio-economic development. The World Bank also offers an accessible introduc-

tion to the topic of impact evaluation and its practice in development. All those

guides present the general concepts of program evaluation as well as

recommendations. Note that the definition of “program evaluation” used in this

book is from Patton (2008, p. 39).
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Sampling and Construction of Variables 2

2.1 A Step Not to Be Taken Lightly

Building a reliable and relevant database is a key aspect of any statistical study. Not

only can misleading information create bias and mistakes, but it can also seriously

affect public decisions if the study is used for guiding policy-makers. The first role

of the analyst is therefore to provide a database of good quality. Dealing with this

can be a real struggle, and the amount of resources (time, budget, personnel)

dedicated to this activity should not be underestimated.

There are two types of sources from which the data can be gathered. On one

hand, one may rely on pre-existing sources such as data on privately held com-

panies (employee records, production records, etc.), data from government agencies

(ministries, central banks, national institutes of statistics), from international insti-

tutions (World Bank, International Monetary Fund, Organization for Economic

Co-operation and Development, World Health Organization) or from

non-governmental organizations. When such databases are not available, or if

information is insufficient or doubtful, the analyst has to rely instead on what we

might call a homemade database. In that case, a survey is implemented to collect

information from some or all units of a population and to compile the information

into a useful summary form. The aim of this chapter is to provide a critical review

and analysis of good practices for building such a database.

The primary purpose of a statistical study is to provide an accurate description of

a population through the analysis of one or several variables. A variable is a charac-

teristic to be measured for each unit of interest (e.g., individuals, households, local

governments, countries). There are two types of design to collect information about

those variables: census and sample survey. A census is a study that obtains data

from every member of a population of interest. A sample survey is a study that

focuses on a subset of a population and estimates population attributes through

statistical inference. In both cases, the collected information is used to calculate

indicators for the population as a whole.
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Since the design of information collection may strongly affect the cost of survey

administration, as well as the quality of the study, knowing whether the study

should be on every member or only on a sample of the population is of high impor-

tance. In this respect, the quality of a study can be thought of in terms of two types

of error: sampling and non-sampling errors. Sampling errors are inherent to all

sample surveys and occur because only a share of the population is examined.

Evidently, a census has no sampling error since the whole population is examined.

Non-sampling errors consist of a wide variety of inaccuracies or miscalculations

that are not related to the sampling process, such as coverage errors, measurement

and nonresponse errors, or processing errors. A coverage error arises when there is

non-concordance between the study population and the survey frame. Measurement

and nonresponse errors occur when the response provided differs from the real

value. Such errors may be caused by the respondent, the interviewer, the format of

the questionnaire, the data collection method. Last, a processing error is an error

arising from data coding, editing or imputation.

Before deciding to collect information, it is important to know whether studies

on a similar topic have been implemented before. If this is to be the case, then it

may be efficient to review the existing literature and methodologies. It is also

critical to be clear on the objectives, especially on the type of information one

needs (individuals and organizations involved, time period, geographical area), and

on how the results will be used and by whom. Once the process of data collection

has been initiated or a fortiori completed, it is usually extremely costly to try and

add new variables that were initially overlooked.

The construction of a database includes several steps that can be summarized as

follows. Section 2.2 describes how to choose a sample and its size when a census is

not carried out. Section 2.3 deals with the various ways of conceiving a question-

naire through different types of questions. Section 2.4 is dedicated to the process of

data collection as it details the different types of responding units and the corre-

sponding response rates. Section 2.5 shows how to code data for subsequent

statistical analysis.

2.2 Choice of Sample

First of all, it is very important to distinguish between the target population, the

sampling frame, the theoretical sample, and the final sample. Figure 2.1 provides a

summary description of how these concepts interact and how the sampling process

may generate errors.

The target population is the population for which information is desired, it

represents the scope of the survey. To identify precisely the target population,

there are three main questions that should be answered: who, where and when?

The analyst should specify precisely the type of units that is the main focus of the

study, their geographical location and the time period of reference. For instance, if

the survey aims at evaluating the impact of environmental pollution, the target

population would represent those who live within the geographical area over which
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the pollution is effective or those who may be using the contaminated resource. If

the survey is about the provision of a local public good, then the target population

may be the local residents or the taxpayers. As to a recreational site, or a better

access to that site, the target population consists of all potential users. Even at this

stage carefulness is required. For instance, a local public good may generate spill-

over effects in neighboring jurisdictions, in which case it may be debated whether

the target population should reach beyond local boundaries.

Once the target population has been identified, a sample that best represents it

must be obtained. The starting point in defining an appropriate sample is to deter-

mine what is called a survey frame, which defines the population to be surveyed

(also referred to as survey population, study population or target population). It is a

list of all sampling units (list frame), e.g., the members of a population, which is

used as a basis for sampling. A distinction is made between identification data (e.g.,

name, exact address, identification number) and contact data (e.g., mailing address

or telephone number). Possible sampling frames include for instance a telephone

directory, an electoral register, employment records, school class lists, patient files

in a hospital, etc. Since the survey frame is not necessarily under the control of the

evaluator, the survey population may end up being quite different from the target

population (coverage errors), although ideally the two populations should coincide.

For large populations, because of the costs required for collecting data, a census

is not necessarily the most efficient design. In that case, an appropriate sample must

be obtained to save the time and, especially, the expense that would otherwise be

required to survey the entire population. In practice, if the survey is well-designed, a

sample can provide very precise estimates of population parameters. Yet, despite all

the efforts made, several errors may remain, in particular nonresponse, if the survey

fails to collect complete information on all units in the targeted sample. Thus,

depending on survey compliance, there might be a large difference between the

theoretical sample that was originally planned and the final sample. In addition to

these considerations, several processing errors may finally affect the quality of the

database.

Target population

Survey population

Theoretical ssample

Final sample Processing error

Coverage error

Nonresponse error

x x
x x

x x

Fig. 2.1 From the target population to the final sample
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A sample is only a portion of the survey population. A distinction is conse-

quently made between the population parameter, which is the true value of the

population attribute, and the sample statistic, which is an estimate of the population

parameter. Since the value of the sample statistic depends on the selected sample,

the approach introduces variability in the estimation results. The computation of a

margin of error�e is therefore crucial. It yields a confidence interval, i.e. a range of
values, which is likely to encompass the true value of the population parameter. It is

a proxy for the sampling error and an important issue with sampling design is to

minimize this confidence interval.

How large should a sample be? Unfortunately, there is no unique answer to this

question since the optimal size can be thought of in terms of a tradeoff between

precision requirements (�e) and operational considerations such as available bud-

get, resources and time. Yet, an indicative formula provides the minimum size of a

sample. It is based on the calculation of a confidence interval for a proportion. As an

illustration, assume that one wishes to estimate the portion of a population that has a

specific characteristic, such as the share of males. The true population proportion is

denoted π and the sample proportion is denoted p. Since π is unknown, we can only

use the characteristics of the sample to compute a confidence interval. Assume for

instance that we find p¼ 45% (i.e. 45 percent of the sample units are male) and

calculate a margin of error equal to e¼ 3%. The analyst can specify a range of

values 45% � 3% in which the population parameter π is likely to belong, i.e. the

confidence interval is [42%, 48%]. Statistical precision can thus be thought of as

how narrow the confidence interval is.

The formula for calculating a margin of error for a proportion is:

e ¼ zα �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ

n0

s

Three main factors determine the magnitude of the confidence interval. First, the

higher is the sample size n0, the lower is the margin of error e. At first glance, one
should then try to maximize the sample size. However, since the margin of error

decreases with the square root of the sample size, there is a kind of diminishing

returns to increasing sample size. Concurrently, the cost of survey administration is

likely to increase linearly with n0. There is consequently a balance to find between

those opposing effects. Second, a sample should be as representative as possible of

the population. If the population is highly heterogeneous, the possibility of drawing

a non-representative sample is actually high. In contrast, if all members are

identical, then the sample characteristics will perfectly match the population,

whatever the selected sample is. Imagine for instance that π¼ 90%, i.e. most indi-

viduals in the population are males. In that case, if the sample is randomly chosen,

the likelihood of selecting a non-representative sample (e.g., only females) is low.

On the contrary, if the gender attribute is equally distributed (π¼ 50%), then this

likelihood is high. Since the population variance π(1� π) is unknown, the sample

variance p(1� p) will serve as a proxy for measuring the heterogeneity in the

18 2 Sampling and Construction of Variables



population. The higher is p(1� p), the lower is the precision of the sample estimate.

Third, the zα statistic allows to compute a margin of error with a (1� α) confidence
level, which corresponds to the probability that the confidence interval calculated

from the sample encompasses the true value of the population parameter. The

sampling distribution of p is approximately normally distributed if the population

size is sufficiently large. The usually accepted risk is α¼ 5% so that the confidence

level is 95%. The critical value z5%¼ 1.96 is computed with a normal distribution

calculator.

Let us now consider the formula for the margin of error from a different

perspective. Suppose that instead of computing e, we would like to determine the

sample size n0 that achieves a given level of precision, hence keeping the margin of

error at the given level e. The equation can be rewritten:

n0 ¼ z25% � p 1� pð Þ
e2

Table 2.1 highlights the relationship between the parameters. For instance, when

the proportion p is 10% and the margin of error e is set to 5%, the required sample

size is n0¼ 138. If we want to reach a higher precision, say e¼ 1%, then we have to

survey a substantially higher number of units: n0¼ 3457. Of course, the value of p is
unknown before the survey has been implemented. Yet, the maximum of the sample

variance p(1� p) is obtained for p¼ 50%. For that value of the proportion, and in

order to achieve a level of precision e¼ 1%, one should survey at least n0¼ 9604

units, and n0¼ 384 to achieve e¼ 5%.

The sample size also depends on the size of the target population, denoted

N hereafter. Below approximately N¼ 200,000, a finite population correction factor

has to be used:

Table 2.1 Sample size for

an estimated proportion
Proportion Margin of error

p (%) 1–p (%) 0.5% 1% 5% 10%

10 90 13,830 3457 138 35

20 80 24,586 6147 246 61

30 70 32,269 8067 323 81

40 60 36,879 9220 369 92

50 50 38,416 9604 384 96

60 40 36,879 9220 369 92

70 30 32,269 8067 323 81

80 20 24,586 6147 246 61

90 10 13,830 3457 138 35
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= ×
(1 − )

×
−

− 1

Solving for n yields:

n� N � 1

N � n
¼ z25% � p 1� pð Þ

e2

n� N � 1

N � n
¼ n0,

n ¼ n0N

n0 þ N � 1
:

For instance, while we were previously suggesting a sample size of n0¼ 384 to

ensure a margin of error of 5%, now, with the new formula, and if the population

size is N¼ 500, we have:

n ¼ 384� 500

384þ 500� 1
� 217

Table 2.2 provides an overview of the problem. Those figures provide a useful

rule of thumb for the analyst. For a desired level of precision e, the lower is the

population size N, the lower is the number n of units to survey. Those results,

however, have to be taken with caution. What matters at the end is common sense.

For instance, according to Table 2.2, if N¼ 1000 the analyst should survey n¼ 906

units to ensure a margin of error of 1%. In that case, sampling would virtually be

equivalent to a census, in statistical terms but also in budget and organizational

terms. Moving to a less stringent 5% margin of error would provide a much more

relevant and tractable number of units to survey.

In practice, most polling companies survey from 400 to 1000 units. For instance,

the NBC News/Wall Street Journal conducted in October 2015 a public opinion poll

Table 2.2 Target

population and sample size
Population Margin of error

N 0.5% 1% 5% 10%

50 50 50 44 33

100 100 99 80 49

500 494 475 217 81

1000 975 906 278 88

2000 1901 1655 322 92

5000 4424 3288 357 94

10,000 7935 4899 370 95

100,000 27,754 8763 383 96
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relating to the 2016 United States presidential election (a poll is a type of sample

survey dealing mainly with issues of public opinions or elections). A number of

1000 sampling units were interviewed by phone. Most community satisfaction

surveys rely on similar sample sizes. For instance, in 2011, the city of Sydney,

Australia, focused on a series of n¼ 1000 telephone interviews to obtain a satisfac-

tion score related to community services and facilities. Smaller cities may instead

focus on n¼ 400 units. At a national level, sample sizes reach much larger values.

To illustrate it, in 2014, the American Community Survey selected a sample of

about 207,000 units from an initial frame of 3.5 million addresses. According to our

rule of thumb, this would yield a rather high precision, approximately e¼ 0.2%.

The choice of sample size also depends on the expected in-scope proportion and

response rate. First, it is possible that despite all efforts coverage errors exist and

that a number of surveyed units do not belong to the target population. On top of

these considerations, the survey may fail to reach some sampling units (refusals,

noncontacts). To guarantee the desired level of precision, one needs therefore to

select a sample larger than predicted by the theory, using information about the

expected in-scope and response rates. More specifically, the following adjustment

can be implemented:

Adjusted sample size ¼ n

Expected response rate� Expected in-scope rate

Suppose for instance that the in-scope rate estimated from similar surveys or pilot

tests is 91%. Assume also that the expected response rate is 79%. When n¼ 1000,

the adjusted sample size is:

Adjusted sample size ¼ 1000

0:91� 0:79
¼ 1391

A crucial issue here is that once the expected in-scope and response rates have been

defined ex ante, their values should serve as a target during the data collection

process. A response rate or in-scope rate lower than the desired values will result in

a sample size that does not ensure anymore the precision requirement. For instance,

in the case of the American Community Survey, if we fictitiously assume an ex-post

response rate of 25% and in-scope rate of 85%, which can be realistic in some cases

(if not in this particular one), then the margin of error increases from e ¼ 0.2% to

0.5%.

To conclude, whether one chooses a higher or lower sample size

(or equivalently, a higher or lower precision) mainly depends on operational

constraints such as the budget, but also the time available to conduct the entire

survey and the size of the target population. First, there are direct advantages and

disadvantages to using a census to study a population. On the one hand, a census

provides a true measure of the population but also detailed information about

sub-groups within the population, which can be useful if heterogeneity matters.

On the other hand, a sample generates lower costs both in staff and monetary terms
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and is easier to control and monitor. Second, the time needed to collect and process

the data increases with the sample size. Thus, with a sample survey of realistic size,

the results are generally available in less time and can still be representative of the

population. Third, the population size is also a determinant factor. If the population

is small, a census is always preferable. In contrast, for large populations, accurate

results can be obtained from reasonably small samples. In any case, the next step

now consists in conceiving the questionnaire that will be proposed to respondents.

2.3 Conception of the Questionnaire

A questionnaire is a set of questions designed to elicit information upon a subject,

or sequence of subjects, from a respondent. Given its impact on data quality, the

questionnaire design plays a central role. The purpose of a survey is to obtain

sincere responses from the respondent. One main principle applies in this matter:

one should start on the basis that most people do not want to spend time on a survey,

and if they do, it could be that they actually are not satisfied with the policy under

evaluation, which may be non-representative of the population as a whole.

Nonresponses should be minimized as much as possible. This can be done by

explaining why the survey is carried out, by keeping it quick and by telling the

respondents that the results will be communicated once finalized. Those three rules

are even truer nowadays since people are frequently required to participate in

surveys in many fields.

An important aspect of questionnaire design is the type of response formats.

There are two categories of questions: open-ended versus close-ended. Close-ended

questions request the respondent to choose one or several responses among a

predetermined set of options. While they limit the range of respondents’ answers

on the one hand, they require less time and effort for both the interviewer and the

participant on the other hand. In contrast, open-ended questions do not give

respondents options to choose from. Thereby, they allow them to use their own

words and to include more information, including their feelings and understanding

of the problem.

Examples of close-ended and open-ended questions are provided in Fig. 2.2.

Dichotomous questions (also referred to as two-choice questions) are the simplest

version of a close-ended question. They propose only two alternatives to the

respondent. Multiple choice questions propose strictly more than two alternatives

and ask the respondent to select one single response from the list of possible

choices. Checklist questions (or check-all questions) allow a respondent to choose

more than one of the alternatives provided. Forced choice questions are similar to

checklist questions, although the respondent is required to provide an answer (e.g.,

yes–no) for every response option individually. Partially closed questions provide

an alternative “Other, please specify”, followed by an appropriately sized answer

box. This type of question is useful when it is difficult to list all possible alternatives

or when responses cannot be fully anticipated. Last, open-ended questions can be of

two forms, either text or numerical.
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Another widely used format is the scale question, which asks the respondent to

grade the response on a given range of options (see Fig. 2.3). These questions can be

grouped into two subcategories: ranking questions and rating questions. Ranking

questions offer several options and request the respondent to rank them from most

important to least important on a ranking scale (where 1 is the most important, 2 is

the second most important, and so on) or a bipolar scale (where respondents have to

rate the intensity of their preference). Respondents thus compare each item to each

other. A ranking scale has the inconvenient to force the respondent to make one

item worse or better than another, when they actually could be indifferent between

them. They also require a significant cognitive effort. Pairwise comparisons over-

come these problems through the use of bipolar scales. When the number of

Fig. 2.2 Close-ended and open-ended questions. (a) close-ended questions and (b) open-ended
questions

2.3 Conception of the Questionnaire 23



alternatives is large, it is possible to ask the respondents to choose one single item

through a multiple choice question, for instance:

Let’s assume for a moment that the Santa Monica Police Department hired
another officer and assigned that officer to your neighborhood. Which of the
following five items should be the single highest priority for a new police officer
assigned to your neighborhood?

1. Working with local kids to prevent gangs and youth crime,
2. Patrolling on foot in your local neighborhood,
3. Working with local residents and neighborhood groups to help prevent crime,
4. Patrolling in police cars in your local neighborhood,

Fig. 2.3 Scale questions. (a) ranking questions and (b) rating questions
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5. Patrolling near the schools in your neighborhood.
(Source: Santa Monica Resident Survey, 2005)

The other category of scale question is the rating question, which requires the

respondents to rate their answer, independently of other options, on a rating scale

(also referred to as a Likert scale). Usually, this type of scale contains equal

numbers of positive and negative positions, which creates a less biased measure-

ment. Often, it is preferable not to propose a neutral position in the middle, as

otherwise the respondents could choose this category to save time or hide their

preference. Last, semantic differential scales ask the respondents to choose between

two opposite positions, with bipolar adjectives at each end. Such a scale allows to

include several dimensions in a single question, but also demands higher cognitive

effort from the respondent.

The sequencing of questions is as important as the questions themselves. It

should be designed to encourage the respondent to complete and maintain interest

in the questionnaire. It is usually advised to follow the following sequence. First, an

introductory section should give the title of the survey and introduce the authority

under which the survey is conducted, its purpose, and the general contents of the

questionnaire. What is included is crucial in securing the participation of

respondents. This section usually contains general instructions for the interviewer

and respondents, provides reassurances about confidentiality and states the

expected length of the survey. It requests the respondent’s cooperation and stresses

the importance of his/her participation. It explains how the survey data will be used

and includes contact information. Finally, this section may include the signature of

the person in charge of the authority under which the survey is conducted.

The sequence of questions should be as logical as possible. For instance, the first

questions should be easy to answer. Sensitive questions should not be placed at the

beginning of the questionnaire, but introduced at a point where the respondent is

more likely to feel comfortable answering them. The first questions are generally

about things respondents do or have experienced, the so-called behavior questions.

Knowledge questions can be included to better assess whether the respondent

knows the topic. Those types of question are then followed by opinion questions,

which ask what the respondents think about a specific item. Motive questions

require the respondents to evaluate why they behave in a particular manner.

Personal and confidential questions as well as questions about socio-economic

status are located at the end of the questionnaire. One should not forget to include

an open-ended question at the end, so that the respondents have the possibility to

express themselves, as well as an acknowledgement to thank the respondent.

Between each part of the questionnaire it is important to use transitional

statements to explain that a new topic will be examined. In addition, several rules

have to be obeyed with respect to question writing. Spelling, style and grammar

should be carefully checked, otherwise it would devalue the organization that

implements or orders the study. It is also recommended to minimize the length of

the questionnaire. The greater is the number of questions, the less time the

respondents spend, on average, answering each question. There is a point at
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which survey completion rates start to drop off, usually after 5–8 min (i.e. 15–20

questions—one web page—one sheet of paper). Do not ask open-ended questions

unless necessary. Use the same scales over the questionnaire. Regroup similar

questions as follows:

Now, please rate each of the following possible problems in Santa Monica on a
scale of 1 to 5. Use a 1 if you feel the problem in NOT serious at all, and a 5 if you
feel it is a VERY serious problem in Santa Monica:

1. Traf�ic congestion

2. The affordability of housing for low 

income families and seniors

3. Gang violence

4. The number of homeless people in the city

5. Lack of parking

(Source: 2005 Santa Monica resident survey)

Another point is to define and choose carefully the time horizon. For instance,

depending on the context, the question “How many times per year do you take the

bus” may not be enough specific and “per year” should be replaced by “per week”.

Avoid using terms such as “regularly” or “often”, which do not convey the same

meaning for all respondents. Instead, an appropriate time horizon should be offered,

e.g.:

How often do you suffer from headaches?

1. Rarely or never
2. Once or more a month
3. Once or more a week
4. Daily

(Source: 2001 Tromsø Health Survey)

Perhaps it is obvious, but simple and clear questions are better than long

questions, with complex words, abbreviations, acronyms, or sentences that are

difficult immediately to understand. Define the technical terms if necessary. Do

not ask negatively worded questions like “Should the City not invest in energy

efficiency for municipal buildings?” Avoid double-barreled questions that ask two

or more questions in a row. Do not use confusing terms or vague concepts. For

instance, when asked “how much do you pay per year in taxes?” respondents may

not know what is meant by “taxes”, whether it is income taxes, property taxes,

national or local taxes. Finally, there is always the risk of a framing effect when

phrasing a question. For instance, questions like “Don’t you think that the city

needs to cut the grass around our schools?” may induce yea-saying bias. Prefer

instead a question like “to what extent do you agree or disagree that. . .”. Such a

question should also specify the cost and/or additional increase in taxes. Check also
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that the response options do not force people to answer in a way that they do not

wish to. Questions must propose all the relevant options. One should open the

question with an item “other”, if one is not sure about the exhaustiveness of the

options. Last, each item should be totally independent from the others.

Not only respondents but also public decision-makers or experts in the field

should be consulted to provide insight into the type of information that is required.

Meetings and focus-groups can help identify issues and concerns that are important.

Whether it is a new questionnaire or a set of questions that have been used before, it

is also essential to test it before the survey is implemented. This stage represents an

opportunity to check whether the interviewers and respondents understand the

questions, whether the survey retains the attention of respondents and whether it

is sufficiently short. In a first step, an informal pilot test can be implemented using a

number of colleagues. While they may be familiar with the questionnaire and will

tend to answer the questions more quickly, they will also be more likely to pick up

errors than the respondents themselves. The next stage for the questionnaire writer

is to implement a larger scale pilot test on a subsample of the target population, but

also on specific subgroups of the population that may have difficulties with partic-

ular questions. A pilot test of 30–100 cases is usually sufficient to discover the

major problems in a questionnaire. The questionnaire should be administered in the

same manner as planned for the main survey. A minimum of 30 observations also

yields the possibility for the questionnaire writer to implement a preliminary

statistical analysis, in order to assess whether the survey is suitable to achieve the

objectives of the study.

2.4 Data Collection

Data collection is any process whose purpose is to acquire information. When it has

been decided that a census is not preferable over a sample survey, the first stage

consists in selecting a subset of units from the population. There are two kinds of

methods in this respect: non-probability and probability sampling. Whether one

chooses the first or the second mainly depends on the availability of a survey frame,

i.e. a list of each unit in the population. If a survey frame is not available, then one

can implement a probability sampling, i.e. select randomly a sample from that list.

By definition, probability sampling is a procedure in which each unit of the

population has a fixed probability of being selected from the sample. Reliable

inferences can then be made about the population. If a survey frame is not available,

then one has to rely instead on subjective and personal judgment in the process of

sample selection, i.e. on non-probability sampling. The procedure is usually simpler

and cheaper to implement, but also more likely to be subject to bias. Hence, whether

one chose an approach or another depends on the availability of a survey frame and

how one values the sampling error against the cost of survey administration.

Common methods of probability sampling are simple random sampling, system-

atic sampling, stratified sampling and cluster sampling. We shall consider them

successively. With simple random sampling, each unit is chosen randomly using a

2.4 Data Collection 27



random number table or a computer-generated random number. Such sampling is

done without replacement, i.e. the procedure should avoid choosing any unit more

than once. Systematic sampling is a method that selects units at regular intervals. In

a first step, all units in the survey frame are numbered from 1 to N. Second, a
periodic interval k¼N/n is calculated, where n represents the desired sample size.

Third, a starting point is randomly selected between 1 and k. Fourth, every k th unit
after the random starting point is selected. For instance, assume that the survey

frame contains N¼ 10,000 units and that we would like to sample n¼ 400 units.

The sampling interval is k¼N/n¼ 25. Then a random number between 1 and

25, say 12, is selected. The units that are selected are 12, 12þ25 ¼ 37,

37þ25 ¼ 62, etc. Stratified sampling is a method by far superior to simple random

and systematic sampling because it may significantly improve sampling precision

and reduce the costs of the survey. It is used when the survey frame can be divided

into non-overlapping subgroups, called strata, according to some variable whose

information is available ex ante (e.g., males/females, age categories, income

categories). The approach consists in drawing a separate random sample from

each stratum and then to combine the results. Specifically, the population N is

divided into m groups with Ni units in group i, i¼ 1 , . . . ,m. If the desired sample

size is n and for a proportional (Ni/N ) allocation of units between groups, one

should then survey nNi/N units in each group i. Systematic or simple random

sampling is then used to select a sufficient number of units from each stratum.

Finally, cluster sampling randomly selects subgroups of the population. In contrast

with stratified sampling, the subgroups are not based on the population attributes,

but rather on independent subdivisions, or clusters, such as geographical areas,

districts, factories, schools. Clusters i, i¼ 1 , . . . ,M of size Ni must be mutually

exclusive and together they must encompass the entire population:
PM

i¼1 Ni ¼ N.
The first step amounts to drawing randomly m clusters amongst the M. Then two

possibilities arise. Either one surveys all units in each selected cluster, in which case

the method is referred to as “one-stage cluster sampling”, or one selects a random

sample from each cluster, which is the “two-stage cluster sampling”. One advan-

tage of the procedure is that it may significantly reduce the cost of collection for

instance if personal interviews are conducted and the geographical zones are spread

out. One difficulty, however, is that the selected clusters may be non-representative

of the population.

Methods of non-probability sampling encompass convenience sampling, judg-

ment sampling, volunteer sampling, quota sampling, and snowball sampling. Con-

venience sampling, also referred to as haphazard sampling, is the most common

approach. As can be deduced from the name, it consists in selecting a sample

because it is convenient to do so. Typical examples include surveying people in a

street, at a subway stop, at a crowded place. The approach is based on the

assumption that the population is equally distributed from one geographical zone

to the other. If not, then some bias may occur. Judgment sampling selects the

sample based on what is thought to be a representative sample. For instance, one

may decide to draw the entire sample from one “typical” city or “representative”
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street. The approach may results in several biases, and is generally used for explor-

atory studies only. Volunteer sampling selects the respondent on the basis of their

willingness to participate voluntarily in the survey. Here again, the approach is

subject to many bias. In particular, self-selection may produce a sample of highly

motivated (pro or against the project) individuals and neglect average or less con-

trasting views. It is however often used when one needs to survey people with a

particular disease or health condition. Quota sampling is usually said to be the

non-probability equivalent of stratified sampling. In both cases, one has to identify

representative strata that characterize the population. Information about the true

population attributes (available from other sources such as a national census) can be

used to guarantee that each subgroup is proportionally represented. Then conve-

nience, volunteer, or judgment sampling is used to select the required number of

units from each stratum. The procedure may save a lot of time as one would

typically stop to survey people with a particular characteristic once the quota has

been reached. For instance, assume one would like to survey n¼ 400 units. If we

have an equal share of males and females in the population, one should survey only

200 males and 200 females. Last, snowball sampling is recommended when one

needs to survey people with a particular but not frequent characteristic. The

approach identifies initial respondents who are then used to refer on to other indi-

viduals. Again, it may generate several biases. It is generally used when one wants

to survey hard-to-reach units at a minimum cost, such as the deprived, the socially

stigmatized, or the users of a specific public service.

Once the sampling procedure has been selected, one has to start the collection of

data. The basic methods are self-enumeration, telephone interview, and personal

interview. The characteristics of the target population and whether a frame is easily

available strongly influence the choice of the method, which can be paper or

computer based. Self-enumeration requires the respondents to answer the question-

naire without the assistance of an interviewer. This method of data collection is

easy to administer and is typically suited to large samples or when some questions

are highly personal or sensitive and easier to complete in private. Respondents

should be sufficiently motivated and educated, so that they do not skip or misinter-

pret information. The response rate can be very low, and one may have to contact

several times the respondents to remind them to complete the questionnaire.

Personal interview requires the respondents to answer the questionnaire with the

assistance of an interviewer, at home, at work, or at a public place. The method

yields high response rates but it can however be expensive and thereby more suited

to smaller sample sizes. Another issue is that the interviewers may have to resched-

ule the interview until the respondent is present or has time. Last, telephone

interviews offer good response rates at reasonable costs since the interviewers do

not need to travel, and the interview can be rescheduled more easily than with

personal interviews. It is also easier to control the quality of the interviewing

process if it is recorded.

The type of questions may strongly influence the choice of the collection

method. If complex questions are asked, then personal or telephone interviews

are preferable. In contrast, if questions concern highly personal or sensitive issues,

2.4 Data Collection 29



self-enumeration is preferable. The nature of the sample units is also important. For

instance, if people need assistance (e.g., children or distressed people), personal

interviews are more relevant. For example, in the case of child’s health condition,

the sample unit can be the child’s family. Within this sample unit, one may

distinguish between the unit of reference (the child who provides the information)

and the reporting unit (one of the parents carrying out the information).

When personal or telephone interviews are chosen as methods for data collec-

tion, it is important to prepare the interviewers. They should be informed that the

questionnaire has been carefully prepared to minimize potential biases, that they

should not improvise, nor influence the respondents. Every question should be

asked, in the order presented, exactly as worded. They should be provided with a

manual that contains guidelines. These guidelines should also contain answers to

the most common questions that respondents may ask, as displayed in Table 2.3.

Interviewers must be honest about the length of the interview. Questions that are

misunderstood or misinterpreted should be repeated. Personal interviewers should

have official badges or documents in case a respondent ask them to prove they are a

legitimate representative of the public sector. Last, if a person still refuses to answer

the questionnaire, it should be recorded as “refusal”.

It is important to assess the performance of data collection during the survey

process itself. In this matter, many rates can be computed. Figure 2.4 provides an

Table 2.3 Examples of questions and answers during interviews

Usual question of the respondent Standard answer by the interviewer

Why did you pick me? By selecting a few people like you, we are able to reduce
the costs associated with collecting information because
we do not have to get responses from everybody. On
average, the data collected will be representative of the
population because respondents have been selected
randomly.

Who is going to see my data? All information collected is highly confidential and will
be seen only by the survey staff. Your answers will be
used only for the production of anonymous statistics.

Why should I participate? How will

you use my answers?

The purpose of this survey is to find out your views on
________. Your input in this study will provide useful
information and help improving public services.

I do not have the time right now The questionnaire consists of ____ short questions and
will not take more than ____ minutes of your time. Your
responses are very important. If you are very busy now,
please tell me when I can reach you again.

I do not see how I can help you; I

really don’t know the topic.

We are interested in your opinions and experiences, not
in what information you may or may not have. In a study
of this type, there are no right or wrong answers to
questions.

Who is behind this? This study is supervised by ______. The purpose is to
collect information that will be helpful in improving
public services.
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illustration of these concepts. A first rate is based on the proportion of resolved

records:

Resolved rate ¼ Number of resolved units

Initial sample

This rate is defined as the ratio of the number of resolved units to the total number of

sampling units. A unit is categorized as resolved if it has a determinate status, i.e. if

the unit is either in-scope (complete, partial, refusal, noncontact) or out-of-scope.

A crucial issue is that some units may not belong to the target population so that

they are out-of-scope. The following indicator estimates the extent of the

phenomenon:

In-scope rate ¼ Number of in-scope units

Number of resolved units

Using this proportion, it is also possible to approximate the expected number of

in-scope units among the resolved and unresolved units:

Expected number of in-scope units ¼ In-scope rate� Initial sample

The assumption underlying this expectation is that the in-scope rate can be

extrapolated to the whole sample.

Initial sample

Resolved Unresolved

Out-of-scope Out-of-scope 

uunits
(Non-existent 

units, out-of-

scope)

In-scope In-scope 

uunits
(Belong to the 

target 

population)

Expected in-Expected in-

sscope units

Expected 

out-of-scope out-of-scope 

units

�

RRespondents

(Complete, 

partial)

Non

rrespondents
(Refusals, 

noncontacts)

Total in-scope units

Fig. 2.4 From the initial sample to the responding units
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Another indicator of interest is the response rate, namely the number of

respondents (either complete or partial response) divided by the total number of

sample units that are in-scope (resolved and unresolved) for the survey. Since the

latter is unknown during the collection process, the previous formula is used for the

denominator:

Response rate ¼ number of responding units

expected number of in-scope units

Once the data has been collected, it is common to provide the following

information at the beginning of a survey study: (1) the sampling design and data

collection method, (2) the number of sampling units, (3) the number of in-scope

units, (4) the number of responding units, and (5) the margin of error, as illustrated

in Fig. 2.5.

In Fig. 2.5, a sample of 1000 units has been gathered via stratified sampling and

computer-assisted personal interviewing. Assume that after one week of data

collection, we have 600 resolved units among which 300 units are in-scope. This

yields a resolved rate of 600/1000 ¼ 60% and an in-scope rate equal to

300/600 ¼ 50%. The expected total number of in-scope units is thus

1000 � 50% ¼ 500. Suppose now that among the 300 units that are in scope,

200 units responded to the survey (either complete or partial response). Then the

response rate is 200/500 ¼ 40%. Now imagine that survey completion occurs after

3 weeks. This means that one finally gets 1000 resolved units. Among these units,

suppose that 700 units are in-scope and that 500 units responded to the survey. If the

target population size is N ¼ 10,000, the margin of error can be obtained using the

formula described in Sect. 2.2:

This yields a margin of error of approximately 4.27%.

Fig. 2.5 Typical header for a survey study
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2.5 Coding of Variables

Coding is the process of converting textual information into numbers or other

symbols that can be counted and tabulated. This step is essential as it determines

the final variables that will be used for subsequent analyses. To better implement it,

one should understand what a database is. In statistics, it is a computer file (e.g.,

Excel file) made of rows i and columns j, where rows stand for the responding units,
and columns for the variables. This framework is illustrated in Table 2.4 where each

xij represents the value assigned by respondent i to variable j.
In this section, we propose to explain how a database is coded using the

questions from Figs. 2.2 and 2.3. Table 2.5 shows what the final database looks

like for a selected set of questions. For closed questions, codes are generally

established before the survey takes place. The categories may be split into one or

several variables depending on the nature of the questions.

For dichotomous questions, such as question Q1 (“In 2004, did you or did
anyone in your household make a call requesting emergency assistance from the
Police Department?”), the coding involves the creation of one single variable:

Q1 ¼ 1 if}yes}
0 if}no}

�

Since their values belong to the set {0, 1}, such variables are also called

binary variables.

For multiple choice questions, two cases arise depending on whether there is a

clear ordering of the variables. First, when the options of answer can be ordered,

one can build a unique variable using a scale relevant to the investigated topic.

For instance, question Q2 (“How many years have you lived in Novato?”) can be

coded as:

Table 2.4 A usual database format

Responding unit/individual Variable 1 Variable 2 . . . Variable j . . .

1 x11 x12 . . . x1j . . .

2 x21 x22 . . . x2j . . .

3 x31 x32 . . . x3j . . .

. . . . . . . . . . . . . . . . . .

i xi1 xi2 xij . . .

. . . . . . . . . . . . . . . . . .

n� 2 xn� 2 , 1 xn� 2 , 2 . . . xn� 2 , j . . .

n� 1 xn� 1 , 1 xn� 1 , 2 . . . xn� 1 , j . . .

n xn , 1 xn , 2 . . . xn , j . . .
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Q2 ¼

1 if}Less than 2 years}
2 if}2� 5 years}
3 if}6� 10 years}
4 if}11� 20 years}
5 if}More than 20 years}

8>>>><
>>>>:

Second, when there is no intrinsic ordering to the options, one has to split them into

separate variables. This is the case for instance with question Q3 (“Do you live in a
unit, house, townhouse or semi?”):

Q3
��unit ¼ 1 if}yes}

0 if}no}

�
,Q3

��house ¼ 1 if}yes}
0 if}no}

;

�
. . .

In a similar manner, checklist questions, whether they are forced or not, imply a

transformation of each category into one specific variable. For instance, with

question Q4 (“Which, if any, of these events did you or a member of your household

attend?”), we have:

Q4
��jam ¼ 1 if}yes}

0 if}no}

�
,Q4

�� fireworks ¼ 1 if}yes}
0 if}no}

;

�
. . .

Note that forced choice questions like Q5 (“Do you receive any of the following

benefits?”) can also be treated as a series of dichotomous questions, with for

instance:

Table 2.5 Examples of coding

(a) Questions Q1–Q7

Ind Q1 Q2
Q3
unit

Q3
house

Q4
jam

Q4
fireworks

Q6
centre

Q7
school

Q7
unemp

1 1 4 0 1 0 0 0 0 0

2 0 3 0 0 0 0 0 0 1

3 1 1 1 0 1 0 0 0 0

4 1 3 1 0 1 1 1 1 1

. . . 0 5 0 0 1 1 0 1 0

(b) Questions Q8–Q14

Ind Q8
Q9
International tensions

Q9
Economic concerns Q11 Q12

Q14
Corrosive

1 30 5 1 4 2 5

2 63 4 3 1 3 4

3 140 3 4 3 5 1

4 37 6 5 2 4 3

. . . 0 2 3 3 1 2
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Q5
��sickness benefit ¼ 1 if}yes}

0 if}no}

�

For text and partially closed questions, coding is more difficult as it requires

interpretation and personal judgment to recode them into close-ended questions.

The survey staff has to detect whether some items appear frequently. If it seems to

be the case, then different categories should be created to take into account the

heterogeneity in the responses. Afterwards, the coding can be done either manually

or by computer. For instance, to question Q6 (“How did you contact the City of
Sydney?”), the option “other” may have been selected frequently by people who

wrote down “response centre”, which does not belong to the initial set of

categories. If the number of occurrences is large enough, this item should be

included as a new item among the categories of question Q6:

Q6
��response centre ¼ 1 if}yes}

0 if}no}

�

Similarly, to question Q7 (“Now, what would you say are the one or two most

important issues facing the City of Santa Monica today?”), one has to detect first

which items have been frequently raised (e.g., quality of schools, unemployment

rate, environmental concerns, crime rate), and create a category for each of them:

Q7
��schools ¼ 1 if}yes}

0 if}no}

�
, Q7

��unemployment ¼ 1 if}yes}
0 if}no}

�
, . . .

Coding is much simpler when it comes to numerical questions. We may directly

use the question as it is. To illustrate, for question Q8 (“Last month, what was the

cost of gas for this house, apartment, or mobile home?“), we have:

Q8 ¼ declared cost of gas

For ranking order questions, the data set should include a column for each item

being ranked. For instance, for question Q9 from Fig. 2.3 (“Please rank the
following issues in order of their importance to you.”) we have:

Q9
��international tensions ¼ score obtained

Q9
��Economic concerns ¼ score obtained

. . .

For any given respondent, each ranked item has a unique value, and once an item

has reached a score, that score cannot be employed anymore. Notice also that this

type of question may return different results depending on the completeness and

relevance of the list of items being ranked. Thus, these scores should be analyzed

with caution.
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Instead of using a ranking scale, one may prefer to use a bipolar scale or a rating

scale. With a bipolar scale, and any rating question, it is common to code the values

using 1, 2, 3, etc. For instance, let us consider question Q10 (“Which of the policy
options described below would you be most in favour of?”). The coding has been

implicitly made since the respondent must choose a value between 1 and 10. For

question Q11 (“Generally speaking, are you satisfied or dissatisfied with the job the
City of Thousand Oaks is doing to provide city services?”), the coding is similar,

the only difference being that a 4-point rating scale should be used:

Q11 ¼
4 if}Very satisfied}
3 if}Somewhat satisfied}
2 if}Somewhat dissatisfied}
1 if}Very dissatisfied}

8>><
>>:

For question Q12 (“To what extent do you agree or disagree that the City of

Miami Beach government is open and interested in hearing the concerns or issues of

residents?”), one should use a 5-point ranking scale, where 3 represents the neutral

position:

Q12 ¼

5 if}Strongly agree}
4 if}Somewhat agree}
3 if}Neutral}
2 if}Somewhat disagree}
1 if}Strongly disagrees}

8>>>><
>>>>:

Question Q13 (“On a scale from 1 to 10 can you indicate how satisfied you are
with the life you lead at the moment?”) already provides the respondent with a

10-point rating scale.

Last, question Q14, which uses a semantic differential scale, can be separated

into three variables (Corrosive, Leaves No Scale, Stains Fixtures) and recoded on a

5-point scale, for instance:

Q14
��Corrosive ¼

5 if}check on 1st line}
4 if}check on 2nd line}
3 if}check on 3rd line}
2 if}check on 4th line}
1 if}check on 5th line}

8>>>><
>>>>:

One difficulty with survey methods is that the questionnaire may contain a high

number of nonresponses. They can be of two types: item nonresponse, which occurs

when the respondent partially answered the questionnaire, and total or unit non-

response, which occurs when all or almost all data for a sampling unit are missing.

While the first type of error can be solved using imputation techniques, the second

type generates more severe biases, especially when these nonresponses are corre-

lated to some characteristic of the population (e.g., illiteracy). If the nonresponse
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rate is high, that can also impact the sample size and therefore the precision of the

analysis.

The problem of total nonresponse can only be tackled ex ante. First, as already

stated, if the response rate can be predicted in advance, the initial sample size

should be adjusted accordingly. Second, it is possible to improve the response rate

by providing higher incentives to participate, for instance by explaining the purpose

of the study, by offering coupons, additional services, by using media to let citizens

know that their feedbacks have been used after previous surveys.

When faced with item nonresponses, there are two possibilities. Either one

excludes the item from the analysis, or replaces the missing value using imputation

techniques. In the first case, the value is generally coded with a blank or NA (for

Non Available). Using NA is preferable as it does not incur the risk to be mistaken

with a value one has forgotten to report. In addition, spreadsheets commonly

understand what NA means. For instance, the command AVERAGE from Excel

yields 7 when faced with values “10, NA, 4”. It should be stressed that “0” (zero)

should never been used to code a missing item. This would be highly confusing

since in practice, many variables can reach this value even when the item is not

missing. More generally, note that characters like “;” or “/” should be avoided as

most statistical packages cannot handle them properly.

Second, if one wants to replace missing values using imputation techniques, the

two most common methods are deductive imputation and mean value imputation.

Deductive imputation consists in using logic to deduce the missing value. Typical

examples are when the sum of percentage items is less than 100%, or when a

ranking question has missing values. Assume for instance that question Q9 has been

filled in as follows:

Q9. Please rank the following issues in order of their importance to you. 1 stands
for the most important and 6 for the least important.

In that case, one may quite safely attribute “6” to the missing item. However,

deduction may not always be so straightforward, for instance with two or more

missing values.

Mean value imputation replaces the missing value with the mean value for a

given class. Assume for instance that a data set contains information about

employees in a given industry and that values are missing with respect to their

monthly income. Those missing values can be imputed by the average monthly

income for respondents who correctly reported their remuneration and who are in

the same company or geographic area. This may however reduce the sampling
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variance and, as such, artificially increase the sampling precision. The method

should thus be used only as a last resort.

There is also always a risk that participants do not pay attention, do not read

instructions, or answer randomly. Several methods exist to identify careless

responders or inconsistent values. The most popular approach consists in including

an attention filter where respondents are required to choose one specific answer

option, sometimes regardless of their own preference:

Reading the instructions carefully is critical. If you are paying attention please
choose “7” below.

This type of question is used to flag those who do not carefully read the instructions.

An alternative method is to use reaction times or the duration of survey completion

if the interview is computer based.

Another possibility is to identify outliers, which by definition are values that lie

in the tails of a statistical distribution. In this respect, the first thing to do when

checking for the quality of a database is to compute minimum and maximum

values. This allows to verify whether the collected information is consistent with

what one might expect. In Excel, functions MIN and MAX can be used. A more

general approach is to identify values that lie outside the interquartile range. The

latter is defined as [Q1,Q3], whereQ1 is the middle value in the first half of the rank-

ordered data set and Q3 is the middle value in the second half of the rank-ordered

data set. In Excel, one may use for instance the function QUARTILE(array, quart),
which returns the quartile of a data set. If quart equals 1, the function returns the

first quartile (25th percentile); if quart equals 2, the function returns the

median value (50th percentile); If quart equals 3, it returns the third quartile

(75th percentile).

Respondents who are flagged as outliers can be excluded from subsequent

analysis, or inconsistent values be imputed using the previous techniques. One

should however be careful as being an outlier is not necessarily synonymous with

careless responding. Some respondents may be natural outliers, with preferences

rather apart from those of more standard individuals.

Consider for instance Fig. 2.6. It provides a database constructed only for the

purpose of illustrating the approach. The data correspond to a survey based on

22 citizens of a city and their satisfaction (on a 4-rating scale) about a public

service, say, a response center. The city is divided into three districts whose zip

codes are 700, 800 and 900, respectively. Gender is coded as 1 for female and 2 for

male. The data have been ordered according to age (variable Age1). As can be seen,
the minimum value for this variable is 1 and the maximum is 861. This quick glance

thus points out problems in the database. Using the quartile function, we find

Q1 ¼ 34 and Q3 ¼ 74. These values correspond to individuals 6 and 16 in the

dataset. In theory, one should be suspicious about any value out of this range. For

instance, we can eliminate individuals 1, 20 and 21 as their age corresponds to

inconsistent values. However, individuals 2, 3, 4, 5, 17, 18, and 19 are
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natural outliers and should not be eliminated. If one wants to keep all the obser-

vations for a subsequent analysis, it is possible to replace the missing or inconsistent

values either with “NA” or mean values. For instance, the average age for females

(individuals 3, 4, 6, 8, 9, 10, 11, 15 and 19) is 49.6, while the average age for males

(individuals 2, 5, 7, 12, 13, 14, 16, 17 and 18) is 55.4. These values can be used to

recode variable Age1 into variable Age2.
Ideally, a sample survey should cover groups of the target population in pro-

portions that match the proportions of those groups in the population itself. In

practice, this may not always be the case. Due to the sampling design, to

non-coverage issues or nonresponse, some groups may be over- or under-

represented. In such situations, no reliable conclusions can be drawn from the

sample, unless it is adjusted using raking techniques (also known as sample-

balancing or iterative proportional fitting). The idea is to assign a weight to each

responding unit so that the sample better matches the target population. Units that

are under-represented are attributed a weight greater than 1, and those that are over-

represented are attributed a weight smaller than 1.

Let us first consider a simple example with one single control variable. In

Fig. 2.6, we have information about the gender of each respondent: 9 respondents

are females, and 13 are males (outliers included). Assume now that we can compare

the response distribution of Gender with the population distribution, assumed to be

equally distributed between males and females:

IndividualIndividual Age1Age1 GenderGender Zip codeZip code SatisfactionSatisfaction Age2Age2

11 111 2 700 4 55555...444

22 20 2 800 2 20

33 20 1 800 4 20

44 21 1 900 3 21

55 29 2 700 2 29

66 334 1 800 2 34

77 36 2 700 3 36

88 45 1 700 4 45

99 48 1 800 4 48

110 56 1 900 2 56

111 56 1 900 1 56

1212 56 2 700 3 56

1313 65 2 700 2 65

1414 66 2 800 4 66

1515 68 1 800 4 68

1616 774 2 700 4 74

1717 76 2 800 3 76

1818 77 2 900 1 77

1919 98 1 700 3 98

2020 4455 2 800 4 55555...44

2121 8861 2 900 1 55555...44

2222 NNA 2 700 2 55555...44

MINMIN 11

MAXMAX 861861

Q1Q1 3434

Q3Q3 7474

Fig. 2.6 Database: example 1
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Sample Female: 9 (40.9%) Male: 13 (59.1% )

Population (census) Female: 2200 (50%) Male: 2200 (50%)

The population includes 50% of males, while it is 59% in the sample. The males are

thus over-represented in our sample. We can solve this representativeness bias by

assigning adequate weights to male and female respondents:

Weight
��� f emale ¼ 50%=40:9% ¼ 1:22

Weight
���male ¼ 50%=59:1% ¼ 0:85

The weights are obtained by dividing the population percentage by the corre-

sponding sample percentage.

In practice, it is frequent to use several control variables. The computational

approach is complex and relies on raking algorithms. To illustrate, assume now that

we use both Gender (two categories: male, female) and Zip code (three categories:
700, 800, 900) to correct the representativeness bias. Combining all possibilities of

gender and zip code leads to 2� 3 different groups. Assume now that we have

information about the distribution of Zip code within the target population:

Zip code 700 800 900

Sample 9 (40.9%) 8 (36.4%) 5 (22.7%)

Population 2000 (45.45%) 1200 (27.27%) 1200 (27.27%)

How can we use this information to compute the weights? Figure 2.7 illustrates the

approach. Figure 2.7a contains information about the total frequencies in the sample.

For instance, in our dataset, 2 females live in district 700, 4 in district 800 and 3 in

district 900. Last row and column of Fig. 2.7a provide the target to attain. Since the

population is equally distributed among males (50%) and females (50%), one should

obtain similar proportions in the sample, i.e. 50% � 22¼ 11. Similarly, since

45.45% of the population lives in district 700, one should have 45.45% � 22¼ 10

units for this category in the sample, and 6 units for districts 800 and 900.

Raking is achieved with successive iterations until one converges to the desired

set of proportions. In Fig. 2.7b, the first iteration consists in aiming at 11 for the total

of males and females. Value 2.44 is obtained by multiplying the sample frequency

(here 2) by 11/9. Similarly, 4.89 is the product of 4 with 11/9, and so on. The second

iteration aimins at the desired set of proportions for Zip code. For instance, value
2.92 is obtained by multiplying 2.44 with 10/8.37. The new values obtained

however affect in return the total frequency of males and females, and the process

must be reiterated until one reaches convergence. As can be seen from Fig. 2.7e,

after four iterations, the values are more stable. The weights are finally obtained by

dividing the values of Fig. 2.7e by those of Fig. 2.7a (see Fig. 2.7f).

As can be deduced from the previous example, raking can be laborious, and one

may rely instead on statistical software to assess the relevant weights. Figure 2.8
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provides the coding to be used in R-CRAN. Command read . table is used to upload
the database, saved afterwards under the name “D”, using the path C : //mydata .
csv, which denotes the location of the file. The file format is .csv, with “;” as a

separator, and can be easily created with Excel. The command head displays the

first rows of the dataset. To use the anesrake function, all variables must be coded

continuously (1, 2, 3, etc.) with no missing values. Variable Zip.code has thus been
recoded from 1 to 3. On average, the level of satisfaction with respect to the public

service under evaluation is 2.81. This value however does not take into account the

representativity bias. The package weights allows to compute the proportion of

males and females using wpct(D$Gender), as well as how the sampling units are

distributed among the districts, using wpct(D$Zip.code). The next step is to specify
manually the population characteristics:

p:gender ¼ c 0:50; 0:50ð Þ
p:zip ¼ c 0:454545455; 0:272727273; 0:272727273ð Þ
targets ¼ list p:gender; p:zipð Þ
names targetsð Þ ¼ c }Gender}; }Zip:code}ð Þ

Fig. 2.7 Raking with two variables: example 1. (a) Sample, (b) Iteration 1, (c) Iteration

2, (d) Iteration 3, (e) Iteration 4, (f) weights
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It is important to use the same variable names as the dataset. The raking algorithm is

implemented using the package anesrake. One has to specify the desired set of

proportions (targets), the dataset (D), the column that contains the individual

numbers (D$Individual). Finally, the weights (myrake$weightvec) are saved into

the dataset D under the name D$myweights. Those weights are similar to those

presented in Fig. 2.7f. For instance, individual 1 is a male from district 1 and as such

receives a weight of 0.98. Individual 3 is a female from the second district and gets

a weight of 0.91. Weights can be used to compute the average satisfaction mean
(D$myweights∗D$Satisfaction). We now find 2.78.

Note that raking adjustments imply to know only the population totals of the

specific variables, not all cells of a cross-table. The first step is to identify a set of

variables likely to be used as control variables, and to compare them with reliable

data sources (e.g., census). Some typical variables are age groups, gender, socio

economic status, geographical location. When selected variables have categories

with less than 5% in the sample, it is recommended to collapse them.

Fig. 2.8 Raking with R-CRAN: example 1
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Bibliographical Guideline Several definitions in this chapter have been taken and

modified from the OECD Glossary of Statistical Terms. This glossary contains

additional definitions of key concepts and commonly used acronyms. These defi-

nitions are primarily drawn from existing international statistical guidelines and

recommendations that have been prepared over the last two or three decades by

international organizations (such as the United Nations, International Labor

Organization, Organization for Economic Co-operation and Development, Euro-

stat, International Monetary Fund) working with national statistical institutes and

other agencies responsible for the initial compilation and dissemination of

statistical data.

Several guides are also available online, such as the “Guidelines for Designing

Questionnaires for Administration in Different Modes” proposed by the United

States Census Bureau, “Public Opinion Surveys as Input to Administrative Reform”

by the Organization for Economic Co-operation and Development, “Designing

Household Survey Samples: Practical Guidelines” by the Department of Economic

and Social Affairs of the United Nations, “Survey Methods and Practices” by

Statistics Canada, the “Handbook of Recommended Practices for Questionnaire

Development and Testing in the European Statistical System” by Eurostat.
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Descriptive Statistics and Interval
Estimation 3

3.1 Types of Variables and Methods

Statistics divide into two branches, namely descriptive statistics and inferential

statistics. Descriptive statistics are used to describe and summarize the basic

features of the data in a study. It is the starting point of any evaluation. The

approach is not difficult to implement as it consists in simplifying often large

amounts of data using tabular, graphical and numerical techniques. Yet, it remains

essential if one wants to get a clear picture of what the dataset contains. Assume for

instance that one has gathered data about 1000 students receiving a particular

educational training. Providing extensive information about the socio-economic

characteristics of each individual as well as their marks would be useless or even

uninformative as it would be impossible to grasp the phenomena at stake. Instead, it

is preferable to provide simple and understandable summary statistics such as

information about the share of males and females, or graphs visualizing the

characteristics of the sample as a whole.

Providing descriptive statistics is thus a preliminary and necessary step. It gives

a snapshot of the information that has been gathered. In most cases, however, the

description is done in the context of a sample survey. The conclusions depend as

such on the selected sample, which introduces some uncertainty in the results. Any

generalization should be ventured with care. Inferential statistics is very useful in

this respect. It aims at generalizing the sample findings to the population of interest

through the calculation of well-defined degrees of uncertainty. This uncertainty is

accounted for through a margin of error �e, calculated with adequate probability

distributions. The approach offers a way of assessing the confidence the evaluator

has in drawing conclusions from the sample. For instance, based on a sample study,

we can use inferential statistics to deduce the satisfaction inhabitants derive from a

public service as if the survey was involving the whole population.

Whether they are inferential or descriptive, statistical tools vary depending on

the type of variables that are examined (Table 3.1.). A distinction is made between a

categorical variable and a numerical variable. A categorical variable, also known as
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qualitative variable, describes a quality or characteristic of a data unit. This type of

variable cannot be meaningfully described in terms of numbers. It may be classified

as either ordinal or nominal. Ordinal variables take values that can be logically

ordered or ranked. Examples include academic grades (e.g., A, B, C) or answers to

scale questions (e.g., strongly agree, agree, disagree, strongly disagree). Nominal

variables take values that cannot be ranked on an ordinal scale. Examples include

gender, place of residence, political affiliation. Numerical variables on the other

hand describe a numerically measured value. They are also referred to as quanti-

tative variables. Two subcategories exist. A continuous variable can take any value

between its minimum value and its maximum value (e.g., 20.1, 35.2, 40.3).

Examples include income, time, and age. A discrete variable takes values based

on a count from a set of distinct whole values (e.g., 20, 35, 40). Examples include

the number of items bought by a consumer, the number of children in a family. In

practice, the distinction between a continuous variable and a discrete variable is not

as straightforward as one might think. For the sake of simplicity, continuous

variables are often reported on a discrete scale. For instance, taxable income is

often rounded to the nearest whole dollar.

This chapter aims to review the different statistical methods that can be used to

describe a sample and to make inference for a larger population. Despite its

apparent simplicity, one should not underestimate the importance of the task,

especially in the context of public policies. Any evaluation study involves the

presentation of a lot of data in a concise manner. In particular, identifying the

problems or needs that a given policy must address requires informative statistics,

often presented in the form of context indicators. Those statistics may for instance

provide information about the economic situation of a jurisdiction (local GDP per

capita, unemployment rate, public debt, etc.), socio-demographics characteristics

(share of elderly people, gender, etc.) or other variables of interest (environment,

health, education). Such indicators can reflect the jurisdiction’s situation at a given

date or over a large set of time periods. They provide information about the

different aspects that are likely to influence policy evaluation. They may also

evidence selection biases in the collection of information, which may in turn affect

the evaluation process.

The outline of the chapter follows the classification of Table 3.2. Section 3.2

explains how to describe a database using tables. Section 3.3 is about graphical

methods. Section 3.4 details the different measures of central tendency and

variability. Section 3.5 explains how to describe the shape of a distribution of

data. Section 3.6 introduces inferential statistics and explains how to compute

Table 3.1 Statistical variables

Type of variable Subtype Example

Categorical variables Ordinal Academic grades A, B, C,. . .

Nominal Political party affiliation

Numerical variables Continuous Income

Discrete Number of children
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confidence intervals in order to generalize the results obtained from a sample to the

whole population of interest.

3.2 Tabular Displays

One important step in a statistical analysis is to show how the observations are

distributed in a dataset. This can be done through what is termed a one-way table, or

frequency table, which counts the number of times each value occurs. To build such

a table, one needs to split the data into categories or intervals known as classes or

bins. There are two rules in this respect. First, every observation must belong to one

and only one class. Second, as a matter of simplicity, the classes should have the

same width. Once created, the classes are listed in the first column of the one-way

table and the frequencies are displayed in a second column, as depicted in Table 3.3.

Imagine that a variable x is divided into L levels, or classes, namely x1 . . . xL. The
frequency (or absolute frequency) of a particular class xl represents the number of

observations nl that fall in the class. For example, suppose that a frequency

Table 3.2 Tools for describing statistical variables

Descriptive statistics

Inferential

statistics

Tabular

analysis Numerical analysis

Graphical

analysis

Use of sample

statistics to infer

characteristics of

the population

Categorical

variables

One-way

and

two-way

tables

Absolute and relative

frequencies

Bar graph,

pie chart,

radar chart

Confidence

interval for a

population

proportion

Numerical

variables

One-way

and

two-way

tables

Min, max, mean, mode,

median, variance, standard

deviation, coefficient of

variation, skewness, kurtosis

Histogram,

box-plot,

radar chart,

line graph

Confidence

interval for a

population mean

Table 3.3 Frequency table

Class Frequency Relative frequency Cumulative relative frequency

x1 n1 f 1 ¼ x1
n F1¼ f1

x2 n2 f 2 ¼ x2
n F2¼ f1 + f2

⋮ ⋮ ⋮ ⋮

xl nl f l ¼ xl
n Fl¼ f1 + f2 + . . . + fl

⋮ ⋮ ⋮ ⋮

xL nL f L ¼ xL
n FL¼ f1 + f2 + . . . + fL¼ 1

Total n 1
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distribution is based on a sample of 200 students. Imagine that 50 of these students

got a score between 60 and 70. In that context, the interval 60–70 represents the

class, and 50 is the absolute frequency.

As shown in Table 3.3, the frequency distribution can also be thought in terms of

relative frequency (or percent frequency). The relative frequency fl of a class xl is
defined as the number of occurrences nl in the dataset divided by the total number of

observations n:

f l ¼
nl
n

The value fl assigned to each class l represents the proportion of the total data set

that belongs in the class. In our previous example, this number amounts to 25%

(50/200) for the class 60–70. By construction and except for any rounding error,

relative frequencies should add up to 100%. It is then possible to compute cumu-

lative relative frequencies. The approach consists in adding up the relative fre-

quencies from one class to the next, to give a running total. The cumulative relative

frequency Fl of a class xl is given by:

Fl ¼
Xl

p¼1

f p

It denotes the percentage of the observations that are lower than xl. The cumulative

frequency of the first class is the same as its relative frequency. The cumulative

frequency of the second class is the sum of the first and second relative frequencies,

and so on. Note that cumulative frequencies have no meaning for nominal variables

as no category can be higher or lower than another.

A frequency table provides information on the distribution of one single variable

at a time. With a categorical variable, the observations are already organized into

different groups. With a continuous variable on the other hand, several steps are

involved for specifying a set of classes. First, the range of a variable x is defined as
the difference between the minimum and maximum values in the sample:

range xð Þ ¼ max xð Þ �min xð Þ
Second, the number of classes is commonly between five and twenty. Sturges’

formula is generally used:

L ¼ 1þ 3:322� log10 nð Þ
where n denotes the sample size. The number of classes increases with the sample

size. Third, the class width is obtained by dividing the range of the data by the

number L of classes:
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w ¼ range xð Þ
L

The next higher convenient number is chosen in case of fractional results. The final

step consists in determining the class limits. From an appropriate starting point for

the lower limit, the lower limit of the next class is obtained by adding the class

width. The process continues until the last class is reached. Statistical softwares

such as Excel or R-CRAN can be used to automatize the procedure of class

specification.

To illustrate the approach, assume that we have information about the research

and development (R&D) expenditures of a sample of 60 firms for a given time

period (example 1). Table 3.4 provides the raw data. We have figures about R&D

intensity, the number of patents assigned to each firm, whether those firms have

received a government subsidy and the sector they belong to. Variable intensity is
continuous and defined as R&D expenditures divided by value added. As it cannot

take the value of a fraction, patent is a discrete variable. Variable subsidy is a

nominal variable. It equals one if the firm has received a subsidy and zero other-

wise. Last, variable sector is an ordinal variable. It classifies the manufacturing

industries into three categories, coded as 3 for high-technology industries (e.g.,

aircraft and spacecraft), 2 for medium-technology industry (e.g., motor vehicles,

trailers and semi-trailers) and 1 for low-technology industry (e.g., food products,

beverages and tobacco).

The frequency distributions of the variables are provided in Table 3.5. For each

variable, we have the number of elements that belong to each class as well as the

relative frequencies. As can be seen, the framework is easily settled for categorical

variables. One simply needs to record the number of firms that have received a

subsidy or the number of firms that belong to one of the considered sectors. For

instance, in Table 3.5a, we can see that the share of firms that have received a

subsidy amounts to 33% (i.e. 20 firms out of 60). Table 3.5b provides information

on the distribution of firms among the industrial sectors: 35% are low-technology,

40% are medium-technology and 25% are high-technology. Last column of

Table 3.5b (cumulative frequency) points out that 75% of firms are not high-

technology. Table 3.5c, d respectively provide frequencies for R&D intensity and

patent claims.

With numerical variables, one needs to define the class intervals. The Sturges

formula provides the number of class intervals:

L ¼ 1þ 3:322� log10 60ð Þ ¼ 6:91 � 7 rounded offð Þ
As can be seen from Table 3.5, all intervals have the same width and are continuous

throughout the distribution. For variable Intensity the range is computed as:

3.2 Tabular Displays 49



Table 3.4 Raw data for example 1

Firm Intensity Patents Subsidy Sector

1 0.23 42 1 3

2 0.19 31 0 3

3 0.20 20 0 3

4 0.19 33 1 3

5 0.18 30 1 3

6 0.18 43 0 3

7 0.17 37 1 3

8 0.23 27 1 3

9 0.11 7 0 3

10 0.16 21 1 3

11 0.14 13 0 3

12 0.20 20 1 3

13 0.21 42 1 3

14 0.18 35 1 3

15 0.14 13 0 3

16 0.21 26 1 2

17 0.11 24 0 2

18 0.10 1 0 2

19 0.13 33 0 2

20 0.17 49 1 2

21 0.08 3 0 2

22 0.11 11 0 2

23 0.14 28 0 2

24 0.11 3 1 2

25 0.09 4 0 2

26 0.17 32 1 2

27 0.08 2 0 2

28 0.13 22 0 2

29 0.08 2 0 2

30 0.12 16 0 2

31 0.07 1 0 2

32 0.16 21 1 2

33 0.18 39 1 2

34 0.08 2 0 2

35 0.16 25 1 2

36 0.06 0 0 2

37 0.12 19 0 2

38 0.20 58 1 2

39 0.10 7 0 2

40 0.04 0 0 1

41 0.09 13 1 1

42 0.01 2 0 1

43 0.04 13 0 1

(continued)
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range Intensityð Þ ¼ 0:23� 0 ¼ 0:23

The ratio of these numbers yields the width of class intervals:

w ¼ 0:23

6:91
¼ 0:0333

This value can be rounded to 0.035. The first class interval is thus defined as

[0%, 3.5%], then it is ]3.5%, 7%], and so on. For variable Patents, the range is

58� 0¼ 58. The width is computed as 58/6.91¼ 8.36, which can be rounded to

9. The class intervals are then computed as simple multiples of the width.

The main task in creating a frequency table is counting the number of units

observed in each class. Excel can be very helpful in this respect. One needs to load

an add-in program that is available when one installs Excel: the Analysis ToolPak.

In the Excel Options, click Add-Ins, and then in the Manage box, select Excel

Add-ins. In the Add-Ins available box, select the Analysis ToolPak check box, and

then click OK. Once the Analysis ToolPak is loaded, the Data Analysis command is

available in the Analysis group on the Data tab. It is possible to create a frequency

table with the “Histogram tool”. The input range corresponds to the column of the

raw data one wants to analyze. The bin range stands for the class intervals. If no

class number is entered, then the Histogram tool will create evenly distributed class

intervals by using the minimum and maximum values in the input range as start and

end points.

Table 3.4 (continued)

Firm Intensity Patents Subsidy Sector

44 0.04 11 0 1

45 0.07 2 0 1

46 0.07 5 0 1

47 0.00 0 0 1

48 0.02 0 0 1

49 0.08 2 1 1

50 0.02 2 0 1

51 0.01 4 0 1

52 0.05 0 0 1

53 0.05 6 0 1

54 0.02 0 0 1

55 0.02 4 0 1

56 0.07 19 0 1

57 0.00 0 1 1

58 0.08 12 0 1

59 0.08 14 0 1

60 0.01 0 0 1
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Once frequency tables are created, the analysis can move to the next step with

the construction of two-way tables (also known as contingency tables or cross-

tabulations). Table 3.6 illustrates the approach. Entries in the cells of a two-way

table can be displayed as absolute frequencies (Table 3.6a) or as relative

frequencies (Table 3.6b). The classes of variable x label the rows while the classes
of variable y label the columns. Scalars L and M denote the number of classes for

the row variable and the column variable, respectively. Entries in the body of the

table (nlm) are termed joint frequencies. Entries in the total row (n.m ,m¼ 1 . . .M )

and total column (nl. , l¼ 1 . . .L ) are referred to as marginal frequencies or mar-

ginal distributions. This term is not to be mistaken with that of a conditional

distribution. Marginal frequencies provide information about the distribution of a

variable in the whole dataset. It corresponds to the values reported in the one-way

table. Conditional frequencies on the other hand relate to the distribution of one

Table 3.5 Frequency distributions: example 1

Frequency Relative frequency (%)

(a) Subsidy

Yes 20 33

No 40 67

Total 60 100

Frequency Relative frequency (%) Cumulative frequency (%)

(b) Industrial sectors

Low-tech 21 35 35

Medium-tech 24 40 75

High-tech 15 25 100

Total 60 100

(c) R&D intensity

0–3.5% 9 15 15

3.5–7% 10 17 32

7–10.5% 11 18 50

10.5–14% 11 18 68

14–17.5% 6 10 78

17.5–21% 11 18 97

21–24.5% 2 3 100

Total 60 100

(d) Patent claims

0–9 26 43 43

9–18 9 15 58

18–27 11 18 77

27–36 7 12 88

36–45 5 8 97

45–54 1 2 98

54–63 1 2 100

Total 60 100
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variable for a given value or class of the other variable. For instance, Table 3.6c

provides the conditional distribution of x given the value ym of y.
To illustrate, consider the categorical variables of example 1. First, one needs to

calculate the appropriate frequency counts. To do so, all the 60 firms must be

examined. In Table 3.7, the marginal distributions of Subsidy and Sector appear at
the right and bottom margins of the two-way table, respectively. The numbers

reported in the body of the table represent the joint frequencies. In practice, they can

Table 3.6 Two-way

tables
(a) Absolute frequencies

y1 y2 . . . ym . . . yM Total

x1 n11 n12 . . . n1m . . . n1M n1.
x2 n21 n22 . . . n2m . . . n2M n2.
⋮ ⋮ ⋮ . . . ⋮ . . . ⋮ ⋮

xl nl1 nl2 . . . nlm . . . nlM nl.
⋮ ⋮ ⋮ . . . ⋮ . . . ⋮ ⋮

xL nL1 nL2 . . . nLm . . . nLM nL.
Total n.1 n.2 n.m n.M n

(b) Relative frequencies

y1 y2 . . . ym . . . yM Total

x1 f11 f12 . . . f1m . . . f1M f1.
x2 f21 f22 . . . f2m . . . f2M f2.
⋮ ⋮ ⋮ . . . ⋮ . . . ⋮ ⋮

xl fl1 fl2 . . . flm . . . flM fl.
⋮ ⋮ ⋮ . . . ⋮ . . . ⋮ ⋮

xL fL1 fL2 . . . fLm . . . fLM fL.
Total f.1 f.2 f.m f.M 1

(c) Conditional distribution of x given the value ym of y

Class Frequency Relative frequency

x1 n1m f1m
x2 n2m f2m
⋮ ⋮ ⋮

xl nlm flm
⋮ ⋮ ⋮

xL nLm fLm
Total n.m f.m

Table 3.7 Marginal and

joint distributions: example 1
Subsidy

No Yes Total

Sector Low-tech 18 3 21

Medium-Tech 16 8 24

High-tech 6 9 15

Total 40 20 60
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be computed using pivot tables in Excel. To insert a pivot table, one needs to

execute the following steps. On the Insert tab, click PivotTable and then select the

variables to be analyzed. The relevant fields must be dragged to the different areas.

With numerical variables, it is possible to specify the class intervals by right-

clicking any cell inside the first row or first column and by selecting “Group”.

Two-way tables are useful for displaying data and identifying trends. In

Table 3.7 for instance, it can be seen that among the 40 firms that did not receive

a subsidy, 18 belong to the low-technology sector, 16 to the medium-technology

sector and only 6 to the high technology sector. This shows evidence of a selection

bias in the way the grant was assigned. This may farther affect the method of

analysis. In this example, it may be misleading directly to compare the targeted

group (or treatment group), those who received a subsidy, with the control group

(those who did not). Evaluating the role the subsidy has on patent claims is thus not

as straightforward as one might think.

3.3 Graphical Representations

Visual displays are useful in many occasions. Graphs for instance can be easier to

read than a table, especially when the reader has a limited knowledge of statistics.

They can summarize the key features of a set of data in a very efficient manner with

minimum loss of information. A variety of methods exists. Among the most popular

we can name bar graphs, circle graphs, histograms, scatter plots, line graphs and

radar charts. Ideally, those graphs should convey information that would not be

readily understandable if it was provided in the main text or in a table. They can be

generated by statistical packages at the analyst’s convenience.

Graphs should be used with care. A badly conceived figure may not accurately

reflect the true nature of the data. Designing good charts is all the more challenging

that their conception does not only depend on the knowledge one has of the data, but

also on how the reader will apprehend each graphical element. Several rules exist in

this respect: (1) there is a title for the graph as well as for the axes; (2) a legend is

included if different symbols or colors are used; (3) the scales defining the axes are

apparent on the axes and, unless otherwise specified, they must encompass the

whole set of observations; (4) units are visible (e.g., percentage, thousand dollars);

(5) as they may distort the visual representation of the data, 3D, shadow and other

fancy effects should be used with extreme caution; (6) colors should be avoided if

the document has to be printed in black and white; (7) the sources of data must be

specified either in the text or in the title; (8) unless otherwise specified, the source of

the graph as well as the data is included in the title (e.g., “Source: Author’s

contribution based on data from. . .” or “Source: OECD, 2016”) and, when neces-

sary, the sources are integrated as new items in the bibliography.

Bar graphs are used for displaying the distribution of categorical variables

(Fig. 3.1). For each class there is a bar and the height of each bar represents the

frequency of the class. The frequency can be expressed in absolute, relative or joint

values. The bars may be drawn to be contiguous or detached. The bars are uniform
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in width. This is an important feature as a larger bar could make the reader think that

there might be a higher number of occurrences than there actually is. Figure 3.1a

provides an illustration using data from Table 3.4. Frequency percentages or

numbers can be included at the top of the bars. With nominal variables, the

categories are generally rearranged so that the bars grade sequentially from the

most frequent category to the less frequent. This is not the case with ordinal

variables as the sequence of categories has a meaning. When it comes to joint

distributions, multiple bar graphs can appear on the same figure, as illustrated in

Fig. 3.1b.

Circle graphs (or pie charts) offer another way of summarizing the distribution

of categorical variables. They take the form of a circle divided into a series of

portions. Each portion represents a particular class. Figure 3.1c provides an exam-

ple. When faced with subgroups (e.g., countries), the diameter of the circle can also

be linked to the number of observations in each subgroup in order to reflect their

size. Circle graphs are visually simpler than any other type of graph. Yet, they

should be used sparingly. They are often considered as the worst way to convey
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Fig. 3.1 Plotting categorical variables: example 1. (a) Bar graph: relative frequencies. (b) Bar

graph: joint frequencies. (c) Circle graph: relative frequencies
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information. They become unreadable when the circle is divided into more than six

portions. With respect to ordinal variables, bar graphs are usually more appropriate

than pie charts as they allow the natural ordering of the categories to be visualized.

Moreover, it is difficult to visually assess the different sizes of the portions and,

thereby, the fractions that are associated with them. This may in return affect the

reader’s judgment.

Histograms provide information on the distribution of numerical variables. A

histogram looks somewhat like a bar chart. One difference is that the observations

need to be grouped into classes. The classes must be indicated by increasing order

on the horizontal axis. For each class, a vertical bar whose length is the frequency of

that class is drawn. This frequency can be expressed in absolute, relative or

conditional values. The process of constructing the classes is the same as with

tables (Sturges formula). Statistical packages usually offer those classes automati-

cally. Figure 3.2a provides an example using information from Table 3.5c about
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Fig. 3.2 Plotting numerical variables: example 1. (a) Histogram: absolute frequencies.

(b) Histogram: adjusted frequencies. (c) Kernel density plot. (d) Scatter plot
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R&D intensity. The length of the first bar corresponds to the absolute frequency of

the first class, that is n1¼ 9. The length of the second bar amounts to n2¼ 10 and so

on.

It is also possible that the height of the bars in a histogram does not represent the

number of observations or the relative frequencies. In that case, the length stands

for an adjusted number so that the area of each bar amounts to the frequency

(absolute or relative) of each class. The total area of the bars then corresponds

either to the total number of observations or to 100%. Adjustments are made as

follows. For a given class l, one needs to divide the frequency of the class by the

width wl of the class. We have:

Adjusted nl ¼ nl
wl

;Adjusted f l ¼
f l
wl

For instance, in the case of a relative frequency distribution, the area of each bar is

obtained by the multiplication of the bar’s height ( fl/wl) with its width (wl),

i.e. amounts to the relative frequency ( fl) of the class. Hence, the total area of the
bars is given by f1 + f2 + . . . + fL¼ 1.

Figure 3.2b illustrates the approach. For the first class on the left (0, 3.5%), the

relative frequency amounts to 15% (see Table 3.5c). The adjustment is as follows:

Adjusted f 1 ¼
f 1
w1

¼ 15%

3:5%� 0%
� 4:28

This value corresponds to the height of the first bar in Fig. 3.2b. As can be seen, the

re-scaling does not change the shape of the histogram. The approach is particularly

useful when class intervals are unequal or when one wants to get an approximation

of a probability density function, in order to find the probability that a random

variable falls into a particular range of values. Probability density functions are

often used to model large sets of data. By construction, the total area underneath a

probability density curve is 1 because the probability that an observation falls

within the minimum value and the maximum value is 100%.

Histograms provide information about the likelihood that a particular event

occurs. The higher the bar of a class, the more likely that particular class is to be

observed. Yet, it should be stressed that the shape of a histogram depends on the

number of class intervals and the way they are constructed. We may have for

instance as many classes as there are values, or only one class that would encom-

pass the whole set of observations. Kernel density plots offer an alternative way to

visualize the distribution of numerical variables. It consists in using nonparametric

techniques to approximate the shape of the distribution. Figure 3.2c provides an

example. The approach yields a curve that is closely related to the shape of Fig. 3.2b

in a smoother and continuous way.

Scatter plots are used to display the distribution of two numerical variables. This

type of graph has two dimensions: a horizontal dimension for the x -variable and a

vertical dimension for the y -variable. Each observation has two coordinates which
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indicate the position of the observation with respect to the horizontal and vertical

axes. A symbol, generally a bullet point, represents the observation at the intersec-

tion of the two coordinates. Figure 3.2d provides an illustration. The way in which

the points are distributed indicates whether there is a relationship, in the form of a

line or a curve for instance, between x and y. Figure 3.2d hints that on average the

number of patent claims increases as R&D intensity increases.

Line graphs offer a way to display the behavior of one or several variables over

time. Time appears on the horizontal axis and the variable(s) of interest on the

vertical axis. Each observation has two coordinates corresponding to the position of

the observation in time and the value it achieves. The symbols representing the

observations are usually connected by segments to highlight changes over time.

When faced with subgroups (e.g., countries), one curve for each subgroup is

displayed, and the symbol used is specific to the subgroup. Table 3.8, for example,

provides information on the population growth of five (fictitious) cities from 1950

to 2010. From Fig. 3.3, one can see that the population is constantly increasing, but

at different rates depending on the city.

Finally, radar charts allow the distributions of several variables to be displayed

simultaneously. Also known as web charts, spider charts or star charts, they are

used to compare the performance of one or more units (e.g., individuals, cities,

drugs). Variables are displayed on separate axes. Each axis extends outward from

the center of the chart and has the same size as the other axes. Observations are

represented by a symbol on the corresponding axis. These symbols are connected

by segments in order to highlight the specificities of each unit. For example, radar

charts offer a useful way for presenting multivariate clinical data. To illustrate,

Table 3.9 provides information on the side effects of two competing drugs, gathered

from two different samples. Each observation corresponds to the proportion of

patients who suffered from side effects. Figure 3.4 illuminates the differences

between treatments. While drug A is more likely to induce headaches, drug B is

prone to cause nausea.

All the graphs displayed in this section have been created with R-CRAN. The

source codes for the figures of example 1 are provided in Fig. 3.5, those of examples

2 and 3 in Fig. 3.7.

Figure 3.5 starts with the read . table command. It reads a file in table format

(saved as a .csv file on disc C:) and creates a data frame D in the R-CRAN

environment. The command head() returns the first parts of the table, which are

Table 3.8 Population of

five cities from 1950 to

2010: example 2

Year City A City B City C City D City E

1950 6035 12,301 4351 1987 8864

1960 6666 13,190 4759 2195 9317

1970 8126 14,715 4904 2307 10,090

1980 10,921 16,743 4953 2812 11,481

1990 11,480 18,313 5525 3107 12,974

2000 12,681 19,636 5808 4175 15,816

2010 12,936 22,123 6416 4612 17,470
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Table 3.9 Proportion of patients who suffered from side effects: example 3

Nausea (%) Vomiting (%) Diarrhea (%) Headache (%) Rash (%)

Drug A 13 1 1 10 4

Drug B 15 2 3 5 5
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Fig. 3.3 Line graph of the population of five jurisdictions: example 2
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Fig. 3.4 Radar chart: example 3

3.3 Graphical Representations 59



Fig. 3.5 Graphs with R-CRAN: example 1
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similar to the first rows of Table 3.4. This is a quick way to check that you are

working with the right file. To create Fig. 3.1a one needs to build a frequency table

using the class intervals defined in the previous section. This is done thanks to table
(D$Sector) which provides the absolute frequency of the variable Sector. The dollar
sign ($) in R-CRAN is used to identify each component of a variable of interest

(here Sector) in database D. The relative frequencies are obtained with prop . table
(). Those frequencies are saved in an additional item called relat . freq. By using the
function rownames we are able to replace the codes (1,2,3) of variable Sector by
text names ( "Low-technology", "Medium-technology", "High-technology"). The

command c() is frequently used in R-CRAN to combine elements into a vector. A

barplot is then created and saved under the name myplot for a subsequent use.
As can be seen, several options are included inside the barplot command, such as

main for the main title, ylab for the name of the vertical axis, or ylim for the limits of

the vertical axis. As they are similar from one graph to another, those options are

detailed in Table 3.10. The command text is used to display the percentage values at
the top of the bars. The vector c("35%", "25%", "40%") is drawn such that the

coordinates correspond to myplot (horizontal axis) and relat . freq (vertical axis).

Option pos¼ 3 indicates that the text should be placed above the specified

coordinates.

Figure 3.1b is constructed in a similar manner excepted that the focus is now on

two variables and their joint frequencies. The frequency distribution is obtained

using the table command and saved under the name joint . freq. The names of the

columns and rows are specified accordingly. The command barplot draws the graph
and a legend is included to help the reader differentiate the different colors.

Table 3.10 Main graph options in R-CRANa

Options Definition

type Character string giving the type of plot desired. The following values are possible:

“p” for points, “l” for lines, “b” for both points and lines, “c” for empty points joined

by lines, “o” for over-plotted points and lines, “s” and “S” for stair steps and “h” for

histogram-like vertical lines. Finally, “n” does not produce any points or lines.

xlim The x limits of the plot.

ylim The y limits of the plot.

main Main title for the plot.

sub Subtitle for the plot.

xlab Label for the x axis.

ylab Label for the y axis.

col The colors for lines and points. Multiple colors can be specified so that each point can

be given its own color: see Fig. 3.6.

bg Vector of background colors for open plot symbols.

pch Vector of plotting characters or symbols: see Fig. 3.6.

cex Numerical vector giving the amount by which plotting characters and symbols should

be scaled relative to the default.

lty Vector of line types: 1 ¼ solid, 2 ¼ dashed, etc.

lwd Vector of line widths.
aAdditional information is available using “ ?plot . default ” in the R-CRAN console
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Command beside¼ TRUE allows to avoid the piling-up of bars. More information

is available by typing “ ?barplot ”, “ ?legend ” or “ ?plot . default ” in the R-CRAN
console.

In Fig. 3.5, the pie command is used to draw the circle graph of Fig. 3.1c. The

item relat . freq stands for the relative frequency of variable sector. It was previ-
ously created with function table. The values of the pie slices are included in the

graph with labels. The command paste is very useful in this matter. It glues several

objects together, here the name of the sectors (rownames(relat . freq)) with the

value of the relative frequencies (relat . freq∗100), and the % sign.

Figure 3.5 finally provides the codes for Fig. 3.2. First, a variable myclasses is
created to specify the class intervals. The command hist is then used to draw the

histogram of absolute frequencies (Fig. 3.2a). The option breaks uses the vector

myclasses to define the bins. R-CRAN determines those classes automatically when

this option is not entered. The inclusion of the option freq¼FALSE in the hist
command generates the adjusted frequencies of Fig. 3.2b. Last, function plot
(density()) allows the probability density function to be drawn in a smooth and

continuous way as in the Kernel representation of Fig. 3.2c. The command plot is
also used to draw the scatter plot of Fig. 3.2d. Using the ~ sign, the command

specifies the variable on the vertical axis (here D$Patents) as a function of the

variable on the horizontal axis (here D$Intensity). The term pch¼ 19 specifies the

type of symbol (see also Fig. 3.6).

To obtain the line graph of Fig. 3.3, one makes use of the matplot function as in

Fig. 3.7. First, the database is uploaded under the name E in the R-CRAN environ-

ment. Notice that the column “years” (see Table 3.8) is not included as a variable

but as the name of the rows. Several options are specified in the matplot command:

PCH symbols
0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

0 (white)

1 (black)
2 (red)

3 (green)

4 (blue)

5 (cyan)

6 (magenta)
7 (yellow)

8 (gray)

Colors

Fig. 3.6 Colors and symbols
used in R plot
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E denotes the data, type¼ "b" indicates that both a line and a symbol are plotted;

pch¼ 1 : 5 defines the type of symbol (symbol 1 for the first jurisdiction, symbol

2 for the second, and so on); col¼ 1 : 5 stands for the color (color 1 for the first

jurisdiction, color 2 for the second, and so on); xaxt¼ "n" suppresses plotting of the
axis. The xaxt command is used because we need to put years as the x -axis. This is
done with the command Axis where side¼ 1 specifies the axis to be modified (the

horizontal axis), at¼ c(1, 2, 3, 4, 5, 6, 7) represents the horizontal coordinates, and

rownames(E) are the new labels.

Loaded with the command library, the package fmsb provides several functions

for medical and health data analysis. Figure 3.7 codes the radarchart function. The
raw data are uploaded with the read . table command. Two vectors,MIN andMAX,
are created. They specify the lower and upper limits of the axes. We need to draw

two radar charts in the same box in order to compare the side-effects of the two

Fig. 3.7 Graphs with R-CRAN: examples 2 and 3
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treatments. To do so, the command par(mar¼ c(1, 1, 2, 1)) modifies the margins

using a numerical vector of the form c(bottom, left, top, right) that gives the number

of lines to be specified on the four sides of the plot. The term mfrow¼ c(1, 2)
specifies the number of boxes/graphs to be drawn (1 row and 2 columns). Extend

the graph window in the R-CRAN console so that all the text appears on the screen

if you wish to copy for further use. Two additional vectors are created, labelA and

labelB. They are used to rename the axes so that they include the value of each

observation. The paste command is used in this respect: colnames(F) stands for the
names of the side effects; F[1, ]∗100 and F[2, ]∗100 are the relative frequencies

observed for drug A and drug B, respectively; "%" indicates the percentage sign.

The command radarchart is then used to plot the graph. The rbind command allows

the data frame to include the vectors of maximum and minimum values. Option

pdensity¼ 40 specifies the filling density of polygons and vlabel indicates the

names of the variables.

3.4 Measures of Central Tendency and Variability

It is often easier to interpret data when they are presented graphically rather than as

a table. Another option to summarize information is to rely on numerical indicators.

Two types of indicators are used in this respect: measures of central tendency and

measures of variability. The first approach consists in condensing the set of data

into a single value that represents the middle or center of the distribution. The usual

measures include the mode, the median, and the mean. Measures of variability are

used to describe dispersion in a set of data. Typical examples are the range, the

interquartile range, the variance, the standard deviation and the coefficient of

variation.

It is important to remember that a difference exists between a sample and a

population. While the population includes all of the elements from a set of data, a

sample is only a subset of it. Any measure that results from a sample is referred to as

a statistic. Measures that refer to population attributes are termed parameters. For

instance, in example 1, the average number of patent claims is a sample statistic. If

one were able to survey the whole set of firms, it would be a population parameter.

Upper-case letters are often used to denote population parameters (e.g.,

N ¼population size), while lower-case letters refer to sample statistics (e.g.,

n ¼sample size). By convention, specific symbols are used to represent certain

statistics and parameters. For the sample, �x is commonly used for the mean, s for the
standard deviation, p for a proportion. For the population, μ is employed for the

mean, σ for the standard deviation and π for a proportion.

The mode, or modal value, is the most frequently occurring value in a set of data.

Sometimes there are multiple modes. Graphically, it shows up on a bar graph or a

histogram as the highest column. To find the mode, one can also make use of a

frequency table. For example, from Table 3.5a, we can see that the mode of Subsidy
is “No” while for variable Sector it is “medium-tech” (Table 3.5b). With numerical

variables, the data must be grouped into classes. In this case, the mode is also
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referred to as the modal interval. For instance, in Table 3.5c, variable Intensity is

characterized by three modes: [7%, 10.5%], [10.5%,14%] and [17.5%,21%]. With

continuous variables, the mode can also be expressed as the center of the class.

The mean (or arithmetic average) is the sum of the values of each observation in

a dataset divided by the number of observations. Depending on whether we are

dealing with the population or with a sample, the formulas are written as:

μ ¼ 1

N

XN

i¼1
Xi populationð Þ

and

�x ¼ 1

n

Xn

i¼1
xi sampleð Þ

where N is the size of the population, n the sample size, Xi and xi denotes the i th
observation in the population or the sample. For instance, using information from

Table 3.4, the mean of intensity is computed as:

�x ¼ 1

60
0:23þ 0:19þ . . .þ 0:08þ 0:01ð Þ ¼ 0:109

When observations are arranged in ascending order, the median is the value that

falls in the middle of the data. This measure is for instance used to provide

information about the distribution of household income. The median income is

the value that divides the income distribution into two equal groups, half having

income above that amount, and half having income below it. If there is an odd

number of observations, the median value is simply the middle value. Imagine for

instance that we have information about the grade of eleven students:

The median is 51. If there is an even number of observations, the median value is

the mean of the two middle values. For instance, using data from Table 3.4, the

value of Intensity can be rearranged by increasing order:

The median in that case is equal to (0.1+0.11)/2¼0.105.

The mode, the mean and the median provide different types of information. The

mean uses every value in the data to provide a central measure. It is thereby

sensitive to extreme values or outliers. The median and the mode, on the other

hand, are not affected by outliers. The median provides a useful and simple

description of central tendency: half of the values are below it. The mode is the

only measure of central tendency that can be used for nominal variables. It is
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the most frequently occurring value or class in a set of data. Yet, this does not mean

that it always stands for the center of the distribution. It is also possible that more

than one mode exist for the same variable. More important, the mode of a numerical

variable depends on how the class intervals are constructed.

Measures of dispersion indicate how spread out the observations are. The range

is calculated as the highest value minus the lowest value. It provides a simple

measure but is very sensitive to outliers. Other alternatives exist. The interquartile

range for instance is the difference between the upper and lower quartiles:

IQR ¼ Q3 � Q1

In descriptive statistics, the quartiles are the three points that divide a ranked set of

values into four equal groups. The first quartile Q1 is defined as the median of the

lower half of the data set. About 25% of the observations lie below Q1 and about

75% lie above. The second quartile Q2 is the median of the data. The third quartile

Q3 is the middle value of the upper half of the data set. About 75% of the numbers in

the data set lie below Q3 and about 25% lie above.

Consider the previous distribution of marks. In Excel and R-CRAN, when there

is an odd number of observations, the approach consists in including the median in

both halves:

The interquartile range is then computed as:

Q1 ¼
21þ 34

2
¼ 27:5;Q3 ¼

71þ 82

2
¼ 76:5; IQR ¼ 76:5� 27:5 ¼ 49

On the other hand, when there is an even number of observations, the approach

consists in splitting the data set exactly in half. Two cases arise depending on the

number of observations in those two halves. Consider the following distribution:

There is a total of 12 data points. Both halves also contain an even number of

observations. The lower quartile is 25% of the third data value (21) plus 75% of the

fourth value (34) while the upper quartile is 75% of the ninth value (82) plus 25% of

the tenth value (93):

Q1 ¼
1

4
21þ 3

4
34 ¼ 30:75;Q3 ¼

3

4
82þ 1

4
93 ¼ 84:75; IQR ¼ 54

Let us now examine another distribution with 10 observations:
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There is now an odd number of observations in both halves. The lower quartile is

75% of the third data value (21) plus 25% of the fourth value (34) while the upper

quartile is 25% of the seventh value (67) plus 75% of the eighth value (71):

Q1 ¼
3

4
21þ 1

4
34 ¼ 24:25;Q3 ¼

1

4
67þ 3

4
71 ¼ 70; IQR ¼ 45:75

In Excel, the corresponding formula is QUARTILE(array, quart) where array
denotes the range of data values for which one wants to calculate the specified

quartile and quart is an integer representing the required quartile. In R-CRAN, the

command summary offers those quartiles automatically.

To illustrate the methodology, let us examine variable Intensity from Table 3.4.

We use the previous rearrangement of the observations (by increasing order) and

now split them exactly in two halves with 30 observations in each. This corresponds

to case 2 (even number of observations in both halves).

The first quartile is computed as:

Q1 ¼
1

4
� 0:06þ 3

4
� 0:07 ¼ 0:0675

For the third quartile, we have:

Q3 ¼
3

4
� 0:17þ 1

4
� 0:17 ¼ 0:17

The interquartile range of Intensity is thus IQR¼ 0.17� 0.0675¼ 0.1025.

Two other common measures of variability are the variance and the standard

deviation. For the population, the variance is expressed as the sum of the squares of

the differences between each observation and the mean, divided by the population

size:

σ2 ¼ 1

N

XN
i¼1

Xi � μð Þ2 ¼ 1

N

XN
i¼1

Xi
2 � μ2 populationð Þ

For the sample, the formula is slightly different. We have:

s2 ¼ 1

n� 1

Xn
i¼1

xi � �xð Þ2 ¼ 1

n� 1

Xn
i¼1

xi
2 � n

n� 1
�x 2 sampleð Þ
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The standard deviation is expressed as the square root of the variance. It can be

interpreted as the approximate average distance from the mean:

σ ¼
ffiffiffiffiffi
σ2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
Xi � μð Þ2

r
populationð Þ

s ¼
ffiffiffiffi
s2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn

i¼1
xi � �xð Þ2

r
sampleð Þ

Using information from Table 3.4, the variance of Intensity is computed as:

s2 ¼ 1

60� 1
½ð0:23� 0:109Þ2 þ � � � þ ð0:01� 0:109Þ2� � 0:00427

The standard deviation amounts to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00427

p � 0:065:
The standard deviation expresses the dispersion of data in the same unit as the

original observations. If all values are the same and thus equal to the mean, then the

standard deviation is null. The concept should not be mistaken with that of the

standard error (se). The latter denotes the standard deviation of the sampling

distribution of a statistic (such as a mean, proportion, etc.) and is used when one

wants to make statistical inference about a defined population.

As we have seen, the formulas for the sample standard deviation and variance

differ from population formulas. When calculating a sample variance, we divide by

(n� 1) instead of dividing by N. The reason behind is that we need to ensure that the
sample variance is an unbiased estimator of the population variance. Simply put,

the value of a statistic is likely to be above or below the true value of the population

parameter. The mean of the sampling distribution could however converge to the

population parameter. If this is to be the case, the sample statistic is said to be an

unbiased estimator of the population parameter. While this holds true for the sample

mean (the mean of the distribution of sample means is the mean of the population),

this is not the case mathematically for the variance. By construction, the mean of

the distribution of sample variances is not the variance of the population. Using a

factor (n� 1) to weight the sample variance however ensures that this condition is

verified.

The coefficient of variation offers a relative measure of dispersion:

cv ¼ σ

μ
populationð Þ;bcv ¼ s

�x
sampleð Þ

The coefficient of variation is usually expressed in percentage and it is very useful

as it allows distributions with different scales to be compared. In Table 3.11, for

instance, we have information about the per capita expenditures of a set of local

jurisdictions. The standard deviation points out an important heterogeneity with

respect to social assistance. The average distance from the mean amounts approxi-

mately to $42. If one were to reduce disparities among jurisdictions, this category of
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expenditures would appear as a priority, all the more so that it represents by far the

main expenditure item. Yet, proportionally speaking, jurisdictions are more

unequally distributed with regard to fire protection. The coefficient of variation

amounts to 40.30%, which means that the jurisdictions differ by about 40% from

the average level. Understanding those disparities is also at the heart of public

evaluation.

Table 3.12 provides a summary of the built-in functions available in Excel and

R-CRAN. As can be seen, the names can be misleading. For instance, in both

R-CRAN and Excel the command var denotes the variance of the sample, and not

the variance of the population. Figure 3.8 illustrates the method in R-CRAN using

data from example 1. The summary command provides the min, the max as well as

the quartiles of variable Intensity. Commands mean, var, and sd offer the mean, the

variance and the standard deviation, respectively.

3.5 Describing the Shape of Distributions

A fundamental task in describing the nature of a statistical variable is to portray the

shape of its distribution. In this context, the normal or Gaussian distribution is

commonly used as a point of reference. It describes a class of distributions that are

described by two parameters: the mean μ and the standard deviation σ. The

probability density functions shown in Fig. 3.9 provide illustrations of normal

Table 3.11 Expenditures per capita: example 4

Variable Mean Standard deviation Coefficient of variation (%)

Social assistance $226 $42 18.58

Education $90 $26 28.89

Culture $22 $5 22.73

Police $39 $13 33.33

Fire protection $67 $27 40.30

Table 3.12 Variance and standard deviation in R-CRAN and Excel

Context Formula R-CRAN Excel

Sample

variance
s2 ¼ 1

n�1

Pn
i¼1

xi � �xð Þ2 var(x) VAR or VAR . S
depending on the version

Population

variance σ2 ¼ 1
N

PN
i¼1

Xi � μð Þ2 (length(x)� 1)/

length(x)∗ var(x)
VAR : P

Sample

standard

deviation

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1

PNn
i¼1 xi � �xð Þ2

q
sd(x) STDEV or STDEV . S

depending on the version

Population

standard

deviation

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 Xi � μð Þ2

q
sqrt((length(x)-1)/

length(x))* sd(x)
STDEV :P
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distributions. There is only one mode, which is equal to the mean and the median.

The shape of those distributions is given by:

f xð Þ ¼ 1

σ
ffiffiffiffiffi
2π

p e�
x�μð Þ2
2σ2

Fig. 3.8 Central tendency and variability in R-CRAN: example 1
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Fig. 3.9 Examples of normal distributions
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Normal distributions are extremely important because they describe many real

events. They also play an essential role in inferential statistics.

A shown in Fig. 3.9, a normal distribution is characterized by a symmetric bell-

shaped curve. Most observations are clustered around the center of the distribution.

The shape of the curve differs depending on the values of μ and σ. When the mean

parameter μ increases from 50 (Fig. 3.9a) to 70 (respectively 30), then the distribu-

tion shifts to the right-hand (respectively left-hand) side of the graph (Figure 3.9b)

(respectively Figure 3.9c). When the standard deviation decreases from

10 (Figure 3.9a) to 5 (Figure 3.9d), then the mass of the distribution is more

concentrated around the mean. When the standard deviation increases, the distribu-

tion is more and more dispersed (Fig. 3.9e, f).

Two indicators are used to compare the distribution of a variable with the shape

of a normal curve: skewness and kurtosis. The sample skewness (or Fisher-Pearson

coefficient of skewness) measures the asymmetry of the distribution:

g1 ¼
1
n

Pn
i¼1 xi � �xð Þ3

1
n�1

Pn
i¼1 xi � �xð Þ2

h i3=2 sampleð Þ

By construction, a normal distribution has a skewness of 0. If g1¼ 0, the

observations are evenly distributed on both sides of the mean, implying a symmet-

ric distribution. If g1< 0, the left tail of the distribution is longer and the mass of the

observations is concentrated on the right. In this case, the distribution is said to be

left-skewed, left-tailed, or skewed to the left. If g1> 0, the right tail is longer and

the mass of the distribution is concentrated on the left. The distribution is said to be

right-skewed, right-tailed, or skewed to the right.

In statistics, the denominator of a ratio frequently serves as a weight to normalize

a measure. This is typically the case with the skewness coefficient. What matters in

the previous formula is actually the numerator. We can see that it is defined as the

sum of cubes of differences with the mean. Unlike the variance which measures a

sum of positive distances, the skewness coefficient accounts for the fact that an

observation can be positioned either to the left or to the right of the mean value. The

numerator is thus composed of negative and positive values. If those negative

values outweigh the positive ones, then the left tail of the distribution is longer,

as illustrated in Fig. 3.10a. In that case, the mean lies toward the direction of skew,

i.e. on the left, relative to the median. In contrast, if some observations attain high

values, the distribution is right-skewed, as shown in Fig. 3.10b. The mean lies to the

right of the median because those extreme values serve to compute the mean, and

not the median. A symmetric distribution is characterized by observations that are

equally distributed around the central position (Fig. 3.10c).

The skewness formula may vary from one statistical software to another. For

instance Excel uses:
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G1 ¼ n2

n� 1ð Þ n� 2ð Þ g1 ¼
n

n� 1ð Þ n� 2ð Þ
Xn
i¼1

xi � �x

s

� �3
sampleð Þ

Choosing one or another measure is of less importance. They converge as the

sample size increases.

Note that it is possible to approximate the asymmetry of a distribution by

computing what is termed the median skewness coefficient. It is a measure based

on the difference between the sample mean and median:

median skewness coefficient ¼ 3� mean�medianð Þ
standard deviation
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Fig. 3.10 Examples of asymmetric and symmetric distributions. (a) Left-tailed distribution:

skewness ¼ �0.6. (b) Right-tailed distribution: skewness ¼ 0.6. (c) Symmetric distribution:

skewness ¼ 0
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Skewness is positive (respectively negative) if mean is greater (respectively lower)

than median. With this measure, one may however reach conclusions that are

different from g1 and G1. The fact that the mean is right of the median does not

necessarily imply that the distribution is right skewed as defined with g1 and G1.

Another measure that is frequently used to characterize the shape of a distribu-

tion is the kurtosis:

g2 ¼
1
n

Pn
i¼1 xi � �xð Þ4

1
n

Pn
i¼1 xi � �xð Þ2

h i2 sampleð Þ

It assesses whether a distribution is heavy-tailed or light-tailed relative to a normal

distribution. By construction, a normal distribution has a kurtosis of 3. If g2> 3, the

distribution is said to be leptokurtik (or heavy-tailed) and characterized by a high

degree of peakedness. As shown in Fig. 3.11a, observations are mainly distributed

around the mode. If g2< 3, the distribution is described as platykurtik (or light-

tailed). It is characterized by a high degree of flatness, as depicted in Fig. 3.11b.

Last, if g2¼ 3 the distribution is mesokurtic. The observations are dispersed around

the mean like any normal distribution (Fig. 3.11c). The kurtosis measure is some-

times normalized and computed as “g2� 3”. This measure is termed excess kurto-

sis. For instance, it is the one that is used in Excel.

Another useful tool for describing the shape of a distribution is the box plot. This

graph depicts a variable through its quartiles by representing the distances between

the minimum, the lower quartile Q1, the median, the upper quartile Q3 and the

maximum. An illustration is provided in Fig. 3.12. A rectangle is drawn so that the

left side of the box corresponds to Q1 and the right side to Q3. When box plots are

displayed horizontally as in Fig. 3.12, the width of the rectangle represents the

interquartile range and, as such, contains 50% of the observations. The height of the

rectangle does not represent anything in particular. Observations outside the rect-

angle are considered as extremes values. Inside the box, a vertical line is drawn

representing the median. The minimum and maximum are described by two vertical

lines positioned at the extremities of the graph. Box plots can be drawn either

horizontally or vertically.

Despite its simplicity, a box plot provides detailed information about the shape

of a distribution. To illustrate, Fig. 3.13 gives the box plots associated with the

histograms of Figs. 3.10 and 3.11. For vertically displayed boxes, height gives an

indication of the variance and the line inside the box provides a measure of central

tendency. The lines extending vertically from the box, known as whiskers, indicate

variability outside the upper and lower quartiles. The whiskers can tell us whether

the sample is skewed, either to the left or to the right. When the distribution is

symmetric, long whiskers (compared to the box length) mean that the distribution is

heavy-tailed (leptokurtic distribution). If, on the other hand, the whiskers are

shorter than the box, then the distribution is short-tailed (platykurtic distribution).

Let us now consider the data of Table 3.4 (example 1). Figure 3.14 provides the

code to be used in R-CRAN to construct the box plots of Intensity and Patents. The
boxplot command is used to draw the graphs of Fig. 3.15. Both distributions are
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right-skewed. There is some inequality in the distribution of firms with respect to

those variables. The package moments is uploaded so that we can compute the

skewness and kurtosis. The numerical results confirm the graphical analysis. The

mean is higher than the median. Both skewness coefficients are positive and the

excess kurtosis coefficients are lower than 3, indicating platykurtic distributions.

Note that box plots produced by statistical packages may differ from those

presented above. Extreme values are sometimes removed from the graph to draw

attention to the values that are unusually far away from the distribution. In that case,

outliers are represented as circles or asterisks beyond the bounds of the whiskers.

Hence, the whiskers do not extend to the most extreme data points.
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Fig. 3.11 Examples of heavy-tailed and light-tailed distributions. (a) Leptokurtic distribution:

kurtosis ¼ 3.72. (b) Platykurtic distribution: kurtosis ¼ 2.06. (c) Mesokurtic distribution:

kurtosis ¼ 3
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Fig. 3.14 Box plots with R-CRAN: example 1
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3.6 Computing Confidence Intervals

The computation of a confidence interval is crucial if one wants to generalize the

sample findings to the population of interest. The approach consists in providing a

range of values �e above and below the sample statistic which is likely to contain

the parameter of the population we are studying. The width of the interval depends

on the desired confidence level but also on the probability distribution assumed

behind observed data. Often, one chooses a 95% confidence level, so that 95% of

the estimated intervals would include the true parameter.

To understand the principle of inferential statistics, let us consider a simple

illustration (example 5). Assume that a radar unit is used to measure the speed of

cars on a highway. This variable is assumed to be normally distributed. The

sample standard deviation is found to be s¼ 16km/hr while the sample mean is

�x ¼ 128km=hr. We can use this information to estimate the probability function for

each value x of X:

f xð Þ ¼ 1

16
ffiffiffiffiffi
2π

p e�
x�128ð Þ2
2�162

This is the probability density of a normal distribution (see Sect. 3.5). A graph of it

is provided in Fig. 3.16. If we want to calculate the probability that a car picked at

random is travelling at less than x km/hr, we need to compute the area beneath the

density curve that lies to the left of x, and thus compute the following integral:

Pr X < xf g ¼ F xð Þ ¼
Z x

�1

1

16
ffiffiffiffiffi
2π

p e�
t�128ð Þ2
2�162 dt

where F denotes the cumulative distribution function. For instance, in Fig. 3.16, this

area amounts to 91.5% when x¼ 150 (area displayed in grey). To compute this

probability we can implement pnorm(150,mean¼ 128, sd¼ 16) in R-CRAN. This

equivalently means that the probability that a car is travelling at more than 150 km/
h is 8.5%.

The previous approach can be extended to compute the confidence interval of the

mean speed. Assume that x1, x2, . . . xn are n independent observations drawn from a

population with mean μ and variance σ2. By definition, if the random variables are

independent, the variance of their sum is equal to the sum of their variances:

Var x1 þ x2 . . .þxnð Þ ¼ nσ2

It follows that the mean �x is normally distributed with mean μ and variance σ2/n.
Given that the population characteristics are unknown, we can use �x and s2/n to

approximate this distribution. We can then compute the probability that the mean

falls inside a given interval. A distinction is thus made between the estimated

density probability function f xj�x ; s2ð Þ of the variable and the estimated probability

density function f xj�x ; se2ð Þ of its mean, with se ¼
ffiffiffiffiffiffiffiffiffi
s2=n

p
. The standard error se

represents the standard deviation of the sample distribution of the mean.

3.6 Computing Confidence Intervals 77



Computing a confidence interval is not straightforward since we need to com-

pute the area below the curve of the density function. The task is however made

easier by the use of statistical tables. Those tables provide information about the

cumulative probabilities for a set of distributions. To illustrate, Fig. 3.17 provides

the statistical table of the standard normal distribution, which by definition is the

distribution of a normal random variable with zero mean and unit variance. This

probability distribution function is usually symbolized by a lowercase Phi (ϕ). We

have:

ϕ xð Þ ¼ 1ffiffiffiffiffi
2π

p e�
x2

2

The cumulative distribution function (uppercase Phi) of the standard normal distri-

bution is given by:

Φ xð Þ ¼ 1ffiffiffiffiffi
2π

p
Z x

�1
e�

t2

2dt
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Fig. 3.16 Estimated probability density function: example 5
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Assume for example that we would like to know the probability that X is lower than

1.02 (¼1.0+0.02). In Fig. 3.17, one would select 1.00 in row and 0.02 in column to

find a probability equal to 84.61%. The other way round, we can also compute a

value x such that Φ(x) is equal to some probability p. For instance, if p¼ 97.50%,

we can see that x amounts to 1.96. This means equivalently that the probability that

X is higher than 1.96 is 2.5%.

Figure 3.20 is built with the Excel command NORMDIST(x, 0, 1, TRUE) where
x denotes the variable, “0” denotes the mean, “1” is the standard deviation, and

“TRUE” is to ensure that the function returns the cumulative distribution function.

In R-CRAN the function pnorm(x, 0, 1) yields an equivalent output. For instance,

pnorm(1.96,0, 1) yields 0.9750021.
We do not need to construct a statistical table for each form of normal distribu-

tion. As a matter of fact, every normal distribution is a variant of the standard

normal distribution. Formally, the cumulative distribution function of a normal

distribution with mean μ and standard deviation σ is given by:

F xð Þ ¼ Φ
x� μ

σ

� �
¼ Φ zð Þ

Fig. 3.17 Cumulative probabilities of the standard normal distribution
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where z is called a standard score or z-score. Observations have to be weighted by

the standard deviation and centered by subtracting the mean so that the distribution

has a mean of zero and a standard deviation of one. In statistical terms, we need to

standardize the variable of interest:

z ¼ x� μ

σ

Coming back to example 5 (Fig. 3.16), x is equal to 150, the sample mean to

128, and the sample standard deviation to 16. We thus have:

z ¼ 150� 128

16
¼ 1:375

Using Fig. 3.17, we get:

F 1:375ð Þ∈ 91:47%; 91:62%½ � � 91:5%

Figure 3.18 illustrates the approach. The probability density function is now

centered on 0. The probability that x is lower than 1.375 is displayed in grey.

Figs. 3.16 and 3.18 are strictly equivalent. The only difference is the scale of the

axes.

Every normal random variable X can be transformed into a z-score via the

previous formula. If the mean �x is used, rather than a single value, then the standard

score should be divided by the relevant standard deviation σ=
ffiffiffi
n

p
:

z ¼ �x � μ

σ=
ffiffiffi
n

p

Assume now that we would like to compute a confidence interval such that the

probability that μ lies in this interval is 95%. As described in Fig. 3.19, we need to

compute the upper and lower bounds of the interval so that the shaded areas at either

end of the distribution are equal to 2.5%. From Fig. 3.17 we know that those limits

amount to –1.96 and +1.96, respectively. We thus have:

Pr �1:96 <
�x � μ

σ=
ffiffiffi
n

p < 1:96

� �
¼ 95%

which can be rewritten as:

Pr �x � 1:96� σffiffiffi
n

p < μ < �x þ 1:96� σffiffiffi
n

p
� �

¼ 95%

The confidence interval of the population mean is therefore:
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�x � 1:96� σffiffiffi
n

p ; �x þ 1:96� σffiffiffi
n

p
� �

The margin of error e is given by 1:96� σ=
ffiffiffi
n

p
. It is a measure of how closely one

expects the sample results to represent the entire population being studied. The

greater the dispersion σ around the mean, the less certain we are about the actual

population mean, and the larger is the confidence interval. Similarly, the lower the

sample size, the less confidence we have in the sample statistic and the larger is the

confidence interval.

In practice, the population standard deviation σ is unknown. We rely instead on

the sample standard deviation s. In addition, the standard deviation is not the same

depending on whether we estimate a sample mean or a sample proportion. Last, the

formula for computing a confidence interval depends both on the size of the sample

and on the size of the population. Table 3.13 illustrates those differences.

First, when the sample size is approximately lower than 100, a Student distribu-

tion must be used to compute the confidence interval of the mean. The Student

distribution (or t-distribution) is leptokurtic, i.e. has a higher kurtosis than the

normal distribution, which thereby yields higher confidence intervals. Fig. 3.20

provides the cumulative probabilities of this distribution. This table has been
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Fig. 3.18 The standard normal probability distribution: example 5
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Table 3.13 Confidence interval of a mean and a proportion

Statistic

Standard

error Critical value Margin of error

(a) Large population (N>200,000) and large sample (n>100)

Mean sffiffi
n

p z obtained from a standard normal

distribution (1.96 for a 95% confidence

interval)

z� sffiffi
n

p

Proportion
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pð Þ 1�pð Þ

n

q
z obtained from a standard normal

distribution

(1.96 for a 95% confidence interval)

z�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pð Þ 1�pð Þ

n

q

(b) Large population (N>200,000) and small sample (n<100)

Mean sffiffi
n

p t obtained from a Student distribution with

n� 1 degrees of freedom

t� sffiffi
n

p

Proportion
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pð Þ 1�pð Þ

n

q
z obtained from a standard normal

distribution

(1.96 for a 95% confidence interval)

z�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pð Þ 1�pð Þ

n

q

(c) Small population (N<200,000) and small sample (n<100)

Mean sffiffiffi
n

p t obtained from a Student distribution with

n� 1 degrees of freedom
z� sffiffi

n
p �

ffiffiffiffiffiffiffi
N�n
N�1

q
Proportion

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pð Þ 1�pð Þ

n

q
z obtained from a standard normal

distribution

(1.96 for a 95% confidence interval)

z�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pð Þ 1�pð Þ

n

q
�

ffiffiffiffiffiffiffi
N�n
N�1

q
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generated with the TINV function from Excel (in R-CRAN one would use the

function qt). The most important column is displayed in red. It provides the t-
values to be used in order to compute a 95% confidence interval (2.5% on both sides

of the distribution). As can be seen, those t-values are all higher than 1.96. They

depend on the number of degrees of freedom. Basically speaking, degrees of

freedom relate the precision of the estimate to the sample size. When we estimate

the mean, we need to have a least one observation to do so. Any additional

observation is a bonus that will improve the precision of the estimator. The number

of degrees of freedom in that case is n� 1. For instance, if we were estimating the

equation of a line, we would need at least two observations to do so. The number of

degrees of freedom would be n� 2. In Fig. 3.20, the higher the number of degrees

of freedom, the closer is the critical value to 1.96. Second, when the population size

(N ) is small, below approximately N¼ 200,000, a finite population correction

factor (CF) has to be used, in order to weight the margin of error e:

Fig. 3.20 Cumulative probabilities of the t-distribution
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CF ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N � n

N � 1

r

Turning back to example 1, let us compute manually the confidence intervals for

the population mean of variable Intensity and the proportion of firms that have

received a subsidy (see Table 3.4 for the corresponding raw data). The sample size

is n¼ 60 firms. We know that the mean of Intensity is �x ¼ 0:109 and its standard

deviation is s¼ 0.065. The standard error se is computed as:

se Intensityð Þ ¼ sffiffiffi
n

p ¼ 0:065ffiffiffiffiffi
60

p

The critical t-value is obtained from Fig. 3.20 for n� 1¼ 60� 1¼ 59 degrees of

freedom. We have t¼ 2.001. Assume that the population size is N¼ 5,000. A

correction factor is thus required. We obtain the following margin of error:

e Intensityð Þ ¼ t� σffiffiffi
n

p �
ffiffiffiffiffiffiffiffiffiffiffiffi
N � n

N � 1

r
¼ 2:001� 0:065ffiffiffiffiffi

60
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5000� 60

5000� 1

r
� 0:017

The confidence interval of the mean for variable Intensity is thus:

0:109� 0:017

For variable Subsidy, we know that a proportion 20/60 (�33.3%) of the firms

received a subsidy (see Table 3.5). From Table 3.13, we know that the standard

error is:

se Subsidyð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð Þ 1� pð Þ

n

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20=60ð Þ � 40=60ð Þ

60

r

The critical z-value amounts to 1.96. We have:

e Subsidyð Þ ¼ 1:96�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20=60ð Þ � 40=60ð Þ

60

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5000� 60

5000� 1

r
� 11:8%

The confidence interval for the average number of recipients is:

33:3%� 11:8%

Figure 3.21 details those computations in R-CRAN. Functions qt(0.975, n� 1) and

qnorm(0.975) are used to find the critical values t and z, respectively.
It should be stressed that the formulas presented in Table 3.13 can be used if and

only if the data are normally distributed. This may hold true in many situations, but

there are some cases however where we have to rely on nonparametric techniques

to avoid bias. The bootstrapping method allows the estimation of the sampling

distribution of almost any statistic by using random sampling methods. Picking data
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from the sample, the method successively creates a large number of subsamples

(known as bootstrap samples) for the purpose of approximating the sampling

distribution. Those subsamples are the same size as the initial sample and created

with replacement. Assume for instance that we have a sample of 10 observations

numbered from 1 to 10. We can create a set of subsamples by selecting randomly

10 observations from the sample. For instance we may have:

Bootstrap sample 1: (9 7 8 2 1 9 10 2 7 9);

Bootstrap sample 2: (2 9 2 2 6 9 6 1 5 9);

Bootstrap sample 3: (1 3 8 2 1 6 6 4 1 10); and so on.

For each bootstrap sample, a point estimate (such as the mean, the median, etc.)

is computed. The distribution of those bootstrap statistics is then used to compute a

confidence interval (usually a 95% percentile confidence interval) for the relevant

population parameter.

Let us consider again variables Intensity and Subsidy. Figure 3.22 provides the

codes to bootstrap confidence intervals with R-CRAN. First, we need to specify the

statistic that we estimate, here the mean. We could use the same approach to

compute the confidence interval of the median. We create myfunction, defined by

two entries: a database (data) and a random index (i) for the bootstrap sample. In

this function, a subsample denoted data2 is generated and used for computing the

mean of each bootstrap sample. Once the function is created, and the data uploaded,

the boot command (from the boot package) is used to create the bootstrap statistics.

Fig. 3.21 Computing confidence intervals with R-CRAN: example 1
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The boot command uses both the original sample (mysample) and the function

myfunction to generate randomly R¼ 10,000 observations named myboot$t.
Histograms of those statistics are provided in Fig. 3.23. They are constructed in

the same way as the adjusted frequencies of Fig. 3.2b.

The computation of the bootstrap intervals is based on the values of the

percentiles (function quantile). A percentile is a measure indicating a threshold in

a frequency distribution. The kth percentile is the value that splits the observations

into two groups: the lower group contains k percent of the observations while the

upper group contains the rest of the observations. For instance, the 2.5th percentile

is the value which marks off the lowest 2.5% of the observations from the rest, the

25th percentile is the same as Q1, the 50th percentile is the same as the median, the

75th percentile is the same as Q3, and the 97.5th percentile contains all but 2.5% of

the observations. Within the 2.5th and 97.5th percentiles lie 95% of the values,

which gives us a 95% confidence interval.

For variable Intensity, the bootstrap yields a confidence interval equal to

[0.092, 0.125]. Due to the random nature of the boot process, and depending on

the number of bootstrap samples randomly generated, each bootstrapping is likely

to produce slightly different results. For variable Subsidy, the confidence interval

amounts to [0.216, 0.450]. Those percentile confidence intervals are displayed in

red on Fig. 3.23 using the abline command. Option v specifies the x-values for a
vertical line. Note that the approach does not offer to correct for the population size,

which is of less importance as the correction factor, by decreasing e, would only

reduce the size of the interval and, therefore, increase the confidence we have in the

statistic.

Fig. 3.22 Bootstrap confidence intervals with R-CRAN: example 1
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Bibliographical Guideline

Many textbooks deal with the concepts that have been presented in this chapter. We

may cite in particular Johnson and Bhattacharyya (2009) and Anderson et al.

(2014). Those manuals provide an introduction to statistics (organization and

description of data, the normal distribution, inference, etc.) with real-world

examples. The reader can also refer to Richardson (2012), which offers a descrip-

tion of the numerous techniques that can be used to display information. Osborn

(2006) covers the basic biostatistics, descriptive statistics, and inferential statistics

that are unique to health information management. Last, many statistical terms are

defined online. In this respect, the reader may have a look at the websites of the

Australian Bureau of Statistics and the OECD. They both offer a glossary of the

most important statistical terms.
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Measuring and Visualizing Associations 4

4.1 Identifying Relationships Between Variables

In its simplest form, a statistical report provides information about a series of

variables by separately computing for each of them summary statistics, displaying

frequencies, and estimating intervals for population parameters. In a more sophisti-

cated manner, it can also describe the relationships that potentially exist between

the variables in question. A distinction is thus made between a univariate analysis,

which involves describing the distribution of each variable separately, and a

bivariate analysis that is used to highlight associations between pairs of variables.

While the former type of analysis serves to better understand the descriptive context

of a public program, the latter is particularly useful when one wants to further

interpret the data in order to motivate a particular policy intervention.

Finding the causes of a problem and knowing why a particular policy should be

implemented is essential to the evaluative approach. Consider a program aiming at

reducing poverty in developing countries. The identification of needs is made

difficult by the multidimensional nature of the problems people experience. Poverty

may be thought in terms of economic growth, income inequalities, unemployment,

malnutrition, poor sanitation, lack of infrastructures, lack of education and political

instability. Those items are interrelated and must be examined together. What are

the relationships linking health, education and economic growth? What is the

priority? Is it to feed children, to educate people, or to promote industrial activities?

To have a clear picture of the relationships at stake is essential if one wants to attain

desirable goals in an efficient manner. One tool in the statistician’s toolbox that can

serve this purpose is bivariate analysis. We may find for instance that with a higher

level of education, people would receive higher wages and be more careful with

their health. In this context, education would become a mean to achieve a general

development agenda.

Formally, one of the goals of statistical studies is the identification of cause-and-

effect relationships. The idea is to examine whether a variable X has an impact on a

variable Y:
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X ! Y

In that context, X represents what is termed an independent variable (also known as

exogenous or explanatory variable) while Y is called a dependent variable (endoge-

nous or explained variable). The dependent variable Y represents the output or

outcome whose variation is being studied and that is thought to be influenced by

factors such as X. An independent variable on the other hand is a factor that the

evaluator thinks is causing a variation in the dependent variable. Examples include

the demand Y of consumers for the product of a firm, which depends on the selling

price X of the good; or air pollution Y that varies with GDP per capita X. When

causation is found, it means that a change in one variable directly causes a change in

the other variable.

Demonstrating that a particular variable X (the independent variable) has an

effect on some outcome of interest Y (the dependent variable) is generally made

difficult by the presence of confounding variables Z that may connect with both the

dependent variable and the independent variable. There are two types of situations.

First, there may be a causal relationship between X and Y that is also affected by a

third variable Z. This yields the following path analysis diagram:

X ! Y
" %
Z

In that case, the effect of X on Y can be underestimated or overestimated depending

on how Z affects X and Y. Second, it is possible that a spurious relationship exists

between X and Y:

X Y
" %
Z

Variables Y and X have no direct causal connection and yet some association is

highlighted. For instance, if one examines the spending behavior of local

governments without controlling for the population size, a comparison of their

expenditures levels with car ownership would make one conclude that a positive

relationship exists between those variables: an increase in the population (Z ) is
likely to induce an increase in the total number of vehicles (X), and will generate in
the meantime a higher demand for public spending (Y ). Variable Y is thereby

artificially associated with variable X. Under this framework, the term “association”

denotes a relationship between two variables that renders them statistically depen-

dent. It does not, however, imply causation.

Correlation and association are closely terms. Both concepts imply that two

variables vary according to some common pattern. Yet, association is more general

than correlation. The latter can be considered as a special case of association, where

the relationship between the variables is linear. The scatter plots of Fig. 4.1
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illustrate those differences in the (X ,Y ) plane. In Fig. 4.1a, the graph reveals a

relationship between X and Y. This relationship is non-linear meaning that the

variables are associated but not linearly: there is no correlation. Figure 4.1b displays

a linear relationship between X and Y. The variables are correlated and thereby

associated. Last, Fig. 4.1c illustrates a situation where no association exists between

the variables.

The statistical tools for the identification of relationships between variables

depend on their nature. Categorical (or qualitative) variables describe a quality or

characteristic of a data unit. Numerical (or quantitative) variables give an account

of a numerically measured value. When the two variables that are compared are

numerical, then testing for correlation is the relevant approach. It determines the

degree to which two variables tend to move together linearly. The chi-square test is

an inferential test that uses data from a sample to make conclusions about the

relationship between two categorical variables. When one variable is numerical and

the other is categorical, one usually tests differences between means (the analysis of

variance or ANOVA extends the approach by analyzing the differences among

several means).

When faced with more than two variables, it is also possible to provide a

multidimensional representation of the problem using correlation-based methods

(also known as factor analysis methods) such as principal component analysis and

multiple correspondence analysis. Principal component analysis offers a way of

identifying patterns in data when the variables are numerical. Multiple correspon-

dence analysis is used on the other hand when the variables are categorical. Both

methods offer an all-encompassing picture of the phenomena in play. The idea is to

reduce the dimensionality of a data set by plotting all the observations on 2D graphs

depending on how close the observations are with respect to their characteristics.

Observations can then be divided into groups according to their proximity and these

groups can serve to identify the beneficiaries of a particular intervention. For

instance, the approach can be used to create a typology of jurisdictions according

to their socio-economic characteristics to better explain differences in public

Fig. 4.1 Difference between association and correlation. (a) Association between Y and X, but no
correlation. (b) Association and correlation between Y and X. (c) No correlation and no association
between Y and X

4.1 Identifying Relationships Between Variables 91



spending. In education, one can identify profiles of students and bring to light the

determinants of success and failure at school. The approach can be used in health to

differentiate types of patients. Those typologies may in return be used to inform

policy-makers about particular needs and possible interventions.

The remaining of the chapter is organized as follows. Section 4.2 explains how

to compute a correlation coefficient and how to assess its statistical significance.

Section 4.3 provides a description of the chi-square test of independence.

Section 4.4 is about testing differences between means. Sections 4.5 and 4.6

develop the methodology of principal component analysis and multiple correspon-

dence analysis, respectively.

4.2 Testing for Correlation

The covariance and correlation coefficients are used to assess a possible linear

association between two numerical variables. They are simple to calculate and to

interpret. For a population of size N, the covariance between two variables X and

Y is given by:

σX,Y ¼ 1

N

XN

i¼1
Xi � μXð Þ Yi � μYð Þ populationð Þ

where Xi and Yi are the values of X and Y for the ith unit while μX and μY denote the
mean of the variables. The counterpart of the formula for a sample of size n is:

sx,y ¼ 1

n� 1

Xn

i¼1
xi � �xð Þ yi � �yð Þ sampleð Þ

The sample covariance offers an average measure of the deviations from both

means �x and �y . Its sign shows the direction of the linear relationship between the

variables. Figure 4.2 illustrates the approach. When most observations lie in the

North-East and South-West quadrants, the sum
P

xi � �xð Þ yi � �yð Þ contains positive

(+) 

(–)

(+) 

(–)

(–)                       (+)(–)                       (+)

(+) 

(–)

�

North-West

South-West

North-East
� �

� � �

South-East

North-West

South-West

North-East

South-East South-West

North-East
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North-West

(–)                       (+)

– – –

a b c

Fig. 4.2 Understanding covariance. (a) Positive linear relationship between x and y. (b) Negative
linear relationship between x and y. (c) No relationship between x and y
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values mainly (emphasized in orange) and the covariance is positive. When

observations lie in the North-West and South-East quadrants, the sum is mostly

made of negative values (in blue on the graph). The covariance is negative. Last,

when the individuals are equally distributed among the quadrants, the covariance

approaches zero.

The correlation coefficient, also referred to as Pearson product-moment correla-

tion coefficient or Pearson’s r, offers a normalized measure of the covariance. It is

computed as:

ρX,Y ¼ σX,Y
σXσY

populationð Þ

and

rx,y ¼ sx,y
sxsy

sampleð Þ

where σX and σY denote the standard deviation of variables X and Y respectively,

and sx and sy are their sample counterparts:

σX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

Xi � μXð Þ2
vuut ; σY ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

Yi � μYð Þ2;
vuut

sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

xi � �xð Þ2
s

; sy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

yi � �yð Þ2
s

In Excel, one can use the CORREL function to compute the correlation coefficient.

The correlation coefficient provides a measure of linear association between two

numerical variables. Its value ranges between �1 and +1. The sign of the correla-

tion coefficient depends on whether the variables are positively or negatively

related. If the coefficient is close to 1, the variables are said to be positively and

linearly associated: as the value of one variable increases, the value of the other also

tends to do so. If the coefficient is close to�1, the variables are said to be negatively

and linearly associated: as the value of one variable increases, the value of the other

tends to decrease.

The magnitude of the correlation coefficient determines the strength of the

correlation. Although there is no convention, the following guidelines provide a

proxy of how one usually describes the correlation coefficient:

Weak correlation: 0� |rx , y|< 0.4;

Moderate correlation: 0.4� |rx , y|< 0.6;

Strong correlation: 0.6� |rx , y|< 1.
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If the coefficient approaches 0, we generally conclude that there is no linear

relationship between the variables. A correlation coefficient of �1 or +1 indicates

a perfect linear relationship.

Graphically, the correlation coefficient is a measure of clustering around a line.

In Fig. 4.3a for instance, there is a strong linear association between the two

variables. The correlation coefficient is high and amounts to 0.96. This does not

mean that 96% of the observations are concentrated. Assuming that Y is the

dependent variable, the correlation coefficient measures instead the extent to

which knowing the value of X helps to predict the value of Y. The squared

correlation coefficient rx , y
2 is the percentage of variation in Y that can be explained

by knowing X, or vice-versa. In our example, we can say that 0.962¼ 92% of the

variation in Y is accounted for by X. In Fig. 4.3b on the other hand, variable

X moderately explains variable Y. The observations are more dispersed and the

lower is the correlation coefficient.

A common mistake is also to think that the correlation coefficient measures the

slope of the line around which the observations are clustered. This is not true. For

instance, in Fig. 4.3c, the slope of the line is greater than the slope observed in

Fig. 4.3a. Yet, the correlation coefficients are similar. Last, it should be stressed that

the correlation coefficient measures linear relationships only. This means that any

change in one variable must be associated with a constant proportional change in

the other variable. In Fig. 4.3d, for instance, there is a clear association between the

variables but the relationship is not linear. The correlation coefficient is found to be

near zero.

The population correlation ρ is usually unknown. The sample statistic r can

however be used to carry out tests of hypotheses. In hypothesis testing, one begins

by making an assumption about a particular population parameter. This assumption

is referred to as the null hypothesis H0. Often, it assumes that the observed

phenomenon is due to chance only. For instance, for the test for significance of

correlation, this assumption is specified as:

H0 : ρX,Y ¼ 0 the population correlation is zeroð Þ
It may or may not be true. One also needs to define the alternative hypothesis

denoted by H1.

H1 : ρX,Y 6¼ 0 there is a real correlationð Þ
The alternative hypothesis states that the observed phenomenon is the result of

some non-random cause. A statistical test is then implemented to determine

whether there is enough evidence to reject the null hypothesis. If the correlation

coefficient is found to be statistically different from zero, then we conclude that the

correlation coefficient is significant.

Basically speaking, there are two ways of testing a hypothesis in statistics. The

first approach relies on confidence interval estimation. A confidence interval gives

an estimated range of values which is likely to include the population parameter ρ.
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Intervals are usually calculated at a 95% confidence level, so that 95% of the

estimated intervals would include the true parameter. For instance, if the confidence

interval of a given population parameter includes zero, then one would fail to reject

the null hypothesis that the population parameter is null.

The second approach uses the correlation coefficient rx , y from the sample data to

compute its standard error as:

se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rx,y2

n� 2

r

The value of the test statistic is given by the following t-value:

t∗ ¼ rx,y
se
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Fig. 4.3 Scatter plots and correlations. (a) Strong linear association. (b) Moderate linear associa-

tion. (c) Different slope. (d) Non-linear association
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If the variables under examination are normally distributed, then this statistic

follows a Student distribution with n� 2 degrees of freedom. For a confidence

level of 95%, we find the critical value for n� 2 degrees of freedom and a

significance level equal to 5%. The number of degrees of freedom is reduced by

two because we need at least two observations to compute the correlation coeffi-

cient. The significance level is defined as 100% minus the confidence level. If |t∗| is
higher than the critical value, then the null hypothesis is rejected. On the other hand,

if |t∗| is lower than the critical value, we fail to reject the null hypothesis. In that

case, there is not sufficient evidence to conclude that there is a significant linear

relationship between the variables.

Note that the test is two-tailed (or two-sided). To achieve a significance level of

5%, the absolute value of the test statistic must be greater than or equal to a critical

value defined as tα/2(df), where α denotes the significance level, and df stands for the
number of degrees of freedom. Under this framework, no assumption is made as

regards the sign of the correlation coefficient. Deviations of the correlation coeffi-

cient are considered possible in either direction from zero. Figure 4.4a provides an

illustration with 58 degrees of freedom. The upper limit of the region of acceptance

is equal to the value for which the cumulative probability of the Student distribution

is equal to one minus the significance level divided by 2, i.e. 0.975. The lower limit

is defined as the value for which the cumulative probability of the Student distribu-

tion is equal to 5% divided by 2, i.e. 0.025. Overall, this yields a confidence level of

95%. Equivalently we say that the significance level (grey area in Fig. 4.4a)

amounts to 5%. Since the Student distribution is symmetric, the upper limit and

the lower limit are equal in absolute value. Therefore, in practice, one does not need

to compute both values. By convention, the focus is on the upper limit only.

It is also possible to perform a one-tailed (one-sided) test. In our example, we

would test for instance:

H0 : ρX,Y � 0 ðthe population correlation is lower than or equal to 0Þ
H1 : ρX,Y > 0 the population correlation is strictly positiveð Þ

Here, we are interesting in one side of the Student distribution only, as illustrated in

Fig. 4.4b. In that case, we implicitly assume that the correlation coefficient cannot

be negative. By construction, the critical value, now denoted tα(n� 2), is lower

than previously. This makes it easier to reject the null hypothesis and to obtain

statistical significance. One-tailed tests should however be used with caution. With

a one-tailed test, one has to make an assumption about the direction of the

relationship and completely disregard the possibility of a relationship in the other

direction.

To illustrate the test of correlation, consider a sample of 60 firms. Table 4.1

provides information about their research and development intensity (R&D

expenditures divided by value added), the number of patents assigned to each

firm, whether those firms have received a subsidy from the government (0 if no

subsidy and 1 otherwise) and the sector they belong to (3 for high-technology, 2 for
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medium-technology and 1 for low-technology industry). Figure 4.5 provides the

code to be used in R-CRAN if one wants to test whether the number of patents is

correlated with R&D intensity. The database is uploaded using the command read .
table and saved under the name D. A scatter plot is generated to better highlight the

phenomenon in question (see Fig. 4.6). We can see that the observations are

approximately concentrated around a fictitious line with positive slope.

The parameters of the test are specified as follows: n stands for the number of

observations, r is the coefficient of correlation computed with the cor function, se
denotes the standard error, and tstar is the test statistic. We find t∗¼ 11.27. The

upper critical value (t2.5%(58)¼ 2.0017) is obtained using the command qt(0.975,
n� 2). As can be deduced from the results, the test statistic (11.27) is greater than

the critical value in absolute value, which means that we reject the null hypothesis.

The population correlation is not zero. A similar conclusion can be reached with

the cor . test command. This function directly provides information about the

test statistic (t¼ 11.2711), the number of degrees of freedom (df¼ 58), the confi-

dence interval of the population parameter [0.73, 0.89], and the sample estimates

(rx , y¼ 0.83). The p-value gives the level of significance for which one would be

indifferent between rejecting and not rejecting H0. In other words, if the p-value is
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Fig. 4.4 The Student distribution (df¼ 58). (a) Two-tailed test. (b) One-tailed test
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Table 4.1 Raw data for example 1

Firm Intensity Patents Subsidy Sector

1 0.23 42 1 3

2 0.19 31 0 3

3 0.20 20 0 3

4 0.19 33 1 3

5 0.18 30 1 3

6 0.18 43 0 3

7 0.17 37 1 3

8 0.23 27 1 3

9 0.11 7 0 3

10 0.16 21 1 3

11 0.14 13 0 3

12 0.20 20 1 3

13 0.21 42 1 3

14 0.18 35 1 3

15 0.14 13 0 3

16 0.21 26 1 2

17 0.11 24 0 2

18 0.10 1 0 2

19 0.13 33 0 2

20 0.17 49 1 2

21 0.08 3 0 2

22 0.11 11 0 2

23 0.14 28 0 2

24 0.11 3 1 2

25 0.09 4 0 2

26 0.17 32 1 2

27 0.08 2 0 2

28 0.13 22 0 2

29 0.08 2 0 2

30 0.12 16 0 2

31 0.07 1 0 2

32 0.16 21 1 2

33 0.18 39 1 2

34 0.08 2 0 2

35 0.16 25 1 2

36 0.06 0 0 2

37 0.12 19 0 2

38 0.20 58 1 2

39 0.10 7 0 2

40 0.04 0 0 1

41 0.09 13 1 1

42 0.01 2 0 1

43 0.04 13 0 1

(continued)
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less than the significance level α ¼ 5%, the null hypothesis is rejected. On the other

hand, if the p-value is greater the null hypothesis is not rejected.
Figure 4.5 also performs a one-tailed test. Using qt(0.95, n� 2), the critical value

is found to be 1.67. Equivalently, one can include the entry “greater” in the cor . test
function. As expected, the p-value is lower than 5%, which means that we do reject

H0: the population coefficient is not lower than nor equal to zero.

4.3 Chi-Square Test of Independence

This section explains how to statistically assess the strength and significance of a

relationship between two categorical variables. The chi-square test of independence

(or Pearson chi-square test) uses data from the sample to make conclusions about

the relationship between categorical variables in the population. The alternative

hypothesis suggests that the variables are associated but does not state that the

relationship is necessarily causal:

H0 : The variables are not associated

H1 : The variables are associated

As for any statistical test, one has to compute a test statistic, namely the

chi-square test statistic (denoted χ2 hereafter), and examine whether this statistic

is lower or higher than a critical value. The first step is to create a two-way or

Table 4.1 (continued)

Firm Intensity Patents Subsidy Sector

44 0.04 11 0 1

45 0.07 2 0 1

46 0.07 5 0 1

47 0.00 0 0 1

48 0.02 0 0 1

49 0.08 2 1 1

50 0.02 2 0 1

51 0.01 4 0 1

52 0.05 0 0 1

53 0.05 6 0 1

54 0.02 0 0 1

55 0.02 4 0 1

56 0.07 19 0 1

57 0.00 0 1 1

58 0.08 12 0 1

59 0.08 14 0 1

60 0.01 0 0 1
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contingency table. For this purpose, one needs to count how many observations are

in each combination of row and column categories. By convention, when one

variable is thought to be the explanatory variable, it is used to define the rows. The

other is used to define the columns.

The second step is to compute the χ2 statistic. The computation is based on a

comparison between the observed frequencies, expressed in the two-way table, and

the expected frequencies that would be observed under the null hypothesis. To

illustrate, let us consider the data from example 1. Figure 4.7a shows the observed

frequencies of variables Sector and Subsidy. From the marginal (total) row we know

that the total share of firms that did not receive a subsidy is 40/60. Similarly, from

the marginal column, we know that the probability that a firm belongs to sector 1 is

21/60. If the variables Sector and Subsidy were independent, the joint probabilities

Fig. 4.5 Testing for correlation in R-CRAN
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would equal the product of their marginal probabilities. Thus, under the null

hypothesis, the probability that a firm from sector 1 does not receive a subsidy is:

Pr Sector 1;Nof g ¼ 40

60
� 21

60
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Fig. 4.6 Relationship between R&D intensity and patent claims

Fig. 4.7 Observed and expected frequencies: example 1
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We should therefore have 60� Pr {Sector 1, No}¼ 14 non recipients in sector

1 (instead of 18 as stressed in Fig. 4.7a). By applying the same reasoning to the

other cells of Fig. 4.7a, we are able to construct a two-way table showing the

expected frequencies for each cell, as shown in Fig. 4.7b.

Categorical variables are said to be associated when the chance to fall into a

particular category for one variable depends upon the category one falls into for the

other variable. If the variables were not related, a firm from sector 3 would have the

same probability to receive a subsidy than a firm from sector 2 or sector 1. A

comparison of the observed frequencies with the expected frequencies can tell us

whether this is true or not. For instance, we can see from Fig. 4.7a and b that the

number of firms from sector 3 that received a subsidy is 9 while it should have been

5 under the null hypothesis. This evidences an association between the variables.

The chi-square test extends the approach by comparing all the observed frequencies

with the expected frequencies.

The chi-square statistic is computed as follows. We need to subtract each

expected frequency from the observed frequency in each cell to get a difference

table (observed minus expected) as shown in Fig. 4.7c. Those values points out how

far from H0 we are. Now the question remains whether they are significantly large.

The test statistic is defined as:

χ2 ¼
XC
i¼1

Oi � Eið Þ2
Ei

where Oi is the observed frequency in cell i, Ei is the expected frequency in cell

i and C is the total number of cells. The critical value is obtained from a chi-square

distribution. The number of degrees of freedom is specified as:

df ¼ number of row categories � 1ð Þ � number of column categories� 1ð Þ
The chi-square test is a one-tailed test. If the test statistic is higher than the critical

value χ2α dfð Þ, with α¼ 5%, we reject the null hypothesis H0 of independence.

Moreover, the test is considered as valid if the minimum expected frequency is

greater than 1 and if at least 80% of the expected frequencies are equal to or greater

than 5. If this does not hold true, then one must merge some of the categories

together.

Coming back to example 1 (see Fig. 4.7c), the test statistic is computed as:

χ2 ¼ 4ð Þ2
14

þ 0ð Þ2
16

þ �4ð Þ2
10|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

First column

þ �4ð Þ2
7

þ 0ð Þ2
8

þ 4ð Þ2
5|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} � 8:23

Second column

The number of degrees of freedom is:

df ¼ 3� 1ð Þ � 2� 1ð Þ ¼ 2

102 4 Measuring and Visualizing Associations



Figure 4.8 provides the cumulative probabilities of the chi-square distribution.

Those values have been generated in Excel using the function CHIINV. For a

confidence level of 95% and a number of degrees of freedom equal to 2, we find:

χ25% 2ð Þ ¼ 5:991

The test statistic is greater than the critical value. We thereby reject the null

hypothesis of independence. The plus or minus signs observed in Fig. 4.7c give

us the direction of the effects. The way each cell contributes to the chi-square

statistic can also guide the interpretation. The larger is the difference between the

observed and expected frequencies, the greater is the test statistic. In our example, it

can be seen that the probability that a firm from sector 1 receives a subsidy is lower

than if chance alone was operating, while a firm from sector 3 is actually more

likely to receive a subsidy.

Function chisq . test in R-CRAN can be used to perform the chi-square test of

independence. Figure 4.9 provides an example. First, the data are uploaded using

Fig. 4.8 Cumulative probabilities of the chi-square distribution
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the read . table function. The command table is then used to generate a two-way

table which is used along with chisq . test to perform the test. As can be seen, the

value of the chi-square statistic is significant (the p-value is lower than 5%). By

including $expected in the command, we are also able to examine the frequencies

that are expected under the null hypothesis.

The correlation coefficient cannot be used to measure the association between

two categorical variables. Under this framework, an alternative exists which meets

this purpose: Cramér’s V. It is a statistic measuring the strength of dependency

between two categorical variables via a value ranging from 0 to 1:

V ¼
ffiffiffiffiffi
χ2

nt

r

where n is the sample size, and t represents the minimum dimension minus 1:

t ¼ min number of row categories � 1; number of column categories� 1f g
The closer V is to 0, the smaller the association between the categorical variables.

On the other hand, V being close to 1 is an indication of a strong association (but not

necessarily of statistical significance). In our numerical application we have t¼ 1

and n¼ 60. Cramér’s V is computed as:

Fig. 4.9 The chi-square test using R-CRAN
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V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:23

60� 1

r
� 0:37

The same result is found in R-CRAN using the cramersV command from the

package lsr (see Fig. 4.9). In general, two-way tables which have a larger value

of V can be considered to have a stronger relationship between the variables.

4.4 Tests of Difference Between Means

This section explains how to statistically demonstrate that there is a significant

difference between two or more groups when one variable is categorical and the

other numerical.

A two-sample t-test, or independent samples t-test, is used when one wants to

test the difference between two population means:

H0 : μ1 ¼ μ2

H1 : μ1 6¼ μ2

The null hypothesis states that there is no difference between means μ1 and μ2 while
the alternative hypothesis states that there is a difference. The sample sizes for the

two groups may or may not be equal. The test statistic is defined as a t-score:

t∗ ¼ �x 1 � �x 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1
þ s2

2

n2

q
where s1 and s2 denote the (sample) standard deviation of group 1 and group

2, respectively. The critical value is obtained from a Student distribution. The

number of degrees of freedom is given by:

df ¼
s2
1

n1
þ s2

2

n2

� �2

s2
1
=n1ð Þ2
n1�1

þ s2
2
=n2ð Þ2
n2�1

The test is usually defined as a two-tailed test. If the test statistic t∗ is higher in

absolute value than the critical value tα/2(df), we reject the null hypothesis.
Imagine for instance that we would like to assert in example 1 whether there is a

difference in patent claims between the firms that did not receive a subsidy (group

1) and those who did (group 2). Table 4.1 can be transformed to better highlight the

differences between the groups, as shown in Table 4.2. We have:

n1 ¼ 40; n2 ¼ 20; �x 1 ¼ 9:90; �x 2 ¼ 27:75; s1 ¼ 10:78; s2 ¼ 15:41
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Table 4.2 Difference between recipients and non-recipients: example 1

Group 1: non-recipients Group 2: recipients

Firm Patents Firm Patents

2 31 1 42

3 20 4 33

6 43 5 30

9 7 7 37

11 13 8 27

15 13 10 21

17 24 12 20

18 1 13 42

19 33 14 35

21 3 16 26

22 11 20 49

23 28 24 3

25 4 26 32

27 2 32 21

28 22 33 39

29 2 35 25

30 16 38 58

31 1 41 13

34 2 49 2

36 0 57 0

37 19

39 7

40 0

42 2

43 13

44 11

45 2

46 5

47 0

48 0

50 2

51 4

52 0

53 6

54 0

55 4

56 19

58 12

59 14

60 0

Counts 40 20

Mean 9.90 27.75

Standard dev. 10.78 15.41
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Using this information, we calculate the test statistic as follows:

t∗ ¼ 9:90� 27:75ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10:78ð Þ2
40

þ 15:41ð Þ2
20

q � �4:64

The number of degrees of freedom is:

df ¼
10:78ð Þ2
40

þ 15:41ð Þ2
20

� �2

10:78ð Þ2=40ð Þ2
40�1

þ 15:41ð Þ2=20ð Þ2
20�1

� 28:60

The critical value is obtained from the Student table for a 95% confidence level and

approximately 29 degrees of freedom. We actually have t2.5%(29)¼2.045 (see

Fig. 4.10 where the function qt is used to compute that value). This critical value

is lower than |� 4.64|. We thereby conclude that there is a significant difference in

patent claims between the recipients and the non-recipients.

In Fig. 4.10, the function t . test from R-CRAN performs the two-sample t-test.
The p-value is lower than 5% which means that we do reject H0. As can be seen, the

software yields a confidence interval for the difference between means μ1� μ2. As
expected, zero does not belong to that confidence interval. Excel also offers a way

to perform this test with the “Analysis ToolPak” add-in (which can be found in the

Excel options). The command to be used is “t-test: Two-Sample Assuming Unequal

Variances”.

At this stage, we need to bring attention to two points. First, the test concludes

that the observed difference between the recipients and the non-recipients is not due

to chance alone. It does not, however, point out a causal relationship between being

a recipient and having a high R&D productivity. It has been shown in the previous

section that the subsidies were not randomly assigned, the firms of sector 3 being

more likely to receive a subsidy. This points out a selection bias. To put it simply,

the observed difference between the groups could be due to sectoral differences as

well. The path analysis diagram would be:

Fig. 4.10 Two-sample t-test in R-CRAN: example 1
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Firms that received a subsidy are also those who belong to sector 3 (high-

technology sector) and have a higher number of patent claims. Only the use of

more advanced techniques such as quasi-experimental or experimental techniques

can allow us to distinguish between the two potential effects of subsidy and sector.

Second, note also that the t-test is based on the condition that the population

generating the data is normally distributed or close enough to normal. The test

may thus perform poorly if this assumption does not hold true. Histograms can be

helpful in this matter to identify the shape of the distribution, assuming that the data

are representative of the population.

The two-sample t-test can be extended to more than two groups. The approach,

also known as one-way analysis of variance or ANOVA, determines whether any of

the group means are significantly different from each other:

H0 : μ1 ¼ μ2 ¼ . . . ¼ μK

H1 : Not all μ are equal

where K denotes the total number of groups. The numerical variable is assumed to

be normally distributed in each group k. The test also relies on the assumption of

equal variances across groups. If the ANOVA test yields a significant result, we

reject the null hypothesis. This means that at least two means are significantly

different from one another. The test does not however explicit which groups are

significantly different from the others.

ANOVA is based on a comparison of two different sources of variation: the

between-group variability and the within-group variability. The between-group

variability is the difference between the mean values of each group and the mean

of the whole sample (or grand mean). If the group means are very similar, then this

variability is low. The within-group variability on the other hand measures the

variance in each group. Assume for instance that we have three groups and only two

observations in each of these groups:

10 10|fflffl{zfflffl}
Group 1

20 20|fflffl{zfflffl}
Group 2

30 30|fflffl{zfflffl}
Group 3

In that case, there is no variability within the groups (values are the same in each

group) but there is some variability between the groups (the means are different).

Assume now that the observations are distributed as follows:

5 35|ffl{zffl}
Group 1

15 25|fflffl{zfflffl}
Group 2

10 30|fflffl{zfflffl}
Group 3
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In that case, variability is observed within the groups (there is heterogeneity among

the observations in each group), but there is no difference between the group means,

which are equal to 20 in the present case.

Formally, the test statistic is based on a ratio of the between-group variability to

the within-group variability. We have:

F ¼ Average variability between groups

Average variability within groups

If the between-group variability is much higher than the within-group variability,

then it provides support for the alternative hypothesis. First, for each group k of size
nk, one must compute the sample mean �x k. One also needs to compute the grand

mean �x GM for the whole set of observations:

�x GM ¼ 1

n

Xn
i¼1

xi

The grand mean is defined as the total of all the data values xi divided by the total

sample size n.
The estimation of the between-group variability is termed between-mean square

(MSbetween hereafter) and is defined as the average variation of the group means

around the grand mean:

MSbetween ¼ Sum of squares between

Degrees of freedom
¼

PK
k¼1

nk �xk � �xGMð Þ2

K � 1

The estimation of the within-group variability is called within-mean square

(MSwithin). It is based on the sample variance observed in each group, denoted s21,

s22, . . ., s
2
K , respectively. We have:

MSwithin ¼ Sum of squares within

Degrees of freedom
¼

PK
k¼1

nk � 1ð Þs2k
n� K

It is the average variation of observations within each group around the group mean.

Finally, the test statistic is defined as:

F ¼ MSbetween
MSwithin

It follows the Fisher-Snedecor distribution with (K� 1, n –K ) degrees of freedom.

It is a one-tailed test. Figure 4.11 provides a set of critical values for a 95%

confidence level. This table has been constructed using the FINV function available
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in Excel. The decision will be to reject the null hypothesis if the test statistic is

greater than the critical value F5%(df1, df2).
To illustrate the method, assume that we would like to test whether there is a

difference in patent claims between the industrial sectors of example 1. Table 4.3

reorganizes the raw data of Table 4.1 so that the groups and their characteristics are

easily compared. The grand mean amounts to 15.85. We have:

Fig. 4.11 The Fisher-Snedecor distribution for a 5% risk level
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MSbetween ¼ 21 5:19� 15:85ð Þ2 þ 24 17:83� 15:85ð Þ2 þ 15 27:60� 15:85ð Þ2
3� 1

¼ 4551:37

2
¼ 2275:69

As for the within-group variability, we have:

Table 4.3 Difference between recipients and non-recipients: example 1

Group 1: sector 1 Group 2: sector 2 Group 3: sector 3

Firm Patents Firm Patents Firm Patents

40 0 16 26 1 42

41 13 17 24 2 31

42 2 18 1 3 20

43 13 19 33 4 33

44 11 20 49 5 30

45 2 21 3 6 43

46 5 22 11 7 37

47 0 23 28 8 27

48 0 24 3 9 7

49 2 25 4 10 21

50 2 26 32 11 13

51 4 27 2 12 20

52 0 28 22 13 42

53 6 29 2 14 35

54 0 30 16 15 13

55 4 31 1

56 19 32 21

57 0 33 39

58 12 34 2

59 14 35 25

60 0 36 0

37 19

38 58

39 7

Counts 21 24 15

Mean 5.19 17.83 27.60

Standard dev. 5.93 16.40 11.50

Grand mean 15.85

Grand variance 225.32
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MSwithin ¼ 21� 1ð Þ � 5:93ð Þ2 þ 24� 1ð Þ � 16:40ð Þ2 þ 15� 1ð Þ � 11:50ð Þ2
60� 3

¼ 8740:89

57
¼ 153:35

Finally, we get:

F ¼ MSbetween
MSwithin

� 14:84

From Fig. 4.11, the critical value is found to be F5%(2, 57)� 3.1, which is lower

than the test statistic. The decision is to reject the null hypothesis. At least one of the

group means is different. Figure 4.12 performs the test in R-CRAN. One can also

relax the assumption of equal variances by setting var . equal¼FALSE. In that case,
the test produces the result of what is termed Welch’s ANOVA. It is a form of

one-way ANOVA that does not assume equal variances. The decision to reject the

null hypothesis is confirmed.

Last, it is possible to measure the extent of the difference between means by

computing the square correlation coefficient or eta-squared:

η2 ¼ Sum of squares between

Sum of squares total
¼

PK
k¼1

nk �xk � �xGMð Þ2

Pn
i¼1

xi � �xð Þ2

It ranges from 0% to 100% and measures the extent to which the differences

observed between groups (between-group variability) contribute to the total vari-

ance. In our example, the grand variance is displayed at the bottom of Table 4.3:

Fig. 4.12 One way ANOVA test in R-CRAN: example 1
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Grand variance ¼ 1

n� 1

Xn
i¼1

xi � �xð Þ2 ¼ 225:32

We therefore have:

η2 ¼ 21 5:19� 15:85ð Þ2 þ 24 17:83� 15:85ð Þ2 þ 15 27:60� 15:85ð Þ2
Grand variance� n� 1ð Þ

Replacing n with 60, we find 0.34 approximately. This means that sector mem-

bership accounts approximately for one third of the observed variance in patent

claims. Figure 4.12 provides the coding to be used in R-CRAN to compute that

value.

4.5 Principal Component Analysis

When faced with more than two numerical variables, it is very difficult or even

impossible to provide a graphic representation of the data using standard plots.

Principal components analysis overcomes this issue by projecting the whole set of

observations on a 2-dimension map. The axes of the graph represent a combination

of the variables so as to plot the observations with a minimum loss of information.

The approach relies on maximizing the variance in the data, in order to highlight the

heterogeneity of the observations. Each individual and each variable can be

represented on this map, which provides an all-encompassing picture of the

relationships in play.

Given the mathematical difficulties in creating the map manually, the approach

requires a specific statistical environment, e.g., XLSTAT or the package

FactoMineR in R-CRAN. Basically speaking, the purpose of the method is to

reduce the dimensionality (number of variables) of the data set while retaining as

much of the variability in the data as possible. Figure 4.13 illustrates the methodol-

ogy with two variables. The raw data is initially represented through a scatter plot

on the (X,Y ) mapping. The first step is to search for the axis C1 that best accounts

for the majority of the variability in the data (see Fig. 4.13b). This axis is usually

referred to as first principal component or first dimension. Once the first component

is found, a second axis C2 is constructed in a similar manner, subject to the

constraint that C2 is orthogonal to C1. The second principal component accounts

for the majority of the remaining variability and will not be correlated to C1

(Fig. 4.13c). The approach continues until one gets as many components as there

are variables. By construction, the contribution of C1 to the total variance will be

very high, while the contribution of C2 will be lower. Note also that the origin of the

graphic is placed at the center of gravity of the data, which is defined as the point
�X; �Yð Þ in the interior of the data with mean coordinates (Fig. 4.13c). One can then

decide to project the observations. In Fig. 4.13d, for instance, the observations are

projected on the first component only, which results in a single line summarizing
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the information. Figure 4.13e uses the second component but provides less infor-

mation about the variability in the data.

Figure 4.13 provides the reader with a simple illustration of how the method

works. There is actually no need to perform a PCA in this particular example. There

are two variables only and a simple scatter plot reveals the whole distribution

pattern. In practice, one uses PCA when the number of variables to be projected

is larger than two, in which case there are as many components as there are

variables. The orthogonal projection is made on a plane defined by two of the

resulting components (instead of a single straight line as illustrated in Fig. 4.13d

and e). The first two components, C1 and C2, are generally used in this respect since,

by construction, they offer more information about the heterogeneity of the

observations. The remaining of the section illustrates this approach.

Mathematically speaking, the method consists in computing the mean value �x k

for each variable xk, k¼ 1. . .K, and by centering the data. For all individual i one
needs to subtract off the mean:

x0ik ¼ xik � �x k

y

x

y

x

y

x

y

x

y

x

a

d e

b c

Fig. 4.13 The principal component analysis methodology. (a) Raw data. (b) Construction of the

first component. (c) Construction of the second component. (d) Projection on the first component.

(e) Projection on the second component
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Each centered variable x0ik has a mean of zero. The second step consists in

calculating the covariance matrix which contains information about the variance

and covariance of the centered variables:

V ¼
s2x0

1
sx0

1
,x0

2
. . . sx0

1
,x0K

sx0
1
,x0

2
s2x0

2
. . . sx0

2
,x0K

⋮ ⋮ . . . ⋮
sx0

1
,x0K sx0

2
,x0K . . . s2x0K

2
6664

3
7775

The variance appear along the diagonal and covariance appear in the off-diagonal

elements. Entries are symmetric with respect to the main diagonal. Based on this

covariance matrix, a software can calculate eigenvalues and eigenvectors.

The eigenvectors are the directions in which the data vary, i.e. the principal

components. The eigenvalues on the other hand provide information about how

much variance there is in those directions. One usually lists the eigenvalues in order

from largest to smallest. The eigenvector with the highest eigenvalue is the first

component, and so on. By construction, the sum of those values is equal to the

number of variables. By dividing each eigenvalue by the number of variables we

obtain a measure of how much variance each component extracts:

Contribution of each component

in the total variance
¼ Eigenvalue of the component

Number of variables

In practice, it is common to use the Kaiser criterion which suggests to exclude any

dimension with an eigenvalue lower than 1.

The principal component analysis approach is best exemplified in a public policy

context. Imagine that we have (fictitious) data about a set of 60 districts that have

been conferred responsibility for several welfare programs (e.g., protection of

single mothers and children, social assistance for the disabled, aid to the elderly,

and social welfare for the unemployed). Using information from Table 4.4, one

would like to examine the link that may exist between socio-demographic data and

per capita social expenditures. Variable Social_Exp denotes the level of

expenditures per head in each district; Income is the mean taxable income;

Unemprate represents the unemployment rate; Shareof60 is the share of people

aged 60 and over; Population measures the number of inhabitants, Density is the

population density per square kilometer. Variables N_family, N_disabled, N_elder
and N_benefits represent the number of families, disabled, elder and unemployed

who receive social assistance, respectively. For simplicity of exposition, we assume

that the number of recipients in each district depends on eligibility criteria defined

by a central government. In contrast, the amount of aid that each individual receives

is within the discretion of the districts.

Principal component analysis can be used to provide a two-dimensional repre-

sentation of the data that captures most of its variance. The method can also be used
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to identify groups or clusters of observations. Figures 4.14 and 4.15 provide the

code to be implemented in R-CRAN.

The first step consists in choosing the set of variables to analyze. In Fig. 4.14, the
database is uploaded using the read . table command. The command library is used to
load the package FactoMineR. Then the PCA command from this package produces

the preliminary principal component analysis using columns 6, 8, 9, 10, 11 of

Table 4.4. This choice of variables is purely illustrative. Yet, one needs to make

sure that the analysis is sufficiently informative given the variables used. Basically

speaking, observations must be sufficiently dispersed. We can see from Fig. 4.16 that

this condition does not hold true. Observations are rather concentrated around the first

dimension (horizontal axis). Figure 4.17 helps visualizing the variables in the same

plane, made of the first two components. Themap draws what is termed a “correlation

circle”. When two variables are close to each other and far from the center, they are

positively and linearly associated (the correlation coefficient is close to 1). If they are

orthogonal, the correlation coefficient is close to 0 (the variables are not linearly

associated). If they are on the opposite side of the center, then they are negatively

correlated (the correlation coefficient is close to�1). When the variables are close to

the center and far from the circle, interpreting the correlations is hazardous.

For instance, it can be observed fromFig. 4.17 that the variables are correlatedwith

the first dimension only (they all point at the same direction). The reason of this

phenomenon lies in the fact that the first dimension relates to the population size

(column 6, Table 4.4), which is the dominant explanatory variable in this analysis, as

evidenced by using the command myPCA1$eig which displays the set of eigenvalues
(see Fig. 4.14). The higher is the number of inhabitants, the higher is the number of

recipients by construction. To overcome this issue, one simply needs to divide the

number of recipients by the population size. It is also important to understand at this

stage that one usually does not choose randomly the variables to examine. Instead, the

study should rely on a well-documented theoretical background.

The second step is the examination of the eigenvalues. Using the command names
we get a description of the different outputs available with the PCA command. Only

component 1 has an eigenvalue larger than 1, which means that this component is the

main and overpowering dimension in play, according to the Kaiser criterion. This

again shows evidence of a spurious relationship among the variables. We should

therefore adjust the set of variables that is analyzed. This is done in Fig. 4.15 where

Fig. 4.14 Initial principal component analysis: program in R-CRAN
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Fig. 4.15 Main principal component analysis: program in R-CRAN
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Fig. 4.17 Preliminary principal component analysis: set of variables
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data about the recipients are now expressed in percentage of the population

(D$S_ families,D$S_disabled,D$S_elders,D$S_benefits). Those new variables com-

plete the database with additional columns by order of appearance (columns 12, 13,

14 and 15, respectively). Command row . names(D) allows the name of the districts to

appear now on the individuals factor map. Using the command substr(D[, 1], 1, 5) we
choose those names from database D using the first column (column name in

Table 4.4) and extracting only the first five letters of those names. Figures 4.18 and

4.19 then provide the results using columns 2, 3, 4, 5, and 7 of Table 4.4 as well as the

new set of variables 12, 13, 14 and 15. It can be seen from Fig. 4.18 that the

observations are more dispersed than previously. From the new eigenvalues

(Fig. 4.15), we can see that three dimensions have now an eigenvalue larger than one.

The third step investigates the explanatory power of the analysis. If we decide to

focus the analysis on the first two components, one needs to ensure that C1 and C2

explain a sufficient amount of the variability in the data. As a rule of thumb, any

analysis explaining less than 20% of the variance should be excluded. From

Fig. 4.19, the first two components explain 26.10% + 32.85% ¼ 58.95% of the

total variance. Note also that when one divides the eigenvalues values of Fig. 4.15

by the number of variables (here 9), we obtained the percentage of variance

explained by the dimensions. For instance, for the first component we have:

32.85% ¼ 2.9562542/9. The cumulative variance is then calculated by adding

each variance to the running total of variances.
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The fourth step decomposes the variability in each principal component into

contributions due to each variable. Those contributions can then be used together

with the variables factor map to give a meaning to the axes. In Fig. 4.15, the

command myPCA2$var$contrib displays the contributions. It can be seen that the

variables that contribute most to the first component are Shareof60 (24.96%),

S_elders (23.30%), and Income (17.34%). For the second dimension we have

S_benefits (33.09%), Unemprate (29.15%) and S_ families (18.44%). The com-

mand myPCA2$var$cor then displays the correlation coefficients between each

component and each variable. Those correlations are related to how close the

variables are to the axes of Fig. 4.19. In practice, it is common to provide informa-

tion about correlations and variance as in Fig. 4.20. The first component is strongly

structured by an opposition between a high share of elderly people on the East

quadrant and high incomes on the West quadrant. The second component is

explained mainly by high unemployment rates and a high share of unemployed

people and families who benefit from social assistance (North quadrant).

The fifth step regroups the observations into clusters that are internally homoge-

neous (observations in each group must be as close as possible) but heterogeneous

from one group to the other (the distance between each group must be sufficiently

large). While there is no convention in this respect, the number of groups usually

goes from two to eight. They can be constructed manually using information from

the variables and individuals factor maps. For instance, in Fig. 4.19, it seems that
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Fig. 4.19 Main principal component analysis: set of variables
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the disparities among the districts result from an opposition between the wealthier

(West quadrant) and the poorer (East quadrant). The North quadrant highlights

another group: those with a high unemployment rate. In R-CRAN, it is also possible

to perform what is termed an agglomerative hierarchical clustering. Using the

HCPC command, the software automatically constructs the groups in order to

maximize the significance of differences between clusters. The method is an

ANOVA-based approach (also known as Ward’s method). Focusing on distance

measurements, it merges the observations according to their proximity until one

finally maximizes the ANOVA F-statistic. In R-CRAN, one simply needs to choose

the number of clusters by clicking at the (or any other) level suggested by theHCPC
command. In our example, the command suggests a number of three groups, as

shown in Fig. 4.21.

Once the cluster typology has been created, it can be characterized with words

and cross-analyzed with the variables used for the study (and possibly additional

variables when those are available). One advantage of theHCPC command is that it

reproduces the original data (renamed data . clust) with a supplementary column

(called clust) containing the Ward partition. This supplementary column is simply a

dummy variable specifying the cluster (e.g., cluster 1, 2 or 3) each unit belongs

to. Using the command gsummary from the package nlme, it is then possible to

provide summary statistics for each group, as shown in Fig. 4.15. The first entry in

the gsummary command corresponds to the new database mytypo$data . clust, and
the second entry mytypo$data . clust$clust specifies the partition to be used. We

thereby obtain the group means for each variable. Hence, it is possible to offer a

description of the clusters. For instance, it can be seen that cluster 1 is characterized

by a relatively low share of elderly people (19% on average), a low unemployment

rate (10%) but a high income per capita ($7447). Cluster 2 is defined on the other

hand by a high unemployment rate (15%), a high population density

(747 inhabitants per km2) and a high proportion of families and unemployed people

who benefit from social assistance. Last, cluster 3 is described by a high share of

elderly people (25%), a low population density (56 inhabitants per km2), and a high

proportion of recipient elderly and disabled people.

Once those five steps have been implemented, the analysis must end with an

answer to the research question. Table 4.5 displays the results of traditional

ANOVA tests using the command mytypo$desc . var$quanti . var (Fig. 4.15). The

Fig. 4.20 Summary of components’ structure
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first column Eta2 stands for the square correlation coefficient (see Sect. 4.4) while

the second column offers the p-value of the ANOVA tests. Only the variables that

yield a p-value lower than 5% are displayed. The observed differences between

clusters are significant for all variables but Density (not displayed: the ANOVA test

implemented using the oneway . test command confirms it). Thus it seems that the

partition presented in Fig. 4.21 yields significant results. Three profiles of districts

exist depending on their socio-demographics. Now the question remains whether

there is a relationship between those profiles and the observed level of public

spending. From Fig. 4.19, we can see that variable Social_Exp is pointing at the

North-East quadrant where clusters 2 and 3 partly stand. As shown with the

gsummary (Fig. 4.15), those two clusters are those that spend more on average

($189 for cluster 2 and $184 for cluster 3 against $155 for cluster 1). According to

the ANOVA test ( p-value¼1.19e-05) those differences are also significant. This

shows evidence of a relationship between the demand structure and public

spending.
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Fig. 4.21 Main principal component analysis: hierarchical clustering
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4.6 Multiple Correspondence Analysis

The approach of multiple correspondence analysis is very close to that of principal

component analysis in that the method produces a 2D map of the data where each

observation and each variable is represented. In its simplest form, when the

observations are described by two categorical variables, the approach consists in

producing a two-way table and performing what is called a correspondence analy-

sis. In a more general manner, the approach can be applied to a larger set of

categorical variables, in which case the method is termed multiple correspondence

analysis.

Principal component analysis and multiple correspondence analysis are similar

in that both procedures aim to provide a simple illustration of the phenomena at

stake. There are slight differences however. First, multiple correspondence analysis

is used to analyze a set of categorical variables. Each variable thus comprises

several categories (e.g., “male” or “female”) and each of those categories will be

represented. The approach can accommodate numerical variables as long as they

are recoded into classes. For instance, a variable such as “age” can be recoded into

an ordinal variable including several levels, e.g., “less than 20”, “between 21 and

30”, “between 31 and 40”, and so on. Second, the variables factor map does not

provide a correlation circle. Two categories are said to be associated when they are

close to each other on the multiple correspondence analysis factor map. Last, since

all the categories will be represented on the map, one needs to choose accurately the

set of categories to be drawn. When the number of categories is too high, the map

can become unreadable.

Despite the previous differences, the method is quite similar to what has been

presented in Sect. 4.5. First, one needs to examine how the observations are

distributed on the individuals factor map. If one wants to understand the structure

of the data, those observations must be sufficiently dispersed. Second, one should

examine the eigenvalues that are associated with the analysis. The total number of

Table 4.5 Summary of the clustering’s structure

Variables

Cluster

1 (mean value)

Cluster

2 (mean value)

Cluster

3 (mean value)

ANOVA test

(significant difference)

Social_Exp 155.037 189.100 184.783 Yes

Income 7447.481 6535.800 6457.783 Yes

Unemprate 0.104 0.154 0.105 Yes

Shareof60 0.191 0.207 0.256 Yes

Density 659.037 747.700 56.087 No

S_families 0.0018 0.0024 0.0018 Yes

S_disabled 0.0029 0.0031 0.0041 Yes

S_elders 0.0045 0.0060 0.0090 Yes

S_benefits 0.0124 0.0233 0.0124 Yes
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components and, thereby, the total number of eigenvalues, depends now both on the

number of variables K and the number of levels Lk in each variable k:

Number of components or eigenvalues ¼
XK
k¼1

Lk � K

The mean of the eigenvalues is equal to K. Under the multiple correspondence

analysis framework, Kaiser’s rule consists in excluding components that have an

eigenvalue lower than 1/K. Third, one needs to ensure that the first two components

(C1 and C2) explain a sufficient amount of the variability in the data, i.e. at least

20% of the total variance. It is also possible to analyze other components (e.g.,

component C3) if their eigenvalue is larger than 1/K. Fourth, the contributions of the
variables to the components serve to give a meaning to the map. The position of the

categories on the map also helps to determine whether they yield a positive or a

negative contribution. Fifth, a typology is created by clustering the observations

according to their position on the map. Sixth, the partition must be defined with

words and cross-analyzed with the other variables. Last, the typology should be

used to answer the research question.

We illustrate the method using fictitious data about a health survey. The aim is to

assess the relationships between a set of socio-demographic characteristics and

three chronic diseases A, B and C (e.g., respectively diabetes, heart disease, and

respiratory disease). First, using the individuals factor map, we will try to establish

different profiles of individuals. Are some individuals similar with respect to their

characteristics? Can we oppose a group of individuals to another one? Using the

variables factor map, we will also examine how the different variables are

associated. For instance, are some diseases more likely to appear in one group

than in another? Are the differences between the group means statistically signifi-

cant? The data set is provided in Table 4.6. It consists of K¼ 7 variables and

∑Lk¼ 19 categories: Gender (two levels: male or female); Occupation (five levels:
unemployed, unskilled worker, skilled worker, manager or professional); Educa-
tion (three levels: primary, secondary or higher education); Residence (three levels:
rural, semi urban, or urban); Disease A, Disease B and Disease C (two levels: yes or

no).

The R-CRAN program is provided in Fig. 4.22. First the data is uploaded with

the read . table command and renamed as D. A multiple correspondence analysis is

then implemented with the MCA function available with the package FactoMineR.
Using the command names we get a description of the different outputs available

with the MCA command. For instance, the command myMCA$eig yields the

eigenvalues. According to the Kaiser criterion, those values must be higher than

the inverse of the number of variables. This is for instance true for the first two

dimensions which are larger than 1/K¼ 0.14. Together, those dimensions account

for 33.92% of the total variance. Figure 4.23 shows that the observations are

sufficiently dispersed in the resulting system. The analysis can therefore pursue

with an analysis of the variables.
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Fig. 4.22 Multiple correspondence analysis in R-CRAN: example 3
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In Fig. 4.24, the variables are presented with the purpose of highlighting the

main associations. For instance, it can be seen that Education and Occupation are

associated as well as Disease .C and Residence. Variable Gender appears at the

origin of the map, suggesting that this variable is unlikely to contribute to the axes.

Figure 4.25 provides further information by displaying the whole set of categories.

The command myMCA$var$contrib provides the contributions of those categories

to each dimension. The set of variables that contributes most to the first component

includes Primary (24.78%) andUnskilled .worker (18.13%). For the second dimen-

sion, the main contribution is attributed to Disease .B : yes (26.42%).

Using Fig. 4.25, we can also visualize how each category is related to the others.

For instance, “unemployed” and “unskilled workers” are associated with “primary

education” and “disease A”. Professionals and skilled workers appear along with

“higher education” and tend towards “disease B”. Those whose place of residency
is located in a rural area are more likely to get disease C. In other words, a typology
with three groups seems to be apparent. A cluster analysis can further confirm this

statement.

Using the HCPC command, we obtain the partition of Fig. 4.26. Three groups

are underlined. The program in Fig. 4.22 offers to test the differences observed

between the mean groups using traditional chi-square tests. The command

mytypo$desc . var$test . chi2 offers the p-values for the most significant variables
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(whose p-value is lower than 5%). The tests confirm that an association exists

between the resulting partition and the following variables: Education, Disease .B,
Occupation, Disease .A and Disease .C. As for variable Residence, since this

variable does not appear in the results, the chi-square test must be completed

manually as in Sect. 4.3. Using the chisq . test command, we find that the p-value
amounts to 0.061 and is not far from 5%.

The analysis can go further by examining the different relationships highlighted

by the multiple correspondence analysis. Using chi-square tests, we can for instance

test if there is an association between Education and Disease .A or Disease .B. We

could also test for a relationship between Residence and Disease .C. Two-way
tables would ideally complete the analysis by providing a description of the

distributions among the different categories. Last, the results could serve different

policy purposes. For instance, a more cost-efficient screening process of a given

disease could be implemented in relation with what has been observed in terms of

socio-demographics. Differentiated prevention policies could also be set up

according to the different areas at risk.

Bibliographical Guideline
The conception of the correlation coefficient is attributed to Sir Francis Galton, a

cousin of Charles Darwin. In a study dating from 1877, he examined how the size of

-1.0 -0.5 0.0 0.5 1.0 1.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

Factor map

Dim 1 (19.40%)

D
im

 2
 (1

4.
52

%
)

42434957

45

37
40

1317
15

56
53

5459

4729
31

4146

5

27
38582325
52

24

2

199
16

28

33

206
2630

7

50
35

32

36
55

10

51
48
39

11

60

12
18

3

34

1

822

44

21

4

14

cluster 1  
cluster 2  
cluster 3  

Fig. 4.26 Hierarchical clustering: example 3

134 4 Measuring and Visualizing Associations



a sweet pea depends on the size of the parent seed (Galton 1877). Karl Pearson then

developed a more rigorous treatment of the mathematics of the coefficient.

Pearson (1900) also introduced what became known as the chi-square test. A

rudimentary form of principal component analysis can be found in Galton (1889),

Pearson (1901), and MacDonell (1902), while correspondence analysis was first

discussed in Pearson (1906).

Several textbooks can familiarize the reader with the various concepts and

techniques presented in this chapter. Rosenthal and Rosenthal (2011) offer an

introduction to descriptive statistics (e.g., the correlation coefficient), inferential

statistics (the chi-square and ANOVA tests) and data interpretation. Lang and Secic

(2006) offer detailed guidelines for reporting and interpreting statistical

relationships in biomedical science. Last, Giudici (2005) and Tufféry (2011)

describe applied data mining methods such as principal component analysis and

multiple correspondence analysis with the purpose of exploring and modeling large

databases.
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Tufféry, S. (2011). Data mining and statistics for decision making. Wiley.

References 135



Econometric Analysis 5

5.1 Understanding the Basic Regression Model

Econometrics is as statistical tool that investigates cause-and-effect relationships

with the aim of testing a theory or hypothesis, quantifying it, and providing

indications about the evolution of some outcome of interest. The approach is

particularly relevant in the public sector to provide a better understanding of the

context, or to study the effect of a particular policy intervention. For example, one

may use econometrics to examine the heterogeneity of local public spending using

data about socio-demographics. Patient behavior or drug efficiency can be

predicted based on the patients’ characteristics (e.g., age, smoker type, income or

gender). Failure at school can be analyzed based on revision time or lecture

attendance.

The econometric methodology relies on mathematical models which are sup-

posed to offer a simplified but accurate representation of the process under exami-

nation. Broadly speaking, a model consists in one or several equations that the

evaluator wishes to estimate. Those equations include the variables that are thought

to be relevant in explaining the phenomenon in question. A dependent variable

y (explained or endogenous variable) is expressed as a function of several indepen-

dent variables x1, x2, . . ., xK (explanatory or exogenous variables, or regressors). We

test:

y ¼ f x1; x2; . . . ; xKð Þ
This type of analysis is usually referred to as “regression analysis”. Once the model

is estimated on a sample, the parameters of the model serve to test whether the

independent variables (the x’s), have a significant impact on the outcome of interest

(y). It is also possible to use the estimated function to analyze possible scenarios, to

forecast the future or to guide policy formulation.
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In its simplest form, the econometric approach sets a dependent variable as a

function of a single independent variable. This type of analysis, also known as

simple linear regression, defines a population regression function as follows:

yi ¼ α1 þ α2xi þ Ei populationð Þ
where i denotes the units under evaluation (e.g., individuals, patients, students,

facilities, cities, etc.), α1 and α2 are the parameters to be estimated and Ei is what is
called an error term or random disturbance. For any unit i, the observed value of yi is
the sum of two components, a deterministic part (α1 + α2xi) and a stochastic part (Ei)
which is meant to capture all the factors the model omits. We have the following

path analysis diagram:

x ! y
"
E

The stochastic error term E is present in the equation because (1) other variables

could also affect the dependent variable, (2) measurement errors are possible,

(3) the linear functional form could be inaccurate (e.g., nonlinear relationships

could be in play), (4) unpredictable or purely random variations of the dependent

variable can never be ruled out.

The objective of an econometric study is to provide a numerical value to both the

deterministic part and the stochastic part using data from a sample. The method of

ordinary least squares (OLS) is the most common approach in this respect. Roughly

speaking, it estimates the coefficients α1 and α2 so as to minimize the stochastic

part. We thereby obtain a function that is as close as possible to the observed data

points. Figure 5.1 provides an illustration. The aim is to reduce the differences

between the observed outcomes (y) and the responses predicted by the linear

approximation of the data (the deterministic part). In Fig. 5.1a, variable x and

variable y are linearly associated. The correlation coefficient could serve as a

measure of this association. It will not, however, provide an estimate of the equation

of the line around which the observations are clustered. In theory, many models

could be estimated (see Fig. 5.1b). The OLS method offers a solution by

minimizing the distances between the regression line and the data points, as

shown in Fig. 5.1c.

Formally, assume that we have gathered information about n units i¼ 1. . . n as

well as the value they take with respect to x and y. The optimization problem

consists in searching for α1 and α2 so as to minimize the sum of squared errors:

min
α1;α2f g

Xn
i¼1

Eið Þ2
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By using squared residuals, we focus on “positive distances” and avoid positive and

negative residuals canceling each other out. Once estimated, the sample counterpart

of the model (the sample regression function) is written as:

byi ¼ bα1 þ bα2x1i sampleð Þ
which is the equation of the regression line. The sample regression function can also

be expressed as:

yi ¼ bα1 þ bα2x1i þ bEi sampleð Þ
where bEi ¼ yi � byi denotes the difference between the observed value yi and the

value byi predicted by the model.

As can be noticed, the notations differ depending on whether we are dealing with

the sample function or the population function. Table 5.1 illustrates those

differences. We put a “hat” over the parameters to indicate that they correspond

to a sample estimator of the population parameter. By convention, the terms bEi
(i¼ 1. . .n) are termed residuals and, by construction, their sum

Pn
i¼1bEi and their

mean are equal to zero. They represent the vertical distances between each data

point and the corresponding point on the regression line. The term fitted value is

used to denote each point (byi) on that line.

Figure 5.2 provides an illustration. For each value xi, the regression line yields

the fitted value byi that is associated. By construction, this line passes through the

center of gravity of the data �x; �yð Þ. Coefficient bα1 represents the constant

(or intercept) while bα2 represents the slope. In economic terms, bα1 yields the

amount variable y would reach on average if x was equal to zero. The slope bα2

corresponds to the additional change in y we would observe on average if x was

increasing by one unit. We indicate “on average” because the relationship between

y and x is inexact as not all the data points lie on the regression line, as shown in

Fig. 5.2. For all i, the distance between the line (byi) and the observed value (yi) is the
residual bEi. The lower are the residuals, the better the model fits the data.

a b c

Fig. 5.1 The OLS method. (a) Linear association between x and y, (b) Estimation of the

relationship, (c) The OLS method
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The variability of the dependent variable y can be defined as the sum of two

components, the explained sum of squares (ESS) and the residual sum of squares

(RSS), which relate to the deterministic part and stochastic part of the model,

respectively:

Xn
i¼1

yi � �yð Þ2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
TSS

¼
Xn
i¼1

byi � �yð Þ2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ESS

þ
Xn
i¼1

yi � byið Þ2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
RSS

The term TSS denotes the total sum of squares and is a proxy for the total variance

in the data. It tells us how much variation there is in the dependent variable. The

explained sum of squares measures the amount of variation in the dependent

Table 5.1 Econometrics vocabulary

Population regression function Sample regression function

yi Observed value of the dependent

variable

byi Fitted value, predicted value, estimator of

yi
xi Independent variable, regressor xi Independent variable, regressor

α1 Parameter, regression coefficient bα1 Estimated coefficient, estimator of α1
α2 Parameter, regression coefficient bα2 Estimated coefficient, estimator of α2
Ei Error term, errors, disturbances bEi Residual term, residuals

1

Slope 

Unit

Observed value 

Fitted value

Residual

Intercept

Mean

Mean

Fig. 5.2 Fitted and observed values
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variable that is explained by the model. The residual sum of squares on the other

hand measures the variation in the dependent variable that is not explained by the

model. The latter can also be written as RSS ¼ Pn
i¼1 bEið Þ2. The lower is RSS or the

higher is ESS, the better is the explanatory power of the model.

Using the previous equation, it is possible to describe how well the model fits the

observations (the goodness of fit) via the coefficient of determination, denoted R2. It

is computed as the ratio of the explained sum of squares to the total sum of squares:

R2 ¼ ESS

TSS
¼ 1� RSS

TSS

It yields the proportion of variation, or percentage of the total variation in the

dependent variable, that is explained by the regression model. It lies between 0 and

100%. This coefficient can be readily interpreted only for regressions with inter-

cept. It is possible to get a negative value when a constant is not included in the

regression equation. Last, when there is a single independent variable, R2 is also the

square of the sample correlation coefficient relating the dependent and the indepen-

dent variable:

R2 ¼ rx,y
� �2

simple linear regressionð Þ
In that case, R2 measures the strength of the linear association between the

variables.

To illustrate the methodology, assume that we have data about 60 (fictitious)

districts that have been conferred responsibility for several welfare programs,

providing assistance to single mothers and children, disabled, elderly, and the

unemployed. Table 5.2 provides the dataset. We would like to highlight the

determinants of per capita social expenditures, denoted Social_Exp hereafter.

Among the set of independent variables, we have Income (the mean taxable

income); Unemprate (the unemployment rate); Shareof60 (the share of people

aged 60 and over); Population (number of inhabitants), Density (population density
per km2). Variables N_ family, N_disabled, N_elder and N_benefits represent the
number of families, disabled, elder and unemployed who receive social assistance,

respectively. Figure 5.3 performs a simple linear regression in R-CRAN. A similar

methodology can be employed in Excel: one simply needs to click anywhere in a

scatter plot. Then, on the Layout tab in the Analysis group, one clicks Trendline,

then chooses “Linear” to calculate the least squares fit for a line.

Figure 5.3 starts with the read . table command which is used to upload the

database in R-CRAN using the path C : //mydataOLS . csv, which denotes the

location of the file. The file format is .csv, with “;” as a separator. This format

can be easily created with Excel. For computational convenience, the database is

renamed D. Command head returns the first part of the data. This command is used

to check that the data have been correctly uploaded. The first analysis consists in

assessing graphically whether there is an association between social spending per

head and the rate of unemployment. The command plot is used to this purpose and
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offers the scatter plot of Fig. 5.4. The command lm fits a linear model on those

observations. We estimate the following relationship:

Social Exp ¼ 141:7þ 269:5� Unemprate

In most cases, the intercept (141.7) is not worth interpreting because it illustrates an

extreme situation (here a zero unemployment rate) that is unlikely to occur and for

which no data point is actually available for estimation purpose. The slope on the

other hand is worth the examination. In the present case, it means that an increase in

the unemployment rate by one percentage point (0.01) yields on average an increase

by $2.7 in per capita social expenditures.

Using the abline function, the analysis goes further by plotting the regression

line in the (x, y) system (see Figs. 5.3 and 5.4). The mean vector (mean
(D$Social_Exp) ~mean(D$Unemprate)) is also drawn on the graph. As can be

seen, the regression line does pass through the center of gravity of the scatter

Fig. 5.3 Simple linear regression with R-CRAN: example 1
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plot. Last, the correlation coefficient, as well as the squared correlation coefficient,

are computed. It can be observed that there is a weak correlation between the two

variables of interest (ρ¼ 0.23). The coefficient of determination amounts to

R2¼ 0.232¼ 0.056. The model is thus found to explain 5% only of the variation

in per capita social expenditures. This result is not surprising. In practice, it is rare

that a single variable model explains most of the variation in the dependent

variable.

As we will see later, it is possible to extend the previous simple regression model

to a multiple regression model by including additional explanatory factors in the

equation. In that context, existing theories and common sense are used to motivate

the choice of the variables. The expected sign of the model’s parameters should be

defined ex ante using those theoretical arguments. One then needs to decide the data

sample upon which the model will be estimated. Various types of data can be used

in this respect. Time series data gives information about one single unit i over
several periods of time. In that case, the subscript t is used as a replacement of i to
index the observations. Conversely, cross-sectional data focuses on one single

period of time and provide information about a set of individuals that are indexed

by i. Panel data offers a combination of those two dimensions by considering a set

of individuals i over several time periods t.
One should distinguish the econometric approach, which is based on observa-

tional data, from a randomized controlled experiment, which attempts to isolate the

effects of a treatment through randomization. Understanding those differences is
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Fig. 5.4 Unemployment rate and social expenditures: example 1
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important, especially when the research study is supposed to guide the formulation

of public policies. An econometric analysis does not attempt to manipulate or

influence the environment. Data are only observed, collected and interpreted. In

an experiment on the other hand, we compare a treatment group with a control

group that has similar characteristics on average except for the fact of receiving the

treatment (a comparison of the mean outcome in each group allows the average

treatment effect to be quantified). The problem with observational data is that we do

not control for all those characteristics that may also influence the outcome of

interest. The analysis becomes multidimensional. The use of econometrics is an

attempt to control for all those extra factors. By estimating a coefficient for each

variable, each effect is supposed to be isolated. In other words, the econometric

approach is based on a ceteris paribus reasoning (all else being equal). Each

estimated coefficient represents the impact of a variable, holding constant the

effects of the other independent variables.

While appealing, the econometric approach must be implemented with care.

Many biases may result from model misspecifications. For instance, the true

functional form of the relationships under examination is usually unknown. If we

use the wrong form, we could reach misleading conclusions about the effects of the

independent variables. Moreover, it is possible that an omitted variable has a link

with both the dependent variable and one or more of the independent variables

(spurious relationship). In such circumstances, we could erroneously conclude that

a variable influences another while it actually does not. The dependent variable may

also be part of a system of simultaneous equations, which may result in biases if the

model does not account for that simultaneity. Last, a regression analysis, even

perfectly implemented, cannot prove causality unless more sophisticated

techniques are employed (e.g., Granger causality test or quasi-experimental

techniques).

The outline of the chapter is as follows. Section 5.2 generalizes the simple linear

model to a multiple setting which can be used to predict the unknown value of a

dependent variable from the known value of two or more variables. Section 5.3

describes the assumptions underlying the method of ordinary least squares.

Section 5.4 is about the choice of variables and Sect. 5.5 is concerned with the

form those variables take in the regression equation. Section 5.6 explains how to

deal with biases. Section 5.7 is about model selection and how to interpret regres-

sion analysis results. Last, Sect. 5.8 extends the approach to the case where the

dependent variable is binary, i.e. takes on values 0 or 1.

5.2 Multiple Regression Analysis

Multiple regression analysis is an extension of the simple linear regression model.

The approach is used when one wants to regress the dependent variable on two or

more independent variables. The aim is not to estimate the equation of a line but,

instead, to estimate a multidimensional linear equation. Formally, the multiple

regression equation of y on x2 , . . . , xK is given by:
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yi ¼ α1 þ α2x2i þ α3x3i þ . . .þ αKxKi þ Ei populationð Þ
The terms are analogous to those of simple linear regression: Ei stands for the error
term, α1 is the intercept, and each coefficient αk, k> 1, represents the impact on

average of a one unit increase in xk on the dependent variable y, holding constant the
other independent variables. Under this setting, the sample regression function is

written as:

byi ¼ bα1 þ bα2x2i þ bα3x3i þ . . .þ bαKxKi sampleð Þ
or

yi ¼ bα1 þ bα2x2i þ bα3x3i þ . . .þ bαKxKi þ bEi sampleð Þ
where byi stands for the fitted values, bEi is the residual term and the bα ’s are the

estimated coefficients.

Equivalently, the model can be written in matrix form:

Y ¼

y1
y2
⋮
yi
⋮
yn

26666664

37777775, bY ¼

by1by2
⋮byi
⋮byn

26666664

37777775,X ¼

1 x21 . . . xK1
1 x22 . . . xK2
⋮ ⋮ . . . ⋮
1 x2i . . . xKi
⋮ ⋮ . . . ⋮
1 x2n . . . xKn

26666664

37777775,α ¼

α1
α2
α3
⋮
αK

266664
377775, bα ¼

bα1bα2bα3

⋮bαK

266664
377775,

e ¼

E1
E2
⋮
Ei
⋮
En

26666664

37777775, be ¼

bE1bE2
⋮bEi
⋮bEn

26666664

37777775
Note that the unit vector x1¼ 1 , . . . , 1 is included among the independent variables

so that the weighting coefficient α1 on that term represents the regression constant.

Under this setting, the previous population regression function becomes:

Y ¼ Xαþ e populationð Þ
The sample counterpart of the equation is specified as:

bY ¼ Xbα or Y ¼ Xbα þ be sampleð Þ

The OLS estimator is given by bα ¼ X0Xð Þ�1
X0Y. For simplicity of exposition, we

will not detail how to solve the optimization problem. As already stressed in

Sect. 5.1, the OLS procedure consists in finding the coefficients that minimize the

stochastic part of the model, i.e. the squared residuals.
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Once the regression equation has been estimated, it is crucial to assess the

goodness of fit of the model. One issue is that the R2 automatically increases

when extra explanatory variables are added to the model (even if they are not

relevant in explaining the phenomenon in question). Adding new variables causes

the stochastic part as measured by RSS to become smaller. To overcome this issue,

one usually prefers to examine what is termed the adjusted R2:

�R
2 ¼ 1� n� 1

n� K

� �
1� R2
� � ¼ R2 � 1� R2

� � K � 1

n� K

� �
The closer the coefficient is to 100%, the better the model fits the data. The key

difference between R2 and �R
2
is that the adjusted R2 is always lower than its

unadjusted version. It does not automatically increases when new independent

variables are included. For this reason, it offers a useful criterion for measuring

the explanatory power of a model.

The adjusted R2 tells you how well the model predicts the dependent variable. It

is a measure of the strength of the model. To go further, it is possible to use a F-test
of overall significance with null and alternative hypotheses as follows:

H0 : α2 ¼ . . . ¼ αK ¼ 0 all parameters taken jointly are not significantð Þ
H1 : H0 is not true not all parameters are simultaneously zeroð Þ

The test statistic is based on the (unadjusted) R2:

F∗ ¼ R2

1� R2
� n� K

K � 1

The F-test is used to assess whether the strength of the model is due to some

non-random cause. Under the null hypothesis, statistic F∗ follows a Fisher distri-

bution with K� 1 and n�K degrees of freedoms. The critical value is denoted

Fα(K� 1, n�K), where α is the significance level, usually 5%. If F∗>F5%(K� 1,

n�K ) then the null hypothesis is rejected: the independent variables are jointly

significant. Note that a larger R2 leads to a higher value of F∗, which means that

when R2 increases notably, everything else being equal, then there should be

stronger evidence that at least some of the coefficients are non-zero.

A related question is whether the independent variables significantly influence

the dependent variable. Statistically, this is equivalent to testing the null hypothesis

that the estimated coefficients are zero:

H0 : αk ¼ 0 the effect of xk is not statistically significantð Þ
H1 : αk 6¼ 0 xk has a statistically significant impact on yð Þ

The test statistic is defined as:
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t∗k ¼ bαk

se bαkð Þ
where se bαkð Þ denotes the standard error of the estimated coefficient. Under the null

hypothesis, the test statistic follows the Student distribution with n�K degrees of

freedom. The critical value is denoted tα/2(n�K ) where α is the significance level,

often 5%. The testing strategy is to reject the null hypothesis if the test statistic in

absolute value is higher than the critical value. If this is to be the case, one usually

concludes that “variable xksignificantly influences the dependent variable while

controlling for other independent explanatory variables”. For n�K> 100 and a 5%

significance level, the critical value converges to 1.96. In that case, the strategy is to

reject the null hypothesis if: ��t∗k �� > 1:96

Note that the test is two-tailed because the alternative hypothesis allows for both

negative and positive values of bαk.

The standard error se bαkð Þ of the estimated coefficients is provided in the

regression output of most statistical packages. Mathematically, one defines the

sample variance of the OLS estimator via the following covariance matrix:

bσ2 X0Xð Þ�1 ¼

se bα1ð Þ2 σbα1,bα2
. . . σbα1,bαK

σbα1,bα2
se bα2ð Þ2 . . . σbα2,bαK

⋮ ⋮
. . .

⋮
σbα1,bαK

σbα2,bαK
. . . se bαKð Þ2

266664
377775

This matrix holds the squared standard errors in the diagonal elements and the

covariances σbαk ,bα l
(k 6¼ l ) in the off-diagonal elements. What matters for statistical

testing is the diagonal of the matrix. The matrix is obtained from the product of bσ2

with (X
0
X)�1. The scalar bσ2 stands for the sample variance of the residuals. It is an

estimate of the unobserved variance of the error term. We have:

bσ2 ¼ 1

n� K

Xn
i¼1

bE2i
where n�K stands for the number of degrees of freedom in the model. We can see

that the elements of the covariance matrix decrease with the variance of the error

term, which means that t∗k increases as bσ2 decreases, k¼ 1 . . .K. Intuitively, the

lower is the stochastic part, the higher the chances that the estimator bα reflects the

true value of α.
Let us now illustrate the approach using the dataset from example 1. Figure 5.5

performs a multiple regression analysis using Social_Exp as a dependent variable

and Unemprate, Income and Shareof60 as dependent variables. The choice of those
variables is purely illustrative. The command lm fits a linear model on those
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observations. A name is given to that regression (myreg). The summary function

then provides a detailed presentation of this lm object. By order of appearance, the

software provides summary statistics about the residuals (the min, max, and the

quartiles), the estimated coefficients (their value, their standard error, their t-
statistic, and their p-value), the sample error of the residuals, the number of degrees

of freedom, the R2 and �R
2
coefficients, and the result of the F-test of overall

significance. Using the qt and qf functions, the program offers the critical values

tα/2(n�K )¼ t2.5%(56) and Fα(K� 1, n�K )¼F5%(3, 56) that will be used for

hypothesis testing. Last, the program ends with the command confint which

estimates a confidence interval for the coefficient of Shareof60 and Income. Each
of these outputs is further detailed below.

First, it is essential to assess the appropriateness of the model by analyzing the

residuals. Summary statistics can be very informative in this respect. For instance,

the minimum and maximum values can be used to detect a sample peculiarity. Any

observation with a large residual, i.e. whose actual value (yi) is unusually far away

from its fitted value (byi), is suspicious. It may indicate an outlier in y, a measurement

error or any other problem. The first and third quartiles (1Q and 3Q) can serve as a

Fig. 5.5 Multiple linear regression with R-CRAN: example 1
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proxy for the overall quality of the model. As a rough indication, any value that is

close to or higher than the mean value of the dependent variable indicates high

residuals. For instance, in Fig. 5.5, the minimum and the maximum amount to –

43.888 and +55.717, respectively. The first and third quartiles on the other hand are

–18.333 and +17.757. Given the mean of the dependent variable ($172.1167 from

Fig. 5.3) those values are coherent. Last, the median serves as an indication of the

asymmetry of the distribution. A large median in absolute value suggests that the

residuals are not distributed equally around their mean, which by construction

amounts to zero.

The p-values (Pr(>| t| )) of Fig. 5.5 help determining the significance of the

coefficients (i.e. whether they are or not significantly different from zero). Those

values stand for the significance level α ∈ [0, 1] at which we are indifferent

between rejecting or accepting the null hypothesis given the sample data under

examination. A small p-value (typically less than 5%) indicates strong evidence

against the null hypothesis. A large p-value (greater than 5%) indicates that one

fails to reject the null hypothesis. As a rough and quick indication, one can also look

at the asterisks “*”, which point out the level of significance for each coefficient. In

Fig. 5.5, at a 5% significance level, Unemprate and Shareof60 both yield a signifi-

cant impact on the dependent variables (their p-value is lower than 5%), while

Income does not yield a significant impact. Likewise, we can look at the t-values
and compare them to the relevant critical value, here t2.5%(56)¼ 2.003. As can be

seen, those t-values are higher than the critical value for Unemprate and Shareof60,
but lower for Income.
The t-values from Fig. 5.5 are obtained from the values of the estimates and their

standard errors. For instance, for Unemprate, we have:

t∗Unemprate ¼
bαUnemprate

se bαUnemprate

� � ¼ 312:6

143:4
� 2:18

Confidence intervals offer an alternative method for assessing the significance of a

given parameter. A margin of error is computed as follows:

e bαkð Þ ¼ tα=2 n� Kð Þ � se bαkð Þ
The confidence interval is then given by bαk � e. If zero belongs to that interval, then
we reject H0 at the significance level α. To illustrate, let us consider the impact of

Shareof60. The standard error amounts to 93.03. At a 5% significance level, the

margin of error is computed as 2.003� 93.03� 186.3. The confidence interval of

the coefficient is thus 270.7� 186.3¼ [84.4,457]. In Fig. 5.5, one reaches the same

conclusion using the command confint(myreg, “Shareof60”). As already stressed,

the coefficient is significantly different from zero. Conversely, the same calculation

for Income brings a confidence interval that includes 0, confirming the

non-significant impact of that variable on social expenditures.

The sign of the estimated coefficient indicates the direction of the relationship.

Once significance has been assessed, it is important that the sign of the estimates are
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consistent with what is expected. In practice, only the coefficients significantly

different from 0 are examined (here, Unemprate and Shareof60). For instance in

Fig. 5.5, we can see that Unemprate and Shareof60 yield a positive impact on per

capita social expenditures. A one percentage point increase in the unemployment

rate and in the share of people aged over 60 yields on average an increase in per

capita social spending of $3.1 and $2.7, respectively. Whether those signs are in

accordance with the existing literature would require further analysis as it depends

on the context (the sample data at hand) and the motivations behind the study (what

is the theoretical background?).

The last step when performing a regression analysis consists in checking the

overall strength of the regression model. In Fig. 5.5, the adjusted R2 amounts to

13.85%, which means that the model explains 13.85% of the variation in the

dependent variable. This value can be obtained from the unadjusted R2:

�R
2 ¼ 1� n� 1

n� K

� �
1� R2
� � ¼ 1� 60� 1

60� 4

� �
1� 18:23%ð Þ � 13:85%

The F-statistic is derived as follows:

F∗ ¼ R2

1� R2
� n� K

K � 1
¼ 18:23%

1� 18:23%
� 60� 4

4� 1
� 4:16

This statistic is larger than the critical value Fα/2(3, 56)¼ 3.359 which indicates

overall significance of the model: not all coefficients are zero. Equivalently, the p-
value of the F-test (0.009892) is lower than 5%.

Note that there is no specific rule as regards the minimum value the adjusted R2

is supposed to reach. Depending on the field of analysis, the coefficient can reach

very different values that can be lower than 30% in some cases and larger than 60%

in others. Moreover, as we shall see later, a very large R2 (higher than 90%) can be

suspicious as well. It may be a sign of a spurious relationship between the variables

(which appear to be significant because each of them is related to a third one). On

the other hand, a low �R
2
is problematic when the purpose of the model is to ground

predictions about the determinants of the dependent variable.

5.3 Assumptions Underlying the Method of OLS

The method of ordinary least squares is based on a set of assumptions which are

required not only to estimate accurate coefficients, but also for statistical inference,

i.e. for testing whether the model parameters are non-zero. The main assumptions

are described below:

Linearity As already stated, the relationship between the dependent variable and

the independent variables is linear in the parameters. This assumption, however, is

not as restrictive as it looks. It says linear in the parameters, not the variables. The
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variables can be modified at convenience using logarithmic (lnxik) or polynomial

forms (x2ik, x3ik, etc.). Moreover, the same independent variable can be included

several times in the same regression model using different transformations. This

introduces a lot of flexibility in the estimation procedure. As long as the equation

remains in an additive form, the model can be estimated by OLS.

Independent Variables Are Exogenous All the independent variables are uncor-

related with the error term:

Cov xki; Eið Þ ¼ 0 8k
When a dependent variable is correlated with the error term, it means that the

variable is associated with factors that the model omits. In that case, the variable is

said to be endogenous. The method of instrumental variables must be used to carry

out inference. If the variables are not correlated with the error terms, then the

variables are said to be exogenous. In that context, the method of least squares is

valid.

No Collinearity Between the Independent Variables The independent variables

must be linearly independent. They should not be correlated (collinearity) nor

expressed as a linear combination of the other independent variables

(multicollinearity). If one fails to meet this assumption, it becomes difficult or

even impossible to disentangle the effects of the independent variables. A way to

detect and thereby avoid this problem is to run a correlation matrix of all indepen-

dent variables. Correlations among independent variables that are larger than, say

0.6, can be considered as problematic. Another situation where multicollinearity

occurs is when two or more independent variables show a deterministic linear

relationship (perfect multicollinearity), for instance when both the share of males

and females are introduced in the right-hand side of the regression model. In that

case, the share of males is perfectly correlated with the share of females and most

statistical packages will either not run or drop one or more variables (e.g., by

including NA’s in the regression output). Whether it is perfect or imperfect, the

usual solution to multicollinearity is to omit the offending variables.

Equal Variance of Errors When the error terms are distributed with constant

variance, they are said to be homoscedastic:

Var Eið Þ ¼ σ

In the simple linear regression model, this means that the variance of the

observations along the line of best fit remains similar along the line. This assump-

tion is labeled homoscedasticity. When the error terms are distributed with unequal

variance, we use instead the term heteroscedasticity. In that case, it becomes

difficult to assess the true standard error of the coefficients. Confidence intervals
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may be too wide or too narrow which could invalidate statistical tests of

significance.

Independence of Errors The size of each error term is not influenced by the size

of other error terms:

Cov Ei; Ej
� � ¼ 0, i 6¼ j

This assumption is very likely to be violated with time series data because each

error term at time t is likely to be correlated with the error at time t� 1. If this is to

be the case, the error terms are said to be auto-correlated. Autocorrelation problems

(aka serial correlation) generally occur when the model is misspecified and does not

fully assess the evolution of the dependent variable through time. The coefficient

estimators as well as the standard errors can be biased.

Normality of Errors This assumption is stated as:

Ei � Nð0, σ2Þ
where the symbol ~ means “distributed as”, N denotes the normal distribution,

0 stands for the mean of residuals, and σ2 is the (unobserved) variance of the error
term. Simply put, it means that the errors terms are close to zero on average, but

could possibly reach negative or positive values. This assumption is crucial.

Non-normally distributed errors can distort the significance tests (t- and F-tests).
As we will see in Sects. 5.4–5.7, assessing whether the classical assumptions of

the OLS method hold true is an important step of regression analysis. In particular,

since residuals offer an estimate of the unobservable statistical errors, examining

their distribution is essential. Any atypical pattern in the way they are distributed

can be considered as a sign of misspecification. The graphs in Fig. 5.6 provide a

schematization. First, Figure 5.6 plots the residuals against the fitted value. This

type of analysis can be used to evaluate how well the model fits the data or meets the

assumptions underlying the OLS method. For instance, in Fig. 5.6a, no particular

pattern is observed. The residuals display a Gaussian (normal) white noise with

mean 0 and constant variance. In Fig. 5.6b, the residuals exhibit a nonlinear pattern.

The linear regression model is not adapted to the data. Figure 5.6c illustrates a

situation where two points are far away from the majority of the data, meaning that

those two observations are not well predicted by the model. The distribution of

residuals around their mean (i.e. zero) is thus asymmetric, which indicates a

violation of the normality assumption. Figure 5.6d, e illustrates a situation of

heteroscedasticity. The residual plots indicate that the variance of the residuals is

increasing or decreasing with the fitted values. Last, Fig. 5.6f plots the residuals at

year t as a function of the residuals at year t� 1, revealing a strong positive

correlation in the residuals.

5.3 Assumptions Underlying the Method of OLS 155



5.4 Choice of Relevant Variables

An important step in conducting an econometric analysis is to characterize the

problem, specify the objectives of the study, and select the variables to be analyzed.

This step, also termed specification, is essential as it will determine the validity of

the regression analysis. A badly conceived specification may yield the wrong

statistical inferences. The choice of a specification also impacts the way informa-

tion is collected. Therefore, this step should not be taken lightly. In this respect,

there are no comprehensive rules. The choice of variables mainly depends upon the

understanding of the context. Yet, the following guidelines may help specify an

accurate regression model and avoid estimation biases.

The main motivation for choosing one specification among others is theory. If

theory says that a given variable should depend on some other variable, then this

relationship should be examined in priority. For instance, it has been argued in

economics that several factors such as price and income affect the demand for a

good or service. For most goods (termed “normal goods”), there must be a positive

relationship between a consumer’s income and the demand for the good and there

must be a negative relationship between the price of the product and the quantity

consumers are willing to buy (the so-called Law of Demand). In that context, the

usual econometric specification for modeling the demand for a good specifies the

0 0 0

0 0 0

Outliers

a b c

d e f

Fig. 5.6 Graphic representation of regression assumptions. (a) No pattern in residuals, (b)

nonlinearity, (c) non-normality, (d) heteroscedasticity, (e) heteroscedasticity, (f) Autocorrelation
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quantity demanded by the consumers as a function of their income and the price of

the good itself.

The second motivation for selecting a set of variables is empirical evidence.

Nowadays, the literature is vast and rich. Many empirical studies have been carried

out in all fields. Provided that they come from a reliable information source (e.g.,

government agency, peer-reviewed journal), those studies should serve as a refer-

ence for any subsequent analysis. Those who have conducted those studies have

been confronted with similar problems, e.g., sampling procedure, data collection

and choice of variables. Any information about the ways they have addressed them

may save a lot of time and effort. The empirical literature can also serve as a

benchmark with respect to the expected sign and level of the estimated coefficients.

Any impact that has not been supported by previous studies should always be

considered with caution.

In many occasions, a reason for choosing one variable instead of another is data

availability. While convenient at first, a specification based only the availability of

data can be difficult to motivate. Make sure that this will not jeopardize the final

quality of the research study. Note also that a distinction exists among the explana-

tory variables depending on whether they are considered as variables of interest or

control variables:

y ¼ f Variables of interest, Control variablesð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Independent variables

Variables of interest are concerned with the main relationships under examination,

usually theory-based. For instance, in the context of public policies, it may be any

variable over which policy-makers have direct control (e.g., whether the units have

been selected for an intervention) or any variable which is the primary focus of the

evaluator (e.g., the main determinants of the phenomenon under study). A control

variable on the other hand is included in the model as it may improve the explana-

tory power of the model and, to some extent, reduce estimation biases.

Each estimated coefficient represents the impact of a variable, holding constant

the effects of the other independent variables. If an important variable is omitted,

then its impact is not kept constant for the estimation of the other coefficients,

which may result in an omitted variable bias. Omitting a relevant variable (e.g.,

income or price in a demand equation) not only makes it impossible to estimate the

impact of that variable, but can also create bias in the estimated coefficient of the

other variables. Yet, this does not imply that the model should contain all available

variables. While it does not cause bias (the coefficient still provide an accurate

estimation of the population parameters), including an irrelevant variable that does

not truly affect the dependent variable may distort the significance tests. Standard

errors become larger and the hypothesis that the variables yield a significant impact

is more likely to be rejected. This is why theory should always be used to motivate a

particular specification in the first place.
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The choice of a particular specification should also be based on common sense.

Several ground rules can be offered in this respect. What follows provides several

examples using simulated data and R-CRAN as a statistical environment (lm
command). For simplicity of exposition, only the related codes are provided.

Perfect Fit Theoretical models are usually of two types: identity relationships and

behavioral relationships. Identity relationships correspond to accounting equations

which link perfectly the variables together. An example of such an identity is the

GDP being equal to the sum of its component parts:

Y ¼ Cþ I þ Gþ X �M

where Y denotes gross domestic product, C is private consumption, I is private

investment, G is government consumption, X is exports, and M is imports. Under

this setting, econometrics is not required to estimate the equation because the

relationship already is common knowledge. Behavioral relationships on the other

hand are unknown ex ante and require theory and advanced statistical techniques to
be fully assessed. The demand for a good offers an example. The econometric

specification is based on a model of consumer behavior which attempts to identify

the factors that influence the choices that are made by consumers.

While useless in most cases, estimating an identity relationship using OLS is still

possible. In Fig. 5.7, the dependent variable y¼ x1 + x2 is the sum of two indepen-

dent variables, x1 and x2. As can be seen, the regression output offers accurate

results. The R2 amounts to 100% and the independent variables yield a significant

impact (the t-values are extremely high). Another situation where perfect fit

(R2¼ 1) is attained is when there are as many parameters to be estimated as

observations. In that case, the number of degrees of freedom is insufficient to

provide an accurate result. The model is said to be saturated. For instance, if one

estimates the equation of a line using two observations only, then the R2

(or equivalently the correlation coefficient in that case) is equal to 1. Be advised

that there is no convention with respect to sample size requirement for econometric

use. As a rule of thumb, we may for instance rely on Green’s rule which states that

the sample size should be of at least 50 + 8K where K is the number of parameters to

be estimated. In practice, it also depends on data availability. A minimum of 30 data

points is usually considered as “safe”.

Multicollinearity One of the classical assumptions of the method of least squares

is that the independent variables should be independent of one another. If this

assumption does not hold true (multicollinearity), the calculation and interpretation

of the estimated coefficients are affected. The analysis may erroneously conclude

that some relevant variables yield no significant impact. Consider for instance

Fig. 5.8 where x1 is correlated with both y and x2. When y is regressed on x1 and
x2, variable x1 does not yield a significant impact. The reason is that x1 and x2 are
linearly associated. It is as if x2 was explaining the whole variation in y by itself. On
the other hand, when y is regressed on x1 alone, the impact is found to be significant.
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As already stressed in Sect. 5.3, the usual solution to avoid any misinterpretation is

to rule out the offending variables.

Time Trends When faced with time series data, the dependent variable may grow

or decline automatically over time. An omitted variable bias will occur if this

evolution is not accurately taken into account. A commonly accepted way to deal

with this problem is to include a linear trend in the regression equation:

where trend is a sequential numbering of the time periods (1 , 2 , . . . , n) usually
beginning with a value of 1. Coefficient β represents the increment at which the

dependent variable changes, on average, in each time period. If β is positive, then

the dependent variable increases by β from one period to the other. If it is negative,

then the dependent variable decreases over time. Note that the dependent variable

can also be expressed in logarithm so that the slope coefficient becomes a direct

estimate of the percentage growth rate per period (see next section for a discussion

about the different functional forms).

In practice, a graphical analysis guides the choice whether to include a time trend

or not. Consider for example Fig. 5.9. It can be seen that variables y and x do not

experience the same progression. While y shows a growing tendency through time,

x is stationary. By stationary, we mean that x is not trending upwards or downwards.
Explaining y solely on the basis of x cannot yield fine results in terms of goodness of

Call:
llm(formula = y ~ x1 + x2)

Estimate Std. Error   t value Pr(>|t|)    
(Intercept) 1.019e-14  7.400e-15 1.378e+00     0.18    
x1          1.000e+00  1.206e-16 8.294e+15   <2e-16 ***
x2          1.000e+00  1.747e-16 5.723e+15   <2e-16 ***
---
Multiple R-squared:     1,      Adjusted R-squared:     1 
F-statistic: 4.074e+31 on 2 and 27 DF,  p-value: < 2.2e-16
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Fig. 5.7 Perfect relationship between y, x1 and x2
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fit as pointed out by the quite low �R
2

0:0025ð Þ. This has two important

consequences. First, the growth tendency of y is not assessed by the model. Second,

the coefficient of x is found to be non-significant. The results improve radically

when a trend variable is included (trend¼ 1 : 30 where 30 is the total number of

time periods). In that case, both the impact of x and trend appear to be significant.

The �R
2
amounts to 89.67%. On average, the dependent variable increases by 2.19

units each year.

Spurious Relationship A spurious relationship is observed when two variables

are independent from each other and yet are found to be significantly associated due

to the influence of a third, unobserved variable. This phenomenon may distort

considerably what comes out of the data. A typical example is when one ignores

a common trend in time series data. If a dependent variable and an independent

variable are both nonstationary, they will automatically appear as correlated

because of the influence of time. A way to solve this issue is to make the variables

stationary by specifying them in first-difference. A similar situation occurs when a

Call:
llm(formula = y ~ x1 + x2)

Estimate Std. Error t value Pr(>|t|)    
(Intercept)   7.1870     1.7347   4.143 0.000303 ***
x1           -0.4043     0.5901  -0.685 0.499105    
x2           55.1216     8.9222   6.178 1.33e-06 ***
---
Multiple R-squared: 0.8746,     Adjusted R-squared: 0.8653 
F-statistic: 94.15 on 2 and 27 DF,  p-value: 6.72e-13 

Call:
lm(formula = y ~ x1)

Estimate Std. Error t value Pr(>|t|)    
(Intercept)  10.7023     2.5000   4.281 0.000197 ***
x1            2.9290     0.3647   8.032 9.56e-09 ***
---
Multiple R-squared: 0.6973,     Adjusted R-squared: 0.6865 
F-statistic: 64.51 on 1 and 28 DF,  p-value: 9.563e-09

5 6 7 8

25
30

35

x1

y

5 6 7 8

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

x1

x2

Fig. 5.8 Collinearity between x1 and x2
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trend in the data is attributed to inflation. A solution in that case is to deflate the

series, i.e. to specify them in real terms.

Figure 5.10 offers an example. Both variables x and y grow over the years. When

y is regressed on x, the analysis erroneously concludes to a significant relationship

among the variables. We face a spurious regression. The scatter plot of y on x points
out the problem. Smallest values of x and y are observed at the beginning of the

observation period (before 1990) and largest values appear after 2010. The analysis

is invalid because both variables are correlated with a third variable: time. The

solution is to use first-differences. Rather than regressing yt on xt, we regress

Δyt¼ yt� yt� 1 on Δxt¼xt� xt� 1. The model becomes:

Δyt ¼ β1 þ β2Δxt þ Et

Call:
llm(formula = y ~ x)
Estimate Std. Error t value Pr(>|t|)
(Intercept)  33.0959    19.7425   1.676    0.105
x             0.9956     0.9600   1.037    0.309
---
Multiple R-squared: 0.03699,    Adjusted R-squared: 0.002598
F-statistic: 1.076 on 1 and 28 DF,  p-value: 0.3086

> trend=1:30
> trend
[1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
[21] 21 22 23 24 25 26 27 28 29 30

Call:
lm(formula = y ~ x + trend)
Estimate Std. Error t value Pr(>|t|)
(Intercept)   5.6005     6.5940   0.849   0.4032
x             0.6723     0.3097 2.171   0.0389 *
trend         2.1949     0.1407  15.598 4.97e-15 ***
---
Multiple R-squared: 0.9038,     Adjusted R-squared: 0.8967
F-statistic: 126.8 on 2 and 27 DF,  p-value: 1.872e-14
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Fig. 5.9 Projecting time trends
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In such a model, when a constant β1 is included, it estimates the coefficient of the

trend in the dependent variable. On average, and at each period of time, the

dependent variable increases by β1 units. In Fig. 5.10, applying this method and

using function diff, we find that y is not influenced by x anymore and that

y automatically increases each year by 2.61. Note that the unadjusted R2 is now

negative, meaning actually that a model based on x only fits the data really poorly.

Spurious relationships are not limited to time series. Similar problems may occur

when faced with cross-sectional data, especially when one does not control for size

effects (the number of inhabitants in a set of jurisdictions, size of hospitals,

countries by GDP). Consider for example a small city with one primary school,

no railway station and a very low traffic. A comparison of this city with a larger city

with shopping centers, multiple car parks and traffic schemes would be misleading.

One would for instance erroneously conclude that school expenditures and traffic

congestion are linked. The larger is the population, the higher are the number of

cars and the number of pupils at school. Similarly, comparing two hospitals of

different size may yield ambiguous results. Larger hospitals will face higher cost

just because the numbers of patients is larger. Last, comparing countries based on

their GDP is not right because this measure is expected to increase with population.

Call:
llm(formula = y ~ x)

Estimate Std. Error t value Pr(>|t|)    
(Intercept) 17.06050    3.81424   4.473 0.000117 ***
x            1.03905    0.08824  11.775 2.33e-12 ***
---
Multiple R-squared: 0.832,      Adjusted R-squared: 0.826 
F-statistic: 138.6 on 1 and 28 DF,  p-value: 2.327e-12

Call:
lm(formula = diff(y, 1) ~ diff(x, 1))

Estimate Std. Error t value Pr(>|t|)  
(Intercept)   2.6119     1.2369   2.112   0.0441 *
diff(x, 1)   -0.1131     0.2191  -0.516   0.6099  
---
Multiple R-squared: 0.009771,   Adjusted R-squared: -0.0269 
F-statistic: 0.2664 on 1 and 27 DF,  p-value: 0.6099
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The obvious solution to those problems is to express the variables in per capita

terms, e.g., expenditures per inhabitant or per patient. Another way to control for

those size effects is to divide the variables of the study by a variable that indirectly

accounts for the size of the units under examination. For instance, instead of

expressing public expenditures in per capita terms we may consider government

spending as a percentage of gross domestic product.

Structural breaks appear when there is an unexpected shift in a time series due

for instance to some institutional change or new regulation. The usual and easiest

approach to account for that phenomenon is to include a binary variable, aka

dummy variable, in the regression equation. Such a variable switches from zero

to one at the date of the breakpoint. Consider the following simple linear regression

model:

yt ¼ α1 þ α2xt þ Et

Suppose we suspect that the structure of the model has changed at a given point in

time t¼ t∗. We would create a dummy d that takes value 0 for t< t∗ and 1 for t� t∗.
Then two possibilities arise. First, the structural change may affect the intercept

coefficient only, in which case the dummy variable is introduced as an additive

term:

Here α3 denotes the effect of the structural break on the constant term. On average,

when t< t∗, the dummy equals zero and the intercept coefficient amounts to α1, while
for t� t∗ the dummy equals one and the constant is α1 +α3. Second, it is possible that
the structural change affects both the constant and the slope coefficient in which case

the dummy variable is also introduced as a multiplicative term, either as:

or:

On average, when t< t∗, the slope amounts to β3, while for t� t∗ it is β4. Not only
does the dummy variable account for the change in the constant but also for the

change in the slope coefficient.

Figure 5.11 provides an illustration. It can be seen that the evolution of y is

unstable through time. Before 2002 (period 1), the values of y are smaller and less

dispersed. After 2002 (period 2), y reaches higher and more dispersed values. To

account for a possible structural change a dummy d is created with “zeros” for the

first 15 periods, and “ones” for the last 15 periods. Variable x is then split into two

elements: x1¼ x∗(1� d ) and x2¼ x∗d.Using these variables, the regression output
yields a significant result for the slope coefficient only for the second period. In
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period 1, the impact is found to be non significant while in period 2, an increase in

x generates on average an increase in y of 2.60 units. Those relationships are

displayed on the scatter plot of y on x. In blue are depicted the observations for

the second period. Visually, the slope of the regression line is higher for this period.

In the first period, represented in orange, the slope is closer to zero.

5.5 Functional Forms of Regression Models

Another difficulty in regression analysis is the choice of the functional form that

best fit the data. Many functional forms are possible. They include for instance the

double-log model, semi-log models, and polynomial models. In the double-log

model, also known as Log-Log, all variables are expressed in natural logarithm.

For instance, under the framework of the simple linear regression, we have:

ln yi ¼ α1 þ α2 ln xi þ Ei

> d=c(rep(0,15),rep(1,15))
> d
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
> x1=x*(1-d)
> x2=x*d

> summary(lm(y~d+x1+x2))

Call:
llmm((ffoorrmmuullaa == yy ~~ dd ++ xx11 ++ xx22))

Estimate Std. Error t value Pr(>|t|)    
(Intercept)  35.0430     6.1793   5.671 5.78e-06 ***
d            16.0155    10.4676   1.530    0.138    
x1            0.5189     0.3435   1.510    0.143    
x2            2.6071    0.4176   6.243 1.32e-06 ***
---
Multiple R-squared: 0.8849,     Adjusted R-squared: 0.8716 
F-statistic: 66.62 on 3 and 26 DF,  p-value: 2.465e-12
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where ln yi and ln xi stand for the dependent variable and the independent variable,

respectively. One asset of the double-log model is that the slope coefficient

measures the elasticity of y with respect to x. We have on average:

α2 ¼ dy=y

dx=x

By definition, an elasticity is the percentage change in y for a one percentage

increase in x (if we set dx/x¼ 1 percent, we have dy/y¼ α2 percent). For instance,
if the estimated coefficient is 1.2 that means that a 1% increase in x will generate on
average a 1.2% increase in y. Graphically, the slope α2 determines the shape of the

regression curve. If 0< α2< 1, the impact of the independent variable is positive

and becomes smaller as its value increases (Fig. 5.12a). If α2> 1, the impact of the

independent variable is positive and becomes larger as its value increases

(Fig. 5.12b). If α2¼ 1, the impact of the independent variable is positive and

constant (Fig. 5.12c). If α2< 0, the impact of the dependent variable is negative

(Fig. 5.12d).

It should be reminded that a distinction exists between a “percent change” and a

“percentage point change”. While the former denotes the proportion of increase or

decrease in a given variable, the latter indicates whether a rate goes up or down and

by how many points. For instance, in Fig. 5.5, variables were not expressed in

natural log. We found that a one percentage point increase in the unemployment

rate was generating on average an increase of $3.1 in per capita social spending.

Here, by “percentage point increase” we mean the unemployment rate plus one

percent. If the variable was expressed in logarithm, we would be referring to a

“percent change”, i.e. the unemployment rate times (1 + 1% ).

Semi-log models, also referred to as Log-Lin and Lin-Log models, express one

variable in natural logarithm and the other in a linear form. In the Log-Lin model,

the natural logarithm of the dependent variable is taken, but not that of the

independent variable:

ln yi ¼ α1 þ α2xi þ Ei

The slope coefficient yields the percentage change in the dependent variable

induced on average by a one unit increase in the independent variable:

α2 ¼ dy=y

dx

If we set dx¼ 1, we have dy/y¼ α2. If α2> 0, the impact of the independent variable

is positive and becomes larger as its value increases (Fig. 5.12e). If α2< 0, the

impact of the dependent variable is negative and becomes smaller (Fig. 5.12f). In

the Lin-Log model, only the independent variable is expressed in logarithm:
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yi ¼ α1 þ α2 ln xi þ Ei

We have on average:

α2 ¼ dy

dx=x

If we set dx/x¼ 1%, we get dy¼ α2/100. A one percent increase in the independent

variable yields a α2/100 change in the dependent variable. If α2> 0, the impact of

the independent variable is positive and becomes smaller as its value increases
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Fig. 5.12 Functional forms. (a) Double-log model: 0< α2< 1, (b) double-log model: α2> 1, (c)

double-log model: α2 ¼ 1, (d) double-log model: α2 < 0, (e) log-lin model: α2 > 0, (f) log-lin

model: α2< 0, (g) lin-log model: α2> 0, (h) lin-log model: α2< 0, (i) quadratic model: α1, α3>
0, α2 < 0, (j) cubic model: α1, α2, α3 > 0, α4 < 0
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(Fig. 5.12g). If α2< 0, the impact of the independent variable is negative and

becomes smaller (Fig. 5.12h).

It is also possible to choose a polynomial functional form that allows the

relationship between x and y to be modeled in a more complex way. For instance,

adding a squared term x2i in the equation is useful when one wants to fit a U-shaped
distribution, as illustrated in Fig. 5.12i. Formally, we write:

yi ¼ α1 þ α2xi þ α3x
2
i þ Ei

This equation is usually referred to as a polynomial of degree two or quadratic. The

model can also be extended by adding a cube term (cubic model), as shown in

Fig. 5.12j:

yi ¼ α1 þ α2xi þ α3x
2
i þ α4x

3
i þ Ei

While more general, the polynomial transformation entails a loss of simplicity in

the interpretation of regression coefficients.

In simple linear regression analysis (one independent variable only), a simple

way to choose the best functional form is through the examination of a scatter plot,

as shown in Fig. 5.12. The task is more difficult when more than one independent

variable is included. In that case, we may rely on residual plots showing the

residuals as a function of the fitted values. Any non-random pattern can be an

indication that the regression function is not linear. An alternative is to rely on the

adjusted R2 of the models in competition. For instance, we can express the depen-

dent variable linearly and compare the simple linear model with the Lin-Log or

quadratic model. Or we can express the dependent variable in logarithm and

compare the double-log model with the Log-Lin or any other functional form

where lny is the dependent variable. When two models are compared, the best

model is the one with the highest �R
2
.

5.6 Detection and Correction of Estimation Biases

An important step that should not be neglected in econometrics is the examination

of residual terms. Residual plots can be very useful in detecting for instance

non-linearity, non-normal residuals, heteroscedasticity or autocorrelation. Those

problems may themselves be generated by a model misspecification. More for-

mally, several tests exist to diagnose a specific pattern in the way residuals are

distributed: the Jarque-Bera test of normality, the Breusch-Pagan test for

heteroscedasticity, the Durbin-Watson test for autocorrelation. This section offers

a description of those procedures after testing for non-linearity.

Non Linearity If the linear functional form is not appropriate to fit the data, then

the estimated coefficients as well as the fitted values will be biased. For instance, as

shown in Fig. 5.13, the first scatter plot shows a nonlinear pattern between x and y.
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Using a linear model is inappropriate. Plotting the residuals (bE ) of that linear

regression as a function of the fitted values (by ) illuminates the problem. The

command abline(h¼ 0) is used to add a horizontal line to the plot. Data points

above that line are underestimated while those below that line are overestimated.

The closer a data point is to the line, the better the model estimates that observation.

As expected, the residual plot points out a non-linear pattern. As can be seen, a

possible solution to that problem is to use a quadratic form (x and x2), which
improves the goodness of fit as measured with the adjusted R2.

Non-normal Residuals Violations of normality affect the results of the t-tests of
statistical significance. Non-normality occurs for instance when outliers are present

> myreg=lm(y~x)
> summary(myreg)

Call:
llm(formula = y ~ x)

Estimate Std. Error t value Pr(>|t|)    
(Intercept)  140.203     79.303   1.768    0.088 .  
x             10.139      1.657   6.119 1.33e-06 ***
---
Multiple R-squared: 0.5721,     Adjusted R-squared: 0.5569 
F-statistic: 37.44 on 1 and 28 DF,  p-value: 1.33e-06 

> plot(myreg$residuals~myreg$fitted.values)
> abline(h=0)
> x2=x^2
> myreg2=lm(y~x+x2)
> summary(myreg2)

Call:
lm(formula = y ~ x + x2)

Estimate Std. Error t value Pr(>|t|)    
(Intercept) 2373.08416  142.53174   16.65 1.00e-15 ***
x            -91.79933    6.42701  -14.28 4.18e-14 ***
x2             1.11987    0.07037   15.91 3.05e-15 ***
---
Multiple R-squared: 0.9588,     Adjusted R-squared: 0.9557 
F-statistic:   314 on 2 and 27 DF,  p-value: < 2.2e-16
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Fig. 5.13 Violation of the linearity assumption
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in the data (residual terms are large for some of the observations) or when the

functional form is inappropriate. The distribution of residuals can be asymmetric

(skewness coefficient different from 0), light-tailed or heavy-tailed (kurtosis coef-

ficient different from 3). Visually, the easiest way to assess the normality of

residuals is to draw a probability density function for the residuals and to compare

it to the normal distribution. Figure 5.14 offers an illustration. The scatter plot of

y on x points out an outlier. Once the regression line has been fitted using the lm
function, the values of the residuals (myreg$residuals) are standardized, i.e. divided
by their (sample) standard deviation (we do no need to subtract the mean as the sum

of residuals is zero). The probability density function of the residuals is then drawn

using the plot function. The density of the standard normal distribution is added to

the graph using the curve command. As can be observed, the shape of the distribu-

tion is far from being normal on the right tail of the distribution.

The Jarque-Bera test offers a formal way of detecting non-normal residuals. The

test looks jointly at the skewness and kurtosis of the residuals distribution via the

following statistic:

> myreg=lm(y~x)
> stand_resis=(myreg$residuals)/sd(myreg$residuals)
> plot(density(stand_resis),type="l",col="red",lwd=3)
> curve(dnorm, add = TRUE,type="l",col="green",lwd=3)
> legend("topright",legend=c("Normal distribution",
+ " Residuals"),col=c("green","red"),lty=c(1,1),lwd=c(2,2))
> library(tseries)
> jarque.bera.test(myreg$residuals)

Jarque Bera Test

data:  myreg$residuals 
X-squared = 7.9907, df = 2, p-value = 0.0184
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Fig. 5.14 Violation of the normality assumption
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JB ¼ n� Kð Þ g21
6
þ g2 � 3ð Þ2

24

" #

where n is the sample size, K is the number of regressors, g1 is the skewness

coefficient, g2 is the kurtosis coefficient. For normally distributed residuals, g1¼ 0

and g2¼ 3. The test hypotheses are specified as follows:

H0 : The residuals are normally distributed JB ¼ 0ð Þ
H1 : The residuals are not normally distributed JB > 0ð Þ

Under the null hypothesis, the JB statistic follows a chi-square distribution with

2 degrees of freedom. If the p-value of the test is lower than 5%, one rejects the

hypothesis that the residuals are normally distributed. If the null hypothesis fails,

one can then check whether the violation of normality is due to the presence of

outliers, i.e. anomalous values in the data. One can also try to transform the

dependent variable or the explanatory variables as described in the previous section

until one reaches normality. For instance, in Fig. 5.14, the command jarque . bera .
test from the package tseries has been used to assess the normality of the residuals.

It can be seen that the residuals are not normally distributed: the p-value amounts to

0.0184 (and is lower than 5%) and the null hypothesis is rejected.

Heteroscedasticity This problem frequently appears in cross-sectional data. When

the units under examination are heterogeneous with respect to their size, large units

(e.g., highly populated cities or countries, large hospitals) may exhibit high vari-

ance in the dependent variable. Smallest units on the other hand are more likely to

be similar. This may generate a problem of heteroscedasticity where the residual

variance is not constant across fitted values. If the residual plot exhibits such a

pattern, then heteroscedasticity is said to be present and the estimation procedure

needs to be modified accordingly. Figure 5.15 provides an example. In the scatter

plot of y on x, observations are more dispersed for high values of x. This pattern is

also observed in the residual plot where the variance is found to be not constant. As

a consequence, the results of the t- tests cannot be trusted.
The Breusch-Pagan test can be implemented to detect heteroscedasticity. It tests

whether the estimated variance of the residuals is dependent on the values of the

regressors:

bE2 ¼ β1 þ β2x2i þ β3x3i þ . . .þ βKxKi þ ui

where ui is the error term of this regression. The test hypotheses are:

H0 : Homoscedasticity

H1 : Heteroscedasticity
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If an F-test confirms that the independent variables are jointly significant then the

null hypothesis of homoscedasticity is rejected. In some cases, expressing the

dependent variable in logarithm or in per capita terms may solve the problem. In

other cases, White’s heteroscedasticity-corrected covariance matrix can be used to

make inference:

> myreg=lm(y~x)
> summary(myreg)

Call:
llm(formula = y ~ x)

Estimate Std. Error t value Pr(>|t|)    
(Intercept) 8.607e+03  1.176e+04   0.732     0.47    
x           9.380e-02  1.560e-02   6.013 1.77e-06 ***
---
Multiple R-squared: 0.5636,     Adjusted R-squared: 0.548 
F-statistic: 36.16 on 1 and 28 DF,  p-value: 1.766e-06 

> plot(myreg$residuals~myreg$fitted.values)
> abline(h=0)

> library(lmtest)
> bptest(myreg)

studentized Breusch-Pagan test
data:  myreg 
BP = 13.3175, df = 1, p-value = 0.0002629

> # Results with a corrected covariance matrix:
> library(sandwich)
> coeftest(myreg,vcov=vcovHC(myreg,type = "HC"))

t test of coefficients:
Estimate Std. Error t value  Pr(>|t|)    

(Intercept) 8.6068e+03 7.6180e+03  1.1298    0.2681    
x           9.3802e-02 1.8908e-02  4.9610 3.085e-05 ***

0 200000 600000 1000000 1400000

0
50

00
0

10
00

00
15

00
00

20
00

00

x

y

20000 40000 60000 80000 100000 140000

-5
00

00
0

50
00

0

myreg$fitted.values

m
yr

eg
$r

es
id

ua
ls

Fig. 5.15 Violation of the homoscedasticity assumption

5.6 Detection and Correction of Estimation Biases 171



HCE ¼ X0Xð Þ�1
X0 bΩX

� 	
X0Xð Þ�1

with bΩ ¼ diag bE21;bE22; . . . ;bE2n� �
and where HCE stands for heteroscedasticity-

consistent estimator. Statistical packages provide this matrix very easily. Note that

using HCE yields a better estimate of the standard errors. It does not solve however

what may have caused the problem in the first place. For instance, in Fig. 5.15, the

Breusch-Pagan test is carried out with the command bptest from the package lmtest.
The p-value of the test is lower than 5% which means that we reject the hypothesis of

homoscedasticity. The command coeftest then recalculates the t-value using the

corrected covariance matrix. The entry HC specifies White’s estimator.

Autocorrelation This problem appears in time series data when the series have a

common trend, or when the estimated relationship has a non-linear shape. A way to

diagnose this problem is to plot the residuals at t as a function of the residuals at

t� 1. The Durbin-Watson test can also be implemented to detect the presence of

autocorrelation. The test hypotheses are the following:

H0 : No autocorrelation

H1 : Autocorrelation

The test statistic is defined as:

DW ¼
Pn

t¼2 bEt � bEt�1ð Þ2Pn
t¼1 bEtð Þ2

This statistic lies between 0 and 4. At a 5% significance level, it is compared to

lower and upper critical values. If DW is close to 0, there is evidence of positive

serial correlation. If DW is close to 4, there is evidence of negative serial correla-

tion. If autocorrelation is detected, then the model needs to be modified by using for

instance first-differences or non-linear transformation of the variables. The problem

can also be resolved with the Cochrane–Orcutt method. The procedure is iterative

and usually available in any statistical package. It consists in estimating:

bEt ¼ ρbEt�1 þ ut

Using bρ we transform the regression model by taking a quasi-difference:

yt � bρyt�1 ¼ α1 þ α2 x2t � bρx2t�1ð Þ þ . . .þ αK xKt � bρxKt�1ð Þ þ Ei

The procedure is then reiterated until no important variation in the estimated value

of bρ is observed.
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Figure 5.16 offers an illustration. Both the dependent variable y and the inde-

pendent variable x are non-stationary. For this reason, regressing y on x yields a

problem of autocorrelation. The scatter plot of the residuals at year t (observations
2–30) against the residuals at year t� 1 (observations 1–29) exhibits a pattern. The

Durbin-Watson test (command dwtest) confirms the presence of autocorrelation.

The p-value is lower than 5%. To solve this issue, the iterative procedure of

myreg=lm(y~x)
> library(lmtest)
> dwtest(myreg)

Durbin-Watson test
data:  myreg 
DW = 1.0183, p-value = 0.0008958 
alternative hypothesis: true autocorrelation is greater than 0

> library(orcutt)
> cochrane.orcutt(myreg)
$Cochrane.Orcutt

Call:
llm(formula = YB ~ XB -- 11)

Residuals:
Min      1Q  Median      3Q     Max 

-11.872  -4.936   1.233   3.998  10.508 

Coefficients:
Estimate Std. Error t value Pr(>|t|)  

XB(Intercept) 7452.7674  3503.8787   2.127   0.0427 *
XBx             -0.1130     0.2191  -0.516   0.6103  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 6.219 on 27 degrees of freedom
Multiple R-squared: 0.1455,     Adjusted R-squared: 0.08218 
F-statistic: 2.298 on 2 and 27 DF,  p-value: 0.1197 

$rho
[1] 0.9996467

$number.interaction
[1] 24922

1990 1995 2000 2005 2010 2015

0
20

40
60

80
10

0

Time

V
ar

ia
bl

es

x
y

-10 -5 0 5 10 15

-1
0

-5
0

5
10

15

myreg$residuals[1:29]

m
yr

eg
$r

es
id

ua
ls

[2
:3

0]

Fig. 5.16 Test of autocorrelation
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Cochrane–Orcutt can be used (command cochrane . orcutt from the package

orcutt). Using this approach, the dependent variable does not yield a significant

impact on y. The slope parameter bρ is found to be 0.99 and the software needs

24,922 iterations to reach a stable result.

5.7 Model Selection and Analysis of Regression Results

It is not an easy task to select the final model that will be included in a policy report.

Quite often, the method of selection relies on trial and error. Once a model is

estimated, the regression output must be analyzed meticulously. If the estimated

coefficients are not significant or in the opposite direction to what is expected, one

should question the choice of variables and the manner in which they are measured

and expressed. What happens if one of the variables is excluded? What if one

additional control variable is included? It is also important to check that the

coefficients do not change significantly when extra variables are included or

excluded. Instability in the estimated coefficients is often a sign of

multicollinearity. The examination of a correlation matrix can be very helpful in

this respect, in order to detecting those potential problems. The adjusted R2 and the

F-test of overall significance can also be used to assess the quality of the model.

Does the goodness of fit improve extensively when an extra variable is added to the

equation? Last but not least, once the final model is established, it is important to

check that the residuals satisfy the classical assumptions of the OLS method. If not,

then it means that a few problems remain with regard to the chosen specification.

Consider for instance example 1. In Fig. 5.5, we have made the choice of

including three variables only (as a matter of simplicity, we do not discuss the

theory behind the model):

Model 1

Social Exp ¼ α0 þ α1Unemprateþ α2Incomeþ α3Shareof60þ Ei

The adjusted R2 of the model amounts to 13.85%. The regression equation can

actually be modified so as to improve the goodness of fit. For instance, so far we did

not use information about variables N_ family, N_disabled, N_elder and N_benefits
which represent the number of families, disabled, elder and unemployed who

receive social assistance, respectively. The population density could also be

included in the model. Does the goodness of fit increase when those variables are

included?

To avoid spurious regression or any other misspecification, we cannot express

the variables in level. All the variables must be expressed in per capita terms. This is

done in Fig. 5.17 where data about social beneficiaries are now expressed in

percentage of the population and renamed S_ families, S_disabled, S_elders, and
S_benefits. Those new variables complete the database with additional columns. A

new model is estimated:
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Fig. 5.17 Model selection using R-CRAN: example 1 (part 1)
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Model 2

Social Exp ¼ α0 þ α1Unemprateþ α2Incomeþ α3Shareof60þ α4S families

þα5S disabled þ α6S eldersþ α7S benefitsþ α8Densityþ Ei

The goodness increases from 13.85% (Fig. 5.5) to 50.29% (Fig. 5.17). Yet, we

should be careful because we do not want to introduce variables that are too much

correlated with each other. For instance, Unemprate and Shareof60 do not show a

significant impact anymore. This is a sign of multicollinearity which is confirmed

by the computation of a correlation matrix (see function cor in Fig. 5.17).

Unemprate is strongly correlated with S_benefits (r¼ 0.80), while Shareof60 is

strongly correlated with S_elders (r¼ 0.73). Moreover, variable Income seems to

be correlated with the population density (r¼ 0.63).

From the previous discussion, we exclude Shareof60, Unemprate and Density
from the regression equation. Figure 5.18 estimates the following model:

Model 3

Social Exp ¼ α0 þ α1Incomeþ α2S f amiliesþ α3S disabled

þα4S eldersþ α5S benefitsþ Ei

The model yields an adjusted R2 equal to 48.88%. At this stage, we may decide to

implement a Box-Cox test to determine the form of the dependent variable. The

Box-Cox procedure consists in finding the optimal value of a parameter λ that yields
the final form of the dependent variable:

Endogenous variable ¼
yλ � 1

λ
if λ 6¼ 0

ln yð Þif λ ¼ 0

8<:
If λ¼ 0.5 we can use the square root of y in the regression analysis. If λ¼ 1 we may

use y, or ln(y) if the parameter approaches 0. Figure 5.18 implements the procedure

using the command boxcox from the package MASS. It generates the graph of

Fig. 5.19. The horizontal line indicates a 95% confidence interval about the maxi-

mum observed value of λ. As can be seen, the procedure yields a parameter λ close to
one, which means that we can keep the dependent variable in a linear form.

The question remains about the form of the independent variables. We may try to

express the independent variables in logarithm:

Model 4

Social Exp ¼ α0 þ α1lnðIncomeÞ þ α2lnðS f amiliesÞ þ α3lnðS disabledÞ
þα4 ln S eldersð Þ þ α5 ln S benefitsð Þ þ Ei
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Fig. 5.18 Model selection using R-CRAN: example 1 (part 2)
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As can be seen from Fig. 5.18, the goodness of fit decreases when the independent

variables are expressed in natural log (see myreg4). Overall, the best model seems

to be Model 3.

The last step consists in examining the distribution of residuals. Figure 5.18

offers an example using the third model (myreg3). As already stated in Sect. 5.6, the
scatter plot of residuals versus fitted values is very useful when conducting a

residual analysis. The graph is used to detect non-linearity, non-normality (e.g.,

outliers) and heteroscedasticity (unequal error variances). Using information about

myreg3, Fig. 5.20 is created with the command plot (myreg3$residuals ~
myreg3$fitted.values). The residuals (displayed on the y axis) are expressed as a

function of fitted values (displayed on the x axis). The command abline(h¼ 0)

draws an horizontal line at y¼ 0. The residuals fit no particular pattern: the residuals

are clustered around the horizontal axis, which suggests that the relationship is

indeed linear. The distribution is symmetric around that axis and does not exhibit

outliers, which supports the assumption of normality. The variance of residuals is

not a function of the fitted values, meaning that the residuals are homoscedastic.
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Fig. 5.19 Parameter of the Box-Cox power transformation
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The normality of residuals is further confirmed in Fig. 5.21. To create this graph,

the values of the residuals (myreg3$residuals) are standardized (stand_resis).
Function curve displays the density of the standard normal distribution (see

Fig. 5.18). Both density curves have a similar pattern. The tests also confirm that

the residuals are normal ( jarque . bera . test) and homoscedastic (bptest), the

respective p-values being much above the 5% threshold.

Table 5.3 displays the previous results in a more polished form. This is the

standard way to present regression outputs. For each variable, the numbers that are

not in brackets are the regression coefficients. The sign of the coefficient indicates

the direction of the relationship between the dependent variable and the indepen-

dent variable. For instance, a negative relationship indicates that the dependent

variable increases as the independent variable decreases. An asterisk is included

whenever this impact is found to be significant. Three asterisk means that the p-
value is lower than 0.1%, two asterisks indicates a 1% significant level, and one

asterisk stands for a 5% significance level. Values in brackets indicate t-values. The
higher are those values, the lower are the p-values associated with the t-tests. Note
that “being significant” does not mean that the effect is significantly large. It means

only that the observed effect is not due to chance. Only the regression coefficients

measure the magnitude of the effects.

What do the regression results tell us? According to the result of Model 3, the

mean income and the shares of social beneficiaries all have a statistically significant

relationship with per capita social expenditures. For instance, an increase in income
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Fig. 5.20 Residuals versus fits plot
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by $100 would generate an increase in per capita social expenditures by $6.7 (see

column (3) of Table 5.3). Assessing whether those effects are consistent with the

existing literature would require further expertise as each model is context-

dependent.

5.8 Models for Binary Outcomes

So far, the dependent variable has always been numeric which allows the OLS

method to be used without worries. There some situations, however, where the

dependent variable is categorical, which makes the OLS approach irrelevant.

Examples include the analysis of individual choice and responses to survey

questions, e.g., whether or not to buy a good, or to accept a particular policy. To

illustrate, let the dependent variable yi be a dichotomous random variable which

takes the values 0 and 1 or equivalently “No/Yes”. The probability of observing

either yi¼ 1 or yi¼ 0 is determined by a set of factors x2i , . . . , xKi and a set of

parameters α1 , . . . , αK. Since the dependent variable is dichotomous, the usual
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linear approach with ordinary least squares is not suitable for estimating this

relationship. Consider for instance Fig. 5.22 where yi is explained by one single

dependent variable x. The individual observations (displayed in orange) do not

follow a linear pattern. Individuals who face extreme values of x are more likely to

say either “yes” or “no”. In contrast, for intermediate values of x, they are more

likely to hesitate. Two families of models can be used to estimate such a relation-

ship: logit and probit models. Both models are forms of generalized linear models

(GLMs) and adopt the maximum likelihood estimation (LME) method. The proce-

dure requires specific distribution functions and estimates the parameters so that the

probability of observing the sample outcome is as high as possible.

Formally, the probability that yi¼ 1 is defined by a link function F which

connects the dependent variables to the outcome:

Pr yi ¼ 1ð Þ ¼ F α1 þ α2x2i þ . . .þ αKxKið Þ
F is a cumulative distribution function which is expressed either as a logistic

distribution function in the logit model or as a normal distribution function in the

Table 5.3 Estimation results (OLS): example 1

Social_Exp

(1) (2) (3) (4)

Intercept 49.95

(0.927)

26.47

(0.625)

15.48

(0.535)

263.46

(1.210)

Unemprate 312.6*

(2.180)

�217.8

(�1.123)

Income 0.0047

(1.207)

0.0043

(1.124)

0.0067*

(2.320)

47.575

(1.773)

Shareof60 270.7**

(2.910)

162.6

(1.620)

S_families 20,020***

(4.074)

17,440***

(3.629)

24.130*

(2.592)

S_disabled 4379

(1.091)

7054

(1.896)

18.641

(1.413)

S_elders 3267*

(2.170)

4658***

(3.521)

30.186**

(2.945)

S_benefits 2086*

(2.396)

1657**

(3.258)

22.552**

(2.792)

Density 0.0030

(1.149)

Adj. R2 0.1385 0.5029 0.4888 0.3871

N 60 60 60 60

F-stat 4.161*** 8.462*** 12.28*** 8.453***

***, **, and * indicate a significance level of 0.1%, 1% and 5%, respectively. t-values are in

brackets
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probit model. Generally speaking, if a variable Z has mean μZ and varianceσ2Z, those
distributions are expressed as follows:

Logit model : F zð Þ ¼ 1

1� e�z

Probit model : F zð Þ ¼ Φ zð Þ ¼
Z z

�1

1

σZ
ffiffiffiffiffi
2π

p e
� t�μZð Þ2

2σ2
Z dt

By replacing z with α1 + α2x2i + . . . + αKxKi, the models can be expressed as

follows:

Logit model : ln
yi

1� yi
¼ α1 þ α2x2i þ . . .þ αKxKi

Probit model : Φ yið Þ�1 ¼ α1 þ α2x2i þ . . .þ αKxKi

As with the method of least squares, the value of yi depends on a set of independent
variables and unknown parameters. Based on those specifications, it is possible to

compute a log-likelihood function lnL that is maximized for estimating the

unknown parameters. Empirically, the logistic and normal cumulative functions

do not differ much. The estimates obtained using the logit and probit models are

often very close. For this reason, there is no exact rule as to which model should be

used. Because of its simplicity, the logit model is often preferred.

An important feature of logit and probit models is that the parameters of the

model, unlike the linear regression model, do not represent marginal effects. Those

( = )

0

1

Fig. 5.22 A qualitative response regression model
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Table 5.4 Data for example 2

Patient S Age Smoker

1 0 63 1

2 0 63 1

3 0 56 0

4 0 61 1

5 0 64 0

6 0 61 1

7 0 64 1

8 0 61 1

9 0 69 0

10 0 61 1

11 0 67 0

12 0 49 0

13 0 57 0

14 0 59 0

15 0 69 0

16 0 61 1

17 0 63 0

18 0 69 0

19 0 59 0

20 0 64 0

21 0 64 0

22 0 41 0

23 0 61 0

24 0 54 1

25 0 64 1

26 0 61 0

27 0 68 0

28 0 40 1

29 0 65 0

30 0 69 0

31 0 64 0

32 0 64 0

33 1 61 1

34 1 73 0

35 1 65 1

36 1 79 0

37 1 56 1

38 1 69 1

39 1 62 1

40 1 73 1

41 1 93 1

42 1 61 1

43 1 62 1

(continued)
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effects depend on the values of the dependent variable. To overcome this issue, one

usually evaluates the marginal impacts at the sample means of the data, i.e. by

setting the independent variables at their mean. Statistical packages, such as

R-CRAN, usually make the task easier by providing those values automatically.

Assume for instance that we would like to assess whether the characteristics of a

set of patients affect their probability to undergo a particular treatment, e.g.,

strategy 0 (yi¼ 0) or strategy 1 (yi¼ 1). The data is cross-sectional and presented

in Table 5.4. It consists in n¼ 60 patients of different age (Age) who used to smoke

or not (Smoker). All patients underwent treatment, either with strategy 0 (S¼ 0) or

with strategy 1 (S¼ 1). The codes used in R-CRAN are presented in Fig. 5.23. The

logit and probit models are estimated using the glm command. Both models

specifies S as a function of Age and Smoker. Option family specifies the link

function to be used in the model.

The command summary displays the results. The coefficients cannot be directly
interpreted because they do not represent marginal effects. Yet, we can already see

that there is a significant positive relationship between the probability of receiving

treatment S¼ 0 and both Age and Smoker. Option x¼ TRUE in the glm command

indicates whether the exogenous variables should be saved for subsequent analysis.

This option is required if one wants to obtain the marginal effects at the sample

means, using the package erer. The regression output can be interpreted using the

maBina command: being one year older increases the probability of undergoing

strategy S¼ 1 by 6.5–6.7%. Being a smoker increases this probability by

52.5–53.1%.

Table 5.4 (continued)

Patient S Age Smoker

44 1 69 1

45 1 63 0

46 1 87 0

47 1 64 0

48 1 71 1

49 1 59 1

50 1 68 0

51 1 68 0

52 1 68 1

53 1 67 1

54 1 72 1

55 1 59 1

56 1 87 1

57 1 81 1

58 1 76 0

59 1 68 1

60 1 73 0
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Fig. 5.23 Estimation of logit and probit model using R-CRAN: example 2
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Note that the output of the glm command differs slightly from that of the lm
command. The term “Fisher scoring iterations” relates to the way the model is

estimated, which is based on successive trial and error until the log-likelihood

function is maximized. The number of iterations corresponds to the number of

times the software implements that process. The null deviance is a measure of the

lack of fit of the model when the equation includes only the intercept. In that case,

only one parameter is estimated and the number of degrees of freedom is

n�K¼ 60� 1¼ 59. Likewise, the residual variance is a measure of the lack of

fit, but when the model includes the independent variables. The number of degrees

of freedom is 57 because three parameters are being estimated. The larger is the

difference between the null deviance and the residual deviance, the better is the

explanatory power of the model. Last, when two models are compared, the best

model is the one with the lowest Akaike Information Criterion (AIC) value.
The computation of the residual deviance and the AIC is based on the value of

the maximized log-likelihood function. We have:

Residual Deviance ¼ �2 ln L∗ð Þ
AIC ¼ 2K � 2 ln L∗ð Þ

where L∗ is the maximum value of the likelihood function for the model. Consider

for instance Fig. 5.23. The value of ln L∗ is obtained with the logLik command. For

the logit model, the residual deviance and the AIC are computed as follows:

Residual Deviance ¼ �2� �26:72026ð Þ ¼ 53:44052

AIC ¼ 2� 3� 2� �26:72026ð Þ ¼ 59:44052

Those statistics are very useful when comparing two models.

Bibliographical Guideline

The term “regression” comes from genetics and has been popularized by Galton

(1886), an English polymath, cousin of Darwin, who was interested in the link

between the characteristics of children and those of their parents. The method of

least squares originates in Pearson (1894). The analytical foundation of maximum

likelihood estimations as well as further developments in econometrics have been

introduced by Fisher (1922). The first known empirical studies to use multiple

regressions in economics are those of Benini (1907), where a demand function for

coffee is estimated using data from Italy, and Moore (1914), about economic

cycles. The term “econometrics” is attributed to Ragnar Frisch, a Norwegian

economist and the co-winner of the first Nobel Prize in economics in 1969 (with

Jan Tinbergen). He was one of the founders of the Econometric Society and editor

of Econometrica, a peer-reviewed academic journal of economics, for over twenty

years. For further historical aspects the reader may consult Eatwell et al. (1990).
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Since the seminal works of Pearson (1894) and Moore (1914), the econometric

approach has gone through a number of methodological changes and developments.

Far from being exhaustive, this chapter only provides the basics of regression

techniques. To go further, the reader may rely on Gujarati and Porter (2009),

Verbeek (2012) and Greene (2011). Those textbooks review the basic empirical

techniques as well as the theoretical foundation of the econometric methods. Note

that the rule of thumb for minimum sample size presented in Sect. 5.4 is derived

from Green (1991).

It should be stressed that the econometric methods have long been decried in

science. We may for instance quote Frisch’s (1934) own criticism of the approach,

which is nowadays still relevant. “The data will frequently obey many more
relations than those which the statistician happens to think of when he makes a
particular regression study [. . .] As a matter of fact I believe that a substantial part
of the regression and correlation analyses which have been made on economic data
in recent years is nonsense for this reason.” To overcome this issue, many empirical

analyses now rely on more complex techniques, such as quasi-experimental

methods.
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Estimation of Welfare Changes 6

6.1 Valuing the Consequences of a Project

Public projects have consequences on individual lives. This rather obvious state-

ment nevertheless puts pressure on policy-makers to bring in relevant measures of

how those consequences are perceived by their citizens. The estimation of welfare

changes is thus a crucial step in the evaluation process, but also a tricky task.

Formally, let ui denote the satisfaction or utility levels of agents i¼ 1 . . . n. If the
agents are able to express the level of satisfaction they get from being in one state

(e.g., consumption bundle, health state) then their individual welfare is observable

and those measurements can be used for policy-making purposes. For instance,

assume that we would like to assess the change in welfare resulting from a

particular public intervention. Let denote u0i the utility that each agent i derives

from the status quo and u1i the utility they derive from the intervention. The main

issue for the evaluator is to get a measure of the utility differences u1i � u0i for all

agents i¼ 1 . . . n. In this respect, one may rely on two different conceptualizations.

First, we may assume that utility levels can be directly measured on a cardinal scale,

in which case welfare is expressed in units of utility; or one may rely on the concept

of consumer surplus, in which case welfare is measured in monetary units.

Utility refers to the benefit or satisfaction an agent derives from using a good or

service. Surplus on the other hand is defined as the difference between the amount

of money an agent is willing to pay for consuming a particular good or service and

the price she or he actually pays. Although surplus and utility are different concepts,

they are closely related: agents will derive extra satisfaction if the price they pay for

a good decreases, first, because they will be able to consume more of that good and,

second, because they will be able to use the extra money to purchase other goods.

To illustrate, consider an agent who is willing to pay $4 for one unit of a good, $7

for two units, $9 for three units and $10 for four units. The inverse demand curve

(price as a function of quantity) can be schematized as follows:
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The law of diminishing marginal utility says that as an agent uses more and more of

a good, each additional unit yields less satisfaction. This is also reflected in the

willingness to pay. Now assume that the actual price of the good is $3. At this price

the agent will buy two units of the good:

The surplus amounts to $1 and is computed as the difference between the willing-

ness to pay for those two units (here, $7) and the actual cost (2� $3¼ $6).

Graphically, the surplus corresponds to the area (displayed in green in the

diagram) below the inverse demand curve and above total spending (displayed in

red). Should a reduction in price by $2 be observed, the surplus would increase by

$5:

The agent derives additional satisfaction first because he or she will be able to buy

two extra units of the good and, second, because he or she can buy additional goods

with the extra $2 saved. Change in surplus is thus an approximation of differences

in utility, expressed in monetary values.

Choosing whether and how to measure utility directly or through consumer

surplus mainly depends on the context of the analysis. Broadly speaking, there

are three ways of eliciting individual preferences with regard to a public project.

The first two imply a monetization of consequences while the third does not. Let us

briefly introduce them.

The first set of methods consists of stated preferences techniques whereby

individuals declare what their perceptions are of the project and its consequences.

A first and quite popular method is contingent valuation. A sample of individuals is

picked from the population targeted by the project. They are asked how much they

would be willing to pay for positive consequences (or receive in compensation for

negative ones). The econometric treatment of their answers generates an average

individual willingness to pay. Stated preference methods also include choice
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modeling techniques. They are quite suited to projects that have multiple

characteristics that cannot be reduced to a single attribute. Respondents are then

asked to evaluate multi-dimensional policy options. In this chapter, we focus on the

discrete choice experiment method, as it is more and more often used to elicit

preferences (the bibliographical guideline provides references on other choice

modeling methods).

The second set of methods comprehends revealed preferences techniques.

Instead of directly asking people what their perception of policy options is,

preferences are inferred from what is observed on existing markets. For instance,

the hedonic pricing method estimates the implicit price of non-market goods, e.g.,

proximity of a school or air quality, from their impact on real estate market prices.

The method rests on the idea that the choice of a living place does not only reflect

the preference for the property itself, but also integrates the environmental

attributes. Regression analysis is then used to disentangle the different factors

influencing market prices. Alternatively, the travel cost method uses information

about the monetary and opportunity costs borne by individuals to reach a recrea-

tional site, and relates it to the demand for the site. The econometric analysis of that

relation then estimates the individual marginal willingness to pay for the amenities

of the site.

Finally, health technology assessment has developed an ambitious framework

for evaluating individual perceptions of the health states they are in or may fall into.

Measures of health-related quality of life allow to shift from objective statements of

health states (for instance the walking condition after a hip surgery) to its subjective

appreciation by individual who face it or are asked to act as if they were facing

it. Quality adjusted life-years (or QALYs) aggregate two dimensions of health

programs consequences, the quantity of life and the utility associated with each

period lived under a particular health state. Contrary to revealed or stated

preferences, the valuation of health-related quality of life does not involve any

monetization of the consequences of a health program on individual welfare.

The outline of the chapter is as follows. Sections 6.2 and 6.3 develop two stated

preferences methods: contingent valuation and discrete choice experiment.

Sections 6.4 and 6.5 are about revealed preferences methods: hedonic pricing and

travel cost method. For each section, we take time to demonstrate how statistical

confidence intervals can be defined and applied. The use of confidence intervals,

rather than point estimates, will reveal to the decision-maker the precision of the

analysis. Finally, Sect. 6.6 proposes an introduction to valuation techniques for

health outcomes.

6.2 Contingent Valuation

The contingent valuation method directly asks a sample of individuals from a target

population how much they would be willing to pay or accept in compensation for

gains or losses of non-market goods and services. The questionnaire is divided in

two parts, a descriptive part and a set of questions. Since the survey is based on
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hypothetical scenarios, the descriptive part must contain a relevant set of informa-

tion to approximate real-life situations. The consequences of the project are usually

described on a yearly basis over a given time horizon. A typical scenario describes

the type of good affected by the project, how the latter affects the quantity or quality

of that good, whether it generates external effects, its location and duration. The

scenario also explains the source of financing (users, taxpayers), the method of

payment (fare, taxes), and its frequency (on-site, on a yearly basis). Finally, the

status quo should be evoked: what if the project is not implemented? The descrip-

tion may be accompanied by support materials, such as charts or pictures, with care

however as they sometimes induce biases due to framing effects.

The descriptive part is followed by a question about the willingness to pay of the

respondent. The elicited value is thus contingent to the proposed scenario. The

question can take the form of an open-ended question such as:

“What is the most you would be willing to pay for . . . ?”

Here the respondent has total freedom as regards the answer, which may be a

problem if the respondent has no prior experience from using the good or insuffi-

cient knowledge about the satisfaction from using it. The approach may result in

many missing values if the respondent refrains from answering. To overcome this

problem, a closed-ended question can be employed with an appropriate set of

amounts, or payment cards, among which respondents have to choose:

“What is the most you would be willing to pay for . . . ”

□$5□$10□$15□$20□$25□$30□$35□$40□$45□$50

The amounts should be sufficiently different so that respondents do not hesitate too

much between them.

In both cases, open- or closed-ended questions, the statistical treatment consists

in computing the sample mean of declared individual willingness to pay. Let

n represent the sample size and let wi denote the willingness to pay of respondent

i, i¼ 1 . . . n. The average individual willingness to pay (AWTP) is given by:

AWTP ¼
Pn

i¼1 wi

n

The confidence interval is defined as:

AWTP � t� se;AWTPþ t� se½ �
The estimated standard error of the mean se ¼ s=

ffiffiffi
n

p
is computed from the sample

standard deviation:
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s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 wi � AWTPð Þ2
n� 1

s

Last, parameter t is obtained from a Student distribution table for n� 1 degrees of

freedom and a 5% risk probability. In practice, for large samples (n> 200), the t-
distribution converges on the normal distribution and the t-statistic is close to 1.96.
In contrast, when n is small, the tails of the t-distribution decrease more slowly than

the tails of the normal distribution, thus yielding higher confidence intervals.

Despite their simplicity, open- and closed-ended questions have been progres-

sively less used in practice. Both types of questions may indeed induce individuals

to choose an amount close to the price they may have experienced in similar

(or seemingly so) situations. The bias in that case is tremendous as the elicited

amount would approximate the price or cost of the good, and not the satisfaction

derived from using it. The net welfare associated with the project is measured as the

surplus, that is, the willingness to pay minus the price paid for the good. Should the

survey elicit prices instead of willingness to pay, the surplus would approach zero,

and the evaluator would be likely to reject the project for that reason.

To obtain adequate answers from the respondent, many studies prefer to employ

the dichotomous choice approach advocated by the National Oceanic and Atmo-

spheric Administration, also known as the NOAAmethod. Respondents are initially

divided into subsamples each associated with different bid values. For instance,

those bid values can be determined in a pre-survey, through an open-ended ques-

tionnaire. Then the survey asks respondents whether they would be willing to

support the project considering the bid value they face:

“Assume that you have to pay $25 for the project . . .

Would you be in favor of its implementation?□yes□ no”

If the respondent is in favor of the project, it means that his/her willingness to pay is

higher than the bid value, and lower otherwise. The approach thus does not directly

provide a willingness to pay, but yields instead a lower bound if the answer is “yes”

and an upper bound if the answer is “no”.

With the NOAA method, the computation of the average willingness to pay

implies the use of logit or probit econometric models. Let bi denote the bid value

faced by individual i and yi the response. We set yi¼ 0 if the answer is “no” and

yi¼ 1 if the answer is “yes”. The probability of observing a positive response is

determined by the bid value bi and the individual willingness to pay wi:

Pr yi ¼ 1ð Þ ¼ Pr bi < wið Þ
The higher the bid value, the lower the probability that individual i accepts the

project. Since the endogenous variable is dichotomous, the usual linear approach

with ordinary least squares is not suitable for estimating this relationship. As

illustrated in Fig. 6.1 where individual observations are represented in orange, the
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model is nonlinear. Individuals who face extreme bid values are more likely to say

either “yes” or “no”. In contrast, for intermediate bid values, they are more likely to

hesitate between supporting and rejecting the project.

The dichotomous choice approach consists in estimating the point of equal

opportunity, i.e. the amount of the bid for which the probability of saying “yes”

or “no” is 50%. In Fig. 6.1, the blue curve represents the fitted values estimated via a

logit or a probit model. The inflection point, depicted in black, yields the average

willingness to pay, i.e. what we aim to measure.

To illustrate the contingent valuation method, let us consider a very simple

example made of n¼ 20 observations. The dataset is provided in Table 6.1. The

first column results from the anonymization of individual respondents by random

indexing. The second column gives the individual willingness to pay obtained with

a closed-ended question. From the second column, the average willingness to pay

can be computed using the AVERAGE function in Excel, which yields

AWTP¼ 22.80. The confidence interval is defined as:

22:80� 2:09� 7:78ffiffiffiffiffi
20

p ; 22:80þ 2:09� 7:78ffiffiffiffiffi
20

p
� �

� 22:80� 3:64

where t¼ 2.09 can be obtained using the TINV Excel function for a 5% risk

probability and n� 1¼ 19 degrees of freedom. Sample standard deviation

s¼ 7.78 is obtained using the Excel function STDEV. Assume now that the target

population is N¼ 300,000. The total willingness to pay (TWTP) of that population
would amount to:

TWTP � 22:80� 300,000Þ � 3:64� 300,000Þ � 6,840,000� 1,092,000ðð

Fig. 6.1 The dichotomous choice method: illustration
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These values can be included directly in a cost-benefit appraisal.

The third and fourth columns of Table 6.1 retrace the responses obtained with

the dichotomous choice method. The bid value ranges from 5 to 50. To estimate the

average willingness to pay, a logit model can be employed:

ln
Pr yi ¼ 1ð Þ
Pr yi ¼ 0ð Þ

� �
¼ α0 þ α1bi

Solving for the value of bi that yields Pr(yi¼ 1)¼ Pr (yi¼ 0)¼ 1/2, the left-hand

side of the equation amounts to ln(1)¼ 0. Thus, we have:

AWTP ¼ �α0
α1

The average willingness to pay is simply given by the ratio of the estimated

coefficients. Obtaining the confidence interval of this ratio is however not straight-

forward. The use of either the delta method or the bootstrap method is necessary.

The delta method amounts to a linear approximation of the relationship between the

Table 6.1 Contingent valuation: example 1

Respondent Closed-ended question

Dichotomous

question

Socio-economic

characteristics

i¼ 1. . .20 wi Bid value bi yi Income Gender

1 13 5 1 1750 0

2 24 10 1 1750 0

3 27 15 1 2750 0

4 19 20 0 750 1

5 33 25 1 2750 0

6 39 30 1 1750 0

7 16 35 0 750 1

8 19 40 0 1250 1

9 18 45 0 750 1

10 21 50 0 750 0

11 18 5 1 1750 1

12 13 10 1 1750 1

13 32 15 1 2750 1

14 17 20 0 1750 0

15 31 25 1 2750 1

16 11 30 0 750 0

17 22 35 0 1250 0

18 33 40 0 1250 0

19 27 45 0 3250 0

20 23 50 0 1250 1

Mean 22.80 1675 0.45

6.2 Contingent Valuation 195



coefficients and then computes the variance for large sample inference. The boot-

strap method uses instead the sample as a surrogate population, and artificially

creates a large number of subsamples (known as bootstrap samples) for the purpose

of approximating the sampling distribution. The bootstrap subsamples are generally

of the same size as the initial sample, and created with replacement. For large

samples, the delta and bootstrap methods coincide asymptotically.

At this point, using Excel is rather difficult. Figure 6.2 provides the codes to be

used in R-CRAN and the corresponding outcomes. The final name of the dataset is

D. The read . table command is used to upload the data file. Primary data is stored in

disc C: in the form of an Excel comma separated values file (with suffix .csv), as is

confirmed by the sep¼ " ; " command. The head¼ TRUE command identifies col-

umn names. The glm function is used to regress y on the variable Bid . value. As can
be seen from the estimation results (only outcomes directly used in the analysis are

displayed), we obtain a significant and negative impact: the higher the bid value, the

lower the probability is to accept the project. The average willingness to pay is

obtained by dividing the intercept by the second coefficient, i.e. AWTP¼ �
(4.95089/� 0.19832)¼ 24.96. The plot and curve commands allow to check this

value by drawing both the observations and the fitted values on a same graph

(Fig. 6.3). As can be observed, the inflection point is indeed around 25.

Fig. 6.2 Contingent valuation with R-CRAN: example 1
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The function deltaMethod available with the package car can be used to

approximate the standard error se of the average willingness to pay. Using infor-

mation from Figure 6.2, the confidence interval amounts to:

AWTP� 1:96� 3:578;AWTPþ 1:96� 3:578½ � ¼ 24:96� 7:01

In our case, given the small number of observations, bootstrapping is however more

appropriate. First, we need to specify the function that we would like to estimate. In

Fig. 6.2,myfunction is defined by two entries: a database and a random index for the

bootstrap sample. In this function, a subsample denoted data2 is created and is used
for estimating the relationship between Bid . value and y. The average willingness to
pay is defined as the ratio of the estimated coefficients (�reg$coef[1]/reg$coef[2]).
Once the function is created, the boot command (from the boot package) is used to

compute the confidence intervals. The boot command uses both the original dataset

D and the function myfunction to generate randomly R¼ 10,000 bootstrap samples.

The computation is based on the quantile method where myboot$t denotes the

vector of bootstrap statistics, i.e. the vector containing the estimated values of

AWTP for each bootstrap sample. The bootstrapping generates here the confidence

interval [17.48, 32.45]. Due to the random nature of the boot process, each

bootstrapping is likely to yield slightly different results. Finally, due to the small
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Fig. 6.3 The dichotomous choice method: example 1
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size of our numerical example, the bootstrap procedure may generate R-CRAN

error messages that do not affect the results nor the methodology.

The contingent valuation survey should finally end with questions about socio-

demographic characteristics, such as the age and gender of the respondent, his/her

income or level of education. Behavioral questions (what do you do? where?

when?), opinion questions (what do you think about?) and motives questions

(why?) can also provide useful information in order to interpret the willingness to

pay. More importantly, the socio-demographic variables (gathered in vector

CONTROLSi) can be used ex post to correct sample representativeness. In the

context of closed-ended questions, we may estimate for instance:

wi ¼ f CONTROLSið Þ
Such an equation, sometimes referred to as a valuation function, may have different

functional forms f. For instance, the endogenous variable does not necessarily need
to be a linear function of its arguments.

The valuation function relates the respondent’s answer to his/her socioeconomic

characteristics. Consider for instance the last two columns of Table 6.1. Variables

Gender (coded as 0 for female and 1 for male) and Income can be used to predict the
individual willingness to pay. Let us assume a linear valuation function:

wi ¼ α0 þ α1Incomei þ α2 Genderi

Once the coefficients α0, α1 and α2 are determined, one can use the estimation

results and the true population’s characteristics (denoted MeanIncome and

MeanGender afterwards) to predict the average willingness to pay:

AWTP ¼ α0 þ α1MeanIncomeþ α2 MeanGender

Figure 6.4 provides the corresponding coding. The first step consists in estimating

the model via OLS using the lm command. As can be seen from the regression

summary, only Income significantly affects willingness to pay. The greater is this

variable, the higher is the willingness to pay. In contrast, Gender has no significant

impact.

Assume now that the sample is not representative of the target population and

that both income and share of women are overvalued in our sample. This would

mean that the mean sample value of the willingness to pay (AWTP¼ 22.88) does

not provide a good estimation of the population’s average willingness to pay.

Suppose for instance that the mean income and the share of men in the population

amounts to 1500 (instead of 1675 in Table 6.1) and 51% (instead of 45%),

respectively. In Fig. 6.4, a new database, denoted E, is constructed with these

values. The predict function uses this new database and the coefficients obtained

in the previous regression (reg) to predict the average willingness to pay. The

confidence interval is [8.20, 33.48]. As expected, the average willingness to pay
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( fit¼ 20.84) is lower with population characteristics than with sample

characteristics.

A similar approach can be used under the framework of dichotomous questions

(the NOOA method) by directly including population’s characteristics in the logit

estimation:

ln
Pr yi ¼ 1f g
Pr yi ¼ 0f g

� �
¼ α0 þ α1bi þ α2Incomeþ α3 Gender

Focusing again on the point of equal opportunity and using the population’s

characteristics yields:

AWTP ¼ � α0 þ α2MeanIncomeþ α3 MeanGender

α1

The method to compute the confidence interval is similar to what has been done

previously, i.e. bootstrapping, except that now the mean income (1500), the share of

male in the population (0.51), and their coefficients are included in myfunction. The
code in R-CRAN is detailed in Fig. 6.5. The confidence interval in that case is

[10.97, 31.51].

As it may result in several biases, the contingent valuation method has been

intensively criticized. In particular, the way in which the scenario is presented to the

respondents may strongly influence their responses. Since the method does not

involve real cash transactions, the respondents may also overstate their true

preferences. There are however several ways to deal with these biases. For instance,

the questions can also be rephrased by asking the respondents to report their

willingness to pay to avoid the loss of the good, their willingness to abstain from

an improvement in the quality of the good, or their willingness to accept a

worsening in the quality of the good. Moreover, one or several follow-up questions

can be included to improve the precision of the dichotomous choice method. A

> D=read.table("C:\\data-CV.csv",head=TRUE, sep=";")
> reg=lm(w~Income+Gender,D)
> summary(reg)

Coefficients:
Estimate Std. Error t value Pr(>|t|)   

(Intercept) 11.102043   3.800270   2.921  0.00952 **
Income       0.006511   0.001666   3.909  0.00113 **
Gender      -0.049938   2.746047  -0.018  0.98570   
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> Income=1500
> Gender=0.51
> E=data.frame(Income, Gender)
> predict(reg,E,interval="prediction")

fit      lwr      upr
1 20.8436 8.204579 33.48262

Fig. 6.4 Valuation function with R-CRAN: example 1
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higher bid value is proposed to those in favor of the project, and a lower amount for

those against it. This bidding game has however been also criticized as being

subject to a starting point bias. The initial bid provides a reference point for the

undecided respondent who may regard the proposed amount as an approximation of

the true cost of the project. Despites its drawbacks, contingent valuation still

remains the simplest approach to elicit the willingness to pay of individuals.

6.3 Discrete Choice Experiment

Choice modeling methods, among which discrete choice experiment, involve the

construction of a hypothetical market and, as such, resembles a market research

survey. The approach is typically used when several projects with multiple

characteristics are evaluated. Contrary to contingent valuation, the purpose is not

directly to elicit an individual willingness to pay, but instead to ask respondents to

state a preference over a set of public goods or services using multiple scenarios.

The questionnaire generally starts with a detailed description of the context such as

why the survey is carried out, what are the study area, the status quo, and manage-

ment issues. It is also reminded that the objective of the survey is to determine the

citizens’ preference and that the results will be used to design future public policies.

The survey then provides the respondents with information about the policy

options, within the time framework relevant to the decision context. Last,

respondents are asked to evaluate those policy options.

In contrast to what is practiced in contingent valuation, the questionnaire also

often incorporates the cost and payment vehicle of the strategy for the users

themselves. Each respondent thus mentally associates the utility derived from

each option with the expense he or she will bear. Socio-demographic questions

can also be included to provide a better understanding of the results or to correct a

potential representativeness bias.

Formally, each option Sj, j¼ 1 . . . J combines attributes ak, k¼ 1 . . .K by

assigning them levels akj. Each attribute ak has a number of levels lk. These levels
must comprehend the most relevant aspects of the decision problem but should also

be kept to a tractable number. Concision and comprehensiveness may not be so easy

to conciliate. Systematic literature reviews and focus groups are useful in this

matter. In practice, the number of attributes ranges from three to ten. The levels

Fig. 6.5 The NOAA method with R-CRAN: example 1
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can be expressed in qualitative or quantitative terms and their number must also be

kept small, usually from two to six.

To illustrate the discrete choice approach, let us consider a public health project

dealing with the management of a chronic disease (e.g., diabetes or chronic heart

failure) that requires intermittent but regular care. Assume that the standard man-

agement program is hospital-based. As an alternative, decision-makers may wish to

consider home-based patient’s care. Eliciting patients’ preferences for one solution

or the other is of paramount significance since they will influence adherence to the

management program. The discrete choice experiment makes it possible by

identifying the factors influencing patients’ choice of a care pathway. An illustra-

tive choice set in the context of chronic disease management is given in Table 6.2. It

shows a choice card comparing two policy options that each provide different

combinations of attribute levels. Patient’s copayment consists of the share of total

cost not covered by social or private insurance. Then follow attributes describing

care procedures as well as access to information sessions (e.g., with dieticians and

other people with the same disease). For instance, level “Same nurse” means that if

the respondent chooses option 2, he or she will always get healthcare from the same

person. The choice card should evidence a trade-off between the various attributes

of care delivery. The final row of Table 6.2 is for decision between the two options.

The economic foundations of discrete choice experiment lie in random utility

theory, in which utility has a deterministic and a probabilistic component. They are

also rooted in Lancaster’s theory of consumer behavior, by which goods and

services take their value from their characteristics (you do not buy a car but rather

its color, image, engine, available space, etc.). The utility function is thus multi-

attribute. Let ui(Sj) denote the utility derived by individual i from option Sj. The
level of satisfaction is assumed to depend linearly on attributes a1j , . . . , akj , . . .
aKj that characterize option Sj:

ui Sj
� � ¼ β0 þ β1a1j þ . . .þ βkakj þ . . .þ βKaKj

Let yi represent the choice of individual i among the J options of a given choice

card. The probability that i will choose option j is:

Table 6.2 Choice card: example 2

Attributes ak

Option 1

Hospital-based care

Option 2

Home-based care

Patient co-payment $160 $50

How often you see the nurse On a daily basis On a weekly basis

Continuity of contact Different nurse Same nurse

Emergency care Hospital emergency

services

Standard emergency

services

Access to group education class No Yes

Which option would you

prefer?

□ □
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Pr yi ¼ jf g ¼ Pr max
�
ui S1ð Þ; . . . ; ui SJð Þ� ¼ ui Sj

� �	 

The choice of option j thus depends on the characteristics of the competing options,

which leads to a conditional logit model. By estimating the model, we obtain a

value for each coefficient β0, β1 , . . . , βK.
Assume now that a1 is the cost attribute. To obtain the marginal willingness to

pay for attribute ak (k 6¼ 1) one needs to compute the marginal rate of substitution of

a1 for ak (MRSa1!ak ). By definition, this is the amount of money the individual is

willing to give up in exchange for one extra unit of ak while maintaining the same

level of utility. For example, assume that attributes a3 . . . aK are held constant. With

respect to a2, we have du¼ β1da1 + β2da2¼ 0, which yields:

MRSa1!a2 ¼
da1
da2

¼ �β2
β1

This ratio represents the implicit price of attribute a2. More generally, we have:

MRSa1!ak 6¼1
¼ da1

dak
¼ �βk

β1
, k ¼ 2 . . .K

The choice experiment provides estimates of those marginal rates of substitution

and allows to compare the relative satisfaction derived from the various attributes

of the project.

We now move on to the practical implementation of a choice experiment. The

first step in the implementation process is to design a tractable choice framework.

The number of possible scenarios may increase exponentially with the number of

attributes and their levels, generating high costs of survey administration as well as

a heavy cognitive burden on respondents who would be faced with long and

complex interviews. The set of all possible combinations of the levels of the

attributes is labeled a full factorial design. For instance, assume that there are five

attributes ak with four levels each (lk¼ 4 for k¼ 1 . . . 5). This yields
QK¼5

k¼1 lk ¼ 45

¼ 1024hypothetical options. Thus, a major issue with respect to choice modeling is

the conception of an experimental design that will balance informational content

(a number of options sufficient enough to provide reliable data) and tractability of

the interview process and data management.

In practice, it is convenient to use an algorithm that generates a fractional design,

namely a subset of the full factorial design. An orthogonal fractional design is such

that the attributes are uncorrelated. Consider for instance a full factorial design for

three attributes {a1, a2, a3} with three levels {1, 2, 3} each (lk¼ 3 for k¼ 1 . . . 3).

This yields
QK¼3

k¼1 lk ¼ 33 ¼ 27 possible options:

1; 1; 1ð Þ; 2; 1; 1ð Þ; 3; 1; 1ð Þ; 1; 2; 1ð Þ; 1; 3; 1ð Þ; . . .
If one had to select a subset of three options, it would be useless to choose (1, 1, 1) ;

(2, 2, 2) ; (3, 3, 3) as it would be impossible to isolate the effect of each attribute. An
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orthogonal fractional design aims instead to avoid multicollinearity between

attributes, so as to minimize the loss of estimation power.

Let us now consider a more detailed illustration. Suppose that we would like to

estimate the economic value of a natural park (example 3). The attributes and levels

chosen to describe the options are presented in Table 6.3. For each attribute, levels

are arranged in increasing order, quantitatively or qualitatively. For instance, $15

represents the third highest level of additional annual tax for the creation of the

park, out of four possible payments. Similarly for qualitative attributes, “camping

inside the park, in unorganized campsite” describes the second level of the camping

attribute. The full factorial design for Table 6.3 is thus {{1, 2, 3, 4}, {1, 2, 3}, {1, 2},

{1, 2, 3}} and it generates
QK¼4

k¼1 lk ¼ 4� 3� 2� 3 ¼ 72 possible alternatives,

denoted S1 . . . S72 hereafter.
To reduce the cost of survey administration, assume that the respondents are

allocated to four interview groups (usually referred to as blocks), each group facing

four choice cards that each display two competing options. We can use R-CRAN,

and the package AlgDesign, to optimize the choice set. In Fig. 6.6 the command

gen . factorial generates the full factorial design. The vector c(4, 3, 2, 3) represents
the number of levels lk for each attribute ak, i.e. four levels for the tax, three for

amenities, two for facilities, and three for the camping attribute. The command

optBlock is used to generate the fractional design. This command generates ran-

domly, but with a minimum loss of information, the options that will form the

16 choice cards. The command optBlock assigns the options so as to minimize D-
error, a usual criterion in the design of optimal choice experiments. The entry “~.”

specifies that all variables from the design are to be used linearly. The option

center¼FALSE states that the levels are not to be centered. As can be seen,

16 choice cards are generated (termed “block” in R-CRAN although this term

will be used afterwards to denote each group of individuals). In what follows, as

a matter of simplicity, choice cards B1 to B4 will be allocated to the first group/

block of individuals, choice cards B5 to B8 will be allocated to the second block,

Table 6.3 Attributes and levels in discrete choice modeling: example 3

Attributes ak Levels No.

Additional tax per year $5 1

$10 2

$15 3

$20 4

Amenities Basic (toilets) 1

Medium (toilets and picnic area) 2

High (toilets, picnic area and exercise station) 3

Recreational facilities Basic ( jogging) 1

Medium ( jogging and children playground) 2

Camping Not inside the park 1

Inside the park, in unorganized campsite 2

Inside the park, in organized campsite 3
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and so on. Remember that the fractional design is optimized but also generated

randomly so that different sets of cards are likely to be generated each time the

program is run.

Following a usual but not systematic practice, the status quo or “do-nothing”

option is included in each choice card as a reference point. This anchoring of

choices to the current situation allows respondents to conceive the change that

could be brought in by the project under its various forms. Another advantage of

including the status quo is that respondents do not feel like the public decision-

maker imposes a new policy at their expense, with the only choice of variants of an

inflicted project. The attributes of the status quo are coded with 0 values. The final

number of options in each choice card is thus three. An example of choice card is

provided in Table 6.4, where options S12 and S65 as well as the status quo are

confronted. This choice card corresponds in Fig. 6.6 to the fourth choice set B4 of

the first group of respondents.

The data structure associated with our experimental design is presented in

Table 6.5. For the sake of simplicity, only twelve hypothetical individuals (variable

ind) were interviewed, i.e. three individuals per block (variable block), each facing

four choice cards (card). The choice variable is denoted y. The variables tax, fac,
amen and camp stand for the tax, facilities, amenities and camping attributes,

Fig. 6.6 Fractional design with R-CRAN: example 3
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respectively. When one looks at the columns, each attribute appears three times as

there are three options in each choice card (i.e. options 1, 2 or 3). Furthermore,

when one reads the rows, each choice card appears three times as there are three

individuals per block. For example, choice card B4 of Table 6.4 has been displayed
in Table 6.5 (block 1). When faced with this choice card, respondents 1 to 3 have to

compare option 1 (i.e S12) versus option 2 (i.e. S65) and option 3 (the status quo).

Their answer may be different and will be recorded in column y either with 1, 2 or

3. Moving to the next block implies a new set of choice cards (e.g., numbered from

B5 to B8 for block 2).

As can be seen from Table 6.5, the structure of the data is complex. There is one

row for each choice situation and there are as many columns for the attributes as

there are options. Table 6.6 provides a numerical example of such data. In addition

to the choice experiment questions, data on the respondent’s annual taxable income

is collected (income). This format is known as a “wide” format in R-CRAN. In

Fig. 6.7, to transform the data (initially stored on memory space C: in the program)

in a suitable format for R-CRAN, we use the commandmlogit . data from themlogit
package. Each individual has responded to four choice cards. To take this panel

dimension into account, one has to add the argument id¼ "ind" in the formula so

that the software differentiates each individual. The argument varying indexes the

variables that are option-specific (i.e. from column five tax1 to column sixteen

camp3). The command returns a dataset E in “long” format which has fewer

columns than in the wide format, the caveat being that the value of income is

repeated twelve times (three options by four choice cards). Two additional variables

are created: chid, which represents the choice index (i.e. card), and alt, which
denotes the index of each option in each choice set. The head command shows that

respondent 1, whose income is 252,000, has chosen option 2 (the TRUE outcome

Table 6.4 A choice card: example 3

Attributes ak

Option 1: S12
a1 , 12¼ 4

a2 , 12¼ 3

a3 , 12¼ 1

a4 , 12¼ 1

Option 2: S65
a1 , 69¼ 1

a2 , 69¼ 2

a3 , 69¼ 2

a4 , 69¼ 3

Option3:

status quo

Additional tax per

year

$20 $5 $0

Amenities High (toilets, picnic area

and exercise station)

Medium (toilets and

picnic area)

No amenities

Recreational

facilities

Basic ( jogging) Medium ( jogging and

children playground)

No

recreational

facilities

Camping Not inside the park Inside the park, in

organized campsite

No camping

site

Which option

would you prefer?

□ □ □
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for y when alt¼ 2) when faced with the first choice card (chid¼ 1) while rejecting

option 1 as well as option 3 (the FALSE outcome for y for both alt¼ 1 and alt¼ 3).

In Fig. 6.7, the data is first analyzed with a conditional logit model using the

command mlogit. The McFadden R2 is similar to the usual coefficient of

Fig. 6.7 Multinomial logit regressions with R-CRAN: example 3
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determination in conventional analysis. The likelihood ratio test is significant

meaning that we reject the hypothesis that all coefficients except the intercept are

jointly zero. The coefficients of 2 : (intercept) and 3 : (intercept) stand for option

specific effects. The impact of the tax variable is significant and negative while

amenities and facilities attributes yield a significant and positive coefficient. The

camping attribute is not significant. For attributes with a significant impact on the

probability of choice, we calculate the marginal rates of substitution:

MRSatax!aamen ¼ �αamen
αtax

¼ 1:60850

0:62148
� 2:59

MRSatax!af ac ¼ �αf ac
αtax

¼ 2:75535

0:62148
� 4:43

The ratio 2.59 is the marginal rate of substitution of the amenities attribute in terms

of dollars. It means that to increase by one level the quality of amenities, a

respondent is willing to pay at most 2.59 dollars more. The satisfaction derived

from recreational facilities is found to be higher, with an implicit price approxi-

mately equal to $4.43.

To improve the explanatory power of the model, a mixed logit model is

estimated by including “| income” in the regression formula. The goodness of fit

increases to 45%. Marginal rates of substitution become:

MRSatax!aamen ¼ �αamen
αtax

¼ 1:7778

0:69493
� 2:56

MRSatax!afac ¼ �αfac
αtax

¼ 2:8741

0:69493
� 4:14

The implicit price of the amenities attribute remains stable while it decreases

slightly for the facilities attribute. Furthermore, the coefficient on “3 : income“ is

negative and significant which indicates that the probability of choosing the status

quo decreases with income, thus highlighting a likely income effect on the demand

for that particular public good. Finally, the delta method is the simplest (if not

perfectly accurate due to the small size of the sample) manner to compute the

confidence intervals (1.96� se). The model yields:

MRSatax!aamen � 2:56� 1:96� se � 2:56� 1:74

MRSatax!afac � 4:14� 1:96� se � 4:14� 3:22

Discrete choice experiments allow to estimate a multi-characteristic valuation

function that can be used to deduce the attributes of the public project that do matter

and the individual marginal willingness to pay for them. It may be less prone to the

“yea-saying” bias than the contingent valuation method as it gives the opportunity

for respondents to choose among alternatives. Yet, the method is costly and still
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subject to criticisms. In particular, the cognitive burden of choice experiment

surveys may strongly influence the preferences that are stated by the respondents.

6.4 Hedonic Pricing

The hedonic pricing method uses the value of a surrogate good or service to

approximate the implicit price of a non-market good. Most of its applications

concern environmental quality or amenities and their impact on the real estate

market. In particular, the method has been often used to provide a value to

improved air or water quality, or conversely to reduced noise nuisance.

Hedonic pricing is based on a set of assumptions about individuals’ behavior and

their location decision. In particular, the real-estate market is assumed to be

competitive with freedom of access and in equilibrium. Individuals are presumed

to perceive the evaluated environmental attribute and integrate it as a dimension of

their location decision. That decision is the result of an optimal choice given the

characteristics of each property (including the environmental attribute) and the

budget constraint of individuals. Under these conditions, the places where people

choose to live in should not only reflect their preference for the property itself but

also their preference for the environmental good. As a consequence, through a

regression analysis, house prices could be used to estimate a value of their

associated environmental amenities.

Figure 6.8 illustrates the setting. Each house is characterized by its location on a

one-dimensional axis of air quality z. As there should be a higher demand for better

environmental quality, the house unit price p(z) is (here linearly) increasing with the
distance from the source of pollution ( p

0
(z) is strictly positive). In the top-panel of

Fig. 6.8, lower rents are paid for homes in more polluted areas. Consider now a

household living in house number 2. Its marginal willingness to pay is displayed at

the bottom-panel of Fig. 6.8, and is assumed to be decreasing as stated in standard

consumer theory. The curve stands for the marginal satisfaction the household

derives from air quality. The marginal price p
0
(z) is also displayed (it is assumed

to be constant, but this is not necessarily so). It represents what the household

should pay for a new location with air quality improved by one unit, i.e. by “moving

next door”. As can be seen, location number 2 represents the household’s optimal

choice as moving next door would imply an additional price higher than the benefits

in terms of improved environmental quality. Observations of marginal price and

corresponding level of air quality thus give the equilibrium point of each household.

This is the keystone of hedonic pricing. If we consider marginal changes in

environmental quality, the marginal rent should provide a good proxy for the

marginal willingness to pay for a change in location. For larger changes, however,

the method would provide only an upper bound (as shown in Fig. 6.8). Hedonic

pricing is thus suitable mostly for measuring the impact of small changes in

environmental quality.

One of the difficulties of the approach lies in the choice of a functional form for

the model. With hedonic pricing, the final aim is not to provide an estimation of
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house price, but rather to approximate the marginal impact of the environmental

attribute z on the endogenous variable (here, house price p). Consider for instance
the linear approach:

p ¼ CONTROLSþ β1z

In this case, the coefficient β1 gives directly the implicit price or hedonic price we

are looking for (∂p/∂z¼ β1). It denotes the approximate change in the price p for a

unit change in the environmental attribute z. Now, should we consider instead a

semi-log model, the conclusion would actually differ:

ln p ¼ CONTROLSþ β1z

Coefficient β1 would give the approximate percent change in the price p for a unit

change in the environmental good (∂p=∂z ¼ β1e
CONTROLSþβ1zð Þ ¼ β1p).

How can we select the best functional form? While comparing the goodness of

fit (R2) can be helpful with respect to the choice of exogenous variables, this is not

the case anymore as regards the endogenous variable. Instead, one has to implement

a Box-Cox test. The latter aims to find a monotonic transformation of data, using

power functions, in order to improve the model fit. It consists in finding the optimal

value of a parameter λ to make the data more normal distribution-like. Once the

parameter is known, the endogenous variable is transformed as follows:

AAir quality

( )
House price

1 2 3 4 5 6

Marginal price

Marginal WTP, ’( )

1 2 3 4 5 6

Marginal WTP

Upper

bound

Air quality

Marginal price 

approximates marginal 

willingness to pay 

Fig. 6.8 Hedonic pricing: illustration
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Endogenous variable ¼
pλ � 1

λ
if λ 6¼ 0

ln pð Þif λ ¼ 0

8<
:

For instance, if λ¼ 0.5 we can use the square root of p in the regression analysis. If

λ¼ 1 we may use p, or ln(p) if the parameter approaches 0.

To illustrate the method let us consider a simple example, the estimation of the

value of urban green space (parks and sport fields) in a given city. The data set is

provided in Table 6.7 and contains thirty geo-coded apartment rents (on a year-

basis), divided into five different districts of equivalent size. It provides information

on one single intrinsic variable of the real estate, namely the surface area in square

meters. In order to investigate how the presence of urban green spaces is capitalized

in real estate prices, we also have information about the number of green spaces in

each district (see last column).

Figure 6.9 provides the estimation results. While the first model (reg1)
formulates the endogenous variable in logarithm, the second model (reg2) does
not transform the endogenous variable. For the first regression, both the surface and
green . spaces variables yield significant coefficients with the expected positive

sign. An increase in surface by one square meter generates an increase in price of

0.7%. Similarly, an additional green space in a given district yields an increase in

the renting price of 1.7%. Reasoning in terms of growth rate is however not

convenient as the value cannot be used as such. Instead, we have to settle an initial

value for the rent if we want to approximate the marginal willingness to pay for an

additional green space. For instance, for the first housing unit, an additional green

space in district 1 will yield:

New rent ¼ Old rent� 1þ 1:7384%ð Þ ¼ 5153� 1þ 1:7384%ð Þ ¼ 5242:57

Equivalently, this means that the marginal willingness to pay of this household is:

WTP ¼ Hedonic price ¼ Old rent� 1:7384% ¼ 89:57

Should the public sector build a new park in district 1, then the willingness to pay of

household 1 would be at most $89.57 per year. In Fig. 6.9, we automated the results

using the command D$hedonic . price¼D$rent∗reg1$coef[3] where reg1$coef
[3] denotes the third coefficient of the regression output, i.e. 1.7384%.

The logarithmic form implies a different hedonic price for each household. As

shown in Fig. 6.9, we may also provide a hedonic price for each district using the

command gsummary available with the package nlme. The command allows to

compute the mean (FUN¼mean) of each variable in dataset D for each district

(groups¼D$district). By construction, the higher is the average rent in a given

district, the higher is the hedonic price. Moreover, using the average rent for the
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whole sample (mean(D$rent)∗reg1$coef[3]), the model gives a mean hedonic

price equal to $195.64.

The results of the linear model (reg2) are different as the hedonic price is now
the same for each district and each household. The estimation results yield a

hedonic price equal to $260.06. At this stage, it should not be necessary to point

out how important the bias imposed by a misspecification in the functional form

would be. The boxcox command from the package MASS may provide some

insights as regards the functional form we should employ for the endogenous

variable. Figure 6.10 shows that the value of λ approaches 1, giving in this case

support to the linear model. Hence, should public sector authorities be willing to

Table 6.7 Data for

hedonic pricing: example 4
Housing unit District Rent Surface Green spaces

1 1 5153 20 21

2 1 6484 30 21

3 1 4322 20 21

4 1 4308 26 21

5 1 5710 35 21

6 2 6899 60 11

7 2 8359 80 11

8 2 9469 90 11

9 2 8369 65 11

10 2 7234 70 11

11 3 16,705 79 24

12 3 10,955 35 24

13 3 14,833 78 24

14 3 9805 35 24

15 3 11,767 56 24

16 4 10,835 112 5

17 4 12,885 116 5

18 4 3638 32 5

19 4 12,510 116 5

20 4 4635 32 5

21 5 14,050 117 12

22 5 21,621 190 12

23 5 14,522 130 12

24 5 33,253 321 12

25 5 13,274 123 12

26 6 34,303 324 19

27 6 11,654 100 19

28 6 4675 23 19

29 6 3687 20 19

30 6 11,717 89 19
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build a new park in the city, the cost per household should not exceed $260.06. The

confidence interval is directly obtained from the regression results:

MWTP� tα=2 � se;MWTPþ tα=2 � se
� � � 260:062� 93:16

Parameter tα/2¼ 2.0518 is obtained from a Student distribution table for n�K
degrees of freedom (where n¼ 30 is the number of housing units and K¼ 3 is the

number of estimated coefficients) and a 5% significance level. The standard error

(se¼ 45.408) comes directly from the estimation results for reg2 in Fig. 6.9.

With the recent availability of large geo-coded databases, hedonic pricing has

been extensively used in the past years. However, it is suitable only for observable

Fig. 6.9 Hedonic pricing with R-CRAN: example 4
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attributes. For instance, while the taste and odor of water may be inoffensive, water

turbidity may affect the housing price more significantly than the presence of

harmful but invisible pollutants. Moreover, the need for a large database makes

the method difficult to implement, especially as there may be multicollinearity

problems if insufficient variance is observed between observations. For instance,

the largest houses may be also those located far away from the source of pollution,

in a wealthy neighborhood, with a low crime rate, which makes it impossible for the

evaluator to extract the true effect of the environmental good. Last, real estate may

be affected by external factors, like taxes or interest rates, making the results

relatively complex to interpret, depending heavily on model specification, and

requiring a high degree of econometric expertise. The fact that the hedonic price

method is based on real choices is however an asset and, as such, it remains a key

figure of monetary valuation methods.

6.5 Travel Cost Method

The travel cost method evaluates the value of recreational sites (e.g., forest, park,

castle, beach, etc.) using information about the cost that people incur to visit the site

in a given time period, usually a year. The basic tenet is to gather information about

the distance between the recreational site and the starting point of travel, and to
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Fig. 6.10 Box-Cox test: example 4
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examine how this distance affects the cost and number of visits. The cost associated

with the trip includes both (1) monetary expenses, such as gasoline, average wear

and tear on car, the admission price and (2) the opportunity cost of time. The

method consists in estimating a function that relates the demand for the site,

measured by the number of visits, to the visit cost. Individual marginal willingness

to pay is thus directly estimated as for any marketed good. There are two

approaches in this respect, the zonal travel cost method and the individual travel

cost method, depending on whether we deal with aggregate or individual data.

The zonal travel cost method groups respondents into zones of residence, so that

visit costs increase with the average distance of each zone to the site. Data consist of

information about visitors’ geographical origin, e.g., their zip code or equivalent.

Within each zone, travels costs to the recreational site are assumed identical. When

the cost increases, we should observe a decrease in the visit rate, which is computed

as the number of visits from a zone divided by the zone population. Based on these

observations, the estimated demand function can be used to appraise the economic

benefits resulting for instance from a reduction in the cost of access to the site, or an

improvement of its recreational quality.

The individual travel cost method shares the same theoretical premises as the

zonal travel cost method but uses individual records on the number of visits,

distance and travel costs, plus a set of socio-economic characteristics, thereby

allowing a more precise estimation of the demand curve. Whether we should use

the individual or zonal travel cost method mainly depends on three factors: (1) the

cost of survey administration as the individual travel cost method requires a larger

set of personal information; (2) whether the site implies on average several visits

per individual since the individual travel cost method requires sufficient variance

among observations; (3) the zonal method requires that individuals in a zone be

relatively similar in terms of travel costs: an accurate specification of zonal

divisions is therefore of high importance. As for the last point, since higher

distances do not necessarily imply higher travel time, both distance and time

aspects have to be taken into account when specifying the zones.

To illustrate the zonal travel cost approach, let us consider the numerical

example provided in Table 6.8. The area encompassing visitors’ origins is divided

into five zones, indexed from 1 to 5. For each zone, information on the number of

visits and population size is collected for a given year. The visit rate is obtained by

dividing the number of visits from each zone by the zone population. To compute

the cost of one visit we need information on travel distance and travel time. Travel

time is generally computed by assuming an average vehicle speed and using the

round-trip distances from each zone. Coupled with data on average distance costs

(e.g., a standard cost per km for operating an automobile, here $0.8 per km) and

time costs (usually the average hourly wage, which could also differ by zone, here

$0.5 per min) these variables yield the distance costs (column 7) and the time costs

(column 8). If any, admission fees also have to be included to compute the visit cost.

Figure 6.11 illustrates the econometric approach. First, the two variables

(VisitCost and VisitRate) are created using information from Table 6.8. The regres-

sion results obtained with the command lm yield the following demand function:
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Demand � 3:04492� 0:09378� VisitCost

The confidence interval can be obtained using the command confint. It is

important to understand that the endogenous variable is the visit rate and, as

such, the estimation results provide an estimated value of this item, denoted

Demand. Using the previous equation and the real value of the cost

(or equivalently the command $fitted . values), we obtain the estimated demand

for each zone:

Demand ¼ 2:435; 2:013; 1:591; 0:981; 0:278ð Þ
The estimated demand function is displayed at Fig. 6.12. Function plot displays the
observations while the abline command draws the regression line.

By definition, the average willingness to pay in a given zone is defined as the

sum of two components: (1) the cost of visiting the site on average and (2) any

excess amount which people in the zone would be willing to pay on average but do

not have to pay, i.e. the surplus. The regression equation can be used to compute

these two elements. For instance, for a visit cost of $22 (zone 4), the first component

is defined as the area of the rectangle in Fig. 6.12 (area labeled “Cost”). We have:

Cost ¼ VisitCost� Demand

This area represents the (estimated) average spending incurred by the zonal popu-

lation for visiting the recreational site. The second element relates to the net welfare

the zonal population derives because it pays less than what it was willing to pay. In

our case, since we are dealing with the equation of a demand curve (quantity as a

function of price and not the other way around), the surplus is defined as the area of

the triangle on the right hand side of Fig. 6.12 (area labeled “Surplus”). Integration

can be used to calculate this amount.

In Fig. 6.11, using the command function we more formally specify the demand

function we will analyze. The intercept and slope are respectively the estimated

Table 6.8 The zonal travel cost method: example 5

Zones

Total

visits Population

Visit

rate

Travel

distance

(km)

Travel

time

(min)

Distance

cost

$0.8/km

Time

costs

$0.5/

min

Cost

per

visit

1 20,000 8000 2.50 5 5 $4 $2.5 $6.5

2 25,000 12,500 2.00 10 6 $8 $3 $11

3 50,000 31,250 1.60 15 7 $12 $3.5 $15.5

4 11,000 13,750 0.80 20 12 $16 $6 $22

5 17,000 42,500 0.40 25 19 $20 $9.5 $29.5
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Fig. 6.11 Zonal travel cost method with R-CRAN: example 5
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coefficients reg$coef[1] and reg$coef[2]. Consider zone 4. For a visit cost of $22,
the estimated demand (visit rate) is 0.981:

Demand 22ð Þ � 3:04492� 0:09378 � 22 � 0:981

The corresponding surplus is the area under the demand curve at the bottom right of

Fig. 6.12 from a visit cost of $22 to the x-axis intercept (obtained with the uniroot
command). Since we are dealing with a rate (number of visits divided by the

population size), this surplus represent the “average” surplus of the zone.

Integrating the demand curve (using integrate) over those bounds yields a per

capita surplus ($5.138) that is to be multiplied by the population of zone 4 in

order to obtain a total surplus of $70,651. The estimated total cost they incur

($296,967) is obtained from the multiplication of the average cost

(VisitCost�Demand(22)) with the population of zone 4 (Population[4]).
Consider now a new road project that could improve access to the recreational

site by reducing the visit cost of zone 4 to $20. Demand increases to 1.169

(compared to the previous visit rate of 0.981 for a cost of $22):

Demand 20ð Þ � 3:04492� 0:09378 � 20 � 1:169
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Fig. 6.12 Demand function: example 5
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The per capita surplus is found to be $7.289 (instead of $5.138). Surplus for zone

4 is now $100,227 for a total cost of $321,550. The net surplus for zone 4 that could

be generated by the new road is then obtained by comparing this surplus with the

one obtained previously:

Net surplus ¼ $100; 227� $70; 651 ¼ $29; 576

Should the road project cost more than $29,576 per year in total, then inhabitants

from zone 4 would not get a net benefit from it. These results can of course be

replicated to the other zones.

The travel cost method rests on the empirical techniques used by economists to

estimate market good values. Given its simplicity and the low costs of survey

administration, the travel cost method represents a very useful tool for monetizing

non-market goods. Several assumptions are however made which may weaken the

approach. In particular, people are assumed to react in a similar manner to distance

costs, travel costs and admission fees. The measure of the opportunity cost of time

is also subject to controversy, especially if people enjoy the travel time itself, which

would yield an overestimation of the costs. Moreover, while hedonic pricing

assumes that people choose their place of residency according to the different

attributes of the competing locations, the travel cost method makes the opposite

assumption. Should we relax the no-mobility hypothesis, the travel cost method

would actually fail in estimating the demand for the recreational site. If individuals

change their place of residency so as to live closer to the recreational site, the price

of a trip would actually become endogenous. Those with the lowest travel costs

would also be those with the highest preference for the site. Last, there exists a

random-utility version of the method assuming that individuals will choose the

recreational site they prefer out of all possible sites. This approach requires how-

ever information on all potential sites that a visitor might select, their quality

characteristics, the travel costs to each site, thus making the method difficult to

implement in practice.

6.6 Health-Related Quality of Life

One important issue when assessing the benefits of a health program is whether the

valuation of outcomes should comprehend the viewpoint of the patient. By means

of illustration, let us take the case of a public health program for cancer screening

(e.g., colorectal cancer screening of men and women from 50 to 75 years old). Any

decision concerning the allocation of healthcare resources involves demonstrating

the performance of the competing strategies (e.g., no screening, standard screening,

and innovative screening, more or less repeated). The decision-maker may for

instance rely on quantitative measures such as survival rates. For example, a cohort

and cost-effectiveness model may show that the most cost-effective strategy (e.g.,

innovative screening) yields, on average, a gain of five life-years. This alternative

whose outcome is a priori most desirable would thereby be selected. Yet, from the
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patients’ standpoint, the survival rate does not encompass all the dimensions of the

health program. The strategies in competition may bring in additional benefits and

harms (notwithstanding costs) that are important as well. Examples of harms are the

side effects and painful compliance with the screening process. Another instance is

the case of chronic diseases: patients may live a life in a state far worse than what

they could define as perfect health. Those are attributes that can be accounted for by

the evaluator.

With a single and quantitative measure of outcome (e.g., lives saved, life-years

lived or events avoided), there is an explicit or underlying one-dimensional scale,

which usually takes the form of an arithmetic scale (e.g., number of cancers avoided

during the implementation of the program) or that of a time scale (e.g., total

quantity of life years lived by a cohort over a given time horizon). Yet, in health,

outcomes can also have qualitative attributes relating to quality of life. Life

expectancy is one thing, quality adjusted survival is another and crucial one. This

is why QALYs (for Quality Adjusted Life Years) have become a standard outcome

measure in the cost-effectiveness analysis of health programs. The QALY indicator

provides a single scale measure of both quantity and quality of life. Outcomes are

thus valued through the elicitation of individual preferences with respect to the

various health states individuals or patients may be confronted with, either “poten-

tially” if the elicitation framing involves people from the general population, or

“actually” if it directly considers patients under the assessed condition.

Figure 6.13 provides an illustration of an intervention program (the blue curve)

that would replace a strategy of status quo (the orange curve). During the first phase,

quality of life deteriorates, for instance because of a heavy treatment involving side-

effects. The second phase sees an improvement, for instance associated with the

recovery process. The last time sequence involves quantitative (decrease in mortal-

ity) and qualitative (decrease in morbidity) gains. As can be understood from this

example, the first step in the valuation of the outcomes of a health program is to

measure individual preferences for each health state at the time they occur. To do

so, a multi-attribute utility function is used to model the preferences of patients.

Formally, patients are characterized by a vector of physical and psychological

attributes meant to comprehend the aspects of individual well-being relevant to the

assessed health intervention. A health state Hj¼ (aj1, aj2, . . . , ajk, . . . , ajK),
j¼ 1 . . . J, is described through K attributes where ajk is the level of attribute k in

state Hj, k¼ 1 . . .K. For instance, if attribute k is the ability to walk and j is the
health state associated with a hip surgery recovery phase, ajk will describe the

corresponding walking speed. Each attribute k has a number of levels lk (e.g., five
walking speeds, from very low to normal). Each health state is thus represented as a

K-dimensional vector of attributes. The keystone of health-related quality of life

methods is to measure the utility level associated with each of these multi-attribute

health states.

Among the empirical methods for measuring preferences, the most frequent are

the standard gamble, the time trade-off and more recently discrete choice

experiments. Basically speaking, the respondent, a patient or an individual from

the general population, is faced with a description of the health states that includes
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clinical considerations (e.g., post-surgery status), side-effects (e.g., nauseas) and

functional consequences (e.g., patient confined to bed). The interview technique is

meant to elicit individual preferences with regard to those health states.

The standard gamble method rests on the Von Neumann and Morgenstern

expected utility function, denoted EU hereafter. First, let u¼ u(Hj) denote the utility

a respondent derives when facing state Hj, j¼ 1 . . . J. The higher is the utility u for

a particular state, the higher is the preference for that state. For the evaluation of

health state Hj, the respondent is confronted with the following choice frame: either

choose the certain lottery A¼ {Hj; 1}, which amounts to remaining inHj, or pick the

risky lottery B¼ {H+,H�; pj, 1� pj} where he or she may end up in perfect health

(H+) with probability pj, or face death (H�) with probability (1� pj). For simplicity

of exposition, we assume that u(H_)< u(Hj)< u(H+). The expected utility EU for

lottery A and lottery B is respectively given by:

EU Að Þ ¼ u Hj

� �
EU Bð Þ ¼ pj � u Hþð Þ þ 1� pj

� �� u H�ð Þ

If we set u(H�)¼ 0 and u(H+)¼ 1 then EU(B)¼ pj. Thus, at the point of indiffer-

ence between the two lotteries, we get u(Hj)¼ pj.
Figure 6.14 displays the corresponding decision tree. The square is a choice

node, the circle is a chance node. For example, the respondent is questioned on state

Hj and is asked “For which value of pj are you indifferent between accepting the

risky gamble and remaining with certainty in health state Hj?” or “From which

value of pj are you willing to accept the risky gamble?” If for a state H1, the

Date of 
intervention

Death time without 

intervention

Death time with 

intervention

TTime

Utility index

Initial 

Situation

QALYs gained by life 

improvement during 

intervention

QALYs foregone during 

intervention through 

quality of life deterioration

QALYs gained by life 

improvement and life 

quantity

Status quo Intervention

Fig. 6.13 QALYs gained from an intervention
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respondent declares p1¼ 0.90¼ u(H1), it means that to give up the certainty of

state H1, the individual requires as much as a 90% probability that the risky gamble

will be favorable. State S1 is highly valued. If on the contrary, for a state H2, the

answer is p2¼ 0.10¼ u(H2), then to give up the certainty of state H2, the individual

does not require more than a 10% probability that the risky gamble will be

favorable. State H2 is poorly valued.

An alternative preference measurement is the time trade-off method. The patient

is confronted with two options. The first one is to live in state Hj for T years (the life

expectancy in this health state) followed by death. The second option is to live in

state H+ for t< T years, followed by death. The interviewer proposes to vary time

t from T to 0 until the patient is indifferent between the two options. The utility

associated with health state Hj is then u(Hj)¼ t/T. Figure 6.15 exemplifies the

approach.

Finally, discrete choice experiment techniques can be used to elicit preferences

for health states, as shown in Table 6.9 (for the attribute framework) and Table 6.11

(for an example). Attributes must be chosen carefully in order to comprehensively,

precisely, and yet simply depict the condition under scrutiny.

In practice, if measuring preferences appears too costly and complex whenever a

new health question is tackled, one may also rely on pre-existing health status

classification systems. Among the many available systems, popular ones are for

instance (1) the EQ-5D-5L from the EuroQoL Group, based on the time trade-off

and discrete choice experiment methods with additive utility, or (2) the Health

Utility Index based on standard gamble with multiplicative utility. For sake of

simplicity, we focus here only on the EQ-5D-5L classification system.

The EQ-5D-5L questionnaire (fully available from the EuroQol Research Foun-

dation) is widely used in clinical trials and recommended as well by a vast majority

of national or international health technology assessment agencies. The question-

naire provides a generic patient-reported outcome. It has five dimensions or

attributes which in turn have five qualitative levels of increasing degrees of severity

1 −

Fig. 6.14 A standard gamble
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(Table 6.10). Respondents are asked to indicate the extent to which they face

problems on the following generic dimensions of health: mobility; self-care;

usual activities (e.g., work, study, housework, and family or leisure activities);

pain/discomfort; anxiety/depression. The level descriptors (no, slight, moderate,

severe, extreme/unable) are respectively captured by values 1, 2, 3, 4, 5. A health

state for instance characterized by a situation of severe problems in walking about,

moderate problems with self-care, slight problems doing usual activities, extreme

pain or discomfort, no anxiety or depression, is coded 43251.

The initial EQ-5D questionnaire contained only three levels of severity, which

nevertheless generated 243 (35) health states. With five levels of severity, the

number of health states reaches 3125 (55). Neither system could afford a full

investigation of all situations through interviews. Consequently, and without

going into details that may change over time and along ongoing methodological

improvements, respondents are randomly selected from the general population of

the country carrying the study, usually a sample from 400 to 1000 individuals.

Around 100 health states are valued. A standard protocol is that respondents are

asked to evaluate 10 EQ-5D-5L health states by time trade-off. Afterwards, they are

instructed to carry discrete choice valuation of 10 pairs of EQ-5D-5L health states.

Table 6.11 provides such an example with state 13345 and state 52454. Note that

this discrete choice setting does not involve a monetary attribute.

Regression methods (e.g., multinomial regressions) are then used to estimate

values for the whole set of health states. For instance, Table 6.12 shows the central

estimates for England with 2016 Office of Health Economics data and uses them for

the valuation of utility decrements associated with health states 13345 and 52454

(please note that not all statistical corrections are reported here, so that the results

0

Fig. 6.15 Time trade-off

Table 6.9 Choice card for

health state evaluation
Attributes Health state S1 Health state S2

1 a11 a21
. . . . . . . . .

k a1k a2k
. . . . . . . . .

K a1K a2K
Which option is better? □ □

6.6 Health-Related Quality of Life 225



are approximations). The severity of the condition in health state 52454 is such that

it gets a negative utility value (see last row of Table 6.12).

It should be stressed that the EQ-5D-5L questionnaire is conceived to be

applicable for any health condition so that they can be used across different patient

populations and diseases. In some cases, however, one must distinguish between

condition-specific measures and generic measures. With the former, extra

questionnaires must be used to assess specific clinical impacts (e.g., joint laxity in

the hip surgery example).

Once each health state has been valued, one must proceed to the computation of

QALYs. Formally, it is a measure that combines both length and quality of life

dimensions into a single indicator. The approach consists in multiplying the utility

Table 6.10 The EQ-5D-5L descriptive system

Attributes/Dimensions Level

Mobility

I have no problem in walking about □

I have slight problems in walking about □

I have moderate problems in walking about □

I have severe problems in walking about □

I am unable to walk about □

Self-care

I have no problem washing or dressing myself □

I have slight problems washing or dressing myself □

I have moderate problems washing or dressing myself □

I have severe problems washing or dressing myself □

I am unable to wash or dress myself □

Usual activities

I have no problem doing my usual activities □

I have slight problems doing my usual activities □

I have moderate problems doing my usual activities □

I have severe problems doing my usual activities □

I am unable to do my usual activities □

Pain/discomfort

I have no pain or discomfort □

I have slight pain or discomfort □

I have moderate pain or discomfort □

I have severe pain or discomfort □

I have extreme pain or discomfort □

Anxiety/depression

I am not anxious or depressed □

I am slightly anxious or depressed □

I am moderately anxious or depressed □

I am severely anxious or depressed □

I am extremely anxious or depressed □
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value u(Hj) associated with each health state Hj by the number of years lived in that

state. For example, 2 months lived in state Hj is computed as 2/12� u(Hj). QALYs

can then be incorporated in a decision-analytic model together with medical costs to

implement a cost effectiveness analysis (see the related chapter). For instance, the

EQ-5D-5L classification system provides indicators of health-related quality of life

that run from death (or even situations worse than death) to “perfect” health on a

QALY scale. As time elapses after an intervention, patients go through various

health states (e.g., hospitalization for hip surgery, then convalescence period

followed by progressive return to normal walk) that generates quality-adjusted

life-years lived. Those are compared with what would have come out of a life

without that intervention (e.g., no trauma associated with hip surgery but recurrent

difficulties to walk). The difference over the considered time horizon would breed

quality-adjusted life-years gained. This difference in effectiveness can then be

related to cost considerations.

Bibliographical Guideline
The economic foundations of stated preferences techniques can be traced to Bowen

(1943) and Ciriacy-Wantrup (1947) who recognized the advantages of using public

opinion surveys to value public goods. Since then, many developments and

applications have emerged over a wide variety of themes such as recreational

sites, air and water quality. Carson (2011) provides a comprehensive review of

this large literature and its recent developments.

In particular, contingent valuation enjoyed a revival in 1993 after the publication

of a report by a panel of experts, chaired by Nobel Prize laureates Kenneth Arrow

and Robert Solow. Following the Exxon Valdez oil catastrophe that occurred in

1989, this panel was created under the auspices of the National Oceanic and

Atmospheric Administration, a branch of the United States Department of Com-

merce, to appraise the validity of contingent valuation measures for natural

Table 6.11 Choice card for the EQ-5D-5L

State A (13345) State B (52454)

Mobility I have no problem in walking

about

I am unable to walk about

Self-care I have moderate problems washing

or dressing myself

I have slight problems washing

or dressing myself

Usual activities I have moderate problems doing

my usual activities

I have severe problems doing

my usual activities

Pain/discomfort I have severe pain or discomfort I have extreme pain or

discomfort

Anxiety/depression I am severely anxious or depressed I am severely anxious or

depressed

Which is better, state

A or state B?

□ □
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resource damage. The report advocated the use of carefully designed surveys and

concluded that “contingent valuation studies can produce estimates reliable enough
to be the starting point of a judicial process of damage assessment, including lost
passive-use values” (NOAA 1993, p. 43).

Choice modeling and the discrete choice experiment methodology find their

conceptual basis in Lancaster’s (1966) theory of consumer demand which assumes

that consumers’ utility for goods depend on the characteristics those goods contain.

The approach became popular in marketing after the development of the random

Table 6.12 Example of EQ-5D-5L value set and health state values

Utility decrements Estimate 13345 52454

Constant 1 1 1

Mobility

No 0 0

Slight �0.051

Moderate �0.063

Severe �0.212

Unable �0.275 �0.275

Self-care

No 0

Slight �0.057 �0.057

Moderate �0.076 �0.076

Severe �0.181

Unable �0.217

Usual activities

No 0

Slight �0.051

Moderate �0.067 �0.067

Severe �0.174 �0.174

Unable �0.190

Pain/discomfort

No 0

Slight �0.060

Moderate �0.075

Severe �0.276 �0.276

Unable �0.341 �0.341

Anxiety/depression

No 0

Slight �0.079

Moderate �0.104

Severe �0.296 �0.296

Unable �0.301 �0.301

Value for health state 13345 1�(0+0.076+0.067+0.276+0.301)¼0.28

Value for health state 52454 1�(0.275+0.057+0.174+0.341+0.296)¼�0.143
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utility model formulated as a conditional logit model by the Nobel Laureate

McFadden (1973). Since then, discrete choice experiment has been intensively

used in diverse fields, e.g., tourism, irrigation water, climate change, air quality,

etc. A review of the recent literature is available in Carson and Czajkowski (2014).

It is also commonly used in the health sector to elicit preferences for healthcare

products and programs (Ryan et al. 2008).

The theoretical foundations of the hedonic pricing method are attributed to

Lancaster’s (1966) consumer theory and Rosen’s (1974) model of market behavior

for differentiated goods. One of the first hedonic pricing studies is that of Ridker

and Henning (1967). Using cross-section data for the St. Louis metropolitan area in

the USA, they provided empirical evidence that sulfate air pollution, housing

characteristics, accessibility, and neighborhood characteristics affect property

values. More specifically, they argued that the coefficient on the air pollution

variable in the regression equation can be interpreted as the average willingness

to pay for air quality improvements for all St. Louis households. The approach was

criticized a few years later by Freeman (1971) who emphasized the fact that the

population coefficient provides a correct measure of willingness to pay if and only

if the air quality improvement is small. Since then, the method has been used for

estimating the effect of different attributes in many fields (see for instance Chau

et al. 2004).

The origin of the travel cost method is attributed to Hotelling (1947), who argued

in a letter to a park service director that visitation rates should be inversely related

to the distance travelled to reach a site. In this document, Hotelling considered

concentric zones defined around the park so that the cost of travel to the park from

all points in one of these zones is approximately constant. Hotelling’s approach was

first applied by Trice andWood (1958) on data obtained from visitors in the Sierras.

Clawson (1959) and Clawson and Knetsch (1966) then expanded the idea assuming

that the experience of users from one location zone should provide an accurate

measure of what people in other location zones would do if costs were the same.

Nowadays, the method is still often referred to as the Clawson-Knetsch approach.

In a context were recreational sites were becoming more and more attractive, the

approach was particularly popular in the sixties when the United States Congress

actually required that recreation be considered in program valuation for water

projects (see e.g., Banzhaf 2010, for an historical perspective on nonmarket valua-

tion and recreation demand).

The measure of health-related quality of life is a major challenge to health

technology assessment and policy evaluation. Integrating clinical evidence and

individual values (Huninck et al. 2007) requires a single measure of both quantity

of life and quality of life. QALYs are meant to reach that objective and we have

focused here on the EQ-5D-5L valuation protocol (Oppe et al. 2014). However, the

approach does not provide a definite answer to the challenge. Vast areas of health

policies cannot convincingly rely on QALYs, as evidenced in cancer (Garau et al.

2011) and pediatric (Ungar 2011) treatments. Furthermore, health-related quality of

life does not fully comprehend all the complex dimensions of individual well-being.
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In this respect, the ICECAP methodology is a promising avenue (Al Janabi et al.

2012).
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Part II

Ex ante Evaluation



Financial Appraisal 7

7.1 Methodology of Financial Appraisal

Financial appraisal evaluates the financial attractiveness of an investment project

by analyzing the timing and value of cash flows that result from its implementation.

The approach is regularly carried out by companies in the private sector to assess

whether investment strategies are commercially profitable. It is also in use in the

public sector and particularly relevant for appraising large public works or public-

private partnership projects. In the public sector, it is often a preliminary step to a

more detailed and complex “economic appraisal” which, under the auspices of a

cost benefit analysis (CBA), aims at assessing the impacts of the project on the well-

being of the stakeholders. While a financial analysis examines the projected

revenues with the aim of assessing whether they are sufficient to cover expenditures

and/or to make the investment sufficiently profitable, an economic analysis goes

further by examining the satisfaction derived from the consumption of public

services. The approaches are thereby different, but also complementary, as a project

that is financially interesting is not necessarily economically viable and vice versa.

The financial methodology should not be mistaken with what is done in account-

ing. Simply put, an accountant prepares financial statements such as revenue

statements, balance sheets and cash flows, and makes sure that these records are

compliant with law requirements. A financial manager on the other hand provides

decision-makers with financial advices and support (through performance

indicators and graphics) by weighing the costs and revenues of a certain course of

actions and planning for the long-term. The emphasis is placed on decision-making

with the aim of better allocating the budget. The analysis is often global in the sense

that the focus is on the financial health of the entity as a whole, but can be project-

specific (so-called project appraisal), to better adjudge and compare the attractive-

ness of competing investment strategies.

A crucial issue in project appraisal is the timing of cash flows. Figure 7.1

provides an illustration. First, a public project is characterized by a time horizon.

It represents the maximum number of years for which cash flow forecasts are
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provided (usually the same as the CBA time horizon). Selecting the right time

horizon is crucial. A time horizon that does not capture all future revenues and costs

can make a project’s return on investment seem better or worse than it is. This may

in return affect policy recommendations. Based on survey results, the “Guide to

cost-benefit analysis of investment project” prepared for the European Commission

in 2014, advocates a time horizon of at least 20 years and at most 30 years for the

majority of infrastructures; while for productive investments, it is about 10 years.

Second, an investment project is defined by a stream of cash flows whose

evolution is irregular in time. Identifying and forecasting those cash flows

constitutes the core of any financial appraisal. Cash flow forecasts are usually

provided in spreadsheets which include information on:

1. Investment costs: initial outlay incurred at the beginning of the project’s life

(land, buildings, equipment, licenses, patents, other pre-production expenses,

etc.), extraordinary maintenance, residual value;

2. Operating costs and revenues: ongoing running costs (labor, energy costs,

maintenance costs, security costs, administration costs) and revenues (sales, user

charges);

3. Sources of financing: equity, loans, bonds and other financial resources.

As illustrated in Fig. 7.1, a project is characterized by (1) large costs at the

beginning of the projects’ life, (2) recurrent but smaller inflows observed all along

the project’s life and (3) a residual value when the project ends. Operating costs and

revenues emerge recurrently during the implementation of the project. Investment

flows appear in the first periods mostly, i.e. during the construction process. An

exception is when some items can be sold off (thus generating a positive residual

value) or when an extraordinary maintenance generates a large outflow at a point in

time (when an item breaks down or becomes obsolete). The residual value can

Cash flow

Period

Net operating
expenditures (+)

Initial
investment
outlay (–)

0

Positive
residual

value (+)

Negative
residual
value (–)

0 1 2 3 4 … TT–1T–2… … … … T–4 T–3

Time horizon

Fig. 7.1 A typical cash flow stream
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sometimes be negative if the asset has to be removed from where it was used (e.g.,

nuclear waste placed in long-term storage).

The financial attractiveness of a public project is determined by its ability to be

sustainable and profitable. To assess whether this is the case or not, a financial

appraisal produce three types of analysis:

1. Sustainability analysis.

2. Analysis of the profitability of the investment.

3. Analysis of the profitability of the capital.

Financial sustainability is defined as the capacity of the project revenues to cover

the costs. The analysis relates the sources of financing to the financial outflows in

order to check whether the project risks of running out of money from one year to

the other. Financial profitability is the ability of the project to achieve a satisfactory

rate of return. Here, a distinction is made between the public entity that

commissions the project and the partner investors that support the project through

additional funding. As their objective functions differ, there are two definitions of

profitability. First, the profitability of the investment is examined to make sure that

there exists no better source of revenue for the public. Second, the return on capital

can be evaluated, with the aim of assessing whether the project is commercially

profitable for the partner investors.

Table 7.1 summarizes the differences between the different types of analysis.

The “–“ and “+” signs indicate whether an item should be considered as an outflow

or an inflow, respectively. As can be seen, the financial sustainability analysis takes

into account all the possible cash flows in order to evaluate the difference between

the money that goes in and the money that goes out. The approach enables the

identification of financing shortfalls that may occur during the project. The

Table 7.1 The main elements of financial appraisal

Financial

sustainability

Financial profitability of

the investment

Financial profitability of

the capital

Total investments

Total

investments

costs

– –

Operating revenues and costs

Total operating

costs

– – –

Total operating

revenues

+ + +

Sources of financing

Loans +

Equity + –

Loans

reimbursement

– –
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examination of cash flows is made on an annual basis. The approach is different

when it comes to the profitability of a project. The main question is whether the

revenues as a whole are worth the money invested. The analysis consists first in

comparing the initial investment with the net operating revenues (profitability of the

investment). In this case, profitability is examined regardless of loan repayments.

This avoids double counting as the loan repayments also reflect the initial invest-

ment cost for which the money was borrowed. Second, the analysis compares the

amount of capital with the commercial profit induced by the project (profitability of

the capital). Here, external contributions (equity) appear with a negative sign as

they are expenditures from the point of view of the partner investors. As they also

determine the final profit, loan repayments have to be taken into account in this case

(total investments are excluded).

A key feature of the profitability analysis is that it does not consider the cash

flows on a year basis but, instead, totals them up in order to compare the global net

revenue generated by the project with the initial investment or capital. To do so, the

approach relies on discount factors, which weight the cash flows according to their

position in time. The approach is based on the idea that a dollar today is worth more

than a dollar tomorrow. The time value of money is a central concept in finance.

There are several situations where dollars at different points in time are compared,

for instance when money is borrowed (bank loans), when money is invested (saving

accounts, bonds), or when one wants to evaluate an investment project (discounted

cash flow analysis).

The remainder of the chapter is structured as follows. Section 7.2 introduces the

concept of the value of time with a focus on interest rate effects. Section 7.3

explains how to assess the financial sustainability of a project through the exami-

nation of its sources of financing. Section 7.4 is about discounting and the profit-

ability of the investment and capital. Section 7.5 discusses and presents alternative

methods of ranking investments. Section 7.6 discusses the treatment of inflation in

project appraisal. Last, Sect. 7.7 introduces the basics of a sensitivity analysis, in

order to identify the variables that are critical in profitability analysis.

7.2 Time Value of Money

The time value of money is a concept underlying many financial techniques. The

intuition behind it is that a dollar in hand today is worth more than a dollar received

tomorrow. The reason is simple: a dollar today can be invested to earn interests

tomorrow. The time value of money is thus related to the concept of opportunity

cost. Trade-offs between current and future dollars depend on the rate of return or

interest rate one can earn by investing.

There are two basic methods to account for the effects of interest accumulation.

One is to compute the future value of an investment. This process by which cash

flows are expressed in terms of their future value is called compounding. The

second approach consists in removing the interest effect over time by computing

the present value of a future payment. The approach is referred to as discounting.
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Understanding the effects of interest rates is essential if one wants to apprehend

the whys and wherefores of the financial approach. Basically speaking, the sum on

which the interest is being paid is termed the principal. It is the amount of money

borrowed or invested. The interest rate is the ratio of interest paid to the principal.

Interests can be classified as simple interest or compound interest. Compound

interest refers to the situation in which interests are calculated using a base that

changes over time. With simple interest on the other hand, the base on which

interests are calculated is fixed. Assume for instance that one invests $10,000 for

10 years and receives 5% per year in interest. The growth of the investment is

depicted in Table 7.2. With simple interest, the amount earned does not change.

One multiplies the principal with the 5% rate. The interest amounts to

$10,000� 5% ¼ $500 each year. With compound interest, the principal

accumulates. One earns $500 at the end of the first year; the balance becomes

$10,500. The interest of the second year is computed as 5% � $10,500¼ $525. The

process is then reiterated until one reaches the time horizon. As can be seen from

Table 7.2, the total interest amounts to $5000 with simple interest, and to $6289

with compound interest. Compound interest works to the investor’s advantage but

against that of the borrower.

While simple interest is described in many textbooks, it has limited practical use.

The reason is the time inconsistency generated by the process of calculating the

interest. If one earns $500 after one year, one should be able to re-invest that money

in a similar manner to earn additional interest. This is why, in practice, compound

interest is more commonly used in finance, to compute the interest charged for a

loan, or to compute a present value. In the remaining of the chapter, when we will

refer to interest, we will always have in mind a compound interest.

Formally, if an amount P0 (the initial principal) is invested for one year at an

interest rate equal to r then, at the end of the year, one earns P0(1 + r). The second
year, one earns P0(1 + r)� (1 + r)¼P0(1 + r)

2, and so on. The value of an

Table 7.2 Simple versus compound interest: example 1

Year

5% simple interest 5% compound interest

Balance Interest Balance Interest

0 $10,000 $10,000

1 $10,500 5%�$10,000¼$500 $10,500 5%�$10,000¼$500

2 $11,000 5%�$10,000¼$500 $11,025 5%�$10,500¼$525

3 $11,500 5%�$10,000¼$500 $11,576 5%�$11,025¼$551

4 $12,000 5%�$10,000¼$500 $12,155 5%�$11,576¼$579

5 $12,500 5%�$10,000¼$500 $12,763 5%�$12,155¼$608

6 $13,000 5%�$10,000¼$500 $13,401 5%�$12,763¼$638

7 $13,500 5%�$10,000¼$500 $14,071 5%�$13,401¼$670

8 $14,000 5%�$10,000¼$500 $14,775 5%�$14,071¼$704

9 $14,500 5%�$10,000¼$500 $15,513 5%�$14,775¼$739

10 $15,000 5%�$10,000¼$500 $16,289 5%�$15,513¼$776

Total $5000 $6289
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investment at the end of a time horizon T over which interest is compounded is

called the future value of an investment. It is defined as:

FT ¼ P0 1þ rð ÞT

Coming back to example 1 (Table 7.2), the principal is P0¼ $10,000 and

invested at 5% interest for 10 years. The future value of the investment is

F10¼ $10,000� (1 + 5%)10� $16,289. This sum of money represents the value

the investment has after 10 years. It comprises both the interest ($6289) and the

principal ($10,000).

Compound interest is also used to determine the present value of a future sum of

money. The approach, also known as discounting, has the advantage to allow

different investment strategies to be compared regardless of their time horizon.

The present value of a future payment is computed as:

P0 ¼ FT

1þ rð ÞT

In this setting, the interest rate is also termed a discount rate, and the ratio 1/(1 + r)T

is referred to as a discount factor.

Consider for instance an investment strategy S1 that yields a unique cash flow

F10¼ $16,289 at year T¼ 10. At a 5% discount rate, the present value of the

investment is computed as P0¼ $16,289/(1 + 5%)10¼ $10,000. This sum is lower

than the future value because the money that is earned in the future is less valuable

than the money that is earned today. Let us now examine an investment strategy S2
that yields F20¼ $20,000 in 20 years at a similar rate. The present value of this lump

sum is P0¼ $20,000/(1 + 5%)20¼ $7538. This amount is found to be lower than the

one previously observed with strategy S1. The sum earned ($20,000) does not

compensate the large time horizon (20 years).

The present value of an annuity can be calculated in a similar manner. By

definition, an annuity is a constant cash flow F that occurs at regular intervals for

a fixed period of time (Ft¼F for all t> 0). The present value is determined by

examining each periodic cash flow and discounting them back to the present:

P0 ¼ F

1þ rð Þ þ
F

1þ rð Þ2 þ . . .þ F

1þ rð ÞT

Imagine for instance that one invests an amount at 5% interest so that one receives

$10,000 per year for each of the next 3 years. To find the present value of this

$10,000 3-year annuity, one can calculate the discount factor 1/(1 + r)t applying to

each period t. Then, one multiplies each receipt by the discount factor, as shown in

Table 7.3. The sum of the resulting figures yields the net present value of the

annuity, which is found to be $27,232 in the present case.
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The computation of the present value of an annuity can use a factorized version

of the formula. In mathematics, it has been shown that the sum of a geometric series

of the form ax+ ax2 + . . . + axT is finite as long as x is strictly less than 1. We have:

axþ ax2 þ . . .þ axT ¼ ax
1� xT½ �
1� x½ �

Replacing a by F and x by 1/(1 + r) in this expression yields:

P0 ¼ F

1þ rð Þ �
1� 1= 1þ rð ÞT
h i

1� 1= 1þ rð Þ½ � ¼ F� 1� 1þ rð Þ�T

r

The expression [1� (1 + r)�T]/r is termed an annuity factor. It represents the weight

by which the periodic payment must be multiplied to obtain the present value of the

annuity. For instance, in example 2 (see Table 7.3), the present value is computed

as:

P0 ¼ 10; 000� 1� 1þ 5%ð Þ�3

5%
� $27; 232

This sum represents the initial amount of money that has to be invested.

The process of paying off a loan (plus interest) is similar to that of an annuity. An

amortized loan, by definition, is made of a series of regular, equal payments termed

amortization. Assume for instance that one has borrowed $100,000 from a bank at

5% interest and that one has agreed to pay off this loan by making equal payments

on a year basis during 10 years. The amount $100,000 represents the present value

P0 of the loan. Using the inverse form of the annuity factor, the periodic payment

can be computed as:

F ¼ P0 � r

1� 1þ rð Þ�T

We thus have F¼ $100,000� (5%)/(1� (1 + 5%)�10)� $12,950. Multiplying this

amount with the time horizon yields the maturity value of the loan:

F� 10� $129,505. This amount represents the total amount one must repay to

the lender. It includes the principal ($100,000) and the interest ($29,505).

Table 7.3 Present value of an annuity: example 2

Year Amount received Discount factor at 5% Present value at 5%

1 $10,000 1/1.05¼0.9524 $9524

2 $10,000 1/1.052 ¼ 0.9070 $9070

3 $10,000 1/1.053 ¼ 0.8638 $8638

Total $27,232
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The payment F that a borrower makes on an amortized loan partly pays off the

principal (the original amount borrowed) and the interest (the fee the lender

receives). In practice, it is common to provide the borrower with a table that

shows how these portions vary through time. This list is called an amortization

schedule. We illustrate the approach in Fig. 7.2. The numbers have been rounded

off for simplicity of exposition. For the first period the interest (hereafter I1) is
computed by multiplying the 5% rate with the initial principal:

I1¼P0� r¼ $100,000� 5% ¼ $5000. The difference obtained ($7950) between

the payment F¼ $12,950 and the interest I1¼ $5000 yields a reduction in the

remaining principal balance. We have P1¼ $100,000� $7950¼ $92,050. In period

2, the interest is obtained from the multiplication of the 5% rate with the new

balance: I2¼ $92,050� 5%. The approach is reiterated until one reaches the term of

the loan. As can be seen from Fig. 7.2, at the beginning of the loan, large interest

payments and small payments to the principal are made. As time goes on, the

principal is reduced to the point that the payment covers mostly the principal.

Because interests are computed on the current balance, they become progressively

smaller as time increases.

Notice that annual interest can be compounded monthly, or quarterly. In this

situation, one needs to take into account the number of periodic payments m per

year in the previous formula:

F ¼ P0 � r=m

1� 1þ r=mð Þ�mT

The amortization schedule is defined similarly to what has been done previously.

The relevant number of periodic payments becomes m� T. First, the periodic

payment F is computed using the formula above. Second, one obtains the interest

portion I1 by multiplying the principal P0 with the rate r/m. Third, the principal

portion is calculated as the difference between the periodic payment F and the

interest I1. The new principal balance is then determined from these expressions,

and so on.

YYear Payment Interest Principal Balance

0 $100,000

1 $12,950 $5,000 $7,950 $92,050

2 $12,950 $4,602 $8,348 $83,702

3 $12,950 $4,185 $8,765 $74,936

4 $12,950 $3,747 $9,204 $65,733

5 $12,950 $3,287 $9,664 $56,069

6 $12,950 $2,803 $10,147 $45,922

7 $12,950 $2,296 $10,654 $35,267

8 $12,950 $1,763 $11,187 $24,080
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Fig. 7.2 Constructing an amortization schedule: example 3
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The concept of the time value of money should not be mistaken with that of

depreciation. While the former is related to the return one may effectively earn from

an investment, the latter is not associated with a real cash transaction. It is an

accounting method that spreads the investment costs more equally over the lifespan

of the project. The approach can be used for instance to claim special tax

allowances. Most types of fixed assets such as buildings, machinery, vehicles,

furniture, and equipment are depreciable. Certain intangible properties, such as

patents, copyrights, and computer software are also depreciable. However, land

value is usually not depreciable as it can be sold off at the end of the investment

period. Many methods of depreciation exist. They include for instance:

1. Straight-line method. The asset’s value is equally distributed over its estimated

useful life:

Depreciation per annum ¼ 1
Useful life

Cost� Residual valueð Þ
For example, an equipment costing $5000 with an estimated salvage value of

$0 and an estimated life of 10 years, would be depreciated at the rate of $500 per

year for each of the 10 years.

2. Sum of the years’ digits method. It allocates a higher depreciation rate in the

earlier years of the asset’s useful life. Under this method, one needs first to

calculate the sum of the years’ digits. The level of depreciation at year t is then
defined as:

Depreciation at year t ¼ Useful life� t�1ð Þ
Sum of the years digits

Cost� Residual valueð Þ
If an equipment has a useful life of 5 years, the sum of the years’ digits equals

1+2+3+4+5¼15. The depreciation rate is computed as (5–0)/15¼5/15 for the

first year, (5–1)/15¼4/15 the second year and so on. The depreciation rates

should add up to 100%. The sum of the years’ digits can also be computed as

n(n+ 1)/2 where n denotes the useful life in years.

Depreciation techniques are based on the idea that one cannot deduct spending

on fixed assets immediately as they have a long useful life. The approach has

however no relation to the actual flow of money that takes place. Furthermore,

depending on the method used, large differences may be observed between the true

value and the book value of investment assets.

Spreadsheet software like Excel provide a large set of tools for those who want

to compute items such as the present value or future value of an investment. Those

tools are presented in Table 7.4. Some of them will be used in the remaining of this

chapter to evaluate the sustainability and profitability of a project. For instance,

loans from commercial or State banks allow public entities to leverage resources to

finance a portion or all of a project’s implementation costs. Assessing the cost of

these loans is essential as it will determine the sustainability of the project. The

concept of the time value of money is also central to project appraisal if one wants

to assess the profitability of a project. In that case, all future cash flows must be

estimated, discounted and compared to the initial sum of money engaged. In the

remainder of the chapter, attention will be devoted to presenting these tools in the

context they are used.
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7.3 Cash Flows and Sustainability

A cash flow statement records the estimates of all cash receipts and expenditures

that are expected to occur during a certain time period because of the project. It

includes forecasts of financing, investment costs, operating costs and revenues.

Only the cash flows induced by the project must be examined, in the sense that they

Table 7.4 Using spreadsheets with Excel

Context Formula Definition Excel function

Lump sum FT¼P0(1 + r)
T Future

value of an

investment

FV(rate, nper, 0, pv) calculates the
future value of an investment; rate is a
constant interest rate; nper is the time

horizon; pv is the lump sum. Entering a

zero as the payment amount tells Excel

there is no constant stream of payments.

P0 ¼ FT

1þrð ÞT Present

value of an

investment

PV(rate, nper, 0, fv) calculates the
present value of an investment; rate is a
constant interest rate; nper is the time

horizon; fv is the future value. Entering
a zero as the payment amount tells Excel

there is no constant stream of payments.

Annuity P0 ¼ F� 1� 1þrð Þ�T

r
Present

value of an

annuity

PV(rate, nper, pmt) calculates the
present value of a an annuity; rate is a
constant interest; nper is the time

horizon; pmt is the payment made each

period and cannot change over the life

of the annuity.

Amortization

schedule

F ¼ P0 � r
1� 1þrð Þ�T Payment PMT(rate, nper, pv) returns the payment

amount for a loan based on an interest

rate and a constant payment schedule;

rate is the interest rate; nper is the time

horizon; pv is the present value or
principal of the loan.

Pt� r Interest IPMT(rate, per, nper, pv) returns the
interest payment for a given period for a

loan based on periodic, constant

payments; rate is a constant interest
rate; per is the period for which the

interest must calculated, nper is the time

horizon; pv is the initial principal.

F� It Principal PPMT(rate, per, nper, pv) returns the
payment on the principal for a given

period for a loan based on periodic,

constant payments; rate is a constant
interest rate; per is the period for which

the interest must calculated; nper is the
time horizon; pv is the initial principal.

Source: Gathered and adapted from https://support.office.com
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are considered only if they induce a change compared to some status quo. For this

reason, the analysis of cash flows is often referred to as “with versus without

comparison” or “incremental cash flow analysis”.

Whether payments are for items already delivered or to be received in the future is

of no concern to financial appraisal. What matters is the exact timing of cash

proceeds and payments. They must represent real transactions, with a well-

determined position in time. Similarly, a financial appraisal is not interested in

whether inventories increase or decrease. Only cash outlays are to be recorded.

Other accounting items should be ignored such as sunk costs (which have already

been incurred and cannot be recovered) or depreciation (by which the costs of

equipment are allocated a value over the duration of its useful life). Table 7.5

provides a list of typical cash flows as well as their position in time. The “–“ and

“+” signs specifies whether those items represent an outflow or an inflow. These cash

flows are usually net of VAT (tax on value added) if it is relevant to the context.

Investment costs include all costs related to the design and construction of the

project (see Table 7.5a). A distinction is made between fixed assets, start-up costs

and working capital. Fixed assets refer to investments needed to set up the project or

to replace obsolete equipment (extraordinary maintenance). Examples comprise

buildings, property, infrastructures, equipment, etc. Those goods are relatively

durable and can be used repeatedly through the project’s life. Their purchase is

usually concentrated in the first years of the project. A residual value can be

included among the costs at the end of the project, generally as an inflow. However,

the value can also be negative if the asset has to be removed from where it was used.

Start-up costs represent the inflows incurred to get the project started. They

include the costs of preparatory studies, consulting services, training expenses,

patents, research and development expenses.

Working capital refers to additional expenses that must be engaged to ensure that

the project is implemented without delay (stocks, equipment spare parts). Only

year-on-year increments in the level of working capital should be considered. These

increments will be particularly large at the beginning of the project, when stocks

and equipment spare parts must be built up. They will be lower and converging to

zero as the project ends. At some point in time, no further investments in working

capital will be recorded.

Operating costs are expenses associated with the operation, maintenance and

administration of the project. They include raw materials, energy costs, labor,

repairs and maintenance, insurance cost, quality control, and waste disposal costs.

As shown in Table 7.5b, those items are regularly purchased. Costs such as interest

and loan repayments are not included, because it would double count the capital

cost for which money has been borrowed.

Operating revenues encompass the inflows obtained from selling a product or

providing a service. The project’s output can be sold directly through user charges.

Typical examples include the toll revenue from a road project, park entrance fees

and annual park passes, admission fees for public swimming pools, fees levied on

parents of public school, park rental rates, fees on gym and sport fields or equipment

rentals. The project’s output can also be charged indirectly, via specific tax schemes

(e.g., garbage disposal tax, fire protection or water taxes). Those user charges and
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Table 7.5 A typical cash flow budget

Year 0 Year 1 Year 2 . . . Year t . . . Year T

(a) Total investments

R1 Land – . . . . . .

R2 Buildings – . . . . . .

R3 Equipment – . . . . . .

R4 Extraordinary maintenance . . . – . . .

R5 Residual value . . . . . . +

R6 Total fixed assets:

R1+. . .+R5
– . . . – . . . +

R7 Licenses – . . . . . .

R8 Patents – . . . . . .

R9 Preparatory studies – . . . . . .

R10 Total start-up costs: R7+R8

+R9

– . . . . . .

R11 Stocks – – . . . . . .

R12 Equipment, spare parts – – . . . . . .

R13 Working capital: R11+R12 – – . . . . . .

R14 Total investment costs: R6

+R10+R13

– – – . . . – . . . –/+

(b) Operating costs and revenues

R1 Raw material – – . . . – . . . –

R2 Labor – – . . . – . . . –

R3 Electric power – – . . . – . . . –

R4 Maintenance – – . . . – . . . –

R5 Administrative costs – – . . . – . . . –

R6 Sales expenditures – – . . . – . . . –

R7 Total operating costs:

R1+. . .+R6
– – . . . – . . . –

R8 Sales + + . . . + . . . +

R9 Taxes + + . . . + . . . +

R10 Total operating revenues:

R8+R9

+ + . . . + . . . +

R11 Net operating revenues:

R7+R10

–/+ –/+ . . . –/+ . . . –/+

(c) Sources of financing

R1 Loan + . . . . . .

R2 Private equity + . . . . . .

R3 Public contribution + . . . . . .

R4 Total financial resources:

R1+R2+R3

+ . . . . . .

R5 Loans: principal – – . . . – . . . –

R6 Loans: interest – – . . . – . . . –

R7 Loan reimbursement:

R5+R6

– – . . . – . . . –

R8 Net financing flows: R4+R7 + – – . . . – . . . –
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taxes usually do not accrue until the service in question is operational. For this

reason, they are often devoted to ongoing facility operations only.

A project may also depend on extra sources of financing, for instance through

equity (grantors, local investors, host government, bilateral or multilateral

organizations), grants (supranational, federal, State or local funding) and debt

(commercial lenders, State-owned banks, supranational investment banks, bonds).

Financial appraisal usually records those flows in an extra table (see Table 7.5c).

Equity contributions are made by external investors through share capital and other

shareholder funds. Many infrastructure projects also benefit from State support in

the form of equity participation and capital grants (transfers received from govern-

ment or international organizations for the purpose of financing the acquisition of

capital assets). In Table 7.5c, debt reimbursements are included and tied to an

amortization schedule. Those payments have priority among the invested funds.

Lenders can obtain any return or repayment before equity does.

By definition, a project is said to be financially sustainable when it does not incur

the risk of running out of cash in one of the examined periods. The sustainability

analysis establishes this condition by summarizing all the cash flows in a single

spreadsheet, as depicted in Fig. 7.3. Essentially, the analysis must relate all costs

and debt repayment induced by the project to the different sources of financing. One

needs first to compute the net cash flows at the point in time t they are observed:

Net cash flowst ¼ Total inflowst � Total outflowst

As shown in Fig. 7.3, the total inflows are defined by the total financial resources

and operating revenues. The total outflows on the other hand are computed as the

sum of investment costs, operating costs and loans reimbursement.

Second, once the net cash flows are computed, one must show that the project

will have sufficient inflows to cover expenditures for investment and operation

throughout the entire lifespan:

Xt

k¼1

Net cash flowsk � 0 for all t ¼ 1 . . . T

Fig. 7.3 Verification of the financial sustainability
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Should this condition be fulfilled, it would ensure the availability of sufficient funds

all along the project’s life.

To illustrate the method, consider the construction of a bridge in a given

jurisdiction. Table 7.6 provides a detailed presentation of the cash proceeds and

payments. For simplicity of exposition, the time horizon is set to 3 years. In

addition, we assume no residual value. The project involves an immediate outlay

of $30 million (for the lands, infrastructure, equipment, the stocks and spare parts)

and is followed by annual operating expenditures of $4 million (raw materials,

labor, electric power, etc.). It generates annual revenues via a toll which amounts to

$13.6 million for the first year, $17 million for the second year, and $17.5 million

for the third year.

The bridge project is financed by a combination of debt and funds. The private

and public sector contribute to the financing of the project for $2.1 million and $2.9

million, respectively. A loan is secured for an amount of $25 million. The current

Table 7.6 Costs, revenues and resources: example 4

Year 0 Year 1 Year 2 Year 3

Total Investments—thousands of dollars

R1 Lands –7000

R2 Bridge infrastructure –15,000

R3 Equipment –4000

R4 Start–up costs –1500

R5 Road network –2500

R6 Total investment costs: R1+R5 –30,000 0 0 0

Operating revenues and costs—thousands of dollars

R1 Raw materials –2250 –2250 –2250

R2 Labor –750 –750 –750

R3 Electric power –300 –300 –300

R4 Maintenance –450 –450 –450

R5 Administrative costs –80 –80 –80

R6 Sales expenditures –170 –170 –170

R7 Total operating costs: R1+. . .+R6 0 –4000 –4000 –4000

R8 Sales 13,600 17,000 17,500

R9 Total operating revenues: R8 0 13600 17000 17500

R10 Net operating revenues: R7+R9 0 9600 13000 13500

Sources of financing table—thousands of dollars

R1 Loan 25,000

R2 Private equity 2100

R3 Public contribution 2900

R4 Total financial resources: R1+R2+R3 30,000 0 0 0

R5 Loans: principal –7930 –8327 –8743

R6 Loans: interest –1250 –853 –437

R7 Loan reimbursement: R5+R6 –9180 –9180 –9180

R8 Net financing flows: R4+R7 30,000 –9180 –9180 –9180
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interest rate is assumed to be 5% per annum. The formula provided in Sect. 2 can be

used to compute the loan annuity:

F ¼ $25 million� 5%

1� 1þ 5%ð Þ�3
� $9:18 million

The amortization schedule can be obtained using Excel formula such as IPMT and

PPMT (see Table 7.4).

The sustainability analysis consists in assessing whether the revenues and other

sources of financing are sufficient to cover the costs and the loan repayments. This

comparison is made on a year basis. Figure 7.4 presents the net cash flows resulting

from the bridge project (not discounted and before tax). At year 0, the project faces

an inflow equal to 30 million dollars. This amount comprises the loan, the private

equity and the public contribution. In the meanwhile, the investment amounts to

30 million dollars, which finally results in a net cash flow equal to zero. Financial

sustainability is thus verified for the first period. In year 1, the project gets extra

money from the toll (13,600), but the loan must be reimbursed (9180) and the usual

operating expenses must be paid (4000). This yields a net cash flow equal to

420 thousand dollars. From row R9, we can see that financial sustainability is still

verified as the net cumulated cash flow remains positive 0+420¼420). Overall, the

examination of row R9 yields the conclusion that financial sustainability is verified

for all periods. The cumulated cash flows are always more than or equal to zero for

all the years considered.

7.4 Profitability Analysis

The profitability analysis aims to compare the total revenues against the total costs

observed over the whole projects’ life. The question is not whether the project risks

of running out of money from 1 year to another but, instead, whether the return on

investment is sufficiently high. The approach makes use of discount factors to

weight the cash flows according to their position in time. The approach is also

referred to as discounted cash flow analysis. When investors commit funds to a

project, they have an opportunity cost that derives from sacrificing a return on

Fig. 7.4 Sustainability analysis: example 4
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alternative investments. Discounted cash flow analysis makes it possible to take

into account this implicit cost.

It has been shown in Sect. 7.2 that the interest rate can be used to convert a

stream of cash flows in terms of present value. In a similar manner, the profitability

analysis computes the financial net present value or FNPV. It is defined as the

difference between the present value of cash inflows and the present value of cash

outflows. Formally, let CFt denote the net cash flows observed in period t. We have:

FNPV ¼ CF0 þ CF1

1þ rð Þ1 þ . . .þ CFT

1þ rð ÞT ¼
XT
t¼0

CFt

1þ rð Þt

The weights 1/(1 + r)t by which the cash flows are multiplied are the discount

factors and r is the financial discount rate. Those factors are lower than one and

decrease as time increases. Cash flows are thereby considered of less importance if

they occur at the end of the project’s life. A positive financial net present value

indicates that the projected earnings generated by the project exceed the costs, in

terms of present dollars.

The choice of the discount rate is decisive. In theory, it represents the opportu-

nity cost of funds, valued as the loss of return from an alternative investment.

Assume for instance that we invest $50,000 today and receive $51,000 next year

(strategy S1). We can compare this return with that of an alternative strategy, e.g., a

government bond at 5% interest (strategy S2). To make this comparison possible,

we can compute the net present value:

FNPV S1ð Þ ¼ �$50; 000þ $51; 000

1þ 5%ð Þ � �$1428

The net present value is negative. This means that strategy S2 offers a higher return
than strategy S1. We reach a similar conclusion if, instead, we compare the future

value of the investments: $50,000 invested at a 5% rate yields a return equal to

$52,500. Hence, strategy S2 remains the optimal choice even when values are

expressed in future terms ($52,500 is greater than $51,000). Comparing present

or future values is actually strictly equivalent as we have (�$52,500 + $51,000)/

(1 + 5%)¼ � $1428.

In practice, the discount rate is recommended by government agencies such as

the national Treasury, or supranational authorities such as the European Union. In

most cases, it represents the safest alternative use. It is for instance approximated by

the real return on government bonds, the long term real interest rate on commercial

loans, or the return on a portfolio of securities in the international financial market.

A positive financial net present value means that the project yields a return higher

than these safer investment strategies.

An alternative to the net present value criterion is the financial internal rate of

return or FIRR. It is the highest rate that the project can bear. Formally, it is defined

as the value of r such that FNPV(r)¼ 0. Any strategy with a positive net present
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value will also have an internal rate of return that exceeds the discount rate. The

term “internal” is used because this rate depends only on the cash flows generated

by the investment and not on some other rate observed elsewhere. It cannot be

determined by an algebraic formula. Three different techniques can be used to

approximate its value:

1. Trial and error method. The approach consists in using different discount rates

until one finds out which rate delivers a FNPV close to zero. One generally starts

with a low discount rate and calculates the net present value. If the FNPV
exceeds zero, the discount rate is increased. When it is negative, the discount

rate is decreased.

2. Linear interpolation. The following heuristic can be used, although it may

yield imprecise results. First, one needs to calculate two net present values using

two different rates. Second, one uses the following formula to find the internal

rate of return:

FIRR ¼ r1 � FNPV r1ð Þ r2�r1ð Þ
FNPV r2ð Þ�FNPV r1ð Þ

where r1 and r2 are two randomly chosen rates with r2> r1. Depending on the

value of r1 and r2, the computation can be more or less accurate.

3. Spreadsheet software. Excel can perform financial calculations. Relevant

formulas are provided in Table 7.7.

Assuming that all projects require the same amount of initial funds, the project

with the highest rate of return is generally considered the best from the financial

point of view.

To illustrate the approach, let us consider a simple example, as that provided in

Table 7.8. The project involves an immediate outlay of –$30,000 with annual net

operating income in each of 5 years of $7200. The initial outlay is timed for year

Table 7.7 Discounted cash flow analysis with Excel

Context Formula Definition Excel function

Profitability

of a project FNPV ¼ PT
t¼0

CFt

1þrð Þt
Net present

value

value0 +NPV(rate, value1, value2, . . .)
calculates the net present value; value0
represents the first cash flow (investment)

and is excluded from the NPV formula

because it occurs in period 0 and should

not be discounted; rate is the discount rate
and value1 , value2 , . . . is a series of
future payments (range of cells containing

the subsequent cash flows).

r such that FNPV
(r)¼ 0

Financial

internal rate

of return

IRR(value0, value1, value2, . . .) yields the
internal rate of return for a series of cash

flows (here value0, value1, value2),
starting from the initial period. Values

must contain at least one positive value

and one negative value.

Source: Gathered and adapted from https://support.office.com
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0, while net cash flows are spread equally from year 1 to 5. This is a typical pattern

of cash flows for which the internal rate of return can be derived without computa-

tional difficulties. The net present value is the sum of the discounted annual net cash

flows. First, assuming a discount rate of 5%, we can compute the discount factors

for each period (third column). For this rate, the project is financially acceptable as

the net present value is positive (FNPV¼ $1172). Using trial and error, one can

figure out the internal rate of return. A discount rate of 8% yields for instance a

FNPV equal to –$1252. Using a lower discount rate of 6%, the FNPV starts

converging to zero. We can also use a linear interpolation, for instance by using

the 5% and 8% rates:

FIRR ¼ 5%� $1172ð Þ 8%� 5%ð Þ
�$1252ð Þ � $1172ð Þ � 6:4%

A similar result can also be obtained using the IRR formula in Excel.

As future cash flows are more likely to be positive while the initial net cash flow

CF0 is generally negative (initial investment), the higher is the discount rate, the

lower is the net present value. This result is illustrated in Fig. 7.5 where the

investment strategy presented in Table 7.8 is evaluated using different discount

rates. This is because future inflows are given less weight. This result however does

not hold anymore if investment costs are observed all along the project’s life, which

is often the case with long-run public projects (planned or extraordinary mainte-

nance, reinvestment, negative residual value, etc.). In that context, multiple FIRR
can be found, which makes the approach useless. The FNPV on the other hand is

always computable which renders it more suitable in many occasions.

The profitability of a project can be assessed from the point of view of the

investment (FNPVI hereafter) or the capital (FNPVK). Figure 7.6 describes the two

types of analysis. The net present value of the investment (FNPVI) assesses the

ability of operating net revenues to sustain the investment costs, regardless

financing and tax. As can be seen from Fig. 7.6a, the approach simply consists in

Table 7.8 Annual cash flows: example 5

Year

Net cash

flow

Discount

factor at

5%

Present

value at

5%

Discount

factor at

8%

Present

value at

8%

Discount

factor at

6%

Present

value at

6%

0 –$30,000 1.00 –$30,000 1.00 –$30,000 1.00 –$30,000

1 $7200 0.95 $6857 0.93 $6667 0.94 $6792

2 $7200 0.91 $6531 0.86 $6173 0.89 $6408

3 $7200 0.86 $6220 0.79 $5716 0.84 $6045

4 $7200 0.82 $5923 0.74 $5292 0.79 $5703

5 $7200 0.78 $5641 0.68 $4900 0.75 $5380

FNPV $1172 –$1252 $329
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comparing the investment costs (row R1) with the net operating revenues (R2+R3).

The approach is slightly more complex with respect to the profitability of the capital

(FNPVK). Here, the objective is to examine the project performance from the

perspective of the external contributors, whether they are public or private. Follow-

ing the European Commission methodology, the private net cash flow is defined

before tax (see Fig. 7.6b). It is computed as the difference between the net operating

revenues (R1+R2) minus the loan reimbursement (R3) and the external

contributions (R4+R5). There are variations in this method, however, in that the

profit may be also examined after tax. In that case, since depreciation is a deductible

$1,172
$329

-$1,252
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Fig. 7.5 Net present value and the discount rate: example 5

a

b

Fig. 7.6 Verification of the financial profitability. (a) Returns on investment—thousands of

dollars. (b) Returns on capital—thousands of dollars
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expense for profit tax purposes, the results are heavily influenced by the deprecia-

tion method.

Let us now consider again example 4. Figure 7.7 examines the profitability of the

project using information from Table 7.6. The first part of the table compares the

investment costs of $30 million with the net operating costs (9.6, 13 and 13.5

million dollars). There is no information about the capital and loan structure as the

focus is on the profitability of the investment. The financial net present value is

displayed for three discount rates: 4%, 8% and 16%, respectively. When the

discount rate is 4%, we have:

FNPVI 4%ð Þ ¼ �30; 000þ 9600

1:04
þ 13; 000

1:042
þ 13; 500

1:043
� 3251 thousand dollars

It measures the extent to which the project net revenues are able to repay the

investment, regardless of the sources or methods of financing. At this discount rate,

the returns on investment are positive. When the discount rate is 16%, we have

instead:

FNPVI 16%ð Þ ¼ �30; 000þ 9600

1:16
þ 13; 000

1:162
þ 13; 500

1:163
� �3414 thousand dollars

At a 16% rate, the project is not attractive anymore.

The second part of Fig. 7.7 assesses whether the public and private investors will

be willing to participate in the project. The focus is on row R6 where the private and

public contributions, as well as the reimbursement of the loan, have been taken into

account to compute the private net cash flow. The external contributions now

appear with a negative sign as they are expenditures from the point of view of

investors.

a

b

Fig. 7.7 Profitability analysis: example 4. (a) Returns on investment—thousands of dollars. (b)

Returns on capital—thousands of dollars
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7.5 Real Versus Nominal Values

Inflation denotes an increase in the average price level, which thereby reduces the

purchasing power of the money in question. When the price level rises, each unit of

currency buys fewer goods and services. This effect is of high importance in project

appraisal. Assume for instance that one earns $1000 in 20 years. The inflation

observed during this period is going to make this amount worth less. As such, the

discount factors should be adjusted, to remove the effect of price changes. This is

why, in practice, a nominal interest rate is used when cash flows are expressed in

terms of their current value.

Inflation, discount and interest rates are closely related. Formally, the equation

that links nominal and real interest rates is the following:

1þ rnominal
� � ¼ 1þ rreal

� �
1þ πð Þ

or equivalently:

rnominal ¼ rreal þ π þ rreal � π
� �

where rnominal and rreal stand for the nominal and real interest rates, respectively.

The inflation rate is denoted by π. It is the expected average annual rate of increase

in the price of goods. Assume for example that the (constant) annual inflation rate is

5%. What is costing $100 on average today will cost $100(1+5%)¼$105 next year,

and $100(1 + 5%)2¼ $110.25 the year afterwards, etc.

If the nominal interest rate and inflation rate are sufficiently low, the previous

formula can be approximated as follows:

rnominal � rreal þ π

Nominal rates thus comprise two components: a portion that represents expected

inflation (known as the inflation premium) and a portion that represents the real rate

of return. For example, with a nominal interest rate of 5% and an expected inflation

rate of 2%, the real rate of interest is 3% approximately.

The existence of inflation raises the question of whether the analysis requires a

nominal or a real discount rate. The rule is simple: if cash flows are measured in

nominal (or current) terms, then they should be discounted with a nominal discount

rate. If they are expressed in real (or constant) terms, they should be discounted with

a real discount rate.

To obtain values expressed in real terms, one needs to adjust for changes in

prices level, i.e. to “deflate” the cash flows. The consumer price index (CPI) is

commonly used in this purpose. However, it may be relevant to use more specific

indices (e.g., the medical care component of the CPI for a public health program),

depending on the nature of the project. Generally speaking, the CPI measures

changes in the price level of a representative basket of consumer goods and services

purchased by households, multiplied by 100. It is defined by a base year for which
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the index is equal to 100 and different values for the following years. To convert

cash flows in real terms for the base year, one simply divides each cash flow by the

CPI for that year:

CFreal
t ¼ CFnominal

t

CPIt
� 100

In this particular situation, the CPI is also termed a “deflator”. Assuming that prices

rise at the same rate π during inflationary periods, the previous expression can also

be defined in terms of the base year only:

CFreal
t ¼ CFnominal

t

1þ πð Þt

It is important to understand that we are not computing a present value. Instead, we

are converting nominal values to real values by relating the future sum of money to

the purchasing power observed at year 0. The approach is thus different from

discounting.

Real interest rates better reflect the real return to a lender and the real cost to a

borrower and are thus more relevant than nominal rates for economic decisions.

However, with respect to net present value computations, both approaches will

yield the same result. To illustrate, consider a future cash flow expressed in real

termsCFreal
t at year t. The present value is computed asCFreal

t = 1þ rreal
� �t

. Now, the

inflated value of the cash flow is computed asCFnominal
t ¼ CFreal

t 1þ πð Þt. Using the
nominal rate to compute the net present value of the nominal cash flow, we obtain:

CFnominal
t

1þ rnominalð Þt ¼
CFreal

t 1þ πð Þt
1þ rnominalð Þt ¼

CFreal
t

1þ rrealð Þt

The approaches are strictly equivalent. What should be retained here is that when

the analysis is carried out at current prices (resp. constant), then the discount rate

should be expressed in nominal terms (resp. real). Moreover, when the inflation rate

is unstable through time, then the discount rate must be modified accordingly to

compute the relevant discount factors.

Table 7.9 illustrates the approach through a simple example. The base year for

the CPI is year 0. The inflation rate is assumed to be π¼ 2% over the whole period.

This implies that the CPI for year 1 is 102, then 104 at year 2, and so on. Because of

inflation, any revenue obtained in the future is worth less than if it were obtained in

year 0. The third column describes the cash flows of a project under evaluation.

Those cash flows are expressed in current prices. In the fourth column, they are

converted in real terms. Each value is obtained by dividing the nominal values

(multiplied by 100) by the CPI for the relevant period. Those values are lower

because the effect of inflation has been accounted for.
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In Table 7.9, the nominal and real discount rates are set to 5.06% and 3%,

respectively. Those values are in accordance with the inflation rate observed over

the period. We have 5.06% ¼ 3% +2% + (3% � 2%). If the cash flows are

expressed in nominal terms, then the nominal rate should be used accordingly:

FNPV 5:06%ð Þ ¼ �$100; 000þ $30; 000

1:0506
þ . . .þ $30; 000

1:050610
¼ $130; 979

If, instead, one prefers to express the cash flow in real terms, we have:

FNPV 3%ð Þ ¼ �100; 000þ 29; 412

1:03
þ . . .þ 24; 610

1:0310
¼ $130; 979

The results are equivalent.

Why the trouble of deflating cash flows if the approaches yield similar results? In

the private sector, it is more common to work in values expressed in nominal terms.

The use of current prices places the study in actual values, thereby making easier

the planning of annual budgets. For the analysis of public policy projects, however,

the use of real terms has the advantage to facilitate the comparison of cash flows,

especially when the projects take place in different countries facing their own

inflation rate. It is up to the evaluator to decide whether the benefits of using

constant prices are worth the trouble.

7.6 Ranking Investment Strategies

Several financial techniques can be used to rationalize investment decisions. They

include indicators such as the net present value, the accounting rate of return, the

payback period, the discounted payback period, the break-even point or the break-

Table 7.9 Nominal and real cash flow: example 6

Year CPI Nominal cash flow Real Cash flow

0 100 –$100,000 –$100,000

1 102.0 $30,000 $29,412

2 104.0 $30,000 $28,835

3 106.1 $30,000 $28,270

4 108.2 $30,000 $27,715

5 110.4 $30,000 $27,172

6 112.6 $30,000 $26,639

7 114.9 $30,000 $26,117

8 117.2 $30,000 $25,605

9 119.5 $30,000 $25,103

10 121.9 $30,000 $24,610

Discount rate¼ 5.06% 3%

FNPV¼ $130,979 $130,979
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even sales. They are essential to the evaluation of public works, especially when the

authority in question does not have sufficient funds to undertake several projects at

the same time. Table 7.10 provides a general definition of these items as well as the

context in which they are used. Those methods are successively detailed below.

First, as already stated, discounted cash flow analysis allows competing

strategies to be compared according to their financial profitability. The conclusions

are summarized by indicators such as the FNPV, which evaluates the return of a

project by comparing the inflows and outflows that result from its implementation.

Consider for example Table 7.11 where four competing strategies are evaluated,

each of the same time length. The indicator of profitability is provided at the bottom

of the table. For a discount rate set to 4%, one would rank first strategy S2, then
strategy S3, S1 and S4. As can be seen, strategy S4 yields a negative net present

Table 7.10 Overview of performance indicators

Indicator Acronym Definition Context

Financial net

present value

FNPV Total amount of gain or loss a project will

produce in terms of present value

Profitability

Accounting

rate of return

ARR Average return on investment Profitability

(Discounted)

payback

period

(D)PB Number of periods for the cumulated net cash

flows (expressed in their present value) to

equal the initial investment

Risk in terms of

opportunity

cost

Break-even

point

BEP Output required to cover all fixed expenses Risk in terms of

sustainability

Break-even

sales

BES Amount of sales required to cover all fixed

expenses

Risk in terms of

sustainability

Table 7.11 Discounted cash flow analysis: example 7

Year

Cash flow statement

Strategy S1 Strategy S2 Strategy S3 Strategy S4

0 –$140,000 –$140,000 –$89,000 –$130,000

1 $17,500 $15,000 $11,400 $16,000

2 $17,500 $15,600 $11,400 $16,000

3 $17,500 $16,224 $11,400 $16,000

4 $17,500 $16,873 $11,400 $16,000

5 $17,500 $17,548 $11,400 $16,000

6 $17,500 $18,250 $11,400 $16,000

7 $17,500 $18,980 $11,400 $16,000

8 $17,500 $19,739 $11,400 $16,000

9 $17,500 $20,529 $11,400 $16,000

10 $17,500 $21,350 $11,400 $16,000

Discount rate¼ 4% 4% 4% 4%

FNPV¼ $1941 $4231 $3464 –$226
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value, which means that this strategy is not financially acceptable. Last, S3 involves
a lower investment outlay ($89,000) compared to strategy S2 ($140,000). In that

context, the evaluator must weight those pros and cons and take into account the

budget constraint of the public authority.

The accounting rate of return (ARR) measures the extent to which the return on

investment compensates the initial outlay. It expresses the average accounting

profit as a percentage of the investment cost. The measure depends on the depreci-

ation method, usually a straight-line method. In our setting, we have:

ARR ¼ Average accounting profit

Initial investment cost

The average accounting profit is defined as:

Average accounting profit ¼ Average net cash flows� Depreciation per annum

Consider again example 7 (Table 7.11). Strategy S1 is characterized by an initial

outlay of CF0¼ � $140,000. As there is no residual value, if one uses a straight line

depreciation method to write off this cost (see Sect. 2), then the depreciation per

annum amounts to CF0/T¼ � $14,000. Moreover, strategy S1 generates annual net

cash flows of
PT

t¼1 CFt=T ¼ $17; 500, which finally yields an average accounting

profit of $17,500–$14,000¼$3500. The accounting ratio of return is thus computed

as ($17,500–$14,000)/$140,000¼2.50% (see Table 7.12). Using this criterion,

strategy S2 offers the highest return (2.86%). Strategy S3 then comes second

(2.81%). The profit potential of the different competing strategies is easily com-

pared. The approach, however, does not account for the time value of money. Any

return observed at the end of the project’s life is worth as much as those observed

earlier.

The payback method assesses the time it takes for a strategy to earn back the

money initially invested. There are two cases depending upon whether the net cash

flows are identical or not over the project’s life. When they are equally distributed

over the project’s life (CF1¼ . . . ¼CFT¼CF), the following formula is used:

PB ¼ Initial investment cost

Annual net cash flow
¼ �CF0

CF

The payback period PB is obtained by dividing the initial investment outlay by the

periodic cash inflow observed in the following periods. For projects with unequal

cash flows, a similar indicator is computed:

PB ¼ τ � 1ð Þ þ �Pτ�1
t¼0 CFt

CFτ
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where τ is the period in which the initial investment is fully recovered; (τ� 1)

denotes the number of periods before full recovery; �Pτ�1
t¼0 CFt represents the

remaining uncovered cost in period τ; CFτ is the net cash flow observed in period τ.
The payback period method provides a measure of a project’s riskiness. It

indicates the number of periods required for the proceeds of the project to recoup

the original investment outlay. The approach is particularly useful under capital

rationing, when the budget must be prioritized, or under the threat of expropriation.

It also has the advantage to be easily understood, and can be used to show the time

commitment of funds. The lower is PB, the sooner the initial cost can be recovered,
and the sooner the inflows can be reinvested in new projects. This indicator of

performance, however, does not measure profitability. For instance, any inflow

received beyond the payback period is not considered. The method may thus cause

rejection of a highly profitable source of earnings if those earnings are generated at

the end of the project’s life. Another issue is that this approach ignores the time

value of money. The method can however be extended using cash flows expressed

in their present values.

Consider for instance Fig. 7.8. Strategies S1, S3 and S4 generate equally

distributed cash flows over the projects’ life. The payback periods can be computed

as follows:

PB S1ð Þ ¼ $140; 000

$17; 500
;PB S3ð Þ ¼ $89; 000

$11; 400
;PB S4ð Þ ¼ $130; 000

$16; 000

The values obtained (respectively, 8.00, 7.81 and 8.13) represent the number of

years it takes to recover the initial investment.

The method is slightly more complex for strategy S2 since the net cash flows are
unequally distributed. One needs to determine the cumulative cash flows. The year

of full recovery is τ¼ 9 for strategy S2. At year τ� 1¼ 8, the uncovered costs

amounts to �P8
t¼0 CFt ¼ $1787. From Table 7.11, the net cash flow at year

9 amounts to CF9¼ $20,259. Hence, we have:

Fig. 7.8 Payback period method: example 7
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PB S2ð Þ ¼ 8þ $1787

$20; 259
¼ 8:09

Overall, strategy S3 is the strategy that yields the shortest payback period, then

come S1, S2 and S4.
Break-even analysis is another method for isolating investment risk. It is used to

determine the volume of activity that is needed to cover the related costs. The

approach is particularly relevant for evaluating self-financing projects, when sales

revenue and user charges should ideally cover the project’s costs. The method

consists in dividing all costs into fixed and variable cost categories. By definition, a

fixed cost is any expense that remains constant regardless of the level of output.

Those costs occur on a periodic basis irrespective of whether the production takes

place. Examples include rent, insurance premiums, and loan payments. Variable

costs are expenses that fluctuate directly with changes in the level of output. They

occur only when activity takes place. They are usually expressed as cost per unit.

Examples include labor costs, material and packaging.

The break-even methodology is strongly related to the concept of sustainability.

Formally, a break-even point is computed as:

BEP ¼ Fixed costs per year

User charge� Variable cost per unit

This ratio represents the number of units that must be sold to make no profit or no

loss. In this expression, the denominator is called the contribution. It is the amount

each sold unit contributes towards profit. Alternatively, we can compute the break-

even sales:

BES ¼ BEP� User charge

Assume for instance that the fixed costs amount to $100,000 per year. If the variable

cost per unit is $2 while the user charge is $10, then the break-even point is:

BEP ¼ $100; 000

$10� $2
¼ 12; 500 units

It is the minimum number of units that must be sold each year on average. If the

number of units sold is lower than 12,500, then the project will make a loss. This

equivalently means that the sales should amount at least to

BES¼ 12,500� $10¼ $125,000 per year.

Let us now illustrate the approach for strategy S2 (example 7). On average, let us

assume a variable cost per unit of $0.2 and fixed operating costs of $1000 per year.

The user charge is set to $2. To compute the break-even point, loan payments must

be included as a fixed cost. Imagine that the initial outlay ($140,000) has been

borrowed from the bank at an interest rate of 3%. The PMT formula from Excel can

be used to compute the periodic payment (see Sect. 7.2). We have:
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F ¼ $140; 000� 3%

1� 1þ 3%ð Þ�10
¼ $16; 412

This yields a break-even point equal to:

BEP S2ð Þ ¼ $1; 000þ $16; 412

$2� $0:2
¼ 9673

The break-even sales amount to:

BES S2ð Þ ¼ BEP S2ð Þ � $2 ¼ $19; 347

A similar approach can be used for the other strategies.

7.7 Sensitivity Analysis

The values included in a cash flow statement are estimated based on the most

probable forecasts (also known as the most-likely scenario). Their choice can be

influenced by many factors and the assumptions made can be subject to error.

Sensitivity analysis investigates those assumptions by assessing the effects of a

variation in one or several variables on the project’s key indicators. For instance, a

sensitivity analysis can make use of different discount rates to check how the results

are critical to the value of time. Each sensitive variable such as sales can also be

changed to assess the investment’s desirability.

Several types of sensitivity analysis exist. The easiest approach is to examine the

most-likely scenario and consider the impact of changes in project variables

individually. Ideally, the analysis examines all the independent variables of the

project. Any aggregated variable such as total fixed assets or total operating

expenditures are usually disregarded. In that context, the European Commission

advocates the computation of what are termed switching values and elasticities. By

definition a switching value is the value at which a project becomes acceptable. In

other words, it is the value that a variable would have to take in order for the FNPV
of the project to become zero. For simplicity of exposition, this value is expressed in

terms of percentage change, based on the initial scenario. For instance, a 20%

increase in the cost of raw materials may reduce the project’s profitability to zero. If

it takes a 60% increase in the cost of labor to achieve the same target, one would

conclude that the cost of raw materials is a more sensitive variable.

The calculation of switching points can be done using trial and error. To

illustrate, let us consider again the bridge project (example 4) and the profitability

of the investment (FNPVI in Table 7.6). Assume that the discount rate is equal to

4%. Starting from the initial cash flow statement, one varies each variable indepen-

dently from the others until one reaches the required threshold, i.e. FNPVI¼ 0. To

illustrate, the method is used to compute the switching value of raw materials (see

row R7 of Fig. 7.9). The percentage increase required to zero out the profitability of
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the investment is 52.07%. In Fig. 7.9, we have 3422¼ 2250� (1 + 52.07%) where

2250 represents the value initially described in the most-likely scenario (Table 7.6).

Similarly, we can see in Fig. 7.10 that if the sales decrease by more than 7.33%,

then the project falls below the minimum level of acceptability. Table 7.13 extends

the approach to other variables. It can be seen that the most sensitive variables are

the value of sales, the cost of infrastructure and raw materials. Administrative costs

and sales expenditures appear as the less sensitive ones.

a

b

Fig. 7.9 Switching value of raw materials: example 4. (a) Total Investments—thousands of

dollars. (b) Operating revenues and costs—thousands of dollars

a

b

Fig. 7.10 Switching value of sales: example 4. (a) Total Investments—thousands of dollars. (b)

Operating revenues and costs—thousands of dollars
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Once the most sensitive variables are identified, one can also calculate the effect

of possible changes in these variables (usually from 1% to 15%) on the FNPV. As a
matter of fact, the European Commission suggests calculating the effect of a 1%

increase in each of the variables on the FNPV. The recommendation is to consider

critical those variables for which such a variation gives rise to a variation of more

than 1% in the value of the FNPV. Figure 7.11 presents the different elasticities

computed for the bridge project. An “elasticity” is defined as the percentage change

in the FNPV indicator for a 1% change in the variable. As previously, the sensitivity

analysis shows that the amount of sales, the cost of lands, infrastructures, equipment

and raw materials constitute critical variables.

Sensitivity tests can be misleading, especially when variables are correlated to

each other. For instance, when preparing a cash flow statement, one may consider

Table 7.13 Sensitivity analysis and switching values: example 4

Variable Switching values

Maximum increase

before the FNPV equals 0

Lands 46.45%

Bridge infrastructure 21.68%

Equipment 81.29%

Start-up costs 216.75%

Road network 130.05%

Raw materials 52.07%

Labor 156.20%

Electric power 390.50%

Maintenance 260.40%

Administrative costs 1464.50%

Sales expenditures 689.30%

Maximum decrease

before the FNPV equals 0

Sales �7.33%

Fig. 7.11 Sensitivity analysis and elasticities: Example 4
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forecasts about sales revenues. Those sales may generate additional expenses,

directly linked to the selling activity (sales expenditures), but also indirectly, for

instance via maintenance actions. In that context, the basic techniques of varying

one variable at a time, keeping the other variables constant, becomes unjustified.

Instead, it is necessary to explore a change in a combination of variables. Several

techniques have proven to be very helpful in this respect. Examples include

scenario analysis and probabilistic analysis. A scenario analysis generally focuses

on three alternatives: a most-likely scenario, a best-case scenario, and a worst-case

scenario. The purpose is not to identify the exact conditions of each scenario but,

instead, to draw attention to the main uncertainties involved in the project. A

probabilistic analysis generalizes this approach to a continuous setting where

each variable can take any value with some likelihood. The approach, also known

as Monte Carlo analysis, examines those variations simultaneously and simulates

thousands of scenarios, which results in a range of possible net present values with

their probability of occurrence. Those approaches are presented in the next

chapters.

Bibliographical Guideline

The concept of the time value of money is described in many textbooks. We can

name in particular that of Van Horne and Wachowicz (2008). The book describes

the basic principles of financial management and provides the reader with informa-

tion about many topics in finance. Additionally, the reader can refer to Pirnot

(2014), which introduces the main principles of consumer mathematics, including

simple and compound interests, consumer loans, annuities and amortization.

Discounted cash flow analysis is fully described in Campbell and Brown (2003).

The book closely integrates the theory and practice of cost benefit analysis using a

spreadsheet framework. The reader can also refer to Boardman et al. (2010), which

offers a practical introduction to cost benefit analysis. Furthermore, many textbooks

provide a description of ranking methods such as the accounting rate of return, the

payback period, or the break-even point. These references include for instance

Alhabeeb (2014) and Ahuja et al. (2015).

Several institutional guides present the financial practices to be used in the

context of public program evaluation. We may cite in particular the Guide to cost

benefit analysis of investment projects of the European Commission. This guide

provides a detailed presentation of the concept of sustainability, profitability, and

sensitivity analysis. Additionally, the Project appraisal practitioners’ guide by

USAID, a US government agency, offers a review of the international best practices

of project appraisal while approving a public sector project.
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Budget Impact Analysis 8

8.1 Introducing a New Intervention Amongst Existing Ones

Budget impact analysis examines the extent to which the introduction of a new

strategy in an existing program affects an agency’s budget. The focus is on the

outcome achievement associated with the implementation of the program and the

expected mid-run budget burden. Not only does the method provide information

about the costs generated by a new intervention or treatment, but it also assesses

how the new strategy will affect the overall supply of services and the amount of

resources devoted to it. The approach may serve for instance to evaluate the impact

of a new drug on the health care system, or be part of a budget planning process in

order to analyze multiple scenarios. The adoption of the new strategy will affect

positively or negatively the demand for other types of interventions and, thereby,

will modify the costs associated with their supply. Overall, budget impact analysis

provides a general tool for anticipating future changes in public expenditures

associated with the launching of a new project.

The context of the analysis is a public or publicly monitored program providing

services through existing supply to which the new strategy is going to be added. The

initial supply frame consists of one or several mutually exclusive interventions that

are already in effect. This initial framework is labeled the “current environment”.

The introduction of a new strategy will reshuffle demand and supply patterns, and

will characterize the “new environment”. The aim of budget impact analysis is to

evaluate the budget and outcome changes initiated by the introduction of the

additional strategy in the program. Figure 8.1 illustrates the approach. The adoption

of a new strategy modifies the way the demand is addressed and may also divert the

demand from other types of intervention, which finally alters the way supply is

handled. The difference expected between the new environment and the current one

represents the total impact of the new strategy on the total budget.

Let us take a first stylized example of a school district in a remote and poor area

where primary education is delivered by two existing village schools. Due to travel

costs and the lack of public transportation, those schools fail to reach children from
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remote places. Public authorities intend to introduce a third one in this educational

landscape, a district school with publicly organized transportation from home place

to school. Will that arrangement attract yet out-of-school pupils? Will there be shift

in demand from village schools to the district facility? What will the budget impact

be for the public authority? The second example deals with the more widespread

use of budget impact analysis in the field of public health. Admission to reimburse-

ment of a new drug in addition to existing ones is likely to reshape the management

of the disease and the ensuing budget burden. In the first example, the subjects of

interest are school-age children in the district, the outcome targets are the children

attracted to primary education. The suppliers of the service are the schools, from the

two villages or from the district facility. In the second example, the population of

interest consists of the people who have a disease likely to be treated by either the

existing set of drugs or the new one. Suppliers are the drug manufacturers. The

outcome target is the number of treated patients. A sound budget analysis should

allow outcomes and the corresponding budget loads to be disaggregated by

supplier.

Details of demand forecast and cost structure need to be provided. As a general

principle, this information is gathered for a rather short time horizon, usually

middle-run from 3 to 5 years. Cash flows are expressed in nominal value terms

and, as a matter of fact, are not discounted. The project intends to add a new strategy

to the set of strategies already in place. As a consequence, demand is rearranged.

Variations may concern the flows of (1) incoming subjects, i.e. those attracted by

the new strategy (for instance, children now carried by public transportation and

sent to district school or patients eligible to the new drug) and (2) of out-going

subjects because the new strategy may generate less dropouts among

schoolchildren or less forced termination of treatment due to harmful side-effects.

As was mentioned before, budget impact analysis restricts its span to the usual

mid-run budget planning horizon. That fits the budget holder’s constraints and

objective but is not meant necessarily to reflect the situation of the users. For

Fig. 8.1 Budget impact analysis
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instance, in the management of chronic diseases, the patient’s horizon is their life

expectancy. Conversely, an educational program may extend over a shorter hori-

zon, in which case the first generations of users would have left it before the budget

impact horizon is reached.

Finally, let us point out that budget impact analysis does not provide a decision

rule: financial sustainability and the extent to which outcome targets are reached are

to be appraised by the decision-maker according to their objectives and constraints.

The method is thus descriptive rather than prescriptive.

The present chapter offers a simple analytical framework with the aim of

presenting the general scheme of the method. Despite its simplicity, the method

must be implemented with caution. Many difficulties may arise, especially when

estimating demand flows. Demand projections are context-dependent and may

require significant technical expertise (in education, medicine, epidemiology, soci-

ology, demography, etc.). To illustrate, let us take the case of a health program. The

first step consists in defining the “total population”, i.e. those who live in the

jurisdiction where the program is implemented. The “affected population”

comprehends both the prevalent subjects from the previous periods that remain

with the disease, and the incident subjects. Prevalence is the proportion of the total

population that is affected with the disease in question at a specific time. Incidence

is the rate of occurrence of new disease cases. Inclusion criteria applied to the

affected population define the “eligible population”, namely the population who is

susceptible to treatment. Many factors also define exit rates of the eligible popula-

tion from the interventions of the program (e.g., non-compliance, supply shortages,

adverse events requesting treatment termination, general or disease-related mortal-

ity rate, migration to another jurisdiction). Building demand forecast is thus a step

that should not be taken lightly, especially because it serves as the foundation for

the rest of the analysis.

The remainder of the chapter is as follows. Sections 8.2 and 8.3 introduce the

method. The analytical framework is first presented in the case of a single supply,

e.g., one school, one drug or more generally one service or strategy (Sect. 8.2). The

framework is then extended to several supplies and compares the current environ-

ment with a new one in which an additional strategy is added (Sect. 8.3). Section 8.4

provides a numerical example. Section 8.5 is dedicated to deterministic sensitivity

analysis through the exploration of alternative scenarios of parameters values.

8.2 Analytical Framework

The purpose of budget impact analysis is to provide a simulation model that shows

how the adoption of a new strategy will affect a budget, given that a specific range

of services are already being supplied. The analytical framework is that of an

overlapping-generations model. Figure 8.2 illustrates the mathematics behind this

framework. The analysis is concerned with T generations of subjects, where

T represents the time horizon of the budget impact analysis. Each generation is

denoted t¼ 1 . . . T. Those time periods are usually but not necessarily years. A
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strategy Sk is characterized by a set of intervention periods m¼ 1 � � �M(Sk) where
M is the total number of intervention periods. We do not have necessarilyM< T, or
M> T, because the time horizon of the budget impact analysis, usually three to five

years, is independent of the periods of intervention. In Fig. 8.2, for instance, the

analysis is interested in T¼ 5 years and focuses on one single strategy. Each of the

five generations benefit from M¼ 3 periods of intervention, denoted m¼ 1, 2 and

3 respectively.

As illustrated in Fig. 8.2, what matters is the flow of subjects who benefit from

the interventions. Generations differ in their number and characteristics, which

modifies the demand for the good or service in question. For instance, they are the

children aged 6 enrolled for a 3-year educational program. The second year of

implementation sees the coexistence of two generations of schoolchildren. The new

one, aged 6, attends the school for their first-year program, along with their elders,

now aged 7, who join the second-year program. Those generations of children

aggregate themselves over the time horizon of the budget impact analysis. If that

horizon is for instance five calendar years, the first generation will have left at the

end of the third year, while at the end of the fifth year, the fifth generation will begin

their first-year program, in parallel with the third generation (completing the

program) and the fourth (in their second year). Note that the number of subjects

in a given generation is not necessarily stable through time. For instance, a few

pupils may have to repeat one school year, in which case they are treated as if they

were belonging to the next generation. Some others may move with their parents to

an area that is outside the scope of the considered program.

Formally, for a given strategy Sk, the quantity of good or service supplied to

generation t is denoted by xmt Skð Þ, where m denotes each intervention period. The

x’s can also refer directly to the number of subjects, in which case each subject is

assumed to consume one single unit of the good. The supply frame is defined by a

table as that of Fig. 8.3 made of T rows standing for the generations and T columns

characterizing the time periods. We have xmt Skð Þ ¼ 0 either when m>M(Sk) (the
strategy has already been supplied) or when m< 1 (the strategy is not yet in effect).

Fig. 8.2 Cohorts of users over the budget impact horizon
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Figure 8.3 offers the example of a 5-year time horizon (T¼ 5). Strategy Sk is
characterized by three intervention periods (M¼ 3). In period 1, the program

involves an initial cohort or generation of users, which results in a total quantity

supplied equal to x11 Skð Þ. In period 2, the quantity supplied for that generation is

x21 Skð Þ. In the meantime, the second generation of users has arrived, generating an

extra supply equal to x12 Skð Þ. At time period 3, generation 1 completes the program,

generation 2 enters the second year of intervention, generation 3 begins the pro-

gram, and so on.

By using an intermediate time index i, we can express the annual supply at year

t as:

xt Skð Þ ¼
Xt

i¼1

xtþ1�i
i Skð Þ

with xtþ1�i
i ¼ 0 for t+ i� 1>m. Total supply over the whole horizon T is then

defined as:

x Skð Þ ¼
XT

t¼1

xt Skð Þ ¼
XT

t¼1

Xt

i¼1

xtþ1�i
i Skð Þ

For instance, Fig. 8.3 is read column by column:

In period 1: x1 Skð Þ ¼ P1
i¼1 x

2�i
i ¼ x11.

In period 2: x2 Skð Þ ¼ P2
i¼1 x

3�i
i ¼ x21 þ x12.

In period 3: x3 Skð Þ ¼ P3
i¼1 x

4�i
i ¼ x31 þ x22 þ x13.

In period 4: ( ) = ∑ = 0 + + + .

In period 5: ( ) = ∑ = 0 + 0 + + + .

The total supply is thus computed as follows:

Fig. 8.3 Supply from strategy Sk to overlapping generations

8.2 Analytical Framework 273



x Skð Þ ¼ x1 Skð Þ þ x2 Skð Þ þ x3 Skð Þ þ x4 Skð Þ þ x5 Skð Þ
Supply is thus conceived in an overlapping generation setting. Factors determining

successive eligible demands for a given generation (inclusion criteria, compliance

rate, discontinuation, etc.) are considered as exogenous since they are context-

dependent and determined upstream of the supply and cost analysis.

We now move on to cost specification. We make the simplifying assumption that

unit costs associated with a unit of supply are not t-dependent, i.e. do not vary from
one generation to another. However, they are m-dependent, i.e. dependent on the

period of intervention. For instance, there is an initial intervention cost in m¼ 1

then follow-up costs for m� 2. That allows various cost profiles. Furthermore, the

costs are strategy-dependent, i.e. do vary from one strategy to another. Formally,

unit cost is denoted ucm. To illustrate, Fig. 8.4 provides cost details for strategy Sk
and relates to the supply frame of Fig. 8.3.

For each period t, one must compute the total cost defined by the sum of products

of quantities and unit costs. We have:

Ct Skð Þ ¼
Xt

i¼1

uctþ1�i Skð Þ � xtþ1�i
i Skð Þ

Over the whole time horizon, the cost of strategy Sk is:

C Skð Þ ¼
XT

t¼1

Ct Skð Þ ¼
XT

t¼1

Xt

i¼1

uctþ1�i Skð Þ � xtþ1�i
i Skð Þ

For instance, using information from both Figs. 8.3 and 8.4, we have:

In period 1: C1 Skð Þ ¼ uc1 � x11.

In period 2: C2 Skð Þ ¼ uc2 � x21 þ uc1 � x12.

In period 3: C3 Skð Þ ¼ uc3 � x31 þ uc2 � x22 þ uc1 � x13.

Fig. 8.4 Annual costs in supplying strategy Sk
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The total cost of strategy Sk is C(Sk)¼C1(Sk) +C2(Sk) +C3(Sk) +C4(Sk) +C5(Sk).
It is important to note that costs do not reflect the producer’s cost function but

rather the expense borne by the budget holder in charge of financing the project. For

instance, in the case of public health, the cost does not stem from the analytical

accounts of the manufacturer, in this case a pharmaceutical firm providing a new

drug to be added to the existing treatment options. Rather, the cost taken into

account is the one borne by the third-party payer(s), e.g., social security or mutual

funds who bear reimbursement. The cost boundary is to be precisely defined and

justified. For instance, does it include out-of-pocket costs for patients? Do parents

have to pay a fee for sending their children in a particular school? The budget holder

may or may not take those into account depending on the chosen cost perimeter.

8.3 Budget Impact in a Multiple-Supply Setting

When moving from a single supply to a multiple supply framework, one must make

sure that the cost perimeter remains stable so as to allow comparisons between the

current and the new environment. Simply put, we assume that the adoption of a new

strategy does not affect the supply costs of the other strategies.

Once the demand has been estimated and the supply frame has been built, one

can proceed to the budget impact analysis per se. The first step is to define the

current environment, denoted e0 hereafter. It involves a perimeter that encompasses

the strategies S1, . . . ,SK that are currently in effect: e0¼ {S1, . . . , SK}. By construc-
tion, it does not include the new strategy. The introduction of a new strategy SK+ 1

brings in the new environment: e1¼ {S1, . . . , SK, SK+ 1}. The adoption of strategy

SK+ 1 may modify the demand forecast, the supply frame and consequently the

budget perimeter. Strategy SK+ 1 has unit costs uc
m(SK+ 1). Unit costs are assumed to

be unchanged for the existing strategies S1, . . . , SK. However, demand patterns may

change since the introduction of the new strategy is likely to reshuffle subjects

amongst strategies, attract new ones, and prevent more (or less) from leaving the

program.

Let xmt Skje0ð Þ, k¼ 1 . . .K, and xmt Skje1ð Þ, k¼ 1 . . .K+ 1, denote the quantities

supplied for each strategy Sk under the current environment and the new environ-

ment, respectively. Total budget for the current environment is computed as:

C e0ð Þ ¼
XK

k¼1

C Skje0ð Þ

where

C Skje0ð Þ ¼
XT

t¼1

Xt

i¼1

uctþ1�i Skð Þ � xtþ1�i
i Skje0ð Þ
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The term C(Sk| e0) represents the total cost of strategy Sk under the current environ-
ment (k¼ 1 . . .K ). Similarly, total budget for the new environment is:

C e1ð Þ ¼
XKþ1

k¼1

C Skje1ð Þ

with

C Skje1ð Þ ¼
XT

t¼1

Xt

i¼1

uctþ1�i Skð Þ � xtþ1�i
i Skje1ð Þ

Here, the term C(Sk| e1) represents the total cost of strategy Sk under the new

environment (k¼ 1 . . .K+ 1). Using these equations, the budget impact over the

whole time horizon is expressed as a simple difference:

Budget impact ¼ C e1ð Þ � C e0ð Þ
If the impact is found to be positive, it means that the new strategy generate extra-

cost. If the impact is found to be negative, then the new environment is cost-saving.

As already stated in Sect. 8.1, budget impact analysis does not provide a decision

rule. Extra-cost can be synonymous with higher quality of supply while extra-

saving may imply a reduction in that quality. It is up to the decision-maker to decide

whether the change in cost is acceptable.

In practice, total budgets can also be decomposed on an annual basis so as to

assess the budget load year after year, which is more in line with the budget impact

standpoint. The annual budget burden for the current environment is defined as:

Ct e0ð Þ ¼
XK

k¼1

Xt

i¼1

uctþ1�i Skð Þ � xtþ1�i
i Skje0ð Þ

while for the new environment, it is

Ct e1ð Þ ¼
XKþ1

k¼1

Xt

i¼1

uctþ1�i Skð Þ � xtþ1�i
i Skje1ð Þ

The annual basis naturally provides a more detailed analysis:

Budget impact at tð Þ ¼ Ct e1ð Þ � Ct e0ð Þ, t ¼ 1� � �T
Admittedly, the chosen time horizon is to some extent arbitrary since the lifespan of

the assessed facilities or drugs is likely to go much beyond the chosen time horizon.

However, budget impact analysis is meant to assess middle run feasibility in terms

of sustainable budget and ability to reach target outcomes. We now move on to a

numerical example that will serve as the base case analysis.
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8.4 Example

Budget impact analysis is highly context dependent so that building an all-use

template would be a wager. For instance, the subjects of interest within a given

general population can be school-age children eligible to attend an education

institute or patients suffering from a disease that requires treatment. This explains

why we present an example of analysis that cannot claim generality.

The example considers a time horizon that ranges from 2020 to 2024 (T¼ 5) and,

as such, involves five generations of subjects. Table 8.1a displays forecasts about

the beneficiary population for the five generations. For year 2020, 5000 subjects

enter the model. This initial cohort comprehends subjects already treated (the

prevalent population) and the newcomers to the treatment (the incident population).

In 2021, a new generation enters the model with 1100 incident subjects, and so on.

The budget impact analysis is interested in a set of three strategies, namely S1, S2
and S3. The current environment e0 includes two strategies S1 and S2 while the new
environment e1 is characterized by strategies S1, S2 and S3. Those strategies are

assumed to be mutually exclusive interventions: a subject cannot benefit from more

than one strategy at the same time. This does not mean that the strategies are jointly

exhaustive, as one individual that has entered the program may also leave it. In

other words, strategies S1, S2 and S3 do not together exhaust all the possibilities

faced by the subjects. Yet, only the strategies that directly influence the budget are

analyzed.

Table 8.1b shows how the incident population is distributed among the strategies

of the current environment. In period 1, the current environment allocates 40% of

the incident population to strategy S1 and 60% to strategy S2. As can be seen, those

shares evolve over time. In period 2 for instance, 30% of the incident population

benefit from strategy S1 while 70% benefit from strategy S2. It can be seen in

Table 8.1c that the new environment reallocates those demand shares. For instance,

in 2022, the incident population counts 1200 subjects. The current environment

shares them between strategy S1 (which takes care of 360 subjects) and strategy S2
(which treats 840 subjects). Should strategy S3 be introduced through the new

environment, that same cohort would then be allocated differently to strategy S1

Table 8.1 Allocation of incident population among strategies

(a) Incident population

Year 2020 2021 2022 2023 2024

Counts 5000 1100 1200 1300 1400

(b) Current environment (e0)

Strategy S1 2000 (40%) 330 (30%) 360 (30%) 520 (40%) 420 (30%)

Strategy S2 3000 (60%) 770 (70%) 840 (70%) 780 (60%) 980 (70%)

(c) New environment (e1)

Strategy S1 1500 (30%) 220 (20%) 240 (20%) 390 (30%) 280 (20%)

Strategy S2 3000 (60%) 550 (50%) 480 (40%) 260 (20%) 560 (40%)

Strategy S3 500 (10%) 330 (30%) 480 (40%) 650 (50%) 560 (40%)
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(240 subjects), strategy S2 (480 subjects), and strategy S3 (480 subjects). Note that,

for simplicity of exposition, the incident population is assumed to be the same in the

current and new environments (Table 8.1a). This assumption should be relaxed if

the new strategy S3 could attract new subjects. For instance, strategies S1 and S2
may be treatments that are contra-indicated for patients who could be now treated

with strategy S3 (e.g., a drug that they would tolerate).

Exit criteria for lost or censored subjects may differ from one strategy to another.

For instance, termination may depend on the duration of intervention and on

individual characteristics or circumstances (non-compliance, dropout, side effects,

relocation, etc.). Exit rates are not affected by the introduction of the new strategy.

Figure 8.5a provides information about the annual exit rates at the end of interven-

tion periods for each strategy. Strategy S1 is characterized by M(S1)¼ 3 years of

intervention, then those interventions fully stop (hence the 100% exit rate at the end

of period m¼ 3). The assumption is that no subjects are lost or censored: the exit

rate is set to 0%. Strategy S2 involves at least 5 years of interventions with a 10%

dropout each year. Strategy S3 is characterized by M(S3)¼ 4 years of intervention

(100% of reached subjects leave the model after their 4-year treatment) and

evidences a variable dropout during the intervention years.

In Fig. 8.5b, cost profiles depend on the strategies and their treatment length.

Like exit rates, they are not affected by the introduction of the new strategy.

Strategy S1 shows a constant and relatively high unit cost over its duration. Strategy
S2 implies a rather smaller overall budget for a given subject, with a kind of initial

investment and subsequent follow-up costs. Strategy S3 has a quite high initial cost

with decreasing follow-up costs, but its overall individual budget burden is still

lower than that of strategy S1.
Figure 8.6 describes the follow-up of subjects under the two scenarios. At the

first year of analysis (2020) the program reaches 5000 subjects (patients with a

given disease, children of school age in the targeted district). Part of them could be

prevalent (they have already been treated during the previous year at least) and the

rest is incident (they become eligible to treatment in the case of a disease or reach

the age of 6 in the school example). During the second year (2021), the incident

generation 2 with its 1200 subjects adds up to the prevalent generation 1 (apart from

those who may have left the program, which does not happen for strategy S1 in our
example). During the third year (2022), generations 1 and 2 are now prevalent and

are joined by the incident generation 3 (1200 subjects), etc.

Fig. 8.5 Exit and cost patterns
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Let us consider for instance strategy S2 under the current environment

(Fig. 8.6a). The values are computed as follows. First, at year 2020, 60% of the

incoming population (5000 from Fig. 8.6b) are treated with strategy S2, namely

3000 subjects. At the end of year 2020, generation 1 faces an exit rate of 10%

(Fig. 8.5a) which implies that 300 subjects from this generation will leave the

program. As such, in 2021, the number of subjects of generation 1 benefiting from

S2 is 2700. In the meantime, the incident population (generation 2) amounts to

770 (60% of the 1100 incoming subjects). The total number of subjects treated with

S2 in 2021 is thus 3470. At the end of year 2021, both generations face a 10% exit

rate, which means that generations 1 and 2 are reduced in 2022–2430 and

693 subjects, respectively. They are joined by 70% of generation 3 (840 subjects)

so that 3963 subjects are now part of the program under the S2 strategy. The

procedure continues as such until the time horizon is reached. A similar method

is used for the new environment.

The comparison of Fig. 8.6a with Fig. 8.6b highlights differences in the way

attrition affects the cohorts of users. In the current environment, once subjects from

a given generation (say generation 3 entering the program in 2022) have been

Fig. 8.6 Follow-up of generations by scenario and by strategy
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allocated to a strategy (say strategy S2, and namely 840 subjects), they get treated

unless they exit at the previously defined termination rates. For an annual 10% rate,

the number of subjects treated with strategy S2 decreases to 756 in 2023 and to

680 in 2024. In the new environment, strategy S2 follows a similar pattern but the

initial number of subjects differs because the demand share of S2 has decreased with
the arrival of strategy S3. The new environment would only allocate 480 subjects to

strategy S2 and attrition would reduce the treated subjects among them to 432 in

2023 and 389 in 2024.

Total rows of Figs. 8.6a and 8.6b indicate the population reached under a given

environment. It is an indicator of the annual global outcome associated with that

environment. Last row of Fig. 8.6 computes the difference between those totals. In

2020, this difference amounts to zero as the population in both environments is

assumed to be the same. In 2021, the new environment has 50 less subjects than the

current environment. This result is due to the reallocation of subjects among

strategies and the fact that strategies differ in their termination rates. As can be

seen, the differences in annual global outcome are very thin in this example. At year

2022, it amounts to�129, then +258 in 2023, and�16 in 2024. Yet, what matters is

more the way the subjects are distributed among the strategies. Differences in

allocation of subjects may generate high differences in terms of costs. For instance,

the population reached by the strategies under the current and new environments is

displayed in Figs. 8.7 and 8.8, respectively. It can be seen that an important share of

those benefiting from strategy S2 in the current environment are allocated to

strategy S3 in the new environment. This may strongly affect the total cost of the

program.

Costs patterns are displayed in Fig. 8.9. They are decomposed by scenario,

strategy and year. The values have been generated using information from

Fig. 8.7 Cohorts of users: current environment
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Figs. 8.6 and 8.5b. Consider for instance strategy S2 in the current environment. The

total row of Fig. 8.9a has been computed as follows:

At year 2020: C1(S2)¼ $50� 3000¼ $150,000;

At year 2021: C2(S2)¼ $20� 2700 + $50� 770¼ $92,500;

At year 2022: C3(S2)¼ $20� 2430 + $20� 693 + $50� 840¼ $104,460;

and so on.

The aim is to generate annual costs by environment and to compare them in order to

calculate the annual budget impact of strategy S3. This is done in Fig. 8.9 where the
last row shows the difference in costs between the current environment and the new

environment. As can be observed, the annual budget impact is positive for all years

except in 2021 and amounts to $50,000 in 2020, �$1500 in 2021, $7835 in 2022,

$80,100 in 2023 and $53,220.4 in 2024. Summing those figures yields the total

budget impact of introducing strategy S3 as a new intervention in the program,

namely $189,666. Figure 8.10 displays the annual impacts over the time horizon of

the analysis. With this particular example, the impact is mainly positive which

means that the budget holder will have to commit additional financial resources if

the new strategy is to be introduced in the supply frame.

8.5 Sensitivity Analysis with Visual Basic

Budget impact analysis provides a quantitative assessment of the annual allocation

of demand to the strategies and of the cost burden associated with it. Those results

are quite dependent on the assumptions on demand flows and shares amongst

strategies (as in Table 8.1) as well as on the exit rates and cost structure (as in

Fig. 8.8 Cohorts of users: new environment
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(a)(a) Current environment ( )

2020 2021 2022 2023 2024

S
tr

at
e

g
y

Generation 1 $200,000 $200,000 $200,000 $0 $0

Generation 2 $0 $33,000 $33,000 $33,000 $0

Generation 3 $0 $0 $36,000 $36,000 $36,000

Generation 4 $0 $0 $0 $52,000 $52,000

Generation 5 $0 $0 $0 $0 $42,000

Total strategy $200,000 $233,000 $269,000 $121,000 $130,000

S
tr

at
e

g
y

Generation 1 $150,000 $54,000 $48,600 $43,740 $39,366

Generation 2 $0 $38,500 $13,860 $12,474 $11,227

Generation 3 $0 $0 $42,000 $15,120 $13,608

Generation 4 $0 $0 $0 $39,000 $14,040

Generation 5 $0 $0 $0 $0 $49,000

Total strategy $150,000 $92,500 $104,460 $110,334 $127,241

Total + $350,000 $325,500 $373,460 $231,334 $257,241

(b)(b) New environment ( )

S
tr

at
e

g
y

Generation 1 $150,000 $150,000 $150,000 $0 $0

Generation 2 $0 $22,000 $22,000 $22,000 $0

Generation 3 $0 $0 $24,000 $24,000 $24,000

Generation 4 $0 $0 $0 $39,000 $39,000

Generation 5 $0 $0 $0 $0 $28,000

Total strategy $150,000 $172,000 $196,000 $85,000 $91,000

S
tr

at
e

g
y

Generation 1 $150,000 $54,000 $48,600 $43,740 $39,366

Generation 2 $0 $27,500 $9,900 $8,910 $8,019

Generation 3 $0 $0 $24,000 $8,640 $7,776

Generation 4 $0 $0 $0 $13,000 $4,680

Generation 5 $0 $0 $0 $0 $28,000

Total strategy $150,000 $81,500 $82,500 $74,290 $87,841

S
tr

at
e

g
y

Generation 1 $100,000 $4,500 $3,825 $15,300 $0

Generation 2 $0 $66,000 $2,970 $2,524.5 $10,098

Generation 3 $0 $0 $96,000 $4,320 $3,672

Generation 4 $0 $0 $0 $130,000 $5,850

Generation 5 $0 $0 $0 $0 $112,000

Total strategy $100,000 $70,500 $102,795 $152,144.5 $131,620

Fig. 8.9 Costs by scenario and by strategy

Fig. 8.10 Budget impact of introducing strategy S3
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Fig. 8.5). This is why exploring uncertainty through sensitivity analysis, far from

being an appendix to the assessment, is a constitutive part of budget impact

analysis.

The first type of uncertainty relevant to that analysis is parameter uncertainty

surrounding the values of input. Parameter uncertainty relates to the estimation of

generational demands, demand shares amongst strategies and cost parameters. This

form of uncertainty is associated with factors such as the existence of several but

conflicting studies or expert opinions documenting data or, conversely, is related to

a lack of data for parameters of interest. Because of limited or poor information,

much of parameter uncertainty cannot be quantified with relevance.

The second type of uncertainty is structural and is conveyed by the assumptions

that prevailed in framing the budget impact analysis: they relate to inflexions in the

current environment patterns induced by the introduction of the new strategy, which

are not easy to anticipate. Specifically, the allocation of the target population among

strategies as well as their exit rates are likely to be structurally distorted by the

inclusion of the new strategy. With structural uncertainty, the interrogation is not

about doubts on the value of a given specific parameter (for instance the demand

share of strategy S1 at year t¼ 2023 in the new environment may not be 30% with

certainty, thus there is parameter uncertainty around that value). What is questioned

with structural uncertainty is the parameter pattern for demand shares and exit rates

and cost structure as a whole. By essence, structural uncertainty in budget impact

analysis strongly resists quantification.

In this context, sensitivity exploration in budget impact analysis is best carried

out through scenario analyses. The usual approach consists in using a most-likely

scenario, also known as base case, as a benchmark. The sensitivity analysis then can

change selected input parameter values and structural assumptions so as to generate

plausible outcomes and budget burdens alternative to the base-case.

Let us consider again the example of Sect. 8.4. There are many ways of

implementing sensitivity simulations using templates. Excel can for instance be

used in this purpose. The analysis can be separated in three worksheets as described

in Table 8.2. The first worksheet is labeled “Parameters” and describes input

parameters (incident population, exit rates, unit costs), i.e. contains information

similar to that presented in Table 8.1 and Fig. 8.5. The second worksheet is named

“Base case” and displays all the results of the budget impact analysis as in Figs. 8.6

and 8.9 as well as Figs. 8.1 and 8.2. The third worksheet is labeled “Sensitivity

analysis” and simulates how parameters and structural uncertainty influence the

impact on costs and outcomes of the introduction of the new strategy. We suggest

here a very simple macro command under Excel that allows modifying any subset

of parameters and then restores the initial values.

Figure 8.11 provides the corresponding code. Macros are written in the Visual

Basic programming language and are stored in a separate Visual Basic editor,

nevertheless linked to the main workbook. By definition, a macro is an action or

a set of actions that is used to automate tasks. In Excel, a few settings may have to

be changed before running the macro. First, the Developer tab is not displayed by

default. It can be added to the ribbon via the following steps: (1) click the Microsoft
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Office Button, (2) click Excel Options and (3) in the Popular category, under Top

options for working with Excel, select the “Show Developer tab in the Ribbon”

check box, and click OK.

Once the Developer tab is displayed, click on Visual Basic in the Developer tab,

then click on Insert and Module. The next step is to copy and past the code of

Fig. 8.11. Once saved, the macro can be accessed from the Developer tab, by

clicking the Macros command on the ribbon (Developer tab, Code group). It is also

possible to add a button and to assign a macro to it in a worksheet. On the Developer

tab, in the Controls group, one needs to click Insert, and then under Form Controls,

one must click Button. The final step is to choose the location of the button on the

worksheet, and to assign a macro to it.

In Fig. 8.11, the macro makes use of two worksheets only, the one that contains

the parameters (worksheet 1 labeled “Parameters”) and the one that performs the

sensitivity analysis (worksheet 3 labeled “Sensitivity analysis”). Note that

worksheet 3 is an exact copy of worksheet 2 (same calculations) and will differ

only with respect to the initial parameters. In Fig. 8.11, command lines begin with

the 0 symbol. The first step is to select the initial set of parameters by first stating the

Table 8.2 Organization of budget impact analysis in Excel

Worksheet 1 “Parameters”

Worksheet 2 “Base

case”

Worksheet 3 “Sensitivity

analysis”

For both the current and new

environments, information about the

incident populations and their

allocation among strategies.

Follow-up of

generations by

scenario and by

strategy.

Simulates how parameters and

structural uncertainty influence

the supply.

For all strategies, information about

annual rates of exit at the end of

intervention periods, and unit costs

by intervention period.

Costs by scenario

and by strategy.

Simulates how parameters and

structural uncertainty influence

the cost of strategies.

Fig. 8.11 Visual basic macro for restoring initial values

284 8 Budget Impact Analysis



corresponding sheet (worksheet 1 labeled “Parameters”) then identify in that sheet

the relevant cells (in the example, these are the cells ranging from B3 to G27).

Initial values are then saved through the Selection .Copy code. Those values are

then displayed in the Sensitivity analysis worksheet from cell B4 in the example. In

other words, the macro is used to copy the parameters of the first worksheet (cells

B3 to G27) in the third worksheet (cells B4 to G28). We can then proceed to the

budget impact analysis in the third worksheet by modifying those values. The

advantage of the macro is that we can examine multiple scenarios, and then restore

the parameters very easily.

Even in a simple example such as the one presented here, the number of

parameter combinations is such that they cannot be explored systematically, all

the more so that we do not have information on the likely variation range of

parameters. One should then select a number of plausible scenarios, relevant to

the concerns of the policy-maker, and examine their outcome and cost

consequences. The following examples are thus purely illustrative and would

require an explicit contextualization in order to receive a fully pertinent

interpretation.

We first investigate variations in a single parameter (see Table 8.3) using the

analysis of Sect. 8.5 as the base case. For instance, the consequences of a 25%

decrease in the initial annual cost of strategy S3 (uc
1(S3)¼ 150 instead of 200) are

such that the budget impact of introducing the new strategy is approximately three

times less, without any repercussion on demand allocation (Table 8.3b).

Structural sensitivity analysis can also be explored through various scenarios

involving several simultaneous changes in parameters that express for instance a

best case scenario or conversely a worst case scenario. Defining what is worst or

best is of course dependent upon the context and the hierarchy between

consequences. For instance, the public decision-maker may give priority to cost

(that should be contained) or to demand (that should be directed to the new

strategy). Figure 8.12 illustrates the methodology using the framework of Sect.

8.4 as the base case. We examine the case of a chronic disease initially treated by

either strategy S1 or strategy S2. The new and innovative treatment is strategy S3. A
“stress-test” sensitivity scenario would consider the following deviations in the

model structure. First, public health authorities may anticipate a steady increase in

the prevalence of the disease due for instance to ingrained harmful diet and lifestyle

Table 8.3 Parameter sensitivity analysis: example of a cost decrease

(a) Base case

Year 2020 2021 2022 2023 2024

Budget impact $50,000 �$1500 $7835 $80,100.5 $53,220.4

Total budget impact $189,666

(b) Impact of a 25% decrease in the initial annual cost of strategy S3
New annual impact $25,000 �$18,000 �$16,165 $47,600.5 $25,220.4

Total budget impact $63,655
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habits (Fig. 8.12a). Second, the innovative strategy S3 would attract every year

additional subjects from each strategy (compared with the base case), thus

generating a reduction of 10 percentage points in the demand for S1 and S2
(Fig. 8.12b). Third, treatment compliance may be better than expected so that exit

rates would go down to 10% each year (Fig. 8.12c). Finally, follow-up costs may be

greater than initially expected (Fig. 8.12d). As can be seen from Fig. 8.12e,

compared to the base case, this scenario induces an important increase in the budget

burden.

Figures 8.13, 8.14 and 8.15 show the distribution of demands and budget impacts

of the “stress-test” scenario. The new budget impact evidences a strong effect on the

cost burden. Whether that burden is bearable and relevant is a question that cannot

be answered by the budget impact analysis. The latter nevertheless illuminates the

magnitude of the effects. In this example, the public decision-maker faces a real

public health concern with the constant rise of a chronic disease, due to lifestyle

habits, environmental factors, etc. If the policy answer is to introduce a new and

expensive drug, then it will have a considerable budget impact and opportunity cost.

The sensitivity analysis may prompt reflections about alternative ways of dealing

with the problem.

Bibliographical Guideline
Budget impact analysis is to our knowledge mostly if not solely used in health

economics, although its design should make it a rather general tool for assessing the

consequences of introducing a new strategy amongst existing ones in the imple-

mentation of a public project. The main proponent of that method has been

Mauskopf (1998) with a seminal analysis that has generated a lot of interest both

among scholars and practitioners of public health decision making (Trueman et al.

2001; Garattini and van de Vooren 2011). Budget impact analysis is now

recommended by several national health technology assessment agencies when a

new innovative treatment claims reimbursement from social security or mutual

funds. It is also recognized at the international level by scientific authorities in the

field (ISPOR 2014).

Fig. 8.12 Structural sensitivity analysis: a stress-test scenario
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Uncertainty related to the choice of parameter pattern and values cannot be dealt

with by using partial deterministic analysis and probabilistic sensitivity analysis.

Budget impact analysis rather uses scenarios involving either variations of a small

set of parameters or larger scale deviations from the base case in order for instance

Fig. 8.13 Cohorts of users under the stress-test scenario: current environment

Fig. 8.14 Cohorts of users under the stress-test scenario: new environment
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to account for optimistic or pessimistic stances (Nuijten et al. 2011; Mauskopf

2014).

Applications to fields of public action other than pharmacoeconomics and health

economics could be developed by complementing the budget impact model with a

detailed argumentation of what the target population consists of, how it evolves

according to relevant parameters such as socio-economic, epidemiologic, demo-

graphic parameters. Our presentation has eluded that dimension of budget impact

analysis in order to remain as all-purpose as possible. Demand analysis necessitates

specific knowledge about the assessed field of public action and, in practical terms,

requires a preliminary worksheet generating demand shares and their evolution in

time). In the case of health policies, national health technology assessment agencies

often provide templates helping with such calculations (e.g., in France: Ghabri et al.

2017).

Finally, our model of budget impact analysis pays tribute to the overlapping

generations setting that was initially conceived by Samuelson (1958) and further

formalized by Gale (1973). That allows a systematic presentation of the cost and

outcome consequences of the introduction of a new strategy in an existing field of

action, both over the lifecycle of a generation of users and across generations.
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Cost Benefit Analysis 9

9.1 Rationale for Cost Benefit Analysis

The aim of cost benefit analysis is to determine whether a public policy choice is

globally beneficial or detrimental to society’s welfare. The method allows several

projects to be compared not only on the basis of their financial flows (investments

and operating costs) but also on the basis of their economic effects (variation in

consumption of public services, change in the satisfaction derived from them). For

instance, the construction of a highway not only modifies the financial flows of the

authority at stake, but affects traffic congestion, reduces travel time, improves

safety, influences positively or negatively real estate in the areas served by the

project. All these consequences must be properly accounted for. To do so, cost

benefit analysis expresses these impacts in terms of a common metric, their

equivalent money value. Then the method confronts the financial flows with the

economic impacts to measure the total contribution of the project to the well-being

of the society.

Cost benefit analysis is primarily used for assessing the value of large capital

investment projects (transportation infrastructures, public facilities, recreational

sites) but can be employed for appraising smaller projects, public regulations or a

change in operating expenditures, especially where other methods fail to account

for welfare improvements. It became popular in the 1960s with the growing

concern over the quality of the environment, not only in the USA but also in

many other countries. Nowadays, institutions such as the European Commission,

the European Investment Bank or the World Bank require cost benefit analysis

studies for extra funding and loan requests. In the USA, the approach is frequently

used when a public policy choice imposes significant costs and economic impacts.

In Europe, more and more governments use the approach to justify a particular

policy to taxpayers. This was for instance the case with HS2, a controversial high-

speed rail link between London, Birmingham and Manchester.

Cost benefit analysis is concerned with two types of economic consequences.

First, a project produces “direct effects” affecting the welfare of those who

# Springer International Publishing AG 2017

J.-M. Josselin, B. Le Maux, Statistical Tools for Program Evaluation,
DOI 10.1007/978-3-319-52827-4_9

291



primarily benefit from the public service. They are related to the main objectives of

the program. Table 9.1 provides several examples. They include for instance the

satisfaction from using recreational parks or the time saved by projects in the

transport sector. Assessing the direct contribution of a public policy to society’s

welfare is at the heart of cost benefit analysis. Second, a project may generate

“negative and positive externalities”, so-called “external effects”. Those are costs

and benefits that manifest themselves beyond the primary objectives of the pro-

gram. They appear when a policy affects the consumption and production

opportunities of third parties. Typical examples are deterioration of landscape

(negative externality) and economic development (positive externality), as

described in Table 9.1. Given their potential impact on society’s welfare,

externalities are also monetized, including social and environmental effects.

The cost benefit analysis methodology also ensures that the price of inputs and

outputs used in the analysis reflect their true economic values, and not only the

values observed in existing markets. Government intervention may divert the

factors of production (land, labor, capital, entrepreneurial skill) from other produc-

tive use. This is particularly true where markets are distorted by regulated prices or

where taxes or subsidies are imposed on imports or exports (see Table 9.1). For

instance, a land made available for free by a public body generates an implicit cost

to the taxpayers: the opportunity cost of not renting the land to another entity. A tax

on imports which affects the price of inputs also has to be deduced to better reflect

the true costs to taxpayers. To account for these distortions, cost benefit analysis

makes use of what is called conversion factors. They represent the weights by

which market prices have to be multiplied to obtain cash flows valued at their true

price from the society’s point of view.

Public policies involve many objectives, concern different beneficiary groups

and differ with respect to their time horizon. The cost benefit analysis methodology

has the advantage to simplify the multidimensionality of the problem by calculating

a monetary value for every main benefit and cost. To make those items fully

comparable, the approach converts all the economic and financial flows observed

at different times to present-day values. This approach, known as discounting, is

essential to cost benefit analysis. It enables the projects to be evaluated based on

how the society values the well-being of future generations. The idea is that a

benefit, or a cost, is worth more when it has an immediate impact. As a conse-

quence, activities imposing large costs or benefits on future generations may appear

of less importance. The use of an appropriate discount factor, which weights the

time periods, is here decisive.

Despite its popularity among many government agencies and the fact that cost

benefit analysis provides an all-encompassing tool for evaluating public policies,

the approach has been intensively decried. One of the major drawbacks is the fact

that it often struggles to put monetary values on items such as aesthetic landscapes,

human health, economic growth, environmental quality, time or even life. The core

of the problem is that public projects mostly affect the value of goods that are not

bought and sold on regular markets (non-market goods). For this reason, variations

in society’s welfare cannot be valued based on the usual observation of market
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Table 9.1 Examples of economic impacts

Type of project Direct benefits

Positive

externalities

Negative

externalities

Price

distortions

Rail investment Time savings,

additional

capacity,

increased

reliability

Economic

development,

reduced

negative

externalities

from other

transport

modes

Aesthetic

and

landscape

impacts,

impacts on

human

health

Opportunity

costs of raw

materials due

the diversion of

them from the

best alternative

use, land made

available free

of charge by a

public body

while it may

earn a rent,

tariff

subsidized by

the public

sector, labor

market

distortions due

to minimum

wages or

unemployment

benefits

Waste treatment Treatment of

waste which

minimizes

impacts on

human health

Environmental

benefits

Aesthetic

and

landscape

impacts,

other

impacts on

human

health,

increase in

local traffic

for the

transport of

waste

Production of

electricity from

renewable energy

sources

Reduction in

greenhouse

gases

Amount of

fossil fuels or

of other

non-renewable

energy sources

saved

Aesthetic

and

landscape

impacts,

negative

effects on

air, water

and land

Telecommunication

infrastructures

Time saved for

each

communication,

new additional

services

Economic

development

induced by the

project

Aesthetic

and

landscape

impacts,

Impacts on

human

health

Parks and forests Recreational

benefits,

utilization and

transformation

of wood

Improvement

of the

countryside,

environmental

protection,

increased

income for the

tourist sector

Increased

traffic
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prices. One has to rely instead on non-market valuation methods, such as revealed

preference methods or stated preference techniques. Obtaining accurate estimates

of costs and benefits is all the more challenging that many factors may affect the

conclusions of the study, such as the time horizon, whether people have prior

experiences of using the service or whether they have perfect information about

the consequences of the project, etc. To overcome these issues, a sound cost benefit

analysis generally ends with a sensitivity analysis which examines how the

conclusions of the study change with variations in cash flows, assumptions, or the

manner in which the evaluation is set up. This sensitivity analysis can be

implemented in a deterministic way. In this case, the uncertainty of the project is

described through simple assumptions, for instance by assuming lower and upper

bounds in economic flows. The sensitivity analysis can also be probabilistic. Each

economic flow is assigned a random generator based on a well-defined probability

distribution. A mean-variance analysis then helps the decision-maker to fully

compare the risk and performance of each competing strategy.

The remainder of the chapter is organized as follows. Section 9.2 details the

theoretical foundations of the method. Section 9.3 provides a tutorial describing the

discounting approach. Section 9.4 explains how to convert market prices to eco-

nomic prices. Sections 9.5 and 9.6 show how to implement a deterministic and

probabilistic sensitivity analysis. Section 9.7 finally explains the methodology of

mean-variance analysis.

9.2 Conceptual Foundations

Government intervention affects the satisfaction of the agents composing society in

many different ways. While some agents will benefit from a change in the public

good-tax structure, other agents can be worse off. An investment decision may also

generate positive and negative externalities that affect the well-being of particular

agents in specific areas. Due to the presence of government-imposed regulations,

project cash flows may be distorted and should be valued at their opportunity costs.

Cost benefit analysis captures all these economic consequences by expressing them

in terms of a common currency, money. How is that possible? How can a change in

the society’s welfare be related to dollar value? The approach is actually based on

the observation that individuals are often willing to pay more for a good than the

price they are charged for it. For instance, if one is willing to spend $10 at most for a

service, but pays only $2, one achieves some surplus of $8. This is what cost benefit

analysis aims at measuring. If there is a public policy choice for which the net

benefits are greater than those of the competing strategies, then society should go

ahead with it.

More specifically, cost benefit analysis relies on estimating what is called the

economic surplus, a measure of welfare that we find in microeconomics, a branch of

economics that studies the behavior of agents at an individual level. Under this

framework, the surplus is computed as the sum of two elements: (1) the consumer

surplus, measured as the monetary gain obtained by agents being able to purchase a

294 9 Cost Benefit Analysis



good for a price that is less than the highest price they are willing to pay, and (2) the

producer surplus, defined as the difference between the price producers would be

willing to supply a good for and the price actually received. While a reasonable

measure of benefit to a producer is the net profit, the task is much more difficult with

respect to the consumer surplus. One has to identify here the demand for the good.

All the difficulty and ingenuity of cost benefit analysis lies there. This section

provides a simple microeconomic framework serving to better describe the under-

lying assumptions.

Formally, let u(x, z) denote the utility (or satisfaction) an agent derives from

consuming a private good in quantity x and a public good in quantity z. The public

good is provided by the government and financed through taxes. The budget constraint

of the agent is defined as pxx+ br¼ y where px denotes the price of the private good,
b is the tax base of the agent, r stands for the tax rate chosen by the government and

y represents the agent’s income. Although we could relax this assumption, the public

budget is assumed to be balanced.We have rB¼ cz, where B is the total tax base upon

which the tax rate is applied, and c denotes the marginal cost of production. Using

r¼ cz/B in the budget constraint of the agent, we obtain pxx+ pzz¼ y where pz¼ cb/B
represents the (tax) price of the public good. The demand of the agent for the public

good is then determined by the maximization of u given this budget constraint:

max
x;zf g

u x; zð Þ subject to pxxþ pzz ¼ y

To simplify the exposition, we set px¼ 1 and assume that the agent has quasi-

linear preferences: u(x, z)¼ x+ v(z). Function v is an increasing and concave func-

tion of z while x enters the utility function as a simple additive term. Solving the

optimization problem by substitution yields:

max
zf g

u y� pzz; zð Þ , v0 zð Þ ¼ pz

The solution is obtained by taking the derivative of y� pzz+ v(z) with respect to z.
The derivative of v represents the inverse demand function. The lower the price (for

instance due to a decrease in b or c), the higher the demand for the good, as

illustrated in Fig. 9.1. This generalizes the usual “law of demand” to the case of a

publicly provided good.

The welfare the agent derives from z is directly linked to the shape of the inverse
demand curve. If the public good is not produced at all, the level of satisfaction

obtained by the agent is u(x, 0)¼ y. If z units are produced, the maximum amount

A the agent would be willing to pay is determined by the condition u(y�A, z)> u
(x, 0). Equivalently, we have A< v(z). In other words, v(z) represents the willing-

ness to pay (WTP) of the agent. Similarly, v0(z) is what is termed the marginal WTP.

The consumer surplus is thus defined as:

s zð Þ ¼ v zð Þ � pzz
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where pzz represents the cost of the policy to the agent. This expression can also be

written as:

s zð Þ ¼
Z z

0

v0 zð Þdz� pzz

Graphically, this means that the consumer surplus is the area comprised between

the inverse demand curve v0(z) and the horizontal line at the price pz. As shown in

Fig. 9.1, a decrease in the price generates a direct effect on surplus (effect 1), but

also a change in the demand and, if this demand is satisfied, an additional increase

in surplus (effect 2).

Consider for instance an agent who enjoys visiting a recreational park. Assume

that one has information about his/her willingness to pay for visiting the site. As

shown in Fig. 9.2, the marginal willingness to pay is decreasing. For a first visit, the

agent is willing to pay $9 at most. For a second visit, the agent is willing to pay $4,

and so on. This illustrates the “law of diminishing marginal utility”. There is a

decline in the marginal welfare the agent derives from consuming each additional

unit. At some point, and for a given price, the agent will stop visiting the site which

will determine his/her final demand. To illustrate, imagine that the price is $2. The

agent will visit the site three times and obtain a surplus of $9. This information is

essential to cost benefit analysis. It allows the net welfare of the agent to be

quantified in monetary terms. For instance, if a public body aims at providing a

better access to the recreational park, thereby reducing the travel expenses of the

agent by $1, then the surplus will increase by $3. This means that the agent does not

Tax price

Decrease in
tax price

Consummer

surplus

Effect 1 Effect 2

Increase in

surplus

Fig. 9.1 Demand for public good and consumer surplus
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want to pay more than $3 for the project. This amount represents the willingness to

pay of the agent for a better access to the park.

Let us now consider a framework with two agents, indexed 1 and 2, respectively.

They differ in their tax base (b1 and b2) and consequently in their tax price, p1¼ cb1/
(b1 + b2) and p2¼ cb2/(b1 + b2), with p1 + p2¼ c. They have different preferences

about the public good: u1¼ x+ v1(z) and u2¼ x+ v2(z). Cost benefit analysis aims at

selecting one single level of public good by maximizing the total surplus s1(z)
+ s2(z). This amounts to differentiate v1(z) + v2(z)� cz with respect to z. We obtain:

v01 zð Þ þ v02 zð Þ ¼ c

In equilibrium, the sum of the marginal WTP is equal to the marginal cost of

production. In economics, this is known as the Pareto-optimality condition for the

supply of a public good. For instance, in Fig. 9.3, agent 1 desires a lower quantity of

public good than agent 2. To maximize the surplus, cost benefit analysis considers

the demand of the whole society (by summing the two demand curves) and chooses

a solution that lies between the ideal points of the agents (such that the budget

constraint p1 + p2¼ c is fulfilled). By doing so, we are guaranteed to reach a

situation of Pareto-optimality which, by definition, is a state of allocation of

resources in which it is impossible to make any one individual better off without

making at least one individual worse off.

The concept of Pareto-optimality should not be mistaken with that of Pareto-

improvement, which denotes a “move” that benefits an individual or more without
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Fig. 9.2 Consumer surplus in a discrete choice setting: example 1
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reducing any other individual’s well-being. To illustrate, consider three agents who

have preferences about two competing strategies. In Table 9.2, those preferences

are expressed in monetary terms. We can see that agents 1 and 2 prefer strategy S1,
while agent 3 prefers strategy S2. In this example, the concept of Pareto-

improvement is not useful as it is impossible to implement a policy change without

making at least one individual worse off. A change from S1 to S2 is not Pareto-

improving but neither is a move from S2 to S1. Then, how can we reach a situation

of Pareto-optimality? The answer is through reallocation. One has to rely on what is

termed a Kaldor-Hicks improvement. A move is more efficient as long as everyone

can be compensated to offset any potential loss. Using this criterion, one would

typically select strategy S2. To clarify the whys and wherefores, one needs at this

stage to understand that what matters in cost benefit analysis is welfare. In

Table 9.2, agent 3 derives a high level of satisfaction from S2 and is willing to

pay a lot for it, even if this means to compensate the welfare loss of the other agents.

For instance, if agent 3 gives $5 to agent 1 and $1 to agent 2, a move from S1 to S2
would benefit the whole society.

Cost benefit analysis provides public managers with a decision criterion based

on the Kaldor-Hicks criterion. A project is an improvement over the status quo if

Agent 1’s

ideal point

Tax price

Quantity of

public good

( )

( )

( ) + ( )

Situation of

Pareto-optimality

Agent 2’s

ideal point

Optimal level

of provision

Fig. 9.3 The optimal provision of public goods

Table 9.2 The concept of Pareto-optimality: example 2

Project Agent 1’s surplus Agent 2’s surplus Agent 3’s surplus Total surplus

Strategy S1 $5 $25 $75 $105

Strategy S2 $0 $24 $84 $108
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the sum of welfare variations is positive. If the gains exceed the losses, then the

winners could in theory compensate the losers so that policy changes are Pareto-

improving. Yet, the compensation scheme must be chosen carefully. Cost benefit

analysis is in this respect not equipped to conceive and implement redistributive

schemes. Instead, the approach aims at selecting a particular policy among compet-

ing strategies. It nevertheless remains that redistribution, if carried out, can strongly

affect work incentives, induce mobility, generate tax evasion or encourage tax

fraud.

9.3 Discount of Benefits and Costs

Project selection starts with an option analysis discussed at the level of a planning

document such as a master plan. The set of strategies is generally reduced so that at

least three alternatives are examined: (1) a baseline strategy (or status quo) which is

a forecast of the future without investment; (2) a minimum investment strategy and

(3) a maximum investment strategy. Once the strategies are identified, a financial

analysis is implemented to determine whether they are sustainable and profitable

(a chapter has been dedicated to this step). If the financial analysis is not conclusive,

then cost benefit analysis must outline some rationale for public support by

demonstrating that the policy generates sufficient economic benefits. This step,

termed economic appraisal, aims to assess the viability of a project from the society

perspective. To do so, all economic impacts are expressed in terms of equivalent

money value. Discounting then renders these items fully comparable by

multiplying all future cash flows by a discount factor.

Formally, let NBt¼Bt�Ct denote for each year t the net economic benefit,

defined as the difference between total benefits Bt and total costs Ct. Discounting

is accomplished by computing the economic net present value (ENPV hereafter):

ENPV ¼ NB0 þ δ1NB1 þ � � � þ δTNBT

where T represents the time horizon of the project and δt (t¼ 1 . . . T ) are the

discount factors by which the net benefits at year t are multiplied in order to obtain

the present value. The discount factors are lower than one and decreasing with the

time period. They are defined as:

δt ¼ 1

1þ rð Þt , for t ¼ 1 . . . T

where r denotes the economic discount rate. This rate is different from the discount

rate used in the financial appraisal. It does not represent some opportunity cost of

capital (the return obtained from a best alternative strategy). It reflects instead the

society’s view on how future benefits and costs should be valued against present

ones. This rate is generally computed and recommended by government agencies

such as the Treasury, or upper authorities such as the European Union. Their values
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may differ from 2 to 15% from one country to another. They are usually expressed

in annual terms. When the analysis is carried out at current prices (resp. constant),

the discount rate is expressed in nominal terms (resp. real) accordingly.

A positive economic net present value provides evidence that the project is

desirable from a socio-economic point of view. In Excel, the computation can be

accomplished with the NPV function. This command calculates the net present

value via two entries: (1) a discount rate and (2) a series of future payments. One

needs to enter the following formula in a cell:

¼ value0þ NPV rate; value1; value2; . . .ð Þ
where rate is the discount rate, value0 represents the first cash flow. This cash flow

is excluded from the NPV formula because it occurs in period 0 and should not be

discounted. Last, “value1, value2, . . . ” is the range of cells containing the

subsequent cash flows.

The following statement holds true in many occasions: the higher is the discount

rate, the less likely the net present value is to reach positive values. The reason

behind this is that most policy decisions involve large immediate outlays for

building the infrastructure. Benefits on the other hand are observed in the future

all along the project’s life. When the discount rate increases, the value of future

inflows decrease, which thereby reduces the ENPV. At some point, known as the

internal rate of return (EIRR), the net present value reaches negative values. We

have:

EIRR ¼ r such that ENPV rð Þ ¼ 0:

The internal rate of return is defined as the discount rate that zeroes out the

economic net present value of an investment. It cannot be determined by an

algebraic formula but can be approximated in Excel using the IRR function:

¼ IRR value0; value1; value2; . . .ð Þ
The formula yields the internal rate of return for a series of cash flows (here value0 ,
value1 , value2), starting from the initial period. Values must contain at least one

positive value and one negative value.

The EIRR is an indicator of the relative efficiency of an investment. It should

however be used with caution as multiple solutions may be found, especially when

large cash outflows appear during or at the end of the project. An example is

provided in Fig. 9.4. While strategy S1 is characterized by a negative net benefit

observed only in period 1, strategy S2 induces negative values both at the beginning
and at the end of the project. As a consequence, strategy S2 yields two internal rates
of return, around 1% and 7% respectively, while strategy S1 generates only one

EIRR, around 4%. Given these difficulties, the net present value is often considered

as a more suitable criterion for comparing alternative strategies. The strategy with

the highest ENPV is designated as the most attractive and chosen first. For instance,
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we can see from Fig. 9.4 that strategy S1 prevails over strategy S2 only for small

discount rates, lower than 4% approximately.

An alternative approach to assess the relative efficiency of an investment is the

benefit-cost ratio. It is defined as:

BCR ¼ PVEB

PVEC
with PVEB ¼

XT
t¼0

Bt

1þ rð Þt and PVEC ¼
XT
t¼0

Ct

1þ rð Þt

The BCR is computed from the present value of the benefits (PVEB) and the present
value of the costs (PVEC). Ideally, it should be higher than 1 and maximized.

Unlike the EIRR, the BCR has the advantage of being always computable.

When comparing two alternative investments of different size, the BCR and the

ENPV may reach different conclusions. The reason is that the BCR is a ratio and,

therefore, like the EIRR, it is independent of the amount of the investment. Consider

for instance two alternative strategies: a small investment project versus a large one.

The smaller project induces net benefits and costs which amount to PVEB¼ 10 and

PVEC¼ 5 million dollars respectively. This yields a BCR of 2 and an ENPV of

5 million dollars. The larger project generates benefits and costs which amount to

PVEB¼ 50 and PVEC¼ 40 million dollars, respectively. This generates a BCR of

1.25 and an ENPV of 10 million dollars. As can be seen, while the BCR is higher for

the smaller project, the ENPV is higher for the larger project.

Direct effects and externalities, when they are quantified, are directly included as

new items in the financial analysis, thus filling the cash flow statement with

additional rows. To illustrate, Fig. 9.5 provides a detailed presentation of costs

tt Net benefits

(strategy )

Net benefits

(strategy )

1 –100000 –70000

2 7000 10000

3 7500 10500

4 8000 10500

5 8000 10500

6 8000 10500

7 8000 10500

8 8000 10500

9 8000 10500

10 8000 10500

11 8000 10500

12 8000 10000

13 8000 10000

14 8000 10000

15 8000 10000

16 8000 10000

17 8000 10000

18 8000 10000

19 8000 10000

20 8000 –120000
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Fig. 9.4 Multiple internal rate of returns: example 3
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and benefits for a bridge project. For simplicity of exposition, the time horizon is set

to 3 years. The project involves an immediate outlay of $30 million (for the lands,

bridge infrastructure, equipment, etc.) and is followed by annual operating

expenditures of $4 million (raw materials, labor, etc.). It generates annual revenues

via a toll, which are expected to amount to $13.6 million for the first year, $17

million for the second year, and $17.5 million for the third year. The main economic

benefit of the bridge project is the time saved by users (row R16). Those benefits

may have been valued for instance at the opportunity cost of time, which is the

fraction of salary the users could earn with the time saved, net of toll fees.

Furthermore, the bridge generates negative externalities due to noise and aesthetic

impacts, both at the time of construction and during the following years (row R17).

Those external effects may have been estimated using revealed preferences

techniques. To avoid double-counting, the economic appraisal does not account

for external sources of financing (interest and principal repayment, private equity)

as they are supposed to cover the initial investment costs.

In practice, a road connection induces several economic effects. It generates

savings in travel time for the users. In the meantime, if the infrastructure is

equipped with a toll gate, it provides a revenue stream for the operator. In that

context, the toll is a cost from the point of view of the users and a revenue from the

point of view of the operator. The effects cancel each other out. To better assess the

impact on welfare for the whole society (users and operator), the users’ benefits

must be expressed net of fees. In other words, the consumer surplus (e.g., time

saving in Fig. 9.5) is computed as the difference between the gains in terms of time

Fig. 9.5 Economic return on investment: example 4
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saved and the toll fees. By doing so, toll revenues/fees are finally excluded from the

economic appraisal:

Gains in terms

of time saved

� �
� Toll

fees

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Time saving ðR16Þ

þ Toll

fees

� �
|fflfflfflfflffl{zfflfflfflfflffl}
Sales ðR14Þ

¼ Gains in terms

of time saved

� �

The approach is thus different from that of a financial appraisal, where toll revenues

are included as a positive cash flow, to assess the financial sustainability and

profitability of the investment strategy.

In Fig. 9.5, the most important row is R20, which represents the net benefits of

the project for each time period. Summing all the flows (�32,500 + 12,600

+ 17,500 + 20,000) to evaluate the suitability of the project would make us assume

that future flows matter as much as present flows. In practice, however, one usually

prefers to give lower importance to future cash flows. Discounting is accomplished

by applying each year a discount factor that reflects the value of future cash flows to

society. Consider for instance Fig. 9.5 where several discount rates (row R21) have

been considered to assess the desirability of the project. With a discount rate equal

to 4%, the economic net present value is computed as:

ENPV 4%ð Þ ¼ �32; 500þ 12; 600

1:04
þ 17; 500

1:042
þ 20; 000

1:043
� 13; 575

Similarly, using information from total costs (row R18) and total benefits (R19), we

have:

PVEC 4%ð Þ ¼ �ð Þ32; 500þ �ð Þ6000
1:04

þ �ð Þ6000
1:042

þ �ð Þ6000
1:043

� �ð Þ49; 151

PVEB 4%ð Þ ¼ 0þ 18; 600

1:04
þ 23; 500

1:042
þ 26; 000

1:043
� 62; 726

Equivalently, the difference between these two expressions yields the net present

value:

ENPV 4%ð Þ ¼ PVEB 4%ð Þ � PVEC 4%ð Þ � 13; 575

The ENPV decreases to 10,047 when the discount rate increases to 8%, and to 4181

when it equals 16% (row R24). Those values are positive and provide evidence that

the project is desirable.

The benefit-cost ratios are provided in row R25 of Fig. 9.5. They are higher than

one, which points out again the attractiveness of the project, no matter what the
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value of the discount rate is. They are computed from rows R22 and R23. For

instance, for a 4% discount rate, we have:

BCR 4%ð Þ ¼ PVEB 4%ð Þ
PVEC 4%ð Þ ¼

62; 726

49; 151
� 1:28

Statistical programming languages such as R-CRAN have proven to be very

handy when it comes to assigning probability distributions to particular events. In

the bridge example, cash flows may for instance be characterized in a less deter-

ministic manner to better assess the uncertainty of the project. This analytical

technique, known as probabilistic sensitivity analysis, is further detailed in Sect.

9.6. As a preliminary step, Fig. 9.6 provides the codes to be used if one wants to

calculate the ENPV and other performance indicators in R-CRAN.

Figure 9.6 reproduces the results obtained in Fig. 9.5. The first step consists in

downloading the Excel worksheet in R-CRAN. For this purpose, the table has been

modified and consists only of raw data, cleaned of totals, and rearranged so that the

costs and benefits are presented successively. The command read . table reads the

file (saved as a .csv file on disc C:) and creates a data frame from it, renamedD. This
yields a table equivalent to Fig. 9.5. The object D has the properties of a matrix. An

element observed in row i and column j is referred to as D[i, j].
Elements of D are summable. The cost vector C is for instance obtained by

summing rows 2 to 13, while the benefit vector B is the result of the sum of rows

14 and 15. The command colSums is used to ensure that only the rows are summed

over columns 2 to 5. Last, package Fincal and its function npv are used to compute

the different performance indicators. The entry Disc .Rate specifies the vector of

discount rates to be applied in the npv function. As the costs are already expressed

in negative values, the analysis does not need to subtract them. For the BCR, one
needs to use the function abs() to express the costs in absolute value.

Under special circumstances, an indicator known as the net benefit investment

ratio (NBIR) can also be examined. It is defined as the ratio of the present value of

the benefits (PVEB), net of operating costs (PVEC�PVK), to discounted invest-

ment costs (PVK):

NBIR ¼ PVEB� PVEC� PVKð Þ
PVK

For instance, in Fig. 9.5, the investment outlay is PVK¼ 30,000. For a discount rate

equal to 4%, the present value of operating costs amounts to

PVEC�PVK¼ 49,151� 30,000¼ 19,151. We also have PVEB¼ 62,726. This

yields a NBIR equal to (62,726� 19,151)/30,000¼ 1.45. This ratio assesses the

economic profitability of a project per dollar of investment. It is very useful when

an authority is willing to finance several projects but has to face a budget constraint.

The method allows the best combination of projects to be selected.
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To illustrate the advantages of the NBIR, let us consider an authority that has a

budget of $1,000,000. Information about the competing strategies is provided in

Table 9.3 (amounts in thousands of dollars). If one were to compare the alternatives

using net present values, strategies S1 and S2 would appear as the best alternatives.

The budget constraint would be fulfilled and, overall, one would obtain a total

Fig. 9.6 Discounting cash flows with R CRAN: example 4
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ENPV equal to 100+80¼180 thousand dollars. The ENPV, however, does not assess
accurately the return on investment. With this criterion, larger projects are more

likely to be selected. In contrast, the net benefit investment ratio assesses the

profitability of the investment independently of its size (like the BCR). Using this

criterion, we can see from the last column of Table 9.3 that the approach would rank

strategy S1 first, then S3, S4 and S6. Assuming that only part of S6 is financed (50% of

it), this combination of strategies would yield a ENPV equal to 100+70+60+20/

2¼240 thousands of dollars. Thus, under capital rationing, the NBIR appears as a

very performing selection criterion.

9.4 Accounting for Market Distortions

Conversion factors are related to the concept of shadow prices (also termed

accounting or economic prices). They reflect the cost of an activity when prices

are unobservable or when they do not truly reflect the real cost to society. Shadow

prices do not relate to real life-situations. They correspond instead to the prices that

would prevail if the market was perfectly competitive. For instance, the prices used

in the financial appraisal (which are usually referred to as market prices) are likely

to include taxes or government subsidies. Prices have to be adjusted in conse-

quence, to better reflect trading values on a hypothetical free market. Yet, the term

market prices can be misleading. In cost benefit analysis, it stands for the actual

price of transaction subject to market distortions, while in common language a

“market economy” denotes an economy that is little planned or controlled by

government. To avoid any confusion in the remaining of the chapter, we will use

the term “financial prices” as a synonym for “market prices”.

What is the true economic cost of inputs and outputs for cost benefit analysis

use? To answer this question, it is convenient to appeal to the concept of opportu-

nity cost. We should ask ourselves “what would be the value of inputs and outputs if

they were employed somewhere else?” For instance, the Little-Mirrlees-Squire-van

Table 9.3 Ranking of project under capital rationing: example 5

Strategy

Investment

costs PVK

Present value of benefits net

of operating costs

PVEB� (PVEC�PVK)

Economic net

present value

ENPV
Profitability

ratio NBIR

S1 400 500 100 1.30

S2 600 680 80 1.10

S3 300 370 70 1.25

S4 200 260 60 1.23

S5 500 530 30 1.06

S6 200 220 20 1.13
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der Tak method advocates the use of international prices (converted to domestic

currencies), for evaluating and comparing public projects in different countries. The

rationale for the method is that world prices more accurately reflect the

opportunities that are available to the countries. The method has for instance been

frequently used for calculating shadow prices for aid projects in developing

countries, where markets are often considered more distorted.

In some cases, it is easy to correct for price distortions ex ante. For instance, the
cash flows should be net of VAT (value added tax). The value of land and buildings

provided by other public bodies can be included directly at their true costs. In some

other cases, however, the use of a conversion factor may be necessary. Formally, a

shadow price is defined as:

Shadow price ¼ Financial price� CF

The conversion factor CF approximates the degree of perfection of the market. In

an undistorted economy, the conversion factor is equal to one and shadow prices

are identical to financial prices. Should CF be higher than one, then the financial

prices would yield an underestimation of the true value of inputs and outputs. If

lower than one, they yield instead an overestimation. Several examples are

provided below.

Regulated Price This situation occurs when an input is made available at a lower

price by the public sector, hence yielding an underestimation of the true costs to

taxpayers. Common examples are a land proposed at a reduced price by a public

authority while it may earn a higher rent or price otherwise; or an energy sold at a

regulated tariff. The conversion factor should reflect these opportunity costs:

CF ¼ Shadow price

Financial price

Consider for instance row R1 of Fig. 9.5. Assume that the land has been sold at 80%

of the usual price. The conversion factor is computed as CF¼ 1/0.80¼ 1.25. In this

case, the shadow value of lands amounts to 7000� 1.25¼ 8750 thousand dollars.

Similarly, assume that electricity (row R9 of Fig. 9.5) is produced at a tariff that

covers only 60% of marginal cost. The true cost to society is defined as 300�
(1/0.60)¼ 500 thousand dollars.

Undistorted Labor Market When the labor market is perfectly competitive, the

economy reaches an equilibrium where only “voluntary unemployment” prevails.

People have chosen not to work solely because they do not consider the equilibrium

wages as sufficiently high. If this is to be the case, the project would only divert the

labor force from their current use, at its market value (assuming that the project is

not large enough to influence wages). The conversion factor is defined as CF¼ 1.
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Distorted Labor Market When minimum wages are adopted in a given labor

market, the quantity of labor supplied increases (the number of workers who wish to

work) while the demand for labor decreases (the number of positions offered by

employers). This creates a situation of involuntary unemployment, where labor

supply exceeds demand. Some individuals, in particular unskilled workers, are

willing to work at the prevailing wage but are unable to find employment. In such

markets, the opportunity costs of hiring these individuals is lower because the

project would hire agents who would have been unemployed otherwise. In that

context, the conversion factor is lower than one (but not necessarily zero as the new

workers could also work in the informal economy or just enjoy leisure). For

instance, in its “Guide to Cost-Benefit Analysis of Investment”, the European

Commission advocates the use of the regional unemployment rate (u) as a basis

for the determination of the shadow wage:

CF ¼ 1� uð Þ 1� sð Þ
where s is the rate of social security payments and relevant taxes that should be

excluded from the financial prices as they also represent a revenue for the public

sector. Assume for instance that the unemployment rate is u¼ 9% and s¼ 15%.

Row R8 of Fig. 9.5 would be replaced with 750� (1� 9%)(1� 15%)� 522 thou-

sand dollars.

Import Tariffs A tariff on imports increases the costs of inputs used in the project

and, at the same time, induces additional revenue for the central government which

can be used for other purposes. The true cost of inputs would be overestimated if no

adjustment of cash flows were to be made. To better adjudge the true cost to society,

any tariff should be excluded from the financial statement. This is equivalent to say

that only the CIF price (cost plus insurance and freight) should be used for valuing

the imported inputs. Let tm denotes the proportional tax rate on imports. The

conversion factor is defined as:

CF ¼ Shadow worldð Þ price
Financial price

¼ CIF price

CIF price� 1þ tmð Þ ¼
1

1þ tmð Þ
Assume in row R7 of Fig. 9.5 that the raw materials have been imported. If the tax

rate is equal to tm¼ 20%, then the value to be used in the economic appraisal is

2250� (1/1.2)¼ 1875 thousand dollars. The tariff has been removed from the

price.

Export Subsidies If the project receives an additional payment for exporting, it

would be at the expense of the domestic taxpayers. The reasoning is thus similar to

that previously made regarding an import tariff. Any subsidy should be excluded

from the financial flows. This amounts to consider the “free on board” FOB price

only (before insurance and freight charges):
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CF ¼ Shadow worldð Þ price
Financial price

¼ FOB price

FOB price� 1þ sxð Þ ¼
1

1þ sxð Þ
where sx denote the rate of subsidy.

Major Non-traded Goods The fact that an input is not imported or an output not

exported does not necessarily mean that they are not subject to trade distortions.

The existence of a tariff that aims to protect the domestic market may explain for

instance the current use of local inputs. In such situations, the tax on imports is also

reflected in the domestic prices. Similarly, a subsidy that encourages the producers

to export may generate an increase in the price level. When data are available, these

distortions can be valued using the same approach as previously. Assume for

instance that the government has imposed an import tax of 25% on equipment

and infrastructure (rows R2 and R3 of Fig. 9.5). The conversion factor to be used is

1/(1 + 25%)¼ 0.8, even if those goods are bought in the domestic market.

Minor Non-traded Goods For minor items, or when data are not easily available,

the European Commission advocates the use of a “standard conversion factor”. The

latter is specified as:

SCF ¼ M þ X

M þ Tm � Sm þ X � Tx þ Sx

whereM denotes the total imports valued at the CIF price, X the total exports valued

at the FOB price, Tm and Sm the total import taxes and subsidies, and Tx and Sx the
total export tax and subsidies. In simple words, SCF is the ratio of the value at world

prices of all imports and exports to their value at domestic prices. It generalizes the

previous formulas and provides a general proxy of how international trade is

distorted due to trade barriers. It assesses how the prices would change on average

if such barriers were removed. For instance, should Tm+ Sx be larger than Sm+ Tx,
then, on average, the country would support the domestic producers. In that context,

the standard conversion factor would be lower than one, meaning equivalently that

the trade balance is artificially increased, or that the domestic prices are overvalued.

The inverse of the standard conversion factor (1/SCF) is also termed “shadow

exchange rate factor”. In practice, the approach is used when one wants to compare

the economic performance of competing projects in different developing countries.

The conversion factors previously determined are applied to the cash flows of

the bridge project (Fig. 9.6). They are displayed in the last column of Fig. 9.7. For

all minor traded items (for which data on trade distortions were not accurately

available) a standard conversion factor equal to 0.9 has been considered

(emphasized in red). As can be seen from the ENPV and BCR criteria, the project

remains economically viable, even at a discount rate of 16%. For this rate, the

performance indicators have been computed has follows, and rounded for presen-

tation purposes:
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PVEC 16%ð Þ ¼ �ð Þ29; 175þ �ð Þ5477
1:16

þ �ð Þ5477
1:162

þ �ð Þ5477
1:163

� �ð Þ41; 476

PVEB 16%ð Þ ¼ 0þ 17; 240

1:16
þ 21; 800

1:162
þ 24; 250

1:163
� 46; 599

ENPV 16%ð Þ ¼ PVEB 16%ð Þ � PVEC 16%ð Þ � 5123

BCR 16%ð Þ ¼ PVEB 16%ð Þ=PVEC 16%ð Þ � 1:12

In theory, conversion factors should provide the evaluator with a better decision

tool. However, in practice, they are unique to the context and the methods used to

approximate those weights are often based on rough calculations. While time-

consuming, those adjustments can also be of minor importance for the investment

decision. Therefore, conversion factors should be used with caution or in excep-

tional cases only. It is also possible to provide the results of the analysis both with

and without shadow prices.

At this stage of the analysis, the net benefits of the bridge project should be

analyzed against those of larger and smaller investments. Moreover, it may be

useful to check whether some excluded items are likely to compromise or reinforce

the decision made, especially if the ENPV reaches surprisingly high values. For

instance a BCR approaching 2 would mean that the economic benefits are twice as

high as the economic costs. Then why was the project not implemented before? If

data is available, it can also be useful to compare the economic return of the

Fig. 9.7 Corrections for market distortions: example 4
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investment with that of an already existing project. Last, if some important costs

and benefits have been excluded from the analysis because it was not possible to

monetize them, a description of these items should at least be provided in physical

terms. In this respect, a multi-criteria analysis can be used to combine both physical

terms and monetary terms (e.g., the ENPV) into a single indicator.

9.5 Deterministic Sensitivity Analysis

Cost benefit analysis generally goes further by questioning the valuation of the costs

and benefits themselves. When some important items are difficult to estimate but

yet quantified, or when some degree of uncertainty is inherent to the study, a

sensitivity analysis can be used to examine the degree of risk in the project. This

can take the form of a partial sensitivity analysis, a scenario analysis, a Monte Carlo

analysis or a mean-variance analysis.

Uncertainty not only refers to variations in the economic environment (uncertain

economic growth, natural hazards, modification of relative prices), but also to

sampling errors resulting from data collection. Consider for instance the bridge

example (Fig. 9.7). The study makes assumptions about the cost of inputs, about the

amount of sales, and uses estimates to calculate the economic effects (time saving,

externalities). Those cash flows can only be assessed or forecasted imprecisely.

This affects in return the precision of the ENPV. The purpose of a sensitivity

analysis is to identify these sources of variability and assess how sensitive the

conclusions are to changes in the variables in question.

In a partial sensitivity analysis, only one single variable is modified while

holding the other variables constant. Figure 9.8 illustrates the approach by assessing

first the effect of a change in energy costs (row R9 of Fig. 9.7) on the ENPV of the

bridge project. A 15 percent increase in costs yields for instance a net benefit of

$13,699 for a 4% discount rate, $10,412 for a 8% discount rate and $4947 for a 16%

discount rate. The results and conclusions (suitability of the project) are not really

sensitive to those variations. Similar results are obtained when the costs of raw

materials vary from �15% to +15% (see Fig. 9.8).

A partial sensitivity analysis has its limits as the approach does not consider

variations in more than one variable. To solve this issue, an alternative approach

known as scenario analysis is commonly used. It combines the results in a three-

Fig. 9.8 Partial sensitivity analysis: example 4
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scenario framework with two extreme scenarios and one most-likely scenario.

These scenarios draw attention to the main uncertainties involved in the project.

The idea is to focus on the upper boundaries (best-case scenario) and lower

boundaries (worst-case scenario) of the study’s results. For instance, considering

variations that are similar to those of Fig. 9.8, the approach would combine the

assumed lower and upper values (–15% and +15%) of both variables simulta-

neously to characterize the two extreme scenarios. By doing so, we obtain

Table 9.4. We can see that the ENPV never reaches negative values, which gives

support to the strategy at stake. The results can then be compared to those obtained

for competing strategies.

Consider now Table 9.5 where the results of a scenario analysis are displayed for

three competing strategies, in thousands of dollars. It can be seen that strategy S3 is
dominated by the other strategies as its net present value is always equal to or lower

than the net present values of the other projects. Strategy S3 is thus eliminated. If no

other dominant strategy is apparent, different decision-rules can be employed:

1. The maximin rule consists in selecting the alternative that yields the largest

minimum payoff. This rule would be typically used by a risk-averse decision-

maker. In Table 9.5 for instance, the minimum payoff is 1000 for strategy S1,
while it is –500 for S2. Strategy S1 is thus selected. This ensures that the payoff
will be of at least 1000 whatever happens.

2. The minimax regret rule consists in minimizing the maximum regret. Regret is

defined as the opportunity cost incurred from having made the wrong decision.

In Table 9.5, if one chooses strategy S1 we have no regret when the worst-case or
most-likely scenarios occur. On the other hand, if the best-case scenario occurs,

the regret is 2000� 3000¼ � 1000. If one chooses strategy S2, the regret

amounts to �500� 1000¼ � 1500 for the worst-case scenario,

1000� 1500¼ � 500 for the most-likely scenario, and zero for the best-case

scenario. Overall, the maximum regret is –1000 for strategy S1 and –1500 for

Table 9.4 Scenario analysis: example 4

Best-case

Energy costs: �15%

Raw materials: �15%

Most-likely

Energy costs: 0%

Raw materials: 0%

Worst-case

Energy costs: +15%

Raw materials: +15%

ENPV(4%) 14,914 13,916 12,918

ENPV(8%) 11,540 10,614 9687

ENPV(16%) 5931 5123 4316

Table 9.5 Scenario analysis and project selection: example 6

ENPV Worst-case Most-likely Best-case

Strategy S1 1000 1500 2000

Strategy S2 �500 1000 3000

Strategy S3 �500 1000 2000

312 9 Cost Benefit Analysis



strategy S2. Strategy S2 is thus eliminated. The approach is relatively similar to

the maximin approach as it favors less risky alternatives. The approach however

accounts for the opportunity cost of not choosing the other alternatives. It is used

when one wishes not to regret the decision afterwards.

3. The maximax rule involves selecting the project that yields the largest maximum

payoff. For project S1, the maximum payoff is 2000, while for S2, it is 3000. A
risk-lover decision-maker would favor project S2.

4. The Laplace rule implies maximizing the expected payoffs assuming equiprob-

able scenarios. In our example, we would assign a probability of 1/3 to each

scenario. The expected payoff for project S1 is defined as: (1/3)� 1000 + (1/3)�
1500 + (1/3)� 2000¼ 1500. For project S2, we have: (1/3)� (�500) + (1/3)�
1000 + (1/3)� 3000¼ 1166. Based on this decision rule, strategy S1 is selected.

The two methods of sensitivity analysis described above are often considered as

deterministic as they assess how costs are sensitive to pre-determined change in

parameter values through upper and lower bounds. They may be sufficient to assess

roughly the risk associated with a project, but they do not account for all the

uncertainty involved. In particular, they do not evaluate precisely the probability

of occurrence of each possible outcome. A probabilistic sensitivity analysis is a

useful alternative in this respect. Instead of focusing only on extreme bounds, the

approach examines a simulation model that replicates the complete random behav-

ior of the sensitive variables. It allows the distribution of the ENPV to be fully

examined.

9.6 Probabilistic Sensitivity Analysis

A probabilistic sensitivity analysis assigns a probability distribution to all sensitive

variables. These variables thereby become random in the sense that their value is

subject to variations due to chance. The approach, also known as Monte Carlo

analysis, examines those variations simultaneously and simulates thousands of

scenarios, which results in a range of possible ENPV with their probabilities of

occurrence. The method requires detailed data about the statistical distribution of

the variables in question. One can for instance use information about similar

existing projects, observed variations in input prices or, if the direct benefits and

externalities have been estimated in the context of the project, the estimated

standard deviations.

Among the most common distribution patterns that are used in probabilistic

sensitivity analysis, we may name the uniform distribution, the triangular distribu-

tion, the normal distribution, and the beta distribution. The triangular and beta

distributions are frequently used because both can be characterized by the worst-

case, most likely, and best-case parameters. The normal distribution on the other

hand has proven to be very handy provided that information on standard deviations

is available. In what follows, R-CRAN is used to illustrate the differences among
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them (see Figs. 9.9 and 9.10). Many other probability distributions exist. For

simplicity of exposition, they are not presented here.

The uniform distribution assigns an equal probability of occurrence to each

possible value of the random variable. It is used when little information is available

about the distribution in question. Consider for instance the energy costs (row R9)

of Fig. 9.7. They are initially set to –450 thousand dollars. We could assign instead

a range of values between –500 and –400 with an equal probability of occurrence.

With R-CRAN (Fig. 9.9), this amounts to use the runif command. The first entry

denotes the number of randomly generated observations (here 1,000,000), while the

second and third entries stand for the lower and upper limits of the distribution.

Figure 9.10a provides the probability density function estimated with plot(density()).
As can be seen, the uniform distribution yields a rectangular density curve (which

would be perfectly rectangular with an infinite number of observations). Each value

has an equal probability of occurring inside the range [�500,�400]. In Fig. 9.10,

the bandwidth relates to the precision of the local estimations used to approximate

the shape of the density curve and is of no interest for the present purpose.

The triangular distribution is a continuous probability distribution with a mini-

mum value, a mode (most-likely value), and a maximum value. In contrast with the

uniform distribution, the triangular distribution does not assign the same probability

of occurrence to each outcome. The probability of occurrence of the lower and

upper bounds is zero, while the maximum of the probability density function is

obtained at the mode. This distribution is used when no sufficient or reliable

information are available to identify the probability distribution more rigorously.

In R-CRAN (Fig. 9.9), we can use the rtriangle function from the triangle package.

Fig. 9.9 Probability distributions in R-CRAN

314 9 Cost Benefit Analysis



The first entry specifies the number of observations; the second and third entries are

the lower and upper limit of the distribution; last entry stands for the mode of the

distribution. As can be seen from Fig. 9.10b, the program yields a triangular

probability density function with minimum and maximum values obtained at –

500 and –400, respectively.

With the normal distribution, the density curve is symmetrical around the mean

and has a bell-shaped curve (see Fig. 9.10c). The random variable can take any

value from �1 to +1. Train punctuality is an example of a normal probability

density function. A train arrives frequently just in time, less frequently 1 min earlier

or late and very rarely 20 min earlier or late. In R-CRAN (Fig. 9.9), the command in

use is rnorm. The first entry specifies the number of observations; the second is the
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Fig. 9.10 Examples of probability distributions. (a) Uniform distribution. (b) Triangle distribu-

tion. (c) Normal distribution. (d) Beta distribution (1.5,1.5). (e) Beta distribution (5,5). (f) Beta

distribution (2,5)
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mean; the third is the standard deviation. The simplest form of this distribution is

known as the standard normal distribution. It has a mean of 0 and a variance of 1. In

Fig. 9.9, the standard deviation is set arbitrarily to 100. In Fig. 9.10c, the values tend

to distribute in a symmetrical hill shape, with most of the observations near the

specified mean. Provided that information about the standard deviation is available,

the normal distribution may provide a reasonable approximation to the distribution of

many events. Meanwhile, a lot of variables are likely to be not normally distributed.

They may exhibit skweness (asymmetry), or have a different kurtosis (differently

curved). A way to capture these differences is to rely instead on the beta distribution.

The beta distribution is determined by four parameters: a minimum value, a

maximum value and two positive shape parameters, denoted α and β. Depending on
those parameters, the beta distribution takes different shapes. Like the uniform and

triangular distributions, it models outcomes that have a limited range. In Fig. 9.9,

energy costs are randomized using the rbetagen command available with the

package mc2d. The first entry is the number of randomly generated observations;

the second and third entries stand for parameters α and β; the last two entries

represent the lower and upper bounds, respectively. When α and β are the same, the

distribution is symmetric (Figs. 9.10d, e). As their values increase, the distribution

becomes more peaked (Fig. 9.10e). When α and β are different, the distribution is

asymmetric. For instance, in Fig. 9.10f, the curve is skewed to the right because α is

set to be lower than β.
So far, we have assumed that there was uncertainty about the project’s variables

independently of each other. Those variables were considered uncorrelated. When

this is the case, one can easily assign a random generator to each variable without

worries. In some other cases however, the use of joint probability distributions is

required. Consider for instance time saving (row R16 of Fig. 9.7) and sales (row

R14). To some extent, those variables are likely to be correlated. The higher is the

traffic, the higher are the sales revenues and the time saved by users (if there is

induced traffic congestion, time saved may decrease and correlation would be

negative). Traffic may also significantly affect maintenance costs (raw materials,

labor, electric power, etc.). If one were to assign separately a random generator to

these variables they would be varying independently from each other. We could for

instance observe a decrease in sales and, in the meanwhile, a significant increase in

time saving. To avoid those situations, it is generally advised to use a multivariate

probability distribution. This can be done for instance with a multivariate normal

distribution, provided that information about the covariance matrix is available.

A covariance matrix contains information about the variance and covariance for

several random variables:

V ¼
Var x1ð Þ Cov x1; x2ð Þ . . . Cov x1; xKð Þ

Cov x1; x2ð Þ Var x2ð Þ . . . Cov x2; xKð Þ
⋮ ⋮ . . . ⋮

Cov x1; xKð Þ Cov x2; xKð Þ . . . Var xKð Þ

2
664

3
775
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The variances appear along the diagonal and covariances appear in the off-diagonal

elements. This matrix is symmetric (i.e. entries are symmetric with respect to the

main diagonal). If a number outside the diagonal is large, then the variable that

corresponds to that row and the variable that corresponds to that column change

with one another.

The covariance matrix can be used to generate random observations that are

dependent from each other. To illustrate, let us examine again the bridge project

(example 4). Assume that we have obtained data about a bridge of equivalent size.

We can use information about the existing infrastructure to build a random genera-

tor for both sales (variable Sales) and time saving (variable Time). Table 9.6

provides the dataset (10 years) and Fig. 9.11 illustrates the simulation method.

The mean values are computed using the mean command, while the covariance

matrix is directly obtained using function cov. Those values are used afterwards in

the rmvnorm function of the package mvtnorm. Basically speaking, the rmvnorm
function randomly generates numbers using the multivariate normal distribution.

The first entry is the number of observations; the second entry is the vector of

means; last entry specifies the covariance matrix. The rmvnorm command generates

a matrix made of (1) as many columns as there are variables and (2) as many rows

as they are observations. For illustrative purposes, the number of randomly

generated observations is set to 10,000. We thus have two columns (one for Sales
and one for Time) and ten thousands rows. If one were to use the resulting random

generator in a Monte Carlo framework, we would generate instead a matrix made of

as many columns as there are variables and as many rows as they are time periods.

Figure 9.11 ends with assessing the quality of the model by comparing the real

distributions against the simulated ones. The first plot command provides a scatter

plot of the relationship between sales and time saving using the existing dataset. As

expected, some correlation between the variables is highlighted. As shown through

a simple linear regression (abline command), this correlation is accurately taken

into account by the simulated data (displayed in red in Fig. 9.12). To draw this

regression line, we have made use of the ten thousand randomly generated

observations. For simplicity of exposition, those observations are not displayed

Table 9.6 Dataset for comparison: example 4

Sales Time

12,652 2310

11,688 2441

13,044 2408

12,343 2466

11,753 2092

14,292 2595

13,802 2810

12,249 2659

11,598 2485

12,239 2147
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on the graph. Last, Fig. 9.12b, c compare the probability density of the real

observations (in black) with that of the simulated ones (in red). As can be seen,

the model provides an accurate estimation of the phenomena in question.

Note that the simulations presented in Fig. 9.11 can be easily extended to more

than two variables. The resulting random generator can also be used for simulating

cash flows in a Monte Carlo framework. In this purpose, the randomly generated

data can be multiplied by a trend variable, e.g., 1 , (1 + x) , (1 + x)2 , . . ., to account

for a possible automatic increase in sales in the first years of the project (for instance

by x% each year).

A Monte Carlo simulation consists in assigning a probability distribution to each

of the sensitive cash flows and running the model a high number of times to

generate the probability distribution of the ENPV. A loop is created in which

(1) sensitive cash flows are assigned a random number generator, (2) the ENPV is

computed using the randomly generated cash flows and (3) the ENPV is saved for

subsequent analysis. The simulation is repeated a large number of times (10,000

times or more) to provide a range of possible ENPV. This range is then used to

estimate a probability distribution. One can then decide whether the probability that

the ENPV is negative is an acceptable risk or not.

Figure 9.13 applies a Monte Carlo simulation in order to estimate the risk of the

bridge project (example 4). For sake of simplicity, the dataset still corresponds to

that of Fig. 9.5. First, the program defines a loop that goes from i¼ 1 to 10,000, this

last number representing the number of times the ENPV will be randomly

generated. Although we could extend the simulations to a larger number of

variables, only “electric power”, “raw materials”, “Sales” and “time saving” are

assigned a random number. The uniform and triangular distributions (runif,

Fig. 9.11 Simulating joint distributions with R-CRAN: example 4
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rtriangl e) as well as the multivariate normal distribution (mvtnorm) are used in this
purpose.

The cash flows for electric power, raw materials, sales and time saving are

observed at year 1, 2 and 3. As such, three observations per variable must be

generated. A joint distribution similar to that of Fig. 9.11 (database E) is used to

simulate sales and time saving. To ensure that the difference in means between

Table 9.6 and Fig. 9.5 are fully assessed, two additional variables are created:

Weights. Sales and Weights.Time. They are used to weight the random generator

(simu) so that the average values of sales and time saving correspond to those of

Fig. 9.5. Mathematically, we rely on the fact that the standard deviation of the
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Fig. 9.12 Bivariate normal distribution: example 4. (a) Scatter plot. (b) Probability density of

sales. (c) Probability density of time saving
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product of a constant a with a random variable X is equal to the product of the

standard deviation of X with the constant:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var aXð Þp ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xð Þp

. In other words,

we consider the possibility that the new bridge (aX, i.e. database D) is not of the
same size as the existing bridge (X, i.e. database E) and, consequently, that the
standard errors are proportionally different. From the previous mathematical for-

mula, we can see that we can indifferently include the weights (Weights. Sales and
Weights.Time) in the random generator (in which case each generated value

accounts for that modification) or after as it is done in Fig. 9.13.

Then the discounted cash flows are computed in a manner similar to that

presented in Fig. 9.6. The analysis ends with drawing the probability density

Fig. 9.13 Monte Carlo simulation with R-CRAN: example 4
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function of the randomly generated ENPV (see Fig. 9.14). What matters here is the

95%-confidence interval obtained using the function quantile. The latter yields

positive values, ranging from 8643 to 18,561 thousand dollars, which gives support

to the bridge project. Roughly speaking, the probability that the ENPV falls outside

this interval is lower than 5%. Notice that the mean is approximately 13,568

thousand dollars, i.e. quite similar to the ENPV obtained in Fig. 9.5. This result is

not surprising as the mean of the distributions used for the simulations are set to the

same values as those of the raw dataset (for instance –300 for electricity and –2250

for raw materials). More interesting is the variance, which indicates the risk of the

project.

9.7 Mean-Variance Analysis

Once the probability distributions have been calculated for several strategies, the

mean and variance of each ENPV distribution can be compared. The approach,

known as mean-variance analysis plots the different strategies in the mean-variance

plane and selects them based on their position in this plane. Under this framework,
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Fig. 9.14 Estimated distribution of the ENPV: example 4
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the mean of the ENPV represents the expected return of the project from the society

point of view. The variance, on the other hand, represents how spread out the

economic performance is. It measures the variability or volatility from the mean

and, as such, it helps the decision-maker to evaluate the risk behind each strategy. A

variance value of zero means for instance that the chances of achieving the most-

likely scenario are 100%. On the contrary, a large variance implies uncertainty

about the final outcome. If two strategies have the same expected ENPV, but one
has a lower variance, the one with the lower variance is generally preferred.

Imagine that a decision-maker must choose one alternative out of four possible

strategies. The plane in question is presented in Fig. 9.15. Strategy S1 and strategy

S2 have similar variance. In other words, they have the same risk. However, the

distribution of S2 yields a higher ENPV on average, and is thus preferable. Consider

now S2 versus S3. They have the same mean, but the ENPV of S3 is more dispersed.

Strategy S3 is what is called a “mean preserving spread” of strategy S2 and, as such,
is riskier. A risk-averse decision-maker would typically prefer strategy S2 since the
likelihood that the ENPV falls below zero is lower. Comparing strategy S2 with
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strategy S4 is less clear-cut. While S4 has a much higher mean, its variance is also

greater. In this situation, it is up to the decision-maker to decide what matters most,

whether it is an increase in the expected ENPV or a decrease in the variance.

Bibliographical Guideline

The concept of consumer surplus is attributed to Dupuit (1844, 1849), an Italian-

born French civil engineer who was working for the French State. His articles “On

the measurement of the utility of public works” and “on tolls and transport charges”

provide a discussion on the concept of marginal utility. They point out that the

market price paid for consuming a good does not provide an accurate measure of the

utility derived from its consumption. If one wants to construct a public infrastruc-

ture, it is instead the monetary value of the absolute utility, i.e. the willingness to

pay, that matters.

The theory of externalities was initially developed by Pigou (1932) who

demonstrated that, under some circumstances, the government could levy taxes

on companies that pollute the environment or create economic costs.

Shadow prices have been intensively used after the proposal of Little and

Mirrlees (1968, 1974) to use world market prices (and standard conversion factors)

in project evaluation. Their approach was subsequently promoted by Squire and van

der Tak (1975) in a book commissioned by the World Bank.

The modern form of Monte Carlo simulation was developed by von Neumann

and Ulam for the Manhattan Project, in order to develop nuclear weapons. The

method was named after the Monte Carlo Casino in Monaco.

The mean-variance portfolio theory is attributed to Markowitz (1952, 1959),

which assumes that investors are rational individuals and that for an increased risk

they expect a higher return.

Many guides provided by government agencies are available online. We may

cite in particular the “Guide to Cost-Benefit Analysis of Investment Projects” of the

European Commission which describes project appraisal in the framework of the

2014–2020 EU funds, as well as the agenda, the methods and several case studies.

The European Investment Bank (EIB) proposes as a complement a document that

presents the economic appraisal methods that the EIB advocates to assess the

economic viability of projects. Additional guides are available, such as the “Cana-

dian cost benefit analysis guide” provided by the Treasury Board of Canada

Secretariat, the “Cost benefit analysis guide” prepared by the US Army, the guide

to “Cost-benefit analysis for development” proposed by the Asian Development

Bank, the “Cost benefit analysis methodology procedures manual” by the

Australian Office of Airspace Regulation. Those documents review recent

developments in the field and provide several examples of application with the

purpose to make CBA as clear and as user-friendly as possible.

Several textbooks can also be of interest for the reader. We may in particular cite

Campbell and Brown (2003). Their book illustrates the practice of cost benefit

analysis using a spreadsheet framework, including case studies, risk and alternative

scenario assessment. We may also cite Garrod and Willis (1999) and Bateman et al.
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(2002) who provide an overview of the theory as well as the different methods to

estimate welfare changes.
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Cost Effectiveness Analysis 10

10.1 Appraisal of Projects with Non-monetary Outcomes

Cost effectiveness analysis is a decision-making tool that compares the relative

costs and outcomes of two or more strategies competing for the implementation of a

public program. The method has initially been developed in the field of public

health and, since then, is more and more used in other fields of public action. The

keystone of the approach is that it does not require estimating the equivalent money

value of the outcomes. It rather uses physical or arithmetical units for their

measurement. Examples of applications are education, public health programs or

policies for a safer environment, wherever the decision-maker would feel it inap-

propriate or unnecessary to monetize outcomes. Measures of effectiveness are for

instance the rate of school completion, the number of premature births averted,

composite indicators of safe environment, etc.

In its simpler form, cost effectiveness analysis consists in comparing incremen-

tal cost effectiveness ratios (ICER) where the numerator is the cost difference when

shifting from one strategy to another, and the denominator is the effectiveness

difference. The principle of confronting competing and mutually exclusive

strategies through differential costs and differential effectiveness builds on the

concept of opportunity cost. By selecting a particular strategy, you give up the

net advantages of the waived strategy. The perspective is thus comparative (the goal

is to find out the differences among strategies) and consequentialist (the maximiza-

tion of effectiveness from available resources is the only relevant consideration).

We have:

ICER ¼ Difference in cost

Difference in effectiveness

The ratio represents the incremental cost associated with one additional unit of

effectiveness. For instance, if a new strategy costs $20 extra dollars and brings in

10 units of effectiveness, then the ICER amounts to $20/10¼$2. Each additional
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unit of effectiveness thus costs $2. It is up to the decision-maker to decide whether

this extra cost is beneficial to society or not.

Once data on cost and effectiveness have been gathered, the ICER is compared

to the marginal willingness to pay of the decision-maker for an additional unit of

effectiveness. The decision-maker represents the community for which the project

will be implemented and marginal willingness to pay is thus collective. The choice

rule is that a competing strategy is preferred over a reference strategy if its

incremental cost effectiveness ratio is lower than a given level of collective

willingness to pay:

Competing strategy � Reference strategy , ICER < WTP

Coming back to our example, if the WTP is $3, then the new strategy is considered

as more cost effective and thereby selected. On the other hand, if the willingness to

pay is lower than $2, then implementing the new strategy is considered detrimental

to society.

The previous choice rule can be generalized to any level of willingness to pay

when one moves to the incremental net benefit (INB) approach, which is a linear

rearrangement of the incremental cost effectiveness ratio:

INB ¼ WTP � Difference in effectivenessð Þ � Difference in costð Þ
The decision rule is such that the switch to a new strategy is accepted if INB> 0. In

our previous example, we have INB¼ 10�WTP� $20. The INB thus amounts to –

$10 if the willingness to pay is $1, $0 if the willingness to pay is $2 and $10 if the

willingness to pay is 3$. In other words, the approach offers a way to measure

welfare changes expressed in dollar values without presupposing any measure of

willingness to pay. If more than two strategies are in competition, a simple

comparison of the INB yields the most efficient policies.

The ICER and INB indicators are based on pairwise comparisons which can be a

shortcoming when the evaluator is faced with more than two strategies. The

construction of an efficiency frontier overcomes this problem. It is a graphical

tool that divides strategies into two categories: the first comprehends the most

efficient strategies (the frontier) and the second displays strategies (out of the

frontier) that are not cost-effective relative to the strategies of the first category.

The method relies on two concept of dominance, simple dominance and extended

dominance. A strategy is subject to simple dominance if it yields higher cost and

lower effectiveness than another strategy. A strategy is subject to extended domi-

nance if its ICER, i.e. its incremental cost, is higher than that of the next more

effective strategy. All the strategies that are subject to dominance, be it simple or

extended, are excluded from the frontier. The approach thus provides a sorting of

strategies, for any value of collective marginal willingness to pay.

A strategy may not only affect outcomes in the next period, but may also induce

multiple consequences in the subsequent periods. Therefore, when selecting among

strategies, it is necessary to consider a multiple-state setting (situations that
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individuals can be in), transitions between states (when individuals move from one

state to another), transition probabilities (how likely such moves are), and a relevant

time horizon. The approach, also known as decision analytic modeling, generally

relies on Markov chains to define this setting. A Markov model considers a finite

number of states representing the different situations induced by the strategies (e.g.,

different stages of a disease, death or recovery). They are assumed to be mutually

exclusive since a subject cannot be in more than one state at the same time. Each

time period or Markov cycle is associated with cost and effectiveness measures that

depend on the allocation of subjects among the Markov states. Decision analytical

modeling then computes the total cost and total effectiveness of the competing

options with the aim to provide decision-makers with relevant information about

the resources required to operate the strategies as well as their consequences.

Cost effectiveness analysis is based on a set of parameters that can strongly

affect the accuracy of the conclusions if their value is not carefully established. It is

the task of the evaluator to demonstrate to what extent those conclusions are robust

to the assumptions made. Several methods exist in this respect. Among the most

sophisticated ones, one may name Monte Carlo simulations (aka probabilistic

sensitivity analysis) which offer a way to measure and evaluate the uncertainty

inherent to cost and effectiveness measurements. Each parameter of the model (for

example, the probability of an intervention being successful or the cost associated

with that intervention) is assigned a random generator that is based on a pre-defined

probability distribution. The way data has been collected (sample data or

non-sampled secondary data source) generally determines the shape of the random

generators. The model is then iterated a high number of times until a sufficient

number of simulations is obtained. Those simulated data are finally examined in

order to compute a 95% confidence interval on the cost and effectiveness

measurements. Furthermore, each iteration can be used to compute cost effective-

ness indicators such as the ICER or the INB. It is also possible to plot the simulated

data in the differential cost and effectiveness plane to assess, for instance, whether a

strategy yields on average a decrease in cost and/or an increase in effectiveness.

Last, one may rely on cost-effectiveness acceptability curves which indicate the

number of times each strategy is optimal in those simulations.

To sum up, cost effectiveness analysis data are obtained in three related

sequences. The first one involves primary or initial data on costs and effectiveness

(for instance the direct cost of cleansing the soil from a pollutant and the prevalence

of infectious diseases related to that pollutant), usually gathered from experiments

or previous case studies. The second step consists in simulations, based on those

primary data, using decision-analytic modeling (Markov chains). The latter

calculates period after period vectors of projected cost and effectiveness and

cumulates them over a chosen time horizon. Those vectors, once aggregated,

form the cost and effectiveness measurements. In the above example, the effective-

ness measure can be the decrease in the number of individuals affected by diseases

or in the number of deaths due to pollution; costs can be cleansing expenses as well

as expenditures associated with taking care of diseased people. Third, Monte Carlo

simulations can be implemented to assess the robustness of the results. This step is

10.1 Appraisal of Projects with Non-monetary Outcomes 327



essential as the uncertainty surrounding decision analytic models makes determin-

istic analyses rather fragile tools when they are not accompanied by a full explora-

tion of methodological, parameter and structural uncertainty. If for instance the

reference strategy is “doing nothing”, one can compare its net merit with those of

competing strategies, say, “proceed to an immediate and massive cleansing” or

“proceed to sequential and progressive cleansing”, over a large set of

simulated data.

The chapter is organized as follows. Section 10.2 describes the usual cost

effectiveness indicators, namely the incremental cost effectiveness ratio and the

incremental net benefit, which can be used for pairwise comparisons of mutually

exclusive strategies. Section 10.3 moves on to defining cost-effective strategies

through the construction of the efficiency frontier in presence of several strategies.

Section 10.4 introduces decision analytic modeling and shows how to obtain cost

and effectiveness data from a Markov model. Section 10.5 implements those

calculations in R-CRAN and Sect. 10.6 extends the approach to QALYs (Quality

Adjusted Life Years). Section 10.7 discusses the various forms of uncertainty in

decision analytic models and investigates parameter uncertainty through Monte

Carlo simulations. Last, Sect. 10.8 explains how to analyze and interpret those

simulation outputs.

10.2 Cost Effectiveness Indicators

The aim of this section is to assess a public project through pairwise comparisons of

alternative strategies of implementation. Let us consider for instance dropping out

of school as a policy problem. Alternative educational strategies intended to reduce

dropouts address the problem of early school leaving in different ways, generating

different costs and effectiveness levels. It is thus necessary to reason in terms of

cost effectiveness differentials. In what follows, let us assume that the evaluator

faces a set of strategies that provide support to schoolchildren at risk of dropping

out, e.g., mandatory attendance, compulsory add-on programs that complement

existing schooling, limited-period training programs, social assistance, relocation

to another school, etc. The situation of reference is the currently implemented

strategy S0, or status quo. Alternatives to S0 are the competing strategies S1 ,
S2 , � � � , SK, which are assumed to be mutually exclusive.

Strategies are associated with production functions involving capital inputs

(technical, physical, and human), labor (teachers, assistants, social workers), and

space. Costs may include those for the public sector or the agency providing the

program, for the individuals to whom the program is dedicated, for the other parties

involved (mutual funds, donors, other agencies). The cost perimeter is defined by

the decision-maker. The unit of measurement for costs is monetary, with total cost

for each strategy denoted C0 ,C1 ,C2 , . . . ,CK. Moving from the reference strategy

to a competing strategy k generates differential cost ΔC0! k¼Ck�C0.

What are the outputs of those production functions? What would their unit of

account be? Cost effectiveness analysis takes the stance that the arithmetic or
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physical consequences of the strategy account for its outcomes. In our example, the

number of children completing high school would be a measure of the effectiveness

of the implemented program, but one could argue that the number of children

completing high school with marks above a specified level would be a better

measure. Again, the task of defining those measures goes to the decision-maker.

The key point here is that the unit of measurement of effectiveness is non-monetary.

If we denote E0 ,E1 ,E2 , . . . ,EK the respective effectiveness of the competing

strategies, then differential effectiveness is given by ΔE0! k¼Ek�E0.

Consider the various possible locations of strategies on the [ΔE,ΔC] mapping

with reference strategy S0 as the origin. Figure 10.1 displays the four cases that may

arise. Since we have just plotted the differential effectiveness and cost coordinates,

the cost effectiveness mapping is at this stage simply descriptive. The situations in

the South East and North West quadrants are obvious. North West strategies SNW
are subject to simple dominance with respect to S0. South East strategies SSE are

simply dominant. In contrast, for the North East and South West quadrants, cost

effectiveness indicators as well as information on collective marginal willingness to

pay (WTP) are required in order to make a decision to switch or not from the

reference to one of its alternatives.

To illustrate the interest of mapping strategies on the [ΔE,ΔC] plan, consider
Table 10.1 where cost and effectiveness values are provided for six competing

strategies. We distinguish the denomination of a strategy (a, b, c, . . .) from its

notation (S1, S2, S3, . . .) since while the former always remains (e.g.,

a corresponds to “mandatory attendance”), its notation is likely to vary during the

implementation of the efficiency analysis, as we shall see later. The plotting of cost

and effectiveness data on the [E,C] mapping is rather uninformative, as depicted in

Fig. 10.2. However, should for instance strategy c be the status quo (S0), then a
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Fig. 10.1 Differential cost effectiveness mapping
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pairwise comparison would actually lead to a scatter plot with strategy c as the

origin, as shown in Fig. 10.3. The differential cost-effectiveness mapping thus

illuminates the analysis. Indeed, from Fig. 10.3, it is easy to see that b is subject

to simple dominance with respect to c, i.e. strategy b is more costly and less

effective. However, from Fig. 10.3, it can be seen that the concept of simple

dominance is not sufficient to select one single strategy. Strategies a, d, e and

f are for instance not dominated by c and do not dominate c either. One has then to

define indicators that sort out the relative cost effectiveness of the competing

strategies.

The first of cost effectiveness indicators is the incremental cost effectiveness

ratio (ICER). It describes the additional investment of resources required for each

additional unit of outcome improvement expected to result from investing in Sk
rather than S0. The corresponding formula is:

ICER S0 ! Skð Þ ¼ ΔC0!k

ΔE0!k
¼ Ck � C0

Ek � E0

The ICER is a slope as depicted in Figs. 10.4 and 10.5, respectively in the North

East (strategy SNE) and South West (strategy SSW) quadrants. The greater is the

Table 10.1 Cost and effectiveness of competing strategies: example 1

Denomination of

strategy

Notation of

strategy

Effectiveness

Ek

Cost

($)

Ck ICER (S3! Sk)

a S1 37 1500 20

b S2 39 1650 �16.7

c S3 42 1600 NA

d S4 46 1700 25

e S5 48 1900 50

f S6 50 2000 50

a

b
c

d

e
f
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2100
Ck

Fig. 10.2 Cost effectiveness mapping: example 1
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slope, the higher is the incremental cost effectiveness ratio compared to the status

quo.

In Table 10.1, when the reference strategy is c, the ICER ranges from �16.7 to

50 (last column of Table 10.1). The negative sign on�16.7 is related to the concept

of simple dominance (strategy b is simply dominated). If the focus were merely on

cost, strategy a would then appear as the most efficient strategy as it minimizes the

ICER. However, strategy a is also the strategy that reaches the lowest level of

effectiveness (only 1500 while e and f reach 1900 and 2000 respectively) and

deteriorates the situation with regard to the existing status quo. As for the value

of 25 (corresponding to the move from strategy c to strategy d ), it means that

starting from the status quo, an increase of one unit in the effectiveness measure

will cost $25 if that effectiveness improvement is implemented through strategy d.
Strategies e and f generate the same ICER of 50 so that this cost effectiveness
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f
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Fig. 10.3 Differential cost and effectiveness: example 1

Fig. 10.4 ICER in the North East quadrant
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indicator cannot sort them out. We will come back to that point later but one can

still observe that the monetary effort asked from the decision-maker is twice as

much if strategy e or f are chosen than if strategy d is selected. If solving the dropout
problem is a priority in education reform, then the decision-maker may decide to

dedicate extra money to reach a higher level of effectiveness than what is currently

obtained through the implementation of strategy c. A decision based on (positive)

ICER only is therefore not sufficient to assess the cost effectiveness of the

strategies. Positive ICERs have to be assessed against the willingness to allocate

extra resources in order to move from status quo to the chosen strategy.

Cost effectiveness analysis thus requires information on the collective marginal

willingness to pay (WTP) for extra outcome or willingness to accept (WTA)
outcome loss. We assume afterwards that the WTP/WTA line has no kink at the

origin, meaning that the cost-saving required to accept the loss of one unit of

effectiveness is no greater than the extra cost consented to increase effectiveness

by one unit. The decision rule to accept or reject the switch from S0 to SNE or SSW is

then very simply described in Figs. 10.6 (North East quadrant) and 10.7 (South

West quadrant). To sum up, in the North-East quadrant:

ICERðS0 ! SNEÞ > 0 : CNE > C0,ENE > E0,

switch accepted if ICER < WTP:

In the North-west quadrant:

ICERðS0 ! SNWÞ < 0 : CNW > C0,ENW < E0,

switch rejected ðsimply dominatedÞ:
In the South-East quadrant:

∆

∆

−

Fig. 10.5 ICER in the South West quadrant
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ICERðS0 ! SSEÞ < 0 : CSE < C0,ESE > E0,

switch accepted ðsimply dominantÞ:
In the South-West quadrant:

ICERðS0 ! SSWÞ > 0 : CSW < C0,ESW < E0,

switch accepted if ICER < WTA:

Figure 10.8 synthesizes the various situations.

Several questions have been raised about the use of ICER for decision-making.

First, being a slope brings about problems such as the one described in Table 10.2.

ICERs can be similar (Case 1 considers two North East strategies for which the

ICER is 4; case 2 has one North East strategy and the other is South West for the

same ICER of 5). From Table 10.1, we can see that example 1 also experienced that

with strategies e and f. The ICER may thus hide differences in strategies though

admittedly a closer look at data should overcome that problem. The ratio nature of

the ICER is also of concern when differences in effectiveness are small enough to

generate extremely high values that are awkward to interpret. Finally, the ICER is

∆

∆

∆

∆

Fig. 10.7 Decision rule with ICER in the South West quadrant

∆ ∆

Fig. 10.6 Decision rule with ICER in the North East quadrant
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by construction a parameter usually obtained from running a decision analytic

model and this parameter is to be confronted with a single value of WTP. That
value may not be readily available or may not be defined at all. Fortunately, the

second cost effectiveness indicator, the incremental net benefit (INB), is able to

overcome those problems.

The INB is defined as the difference between the variation in effectiveness

associated with the shift from strategy S0 to strategy Sk, valorized by what the

community is ready to pay (allocate) for each extra unit of effectiveness, i.e. the

collective marginal willingness to pay, and the variation in cost induced by the

change of strategy:

INB0!k WTPð Þ ¼ WTP� ΔE0!k � ΔC0!k

Fig. 10.8 Decision in the differential cost effectiveness mapping

Table 10.2 Cases of indetermination with ICERs: example 2

Case 1 S0 S1 S2

Cost C0¼ 100 C1¼ 120 C2¼ 200

Effectiveness E0¼ 0 E1¼ 5 E2¼ 25

Case 2 S0 S3 S4

Cost C0¼ 100 C3¼ 125 C4¼ 90

Effectiveness E0¼ 0 E3¼ 5 E4¼ � 2
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The decision rule is such that the switch is accepted if INB0! k(WTP)> 0, which is

equivalent to WTP> ICER(S0! Sk). Consider for instance strategy S2 from

Table 10.2. The unit cost of an increase in effectiveness is:

ICER S0 ! S2ð Þ ¼ $200� $100

25� 0
¼ $4

Should marginal willingness to pay be lower than $4, the decision-maker would

actually reject strategy S2. Using the INB criterion yields more general results. For

WTP equal to 1, we obtain INB0! 2(1)¼ 1� (25� 0)� (200� 100)¼ � $75, i.e. a

move from strategy S0 to strategy S2 would yield an incremental net loss of $75. For

WTP equal to $5, moving from S0 to strategy S2 would yield instead an incremental

net benefit of INB0! 2(5)¼ $25. By construction, the INB equals 0 when

WTP¼ $4¼ ICER. The final decision thus depends on the marginal willingness

to pay of the decision-maker. The higher the willingness to pay, the more likely a

strategy in the North East quadrant is to be selected.

Figure 10.9 shows how to represent the INB of an accepted strategy in the North

East quadrant for a given value ofWTP. Since the INB does not require specifying a

value ofWTP, it is also possible to represent it as a function in the mapping [WTP,
INB]. For instance, Fig. 10.10 assumes that alternative strategy Sk belongs to the

North-East quadrant. For values of WTP greater than the ICER, the strategy is

preferred to the status quo. Thus, with the INB, the decision-maker is provided with

a tool that allows discussion and debate about the extent to which the community

can or wishes to allocate resources to a more costly yet more effective strategy.

Cost effectiveness indicators provide pairwise comparisons of the strategies

competing for the implementation of a public project. The ICER is built as a ratio

of differential costs and outcomes from a reference strategy to a comparator. It

× ∆

∆

> 0

∆

Fig. 10.9 INB of an accepted strategy in the North East quadrant
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provides a single value of extra cost per extra unit of effectiveness gained when

moving away from the reference. This single value is to be compared to the

marginal willingness to pay of the community for that extra unit of effectiveness.

WTP then serves as a threshold below which strategies are acceptable. If the

community cannot or does not wish to provide that threshold value, then the INB
allows to consider the whole range of potential values ofWTP. The ICER is a choice

parameter to be confronted with WTP, the INB is a function of WTP. However,
comparing strategies in pairs does not provide a full picture of the decision problem,

particularly when several strategies are in competition. This is why the next step of

the analysis moves on to the construction of the efficiency frontier.

10.3 The Efficiency Frontier Approach

When several mutually exclusive strategies compete for the implementation of a

public project, building an efficiency frontier allows non dominated and collec-

tively acceptable strategies to be identified. The approach distinguishes two concept

of dominance: simple versus extended dominance. In the case of simple dominance,

a strategy is considered inefficient if there is at least one strategy that has higher

effectiveness and lower cost. Extended dominance indicates that there exists a

combination of strategies that yields higher effectiveness and lower cost. The

efficiency frontier links the strategies that are not subject to simple or extended

dominance.

Formally, when K strategies are in competition, the algorithm for finding the

frontier is as follows. The first step is the ranking and indexing of strategies by

increasing effectiveness:

For all k in 2; . . . ;K � 1f g we must have Ek�1 < Ek < Ekþ1

The second step excludes strategies subject to simple dominance (SSD):

∆

( )

( ) > 0

Accepptance area

( )

Fig. 10.10 Decision rule with the INB as a function of WTP
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Sk is SSD if Ck > Ckþ1

One must replicate the exclusion criterion until no more strategies are SSD. The

third step rests on the calculation of ICER(Sk� 1! Sk) which allows the exclusion

of strategies subject to extended dominance (SED):

Sk is SED if ICER Sk�1 ! Skð Þ > ICER Sk ! Skþ1ð Þ
Again, calculations should be replicated until all SED strategies have been ruled

out. The fourth step consists in (1) drawing the (convex) cost-effectiveness frontier

on the [ΔE,ΔC] mapping, by linking non-dominated strategies and (2) selecting

interventions meetingWTP requirements. That can be done by calculating the ICER
from strategy 0 as the reference to the efficient alternative strategies, and by

checking it graphically.

Now, let us reconsider the example of school dropout (Example 1, Table 10.1)

where six strategies are in competition. Strategy a yields the lowest effectiveness

and the next strategies are already ordered by increasing effectiveness. The second

step excludes SSD strategies: intervention k is simply dominated by intervention

k + 1 if intervention k+ 1 is more effective and less expensive. As already shown,

strategy b is SSD and thus eliminated. One checks that no other strategy is now

SSD, which is verified from Table 10.1. The third step calculates ICERs of

non-excluded strategies, relative to the preceding intervention, in order to identify

SED strategies (if any). Figure 10.11 shows the result and allows detecting that

strategy e induces a greater cost per extra unit of effectiveness: its ICER is greater

than the ICER of the next effective strategy f, while it is less effective. Here,

strategy e is SED and thus eliminated. Then, replication of the third step does not

identify anymore SED strategies as shown in Table 10.3 which delineates strategies

belonging to the efficiency frontier (Fig. 10.12). The graph confirms that strategy

Fig. 10.11 Elimination of SED strategies: example 1

Table 10.3 Strategies on the efficiency frontier: example 1

Denomination of

strategy

Notation of

strategy

Effectiveness

Ek

Cost ($)

Ck

ICER
(Sk� 1! Sk)

a S1 37 1500 NA

c S2 42 1600 20

d S3 46 1700 25

f S4 50 2000 75
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b is indeed more costly and less effective than strategy c while strategy e is

dominated by all the linear combinations of strategies d and f. The frontier is by

construction convex.

In order to complete the fourth step, one calculates the ICER from strategy a as

the reference to the efficient alternative strategies c, d and f which gives respec-

tively $20, $22.2 and $38.5 per unit of effectiveness. If WTP is for instance $40,

then all three strategies are acceptable and one needs further criteria to draw

out a preferred option. If WTP is for example $30, then strategy f is ruled out.

Figure 10.13 illustrates that with a willingness to pay of $40 per unit of effectiveness.
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Fig. 10.12 Efficiency frontier: example 1
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Fig. 10.13 Efficiency frontier and acceptable strategies: example 1
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Should a strategy yield 2 units of effectiveness, the decision-maker would be

willing to pay $80 at maximum. Should it be 10 units, the decision-maker would

be willing to pay $400 instead, and so on. This allows us to draw a continuous line

below which all the represented strategies are potentially acceptable.

Another way of expressing the choice of strategies with respect toWTP builds on

Fig. 10.10. Table 10.4 exemplifies the evolution of the INBs of the competing

strategies for discrete values of WTP. One can draw the INB lines for strategy b to

f with strategy a as the reference. Figure 10.14 shows the resulting changes in

preferred option as WTP increases.

Table 10.4 Evolution of INBs as a function of WTP: example 1

WTP

INB (WTP) of strategies

b c d e f

0 �150 �100 �200 �400 �500

10 �130 �50 �110 �290 �370

20 �110 0 �20 �180 �240

30 �90 50 70 �70 �110

40 �70 100 160 40 20

50 �50 150 250 150 150

60 �30 200 340 260 280

70 �10 250 430 370 410

80 10 300 520 480 540

90 30 350 610 590 670
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Fig. 10.14 Efficiency in the INB plane: example 1
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The analysis of efficiency in the INB plane confirms that strategy b is never the

most preferred, neither is strategy e since their INB line is never the uppermost. The

three vertical dotted lines on Figure 10.14 depict the choice facing the decision-

maker when he or she is to select a project amongst the six proposed alternatives. In

coherence with Table 10.3, below a WTP of $20 per unit of effectiveness gained,

then the reference strategy a is preferred. For a WTP between $20 and $25, the

choice should move to strategy c. Above $25 and until $75 per unit of effectiveness
gained, strategy d should prevail. Strategy f is most effective but also very costly

relatively to the others so that it is selected for high levels of consent only.

There is an alternative but equivalent way of building the efficiency frontier,

with algorithms of elimination of SSD and SED strategies particularly suited for

situations where a significant number of alternatives are competing. As already

stressed, the efficiency frontier approach consists in comparing graphically the net

benefit of available strategies in terms of effectiveness plotted on the x-axis, with
the net costs of these strategies plotted on the y-axis. If a strategy is to the north west
of the frontier, it is not cost-effective. For instance, in Fig. 10.15, six strategies a, b,
..., f are evaluated. Strategy a is used as reference policy. The orange line represents
the efficiency frontier. Its construction is based on the evolution of the slope

between the strategies, i.e. on ICER calculations. For instance, a move from

strategy a to b implies a positive ICER, i.e. an additional investment of resources

for each additional unit of effectiveness. A move from b to c generates an increase

in the slope. In contrast, the ICER decreases when we move from c to d but it

remains positive. This means that it is actually better to use b and d, as there would
exist a combination of these strategies, denoted c’, that would be less costly than c.
By definition, strategy c is said to be subject to extended dominance and is therefore

eliminated. Strategy e is also eliminated but for another reason. A move from e to
f implies a negative ICER. This means that e is subject to simple dominance, i.e. this

strategy generates higher costs than f but also lower benefits.

> 0

> 0

> 0

< 0

Δ

Fig. 10.15 Construction of the efficiency frontier
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The construction of the efficiency frontier is thus based on two algorithms, one

for the elimination of SSD alternatives, those that yield higher costs than the next

more effective strategy (strategies are ordered by increasing effectiveness), and one

for the elimination of SED strategies (those that yield a decrease in the ICER).
Figure 10.16 illustrates the methodology (example 3). SSD elimination rules out

strategies such that ΔC� 0 with respect to the next more effective strategy until all

ΔC are strictly positive. In the example, the first step of SSD elimination identifies

four strategies (namely c, d, f and h) that are SSD. The second step exhausts the

possibilities of simple dominance with the exclusion of strategy g for which the cost
difference with strategy i is null. All remaining strategies have a strictly positive

cost difference with the next more effective strategy. The procedure goes on with

the elimination of SED strategies. The algorithm eliminates strategies such that

ΔICER� 0 with respect to the next more effective strategy until all ΔICER are

strictly positive. The first step excludes strategy e for the negative ICER difference

with strategy b. The latter does not pass the second step when it is confronted with

strategy a. Strategies a, i and j form the efficiency frontier (Fig. 10.17).

Fig. 10.16 Elimination of SSD and SED alternatives: example 3
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Fig. 10.17 Elimination of SSD and SED alternatives: example 3
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As we have seen, the assessment of efficiency is ultimately based on aggregate

cost and effectiveness data. However, the process by which such data is measured is

far from straightforward. It requires conceiving and simulating a model that

represents the evolution of the population targeted by the public project.

10.4 Decision Analytic Modeling

When comparing strategies, the ideal situation would be to rest on their true

(population) mean costs and mean effects. In practice, information is usually

obtained from sample means generated by a model simulating the evolution of a

cohort under a given strategy. An often used framework is the Markov model, a

simple and powerful tool. One of the most interesting properties of Markov

modeling is that it allows reversible situations (you have a job once, lose it, then

enter a training program and get a new one: the training policy has reversed your

situation).

The first thing to define is the pertinent cohort, namely the subjects in the target

population of the public project. All the relevant situations of those subjects should

be listed in a finite number of Markov states mi , i¼ 1 . . . M. At one period, subjects

are always located in one and only one Markov state. From one period to another,

they may move from one Markov state to another, if that transition is allowed. The

time horizon of the simulation is T. Periods are termed Markov cycles and denoted

t¼ 1 . . . T. Cycles are appropriate time increments, often years. Moving from state

mi to state mj is expressed by transition probability pij� 0 with
PM

j¼1 pij ¼ 1 for all

i¼ 1 . . . M.

A Markov process is characterized by N0, the initial allocation of subjects

amongst the Markov states at t¼ 0:

and by a transition matrix P:

For each row of this matrix we have:
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pi1 þ . . .þ pii þ . . .þ pij þ . . . piM ¼ 1, 8i ¼ 1 . . .M

The transition matrix does not have to be symmetric (moving from state mi to state

mj does not necessarily have the same probability as moving from state mj to state

mi). For instance, it may be “easier” to move from regular school attendance to

dropout than the opposite. Furthermore, if the matrix is upper triangular (all the

entries below the main diagonal are zeros), pathways are not reversible and the

Markov process is a one-way oriented decision tree. Last, if transitions are time-

dependent, then the Markov process is non-stationary so that pij¼ pij(t) and

consequently P¼Pt.

Let us consider the evolution of the cohort among the states. The state vector Nt

describes the number of subjects of the cohort who are present in each Markov state

at a given cycle t. More specifically, Nt is a [1,M] vector with elements resulting

from the matrix product of Nt� 1 with the transition matrix P:

Nt ¼ Nt�1 � P

The number of subjects at cycle t in state i is denoted nt , i. We equivalently have:

Nt ¼ nt1 . . . ntM½ � ¼ nt�1,1 . . . nt�1,M½ � � P

By definition of a matrix product, the elements of Nt are determined by

nt, i ¼
PM

j¼1 nt�1, j � pji. Examples of computation are provided below. Cycle after

cycle, the state vectors yield what is called the Markov trace, i.e. a [T,M] matrix

that displays the evolution of the cohort among the states over the whole set of

periods:

The Markov trace allows to determine an effectiveness measure, based on the

number of subjects in each state over the whole time horizon. For instance, should

m1 be a state describing how many patients survived after a medical treatment, then

the number of observations in m1 would serve as a proxy for the desired outcome of

the strategy. A discounted value can then be computed to better assess the present

value of this outcome.

The computation of the total cost is based on a column vector of dimension

[M, 1] that describes the unit cost uci� 0 associated with the number of subjects in

each state mi, denoted UC afterwards:
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Since the total cost depends on the number of subjects in each state at each period,

we need to compute a cost vector of dimension [M, 1] defined as:

COST ¼ TRACE� UC

The sum of the elements of COST gives the total policy cost. Again, a discounted

value can be computed to assess its present value.

The following numerical example illustrates the basic functioning of Markov

modeling. Consider a cohort of schoolchildren entering a 3-year educational pro-

gram. Education authorities are concerned about demotivation and possible

dropouts. Education analysts provide them with a scenario for the evolution of

the cohort, synthesized by the state-transition Markov diagram of Fig. 10.18. The

total number of subjects (here, schoolchildren) is 1000. Markov cycles are years.

The time horizon of the simulation is T¼ 3. The set of Markov states is {m1,m2,m3,

m4}. State m1 comprehends pupils who attend school on a regular basis. State m2

(respectively state m3) concerns occasional (respectively frequent) school leavers.

State m4 deals with definitive dropouts. The education analysts’ assumption is that

the first three states are reversible while the fourth one is an absorbing state (those

children would never go back to standard school). By definition state mi is absorb-

ing if pii¼ 1 and consequently pi , j 6¼ i¼ 0. Let us assume for the moment that there

Fig. 10.18 Example of a state-transition Markov diagram
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is no public intervention and denote a this strategy. The transition matrix provided

by the education analysts is:

Pa ¼
p11 ¼ 0:80 p12 ¼ 0:20 p13 ¼ 0:00 p14 ¼ 0:00
p21 ¼ 0:40 p22 ¼ 0:50 p23 ¼ 0:10 p24 ¼ 0:00
p31 ¼ 0:05 p32 ¼ 0:30 p33 ¼ 0:60 p34 ¼ 0:05
p41 ¼ 0:00 p42 ¼ 0:00 p43 ¼ 0:00 p44 ¼ 1:00

2
664

3
775

Matrix Pa can be based upon various information sources, depending on the actual

context of the evaluation. They can stem from expert judgments, past experience,

previous field experiments, or clinical trials in health. Transition probabilities can

be a simple number or a complex combination of parameters leading to that number

(for instance combining risk factors and socio-demographic characteristics).

The arrows on the state-transition Markov diagram of Fig. 10.18 describe the

moves subjects can make in the model. For instance, a transition from state m2 to

state m3 is allowed and the transition matrix quantifies it to p23¼ 0.10, meaning that

10% of the subjects who were in statem2 at cycle t� 1 will move to statem3 at cycle

t. Transition from state m2 to state m4 is not allowed which is quantified by

p24¼ 0.00. Circling arrows describe a strictly positive probability of remaining in

the same Markov state from one cycle to the next. For instance, 50% of

schoolchildren who were occasional school leavers during the previous period

will remain so during the current period ( p22¼ 0.50). When absorbing states exist

in the model, they only get incoming arrows and once subjects have reached such

states, they can no longer get out of it. This is the case here of Markov state m4, for

which there is an incoming transition from m3 but no way out since p44¼ 1.

Let us assume that the initial allocation of subjects amongst the Markov states is

N0¼ [1000; 0; 0; 0], i.e. all the students attend school on a regular basis (different

initial allocations can of course be analyzed). Since transitions from matrix Pa are

not time-dependent, the Markov process is stationary. In our case, it means that the

passage of time is not supposed to affect the behavior of children (an alternative

would be for example that as they get older, they also get more inclined to school

leaving, in which case transition probabilities towards dropout states would rela-

tively increase with time). What is the educational status of the cohort, year after

year? Vectors Nt for t¼ 1 . . . 3 provide the Markov trace of the process:

The Markov trace provides an annual account of the allocation of schoolchildren

amongst the various Markov states describing their educational situation. Since nti
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denotes the number of subjects at cycle t in statemi, the elements of the state vectors

Nt can be detailed as follows.

At cycle 1:

n11 ¼ n01 � p11 ¼ 1000� 0:8 ¼ 800

n12 ¼ n01 � p12 ¼ 1000� 0:2 ¼ 200

n13 ¼ n01 � p13 ¼ 1000� 0:0 ¼ 0

n14 ¼ n01 � p14 ¼ 1000� 0:0 ¼ 0

At cycle 2:

n21 ¼ n11 � p11 þ n12 � p21 þ n13 � p31

¼ 800� 0:8þ 200� 0:4þ 0� 0:05 ¼ 720

n22 ¼ n11 � p12 þ n12 � p22 þ n13 � p32

¼ 800� 0:2þ 200� 0:5þ 0� 0:3 ¼ 260

n23 ¼ n12 � p23þn13 � p33

¼ 200� 0:1þ 0� 0:6 ¼ 20

n24 ¼ n13 � p34 þ n14 � p44

¼ 0� 0:05þ 0� 1 ¼ 0

At cycle 3:

n31 ¼ n21 � p11 þ n22 � p21 þ n23 � p31

¼ 720� 0:8þ 260� 0:4þ 20� 0:05 ¼ 681

n32 ¼ n21 � p12 þ n22 � p22 þ n23 � p32

¼ 720� 0:2þ 260� 0:5þ 20� 0:3 ¼ 280

n33 ¼ n22 � p23þn23 � p33

¼ 260� 0:1þ 20� 0:6 ¼ 38

n34 ¼ n23 � p34 þ n24 � p44

¼ 20� 0:05þ 0� 1 ¼ 1

Facing the dropout problem exemplified above, the educational authorities may

wish to put forward a prevention strategy, for instance by increasing support for
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schoolchildren who have been identified as occasional or frequent school leavers

(those reaching states m2 and m3). That support strategy, labeled b hereafter, for

instance results in the following modified transition matrix:

The support strategy is such that children who are occasional school leavers

(state m2) are taken care of for instance through interviews and subsequent

follow-up. As a consequence, more of them move back (in probability) to state

m1 (60% instead of 40%), fewer stay in state m2 (30% instead of 50%) which

decreases the shift towards frequent dropout. Similarly, the children who are

frequent school leavers (state m3) move back more easily to state m1 (20% instead

of 5%) and state m2 (35% instead of 30%), which reduces the probability of staying

in state m3 (40% instead of 60%). The result of the policy appears in the new

Markov trace. One can thus check cycle after cycle the outcomes of the prevention

strategy:

In the example proposed here, the Markov trace shows that the dropout problem

decreases when the support policy b is implemented. More children remain or come

back to state m1 while there are fewer dropouts at each cycle.

The next numerical example will comprehend both the cost and consequence

aspects of a similar decision problem in education over a longer time horizon that

will require discounting (in theory, the previous example should have used

discounting too, but was mainly intended to provide an introduction to the mechan-

ics of Markov modeling).

Assume that education authorities consider early school leaving over the whole

horizon of mandatory school (for instance from the age of six to the age of sixteen),

so that T¼ 10. That time span requires discounting and authorities choose a rate of

3%. Strategy a involves no particular prevention, strategies b, c and d each provide

a different type of prevention. The Markov process still rests on Fig. 10.18 and is

assumed again to be stationary. Each strategy is associated with a transition matrix

and a cost vector. The cost perimeter is associated with Markov states m2 ,m3 ,m4.

This means that any subject entering (or staying in) those states triggers the

corresponding costs. Effectiveness is defined by the headcount of schoolchildren

in states m1 and m2. Of course, any other relevant measure of effectiveness can be
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used, provided that the model is equipped to deliver it. Starting with strategy a,
matrix Pa is the same as in the previous numerical example; as to the cost

matrix UCa, it is given by:

UCa ¼
uc1 ¼ 000

uc2 ¼ 120

uc3 ¼ 220

uc4 ¼ 320

2
664

3
775

The Markov trace as well as measures of non-discounted and discounted cost

and effectiveness are displayed in Fig. 10.19. The Markov trace is obtained by

applying the transition matrix to each state vector. In Excel, state vectors Nt can be

obtained with the command MMULT. This Excel function calculates the matrix

product of two arrays. The format is MMULT(array1, array2) where array1 and

array2 are matrices. The number of columns in array1 is equal to the number of

rows in array2. To input an array formula, one needs to (1) highlight the range of

cells for the new matrix, (2) type the command MMULT(array1, array2), and
(3) press CTRL-SHIFT-Enter. The resulting matrix has the same number of rows

as array1 and the same number of columns as array2.

Strategy b provides a first prevention policy that induces a new transition matrix

as well as a new cost structure. Figure 10.20 displays them (with parameter changes

indicated in blue) as well as the new Markov trace and its associated effectiveness

and cost measures. Strategies c and d are similarly described in Figs. 10.21 and

10.22, changes with respect to strategy a indicated respectively with colors red and

orange. The information generated by the Markov traces of the competing strategies

allows first to build the efficiency frontier. Figure 10.23 shows how strategy b is

SED. Strategies on the efficiency frontier are described in Fig. 10.24 and then

characterized in Fig. 10.25.

Finally, Fig. 10.26 uses the INB approach to sort out the preferred strategies with

respect to WTP. Strategy b is never the most preferred. In line with Fig. 10.24,

Fig. 10.19 Cost and effectiveness data: example 4 (strategy a)
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Fig. 10.20 Cost and effectiveness data: example 4 (strategy b)

Fig. 10.21 Cost and effectiveness data: example 4 (strategy c)

Fig. 10.22 Cost and effectiveness data: example 4 (strategy d )
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below a WTP of $98.4 per unit of effectiveness gained, the reference strategy a is

preferred, so that no attempt at containing dropout is made. For a WTP between

$98.4 and $434.4, then the prevention policy associated with strategy c should

prevail. Above $434.4 per unit of effectiveness gained, strategy d should win

through.

Note that for simplicity of exposition, the initial allocation of subjects amongst

the states has been such that they were all in state m1 so that N0¼ [1000; 0; 0; 0].

This assumption can be easily relaxed if the context analysis has evidenced that

subjects enter the model not only from m1, but also from m2 and m3. Past or

neighboring experience may for instance have shown that a relevant initial alloca-

tion would be N0¼ [700; 200; 100; 0]. The model can then be rerun accordingly.

The context of the analysis usually implies that subjects do not enter the model from

an absorbing state. The new initial allocation of subjects uniformly applies to all the

strategies.

Fig. 10.23 Elimination of SED strategies: example 4

Fig. 10.24 Strategies on the efficiency frontier: example 4
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Fig. 10.25 Efficiency frontier: example 4
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10.5 Numerical Implementation in R-CRAN

In what follows, we introduce the main commands to be used in R-CRAN in order

to implement a cost effectiveness analysis step by step. Figure 10.27 presents the

command lines for deriving the Markov trace, as well as the cost and effectiveness

data for strategy a, which was fully described in the previous section. The first stage
is about loading the packagemarkovchain using the command library. We also load

the package FinCal which will be used to compute the discounted values of the cost

and effectiveness measures. The second stage consists in creating a Markov chain

object, labeled P, using command new. The option states allows the Markov states

to be named as m1, m2, m3 and m4. Option transitionMatrix is used to specify the

matrix of transition probabilities Pa, which in our case is made of four columns and

sixteen entries. Using command plot creates a graph displaying the Markov model.

Since the position of the circles representing Markov states is randomly defined,

command plot can be implemented several times until one gets a suitable graphic

(for instance, that of Fig. 10.28).

In a third stage, we construct the Markov trace. Vector N0 is defined as N0¼ c
(1000, 0, 0, 0). To understand the functioning of the process, Fig. 10.27 first presents

how one may derive the first state vector N1 by simply multiplying N0 by P.
Similarly, the second vector N2 is obtained using N0∗P ^ 2 (similarly for N3).

Then, a loop automatizes the process. This is done first by defining the time horizon

T¼ 10, then by specifying the dimension of the Markov trace (i.e. T rows � 4

columns corresponding to the Markov states), and finally by developing the loop.

The latter is made of an iterator t that goes from 1 to T and an iterable object

-80000

-60000

-40000

-20000

0

20000

40000

60000

80000

100000

120000

0 100 200 300 400 500

IN
B

WTP

Fig. 10.26 Efficiency in the INB plane: example 4
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between brackets: for each of the values of t, a state vector is built and included into
the TRACE matrix using command TRACE[t, ]¼N0∗P ^ t.

The last stage consists in computing the effectiveness and cost vectors. For this

purpose, it is preferable to work with a database instead of a matrix, since it allows

additional variables to be easily included. In Fig. 10.27, we define a database for

strategy a using command data . frame. The dollar sign notation is used to define

each variable entering the dataset. The first variable that is created is a$period that

will index each Markov cycle from 1 to T. This variable is also used afterwards to

discount the cost and effectiveness measures. The second variable is our index of

effectiveness (a$EFFECT) measured in this particular example as the sum of the

subjects belonging to states m1 and m2. We specify the unit cost vector as UC¼ c

Fig. 10.27 Cost and effectiveness data with R-CRAN: example 4
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(0,120,220,320). The final cost vector is obtained by multiplying the trace with UC
to get a$COST. The multiplication sign has to be put between percentage signs (%)

as we need here to implement a matrix multiplication. The�pv . simple command is

then used to compute the present value of each observation in a$EFFECT and

a$COST by specifying both the discount rate (Disc .RATE) and the time period

(a$period). The final database a is thus made of each relevant variable for the cost

effectiveness analysis. Command round is used for presentation purpose and simply

rounds the values of the dataset.

The program of Fig. 10.27 can be improved by creating a function that

encompasses all the previous commands into a single one. The approach is then

much faster, and allows the evaluator to examine a large set of competing strategies.

In Fig. 10.29, we define a function labeled cea that depends on the transition matrix

P, the unit cost vector UC, the time horizon T, the initial state vector N0, and the

discount rate Disc .RATE. Between brackets are then specified the commands used

to compute the trace, the cost and effectiveness vectors, as well as their discounted

values. Command print finally specifies the final output of the function.

While P and UC are specific to each strategy, this is not the case for the time

horizon, the initial vector and the discount rate. Those variables are common to all

competing strategies and are thereby specified directly after the creation of function

cea. In Fig. 10.29, we then define P andUC for each strategy. Command cea is used
to create the relevant data for each strategy from a to d. Command round can be
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Fig. 10.28 State-transition Markov diagram with R-CRAN: example 4
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Fig. 10.29 Creating a cost effectiveness function in R-CRAN: example 4
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avoided if fully detailed results are preferred. Results can be compared to those of

Figs. 10.19, 10.20, 10.21 and 10.22.

Figure 10.30 first displays the command for computing the ICER. It starts with
the creation of two vectors E and C that are respectively made of the effectiveness

and cost measures. For instance, sum(a$discEFFECT) is the sum of all the

discounted values of effectiveness for strategy a, i.e. stands for Ea. In other

words, E and C are each made of four elements: E¼ (Ea,Eb,Ec,Ed) and C¼ (Ca,

Cb,Cc,Cd). As data is already ordered by increasing effectiveness

(Ea<Eb<Ec<Ed ), the next step consists in computing the first differences

using the values of vector E and C and command diff. Two new vectors are created

and denoted delta .E and delta .C. They are used directly to compute the ICER. We

eliminate strategy b (recall that it is subject to extended dominance) by excluding

the second element of vectors E and C using commands E[�2] and C[�2], and

compute again the first difference. Make sure that you do not use the round
command when generating cost and effectiveness data vectors within the cea

Fig. 10.30 ICER, efficiency frontier and INB with R-CRAN: example 4

10.5 Numerical Implementation in R-CRAN 355



function. Although it is quite useful for the presentation of results (as in Fig. 10.29),

the use of rounded values precludes from obtaining exact outcomes.

The next step consists in plotting the efficiency frontier (Fig. 10.31). One needs

to be careful as we need now to compute differences from each strategy to strategy

a only, and not first differences as previously. To plot the frontier we first exclude

strategy b. Then, to include separately strategy b on the graph we use command

points. For both the plot and points functions we use command pch to define a

vector of symbols. Command type¼ ”b” used in the plot function allows to draw

“both” a line and a symbol together. A description of graphic options is available by

running command “?plot . default”.
To implement the INB methodology (Fig. 10.32), one needs first to create a

range of values for WTP. In Fig. 10.30, this range goes from 0 to 700. We then

compute the INB for each value of WTP and for each strategy. The way to draw a

graphic is similar to what has been done previously. Here, a range is defined for the

y-axis in order to better represent each INB. We also specify the names of both the

horizontal and vertical axes. The function abline is used to plot a horizontal line that
goes through the origin (h¼ 0), as well as vertical lines (v¼ ICER) allowing to

display theWTP for which strategies c and d are accepted. Last, a legend is created.
The first entry relates to the position of the legend in the graphic. Option lty¼ c
(1, 1, 1) speficies the type of the line, “1” meaning continuous line. Option col
defines the color of the lines, and legend their name.
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10.6 Extension to QALYs

A key feature of health programs is that patients can go through many health states

(e.g., hospitalization for hip surgery, then convalescence period followed by pro-

gressive return to normal walk) that bring different levels of satisfaction. Account-

ing for these welfare changes can be essential to guide health-care resource

allocation decisions. In this respect, a widely used measure of health effectiveness

is that of quality adjusted life-years (QALYs). The idea is that the satisfaction of

patients can be measured on a 0–1 scale which describes whether a health state is

more desirable than another. As already stressed in a previous chapter (see Chap. 6),

this measurement can be obtained from preference surveys in which standard

gambles, time trade-offs or discrete choice experiments are used to create a ranking

among health states. Health outcomes are translated into quality of life measures.

In practice, QALY increments or decrements are measured along discrete time

intervals, for instance the cycles in a Markov model. Let us refer to example

4, strategy a where the four Markov states can be used to describe health states

[m1,m2,m3,m4]. We make the assumption that quality of life deteriorates as

individuals move from S1 to S2, S2 to S3, S3 to S4. Figure 10.33 provides the

codes in R-CRAN. The first step is to upload packages markovchain and FinCal
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(for discounting) then create the Markov chain. The second step consists in

generating the Markov trace and associating utility levels to it. At each time

increment, here for instance a month, the initial population of 1000 subjects is

reallocated among health states and their corresponding QALYs. In this numerical

example, we put [u(m1)¼ 0.8, u(m2)¼ 0.6, u(m3)¼ 0.4, u(m4)¼ 0.0]. The

discounted total utility reached by the cohort each month is represented in

Fig. 10.34 until time horizon T¼ 50 months is reached.

Whenever effectiveness measures do not fully account for the condition of users

or patients, QALYs appear as a way of apprehending it more accurately without any

recourse to monetary valuation.

10.7 Uncertainty and Probabilistic Sensitivity Analysis

The exploration of uncertainty is of paramount importance in cost effectiveness

analysis. The usual classification comes from health technology assessment

guidelines and it includes methodological uncertainty, parameter uncertainty and

structural uncertainty.

Methodological Uncertainty The vast majority of cost effectiveness analyses has

to adhere to a reference case that prescribes the set of methods to be used.

Inadequate compliance with guideline recommendations brings in discrepancies

that undermine the scope and relevance of cost effectiveness outcomes. Methodo-

logical uncertainty comes from those failures. The first recommendation item is

what is called the perspective of the model, namely: Who defines the effectiveness

criterion, the cost perimeter? Second, the time horizon has to be carefully justified:

too long, it dilutes costs and effects, particularly through discounting; too short, it

may unduly truncate outcomes occurring too late in the evaluation process to be

Fig. 10.33 QALY generation with R-CRAN
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properly taken into account. Even in the absence of a guideline reference case, this

is an important point. An example outside the field of health would be the choice of

the right time horizon for an education program: should the horizon be limited to

school achievements or should it reach beyond to catch the effects of the program

on mid-term achievements on the job market? The third item is the choice of the

discount rate. It influences the degree to which future outcomes are taken into

account. Guidelines, when they exist, usually follow the recommendations of

governments or supranational agencies.

The last two items are probably those who generate the more methodological

uncertainty. The population of analysis (or population of interest, or of reference)

should be targeted as precisely as possible in accordance with the goal defined

during the analysis of the context of the program. Should it be too narrowly

delineated, then relevant consequences would be missed. Should it be too broad,

then outcomes would be blurred in too vast a population. Furthermore, in case of

sampling, representativeness would be lessened. Finally, the choice of comparators

(the competing strategies) is probably the main source of bias. If relevant

comparators are left aside, the statistical part of the evaluation process may appear

at first glance accurate, providing that it is properly carried out in mathematical
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terms. Nevertheless, it would be uninterpretable in terms of policy

recommendations.

Parameter Uncertainty It relates to the estimation of the mean values of model

inputs (e.g., unit costs, utility scores, mortality risk, recovery frequency, dropout

rate, etc.). Parameter uncertainty first comes from the lack of justification of data

sources. The quality of primary data, obtained from preexisting or homemade

databases, must be openly assessed. Census or sample survey procedures should

be fully described. The failure to meet those requirement may seriously impair the

next steps of the evaluation process. The chapter dedicated to “Sampling and

construction of variables” provides guidance in this respect. Equipped with a

database of a given quality, a first way to deal with parameter uncertainty is to

proceed to one-way deterministic sensitivity analysis. It examines how an outcome

of interest (the ICER for instance) changes in response to variations in a single

parameter, holding all other parameters constant. As an illustration, one may figure

out an outcome associated linearly with a set of covariates, the one-way analysis

consisting in calculating the partial derivative of the outcome with respect to the

parameter of interest. One must be extremely cautious about the interpretation of

such results. The underlying assumption of linearity undermines deterministic

sensitivity analyses. Decision analytic modeling does not pre-specify any func-

tional form relating model inputs and the ensuing outcomes. Models are usually

complex enough to preclude reducibility to linear relations. For instance, an

increase in effectiveness can come from fewer adverse events which breeds in

turn smaller treatment costs while success in avoiding those negative health effects

can be related to increased costs as more experienced staff are enrolled in the

program. The ensuing reduced morbidity may in turn have longer term effects on

patients’ ability to bear subsequent care stages, increasing their utility, or allow

them to be safely eligible to the next stage or line of treatment, etc. The main

interest of deterministic sensitivity analysis is to check that the direction of change

is consistent with common sense or prior belief as to that direction (e.g., a decrease

in the price of an input should not increase the cost outcome). Since models are

often complex, with many states and transitions organized in intricate patterns,

deterministic sensitivity analysis can serve as debugging device, to check the

internal coherence of the coding of the model. Parameter uncertainty is best dealt

with through probabilistic sensitivity analysis and will be investigated in detail in

the upcoming developments.

Structural Uncertainty It relates to the uncertainty around the constituting

aspects of the model. The first problem that generates structural uncertainty is the

possible omission of events by the evaluator when they frame the decision analytic

model (in the case of a Markov model, there would be missing Markov states).

Omission may be in relation to a lack of knowledge about the context or on the

effects or consequences of the intervention. In terms of decision analysis under

incomplete knowledge, this corresponds to the impossibility of an exhaustive

classification of the states of nature associated with the intervention. For instance,
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in the case of a health program, the lack of knowledge of the natural history of the

disease or the unfounded extrapolation of the effects of a drug beyond the time

horizon of the associated clinical trial generate uncertainty that cannot be dealt with

by using the standard statistical tools that address parameter uncertainty. The

second issue associated with structural uncertainty is about the measurement of

cost and above all of utility. The Chap. 6 has evidenced the difficulty to adequately

assess individual preferences. The statistical handling of the uncertainty around

utility parameters offers a partial answer but it gives it under the assumption that the

utility measurement method is adequate, which assumption is surrounded by a

statistically irreducible uncertainty.

Admittedly, the three types of uncertainty overlap to some extent. The standard

classification described here nevertheless provides a useful framework and check-

list to investigate the partial knowledge investigators usually face when they

evaluate programs. Methodological uncertainty depends on the context of the

analysis and will not be further studied. Structural uncertainty also very much

depends on that context (e.g., utility formation and measurement is a fundamental

question in health technology assessment that differs substantially from outcome

measurement in education or social rehabilitation). The next developments will

focus on the treatment of parameter uncertainty which all evaluation programs

commonly face.

First, uncertainty in cost parameters is likely substantially to impact the project

appraisal. This uncertainty can come from imprecision in measurement due to

inadequate accounting structures, difficulty in using and comparing with cost data

from other institutional context, absence of consensus on joint cost allocation

methods, small sample size when gathering cost data, etc. An adequate distribution

should rule out negative numbers since costs are counted positively, allow values

greater than 1 as well as high values. Cost values often cluster around their mode,

but particular situations are likely to generate outlying but nevertheless relevant

observations. For instance, a given medical intervention may evidence costs that are

homogenous amongst the vast majority of patients but nevertheless induce for a

minority of them much longer stays in hospital requiring lengthy inpatient admis-

sion and care. Similarly, while most schoolchildren entail similar educational costs,

some pupils with specific difficulties in their acquisition of knowledge or in their

behavior may require special attention from the educational community. The counts

of resource use (hospital days, hours of specialized teaching) are weighted by unit

cost and sometimes, that count can be quite high. Cost data can thus be long-tailed

(right skewed). Taking those constraints into account, both the Log-normal and

Gamma distributions are suited to simulate cost parameters.

The Log-normal distribution is a continuous probability distribution of a random

variable whose logarithm is normally distributed. In R-CRAN, the rlnorm com-

mand generates such random deviates:

rlnorm ¼ rlnorm obs; μ; σð Þ
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where obs stands for the number of observations randomly generated while μ is a

location parameter (or log mean) and σ is a shape parameter (or log standard

deviation). By definition, the expectation of the Log-normal distribution is

eμþσ2=2 and the variance is ðeσ2 � 1Þeμþσ2=2 . If a random variable X follows the

Log-normal distribution, then lnX has the normal distribution with mean μ and

standard deviation σ. In other words, the location parameter is the mean of the data

set after transformation by taking the logarithm, and the scale parameter is the

standard deviation of the data set after transformation.

The method of moments can be used to estimate the parameters of the

Log-normal distribution. The idea is to relate the population moments (i.e.,

equations of expectation and variance of the distribution) to the sample moments

estimated from the sample. The equations are then solved for the shape parameters,

using the sample moments in place of the (unknown) population moments. Assume

for instance that we have some data about a cost parameter with sample mean �x and

standard error se. To fit a Log-normal distribution, we must have:

�x ¼ eμþσ2=2 and se2 ¼ ðeσ2 � 1Þeμþσ2=2

We can invert these formulas to get μ and σ as functions of �x and se:

μ ¼ ln �xð Þ � 1

2
ln se=�xð Þ2 þ 1
� �

and σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se=�xð Þ2 þ 1

q
For instance, if one were knowing that μ¼ 10 and se¼ 6 we could easily use

R-CRAN to fit the distribution in question. Note that the standard error se here

denotes the standard deviation of the sampling distribution of the mean and not the

sample standard deviation.

Figure 10.35 offers an example. First, using the above expressions, we define a

unit cost uc1 with mean of 10 and standard error of 6. The first entry in the rlnorm
command denotes the number of randomly generated observations (here

1,000,000), while the second and third entries stand for the μ and σ parameters,

respectively. Figure 10.36a provides the related probability density function

estimated with plot(density()). The bandwidth relates to the precision of the local

estimations used to approximate the shape of the density curve. As can be seen, the

distribution shifts to the right as the mean increases (Fig. 10.36b). Moreover, the

lower the standard error, the less spread out the distribution (Fig. 10.36c).
The Gamma distribution is often preferred in health technology assessment. In

R-CRAN, we have:

rgamma ¼ rgamma obs; α; βð Þ
where α is a shape parameter and β is a rate parameter. Both parameters are positive

real numbers. Parameter α mainly determines the position of the density function.

Higher values of α are for instance associated with a density function placed on the

right of the x axis. Parameter β on the other hand has the effect of stretching or
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compressing the range of the Gamma distribution. The higher β, the more spread

out the distribution.

The expectation and variance of the gamma distribution are α/β and α/β2,
respectively. Thus, as previously, the shape and rate parameters can be calculated

from a sample mean �x and standard error se. Using the method of moments, we set:

�x ¼ α

β
and se2 ¼ α

β2

Solving for the values of α and β yields:

α ¼ �x 2

se2
and β ¼ �x

se2

Fig. 10.35 Log-normal and gamma distributions in R-CRAN
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The main difference between α and β comes from whether the mean is expressed in

square in the numerator. An increase in the sample mean has thus a higher impact

on α, and makes the distribution move to the right of the x axis.
Figures 10.35 and 10.36d, e, f simulate the gamma distribution. The first entry in

the rgamma command denotes the number of randomly generated observations

(here 1,000,000), while the second and third entries stand for the shape and rate

parameters respectively. In Fig. 10.36d, the mean and standard error are set to

10 and 6 respectively. The density function moves to the right when the mean is set

to a higher value (Fig. 10.36e). The lower the standard error, the less spread out the
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Fig. 10.36 Modeling cost parameters. (a) Log-normal (mean ¼ 10, se ¼ 6); (b) log-normal

(mean ¼ 50, se ¼ 6); (c) log-normal (mean ¼ 50, se ¼ 2); (d) gamma (mean ¼ 10, se ¼ 6); (e)

gamma (mean ¼ 50, se ¼ 6); and (f) gamma (mean ¼ 50, se ¼ 2)
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distribution (Fig. 10.36f). As can be observed, both the Log-normal and gamma

distributions can be used effectively for describing positively skewed data.

Note that the Log-normal and gamma distributions are also frequently used to fit

QALYs, especially when one needs to include the possibility of one or more health

states with utility out of the [0,1] bounds. Specifically, utility parameter U may be

negative if a health state is considered worse than death and thus allocated a value

less than zero. The usual way to fit a distribution in that case is to focus on utility

decrements 1�U so that values are positive only. The analysis moves from the

utility scale to the disutility scale: distributions are censored at zero but they are

unbounded above zero. The Log-normal and gamma distributions then become

appropriate to model those weights.

Assigning a distribution on a probability parameter is challenging as one must

account for the fact that measurements are constrained to lie between zero and one.

Two distributions can be used which satisfy this property: the beta distribution and

the Dirichlet distribution. While the beta distribution is well suited to model

two-state transition probabilities, the Dirichlet distribution is more appropriate

when faced with multiple-state environments. For instance, if one were using

independent beta distributions for fitting the probabilities of several states of nature,

one would face the risk of having a sum of parameters out of the [0, 1] bounds. The

Dirichlet distribution overcomes this issue by generalizing the beta distribution.

In its simplest (non-generalized) form, the beta distribution is determined by two

positive shape parameters, denoted α and β:

rbeta ¼ rbeta obs; α; βð Þ
Depending on those parameters, the beta distribution takes different shapes. When

α and β have the same value, the distribution is symmetric. As their values increase,

the distribution becomes more peaked. When α and β are different, the distribution

is asymmetric.

To illustrate the beta distribution, assume that we deal with only two states of

nature, say m1 and m2. Imagine that we have observed from a sample of size n that

n1 individuals are in state m1 while n2 are in state m2. To fit the beta distribution

based on this sample data, we simply need to set α¼ n1 and β¼ n2. Another but
equivalent way to specify α and β is to rely on the sample proportion p and sample

error standard se. By definition, the beta distribution has an expectation of α/(α + β)
and a variance of αβ/((α+ β)2(α+ β + 1)). Using the method of moments, we set:

p ¼ α

αþ β
and se2 ¼ αβ

αþ βð Þ2 αþ β þ 1ð Þ
Solving for α and β yields:
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α ¼ p
p 1� pð Þ

se2
� 1

� �
and β ¼ α

1� pð Þ
p

Assume for instance that we have 600 out of 1000 children who are occasional

school leavers (state m2) while the other 400 remain in state m1 (they are regular

attendants). The beta distribution representing the probability of school dropout can

be defined as:

rbeta ¼ rbeta obs; 400; 600ð Þ
Figures 10.37 and 10.38a illustrate this case. If, on the other hand, only the sample

proportion is known, e.g., p¼0.4, and a confidence interval for a proportion has

been estimated with se¼ 0.05, then the beta distribution is defined as:

rbeta ¼ rbeta obs; 38; 57ð Þ

Figure 10.37 describes the computation. As can be seen from Fig. 10.38b, the

distribution is more spread out, yet the mean is still around 0.4.

The Dirichlet distribution is the multivariate generalization of the beta distribu-

tion to a larger set of states. It is particularly suitable for modeling a transition

matrix:

rdirichlet ¼ rdirichlet obs; alphað Þ
where alpha¼ (α1, α2, . . .) is a vector or matrix of parameters. In R-CRAN, this

function comes with the mc2d package which includes various distributions for

Monte Carlo simulations.

Consider for instance the previous beta distribution rbeta(obs, 400,600). In

Fig. 10.38a, the command has been used to simulate 1,000,000 observations, e.g.,

0.35, 0.41, 0.45, etc., which on average yields a proportion of being in state m1 of

0.4. By construction, the probability of being in state m2 is thus 1 minus those

values, i.e. 0.65, 0.59, 0.55, etc. The Dirichlet distribution can save us some time by

providing directly those proportions, as shown in Fig. 10.38c, d where both density

functions are displayed (i.e. bp ¼ 0:4 and 1� bp ¼ 0:6 on average). To do so, in

Fig. 10.37, we have specified alpha as a vector c(400,600).
More interestingly, the entry alpha in the rdirichlet command can take the form

of a matrix. Coming back to example 4, let us assume that the transition matrix Pa

of strategy a has been obtained empirically from samples of size 1000:

State m1 State m2 State m3 State m4 Total
Sample 1 : m1 800 200 0 0 1000

Sample 2 : m2 400 500 100 0 1000

Sample 3 : m3 50 300 600 50 1000

Sample 4 : m4 0 0 0 1000 1000
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Fig. 10.37 Beta and Dirichlet distributions in R-CRAN
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For simplicity of exposition, the table is exactly the same as the Markov trace.

However, in practice, it is unlikely that the sample sizes match the number of

subjects in the Markov simulations. To fit the Dirichlet distribution, one simply

needs to specify alpha using the values of the above matrix. In Fig. 10.37, we set:

alpha ¼ matrix c 800; 400; 50; 0; 200; 500; . . .ð Þ; nrow ¼ 4ð Þ
Then, using rdirichlet(4, alpha), we successively generate three random transition

matrices. The approach can thereby be used in a Monte Carlo framework where

each row of the transition matrix is assigned a random generator whose

probabilities sum to 1.

Until now, parameters have been assumed to be independent. If there is a

presumption that it is not the case, the Cholesky decomposition method can be
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Fig. 10.38 Modeling transition probabilities. (a) Beta (alpha ¼ 400, beta ¼ 600); (b) beta

(p ¼ 0.4, se ¼ 0.05); (c) Dirichlet (400, 600), p ¼ 0.4; and (d) Dirichlet (400, 600), p ¼ 0.6
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used to assess uncertainty when two or more parameters are correlated. If we have

access to the variance-covariance matrix, we can employ the Cholesky decomposi-

tion that provides correlated draws from a multivariate normal distribution. Chap. 9

offers an example of such a distribution.

A probabilistic sensitivity analysis (aka Monte Carlo simulations) assigns a

probability distribution to all sensitive parameters. Figure 10.39 offers an illustra-

tion using example 4. The approach simulates i¼ 1 to obs¼ 1000 scenarios and

examines the randomly generated parameters simultaneously in each loop. The

parameters are thereby random in the sense that their value is subject to variations

due to chance. For each strategy under examination, the analysis results in a range

of cost and effectiveness measurements with their probabilities of occurrence.

More specifically, the Monte Carlo simulations of Fig. 10.39 start with

uploading the mc2d package. Then the program sets the main parameters of the

model. As previously, the focus is on M¼ 4 Markov states. The time horizon is

T¼ 10 years. The initial allocation of subjects amongst the states is N0¼ c
(1000, 0, 0, 0). The discount rate is set to Disc .RATE¼ 0.03. The number of

strategies is K¼ 4. The second step consists in creating two matrices that will

contain the randomly generated values of the cost and effectiveness measurements.

The entry obs¼ 1000 defines the number of simulations. Matrices SIM_E and

SIM_C are thus made of K¼ 4 columns and obs¼ 1000 rows.

The next step relates to the loop itself. A probability distribution is assigned to

each of the parameters and the model is run a thousand of times to generate the

probability distribution of the cost and effectiveness measures. Note that the

number of loops can be set to a higher value, e.g., 10,000, in which case the

software takes more time to generate the simulation outputs. For simplicity of

exposition, the choice of the distributions in Fig. 10.39 is arbitrary. First, using

the Dirichlet distribution, each strategy is assigned a transition matrix using the

same approach as in Fig. 10.37 (i.e. we assume that each row of the transition

matrix has been were obtained from a sample of size 1000). The unit costs are

assigned the same values on average than those in Sects 10.5 and 10.6. For strategy

a, the standard error is set to
ffiffiffiffiffiffiffi
0:5

p
, while for strategy b, c and d, the standard error is

set to
ffiffiffiffiffiffiffi
1:5

p
,

ffiffiffi
2

p
and

ffiffiffi
3

p
, respectively. Note that the cea function previously created

in Sect. 10.6 is used to compute the effectiveness and cost measurements. The

reader thus should be careful to run the program of Fig. 10.29 before implementing

the program of Fig. 10.39. Last, the coding ends with two lines:

SIM E i;½ � ¼ c sum a$discEFFECTð Þ; sum b$discEFFECTð Þ; . . .ð Þ
and

SIM C i;½ � ¼ c sum a$discCOSTð Þ; sum b$discCOSTð Þ; . . .ð Þ
For each randomly generated data i¼ 1. . .1000, the effectiveness and cost

measurements are saved for subsequent analysis in the SIM_E and SIM_Cmatrices.

10.7 Uncertainty and Probabilistic Sensitivity Analysis 369

http://dx.doi.org/10.1007/978-3-319-52827-4_9


Fig. 10.39 Monte Carlo simulations of cost and effectiveness: example 4
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Once the SIM_E and SIM_C matrices have been filled in with the randomly

generated numbers, one can assess the relevance of the simulations with basic

univariate analyses. For instance, Fig. 10.40 draws the estimated density probability

functions of the cost and effectiveness measurements for each strategy (see

Figs. 10.41 and 10.42). As previously, the density function is used to compute

density estimates. Compared to the other strategies, it can be seen from Fig. 10.41

that strategy a has on average a lower effectiveness and a larger variance. Fig. 10.42
shows that costs and their variance increase as one moves from strategy a to

strategy b, c and d. The next section aims to provide a more detailed comparison

of those disparities.

10.8 Analyzing Simulation Outputs

In this section we review the three standard approaches to analyze Monte Carlo

simulations in a cost effectiveness framework: the cost-effectiveness plane, the

expected INB and the acceptability curves. All those approaches suppose a strategy

against which all the others are compared. This reference can for instance be the

current intervention or the one that is thought to be the less-cost effective. In what

follows, pursuing with example 4, we will consider strategy a as this benchmark.

The cost-effectiveness plane method is described in Fig. 10.43. The idea is to

compare each strategy with the reference by plotting the difference in effectiveness

(ΔE) against the difference in cost (ΔC). For example, Figs. 10.44, 10.45 and 10.46

shows the previous 1000 Monte Carlo simulations in the [ΔE,ΔC] plane using

strategy a as the reference strategy. As already stated in Sect. 10.2, the slope of a

line joining a point to the origin is the incremental cost-effectiveness ratio (ICER)
which measures the incremental cost associated with one additional unit of effec-

tiveness. The rectangle relates on the other hand to the 95% confidence intervals

defining those distributions.

Figures 10.44, 10.45 and 10.46 have been created in R-CRAN using the matrices

SIM_E and SIM_C of Fig. 10.39. Those matrices contains all the simulated values

of cost and effectiveness from strategy a to strategy d. Figure 10.43 is coded as

Fig. 10.40 Distributions of cost and effectiveness: example 4
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follows. First, the differences in question are computed using strategy a (first

colomn of SIM_E and SIM_C) as the reference. The plot command is then used

to draw the graphs. For each strategy, the incremental cost (ΔC) is expressed as a

function of the incremental effectiveness (ΔE). The xlim and ylim entry specify the

range of the graph and is used to ensure comparability of graphs between strategies.

The y- and x-axes are included using the abline(v¼ 0) and abline(h¼ 0) commands,

respectively. The function rect draws a rectangle using the coordinates of two

points. The method to compute those points is simple. The approach relies on the

quantile function which is used here to compute the percentiles of the simulations

vector. For instance, the function quantile(delta .E[, 2], .025) yields the lower

bound of the 95% confidence interval of the 1000 observations related to strategy

b and its differential effectiveness. In other words, 2.5% of the simulated

observations lies below that value. Reciprocally, the function quantile(delta .E
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Fig. 10.41 Estimated distributions of effectiveness: example 4
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[, 2], .975) yield the upper bound of the 95% confidence interval with 97.5% of the

observations lying above that limit. Using similar computations for costs, we are

able to establish the coordinates of the rectangle whose height represents the 95%

confidence interval on differential cost and width the 95% confidence interval on

differential effectiveness.

The joint cost effectiveness density for strategies b, c and d with strategy a as the
reference evidences a strong presumption that they all belong to the North East

quadrant, with an increasing effectiveness from b to c and d. Cost structures are
similar, with a small advantage to strategy b who offers more simulations in the

South East quadrant where the strategy would be dominant. From Figs. 10.44 to

10.46 we cannot conclude that the costs of strategies are significantly different from

those of strategy a (the rectangle crosses the horizontal axis). Yet, strategy d offers

the greater number of simulations in the North East quadrant with the greater level

of effectiveness.
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Fig. 10.42 Estimated distributions of cost: example 4
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Although the previous approach offers an easy way of comparing strategies, it

does suffer from a lack of generalization as the ICER is by construction to be

compared with a single value of WTP. Moreover, the approach yields results that

are difficult to interpret when the resulting confidence intervals are very large. To

overcome those issues, one may rely instead on the expected incremental net

benefit. The approach is depicted in Fig. 10.47 and consists in computing the

usual INB indicator for a range of willingness to pay using the mean of the

differential cost and effectiveness in the simulations. The codes are similar to

those of Fig. 10.30 except that we now use averages. This yields Fig. 10.48

where strategy b is found to be never the most preferred strategy. Below a WTP
of around $100 per unit of effectiveness gained, the reference strategy a is pre-

ferred. For a WTP approximately between $100 and $440 strategy c is better. Then
above $440 per unit of effectiveness gained, strategy d should win through.

One inconvenient of the expected INB method is that it excludes risk

considerations from the analysis since the variance in data is totally disregarded.

In practice, the probability distributions used in the Monte Carlo framework are

specified so that their expected value corresponds more or less to the parameters

used in the deterministic analysis. Therefore, at best, the approach can be used as a

robustness check that the simulations are able to reproduce the most likely scenario

(see for instance the very similar Fig. 10.32).

Fig. 10.43 Differential effectiveness and cost in R-CRAN: example 4
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A way to account for the variance in the data is to rely on cost-effectiveness

acceptability curves. The principle is to compute the number of simulations in

which each strategy is found to be most efficient and this, for each possible value of

willingness to pay. Figure 10.49 provides the program in R-CRAN. The idea is

again to analyze the simulated data (previously stored in SIM_E and SIM_C) and to
run two loops: one for the change in the willingness to pay (loop 1), one for

counting the number of times each strategy is optimal (loop 2).

Basically speaking, we are now dealing with four strategies, a range of WTP
(from $1 to $700) and a set of 1000 simulations. Loop 1 starts with aWTP of $1 and

computes an INBmatrix for the whole set of simulations. Then loop 2 examines this

INB matrix starting with the first set of simulations (i¼ 1). For each strategy, one

must compute a dummy (OPTa,OPTb,OPTc, andOPTd) that specifies whether the
strategy is optimal (value 1) or not (value 0) according to the INB criterion. The idea

is to find the strategy that yields the highest INB given the willingness to pay. Loop

2 continues until all the data sets have been examined (i¼ 2 . . . obs). Then the

counter of Loop 1 is set to $2 and loop 2 restarts from i¼ 1. The process continues

until WTP¼700.

As can be understood, one needs to set a value 0 or 1 for each strategy, eachWTP
and each simulated data. To do so, Fig. 10.49 starts with the construction of four
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Fig. 10.44 Joint cost-effectiveness density for strategy b: example 4
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matrices, one for each strategy, each made of as many rows as there are simulations,

here, obs¼ 1000, and as many columns as they are values of WTP(here, from 1 to

700). For each WTP, loop 1 stores the incremental net benefits in a matrix called

MAT_INB. Command cbind is used to combine the sequence of INBs by columns.

Loop 2 then examines this matrix and specifies the dummies as follows:

OPTa i;WTP½ � ¼ which:max MAT INB i;½ �ð Þ ¼¼ 1ð Þ∗1

OPTb i;WTP½ � ¼ which:max MAT INB i;½ �ð Þ ¼¼ 2ð Þ∗1

OPTc i;WTP½ � ¼ which:max MAT INB i;½ �ð Þ ¼¼ 3ð Þ∗1

OPTd i;WTP½ � ¼ which:max MAT INB i;½ �ð Þ ¼¼ 4ð Þ∗1

Here which . max determines the location, i.e., index of the maximum in the

numeric vectorMAT_INB[i, ]. The “¼¼” command produces a type of value called

a “logical”, i.e. TRUE or FALSE, that specifies whether or not a condition (here,

being equal to 1, 2, 3 or 4, referring to the four columns of matrix MAT_INB
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Fig. 10.47 Expected incremental net benefit with R-CRAN: example 4
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respectively associated with strategies a, b, c and d ) is met. The “∗ 1” command is

used to transform the logical value TRUE or FALSE into a numerical value 1 or

0. For instance, if the index of the maximum is 1, it means that the INB is greater for

the first strategy (namely strategy a) and a value of 1 is assigned to OPTa while

zeros are assigned to other strategies (OPTb, OPTc and OPTd).
Once the loops are completed, one simply needs to compute for each WTP the

number of times each strategy has been optimal. The command colMeans is used
for this purpose. To illustrate, imagine for instance that OPTa has the following

shape:

OPTa ¼

WTP ¼ $1 WTP ¼ $2 WTP ¼ $3 WTP ¼ $4

1 1 0 0

0 0 1 0

1 1 1 1

1 1 1 0

1 0 0 0

0 0 0 0

2
666666664

3
777777775

Here, the counter of Loop 1 goes from $1 to $4 while the counter of loop 2 goes

from 1 to 6, i.e. we consider four values of WTP and 6 simulated data sets. For
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WTP¼ $1, strategy a is found to be optimal four times. The mean is computed as

1 + 0 + 1 + 1 + 1 + 0/6 ¼ 66.6%. In other words, for a willingness to pay of $1,

strategy a is found to be optimal in two third of the simulations. Similarly, we can

compute the mean for the next columns: 50% for WTP¼ $2 and $3, 16.66% for

WTP¼ $4. Of course, in practice, the number of simulated data as well as the range

of willingness to pay is much larger. By construction, if OPTa[i¼ 1,WTP¼ 1]¼ 1

then OPTb[i¼ 1,WTP¼ 1] is equal to zero and so are OPTc and OPTd. This
ensures that the vertical sum of acceptability curves is always equal to 100%.

Figure 10.50 provides the resulting graph. The results are in accordance with

what has been previously observed. Below a WTP of around $100 per unit of

effectiveness gained, the reference strategy a is preferred. For a WTP approxi-

mately between $100 and $440 strategy c is better. Then above $440 per unit of

effectiveness gained, strategy d wins. The graph also has the advantage to provide

information on the risk associated with each strategy. For a given WTP, the higher

Fig. 10.49 Cost-effectiveness acceptability curves in R-CRAN: example 4
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the curve, the higher the confidence in the results. For instance, for small WTP, the
black curve (strategy a) is above the other strategies, and is cost-effective with a

probability of 40–60%. On the other hand, for large values of WTP, the blue curve
(strategy d ) is not so far from the green curve (strategy c) and strategy

d progressively takes the advantage over all the other strategies. That advantage

is confirmed for even greater values of WTP (MaxWTP¼ 1500) where strategy

d evidences a strong degree of confidence that reaches 80% of simulations

(Fig. 10.51).

Bibliographical Guideline

Cost effectiveness analysis has been developed initially as a decision tool for

constrained optimization in operations research and management science (Briggs

et al. 2006). It has then appeared to be particularly suited to public policies

involving the maximization of a societal objective under a budget constraint.

That constrained optimization would encompass two or more alternative options

each with their own costs and consequences. In the 1990s, cost effectiveness

analysis has developed in the field of education policies (Levin and McEwan

2000), in transport and environment (with Shoup 1973 as a precursor; a survey is
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provided by Kok et al. 2011) but mostly in public health were it has been exten-

sively used to assess mass screening programs as well as access to social security

reimbursement for innovative drugs or treatments (Gold et al. 1996; Drummond

and McGuire 2001; Drummond et al. 2015). Furthermore, cost effectiveness analy-

sis has become the official evaluation tool for several Health Technology Assess-

ment national agencies including the United Kingdom, France, Australia, The

Netherlands, Canada, etc. (Heintz et al. 2016 provide a systematic assessment of

national practices in Europe).

Cost effectiveness analysis rests on cost effectiveness indicators that provide a

synthetic measure of complex decision problems. The use of the differential

effectiveness and differential cost mapping has been promoted by Black (1990).

The incremental cost effectiveness method arises in the mid-1970s and has been

systematized by Drummond et al. (1987) and Johannesson and Weinstein (1993).

The decisional and statistical problems raised by the use of ICER have led to the

introduction of the INB in the late 1990s (Stinnett and Mullahy, 1998). The

efficiency frontier is a standard in management science; Laska et al. (2002) provide

a systematic review of its properties. Willan (2011) reviews and illustrates methods

for determining sample size requirements for cost effectiveness analysis in clinical

trials.
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Forerunners in the use of Markov models in decision analytic modeling are

Sonnenberg and Beck (1993) and Briggs and Sculpher (1998). Alternatives to

Markov processes are for instance decision trees or system dynamic models

(Brennan et al. 2006 give a survey of the main DAM modeling tools). Markov

models have been first used in this chapter in a deterministic setting. It is useful in

order to get a broad picture of the policy question at stake. It also provides data for

subsequent multicriteria decision analysis, especially with respect to the efficiency

frontier. However, if a decision is to be taken on the basis of a cost effectiveness

analysis, then the extension to a probabilistic setting is required. Uncertainty is

systematically investigated by Barton et al. (2008), Claxton (2008), Briggs et al.

(2012), Ghabri et al. (2016). A recent step by step approach to handling parameter

uncertainty is provided by Edlin et al. (2015). Model biases in health technology

assessment are explored by Raimond et al. (2014).
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Multi-criteria Decision Analysis 11

11.1 Key Concepts and Steps

Multiple criteria decision analysis (MCDA), also called multi-criteria analysis, is

concerned with the analysis of multiple attribute environments and is devoted to the

development of decision support tools to address complex decisions, especially

where other methods fail to consider more than one outcome of interest. The

approach is based on operational research and uses advanced analytical methods

to evaluate a finite number of alternatives. These alternatives may be very broad.

For example, in the context of public policy-making, MCDA can be used to

compare the performance of different units (e.g., countries, municipalities, patients,

students) based on their individual characteristics (wealth, education, health) or to

select a particular policy option using a full range of social, environmental, techni-

cal, and financial indicators. A set of criteria is first established; then weights are

assigned to reflect their relative importance. The analysis finally provides an

ordered set of alternatives based on their overall performance.

In its simplest form (compensatory analysis), the idea behind MCDA is to

simplify the decision-making process through the construction of a composite

indicator, that is, a measurement of performance based on the aggregation of the

different dimensions under examination. The approach is particularly useful for the

comparison and ranking of countries or cities. The Human Development Index

(HDI) offers an example. It is a measure of well-being which relates to three

dimensions of human development: health, education, and income per capita:

HDI ¼ Ihealth � Ieducation � IIncomeð Þ13

This index is an alternative to the traditional GDP per capita and can be used to

follow improvement in human development over time or to compare development

levels across countries. The method is said to be compensatory because a marginal

decrease in the value of one dimension (e.g., income) can be compensated by a

marginal increase in the value of another dimension (e.g., education). Composite
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indicators are very attractive as they offer a simple way of ranking alternatives. The

approach can also be used for comparing a range of public projects or action plans

which are described in terms of their financial, social and environmental impacts.

Policy options are then ordered from best to worst by means of the composite

indicator.

In its most complex form (non-compensatory analysis), MCDA does not aim to

aggregate the different criteria together but, instead, examines each dimension

individually. In that context, tradeoffs among variables are of less importance. A

bad performance may not be compensated for by a better score somewhere else.

This type of analysis is generally dedicated to “sorting problems”, where the aim is

to assign alternatives to defined categories or to reduce the number of alternatives to

be considered. For example, one of those non-compensatory methods, known as the

outranking approach, relies on pairwise comparisons across the whole set of

available criteria. The idea is to compute the number of times each alternative

performs better than the others. Alternatives that outrank the others are considered

the best, while those that are outranked are disregarded. The method is said to be

non-compensatory because the final judgment is based on how many times each

alternative differs positively from the others and not on the magnitude of that

difference. In other words, an alternative i that performs slightly better on most

criteria will rank higher than an alternative j that does much better for a smaller set

of attributes.

The different steps of MCDA are illustrated in Fig. 11.1. Basically speaking, the

approach starts with the identification of the problem (step 1): what are the

objectives of the study or the questions to be answered? What is the set of variables

to be analyzed? What are the alternatives under evaluation? This step is not to be

neglected as it determines the way data is collected and the form each individual

indicator will take. The approach then proceeds with gathering information about
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the performance of each alternative against the whole set of criteria (step 2). Data

generally takes the form of a performance matrix:

Criteria 1 Criteria 2 . . . Criteria K
Alternative 1 100 17;000 . . . 0:01
Alternative 2 160 20;000 . . . 0:03

⋮ ⋮ ⋮ ⋮ ⋮
Alternative n 7 18;000 . . . 0:02

Each row of the matrix describes an evaluated unit/option and each column

describes their performance against the criteria. Those criteria define the set of

individual indicators under scrutiny. To make those indicators comparable, values

in the performance matrix are generally normalized to be from 0 to 1, thereby

constituting what is termed a score matrix.

Step 3 adds another element in the evaluation process. Numerical weights are

assigned to criteria to better reflect their relative importance. In many cases, the

elicitation process itself proves to be very helpful. The stakeholders can express and

shape preferences in terms suited to the context. Weights and scores for each

alternative are then combined to arrive at a ranking or sorting of alternatives

(Step 4). The approach can be compensatory or non-compensatory. Should a

compensatory analysis be implemented, the approach would rely on aggregation

methods to build a composite indicator; for instance by multiplying or summing the

individual indicators. Should a non-compensatory analysis be implemented, the

approach would examine each dimension individually. Last, policy

recommendations can be made on the basis of the MCDA model (step 5). A

sensitivity analysis that examines the weights and scores is used to explore how

changes in assumptions influence the results. Those successive steps are further

detailed in the remaining of the chapter.

MCDA is very flexible as scores can be quantifiable in non-monetary terms (e.g.,

social or health effects) and be expressed in ordinal and numerical terms. It has

applications in many different fields (human development, health, education, envi-

ronment, etc.) and allows for the possibility of assessing performance over time.

Often, it is considered as an efficient communication tool. Composite indicators are

for instance very popular among government agencies as they can be used not only

to assess performance, but also to capture the attention of the many actors involved

in the decision-making process, to stimulate public policy debate, and to guide

policy action. Because information is easier to interpret, stakeholders are offered a

simple but general picture of the problem.

Despite its many qualities, MCDA is not the magic method that solves all the

issues faced by the evaluator. The approach is often said to lack theoretical

foundations and the analysis depends on so many factors, starting from step

1 (problem structuring) to step 5 (examination of results), that the final judgment

can be far from relevant if those steps are not carefully addressed. While considered

as an efficient decision aid tool, it may also offer a picture of the problem that is by
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far too simplistic. On top of those considerations, the weighting framework is

generally based on human judgment and is thereby subjective (the aim of MCDA

is to model the preferences of the decision-maker). Due to strategic choices or

political dispute, the analysis can thereby be manipulated to support a particular

outcome or to exclude another one. For those reasons, MCDAwould only serve as a

starting point for discussion, not to take the decision per se. A sound sensitivity

analysis is also crucial to improve the quality of the analysis.

The outline of the chapter is as follows. Section 11.2 is about problem structur-

ing, i.e. how to establish the decision context and how to generate the set of criteria

for MCDA purpose. Sections 11.3 and 11.4 offer several methods for establishing

relative preference scores and assigning weights to criteria. Section 11.5 explains

how to combine those weights and scores to derive a composite indicator.

Section 11.6 extends those methods to non-compensatory analysis. Last, Sect.

11.7 is about sensitivity analysis and how to interpret MCDA results.

11.2 Problem Structuring

The first step in a MCDA process is to define the problem faced by the policy-

makers, the objective of the study and the persons who should be involved in the

MCDA process. This task can be cognitively challenging since MCDAmethods are

generally used in the case of problems that are too complex to handle with

traditional methods, involving multiple objectives and many conflicting views.

Using reference sources such as budget requests, performance measurements and

audit results may also render the analysis costly in terms of time and money spent.

In that context, value trees (criteria hierarchy tree) are often seen as a useful tool to

better understand the context of the decision.

Formally, a value tree can be divided in a set of three items: the goal (or main

objective) of the study, a set of sub-objectives, and specific criteria or individual

indicators. Figure 11.2 illustrates the approach using the Human Development

Index. As can be seen, the HDI is not a comprehensive measure of well-being

(for instance, inequalities are disregarded). It focuses on basic dimensions of human

development, health, education, and income. Those dimensions are themselves

measured in relation to specific individual indicators: life expectancy at birth,

expected years of schooling (i.e. number of years of schooling that a child of school

entrance age can expect to receive), mean years of schooling (i.e. average number

of years of education received by people aged 25 and older) and gross national

income per capita. The fundamental goal of building such a value tree is to help the

evaluator organize all the information relevant to the analysis into a structure that

can be easily apprehended.

A key issue in MCDA is to delineate the set of sub-objectives and their related

measurement. Those dimensions can be very broad. By way of illustration, when

evaluating a transport investment, MCDA can clarify the set of costs and benefits.

Those can be expressed in terms of accessibility, safety, and environment. Other

dimensions can also be included such as economic impact, future potential in terms
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of supply, how the program integrates within the current environment, and deliver-

ability. Those dimensions (or sub-objectives) may themselves be subdivided in

specific indicators: improvement in landscape, noise, air quality, overall safety, etc.

The literature distinguishes a set of requirements that are primordial in this respect.

They can be summarized as follows:

1. Completeness: have all relevant criteria been considered? The selected criteria

should account for all the important characteristics of the evaluated alternatives.

Satisfying this condition is crucial as one does not want to miss an

important item.

2. Operationality: can each alternative be assessed against each criterion? Data

must be available and collected according to a well-defined scale of

measurement.

3. Non-redundancy: are there unnecessary criteria? The MCDA process should

avoid overlapping measures. Similar criteria should be eliminated or combined

into a single indicator in order to facilitate the process of calculating criteria

weights.

4. Simplicity: is the number of criteria excessive? The purpose of MCDA is to

facilitate the evaluation process. The number of criteria should be kept as low as

possible. A criterion can for instance be deleted if all the alternatives are likely to

achieve a similar score when assessed against it.

5. Independence: are the criteria independent from policy choices? For example,

high public spending (e.g., in education or health) cannot itself be a criterion.

Public spending is a mean of achieving a goal, not the goal per se, and can only

be considered as a cost.

When selecting the set of criteria a balance must be found between those five

conditions. Note also that generating criteria is context dependent and will reflect
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the views of the different stakeholders in play: e.g., central and local authorities,

interest groups, regulatory bodies, residents, scientific community, etc.

Several methods can be used to elicit the shape of the value tree. For instance,

the set of sub-objectives can be identified using existing theories and policy

statements, information from interest groups and government agencies, by observ-

ing the environment in which the study is conducted, from discussions with

decision-makers, through a survey distributed to stakeholders, or via a panel of

experts. In most cases, the organization of a focus group where relevant actors

express their views and knowledge can be helpful. By definition, a focus group is a

small group led through an open discussion by a moderator. In a MCDA context,

the approach is used to learn about participants’ opinions, e.g., issues and criteria

they think are relevant, and to test assumptions. The group must be large enough

(greater than 5) to be sufficiently representative but smaller enough (lower than 12)

so that each participant has time to express their view. An agenda must be defined

ex ante, with a specific timeline (from one to two hours), a set of open-ended

questions (less than 10), and repeated sessions. A summary report is generally

offered to the focus group after each session. The focus group represents also an

opportunity to discuss the set of alternatives to be evaluated. The different views are

then assembled to produce a final report and a graphical representation in the form

of a value tree.

11.3 Assessing Performance Levels with Scoring

Once the set of criteria has been established, the next step is to assess how the

alternatives perform with regard to each individual indicator. This process, also

known as scoring, can take different forms. For instance, different groups (e.g.,

decision-makers, citizens, experts or stakeholders) can allocate the alternatives in

question with a score in the [0,1] interval (direct rating). This is by far the easiest

approach. Scores can also be obtained from a specially constructed information

system or from already existing statistical sources. The resulting output is a

performance matrix that relates each alternative to its performance with respect to

the selected indicators.

Formally, a performance matrix (before scoring and weighting) is a table in

which the rows describe the alternatives i¼ 1 . . . n (e.g., countries, policy options)

and the columns xk, k¼ 1 . . .K, the individual indicators:
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Each element xik of matrix P represents the evaluation (or performance) of the i-th
alternative against the k-th criterion. Those elements are generally expressed in

quantitative terms, but can also take a qualitative form, e.g., a 5-star rating

(HHH☆☆) or a specific color coding (red for high and green for low).

Table 11.1 offers an example of a performance matrix using the 2014 HDI. The

table, based on data from the United Nations Development Program, shows the

performance of a number of (randomly selected) countries in regard to the level

they reach in terms of life expectancy, expected years of schooling for children of

school-entering age, mean of years of schooling for adults aged 25 years and gross

national income per capita. Last column offers the resulting HDI index. Its compu-

tation will be detailed later on. As can be observed, three of these criteria are

measured in years and one in monetary (purchasing power parity PPP) terms. In

addition, if the first three criteria are expressed in similar terms, their values are not

directly comparable. For these reasons, MCDA usually requires transformation of

raw measurements so that each individual indicator is normalized between 0 and

1 (or equivalently 100%).

Final scores are derived from partial value functions (marginal value functions).

The aim of those functions, denoted vk¼ vk(xik) hereafter, is to translate the

performance of the alternatives on a scale which allows direct comparisons

among criteria. For each k¼ 1 . . .K, they ideally satisfy three properties:

Property 1: alternative i is preferred to alternative j in terms of criterion k if and

only if vk(xik)> vk(xjk);
Property 2: indifference between i and j in terms of criterion k exists if and only if

vk(xik)¼ vk(xjk).
Property 3: vk xmin,kð Þ¼0 and vk xmax,kð Þ¼1, where xmin , k and xmax , k are the

minimum and maximum level for criterion k, respectively.

Table 11.1 Human development index for a set of countries: example 1

Country

Life

expectancy

at birth

(years)

Expected

years of

schooling

(years)

Mean years

of

schooling

(years)

Gross national

income per

capita (2011

PPP $)

Human

Development

Index (HDI)

Norway 81.6 17.5 12.6 64,992 0.944

Denmark 80.2 18.7 12.7 44,025 0.923

Japan 83.5 15.3 11.5 36,927 0.891

Bulgaria 74.2 14.4 10.6 15,596 0.782

Egypt 71.1 13.5 6.6 10,512 0.690

Indonesia 68.9 13.0 7.6 9788 0.684

Cambodia 68.4 10.9 4.4 2949 0.555

Pakistan 66.2 7.8 4.7 4866 0.538

Haiti 62.8 8.7 4.9 1669 0.483

Niger 61.4 5.4 1.5 908 0.348

Data source: United Nations Development Program, 2014
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Property 1 ensures that all scores are expressed in accordance with preferences

and aims. It is preferable to have a high score (high vk) than a low score (low vk).
Assume for instance that one aims to evaluate a range of public projects. Cost

considerations are likely to belong to the set of relevant criteria. In that case, a high

score must be associated with a low level of cost and, reciprocally, a low score must

be associated with a high level of cost. Property 2 states that one is indifferent

between two alternatives on the considered criterion if they have obtained the same

score. Last, according to Property 3, those scores should lie between 0 and 1.

In accordance with property 3, it is conventional to assign a value using an

interval scale. To do so, one needs to define two reference points. The scores are

then computed in relation to those benchmarks. The approach, also known as unity-

based normalization or Min-Max method, specifies a linear partial value function as

follows:

vk xikð Þ ¼ xik � xmin,k

xmax,k � xmin,k

The score is computed as the ratio of the difference between the raw value and the

minimum value (xik� xmin, k) to the difference between the maximum and minimum

values (xmax, k� xmin, k). As illustrated in Fig. 11.3a, the approach is equivalent to

rescaling the performance values using the equation of a line. For example, if one

criterion has a minimum value of 2,000 and a maximum of 10,000, each score is

computed as:

Score ¼ Performance � 2;000

10;000� 2;000

An alternative with a performance of 2,000 will obtain a score of 0 while an

alternative with a performance of 10,000 will get a score of 1. For any alternative

1

( ) ( ) ( )

1 1

0 0 0

, , , ,, ,

a b c

Fig. 11.3 Linear, convex and concave value functions. (a) Linear function, (b) Convex function,
(c) Concave function
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in between, say 3,000, we would obtain a score inside the [0,1] interval, here

(3,000–2,000)/(8,000) ¼ 0.125.

Note that when higher values in the performance matrix correspond to worse

rather than better performance, for instance in the case of a pollution or a financial

cost, then the linear value function must be modified as follows:

vk xikð Þ ¼ xmax,k � xik
xmax,k � xmin,k

Consider for instance a measure of pollution whose values lie between 0 and 50.

The value function becomes:

Score ¼ 50� Performance

50� 0

An alternative with a performance of 50 will get a score of 0 while an alternative

with a performance of 0 will obtain a score of 1. For any alternative in between, say

25, we would have a score equal to (50–25)/(50) ¼ 0.5.

One interesting feature of partial value functions is that they can also be used to

establish some preference over the performance levels. Mathematically speaking,

partial value functions can be nonlinear. For example, preference over air quality

can be marginally decreasing as people may not care about air quality

improvements above a certain level. After an acceptable level of pollution, further

marginal improvements are valued much less highly. In practice, for computational

ease, it is simpler to rely on continuous functions as those illustrated in Fig. 11.3b,

c. A convex function is more suitable when, for an equivalent variation (displayed

in green in Fig. 11.3b), the decision-maker prefers an increase from high perfor-

mance levels over an increase from low performance levels. On the other hand, a

concave function is used when, for an equivalent variation, the decision-maker

prefers an increase from low performance levels over an increase from high

performance levels (Fig. 11.3c). In contrast, with a linear function, the decision-

maker is indifferent with respect to the starting point (Fig. 11.3a). The value

function is said to be neutral.

The minimum and maximum reference points can be established in many

different ways. First and foremost, the scale can be global or local. By definition,

a local scale is defined by the currently considered set of alternatives. In the sample,

a score of 0 is assigned to the alternative with the worst performance and 1 is

assigned to the alternative that best performs. Other alternatives will receive a score

that lies in between those values. With global scaling on the other hand, the

reference points are defined based on the worst and best possible performance

using the whole range of conceivable values. Scores lie again in the [0,1] interval,

but do not necessarily reach those extreme values. The choice between local and

global scaling is mainly a matter of time and ease of use. Ideally, global scaling is

chosen because the approach does not depend on the set of considered alternatives.

It more easily accommodates new alternatives and allows for comparison through
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time. Local scaling on the other hand permits an immediate estimation of scores

and, most of all, does not require further human judgment.

The Human Development Index offers an example of global scaling. The

reference points are presented in Table 11.2. The minima are fixed at 20 years for

life expectancy, 0 years for expected years of schooling, 0 years for mean years of

schooling, and $100 for GNI per capita. The maxima are respectively set to

85 years, 18 years, 15 years and $75,000. Those values are based on historical

evidence and forecasts. Scores provided in Fig. 11.4 are computed in relation to

those values. The different partial value functions can be described as follows:

vkðxikÞ ¼ xik � 20

85� 20
ðk ¼ Life expectancyÞ

vk xikð Þ ¼ min xik; 18f g � 0

18� 0
k ¼ Expected years of schoolingð Þ

vk xikð Þ ¼ xik � 0

15� 0
k ¼ Mean years of schoolingð Þ

vk xikð Þ ¼ ln xik � ln 100

ln 75;000� ln 100
k ¼ GNI per capitað Þ

Note that for the purpose of calculating the HDI value, expected years of schooling

is capped at 18 years (see Denmark in Table 11.1 and Fig. 11.4), which equivalently

means that the value function associated with that criterion is non-linear and

Table 11.2 Reference points for the HDI: example 1

Country

Life

expectancy at

birth (years)

Expected years

of schooling

(years)

Mean years of

schooling

(years)

Gross national income

per capita (2011

PPP $)

Minimum 20 0 0 100

Maximum 85 18 15 75,000

Data source: United Nations Development Program, 2014

Fig. 11.4 Score matrix: example 1
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concave. Similarly, the HDI uses the logarithm of income, i.e. a concave function,

to reflect the diminishing importance of income with increasing GNI.

The score matrix is usually not the final product of the analysis. Yet, before any

further calculations, a close examination of the scores can be informative and, to

some extent, necessary. For instance, it can be interesting to check whether there

are alternatives that are dominated by others. By definition, alternative i is said to

dominate alternative j if i performs at least as well as j on all criteria and strictly

better on at least one criterion. Reversely, an alternative is said to be non-dominated

as long as it is not inferior to any other available alternative in all the considered

criteria. Consider for instance Fig. 11.4. From this small sample of countries, it can

be seen that Japan dominates all the alternatives but Norway and Denmark. Those

alternatives are therefore those that best perform in the related sample. This result

should be reflected in the composite indicator. When it comes to the evaluation of

public projects, policy options that have proven to be dominated can be eliminated

without any regret, unless those dominance relationships indicate that one or more

relevant criteria are missing from the analysis.

11.4 Criteria Weighting

In most MCDA studies, weighting coefficients wk, k¼ 1 . . .K, lie between 0 and

1 and satisfy the following requirement:

XK
k¼1

wk ¼ 1

Weights must reflect the relative importance of the criteria and, as such, be in

accordance with the decision-maker’s preferences. Assessing those weights is not

straightforward. In most cases, weight assessment is based on successive iterations

and involves the participation of stakeholders. Several methods can be used in this

respect.

As exemplified with the HDI, the easiest way for establishing weights is to set

wk¼ 1/K for all k. All criteria are judged to be of equal importance. While

convenient at first, the approach may however induce redundancy by combining

variables that are too similar. To overcome double-counting, criteria that prove to

be highly correlated can be combined into a single indicator. This is for instance the

case with the education index used to compute the 2014 HDI. We have:

IEducation ¼ Expected years of schoolingþMean years of schooling

2

This index is defined as the arithmetic mean of the mean years of schooling

indicator and the expected years of schooling indicator.

Another approach is direct subjective assessment through what is termed the

analytic hierarchy process, also known as Saaty’s method. The decision-maker
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evaluates the criteria using pairwise comparisons. Then, the results are assembled

to compute weights. The method has proved to be very popular in MCDA. It is for

instance described in “Multi-criteria analysis: a manual”, a guide from the UK

Government department for communities and local government in England. Spe-

cifically, the decision-maker must answer a set of questions of the form “how

important is criterion k relative to criterion l?” The preference can be expressed

verbally and converted on an ordinal scale as follows:

1 ¼ Equally important;

3 ¼ Moderately more important;

5 ¼ Strongly more important;

7 ¼ Very strongly more important;

9 ¼ Overwhelmingly more important.

The results are then summarized in a judgment matrix:

where each akl represents the pairwise comparison rating for criterion k against l.
The decision-maker is assumed to be consistent in his/her preference. For example,

if k is felt to be “moderately more important” than l, then the value 1/3 is assigned to
l against k. Because of this reciprocity, the method requires only K(K� 1)/2 pairwise

comparisons.

One popular method for deriving weights is the geometric mean method. First,

the geometric mean of each row of A is computed as:

π1 ¼ 1� a12 � . . .� a1k � . . .� a1Kð Þ1=K

π2 ¼ 1=a12 � 1� . . .� a2k � . . .� a2Kð Þ1=K

. . .

πk ¼ 1=a1k � 1=a2k � . . .� 1� . . .� akKð Þ1=K

. . .

πK ¼ 1=a1K � 1=a2K � . . .� 1=akK � . . .� 1ð Þ1=K

Second, the sum π1 + π2 + . . . πk+ . . . + πK of those geometric means is calculated.

Last, weights are obtained through normalization by dividing each of the geometric

means by their total:
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wk ¼ πkPK
k¼1 πk

The approach offers a simple way of assessing preferences, especially if the

decision-maker finds direct rating rather difficult. Greater weights are given to

criteria which are considered to be more important. Yet, the method can be costly

in terms of time as it relies on a large number of pairwise comparisons.

To illustrate Saaty’s method, let us assume that we have the following judgment

matrix:

A ¼
1 1=5 1=9
5 1 1=3
9 3 1

2
4

3
5

Criterion 2 is judged to be “strongly more important” than criterion 1. Criterion 3 is

“overwhelmingly more important” than criterion 1 and “moderately more impor-

tant” than criterion 2. The geometric means are computed as follows:

π1 ¼ 1� 1=5� 1=9ð Þ1=3 � 0:281

π2 ¼ 5� 1� 1=3ð Þ1=3 � 1:186

π2 ¼ 9� 3� 1ð Þ1=3 ¼ 3:000

The total of those geometric means is π1 + π2 + π3� 4.467. Finally, the weights are

obtained by dividing the geometric means by their total:

w1 � 0:281=4:467 � 0:063

w2 � 1:185=4:467 � 0:265

w3 � 3:000=4:467 � 0:672

As can be seen, the weights sum to one, the highest weight being allocated to

criterion 3, while the lowest is allocated to criterion 1.

Another possibility for computing weights is through use of a regression model.

The approach is suitable when the main outcome of interest is directly measurable,

but at high cost, which prevents the measure to be used repeatedly over time.

Consider for instance a value tree where the goal is to get a measure of y (e.g.,

welfare) and that only a set of normalized individual indicators x1, x2, . . ., xK are

available (e.g., per capita income, level of inequality, unemployment rate, mortality

rate, etc.). A survey can be implemented in period t to get a value of outcome y (e.g.,
through a scale from 1 to 10 where people indicate how satisfied they are with their

life). Then, using ordinary least squares, the following regression model can be

estimated to assess the link between y and the individual indicators x1, x2, . . ., xK:
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yi ¼ w1x1i þ w2x2i þ . . .þ wKxKi þ Ei

In that context, w1, . . .wK are the coefficients to be estimated and Ei is the error

term, i.e. unobserved factors that affect the dependent variable. Once estimated, the

model offers a way to predict the value of y using the individual indicators. The

approach does not require assumptions about the weights and rely only on statistical

evidence. The method can also be used to validate a set of already chosen weights.

One inconvenience, however, is that negative weights can be assigned. The

approach also relies on statistical expertise as a set of critical assumptions must

be verified in order to apply the method. For instance, the econometric approach

requires a large sample and appropriate checks to provide accurate results. Among

other things, individual indicators must be uncorrelated to avoid multicollinearity

problems.

Last, the weights may reflect the quality of the data. Individual indicators that

prove to be statistically unreliable (e.g., due to sampling error, missing values) can

be assigned lower weights. It is also possible to rely on experts or citizens’ opinion,

e.g., through survey or focus group methods, to determine the weights. Computed

as such, they would better reflect the importance of the criteria from the society’s

point of view and not only from the viewpoint of the decision-maker. Finally, to

avoid double counting, a sound principal component analysis, which provides a

multidimensional analysis of the context, can be used to characterize the different

correlations that are in play in the data.

11.5 Construction of a Composite Indicator

Once the weights have been determined, one must proceed with the evaluation of

the alternatives per se. A possible approach is to rely on aggregation methods (aka

American school) to build a single measure of performance. Based on the frame-

work of multi-attribute utility theory, a value function is constructed so as to

express overall preference. The idea is to combine all the partial scores and to

assemble them into a global score. The approach is compensatory because a poor

performance in some indicators can be compensated by sufficiently high values in

other indicators.

Formally, let xi¼ (xi1, xi2, . . . , xiK) characterize the performance of alternative

i against the whole set of criteria. Aggregation is implemented via a value function

V(xi)¼V(xi1, xi2, . . . , xiK) which assigns a global score to each alternative

i (i¼ 1 . . . n) using the whole set of criteria xik (k¼ 1 . . .K ). The value function

ideally satisfies three properties:

Property 1.Alternative i is preferred to alternative j against all criteria if and only if
V(xi)>V(xj);

Property 2. Indifference between i and j against all criteria exists if and only if V
(xi)¼V(xj).
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Property 3. Preferences and indifferences are transitive: for any alternatives h,
i and j, if alternative h is preferred to i, and alternative i is preferred to j, then
alternative h is preferred to j, and similarly for indifference.

Properties 1 and 2 imply that preferences are complete: for any alternatives i and
j, either one is strictly preferred to the other or there is indifference between them.

The purpose of the value function is to construct a preference order of the

alternatives that is consistent with the decision-maker’s viewpoint, the final aim

being to compile all individual indicators into a single composite indicator. The

decision-maker’s preference can be modeled in many ways depending on the

aggregation technique. The simplest form is the additive model, which sums the

weighted and normalized individual indicators:

V xið Þ ¼
XK
k¼1

wk � vk xikð Þ

Another widespread form is the geometric model:

V xið Þ ¼
YK
k¼1

vk xikð Þ½ �wk

In both cases we have:

XK
k¼1

wk ¼ 1 and 0 � wk � 1 for all k

One advantage of the additive model is that it allows the assessment of the

marginal contribution of each variable separately. An increase in the partial value

function vk(xik) by one unit yields an increase in the value function V(xi) by wk units.

Moreover, it is easy to compute a “marginal rate of substitution” (MRS) for a pair of

criteria. For criteria k and l, consider a simultaneous variation of their respective

partial value functions, keeping all other partial value functions constant. If the

value function level is to remain unchanged, then the total derivative of V is 0:

dV ¼ wkdvk þ wldvl ¼ 0

Which yields:

MRSvk!vl ¼
dvk
dvl

¼ �wl

wk

By definition, this rate represents how much a score for one criterion must increase

to compensate a decrease by one percent in a score on another criterion. By

construction, this rate is independent of the values of the K� 2 other indicators.
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One inconvenient of the additive model is the full compensability it implies. A

bad score for one criterion (e.g., an environmental index) can be easily

compensated for by a good score on another (e.g., a growth index). The geometric

model overcomes this issue. For instance, when a bad score is obtained, e.g., a score

close to zero, the value function approaches zero as well. In that context,

alternatives with low scores in some individual indicators are more likely to rank

last under a geometric aggregation. To illustrate those differences let us consider

again the HDI. In 2010, the HDI methodology has changed from arithmetic to

geometric aggregation. The reason behind this change was that poor performance in

any dimension was not reflected in the additive model. The geometric model on the

other hand allocates a low value for countries with uneven development across

dimensions. Table 11.3 offers an illustration using the sample of countries from

example 1. Scores for individual indicators are derived from Fig. 11.4. A stated

previously, the education index stands for the arithmetic mean of the mean years of

schooling indicator and the expected years of schooling indicator. For Japan, the

geometric model is obtained as follows:

V xJapan
� � ¼ 0:977ð Þ1=3 � 0:808ð Þ1=3 � 0:893ð Þ1=3 � 0:890

The additive version of the HDI (which is not applied anymore) yields instead:

V xJapan
� � ¼ 1

3
0:977þ 1

3
0:808þ 1

3
0:893 � 0:893

As can be observed from Table 11.3, no significant difference is observed between

the two models although discrepancies increase for countries with lower values of

Table 11.3 Aggregation of partial value functions: example 1

Country

Health

index

Education

index

Income

index

HDI

Geometric

model

HDI

Additive

model

Norway 0.948 0.906 0.978 0.944 0.944

Denmark 0.926 0.923 0.920 0.923 0.923

Japan 0.977 0.808 0.893 0.890 0.893

Bulgaria 0.834 0.753 0.763 0.783 0.783

Egypt 0.786 0.595 0.703 0.690 0.695

Indonesia 0.752 0.614 0.692 0.684 0.686

Cambodia 0.745 0.449 0.511 0.555 0.568

Pakistan 0.711 0.373 0.587 0.538 0.557

Haiti 0.658 0.405 0.425 0.484 0.496

Niger 0.637 0.200 0.333 0.349 0.390
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HDI. For a larger set of countries, however, the resulting ranking can be very

different.

When faced with a high number of alternatives, it is possible to summarize

information by allocating the alternatives to different categories based on the value

they obtain with respect to the composite indicator. The categories can for instance

be established on the basis of a rating scale (1, 2, 3. . .) or a qualitative scale (e.g.,
fully achieved, partly achieved, etc.). Cut-off points can be specified using infor-

mation about how the composite indicator is distributed. For instance, in the 2015

Human Development Report, those cut-off points are derived from the quartiles of

distributions: a country is classified in the “very high development” group if its HDI

is in percentiles 76–100%, in the “high development” group if its HDI is in the

percentiles 51–75%, and so on.

11.6 Non-Compensatory Analysis

When using the previous aggregation methods, results can be highly sensitive to

changes in scores and the way individual indicators are constructed and possibly

traded off. Some composite indicators can be in favor of one alternative while other

value functions are in favor of another. To overcome this issue one may rely on a

non-compensatory analysis. Non-compensatory models (aka French school) rely on

pairwise comparisons of alternatives with respect to each individual indicator. The

approach is particularly suitable for solving sorting problems. Among the most

popular outranking methods are the ELECTRE methods (ELimination Et Choix

Traduisant la REalité), also known as the “elimination and choice translating

reality” methods. Outranking relations among alternatives are examined based on

two measurements: a concordance index and a discordance index. Several versions

of the approach exist: ELECTRE I, II, III, Tri. Other methods are also available:

e.g., PROMETHEE I and II. For the sake of simplicity, this section focuses on

ELECTRE I only.

First a concordance set of criteria is defined for each pair of alternatives i and j.
This set is denoted Ω (i, j) hereafter. It is the set of all k ∈ {1, . . . ,K} for which

alternative i is preferred to alternative j:

Ω i; jð Þ ¼ kj vk xikð Þ � vk xjk
� �� �

, for i 6¼ j

Let ΩC(i, j) denote the complement of the concordance set. We have:

ΩC i; jð Þ ¼ kf jvk xikð Þ < vk xjk
� ��

, for i 6¼ j

Hereafter, we will refer to this set as the discordance set. It denotes the set of criteria

for which alternative i is worse than alternative j.
The concordance index between alternatives i and j is defined as the weighted

measure of the number of criteria for which alternative i is preferred to alternative j.
The calculation of this index is based on the concordance set and is defined as:
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c i; jð Þ ¼
P

k∈Ω i;jð ÞwkPK
k¼1 wk

This index lies in the [0,1] interval and is measured as the normalized sum of all

weights for which alternative i scores at least as highly as alternative j. If we assume

that the weights w1 . . .wk have been normalized a priori (their sum is equal to 1),

then the concordance index becomes:

c i; jð Þ ¼
X

k∈Ω i;jð Þ
wk

This index offers a measure of how far we are from dominance. A value of one

indicates that alternative i dominates alternative j (alternative i always yields a

score at least as high as alternative j). A value of zero indicates that alternative

j strictly dominates i (alternative i always yields a lower score). Any value between
0 and 1 indicates non-dominance.

The different values of the concordance indices are included in a concordance

matrix of dimension n� n:

Those values represent the (weighted) number of times each alternative wins

against another. Because they are meaningless, the diagonal elements of C are not

available (an alternative is not compared to itself).

The discordance index between alternatives i and j measures the maximum

observed difference in scores for which alternative j is preferred to alternative i:

d i; jð Þ ¼ 1

δ
max

k∈ΩCði; jÞ
vk xjk
� �� vk xikð Þ

where δ is the range of the scores, i.e. maximum score minus minimum score over

all criteria 1 . . .K. The discordance index lies between 0 and 1. By definition, it

assigns a value of zero when the discordance set ΩC is empty, i.e. when alternative

i dominates alternative j. Overall, this yields what is termed a discordance matrix:
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Somehow, those values establish the largest opportunity cost or “regret” (i.e. worst

score) incurred from having selected alternative i instead of alternative j.
Basically speaking, one would like the concordance index to be maximized and

the discordance index to be minimized. For this purpose, preferences are modeled

using binary outranking relations S whose meaning is “at least as good as”:

iSj , c i; jð Þ � ~c and d i; jð Þ � ~d

where ~c and ~d are chosen by the decision-maker in the [0,1] range. For an

outranking relation to hold true, both concordance and discordance indices should

lie in a given range of value. If iSj is verified, then we say that “alternative

i outranks alternative j”. An outranking relation is not necessarily complete or

transitive. Four situations actually may occur when alternative i is compared to

alternative j, i 6¼ j:

iSj and not jSi: alternative i is strictly preferred to alternative j.
jSi and not iSj: alternative j is strictly preferred to alternative i.
iSj and jSi: alternative i is indifferent to alternative j
Not iSj and not jSi: alternative i is incomparable to alternative j

The final solution to the decision problem is given by the set of non-outranked

alternatives. The higher the concordance threshold ~c and the lower the discordance

threshold ~d , the lower is the number of alternatives that are outranked and, thus, the

less severe is the comparison.

To illustrate the approach, let us consider the matrix of scores vk(xik) presented in
Table 11.4 where n¼ 5 alternatives are evaluated against K¼ 4 criteria. Last row

yields the weights wk associated with each dimension. Based on the score matrix,

we can compare alternative 1 versus alternative 2. As can be observed, the concor-

dance set for this pair of alternatives is made of criteria x1, x2 and x4. Alternative
1 indeed performs at least better for those criteria. By summing the related weights

we obtain:

c 1; 2ð Þ ¼ 0:6þ 0:2þ 0:1 ¼ 0:9

In a similar manner, the concordance set for a comparison of alternative 2 versus

alternative 1 is {x2, x3}. We obtain:
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c 2; 1ð Þ ¼ 0:2þ 0:1 ¼ 0:3

Applying a comparable reasoning for the whole set of alternatives, we obtain the

following concordance matrix:

C ¼

NA 0:9 0:7 0:8 1

0:3 NA 0:7 0:3 1

0:3 0:3 NA 0:3 0:9
0:2 0:7 0:7 NA 1

0:1 0 0:7 0 NA

2
66664

3
77775

From the 1’s in the matrix, we can conclude that alternatives 1, 2 and 4 dominate

alternative 5. From the 0’s we can also conclude that only alternatives 2 and

4 strictly dominate alternative 5.

The discordance set for a comparison of alternative 1 against alternative 2 is

made of criterion x3 only. For this criterion we observe a difference in score equal to
0.6–0.1¼ 0.5. The range δ¼ 0.8 is defined by the difference between the maximum

value (0.9) and the minimum value (0.1) observed in the score matrix (Table 11.4).

The discordance index for this pair of alternatives is thus:

d 1; 2ð Þ ¼ 0:5

0:8
¼ 0:625

Reciprocally, the discordance set when alternative 2 is compared to alternative 1 is

{x1, x4}. We have:

d 2; 1ð Þ ¼ max 0:8� 0:4; 0:5� 0:4f g
0:8

¼ 0:4

0:8
¼ 0:500

After completion of the comparisons, we obtain:

Table 11.4 Score matrix for example 2

Criterion x1 Criterion x2 Criterion x3 Criterion x4

Alternative 1 0.8 0.5 0.1 0.5

Alternative 2 0.4 0.5 0.6 0.4

Alternative 3 0.2 0.9 0.7 0.1

Alternative 4 0.5 0.4 0.2 0.9

Alternative 5 0.2 0.3 0.1 0.3

Weights 0.6 0.2 0.1 0.1
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D ¼

NA 0:625 0:750 0:500 0:000
0:500 NA 0:500 0:625 0:000
0:750 0:375 NA 1:000 0:250
0:375 0:500 0:625 NA 0:000
0:750 0:625 0:750 0:750 NA

2
66664

3
77775

Assume now that the thresholds are defined as follows:~c ¼ 0:6and~d ¼ 0:5. The
results can be summarized in the form of a matrix filled with 1 and 0 depending on

whether the conditions c i; jð Þ � ~c and d i; jð Þ � ~d do hold (1¼ TRUE, 0¼ FALSE).

Using information from matrices C and D, we obtain the following result matrix:

When both conditions are satisfied (c i; jð Þ � ~c and d i; jð Þ � ~d ), there is no reason to
eliminate alternative i when assessed against alternative j. Considering the relative

performance of the criteria, it performs better a sufficiently high number of times

and, when this is not the case, the difference in scores is sufficiently low. For

instance, when comparing alternative 1 versus alternative 4, the concordance index

is 0.8 and the discordance index is 0.5. This means that alternative 1 performs

sufficiently well against alternative 4, i.e. alternative 1 outranks alternative 4 (“1” is

displayed in red in the result matrix). In this particular case, it can be seen that the

reverse is not true. Alternative 4 does not outrank alternative 1 (“0” is displayed in

red in the result matrix). Alternative 1 is thus strictly preferred to alternative 4.

The set of best alternatives can be identified using a graph similar to that of

Fig. 11.5. Each circle represents an alternative and each arrow specifies whether an

alternative (start point) outranks another (end point). More specifically, the

ELECTRE I method implies searching the set of non-outranked alternatives. This

set defines a “kernel” which contains the solutions to the decision problem. By

definition a kernel Γ associated with an outranking relation S satisfies two

properties:

Property 1. For any alternative j outside Γ there exists an alternative i in Γ such that

iSj (stability property).

Property 2. Whatever the alternatives i and j inside Γ, we have neither iSj nor jSi
(absorption property).

Property 1 states that any alternative outside the kernel must be outranked by an

alternative inside the kernel. Property 2 states that an alternative inside the kernel

cannot be outranked by another alternative inside the kernel. As we shall see, there

can be several kernels or no kernel at all.
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The following algorithm can be used to find the set of possible solutions:

(1) place in the kernel all the alternatives that are not outranked; (2) examine

whether there are alternatives outside the kernel that are not outranked by at least

one alternative in the kernel. If yes, include them in the kernel and reiterate from

1, otherwise stop. Let us consider Fig. 11.5. Alternative 1 is not outranked and must

be included in the kernel (property 1). Yet, alternatives 2 and 3 are not outranked by

alternative 1. They must be included in the kernel (property 1). Since alternative 3 is

outranked by alternative 2, it cannot be included in the same kernel as alternative

2 (property 2). We finally have two kernels: {1, 2} and {3}. Alternatives outside

those kernels can be dropped as they are not fundamentally better compared to the

alternatives in the kernels.

One inconvenient of the approach is that the choice of the thresholds is subjec-

tive (as is the choice of the weights). Results can thereby be manipulated. For

instance, when the thresholds are set to~c ¼ 0:7 and ~d ¼ 0:125, the approach yields
a different result:

1

2

3

4

5

Fig. 11.5 Graph of S when ~c ¼ 0:6 and ~d ¼ 0:5: example 2
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R ¼

NA 0 0 0 1

0 NA 0 0 1

0 0 NA 0 0

0 0 0 NA 1

0 0 0 0 NA

2
66664

3
77775

The graph associated with this matrix is provided in Fig. 11.6. The kernel is made of

a larger set of alternatives: {1, 2, 3, 4}. When the thresholds are set to more severe

values, respectively ~c ¼ 0:5 and ~d ¼ 0:75, we obtain instead:

R ¼

NA 1 1 1 1

0 NA 1 0 1

0 0 NA 0 1

0 1 1 NA 1

0 0 1 0 NA

2
66664

3
77775

In this case, as shown in Fig. 11.7, the kernel is characterized by a single element:

alternative 1.

1

2

3

4

5

Fig. 11.6 Graph of S when ~c ¼ 0:7 and ~d ¼ 0:125: example 2
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Note that we obtain more or less similar results using a compensatory approach.

Applying an additive model on the score matrix of Table 11.4, we have:

Alternative 1: 0.8� 0.6 + 0.5� 0.2 + 0.1� 0.1 + 0.5� 0.1¼ 0.64

Alternative 2: 0.4� 0.6 + 0.5� 0.2 + 0.6� 0.1 + 0.4� 0.1¼ 0.44

Alternative 3: 0.2� 0.6 + 0.9� 0.2 + 0.7� 0.1 + 0.1� 0.1¼ 0.38

Alternative 4: 0.5� 0.6 + 0.4� 0.2 + 0.2� 0.1 + 0.9� 0.1¼ 0.49

Alternative 5: 0.2� 0.6 + 0.3� 0.2 + 0.1� 0.1 + 0.3� 0.1¼ 0.22

Alternative 1 would be ranked first, then alternative 4, alternative 2, alternative

3 and alternative 5. The ELECTRE I method, however, has the advantage of

pointing out particularities. For instance, we can see that alternative 1 (0.64) obtains

a higher global score than alternative 3 (0.38). Yet, in Fig. 11.5, alternative 3 is not

outranked by alternative 1. The reason behind this result is that alternative

3 performs much better on criteria x3 than alternative 1. The ELECTRE approach

can thus be used as a preliminary screening process in order to select a set of

promising alternatives but also to avoid large opportunity costs.

1

2

3

4

5

Fig. 11.7 Graph of S when ~c ¼ 0:5 and ~d ¼ 0:75: example 2
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The graphs of Figs. 11.5, 11.6, and 11.7 have been produced in R-CRAN.

Figure 11.8 provides the codes for Fig. 11.5. The program starts with the library
command which loads the package OutrankingTools. This package offers several

functions to process outranking ELECTRE methods. The program then continues

with the creation of the score matrix using information from Table 11.4. Each

vector represents a column of the score matrix. Four vectors are then created to

specify (1) the names of each option c("1", "2", "3", "4", "5"), (2) the names of the

criteria c("x1", "x2", "x3", "x4"), (3) the weights c(0.6,0.2,0.1,0.1), and (4) the direc-
tion of each indicator c("max ", "max ", "max ", "max "), i.e. whether the criteria

have to be minimized or maximized. Function par is used to modify the margins of

the box using a numerical vector of the form c(bottom,left,top,right) that gives the

number of lines of margin to be specified on the four sides of the plot. Last, the

command Electre_1 from the packageOutrankingTools draws the graph of Fig. 11.5.
Both entries, concordance_threshold¼ 0.6 and discordance_threshold¼ 0.5, specify

the thresholds to be used in the analysis. Including [2 : 3] at the end of the function

allows the concordance and discordance matrices to be displayed.

Fig. 11.8 Outranking relations with R-CRAN: example 2
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11.7 Examination of Results

The last step of MCDA is the examination of results. The size of alternatives,

whether they are countries, cities, schools, hospitals or policy options, may play an

important role in this respect. To illustrate, let us examine again the HDI. As

already stated, the aim of this composite indicator is to provide a measurement of

human development. The approach is very simple by nature as it relies only on three

dimensions. Yet, those dimensions represent averages: income per capita, expected

and mean years of schooling, number of years a newborn infant could expect to live.

If one were not using averages but values expressed in level instead, largest

countries would necessarily be ranked first because they would reach higher

performance in all dimensions. The HDI would be meaningless and the measure-

ment would be related to the population size only. To avoid those effects, individual

indicators should be adjusted so as to control for the size of alternatives (e.g., using

variables per capita, per GDP, per dollar spent). However, addressing this issue is

not as easy as it might look. It is usually dependent on the objective and context of

the analysis.

Consider for instance a decision-maker who must choose among several policy

options (e.g., public transportation modes). For each option, the dimensions of the

problem are divided into a financial cost c and several benefit measures b1 , . . . bK,
each of them being a specific indicator. With MCDA, there are three ways of

comparing the options in question. First, one may consider the cost c as a criterion
along with the various benefit measures. Second, one may divide each individual

indicator b1 , . . . bk by c and focus on benefits per dollar spent. Third, one may

examine b1 , . . . bk regardless of the cost and build an effectiveness indicator which
is compared to the spending level c. Each approach has its pros and cons.

The first approach is commonly used in MCDA. To compute the weights, the

decision-maker must be able to assess the importance of the project cost with

respect to each benefit. The recommendation in the literature is to ask the

decision-maker: “How important is cost relative to effectiveness?” The answer is

likely to depend on budget issues (if affordability is not an issue per se, a zero

weight would be assigned to costs). The process can therefore be highly sensitive

and so can be the conclusion itself. Moreover, depending on the selected weights,

the analysis may be biased toward smaller projects. Assume for instance that we are

comparing two transportation projects according to their cost (c) and how they

improve both traffic (b1) and air quality (b2). The performance matrix is the

following:

b1 b2 c
Alternative 1 3;000 400 $10;000
Alternative 2 5;000 600 $20;000

Alternative 2 is more costly but induces larger benefits at the same time. Thus,

assigning a high weight on cost will be detrimental to this alternative, not only
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because it is more costly, but also because the weights must add up to 1 (the weights

on b1 and b2 will be correspondingly lower).

The second approach which consists in dividing all individual benefits by the

project cost can be misleading. Rescaling b1 and b2 (using respectively 10,000 and

1,000 as upper bounds and 0 as lower bound) yields:

b1 b2
Alternative 1 0:3 0:4
Alternative 2 0:5 0:6

By dividing b1 and b2 by c (expressed in thousand dollars), we obtain:

b1=c b2=c
Alternative 1 0:030 0:04
Alternative 2 0:025 0:03

Those values relate to performance per thousand of dollars spent. In other words,

projects are now compared based on how good they are at achieving each

sub-objective. Alternative 2 is strictly dominated by alternative 1 and thereby

eliminated. One would reach a similar conclusion using a composite indicator.

For example, assuming equal weights:

Alternative 1 :
0:030þ 0:04

2
¼ 3:50%

Alternative 2 :
0:025þ 0:03

2
¼ 2:75%

Yet, such an analysis focuses on one aspect of the problem only. Alternative 2 is

indeed costly but it is also the alternative that best performs with respect to b1 and
b2. The decision-maker may actually decide to dedicate extra money to reach this

higher level of effectiveness. The approach which is described above completely

disregards this possibility.

The third approach consists in treating the cost as an extra variable and comput-

ing a hybrid benefit-cost ratio, denoted HBCR hereafter. First, as previously,

normalized scores are computed:

b1 b2
Alternative 1 0:3 0:4
Alternative 2 0:5 0:6

Then weights are assigned to each criterion and an effectiveness indicator is

calculated. Assuming equal weights and using the additive model, alternative

1 could be for instance assigned a final score of (0.3þ 0.4)/2¼ 35%, while alterna-

tive 2 would obtain (0.5þ 0.6)/2¼ 55%. Those scores offer a global measure of

effectiveness. The hybrid benefit-cost ratio is then computed as:
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HBCR ¼ Effectiveness

Cost

This approach is for instance described in “Principles and Guidelines for Economic

Appraisal of Transport Investment and Initiatives” (Government of New South

Wales). The aim is to be as close as possible to the framework of a cost benefit

analysis. Using amounts expressed in thousand dollars, we get:

HBCR 1ð Þ ¼ 35%

10
¼ 3:50%

HBCR 2ð Þ ¼ 55%

20
¼ 2:75%

Projects can then be ranked based on their HBCR. As can be deduced, the approach
is mathematically equivalent to the second one. Yet, it is more flexible as it allows

various weightings. Costs can be compared against benefits in many other ways.

The decision-maker may wish to assess whether it is advantageous to allocate extra

resources to reach a higher level of effectiveness. A cost-effectiveness analysis

would then be implemented to select the most efficient options.

MCDA provides a way of structuring complex decisions, and helps the decision-

maker assess the relative importance of the criteria. Yet, the method is often

subjective and sometimes complex. Weights might not be transferable from one

decision context to another. They may also differ among stakeholder groups. Data

about future outcomes may rely on imprecise forecasting methods. The previous

discussion also points out the importance of the decision method. To avoid inaccu-

rate decisions, a sound MCDA analysis generally ends with a sensitivity analysis.

The purpose is to check whether the solutions obtained are robust to changes not

only in the performance matrix, but also in the value functions, the weights and the

aggregation method. The approach is very similar to that used in financial analysis

and cost benefit analysis.

First, the sensitivity analysis can be performed by changing each important

parameter individually through a well-specified range. Consider for instance the

weight on cost in the following model:

V ¼ wccþ w1b1 þ w2b2 þ . . .þ wKbK

We must account for the fact that the sum of weights is equal to one.

w1 þ w2 þ . . .þ wKð Þ ¼ 1� wc

The impact of a change in wc is therefore established as follows:
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V ¼ wccþ 1� wcð Þ w1P
kwk

b1 þ w2P
kwk

b2 þ . . .þ wKP
kwk

bK

� �

To illustrate, let us consider the score matrix of example 2 (Table 11.4). The

weights are w1¼ 0.6, w2¼ 0.2, w3¼ 0.1 and w4¼ 0.1. Assume now that we would

like to examine how sensitive the results are to the weight on x1. Since

w2 +w3 +w4¼ 0.4, we have:

V ¼ w1 x1ð Þ þ 1� w1ð Þ 0:2

0:4
x2 þ 0:1

0:4
x3 þ 0:1

0:4
x4

� 	

Replacing the x’s with their true value for each alternative:

Alternative 1: w1 � 0:8þ 1� w1ð Þ 0:2
0:40:5þ 0:1

0:40:1þ 0:1
0:40:5

� �
Alternative 2: w1 � 0:4þ 1� w1ð Þ 0:2

0:40:5þ 0:1
0:40:6þ 0:1

0:40:4
� �

Alternative 3: w1 � 0:2þ 1� w1ð Þ 0:2
0:40:9þ 0:1

0:40:7þ 0:1
0:40:1

� �
Alternative 4: w1 � 0:5þ 1� w1ð Þ 0:2

0:40:4þ 0:1
0:40:2þ 0:1

0:40:9
� �

Alternative 5: w1 � 0:2þ 1� w1ð Þ 0:2
0:40:3þ 0:1

0:40:1þ 0:1
0:40:3

� �

In other words:

Alternative 1: w1� 0.8 + (1�w1)� 0.4

Alternative 2: w1� 0.4 + (1�w1)� 0.5

Alternative 3: w1� 0.2 + (1�w1)� 0.65

Alternative 4: w1� 0.5 + (1�w1)� 0.475

Alternative 5: w1� 0.2 + (1�w1)� 0.25

By varying w1 between 0 and 1 we obtain the sensitivity plot of Fig. 11.10, which

has been established in R-CRAN.

Figure 11.9 provide the codes to construct Fig. 11.10. First, a vector w1 is

created which takes values between 1% and 100%. This vector is used to create

the value functions V1, . . ., V5. Function plot then creates the graph and draws V1.
Entries xlab and ylab specify the label on the x axis and y axis, respectively;

ylim¼ c(0, 1) sets up the limits for the vertical axis; type¼ l gives the type of plot
desired, here a line; col¼ 1 specifies the color of that line, here black. Function

points adds the other value functions to the graph. Last, a legend is included using

legend() which specifies the names to be used (“alternative 1”, “alternative 2” and

so on), as well as the type of plot desired and the color for each curve.

Several conclusions may be drawn from Fig. 11.10. In particular, alternative

3 (in green) and alternative 1 (in black) appear at the top of the graph. While

alternative 1 is ranked first for high value of w1, alternative 3 is preferred for low

values of w1. The intersection of those lines is obtained as follows:
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Fig. 11.9 Sensitivity analysis with R-CRAN: example 2
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Fig. 11.10 Sensitivity plot for example 2
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w1 � 0:8þ 1� w1ð Þ � 0:4 ¼ w1 � 0:2þ 1� w1ð Þ � 0:65

That is to say:

w∗
1 � 0:29

If the weight on cost is thought to be fundamentally greater than this level, then the

decision goes toward alternative 1. The analysis can go further by examining the

scores themselves, e.g., by considering a set of possible scenarios or, when possible,

implementing Monte-Carlo simulations.

Bibliographical Guideline
The debate between using a compensatory approach or a non-compensatory

approach is often said to originate in the social science literature, and more

particularly in the seminal works of Borda (1784) and Condorcet (1785). The

“Handbook on constructing composite indicators” from the OECD offers a descrip-

tion of those works. Basically speaking, Borda and Condorcet were arguing about

the best voting rule for selecting a particular candidate from a set of politicians. If

several individuals or voters participate in the decision, how can we translate the

diverse views regarding the election outcome into a group or societal choice? While

Borda was in favor of the compensatory approach (modeled through what is now

termed the Borda count), Condorcet was on the other hand in favor of the

non-compensatory approach. For Condorcet, the best voting rule is to elect the

candidate that would win by majority rule in all pairings against the other

candidates. In MCDA, the approach has been extended by Roy and several

coauthors (the French school) to a family of methods known as ELECTRE (see

Roy 1968; Roy and Berthier 1973; Roy and Hugonnard 1982; Roy and Bouyssou

1993 among others). Replacing “voters” by “criteria”, the best decision rule would

be to select the alternative that best performs in all pairwise comparisons. The

American school is on the other hand represented by Saaty (1980), a professor of

statistics and operations research who developed the Analytic Hierarchy Process

(AHP) method.

It should be stressed that the aim of this chapter was to describe a set of

techniques which are commonly in play in MCDA. The chapter does not provide

an exhaustive review of all techniques but, instead, offers a synthesized view of the

MCDA approach. To go further, the reader may rely on several textbooks that

present an introduction to MCDA followed by more detailed chapters about the

methods and/or software used in this field (see, among others, Hobbs and Meier

2000; Pomerol and Barba-Romero 2000; French et al. 2009; Ishizaka and Nemery

2013). Additional textbooks (e.g., Beroggi 1991; Beinat 1997) provide an introduc-

tion to the main analytic concepts in MCDA. The reader can also rely on Melese

et al. (2015) who offer a discussion of MCDAmethods in the context of cost benefit

analysis.

Last, several guides that present the best practice in a policy-making context are

available online. We may name in particular “Tools for Composite Indicators
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Building” prepared for the EU (Nardo et al. 2005), the “Handbook on Constructing

Composite Indicators” by the OECD, “Multi-criteria analysis: a manual” from the

UK Government department for communities and local government in England, and

“Principles and Guidelines for Economic Appraisal of Transport Investment and

Initiatives” from the New South Wales Government. Health technology assessment

agencies also show a growing interest in MCDA methods (Thokaka et al. 2016).
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Roy, B., & Berthier, P. (1973). La méthode ELECRE II. Rapport technique. Note de travail, l42.
METRA, Direction Scientifique.

Roy, B., & Bouyssou, D. (1993). Aide multicritère à la décision: méthodes et cas. Paris:
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Part III

Ex post Evaluation



Project Follow-Up by Benchmarking 12

12.1 Cost Comparisons to a Reference

The implementation of large programs is usually devolved to several decision

making units often located in different places on the territory concerned by the

policy. Those are often facilities that operate independently in their geographical

area for the provision of the outcome planned by the program. Typical examples

include schools, hospitals, prisons, social centers, fire departments, which are in

charge of carrying out a mission as defined by the selected strategy. How those

facilities perform is a rather important question since there is no straightforward

way of measuring the relative efficiency of the facilities involved in the implemen-

tation of the project. They may face different constraints, various demand settings

and may have chosen different organizational patterns.

Benchmarking is a follow-up evaluation tool that compares the cost structure of

facilities with that of a given reference, the benchmark or yardstick. What is

assessed is not a policy per se, but the facilities in charge of implementing

it. Benchmarking should be applicable to any public service operating within a

multiple-input multiple-output setting and equipped with a cost accounting system.

The method is particularly relevant for services dedicated to a variety of target

groups. For instance, in education, pupils may come from differentiated social

backgrounds and require different learning and caring methods. Cost comparisons

that would not take into account differences in these demand motives would miss

essential information and surely distort assessments.

The first step in benchmarking is to highlight and delineate the effects of the

demand structure on the cost of the assessed facility (often called the case-mix

effect). The set of services that is supplied must be clearly identified in the

accounting system, with lists of users for each service. Offering those services

implies combinations of inputs that vary from one service to the other. For instance,

in the case of a fire department, fire suppression does not require the same vector of

inputs as a rescue mission. For this reason, as it also determines the quantity of

inputs used, the demand for a set of services plays a determinant role in explaining
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the average cost of a facility. A sound analysis must therefore identify and isolate

the effect of the demand structure on cost. Another example is that of a social care

facility which is located in an area where social distress is in relative terms much

higher than usual.

The purpose of benchmarking is to explore how inputs are translated into

outputs. A facility is considered more efficient than another when it maximizes

the level of outputs for a given set of inputs, or when it minimizes the cost of inputs

required to produce a given level of outputs. Among others, inputs include labor,

equipment, energy, maintenance and administration costs. They are the resources

used by the facility to produce and deliver the service in a given time period.

Outputs on the other hand are defined as the quantity of goods or services produced.

In the context of a public program, outputs are often measured by the number of

users that benefit from the services in question.

Consider two schools A and B that offer two types of degrees, one in physics and

one in literature. One would like to assess which facility achieves its task in the

most efficient way. Table 12.1 provides the average cost per student incurred in

supplying those services. The cost per year is much higher in physics than in

literature in both schools. This can be explained for instance by the equipment

required in physics for operating the classes. In the meantime, the demand structure

is found to differ from one school to the other. The majority of students in school

A are registered in literature while the majority of students in school B are registered

in physics. A rough comparison of their costs would be misleading. For school A,
the total average cost is defined as:

�c Að Þ ¼ $50000� 40%þ $30000� 60% ¼ 38000

For school B, we have:

�c Bð Þ ¼ $45000� 70%þ $25000� 30% ¼ 39000

We can compute the following cost ratio:

Table 12.1 The benchmarking methodology through a simple example

School A School B

Average cost per

year

Share of

students

Average cost per

year

Share of

students

Degree in

physics

$50,000 40% $45,000 70%

Degree in

literature

$30,000 60% $25,000 30%

100% 100%
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�c Að Þ
�c Bð Þ ¼

38000

39000
¼ 0:974

School A is thus cost saving by 1 – 0.974¼ 2.6%. Yet, this simple comparison does

not account for the fact that the distribution of users is in favor of school A. In this

school, most of the students are registered in literature, a much less costly degree.

From Table 12.1, school B is actually more efficient as the cost per student is lower

both in physics ($45,000 < $50,000) and literature ($25,000 < $30,000).

The basic tenet of the benchmarking methodology is to isolate the effect of the

demand structure:

Total effect ¼ Demand effectð Þ � Production effectð Þ
This is done by applying the demand structure of the assessed facility to another

facility chosen as the reference for the evaluation. How would the benchmark

perform if it were to face conditions similar to that of the evaluated unit? In our

numerical example, assume that school B is chosen as the benchmark. The approach

consists in applying the demand structure of A to the costs of B:

�c BjAð Þ ¼ $45000� 40%þ $25000� 60% ¼ 33000

The cost ratio can be rewritten as:

The first ratio relates the adjusted cost of B to the true cost of B; only the demand

structure is different. In this respect, we conclude that the distribution of students in

school A generates an extra saving of 1� 0.85¼ 15%. The second ratio compares

the cost of A to the adjusted cost of B, i.e. once the demand structure has been

controlled for. We conclude that the production structure of A generates an extra

cost of 15%.

There remains to be check whether the extra cost observed in school A is due to

price considerations (for instance, do the teachers in school A have a higher salary?)

or to the allocation of inputs among services (does school A use more teachers?).

Formally, the production effect can be decomposed into two elements:

Production effect ¼ Price effectð Þ � Quantity effectð Þ
Differences will now concern the input combination for each demand motive, as

well as the price of those inputs. Quantity and price effects will thus complete the

comparison of the assessed facility to its benchmark. In this respect, two approaches

can be implemented. The first one is service-oriented: in the case of the previous

example, the services provided are the degrees that students enroll in. The account-

ing system is organized by service, the use of inputs being detailed for each of them
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successively. With the second approach, the accounting system is organized by

input and the allocation of their use among the various services provided by the

facility (for instance, how many square meters of classrooms are respectively

allocated to the two degrees).

In practice, benchmarking requires adequate and precise information on demand

and cost. That can have been planned ex ante, as a requirement before the imple-

mentation of the project: facilities in charge of enacting it would have to demon-

strate that they do have, or will have at the time the project is started, a cost

accounting structure suitable for follow-up by benchmarking. Information on inputs

must thus be detailed and reliable. There is also a need for balance between

aggregation and disaggregation of data to be provided by the accounting system.

Too disaggregated, results may be intricate and uninterpretable; too aggregated,

they may provide an inaccurate picture of underlying but hidden problems.

There are three usual shortcomings associated with benchmarking. First, there

can be doubts about the quality of the accounting system and of data reporting.

While inaccuracies can be due to a lack of technical skill, one cannot also rule out

strategic misreporting due to cheating behavior. Second, benchmarking is not

equipped to assess the value of the services delivered by the facility. Only the

input combination is judged. In the case of our previous example, nothing can be

said with this method about the quality of the degrees offered by schools A and B.
This remark should be kept in mind as benchmarking can be used in further policy-

making. Benchmarking is neither about cost effectiveness nor about Pareto-

optimality as in cost benefit analysis. The approach does not relate the costs to

the degree to which objectives are achieved or to the satisfaction the users derive

from the services under evaluation. Third, the benchmark is usually an average of

reference facilities and may itself fall under the previous two shortcomings.

Benchmarking should then not be used as a “punishment and reward” device,

especially in a non-profit framework, with the exception of obviously outlying

decision-making units. It should rather help facilities in their learning process of

good practices.

Finally, when the project is implemented through a single facility, or when the

decision-maker wants to focus on a specific facility amongst several, benchmarking

can also be used in a self-evaluation dynamic process. The assessed facility is

compared to itself with respect to a previous period of activity so as to learn about

how its practices have evolved over time.

The chapter is organized as follows. Section 12.2 considers the cost accounting

framework that is required for cost comparisons between the assessed facility and

the benchmark. Section 12.3 examines the effects of the demand structure and of

the production structure on cost. Section 12.4 decomposes the price and quantity

components of the production effect, building on a service-oriented cost account-

ing. Section 12.5 offers an alternative input-oriented decomposition. Last, Sect.

12.6 explains how the method can be used in a performance improvement process

for the assessed facilities.
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12.2 Cost Accounting Framework

The first step of the benchmarking process is to make sure that the facility under

assessment, denoted F hereafter, has an adequate cost accounting system. As

illustrated in Fig. 12.1, different quantities of input may be used depending on the

type and number of services that are provided by the facility. The number of users

may also vary from one service to the other, which may in return affect the quantity

of inputs employed. Analytical accounts must be able to reflect the organization of

service provision for the various types of demand faced by the facility. The time

horizon is usually the budget year as it is defined by the accounting rules set by

current public regulations.

Formally, let s¼ 1 . . . S denote the different services supplied by facility F.
Those can be for instance degrees delivered by a university, categories of emer-

gency services provided by a fire station, types of care (to the young, the elderly,

single mothers, etc.) delivered by a social service unit, disease related groups in

hospitals. For each service s, the accounting system should assemble a list of users

1 , . . . , nswhere ns denotes the total number of users in service s. On the supply side,
one must list all production factors (the inputs k¼ 1 . . . K ), their unit price pk and

the quantities of input usedqk
s, i by each user i in service s. Input prices can be derived

by directly using information about the prices charged to the facility (external

pricing). More complex structures like hospitals can also resort to internal pricing,

in which case the internal price is the ratio between the observed total cost of input

k and the total quantity of k used in the facility.

To sum up, the cost accounting system should provide information about price

and quantity for all inputs, with prices common to all services, and quantities

varying from one service to another, and, for a given service, from one user to

Service � = �

Service � = �

Service � = �

Number of usersFactors of production Facility

Input � = �

Input � = �

⋮ ⋮

Input � = �

Similar range of 

sservices from one 

facility tto the other

Different demand 

sstructure from one facility 

to the other

Different production 

structure from one facility 

to the other

	 :���…�

	 :��…�

	 :����…�

⋮

1

2

s

Fig. 12.1 The cost accounting system
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another. Equipped with this analytical accounting, the facility can calculate the

average quantity of factor k used by service s:

�q k
s ¼

Pns
i¼1 q

k
s, i

ns
k ¼ 1 . . .K

Consider for instance that service s is the obstetrics care unit in a given hospital.

The list of inputs may include umbilical cord clamps, latex gloves, sterile pads, etc.

Assume that this care unit receives three patients who use the following

combinations of inputs:

Inpatient 1: 1 umbilical cord clamp, 2 latex gloves, 3 sterile pads

Inpatient 2: 1 umbilical cord clamp, 6 latex gloves, 7 sterile pads

Inpatient 3: 1 umbilical cord clamp, 4 latex gloves, 5 sterile pads

The average quantity of clamps is (1 + 1 + 1)/3¼ 1, the average number of latex

gloves is (2 + 6 + 4)/3 ¼ 4, and the average number of sterile pads is (3 + 7 + 5)/

3 ¼ 5.

Using information about input prices, we are able to record the average cost of

service s:

�cs ¼
XK
k¼1

�q k
s�pk

Coming back to our example, if the price of one clamp is $0.05, $0.03 for one

glove and $0.04 for one sterile pad, the average cost in the obstetrics care unit is

computed as:

1� $0:05þ 4� $0:03þ 5� $0:04 ¼ $0:37

To compute the total average cost of facility F (total cost per user), one must use

information about how the users are distributed among the services. Let

N¼ n1 + n2 + . . . + nS denote the total number of users. For each service s, we can
compute a relative frequency fs¼ ns/Nwhich represents the share of users who have

been using service s. This distribution expresses the demand structure of the facility

(also known as “case-mix” in health). The average cost of facility F is then defined

as a weighted sum of the average costs per service:

�c ¼
XS
s¼1

�c s � f s

To illustrate, Table 12.2 provides the analytical accounting of a facility that uses

three inputs in order to provide four types of services. As mentioned earlier, the

price of inputs is common to all demand motives while quantities are demand-
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specific. Each service generates an average cost. For instance, for service 1 we

have:

�c 1 ¼ 12� $290þ 25� $55þ 31� $130 ¼ $8885

Last column of Table 12.2 provides the distribution of users among the services.

Using this information, the average cost of facility F is computed as:

�c Fð Þ ¼ $8885� 25:7%þ . . .þ $6525� 32:2% ¼ $6223:24

The relative frequencies are used to weight the cost of each service. Note that the

numbers have been rounded for convenience (25.7% should actually be replaced

with 5200/20,200 and 32.2% with 6500/20,200 for finding the result above).

Table 12.2 Cost accounting of facility F

Average quantity of

input �q k
s

Price of

input pk
Average

cost �cs

Number of

users ns

Relative

frequency fs

Service

1

�c 1 ¼ $8885 n1¼ 5200 f1¼ 0.257

Input 1 12 $290

Input 2 25 $55

Input 3 31 $130

Service

2

�c 2 ¼ $3270 n2¼ 2500 f2¼ 0.124

Input 1 4 $290

Input 2 10 $55

Input 3 12 $130

Service

3

�c 3 ¼ $4820 n3¼ 6000 f3¼ 0.297

Input 1 6 $290

Input 2 30 $55

Input 3 11 $130

Service

4

�c 4 ¼ $6525 n4¼ 6500 f4¼ 0.322

Input 1 6 $290

Input 2 35 $55

Input 3 22 $130

N ¼ 20200 100%
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12.3 Effects of Demand Structure and Production Structure
on Cost

The cost comparison is undertaken with respect to a benchmark that can be,

depending on the institutional context, national, regional or whatever is relevant

for the background of the assessment. This benchmark, denoted B hereafter, is

usually built on a sample of “representative” facilities equipped with a full account-

ing system and adequate reporting, and for which data is available. The assessed

facility and the benchmark must have similar accounting structures.

Table 12.3 shows the data for the benchmark used to assess the performance of

facility F. The interpretation of that table is similar to that of Table 12.2. The

average cost of facility B is computed as:

�c Bð Þ ¼ $7500� 22:7%þ . . .þ $6680� 33:2% ¼ $5461:23

A rudimentary cost comparison of the assessed facility F and the benchmark B is

given by the cost ratio:

Table 12.3 Cost accounting of benchmark B

Average quantity of

input �q k
s

Price of

input pk
Average

cost �c s

Number of

users ns

Relative

frequency fs

Service

1

$7500 4800 0.227

Input 1 10 $300

Input 2 30 $50

Input 3 25 $120

Service

2

$3180 3000 0.142

Input 1 3 $300

Input 2 12 $50

Input 3 14 $120

Service

3

$3640 6300 0.299

Input 1 4 $300

Input 2 20 $50

Input 3 12 $120

Service

4

$6680 7000 0.332

Input 1 8 $300

Input 2 40 $50

Input 3 19 $120

N ¼ 21,100 100%
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�c Fð Þ
�c Bð Þ ¼

$6223:24

$5461:23
¼ 1:140

The assessed facility F evinces an extra cost of 14%, but this result is too aggregate

to provide an accurate assessment of the cost structure. One needs to distinguish

between the effects of the production structure and those resulting from a different

distribution of users. For instance, from the supply side, we have:

Service 1: cost greater in F ($8885) than in B ($7500);

Service 2: cost greater in F ($3270) than in B ($3180);

Service 3: cost greater in F ($4820) than in B ($3640);

Service 4: cost lower in F ($6525) than in B ($6680).

While B dominates F on the first three services, F dominates B for service 4. In

other words, for services 1 to 3, we can say that B is more cost-efficient than F: for a
same number of users, facility B incurs lower costs for those services. Please note

that by “more cost-efficient”, we do not mean of better quality. The definition of

“efficiency” is thus narrower than in cost effectiveness analysis where the output

under examination relates to some effectiveness measure (e.g., lower mortality rate

or higher success at school).

From Tables 12.2 and 12.3, differences also exist with respect to the demand

structure:

Service 1: relative frequency higher in F (0.257) than in B (0.227);

Service 2: relative frequency lower in F (0.124) than in B (0.142);

Service 3: relative frequency lower in F (0.297) than in B (0.299);

Service 4: relative frequency lower in F (0.322) than in B (0.332).

The users of facility F are more concentrated in service 1, relatively speaking.

This generates an extra cost for this facility as this service is relatively costly

compared to facility B.
Radar charts can be used to compare the production and demand structures of the

facilities under examination. Figure 12.2 provides an example. The first chart offers

a comparison of the costs of facility F (displayed in blue) with those of facility

B (displayed in red). The second chart uses information about relative frequencies

and compares the demand structures. Each service s¼ 1 to 4 is displayed on a

separate axis. For simplicity of exposition, and to make the charts readable, the

origin of each axis corresponds to the minimum value observed in facilities F and B,
while the end of the axis corresponds to the maximum value. For a given service, if

F is placed at the extremity of the axis, while B is placed at the origin, it means that

the value for F is higher than the value for B. The approach is thus only qualitative

as it does not account for the magnitude of the observed difference.

Radar charts are very useful when one must examine a significant number of

services. Let us first examine Fig. 12.2a. For service s¼ 1, the origin of the axis

relates to the cost of facility B (i.e. $7500) while the end of the axis stands for the
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cost of facility F (i.e. $8885). In a similar manner, minimum and maximum values

have been used to construct the axes of services s¼ 2 to 4. When for a given service

F is located at the tip of the corresponding radar axis, while B is located at its origin,

it means that facility F is less cost-efficient than B. In Fig. 12.2b, data about relative
frequencies have been used to draw the axes. If we consider service 2 for instance,

B faces a relatively higher demand than F. The figures can thus be used to visualize
the dominance relationships both in terms of production (Fig. 12.2a) and demand

(Fig. 12.2b). For instance, it can be easily seen that the demand in facility F is

relatively oriented toward service 1 despite the fact that F is more cost-efficient in

supplying service 4.

Figure 12.3 provides the code to be used in R-CRAN to create Fig. 12.2.

Command par first specifies the margins of the box plot using a vector of the

form c(bottom, left, top, right) that gives the number of lines of margin on the four

sides of the plot. The term mfrow¼ c(1, 2) specifies the number of graphs to be

drawn, i.e. one row made of two box plots arranged in column. Variables cF, cB, fF,
and fB denote the cost and frequency vectors of facility F and facility B, respec-
tively. The values are entered manually using information from Tables 12.2 and

12.3. The c() function is used to combine those values into a vector. A variable label
is created to name the axes of the radar chart. Two databases are produced, namely

D and E. Database D combines the cost vectors cF and cB (through the rbind
command). The function radarchart (from the package fmsb) is then used to

produce the radar chart of Fig. 12.2a. The entry maxmin¼FALSE states that the

maximum and minimum values for each axis will be calculated as actual maximum

and minimum of the data. The entry title gives the title of the graph, vlabel specifies
the names for variables, plwd defines a vector of line widths for plot data, and pcol
yields the color of the lines. In a similar manner, database E combines the frequency

s=1

s=2

s=3

s=4B

F

s=1

s=2

s=3

s=4F

B

a b

Fig. 12.2 Qualitative comparison of facilities F and B. (a) Production structure, (b) Demand

structure
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vectors fF and fB and is used to produce Fig. 12.2b. Last, the text command includes

a legend (“F” or “B”).

In benchmarking, it is crucial to uncover the underlying structural effects

explaining average cost differences. Basically speaking, the allocation of users

amongst services does influence cost. One must therefore isolate the effect of the

demand structure. This is done by decomposing the cost ratio as follows:

The ratio
P

s �c s Bð Þf s Fð Þ=Ps �c s Bð Þf s Bð Þ specifies the extent to which the demand

structure of F is responsible for the extra cost (or for the cost saving). The ratioP
s �c s Fð Þf s Fð Þ=Ps �c s Bð Þf s Fð Þ on the other hand compares the cost of facility

F with that of facility B using the demand structure of F. It measures the extra

cost (or extra saving) generated by the production structure of F.
Let �c BjFð Þ¼Ps �c s Bð Þf s Fð Þ express the cost of B with the demand structure of F.

The cost ratio can be rewritten as:

In the numerical example, we have:

Fig. 12.3 Radar charts in R-CRAN for benchmarking purpose
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�c BjFð Þ ¼ $7500� 25:7%þ . . .þ $6680� 32:2% ¼ 5554:95

The cost ratio becomes:

In the case of facility F, the demand structure only accounts for 1.7% in the extra

cost. The positive cost differential is mostly driven by the use of inputs. The ratio

�c Fð Þ=�c BjFð Þ shows that the production structure of F is indeed cost increasing and

it accounts for 12% of the extra cost.

Another case is that of a facility, sayG, which is cost saving. Table 12.4 provides
the data. The average cost is computed as:

�c ðGÞ ¼ $7005� 28:1%þ � � � þ $5265� 40:2% ¼ $5147:14

Table 12.4 Cost accounting of facility G

Average quantity of

input �q k
s

Price of

input pk
Average

cost �cs

Number of

users ns

Relative

frequency fs

Service

1

$7005 5600 0.281

Input 1 11 $280

Input 2 22 $40

Input 3 29 $105

Service

2

$2770 2500 0.126

Input 1 5 $280

Input 2 8 $40

Input 3 10 $105

Service

3

$3725 3800 0.191

Input 1 5 $280

Input 2 24 $40

Input 3 13 $105

Service

4

$5265 8000 0.402

Input 1 4 $280

Input 2 38 $40

Input 3 25 $105

N ¼ 19,900 100%
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From Fig. 12.4a, we can see that facility G is more cost-efficient than B for all

services but s¼ 3. In the meantime, Fig. 12.4b shows that facility G is more

specialized than facility B in services 1 and 4. Overall, the cost ratio is:

�c Gð Þ
�c Bð Þ ¼

$5147:14

$5461:23
¼ 0:942

Facility G is thus cost saving by 5.8%. The cost of B with the demand structure of

G is:

�c BjGð Þ ¼ $7500� 28:1%þ . . .þ $6680� 40:2% ¼ $5890:55

The cost ratio is decomposed as:

In the case of facility G, the demand structure implies an extra cost of 7.9% which

is more than compensated by a favorable production structure which is cost saving

by 12.6%.

Finally, Table 12.5 illustrates a pure demand structure effect. As can be deduced

from Fig. 12.5a, facility H has the same cost structure as the benchmark both in

terms of price and quantity. We thus have �c s Hð Þ ¼ �c s Bð Þ for all s¼ 1 . . . 4. Facility
H differs from its benchmark only by the way the users are allocated amongst

services (see Fig. 12.5b). The average cost of H is computed as:

s=1

s=2

s=3

s=4G

B

s=1

s=2

s=3

s=4

G

B

a b

Fig. 12.4 Qualitative comparison of facilities G and B. (a) Production structure, (b) Demand

structure
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Table 12.5 Cost accounting of facility H

Average quantity of

input �q k
s

Price of

input pk
Average

cost �c s

Number of

users ns

Relative

frequency fs

Service

1

$7500 3000 0.142

Input 1 10 $300

Input 2 30 $50

Input 3 25 $120

Service

2

$3180 4000 0.190

Input 1 3 $300

Input 2 12 $50

Input 3 14 $120

Service

3

$3640 8000 0.379

Input 1 4 $300

Input 2 20 $50

Input 3 12 $120

Service

4

$6680 6100 0.289

Input 1 8 $300

Input 2 40 $50

Input 3 19 $120

N ¼ 21,100 100%

s=1

s=2

s=3

s=4

B

H

s=1

s=2

s=3

s=4

B

H

a b

Fig. 12.5 Qualitative comparison of facilities H and B. (a) Production structure, (b) Demand

structure

432 12 Project Follow-Up by Benchmarking



�c Hð Þ ¼ $7500� 14:2%þ . . .þ $6680� 28:9% ¼ $4980:47

The cost ratio is:

�c Hð Þ
�c Bð Þ ¼

$4980:47

$5461:23
¼ 0:912

Given that facility H differs from B with respect to the distribution of users only,

we can conclude that the demand structure in facility H is cost saving by 8.8%.

More specifically, the cost of B with the demand structure of H is:

�c BjHð Þ ¼ $7500� 14:2%þ . . .þ $6680� 28:9% ¼ $4980:47 ¼ �c Hð Þ
The cost ratio can thus be decomposed as:

The production structure effect is by construction non-existent. The demand struc-

ture of facility H puts it in a relatively favorable position compared to the

benchmark.

Having identified the influence of the demand structure and of the production

structure on cost, the benchmarking analysis moves on to measuring the effects of

input prices and quantities on cost. To do so, one must have neutralized the demand

effect by applying the demand structure of the assessed facility to the benchmark.

12.4 Production Structure Effect: Service-Oriented Approach

Cost differences do not only come from demand dissimilarities, they also depend on

the combination of inputs and their prices. The next step is thus to decompose the

production effect �c Fð Þ=�c BjFð Þ into a price effect and a quantity effect. We need to

control for the distribution of users, but also for price and quantity differences.

Formally, the production effect can be expressed as:

�c Fð Þ
�c BjFð Þ ¼

P
s �c s Fð Þf s Fð ÞP
s �c s Bð Þf s Fð Þ ¼

P
s

P
k �q

k
s Fð Þ pk Fð Þ� �

f s Fð ÞP
s

P
k �q

k
s Bð Þpk Bð Þ� �

f s Fð Þ
Using this expression we can distinguish between a price effect, concerning pk(F)
and pk(B) and expressing financial and managerial choices, and a quantity

effect, involving quantities of factors �q k
s Fð Þ and �q k

s Bð Þ and expressing productive

choices.

Price and quantity effects can be isolated using Laspeyres and Paasche indices.

The approach has been originally conceived to assess the changes in the price level
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between two periods using indexes such as the consumer price index. In our

context, the aim is to compare two facilities. To illustrate, consider two facilities

X and Y which supply one service only. There are K inputs for this purpose. Under

this framework, one does not need to control for the demand structure since all users

benefit from the same service and the focus is on average costs only. The production

effect is directly obtained from:

�c Xð Þ
�c Yð Þ ¼

P
k �q

k Xð Þpk Xð ÞP
k �q

k Yð Þpk Yð Þ
We would like to know how much each item in the ratio contributes to the observed

difference between X and Y. Facility Y is taken as the origin (the equivalent of the

base year for a price index) while facility X is the arrival (the equivalent of the

current year). A price and quantity index is obtained using the following Fisher

decomposition:

�c Xð Þ
�c Yð Þ ¼

Fisher price

index

� �
� Fisher quantity

index

� �

with

and

The first ratio of the Fisher price index is a Laspeyres price index, the second one is

a Paasche price index. The first ratio of the Fisher quantity index is a Paasche

quantity index while the second one is a Laspeyres quantity index.

The Fisher price index specifies the extent to which the price structure of X is

responsible for the extra-cost (or for the cost saving) relatively to Y. For each ratio

composing this index, the quantities in the numerator and denominator are equal,

only the prices change. The Fisher quantity index on the other hand measures the

extent to which quantities contribute to the observed difference in costs. For each

ratio composing this index, the prices in the numerator and denominator are equal,

only the quantities are changing.

More generally, by applying this approach to facilities F and B and still

controlling for the demand structure, we obtain:

434 12 Project Follow-Up by Benchmarking



and

Benchmark B with the demand structure of F is taken as the origin while the

assessed structure F is the arrival.

Figure 12.6 gives details of calculations. Recall that in the case of F, the
production structure accounts for 12% in the extra cost with respect to the

benchmark:

�c Fð Þ
�c BjFð Þ ¼

$6223:24

$5554:95
¼ 1:120

The Fisher decomposition requires the intermediate calculations of
P

k �q
k
s Bð Þ pk Fð Þ

(the cost of service s in F when this facility uses the same input quantities as B) and

of
P

k �q
k
s Fð Þpk Bð Þ (the cost of service s in F when this facility faces the same prices

as B). Using the total row of Fig. 12.6, the Fisher decomposition is specified as

follows:

Fig. 12.6 Price and quantity effects for facility F
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Input prices are responsible for the extra cost to the extent of 4.5% while quantities

used explain 7.2% of the cost differential, keeping in mind that the demand

structure effect has already been controlled for.

By using the same procedure for facility G, one obtains the following results (for
the sake of simplicity, calculations are not detailed):

Facility G is cost saving by 12.6%. Intermediate calculations yield
P

k �q
k
s Bð Þ pk Gð Þ

¼ $5167:79 and
P

k �q
k
s Gð Þ pk Bð Þ ¼ $5872:66. Both the price effect (0.877) and the

quantity effect (0.996) contribute to the cost advantage but the price effect is the

most prominent. For facility H, we have instead:

As this facility shares the same cost structure as facility B, both in terms of price and

quantity, there are by construction no price and quantity effects.

12.5 Production Structure Effect: Input-Oriented Approach

With the service-oriented approach to the production structure effect, the emphasis

is put on the demand motives and the data is gathered within a framework that fits

that purpose. This is usually the case for instance with hospitals where demand is

allocated to homogenous disease related groups (the services in our presentation)

and where the case-mix (the allocation of demand amongst services) is a crucial

health management feature. The stakeholders of the public project may also wish to

get alternative or complementary information based on the role of inputs in the

formation of the production structure effect. A simple reorganization of the data

allows it.

Figure 12.7 offers an example of such a reorganization of data for facility F and

facility B. The data comes originally from Tables 12.2 and 12.3. The rows are now

divided into three inputs, which are in turn divided in four services. For facility F,

the frequency column fs(F) and the quantity column �q k
s Fð Þ can be used together to

compute the average quantity of input k used in the whole facility:
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�q k Fð Þ ¼
XS
s¼1

�q k
s Fð Þ � f s Fð Þ

For instance, for facility F, the average quantity of input 1 is computed as:

�q 1 Fð Þ ¼ 12� 25:7%þ 4� 12:4%þ 6� 29:7%þ 6� 32:2% ¼ 7:30

Therefore, on average, facility F uses 7.30 units of input 1 per user.

For the benchmark facility B, the approach is quite similar except that we need to

control for the demand structure by using the frequency distribution of facility F:

�q k BjFð Þ ¼
XS
s¼1

�q k
s Bð Þ � f s Fð Þ

For instance, the average quantity of input 1 used by facility B when this facility

faces the same demand structure as facility F is computed as:

�q 1 BjFð Þ ¼ 10� 25:7%þ 3� 12:4%þ 4� 29:7%þ 8� 32:2% ¼ 6:71

On average, were facility B facing the demand structure of facility F, it would use

6.71 units of input 1 per user.

Using information from Fig. 12.7, the input-oriented comparison of facility

F with its benchmark B is:

Input 1: price lower in F ($290) than in B ($300);

Input 2: price greater in F ($55) than in B ($50);

Input 3: price greater in F ($130) than in B ($120).

Fig. 12.7 Data reorganization for facilities F and B
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Similarly, for the quantities (and controlling for the demand structure), we have:

Input 1: quantity higher in F (7.30) than in B (6.71);

Input 2: quantity lower in F (27.85) than in B (28.02);

Input 3: quantity higher in F (19.81) than in B (17.85).

Figure 12.8 illuminates the dominance relationships. We can see that facility F is

twice dominated by B with respect to prices (inputs 2 and 3) and quantities (input

1 and 3).

The codes to produce Fig. 12.8 are provided in Fig. 12.9. The approach is quite

similar to what has been done previously (see Fig. 12.3). First the command par
specifies the margins of the box plot and the number of graphs to be drawn.

Variables pF, pB, qF, and qB denote the price and quantity vectors of facility

F and facility B, respectively. Two databases are again created, one that combines

the price vectors, and one that combines the quantity vectors. The function

radarchart then plots the graph. Last, the text function includes a legend.

This new organization of data can be used to decompose the production effect

into price and quantity effects. The production effect can be written as:

�c Fð Þ
�c BjFð Þ ¼

P
k �q

k Fð Þpk Fð ÞP
k �q

k BjFð Þpk Bð Þ
which can be decomposed into:

k=1

k=2 k=3

B

F

k=1

k=2 k=3

F

B
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Fig. 12.8 Qualitative comparison of prices and quantities in F and B. (a) Price structure, (b)

Quantity structure
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and

Using information from Fig. 12.7, we have:

�c Fð Þ ¼ 7:30� $290þ 27:85� $55þ 19:81� $130 ¼ 6223:24

�c BjFð Þ ¼ 6:71� $300þ 28:02� $50þ 17:85� $120 ¼ 5554:95

X
k
�q k BjFð Þpk Fð Þ ¼ 6:71� $290þ 28:02� $55þ 17:85� $130 ¼ 5806:44

X
k
�q k Fð Þpk Bð Þ ¼ 7:30� $300þ 27:85� $50þ 19:81� $120 ¼ 5958:86

Thus, as previously, we obtain the following decomposition:

However, we now specifically point out the consequences of differences in input

management between facility F and facility B. From Figs. 12.7 and 12.8, we know

that the prices of inputs 2 and 3 induce extra costs and are responsible for the price

effect while the quantities of inputs 1 and 3 explain the quantity effect. If facility

Fig. 12.9 Comparison of prices and quantities in R-CRAN
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F wants to improve its performance, those items would appear as a priority for a

reorganization of production. Of course, a similar approach can be used to assess

the performance of facilities G and H.

12.6 Ranking Through Benchmarking

Benchmarking is a tool that can be used to motivate operations improvement or to

help a decision-maker understand where the performance falls in comparison to

others. The approach can also promote emulation among facilities. Table 12.6

offers an example of how the results of the analysis can be summarized. Using

information gathered from both the demand analysis (Sect. 12.3) and the production

analysis (Sects. 12.4 and 12.5), we are able to offer a clear picture of where the

facilities best perform.

First, by examining the total cost effect �c Xð Þ=�c Bð Þ for each facilityX ∈ {F,G,H},
we can see that facility H performs better than any other facility. Compared to

the benchmark, this facility generates an extra saving of 8.8%. As stressed in

Sect. 12.2, this effect can be decomposed into a demand effect (�8.8%) and a

production effect (0%). The extra saving thus appears to be generated by the

distribution of users only. How facility H responds to the demand can be a

source of inspiration to the other facilities, provided that it is ethically accept-

able to reduce access to some of the services or to encourage the use of the

most efficient ones. Since most public programs are dedicated to the well-being

of their users, this may not be agreeable. This caveat applies to the whole

ranking process.

Second, by examining the second column of Table 12.6, we can also see that

facility F is ranked last. The decomposition of the total effect tells us that an

improvement should not only concern the organization of supply (production

effect: +12%) but also that the demand pattern is cost-increasing (+17%).

Table 12.6 Summary of the benchmarking analysisa

Cost ratio Decomposition of total effect

Decomposition of

production effect

Facility Total effect

Comparison of the

facility’s average

cost with the

benchmark

Demand

effect

Impact of the

distribution of

users among

services

Production

effect

Impact of the

organization

of services

Price effect

Impact of

financial

and

managerial

choices

Quantity

effect

Impact of

the

production

policy

B 0% 0% 0% 0% 0%

F +14% +17% +12% +4.5% +7.2%

G –5.8% +7.9% –12.6% –12.3% –0.04%

H –8.8% –8.8% 0% 0% 0%
aFigures indicate extra costs (+) or extra saving (�) compared to facility B (in percent)
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The last two columns of Table 12.6 decompose the production effect into a price

effect and a quantity effect. It can be seen for instance that facility G yields the best

performance in terms of productive structure. Compared to facility B, this facility is
able to generate cost saving of �12.3% due its managerial policy and of –0.04%

due its input-use arrangements. In this respect, facilityG should serve as a reference

in any service improvement work.

Bibliographical Guideline

The health sector has been a forerunner (Hansen and Zwanziger 1996) in the

comparison of costs amongst facilities providing a common service to various

types of demand. Many national health services advocate such cost comparisons.

Hospitals have a complex cost structure with, depending on national analytical

account techniques, up to one hundred inputs. They also face numerous types of

services that generate as many outputs: the corresponding disease-related groups

may number around two thousand. Benchmarking is a simple tool for comparison to

a reference, usually an “average” hospital which can prove to be somewhat elusive

and difficult to define (Llewellyn and Northcott 2005). It is also usually a part of a

more general performance assessment framework, like the one launched in 2003 by

the World Health Organization Regional Office in Europe (Veillard et al. 2005) and

evaluated in 2013 (Veillard et al. 2013). Agarwal et al. (2016) provide a survey of

quality of management practices of public hospitals in the Australian healthcare

system, as well as comparisons with practices in the United States of America, the

United Kingdom, Sweden, France, Germany, Italy and Canada.

More generally, in the 1990s, the Organization for Economic Cooperation and

Development has promoted developments in public sector benchmarking (OECD

1997) through the Public Management Service (PUMA). Afterwards, a famous

exercise in benchmarking has been the PISA test (OECD 2013).

Our own presentation of benchmarking has mainly focused on the technical side

of cost comparisons in presence of heterogeneous demand structures amongst the

assessed facilities aiming at implementing a public program. The range of

applications can be quite large, keeping in mind that the quality of the data involved

in the evaluation process is an essential factor of its relevance.
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Randomized Controlled Experiments 13

13.1 From Clinical Trials to Field Experiments

Policy questions are mostly about the impact or causal effect of projects on the life

of the citizens who would be exposed to them. Does free access to public schools

shift children away from child labor? To what extent are communicable diseases

(e.g., infections) driven out by primary health care delivered in local dispensaries?

Is voluntary paid work in prisons an adequate tool for preparing the reinsertion of

inmates? Answering those questions can be tricky as several confounding factors

may also affect the outcome variable in question:

Change in outcome ¼ Impact of interventionþ Confounding factors

Confounding factors can be of two kinds. On the one hand, individuals may differ

with respect to their personal characteristics, e.g., their productivity, motivation,

health condition and, in return, these characteristics are likely to affect the outcome

of interest. Observed changes can also be induced by various events and shocks

occurring during the period of observation, that modify the environment of the

program. As can be easily understood, the presence of these confounding factors

makes the identification of causal effects rather difficult. One solution to avoid

potential bias is to run a randomized controlled experiment. The basic tenet of the

method is to assign the subjects to different groups using randomization, such that

they share similar characteristics on average from one group to the other.

Take an example of “before and after” evaluation. A new drug is delivered to

1,000 patients suffering from type 2 diabetes over an observation period of one year

during which a clinical endpoint is scrutinized, for instance, the baseline risk of

hypoglycemia. At the end of the trial, an investigator observes that the baseline risk

has decreased on average, compared to the situation at the time of patients’

inclusion. Can we conclude that this new drug leads to a decrease in hypoglycemia?

The first problem is that there are many factors that also affect the outcome of

interest. Those factors can be of several kinds, e.g., environmental (diabetes is more
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prevalent in poorer people), behavioral (physical activity is a real asset in fighting

the disease), or clinical (comorbidities may affect the endpoint). If these factors

have changed since the program was introduced, then the results of the study are

likely to be biased.

The second problem is a statistical phenomenon known as the “regression

toward the mean” effect. Patients’ selection is usually based on the value of a

biological (e.g., glycemic control) or clinical (e.g., pain intensity) pretest. Unfortu-

nately, those pretests can be subject to random errors and erroneously select healthy

individuals. Once the intervention has taken place, a posttest can yield misleading

conclusions for this particular reason: a significant impact can be pointed out while

the effect is due to chance only. Consider for instance a game involving a large

number of (fair) coins. Suppose that the pretest consists simply in tossing the coins

and recording the number of tails. As might be expected, the test is likely to give

50% of heads (H ) and 50% of tails (T). Now assume that the tails represent the

subjects who receive treatment:

A posttest (new flipping) would inevitably yield bias conclusions as we are likely to

obtain again 50% of tails and 50% of heads:

In that case, a simple after-versus-before comparison would yield naive

conclusions. Despite the absence of any treatment, the posttest would make us

erroneously conclude that the selected coins have now a lower probability of tails.

The temptation is great to compare one exposed individual over time and

estimate how he or she fared “before and after” so as to identify variations (positive

or negative) in their individual well-being. As we have seen, however, such

comparisons can be misleading. An alternative is to contrast participants to those

who were not exposed to the program. Yet, can we so easily compare those two

types of individuals? The answer is no. Using treated versus non-treated

comparisons can be misleading as well. Individuals necessarily differ in their

personal characteristics. For all those reasons, and whatever the policy question

that is tackled, no individual impact on the path of an exposed individual can be

obtained. Experimentation can however assess the average impact of a program on

those who benefited from it (were “exposed to it”) by comparing them to those who

did not. The first set of individuals is generally referred to as the treatment group

while the second set is the comparison group.

Taken as a whole, experimental designs are based on the idea that, in the absence

of the intervention, individuals from the treatment group would have had an

outcome (level of literacy in an educational program, glycemic control in the

diabetes example) similar on average to that of the comparison group. One thus
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needs to find a relevant and adequate comparison group that resembles on average

the treatment group in everything but the fact of receiving the intervention. In

practice, this proves to be an issue as well. Estimating the impact of a program at the

average level does necessarily mean that the confounding factors are held constant

in comparisons. In many cases, confounding factors can influence the results at the

group level, hence the need to find proper criteria for allocating individuals to the

groups.

Consider for instance a federal government that wishes to experiment an educa-

tional policy in a subset of States. Low-income families would get free access to a

new and special educational policy aimed at fighting illiteracy. The policy question

associated with that treatment group is: how would participants have fared without

the program? Concurrently, the comparison group could be the low-income

families from a subset of other States within the Federation: how would have

they fared with the program? However, mere absence of exposure to the treatment

is a poor criterion for a comparison since any difference between the outcomes of

the exposed and non-exposed can be attributed to both the program and differences

due for instance to different systems of social assistance from one State to the other,

prevalence of poverty, gender discrimination, tolerance for child labor, etc.

Differences between the treatment and comparison groups may also come from

self-selection if the program is not mandatory. Subjects select themselves into a

group, causing a biased sample. For instance, children who register to a

non-compulsory educational program can belong to the most motivated ones.

Another example is when one compares smokers with non-smokers to assess the

effect of smoking. This can be hazardous since those who smoke may behave

differently with respect to other items as well (e.g., alcohol and food consumption).

Differences in subject adherence to a mandatory treatment can also be observed. A

treatment can be painful or demanding, involve out-of-pocket or transportation

costs that could be an obstacle for low-income patients, etc. On top of these

considerations, selection errors may occur when wrong or not fully adequate

criteria are used to identify the population of interest (coverage errors). Concur-

rently, the sample under study may not accurately represent the population in

question (sampling errors, measurement errors, etc.). Overall, those selection biases

blur the results of the experiment and may prevent isolating the average treatment

effect.

By definition, a selection bias occurs when the subjects in a study differ from the

treatment group to the comparison group or when they do not perfectly represent

the larger population from which they are drawn. If there are important differences,

the results of the experiment may be biased. It is thus crucial to identify, isolate or at

least control for selection biases. A natural tool for doing so is randomization.

Broadly speaking, a randomization process allocates participants to the experiment

in such a way that they have the same chance of being assigned to either the

treatment group or the comparison group. The groups should thereby share similar

characteristics on average, in which case the comparison group is also termed a

“control group”. Randomization is thus a constitutive part of experiments. Unlike
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observational studies, confounding factors are controlled for ex ante, which allows

direct causal inference.

Randomized controlled experiments are often considered as the most rigorous

way of testing a causal relationship. A distinction is however made between a

“clinical trial” and a “field experiment”. Clinical trials evaluate biomedical or

health-related outcomes with the aim of assessing the effectiveness of a treatment.

A field experiment generalizes the approach to any type of intervention. As the

name suggests, it is a form of investigation performed outside the laboratory in

which units of observation (e.g., individuals, municipalities, etc.) are randomly

assigned to treatment and control groups. This type of investigation has been

booming recently, with variations in protocol that evidence that there is still need

for harmonization in their designs. Their implementation may encounter many

difficulties which, most of the time, are dependent on the context in which they

are used.

The experimental methodology is highly indebted to health technology assess-

ment (evaluation of properties, effects, and/or impacts of drugs, medical devices,

screening, vaccination, etc.). For this reason, our presentation of experiments

mostly rests on the clinical trial methodology. Medical experiments or clinical

trials are at the very heart of research in medicine. They are a necessary condition

for the development of any new drug or medical device and often a legal require-

ment if they are to be authorized by medical authorities and further reimbursed by

mutual funds or social security. For instance, applications for marketing authoriza-

tion for human medicines in the European Economic Area must have been carried

out in accordance with the requirements set by the European Medicines Agency.

Because clinical trials have since long a mature and robust framework, they should

serve as the “gold standard” or benchmark when using their methodology outside

the field of medical research, even if admittedly that methodology should adapt to

the characteristics and circumstances of the so-evaluated public policies.

Medical research can be subcategorized into a set of four phases, from early

investigation to extensive experimentation. To begin with, what is termed the

“phase I study” attempts to estimate the pharmacokinetics and pharmacodynamics

of drugs and they are tested on healthy volunteers or patients already under existing

standard treatment. Phase I is mostly observational and it aims at assessing tolera-

bility, toxicity and drug activity, usually through dose escalation. Escalation often

obeys a Bayesian design, with the investigator’s prior estimate of toxicity/activity

updated and assigned to the next participants. What are termed “phase II studies”

concentrate instead on the biological effects of the drug and they may involve

controls (concurrent control groups, not necessarily randomized, historical group

data, and individual history of patients in the treatment group). It is a kind of

individual before-after evaluation with as strict as possible a control of environ-

mental factors. By providing information and data on the response rate, namely the

biological activity of the drug on patients, they prepare the ground for “phase III

studies”. Phase III trials are the randomized controlled experiment per se. They

should be able to provide relevant outcomes (biomarkers such as blood pressure,

progression free survival, recovery rate, etc.) for both exposed and non-exposed
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groups. Longer-term evaluation, or “phase IV studies”, can also be conducted after

the approval of the drug or medical device by the regulatory agency in charge of its

endorsement. They involve the real-life follow-up of a larger cohort of patients

using the authorized drug. The aim is progressively to build a retrospective knowl-

edge of the disease treatment and of the side-effects of the drug as it is used in real-

life monitoring.

Randomized clinical trials (phase III) are the most accomplished phase of

medical research. Experiments yield average policy effects contrasting the outcome

in the treatment group to the outcome in the control group. The first aim of an

experiment is thus to assess the average impact of the public project through the

comparison of the respective means. The trial also provides indicators of policy

effects or outcomes such as event occurrence (e.g., number of medical

complications in a screening program), relative risk or odds ratios (e.g., risk of

re-offense or school dropout). Those indicators are built over the whole time span of

the experiment, without indication of the timing of events. To go farther, event

analysis through survival curves is motivated by the fact that usual comparisons of

means or proportions with chi-squares or equivalent statistics raise problems when

the length and timing of individual observations differ among participants. Seem-

ingly comparable final outcomes may hide significant differences in the patterns of

evolution from one group to another. The Mantel-Haenszel test for conditional

independence proves to be very useful in such cases.

Note that the practical operation of randomization can be tricky and it depends

both on the assessed program and on the context in which it is to be enacted.

Naturally, randomization is best controlled and structured in health technology

assessment. It nevertheless remains that the very notion of experiment may raise

concern as it may have considerable bearing on the individual welfare of exposed

and non-exposed patients. This is why the ethics of experimentation are a constitu-

tive part of that evaluation tool and should not be neglected. When randomization is

definitely not a feasible protocol for organizational or ethical reasons, quasi-

experimental techniques such as difference-in-differences, propensity score

matching, regression discontinuity design or instrumental variable estimation can

prove quite powerful substitutes. The last chapter of this book details those

procedures.

The remainder of the chapter is organized as follows. Section 13.2 introduces

methods for the random allocation of subjects to the treatment and control groups

and also deals with the ethics of randomization. Section 13.3 presents the usual

statistical tests to assess the significance of a treatment. Section 13.4 explains how

to compute the statistical power of the test, i.e. the probability of detecting a

predefined clinical significance. Section 13.5 is about sample size calculation and

how to determinate the minimum number of subjects to enroll in a study to achieve

a given statistical power. Section 13.6 offers additional but illuminative indicators

of the effect of the evaluated policy intervention. Section 13.7 proposes an extended

experimental framework where the survival patterns of the treated and control

groups can be compared through Kaplan-Meier curves. Last, Sect. 13.8 explains

how to perform the Mantel-Haenszel test in order to compare those curves.
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13.2 Random Allocation of Subjects

A trial is basically speaking a comparative study between two (or more) groups of

subjects (patients, target population of a public policy, etc.) that are chosen from a

population of reference. Figure 13.1 offers an illustration. This population of

reference is defined through general clinical criteria which have to be carefully

discussed and evaluated (e.g., young adults suffering from diabetes). It is also the

task of the investigator to select a sample that is as representative as possible of this

population of reference. The theoretical sample size (i.e. the number of patients or

experimental units required for the trial) will partly depend on the size of the

population of reference, and partly on the precision the investigator would like to

achieve (statistical criteria). The time and budget constraints associated with data

collection are also determinant factors. Several sample size calculators and sam-

pling procedures exist. In this respect, the reader can refer to Sect. 13.5.

A particularity of clinical trials is that they generally set guidelines about who can

participate. The construction of a sample is thus often dependent on the context of

the experiment. Inclusion and exclusion criteria are designed with the help of

clinical experts and statisticians in order to select the most suitable participants.

Inclusion criteria can for instance be related to age, gender, current medications, etc.

Exclusion criteria may concern pre-existing medical conditions, administrative

matters, or exclude subjects that are for instance too ill to participate in the experi-

ment. The focus is not about sample representativeness only (quality of subject

selection), but also on operationality and whether the experiment will suffer from

additional complications (e.g., complex enrolment process, protocol violation, cen-

soring). As a matter of fact, if the inclusion and exclusion criteria are too strict, the

final sample can be non-representative of the population of reference (see Fig. 13.1).

The aim of the experiment must also be clearly defined. An experiment is usually

designed to test one or several hypotheses and explore a particular set of data. If the

investigator intends to collect socio-economic data or have evaluative

questionnaires filled in by patients (for instance quality of life inquiry), then this

must be conceived and planned from the beginning. Once the experiment is on its

way, the protocol should not be altered anymore. An exception is when the

Fig. 13.1 From the population of reference to randomized groups

448 13 Randomized Controlled Experiments



experiment must be terminated, e.g., in case of full and early success, conversely

because of harmful effects of the drug endangering the life of patients (mortality

exposure), or because of effects strongly compromising their health condition

(morbidity exposure).

Once a subset of subjects has been selected, the next step is to randomly assign

them to different groups. In practice, because of limited space, time constraint or for

safety reasons, the number of groups, subgroups or blocks, can be greater than two.

Yet, the standard practice is to allocate equal numbers of patients to treatment and

control blocks. For this reason, and without loss of generality, we will assume in the

remaining of the chapter that there are two groups only, namely the control group

and the treatment group, also referred to as “control arm” and “treatment arm” in

health. A control trial is about how the treatment group (exposed to the treatment or

the policy) fares in comparison with the control group (not exposed to the treatment

or the policy). A randomized control trial is such that the assignment to the

treatment group or to the control group follows a random process ensuring an

equal likelihood of being assigned to either group. It warrants comparability

between the two groups. Covariates like prognostic factors, personal and environ-

mental characteristics of the patients should on average have the same magnitude

and direction in both groups (even though groups can never be perfectly balanced

for all relevant covariates).

The randomization process must ensure that the allocation of participants

between the two groups (exposed and non-exposed) is not influenced by the

investigators or the participants, on the ground of explicit criteria (e.g., a bad

prognosis may encourage the patient to ask for an innovative treatment or may

deter the investigators from testing a treatment) or of implicit criteria (e.g. empathy

or conversely suspicion of bad observance). It is thus important to define ex ante the
degree of information of the parties involved, namely the investigators and the

participants. In this respect, three cases may arise. First, the experiment can be

un-blinded or open, in which case the allocation of participants to the control and

treatment arms of the trial is common knowledge. This is often the case with

surgical procedures. The open design is susceptible to biases like the strategic

reporting of adverse events or psychological effects associated with being treated

or not. Second, single-blinded trials are such that only the investigators are aware of

which arm of the trial, control or treatment, each participant is allocated to. Biases

lie mostly with the investigators, in their reporting and particularly in their advice to

patients. For instance, they may provide compensatory guidance for patients

assigned to the control group, which may affect the comparison among groups.

Finally, double-blind allocation is recommended especially in trials of drugs: they

minimize preconceptions and biased reporting for both the investigators and the

participants. Neither the medical staff nor the patient know which group the patient

belongs to. This is meant to neutralize psychological effects associated with the

administration of the new drug (e.g., enthusiasm on the part of the doctor, optimism

on the part of the patient, better adherence associated with greater expectations,

etc.) and the possibly opposite psychological effects for those patients assigned to

the control group who do not benefit from the assumed innovation.
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Randomization can follow a fixed allocation procedure or be adaptive. In the first

case, group assignment obeys a pre-specified probability that remains constant

throughout the experiment. In the second case, the allocation probability changes

as the experiment progresses. In what follows, we will consider only examples of

fixed allocation procedures. Before that, we should first rule out a method, the

“assignment by alternating sequences”, which is sometimes used but should not

be. The procedure goes as follows. The first patient stepping in is randomly

allocated to one group (e.g., treatment group T ), the second one is allocated to

the other group (here control group C), the third one to the first group again, and so

on, so that the assignment follows a sequence TCTCTC. . . From a purely statistical

point of view, each subject has the same probability of being assigned to the

treatment group. Yet, under this procedure, the person in charge of the assignment

knows the next assignment and, for this reason, could influence which subjects are

allocated to which group. Even for a double blind trial, the entire sequence is known

as long as one subject of the chain has been identified.

Among the randomized fixed allocation procedures, “simple randomization” is

by far the easiest method. A uniform random algorithm generates a number in

interval [0, 1]. For a cut-point p, the subject or participant draws a number x ∈
[0, 1]. If x� p (respectively x> p) then he or she is allocated to the treatment group

(respectively to the control group). Most of the time, the investigator chooses an

equal assignment of patients among groups so that p¼ 50%. The approach is

somewhat equivalent to the tossing of an unbiased coin. For instance, if for a

patient the coin turns up tail, then he or she is allocated to the treatment group T.
If it turns up head, allocation is to the control group C. With p¼ 50%, a long run

assignment with steady patients’ enrollment will lead approximately to groups of

equal size. The procedure is based on the Law of Large Numbers. This latter

suggests that, given a sufficiently large number of subjects, the share of subjects

assigned to each group should converge toward a predictable average proportion,

here p. This result however no longer holds when the sample size is small. In that

case, one may face the risk of imbalances in group size and average pre-trial

characteristics.

In order to control for potentially serious imbalances in group sizes, one may use

“blocked randomization”. Blocked randomization encompasses several algorithms.

One of the simplest designs randomly assigns participants to blocks of a given even

size, for instance s¼ 4, with the constraint of containing two Ts (individuals

allocated to treatment) and two Cs (individuals allocated to control). For a given

block and a list of enrolled participants i¼ 1 . . . 4, there exists a total of six

combinations of group assignment:

TTCC,TCTC, TCCT,CCTT,CTTC,CTCT

One combination is selected at random. For instance, if the third assignment is

selected:
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T C C T
i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

Then, the procedure moves on to the next block. If the trial size is not a multiple

of the block size, then the last block is incomplete which may cause imbalance in

this block. Yet, this imbalance is necessarily small and, by construction, the two

groups have approximately an equal size. In the case of a double blind trial, the

T and C denominations are hidden behind anonymous group names A and B for

instance.

Another frequent source of imbalance relates to a large variance of individual

risk factors in relation to their individual characteristics (e.g., the smoking history

of the patient). If this is likely to be the case, then participants can be stratified with

respect to prognostic factors relevant to the clinical frame of the experiment.

Stratification may occur at the inclusion: for instance, it can be appropriate to

consider first the two subsets of men and women separately and then randomize

them to the control and treatment arms so that both groups contain an equal number

of males and females. When imbalances involve several prognostic factors likely to

influence the outcome of the trial, then stratification can take place within the

randomization process itself. The first step consists in identifying those prognostic

factors that will be used as stratification criteria. The investigator should avoid

selecting too many of them in order to preserve the operationality of the assignment

procedure. Table 13.1 shows an example with three prognostic factors (age, sex and

body mass index (BMI) excess) of early diabetes. Each factor gets a level classifi-

cation. The choice of the levels is based on clinical considerations except for

obvious factors like gender. Age has two levels (intervals [15, 19] and [20, 24]).

The BMI excess factor has three levels (low, moderate and high). This leaves us

with twelve (2� 2� 3) strata. The second step consists in the allocation of subjects

among the treatment and control groups per se. If we keep a block size s¼ 4, we can

proceed to blocked randomization within strata as in Table 13.1. From the second

column, note that the strata can be of different size (in accordance with the sample

and population characteristics). The number of blocks in each stratum is thus

different. When the number of subjects in a stratum is not a multiple of the block

size, then the last block is incomplete.

Randomized controlled trials may suffer from two difficulties: noncompliance

(or no-shows) and missing outcomes. For this reason, the standard protocol for

inclusion is the intention to treat (ITT) procedure: all participants are randomized

and the associated encountered events should be accounted for throughout the

study. Admittedly, it may happen, during the experiment, that a number of patients

do not fit the inclusion criteria (although they seemed to at the time of inclusion).

Similarly, patients may not completely comply with the protocol or may

unintendedly fail to follow it closely. However, excluding them would severely

bias the experiment since such behaviors or events are likely also to occur if the

treatment is finally selected and implemented in real life.

ITT experiments involve treatment and control groups that may not be of

constant size as participants may move from one group to another. Those
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participants are labeled “crossovers”. In clinical trials, it is customary to designate a

patient who goes from control to treatment as a “drop-in”; conversely, a patient

switching from treatment to control is a “drop-out”. This type of experiments is

often opposed to so-called “per protocol analyses” (PPA). PPA removes lost or

non-adherent patients from the statistical and clinical analysis which leads to

serious concerns about the validity of the subsequent conclusions as to the efficacy

of the treatment. The denomination itself is misleading as it wrongly conveys the

idea that the PPA would be the preferred one as it would “stick to the protocol”

whereas it does not.

Last, randomized control trials cannot but raise ethical questions since they deal

with matters of personal integrity and welfare, particularly in the field of health.

When experimenting a new drug within a randomized control trial, about one-half

of the patients do not have the opportunity to benefit from it although the investi-

gator expects it to bring health improvement. Conversely, if for instance the control

group receives a standard treatment where side effects are reasonably mastered, the

treatment group may face harmful unknowns, unexpected side effects that were not

detected during the phase II of the trial. Ethical issues are present not only in health

Table 13.1 Stratified randomization

Strata

Number of

subjects Age Gender

Excess

BMI

Number of

blocks

Group

assignment

(example)

1 78 [15; 19] M Low 19 of size 4 +

1 of size 2

TTCC, CTCT,

. . ., CC

2 93 [15; 19] M Moderate 23 of size 4+1

of size 1

CTCT, CTTC,

. . ., T

3 123 [15; 19] M High 30 of size 4+1

of size 3

CTCT, TTCC,

. . ., CTC

4 65 [15; 19] F Low 16 of size 4+1

of size 1

TCCT, CTCT,

. . ., T

5 47 [15; 19] F Moderate 11 of size 4+1

of size 3

TCTC, TCTC,

. . ., TCC

6 89 [15; 19] F High 22 of size 4+1

of size 1

TCTC, TTCC,

. . .,C

7 210 [20; 24] M Low 52 of size 4+1

of size 2

TTCC, CTTC,

. . .,CC

8 198 [20; 24] M Moderate 49 of size 4+1

of size 2

CCTT, CTTC,

. . .,TC

9 234 [20; 24] M High 58 of size 4+1

of size 2

CTCT, TTCC,

. . .,CT

10 301 [20; 24] F Low 75 of size 4+1

of size 1

CTTC, CTTC,

. . .,T

11 214 [20; 24] F Moderate 53 of size 4+1

of size 2

TCCT, TTCC,

. . .,TT

12 101 [20; 24] F High 25 of size 4+1

of size 1

TTCC, TCTC,

. . ., C
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but also in development, education, etc. Think for instance of the case of a policy

towards disadvantaged children who would be offered safe shelter and balanced

diet in a specially designed educational facility while children in the control group

would be left to their condition.

Depriving participants from treatment may raise ethical concerns that cannot be

eluded in the methodological design of any experiment, be it in health or other fields

of intervention. They can be classified into foundational, operational and reporting

concerns. Admittedly, the following remarks do not contend to exhaust the subject,

and they will concentrate on foundational concerns since operational and reporting

problems are largely context-dependent.

Foundational concerns primarily relate to what is labeled “clinical equipoise”,

namely the uncertainty surrounding the benefits and harms of a new drug. Clinical

research is fundamentally meant to move from total ignorance (“We don’t know

what we don’t know”) to recognized ignorance (“We know what we don’t know”).

What we do not know is the differential benefit/harm ratio of a suggested new

treatment or intervention vis-à-vis the existing ones. That ignorance can be

explored through phase I and phase II clinical trials, and then reduced through

phase III randomized clinical trials. All these phases contribute to provide answers

with respect to what we know about the relative merits of the new drug or treatment.

Yet, they raise ethical concerns. From phase I to phase III, participants who are

exposed to treatment run the risk of unexpected or expected (but with unknown

frequency) harmful events. Thus, even if it seems that the research question requires

a clinical trial, one should always keep in mind the question of individual integrity.

On top of these considerations, participants from the control group face a potential

loss of opportunity since by construction they do not benefit from the treatment (but

conversely are not exposed to its adverse events). This is why informed consent is

required from participants in both arms of the trial under the close scrutiny of (now

always mandatory) ethics committees.

When balancing a health research program with the individual welfare of

participants, one should always have as a primary objective a Pareto improvement.

Namely, we search for a net increase in the welfare of as many participants as

possible (reasonably those from the treatment group in phase III if the intervention

is clinically relevant, volunteers or patients in phases I and II, keeping in mind that

early experiment phases are by essence risky and potentially harmful). Concur-

rently, the “do no harm” maxim should apply so that no one is made worth by his or

her participation in the trial. Due to the inherent risks of experimentation, the design

of the trial should contribute to minimize individual welfare losses so as to tend to a

Pareto-improving situation.

13.3 Statistical Significance of a Treatment Effect

Once the participants have been assigned to their respective groups, the subjects in

the control group are either treated with a placebo (placebo controlled trials) or with

the standard treatment against which the new treatment is assessed. In both cases,
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the fundamental point is that the result of the allocation of a subject to a group is by

nature unpredictable: randomization precludes selection biases. It nevertheless

remains that the balance between the two groups, in terms of risk or prognosis

factors, may not always be ensured. However, the comparability of the covariates

for the two groups increases with the trial size. Randomization generates groups of

similar (or better, equal) size with similar entry characteristics on average. The

differentiated care paths of the two groups should then illuminate the relevance of

introducing the new drug.

How can we measure the treatment effect? A simple numerical example

illustrates the answer. Consider a public health obesity policy that imposes regular

physical activity to the treatment group while the control group is not constrained to

attend such a program. The health indicator is the average overweight

(in kilograms), the reference being the standard body mass index. Table 13.2

provides the data for a sample of 60 participants randomly assigned to the treatment

group and to the control group. The randomization procedure has ensured equal size

of the groups. Patients allocated to the control group are coded “0” while patients

receiving the treatment are coded “1”. A quick glance at the data shows that patients

exposed to treatment usually have a lower overweight at the end of the experiment.

In our example, what can be measured is the average treatment effect (ATE),
calculated as the average outcome in the treatment group (T) minus the average

outcome for the non-exposed patients of the control group (C). Let �x T denote the

mean outcome in the treatment group and �x C the mean outcome in the control

group, with respective individual outcomes xTi and xCi . We have:

ATE ¼ 1

nT

XnT

i¼1
xTi � 1

nC

XnC

i¼1
xCi ¼ �x T � �x C

where nC and nT denote the group sizes, respectively. In the case of example 1:

ATE ¼ 1134

30
� 1328

30
� 37:8� 44:3 � �6:5

At first glance, the program seems to be effective since on average, patients from

the treatment group reduce their overweight by 6.5 kg. Yet, those results are

dependent on the selected sample. Statistical methods must be used to make

inference about the population of reference. To do so, we compute the standard

error (se) of the average treatment effect:

se ATEð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sTð Þ2
nT

þ sCð Þ2
nC

s

where sT and sC are the sample standard deviations of the treatment and control

groups, respectively:
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Table 13.2 Raw results of an experiment: example 1

Patient Overweight (kg) Group (1¼Treatment; 0¼Control)

1 43 1

2 56 0

3 28 1

4 33 0

5 49 1

6 49 0

7 21 1

8 38 1

9 29 0

10 43 1

11 47 0

12 37 1

13 36 1

14 33 1

15 55 0

16 49 1

17 51 1

18 42 0

19 36 0

20 35 1

21 34 0

22 60 0

23 58 0

24 42 1

25 37 0

26 44 1

27 49 0

28 53 0

29 52 0

30 30 0

31 43 1

32 27 1

33 31 1

34 30 0

35 33 1

36 36 0

37 49 0

38 40 1

39 43 0

40 47 0

41 34 1

42 38 1

43 53 0

(continued)
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s j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nj � 1

Xn
i¼1

xi � �xð Þ2
s

, j ¼ T,C

For instance, in our sample we have sT� 8.10, sC� 10.00, we therefore find:

se ATEð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:10ð Þ2
30

þ 10:00ð Þ2
30

s
� 2:35

It is an estimate of the variability of the ATE. As we will see below, this value can

be used to check the significance of the average treatment effect.

Descriptive statistics are useful on their own, as they provide a description of the

sample, but yet cannot be used to generalize the results to the population of

reference. In contrast, inferential statistics allows hypotheses to be tested and can

be used to determine if observed differences between groups are real or occur

simply by chance. First, one must make an assumption about the population

parameters, denoted μT and μC hereafter, in the treatment and control groups,

respectively:

H0 : μ
T ¼ μC ATE is not significantð Þ

This assumption is referred to as the null hypothesis H0. It assumes that the

observed difference is due to chance only. Second, one needs to define the alterna-

tive hypothesis H1:

Table 13.2 (continued)

Patient Overweight (kg) Group (1¼Treatment; 0¼Control)

44 48 1

45 53 1

46 59 0

47 30 0

48 34 0

49 26 1

50 49 0

51 34 1

52 58 0

53 39 1

54 45 1

55 43 0

56 30 1

57 27 1

58 34 0

59 43 0

60 37 1
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H1 : μ
T 6¼ μC ATE is significantð Þ

The alternative hypothesis states that the observed difference is the result of some

non-random cause. A statistical test is then implemented to determine whether there

is enough evidence to reject the null hypothesis.

The test is usually referred to as a “two-sample t-test for equal means”. Formally,

the test statistic is defined as a t-score:

t∗ ¼ ATE

se ATEð Þ ¼
�x T � �x Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sTð Þ2
nT þ sCð Þ2

nC

q
A Student t-distribution approximates the way this statistic is spread. A common

way to test a hypothesis is to rely on a 95% confidence level or, reciprocally, a 5%

significance level. This confidence level defines an acceptance region which

contains the values of the test statistic for which we fail to reject the null hypothesis.

Figure 13.2a provides an illustration. The shape of the Student distribution depends

on a specified number of degrees of freedom (for instance, 55.6 in Fig. 13.2). This

number approximates the “true” sample size by taking into account the number of

observations required for computational purposes. As the number of degrees of

freedom decreases, the tails of the distribution become larger, and so does the

acceptance region. On the other hand, as the number of degrees of freedom

increases, the t-distribution approaches the normal distribution with mean 0 and

variance 1.

In Fig. 13.2a, to achieve a significance level of 5%, the absolute value of the test

statistic t∗ must be outside the region of acceptance. Because the Student distribu-

tion is symmetrical, one usually compares the test statistic t∗ to a single critical

value which delimits the acceptance region. Let tα/2(df) denote this value, where α
denotes the significance level, and df stands for the number of degrees of freedom.

For the two-sample t-test, the number of degrees of freedom is given by:

df ¼
sTð Þ2
nT þ sCð Þ2

nC

� �2

sTð Þ2=nTð Þ2
nT�1

þ sCð Þ2=nCð Þ2
nC�1

If the test statistic t∗ is higher in absolute value than the critical value tα/2(df),
we reject the null hypothesis: the average treatment effect is significant. Recipro-

cally, facing a non-significant difference in means, the analyst can conclude that

there is absence of proof of a significant effect of the treatment, but that does not

prove the absence of an effect. Hence the saying: “absence of proof is not proof of

absence”.

Note that the previous test is defined as a two-tailed (or two-sided) test. It is also

possible to perform what is termed a one-tailed (or one-sided) test. We could test for

instance:
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H0 : μ
T � μC ðATE is not significantÞ

H1 : μ
T < μC ATE is strictly negativeð Þ

Here, we are interested in one side of the Student distribution only, as illustrated in

Fig. 13.2b. In that case, we implicitly assume that the average treatment effect

cannot be positive. The critical value is now denoted tα(df) and, by construction, the
acceptance region is smaller than previously. Hence, one-tailed tests make it easier

to reject the null hypothesis and to detect an effect. If one cares about not missing an

effect, the approach can be appropriate. However, choosing a one-tailed test for the

purpose of attaining significance can be suspicious. For instance, choosing a

one-tailed test after running a two-tailed test that failed to reject the null hypothesis

is scientifically questionable. With a one-tailed test, one also makes an assumption
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Fig. 13.2 The Student distribution (df¼ 55.6). (a) Two-tailed test, (b) one-tailed test
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about the direction of the relationship and completely disregards the possibility of a

relationship in the other direction.

Coming back to example 1, a two-sample t-test can be performed to test whether

the overweight for the treatment group is on average significantly different than the

overweight in the control group. The null hypothesis (H0 : μ
T¼ μC) states that the

treatment is not more effective than standard practice in controlling overweight:

there is no difference between means μT and μC in population. On the other hand,

the alternative hypothesis (H1 : μ
T 6¼ μC) states that there is a difference. If a

significant difference is found, then the result from the sample (ATE¼ � 6.5kg)

can be generalized to the population of reference.

The test statistic is computed as follows:

t∗ ¼ ATE

se ATEð Þ �
�6:5

2:35
� �2:8

The number of degrees of freedom is:

df ¼
8:102

30
þ 10:002

30

� �2
8:102=30ð Þ2

30�1
þ 10:002=30ð Þ2

30�1

� 55:6

By definition, we have t2.5%(55.6)¼2.004. This value can for instance be obtained

in Excel using the TINV(5%, 55.6) command. The test statistic t∗ is thus higher

in absolute value than the critical value. The null hypothesis is rejected: the

two means are significantly different. Provided that the intervention is cost effective

and its budget burden is sustainable, then it can be implemented in the target

population.

Figure 13.3 displays the R-CRAN codes of the two-sample t-test. The database
(saved as a .csv file on disc C:) is uploaded using the command read . table and, for
simplicity of exposition, saved under a new name D. The two groups are distin-

guished using the entries [D$Group¼¼ 1] and [D$Group¼¼ 0] so as to get their

summary statistics. This provides the respective means and sample standard devia-

tion which can for instance be used to compute the t-score and the number of

degrees of freedom. The test is implemented using the command t . test. We have

55.6 degrees of freedom and the test statistic is found to be 2.7535 in absolute value.

The critical value is obtained with the qt(0.975,55.6) command. As previously, we

conclude that there is a significant overweight reduction when patients benefit from

the intervention instead of standard practices. This is alternately confirmed by a p-
value of 0.0079 lower than 5%. The p-value gives the level of significance for

which one would be indifferent between rejecting and not rejecting H0. In other

words, if the p-value is less than the significance level α¼5%, the null hypothesis is

rejected. On the other hand, if the p-value is greater, then the null hypothesis is not

rejected.

Until now, we have been considering tests of equality of means and conse-

quently have been using a Student test. The chi-square test of independence should
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be used when one wants to test for equality of proportions between two samples

(e.g., two baseline risks). The first step is to create a two-way table. Consider for

instance a randomized controlled trial that involves a single period of time. The two

arms of the trial consist of a set of schoolchildren in a standard educational system

(control group) and a set of schoolchildren hosted in a specialized care center

(treatment group). The policy context is to avoid adverse events, i.e. reoffenders

in the target population of children from disadvantaged backgrounds. Allocation to

the two groups has been randomized. We assume that no individuals are lost or

censored during the experiment: they are all present from the beginning to the end

of the trial and they are either reoffenders or not.

After one year of experiment, the count result is summed up as in Table 13.3(a).

The size of the treatment and control groups is the same (nT¼ nC¼ 200). Over the

whole sample (treatment plus control), the number of subjects with event (140) is

lower than the number of subjects without event (260). The research question is

whether there is a difference between the treatment group and the control group and

whether the observed difference is statistically significant. For each group, the

baseline risks are computed as follows:

pT ¼ 60

200
¼ 30% and pC ¼ 80

200
¼ 40%

Fig. 13.3 Comparing treatment and control groups in R-CRAN: example 1
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The resulting difference is 30% � 40% ¼ � 10%. As expected, the intervention

generates a decrease in the number of adverse events. It remains to be seen whether

this result can be inferred to the population of reference. One needs to implement a

chi-square test of independence.

The test hypotheses are specified as:

H0 : πT ¼ πC

H1 : πT 6¼ πC

where πT and πC denote the corresponding population parameters. The next step is

to compute the test statistic:

χ2 ¼
XC
i¼1

Oi � Eið Þ2
Ei

where Oi is the observed frequency in cell i, Ei is the expected frequency in cell

i and C is the total number of cells. The critical value is obtained from a chi-square

distribution. The number of degrees of freedom is given by:

df ¼ number of row categories � 1ð Þ � number of column categories� 1ð Þ
Although the alternative hypothesis is two-sided, the chi-square test is a one-tailed

test. If the test statistic is higher than the critical value χ2α dfð Þ, with α¼ 5%, we

reject the null hypothesis H0 of equality of proportions.

The chi-square test is based on a comparison between the observed frequencies,

expressed in the two-way table, and the expected frequencies that would be

observed under the null hypothesis. In our example, if the probability of an adverse

effect were independent from the assignment to the control group or the treatment

Table 13.3 Observed and expected frequencies: example 2

Participants WITH adverse event

during trial

Participants WITHOUT adverse

event during trial Total

(a) Observed frequencies

Treatment

group

60 140 200

Control

group

80 120 200

Total 140 260 400

(b) Expected frequencies

Treatment

group

(140�200)/400¼70 (260�200)/400¼130 200

Control

group

(140�200)/400¼70 (260�200)/400¼130 200

Total 140 260 400
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group, the joint frequencies would be those of Table 13.3(b), i.e. we would obtain a

similar distribution of events. From the previous formula, the test statistic is

computed as:

χ2 ¼ 60� 70ð Þ2
70

þ 80� 70ð Þ2
70|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

First column

þ 140� 130ð Þ2
130

þ 120� 130ð Þ2
130|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Second column

� 4:40

The number of degrees of freedom is:

df ¼ 2� 1ð Þ � 2� 1ð Þ ¼ 1

The critical values can been generated from Excel using the function CHIINV
(5%, 1). We find:

χ25% 1ð Þ ¼ 3:841

The test statistic is greater than the critical value. We thereby reject the null

hypothesis.

Note that for small data counts (in particular when one cell of the table has a

count smaller than 5), Yates’ continuity correction can be used as an approximation

in the analysis of 2�2 tables. In that case, half the sample size is subtracted from all

frequency differences:

χ2Yates ¼
1

n

XC
i¼1

Oi � Eij j � n
2

� 	2
Ei

In our example, the test statistic is computed as:

χ2Yates ¼
1

400

10� 400
2

� 	2
70

þ 10� 400
2

� 	2
70|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

First column

þ 10� 400
2

� 	2
130

þ 10� 400
2

� 	2
130|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Second column

� 3:96

Again, the test statistic is greater than the critical value, though now much closer to

it. We still reject the null hypothesis. Yates’ correction is however sometimes

criticized as it tends to reduce the chi-squared value and, for this reason, may fail

to reject the null hypothesis when it should be rejected (a so-called type II error as

we shall see later).
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Figure 13.4 performs the test in R-CRAN using the function chisq . test. A
two-way table is created using the matrix command, which is used along with

prop . test to perform the test. The entry correct indicates whether Yates’ continuity
correction should be applied. As can be seen, the conclusion of the tests is the same.

The value of the chi-square statistic is significant (the p-value is lower than 5%).

Last, qchisq(.95, df¼ 1) offers the critical value. Note that the command yields the

95% confidence interval estimate of the difference between the proportions. Note

also that no assumption is made about the direction of the effect (two-sided test).

Yet, from the confidence interval, we have confirmation that the proportion of

adverse events in the treatment group is lower than that in the control group.

13.4 Clinical Significance and Statistical Power

When performing a hypothesis test, two types of errors are possible: type I and type

II, also referred to as “alpha” and “beta” errors. A type I error occurs when the null

hypothesis is true and one erroneously rejects it. This type of error is related to the

significance level α, which denotes the probability of making this type of error:

α ¼ Pr Type I errorf g ¼ Pr reject H0 when H0 is truef g
For instance, a significance level of 5% means that one is willing to accept a 5%

chance that one is wrong when one rejects H0. To decrease this risk, one must use a

lower value of α, i.e., enlarge the region where H0 is accepted. Yet, using a larger

region of acceptance also means that one is less likely to detect a true difference, a

Fig. 13.4 Testing for equality of proportions with R-CRAN: example 2
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so-called type II error: the null hypothesis is false and one actually fails to reject

it. The probability of making this type of error is usually denoted β:

β ¼ Pr Type II errorf g ¼ Pr reject H1 when H1 is truef g
Often the literature refers to 1� β to denote the power of a statistical test. It is the

probability that a Type II error is not committed.

Figure 13.5 illustrates the four possible cases. Type I errors are mostly about the

statistical quality of the test, namely the control of random fluctuations in sampling.

On the other hand, Type II errors concern the scientific quality of the test or

“clinical significance”, i.e. the identification of the magnitude of the effect of the

intervention. Which type of error is more damageable? In most cases, as they do not

want to see an effect where there is not, statisticians focus on the type I error and, to

reduce this type of risk, choose a small level of significance α for implementing a

test. However, when evaluating a medical treatment, missing an effect can also be

detrimental to the patients as they may incur a loss of opportunity, hence the

importance of accounting for type II errors.

Consider a public program aimed at minimizing the occurrence of an adverse

event in a target population. It may be a new drug that diminishes side effects for the

patients treated for a disease, or a new organization of institutional care for young

offenders that would decrease the risk of re-offense. The sample statistics for the

treatment and control groups are denoted pT and pC, while the (unobserved)

population parameters are denoted πT and πC, respectively. Ideally, we

expect that the treatment reduces the probability of adverse event, i.e., we would

like πT< πC. The problem is that we only observe a sample difference ( pT� pC),
which itself depends on the subjects that have been selected. In the case of a drug

for instance, the adverse event for a given patient is triggered by his or her own

clinical characteristics and the natural history of the pathology. Young offenders

have their own personal history and personality characteristics which, coupled with

triggering events, would lead them to re-offense. We may thus face type I and type

II errors when testing H0 : π
T¼ πC versus H1 : π

T 6¼ πC.
Imagine for instance an experiment where the sample gives pT¼ 7% and pC¼ 15%.

At first glance, the treatment group seems less likely to face the adverse event than the

control group. In this case, a type I error would be the rejection of the null hypothesis

whereas, in population, the two probabilities are equal (e.g., πT¼ πC¼10%).

The variation in probabilities observed at the sample level may be due to sampling

error. The usual way for reducing this type of risk is to define an acceptance region

so that the probability of observing such an error is sufficiently small. That small

Fig. 13.5 Summary of type I and II errors
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risk of error is usually kept to α¼ 5%. If the type I error is considered by the

decision-maker as a risk that the society should not take, then the edge value should

be lowered to 1%.

Let us now move on to the reverse situation and let us consider for instance an

experiment where the sample gives pT¼ pC¼ 10%. At first glance, the treatment

group seems to face the same frequency of adverse events as the control group. In

this case, a type II error would be the acceptance of the null hypothesis whereas, in

population, the two probabilities would differ (say πT¼ 5% and πC¼ 15%). Should

this experiment be used for policy-making, the inability to reject the null hypothesis

would imply that the policy associated with the intervention will not be

implemented, leading to a loss of opportunity for the population of reference who

would otherwise have benefited from the treatment. This loss of opportunity is an

important feature of public policies since, by giving up the implementation of a

program, the decision-maker misses the possibility of improving the welfare of the

initially targeted population.

Often, for simplicity of exposition, the computation of the type II risk is

presented in the context of a one-sample t-test. This type of test is used to determine

whether the mean of a group differs from a specified value. For instance, we may

want to know whether a treatment group differs or not from a general population.

Imagine that we expect the mean of the treatment group μT to be lower than the

mean μ0 of the general population (e.g., we expect a reduction in the level of

adverse effects). The test hypotheses can be defined as:

H0 : μ
T ¼ μ0

H1 : μ
T < μ0

The population mean μ0 is not always known, but can be hypothesized, e.g., from

the observation of a control group. Similarly, we only know the sample mean for the

treatment group, denoted �x T hereafter. In this case, a type I error means to

erroneously conclude that μT< μ0 while there is not effect. On the other hand, a

type II error means to erroneously conclude that μT¼ μ0 while there is an effect.

At this stage, to compute the type II error, we need to understand that, depending

on the selected sample, our conclusions can be different. To account for that

uncertainty, we need to assume a distribution for �x T . Imagine for instance that

the null hypothesis is true: we have μT¼ μ0. Yet, we do not know μT and only have

an approximation of it, that is �x T . The problem is that in one given sample, we may

find that the mean �x T is lower than μ0, in another sample it can be higher, and so

on. Given this uncertainty, we need to specify a confidence interval which is likely

to include the unknown population parameter μT. If μ0 belongs to this interval, then
we do not reject H0. For a 5%, significance level, this means that one is willing to

accept a 5% chance that one is wrong when one rejectsH0. In practice, a convenient

way to address this question is to normalize the problem and to rely on a standard

normal distribution or a Student distribution to implement the test. Basically

speaking, a test statistic is computed and compared to a critical value which defines
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the acceptance region. The tricky issue is that the distribution in question also

depends on which hypothesis is true, i.e. whether it is H0 or H1.

Under the null hypothesis, the probability of facing a type I error is defined as:

α ¼ Pr reject H0 when H0 is truef g ¼ Pr �xT < critical value when H0 is true

 �

Figure 13.6a illustrates this case in the mean-density plane. The null hypothesis is

assumed to be true and, for this reason, the distribution of the sample mean has a

mean μ0. The critical value is chosen so that the probability that �x T falls in the

acceptance region is 1� α (confidence level). To implement the test, one generally

focuses on a well-known distribution such as a t-distribution. Instead of focusing on

�x T , the focus is on the following statistic:

a

b

α

β– β

– α

μ0−δ

μ0

Fig. 13.6 Type I and type II errors. (a) Under the null hypothesis, (b) Under the alternative

hypothesis
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t∗ ¼ �x T � μ0
sT=

ffiffiffiffiffi
nT

p

which denotes the standardized sample mean. The latter is computed as the

difference between the sample mean �x T and the hypothesized mean μ0 relative to

the standard error of the mean se ¼ sT=
ffiffiffiffiffi
nT

p
, where sT denotes the sample standard

deviation and nT the sample size. Under H0, this statistic follows a Student distri-

bution. The risk of a type I error is thus defined as:

α ¼ Pr t∗ < tα dfð Þ j t∗et nT � 1
� 	n o

where tα(df) denotes the standardized critical value, with df¼ nT� 1. In practice,

for this kind of test, it is best to use a Student distribution, instead of a normal

distribution, whenever the population standard deviation is unknown. If the sample

statistic is found to be lower than the critical value, then we reject the null

hypothesis. This equivalently means that μ0 does not belong to the acceptance

region, i.e. that it differs from the treatment group mean.

Under the alternative hypothesis, the test statistic t∗ follows a non-central

distribution. Assume that δ> 0 denotes the true (unobserved) difference between

the population means so that the treatment group has now a population mean equal

to μT¼ μ0� δ¼ μ∗. The type II error is given by:

β ¼ Pr reject H1 when H1 is truef g ¼ Pr �xT > critical value when H1 is true

 �

This case is illustrated in Fig. 13.6b where a small difference δ is considered. The
alternative hypothesis is assumed to be true and, for this reason, the distribution of

the sample mean has now a mean equal to μ0� δ. Compared to Fig. 13.6a, the

distribution of the sample mean shifts slightly to the left, which generates a high

probability of a type II error. As can be noticed, the probability β that �x T falls in the

acceptance region is determined by the previously chosen critical value. Type I and

Type II errors are therefore interrelated: as one increases, the other decreases.

Moreover, the larger is the difference δ, the lower is the risk of a type II error and

the higher is the power of the test.

Through standardization, we get:

β ¼ Pr t∗ > tα dfð Þ j H1f g
Under H1, we know that:

�x T � μ∗

sT=
ffiffiffiffiffi
nT

p et nT � 1
� 	
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Moreover, we have:

t∗ ¼ �x T � μ0
sT=

ffiffiffiffiffi
nT

p ¼ �x T � μ0 þ μ∗ � μ∗

sT=
ffiffiffiffiffi
nT

p ¼ �x T � μ∗

sT=
ffiffiffiffiffi
nT

p � δ

sT=
ffiffiffiffiffi
nT

p

The risk of a type II error can thus be expressed as:

β ¼ Pr
�xT � μ∗

sT=
ffiffiffiffiffi
nT

p � δ

sT=
ffiffiffiffiffi
nT

p > tα dfð Þ j �xT � μ∗

sT=
ffiffiffiffiffi
nT

p et nT � 1
� 	8<:

9=;
Equivalently, we have:

1� β ¼ Pr
�xT � μ∗

sT=
ffiffiffiffiffi
nT

p � δ

sT=
ffiffiffiffiffi
nT

p < tα dfð Þ j �xT � μ∗

sT=
ffiffiffiffiffi
nT

p et nT � 1
� 	8<:

9=;
Thus, to calculate the power of a test, one must first compute the non-centrality

parameter
ffiffiffiffiffi
nT

p
δ=sT . The non-central t-distribution is a generalization of the usual

t-distribution. It describes the distribution of a test statistic when the null hypothesis
is false. Figure 13.7 offers an illustration with different values of the non-centrality

parameter. If the parameter is zero, the distribution is identical to a distribution in

the central family. If the non-centrality parameter is nonzero, then the distribution

shifts either to the left or to the right. Note also that the tails of a non-central

distribution are larger from those of the central distribution.

Consider example 1 (see Table 13.2). The indicator of effect is the overweight

and the treatment is meant to help patients decrease that overweight. For individuals

exposed to the policy, the average sample overweight is �x T ¼ 37:8 kg. From the

control group, we may infer the average overweight among the non-exposed:

μ0¼ 44.7 kg. The policy objective is to reach μT< μ0. Under the null hypothesis,

the test statistic is computed as:

t∗ ¼ �x T � μ0
sT=

ffiffiffiffiffi
nT

p ¼ 37:8� 44:7

8:10=
ffiffiffiffiffi
30

p � �4:66

The number of degrees of freedom is nT� 1¼ 29. If we arbitrarily choose a risk of a

type I error equal to 5%, we obtain a critical value equal to t5%(29)� � 1.70. The

test statistic t∗ is thus greater in absolute value than the critical value. At a 5% risk

level, the null hypothesis is rejected: the effect is considered as significant. Fig-

ure 13.8 offers the program in R-CRAN. Note that the p-value (3.188e� 05) is

lower than that of the two-sample t-test ( p-value ¼ 0.0007951 in Sect. 13.3,

Fig. 13.3), which equivalently means that the support for the effect is larger with

the one sample t-test. There are two reasons for this: (1) the one sample t-test is
one-sided only and (2) we assume that μ0 is perfectly known (the uncertainty

inherent to the control group is not taken into account here).
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Beyond the statistical risk represented by type I errors, what is the scientific risk

incurred if H0 cannot be rejected, i.e. if we cannot prove the existence of the effect

from the experiment although it presumably exists in population (or at least we

would like to demonstrate it)? To answer that question, one must know the effect

size that is scientifically required to significantly conclude that the impact of the

treatment does matter. This kind of information is obtained from experts and it

stands as a parameter for the evaluator, even though it can be varied in agreement

with the experts in order to check the (univariate) sensitivity of results to changes in

its value. For instance, let us assume that the weight decrease must reach δ¼ 3kg to

be clinically significant. The power of the test is obtained from:

1� β ¼ Pr
�xT � μ∗

sT=
ffiffiffiffiffi
nT

p � 3

8:10=
ffiffiffiffiffi
30

p < �1:70j �xT � μ∗

sT=
ffiffiffiffiffi
nT

p et nT � 1
� 	8<:

9=;
It is equal to the probability that a non-central t-distributed random variable with

29 degrees of freedom and non-centrality parameter 2.03 is lower than �1.70. To

find this value, one can rely on the pt command in R-CRAN which gives the related

distribution function for a set of non-centrality parameters. In Fig. 13.8, we use this

command and find a statistical power equal to 63.19%. An equivalent way is to rely
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Fig. 13.7 Non-central Student distributions (df¼29)
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on the pwr . t . test function from the package pwr. In that case the effect size is

defined as:

d ¼ �δ

sT

In our example, we have d¼ 3/8.10� 0.37 and this effect is supposed to be

negative. In general, for any type of t-test or for testing difference between

proportions, d values of 0.2, 0.5, and 0.8 (in absolute value) represent small,

medium, and large effect sizes, respectively. Note also that a power above 80% is

usually considered as satisfactory so that in this numerical example (we found

0.6319631) one cannot reasonably conclude that the proposed health policy is

worth implementing. Last, our analysis of effectiveness does not presume of the

efficiency of the policy since we do not have any information about the differential

cost if the health program replaced standard practices.

Fig. 13.8 Computing the power of a test with R-CRAN
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13.5 Sample Size Calculations

Controlling for the beta risk implies that the test must be sufficiently powerful,

i.e. capable of providing (in probability) a significant difference in outcomes if the

treatment is indeed more effective. The power of the test depends on several

parameters, among which the effect size d, the sample size nT, and the significance

level α. Table 13.4 offers an example for different sets of parameters. The base case

corresponds to example 1 (Sect. 13.4) with α¼ 5%, n¼ 30, δ¼ 3 and d� 0.37. As

shown previously, the statistical power is 63.2%. Figure 13.9 computes the different

scenarios in R-CRAN. Note that if one adds $power to the end of the pwr . t . test
command, then only the statistical power will be displayed.

As can be observed from Table 13.4, the power of the test increases with α. Type
I and type II errors are antagonistic. A smaller significance level α implies less test

power, conversely a greater α risk-taking increases the odds of implementing the

policy and hence minimize losses of opportunity. The antagonism between type I

and type II risks is however mitigated by the fact that there is a well establish

consensus to use a type I risk of α¼ 5%. Thus, in practice, the investigator

exogenously sets α to 5% and computes the power of the test from the remaining

parameters.

Second, the required effect size d appears as a quite sensitive parameter. The

power of the test increases with the non-centrality parameter. When the scientific

indicator of effect size implies a treatment mean value too close to that of the

control group, the experiment loses most of its power. On the other hand, a large

required effect size may prove too ambitious and difficult to reach.

Last, the power of the test increases with n. Sample size has the obvious and

intuitive effect: the greater the sample size, the more powerful is the test. Limits to

sample size are nevertheless often practical. Running an experiment is costly and,

usually, the higher the sample size, the higher its cost. Randomization also requires

the formation of two groups and, for particular diseases, finding and following up

patients may not be so easy, hence the concentration of efforts on the inclusion of a

smaller group. In the meanwhile, budgets are seldom limitlessly extendable. It is

thus natural to seek for the minimum sample size required to obtain a pre-defined

statistical power. A test power analysis can be performed for this particular purpose.

The statistical justification of the number of inclusions is a rather difficult topic

but nevertheless important. Sample size calculation is always an estimate

surrounded by a lot of uncertainty since the parameters involved are themselves

estimates. The examples below are mostly illustrative and cannot encompass all

cases since sample size formulas depend on the hypothesis test that has been

selected and the type of clinical trial that has been implemented.

In R-CRAN, the pwr package provides several functions for sample size calcu-

lation. Let us consider again the base case of Table 13.4 with α¼ 5%, d� � 0.37,

n¼ 30 and 1� β¼ 63.2%. In R-CRAN, when one of the parameters is not specified

in the pwr . t . test function, then that parameter is determined from the others. We

can therefore specify the statistical power one would like to achieve and compute
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the required sample size. Figure 13.10 offers several examples. For instance, when

specifying:

d ¼ �0:37, power ¼ 0:63, sig:level ¼ 0:05, type ¼ }one:sample}, alt ¼ }less}

and indicating $n to get the ensuing sample size, one approximately finds a sample

size of 30. If one sets the power of the test to the 80% level, the required sample size

becomes 47.

The pwr . t . test command can also be used to find the sample size for a

two-sided two-sample t-test (see Sect. 13.3) given a medium effect size (d¼ 0.5)

and a power of 80%. The entries of the pwr . t . test function must be specified as:

Fig. 13.9 Sensitivity of statistical power with R-CRAN: example 2

Fig. 13.10 Sample size calculations with R-CRAN
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d ¼ 0:5, power ¼ 0:80, sig:level ¼ 0:05, type ¼ }two:sample}, alt ¼ }two:sided}

Since the test is two-sided, the sign of the effect size does not matter anymore

(we can set d¼ 0.5 or �0.5 indifferently). From Fig. 13.10, we obtain approxi-

mately a sample size of n¼ 64. One should be careful here as n now denotes the

number of subjects in each group, i.e. control and treatment (the total number of

subjects is 128). Using the pwr . 2p . test function, R-CRAN can also calculate the

sample size required to test for equality of proportions. For instance, with an effect

size equal to h¼ 0.5:

h ¼ 0:5, power ¼ 0:80, sig:level ¼ 0:05, type ¼ }two:sample}, alt ¼ }two:sided}

We obtain a sample size of 63 subjects in each group.

13.6 Indicators of Policy Effects

When the experiment reaches its end, the investigator can summarize and interpret

information through various indicators. Often the approach relies on counting the

number of successes and failures in each group. The outcome of interest is thereby

categorical. The most popular indicators include the absolute risk reduction (ARR),
the relative risk ratio (RR), the odds ratio (OR) and the number needed to treat

(NNT). They are successively presented below. Since their computation depends on

the sample under scrutiny, a margin of error�e is generally calculated. It consists in
defining a confidence interval which is likely to contain the true population

measurement:

e ¼ critical value� se

The level of the critical value depends on the confidence level chosen by the

evaluator (often, a 95% confidence level) and the probability distribution assumed

behind the statistic. The standard error se is the standard deviation of the sampling

distribution.

The simplest way of accounting for the treatment effectiveness is to rely on the

absolute risk reduction, also called risk difference, which simply measures the size

of a difference between two treatments. Let pTand pC denote the baseline risks,

i.e. the probability of an event in the treatment group and the control group

respectively. The absolute risk reduction is defined as:

ARR ¼ pT � pC

It represents the proportion of subjects who are spared the adverse outcome as a

result of having received the intervention. The standard error (se) is specified as:
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se ARRð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pT 1� pTð Þ

nT
þ pC 1� pCð Þ

nC

r
where nT and nC denotes the size of the control group and the treatment group,

respectively. The critical value is the appropriate zα/2 value from the standard

normal distribution for the desired confidence level. For instance, for a 5% signifi-

cance level, the critical value is z5% /2¼1.96. The corresponding confidence interval

is:

ARR� 1:96� se

To illustrate, consider again example 2 (Table 13.3). The policy context is to

avoid adverse events. Table 13.5 replicates the results. The baseline risk indicates

the frequency of events evidenced from the two arms of the sample. In the treatment

group, it amounts to pT¼ a/(a+ b)¼ 0.30. It is pC¼ c/(c+ d)¼ 0.40 in the control

group. The group size are nT¼ a + b¼ 200 and nC¼ c + d¼ 200, respectively. The

standard error is computed as:

se ARRð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:30 1� 0:30ð Þ

200
þ 0:40 1� 0:40ð Þ

200

r
� 0:047

The confidence interval is given by �0.10� 1.96� 0.047� [�0.193,�0.007]

which corresponds to the confidence interval obtained with the prop . test function
in Fig. 13.4 (without Yates’ correction for continuity).

Another possibility to assess the effectiveness of an intervention is to calculate

the relative risk. It is defined as the ratio of the probability of event occurrence in the

treatment group to the probability of the event occurring in the control group:

Table 13.5 Relative risk: example 2

Participants

WITH event

during trial

Participants

WITHOUT event

during trial

Participants at

risk prior to

trial Baseline risk

Treatment

group

a¼ 60 b¼ 140 a + b¼ 200 a/(a+ b)¼ 0.30

Control

group

c¼80 d¼ 120 c + d¼ 200 c/(c + d )¼ 0.40

a+ c¼ 140 b + d¼260 n¼ a+ b + c + d
¼400

RR ¼ a= aþbð Þ
c= cþdð Þ ¼ 0:75

Total number

of events

during trial

Total number of

unaffected

participants during

trial

Total of

participants at

risk prior to

trial

Relative risk

RR
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RR ¼ Baseline risk in the treatment group

Baseline risk in the control group
¼ pT

pC

If the policy under scrutiny is such that RR� 1, its implementation implies a

relative improvement. If RR> 1 then the event we wish to avert is unfortunately

more likely to occur in the treatment group than in the control group. This means

that the assessed project should not be generalized from the trial sample to the

whole population of interest. Last, if RR¼ 1 then the two arms experience the same

outcome.

The calculation of the confidence interval rests on the assumption that the

distribution of the logarithm ln(RR) is approximately normal with standard error:

se lnRRð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b

a aþ bð Þ þ
d

c cþ dð Þ

s

For a 5% significance level, the critical value is z5% /2¼1.96. The corresponding

confidence interval is expressed as ln(RR)� 1.96� se.
For instance, in Table 13.5, the relative risk RR is defined as:

RR ¼ pT

pC
¼ 0:30

0:40
¼ 0:75

The risk for the treatment group is 75% that of the control group. There is a relative

improvement that can also be expressed as the relative risk reduction RRR:

RRR ¼ 1� RR ¼ 25%

If the policy measure is to be adopted, then the risk of adverse event (e.g., re-offense

in example 2) should decrease by 25%. This statement should however be verified

through the calculation of a confidence interval. We have se ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0192

p � 0:138,
the confidence interval amounts to:

exp ln 0:75ð Þ � 0:138� 1:96ð Þ ¼ 0:57; 0:98½ �
The switch value RR¼ 1 is not included in the confidence interval, which confirms

the previous statement.

Note that the ARR test and the RR test can sometimes yield different conclusions.

The reason behind such a phenomenon is that the indicators do not measure the

same thing. Imagine for instance that we have the following baseline risks: pT¼ 2%

and pC¼ 7%. Then, the ARR¼ � 0.05 is relatively small while the RR amounts to

0.28. A small difference in proportions can thus lead to a high RR. The proportion of
subjects getting the disease does not differ substantially from the control group to

the treatment group (which is common in studying low incidence rates). Yet,

relatively speaking, this difference is quite sensible. Reciprocally, when the
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difference in proportions is large (e.g., ARR¼ 90% � 70% ¼ 20%), this does not

mean that the RR is necessarily low (here, RR¼ 77%).

Another popular measure of exposure to an adverse event is the odds ratio:

OR ¼ Odds for the treatment group

Odds for the control group
¼ a=b

c=d

Odds for the treatment group are the ratio of the count of event exposures (a) to the
count of non-exposed participants (b). A similar ratio is calculated for the control

group (c/d). If OR¼ 1 then both groups have the same odds. An OR less than

1 means that the treatment group is less likely to experience the adverse event.

Table 13.6 exemplifies it. The policy implies a relative improvement since

OR¼ 0.64< 1. The sampling distribution of the odds ratio is approximately nor-

mally distributed on the natural log scale. The standard error is:

se lnORð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a
þ 1

b
þ 1

c
þ 1

d

r

For a 5% significance level, the critical value is z5% /2¼1.96. The corresponding

confidence interval is thus expressed as ln(OR)� 1.96� se. In our example, the

standard error amounts to se(lnOR)¼ 0.211, approximately. The confidence inter-

val is expressed as:

exp ln 0:64ð Þ � 0:211� 1:96ð Þ ¼ 0:42; 0:97½ �
Again, the resulting confidence interval gives support to the program.

In practice, the relative risk ratio and odds ratio indicators can yield different

results. In our example, the odds ratio is much more favorable to the policy since for

the treatment group the risk of event occurrence is only 64% of that of the control

group, compared to 75% in the case of the relative risk ratio (Table 13.5). This

Table 13.6 Odds ratio: example 2

Participants

WITH event

during trial

Participants

WITHOUT event

during trial

Participants at

risk prior to trial Odds

Treatment

group

a¼ 60 b¼ 140 a+ b¼ 200 a/b¼ 0.43

Control

group

c¼80 d¼ 120 c+ d¼ 200 c/d¼ 0.67

a+ c¼ 140 b + d¼260 n¼ a + b+ c + d
¼400

OR ¼ a=b
c=d ¼ 0:64

Total number

of events

during trial

Total number of

unaffected subjects

during trial

Total of

participants at

risk prior to trial

Odds ratio OR
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discrepancy takes place when the event has a high incidence (high probability of

event in both groups). Conversely, if event occurrence is low, the two indicators

converge. Table 13.7 illustrates this phenomenon. The ratio a/c is similar to that of

Table 13.5 and, for this reason, the RR remains equal to 0.75. The odds ratio on the

other hand increases to 74%. To systematize this result, assume groups of equal size

and rewrite the relative risk and odds ratios as:

RR ¼ a= aþ bð Þ
c= cþ dð Þ ¼

a

c

OR ¼ a=b

c=d
¼ a

c
� d

b

When the incidence of the event is very low compared to sample size, then

d/b! 1� and the odds ratio gets very close to the relative risk ratio.

Another indicator provided by the count framework is the number needed to

treat (NNT, hereafter). In the case of an adverse event, it is the average number of

subjects who should be treated to avoid the occurrence of one event. Formally:

NNT ¼ 1

a= aþ bð Þ½ � � c= cþ dð Þ½ � ¼
1

pT � pC
¼ 1

ARR

It is defined as the inverse of the absolute risk reduction. For instance, in example

2, we have:

NNT ¼ 1

0:30� 0:40
¼ 1

�0:10
¼ �10

According to the ARR criterion, ten events on average are avoided every

100 treated subjects. Equivalently, with the NNT, we conclude that one event is

avoided every 10 treated subjects. The confidence interval is directly obtained from

the ARR:

1

�0:007
,

1

�0:193

� 
� ½�142, � 5�

Note that the NNT should not be mistaken with the baseline risk pT¼ 30%. It does

not mean that by treating 10 subjects, one of them only will avoid the event. Instead,

it is the average number of subjects who need to be treated to prevent one additional

adverse event.

When pT¼ 0% (the treatment works in every case), while pC¼ 100% (every

subject in the control group face the adverse event), then the number needed to treat

is NNT¼ 1/(0.0� 1.0)¼ � 1. If pT¼ 20% (an event is observed 2 times out of 10 in

the treatment group) and pC¼ 40% (an event is observed 4 times out of 10 in the

control group), then the number needed to treat is NNT¼ 1/(0.2� 0.4)¼ � 20. On
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average, one event is avoided every 20 treated subjects. The higher is the NNT, the
less effective is the treatment. If the treatment group and the control group have the

same size (a + b¼ c+ d), the NNT is expressed as:

NNT ¼ aþ bð Þ cþ dð Þ
a= cþ dð Þ½ � � c= aþ bð Þ½ � ¼

aþ bð Þ2
a= aþ bð Þ½ � � c= aþ bð Þ½ � ¼

aþ b

a� c

In this case, the NNT is the ratio of the group size to the reduction in the number of

events allowed by the intervention.

13.7 Survival Analysis with Censoring: The Kaplan-Meier
Approach

How long are you going to keep your job? Will that be influenced by the labor

policy of your state or region? How long would you remain at school before you

dropout, (if ever you do)? How long will your treatment keep you alive? Would you

live longer if treated with another drug? Answering those questions can be difficult

as the subjects may face a different evolution of their situation through time.

Adverse events can be observed all along the experiment, from the beginning

until the end of the period of observation. For instance, the same endpoint result

for two groups can hide very different outlines of evolution. Imagine a medical

experiment with a long time horizon where none of the participants have survived.

Yet, the subjects in the treatment group may have survived longer thanks to the

intervention. It is thus quite important to catch the survival profiles. For this reason,

we must extend the analysis to a framework were the timing of event occurrence is

explicitly accounted for.

This new framework involves the comparison of a control group versus the

treatment group over several time periods. Two-way tables are built for each period,

and then compared in order to check whether the intervention provides significant

improvement. In the affirmative, the experiment can be extended to larger

populations or other jurisdictions. For instance, depending on the context, adverse

events can be job loss, training disruption in labor policy, school dropout in

education, re-offense after prison, side-effect of a drug, etc. In those cases, the

effectiveness of a program is not only about the number of successes and failures,

but also about when they are observed.

Consider an experiment where all the subjects are followed until they face an

adverse event (e.g., progression of the disease). The Kaplan-Meier survival analysis

first requires to set the time frame of individual exposure to treatment (time

horizon H, time period t for event count: months, years, etc.). In practice, the

design should also carefully describe the censoring conditions. Censoring occurs

when some participants do not experience the event before trial termination or

when administrative termination takes place because of the budget constraint, of
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early benefits or harmful effects, etc. Data arrangement should also take into

consideration the fact that some participants can get lost to follow-up without

experiencing the event.

Following the previous structure (see Sect. 13.6), let us first define the two-way

table observed in period t as follows:

Period t With event Without event Total

Treatment group at bt at þ bt
Control group ct dt ct þ dt

For each group and each period, a conditional probability of surviving at any

particular time period is calculated as:

1� ptð Þ ¼ Number of subjects at risk� Number of adverse events

Number of subjects at risk

In other words, for each time interval t, (1� pt) is defined as the number of subjects

who did not experience the adverse event divided by the number of subjects at risk.

This amount to compute the following probabilities for the treatment and control

groups:

1� pT
t

� 	 ¼ at þ btð Þ�at
at þ bt

¼ bt
at þ bt

, 1� pC
t

� 	 ¼ ct þ dtð Þ�ct
ct þ dt

¼ dt
ct þ dt

Those probabilities are conditional because they measure the probability of no

event in period t given that no event has occurred in period (t� 1). For instance, in

the case of a medical treatment, they denote the probability of surviving the tth

period given that the participant has survived the previous time intervals.

The survival rate in period t is calculated by multiplying all the conditional

probabilities preceding and including that time period:

Sj
t ¼

Yt
τ¼1

1� pj
τ

� 	
, j ¼ T,C

It is the percentage of subjects in group j who did not experience the adverse event

by the end of period t. Note that the Kaplan-Meier approach has the advantage to

exclude the number of censored subjects from the calculation. This is crucial. In

many cases, we cannot rely on a simpler computation based on the number of

remaining subjects in each group. The reason is that the censored subjects would be

counted as subjects who did not face the adverse event and one would obtain instead

an overestimation of the survival rate (lower probability of adverse effects). This is

why the Kaplan-Meier approach should be used anytime censoring is prevalent.

To get the intuition of the Kaplan-Meier survival analysis, consider the follow-

ing example. The follow-up horizon is two years. The initial cohort in the treatment
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group and in the control group each have 40 participants. At t¼ 1, we have the

two-way table:

t ¼ 1 With event Without event Total

Treatment group a1 ¼ 1 b1 ¼ 39 40

Control group c1 ¼ 7 d1 ¼ 33 40

The conditional probabilities of surviving period t¼ 1 are computed as

1� pT
1

� 	 ¼ 39=40 ¼ 97:5% and 1� pC
1

� 	 ¼ 33=40 ¼ 82:5%, respectively. In

the first period, these probabilities directly yield the survival rates ST
1 and SC

t . Now,

assume that at t¼ 2 one participant from the treatment group and one from the

control group are censored. We have:

t ¼ 2 With event Without event Total

Treatment group a2 ¼ 2 b2 ¼ 36 38

Control group c2 ¼ 4 d2 ¼ 28 32

Because one individual has been censored, the number of subjects at risk in the

treatment group at t¼ 2 (i.e. 38) does not match the observed number of subjects

without event at the end of period 1 (i.e. 39). Equivalently, in the control group, one

individual has been left out (32 6¼ 33). The conditional probabilities are computed

as 1� pT
2

� 	 ¼ 36=38 � 94:7% and 1� pC
2

� 	 ¼ 28=32 � 87:5%, respectively.

Survival probabilities at the end of period t¼ 2 are thus:

ST
2 ¼ 1� pT

1

� 	� 1� pT
2

� 	 ¼ 39

40
� 36

38
� 92:4%

and

SC
2 ¼ 1� pC

1

� 	� 1� pC
2

� 	 ¼ 33

40
� 28

32
� 72:2%

Consider now Fig. 13.11 which extends the previous illustration. For the treat-

ment group (Fig. 13.11a) the survival curve is built as follows. The observation

period consists of 6 consecutive time intervals (e.g., years) indexed t for an initial

cohort of 40 individuals. During the first period, 1 subject is exposed to the event

and 1 is lost or censored. That leaves 40� 1� 1¼ 38 subjects for the next period

during which 2 participants face the event and 1 is lost or censored. The third period

thus begins with 38� 2� 1¼ 35 subjects, etc. At the end of the experiment

(administrative termination at the end of period 6), 9 subjects have “survived”

and they are by convention allocated to the set of censored participants. To draw the

corresponding survival curve, one needs first to calculate the conditional survival

probabilities 1� pT
t

� 	
period after period, then multiply them to compute the

survival rates. A similar approach is used for the control group (see Fig. 13.11b).
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The survival step functions for the treatment and control groups are depicted in

Fig. 13.12. The code for plotting the curves is provided in Fig. 13.13. First, the

survival probabilities ST
t and SC

t are entered manually. The related curves are then

drawn with the stepfun function. This function is used because the usual way of

plotting survival curves is through step curves, each segment representing survival

at the end of the current time period. A legend is then included with the usual

command. Note that R-CRAN also offers a package named survival, with

several tools for analyzing data at the individual level with heterogeneous time

intervals.

As can be understood, survival rates can be very helpful to assess the effect of a

program over time. They can be used to inform a decision-maker about survival

probabilities after a number a periods. A median survival time can also be provided.

For instance, in Fig. 13.11, the estimated probability of surviving 2 years is 72.2%

without treatment and 92.4% with treatment. The median survival time without

treatment is approximately 3 years and is between 4 and 5 years with treatment.

There remains to check whether these differences are statistically significant.

13.8 Mantel-Haenszel Test for Conditional Independence

As can be deduced from the previous section, what we would like to measure is the

area that lies between two survival curves. The larger is that difference, the larger is

the effect of the treatment over the whole time period. To do so, the usual approach

is to rely on a Mantel-Haenszel test. As previously, this test is used when we have

successive data from two-way tables at different time periods t¼ 1 . . .H:

Fig. 13.11 Survival step functions: example 4. (a) Treatment group. (b) Control group
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Period t With event Without event

Treatment group at bt
Control group ct dt

where nt¼ (at + bt + ct+ dt) represents the total number of subjects. Under this

framework, the Mantel-Haenszel test first defines what is termed a common odds

ratio:
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Fig. 13.12 Kaplan-Meier survival step function: example 4

Fig. 13.13 Plotting survival curves in R-CRAN
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Common OR ¼
PH

t¼1 atdt=ntPH
t¼1 btct=nt

It is a way of summarizing how big the differences are between the two groups. The

null hypothesis of the test is that the population common odds ratio is equal to

1. The alternative hypothesis is that it is different from unity. In other words, the

Mantel-Haenszel test checks whether there is no consistent difference in the

two-way tables over the whole period of study.

Under the Mantel-Haenszel framework, the test statistic is expressed as:

χ2MH ¼
�PH

t¼1 at � EðatÞ
�2

PH
t¼1 s

2ðatÞ
where E(at) denotes what is termed the expected number of events in the treatment

group and s2(at) the variance of the observed number of events in the treatment

group, respectively:

E atð Þ ¼ at þ btð Þ � at þ ct
nt

s2 atð Þ ¼ at þ ctð Þ bt þ dtð Þ at þ btð Þ ct þ dtð Þ
nt2 nt � 1ð Þ

The Mantel-Haenszel statistic has a chi-square distribution with one degree of

freedom. At the 5% confidence level, significant difference between two groups

is reached when χ2MH > 3:84. At the 1% confidence level, the critical value

increases to 6.63.

Let us now illustrate the Mantel-Haenszel test with the data from example

4. Figure 13.14 reproduces the analysis in R-CRAN. Technically speaking, it

does not matter how the two-way tables are arranged as any of the four values of

the two-way tables can be used as at. However, to fit the Kaplan-Meier framework,

the database is arranged so as to correspond to the following order: a, c, b, d. The
command read . table reads the file and allows to check the values entered in the .

csv file. Using the command array, the whole set of two-way tables is generated. To
do so, the initial dataframe D must be specified as a list of numbers. Then the

command mantelhaen . test implements the test. Note that by specifying

correct¼ TRUE in the mantelhaen . test command, R-CRAN performs the

Mantel-Haenszel test with a continuity correction. In addition to testing the null

hypothesis, the Mantel-Haenszel test also produces an estimate of the common odds

ratio.

In our example, the common odds ratio is found to be 0.313 approximately, so

that the treatment group is substantially less likely to experience the adverse event

than the control group. The test statistic is χ2MH ¼ 13:242 > 6:63. The survival

patterns of the treatment and control groups are thus significantly different at the
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1% significance level. For small samples, a continuity correction can be used, in

which case the numerator of the test statistic becomes:

XH
t¼1

at � E atð Þ½ �
�����

������ 0:5

 !2

It reduces the test statistic to 12.15 without changing the conclusion in our case.

Bibliographical Guideline

According to Friedman et al. (2010), clinical trials and the idea of comparison

groups date back to the eighteen’s century, with studies of scurvy in the English

Navy. Randomization was introduced in agricultural research in the 1930s and

modern clinical trials in medicine began in the 1960s. Friedman et al. (2010)

Fig. 13.14 Mantel-Haenszel test with R-CRAN: example 4
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provide a comprehensive and very useful survey of all the sequences of the clinical

trial methodology. A valuable reference for the ethics in clinical trials is Freedman

(1987). More specifically, chi-square tests and the event count framework have

been initially developed by Cochran (1954). Non parametric estimations of survival

curves were initiated by Kaplan and Meier (1958) and by Cutler and Ederer (1958).

Survival curves comparisons originate in Mantel and Haenszel (1969).

There is also a long history of randomized trials in social science and program

evaluation. The Rand health insurance experiment in the mid-1970s is still a

benchmark (Aron-Dine et al. 2013). Since then, randomized trials have been

applied to study a variety of research areas. Among others, we may name labour

economics (see for instance Crépon et al. 2014 for a recent application), education

economics (e.g., Attanasio et al. 2012) and development economics (e.g., Duflo

et al., 2015). The question of randomization in social science, in particular in

development programs, is addressed by Duflo et al. (2007) and Deaton (2010).

Randomized experiments offer an original evidence-based approach to evaluate

public programs. This import of the clinical trial methodology is, however, not

without pitfalls. Concerns about the use (or misuse) of randomized control trials

have been recently raised by Deaton and Cartwright (2016). Conjointly, Favereau

(2016) provides a critical assessment of the analogy between medicine and program

evaluation, especially in the field of economic policies fighting poverty. The latter

cannot not meet all the requirements of the clinical trial methodology, which could

weaken their evaluative power.

Note also that despite all the efforts made to have similar treatment and control

groups, a few differences may pertain. One reason is non-compliance which may

finally result in a selection bias. Other possible reasons are difficulties in the design

itself. For example, one needs to ensure that the group size is sufficiently large, that

the participants give their consent, or that the experiment benefits from the

jurisdiction’s support. In many cases, those items can be a serious concern. An

easy way to detect a selection bias is to rely on simple comparison of means and

proportions using the exogenous variables in the database (e.g., gender, age, etc.).

Those simple descriptive statistics can be accompanied with a one-way t-test and a

chi-square test of independence to assess the significance of those differences (see

Sect. 13.3). If a bias is observed, then one needs to control for it ex post. As already
stressed in the introduction, the usual way of doing it is to rely on quasi-

experimental techniques such as difference-in-differences, propensity score

matching, regression discontinuity design or instrumental variable estimation.

The next chapter offers a description of those substitutes.
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Quasi-experiments 14

14.1 The Rationale for Counterfactual Analysis

Impact evaluation assesses the degree to which changes in a specific outcome or

variable of interest as measured by a pre-specified set of indicators can be attributed

to a program rather than to other factors. Such evaluation generally requires a

counterfactual analysis to assess what the outcome would have looked like in the

absence of the intervention. The main issue is that the counterfactual cannot be

observed individually (the same unit cannot be exposed and unexposed at the same

time) which means that one cannot directly calculate any individual-level causal

effect. Instead, the counterfactual must be approximated with reference to a com-

parison group. Broadly speaking, one needs to compare a group that received the

intervention, the “treatment group”, against a similar group, the “comparison

group”, which did not receive the intervention. The observed difference in mean

outcome between the treatment group and the comparison group can then be

inferred to be caused by the intervention. What is observed in the comparison

group serves as the counterfactual of what would have happened in the absence of

the intervention.

Two types of methods can be used to generate the counterfactual: randomized

controlled experiments and quasi-experiments. Both approaches rely on the esti-

mation of the average causal effect in a population. In the first case, the treatment

group and the comparison group (also termed “control group” in this case) are

selected randomly from the same population. Similarly, quasi-experimental evalu-

ation estimates the causal impact of an intervention, the difference being that it does

not randomly assign the units between the treatment group and the comparison

group. Hence, a key issue with quasi-experimental methods is to find a proper

comparison group that resembles the treatment group in everything but the fact of

receiving the intervention. The term “comparison group” differs from the narrower

term “control group” in that the former is not necessarily selected randomly from

the same population as program participants.
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To illustrate the many difficulties that occur with a quasi-experimental design,

let us consider a four-outcome setting by distinguishing the units that are exposed to

the program from those who are not, and whether the outcomes are observed before

or after the intervention. More specifically, let �ySP denote the average outcome in

each case, with S being equal to one if the group was selected to receive treatment

(and zero otherwise) and P denoting the time period (P¼ 0 before the intervention

and P¼ 1 after). The four possible cases are depicted in Table 14.1. How can we

assess the impact of the intervention using these four possible outcomes? Answer-

ing that question is not straightforward since a variation in the variable of interest,

when measured by single differences, can always be thought of as the sum of two

elements: the true average effect of the intervention (E hereafter) and biases due to

the quasi-experimental design itself.

First, should we compare the outcome observed for the treated units after and

before they have been exposed to the intervention, the analysis would suffer from

an omitted-variable bias. The within-subjects estimate of the treatment effect,

which measures difference over time, is given by:

ΔS¼1
after=before ¼ �y11 � �y10 ¼ Eþ omitted variable bias

The fundamental problem here is that the observed change through time could be

due to the true effect E of the intervention but also due to other changes occurring

over time during the same period. The only case in which after-versus-before

comparisons are relevant is when no other factor could plausibly have caused any

observed change in outcome.

Second, should we concentrate on the period after the intervention, and compare

the group that has been exposed to the intervention with the group that has not, then

the analysis could suffer from a selection bias. The between-subjects estimate of the

treatment effect, which measures the difference between the treated and non-treated

groups, is as follows:

ΔP¼1
treated=non treated ¼ �y11 � �y01 ¼ Eþ selection bias

A selection bias appears when the comparison group is drawn from a different

population than the treatment group. The differences that are observed between the

Table 14.1 Treated and non-treated group in a two-period setting

Before intervention

P¼ 0

After intervention

P¼ 1 Δ after/before

Non-treated group

S¼ 0
�y00 �y01

Treated group

S¼ 1
�y10 �y11 �y11 � �y10

Δ treated/non-treated �y11 � �y01
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treated and non-treated groups could have been generated by the selection process

itself and not necessarily caused by the intervention.

Assume for instance that one aims to evaluate the effect of a tutoring program for

children at risk of school failure. It consists in lessons that prepare students to pass

the examinations of the second semester. Only students who volunteered attend

these sessions. To establish the impact of tutoring we may try to compare the

average marks �y10 of those who participated in the program before they were

exposed to the intervention (e.g., first semester) with the marks �y11 they obtained

after the intervention (second semester). Imagine now that the teachers of the first

semester were more prone to give good marks than the teachers from the second

semester. Approximating the impact of the intervention using after-versus-before

comparison would yield an underestimation of the effect. Should we focus on the

second semester only, we could compare the marks �y11 of those who benefited from

the training sessions with the marks �y01 of those who did not. However, the

evaluation may be affected in this case by a selection bias. For instance, those

who have decided to participate in the tutoring program may also be those who are

the most motivated, and not necessarily those at risk of failing exams. Using treated

versus non-treated comparisons would yield in this case an overestimation of the

impact.

Basically, the ideal way to eliminate a selection bias is to randomly select the

units who belong to the non-treated and treated groups. However, implementing

randomized controlled experiments is not always feasible given the many legal,

ethical, logistical, and political constraints that may be associated with it. Another

problem with randomization is that other biases may appear due to the sampling

process itself, but also to the fact that the experimental design may demotivate those

who have been randomized out, or generate noncompliance among those who have

been randomized in. In those instances, the alternative we are left with is quasi-

experiment, i.e. not to allocate participants randomly.

The key feature of quasi-experimental evaluation is that one needs to identify a

comparison group among the non-treated units that is as similar as possible to the

treatment group in terms of pre-intervention characteristics. This comparison group

is supposed to capture the counterfactual, i.e. what would have been the outcome if

the intervention had not been implemented. The average treatment effect is then

given by:

E ¼ �y11 � �yc

where �yc denotes the counterfactual outcome. While a quasi-experimental design

aims to establish impact in a relevant manner, it does not relate the extent of the

effect to the cost of the intervention. Instead, the challenge is to prove causality by

using an adequate identification strategy. An identification strategy is the manner in

which one uses observational data to approximate a randomized experiment. In

practice, the counterfactual �yc is approximated using quasi-experimental methods

such as difference-in-differences, regression discontinuity design, propensity score
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matching, or instrumental variable estimation. The chapter provides a review of

these statistical tools.

14.2 Difference-in-Differences

Difference-in-differences, also known as double differencing, is by far the simplest

method to estimate the impact of an intervention, especially as it does not neces-

sarily require a large set of data. The method consists in comparing the changes in

outcome over time between treatment and comparison groups. Unlike single

differences (within- and between-subjects estimates), the approach considers both

the time period P and the selection process S to estimate the impact. Using the

setting developed in the previous section, we have:

bE ¼ ΔP¼1
treated=non treated � ΔP¼0

treated=non treated ¼ �y11 � �y01
� �� �y10 � �y00

� �
The method thus requires that outcome data be available for treated and non-treated

units, both before and after the intervention. The assumption underlying the identi-

fication strategy is that the selection bias is constant through time:

selection bias � ΔP¼0
treated=non treated

In other words, the approach aims to eliminate any potential difference between the

treated and comparison groups by using information from the pre-intervention

period.

An alternative but equivalent way to explain the difference-in-differences

approach is to consider the change observed over time among the treated and

non-treated units. As stated in the previous section, this difference cannot be

interpreted as the impact of the intervention, because other factors might have

caused the observed variation. However, one plausible way to take this dynamics

into account is to use the change in outcome observed over time among the

non-treated units:

bE ¼ ΔS¼1
after=before � ΔS¼0

after=before ¼ �y11 � �y10
� �� �y01 � �y00

� �
The assumption underlying the identification strategy is that the trend of the treated

group in the absence of the intervention would have been the same as that of the

non-treated group:

omitted variable bias � ΔS¼0
after=before

This assumption is also known as the parallel-trend assumption.

In practice, it is common to present the result of a difference-in-differences

evaluation using a framework similar to that of Table 14.2, where single and double
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differences are elicited. The treated-versus-non-treated and after-versus-before

approaches yield the same result:

bE ¼ �y11 þ �y00 � �y01 � �y10 ¼ �y11 � �y01 þ �y10 � �y00
� �

The counterfactual is thus approximated by:

byc ¼ �y01 þ �y10 � �y00
� �

In these expressions, the hat symbol over variable y means that the calculated

quantity is only an estimate of the counterfactual �yc, and so is the observed impactbE of the intervention.

Figure 14.1 illustrates the approach. The treatment group (S¼ 1) is represented

in orange while the non-treated group (S¼ 0) is represented in blue. The outcome

Table 14.2 Double difference calculations

Before intervention

P¼ 0

After intervention

P¼ 1 Δ after/before

Non-treated group

S¼ 0
�y00 �y01 �y01 � �y00

Treated group

S¼ 1
�y10 �y11 �y11 � �y10

Δ treated/non-treated �y10 � �y00 �y11 � �y01 �y11 þ �y00 � �y01 � �y10

Fig. 14.1 The difference-in-differences approach
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variable is measured both before and after the intervention takes place. After the

intervention (P¼ 1), the difference observed between the treated group and the

non-treated group does not reveal the true effect of the intervention. A difference

was already observed before the intervention at P¼ 0. The difference-in-differences

approach controls for this selection bias by subtracting the difference observed

between the two groups before the intervention from the difference observed after

the intervention. In other words, we assume that without any intervention, the trend

of the treated group would have been similar to that of the non-treated. Graphically,

this is equivalent to drawing a line parallel to the trend observed among non-treated

units, but starting where the treated units are at P¼ 0. The dotted line yields the

counterfactual byc, which is depicted by a dotted square at P¼ 1.

The results can also be reproduced through an econometric analysis. The model

requires the use of a database with information on treated and non-treated units,

both before and after the intervention. Formally, for each unit i and time period t,
the outcome yit can be modeled via the following equation:

yit ¼ αþ βSi þ γPt þ δ Si � Ptð Þ þ Eit

where Si is the group variable, Pt is the dummy that controls for the timing of the

treatment, the coefficients α, β, γ and δ are the parameters to be estimated and εit is
an error term which contains all the factors the model omits. The product Si�Pt is

an interaction term that represents the treatment variable, i.e. whether an individual

from group S¼ 1 received treatment in period P¼ 1.

The estimated counterpart of the equation can be written as:

yit ¼ bα þ bβSi þ bγPt þ bδ Si � Ptð Þ þ bEit
Ordinary least squares (OLS) regressions are such that the mean of residuals is

exactly equal to zero. Thus, on average, we have:

�ySP ¼ bα þ bβSþ bγPþ bδ S� Pð Þ
We thereby obtain the four possible outcomes of Table 14.2. If S¼P¼ 0, we have

�y00 ¼ bα. Similarly, if S¼ 1 and P¼ 0, we get �y10 ¼ bα þ bβ. If S¼ 0 and P¼ 1, we

obtain �y01 ¼ bα þ bγ . Last, if S¼P¼ 1, then we have �y11 ¼ bα þ bβ þ bγ þ bδ. Under
this setting, the single differences between subjects are given by:

ΔP¼0
treated=non treated ¼ �y10 � �y00 ¼ bβ

ΔP¼1
treated=non treated ¼ �y11 � �y01 ¼ bβ þ bδ

The estimated impact of the intervention is:

bE ¼ ΔP¼1
treated=non treated � ΔP¼0

treated=non treated ¼ bδ
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The regression approach entails a loss in terms of simplicity, but has the advantage

to provide a level of significance with respect to the estimated impact. Moreover, to

go beyond the assumption that other covariates do not change across time, the

regression model can be extended by including additional variables that may affect

the outcome of interest.

Let us exemplify the approach through a simple application (example 1).

Imagine that we would like to estimate the effects of a community-based health

program on newborn mortality. Assume that this program provides primary care

through the use of nurse teams intervening at the city level (e.g., counseling and

prevention). The data is provided in Table 14.3. Our dataset comprises

20 jurisdictions, among which the nine municipalities numbered from 12 to

20 were selected for the program (S¼ 1). We also have information about the

pre-intervention period (P¼ 0). The mortality rate is expressed per thousand of

newborns. The last column provides information about the gross domestic product

(GDP) per capita in each city, for both periods. By definition, Table 14.3 forms a

panel database, as each column contains observations over two periods for each

unit.

Table 14.4 provides descriptive statistics for each period P ∈ {0, 1} and both

groups S ∈ {0, 1}. The program appears to have been implemented in

municipalities that were poorer in terms of GDP and had worse mortality rates,

which creates a selection bias. Table 14.5 provides a more detailed view of the

evolution of the groups. The first frame of interpretation is that of single

differences. Non-treated municipalities evidence a decrease (�1) in their average

mortality rate that by construction cannot be attributed to the policy, but to some yet

unspecified variables. The treated municipalities show a relatively larger decrease

(�3.22) that must nevertheless be related to the initial gap (6.71) between the two

groups, as well as to yet unspecified variables. This gap still remains but decreases

to 4.49 with the intervention. To control for the initial differences between the two

groups and for their evolution over time, the difference-in-differences approach

provides a second and more accurate evaluation of the effect of the intervention:

bE ¼ �y11 þ �y00 � �y01 � �y10 ¼ 17:22þ 13:73� 12:73� 20:44 ¼ �2:22

The actual impact of the health program on the treated group is in fact �2.22, less
than the observed reduction by �3.22.

A possible extension of the method is to relax the parallel-trend assumption by

including additional variables. The previous interpretation assumes a similar pat-

tern among the treated and non-treated units. We can go beyond this statement

through the use of Ordinary Least Squares (OLS) regression. For instance,

according to Table 14.4, the increase in per capita GDP observed for the cities

not covered by the program might have influenced their mortality rate. However,

the increase in GDP observed among the treated units was much smaller, suggesting

that their mortality rate would not have followed a similar track in the absence of

the intervention. This could mean that we previously underestimated the effect of
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Table 14.3 Database for

example 1
Municipality S P Mortality rate Municipal GDP

1 0 0 15 9865

1 0 1 14 10,608

2 0 0 16 8698

2 0 1 15 9692

3 0 0 17 9520

3 0 1 16 9820

4 0 0 15 8542

4 0 1 15 9876

5 0 0 20 6200

5 0 1 19 7023

6 0 0 12 12,698

6 0 1 11 13,466

7 0 0 12 13,569

7 0 1 11 14,569

8 0 0 16 7231

8 0 1 15 8965

9 0 0 10 10,236

9 0 1 8 11,598

10 0 0 8 12,589

10 0 1 7 13,569

11 0 0 10 13,202

11 0 1 9 14,598

12 1 0 19 7566

12 1 1 15 7727

13 1 0 22 5640

13 1 1 18 5964

14 1 0 20 6720

14 1 1 17 7023

15 1 0 20 6560

15 1 1 17 6780

16 1 0 22 5201

16 1 1 19 5469

17 1 0 21 5678

17 1 1 18 6521

18 1 0 19 7021

18 1 1 16 7243

19 1 0 21 5023

19 1 1 18 6038

20 1 0 20 6541

20 1 1 17 6456
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the intervention. We may relax the parallel-trend assumption by including GDP per

capita as an additional variable in the analysis. Figure 14.2 provides the coding to

be used in R-CRAN (our programs only display outputs directly used in the

analysis). Command read . table is used to upload the database in R-CRAN using

the path C : //mydataDID . csv (that denotes the location of the file), saved after-

wards under the name “D”. The file format is .csv, with “;” as a separator, and can

be created with Excel. The command head displays the first rows of the dataset.

The first regression (reg1) consists in reproducing the double-difference results

using OLS (command lm). By default, in R-CRAN, one needs to specify only the

interaction term S∗P in the lm command; the software will automatically include

S and P with the interaction term. As expected, we obtain the same result as

previously. The constant (intercept) amounts to 13.73, which is the average out-

come �y00 for the non-treated group before the intervention (see Table 14.5). The

second coefficient stands for the single difference between the treated and

non-treated for the pre-intervention period ( �y10 � �y00 ¼ 20:44� 13:73 ¼ 6:71
�
.

The third and here non-significant coefficient represents the decrease in the

mortality rate observed for the municipalities not covered by the program

(�y01 � �y00 ¼ 12:73� 13:73 ¼ �1�. Last, the coefficient on the interaction term

yields the effect of the intervention (�2.22), which is also found to be

non-significant. The second regression (reg2) extends the model through the inclu-

sion of the GDP per capita among the covariates. The coefficient on the interaction

term is much higher, as anticipated; it is significant and amounts to �3.07. Com-

mand confint yields the 95% confidence interval for the interaction term, namely

[�5.05;�1.10]. The implementation of the program is therefore associated with a

significant reduction in mortality.

Table 14.4 Summary

statistics for example 1
S P Mortality rate Municipal GDP

Non-treated group

Before 0 0 13.73 10213.64

After 0 1 12.73 11253.09

Treated group

Before 1 0 20.44 6216.67

After 1 1 17.22 6580.11

Table 14.5 Basic difference-in-differences: example 1

Before intervention

P¼ 0

After intervention

P¼ 1 Δ after/before

Non-treated group

S¼ 0
�y00 ¼ 13:73 �y01 ¼ 12:73 �y01 � �y00 ¼ �1

Treated group

S¼ 1
�y10 ¼ 20:44 �y11 ¼ 17:22 �y11 � �y10 ¼ �3:22

Δ treated/non-treated �y10 � �y00 ¼ 6:71 �y11 � �y01 ¼ 4:49 bE ¼ �2:22
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14.3 Propensity Score Matching

The idea behind matching is to select and pair units that would be identical in

everything but the fact of receiving the intervention. Several matching algorithms

exist. One difficulty they share is that the units may differ in more than one variable,

which yields a problem known as the curse of dimensionality. To overcome that,

the propensity score matching method estimates a model of the probability of

participating in the treatment using a set of observed characteristics (overt bias),

and then uses the fitted values of this model to match the units. It thus allows the

multidimensional problem to be reduced to a single dimension: that of the propen-

sity score. If the score is accurately computed, the outcome observed for the

comparison group should provide a satisfactory counterfactual.

Figure 14.3 illustrates the approach. The main focus is on the post-intervention

period, although the scores are often estimated based on pre-intervention

characteristics. The orange dots represent the treated units (S¼ 1), while the blue

ones represent those units that did not receive the intervention (S¼ 0). The coun-

terfactual is approximated using the units that could have been selected in theory

(with similar propensity scores), but were not. Matched units are indicated with two

squares connected by a dotted line. By matching on the propensity score, we are

able to construct two comparable groups. The difference in mean outcome between

these groups yields the estimated impact of the intervention. As can be seen, one

condition for using the method is the existence of a sufficient overlap between the

propensity scores. This is known as the common support condition. For example, in

Fig. 14.2 Difference-in-differences with R-CRAN: example 1
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Fig. 14.3, those units with very low and very high propensity scores, respectively to

the left and to the right, are excluded from the analysis.

Propensity scores are derived from a qualitative response regression that

estimates the probability of a unit’s exposure to the intervention, conditional on a

set of observable characteristics that may affect participation in the program. For

instance, a logit model can be used and be specified as:

ln
Si

1� Si

� �
¼ β0 þ β1x1i þ . . .þ βK xKi

where i stands for unit i, Si specifies whether unit i belongs to the treatment group,

the x’s represent the individual characteristics, and the β’s are the coefficients to be
estimated. Once estimated, the model yields the propensity score, defined as the

estimated probability bSi that unit i receives treatment, given a vector of observed

covariates.

An important problem with respect to propensity score matching is to identify

the x variables to be included in the model. In general, any variable that is thought to

simultaneously influence the exposure S and the outcome variable y should be

included. One should not use variables observed after the intervention, as they

could themselves be influenced by the intervention. Thus, a crucial issue is the

availability of characteristics observed before the intervention takes place.

Once the model has been estimated, the treated units are matched to the

non-treated units that are most similar in terms of their propensity score bS. The
two most common methods are nearest neighbor matching and caliper matching.

With nearest neighbor matching, each unit in the treatment group is matched with a

unit from the control group that is closest in terms of propensity score. The second

Fig. 14.3 The propensity score matching approach
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method uses a standardized distance which is acceptable for any match. This

tolerance level is imposed on the propensity scores and observations which are

outside of the caliper are dropped. As a matter of comparison, caliper matching

generally gives more accurate results, as nearest neighbor matching may link units

with very different scores if no closer match is available.

The average treatment effect is estimated by computing the difference in means

between the two groups:

bE ¼ �yS¼1matched � �yS¼0matched

Three measures of bE exist depending on whether the focus is on the sample average

treatment effect for the treated group (ATT), the sample average treatment effect

for the control group (ATC), or the sample average treatment effect (ATE). The

following example 2 illustrates the difference (Table 14.6). The non-treated group

consists of three units (controls 1, 2 and 3), while the treated group comprises four

units (treated 4, 5, 6 and 7). Each unit displays a score value (in this illustrative case,

unidimensional and exogenous) and a related outcome. Figure 14.4 shows the

corresponding scatter plot, with blue dots for the control group and orange dots

for the treated group. Without matching, the difference in outcome means between

the two groups is:

bEunmatched ¼ �yS¼1unmatched � �yS¼0unmatched ¼ 56:25� 26:67 ¼ 29:58

The matching principle takes into account the fact that a number of units are

relatively distant from the others and that it would be more relevant to compare

the outcomes of units with neighboring locations by giving more weights to central

observations.

As was mentioned before, the nearest neighbor matching may link units in three

different ways. With the ATT method, the focus is on the treated units (4, 5, 6 and 7)

and how they differ from their non-treated counterparts (controls 1, 2 and 3).

Figure 14.5 displays the corresponding matching. All four orange dots are matched.

The analysis excludes unit 1 as it differs too much from any potential counterpart.

Table 14.6 Data for

example 2
Unit Score Outcome Average outcome

Control group 26.67

1 0.2 10

2 0.3 30

3 0.4 40

Treatment group 56.25

4 0.3 45

5 0.4 50

6 0.5 60

7 0.6 70
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With the ATC method, the focus is reversed and the blue dots of the control group

are matched to their nearest neighbor treated units, which leaves treated units 6 and

7 unmatched. Table 14.7 shows how the corresponding differences in means are

calculated. More generally, one would prefer to combine both approaches and

compute the average treatment effect (ATE) instead. Hand calculations from

Table 14.6 give the following differences in outcome means between the two

groups:

bE ATTð Þ ¼ 45þ 50þ 60þ 70ð Þ
4

� 30þ 40þ 40þ 40ð Þ
4

¼ 18:75

bE ATCð Þ ¼ 45þ 45þ 50ð Þ
3

� 10þ 30þ 40ð Þ
3

¼ 20

bE ATEð Þ ¼ 45þ 50þ 60þ 70ð Þ þ 45þ 45þ 50ð Þ
7

� 30þ 40þ 40þ 40ð Þ þ 10þ 30þ 40ð Þ
7

¼ 19:286
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Fig. 14.4 Scatter plot for example 2
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Mean outcome differences that take into account matching do differ from the

unmatched result (bEunmatched ¼ 29:58).
Figure 14.6 provides the coding to be used in R-CRAN to run ATT, ATC and

ATE analyses. The package Matching is uploaded via the library command. The

first step consists in creating the data to be matched. By order of appearance, S is a

vector stating which units have been treated or not. In our example, the first three

units are coded 0 which designates them as controls, code 1 implies that the

corresponding unit is treated; Score denotes the variable we wish to match on

(in this illustrative case, its values are exogenous); Outcome is our variable of

interest; and Units indexes the individuals. The command Match is then used to

compute the average treatment effect for the treated (mymatch1), for the controls

(mymatch2), and the ATE measurement (mymatch3). In each case, we have to

Table 14.7 ATT, ATC and ATE average outcomes

ATT Outcome Matched outcome Matched control unit

Unit Treatment group Control group Unit

4 45 30 2

5 50 40 3

6 60 40 3

7 70 40 3

ATC Outcome Matched outcome Matched treated unit

Unit Control group Treatment group Unit

1 10 45 4

2 30 45 4

3 40 50 5
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Fig. 14.5 ATT and ATC matching methods: example 2
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Fig. 14.6 ATT, ATC and ATE with R-CRAN: example 2
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specify the outcome of interest (Y), the treatment variable (Tr), the score (X), and
the type of measure (estimand). By running $index . treated and $index . control we
display the seven observation numbers from the original dataset used for the

matching, both for the treated and non-treated units, respectively. As can be seen,

ATT focuses on those units that were exposed (4, 5, 6, 7), ATC on the non-treated

units (1, 2, 3), while ATE takes into account all of them. The estimates correspond

to the previous hand calculations. The three methods conclude to a smaller effect

than without matching by giving more weights to central observations. R-CRAN

also provides the standard error (AI SE) and the results of a test of difference

between means (T-stat and p-val). When the p-value is lower than 5%, the observed

difference is statistically significant, which is the case here for all three matching

methods.

A difficulty arises sometimes when two or more units from the same group have

the same score, which results in a tie problem. For instance, a treated unit may

match with two or even more control units. Table 14.8 provides the data for

example 3 as an illustration of the tie problem. A possible way to deal with this

issue is to consider all the possible matched units and then use adequate weights to

reflect the multiple combinations. For example, in Fig. 14.7 where ATT is

estimated, treated units 6 and 7 each match both controls 2 and 3. There is a single

match from 5 to unit 1. Unit 4 does not provide any match. The analysis thus

considers a total of five matching couples, as shown in the R-CRAN program of

Fig. 14.8. The ATT mean difference estimate is 43.33. Another but less preferable

strategy is to break the ties randomly, and to consider only three couples. The code

is ties¼FALSE. As shown in Fig. 14.8, if the ties are randomly broken, treatment

units 6 and 7 are both matched with one and only one of the closest control units

(in terms of score). For instance, in Fig. 14.8, the algorithm randomly assigns unit

2 to units 6 and 7 (see mymatch2). In that case, the mean difference estimation rises

to 53.33. Other iterations of the Match command with the argument ties¼FALSE
would generate the other possible combinations. For instance, unit 6 or unit 7 can be

randomly assigned to unit 3.

Let us now consider a more general application of the method (example 4).

Assume that one aims to compare two alternative treatments for lung cancer,

namely strategy 0 and strategy 1. The data is cross-sectional (outcomes are

observed at the same time after treatment) and presented in Table 14.9. It consists

of 60 patients of different age (Age) who used to smoke or not (Smoker). The
outcome of interest is survival at two years, represented by the variable Death.
Survival is expressed by Death¼ 0. All patients underwent treatment, either with

strategy 0 (S¼ 0) or with strategy 1 (S¼ 1). Table 14.10 provides the summary

statistics for each group. At first sight, strategy 0 seems to yield the lower mortality

rate, but patients who underwent strategy 1 are also on average both older and more

likely to be smokers, thus pointing out a plausible selection bias: the treatment was

not randomly assigned. A matching strategy has to be implemented to better assess

the difference between the two strategies.

The codes used in R-CRAN are presented in Fig. 14.9. The first step consists in

downloading the data via the read . table command. Then, propensity scores are
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estimated via a logit regression using the glm function. The model specifies S as a

function of Age and Smoker. It can be seen from the estimation results that both the

age and being a smoker increase the probability of belonging to group S¼ 1. Option

x¼ TRUE in the glm command indicates whether the exogenous variables should

be saved for subsequent analysis. This is important if we want to use the package

erer and the command maBina to compute marginal effects. Since the output of a

logit regression cannot be readily interpreted, the computation of marginal effects

may be indeed helpful. We can deduct from Fig. 14.9 that, on average, being one

year older increases the probability of undergoing strategy 1 by 6.7%. On average,

Table 14.8 Data for

example 3
Unit Score Outcome Average outcome

Control group 27.50

1 0.10 10

2 0.35 20

3 0.35 50

4 0.60 30

Treatment group 70

5 0.10 60

6 0.30 80

7 0.40 70
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Fig. 14.7 ATT with ties: example 3
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being a smoker increases this probability by 59.1%. The fitted values of our

regression are then saved in database D using D$Score¼mylogit$fitted . values.
Rather than matching on all the exogenous characteristics, individual units are

compared on the basis of their propensity scores. The matching is implemented

using the package Matching and the function Match. We specify that the outcome

variable (Y ) is Death, the treatment variable (Tr) is S, the variable on which the

observations are matched (X) is Score. A caliper is set to 0.2 in this analysis,

although other values could be chosen. It means that all matches not equal to or

within 0.2 standard deviations of the propensity score are dropped. The command

mymatch$ecaliper shows that the tolerance distance is set at 6.4%.

By default, potential ties are taken into account in theMatch command (we have

ties¼ TRUE). If, for example, one treated observation matches more than one

control observation, then all of them are taken into account for estimating the

effect. From the results, we can see that 25 observations were excluded using the

caliper command. We finally have 63 matched observations which include multiple

matching. The estimated impact is significant and amounts to �0.41. This means

that strategy 1 yields in fact a mortality rate 41% lower than strategy 0. According

Fig. 14.8 ATT and ties with R-CRAN: example 3

506 14 Quasi-experiments



Table 14.9 Data for example 4

Patient S Age Smoker Death

1 0 63 1 1

2 0 63 1 1

3 0 56 0 0

4 0 61 1 1

5 0 64 0 1

6 0 61 1 1

7 0 64 1 1

8 0 61 1 1

9 0 69 0 1

10 0 61 1 1

11 0 67 0 0

12 0 49 0 0

13 0 57 0 0

14 0 59 0 0

15 0 69 0 0

16 0 61 1 1

17 0 63 0 0

18 0 69 0 1

19 0 59 0 0

20 0 64 0 0

21 0 64 0 1

22 0 41 0 0

23 0 61 0 0

24 0 54 1 0

25 0 64 1 1

26 0 61 0 0

27 0 68 0 0

28 0 40 1 0

29 0 65 0 0

30 0 69 0 1

31 0 64 0 0

32 0 64 0 1

33 1 61 1 0

34 1 73 0 0

35 1 65 1 1

36 1 79 0 1

37 1 56 1 0

38 1 69 1 1

39 1 62 1 0

40 1 73 1 1

41 1 93 1 1

42 1 61 1 0

43 1 62 1 0

(continued)
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to the p-value, this difference is statistically significant. Strategy 1 is therefore

associated with a significant reduction in the mortality rate. Notice that the standard

error provided by the Match command is the Abadie-Imbens standard error, which

takes into account the uncertainty of the matching procedure.

At this stage, a question could be raised: why not use a regression model instead

of the matching procedure? For instance, we could estimate Death as a function of

Age, Smoker, and S to assess the impact of the strategies. In theory, this would yield

the impact of S ceteris paribus, i.e. everything else being equal. Yet, this is true if

and only if the regression model is not miss-specified. A key feature of any

parametric regression analysis is that the shape of the functional relationships

between the explained and the explanatory variables are predetermined. On the

contrary, a matching strategy does not presume any functional form (except for

estimating the propensity score). It has thus some non-parametric aspects in this

respect, the main feature being that the effect is estimated only on a selected

number of units with comparable characteristics. Moreover, when the selection

bias is large, traditionnal econometrics will fail to estimate the true effect of the

intervention due to multicollinearity problems (correlation among regressors).

Another asset of matching is that one can formally assess the quality of the

match by using two-sample t-tests of exogenous variables or by calculating the

average standardized bias SB:

Table 14.9 (continued)

Patient S Age Smoker Death

44 1 69 1 1

45 1 63 0 0

46 1 87 0 1

47 1 64 0 0

48 1 71 1 1

49 1 59 1 1

50 1 68 0 0

51 1 68 0 0

52 1 68 1 1

53 1 67 1 1

54 1 72 1 1

55 1 59 1 1

56 1 87 1 1

57 1 81 1 1

58 1 76 0 0

59 1 68 1 0

60 1 73 0 0

Table 14.10 Summary

statistics for example 4
Strategy Death Age Smoker

Non-treated group S¼ 0 46.87% 61.09 34.37%

Treated group S¼ 1 53.57% 69.79 67.85%
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SB ¼ �x S¼1
matched � �x S¼0

matched

σS¼1matched

For each covariate x, the standardized bias is defined as the difference of sample

means in the matched database, divided by the standard deviation of the matched

treatment group. While there are no formal rules, a standardized bias after matching

between 3 and 5% is usually considered as sufficient, while a standardized bias of

20% is considered large. Notice that the literature uses also other measures for the

denominator, such as the square root of the average of sample variances, or the

pooled standard deviation.

Figure 14.10 explains how to judge whether the matched units are comparable.

First, the packageMatching is uploaded, and the previous results are reproduced by
estimating the propensity score (glm command), then saving the fitted-values of that

regression in D$Score, and finally implementing the Match function with a caliper

> D=read.table("C://mydataPSM.csv",head=TRUE,sep=";")

> mylogit=glm(S~Age+Smoker,D,family=binomial,x=TRUE)
> summary(mylogit)

Coefficients:
Estimate Std. Error z value Pr(>|z|)   

(Intercept) -18.88718    5.77310  -3.272  0.00107 **
Age           0.26964    0.08532   3.160  0.00158 **
Smoker        2.37366    0.79753   2.976  0.00292 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> library(erer)
> maBina(mylogit)$out

effect error t.value p.value
(Intercept) -4.701 1.440  -3.264   0.002
Age          0.067 0.021   3.140   0.003
Smoker       0.531 0.143   3.159 0.000

> D$Score=mylogit$fitted.values

> library(Matching)
> mymatch=Match(Y=D$Death,Tr=D$S,X=D$Score,
+ estimand="ATE",caliper=0.2)

> mymatch$ecaliper
[1] 0.06365222

> summary(mymatch)

Estimate...  -0.41714 
AI SE......  0.11858 
T-stat.....  -3.5177 
p.val......  0.00043533 

Original number of observations..............  60 
Original number of treated obs...............  28 
Matched number of observations...............  35 
Matched number of observations  (unweighted).  63 

Caliper (SDs)........................................   0.2 
Number of obs dropped by 'exact' or 'caliper'  25

Fig. 14.9 Matching strategy with R-CRAN: example 4
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equal to 0.2. The output is saved under the name mymatch. The MatchBalance
command is then used to determine if the matching was successful in achieving

balance on the observed covariates. We have to specify first the list of the variables

we wish to obtain univariate balance statistics for (namely, S ~Age+ Smoker), then
the database we used (D), and finally the output object from the Match function

(match . out¼mymatch). If noMatch output is included, balance statistics will only

Fig. 14.10 Quality of the match in R-CRAN: example 4
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be reported for the raw unmatched data. The option ks¼FALSE excludes a set of

statistics that are not necessary for our analysis.

The full output for the MatchBalance call is presented in Fig. 14.10. Two

different sets of statistics are provided. First, in interpreting these results, we

would like the after-matching means to be as close as possible for each covariate.

The most important statistic in this respect is the T-test p-value which provides the

result of a test of difference between means, both before and after matching. As can

be seen, there was a significant difference in Age and Smoker before the matching.

This is not the case anymore after matching, which supports our analysis. It is also

possible to examine the standardized bias, std mean diff, which indicates the

percentage difference in means between the treated and control groups (�100).
Before matching, those differences are high. After matching, they decrease and

amount to �16.75 for Age, and 22.54 for Smoker. These values are still large (close
to or higher than 20%), which means that we could refine our analysis using a

smaller caliper.

Second, we may also examine the difference in distribution between the two

matched groups. In this matter, the MatchBalance output contains summary statis-

tics based on empirical QQ-plots. A QQ-plot is a graphical method for comparing

two distributions by plotting their quantiles one against each other. To illustrate,

assume that our dataset consists of three matched couples: three non-treated units

aged 65, 63 and 74 are matched with three treated units aged 67, 65, and 64, respec-

tively. A QQ-plot first orders these vectors and then plots the non-treated group

(63, 65, 74) against the treated group (64, 65, 67). Should the size of the groups be

different, R-CRAN would linearly interpolate data points so that the vector sizes

match. The differences obtained in absolute value (1, 0, 7) are then used to provide

additional statistics. For instance, the mean (mean raw eQQ diff ), median

(med raw eQQ diff ) and maximum (max raw eQQ diff ) differences are provided.
In our 3-couple example, this would for instance yield a mean value equal to

(1þ0þ7)/3, a median value equal to 1, and a maximum value equal to 7. An

additional set of statistics consists of summary statistics based on the standardized

empirical-QQ plots: mean eCDF diff, med eCDF diff and max eCDF diff. What

matters most is that those QQ-plot statistics decrease after matching, approaching

0. Last, theMatchBalance call provides the variance ratio of treatment over control

var ratio (Tr/Co), which should be equal to 1 were there perfect balance.

It is also possible to assess the quality of the matching by comparing manually

the observations that have been matched, using $index . treated and $index . control.
In Fig. 14.10, the command head provides the first six observation numbers in each

group. Unit 4 (S¼ 0) has been matched with units 33 and 42 (S¼ 1), which seems

rather relevant given their characteristics (see Table 14.9). They all are 61 years old

smokers. Unit 5 has been matched with unit 47, and they are both 64 years old and

non-smokers. The matching is however not always this precise. For instance unit

7, a 64 years old smoker, is matched with patient 34, a 73 years old non-smoker.

Their scores however are similar (67% versus 68%) as their characteristics com-

pensate each other.
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14.4 Regression Discontinuity Design

Regression discontinuity design elicits the effect of an intervention by comparing a

treatment group and a comparison group around a threshold above or below which

the intervention is dispensed. Assume for instance that a central government makes

funds available for municipalities with less than five thousands inhabitants. To

estimate the effect of such a policy one would have to examine municipalities with

comparable characteristics. To do so, regression discontinuity design exploits the

discontinuity in treatment by comparing only the municipalities in the vicinity of

the cutoff point, i.e. those with a population slightly lower than 5000 (the treatment

group) and those with a population slightly higher (the comparison group). The

underlying assumption of the method is the following: by examining observations

lying close to either side of the threshold, one should eliminate selection biases.

Formally, the approach consists in estimating the following model:

yi ¼ β0 þ β1Si þ β2 xi � xcð Þ þ β3Si xi � xcð Þ þ Ei

where i stands for unit i; yi denotes the outcome variable; Si specifies whether unit
i has been covered by the program; xi is the assignment variable (so called running

or forcing variable) upon which the treatment cutoff xc is applied; the β’s are the

coefficients to be estimated; Ei is an error term. Once estimated, the model yields on

average:

�ySthreshold ¼ bβ0 þ bβ1S when xi � xc

In other terms, around the threshold, the average outcome for the non-treated units

(when S¼ 0) isbβ0, while the average outcome for the treated (S¼ 1) isbβ0 þ bβ1. The

effect of the intervention is thus measured as:

bE ¼ �yS¼1threshold � �yS¼0threshold ¼ bβ1

From Fig. 14.11, we can see that the approach is equivalent to estimating two

regression lines in a centered plan around the threshold. The estimated coefficientbβ0 yields the intercept of the line for the non-treated group, and
bβ2 is the slope of that

line. For the treated group, the intercept is given by bβ0 þ bβ1 and the slope bybβ2 þ bβ3.

Why go to the trouble of estimating an econometric model if we are interested

only in a simple comparison of means around the threshold? In theory, comparing

the treated units with the non-treated units in the neighborhood of xc would be

sufficient to establish impact. To do so, however, one would have to base the

analysis on a very small set of observations, made only of those units that are in

the close vicinity of xc. This could yield highly inconsistent results. A regression

analysis has the advantage of exploiting a higher number of observations by

extrapolating the effect using estimated lines. However, it is not advised to use
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the whole sample as the relationship between the outcome variable y and the

running variable x could be unstable with respect to extreme observations. In

practice, an optimal bandwidth around the threshold is selected, as we shall see

later.

Regression discontinuity design requires that the units considered cannot manip-

ulate their treatment status. Manipulation means that the running variable x for

some units could be changed from their true values to influence treatment assign-

ment. Graphically, this is analogous to expecting the probability density of x to be

discontinuous at the cutoff point, with an unexpected high number of units on one

side of the threshold, and a lower frequency on the other side, as illustrated in

Fig. 14.12. Assume for instance that a hospital plans to evaluate the effect of a new

treatment protocol for inpatients with a given diagnosis. Let us say that the running

variable is defined as a quantitative indicator measuring the severity of disease, e.g.,

from 1 to 100, and that the cutoff is set arbitrarily to 50. If patients learn of the

assignment mechanism, some of them might try to hide their true health status to

increase the likelihood of participating in the new treatment. Similarly,

municipalities may manipulate their demographic data in order to unduly benefit

from central government funds. Ultimately, this might produce biased estimates

(we would not have a situation that resembles randomization in the neighborhood of

the threshold). Demonstrating the statistical integrity of the running variable x is

thus of high importance. For this purpose, one may use statistical tests, such as the

McCrary test, to establish the smoothness of the density of the running variable

around the cutoff.

Let us now consider for instance the effect of mandatory attendance on exam

performance in college (example 5). Imagine that students who scored below the

Fig. 14.11 Principle of regression discontinuity design
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mean during semester 1 (S¼ 1) are assigned mandatory attendance during semester

2, while students above the mean (S¼ 0) are not. Another similar situation would be

that of a disease treatment where self-administration of the drug (S¼ 0) would

concern patients with a health status index above the mean, while patients with an

index below the mean would receive the assistance of a nurse (S¼ 1) for better

treatment compliance. Coming back to example 5, one would like to estimate the

effect of mandatory course attendance on students’ results. Table 14.11 presents the

data. Variable Ind indexes the individuals; S is the treatment variable; Grade1 and

Grade2 stand for the score obtained at the end of semester 1 and semester 2, respec-

tively (it is a number between 0 and 100). Grade1 is thus the running variable and

Grade2 is the outcome variable. Note that in this particular example, the groups are

of the same size. The approach can however be applied indifferently to groups of

different size.

Table 14.12 offers summary statistics. As can be seen, one cannot compare so

easily the treated units with the non-treated units. Students belonging to group S¼ 1

have the lowest scores, respectively 41.20 and 45.46 on average for the two

semesters, while students from group S ¼ 0 have obtained 68.33 and 68.50 on

average. Due to the selection mechanism itself, a naı̈ve comparison of the grades

obtained after the intervention would thus fail to estimate the true effect of the

program. Using the difference-in-differences approach (see Sect. 14.2), we would

obtain the following impact:

bE ¼ 45:46þ 68:33� 68:50� 41:20 ¼ 4:09

However, the approach is not necessarily appropriate here as the selection bias is

likely to vary through time: those with the highest scores, i.e. who already have

Fig. 14.12 Density of the running variable with manipulation

514 14 Quasi-experiments



Table 14.11 Data for example 5

Ind S Grade1 Grade2

1 1 6 11

2 1 21 2

3 1 24 2

4 1 25 16

5 1 26 34

6 1 28 39

7 1 33 5

8 1 37 49

9 1 38 22

10 1 38 53

11 1 40 19

12 1 41 37

13 1 42 55

14 1 44 56

15 1 45 46

16 1 46 48

17 1 46 60

18 1 46 60

19 1 47 57

20 1 47 62

21 1 49 57

22 1 49 64

23 1 49 64

24 1 50 59

25 1 50 64

26 1 53 67

27 1 53 64

28 1 53 66

29 1 55 66

30 1 55 60

31 0 55 59

32 0 56 59

33 0 57 65

34 0 57 62

35 0 57 57

36 0 58 58

37 0 59 67

38 0 60 61

39 0 61 60

40 0 61 68

41 0 63 63

42 0 65 69

43 0 66 64

(continued)
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secured their degree, may relax their effort. On the other hand, those with the lowest

scores may have incentives to study more. A matching strategy is not suitable either

as the factors that affect exam performance, such as motivation and ability, can be

unobservable. To overcome those issues, one can take advantage of the discontinu-

ity in assignment. Around the threshold, students are likely to be similar in terms of

individual characteristics, all the more so that students do not know ahead of time

what the mean score will be, which reduces any potential manipulation of the

running variable.

R-CRAN can be used to establish the impact of the intervention. In Fig. 14.13,

the database is uploaded under the name D. The first step consists in plotting

Grade2 as a function of Grade1 (see Fig. 14.14). The running variable Grade1 is

centered to correspond to the usual framework of a regression discontinuity design

(CenteredGrade1¼D$Grade1� Threshold). The threshold, which corresponds

here to the mean grade obtained in semester 1 over the whole sample (0 in the

centered plan), is added to the graph with the command abline. From Fig. 14.14, we

can observe a slight break around the cutoff point between the grades of the students

Table 14.11 (continued)

Ind S Grade1 Grade2

44 0 66 71

45 0 67 66

46 0 67 65

47 0 68 72

48 0 69 74

49 0 69 69

50 0 70 73

51 0 71 65

52 0 72 71

53 0 73 70

54 0 76 68

55 0 77 76

56 0 79 91

57 0 82 76

58 0 88 78

59 0 89 91

60 0 92 67

Table 14.12 Summary

statistics for example 5
Strategy Grade1 Grade2

Non-treated group S¼ 0 68.33 68.50

Treated group S¼ 1 41.20 45.46

Grand mean 54.76 (threshold) 56.98
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who were selected for mandatory attendance (on the left) and the grades of those

who were not (on the right).

The impact is first estimated via a regression analysis on the whole sample

(reg1). The estimated effect amounts to 6.12 (difference between the treated group

and the non-treated group) but it is not significant. However, extrapolation from

observations far from the cutoff may not be valid. An appropriate bandwidth should

> D=read.table("C://mydataRDD.csv",head=TRUE,sep=";")
> Threshold =mean(D$Grade1)
> D$CenteredGrade1=D$Grade1-Threshold
> plot(Grade2~CenteredGrade1,D)
> abline(v=0,lwd="2")

> reg1=lm(Grade2~S*CenteredGrade1,D)
> summary(reg1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)       60.2730     2.7952  21.563  < 2e-16 ***
S                  6.1252     3.7869   1.617 0.111400    
CenteredGrade1     0.6064     0.1659   3.655 0.000568 ***
S:CenteredGrade1   0.9365     0.2192   4.272 7.59e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> library(rdd)
> Band=IKbandwidth(D$Grade1,D$Grade2,cutpoint=mean(D$Grade1))
> Band
[1] 10.46083

> sD=D[abs(D$CenteredGrade1)<Band,]
> reg2=lm(Grade2~S*CenteredGrade1,sD)
> summary(reg2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)       58.7694    2.1987  26.729   <2e-16 ***
S                  7.6396     2.9692   2.573   0.0167 *  
CenteredGrade1     0.8256     0.4241   1.947   0.0634 .  
S:CenteredGrade1   0.3579     0.5346   0.669   0.5096    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> points(reg2$fitted.values~sD$CenteredGrade1,
> col="red",type="l",lwd="3")

> rdd=RDestimate(Grade2~Grade1,cutpoint=mean(D$Grade1),data=D)
> summary(rdd)

Type: sharp

Estimates:
Bandwidth Estimate  Std. Error  z value  Pr(>|z|)      

LATE       10.46      -7.405   1.984       -3.732   1.897e-04  ***
Half-BW     5.23      -6.922   2.813       -2.461   1.385e-02  *  
Double-BW  20.92    -10.945   2.623       -4.173   3.006e-05  ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> rdd$ci
[,1]      [,2]

[1,] -11.29325 -3.516311
[2,] -12.43555 -1.409448
[3,] -16.08601 -5.804545

> DCdensity(D$Grade1,mean(D$Grade1),verbose=FALSE,plot=FALSE)
[1] 0.4183614

Fig. 14.13 Regression discontinuity design with R-CRAN: example 5
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be selected to better assess whether non-significance is due to the presence of

extreme observations. The package rdd is very useful in this matter. The command

IKbandwidth provides the Imbens-Kalyanaraman optimal bandwidth. The first

entry of the command is the running variable, the second entry is the outcome

variable, and the last entry is the cutoff point. The resulting bandwidth is

Band¼ 10.46 and is used afterwards to estimate the impact of the intervention on

a subsample sD, such that the distance (in absolute value) between the grade of

semester 1 and the threshold is lower than that bandwidth: sD¼ D[abs
(D$GradeC)<Band, ]. The impact now amounts to 7.64 and is significant at a

5% level. The points function allows the regression lines to be drawn on Fig. 14.14

using the fitted values of the estimated regression model.

More generally, with the command RDestimate, it is possible to estimate the

impact of the intervention using a nonparametric procedure of local regressions that

are implemented on both sides of the threshold. As previously, the bandwidth is

calculated using the Imbens-Kalyanaraman method. Then the model is estimated

with that bandwidth, half that bandwidth, and twice that bandwidth. The use of local

regressions with small bandwidths mitigates the potential problem of incorrect

functional form assumptions. For the selected bandwidth (in our example 10.46),

the results are similar to the previous one. The local average treatment effect

(LATE) amounts to �7.40 and is now significant at a 1% level. A word of warning:

the software provides negative values as the treatment group is by default located at

the right-hand side of the threshold; we observe the difference between the
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Fig. 14.14 Regression discontinuity design: example 5
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non-treated group and the treated group, and not the other way round. Significant

results are also found with half and twice the bandwidth. Confidence intervals are

provided using rdd$ci, where rdd is our previously estimated design. The first row

yields the confidence interval for the first bandwidth: [�11.29;�3.52]. Mandatory

attendance thus has a significant impact on exam performance.

DCdensity implements the McCrary sorting test. If there is a discontinuity in the

density of the assignment variable at the cutoff point, then this may suggest that

some students were able to manipulate their treatment status. Under the null

hypothesis of the test, discontinuity is zero. As can be seen from the high p-value

(41.8% is much higher than 5%), the test does not detect any manipulation of the

design.

14.5 Instrumental Variable Estimation

The instrumental variable estimation addresses the problem of endogeneity in

individual participation and can be applied to those situations where the exposure

to a policy is determined to some extent by unmeasured factors (hidden bias). For

instance, when individuals select themselves, treatment exposure can be related to

unmeasured characteristics (e.g., personal, health or educational status) that also

affect the outcome of interest, thereby creating a selection bias. Instrumental

variables methods intend to overcome this problem by extracting variations in the

treatment variable that would be purely exogenous. It consists in a two-step

procedure that first examines the selection process itself (what are the factors

influencing compliance), and then estimates the effect of the intervention.

Formally, a distinction has to be made between units that are eligible to receive

treatment, S ∈ {0, 1}, and units that comply with it, T ∈ {0, 1}. We would like to

assess the impact of an intervention using the following econometric model:

yi ¼ α0 þ α1Ti þ β1x1i þ . . .þ βK xKi þ Ei

where i stands for unit i, y is the variable upon which the influence of the interven-

tion is explored, Ti denotes individual exposure to treatment, the x’s are additional
control variables, and Ei is an error term. Standard regression models, such as

ordinary least squares, make the assumption that the regressors T and x are uncor-
related with the errors in the model (which errors are meant to contain all the factors

the model omits). This yields the following path analysis diagram:

x ! y
% "

E T

In other words, the regressors are assumed to be exogenous. If this condition is

verified and if the functional form of the model is well specified, then the average

treatment effect bE is directly obtained from the estimated coefficient bα1.
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In some situations, however, compliance may be explained by unobserved

characteristics that also influence the outcome variable y. If this is the case, the

treatment variable T cannot be considered as exogenous anymore. Consider for

instance the impact on exam performance of non-compulsory evening classes for

high-school students who would like to improve their skills. The error term E
embodies factors such as motivation, which may affect exam performance (y) but
also the decision (T ) to attend the courses. The diagram becomes:

x ! y
% "

E ! T

In our example, if one were to use a conventional econometric model, like the one

described previously, one would overestimate the average treatment effect. A

spurious relationship would be observed between the outcome variable and the

treatment variable.

Instrumental variable estimation aims to avoid inconsistent parameter estimation

by generating only variations in T that are exogenous. To do so, one must find an

instrument or instrumental variable z that is correlated with T but supposedly not

correlated with E:

x ! y
% "

E ! T  z

The error term E comprises omitted explanatory factors, some of which influence

compliance T. By explicitly identifying a number of those factors, so called

instruments, that are correlated with T, we diminish omitted or hidden influences

that would otherwise go through the channel of E (the Δ� of the path analysis

diagram below) and augment our understanding of factors leading to compliance

(the Δ+):

x ! y
% "

E ! T  z
Δ� Δþ

In our example, we need for instance an instrument that is correlated with evening

class attendance, but uncorrelated with motivation or any other factors from the

vector of x’s that may affect exam performance. One possible candidate is the

distance from the school to family home. Those who live far away from school may

find it difficult to attend the sessions. Concurrently, travel costs are less likely to be

associated with factors such as motivation, difficult to measure and as such likely to

be captured by E.
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A popular form of instrumental variables estimator is the two-stage least squares

(2SLS) method. In a first stage, the treatment variable T is regressed on the

instruments as well as on all the exogenous variables previously selected. The

equation below specifies one instrument z of coefficient γ1:

Ti ¼ γ0 þ γ1zi þ δ1x1i þ . . .þ δK xKi þ ui

Note that the method does not require the endogenous variable T to be continuous

(OLS can be used to estimate the first stage regression). In a second stage, the model

of interest is estimated as usual, except that the T covariate is replaced with its fitted

values bT obtained from the first stage estimation:

yi ¼ α0 þ α1bT i þ β1x1i þ . . .þ βK xKi þ Ei

The fitted values bT have been computed from supposedly exogenous variables only

and should thus be cleaned of their association with E.
Finding instruments that meet the conditions for their application is a key

concern. The task is greatly eased if the exposure to a policy is determined by

some external selection criteria (e.g., random assignment or exogenous eligibility

threshold). If eligibility S to receive treatment is not correlated to the outcome in

question, then S can serve as an instrument for treatment T. This is best exemplified

with the Wald estimator:

bE ¼ �yS¼1 � �yS¼0

compliance rate

The average treatment effect is obtained by scaling up the difference between the

eligible and ineligible groups. Econometrically, the approach amounts to using S as
an instrument for T. The differences in S induce variations in the probability of

participation T, which facilitates the identification of the causal effect of the

program. Equivalently, the first-stage of a 2SLS regression yields:

bT ¼ compliance rate� S

Being ineligible (S¼ 0) means a zero chance of participating, while being eligible

(S¼ 1) means a probability equal to the compliance rate. Without any additional

covariates, the second-stage regression gives on average:

�yS ¼ bα0 þ bα1
bT ¼ bα0 þ bα1 compliance rate� Sð Þ

In other words, we have �yS¼0 ¼ bα0 and �yS¼1 ¼ bα0 þ bα1 compliance rateð Þ. The
average treatment effect bα1 with 2SLS is thus equal to the Wald estimator.

Furthermore, the model can be extended to a more complex functional form that

better controls for group disparities, provided that additional covariates are

available.
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The Wald estimator applies only when the quasi-experimental design

approaches a randomized experiment, i.e. when the units share similar

characteristics on average. To illustrate (example 6), Table 14.13 provides infor-

mation about two classes of students that were randomly assigned to a treatment

group (S¼ 1) and a comparison group (S¼ 0). The number of students is reduced

drastically for simplicity of exposition. Only individuals 3 and 4 were allowed to

attend the evening courses (S¼ 1) but only individual 4 participated (T¼ 1). The

between-subjects estimate of the treatment effect is:

bE ¼ �yT¼1 � �yT¼0 ¼ 30� 10þ 20þ 10

3
¼ 16:66

By doing so, we compare student 4 (a potentially good student) with all the other

students and may overestimate the effect of the intervention. On the other hand, as

only half of the eligible units participated in the program, a comparison of the class

averages would underestimate the effect:

bE ¼ �yS¼1 � �yS¼0 ¼ 20� 15 ¼ 5

With the Wald estimator, we obtain:

bE ¼ �yS¼1 � �yS¼0

compliance rate
¼ 20� 15

0:5
¼ 10

The Wald estimator thus accounts for non-compliance by weighting the difference

observed between the treatment group and the comparison group. Yet, the method

holds only if the groups are similar on average with respect to the exogenous factors

that influence the outcome in question. In other words, the re-scaling is correct if the

assignment S is random or close enough to random. If not, then a 2SLS estimation

should be implemented with additional regressors to control for any disparity in the

exogenous characteristics.

Let us now consider the dataset for example 7, as presented in Table 14.14. In

this quasi-experiment, all the students were eligible to participate in the evening

sessions (S¼1 for all students). The Wald approach cannot be used. As can be seen

from Fig. 14.15, using R-CRAN, the difference between the treated and

Table 14.13 The Wald

estimator: example 6
Student S Grade T

1 0 10 0

2 0 20 0

3 1 10 0

4 1 30 1
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Table 14.14 Dataset for example 7

Student S T Grade Distance Gender

1 1 1 53 1 0

2 1 1 48 9 1

3 1 0 14 9 0

4 1 1 31 2 0

5 1 0 27 17 1

6 1 1 34 6 1

7 1 1 30 7 1

8 1 0 19 15 1

9 1 1 59 2 0

10 1 0 45 16 0

11 1 1 56 1 1

12 1 1 53 1 0

13 1 0 60 18 0

14 1 0 46 12 1

15 1 0 41 20 0

16 1 1 63 1 0

17 1 1 89 6 1

18 1 1 64 7 1

19 1 1 77 1 0

20 1 1 56 5 1

21 1 1 75 6 1

22 1 1 56 5 1

23 1 1 38 2 1

24 1 1 46 1 0

25 1 1 38 2 0

26 1 1 89 10 1

27 1 1 77 1 0

28 1 0 15 8 1

29 1 1 73 5 0

30 1 1 71 7 1

31 1 0 7 6 0

32 1 1 13 3 1

33 1 1 52 9 0

34 1 0 7 20 0

35 1 1 21 5 1

36 1 0 22 8 0

37 1 0 43 18 0

38 1 1 24 2 0

39 1 0 43 15 1

40 1 1 40 4 0

41 1 0 47 14 1

42 1 0 3 6 0

43 1 1 57 4 0

(continued)
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non-treaded units amounts to 26.86. The same result is obtained when one regresses

Grade on T. However, such an estimation strategy is not appropriate, as those who

have decided to comply with the evening program may also be those with the

highest levels of motivation. Instrumental variables estimation thus appears as a

more suitable method to establish the impact of the intervention.

Distance to home is used as an instrument for treatment. The function ivreg from
the package AER estimates the relationship between y and T by two-stage least

squares. Be aware that all statistics computed “on their own” (two consecutive OLS

regressions) would be biased as the second stage needs also to encompass the

uncertainty of the first-stage. With the ivreg command on the other hand, the

standard errors of the second-stage regression include the fact that we are using

an estimated regressor. The variable Gender (0 for female and 1 for male) has been

included in the model as an additional covariate. As can be seen from the results of

reg2, the average treatment effect amounts to bE ¼ 14:49 and is significant at the

10% significance level.

Several validity tests exist to verify the legitimacy of the instruments employed

and they are displayed through the diagnostics¼ TRUE code. First, an instrument

must be a good predictor of the endogenous variable. This means that the instru-

ment z must be sufficiently correlated with the treatment variable T (i.e. the

covariance must be nonzero: σz , T 6¼ 0). In practice, this assumption is checked by

reporting the F-test on all instruments to see if instruments are jointly significant in

the first-stage regression.

Table 14.14 (continued)

Student S T Grade Distance Gender

44 1 1 49 9 0

45 1 1 50 11 0

46 1 1 52 12 1

47 1 1 67 1 0

48 1 1 69 2 0

49 1 1 67 8 0

50 1 1 68 10 0

51 1 0 4 16 1

52 1 1 84 1 1

53 1 0 72 17 0

54 1 0 41 20 1

55 1 1 88 7 1

56 1 0 13 7 0

57 1 1 52 9 0

58 1 1 89 10 0

59 1 1 71 7 1

60 1 1 40 4 1
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H0 : all the instrument coefficients are jointly zero

H1 : at least one instrument coefficient is nonzero

The usual rule of thumb is that the F-statistic should not be lower than 10. For

instance, the diagnostic in Fig. 14.15 yields a statistic equal to 65.719, which is

found to be significant ( p-value lower than 5%). The F-test thus rejects the null

hypothesis of “weak” instruments. Note that when only one instrument is in use, the

approach simply amounts to implementing a t-test of significance in the first-stage

regression. For instance, the third regression in Fig. 14.15 provides the results of the

first-stage regression (see reg3) for example 7. We can see that participation in

treatment is significantly associated with distance from home. The p-value is the

same as that previously found in the diagnostic output, i.e. 4.57e-11. By

Fig. 14.15 Instrumental variable with R-CRAN: example 7
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construction, the t-statistic (–8.107) is also the square root of the F-statistic previ-

ously found (i.e.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
65:719
p

).

Second, it is possible to assess the extent of the endogeneity problem using the

Wu-Hausman test. The test does not focus solely on the results of the 2SLS

estimations, but examines instead the overall differences between the 2SLS and

OLS coefficients. Under the null hypothesis that there is no endogeneity, the

estimators will not be systematically different:

H0 : Treatment is exogenous the coefficients are not differentð Þ
H1 : Treatment is endogenous 2SLS is more appropriateð Þ

If one does not reject the null hypothesis, one should decide not to use an instru-

mental variable. Roughly speaking, the problem of endogeneity is not serious

enough to justify the use of 2SLS. Rejecting the null hypothesis on the other

hand indicates the presence of endogeneity. For instance, the Wu-Hausman test in

Fig. 14.15 yields a p-value equal to 0.0148, which is lower than 5%. The test does

reveal an endogeneity problem, which overall gives support to the 2SLS estimator.

Finally, the exogeneity of the instruments with respect to the error term E of the
second-stage regression can be assessed with the Sargan over-identification test.

The latter is used when there are more instruments (the z’s) than endogenous

regressors (the T’s). Under the null hypothesis of the test, all instruments are

uncorrelated with E:

H0 : Instruments are exogenous i:e:not correlated with the residualsð Þ
H1 : Not all instruments are exogenous

If the p-value falls below the 5% significance level, we reject H0 and conclude that

at least some of the instruments are not exogenous. In that case, one must find other

instruments. Note that the Sargan test returns NA if there is one instrument per

endogenous regressor (the system is said to be exactly identified). The reason for

this impossibility lies in the fact that the error term is unobserved and must be

estimated. The test procedure is as follows. First, estimate the second-stage regres-

sion and obtain the 2SLS residuals, denoted bE hereafter. Second, regress bE on all

exogenous variables including the instruments. The test statistic is then defined as

the number of observations n times the coefficient of determination R2. Under the

null hypothesis, this statistic (nR2) is distributed according to a chi-square distribu-

tion with L�K degrees of freedom, where L is the number of instruments and K is

the number of endogenous variables. When the system is exactly identified, by

construction, it is not possible to compute this statistic because there is not enough

information available to implement the test (the residuals bE are computed based onbT , which itself is based on z). For instance, in Fig. 14.15, the tests returns NA

because only one variable (Distance) is used to instrument the treatment variable T,
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Table 14.15 Dataset for example 8

Student S T Grade Distance Gender

1 0 0 36 1 0

2 0 0 39 9 1

3 0 0 9 9 0

4 0 0 18 2 0

5 0 0 27 17 1

6 0 0 24 6 1

7 0 0 21 7 1

8 0 0 18 15 1

9 0 0 42 2 0

10 0 0 42 16 0

11 0 0 39 1 1

12 0 0 36 1 0

13 0 0 57 18 0

14 0 0 39 12 1

15 0 0 42 20 0

16 0 0 45 1 0

17 0 0 72 6 1

18 0 0 51 7 1

19 0 0 57 1 0

20 0 0 42 5 1

21 1 1 75 6 1

22 1 1 56 5 1

23 1 1 38 2 1

24 1 1 46 1 0

25 1 1 38 2 0

26 1 1 89 10 1

27 1 1 77 1 0

28 1 0 15 8 1

29 1 1 73 5 0

30 1 1 71 7 1

31 1 0 7 6 0

32 1 1 13 3 1

33 1 1 52 9 0

34 1 0 7 20 0

35 1 1 21 5 1

36 1 0 22 8 0

37 1 0 43 18 0

38 1 1 24 2 0

39 1 0 43 15 1

40 1 1 40 4 0

41 1 0 47 14 1

42 1 0 3 6 0

43 1 1 57 4 0

(continued)
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variable Gender being considered as exogenous as it appears in both regressions

(first and second stages).

Let us finally examine the database of example 8 (Table 14.15) which differs

from that of example 7 by the fact that students were allowed to attend the evening

sessions (S¼ 1), while others were not (S¼ 0). The Wald approach can now be

used, which simplifies greatly the search for an instrument. Results from the

R-CRAN program of Fig. 14.16 show that the difference between the treated

units (T¼ 1) and non-treated units (T¼ 0) amounts to 24.18. As the students who

attended the lessons are likely to be the most motivated, this may yield an overesti-

mation of the effect of the intervention. Furthermore, because only 70% of those

assigned to treatment complied with it, a comparison of the eligible with the

ineligible will yield an underestimation of the effect (the difference amounts to

10.52). To overcome the selection bias, we rely on S to serve as an instrument for T.
According to the Wald estimator, the average treatment effect is equal to 15.03. As

expected, similar results are obtained with the ivreg function (see reg1). The effect
is significant at the 10% level.

It is also possible to include additional covariates (e.g., Gender) to try to reduce

the bias due to the selection process itself. Last, to improve the quality of the

analysis, it is possible to include additional instruments, like the one we have used

in example 7, provided that this data is available. This is done for instance in

Fig. 14.16 with reg2. Both Distance and S are used as instruments for T. From the

2SLS results of reg2, the average treatment effect amounts to bE ¼ 14:22 and is now
significant at the 5% significance level (instead of 10% with the Wald estimator).

Table 14.15 (continued)

Student S T Grade Distance Gender

44 1 1 49 9 0

45 1 1 50 11 0

46 1 1 52 12 1

47 1 1 67 1 0

48 1 1 69 2 0

49 1 1 67 8 0

50 1 1 68 10 0

51 1 0 4 16 1

52 1 1 84 1 1

53 1 0 72 17 0

54 1 0 41 20 1

55 1 1 88 7 1

56 1 0 13 7 0

57 1 1 52 9 0

58 1 1 89 10 0

59 1 1 71 7 1

60 1 1 40 4 1
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The entry diagnostics¼ TRUE examines the legitimacy of the instruments

employed. The F-test supports the analysis with a statistic equal to 36.5 and p-
value lower than 5%. The Wu-Hausman test concludes that there was indeed an

endogeneity problem (the test rejects the null hypothesis). Moreover, since we now

have two instruments and one single endogenous regressor, the Sargan test can be

implemented. We find a p-value equal to 0.958, which is higher than 5%. We

thereby do not reject the hypothesis of exogeneity. Our instruments thus play the

Fig. 14.16 Instrumental variable with R-CRAN: example 8
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role they have to play. Note that one NA remains in the output, but only because this

test is defined by only one value of degrees of freedom (df2 will be always NA).

Last, the first-stage regression (reg3) points out that compliance with treatment

depends both on eligibility (coefficient¼1.13 and significant) and the distance from
home (interaction term¼�0.05 and significant). A logit or probit model could be

estimated to further investigate these results.

Bibliographical Guideline
One of the first studies employing difference-in-differences was that of Ashenfelter

and Card (1985) who wanted to analyze the impact of a training program for

unemployed and low-income workers using longitudinal information on earnings

for a treatment group and a comparison group. Since then, and given the few

number of observations required for its application, difference-in-differences

methods have become very popular in many fields. Propensity score matching

has been originally developed by Rosenbaum and Rubin (1983). Most of its

applications pertain to the case of a binary treatment, although recent developments

have extended the method to other cases (see Hirano and Imbens 2004). The first

application of regression discontinuity design can be traced back to Thistlewaite

and Campbell (1960), who analyzed the impact of merit awards on students’ later

success, using the fact that the allocation of these awards was based on an observed

test score. The McCrary test has been developed more recently, in 2008. A detailed

presentation of RDDmethods is available in Lee and Lemieux (2010). The idea that

instrumental variables can be used to solve an identification problem was first

introduced in Wright (1915) (see Stock and Trebbi 2003). Two-stage least squares

were developed more or less independently by Theil (1953), Basmann (1957) and

Sargan (1958). To go further, one may read Imbens (2014) who reviews recent

work in the literature on instrumental variables methods.

For further references, the reader may also rely on two additional sources. The

first is the “Handbook on Impact Evaluation” published by the World Bank and

available online: it reviews most of the quantitative methods and models related to

impact evaluation. Second, the European Commission provides several guides on

the topic. One of them, “Evalsed Sourcebook: method and techniques” provides a

very pedagogical description of the methods and techniques that are applied in the

evaluation of socio-economic development.
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