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PREFACE 

Introduction 

Preparation for, early detection of, and timely response to emerging 
infectious diseases and epidemic outbreaks are a key public health priority 
and are driving an emerging field of multidisciplinary research, infectious 
disease informatics. As a critical component of this effort, public health 
surveillance has been practiced for decades and continues to be an indis-
pensable approach for detecting emerging disease outbreaks and epidemics. 
Although traditional disease surveillance often relies on time-consuming 
laboratory diagnosis and the reporting of notifiable diseases is often slow 
and incomplete, a new breed of public health surveillance systems has the 
potential to significantly speed up detection of disease outbreaks. These new, 
computer-based surveillance systems offer valuable and timely information 
to hospitals as well as to state, local, and federal health officials. They are 
capable of real-time or near real-time detection of serious illnesses and 
potential bioterrorism agent exposures, allowing for a rapid public health 
response. This public health surveillance approach is generally called 
syndromic surveillance, which is defined as “an ongoing, systematic 
collection, analysis, and interpretation of ‘syndrome’-specific data for early 
detection of public health aberrations.” 

In recent years, a number of syndromic surveillance approaches have 
been proposed. According to a recent study conducted by the US Centers for 
Disease Control and Prevention (CDC), roughly 100 sites throughout the 
country have implemented and deployed syndromic surveillance systems. 
These systems, although sharing similar objectives, vary in system architecture, 
information processing and management techniques, and algorithms for 
anomaly detection, and have different geographic coverage and disease focuses. 

We see a critical need for an in-depth monograph that analyzes and 
evaluates these existing syndromic surveillance systems and related outbreak 
modeling and detection work under a unified framework. In particular, the 
monograph aims to meet the following critical and timely needs. 

 
1. As the body of the syndromic surveillance literature grows rapidly, we 

see a critical need to provide an integrated and synthesized treatment of 
the current state of the art, identify challenges and opportunities  
for future work, and promote fruitful interdisciplinary research. In 
particular, most existing books on syndromic surveillance (and more 
generally, biosurveillance) focus primarily on statistical modeling and 
analytical work. They largely ignore informatics-driven perspectives 
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(e.g., information system design, data standards, computational aspects 
of biosurveillance algorithms, information visualization, and system 
evaluation). This monograph, with a strong Information Technology 
orientation, will help fill in this important gap and will provide an 
accessible review of the field for researchers from a wide range of 
backgrounds who are working or have an interest in public health 
surveillance. 

2. Because of its practical significance, syndromic surveillance is starting 
to attract students at all levels from a variety of backgrounds ranging 
from public health, computer science, information systems, software 
engineering, public administration and policies, and geographical 
information systems, among others. These students need an approachable 
textbook that introduces the key concepts behind syndromic surveillance, 
the related research framework, the critical research questions and 
methodologies, systems challenges and the state of the art of syndromic 
surveillance implementation, and case studies, providing contexts to 
discuss related technological, analytical, and policy considerations in 
an integrated manner. The book will present such materials from a 
multidisciplinary perspective to encourage and promote cross-area 
training, and to accommodate the variety of the backgrounds of the 
interested students. 

3. The monograph will also provide a much-needed comparative study 
for public health practitioners and offer concrete insights that could 
help future syndromic surveillance system development and implement-
ation. Because of the recent rapid developments, it is difficult for 
public health policy makers, and practitioners from both government 
agencies and the private sector, to follow up with the body of syndromic 
surveillance research. This book is intended to serve the purpose of 
communicating to the policy makers and practitioners recent research 
findings, related policy and implementation considerations, and case 
studies containing discussions of concrete application scenarios. 

Scope and Organization 

The monograph aims to present its chapters in a manner understandable 
and useful to students, researchers, and professionals. The main coverage of 
the fifteen chapters is listed below: 

 
• Chapter 1 will discuss the motivation behind syndromic surveillance and 

offer a high-level overview of the field from research, systems, and 
implementation perspectives. It will also summarize the major challenges 
hindering syndromic surveillance system development and adoption. 
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• Chapter 2 will present a conceptual framework used throughout the book 
to analyze various kinds of syndromic surveillance systems and their 
components. In addition, a comprehensive summary of all the systems 
surveyed in our study will be presented in this chapter. 

 
• Chapter 3 will be primarily focused on sources of data for syndromic 

surveillance and related data standards and messaging protocols. It will 
present how various types of public health-related data have been used 
for surveillance purposes and how effective they are. It will also survey 
technical work to facilitate data collection, sharing, and transmission 
from the point of view of knowledge representation and protocols. 

 
• Chapter 4 will present an introductory summary to data analysis and 

exploration techniques that have been applied to public health syndromic 
surveillance. The focus will be on various outbreak detection methods, 
including those monitoring for unusual patterns, indicative of possible 
outbreaks worth further investigation, in temporal, spatial, and spatial-
temporal domains. 

 
• Chapter 5 will discuss data visualization and information dissemination 

issues in the context of syndromic surveillance. Visualization is an 
important informatics tool to help public health analysts explore and 
analyze typically voluminous surveillance datasets, preferably in an 
interactive manner. Information dissemination also plays an important 
role in syndromic surveillance as mandated and voluntary data sharing 
and reporting need to take place within and across public health departments 
and partnering agencies such as homeland security and public safety. 

 
• Chapter 6 will focus on system assessment and other policy issues. 

These issues have been traditionally under-studied or under-appreciated. 
This chapter will attempt to address such issues through a principled and 
theory-grounded evaluation and assessment framework based on the 
Information Systems literature.  

 
• Chapters 7–14 will report several real-world case studies, summarizing 

and comparing eight syndromic surveillance systems, including those 
that have been adopted by many public health agencies (e.g., RODS and 
BioSense). 

 
• Chapter 15 will conclude the monograph by discussing critical issues 

and challenges to syndromic surveillance research and system develop-
ment, and future directions. 
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Audience 

The primary audience for the monograph includes the following: 
 

• Upper-level undergraduates and graduate-level students from a variety 
of disciplines including but not limited to public health, biostatistics, 
information systems, computer science, and public administration and 
policy will benefit from learning the concepts, techniques, and practices 
of syndromic surveillance. 

 
• Researchers in public health and IT are expected to find this book to be 

an excellent and comprehensive source of current and comprehensible 
reviews of the recent advances in the field and benefit from its multi-
disciplinary angle. It will also help promote community development 
across disciplines and between academia and practitioners. 

 
• Government public health officials (e.g., epidemiologists at all levels of 

government) and private-sector practitioners (in both healthcare and IT 
industries) will be interested in this book as it provides an up-to-date 
review of current syndromic surveillance research and practice, critical 
evaluation of current technologies and approaches, and discussion of 
real-world case studies. 
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Part  I 
SYNDROMIC SURVEILLANCE 
SYSTEMS 

 
 

Chapters 1–6 are dedicated to detailed discussions of syndromic 
surveillance systems from the perspectives of system and algorithmic design. 
Chapter 1 summarizes the primary concepts and major objectives of 
syndromic surveillance. Challenges hindering syndromic surveillance system 
development and adoption are discussed. Chapter 2 presents a conceptual 
framework used to survey existing syndromic surveillance systems and 
analyze these systems’ components. These system components include Data 
Sources and Collection Strategies, Data Analysis and Outbreak Detection, 
Data Visualization, Information Dissemination and Alerting. Each component 
is presented in depth in Chapters 3–5 respectively. Chapter 6 focuses on 
system assessment and other policy issues attempting to address such issues 
through a principled and theory-grounded evaluation and assessment frame-
work based on the Information Systems literature. 
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Chapter 1 

INFECTIOUS DISEASE INFORMATICS:  
AN INTRODUCTION AND AN ANALYSIS 
FRAMEWORK 
 

 
 

Syndromic surveillance is concerned with continuous monitoring of public 
health-related information sources and early detection of adverse disease 
events. In practice, syndromic surveillance systems are being increasingly 
adopted to meet the critical needs of effective prevention, detection, and 
management of infectious disease outbreaks, either naturally-occurring or 
caused by bioterrorism attacks. From an academic standpoint, syndromic 
surveillance research is by nature multidisciplinary and has been attracting 

review of the state of the art of syndromic surveillance research and system 
development efforts from the perspective of information science and 

applicable approaches or solutions, and the current state of system imple-
mentation and adoption for key components of syndromic surveillance 

analysis, and data access and visualization. In addition, we present several 

systems. The purpose of these case studies is to illustrate the information 
technology-driven technical discussions in an integrated, real-world context. 
We also briefly touch upon critical nontechnical issues including data 
sharing policies, and system evaluation and adoption. 

This introductory chapter briefly discusses the importance of syndromic 

and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7_1, 

systems ranging from system architecture, data collection and sharing, data 

significant attention in recent years. This monograph presents a comprehensive 

and international syndromic surveillance systems and a review of about 200 

case studies to compare several state-of-the-art syndromic surveillance 

surveillance and what we believe to be/is a unique niche this book intends to fill. 

logies. On the basis of a detailed analysis of more than 50 local, state, national, 

academic publications, in this monograph we discuss the technical challenges, 
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In this time of increasing concern over the deadly and costly threats of 
infectious diseases caused by natural disasters or bioterrorism attacks, prepar-
ation for, early detection of, and timely response to emerging infectious 
diseases and epidemic outbreaks are a key public health priority and are 
driving an emerging field of multidisciplinary research. A few recent disastrous 
events that threatened the public health of large populations around the 
world include the Severe Acute Respiratory Syndrome epidemics (SARS) 
originated in Asia (Li et al., 2004), the outbreak of Avian flu in East Asian 
countries (NBII, 2006; USDA, 2006), and the ever pending threats of bio-
terrorism since the anthrax attacks in October 2001 (Buehler et al., 2003; 
Cronin, 2005; Siegrist, 1999). 

Public health surveillance has been practiced for decades and continues 
to be an indispensable approach for detecting emerging disease outbreaks 
and epidemics. Early knowledge of a disease outbreak plays an important 
role in improving response effectiveness (Pinner et al., 2003). Although 
traditional disease surveillance often relies on time-consuming laboratory 
diagnosis and the reporting of notifiable diseases is often slow and incomplete, 
a new breed of public health surveillance systems has the potential to 
significantly speed up detection of disease outbreaks. These new, computer-
based surveillance systems offer valuable and timely information to hospitals as 
well as to state, local, and federal health officials (Dembek et al., 2005; 
Pavlin, 2003). These systems are capable of real-time or near real-time 
detection of serious illnesses and potential bioterrorism agent exposures, 
allowing for a rapid public health response. This public health surveillance 
approach is generally called syndromic surveillance, which is defined as an 
ongoing, systematic collection, analysis, and interpretation of “syndrome”-
specific data for early detection of public health aberrations. 

The rationale behind syndromic surveillance lies in the fact that specific 
diseases of interest can be monitored by syndromic presentations that can be 
shown in a timely manner such as nurse calls, medication purchases, and 
school or work absenteeism. In addition to early detection and reporting of 
monitored diseases, syndromic surveillance also provides a rich data repository 
and highly active communication system for situation awareness and event 
characterization. Multiple participants provide interconnectivity among disparate 
and geographically separated sources of information to facilitate a clear 
understanding of the evolving situation. This is of significant importance for 
event reporting, strategic response planning, and disaster victim tracking. 
Information gained from syndromic surveillance data can also guide the 
planning, implementation, and evaluation of long-term programs to prevent 
and control diseases, including distribution of medication, vaccination plans, 
and allocation of resources (Mostashari and Hartman, 2003). 
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In recent years, a number of syndromic surveillance approaches have 
been proposed. According to a study conducted by the Centers for Disease 
Control and Prevention (CDC) in 2003 (Buehler et al., 2003), roughly 100 
sites throughout the country have implemented and deployed syndromic 
surveillance systems. These systems, although sharing similar objectives, vary 
in system architecture, information processing and management techniques, 
and algorithms for anomaly detection, and have different geographic coverage 
and disease focuses. We see a critical need for an in-depth review that analyzes 
and evaluates these existing systems and related outbreak modeling and 
detection work under a unified framework. Such a study presented in an 
easily accessible manner will be useful for researchers who are working or 
have an interest in public health surveillance as a review of the state-of-the-
art syndromic surveillance research and practice. It will also provide a much-
needed comparative study for public health practitioners and offer concrete 
insights that could help future syndromic surveillance system development 
and implementation. 

This monograph serves to investigate the surveillance capacity and 
effectiveness of existing syndromic surveillance systems so as to present a 
synthesized review of the state of the art in syndromic surveillance research 
and practice and provide insights and guidelines for future research and 
system implementation. In comparison with several review articles that were 
published in this area (Bravata et al., 2004; Lober et al., 2002; Mandl et al., 
2004; Yan et al., 2006), this monograph, a significantly extended version of 
a recent review that we completed and published in a journal article format 
(Yan et al., 2008), focuses on an in-depth description of technical components 
of syndromic surveillance systems and frames the related research questions 
from an IT and informatics perspective. 

More specifically, this monograph serves the following purposes: (1) to 

emerging syndromic surveillance techniques; (2) to identify the emerging 
needs and challenges; (3) to present in a synthesized manner the research 
and development efforts of public health agencies, research institutions, and 
the industry from an IT perspective; and (4) to serve as a tutorial for IT 
researchers interested in the emerging field of syndromic surveillance and 

 
• Is syndromic surveillance an effective approach to the public health 

surveillance problem? To what extent are existing systems already serving 
the purpose of early event detection, situation awareness, and response 
facilitation? How can their usability and effectiveness be validated? 

provide an updated review of existing system development efforts and 

infectious disease informatics. This survey aims to help answer the following 
questions: 
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• What information sharing, outbreak detection and information access and 
visualization techniques have been implemented and how do these 
techniques perform? Are there any technical barriers to the design and 
implementation of these approaches in public health? 

• What is the deployment status of existing syndromic surveillance systems 
in the United States and other parts of the world? Are there any legal or 
administrative challenges hindering their wide adoption? 

 
This book investigates a number of public health syndromic surveillance 

systems and related outbreak modeling and detection research, with the specific 
emphasis on the most promising practices in applying advanced information 
technologies to public health surveillance. It is mainly focused on major 
efforts from the public health agencies, research institutions, and the industry 
in the United States. Some other countries with major syndromic surveillance 
practices, including Canada, the UK, Australia, Japan, and Korea, are also 
included in the survey. 

To prepare this book, we have reviewed about 250 publications from 
1997 to 2008. To identify related work, we searched archival journals 
including but not limited to Journal of Biomedical Informatics, Journal of 
American Medical Informatics Association, Journal of Advances in Disease 
Surveillance, Journal of Urban Health, Artificial Intelligence in Medicine, and 
Annual Review of Information Science and Technology. These journal articles 
were mainly retrieved from online bibliographical databases including PubMed 
Medline, ScienceDirect, and SpringerLink. Our literature search used both 
general keywords such as “syndromic surveillance” and “biosurveillance,” 
and keywords pertaining to various technical aspects of syndromic surveillance 
such as “outbreak detection,” “spatial surveillance”, and “bioterrorism 
preparedness.” In addition, we investigated other research outlets, including 
proceedings and presentation material from various workshops (e.g., Arizona 
BioSurveillance Workshops 2006, 2007, and 2008, and Rutgers DIMACS 

User manuals and system brochures that are available electronically (e.g., from 
state/national health department Web sites) were also studied.  

Our work reported in this book aims to be comprehensive and is based on 

review does not count implementations of one system in multiple sites.) We 

surveillance systems for which technical descriptions in varying degrees of 
detail are available from public sources. Technical approaches or solutions 
from each system are carefully catalogued and analyzed based on their 
purpose, input assumed, and output produced. The similarities and differences 
between these approaches are identified and their relative strengths and 

Working Group on BioSurveillance Data Monitoring and Information Exchange). 

believe these surveyed systems represent most of the known syndromic 

a systematic study of over fifty syndromic surveillance systems. (Our 
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weaknesses summarized. In addition, an attempt has been made to perform a 
“post analysis,” cutting across all these systems with the objective of assessing 
the extent to which a particular technical approach has been used to meet a 
specific functional requirement of syndromic surveillance. 

Our discussion of public health syndromic surveillance systems is based 
on a conceptual framework (Figure 1-1) that views syndromic surveillance 
as composed of three main functional areas: data sources and collection 
strategies; data analysis and outbreak detection; and data visualization, 
information dissemination, and reporting. Most modern syndromic surveillance 
systems can be conceptualized following this framework. 

The first area is primarily concerned with where and how to collect data. 
The related issues include data entry approaches, data sharing protocols, and 
transmission techniques. The second area involves modeling, analysis, and 
data mining approaches to monitor for data anomalies and to discover whether 
the aberrant data condition is caused by a real change in disease occurrence. 
The syndrome classification process, a critical step that occurs between data 
collection and anomaly detection, focuses on classifying the raw, observational 
data into syndrome groups to provide a meaningful representation with the 
appropriate level of abstraction and granularity to detect aberrations in any 
monitored illness. The third area involves data visualization, user interface, 
and information dissemination functionalities. Public health officials, epidemio-
logists, and when appropriate, emergency response and homeland security 
personnel, interact with the syndromic surveillance systems through these 
components to access detailed information for further investigation, gain 
situational awareness, make decisions about alert generation and dissemination, 
and collect information needed for response planning and event management. 

 
Figure 1-1. Conceptual syndromic surveillance system architecture. 
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This monograph consists of two main groups of chapters. The first group, 
Chapters 2–6, follows the above framework, discussing various components  
of syndromic surveillance systems and approaches. The second group, 
Chapters 7–14, presents integrative case studies based on representative 
systems and typical application scenarios. 

We conclude this introductory chapter by summarizing the key features 
of each ensuing chapter. In Chapter 2, a summary of syndromic surveillance 
systems surveyed in our study, most of which have been adopted in real-
world applications, is presented. Chapters 3–5 discuss technical material 
related to data collection, data analysis and outbreak detection, and data 
visualization and information dissemination, respectively. System assessment 
and other policy considerations are reviewed in Chapter 6. 

From Chapter 7 to Chapter 14, in each chapter, we report a case study 
with a particular syndromic surveillance system, covering BioSense, 
RODS, BioPortal, ESSENCE, NYC SS, EARS, Argus, and HealthMap. 
Chapter 15 concludes this book by discussing critical issues and challenges to 
syndromic surveillance research and system development, and proposing 
some future directions. 
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Chapter 2 

PUBLIC HEALTH SYNDROMIC 
SURVEILLANCE SYSTEMS 
 

 
 

In this chapter, we summarize the key local, state, national, and international 
syndromic surveillance systems and related ongoing research programs of 
interest covered in our study. This summary provides the needed background 
information and application contexts. It also offers a current snapshot of 
syndromic surveillance practice in general. Note that as our primary focus is 
on public health surveillance, closely-related issues such as response 
planning and resource allocations strategies after an event is confirmed (e.g., 
Carley et al., 2003) are beyond the scope of this study. 

For each system surveyed, we list its main contributors and stakeholders. 
We also include an overall system/project description, relevant data sources, 
syndromes monitored, data analysis and outbreak detection methods imple-
mented, frequency of data collection and analysis, whether a GIS component 
is used, and its deployment strategy and status. 

Although our review is intended to be detailed and comprehensive, our 
effort has been hampered by the unavailability of the technical details of 
many syndromic surveillance systems from either the published literature or 
the publicly available sources such as project Web sites. Furthermore, despite 
our best effort, our literature review is unlikely to be exhaustive. As such, we 
may have missed some interesting and emerging local and/or international 
syndromic surveillance system implementations. Nonetheless, our review 
should provide the readers with a fairly detailed and up-to-date snapshot of 
the state-of-the-art research and successful implementations of syndromic 
surveillance systems for public health and biodefense. 

and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7_2, 
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1. SUMMARY OF NATIONWIDE SYNDROMIC 
SURVEILLANCE SYSTEMS 

global public health status monitoring systems have been identified in our study. 
Table 2-1 presents a summary of these systems. Below we provide additional 
information for each of these systems. 

CDC’s BioSense system is a national initiative to support early outbreak 
detection by providing technologies for timely data acquisition, near real-
time reporting, automated outbreak identification, and related analytics (Bradley 
et al., 2005; Ma et al., 2005; Sokolow et al., 2005). BioSense collects ambulatory 
care data, emergency room diagnostic and procedural information from 
military and veteran medical facilities, and clinical laboratory test orders and 
results from LabCorp. BioSense also monitors over-the-counter (OTC) drug 

monitor 11 syndrome categories including fever, respiratory, gastrointestinal 
illness (GI), hemorrhagic illness, localized cutaneous lesion, lymphadenitis, 
neurologic, rash, severe illness and death, specific infection, and botulism-
like/botulism. 

The Real-time Outbreak Detection System (RODS) is grounded in public 
health practice and focuses on collecting surveillance data for algorithm 
validation and investigating different types of novel data for outbreak detection 
(Espino et al., 2004; Tsui et al., 2003). It has been connected to 500+ 
hospitals’ emergency departments nationwide for syndromic surveillance pur-
poses. RODS collects chief complaints from emergency rooms, admission 
records from hospitals, and OTC drug sales data in real-time. Syndrome 
categories including respiratory, GI, botulinic, constitutional, neurologic, rash, 
hemorrhagic, and others are monitored with a collection of data analysis 
methods. 

In 1999, the Walter Reed Army Institute of Research (WRAIR) created 
the Electronic Surveillance System for the Early Notification of Community-
based Epidemics (ESSENCE) (Lombardo et al., 2004). ESSENCE has been 
used to monitor the health status of military healthcare beneficiaries worldwide, 
relying on outpatient ICD-9 diagnostic codes for outbreak detection (Burkom 
et al., 2004; Lombardo et al., 2003, 2004). Military and civilian ambulatory 
visits, civilian emergency department chief-complaint records, school-
absenteeism data, OTC and prescription medication sales, veterinary health 
records, and requests for influenza testing are used by ESSENCE to evaluate 
health status with a focus on cases of death, GI, neurological, rash, respiratory, 
sepsis, unspecified infection, and others. ESSENCE has been deployed in the 

the BioWatch effort. In its most recent implementation, BioSense aims to 

Thirteen nationwide syndromic surveillance systems plus two open source 

sales, and laboratory test results for environmental samples collected through 
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National Capital Area, and 300 military clinics worldwide by 2003 (Lombardo 
et al., 2003). 

The Rapid Syndrome Validation Project (RSVP) is an Internet-based 
population health surveillance tool designed to facilitate rapid communications 
between epidemiologists and healthcare providers (Zelicoff, 2002; Zelicoff 
et al., 2001). Through RSVP, patient encounters labeled with syndrome 
categories (including flu-like illness, fever with skin findings, fever with 
altered mental status, acute bloody diarrhea, acute hepatitis, and acute 
respiratory distress) and clinicians’ judgment regarding the severity of illness 
are reported to facilitate timely geographic and temporal analysis (Zelicoff, 
2002). 

The Early Aberration Reporting System (EARS) is used to monitor 
bioterrorism activities during large-scale events. Its evolution to a standard 
surveillance tool began in the New York City and the national capitol region 
following the terrorist attacks of September 11, 2001 (CDC, 2006a; Hutwagner 
et al., 2003). Emergent department visits, 911 calls, physician office data, 
school and work absenteeism, and OTC drug sales are monitored for 42 
syndrome categories (Hutwagner et al., 2003). EARS has been implemented 
in emergency departments in the state of New Mexico. It was also used for 
syndromic surveillance purposes at the 2000 Democratic National Convention, 
the 2001 Super Bowl, and the 2001 World Series. 

The National Bioterrorism Syndromic Surveillance Demonstration Program 
covers a population of more than 20 million people. This program monitors 
and analyzes disease cases for neurologic, upper/lower GI, upper/lower 
respiratory, dermatologic, sepsis/fever, bioterrorism category A agents (anthrax, 
botulism, plague, smallpox, tularemia, and hemorrhagic fever), and influenza-
like illness (ILI). These data utilized are derived from electronic patient-encounter 
records from participating healthcare organizations including ambulatory-
care encounters and urgent-care encounters (Lazarus et al., 2001, 2002; Platt  
et al., 2003; Yih et al., 2004). This project provides a testbed for analyzing 
various outbreak detection algorithms and implements a model-adjusted 
SaTScan approach and the SMART algorithm (Kleinman et al., 2004). 

The Bio-event Advanced Leading Indicator Recognition Technology 
(BioALIRT) program examines the use of spatial and other covariate inform-
ation from disparate sources to improve the timeliness of outbreak detection 
in reaction to possible bioterrorism attacks (Buckeridge et al., 2005a; Siegrist  
et al., 2004). In a number of regions including Norfolk, Virginia; Pensacola, 
Florida; Charleston, South Carolina; Seattle, Washington; and Louisville, 
Kentucky, the BioALIRT system monitors military and civilian outpatient-
visit records with ICD-9 codes, and military outpatient prescription records 
for unusual ILI and GI occurrences.  
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BioDefend is another program that aims to develop an effective and practical 
approach for rapid detection of outbreaks (2006b; Uhde et al., 2005). Patient 
encounter information is collected automatically or manually from clinics, 

contact. Syndrome categories monitored include respiratory tract infection 

like illness, febrile, rash with fever, fever of unknown origin, sepsis, contact 
dermatitis, and nontraumatic shock. 

Biological Spatio-Temporal Outbreak Reasoning Module (BioStorm) aims 
to integrate disparate data sources and deploys various analytic problem solvers 

consists of a data broker, a data mapper, a control structure and a library  
of statistical and spatial problem solvers (Buckeridge et al., 2002; Crubézy  
et al., 2005). It monitors and analyzes data such as 911 emergency calls 
collected from San Francisco, emergency department dispatch data from the 

respiratory records from hospitals in Norfolk, Virginia. On the basis of a 
customized knowledge base, BioStorm has implemented a library of statistical 

methods that relate detected abnormalities to knowledge about reportable 
diseases. 

BioPortal is another biosurveillance system that provides a flexible and 
scalable infectious disease information sharing (across species and jurisdictions), 
alerting, analysis, and visualization platform (Chen and Xu, 2006; Zeng  
et al., 2005b). The system supports interactive, dynamic spatial-temporal 
analysis of epidemiological, textual and sequence data (Chen and Xu, 2006; 
Thurmond, 2006; Zeng et al., 2005a). BioPortal makes available a sophisticated 
spatial-temporal visualization environment to help visualize public health 
case reports and  analysis  results. Similar to  EARS, BioPortal uses customized 
syndrome categories, which were developed by the State of Arizona Depart-
ment of Health Services and hospitals in Taiwan (Lu et al., 2008). A number 
of retrospective and prospective spatial-temporal clustering (hotspot analysis) 
approaches are developed and implemented in BioPortal for outbreak detection 
purposes. They are Risk-adjusted Support Vector Clustering (RSVC) (Zeng  
et al., 2004a), Prospective Support Vector Clustering (Chang et al., 2005, 2008), 

is a Web-based infectious disease monitoring system that is part of the open 
source OpenEMed project (http://openemed.org/) for use in urgent care settings 

including respiratory, GI, undifferentiated infection, lymphatic, skin, neurological, 

with fever, botulism-like, ILI, death with fever, GI, encephalitis/meningitis-

emergency departments, and first aid stations at the first point of patient 

to support public health surveillance. The framework is ontology-based and 

Palo Alto Veterans Administration Medical Center, and emergency department 

methods analyzing data as single or multiple time series and knowledge-based 

(Umland et al., 2003). It collects chief complaints, discharge diagnoses and 

and space-time correlation analysis (Ma et al., 2006). 

disposition data for detection analysis concerning a group of syndromes 

Bio-Surveillance Analysis, Feedback, Evaluation and Response (B-SAFER) 
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and other. The collected data are analyzed daily by a first-order model that uses 
regression to fit trends, seasonal effects, and day-of-week effects (Brillman 
et al., 2005). 

INtegrated Forecasts and EaRly eNteric Outbreak (INFERNO) incorpo-
rates infectious disease epidemiology into adaptive forecasting and uses the 
concept of an outbreak signature as a composite of disease epidemic curves 
(Naumova et al., 2005). The system has been tested with a dataset of 
emergency department records associated with a substantial waterborne 
outbreak of cryptosporidiosis that occurred in Milwaukee, Wisconsin,  
in 1993. 

Figure 2-1. Surface-plot of scaled ED visits by age, with predominant RSV and influenza A 
and B periods indicated (Olson et al. 2007). 

 
The DiSTRIBuTE project is a proof-of-concept, distributed, influenza 

surveillance system. DiSTRIBuTE uses aggregate, influenza-like illness 
(ILI), emergency department data from existing syndromic surveillance 
systems developed by state and local public health departments. Data are 
aggregated by age group and three-digit zip code. The DiSTRIBuTE project 
complements traditional influenza morbidity surveillance by providing a 
consistent, timely, year-round, high volume, regional, age-group-specific 
indication of febrile illness in the community (Figure 2-1). 

Two other global scale real-time disease event detection and tracking 
systems are taking a different approach from the systems discussed above. 
The Argus and HealthMap projects monitor online media from global sources, 
instead of disease cases reported by hospitals, clinics, and other health 
facilities. The two systems are built on top of open sources, exemplifying an 
idea of open development for public health informatics applications. Argus, 
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“harvesting engines” to capture information relevant to the definitional 
criteria for biological-outbreak severity metrics. The system automatically 

status reports from ProMED as indicators of possible biological events, and 

HealthMap brings together disparate data sources to achieve a unified 
and comprehensive view of the current global state of infectious diseases 

integrates outbreak data of varying reliability, ranging from news sources 
(such as Google News) to curated personal accounts (such as ProMED) to 
validated official alerts (such as World Health Organization). Through an 

provides a jumping-off point for real-time information on emerging infectious 
diseases and has particular interest for public health officials and international 
travelers. 

 

automated text processing system, these data are aggregated by disease and 

relies on its team of multilingual analysts to evaluate the associations between

displayed by location for user friendly access to the original alert. HealthMap 

and their effect on human and animal health. This freely available Web site 

developed at Georgetown University, relies on Internet technologies as 

the online media and existence of adverse health events. 

collects official disease reports from WHO or unofficial international health 
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2. SUMMARY OF SYNDROMIC SURVEILLANCE 
SYSTEMS AT THE LOCAL, COUNTY,  
AND STATE LEVELS 

Twenty syndromic surveillance systems implemented at the local, county, 
and state levels have been identified in our study. Table 2-2 presents a 
summary of these systems. Note that technical information about these 
systems is often much more difficult to locate (in many cases unavailable 
publicly) when compared with nationwide systems. 

The syndromic surveillance system implemented in New York City uses 
ETL (extract, transform, and load) middleware technology from iWay Soft-
ware over secure, Web-based reporting channels to receive and process a 
high volume of daily reports at a central data repository. A custom analytical 
application based on spatial data analysis software SaTScan and ArcView 
desktop GIS and mapping software from ESRI is used to perform statistical 
analysis and related visualization functions (Heffernan et al., 2004a, 2004b). 

Syndromic Surveillance Information Collection (SSIC) is a complex, 
heterogeneous database system intended to facilitate the early detection of 
possible bioterrorism attacks (with such agents as anthrax, brucellosis, plague, 
Q-fever, tularemia, smallpox, viralencephalitides, hemorrhagic fever, botulism 
toxins, staphylococcal enterotoxin-B, among others) as well as naturally 

emerging infections, and pandemic influenza (Karras, 2005). 

(AEGIS) system is a surveillance effort initiated by the Children’s Hospital 

Technology since 2000 at the state of Massachusetts. The system adopted a 
modular design to address the challenges of scalability, robustness, and data 

health surveillance systems into regional and national surveillance initiatives 
(Reis et al., 2007) (Figure 2-2). The system consists of modeling modules, 

occurring disease outbreaks including large foodborne disease outbreaks, 

Informatics Program at the Harvard-MIT Division of Health Sciences and 

security issues due to an emerging demand of integrating real-time public 

The Automated Epidemiological Geotemporal Integrated Surveillance 

detection modules, and client modules. 
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Figure 2-2. Modeling, detection, and client modules implemented in the current AEGIS 
system (Reis et al., 2007). 

 
The Syndromal Surveillance Tally Sheet program is based on the triage 

nurses’ counts of the numbers of patients presenting the syndromes of interest 
collected from emergency departments of Santa Clara County, California 
(Bravata et al., 2002). (This manual system was proved to be staff and res-
ource intensive and was replaced by an ESSENCE implementation in 2005). 

The system used in the greater Boston area is for rapid identification of 
illness syndromes using automated records from 1996 through 1999 of 
approximately 250,000 health plan members in the area (Lazarus et al., 2001).  

 

Modeling Modules

Trimmed - Mean
Seasonal Model CUSUM Web Interface Client

Email Alerts Client

Data Quality Client

Administrative Client

SatScanTM

EWMA
Seasonal Model

with Trend

Seasonal Trend
with ARIMA Errors

Detection Modules Client Modules

New Hampshire Syndromic Surveillance System collects information 
from multiple sites in New Hampshire including emergency departments, 23 
city schools, 5 workplaces, participating pharmacies, as well as military and 
veteran medical facilities, and LabCorp through the BioSense program. Data 
are either key punched or electronically transferred into the Syndromic 
Tracking Encounter Management System (STEMS) for analysis and geo-
coding (Miller et al., 2003). 

In the state of Connecticut, a Hospital Admissions Syndromic Surveillance 
system is implemented by the Connecticut Department of Public Health. This 
system monitors hospital admissions from the previous day rather than out-
patient visits as most other syndromic systems do (Dembek et al., 2004, 2005). 

Catalis Health System for syndromic surveillance in Texas interfaces 
with available clinic practice management systems to produce a standardized 
dataset via a point-of-care electronic medical record (EMR). This system 
supports data flows directly from clinic providers to the health department 
for syndromic surveillance. Rural counties with limited epidemiological 
resources have benefited from this approach (Nekomoto et al., 2003). 
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North Carolina Disease Event Tracking and Epidemiologic Collection 

Emerging Infection Prevention System, analyzes a variety of data sources 
including the North Carolina Emergency Department Database (NCEDD) 
and the Carolinas Poison Center with the EARS software tool (2006d). 

The Georgia Division of Public Health takes a centralized approach by 
comparing local data to those from other districts and state totals. The clinical 
and nonclinical data are collected, and the analysis results are displayed 
through a Web-based program called the State Electronic Notifiable Disease 
Surveillance System (SendSS) (2006k). The major functionalities of the 
Web-based application are shown in Figure 2-3. 

The syndromic surveillance system in Miami-Dade County, Florida, is a 
Web-based system where syndromic data are transferred from emergency 
departments to an ESSENCE server for data analysis and anomaly detection 
(2006m). On a daily basis, 14 county hospitals automatically transmit 
deidentified chief complaint data to the surveillance system. Each chief 
complaint is then placed into one of 10 syndrome categories including 
respiratory, gastrointestinal, hemorrhagic, influenza-like, shock/coma, neurologic, 
fever, febrile, rash, botulism-like, and other. ESSENCE performs automatic 
data analysis, establishing a baseline with a 28-day average. Daily case data 
are then analyzed against this baseline to identify statistically significant 
increases. An MDCHD analyst evaluates all alerts and develops a summary 
report on each day (Zhang et al., 2007). 

Tool (NC Detect), formerly known as the North Carolina Bioterrorism and 

Figure 2-3. Homepage and menu navigation of SendSS Web application (2006k). 
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The Early Event Detection system in San Diego constantly monitors 
emergency room visits, paramedic transports, 911 calls, school absenteeism 
data, and OTC sales for early event detection. It supports interoperability 
with local SAS/Minitab installations, ESSENCE, and BioSense (Johnson, 
2006). 

The New Jersey syndromic system includes four components: emergency 
department-based surveillance using visit and admission data from participating 
hospitals statewide and a modified CUSUM method to detect aberrations, 
OTC pharmacy sales surveillance from RODS, an ILI surveillance module, 
and a Web-based Communicable Disease Reporting System (CDRS) for real 
time data transmission and reporting (Hamby, 2006). 

The Early Event Detection (EED) system in South Carolina provides 
syndromic surveillance capabilities at the state/local level, using data from 
BioSense, OTC sales, and Palmetto Poison Center (Drociuk et al., 2004). The 
EED system is among a number of disease surveillance systems in South 
Carolina, including ESSENCE, BioSense, and sentinel providers network 
with ILI reporting. As of February 2006, there were 536 distinct sources 
providing OTC drug sales data. 

Indiana’s pilot program for syndromic surveillance is currently taking in 
data from 17 hospitals, most of them in Indianapolis. Indiana’s system is 
expected to include a variety of sources: coroners’ reports, calls to the Indiana 
Poison Control Center, school absenteeism counts, lab test orders, veterinary 
lab results, and reports from day care centers (Lober et al., 2002). 

National Capitol Region’s Emergency Department syndromic surveillance 
system is a cooperative effort between Maryland, the District of Columbia, 
and Virginia that uses chief complaints for syndromic assignment. Using a 
syndrome assignment matrix (Begier et al., 2003), the emergency department 
visits are coded into one of eight mutually exclusive syndromes: “death,” 
“sepsis,” “rash,” “respiratory” illness, “gastrointestinal” illness, “unspecified 
infection,” “neurologic” illness, and “other.” 

The Michigan Syndromic Surveillance Project tracks emergent care 
registrations per day (primarily ED, some urgent care) and Poison Control 
Call Center data using RODS. MDCH and participants exchange data in 
real-time using virtual private networks (VPNs) to secure the data and HL-7 
as the messaging format. Detection algorithms run every hour and send 
email alerts to public health officials when deviations are found. State and 
regional epidemiologists are provided with Web access to the charts and 
maps of the data analytical results (2006g). 
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The Hospital Electronic Syndromic Surveillance (HESS) and hospital 
admission syndromic surveillance (HASS) systems, implemented in the 
State of Missouri, are designed to provide an early warning system of public 
health emergencies including bioterrorism events, and offer outbreak detection 
and epidemiologic monitoring functions. HESS collects data electronically 
from existing electronic systems and requires all hospitals to participate, 
whereas HASS receives data on a paper form from selected sentinel hospitals 
(2006f). They use ESSENCE and BioSense to analyze, visualize, and report 
electronically ED data collected through HESS Reporting Rule. By 2007, 
electronic feeds were being collected automatically from 85 hospitals across 
the state. Figure 2-4 shows statewide syndromic surveillance coverage in 
Missouri. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

HESS hospitals (Resch et al., 2007). 

The North Dakota Department of Health Syndromic Surveillance Program 
is based on chief complaint data received electronically from seven large 
hospital emergency departments located in North Dakota’s four largest 
cities. In addition, data from a call center in North Dakota’s largest city are 

SympTran® to translate free text chief complaints into symptoms and then 
group those into six syndrome groups (Goplin et al., 2007). Data analysis 

system will be briefly introduced in the next section. Over 50% of the state’s 

Figure 2-4. Missouri syndromic surveillance coverage; lighter dots are HASS, and darker are 

functions are provided by the commercial software called RedBat. The RedBat 

received and reviewed daily. They use the natural language translation tool 
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population is currently involved in this program (2006h). They have also 
developed the North Dakota Electronic Animal Health Surveillance System 
for animal disease surveillance. The data analysis capability is provided by 
the CDC EARS. 

 
Figure 2-5. Screenshot of SYRIS system. 

Syndrome Reporting Information System (SYRIS) is a Web-based, real-
time, clinician-driven syndromic surveillance system implemented in Lubbock, 
Texas (Figure 2-5). It provides two-way communication between clinicians 
and public health officials for high specificity, high signal-to-noise ratio 

3. SUMMARY OF INDUSTRIAL SOLUTIONS  
FOR SYNDROMIC SURVEILLANCE 

We now discuss seven representative industrial solutions for syndromic 

The Lightweight Epidemiology Advanced Detection and Emergency 
Response System (LEADERS) is an Internet-based integrated medical 

surveillance, as summarized in Table 2-3. 

outbreak detection in both human and wildlife species diseases. 
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System Company 
LEADERS Idaho Technology, Inc., Salt Lake City, 

Utah 
FirstWatch Real-Time Early 
Warning System 

Stout Solutions, LLC., Encinitas, 
California 

STC syndromic surveillance product Scientific Technologies’ Corporation 
(STC), Tucson, Arizona 

RedBat (Multi-use syndromic 
surveillance system for hospitals 
and public health agencies) 

ICPA, Inc., Austin, Texas 

EDIS (Emergisoft’s Emergency 
Department Information System) 

Emergisoft Corporate, Arlington, Texas 

Spatiotemporal Epidemiological 
Modeler (STEM) tool Center, California 
Emergint Data Collection and 
Transformation System (DCTS) 

Emergint, Inc., Louisville, Kentucky 

FirstWatch integrates data from 911 calling systems, emergency depart-

Washington, DC. The analysis and alerting algorithms implemented in the 

applied to a variety of data sources that include OTC sales, school nurse 
visits, and emergency rooms (2006l). 

RedBat automatically imports existing data from hospitals and public 
health agencies. Besides outbreak detection, it is also capable of tracking 
injuries, reportable diseases, asthma, and disaster victims (2006i). 

Emergisoft is a software solution for syndromic surveillance that has 
been employed in the 1996 Olympics in Atlanta and in the metropolitan 
areas of New York City and Los Angeles (Emergisoft, 2006). 

Table 2-3. Seven industrial solutions for syndromic surveillance. 

the CDC NEDSS Logical Data Module (LDM). Its current clients include 

which are monitored in real-time. Real-time alerting and reporting are also 

the Presidential Inaugural Activities, and the Super Bowl. Portions of  

The Web-based STC syndromic surveillance product is compatible with 

(Ritter, 2002). 

supported (2006e). 

LEADERS have been deployed by US military forces worldwide since 1998 

IBM Corporation, Almaden Research 

ments, lab tests, pharmacies, poison controls and paramedic practices, all of 

public health departments in Connecticut, Louisiana, New York City, and 

system such as CUSUM, 3rd Sigma, and STC’s Zhang Methodology are 

surveillance system for collecting, storing, analyzing, and viewing critical 
medical incidents. LEADERS was deployed at the 1999 World Trade Organi- 
zation Summit, the 2000 Republican and Democratic National Conventions,  
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the IBM Almaden Research Center, can be used to develop spatial and temporal 
models of emerging infectious diseases. These models can involve multiple 
populations/species and interactions between diseases. GIS data for every 
county in US have been integrated into the STEM application (Ford et al., 
2005). 

Emergint provides a syndromic surveillance system for data collection 
and processing. It can interface with care providers, laboratories, research 

4. SUMMARY OF INTERNATIONAL SYNDROMIC 
SURVEILLANCE PROJECTS 

Syndromic Surveillance system that monitors the nurse-led telephone helpline 
data collected electronically by the Health Protection Agency from all 23 

vision, eye problems, lumps, fever, rash, and vomiting. Data streams are 

for disease surveillance. EWORS collects data from a network of hospitals 
and provides technical approaches to distinguish epidemic from endemic 
diseases (EWORS, 2006). Free-text or ICD-9 coded symptom reports can be 
collected through EWORS to monitor a number of infectious diseases, 
including malaria and hemorrhagic fever due to Hantaan virus infection. 
Statistical analysis methods are used for daily data analysis and visualization. 

In some high-income countries, syndromic surveillance has been a very 
effective approach to supporting real-time public health monitoring. However, 
in developing countries, where public health is more in hazard, while the infor-
mation communication infrastructure is more fragile, syndromic surveillance 
systems are more critically needed but difficult to implement. Chretien 
identified such difficulties, and discussed some of the successful syndromic 
surveillance implementation cases in a recent work. Availability of techno-
logies for health data capture and transmission in these underdeveloped 
areas and countries are investigated. Operational experiences of systems 
such as EWORS are presented (Chretien et al., 2008). 

organizations, and federal and state health departments. Emergint also pro- 

The National Health Service (NHS) in the UK operates a NHS Direct 

vides data aggregation analysis as well as visualization functions (2004a). 

monitored include cold/influenza, cough, diarrhea, difficulty breathing, double 

control chart methods (Cooper et al., 2004). 

has developed the Early Warning Outbreak Recognition System (EWORS) 

NHS Direct sites in England and Wales (Doroshenko et al., 2005). Syndromes 

The system is currently implemented by public health departments of 

In Southeast Asia, the Association of Southeast Asian Nations (ASEAN) 

analyzed every 2 hours by statistical methods such as confidence intervals and 

Indonesia, Cambodia, Vietnam, and Laos. 

A Spatiotemporal Epidemiological Modeler (STEM) tool, developed at 
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System Agency 
National Health Service (NHS) Direct 
Syndromic Surveillance 

Operated by the National Health 
Service of UK 

Early Warning Outbreak Recognition 
System (EWORS) 

Association of South East Asian 
Nations 

Alternative Surveillance Alert Program 
(ASAP) 

Health Canada 

Military syndromic surveillance for 
dengue fever outbreak 

French Guiana in South America 

Emergency Department Information 
System in Korea 

Korea 

Experimental Three Syndromic 
Surveillances in Japan 

National Institute of Infectious 
Diseases, Japan 

Australian Sentinel Practice Research 
Network (ASPREN) 

The Royal Australian College of 
General Practitioners; the Dept. of 
General Practice, U. of Adelaide; 
Australian Dept. of Health and Ageing 

New South Wales ED surveillance system New South Wales, Australia 
ILI surveillance in France France 

France 

The Alternative Surveillance Alert Program (ASAP), initiated by Health 
Canada, currently monitors gastrointestinal disease trends by analyzing OTC 
antidiarrheal and anti-nausea sales data, and calls to Telehealth lines (Edge 

provincial, and national levels. 
A syndromic surveillance system called 2SE FAG system (Surveillance 

Spatiale des Epidémies au sein des Forces Armées en Guyane) was established 
to serve the military forces in French Guiana, a French overseas department 
in South America in 2004. The statistical analysis of military syndromic 
surveillance data with 2SE FAG is performed with Current Past Experienced 
Graph (CPEG) and the Exponential Weighted Moving Average (EWMA) 
method (Meynard et al., 2008). They showed that the system detected the 
dengue fever outbreak, which occurred in 2006 several weeks before traditional 
clinical surveillance, allowing quick and effective outbreak surveillance 
within the armed forces (Meynard et al., 2008). 

connected to the Korea Emergency Department Information System for daily 

 

 

 

 

 

 

 
 
 

analysis of acute respiratory syndrome. The system was initially developed for 
the 2002 Korea-Japan FIFA World Cup Games (Cho et al., 2003). 

syndromic surveillance system based on EARS syndrome categories and 

Table 2-4. Ten international syndromic surveillance systems. 

et al., 2003). The system is planned to be deployed at the community, 

Systems, Modeling” project)

Japan’s National Institute of Infectious Diseases (NIID) has developed a 

In Korea, 120 emergency departments from 16 provinces and cities are now 

UMR S 707 (“Epidemiology, Information 
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EARS software to analyze OTC sales data, outpatient visits, and ambulance 
transfer data in Tokyo (Ohkusa et al., 2005a, b). Approximately 5,000 sites 
nationwide in Japan are now connected to this system. The system was used 
for the 2000 G8 Summit and 2002 FIFA World Cup Games. 

The Australian Sentinel Practice Research Network (ASPREN) is a national 
network of general practitioners who collect and report data on selected 
conditions such as ILI for weekly statistical analysis (Clothier et al., 2006). It 
is now being used by about 50 general practitioners nationwide in Australia.  

The New South Wales ED surveillance system routinely collects 
computerized ED patient information from 30 EDs in New South Wales 
(Hope et al., 2008). The ED provisional diagnoses are classified into 37 syn-
dromes, including gastrointestinal, influenza, pneumonia, other/unspecified 
respiratory infections, all injury and mental health presentations. Statistical 
control charts are used to automatically detect increases in syndrome 
activity, using Poisson z-scores of observed vs. expected day-of-week. 
Surveillance reports are updated four times per day (Muscatello et al., 2005). 

Influenza-Like illness (ILI) surveillance is practiced in 11,000 pharmacies 
throughout France (about 50% of all pharmacies in France) in 21 regions. 
This ILI surveillance system is a Web-based system that collects medication 
sales and weekly office visit data to provide forecasts of influenza outbreaks 
using a Poisson regression model (Vergu et al., 2006). 

The French “Epidemiology, Information Systems, Modeling,” group 
headed by Guy Thomas has been developing a Web-based application for 

the periodic baseline level and associated upper forecast limit. The latter 
defines a threshold for epidemic detection. The burden of an epidemic is 
defined as the cumulated signal in excess of the baseline estimate (Pelat 
et al., 2007). 

5. SYNDROMIC SURVEILLANCE FOR SPECIAL 
EVENTS 

During natural or human-made disasters, real-time and comprehensive 
knowledge of public health conditions is critical to inform response and 

In recent years, the world has been through a number of global scale 
cases, injuries, and mental health disorders. 

deathly disasters. Some examples that have affected millions of lives include 

perty damage occurring in New Orleans, Louisiana; the outbreak of the 

recovery activities. Priority health conditions include infectious disease 

Hurricane Katrina in 2005, causing the most severe loss of life and pro- 

online epidemiological time series analysis. The application allows estimating 
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SARS pandemic in 2002. In addition to large scale disasters, special events 

participation of large populations. The temporary and sudden surge of 
population density in the event location brings potential health hazards to the 
participants, such as intensified infectious disease transmission and surging 

large influx of people into the metropolitan area for 2 weeks. Population 
surge caused by the influx of a large number of tourists would significantly 
alter healthcare utilization patterns. It is critical to quickly identify any 

Therefore, in this section, we discuss the category of syndromic surveillance 
practice that is concerned with syndromic surveillance for special and large-
scale events. Teams of public health officials often need to work together to 
monitor public health status for such events (e.g., the 2002 World Series in 
Phoenix (Das et al., 2003), the wildfire outbreak in San Diego, 2003 (Johnson  
et al., 2005)). During Korea-Japan FIFA World Cup 2002 in Japan (Suzuki 
et al., 2003) and Korea (Cho et al., 2003), syndromic surveillance systems 
also played a role in public health status monitoring. Another two examples 
are syndromic surveillance systems implemented for the 2002 Kentucky 
Derby (Goss et al., 2003) and the G8 Summit in Gleneagles, Auchterarder, 

emergency departments will be collected. Information concerning a predefined 
list of symptoms and probable diagnoses will also b e collected manually 
using special-purpose forms or via a Web-based interface. Table 2-5 
summarizes six representative efforts in this category. 

Table 2-5. Six representative syndromic surveillance efforts for special events. 

Syndromic surveillance systems for 
special events 

Stakeholders/location 

Syndromic surveillance for Korea-
Japan FIFA World Cup 2002 in Japan 

National Institute of Infectious 
Diseases, Japan 

Communitywide syndromic 
surveillance for 2002 Kentucky Derby 

University of Louisville Hospital and 
Jefferson County Health Dept. 

Syndromic surveillance for Korea-
Japan FIFA World Cup 2002 in Korea 

Korea 

Drop-in bioterrorism surveillance 
system for World Series 2002 in 
Phoenix, Arizona  

Phoenix, Arizona 

Syndromic surveillance during the 
wildfires outbreak in San Diego, 2003 

San Diego County 

Syndromic surveillance for G8 Summit 
in Gleneagles, Auchterarder, Scotland, 
July 2005 

Scotland, UK 

such as the Olympic Games, FIFA World Cup, or G8 Summit often involve 

localized infectious disease outbreaks and prevent them from taking place. 

healthcare utilization. For instance, the 2008 Olympics in Beijing brought a 

Scotland in 2005 (2005a). Typically, during the events data from regional 
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In addition to the surveillance efforts of varying scopes as summarized 
above, there has been an increasing need for the development of syndromic 
surveillance systems and efforts at the global scale. World Health Organization 
(WHO)’s Epidemic and Pandemic Alert and Response program represents 
one such effort toward global syndromic surveillance. Note that the challenge 
of implementing a global surveillance system is more of a policy and 
administration nature as opposed to technical. 
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Chapter 3 

SYNDROMIC SURVEILLANCE DATA SOURCES 
AND COLLECTION STRATEGIES 
 

 
 

In this and the ensuing two chapters, we will focus on three key technical 
aspects of modern syndromic surveillance systems: data sources and collection 
strategies; data analysis and outbreak detection; and data visualization, 
information dissemination, and reporting. 

This chapter discusses syndromic data collection strategies and related 
data sources. Data collection is a critical early step when developing a synd-
romic surveillance system. It involves the selection of data sources, choices 
over vocabulary to be used, data entry approaches, and data transmission 
strategies and protocols. We will go through the related technical issues in the 

additional policy-related considerations that may impact data collection. 

1. DATA SOURCES FOR PUBLIC HEALTH 
SYNDROMIC SURVEILLANCE 

Syndromic surveillance is a largely data-driven public health surveillance 

stored and transmitted. Note that most syndromic surveillance data were 

data types and sources for syndromic surveillance. 

and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7_3, 

following sections. Towards the end of this chapter, we briefly summarize 

to provide timely, prediagnosis health indicators and are typically electronically 
approach. Data sources used in syndromic surveillance systems are expected 

originally collected and used for other purposes and such data now serve 
dual purposes. Figure 3-1 depicts the conceptual timeline of prediagnosis 
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According to an empirical study conducted by Platt et al. (2003), most 
data collected for syndromic surveillance purposes include similar data 
elements: demographic data such as gender, age, area of residence; and data 
relevant to patient visits such as hospital name, the date of the visit, and the 
symptom set (chief complaints or admission status). 

In this monograph, we identify the range of syndromic data sources and 
briefly summarize how they are used. Healthcare providers, schools, phar-
macies, laboratories, and military medical facilities are all data contributors 
for syndromic surveillance. Specifically, data used for syndromic surveillance 
include emergency department (ED) visit chief complaints, ambulatory visit 
records, hospital admissions, OTC drug sales from pharmacy stores, triage 
nurse calls, 911 calls, work or school absenteeism data, veterinary health 
records, laboratory test orders, and health department requests for influenza 
testing (Ma et al., 2005). 

Chief complaints record patient-reported signs and symptoms of their 
illness (e.g., coughing, headache, etc.) for ED or ambulatory visits. Chief 
complaints are among one of the most widely-used syndromic data sources 

chief complaint records collected from a hospital. 
Chief complaints as a syndromic data source present many advantages as 

well as challenges for public health monitoring. Chief complaint records are 
routinely generated and become available typically on the same day the 
patient is seen. As a comparison, diagnostic data typically take a much longer 
time to be coded and transmitted due to various logistical and infrastructural 
issues and the lack of IT personnel at smaller hospitals (Travers et al., 2006). 
Chief complaint records are typically accessible in an electronic format. The 
wide availability and timeliness make chief complaints an ideal syndromic 
data source. However, as each chief complaint entry is a concise statement 

representations are typically necessary before the analytical processes take 

chief complaints for syndromic surveillance. 
 
 
 
 
 
 

Figure 3-2. Sample chief complaint records sheet. 
 

often in short free-text phrases that often contain misspellings and abbrevi-
ations, cleaning chief complaint data and mapping them into more meaningful 

place. In Chapter 4 we will further elaborate this problem as to processing 

in many syndromic surveillance systems. Figure 3-2 shows some sample 
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OTC medication sales and prescription data are indicative of certain 
illness (e.g., influenza), which could be timelier than patient visits, as people 
may visit a drug store before considering seeing a physician. However, 
getting additional information about the purchasers such as demographical 
information is often not possible. ESSENCE and EARS are among the 
systems that utilize OTC sales data for surveillance purpose. The RODS 
laboratory has built the National Retail Data Monitor (NRDM) to monitor 
the sales of OTC medications as a public health surveillance tool. Thousands 
of retail pharmacies, groceries, and mass merchandise operations have 
participated in the program, where the data and analytical results are made 
accessible to public health officials across the nation. 

School or work absenteeism reported by schools and workplaces can also 
be used as an indicator of public health status. As no disease characterization 
available with the absenteeism report, school or work absenteeism data have 
relatively limited use in syndromic surveillance. Systems (such as EARS, 
ESSENCE) monitor the school or work absenteeism data as a rough-cut 
early indication to generate alarms that “something might be wrong” instead 
of telling “what is going wrong.” 

Highly reliable disease diagnostic data are available as part of hospital 
admission record when hospitalization takes place. However, there could be 
1–3 days between a patient’s first healthcare visit and his or her possible 
hospitalization, making such data less timely than many other data types. 

at Connecticut Department of Public Health utilizes hospital admission data 
for syndromic surveillance. 

Triage nurse calls, 911 calls, and ambulance dispatch calls also have the 
potential of signaling possible events and changes in the public health status. 
Although the phone call data are relatively timely, information concerning 
symptoms or signs recorded during patient calls when the patient consults 
healthcare providers needs to be cleaned and extracted for the use of disease 
characterization. NHS Direct in the UK has been used for spatiotemporal 
analyses to initiate prospective geographical surveillance of influenza in 
England (Meynard et al., 2008), based on calls about fever and vomiting 
placed to a national telehealth system. 

International Classification of Diseases 9th edition (ICD-9) codes and 

(ICD-9-CM) codes assigned for diagnoses and procedures are often available in 

reimbursement purposes. ICD-9/ICD-9-CM codes are used as a syndromic 
data source in many systems because of their wide availability in an electronic 
format. Other data sources such as laboratory test orders and results, or even 
news reports, are also studied by researchers as feasible early public health 
indicators. For instance, researchers have studied how the mass media 

today’s healthcare information systems used for billing or third-party insurance 

International Classification of Diseases, 9th edition, Clinical Modification 

The Hospital Admission Syndromic Surveillance (HASS) system implemented 
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covered disease outbreaks and the media activity affected antiviral sales as 
monitored by syndromic surveillance techniques (Racer, 2007). Web-accessible 
information sources regarding infectious diseases such as discussion forums, 
mailing lists, and government Web sites, and news outlets have been found 
valuable in early public health event detection. As the rapid growth of 
Internet use and wide adoption of real-time online communication continues, 
more and more current, highly local information about outbreaks is available 
and accessible by Web crawling to support situational awareness (Brownstein  
et al., 2008a). Researchers also propose to monitor blogs, discussion sites, 
and listservs to complement news coverage and the use of click-stream data 
and individual search queries is also a promising new surveillance source 
(Eysenbach, 2006). However, because of the distributed and unstructured 
nature of these sources of information, monitoring public health related 
events through them becomes a challenge. Recently two global systems, 
HealthMap and Argus, were developed to provide real-time global information 
integration and public health status monitoring (Brownstein et al., 2008a). 

health status. Serious investigation is called for to determine whether 
monitoring environmental indicators can assist public health surveillance. In 
one such study (Babin et al., 2007), air quality measurements from the 
Environmental Public Health Tracking Program (EPHTP) are passed to the 
CDC, and the relationship between air quality and pediatric emergency 

3-year period. Studying environmental factors could help understand back-
ground disease patterns so that unexpected fluctuations could be better 
detected (Zeng et al., 2008). 

1.1 Comparison of Data Sources 

A quantitative compilation of our research results shows that most of the 
syndromic surveillance systems monitor a combination of data sources from 
multiple sites instead of relying on a single data indicator. Out of the 56 
systems numerated in Tables 2-1 through 2-5, wherein the details are known, 
80% use ED chief complaints (both free text and ICD-9 coded chief 
complaints) as a timely public health indicator. Fifty percent of the systems 
monitor OTC drug sales. Thirty percent of the systems use hospital admission 
data as one of the inputs. Thirty of the systems also collect school/work 
absenteeism data. However, absenteeism or drugs sales are never used alone. 
Fourteen systems also connect to poison centers or laboratories for test 
orders, or monitor 911 calls. Additionally, most ED visits chief complaints 
are in free text (90%), which suggests the importance of free text processing 

The systems have been discussed in previous sections, and dedicated chapters 

department (ED) visits for asthma among DC residents are quantified over a 

describing them can be found in Part II. 
There are very few studies connecting environmental factors with public 
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or natural language processing techniques for medical information processing 
in this area. 

A major concern regarding the data used in the surveillance activities is 
about the effectiveness and validity of their usage for illness pattern detection. 

as a possible early warning indicator of human diseases revealed about a 
90% correlation between flu-remedy sales and physician diagnoses of acute 
respiratory conditions together with a 3-day lead time reported. Another 
study (Doroshenko et al., 2005) shows that nurse-led helpline calls can also 
be used for early event detection. SSIC (Syndromic Surveillance Information 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-3. Syndromic surveillance data sources use survey by ISDS. 
 

survey of state syndromic surveillance use including 46 respondents in 2008. 
ISDS (International Society for Disease Surveillance) also conducted a 

diagnosis. Magruder’s study (Magruder, 2003) about using OTC data/sales 
effective the data sources are, as well as a possible time lead compared with 

The following figure (Figure 3-3) shows the distribution of use of data sources 

To be valid in the context of syndromic surveillance, evidence is needed that 

The numbers largely align with our quantitative findings above. 

A number of studies have examined to some degree whether and how 

by the surveyed syndromic surveillance system (Mostashari et al., 2008). 

a data source may have value in identifying an outbreak or biological attack. 



3. Syndromic Surveillance Data Sources and Collection Strategies 39

Collection) program tested the use of visit-level discharge diagnoses from 
several clinical information systems as a syndromic data source (Duchin et al., 
2001; Lober et al., 2003). One limitation of using chief complaints as 
syndromic data is that they provide different predictive values from discharge 

best capture illnesses mainly characterized by nonspecific symptoms like 
fever, while discharge diagnoses appear better at tracking illnesses requiring 
brief ED clinical evaluation and testing, such as sepsis and possibly meningitis 
(Begier et al., 2003). 

Although most of the syndromic surveillance systems use multiple data 

consistency, is necessary. Edge et al. (2004) reported correlations between 
OTC antinausea and antidiarrhea medication sales and ED admissions. 
However, in a study conducted by the Infectious Disease Surveillance 

OTC medications used to treat the common cold correlated with influenza 
activities. It has been observed that as individuals may seek care in a variety 
of settings resulting in multiple reports for the same individual case in 
different data sources, combining these data sources properly presents major 

(Costa et al., 2007). 
Preliminary investigations have evaluated the effectiveness of different 

data sources in syndromic surveillance and studied the differences among 
them in terms of information timeliness and characterization ability for 
outbreak detection, as they represent various aspects of patient healthcare-
seeking behavior (Ma et al., 2005). For example, school/work absenteeism 

healthcare in hospitals or clinics, but specific disease evidence provided by 
the absenteeism type of data is limited. Table 3-1 provides a classification of 
different data sources used for syndromic surveillance organized by their 
timeliness and capability to characterize epidemic events. 

diagnoses, as reported by (Begier et al., 2003). Generally, chief complaints 

same story, i.e., flagging the possible outbreaks for certain illness with 

Center, Japan (Ohkusa et al., 2005a), they found no evidence that sales of 

sources, further examination about whether the different data are telling the 

technical challenges due to dependencies existing among these data sources 

comes to notice relatively earlier as individuals take leave before seeking 
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2. STANDARDIZED VOCABULARIES 

Data standard development, or more generally interoperability, is a key 
to successful, cross-jurisdictional syndromic surveillance. A standardized 
syndromic data representation would have a number of implications. First, a 
specialized vocabulary enables accurate representation for communicating 
information and events. Data formats and coding conventions that are in-
consistent among different sites (e.g., laboratory tests and results can be 
reported in multiple ways) could be an obstacle in capturing illness cases. 

More importantly, streamlining the delivery of electronic data across 
multiple sites saves time and eventually enables real-time reporting and 
alerting. Real-time data transmission and event reporting with a universal 
data format standard and messaging protocol is a primary motivator in the 
development of syndromic surveillance systems. Because of the varying 
internal data structures and database schema among various healthcare 

resources for data conversion and normalization. According to an estimation 
in 2004, the use of data exchange standards in healthcare could save up to 
$78 billion annually (Pan, 2004). 

In addition, syndromic surveillance systems that are more complex and 
geographically distributed need to be interoperable to enhance jurisdictional 
collaboration for timely event detection and response. Therefore, developing 
and imposing standards from programmatic, constructive, architectural, and 
managerial perspectives is especially addressed by the CDC-led syndromic 

the Public Health Information Network (PHIN) framework (CDC, 2006c), the 
National Electronic Disease Surveillance System (NEDSS) (CDC, 2004), the 
National Center for Vital Health Statistics, Department of Defense, Depart-
ment of Veteran Affairs, and all National Institutes of Health. 

standard vocabularies for electronic emergency room records, laboratory 

standard to transport these records. Many available code standards currently 
used in syndromic surveillance have been borrowed from public health 
systems (Wurtz, 2004). Current efforts to standardize vocabulary are based 
on Logical Observation Identifiers Names and Codes (LOINC®), Systematized 
Nomenclature of Medicine (SNOMED®), International Classification of 
Diseases, Ninth Revision (ICD-9), and Current Procedural Terminology 
(CPT®) as core vocabularies. In addition, Unified Medical Language System 
(UMLS) has been used as cross reference ontology among the above coding 
systems. Health Level Seven (HL7) is used as a messaging standard in public 
health. 

surveillance initiatives. These initiatives are a collaborative effort involving 

testing, clinical observations, and prescriptions, along with the messaging 

information systems, it takes a significant amount of time and processing 

This section discusses the development, adoption, and implementation of 
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2.1 Existing Data Standards Used in Syndromic 
Surveillance 

Here we provide a brief summary of each coding system to illustrate their 
scope and target medical domain. 

 
UMLS: The Unified Medical Language System (UMLS) (Fung et al., 

2006) provides a cross reference ontology among a number of different 
biomedical coding systems and standards, and a semantic structure defining 
relationships among different clinical entities. Its Semantic Network and 
Metathesaurus help facilitate system developers in building or enhancing 
electronic information systems that integrate and/or aggregate biomedical 
and health data and knowledge. 

 
LOINC: LOINC codes are universal identifiers for laboratory and other 

clinical observations. Distinct LOINC codes are assigned based on specimen 
types (e.g., “ser” = serum) and methods of the test (e.g., immune fluorescence), 
with specific description for different conditions. As LOINC codes were 
originally developed for billing purposes, they do not convey information 
about the purpose or results of the test (Wurtz, 2004). The CDC has developed 
“Nationally Notifiable Conditions Mapping Tables” (http://www.cdc.gov/PHIN/ 
data_models), which provide mappings from LOINC codes to nationally-
notifiable (and some state notifiable) diseases or conditions. 

 
SNOMED: SNOMED is a nomenclature classification scheme for indexing 

medical vocabulary, including signs, symptoms, diagnoses, and procedures. 
It defines code standards in a variety of clinical areas called coding axes. It 
can identify procedures and possible answers to clinical questions that are 
coded through LOINC. 

 
ICD-9-CM: ICD-9-CM was developed to allow assignment of codes to 

diagnoses and procedures associated with hospital utilization in the United 
States and are often used for third-party insurance reimbursement purposes. 
Table 3-2 shows a partial code set used by ESSENCE for fever. 

 
Table 3-2. ICD-9-CM coding examples. 

ICD9CM ICD9DESCR 
020.2 PLAGUE, SEPTICEMIC 
020.8 OTHER TYPES OF PLAGUE 
020.9 PLAGUE NOS 
021.8 TULAREMIA NEC 
021.9 TULAREMIA NOS 

3. Syndromic Surveillance Data Sources and Collection Strategies
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An updated release of ICD-10-CM was made available in 2007 for public 
viewing. The codes of ICD-10-CM are now under testing and not currently 
valid for any purpose or use. A research study has been conducted to examine 
the usefulness of the ICD-10-CM system in capturing public health diseases, 
when compared with ICD-9-CM. The study also examined agreement levels 
of coders when coding public health diseases in both ICD-10-CM and ICD-
9-CM. Overall results demonstrate that ICD-10-CM is more specific and 
captures more of the public health diseases examined than ICD-9-CM 
(Watzlaf et al., 2007). 

HL7: HL7 (HL7, 2006; Hooda et al., 2004; Thomas and Mead, 2005)  
is the ANSI-accredited healthcare standard messaging format, used for 
transmitting information across a variety of clinical and administrative 
healthcare information systems. It specifies the syntax that describes where a 
computer algorithm can find various data elements in a transmitted message, 
enabling it to parse the message and reliably extract the data elements 
contained therein. HL7 Version 2.3 provides a protocol that enables the flow 
of data between systems. HL7 Version 3.0 (Beeler, 1998) is being developed 
through the use of a formalized methodology involving the creation of a 
Reference Information Model to encompass the ability not only to move 
data, but also to use it once it has been moved. 

Development and adaptation of coding standards and standardized messaging 
formats are essential for information exchange and sharing, a prerequisite for 
public health surveillance. However, different standards and implementations 
exist for operational clinical, laboratory, and hospital information systems, 
which causes significant obstacles for information sharing. Nonetheless, 
standards are being developed, improved, and adopted increasingly widely. 
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In addition to leveraging existing healthcare standards, some groups have 
proposed additional coding and messaging standards tailored specifically for 
syndromic surveillance. For example, the Frontlines group (Barthell et al., 
2002, 2004) is focusing on the development of standard reporting and coding 
structures specific to syndromic data. They defined the data elements in 
triage surveillance reports and a set of codified values for chief complaints. 
They also proposed a system to facilitate continuous flow of XML-based 
triage report data among hospital EDs, and state and local health agencies. 
The ongoing effort motivated to develop an electronic health record is 
largely relevant as well to public health surveillance from the point of view 
of coding and messaging standards. For instance, the Veterans Administration 
(VA) has been standardizing its clinical terminology to comply with industry-
wide standards. In the National VA Health Data Repository (HDR), “Unique 
enterprise identifiers are assigned to each standard term, and a rich network 
of semantic relationships makes the resulting data not only recognizable, but 
also highly computable and reusable in a variety of applications, including 
decision support and data sharing with partners such as the Department of 
Defense (DoD)” (Bouhaddou, Lincoln et al., 2006). 

In addition to technical considerations, regulatory and compliance issues 
also need to be examined carefully to address data standardization challenges. 
For instance, the US has implemented laws, such as HIPAA’s Administrative 
Simplification, to enforce standardization in healthcare information by mandating, 
for example, health plans, healthcare clearinghouses, and providers that conduct 
certain transactions electronically comply with the HIPAA transaction 
standards. 

providers and public health researchers and practitioners often use natural 
language when describing biomedical concepts and constructs, even in the 
context of highly structured case report forms. Hunscher et al. (2006) 
described work in progress and lessons learned in translating complex natural-

the HL7 CDA, LOINC, and SNOMED-CT standards. 

3. DATA ENTRY AND DATA TRANSMISSION 

Syndromic data are being collected through various kinds of healthcare 
and public health information systems. Such data collection efforts often have 

related data entry and transmission techniques. 

language concepts on case report forms into machine-readable format using 

to cross organizational boundaries and jurisdictions. This section discusses 

Despite the availability of standard vocabularies discussed above, healthcare 
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3.1 Data Entry Approaches 

Data entry approaches for syndromic surveillance fall into four categories: 
paper-based forms, Web-based interface, local data input software application, 
and hand-held devices (Zelicoff et al., 2001). Many systems support multiple 
data entry approaches as they involve multiple sites with possibly different 
IT infrastructure support (Espino et al., 2004; Lombardo et al., 2003). In 
general, the manual approach using paper-based forms can lead to unwanted 
delays as the records have to be converted later to an electronic format. 

3.2 Secure Data Transmission 

Secure data transmission is critical to data integrity and confidentiality. 
The specific challenges are as follows. How can a syndromic surveillance 
system retrieve syndromic data from data providers (e.g., hospitals and 
pharmacies)? How can data transfers be done securely over the communication 
channels such as the Internet? 

The existing transmission approaches are either automated or manual. 
Automated transmission refers to transferring of data over a communication 
media where human intervention (e.g., to initiate each transmission transaction) 
is not required. Manual transmission entails significant human intervention. 
About 33% of the 50 systems surveyed rely primarily on automated data 
transmission, whereas the remaining 67% rely on human intervention in both 
data requesting and receiving. Email messages with text reports or data files 
as attachments, despite the security and data exposure risks, are still widely 
used to transfer syndromic data from clinical systems to syndromic surveillance 
systems. 

automated data transmission, since a significant portion of health systems 
support HL7. Among the systems surveyed, those capable of automated data 

system and the BioPortal system use HL7 messaging protocols for automatic 
syndromic data transmission. In RODS, an HL7 listener implemented as 

underlying health system. The messages transmitted are first parsed by an 
HL7 parser bean before being loaded into the database. A configuration file 
written in XML is used to specify the hierarchical structure of the data 

an HL7-based approach to transmit data as HL7-compliant XML messages. 
This approach allows for dynamic changes in the message structure (Hu  
et al., 2005; Zeng et al., 2004b). 

3. Syndromic Surveillance Data Sources and Collection Strategies

transmission all use HL7 one way or another. For example, the RODS 

The XML-based HL7 messaging standards play an important role in 

elements in each HL7 message (Tsui et al., 2003). BioPortal also relies on 

Enterprise JavaBean (EJB) beans is used to receive HL7 messages from each 
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Compared with other approaches that mainly support file-based trans-
missions in a batch mode, HL7-based approaches are more efficient and 
effective. According to a RODS study (Tsui et al., 2005), they could reduce 

(Virtual Private Networks), SSL (secure socket layer), HTTPS, and SFTP 
(secure file transfer protocol) are now being increasingly utilized (Rhodes 
and Kailar, 2005). 

surveillance systems and the involved public health agencies? There is no 
simple answer to this question. Typically the IT infrastructure of the data 
providers (e.g., hospitals) needs to be upgraded to enable timely, reliable, 
and secure data collection. 

to be addressed, including: (1) providing and transmitting data either requires 
staff intervention or dedicated network infrastructure, which often require 
extra costs; (2) data sharing and transmission must comply with HIPAA and 
other privacy regulations; (3) reducing data acquisition latency has important 

quality concerns (e.g., incompleteness and duplications) often pose additional 
challenges. In particular, data ownership, confidentiality, security, and other 

security issues should be resolved in advance between the involved data 
providers and users (Hu et al., 2005). 

legal and policy-related issues need to be closely examined. When infectious 

Many practical challenges hindering the data collection effort also need 

disease datasets are shared across jurisdictions, important access control and 

implications to syndromic surveillance yet is difficult and can be costly; (4) data 

reporting latency by 20  hours. Secure networking techniques such as VPNs 

Is there a best approach to transmit data from data providers to syndromic 



 

H. Chen et al , Infectious Disease Informatics  Syndromic Surveillance for Public Health      49 

© Springer Science + Business Media, LLC 2010 

Chapter 4 

DATA ANALYSIS AND OUTBREAK 
DETECTION 
 

 
 

The analysis components of a syndromic surveillance system focus on 
detecting the changes in public health status, which may be indicative of 
disease outbreaks. At the core of these analysis components is the automated 
process of detecting aberration or data anomalies in the public health 
surveillance data, which often have prominent temporal and spatial data 
elements, by statistical analysis or data mining techniques. These methods 
are also capable of dealing with various common problems in epidemiological 
data such as bias, delay, lack of accuracy, and seasonality. These techniques 
are the focus of this chapter. 

When processing public health surveillance data streams, it is often 
necessary to map the collected syndromic data into a small set of syndrome 
categories to facilitate follow-up analysis and outbreak detection. Section 4.1 
discusses related syndrome classification approaches. In Section 4.2, we pro-

for biosurveillance. Sections 4.3–4.6 summarize various specific detection 
methods spanning from classic statistical methods to data mining approaches, 
which quantify the possibility of an outbreak conditioned on surveillance data. 

1. SYNDROME CLASSIFICATION 

The onset of a number of syndromes can indicate certain diseases thre-
atening public health. For example, the influenza-like syndrome could be due 
to an anthrax attack, which is of particular interest to biodefense. Syndrome 

and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7_4, 

vide a taxonomy of anomaly analysis and outbreak detection methods used 
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processing and analysis. 
A substantial amount of research effort has been expended to classifying 

because different expressions, acronyms, abbreviations, and truncations are 
often found in free-text chief complaints (Sniegoski, 2004). For example, 
“chst pn,” “CP,” “c/p,” “chest pai,” “chert pain,” “chest/abd pain,” and 
“chest discomfort” can all mean “chest pain.” On the basis of our summary 

use chief complaints as a major source of data. Therefore, the problem of 
mapping each chief complaint record to a syndrome category, referred to as 
syndrome classification, is an important practical challenge needing a 
solution. Another syndromic data type often used for syndromic surveillance 
purposes, i.e., ICD-9 or ICD-9-CM codes, also needs to be grouped into 
syndrome categories. Processing such information is somewhat easier as the 
data records are structured. 

A syndrome category is defined as a set of symptoms, which is an indicator 
of some specific diseases. For example, a short-phrase chief complaint 
“coughing with high fever” can be classified as the “upper respiratory” 
syndrome. Table 4-1 summarizes some of the most commonly-monitored 
syndrome categories. Note that different syndromic surveillance systems 
may monitor different categories. For example, in the RODS system there 
are seven syndrome groups of interest for biosurveillance purposes, whereas 
EARS defines a more detailed list of 43 syndromes. Some syndromes are of 
common interest across different systems, such as respiratory or gastrointestinal 
syndromes. 

 
Table 4-1. Diseases and syndrome categories commonly monitored. 

Influenza-like Respiratory Dermatological 
Fever Neurologic Cold  
Gastrointestinal Rash Diarrhea  
Hemorrhagic illness Severe illness and 

death 
Asthma  

Localized cutaneous lesion Specific infection Vomit  
Lymphadenitis Sepsis  Other/none of the above 
Constitutional   
Bioterrorism agent-related diseases 
Anthrax Botulism-

like/botulism 
Plague 

Tularemia Smallpox SARS (severe acute 
respiratory syndrome) 

free-text chief complaints into syndromes. This classification task is difficult 

findings reported in Section 3.1, a majority of syndromic surveillance systems 

classification thus is one of the first and important steps in syndromic data 
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1.1 Syndrome Classification Approaches 

The syndrome classification process can be either manual or implemented 
through an automated system. The BioSense system, developed by CDC 
(Ma et al., 2005), for instance, relies on a working group that develops 
syndrome mapping using CDC definitions. However, automated, computerized 
syndrome classification is essential to real-time syndromic surveillance. A 
software application that analyzes chief complaint records or ICD-9 codes 
and then determines appropriate syndrome categories is often known as a 
syndrome classifier. 

 
Manual Grouping The BioSense system (Bradley et al., 2005; Sokolow 

et al., 2005) and the Syndromal Surveillance Tally Sheet program used in 
EDs of Santa Clara County, California, use a manual approach to classify the 
symptoms. They ask the medical experts in syndromic surveillance, infectious 
diseases, and medical informatics to perform the mapping of laboratory test 
orders into 11 syndromes categories defined by a multi-agency working 
group (Ma et al., 2005). 

 
Automated Classification Existing automated classification methods 

can be roughly categorized into three groups: supervised learning, rule-based 
classification, and ontology-enhanced classification. The supervised learning 
methods require as input a set of CC records labeled with syndromes as 
learning samples before they can proceed to classify unlabelled CC records 
by syndromes. Naive Bayesian and Bayesian network-based methods are 
two examples of the supervised learning methods (Ivanov et al., 2002; 
Sniegoski, 2004). For instance, the CoCo chief complaints classifier 
developed as part of the RODS system is a Bayesian classifier (Chapman  
et al., 2003). Often, a learning approach has a natural language processing 
(NLP) component, which classifies free-text CCs with simplified grammar 
containing rules for nouns, adjectives, prepositional phrases, and conjunctions. 
As part of RODS, Chapman et al. adapted the MPLUS, a Bayesian network-
based NLP system, to classify the free-text chief complaints (Wagner et al., 
2004a; Chapman et al., 2005). Implementing learning algorithms is straight-
forward; however, collecting training records is usually costly and time-
consuming. Another major disadvantage of supervised learning methods is 
the lack of flexibility and generalizability. Recoding for different syndromic 
definitions or implementing the CC classification system in an environment 
that is different from the one where the original labeled training data were 
collected could be costly and difficult.  
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In contrast, rule-based classification does not require labeled training 
data. A text string searching process for syndrome category classification is 

and then mapped to the syndrome categories according to a set of rules often 
predefined by medical experts following the definitions of syndromes of 
interest. For instance, an example rule could be “fever, if NOT animal  
and NOT environmental and fever.” Many applications, for example, EARS 
(Hutwagner et al., 2003), ESSENCE (CDC, 2003), and the National Bioterrorism 
Syndromic Surveillance Demonstration Program (Yih, Abrams et al., 2005), 
make use of such rules. Rule-based methods are relatively flexible, as the 
inference rules can be easily modified and updated. A major problem with 
rule-based classification methods is that they cannot handle symptoms not 
covered in the set of predefined rules. 

The third category of automated approaches, ontology-based classification, 
utilizes relations between medical concepts (Leroy and Chen, 2001). Two 
representative methods are the BioPortal CC Classifier, which relies on 

abstraction method (Crubézy et al., 2005). BioPortal CC Classifier uses 

grouping (as an intermediary representation) for a given CC record and then 
classify it using rules. It is able to provide a flexible architecture that supports 
easy adaptation to new syndromic categories. The BioStorm approach 
creates a series of intermediate abstractions up to a syndrome category from 
the primitive data (e.g., signs, lab tests) for syndromes indicative of illness 
due to an agent of bioterrorism. 

We summarize representative syndrome classification methods in Table 4-2.

a typical rule-based approach. In general, the CC records are first cleansed 

Unified Medical Language System (UMLS) vocabularies and semantics (Lu 
et al., 2006, 2008), and the BioStorm approach, which uses a vocabulary 

UMLS’s Meta-thesaurus and SPECIALIST Lexicon to suggest a symptom 
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An interesting complementary method using both manual and natural-
language processing techniques to create CC classifiers is presented by Halasz 
et al. (2006). They apply an n-gram text processing program to build an ICD9 
classifier to a training set of ED visits for which both the CC and ICD9 code 
are known. A collection of CC substrings with associated probabilities was 
constructed and used to generate a CC classifier program. This approach 
allows the rapid automated creation and updating of CC classifiers based on 
ICD9 groupings. 

Researchers have also started working on a CC classifier for non-English 
CCs. It is noted that there is a critical need for the development CC 
classification systems capable of processing non-English CCs as syndromic 
surveillance is being increasingly practiced around the world. One design 
first maps non-English CCs to English CCs and then use well-tested English 
CC classification systems to process translated CCs (Lu et al., 2007a). 

1.2 Performance of Syndrome Classification Approaches 

On the basis of our survey, about 40% of syndromic surveillance systems 
use automated syndrome classification, while the other 40% rely on a manual 
approach (details are unknown for the remaining 20%). There is clearly room 
for improvement and adoption of automated methods. 

Evaluation studies have been conducted to compare various classifiers’ 
performance for selected syndrome types (Travers and Haas, 2004). For 
instance, experiments comparing two Bayesian classifiers for the acute 
gastrointestinal syndrome showed a 68% mapping success against expert 
classification of ED reports (Ivanov et al., 2002). In general, however, it is 
difficult to paint a general picture of how well syndromic classifiers perform 
and how they fare against each other as many systems have not been evaluated 
on classification accuracy. In addition, the performance of these classifiers 
varies with different syndrome categories, further complicating the evaluation 
task. 

Many prior studies show that a considerable portion (30–40%) of the 
chief complaints data is not classifiable because they are too noisy. However, 
combining chief complaints with the diagnostic codes (such as ICD-9) during 
the same visit can achieve a better classification accuracy (Reis and Mandl, 
2004). 

Another challenge facing syndrome classification is that there are no 
universally-accepted, standardized syndrome definitions. As a result, significant 
rewriting/fine-tuning efforts are needed when applying a classification approach 
in particular application contexts. One possible approach to deal with these 
difficulties is to create intermediary representations (such as symptom groups) 
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and create explicit rules that map these intermediary representations into 
customized syndrome categories (Lu et al., 2006). 

2. A TAXONOMY OF OUTBREAK DETECTION 
METHODS 

Syndromic surveillance systems typically make available multiple outbreak 
detection algorithms, as no single method can deliver superior performance 
across a wide range of scenarios or meet different surveillance objectives 
(Buckeridge et al., 2003). 

Many statistical and data mining techniques for syndromic surveillance 
have been proposed in the literature. These methods can be generally divided 
into retrospective and prospective approaches. If instead we consider the 
characteristics of the surveillance data analyzed, another orthogonal classific-
ation scheme is possible, dividing the outbreak detection methods into 
temporal analysis, spatial analysis, and spatial-temporal analysis approaches. 
This subsection focuses on both schemes. 

Interested readers are referred to http://statpages.org/, which provides 
tutorials for various kinds of parametric and nonparametric statistical tests 
that form the statistical foundation of outbreak detection, and http://www. 
autonlab.org/tutorials/, which includes statistical data mining and machine 
learning tutorials. The review articles on data mining and its application in 
health and medical information (Bath, 2004; Benoit, 2002) are also good 
references to provide in-depth background for the material presented in this 
section. 

2.1 Retrospective vs. Prospective Syndromic 
Surveillance 

A number of surveillance approaches fall under the general umbrella of 
retrospective models, which aim at testing statistically whether events are 
randomly distributed over space and time for a predefined geographical region 
during a predetermined time period (Kulldorff, 2001). Some examples of 
retrospective methods include space scan statistic (Kulldorff, 1997), Nearest 
Neighbor Hierarchical Clustering (NNH) (Levine, 2002), and Risk-adjusted 
Support Vector Clustering (RSVC) (Zeng et al., 2004a). When applying 
retrospective methods, there is usually a clear distinction between the baseline 
data points and the observations of interest, where the baseline data correspond 
to known “normal” health status and the observations of interest are case 
reports to be examined for surveillance purposes. In applications where the 
separation between the baseline data and observations of interest can be 
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cleanly and meaningfully done, retrospective methods can be effectively 
applied. 

One major limitation of retrospective methods is that they are slow in 
detecting emerging clusters when the separation between the baseline data 
and observations of interest is not obvious. The resulting manual trial-and-
error interventions severely limit the applicability of retrospective methods. 

Prospective surveillance often entails repeated analyses performed 
periodically on incoming surveillance data streams to identify statistically 
significant changes in an online context (Chang et al., 2005). Using such a 
method, the separation of the baseline data and observations of interest is no 
longer needed as the system automatically tries various combinations of 
having some time windows as the baseline and some periods after them as 
the time of interest. 

Prospective analysis has long been used in disease surveillance applications. 
The CUSUM method is one of the most established methods. Other examples 
include Rogerson’s approaches (Rogerson, 1997), Kulldorff’s prospective 
version of time-space scan statistics (Kulldorff, 2001), and the Prospective 
Support Vector Clustering (PSVC) method (Chang et al., 2005). 

2.2 Temporal, Spatial, and Spatial-Temporal Outbreak 
Detection Methods 

Table 4-3 summarizes a wide range of outbreak detection methods, all of 
them implemented in one or more syndromic surveillance systems surveyed. 
They are divided into three groups: temporal, spatial, and spatial-temporal 
(Buckeridge et al., 2005b; Mandl et al., 2004). Note that this table does not 
attempt to exhaustively list every detection algorithm proposed in the 
literature. Interested readers can refer to (Brookmeyer and Stroup, 2004; 
Lawson and Kleinman, 2005) for recent in-depth reviews of a more 
comprehensive set of algorithms. The methods listed in Table 4-3 are chosen 
because of their connection with the syndromic surveillance systems surveyed. 
Although not exhaustive, it covers most of the detection method types and 
provides a useful snapshot of the state of the art. Sections 3-5 provide 
additional analysis of these three groups of detection methods, respectively. 
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Because of the importance of outbreak detection algorithms for syndromic 
surveillance, we review some of the critical methods adopted in more detail 
below. The readers should note that the models we are about to discuss can 
be written in a number of mathematically equivalent ways, while the ones 
presented in the text are one of the representations. 

3. TEMPORAL DATA ANALYSIS 

This section discusses representative temporal anomaly detection methods. 

trends (e.g., linear, exponential). 

3.1 Statistical Process Control (SPC)-Based Anomaly 
Detection 

A majority of the systems surveyed employ statistical process control 
(SPC)-based algorithms. These algorithms were originally developed to monitor 
a process and its mean in industrial settings. The ability to differentiate the 
“out-of-control” mean from the “in-control” mean makes these methods 
readily applicable for anomaly detection. 

The basic idea behind SPC-based algorithms is as follows. A small random 
sample ,...),...( 1 txxx =  is drawn repeatedly at certain time intervals. The 
sample mean is compared against given thresholds; alarms are triggered at 

{ }A smin ;sample_ mean( ) ( )= >t s x G s , if the sample mean exceeds the 
control limit G(s). The alerting threshold is either theoretically defined, or 

As such, it is a common practice to estimate the incidence rate using a linear 

regression residuals (Buckeridge et al., 2005a). 

methods that have been widely applied for outbreak detection. CUSUM 

It monitors public health events or incidences as a sequence of data points, 

detection methods attempt to identify unusual patterns, smooth out naturally-
occurring (or known) variations, and distinguish the variations caused by a 

measured typically at evenly-distributed successive times. Temporal anomaly 

possible outbreak from natural variations. Such methods either study the 

Temporal anomaly detection belongs to the vast domain of time series analysis. 

event frequency or the intensity of adverse event occurrences (time intervals 

series analyzed often exhibits substantial day-of-week or seasonal patterns. 

dynamically estimated through historical data. The later one is proved to be 

The Control Statistical Cumulative Sums (CUSUM) and Exponentially 

more robust than the former (Buckeridge et al., 2005a). The single time-

or Poisson regression model, and then to apply a SPC-based method to the 

Weighted Moving Average (EWMA) methods are two standard SPC-based 

between occurrences) to detect changes. These changes could follow different 
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keeps track of the accumulated deviation between observed and expected 
values. Formally, the accumulated deviation is defined as 

),0max( 1 kzSS ttt −+= − , where k is a control parameter and tz  models the 

distribution of the variable of interest (e.g., t t
t

t

xz μ
σ
−

= , if the variable is 

normally distributed) (Rogerson, 2005). Different forms of CUSUM have 
been developed, which assume that the underlying distribution could be 
Poisson or exponential (Rogerson, 2005). Nonparametric models have also 
been developed, removing the need for knowledge of the underlying 
distribution. A deployed SPC method often incorporates a short guard band 
(e.g., 2 days) between the baseline period and the day to be monitored. The 
guard band may lift the sensitivity by avoiding a gradually increasing 
outbreak contaminating the baseline with the outbreak signal. CUSUM 
methods have been specifically designed to deal with limited availability of 
historical data. Three CUSUM algorithms used in the EARS system require 
less than 10 days as the baseline period. They differ from each other by the 
different settings of the baseline period and the threshold levels, resulting in 
different levels of sensitivity (Hutwagner et al., 2003).  

The Shewhart method is another simple form of SPC-based methods. It 
can be viewed as performing repeated significance tests on deviations of an 
observation from a target constant. The Shewhart method performs poorly 
for small and moderate shifts, but for large shifts, CUSUM actually converges 
to the Shewhart method (Lawson and Kleinman, 2005). One study used a 
Shewhart control chart to detect epidemics of Influenza A (Quenel et al., 1994). 

Instead of considering only the last observation in the Shewhart method, 
the exponentially weighted moving average (EWMA) method monitors all 
the previous observations, summing up the multiple deviations in a weighted 
scheme, giving the most recent observation the greatest weight, and all the 
previous observations geometrically decreasing weights (Neubauer, 1997). 

SPC-based methods are widely used in surveillance due to their simplicity. 
Their performances have been tested in many real settings. BioSense, EARS, 
and ESSENCE syndromic surveillance systems among others implemented 
either CUSUM or EWMA or both, and reported their early aberration detection 
capacity for influenza-like illness and other diseases (Hutwagner et al., 2005a; 
Zhu et al., 2005). The details of the performance evaluation can be found in 

3.2 Serfling Statistic 

Serfling’s method uses cyclic regression to model the normal pattern of 
the numbers of patients susceptible to death for pneumonia and influenza 
when there is not an epidemic with the objective of determining an epidemic 

Chapter 6. 



4. Data Analysis and Outbreak Detection  

 

63 

threshold. Its use requires a clear definition of the disease, the selection of 
data to identify a normal pattern of susceptible patients, and the assumption 
that the normal pattern is periodical. 

The Serfling statistic was originally proposed by Serfling for statistical 
analysis of weekly pneumonia and influenza deaths in 108 US cities in 1963 
(Serfling, 1963). Serfling’s method uses cyclic regression to establish an 
expected threshold for daily statistic based on history data excluding the 
epidemic weeks, accounting for seasonal variations. It requires a clear definition 
of the disease and the assumption that the normal pattern is periodical (Mandl 
et al., 2004). A theoretical form of this method is formulated as:  

1 2 3 4( ) sin(2 ) cos(2 )
52 52

= + + +π πt ty t c c t c c  

Serfling’s method is regarded as a traditional modeling technique applied 
to a number of disease surveillance practices such as the French influenza-like 
syndrome data (Costagliola et al., 1981). Serfling’s method has also been 
used by RODS system to model hospital visitation data for influenza  
(Tsui et al., 2003). 

3.3 Autoregressive Model-Based Anomaly Detection 

The autoregressive integrated moving average (ARIMA) method is a 
class of time-series analysis models that are typically specified by three 
parameters: the order of autocorrelation (AR), the order of integration (I), 
and the order of moving average (MA) (Box et al., 1994). These parameters 
determine two things: how much of the past should be used to predict the 
next observation and how much do the past observations weigh in predicting 
the next observation. The higher-order models are more complex and can 
usually achieve a better fit of the training data set, while the simpler low-
order models are usually less likely to over-fit to training dataset (Reis and 
Mandl, 2003). Description of the class of ARIMA methods in full details can 
be found in (Box et al., 1994). We here give an example ARIMA (1, 1, 1) 
model to simply show the notations. In the following equation, μ  is a 
constant term, ))2()1(( −−− tYtY  represents a first-order “autoregressive” 
term, and the forecast error – first-order moving average at period 1−t  is 

)1( −te . φ  and θ  are coefficients. 

)1())2()1(()1()( −−−−−+−+= tetYtYtYtY θφμ
)
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ARIMA models have been applied to pneumonia and influenza deaths 
for detection of outbreaks (Reis and Mandl, 2003). In the Automated 
Epidemiologic Geotemporal Integrated Surveillance (AEGIS) program at 
Children’s Hospital Boston and Harvard Medical School, a hybrid of 
ARIMA with cyclic regression was found to have excellent predictive ability 
(Mandl et al., 2004). These models are available in many common statistical 
software packages (e.g., SAS Time Series Forecasting module). One 
drawback of the ARIMA models is that there is no systematic way to update 
model parameters when new data points arrive. 

The Recursive Least Square (RLS) algorithm is another method based on 
autoregressive linear models and is implemented as part of RODS (Wong  
et al., 2002, 2003). It learns from the time series but does not need a large 
learning sample. Also it is more sensitive to recent historical data to predict 
outcomes, so it is well suited to surveillance for short-term events. Unlike 
ARIMA or the Serfling method, RLS continuously updates its parameters. 
RLS operates by converging on a set of coefficients (for a weighted linear 
equation) that best predicts historical values. The algorithm uses these 
coefficients to predict the current value. It calculates the prediction errors 
between the predicted values and the time series values. Using the prediction 
errors and algorithm threshold (expressed in number of standard deviations), 
RLS computes a threshold value. This algorithm is ideal for detecting spikes 
of cases when there is little historical data. Using these models implies that 
transformation of the data leads to a stationary time series, for which a single 
underlying probability distribution is assumed. These two hypotheses are not 
necessarily true, however; the data may present abrupt and wide changes of 
magnitude as well as irregular periodicity, in situations such as epidemics, 
modifications of the case-definition, screening, or vaccination (Le and 
Carrat, 1999). 

3.4 Hidden Markov Model (HMM)-Based Models 

The SPC-based models and the cyclic regression methods need nonepidemic 
data to model the baseline distribution, which is not always available without 
data preprocessing. This makes it an obstacle for automated surveillance. 
Researchers, therefore, have proposed to use Hidden Markov Models 
(HMM) to segment the time series of influenza indicators into epidemic and 
nonepidemic phases. Hidden Markov models have found major success in 
temporal pattern recognition such as speech and handwriting recognition, 
and bioinformatics. The basic idea behind HMM-based models is to add 
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another layer of random signal generation process conditioned on the state of 
a hidden Markov process to determine the conditional distribution of each 
observed data point. 

The sequence of state transitions in HMM is reconstructed using statistical 
methods to calculate the most likely trends of the surveillance data. HMM-
based models are flexible enough to be easily adapted automatically to trends, 
seasonality, covariates (e.g., gender and age), and different distributions 
(normal, Poisson, Gaussian, Gamma, etc.). HMM-based models have been 
applied in a number of surveillance data time series analysis studies. For 
example, Le Strat and Carrat applied a univariate HMM to ILI time series 
surveillance in France (Le and Carrat, 1999). More technical details of 
HMM in disease surveillance can be found in (Madign, 2005). The author 
further discussed the proper number of hidden states, multivariate extensions 
to the above univariate HMM, as well as HMMs with random observation 
times. Madigan also pointed out that a key extension to the existing research 
on HMM-based surveillance would be to incorporate a spatial component in 
the hidden layer of the models. 

4. SPATIAL DATA ANALYSIS 

Spatial analysis techniques are used to find the extent of “clustering” of 
cases across a map and have long been an important component of the 
surveillance analysis toolset. More specifically, spatial clustering analysis 
aims to detect and locate the anomalies in disease occurrences or outbreaks 
by examining the surveillance data’s spatial distribution, as clusters might be 
of insufficient size to be detected in analyses that consider only an entire 
region. This would also allow for the possibility that some areas contained 
populations more likely to become sick, such as older people, or more likely 
to seek healthcare, as might be the case for certain cultural groups. It thus 
provides the capability of tracking the progression of disease outbreaks and 
identifying the population at risk for proper treatment and prevention. 

The rationale behind spatial surveillance is that natural disease outbreaks 
or biological attacks are typically localized at some spatial scale. Spatial 
analysis in syndromic surveillance uses spatial information residing in the 
data, such as the patient’s home residence, sometimes the work place, and 
the location of the hospital where the illness is reported. Temporal analyses 
we discussed in the earlier section are capable of detecting elevated rates 
across an entire region, but would be less sensitive to a smaller number of 
spatially focused cases. Furthermore, spatially correlated random effects are 
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often ignored by pure time series methods, thus it is assumed that all tests 
are independent. 

Investigations of clusters in space often associate the varying population 
density with the null hypothesis. Denote the intensity of the disease cases 
(the number of expected events per unit area) by )(0 sλ , where s represents a 
location in the study area. Also denote by )(1 sλ  the intensity function of the 
population at risk. The null hypothesis of normal spatial distribution is in 
fact a proportional intensity function, ),()(: 100 ssH ρλλ = where ρ  is the 
expected number of cases divided by the expected number at risk. 

One widely-used spatial analysis algorithm is SMART, made available 
through the BioSense system and the National Bioterrorism Syndromic 
Surveillance Demonstration Program. Other popular methods include the 
GLMM algorithm (Kleinman et al., 2004); spatial scan statistics (Kulldorff, 
1999) and a number of its variations such as Modified spatial scan statistics 
(Duczmal and Buckeridge, 2005); and the Risk-adjusted Support Vector 
Clustering (RSVC) method (Zeng et al., 2004a). 

Temporal analysis methods such as CUSUM can also be adapted to 
analyze spatial information by maintaining CUSUM charts for the surrounding 
neighborhood of each individual region as local spatial statistics or by 
maintaining multivariate CUSUM charts for all regions in a global setting 
(Lawson and Kleinman, 2005). Vice versa, spatial clustering techniques 
could be adapted to temporal surveillance, if considering time as one-
dimensional space. 

4.1 
Algorithm 

Kleinman et al. (2005a) proposed the use of Generalized Linear Mixed 
Model (GLMM) statistics based on a logistic regression model to estimate 
the probability that each subject under surveillance is a case, in each area, on 
a given day. The simple logistic regression model introduces “shrinkage” 

estimators showing the density of population in each area, as the size of the 
population under surveillance in each area often varies. The proposed 
method treats each small area as if it was an individual, and the relative 
locations of the small areas are not taken into account by the model. This 
method in essence ignores much spatial information and cannot detect 
elevated counts over several contiguous areas. 

SMART is an adaptation of the GLMM method, taking additional para-
meters into account to adjust for seasonal, weekly, social trends, and holiday 
status (Bradley et al., 2005). In such an approach, generalized linear models 
are used to establish the expected count per ZIP code per day based on 
regressing historical series of counts in each small area. The established 

Generalized Linear Mixed Models and SMART 
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distribution of case counts are then refined to account for multiple ZIP codes 
through multiple testing. One experimental study suggested that SMART 
delivered slightly inferior results to the spatial scan statistic method. However, 
both methods achieved good performances (Kleinman et al., 2005a). 

4.2 Spatial Scan Statistic and Its Variations 

Most syndromic surveillance systems make use of spatial scan statistic and 
its variations. Using such methods for spatial analysis, a large set of circular 
windows with varying sizes is imposed on the map in different locations to 
search for clusters over the entire region. As the cluster size is unknown a 
priori, the scan statistic method uses a likelihood ratio test where the 
alternative hypothesis is that there is an elevated rate within the scanning 
window when compared with outside. The most likely clusters can then be 
identified based on the likelihood-ratio test if the null hypothesis is rejected. 
For each distinct window, the likelihood ratio is proportional 

to: nNn

N
nNn −

−
− )()(
μμ

, where n is the number of cases inside the circle, N is the 

total number of cases, and μ is the expected number of cases inside the circle 
(Kulldorff, 1997). Other probability models, i.e., distribution from which the 
case incidence are generated, have also been used for scan statistics. Poisson 
model is commonly seen. Bernoulli model can be used for on-off case-
control type data, and exponential model is for survival data. 

There are several advantages with scan statistic methods. First, they 
avoid preselection bias regarding the size or location of clusters. Second, 
they can be easily adjusted for nonuniform population density as well as 
other factors such as age. 

The spatial-temporal version of the scan statistic uses cylinders instead of 
circles, where the height of the cylinder represents time. Still, the circular 
base defines a geographic area with a varying radius. The size of the area 
that is circled could be from zero to hundreds of kilometers or everything in 

rest of the process is largely unchanged. A moving cylindrical window with 
variable sizes in both space and time visits all spatial-temporal locations to 

scan statistic, Takahashi et al. proposed a flexibly shaped space-time

between. The height of the cylinder can represent a time of day or years. The 

performance of the flexibly-shaped space-time scan statistic is compared 

scan statistic for detecting irregularly-shaped clusters, which may not be 

identify a significant excess of cases within it, until it reaches a predetermined 

with the cylindrical scan statistic with a space-time power distribution 

size limit (Kulldorff, 1999, 2001). On the basis of the flexible purely spatial 

detected by the circular spatial scan statistic (Takahashi et al., 2008). The 
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developed by extending the purely spatial bivariate power distribution 
(Takahashi et al., 2008). 

SaTScan is a freely-available software package that implements various 
types of spatial and space-time scan statistics (2006j). It has been used in 
more than 10 syndromic surveillance systems, according to our survey. Two 
commercial products, WpiAnalyst extension for ArcView GIS from the 
Public Health Research Laboratories (2003d) and ClusterSeer developed by 
TerraSeer (2006c) contain both spatial and spatial-temporal scan statistics 
together with many other statistical clustering methods. The SaTScan Macro 
Accessory for Cartography (SMAC) package consists of four SAS macros 
and was designed as an easier way to run SaTScan multiple times and add 
graphical output. The package contains individual macros, which allow the 
user to make the necessary input files for SaTScan, run SaTScan, and create 
graphical output all from within SAS software. The macros can also be 
combined to do this all in one step (Abrams and Kleinman, 2007). 

A modified spatial scan statistic proposed by Duczmal and Buckeridge 
considers work-related factors. A factor reflecting the number of “contamin-

in the residential zones (Duczmal and Buckeridge, 2005). Their simulation 
shows that their approach can achieve greater detection power than the scan 
statistics that do not consider people movements. To apply their approach, 
workplace location information is required, which unfortunately is not 
commonly available in surveillance data sources. 

There are a few known problems with spatial scan methods. First, they 
can only identify clusters in simple regular shapes. Second, it is difficult to 
incorporate prior knowledge, such as the size or shape of the outbreaks or 
the impact on disease infection rate. Third, exhaustive searches over a large 
region to perform statistical tests could be computationally expensive. 

The method summarized in the next subsection deals with the first pro-
blem. To address the second and third problems, Neill et al. (2005) proposed 
a Bayesian spatial scan statistic that is computationally more efficient and 
capable of combining the a priori knowledge of the investigated outbreak. 
A conjugate Gamma-Poisson model, as opposed to the Poisson model in 
Kulldorff’s original spatial scan statistic, is used to produce a spatially 
smoothed map of disease rates, with a focus on computing the posterior pro-
babilities to determine the outbreak likelihood and to estimate the location and 
size of potential outbreaks. 

ations” from workers at the nearest neighbors is added to the observed cases 



4. Data Analysis and Outbreak Detection  

 

69 

4.3 Risk-Adjusted Support Vector Clustering (RSVC) 
Algorithm 

Zeng et al. developed an approach called RSVC that combined the risk 
adjustment idea with a robust Support Vector Clustering (SVC) method to 
improve the quality of retrospective spatial-temporal analysis. Specifically, 
for regions with prior dense baseline data distribution, data points are less 
likely to be grouped to form anomaly clusters. Several steps are involved in 
the clustering process. First, the input data are implicitly mapped to a high-
dimensional feature space defined by a kernel function (typically the Gaussian 
kernel). Second, the algorithm finds a hypersphere in the feature space with 
a minimal radius to contain most of the data. The problem of finding this 
hypersphere can be formulated as a quadratic or linear programming problem 
depending on the distance function used. Third, the function estimating the 
support of the underlying data distribution is then constructed using the 
kernel function and the parameters learned in the second step. The width 
parameter in the Gaussian kernel function is dynamically adjusted based on 
kernel density computed using background data. When mapped back to 
original space, the hypersphere splits into several clusters, which indicated 
high risk outbreak areas (Zeng et al., 2004b). 

5. SPATIAL-TEMPORAL DATA ANALYSIS 

5.1 Rule-Based Anomaly Detection with Bayesian 

The “What’s Strange About Recent Events” (WSARE) algorithm performs 
a heuristic search over combinations of temporal and spatial features to detect 
irregularities in space and time. The case features analyzed by WSARE include 
syndrome category, age, gender, and geographical information. For example, a 
two-term case feature could be “Gender = Male AND Home Location = NW.” 

computed to be used to determine whether there is significant discrepancy 
between the observed statistic of the current day and the baseline. 

Historic data (e.g., recent weeks before the day of analysis) is fed to a 

using an algorithm called optimal reinsertion (Moore et al., 2003) based on 
ADTrees (Moore and Lee, 1998). The benefit of the approach relies on 
Bayesian network’s generalization capability that is able to predict the pro-

network structure is rebuilt every month, while the parameters are updated 

The number of the cases satisfying and those not satisfying the case feature are 

bability of a situation that may not have been encountered in the past. The 

Bayesian network to create a baseline distribution. The network is constructed 

Network Modeling 
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daily. Environmental attributes such as season and day of week can be 
incorporated in the model as conditional probability. 

All feature-value combinations are then searched and scored exhaustively. 
The scores are generated by conducting hypothesis testing for each feature-
value combination against the baseline distribution. Instead of exhaustively 
searching for i-term feature-value combinations with an exponential complexity 
(i = 1, 2, …, n, suppose that there are n features in total), a greedy search 
approach is designed by searching the best 1-term case feature first and then 
adding another term to it to compose a 2-term case feature, and so forth. 
Compared with several other algorithms that do not examine covariate 
information, WSARE performed better as measured by timeliness at the 

5.2 Population-Wide Anomaly Detection and 
Assessment (PANDA) 

Population-Wide Anomaly Detection And Assessment (PANDA) is a 
causal Bayesian network-based model constructing and inferring the spatial-
temporal probability distribution of disease in a population as a whole. The 
causal Bayesian network consists of a large set of inter-linked patient-
specific probabilistic causal models, each of them including variables that 
represent risk factors (e.g., infectious disease exposures of various types), 
disease states, and patient symptoms (Cooper et al., 2004). Simulation con-
ducted by the RODS team showed that the model can handle a population 
size of 1.4 million (Cooper et al., 2004). 

6. MONITORING MULTIPLE DATA STREAMS 

In disease surveillance, multiple data sets (data are collected simultaneously 
from pharmacies, hospitals, nurse help telephone calls, and clinics) are 

detection algorithms monitor individual data sources and do not cross reference 
between them. The problem is that no single data source captures all the 

detection approach is a data-fusion approach using multiple sources of data 
(e.g., ED visits and OTC sales data) to perform outbreak detection. For 
example, MCUSUM and MEWMA (Yeh et al., 2003, 2004) were developed 
to increase detection sensitivity while limiting the number of false alarms. 
Multiple univariate statistical techniques and multivariate methods have also 

usually available for surveillance. However, the majority of implemented 

outbreak detection that are worth separate treatments. 
In Sections 6 and 7, we discuss two specific sets of issues concerning 

individuals in the outbreak (Kulldorff et al., 2005). One potentially fruitful 

expense of slightly higher false-positive rate (Wong et al., 2002). 
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been used in prior studies based on different independence assumptions 
among the data streams. Multiple univariate methods assume independence 
among the data; while multivariate methods establish the covariance matrix 
typically estimated from a baseline period (Buckeridge et al., 2005a). In the 
ESSENCE II project, chief complaints data and sales of OTC medications 
are treated as covariates (Lombardo et al., 2004). However, to model the 
multiple univariate signals from different data streams, an in-depth investing-
ation and characterization of health-care-seeking behavior is necessary. 

Another approach is to monitor stratified data (e.g., based on syndrome 
type or age group, counties, or treatment facilities) in parallel. The WSARE 
(What is Strange About Recent Events) system proposed by Wong et al. 
(2003) is one example, which searches for outbreaks in various groupings of 
age, gender, or census tracts. Kulldorff et al. (2003) developed a tree-based 
scan statistic to do surveillance on groupings that can be preclassified into a 
hierarchical tree structure. 

In addition, during major public events, unpredictable shifts in the healthcare 
data may occur due to changes in healthcare utilization patterns. This problem is 
addressed by Reis et al. Instead of monitoring different healthcare data streams 
individually, they proposed a class of epidemiological network models that 
monitor the interrelationships among these data streams. The integrated 
network-based modeling of the interrelationships among the epidemiological 
data streams allows more robust performance in the face of shifts in healthcare 
utilization during epidemics and major public events (Reis et al., 2007). 

Simultaneous wavelets analysis over multiple time series are practiced by 
Dillard and Shmueli (Shmueli and Fienberg, 2006). Rigorous comparative 
evaluations to quantify the gain of using covariates from multiple data sources 
in surveillance are needed. 

7. SPECIAL EVENTS SURVEILLANCE 

Another challenging issue for real-time outbreak detection is that the 
surveillance algorithms often rely on historic datasets that span a considerable 
length of time. Few methods demonstrate reliable detection capability with 
short-term baseline data. This is a particular concern for surveillance systems 
for special events (also referred to as drop-in models), which are implemented 
against bioterrorism attacks or natural disease outbreaks in settings such as 
international and national sports events or meetings that involve many 
participants in a short time window. 

EARS was used for syndromic surveillance at several large public events 
in the United States, including the Democratic National Convention of 2000, 
the 2001 Super Bowl, and the 2001 World Series (Hutwagner et al., 2003). 
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The RODS system was used during the 2002 Winter Olympic Games 
(Gesteland et al., 2002). The LEADERS system often serves as a drop-in 
surveillance system intended to facilitate communication and coordination 
within and between public health facilities (Ritter, 2002). 

8. SUMMARY OF DATA ANALYSIS PROCESS FOR 
SYNDROMIC SURVEILLANCE 

In this chapter, we first introduce syndrome classification as the first step 
of syndromic data analysis. We then summarize a large number of disease 
surveillance algorithms. These algorithms are organized in two dimensions. 
In the first dimension, a surveillance method is either retrospective surveillance 
or prospective. Retrospective analysis focuses on analyzing historical data, 
whereas prospective analysis is more useful for processing online data streams. 
In the second dimension, a surveillance method can be seen as either a 
temporal, spatial, or spatial-temporal analysis method. Methods designed for 
special events are discussed separately due to their unique characteristics. 
We also examine methods that monitor multiple data streams, which warrant 

this chapter by pointing out some technical issues to watch for while 
applying these surveillance methods. 

about the analyzed data. The distribution of the disease events are in many 
cases assumed, so before the application of any surveillance methods to the 

outbreak patterns and events distribution. Second, an algorithm’s performance 
is related to a number of settings: (1) the availability of historic data; data 

spatial analysis. 
All the complications due to the dynamics of different diseases need to 

number of data discriminates such as mean, variance, and skewness before 

so that different analytical methods are assigned to different types of 
surveillance data in different settings (Crubézy et al., 2005). 

selection scheme to “suit the remedy to the case,” by first evaluating a 

surveillance algorithm performance; (2) the type of outbreak signals (e.g., 

selecting a detection algorithm for analysis. The BioStorm research group 

be considered and well investigated before applying a detection algorithm. 

developed an ontology-based method to incorporate the a priori knowledge 

In (Burkom and Murphy, 2007), the authors propose a data-adaptive method 

disease data, there should be analysis regarding disease behaviors such as the 

collection process as discussed in Chapter  2 is thus closely related to a 

further exploration due to their importance and applicability. We conclude 

slow-building or surge outbreak); (3) the spatial granularity of the data in 

First, the outbreak detection methods make a number of assumptions 
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Chapter 5 

DATA VISUALIZATION, INFORMATION 
DISSEMINATION, AND ALERTING 
 

 
 

Syndromic surveillance systems are critical for public health surveillance 
because they often provide epidemiologists and public health officials the 
visual analytics tools and techniques to synthesize information and detect the 
data anomalies (possible outbreaks) from massive, dynamic, and often 
ambiguous surveillance data. Represented visually, the assessments of public 
health status are better understood and also more effectively communicated 
for action. The geographic or spatial components of the surveillance data 
enable the natural application of visualization techniques for computerized 
assistance for decision making in spatial (and often spatial-temporal) analytics 
(e.g., clustering detection and resource logistics). In addition, the interplay 
between simulation and visualization provides a powerful combination. 
Visualization techniques can be used to analyze simulation output and analysis 
results, and can drastically improve the understandability and accessibility of 
the model to both technical and nontechnical audiences. Virtually all simulation 
software packages have some level of visualization, ranging from basic 
diagrams to full animation. 

This chapter provides a systematic summarization of data visualization 
techniques that are employed in the surveyed syndromic surveillance systems. 

classes of visualization technologies: visual information display and interactive 
visual data exploration. A number of example screenshots from the surveyed 
syndromic surveillance systems visualizations are shown along with the text. 

and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7_5, 

Taxonomy of the visualization techniques procedes the discussion of the two 
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1. SCOPE AND TAXONOMY 

Visualization technology and user interface design involve a vast literature 

are not targeting a complete scientific discussion of visualization technologies, 
but instead, we identify the different visual representations of the syndromic 
surveillance data in the public health context and examine how to advance 
the relevant applications of user interface design methods. 

that can be directly applied to a given structure. One focuses on mapping 
abstract information to a visual representation and the other provides user-

techniques: visual information display and interactive visual data exploration. 
By and large, the visual information display includes temporal, spatial, and 

information. 

as back-end support for visualization functions. As noted by Chen (1999), 
data analysis technology as a “third-dimension” of the information visualization 
technology serves to create structures that characterize the data set, abstract 
the unstructured or high-dimensional information. The data analysis technologies 
as discussed in the previous chapter are important back-end methods that 

2. 

Visual information display techniques aim to present visually either raw 
surveillance data or analysis results (e.g., from the data anomaly detection 
algorithms) (Zhu and Chen, 2005). Visual representation techniques are 
applied to either time-series data or spatial/geographical data. The traditional 

various static statistical graphics, such as line graphs, scatter plots, bar 
charts, and pie charts. Color-coded maps are often used to represent disease 
cases and clusters with case locations. Geographical Information Systems 
(GIS) are now being widely used for spatial information representation and 
cluster detection. Graphs with nodes and links, such as trees and networks, 
are not seen in the surveillance information display, but they might be 
viewed as promising tools for disease modeling based on spreading patterns. 

temporal-spatial information display exploring different dimensions of the 

focus of the discussion accordingly includes two pieces of visualization 

in HCI, computing graphics, psychology, database organization, dynamic 

Shneiderman (1996) identified two aspects of visualization technology 

query, and display algorithms, as well as screen management algorithms. But we 

interface interactions for effective navigation over displays on a screen. Our 

The readers should also be reminded that data analysis technologies serve 

drive many of the visualization approaches discussed in this chapter. 

methods of information display are multidimensional tables (line listing), and 

VISUAL INFORMATION DISPLAY 
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2.1 Visualization of Time-Series Data 

Line chart is a popular method to visualize time-series data as it can help 
identify temporal patterns such as spikes or clusters. Usually one curve 
represents the observed data, and the other curve is the normal pattern 
plotted by the temporal analysis algorithms. Line charts and other plotting 
methods for time-series analysis are supported by most statistical analysis 
packages (e.g., SAS and SPSS). The example view of the interface of 
BioSense application shown in Figure 5-1 is a line chart and a line listing of 
the fictional time-series syndromic data in a metropolitan area. Figure 5-2 
shows a screenshot from the EARS system (Hutwagner et al., 2003), 
visualizing daily data feed from a hospital and the results of applying the 
CUSUM algorithm. 

Other types of plots such as candlestick plot and density ratio map are 
also seen in syndromic surveillance applications. Figure 5-3 shows a density 
ratio map visualizing data aggregated by patient age in several influenza 
seasons (DIMACS, 2006). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-1. Example views available in the BioSense application (source: Biosence Website). 
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Figure 5-2. Line charts plotting temporal patterns of disease cases (EARS system). 

Figure 5-3. Density ratio maps visualizing data aggregated by patient age (DIMACS, 2006). 
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Figure 5-4. Selected Taipei hospitals CC spatial temporal patterns (2006a). 

2.2 Visualization of Spatial Information 

There are several techniques for displaying spatial information contained in 
syndromic data. Printed maps are often used to identify geographic clusters or 
hotspots (Figure 5–4). CDC and the National Center for Health Statistics sup-
port research to investigate the design and display for disease atlases (Lawson 
and Kleinman, 2005). Geographical display of disease statistics in real time is 
also widely used for situation awareness and incident response (Kulldorff, 
2001). 

 

Visualizing disease cases or surveillance-related events on a map can help 
identify case clusters (typically indicative of outbreaks), investigate possible 
causes of a disease or an outbreak, and study an outbreak’s dissemination 
and evolutionary patterns. One major objective of visualization is to identify 
geographical areas with unusually high numbers of cases or events to serve 
surveillance purposes and inform outbreak response decisions. Another 
objective is to determine high-risk areas for a disease under investigation 
and help analyze correlations between disease occurrences, various types of 
environmental factors, and social-demographic variables. 
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Techniques also exist to smooth the borders of identified regions of 
interest and display overlapping clusters. Boscoe et al. (2003) proposed an 
approach for visualizing spatial scan statistic analysis results using nested 
circles, which displays both the relative risk and statistical significance of 
identified hotspots. They show that the mapped clusters typically do not 
have precise boundaries. Rather they consist of relatively well-defined cores 
and fuzzy boundaries. 

Another study presents the health statistics on a map with both geographical 
information and the reliability of the displayed data indicated by a texture 
overlay (MacEachren et al., 1998). A screenshot from their work is shown in 
Figure 5-5. 

Color is an effective visual display property, and it can be an important 
aid for fast and accurate decision making. Color encoding is a traditional 
visualization technique to display indirectly standard deviations by which 
the observed data (e.g., the number of cases of a particular syndrome 
category in a zip code) deviate from the expected counts. The idea is to use 
different colors or shadings to illustrate clusters of high or low rates of 
disease incidence. The screenshot in Figure 5-5 employs such a color 
encoding technique. 

Figure 5-5. A screenshot from (MacEachren et al., 1998) showing both geographical 
information and data reliability. 
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2.3 GIS for Disease Event Visualization 

Geographic Information System (GIS) is a powerful spatial information 
visualization tool and has found important applications in public health 
surveillance (2003c; Hurt-Mullen and Coberly, 2005; Lombardo et al., 

systems can often be georeferenced to a range of geographic areas such as 
blocks, tracts, county subdivisions, and other geographic units. Many syndromic 
surveillance systems (e.g., BioSense, RODS, ESSENCE, BioPortal, and RSVP) 
in the survey interface with GIS for disease visualization and spatial analytics.  

The strength of GIS lies in its ability to integrate different types of data 
onto a common spatial platform. The integration of the environmental factors 
(e.g., groundwater contamination), demographical data and remote sensing 
data (e.g., satellite data) such as vegetation, land-use patterns and soil types, 

characteristics and risks for epidemiological studies. First, GIS is a powerful 
tool for disease mapping and spatial visualization of environmental factors. 

on the GIS analytical tools has been studied widely. 

correlation studies, disease clustering, spatial-temporal analysis, disease data 
visualization. S+SpatialStats, available from Mathsoft, implements lattice 

Matlab functions, user interfaces, sample data sets, and demos that read, 

and SpaceStat (TerraSeer) provides tools for exploratory spatial data analysis 
such as Moran’s I, Geary’s C and spatial regression methods including trend 
surface regression, spatial analysis of variance among others. The SAS Bridge 
from SAS bridges SAS and ESRI’s ArcGIS9 by linking spatial, numeric, 

data transformation and transfer. In addition, GSLIB and GEOEAS among 
others are also serving the market. GEOEAS is a collection of interactive 
software tools for geostatistical analysis. The principal functions of the package 

from sample data. GEOEAS can produce data maps, univariate statistics, 
scatter plots/linear regression, and variogram computation and model fitting. 
GSLIB (Geostatistical Software Library and related software) maintains a 
collection of geostatistical programs developed at Stanford University over 

analyzes three-dimensional data sets. 

2003). Most of the individual records registered into syndromic surveillance 

model estimators. Matlab has a Mapping Toolbox (Matlab), a collection of 

are the production of grids and contour maps of interpolated (Kriged) estimates 

the years. GSLIB provides variogram analysis and Kriging techniques. It also 

and textual data through a single interface, saving the efforts of customizing 

Geostatistical functions are provided in many statistical software packages. 

In addition to visualization, disease outbreak detection and prediction based 

climatic changes, and so on, helps to identify and track the environmental 

To date, the GIS softwares are capable of disease mapping, geographical 

write, display, and manipulate geospatial data, that contains Kriging functions 
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ESRI is a leading GIS modeling and mapping software and technology 
provider. The Spatial Analyst, 3D analyst with ArcGIS, Geostatistical Analyst 

tracking and outbreak detection for various types of disease data [e.g.,  

(Exploratory Spatial Data Analysis), Deterministic interpolation methods 

GeoMedStat, real-time syndrome data (typically visits for each syndrome) 

Figure 5-6. GIS application for disease incidence tracking (Zhong et al., 2005). 

and Tracking Analyst tools have found their applications in disease monitoring, 

can be mapped at the ZIP Code level within the state over a Web-based 

West Nile Virus (WNV)] (ESRI). Geostatistical Analyst provides ESDA 

surveillance by tracking syndromic information. 

2001 (Zhong et al., 2005). In another application, the Missouri Department 

screenshot when executing spatial-temporal Analysis using tracking analyst 
in ArcGIS, illustrating the evolvement of Hepatitis B in China during 1999–

By integrating GIS and the city’s standardized location data with various

GeoMedStat is another GIS application developed at ESRI. Using 

agency-wide databases, the New York City Department of Health and Mental 

of Health and Senior Services employs ArcGIS for disease and bioterrorism 

Hygiene (DOHMH) is able to analyze a range of health data and evaluate 

objects that move or change status through time. Figure 5-6 shows the 

disease trends and their relationship with environmental conditions.

interface (Li et al., 2006). 

and Kriging interpolation methods. Tracking Analyst of ArcGIS can map 
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Figure 5-7. NYC disease surveillance system GIS view (2003a). 
 

and sightings on a map, allowing the user to select multiple data sets (e.g., 

map in a layered manner using the checkboxes. It also supports dynamically 

system using a GIS-enabled database and Intranet application. “The database 

generated views, zooming, brushing, and animation. In addition, it allows the 
user to invoke advanced spatial temporal analysis methods such as Prospective 

After West Nile Virus first appeared in the United States in the summer of 

Support Vector Clustering (PSVC) (see Chapter 4 for details) and visually 

disease cases, natural land features, land-use elements) to be shown on the 

System (BTRGIS) is also based on GIS technology.

shown in Figure 5-8. 

1999, DOHMH developed a vector and avian (mosquito and bird) tracking 

information from the public through an ArcIMS software-enabled Web site” 

is implemented with both spatial (ArcSDE) and relational (SQL Server) 
database management system software that allows staff to collect incoming 

GIS maps are also supported by Spatial Temporal Visualizer (STV) available 

inspect their results through STV. A screenshot of GIS views from STV is 

from BioPortal disease surveillance system. The STV GIS view displays cases 

(Mostashari, 2002). The city’s Bioterrorism Response Geographic Information 
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In addition, GIS is also used in generating simulated cluster data that can 
be used as artificial outbreaks for evaluating the detection capability of the 
outbreak detection algorithms. The artificially generated clusters are customized 
for desired cluster radius, density, distance, relative location from a reference 
point, and temporal epidemiological growth pattern to explore a variety of 
the uncertainties for disease detection algorithm to test (Cassa et al., 2005; 
Watkins et al., 2005). For instance, based on user-specified parameters 
describing the location, properties, and temporal pattern of simulated clusters, 
the AEGIS Cluster Creation Tool (AEGIS-CCT) enables users to create 
simulated clusters with controlled feature sets. 

Internet-based GIS technology and mobile GIS technology provide inno-
vative mechanisms to facilitate flow of information. They allow the instant 
availability and accessibility of the information across the globe. We expect that 
the technologies can further facilitate the field data collection, real-time infor-
mation sharing, and event investigations in the domain of disease surveillance. 

 
Figure 5-8. Visualization of dead bird cases distributed along populated areas near Hudson 
River by BioPortal STV (2006a). 
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2.4 Spatial-Temporal Disease Modeling and Other 
Visualization Examples 

As an ongoing research project, IBM has developed a Spatio-temporal 
Epidemiological Modeler (STEM) to model and visualize the spatial and 
temporal models of emerging infectious diseases. The tool has built in GIS 

Susceptible/Exposed/Infectious/Recovered (SEIR) models. 
The STEM model is one of the few works on visualizing the infectious 

with extremely efficient global transportation links, the vectors of infection 

 

“Policymakers responsible for creating strategies to contain diseases and 

(species) and interactions between diseases, and a better understanding of epi- 

disease spreading models. An example from STEM is shown in Figure 5-9. 

demiology. The STEM application has built in GIS data for every county in the 

data and it integrates with Susceptible/Infectious/Recovered (SIR) and 

the likely outcomes of preventive actions. In an increasingly connected world 

can be quite complex. STEM facilitates the development of advanced mathe-

borders (neighbors), interstate highways, state highways, and airports” (Ford 
et al., 2005).

United States. It comes with data about county borders, populations, shared 

prevent epidemics need an accurate understanding of disease dynamics and 

Figure 5-9. Visualization using IBM STEM (source: http://www.alphaworks.ibm.com/tech/stem). 

matical models, the creation of flexible models involving multiple populations 
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Figure 5-10. BioPortal visualizer with phylogenetic tree representation (2006a). 
 

The integrated visualization and analysis environment of BioPortal system 
also supports a sequence-based phylogenetic tree visualization of infectious 
disease when gene sequence information is available. The sequence-based 

3. INTERACTIVE VISUAL DATA EXPLORATION 

Interactive visual data exploration entails a wide range of techniques and 
operations for effective navigation on computer screens, the process of 
information query and, if needed, close examination of individual cases or 
patterns (Shneiderman, 1998). In particular, the operations and methods are 
expected to provide support for flexibility and interactivity, which allow the 
users to explore the information (e.g., a database) dynamically by specifying 
a year, a county, and the demographic querying criteria such as age and 
gender. Rapid, smooth screen changes on users’ demand are essential for the 
perception of patterns, facilitating the early detection of changes in disease 
incidence rate over time and in correlation with demographic variables. 

the Foot-and-Mouth disease as shown in Figure 5-10. 
phylogenetic tree visualizer has been recently developed for diseases such as 
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There are generally six types of interface functionality in syndromic 

and history (MacEachren et al., 1998). A typical surveillance task always 
involves a continuous combination of a set of functionalities of the six types. 

As an example, the interactive visual data exploration environment from 
the BioPortal project, called the Spatial-Temporal Visualizer, supports all six 
elements to display disease hotspots (see Figure 5-11). This environment 
consists of a GIS display, a Gantt-chart temporal display, statistical plottings, 
and a time-range filter, which are all user controllable and synchronized. 

4. SUMMARY OF DATA VISUALIZATION IN 
SYNDROMIC SURVEILLANCE APPLICATIONS 

In summary, we found that very few systems (e.g., BioPortal) support 
dynamic GIS functions or a full-blown interactive visual data exploration 
environment. Systems including RODS, ESSENCE, and BioSense provide 
limited support for interactive data exploration. Most syndromic surveillance 
systems support geographic displays of a local region with vector maps. All 
systems offer time-series plottings, arranged or aggregated by syndrome 
categories, ages, and other covariates. 

surveillance applications: overview, zoom, filtering, details on demand, relate, 

 
Figure 5-11. A screenshot of BioPortal’s Spatial-Temporal Visualizer (2006a). 
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In addition, although the surveyed visualization tools used in biosurveillance 
present a wide application of visualization on disease incidence clustering, 
we notice that there is a lack of research on infectious disease modeling. 
Research on disease modeling with visual model presentation is critical for 
enhancing the understanding of the nature of infectious disease and its 
causes, processes, development, and consequences, so as to facilitate the 
surveillance process. 

In general, we note that interactive, user-controlled, and real-time renderable 
data visualization can be leveraged to enable effective surveillance and decision 
support, and represents an important research direction. 

5. INFORMATION DISSEMINATION AND 
REPORTING 

We summarize below some existing work on information dissemination 
channels for real time alerting and investigation process triggering. Information 
dissemination and alerting are concerned with managing and distributing 
daily or weekly public health updates and outbreak alerts for involved parties 

There are several challenges with data visualization in syndromic 
surveillance. First, the number of maps generated daily for review is often 
large (Wagner et al., 2004b). For example, if there are 8 syndrome categories 
and 10 geographical regions, at least 80 maps need to be generated for daily 
review. If other parameters such as age and gender are also included in the 
analysis, the number of the maps generated quickly becomes unmanageable. 

Therefore, automatic screening of the maps (e.g., based on anomaly 
detection algorithms) is critical. 

Next, when the current research is focused around the best methods for 
automating the visual presentation and interpretation of the data, a major 
problem with spatial data analysis is data normalization. There is a large amount 
of both temporal and spatial variability that must be taken into account. For 
example, a known temporal variability is the seasonal variation in respiratory 
diseases with increases during the winter months. Spatial variability is even 
more problematic. A certain healthcare facility is centrally located and draws 
patients from the entire state. However, the number of patients seen and the 
severity of their illnesses are associated with the distance the patient must 
travel to reach the hospital. Rural areas also have large variations in population 
density that must be considered. These normalization issues are a complex 
topic. 
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such as public health officials, analysts, primary care providers, and possible 
public safety and homeland security officials. 

Existing syndromic surveillance information dissemination approaches 
include email, FAX, pager, phone calls, Web, and dedicated communication 
networks. These approaches differ greatly in their level of security, labor, 
and resources involved in the procedure, and delay in processing time. 

A few nation-wide secure networks have been built for public health 
information dissemination and alerting. The CDC’s Health Alert Network 
(HAN) serves as a communication backbone, linking public health departments 
in 37 states to CDC headquarters in Atlanta, and now is being expanded 
nationwide (2004b). The Epidemic Information Exchange (Epi-X) system is 
the CDC’s secure, Web-based communications network that serves as an 
exchange between the CDC, state and local health departments, poison 
control centers, and other public health professionals (CDC, 2006b). Epi-X 
provides rapid reporting, immediate notification, and coordination of health 
investigations. The Public Health Information Network Messaging System 
(PHINMS) provides a secure and reliable messaging system for the PHIN 
(2003b; Barry and Kailar, 2005). PHINMS implements ebXML standard 
(Kotok, 2003) for bidirectional data transport, which offers high-quality 
encryption and authentication. An implementation of HAN- and PHINMS-
based syndromic surveillance is described in (Daniel et al., 2005). 

Most syndromic surveillance systems support multiple dissemination 

and voice communications, are relatively fast. Web-based messages and 

automatic role-based personnel directory access can be very useful in automatic 

channels. The most commonly used methods, such as Email notification 

and real-time alert distribution and is increasingly gaining acceptance. 

alerting networks are used less frequently. Secure network alerting with 
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Chapter 6 

SYSTEM ASSESSMENT AND EVALUATION 
 

 
 

Knowing how systems perform under various scenarios is important. We 

detect an outbreak or recognize a bioterrorism attack. Knowing the error rate 
of a system can help make decisions regarding how much effort is needed  
to investigate an alarm. The performance of the algorithms for outbreak 
characterization determines the amount of information they provide (e.g., 
sets of affected individuals, the outbreak size, and disease spreading rate), 
which provide important input for response planning. 

Substantial costs can be incurred when developing or managing syndromic 
surveillance systems and investigating possible outbreaks based on the 
outputs of these systems (Reingold, 2003). For example, as reported in 
(Doroshenko et al., 2005), the annual cost of the NHS Direct Syndromic 
Surveillance System is about $280,000 and the usefulness of surveillance 
systems for early detection and response is yet to be established. Assessing 

improving the efficacy of the investment in system development and 
management (Buehler et al., 2004). 

been developed in the literature, and each method has its own limitations and 

algorithm might have the lowest error rate in a slow-building but not a 

effectively cover the wide spectrum of all possible situations (Aamodt et al., 
2006; Siegrist et al., 2004). As such, thoroughly evaluating different systems 

and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7_6, 

the size of the outbreak infected population is in a particular range. Another 
strengths in different circumstances. One algorithm might work better when 

sudden-surge outbreak. Most researchers agree that no single algorithm can 

need to examine with which level of sensitivity and how quickly they can 

As we discussed Chapter  4, dozens of different data analytical methods have 

the performance of surveillance systems is of significant importance for 
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and analytical methods can provide important clues about their strengths and 
weaknesses, and their applicability in various application scenarios. 

detection methods. The difficulties involve specification of the aberration of 
interest, and determining whether the aberration is of public health importance, 
caused by an infectious disease outbreak or not. In short, outbreaks are difficult 

method can be very complicated. 
In this chapter, we first present a system evaluation framework that outlines 

three linked pieces of work evaluating communication components, outbreak 
detection algorithms, and system interface features. We then focus on evaluating 
outbreak detection algorithms along with syndrome classification algorithms. 
We then discuss the evaluation of data collection and information dissemination 
components and the system interface features. For each evaluation task,  

representative evaluation results from a number of system evaluation studies 
employing the discussed measures. 

1. SYNDROMIC SURVEILLANCE SYSTEM 
EVALUATION FRAMEWORK 

“the need for (a) the integration of surveillance and health information 

of health data, and (d) changes in the objectives of public health surveillance 
to facilitate the response of public health to emerging health threats (e.g., 
new diseases)” (Buehler et al., 2004). 

Many existing evaluation studies follow the guidelines of CDC’s evaluation 
framework. This evaluation framework consists of a series of steps requiring 
the involvement of stakeholders, the description of system components, and 
the gathering of credible evidence regarding the system performance. It can 
serve as a checklist to guide the design and implementation of an evaluation 
procedure. Along with the description of the step-by-step tasks, relevant 
standards are also provided for each of the tasks for assessing the quality of 
the evaluation activities. Simplicity, flexibility, data quality, acceptability, 
sensitivity, predictive value positive (PVP), representativeness, timeliness, 
and stability need to quantified or described. These standards will be further 
developed later in this chapter when we discuss evaluation of specific 
components of syndromic surveillance systems. 

 

we introduce the commonly used measurement metrics. We also report 

CDC’s Guidelines for Evaluating Surveillance Systems aim to address 

to define precisely. Measurement of the validity of an outbreak detection 

systems, (b) the establishment of data standards, (c) the electronic exchange 

However, there fundamental difficulties in the evaluation of outbreak 
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Our evaluation framework in general follows the CDC evaluation frame-
work but treats major system components separately for the purpose of 
performance analysis, considering their differences in terms of performance 
metrics, and visibility to different set of users. The specific evaluation tasks 

information dissemination components, and system interface features. 

2. EVALUATION OF OUTBREAK DETECTION 
ALGORITHMS 

2.1 Evaluation Methodology 

reliability. Different types of simulated signals, different days of duration, 
and different case distributions need to be specified in a simulation study, 
representing a realization of the system dynamic behavior. Tunable replications 
of simulation also enable the examination of alternative solutions. In addition, 
because of its flexibility and direct mapping to real-world entities, simulation 
can be used for training purposes and produce useful animated visual outputs. 

On the basis of the extent of data authenticity, three types of simulation 
are possible. One is to use real data collected from real outbreaks. However, 
because the number of real outbreaks is small (Siegrist and Pavlin, 2004), it 
is very difficult to test outbreak detection algorithms using completely authentic 
data. Simulated outbreaks can also be superimposed on real data to provide 
additional tests for model validity. There are fully synthetic data-based 
simulation and semisynthetic data-based simulation. Without actual outbreak 
data, simulation-based evaluation, in particular, the fully synthetic data-
based simulation, often demonstrates only limited validity (Kleinman et al., 
2005b). 

2.2 Real Data Testing 

Running outbreak detection algorithms on real data provides the strongest 
and most direct validity tests. But the lack of surveillance data with real 
disease outbreaks makes it difficult for real data testing. There are very few 
published evaluation works that use real data with sufficient sample size to 
test outbreak detection algorithms. These few studies include the retrospective 
analysis by Hogan et al. (2003), a retrospective evaluation study (Ivanov et al., 
2003), and the Bio-ALIRT Biosurveillance Detection Algorithm Evaluation 
program (Siegrist and Pavlin, 2004). 

Simulation is one of the well-developed computational methodologies 

include evaluation of outbreak detection algorithms, data collection and 

that can be applied to testing outbreak detection algorithms’ validity and 
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In Hogan et al.’s study, two types of real data – sales of electrolyte 
products and hospital diagnoses – were collected from six urban regions in 
three states for the period 1998 through 2001. The gold standard outbreaks 
are 18 significant increases in respiratory and diarrheal disease in the data. 

respiratory and diarrheal diseases in children compared with the hospital 
diagnoses were seen. 

Ivanov et al. (2003) conducted a retrospective evaluation study evaluating 

conducted by Siegrist et al., real historic deidentified data were obtained 

how quickly an algorithm might detect an attack is due to the fact that 
minimal data exists for an actual biologic attack. The limitations of real data 
testing are discussed, including the uncertainty about the exact start date and 
size of outbreaks and the inability to examine algorithm outbreak-detection 
capabilities under a substantial number of diverse conditions. 

2.3 Fully Synthetic Data Testing 

To address the data problem, synthetic data or semisynthetic data are often 
used in characterizing the performance of the outbreak detection algorithms. 

Simulators are designed to generate the surveillance data such as illness 
incidences, drug purchases, physician visits that can best mimic the realization 
with careful characterization of an outbreak event and sick people’s healthcare 
seeking behaviors. 

A number of methods have been applied to generate these synthetic data. 
One is to use the outbreak detection algorithm itself by running it backwards 
to generate the illness incidence data. This kind of evaluation process was 
used to evaluate WSARE (Wagner et al., 2006). 

Another method composes the shapes of outbreak signals by looking at 
the historical outbreaks. Figure 6-1 shows five temporal distributions used in 
one simulation study (Jackson et al., 2007). The temporal distributions are 
extracted from the epidemic curves of historic outbreaks, representing 
several ways in which a pathogen could spread through a community. They 
then specify the range of outbreak signal durations, and ranges of sizes of 
populations affected to generate a number of simulated outbreaks. 

 

Time gain using the sales of electrolyte products to signal outbreaks of 

used as the gold standard. The study reports the difficulty in determining 

chief complaints and the EWMA detection algorithm employing gold standard 

from five metropolitan areas over 23 months. Two natural disease outbreak 

outbreaks obtained from a dataset derived from the Utah Hospital Discharge 

In the Bio-ALIRT Biosurveillance Detection Algorithm Evaluation program 

cases in the data identified and labeled by an outbreak detection group were 

Database for the years 1998–2001 inclusive. 
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Figure 6-1. Simulation process diagram (Watkins et al., 2007). 

 
A third method is agent-based method. Agent-based simulators (e.g., 

BioWar (Carley et al., 2003)) are also used to generate the surveillance data 
that best represent the realistic outbreak events by modeling the social and 
epidemiological characterization of public health status, which describes 
how people acquire diseases, manifest symptoms, seek information, and seek 
care. RODS also developed a CityBN (City Bayesian Network) simulator to 
validate the WSARE algorithm. The CityBN simulator runs on a large 
Bayesian network whose structure and parameters are created by hand. The 
Bayesian network introduces temporal dynamics based on a variety of 

 
factors such as weather and food conditions (Wong et al., 2005). 
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Researchers also proposed to apply state-transition modeling techniques 
to simulate disease outbreaks (Watkins et al., 2007). The spread of infectious 
diseases transmitted by person-to-person contact in daily time steps can be 
modeled (the process diagram is shown in Figure 6-1). The model 
parameters are specified as disease-specific infectivity and susceptibility at 
individual level based on the SEIR (Susceptible, Exposed, Infectious, 
Recovered) approach that is commonly used to describe the epidemiology of 
infectious diseases. The software was developed using the MapBasic 
programming language for the MapInfo Professional GIS environment.  

The fully synthetic data-based testing is advantageous because of the data 
availability and control over the evaluation process. The size of the outbreak, 
the spatial distribution, and many other characteristics can be changed to 
simulate variable outbreak events. Precise information about outbreaks can 
be used to measure the effectiveness of the methods under testing objectively 
and precisely. However, the synthetically generated data usually embody 
many assumptions to match the evaluated algorithms’ assumptions, thus 
possessing limited validity. Typically, the use of the synthetic data testing is 
restricted to early stage testing of algorithms. 

2.4 Semisynthetic Data Testing 

An alternative method to generate surveillance testing data takes the 
approach of adding simulated outbreak cases to the real data streams. This 
approach is sometimes referred to as “injecting” or “spiking” events into real 
surveillance data collected during nonoutbreak periods (Wagner et al., 
2006). More sophisticated injection techniques model the outbreaks with the 
shape and noise level derived from surveillance data collected during real 
outbreaks. The high-fidelity detectability experiments (HiFIDE) are available 
for noncommercial use. 

Most of the evaluation studies take this approach for system evaluation 
(Reis et al., 2003; Goldenberg et al., 2002). In the evaluation work of EARS 
(Hutwagner et al., 2005a), for instance, 56,000 sets of artificially generated 
case-count data are generated based on 56 sets of parameters using a 
negative binomial distribution with superimposed outbreaks. The ESSENCE 
II system is evaluated using simulated bioterrorism events with estimated 
patterns from the literature (Lombardo et al., 2003). 

The semisynthetic approach provides greater validity than the fully synthetic 
data-based testing. It allows for flexible manipulation of outbreak sizes and 
the shapes of the spikes as well as the time courses of each injected event. 
In-depth understanding of the dynamics of real outbreaks is crucial for the 
fidelity of the injected outbreaks. 
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2.5 Evaluation Metrics for Outbreak Detection 
Algorithms 

The main concerns regarding anomaly detection algorithms include how 
significant the signal needs to be to trigger an alarm, how early an outbreak 
can be detected, and how reliable the alarms are. Various aspects of outbreak 
detection algorithms need to be evaluated using different evaluation criteria. 
Such criteria include the quantification of sensitivity, predictive value positive, 
timeliness, false alarm rate, generalized ROC curves, and average run length. 
These criteria are in line with the CDC evaluation guidelines (CDC, 2001) 
and the prior literature (Buehler et al., 2004; Romaguera et al., 2000). Table 

representations in the literature. A more detailed summary of detection 
algorithm evaluation metrics can also be found in (Buckeridge et al., 2005b). 

Three metrics − sensitivity, false alarm rate or the alternative measure to 
the false alarm rate − predictive value positive and timeliness, are most 
commonly seen in the literature (Buckeridge et al., 2004; Sonesson and 
Bock, 2003). Sensitivity measures the probability that an alarm is correctly 
triggered when an outbreak  indeed occurs.  False alarm rate  measures the 

 
Table 6-1. Outbreak detection metrics. 

Terms Descriptions 
Sensitivity The proportion of outbreaks that an algorithm detected 

correctly (Wagner et al., 2006)  
Specificity The proportion of nonoutbreaks days without alarms 

(Wagner et al., 2006) 
The proportion of alarms signaled as outbreaks are truly 
outbreaks (CDC, 2001)  

Timeliness (time-to-
detection) 

The difference between the date of the first true alarm and 
a reference date (e.g., a date established as a start date of 
an outbreak by expert consensus) (Wagner et al., 2006)  

False alarm rate  The proportion of nonoutbreak time periods (days or weeks 
depending on the organization of the time series) on which 

ROC curve Plot of sensitivity versus false alarm rate 
AMOC curve Plot of timeliness against false alarm rate 

Expected run length until the first false alarm (Sonesson 
and Bock, 2003) 
Expected run length until an alarm (Sonesson and Bock, 
2003) 

AMOC: Activity Monitoring Operating Characteristic 
ARL: Average Run Length 
 

Predictive Value 
Positive (PVP)  

an algorithm signals alarms (Wagner et al., 2006)  

ARL0  

ARL1

ROC: Receiver Operating Characteristic 

6-1 summarized the outbreak detection metrics in the most commonly used 
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probability that an alarm is triggered when there is no outbreak. The measure-
ment of sensitivity and PVP for a syndromic surveillance system is often 
complicated by the absence of an appropriate gold standard (German, 2000). 
A gold standard is assumed to be accurate and can be used to validate the 
signals produced by an outbreak detection system. 

There exists a tradeoff when trying to achieve good performance among 
multiple evaluation criteria (Buckeridge et al., 2004; Siegrist and Pavlin, 
2004). The Receiver Operating Characteristics (ROC) curve and the area 
beneath it are further evaluation metrics that plot sensitivity against false 
alarm rate (Reis and Mandl, 2003). Through the AMOC (Activity Monitoring 
Operating Characteristic) curve plotting timeliness against false alarm rate, 
the evaluators can easily read the tradeoff between the false alarm rate and 
the timeliness. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Fictional AMOC curve. 
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(c) Timeliness-ROC surface for surveillance assessment; vertical dimension is the 
timeliness weight (Kleinman and Abrams 2006). 

 
Figure 6-2. Fictional AMOC curve, timeliness-ROC curve and timeliness-ROC surface. 
 

(b)  Timeliness-ROC curve. 
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Figure 6-2a and b show a fictional AMOC curve and timeliness-ROC 
curve, respectively. A three-dimensional generalized ROC curve is proposed 
by Kleinman and Abrams (2006). The 3-D ROC curve incorporates the time 
of detection and produces the timeliness-ROC surfaces (an example is shown 
in Figure 6-2c). By incorporating sensitivity, specificity and timeliness into 
single metrics, the proposed approach simplifies the comparison of different 
methods’ performance. 

Timeliness measures the proportion of time gained by an early detection 
algorithm compared with a reference signal (e.g., the clinical diagnosis of an 
anthrax case). As a means to measure the efficiency of detection algorithms, 
it refers to how fast an aberration is signaled. The expected delay time can 
be denoted by A( ) max(0, )ED t E t t tτ= ⎡ − = ⎤⎣ ⎦ , where the time of change 
is t=τ , and the time of alarm triggering is At . However, the timeliness of a 
surveillance process should also include the delay in the process data collection 
and case reporting in addition to the time for disease case identification. The 
timeliness of the data collection process is now generally indicated by the 
frequency of data uploading, either manually or automatically, by the data 
providers. A real time surveillance system must feature a real time and 

2.6 Summary of Representative Evaluation Studies 

We have conducted a systematic review of syndromic surveillance system 
performance evaluation studies. Out of 55 publications that claim to evaluate 
syndromic surveillance systems, 32 reported evaluation results or system 
experiences with varying degrees of detail. Two systems were compared 
with a reference detection system. Timeliness versus sensitivity plotting was 
provided in 19 quantitative evaluations of algorithms’ detection performance 
(e.g., WSARE, SaTScan, and RSVC). Twelve systems reported sensitivity 
and false alarm rate through the ROC curve. A few evaluations such as the 
BioALIRT evaluation program are conducted to examine the algorithms 
from different systems for side-by-side comparison. 

For a selected set of detection algorithms, we provide details about evaluation 
design and settings (e.g., the data sets used, the outbreak detection methods 
evaluated, and the simulated outbreak patterns). We also present the evaluation 
results according to the performance metrics used in the evaluation. However, 
as the simulation models and datasets used for evaluating each algorithm 
differ, a conclusive performance report is not feasible. 

automated data collection mechanism as discussed in Chapter 3. 
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3. EVALUATION OF DATA COLLECTION AND 
INFORMATION DISSEMINATION 
COMPONENTS 

The system components for data collection and information dissemination 
need to be evaluated in terms of HIPAA compliance, scalability, and flexibility. 

HIPAA privacy rules govern the obligations and reporting requirements 
of healthcare data (CDC, 2003). HIPAA security regulations require methods 
that protect data from disclosure in transport. To be HIPAA compliant, data 
collection and dissemination components of syndromic surveillance systems 
need to provide security measures such as data encryption, secure sockets, 
secure shell tunneling, or the use of a virtual private network. 

System scalability and flexibility indicate how scalable a syndromic 
surveillance system is in monitoring new diseases, accommodating new 
syndrome categories, or incorporating new types of data. Geographic coverage 
should be able to be expanded with small costs as additional healthcare facilities 
and jurisdictions participate. In addition, systems that use standard data formats 
(e.g., in electronic data interchange) can easily interoperate with other systems 
and thus might be considered more flexible and more scalable (CDC, 2001). 

4. ASSESSMENT OF INTERFACE FEATURES AND 
SYSTEM USABILITY 

4.1 System Usability Evaluation Methodology 

To complete our discussion of system evaluation, the performance of 
operational systems bringing in the users’ operation experiences need to be 
evaluated. The effectiveness (or value) of a syndromic surveillance system 
depends greatly on the outcome associated with their use of the system. The 
evaluation process usually employs two methodologies: controlled experiment 
and field testing. Controlled experiments consider the users’ experience with 
the interaction with the system interfaces for completion of a particular 
operation. Field testing evaluates operational systems mainly for the measure-
ment of the benefit, and the cost from a perspective of societal utility 
(Wagner et al., 2006). It takes into account how long it takes to deploy a 
system, what the system failure rate is, and so on. 
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4.2 System Usability Evaluation Metrics 

In the evaluation work for the BioPortal system, Hu et al. (2005) applied 
a number quantitative or qualitative metrics for system usability evaluation. 
(1) Task accuracy: the correctness of the user generated analysis results 
using the system referenced to the experts’ analysis results; (2) Task efficiency: 
measuring the amount of time a person needs to complete an analysis task; 
(3) User satisfaction: end-user satisfaction typically encompasses system 
content, accuracy, output format, use, and timeliness; (4) Perceived usefulness: 
it refers to the extent to which a person considers a system useful in his or 
her work role and has been shown to affect user adoption significantly; (5) 
Perceived ease of use: the ease of use of a system, as perceived by individual 
users refers to the degree to which a person believes that using a particular 
system will be free of effort. 

Wagner summarized a group of measurable system benefits and cost related 
system features in his recent work on field testing of biosurveillance systems 
(Wagner et al., 2006). The metrics are: (1) Benefits from expected reductions in 
mortality and morbidity through earlier detection; (2) Benefits [usefulness, 
simplicity, representativeness (CDC, 2001)] from expected reductions in 
operational costs owing to policy improvements and workflow efficiency; 
(3) Costs to build or purchase and install, and costs of staff time on alarms 
monitoring and investigation and certain other metrics. 

4.3 Summary of System Usability Evaluation Studies 

The evaluation study conducted by Hu et al. (2005) is representative of 
research examining syndromic surveillance system usability issues, such as 
readability, learning curve, and decision making assistance. They used the 
User Interaction Satisfaction (QUIS) instrument by Chin et al. (1988) to 
evaluate the usability of the BioPortal system, based on the Object-Action 
Interface model developed by Shneiderman (1998). They examined the 
overall reactions to the system, the screen layout and sequence, the system’s 
capability, the terminology/information used, and subjects’ ease of learning, 
based on a 9-Point Likert scale (Hu et al., 2005). 

From a user’s perspective, all relevant data must be seamlessly integrated 
to support the surveillance and analysis tasks that are critical to the prevention 
of and alerts about particular disease events or devastating outbreaks. Data 
visualization support is also critical; the value of a syndromic surveillance 
system is greatly affected by the extent to which the system can present data 
and analysis results in an easily comprehensible, cognitively efficient manner. 
Ultimately, a syndromic surveillance system must facilitate and enhance the 



6. System Assessment and Evaluation 

 

103 

analysis tasks by public health professionals in terms of accuracy and time 
requirements, using their own heuristics and preferred analysis methods. 

5. SUMMARY AND DISCUSSION 

Evaluation of syndromic surveillance systems is confounded by a number 
of factors. First, few real-world datasets are available for evaluation and 
comparison purposes due to the low frequency or absence of outbreaks of 
most diseases. Second, timeliness of detection is closely related to the timing 
of patient visits or medication purchases, determined by individual patients’ 
behavior. Third, data quality and availability are seldom considered in 
algorithm evaluations. Incomplete data from various healthcare participants 
can potentially impair algorithms’ detection power. 

Fourth, the criteria for optimized detection performance may vary for 
different illnesses. Different bioterrorism agents display different temporal 
and spatial patterns. Botulism and toxic shock syndrome are readily detected 
in relatively smaller clusters, whereas detection of SARS presents a greater 
challenge as the syndrome is relatively less specific and the impact may be 
more widely spread. The incubation time and the time between exposure and 
symptom onset could be longer or shorter depending on the type of biologic 
agent. The detection power of the algorithms for rare diseases (e.g., botulism-
like illness or smallpox) is yet to be reported. 

Lastly, the ability of an algorithm to identify the geographic location of 
an outbreak was rarely measured and reported. In spatial context, the signal 
extent is not usually considered. For example, in a scan-like method, the 
radius of a detected cluster could indicate a kind of accuracy of the detection 
method. The cluster validity measurement techniques discussed in a few 
works (Halkidi et al., 2002) seem ready to check the clustering algorithms’ 
performance. 



 

 

 

Part  II 
SYNDROMIC SURVEILLANCE 

 

 
 

To better illustrate the earlier discussion on syndromic surveillance data 
sources, various technical components of syndromic surveillance systems, 

of this monograph. With case studies 1–6, we describe the system components 

Increasingly, Web-based electronic information sources such as discussion 

major information sources for early infectious disease detection. Real-time 
data communication and advanced data mining technologies combined  
with interactive visualization technologies, provide unseen opportunities for 
accessing and integrating global information sources for disease surveil-

global disease surveillance based on online information. Two systems, 
HealthMap and Argus, will be presented as cases 7 and 8, respectively. 

They vary in operational coverage, some being national practice or func-
tioning at an international scale, and the others being deployed locally.  

Case 1: The first case study focuses on the BioSense system, which is a 
nationwide “safety net” for early detection in major cities, initiated and 
administrated by the US CDC. BioSense represents a major effort on infra-

and national levels. 
 
 

in detail roughly following the structure of Chapters 3–5. 

and related implementation issues, we present several case studies in Part II 

forums, mailing lists, government Web sites, and news outlets are becoming 

structure building targeted at near real-time data collection at local, state, 

lance. The following two cases are used to exemplify the efforts dedicated for 

SYSTEM CASE STUDIES 

In Chapters 7–14, we investigated eight biosurveillance systems in depth. 
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During the wildfires in San Diego County in October 2007, the CDC 
BioSense system found a spike in respiratory illnesses that coincided with 
the wildfires in San Diego County. BioSense was set up to receive data from 
the emergency departments of six hospitals near the wildfire zones. BioSense 
identified significant increases in diagnoses of various respiratory syndromes 
(p < 0.001), particularly asthma (p = 0.001) and dyspnea (p < 0.001). Details 
of BioSense’s use as a drop-in biosurveillance system during the San Diego 

 
Case 2: The second case study examines the Real-time Outbreak and 

Disease Surveillance (RODS) system, which has been deployed across the 
nation. The RODS project is a collaborative effort between the University of 
Pittsburg and Carnegie Mellon University. It provides a computing platform 
for the implementation and evaluation of different analytic approaches for 
outbreak detection, among other data collection and reporting functions. The 
National Retail Data Monitor (NRDM) monitoring anonymous sales of over-
the-counter (OTC) healthcare products is part of the RODS project assisting 
with disease outbreaks identification. Thousands of retail pharmacy, grocery, 

RODS was implemented in Utah during the 2002 Winter Olympics. The 
implementation focused on the surveillance process automation and real-

as international games or other gatherings. We discussed this implementation in 

technical and operational aspects of the system implementation, including 
secure network infrastructure and messaging standards for automated data 

detection algorithms, notification systems, and user interfaces. 
 
Case 3: The third case study examines the BioPortal system. Funded by 

the US National Science Foundation (NSF) and US Department of Homeland 

unique for its Web-based, highly interactive, and customizable spatial-temporal 
data visualization and analysis. This visualization and analysis environment 

when sequence information is available. BioPortal enables epidemiological 

surveillance based on free-text chief complaints (in both English and Chinese). 
In addition to human infectious diseases, BioPortal has been applied to 

 

wildfires are presented in Section 4 of Chapter 7. 

provides integrated support for sequence-based phylogenetic tree visualization 

detail as a RODS use case at the end of Chapter 8. Emphases are placed upon 

Security (DHS), the BioPortal project was initiated in 2003. This system is 

time communication that are essential for short-term drop-in situations such 

animal diseases such as Foot-and-Mouth disease (FMD). 

data sharing across jurisdictions. It also provides support for syndromic 

and mass merchandise operations have participated in the NRDM nationwide. 

acquisition, data surveillance techniques including natural language processors, 



II. Syndromic Surveillance System Case Studies 

 

107 

FMD disease is a highly contagious and sometimes fatal viral disease of 
cloven-hoofed animals such as cattle, water buffalo, sheep, goats, and pigs. 
There were a number of epidemics and outbreaks in the US, UK, and Taiwan in 
recent history. In 2005, an Asia-I strain of FMD appeared in the eastern 

University of California, Davis, which is dedicated to a global surveillance 

surrogates of risks and modeling and predicting FMD virus evolution. The 

system for animal diseases. 
 
Case 4: The fourth example system is the Electronic Surveillance System 

for the Early Notification of Community-Based Epidemics (ESSENCE). The 

outbreak detection and warning. 
 
Case 5: We use the New York City syndromic surveillance systems as a 

case to illustrate the citywide surveillance activities in public health practice, 
discussing its uniqueness in the aspects of operational, response, and research 
components that are integrated within a health department. Field investigation 
experiences should be shared among the syndromic surveillance practitioners. 

was practiced for respiratory illness in 2005. The practice focuses on not 
only detecting abnormal increases in respiratory illness visits but also 
determining and characterizing the cause of such increases. They took a “data 
fusion” approach, i.e., monitoring and investigating multiple data sources 
instead of relying on a single data source. This practice is presented in detail 

 

widely deployed in local and state public health departments and has helped 
public health officials to monitor, analyze, and report unusual trends or 

implemented in EARS are tested in a number of circumstances. Experiences 
of syndromic surveillance practices with EARS are accumulated regarding 

 
 
 

detailed discussions about the FMD BioPortal in Section 4 of Chapter 9 high-

for FMD disease by gathering global FMD related information, identifying 

light the significance as well as difficulties of operating a global surveillance 

provinces of China. BioPortal collaborated with the FMD Laboratory at the 

system monitors both military and civilian healthcare data daily for early 

toward the end of Chapter 11. 

Case 6: The Early Aberration Reporting System (EARS) of the US CDC is 

clusters in public health surveillance data. The aberration detection methods 

The NYC Emergency Department (ED) syndromic surveillance approach 

the tuning of the system, the interpretation of the output and the investigation 
process. 
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EARS was seen as a critical infectious disease surveillance system during 

September and October of 2005. We present the implementation and operation 
of details as a use case of the EARS system for public health awareness 
preparedness during natural disasters. 

 
Case 7: The Argus system has been developed to perform biological 

event detection and tracking on a global scale, by examining indications and 

infectious diseases. 
 
Case 8: HealthMap is a Web application that automatically queries, filters, 

integrates, and visualizes unstructured electronic reports on disease outbreaks. It 
collects disease-related online information from around the world, including 
news media, expert-curated accounts, and validated official alerts. The system 
automatically classifies alerts by location and disease and then overlays them 
on an interactive geographic map. 

In April 2009, a new strain of influenza known as H1N1 flu (swine flu) 
was first detected. HealthMap reported the detection of Swine Flu cases 
weeks before the news emerged in English-language resources. It is a real-
time integrated news outlet to enhance the awareness of H1N1 flu outbreaks 
for the public around the world. Details of this practice are discussed as a 
HealthMap case study toward the end of Chapter 14. 

warnings of social disruptions. It actively tracks avian influenza and 130 other 

the devastating hurricane disasters in Louisiana, Mississippi, and Texas in 
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Chapter 7 

BIOSENSE  
 

 
 

(PHIN) framework managed through the CDC BioIntelligence Center. It 
supports early outbreak detection at the local, state, and national levels, by 

department user accounts, representing 49 states. Its user base continues to 

is shown in Figure 7-1. The system has also been used in several high-profile 
events (e.g., the G8 meeting in 2004) (Bradley et al., 2005; Ma et al., 2005; 
Sokolow et al., 2005). 

Figure 7-2 shows the BioSense system architecture. Specifically, BioSense 
consists of the following system components (BioSense, 2008): 
• Data Transmission: assuring the secure, timely, and routine receipt of 

health data for public health surveillance. BioSense requires data to be 
transmitted over the PHIN Messaging System (PHINMS). PHINMS is 
an interoperable messaging system developed by CDC for data providers 
to transmit private data either as standardized messages and vocabulary 
securely over the Internet in real-time or in batches. 

• Data Analysis: establishing a set of statistical methods and tools to assist 
public health analysts to detect potential public health events and make 
informed decisions. At the CDC BioIntelligence Center (BIC) each day, 
the public health analysts monitor, analyze, and interpret facility, state, 
and national trends or anomalies in the BioSense data and provide 
further analytic and reporting support to state and local public health 
departments. 

and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7_7, 

case-finding for epidemiologic investigations. 

BioSense is part of the US CDC’s Public Health Information Network 

monitoring the size, location, and rate of spread of an outbreak; monitoring 

expand. The current implementation status of BioSense (as of June 2008) 

seasonal trends of influenza and other disease indicators; and assisting in 

In March 2005, BioSense had more than 340 state and local health 
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• Data Reporting: on a near real-time basis, providing useful views of data 
through time-series graphs and geospatial maps, for state and local public 
health as well as for CDC program staff. 

• Public Health Response: providing state and local public health staff real-
time access to existing data from healthcare organizations, state syndromic 
surveillance systems, national laboratories, and other data sources for 
investigations, outbreak responses, and public health interventions. 

 
Figure 7-2 also shows the recent collaborative efforts between CDC’s 

National Electronic Disease Surveillance System (NEDSS) and BioSense. The 
goal of the collaboration is to establish interoperable communications between 
a hospital system to a state-based electronic disease surveillance system (e.g., 
NEDSS Base System or any NEDSS compliant system) consistent with 
CDC PHIN standards. 

1. BIOSENSE DATA COLLECTION AND 
PREPROCESSING 

Treatment Facilities (MTF), the Department of Veterans Affairs (VA), the 
Laboratory Response Network (LRN), and Electronic Laboratory Results 
(ELR) reporting systems. The system accepts, receives, and collects up to 

procedure-encoded CPT ordered for every ambulatory care visit from DoD-
MTF and VA. Clinical laboratory test orders are collected nationally through 
the commercial lab operator LabCorp (Laboratory Corporation of America). 
It also receives lab results from BioWatch environmental sensors (Sokolow 
et al., 2005). BioSense supports automated messaging through HL7 
protocols in either a batch mode or a near real-time mode. The data types 
BioSense collects from hospital EDs and ambulatory care include patient 
chief complaint, physician diagnosis, supporting patient demographic data, 
daily hospital census, ED-specific clinical data, microbiology test orders and 
results, radiology orders and results, and medication orders. 

The 11 syndrome categories monitored by BioSense are shown in Table 
7-1. To allow surveillance of more granular events than is possible using the 
11 syndromes, BioSense medical expert staff developed 78 more subsynd-
romes. These subsyndrome definitions can be found at the BioSense project 
Web site (CDC, 2007). 

 
 
 

four ICD-9-CM diagnosis codes identifying the reasons for ER visits and 

BioSense data providers include Department of Defense (DoD)-Military 
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Table 7-1. Eleven syndrome categories monitored by BioSense. 

Fever 
Gastrointestinal 
Hemorrhagic illness 
Localized cutaneous lesion 
Lymphadenitis 
Botulism-like/botulism 

Neurologic 
Rash 
Severe illness and death 
Specific infection 
Respiratory 
 

 
Data in ICD-9-CM form are mapped to 11 syndromes based on a mapping 

schema created in 2003 by a multiagency working group (CDC, 2007). Free-
text data are mapped to subsyndromes using the text word search. Most 
keywords in the chief complaint to subsyndrome mapping table were derived 
from the EARS system Text String Search method. It contains both English 
and certain Spanish keywords and includes regular terms, misspellings, word 

keyword search list by examining the original free text and its corresponding 
mapping results. Keywords were modified during the initial implementation 
period. The majority of the keywords in the free-text physician diagnosis to 
subsyndrome mapping table were derived from terms that appeared in ICD-

Bayesian classifier – CoCo from the RODS laboratory – for syndrome 
classification. 

2. BIOSENSE DATA ANALYSIS 

BioSense uses the CUSUM algorithm for anomaly detection. The CUSUM 
algorithm is used as a short-term surveillance technique to indicate recent 
data changes through the comparison of moving averages (Bradley et al., 
2005). Because of the high variability within the data, CUSUM values are 
computed for each date-source-syndrome combination at the state or 
metropolitan reporting area (MRA) level rather than for individual ZIP codes 
(Bradley et al., 2005). 

The other detection algorithms available from BioSense include EWMA 
and SMART. EWMA and SMART algorithms are also used to predict the day-
source-syndrome counts at the ZIP code level, with seasonality and day- 
of-week effects considered. The calculations are conducted on a daily basis. 
Spatial-temporal clustering methods such as various scan statistics are also 
being explored by the BioSense system. BioSense explored the use of SaTScan 

is set to scan a maximum circle radius of 100 km with each ED facility as 
one geographic unit. Poisson probability model is used to model the disease 

7. BioSense 

fragments, and abbreviations. The mapping is continually improving the 

with a separate run for each month to detect spatial disease clusters. SaTScan 

9-CM descriptions (CDC, 2007). At the same time, BioSense employs a 
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rates, and clusters are identified by locating the geographic areas that do not 
conform to these model-predicted disease rates. 

3. BIOSENSE DATA VISUALIZATION, 
INFORMATION DISSEMINATION, AND 
REPORTING 

BioSense is an Internet-accessible, secure system. It displays data in 
multiple formats including line graphs, maps, tabular summaries, and case 
details. Graph plotting for individual data source, individual syndrome category,  

Figure 7-3. BioSense Influenza tool that merges multiple sources (source: BioSense Web 
site). 
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Figure 7-4. BioSense homepage showing available surveillance functionalities (source: 
BioSense Web site). 

 
and different level of geographical regions is also available (Figure 7-3). On 
its homepage, as shown in Figure 7-4, it provides a collection of analysis and 
visualization functionalities. For VA, DoD, and Lab Test Order Data, (1) it 
can display time series graphs or map graphs of all data sources for each 
syndrome or a selected specific syndrome (the example of asthma time-series 
is shown in Figure 7-5); (2) it has tabular display with access to detailed line 
lists of records for a single syndrome; (3) infection alerts for several 
bioterrorism agents can also be reported. For real-time hospital data, a line 
list of statistical anomalies found by BioSense analysis, time series and map 
display for syndrome counts, and as well as drill-down patient details are all 
available. 

CDC BioIntelligence Center is the agency responsible for monitoring 
anomalies detected by BioSense. The lightweight directory access protocol 
(LDAP) is employed for information reporting. 

 

7. BioSense 
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Figure 7-5. BioSense analysis page for Asthma query (source: BioSense Web site). 

4. CASE STUDY: MONITORING HEALTH 

From October 21 to October 26, 2007, wildfires spread across hundreds 
of thousands of acres of San Diego County, forcing the evacuation of more 
than 300,000 residents. During October 22–30, 2007, CDC personnel monitored 
BioSense for evidence of health effects possibly related to the wildfires in 
San Diego County. 

In October 2007, data were being received from EDs at six of the 19 

outside the fire and evacuation areas (illustrated in Figure 7-6). 
Data received by BioSense included age, sex, free-text patient-reported 

chief complaints, and diagnosis codes (usually ICD-9-CM codes). The first 
part of the standard procedure is syndrome classification. Diagnoses are 

and 78 more specific subsyndromes (e.g., asthma and dyspnea). 
 
 
 

EFFECTS OF WILDFIRES USING 

assigned to one or more of the 11 general syndromes (shown in Table 7-1) 

BIOSENSE 

hospitals in San Diego County. These six hospitals were located near but 
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Figure 7-6. Hospital participation in BioSense, San Diego County, California, October 20-29, 
2007 (Ginsberg et al., 2008). 

 
These data are first centralized at CDC from hospital EDs. Within  

2–3 hours, these data are processed at CDC and then made available in 
BioSense. The median time for chief complaints from patient visits to receipt 

For data analysis, the daily count of visits indicating diseases after the 
manual or automatic syndrome mapping is displayed on time-series graphs 
(Figure 7-7 shows an example time-series for counts of diagnoses and chief 
complaints of asthma) and compared with the predicted number based on a 
7-day moving average. A modification of the EARS C-2 algorithm (Hutwagner 
et al., 2003) is used to determine statistical significance. A single-day visit 
count with a recurrence interval of >100 days (analogous to p < 0.01) is 
considered statistically significant. 

 
 

7. BioSense 

of ED data at CDC is 8 hours. For diagnosis codes, the median time is 5 days. 
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Figure 7-7. Time-series of ED visits by chief complaints and diagnosis of asthma – six 
participating hospitals, San Diego, California, September 22 – November 17, 2007 
(Gingsberg et al. 2008). 

During the wildfires, the BioSense system noted increases in total hospital 
visit volume and large increases in respiratory visits to hospitals, especially 
visits for asthma and dyspnea (difficulty in breathing/shortness of breath). 
The BioSense system detected significant (p < 0.01) increases in visits for 
asthma from October 22 to 24. When the winds shifted on October 25, asthma 
complaints and diagnoses began to decline.  

BIC and San Diego County public health officials also worked together to 
conduct retrospective analyses of BioSense post-wildfire data. These analyses 
helped to gain a better understanding of how cardiovascular and respiratory 
diseases develop before, during, and after the fire and how patients with chronic 
respiratory illness were affected by exposure to the wildfire smoke. The 
collaboration between BIC and San Diego County public health officials 
proved to be useful and has led to increasing collaborative activities across 
CDC and with state and local public health officials. Lessons learned from 
this experience will help not only the next time wildfires strike, but also in 
other large-scale exposures to environmental hazards. 
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5. FURTHER READINGS 

We provide the following project link and some key readings for the 
readers who might be interested in learning more details about the BioSense 
project. 

 
Project link: 

http://www.cdc.gov/BioSense/ 
 
Important readings: 

1. BioSense working group. (June 2008) “BioSense Technical Overview of 
Data Collection, Analysis, and Reporting.” Available at http://www.cdc. 
gov/BioSense/files/BioSense_Techn_Overview_102908_webpage.pdf 

2. Ginsberg, M., J. Johnson, J. Tokars, C. Martin, R. English, G. Rainisch, 

and D. Sugerman. (2008). “Monitoring Health Effects of Wildfires Using 
the BioSense System – San Diego County, California, October 2007.” 
MMWR July 11, 2008. 

3. Bradley, C. A., and H. Rolka, et al. (2005). “BioSense: Implementation 
of a National Early Event Detection and Situational Awareness System.” 
MMWR (CDC) 54(Suppl), pp 11–20. 

7. BioSense 

W. Lei, P. Hicks, J. Burkholder, M. Miller, K. Crosby, K. Akaka, A. Stock, 

 

4. 

5. Ma, H., J. Tokars, R. English, T. Smith, C. Bradley, L. Sokolow, and H. 
Rolka. 2006 Jul 7. “Surveillance of West Nile Virus Activity Using 
Biosense Laboratory Test Order Data.” Advances in Disease Surveillance 
[Online] 1:1. 

6. R. English, P. McMurray, L. Sokolow, H. Rolka, D. Walker, J. Quinn III, 
and K. Cox. 2006 Jul 7. “Geographic Categorization Methods Used in 
BioSense.” Advances in Disease Surveillance [Online] 1:1. 

Sokolow, Leslie Z.,  N. Grady,  H. Rolka, D. Walker, P. McMurray, R.
English-Bullard, J. Loonsk. “Practice and Experience: Deciphering Data 
Anomalies in BioSense.” MMWR August 26, 2005. 
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Chapter 8 

RODS 
 

 
 

The Real-time Outbreak and Disease Surveillance (RODS) system was 
initiated by the RODS Laboratory at the University of Pittsburgh in 1999. 
The system is now an open source project under the GNU license. The 
RODS development effort has been organized into seven functional areas: 
overall design, data collection, syndrome classification, database and data 
warehousing, outbreak detection algorithms, data access, and user interfaces. 
Each functional area has a coordinator for the open source project, and there 
is an overall coordinator responsible for the architecture, overall integration 
of components, and overall quality of the JAVA source code. Figure 8-1 
illustrates the RODS’ system architecture. 

The RODS system as a syndromic surveillance application was originally 
deployed in Pennsylvania, Utah, and Ohio. As of 2006, RODS performs 
emergency department surveillance for other states of California, Illinois, 
Kentucky, Michigan, New Jersey, Nevada, and Wyoming through an ASP 
model at the University of Pittsburgh, and through local installations in 
Taiwan, Canada, Mississippi, Michigan, California, and Texas. As of June 
2006, about 20 regions with more than 200 healthcare facilities connected to 
RODS in real-time. It was also deployed during the 2002 Winter Olympics 
(Espino et al., 2004). It also serves as the user interface for national over-the-
counter medication sales surveillance data collected through the NRDM. 

The conceptual architecture of the RODS system is shown in Figure 8-1. 
Multiple data sources are collected and stored in a database and data 
warehouse where they are made available to outbreak algorithms and the 
RODS user interface. 

 

 
 

and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7_8, 
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The latest version of RODS system is RODS 6. RODS 6 is built from the 

ground up to be pluggable and part of a larger biosurveillance system as a 
biosurveillance grid node that incorporates as well as offers services. New 
data types and algorithms can be easily incorporated into the system without 
the need for database redesign or coding of the core software. RODS 6 also 
provides a robust API so that external applications can leverage the data 

1. RODS DATA COLLECTION 

RODS collects healthcare registration data in real time from participating 
hospitals via a standard called HL7. Specifically, healthcare registration data 
consist of the age, gender, home zipcode, date/time of admission, and a free-
text chief complaint of the patient. 

The National Retail Data Monitor (NRDM) is a component of the RODS 

It also collects and analyzes chief complaints data from various hospitals. 

is shown in Figure 8-2). Daily batch feeds of sales data from those stores are 

Figure 8-1. RODS system architecture (Espino et al., 2004). 

collection, visualization, and data analysis capabilities of RODS. 

NRDM monitors more than 29,000 retail stores including stores from 12 big 

system, collecting and analyzing daily sales data for OTC medication sales. 

7 days a week as of May 2009 (a screenshot of its deployment around the US 
chains in the US and its territories for OTC medication sales 24 hours a day/ 
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received by NRDM everyday by midnight. Individual medication sales data 
are aggregated into one or more of the 18 OTC categories (Table 8-1) before 
being aggregated spatially by zip code according to store location. 
There are plans to integrate laboratory orders, dictated radiology reports, 
dictated hospital reports, and poison control center calls in future versions. 

The RODS system currently monitors 7 healthcare registration prodrome 
categories, as shown in Table 8-2. 
 
Table 8-1. Eighteen over-the-counter medication categories monitored by NRDM. 

Antidiarrheal 
Antifever pediatric 
Antifever adult 
Bronchial remedies 
Chest rubs 
Cold relief adult liquid 
Cold relief adult tablet 
Cold relief pediatric liquid 
Cold relief pediatric tablet 

Cough syrup adult liquid 
Cough syrup adult tablet 
Cough syrup pediatric liquid 
Electrolytes pediatric 
Hydrocortisones 
Nasal product internal 
Thermometers 
Throat lozenges 
Others 

 

Figure 8-2. NRDM deployment at 20,000 stores as of 2002 (Wagner et al., 2003). 
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Table 8-2. Syndrome categories monitored by RODS. 

Gastrointestinal 
Hemorrhagic illness 
Constitutional 
Neurologic 

Rash 
Respiratory 
Botulism-like/botulism 
 

 
The RODS data are collected in real-time through HL7 messages from 

other computer systems such as registration systems and laboratory information 
systems, over a Secure Shell–protected Internet connection in an automated 
mode. 

2. RODS DATA ANALYSIS 

One of the major strengths of RODS is in data analysis. Several syndrome 
classification approaches have been tested and implemented in the RODS 
system. It applies a keyword classifier and an ICD-9 classifier to chief complaint 

multiple settings (Olszewski, 2003). For the respiratory syndrome, based on 

varies between 0.95 and 0.99. 
The RODS laboratory, in collaboration with the Auton Lab at Carnegie 

Mellon University, continues to develop additional algorithms to model both 
the temporal fluctuations and spatial distribution patterns in syndromic 
surveillance datasets. The current open source release of the RODS system 

rules that are made up of any data feature components (e.g., a two-component 

Chapman et al. (2005) proposed a Bayesian network-based semantic model, 

of added system complexity and computational overhead. The performance 
which has shown to classify free-text chief complaints effectively at the expense 

data. The CoCo module, a syndrome mapping component, has been tested in 

other syndrome categories can also be found in (Wagner et al., 2004b). 

of the classifier represented by the ROC curve for each syndrome category 

manually-classified results, CoCo achieves a 77% sensitivity level and 90%

includes implementations of several on-the-fly outbreak detection algorithms: 

Weighted Moving Average, and Recursive Least Square (RLS). Methods 

(WSARE) algorithm (Wong et al., 2003, 2005) evaluates all the possible 

including SMART, scan statistics, and WSARE are also being developed and 

discussed in the previous section. What’s Strange About Recent Events 

tested. A future release will allow the import and export of data as common 

wavelet-detection algorithms, Moving Average, CUSUM with Exponentially 

can be used to analyze the data. 
CUSUM and SMART are also used in the BioSense system. They were 

text files such that stand-alone algorithms and statistical software packages 

specificity level (Wagner et al., 2004b). The classifier’s performance for 
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rule could be Gender = Male and Home = NW) in both recent data and baseline 
data. The rules that have the largest discrepancy of the proportions between 
the recent data and baseline data are detected as rules summarizing the  
most significant patterns of anomalies. WSARE 3.0 has been evaluated 
retrospectively using the data from the Israel Center for Disease Control and 
has shown its capability of detecting the outbreak on the second day from its 
onset (Kaufman et al., 2005). 

In the latest release of RODS 6, high-fidelity injection detectability 
experiments (HiFIDE) are integrated for outbreak simulation and algorithm 
testing. HiFIDE enable public health officials to analyze the detectability 
characteristics of a surveillance system operating in their jurisdiction. HiFIDE 
inject synthetic outbreak data (spikes) into real surveillance data from a 
particular jurisdiction. The HiFIDE spike is both high-fidelity in contour and 
in scale by first deriving the spike shape and then rescaling the spike from 
real surveillance data collected during outbreaks that occurred in other regions. 
In particular, its interface focuses on depicting the expected sensitivity, 
specificity, and timeliness of detection for outbreaks of varying sizes, etiologies, 
and geographic and demographic scopes. A HiFIDE window is shown in 
Figure 8-3. 

Figure 8-3. Sensitivity plots in HiFIDE (Wallstrom et al., 2005). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 8 

 

126 

3. RODS VISUALIZATION, INFORMATION 
DISSEMINATION, AND REPORTING 

The RODS system provides multiple graphing techniques with both time-
series and geographical displays available via an encrypted, password-protected 
Web interface. Three different data views – Main, Epiplot, and Mapplot – 

interface. These views are implemented using JFreeChart (an open-source 

Environmental Systems Research Institute, Inc.). 
The RODS Main screen (Figure 8-4) shows time-series plots updated on 

a daily basis for each syndrome. The intention of the Main screen is that of a 
“threat” board in a situation room. The Main screen refreshes itself every 
two minutes if left displayed. The graphs can be plotted with different event 
monitoring algorithms such as moving average and CUSUM. The user can 
choose to view these plots by county or for the whole state. 

The RODS Main screen is limited to viewing six OTC (individual types 
of medication and prodrome categories cannot be selected from the OTC 
Main screen) or healthcare registration charts for the last seven days, whereas 
Epiplot screen (Figure 8-5) is highly interactive. EpiPlot allows the user to 
specify the syndrome, particular geographic region, start dates, and end dates, to 

graphing package) and ArcIMS (an Internet GIS server developed by the 

are supported. Figures 8-4 to 8-6 are three example views of RODS user 

Figure 8-4. RODS system Main screen (source: RODS Laboratory, University of Pittsburg). 
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generate customized time-series plots. Users can choose to analyze the data 
using one of four on-the-fly analysis algorithms – CuSUM with EWMA, RLS, 
Wavelet or Moving Average. A “get cases” button allows users to view case-
level detail for encounters making up the specific time-series. 

Figure 8-5. RODS Epiplot screen (source: RODS User Manual). 

Figure 8-6. Mapplot output displayed in Google Earth (source: the RODS project at Source 
Forge.net). 
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Figure 8-7. RODS alerts (monitoring healthcare registrations only) (source: RODS manual). 
 
The Mapplot screen provides an interface to the ArcIMS package, to 

display disease cases’ spatial distribution using patients’ zip code information. 
Figure 8-6 is a Mapplot screenshot of Google Earth geographic view of daily 
frequencies of one type of OTC sales. 

The Alerts page (Figure 8-7) provides detailed information about each 
alert for a defined jurisdiction. An alert is registered each time data analyzed 
exceeds the thresholds set by one or more of the four algorithms in use. 

4. CASE STUDY: SYNDROMIC SURVEILLANCE 
WITH RODS FOR THE 2002 WINTER 
OLYMPICS 

bioterrorism and public health surveillance. The main purpose of implementing 

drop-in situations (Gesteland et al., 2003). 
During the Olympics, encounter data were collected from 19 urgent care 

centers and nine emergency departments owned and operated by Intermountain 
Health Care (IHC), University of Utah Health Sciences Center (UUHSC)  
and from the University of Utah Hospital’s emergency department and the 

RODS was deployed at the 2002 Winter Olympics in Salt Lake City for 

process. It was a successful test of RODS deployment in such short-term 
RODS was to automate an otherwise expensive, round-the-clock surveillance 
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Polyclinic located in the Olympic Village. Together these emergency rooms 
and urgent care centers serve about 70% of the population of Utah. 

RODS takes advantage of existing HL7 message routers in healthcare 
systems to receive admission, discharge, and transfer (ADT) data in real time 
from clinical information systems. HL7 message routers consist of HL7 data 
listeners and HL7 parsers. The HL7 listeners establish TCP/IP connections 
between RODS and IHC and UUHSC. The HL7 parser uses regular 
expressions to parse each data segment in an HL7 message. The parsed ADT 
messages are centralized into an Oracle8i database for data retrieval and 
analysis. Figure 8-8 shows a sample HL7 message from one of health systems. 
The primary keys for a HL7 ADT message contain sending facility, ADT 
message type, medical record number, patient class, and visit number (Tsui 

Figure 8-8. Sample HL7 ADT messages (Tsui et al. 2003). 

Figure 8-9. Network architecture of RODS implementation in Utah (Tsui et al. 2003). 

et al., 2003). 
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The HL7 messages were communicated through a secure network infra-
structure between Utah RODS and the data providers consisting of virtual 

(SMS) contributed to the initial establishment for the site-to-site VPNs. Utah 
RODS processes run on dedicated databases and servers including a Web 

Internet firewalls residing on separate servers. 
To classify patients into a prodrome category utilizing free-text chief 

complaints as input, Utah RODS uses two Natural Language Processors 
(NLPS) – Bigram 8 and PLUSI0. They map a chief complaint into one of seven 
prodromes-respiratory, diarrheal, botulinic, viral, encephalitic, hemorrhagic, 
and rash. Bigram is a simple NLPS, developed at the University of Pittsburgh, 
computing the probability of a specific prodrome category of a patient based 
on pair of words in a free-text chief complaint. PLUS was developed at the 
University of Utah. PLUS classifies a free-text chief complaint using a more 
sophisticated Bayesian network. Both NLPS operate in real time using 
client-server TCP/IP socket connections. Whenever a chief complaint is 
available for processing, the RODS server sends a message to PLUS on the 
NLP server, and it returns the classification of the case based on the free-text 

RODS analyzes the data for anomalous densities of cases compared with 
historical patterns. The analyses were conducted every 4 h, and were frequently 
visually inspected by RODS staff through RODS user interfaces. The 
primary statistical tool used by RODS during the Olympics for automated 

data, adjusting its model coefficients based on prediction errors. RLS algorithm 

densities of cases in space and time. 

appropriate authorities were notified and the alarms were determined to be 
false positives. 

Utah) could not share the same HL7 data sets because of proprietary data 
collection issues. It slowed down the process of implementation in a situation 
where time was essential. RODS project spent a considerable amount of time 
during the 7 weeks in this project managing administrative issues instead of 
actually setting up the RODS system. Despite the inherent limitations of the 
7-week establishment of the RODS system, the project was highly successful in 

private networks (VPN) and leased lines (Figure 8-9). Siemens Medical Systems 

server, a GIS server, and a natural language processing server, protected by 

chief complaint (Tsui et al., 2003). 

has an advantage over other potential algorithms in such “drop-in” situations 

ponded to data sharing. The major data contributors (IHC and University of 
At the Olympics, the largest problems faced by the investigators corres-

because it requires only a few days of historical data to generate model co- 

over combinations of temporal and spatial features to detect anomalous 

computes an expected count of each syndrome within a region from historical 

efficients. The WSARE algorithm was also used to perform heuristic searches 

Over 114,000 acute care encounters were monitored between February 8 
and March 31, 2002. The RODS system signaled two alarms; both times the 

pattern recognition was the RLS adaptive filter. RLS (as discussed in Chapter 4) 
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proving how a computer-based, minimally invasive syndromic surveillance 
system can work. 

5. FURTHER READINGS 

We provide the following project link and some key readings for the readers 
who might be interested in learning more details about the RODS system. 

 
Project link: 
 
https://www.rods.pitt.edu/site/ 
 
Important readings: 
 
1. Wu, T. S., F. Y. Shih, M. Y. Yen, J. S. Wu, S. W. Lu, K. C. Chang, 

C. Hsiung, J. H. Chou, Y. T. Chu, H. Chang, C. H. Chiu, F. C. Tsui, 
M. M. Wagner, I. J. Su, and C. C. King (2008), “Establishing a 
nationwide emergency department-based syndromic surveillance 
system for better public health responses in Taiwan,” BMC Public 
Health, 8, p 18. 

2. Shen, Y., C. Adamou, J. N. Dowling, and G. F. Cooper (2008), 
“Estimating the joint disease outbreak-detection time when an automated 
biosurveillance system is augmenting traditional clinical case finding,” 
Journal of Biomedical Informatics, 41, pp 224–231. 

3. Wallstrom, G. L., and W. R. Hogan (2007), “Unsupervised clustering of 
over-the-counter healthcare products into product categories,” Journal of 
Biomedical Informatics, 40(6), pp 642–648. 

4. Dara, J., J. N. Dowling, D. Travers, G. F. Cooper, and W. W. Chapman 
(2007), “Evaluation of preprocessing techniques for chief complaint 
classification,” Journal of Biomedical Informatics, 41(4), pp 613–623. 

5. Espino, J. U., M. M. Wagner, F. C. Tsui, H. D. Su, R. T. Olszewski, 
Z. Lie, W. Chapman, X. Zeng, L. Ma, Z. W. Lu, and J. Dara (2004), 
“The RODS Open Source Project: removing a barrier to syndromic 
surveillance,” Medinfo, 11(Pt 2), pp 1192–1196. 

6. Tsui, F.-C., J. U. Espino, M. M. Wagner, P. Gesteland, O. Ivanov, R. T. 
Olszewski, Z. Liu, X. Zeng, W. Chapman, W. K. Wong, and A. Moore 
(2002), “Data, network, and application: technical description of the 
Utah RODS Winter Olympic Biosurveillance System.” Proceedings 
of the AMIA Symposium, pp 815–819. 
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Chapter 9 

BIOPORTAL 
 

 
 

The BioPortal project was initiated in 2003 by the University of Arizona 
Artificial Intelligence Lab and its collaborators in the New York State 
Department of Health and the California Department of Health Services to 
develop an infectious disease surveillance system. The project has been 
sponsored by NSF, DHS, DoD, Arizona Department of Health Services, and 
Kansas State University’s BioSecurity Center, under the guidance of a federal 
inter-agency working group named the Infectious Disease Informatics Working 
Committee (IDIWC). Its partners include all the original collaborators as 

National Taiwan University. 

hospital ED free-text chief complaints (both in English and Chinese) as well 

and in-house developed innovative clustering-based techniques for retro-
spective and prospective data analysis. The analyses results are displayed via 

analysis module can be used to aid in the understanding of infectious disease 
transmission processes. 

 

and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7_9, 

access to a variety of distributed infectious disease data sources including 

West Nile Virus, foot-and-mouth disease, and live stock syndromes. Figure 9-1 

visualization of lab-generated gene sequence information. Its social network 

The BioPortal system provides distributed, cross-jurisdictional access to 

shows the BioPortal system architecture. This portal system provides Web-based 

datasets concerning several major infectious diseases, including Botulism, 

Spatio-Temporal Visualizer (STV). BioPortal also supports analysis and 

well as the USGS, University of California, Davis, University of Utah, the 

as other epidemiological data. It features advanced spatial-temporal data 

Arizona Department of Health Services, Kansas State University, and the 

analysis methods that include industry standard hotspot analysis algorithms 
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The BioPortal system aims to improve the ability of public health 
practitioners to detect, and maintain situational awareness of outbreaks of 
emerging diseases and bioterrorist attacks, allowing for more timely and 
efficient deployment of resources for further investigation and response 
measures. 

 
 
 
 

(a) BioPortal information sharing and data access infrastructure. 
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(b) BioPortal system architecture with epidemiological data and gene sequence data integrated. 
 

Figure 9-1. BioPortal system architecture. 

1. BIOPORTAL DATA COLLECTION 

ED chief complaint data in the free-text format are provided by the Arizona 
Department of Health Services and several hospitals in a batch mode for 
syndrome classification. Various disease-specific case reports for both human 
and animal diseases are another source of data for BioPortal. It also makes use 
of surveillance datasets such as dead bird sightings and mosquito control 
information. The system’s communication backbones, initially for data 
acquisition from New York or California disease datasets, consist of several 
messaging adaptors that can be customized to interoperate with various 
messaging systems. Participating syndromic data providers can link to the 
BioPortal data repository via the PHINMS and an XML/HL7 compatible 
network. 

2. BIOPORTAL DATA ANALYSIS 

BioPortal provides automatic syndrome classification capabilities based 
on free-text chief complaints. One method recently developed uses a concept 
ontology derived from the UMLS (Lu et al., 2008). For each chief complaint 
(CC), the method first standardizes the CC into one or more medical concepts 
in the UMLS. These concepts are then mapped into existing symptom groups 
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using a set of rules constructed from a symptom grouping table. For symptoms 
not in the table, a Weighted Semantic Similarity Score algorithm, which 
measures the semantic similarity between the target symptoms and existing 
symptom groups, is used to determine the best symptom group for the target 
symptom. The ontology-enhanced CC classification method has also been 
extended to handle CCs in Chinese. 

BioPortal supports hotspot analysis using various methods for detecting 
unusual spatial and temporal clusters of events. A hotspot is a condition 
indicating some form of clustering in a spatial distribution. Hotspot analysis 
facilitates disease outbreak detection and predictive modeling based on 
historical spatial-temporal data and in turn uses them for predictive purposes. 

SaTScan is made available as part of the BioPortal system through a 
simple Web interface and STV. BioPortal also supports the Nearest Neighbor 
Hierarchical Clustering method, and two new methods (Risk-Adjusted Support 
Vector Clustering, and Prospective Support Vector Clustering) developed in-

version of SaTScan that is incorporated in the BioPortal system uses the 
Bernoulli method. The distribution of baseline observations (or controls) and 
the distribution of new observations (or cases) are compared and circular 
clusters are identified where the proportion of new observations is significantly 
higher than the proportion of new observations outside the circle. RSVC is a 
clustering-based, spatio-temporal hotspot analysis algorithm developed at the 
Artificial Intelligence Laboratory of the University of Arizona. It combines the 
power of support vector machines (SVM) with the risk adjustment approach 

(data under normal conditions) to find the emerging at risk area. In addition, 

clustering routine (RNNH) combines the hierarchical clustering capabilities 
with kernel density interpolation techniques. 

3. BIOPORTAL VISUALIZATION, INFORMATION 
DISSEMINATION, AND REPORTING 

portal. This application allows the user to explore the incidence of infectious 
diseases. The portal allows the user to: (1) select a disease of concern and 
access-related databases; (2) narrow the scope by time-frame and geographic 
area of interest; (3) view a variety of data aggregations; and (4) perform 
hotspot analysis to focus attention on critical areas. 

from CrimeStat®. It clusters points with consideration for baseline information 

Neighbor Hierarchical clustering (NNH) routine in CrimeStat identifies groups 
BioPortal uses the RNNH algorithm provided by CrimeStat® III. The Nearest 

of incidents that are spatially close. It clusters points together and then proceeds 

Figure 9-2 shows the screenshot of the interactive Web-based surveillance 

to group the clusters together. The Risk-adjusted Nearest Neighbor Hierarchical 

house (discussed in Chapter 4 ) (Chang et al., 2005; Zeng et al., 2004a). The 
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Figure 9-2. Interactive Web-based BioPortal surveillance portal. 
 
Monitored disease incidence time series are shown on the surveillance 

view (Figure 9-3). The dashboard is integrated with time series detection 
capability and the BioPortal hotspot analysis and visualization tools. Detected 

BioPortal makes available a visualization environment called the Spatial-
Temporal Visualizer (STV), which allows users to interactively explore spatial 
and temporal patterns, based on an integrated tool set consisting of a GIS 
view, a timeline tool, and a periodic pattern tool (Hu et al., 2005). 

 
 
 
 
 

abnormalities are alerted on the upper panel. 

dashboard for the participating hospitals and other healthcare organizations to 
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Figure 9-3. BioPortal syndromic surveillance dashboard integrated with time series detection 
capability and the hotspot analysis and visualization tools. 

 
Figure 9-4 illustrates how these three views can be used to explore an 

infectious disease dataset. The GIS view displays cases and sightings on a 
map. The user can select multiple datasets to be shown on the map in different 
layers using the checkboxes (e.g., disease cases, natural land features, and 
land-use elements). Through the periodic view the user can identify periodic 
temporal patterns (e.g., which months or weeks have an unusually high number 
of cases). The unit of time for aggregation can also be set as days or hours. The 
timeline view provides a timeline along with a hierarchical display of the 
data elements, organized as a tree. 
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A new sequence-based phylogenetic tree visualizer has been recently 
developed for diseases such as the foot-and-mouth disease, for which gene 
sequence information is available (Figure 9-5). Phylogenetic tree analysis 
examines the DNA of pathogens to determine the genetic relationship 
between various strains, and to identify possible sources or mutation. The 
results of an analysis can be drawn as a phylogenetic tree showing the 
hierarchical hypothesized evolutionary relationships (phylogeny) between 
organisms. Each member in a branch is assumed to be descended from a 
common ancestor. The module color-codes outbreak occurrences based on 
distance in genetic space to help predict distribution of virus strains, and aids 
in more efficient vaccine distribution (Thurmond et al., 2007). 

Examining social networks is a useful epidemiological tool for under-
standing the progression of the spread of infectious diseases such as sexually 
transmitted diseases. The SNA module in the BioPortal  system  incorporates 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9-5. BioPortal phylogenetic tree analysis (source: BioPortal Web page). 
 

The BioPortal system also provides Social Network Analysis (SNA) 
capability for epidemic transmission process investigations (Figure 9-6). 
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Figure 9-6. Social network analysis to analyze the SARS epidemic in Taiwan in 2003 (Chen et al., 
2007). 

 
geographical locations, which might be high risk areas such as hospitals, into 
social networks to examine the role of such locations in infectious disease 

to maintain situational awareness and target incident investigation and 

to analyze the SARS epidemic in Taiwan in 2003. 
Data confidentiality, security, and access control are among the key research 

and development issues for the BioPortal project. An access control mechanism 
is implemented based on data confidentiality and user access privileges. For 
example, access privileges to the zip code and county level of individual 

The project also developed various Memoranda of Understanding (MOUs) 
for data sharing among different local and state agencies. 

patient records may be granted to selected public health epidemiologists. 

mitigation efforts more effectively. Social Network Analysis was also employed 

transmission, and to identify potential bridges between locations. This helps 
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4. CASE STUDY: FOOT-AND-MOUTH DISEASE 
SITUATIONAL AWARENESS 

contagious infectious animal diseases in the world. BioPortal plays an important 
role in the collaborative efforts with the FMD Laboratory at the University 
of California, Davis, for developing global real time surveillance for foot-and-
mouth disease. The FMD BioPortal focuses on: (1) gathering global FMD 

evolution; and (4) evaluating and testing FMD surveillance methodologies. 
FMD BioPortal integrates information and data related to foot-and-mouth 

disease from public sources and collects proprietary or confidential data 
through secure specific routing structures. Major data sources include the 

FAO (Food and Agriculture Organization of the United Nations) and OIE 
(World Organisation for Animal Health), and GenBank sequence data. 

Analytical and visualization tools for data summarization and trend detection 
can be selected and invoked through the FMD BioPortal Web-based platform as 
illustrated in Figure 9-7. The BioPortal infrastructure provides generic support 
for summarizing and visualizing FMD-related data with prominent spatial and 
temporal data elements through the Spatial-Temporal Visualizer (STV) (an 

A major enhancement to STV developed specifically for FMD BioPortal 
is the phylogenetic tree visualization that allows the incorporation of genomic 
information visualization in addition to the existing spatial and temporal data 
visualization capabilities (Figure 9-9). The phylogenetic tree visualization is 
used to display temporal-spatial genomic variation of FMD isolates and 
allows user-driven evaluation of differences in genomic variation over time 
and geographic location. 

Intelligence Lab at the University of Arizona and the FMD Lab at UC Davis 
to collect open source FMD breaking news. A team of epidemiologists from 
different countries at the FMD Lab reviews more than 40 Web sites daily 
and sends out the selected news items in a summary format to a listserv. An 
automatic FMD related news collection and classification system was 
recently developed by the AI Lab at the University of Arizona. 

 
 
 
 
 
 

example is shown in Figure 9-8). 

Foot-and-Mouth Disease (FMD) is considered to be one of the most 

World Reference Laboratory at Pirbright, animal surveillance data from 

data; (2) identifying surrogates of risks; (3) modeling and predicting FMD virus 

In addition, FMD News monitoring is an ongoing effort by the Artificial 
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Figure 9-7. FMD BioPortal for accessing analytical and visualization tools (source: FMD 
BioPortal Web site). 

Figure 9-8. Visualization of FMD geographical distribution (source: FMD BioPortal Web site). 
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Figure 9-9. FMD phylogenetic tree visualization (source: FMD BioPortal Web site). 

5. FURTHER READINGS 

We provide the following project link and some key readings for the 
readers who might be interested in learning more details about the BioPortal 
project. 

 
 

Project link: 

http://biocomputingcorp.com/bphome.html 
http://ai.arizona.edu/research/bioportal/index.htm 
 
Important readings:  

1. Hu, P., D. Zeng, H. Chen, C. Larson, W. Chang, C. Tseng, and J. Ma 
(2007). “System for Infectious Disease Information Sharing and 
Analysis: Design and Evaluation,” IEEE Transactions on Information 
Technology in Biomedicine, Vol. 11, No. 4. 

2. Lu, H.-M., D. Zeng, L. Trujillo, K. Komatsu, and H. Chen (2008). 
“Ontology-Enhanced Automatic Chief Complaint Classification for 
Syndromic Surveillance,” Journal of Biomedical Informatics, Vol. 41, 
No. 2, pp 340–356. 
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3. Chang, W., D. Zeng, and H. Chen (2008). “A Stack-Based Prospective 

Vol. 45, No. 4, pp 697–713. 
 Zhang, Y.L., Y. Dang, Y.-D. Chen, H. Chen, M. Thurmond, C.-C. King, 

D. Zeng, C. Larson (2008). “BioPortal Infectious Disease Informatics 

of International Conference on Digital Government Research, pp 
393–394. 

research: disease surveillance and situational awareness,” in proceedings 

Spatio-Temporal Data Analysis Approach,” Decision Support Systems, 
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Chapter 10 

ESSENCE  
 

 
 

The Electronic Surveillance System for the Early Notification of Community-

Applied Physics Laboratory (JHU/APL) in collaboration with the Maryland 
Department of Health and Mental Hygiene, the District of Columbia Depart-

of the Defense Advanced Research Projects Agency (DARPA). It is now 

(DoD-GEIS). It is currently deployed in the National Capital Area (NCA) 
(Lombardo et al., 2004). The system monitors both military and civilian 
healthcare data daily for early outbreak detection and warning, fusing 
information from multiple data sources that vary in their medical specificity, 
spatial organization, scale, and time-series behavior (Burkom et al., 2004). 
ESSENCE has gone through a series of important development stages, and 
its most current prototype is ESSENCE IV. 

Figure 10-1 shows the system architecture of ESSENCE. It collects public 
health status information from three major channels: clinical data, nonclinical 
syndromic data, and health events-related information. The accessibility of 
the collected information is managed by either disclosure control or sharing 
polices to ensure the privacy of personal healthcare information. Automated 
outbreak detection and alerting are supported. Situation and threat awareness 
and epidemiology investigation support are integrated with secured Web-
based visualization and user interfaces. 

 

and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7_10, 

Based Epidemics (ESSENCE) was developed by the Johns Hopkins University 

used in the Department of Defense Global Emerging Infections System 

ment of Health, and the Virginia Department of Health under the sponsorship 
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Figure 10-2. Graphs of all the reporting MTFs (icons are highlighted in one of three colors 
based on the degree of departure from historical data for one or more syndrome group on any 
given day). 
 

part of ESSENCE system. Figure 10-2 shows all the reporting MTFs (icons 

1. ESSENCE DATA COLLECTION 

1. Chief complaint data from hospital ERs; ICD-9-CM codes, OTC sales 
of pharmaceuticals, nurse hotline calls; school absenteeism; and veterinary 
reports; 100% of the clinical visits of military and their dependents are included. 

 
 
 
 

10. ESSENCE

historical data for one or more syndrome group on any given day). 
are highlighted in one of three colors based on the degree of departure from 

ESSENCE now mainly collects three types of data (Lombardo et al., 2003): 

Participation of military treatment facilities (MTFs) constitutes an important 
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2. Publicly available information (e.g., information about local endemic 
disease, sales promotions, and even weather events). 

3. Information about external surveillance activities in the NCA. 
The process for data collection is automated. For the electronically available 

clinical or nonclinical data, the system constantly polls from the hospital 
information system via a query software (Lombardo et al., 2003). For publicly 
available health event-related news, the information is collected via electronic 
media. External surveillance activities are continually communicated among 
the public health officials and epidemiologists manually or electronically. 

Daily counts are placed into the following syndrome groups (Table 10-1) 
(Lombardo et al., 2004). (Each of these groups is defined by a specific set of 
ICD-9 codes.) 

Table 10-1. Syndrome categories monitored by ESSENCE II. 

 
The free text chief complaints are processed and classified into syndrome 

categories with either a natural language processing algorithm (Lombardo  
et al., 2003) or a weighted keyword matching based parser (Lombardo, 

activities. This information in most cases is available via electronic media. 
Likewise, the occurrence of high-profile events in the community may change 

improved timely reporting, optimized automated data transmission, and more 

2. ESSENCE DATA ANALYSIS AND SYSTEM 
EVALUATION 

Respiratory Gastrointestinal Rash 
Death Sepsis Neurologic 
Other Unspecified   

syndrome groups to the participating hospital, state, and county surveillance 

The time lag in data collection is currently a major limitation of ESSENCE. 
detection and alerting thresholds” (Lombardo et al., 2003). 

reference algorithms for assessing the performance enhancement provided 

frequent data uploads should decrease the data lag to one day. 

Reporting System (EARS) algorithms are also included for temporal analysis as 

for use or for other surveillance activities. Within minutes of the query to the 

Weighted Moving Average (EWMA) technique. CDC’s Early Aberration 

The temporal analysis methods for outbreak detection currently used in 

2004). “Once converted to this common format, the information is available 

ESSENCE include an autoregressive modeling algorithm and the Exponentially 

Most of the data can be received within 1–3 days after patient visits. However, 

hospital emergency room electronic log, the system can forward counts of the 
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by the ESSENCE algorithms (Lombardo et al., 2003). For spatial anomaly 
detection, the Kulldorff scan statistic as implemented in the SaTScan software 
is used as a primary spatial analysis tool. A modified version of scan statistic 
is also developed to produce approximate clusters of space-time interaction. 

In ESSENCE, the outbreak detection methods take a “data-fusion” approach 
that includes multiple data streams. Burkom and Elbert applied the Kulldorff 
statistic to multiple data sources in ESSENCE by treating them as covariates 
while using whatever spatial information is available in each source (Burkom, 
2003). A multiple univariate strategy can also be applied to the multiple data 
stream analysis, by treating each data stream separately with a univariate 
outbreak detection method. Then a consensus approach based on Bayes Belief 
Network (BBN) is used to combine the outputs of the multiple univariate 
algorithms to optimize the decision (Burkom et al., 2004). The BBN approach 
increases the sensitivity while controlling the false-alert rate. Table 10-2 lists 
the three categories of outbreak detection methods currently employed in 
ESSENCE. 

The outbreak detection capacity with ESSENCE has been tested in a few 
studies. In the 2003 study (Lombardo et al., 2003), several outbreak scenarios 
were developed to test the performance, each scenario consisting of a series 
of real data streams with a simulated outbreak superimposed. The value of 
multiple data sources added to the detection performance is discussed by 
plotting the performance of the algorithms for respiratory syndrome as a 
function of the number of infected people and the involvement of different 
data sources (ER visits, absenteeism data, OTC influenza medication sales, 
and school absentee totals). It shows that the absenteeism data contributes to 
the timeliness in the detection by 2 days and require a smaller population of 
infected people. 

In the Bio-ALIRT evaluation program, three of the ESSENCE’s detection 
algorithms (Provider-count-adjusted MSPC, multiple univariate EWMA, and 
Bayes Belief Network combination) aggregating multiple data sources were 
tested for respiratory or gastrointestinal syndromes (Burkom et al., 2004). 
Sensitivity and  timeliness are measured  as performance assessment metrics. 

 
Table 10-2. Analytical methods used in ESSENCE for early outbreak detection. 

Temporal analysis Spatial analysis Spatial-temporal analysis 
Autoregressive modeling Scan statistic Modified scan statistic 
EWMA    
EARS algorithms (as 
reference) 
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The performance results of the three methods are summarized in (Lombardo 
et al., 2004). In general, the provider-count-adjusted MSPC and multiple 
univariate EWMA algorithm reduce the median detection time by 5 days for 
the most constrained false-alert rate, whereas the BBN improved timeliness 
by 2 days. The BBN also detected an additional outbreak at the lowest 
specificity (Lombardo et al., 2004). 

3. ESSENCE INTERFACE, INFORMATION 
DISSEMINATION, AND REPORTING 

ESSENCE provides a map-based visualization tool that can display both 
raw case/event data and clusters/hotspots identified by scan statistics. The 
user can enter zip codes or click on an area on the map to select subsets of 
data of interest. The details about cases or events are presented as tables or 
time-series graphs. ESSENCE provides the second portal listing alerts 
generated as the output of the detection processes. These lists consist of 
color-coded flags to indicate the extent of deviations from the baseline 
normalcy. Upper confidence limits (UCLs) for the daily predictions are 
computed and used as thresholds for alerts. If an observed case count 
exceeds the 95% UCL but not the 99% UCL, a low-level (yellow) alert is 
generated. If the count exceeds the 99% UCL, a high-level (red) flag results. 
The user can organize the alert lists for selected data of interest. They can 
also sort these lists by various criteria and access data or port them to the 
map visualization tool to view the spatial distribution of flagged cases. 

The third ESSENCE tool, the query portal, allows a user to select subsets 
of data and data elements from drop-down menus and view these data 
elements over a user-specified timeframe as graphs or tables. The fourth 
portal can be used to generate summary reports, which can then be exported 
outside of ESSENCE for further analysis. The user can select any data elements 
in the archive and view historic counts as well as upward or downward trends.  

Information dissemination in ESSENCE is based on user roles and 
jurisdictions. A basic function of ESSENCE is to deliver alerts and surveillance 
information to the military and civilian public health authorities in the NCA. 
The system provides detection outputs as well as the details of underlying 
data streams via secure Web sites. Information is provided in many separate 
information layers. In ESSENCE, this data layering approach was implemented  
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(a) Temporal analysis with time-series plot (source: Tricare presentation (2005c)). 

(b) Temporal analysis with stacked graph of time-series (source: Tricare presentation (2005c)). 
 

 
 
 
 

10. ESSENCE

to facilitate the distribution to various user roles. “For example, a user who 
logs on from an emergency room may be able to see only the emergency 
room data from his or her jurisdiction, whereas a user recognized as a 
director of epidemiology would have access to all the information within his 
or her jurisdiction as well as the shared information from the surrounding 
jurisdictions in the region” (Lombardo, 2003). 
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(c) Geospatial analysis and GIS mapping (source: ESSENCE IV project Web page). 

(d) GIS mapping of the National Capital Region for respiratory syndrome (source: 
ESSENCE IV project Web page). 

Figure 10-3. Visualization of ESSENCE system. 
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4. FURTHER READINGS 

We provide the following project link and some key readings for the readers 
who might be interested in learning more details about the ESSENCE system. 

 
Project link:  
 
http://eedweb.dhss.mo.gov/ 
 
Important readings:  
 
1. Lombardo, J., and H. Burkom, et al. (2003). “A systems overview of 

the Electronic Surveillance System for the Early Notification of 
Community-based Epidemics (ESSENCE II).” Journal of Urban 
Health: Bulletin of the New York Academy of Medicine, 80(2): pp 32–42. 

2. Burkom, H., and E. Elbert, et al. (2004). “Role of Data Aggregation 
in Biosurveillance Detection Strategies with Applications from 
ESSENCE.” MMWR (CDC) 53(Suppl): pp 67–73. 

3. Lombardo, J., and H. Burkom, et al. (2004). “Electronic Surveillance 
System for the Early Notification of Community-Based Epidemics 
(ESSENCE II), Framework for Evaluating Syndromic Surveillance 
Systems.” Syndromic surveillance: report from a national conference, 
2003. MMWR 2004 53(Suppl): pp 159–165. 
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Chapter 11 

NEW YORK CITY SYNDROMIC 
SURVEILLANCE SYSTEMS 
 

 
 

The New York City (NYC) Department of Health and Mental Hygiene 
(DOHMH) has conducted prospective surveillance of syndromes since 
1995 (Heffernan et al., 2004a). The DOHMH syndromic surveillance system 

a few other complementary surveillance systems for Emergency Medical 
Services (EMS) ambulance dispatch calls, retail pharmacy sales, and work 
absenteeism data. These systems started operating separately, and different 

around the ED visits based syndromic surveillance system in NYC. 
 
 
 
 
 
 
 
 
 
 
 

and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7_11, 

consists of Emergency Department (ED)-visits-based surveillance system and 

analytical methods are being employed by each of them. A “drop-in” synd- 

surveillance for bioterrorism related illness was implemented following the 
romic surveillance system that deployed CDC field-staff to conduct 24 hours 

September 11th 2001 attack (Das et al., 2003; CDC, 2002). We use Table 11-1
to summarize these systems that comprise the syndromic surveillance activities 
in New York City. However, in the following text, the case study will focus 
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Table 11-1. The syndromic surveillance systems in New York City. 

1. NYC ED SYNDROMIC SURVEILLANCE 
SYSTEM DATA COLLECTION 

Syndromic system Analytical approaches Analysis 
frequency 

Data 
transmission 

Emergency Medical 
Services (EMS) 
Ambulance Dispatch 
Calls (Greenko et al., 
2003) 

An adaptation of the excess 
influenza mortality cyclical 
(linear) regression model  

Daily  Calls 

Emergency 
Department Visits 
(Heffernan et al., 
2004b) 

Prospective temporal and 
spatial scan statistics 

Daily  

Retail Pharmacy Sales 
(cough and influenza 
medications, and 
antidiarrheal 
medicines) 

A linear regression model 
similar to that used in the 
EMS system, controlling for 
season, holidays, day of the 
week, promotional sales, 
positive influenza tests, and 

Daily 
(weekdays 
only) 

FTP 
 

Worker absenteeism CUSUM method with a 14-
day baseline 

Daily  

A “drop-in” syndromic 
surveillance system 
following the 9/11 
attack (CDC, 2002) 

Same techniques that had 
been developed for the EMS 
ambulance dispatch system 

Daily CDC field-
staff collected 
the data at 15 

ERs 

attachments  

NYC hospital 

temperature 

By November 2003, 44 of NYC’s 67 EDs participated in this system, 
thereby capturing 80% of all NYC ED patient visits (Heffernan et al., 2004a). 
Data files are transmitted to DOHMH daily, either as email attachments or 
through FTP. Half of the participating hospitals have already automated the 
transmission process. Files can be in several formats, most commonly as 
fixed-column or delimited ASCII text. “Data are read and translated into  
a standard format, concatenated into a single SAS dataset, verified for 
completeness and accuracy, and appended to a master archive.” (Heffernan 
et al., 2004a, 2004b). 

FTP or Email 
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Table 11-2. Exclusive syndrome categories of collected chief complaints in NYC ED 
syndromic surveillance system. 

Common cold Sepsis Respiratory 
Diarrhea Fever Rash 
Asthma Vomiting  

2. NYC ED SYNDROMIC SURVEILLANCE 
SYSTEM DATA ANALYSIS AND FIELD 
INVESTIGATIONS 

The NYC ED syndromic surveillance system uses an adaption of Kulldorff 
and Mostashari’s one-dimensional temporal to evaluate citywide trends in 
syndrome visits and spatial scan statistic (Kulldorff, 1997, 2001) to evaluate 
clustering in ED visits by hospital address and patient home zip code. 

The temporal scan statistic is a special case of the prospective space-time 
scan statistic. The analysis is conducted in a prospective setting with daily 
runs and a variable-length window consisting of the last 1, 2, or 3 days. In 
particular, the ratio of syndrome visits to nonsyndrome (other) visits during 
the most recent 1, 2, or 3 days is compared with a 2-week baseline. 

The spatial scan statistic approach requires comparing the observed to the 
expected number of cases in each geographic area. To control for purely 
spatial differences, expected counts of syndrome visits are derived from each 
area’s history, rather than from the underlying census population. To detect 
rapidly emerging outbreaks, the approach takes the data from the observed 
cases from the last day and compares them with data from a 14-day baseline 
period, with a 1-day gap between the baseline and the date on which spatial 
clustering is being evaluated. 

The chief complaints captured by the ED visit records are classified into 
eight exclusive syndrome categories (Table 11-2) with an SAS algorithm 
developed in-house. This algorithm scans the chief complaint field for 
character strings assigned to a syndrome. The coding algorithm is designed 
to capture a wide variety of common misspellings and abbreviations. If the 
chief complaints contain words or phrases from multiple categories, it will 
be coded according to the following priority-based assignment scheme: 
common cold > sepsis/dead on arrival > respiratory > diarrhea > fever > rash 
> asthma > vomiting > other visits. This scheme attempts to place each chief 
complaint into a single, specific syndrome. The two syndromes of particular 
interest for bioterrorism surveillance are the respiratory and fever syndromes 
in persons older than 13 years of age (Heffernan et al., 2004b). 
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The surveillance signals produced by the system are first reviewed by medical 
epidemiologists on a daily basis. A report consisting of graphs and a brief 
summary is distributed by electronic mail to program staff. Further validations 
are conducted through field investigations. Detailed field investigations of 
syndromic signals are meant to (1) identify the etiology of signals; (2) 
determine why a given syndromic surveillance system failed to detect an 
outbreak captured through traditional surveillance; (3) validate the utility of 

3. NYC ED SYNDROMIC SURVEILLANCE 
SYSTEM VISUALIZATION, INFORMATION 
DISSEMINATION, AND REPORTING 

Spatial syndromic signals are followed up by reviewing the descriptive 
summary of the emergency department visits included in the signal. Hospital(s) 
contributing the largest number of excess cases are paid particular attention, 
by examining the specific syndromes triggering the signal and the line list of 
patients with their chief complaints produced, along with summary statistics 
for age, sex, and zip code. Syndromic signals are communicated to other 
hospital ED staff through phone calls to alert them of unusual disease 
patterns and to ask whether they have noted an increase in the frequency of 
syndrome visits or admission of seriously ill patients. Signals of elevated 
concern are further investigated by conducting field investigations including 
chart reviews, patient interviews, and onsite discussions with clinicians. 

Some sample graphs from the presentations of DOHMH syndromic 
surveillance made at the National Syndromic Surveillance Conference 
(Mostashari, 2002) are as shown in Figures 11-1 to 11-3. 

  
 
 
 

syndromic surveillance for early infectious disease outbreak detection. 

Daily analyses are reviewed with a medical epidemiologist, and a report 
containing detailed graphs and a brief summary is distributed by email to 
related program staff. If a signal investigation is performed, a more detailed 
report will be prepared and made available by the next day. “An external 
report summarizing citywide public health trends is also distributed daily to 
state and regional health officials, the New York City Office of Emergency 
Management, police departments, and fire departments. Hospital-specific, 
confidential reports are shared quarterly with participating emergency 
departments, comparing their facility to overall citywide trends” (Heffernan 
et al., 2004a, 2004b). 



11. New York City Syndromic Surveillance Systems 

 

161 

Figure 11-1. Plotting of NYC ED respiratory visits from November 2001 through March 

Figure 11-2. Display of epidemiology of drug overdoses from EMS “drug overdose” calls 

2002 (Mostashari, 2002). 

(Mostashari, 2002).
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4. CASE STUDY: RESPIRATORY ILLNESS 

SYNDROMIC SYSTEMS IN NEW YORK CITY 

Community-wide increases in respiratory illness detected through syndromic 
surveillance are usually difficult to interpret. Syndromic surveillance analysts 

hypothesize that multiple data streams can help distinguish whether increases in 

several syndromic surveillance data sources daily, including ambulance 

from emergency rooms, and over-the-counter medication sales (data samples 
are shown in Figure 11-4). Daily citywide ratio of ED respiratory over other 
visits was adjusted for day-of-week and holiday effects using linear regression. 

at the New York City Department of Health and Mental Hygiene (DOHMH) 

respiratory illness are related to environmental allergens or infectious diseases. 
For the period June 1, 2004 to May 31, 2005, the NYC DOHMH monitored 

dispatch calls from Emergency Medical Services (EMS), chief complaints 

SURVEILLANCE USING MULTIPLE 

Figure 11-3. Display of West Nile Virus activities in New York City through September 2001 
(Mostashari, 2002).
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Volume spikes in the daily adjusted ratio were identified using the EARS 
CUSUM C3 method with a 14-day baseline. During the study period, five 
sustained, citywide spikes in ED respiratory illness were observed. Figure 
11-5 shows the plot of ED respiratory illness ratio over other visits adjusted 
day-of-week and holiday effects, with CUSUM signals marked and the 
corresponding areas shaded in gray. 

 
 
 
 
 
 
 
 
 
 
 

Figure 11-4. Sample ambulance dispatch calls and over-the-counter pharmacy data. 

Figure 11-5. Citywide daily day-of-week adjusted and holiday-adjusted ratios of ED 
respiratory/other visits, with CUSUM signals marked. 

 
 
 
 
 
 
 
 
 

Figure 11-6. Plots of daily citywide ratios of OTC allergy over analgesics sales (gray), ED 
asthma over other visits (green), and ED fever-flu over other visits (blue). 
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To investigate whether the signals are related to influenza or allergy 
season, the adjusted daily citywide ratios of OTC allergy over analgesics sales 
(gray), ED asthma over other visits (green), and ED fever-flu over other visits 
(blue) were also plotted (see Figure 11-6). 

Comparing two sets of plots, i.e., the adjusted ratios of ED respiratory/ 
other visits (Figure 11-5) and ratios of OTC, ED asthma, and ED-fever-flu 
(Figure 11-6), six signals of ED respiratory illness over a 15-day period in 
September and October were preceded by a spike in OTC allergy sales, and 
so were nine signals in May. These signals also coincided with increasing 
ED asthma visits while ED fever-flu visits remained constant. Instead, three 
consecutive signals in late November, 16 signals in December and 7 signals 
in February coincided with increasing ED fever-flu visits, while these periods 
showed minimal to no increases in ED asthma visits or OTC allergy sales. 
The signal patterns in the multiple data streams suggested that respiratory 
illness increases in Fall and Spring could be attributed to allergy or asthma, 
whereas the Winter increase in respiratory illness is more likely to be attributed 
to influenza (Das, 2005). 

The respiratory illness syndromic surveillance practice at New York City 
demonstrated how multiple syndromic data streams can be helpful for 
characterizing ED respiratory syndrome signals. 

5. FURTHER READINGS 

 

1. Heffernan, R., F. Mostashari, D. Das, A. Karpati, M. Kulldorf, and D. 

MMWR (CDC) 53(Suppl): pp 23–27. 
2. Heffernan, R., F. Mostashari, D. Das, M. Besculides, C. Rodriguez, J. 

Greenko, L. Steiner-Sichel, S. Balter, A. Karpati, P. Thomas, M. 
Phillips, J. Ackelsberg, E. Lee, J. Leng, J. Hartman, K. Metzger, R. 
Rosselli, and D. Weiss (2004). “Syndromic surveillance in public 
health practice, New York City.” Emerging Infectious Diseases 
[serial on the Internet]. 

3. Mostashari F., A. Fine, D. Das, J. Adams, and M. Layton (2003). 
“Use of ambulance dispatch data as an early warning system for 
community-wide influenza-like illness, New York City.” Journal of 
Urban Health 80(2 Suppl 1), pp i43–i49. 

We provide the following key readings for the readers who might be 
interested in learning more details about the New York Syndromic Surveillance 

Weiss (2004). “New York City Syndromic Surveillance Systems.” 

system. 

Important readings: 
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4. Heffernan, R., F. Mostashari, D. Das, M. Besculides, C. Rodriguez, J. 

J. Ackelsberg, E. Lee, J. Leng, J. Hartman, K. Metzger, R. Rosselli, and 
D. Weiss (2004). “System Descriptions New York City Syndromic 

5. Das, D., Metzger, K., Heffernan, R., Balter, S., Weiss, D. and 
Mostashari, F. 2005. “Monitoring Over-The-Counter Medication Sales 

Surveillance Systems.” MMWR(CDC) 53(Suppl), pp 23–27. 

11. New York City Syndromic Surveillance Systems 

Greenko, L. Steiner-Sichel, S. Balter, A. Karpati, P. Thomas, M. Phillips, 

“MMWR(CDC) 54(Suppl), pp. 41–46. 
for Early Detection of Disease of Disease Outbreaks—New York City, 
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EARS 
 

 
 

 
 

 

and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7_12, 

The Early Aberration Reporting System (EARS) was first developed at 
the US CDC. Current EARS system development and research activities are 
supported by the National Center for Infectious Diseases (NCID) Bio-
terrorism Preparedness and Response Program (Hutwagner et al., 2003). 
EARS provides national, state, and local health departments with several 
alternative aberration detection methods to analyze and visualize public health 

approximately 90 city, county and state public health offices, in addition to 
some international offices, use EARS to assist in the early identification of 

EARS has been used in practice with several outbreaks flagged. “In one 

running EARS on their notifiable diseases, the outbreak was confirmed and 

the ozone level that was not large enough to trigger an ozone alarm. Another 
site using EARS identified the beginning of the West Nile Virus season and 

EARS has also been used for several large public events. These events 
include the 2004 G8 Summit in Georgia, the 2004 Democratic National 
Convention in Boston, the 2004 Republican National Convention in New 
York City, and the 2004 Summer Olympics in Greece. The Florida State  

instance, a state health official thought they had a shigella outbreak. After 

surveillance data for syndromic surveillance (Figure 12-1). “As of mid 2006, 

outbreaks of disease and bioterrorism events” (CDC, 2006a; Hutwagner et al.,
2003). “The National Center for Infectious Diseases (NCID) Bioterrorism 
Preparedness and Response Program provides technical support and research 
and development for EARS activities” (Hutwagner et al., 2003). 

2003). “EARS has also linked an increase in asthma cases to an increase in 
they were able to easily identify the county involved” (Hutwagner et al., 

implemented spraying for mosquitoes”  (Hutwagner et al., 2003). 



Chapter 12 168 

Figure 12-1. EARS SAS-based system architecture. 
 

1. EARS DATA COLLECTION AND DATA 
PREPROCESSING 

Users can feed EARS a variety of syndromic surveillance data streams for 

Microsoft Access database tables, Microsoft Excel worksheets, or any 
delimited text files. EARS does not support real-time data streaming; in other 
words, it works in batch mode by loading the data manually. 

 
 

Department of Health used EARS following the 2004 hurricane season. 
EARS detected increases in animal bites and carbon monoxide during the 
post-hurricane monitoring period. EARS was also used for the 2005 hurricane 
season following Hurricanes Katrina and Rita for syndromic surveillance. 

and school and business absenteeism. Data need to be saved as SAS datasets, 

analysis. These data are chief complaints, admission codes, and discharge 
codes, over-the-counter drug sales, 911 emergency calls, physician office data, 
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EARS analyzes syndromic data from emergency departments based on 
chief complaint, admission codes and discharge codes, 911 emergency calls, 
physician office data, school and business absenteeism, and over the counter 
drug sales. EARS is also used for nationally notifiable disease information. 
Some EARS users, who receive their data via file transfer by a given time, 
have EARS set up to run as a scheduled task. Other users run EARS once a 
day or as needed from their laptop or desktop. In addition, users have taken 
the summary file that is produced and linked it back to the data for additional 
drill-down analysis. The majority of EARS users are able to run and review 

In EARS, chief complaints are searched and recognized as a symptom 
and thus grouped into a particular syndrome category by using an internal 
function called EARS Search Process (ESP). ESP searches the chief complaint 
field for specific words that describe illnesses of interest that EARS should 
monitor. The syndrome categories predefined by the words are embedded 
within the EARS code. The syndrome definitions can be customized and 
expended by the users with the built-in logic equations to relate symptom 
names to the syndrome name. 

It is also allowed to run the EARS search process (ESP) feature without 
running EARS. This makes it possible to build new symptoms and syndrome 
equations without running the entire EARS process. 

2. KEY EARS ABERRATION DETECTION 
METHODS 

EARS uses three limited baseline aberration detection methods called 
C1-MILD, C2-MEDIUM, and C3-ULTRA (CDC, 2006a) and two historical 
methods (at least 5 years historical data) – seasonally adjusted CUSUM 
method and historical limits method. The terms mild, medium, and ultra 
refer to the level of sensitivity of the three statistical methods. For example, 
the least sensitive statistical method is named C1-MILD since it is 
considered to have the lowest sensitivity. These methods were designed for 
public health surveillance data with varying degrees of available historical 
information. The seasonally adjusted CUSUM method is based on the 
positive 1-sided CUSUM where the count of interest is compared with the 5-
year mean and the 5-year standard deviations for that period. The seasonally 
adjusted CUSUM was originally applied to laboratory-based Salmonella 
serotype data (Hutwagner et al., 2005). The historical limits method compares 
the current sum of 4 time periods to the mean of the sum of 15 totals of 4 time 
periods surrounding the current point of interest over 5 years (Hutwagner  
et al., 2005). 

12. EARS

the information from several sources within 5–15 minutes a day. 
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Figure 12-2 summarizes the evaluation results of performances of algorithm 
C1, C2, C3, and NBC 7-day, NBC 14-day and NBC 28-day in terms of 
sensitivity vs. false alarm rate. They are all CUSUM - based methods. The 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Figure 12-2. Sensitivity of EARS and Negative Binomial CUSUM (NBC) algorithms 
according to false alarm rate (Watkins et al., 2008).  

NBC: Negative binomial
cusum with an out of control
state defined as 2 standard
deviations greater than the
mean 

The length of the baseline comparison period for C1, C2, and C3 
methods is one week. This time window allows the algorithms to account for 
possible fluctuations in the expected case count attributable to any particular 

the previous week or a recent week relative to the current value; therefore, if 
the syndrome of interest is seasonal, the baseline period most often represents 

“The selection of the baseline period relative to the current value is 
different for the C1-MILD method relative to the other two methods. For the 
C2-MEDIUM and C3-ULTRA methods, the baseline period is further back 
in time relative to the baseline period for the C1-MILD method. The baseline 
period for C1-MILD is obtained from the previous 7 days in closest proximity 

values selected from the same season” (Hutwagner, 2005b). 

to the current value, (day[t-7] through day[t-1])” (Hutwagner, 2005b). 

day of the week. “In addition, the baseline period is always selected from 
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class of Negative Binomial CUSUM (NBC) algorithms are CUSUM algorithm 
variations that are with an out of control state defined as 2 standard deviations 
greater than the mean. The evaluation is based on the detection of outbreaks 

NBC algorithms show significantly higher sensitivity when compared with the 
EARS C1, C2, and C3 algorithms, particularly at low false alarm rates. It 
suggests that the NBC algorithms have a greater level of agreement with 
epidemiological opinion than the EARS algorithms with respect to the existence 

individual EARS and NBC algorithms were not significantly different when 

3. EARS VISUALIZATION, INFORMATION 
DISSEMINATION, AND REPORTING 

EARS generates time-series events occurrence plots for a period of time 
that is specified by the user. The plots are flagged with red marks according 
to the output of the C1-MILD, C2-MEDIUM, and C3-ULTRA methods. By 
clicking on the red marks, EARS can bring the users the original data that 

report. 
The EARS program presents its analysis in a complete HTML Web site 

et al., 2003). 

 
 

12. EARS

of Ross River Virus disease in Western Australia. As shown in Figure 12-2, 

timeliness was also incorporated into the analyses (Watkins et al., 2008). 

output requires only a Web browser. This output can be viewed simultaneously 

of outbreaks of Ross River Virus disease. However, the performance of 

by several different public health officials at different locations (Hutwagner 

containing tables and graphs linked through a homepage. Viewing EARS 

produced the flagged aberration. Figure 12-3 is a sample EARS 30-day graph 

The EARS MV Report is the latest reporting tool introduced in EARS 
version 4. This tool allows the user to quickly view all the data for each 
syndrome on one page. The user can of course examine data tables in detail 
to view graphs, maps and the original data associated with any flagged 
output.  

As depicted in Figure 12-4, the EARS MV Report window has two 
panels. The left panel, labeled “MV Report Contents,” shows the contents of 
the entire report. The right panel shows the selected output. In the example 
below, the table output is shown in the right panel. The user can easily use 
the “Back” button on the contents panel to sift through previous output 
selections (CDC, 2006a). 
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Figure 12-4. EARS MV report (source: CDC EARS Web site). 
 

Figure 12-3. Sample EARS 30-day graph report (source: CDC EARS Web site). 
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4. CASE STUDY: POSTHURRICANE PUBLIC 
HEALTH SURVEILLANCE WITH EARS 

In response to Hurricane Katrina, CDC and the Louisiana Department of 
Health and Hospitals (LDHH) implemented active public health surveillance 
in September, 2005, to monitor for injuries and illnesses at functioning hospitals 
and other acute-care facilities in the greater New Orleans area. At the same 
time, LDHH and Office of Public Health (LAOPH) recognized the need for 
communicable disease surveillance in the evacuation centers (ECs). Starting 

under EC surveillance is plotted by date. 

a database and then analyzed by comparing daily results with a 3-day moving 

Those cases that could not be reconciled by telephone were referred to LAOPH 

 

Figure 12-5. Number and percentage of persons under surveillance in hurricane evacuation 
centers by date – Louisiana, September to October 2005 (Toprani et al. 2006). 

 

12. EARS

For EC surveillance, initially, communicable disease data were entered into 

throughout the state of Louisiana. In Figure 12-5, the number of persons 

for investigation. During the period September 15 to October 26, review  

average. Beginning September 14, data were analyzed using EARS statistical 

elevated CUSUM score suggests a potential outbreak. Elevated CUSUM scores 

of individual EC surveillance forms led to 86 follow-up investigations by  

software. CUSUM scores were computed for each syndromic category. An 

and suspicious cases and clusters identified were investigated by telephone. 

from August 2005, approximately 50,000 persons began moving into ECs 
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warranted telephone investigation; 46 (15%) were referred for follow-up by 
LAOPH. Of 56 investigations referred to LAOPH after implementation of 
EARS, 42 (75%) were identified by both an elevated CUSUM score and 
epidemiologist review of surveillance forms, 10 (18%) were identified by 
epidemiologist review only, and 4 (7%) were identified by an elevated 

5. FURTHER READINGS 

We provide the following project link and some key readings for the readers 
who might be interested in learning more details about the EARS system. 

 
Project link: 

http://www.bt.cdc.gov/surveillance/ears/ 
 
Important readings: 

1. CDC (2006). “Early Aberration Reporting System.” http://www.bt.cdc. 
gov/surveillance/ears/. 

2. Hutwagner, L., W. Thompson, et al. (2003). “The Bioterrorism 
Preparedness and Response Early Aberration Reporting System 
(EARS).” Journal of Urban Health, 80(2 suppl 1), pp 89–96. 

3. Zhu, Y., W. Wang, et al. (2005). “Initial Evaluation of the Early 
Aberration Reporting System – Florida.” Morbidity & Mortality 
Weekly Report (CDC), 54(Suppl), pp 123–130. 

 
 
 

CUSUM score only” (Toprani et al., 2006). 
An active surveillance system was also implemented in hospital EDs and 

acute-care facilities starting in September 2005, to respond to this major disaster. 
The initial implementation was based on paper forms. Because intensive 
labor forces were required to maintain the paper-based system, an ED-based 
electronic syndromic surveillance system was implemented on October 17, 
2005. Six participating EDs in the New Orleans area consented to transmit 
ED data electronically (e.g., patient demographics and chief complaint) every 
24 hours to LDHH, where data were analyzed using EARS. This experience 
suggests that electronic ED-based syndromic surveillance is a more sustainable 
method to continue long-term surveillance for injury and illness after the 
initial response phase of a major disaster. 

telephone; of these, 67 (74%) led to further investigation by LAOPH. “The 
EARS syndromic surveillance system produced 194 CUSUM scores that 
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4. CDC (2006). “Injury and Illness Surveillance in Hospitals and Acute-
Care Facilities After Hurricanes Katrina and Rita, New Orleans Area, 
Louisiana, September 25–October 15, 2005.” Morbidity & Mortality 
Weekly Report (CDC). 

5. CDC (2006). “Surveillance in Hurricane Evacuation Centers – 
Louisiana, September–October 2005.” Morbidity & Mortality Weekly 
Report (CDC), 55(02) pp 32–35. 
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ARGUS 
 

 
 

Project Argus creates and implements a biological event detection and 
tracking capability that provides early warning alerts on a global scale. 
Argus currently manages between 2,200 and 3,300 active, socially disruptive 
biological event case files with update report threading for approximately 
175 countries and over 130 disease entities. It posits a sophisticated scaling 
of outbreak severity based not only on disease metrics but also on socio-
logical and governmental reactions in the face of mild to severe epidemics 
(Chute, 2008). 

The system relies on Internet technologies as “harvesting engines” to 
capture information relevant to the definitional criteria for biological-outbreak 

health status reports from ProMED are collected as indicators of possible 

 
 

and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7_13, 

events are shown in Figure 13-1. Figure 13-2 depicts the Argus system’s 

severity metrics. Official disease reports from WHO or unofficial international 

biological events. The association of media activities and the biological 

biological event detection and tracking process.  
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Figure 13-2. Argus biological event detection process (source: http://www.syndromic.org/ 
conference/2007). 

 
The major role of Argus is to monitor social disruption that is possibly 

caused by epidemics. Social disruption is a deviation from a routine daily 

number of indirect markers including demand for specialized medical services, 
local perception of threat, official acknowledgement of threat, official action 

13. ARGUS

epidemics-caused social disruption through unusual disease reports, and a 

activity that can be tracked and used in lieu of direct reporting of disease. 
Epidemiologists search through the open-source information for signs of 
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against threat, change in business practices, and integrity of infrastructure. 
The open-source information comes from media articles (local sources are 
key) on Internet sites, satellite imagery, weather data, air transportation data, 
and animal health data. They developed over 200 social disruption parameters 
developed in medicine, public health, sociology, cultural anthropology, history, 

languages. They perform biological events detection through state-of-the-art 

disruption indicators. They also propose a heuristic staging model called the 
Wilson–Collmann Scale for assessing biological event evolution. Once an 

include: (1) environmental conditions favorable to an outbreak, (2) localized 
biological event, (3) multifocal biological event, (4) severe social and medical 

In the 2007 influenza season, the Argus team issued nearly 3,000 event 
reports across 128 countries and 27 languages, which included 181 Advisories, 
58 Watches, and 38 Warnings. They identified hundreds of reports of a 
possible H3N2 drifted virus escaping the current vaccine compilation beginning 
8 months ago in a multitude of countries. This information ultimately contri-
buted to  the decision process by the WHO and its partners to change the 

 

Figure 13-3. Argus Watchboard (source: http://www.syndromic.org/conference/2007). 
 
 

infrastructure strain, (5) social collapse, and (6) preparatory posture.  

and disease modeling. Figure 13-3 shows the screenshot of Argus Watch-

event is identified, analysts evaluate the report for possible posting as a 

online media processing software based on taxonomy of nearly 200 social 

into Warning, Watch and Advisory levels.  

Warning, Watch, or Advisory. The stages of outbreak severity they define 

board displaying a global geographical mapping of disease status classified 

The Argus analytic team consists of multilingual analysts covering 34 
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conference/2007). 
 

(Wilson, 2007). 

 
Important Readings:  

Association 15(2), pp 172–173. 

13. ARGUS

southern hemisphere influenza vaccine to include an updated H3N2 strain 

Figure 13-4. Biological event reporting at country level (source http://www.syndromic.org/ 

Watch, and Advisory. 
We provide the following key readings for the readers who might be 

System for Biological Events.” Advances in Disease Surveillance 4(21). 

interested in learning more details about the ARGUS system. 

Health Technologies.” Journal of the American Medical Informatics 
2. Chute, C. G. (2008). “Biosurveillance, Classification, and Semantic 

with geographical locations and date, classified and color-coded as Warning, 

1. Wilson, James M. V. (2007). “Argus: A Global Detection and Tracking 

The Argus event report (Figure 13-4) highlights recent biological events 
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HEALTHMAP 
 

 
 

HealthMap is a freely accessible, automated real-time system that monitors, 
organizes, integrates, filters, visualizes, and disseminates online information 
about emerging diseases. The goal of HealthMap is to deliver real-time 
intelligence on a broad range of emerging infectious diseases for a diverse 
audience, from public health officials to international travelers. 

alerting. 

The text data are automatically categorized into groups by disease types and 
locations with text mining techniques. The system now handles information 
in English, Spanish, and French (Brownstein et al., 2008 ). HealthMap 
currently processes 133.5 disease alerts per day on average (95% Confidence 
Interval: 124.1–142.8), with approximately 50% categorized as Breaking 
News (65.3 reports/day). With a 30-day default window, the system may 
display over 800 Breaking News alerts on a given day (Freifeld et al., 2008). 

 
 

 

and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7_14, 

HealthMap.org Web site has been operational since September 2006 
(Figure 14-1). US Health and Human Services and the US Department of 

(RSS) feeds, ProMED mailing lists, and EuroSurveillance and WHO alerts. 

Defense among other national or international organizations have used their 

The system acquires multistream data automatically every hour from a 

ation characterization, (3) signal interpretation, and (4) dissemination and 

mately 15,000 unique visitors per month from around the world. 

which consists of the following components: (1) data acquisition, (2) inform-

variety of electronic sources: online news wires, Really Simple Syndication 

Figure 14-2 shows the system architecture of the HealthMap application, 

data stream for surveillance activities. HealthMap currently receives approxi-

a
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Figure 14-1. HealthMap geographic coverage, October 1, 2006 to February 16, 2007 (Freifeld 
et al. 2008). 

 

Figure 14-2. Framework for Internet-based surveillance (Freifeld et al. 2008). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

185 

HealthMap aggregates the disease reports by source, disease, and geo-
graphic location. This information characterization is performed using natural 

The characterized information is then overlaid on an interactive map 
(supported by Google Maps), which allows for user access to the original 

filtering by feeds sources, disease, and countries. 

Figure 14-3. HealthMap page showing the latest information on H1N1 Flu as of May 27th, 2009 
(lower-left corner: bringing up the related news at a particular location as zooming out). (source: 
Healthmap Web page). 

14. HealthMap 

language interpretation and automated text mining and parsing techniques. 

report. On the left-hand panel, the HealthMap page allows improved information 
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In April 2009, a new strain of influenza known as swine flu (H1N1 flu) 

now present in over two dozen countries around the globe including Canada, 
Japan and the UK. HealthMap began aggregating and filtering real-time 

in English-language resources. HealthMap tracked early reports from the 
Mexican press on a “mysterious” influenza-like illness occurring in the town 

3,000 residents and killed 2 people. 

public health surveillance purposes to support and enhance the traditional 

ability to saturate towns, cities, and communities where public health 

We provide the following project link and some key readings for the readers 
who might be interested in learning more details about the HealthMap Project.  

 
Project link: 

http://www.healthmap.org 
 
Important readings:  

1. Freifeld, C. C., et al., “HealthMap: Global Infectious Disease 
Monitoring through Automated Classification and Visualization of 
Internet Media Reports.” Journal of the American Medical Informatics 
Association 2008. 15(2): pp 150–157. 

2. Chute, C. G., “Biosurveillance, Classification, and Semantic Health 
Technologies.” Journal of the American Medical Informatics 
Association 2008. 15(2): pp 172–173. 

3. Brownstein, J. S., C. C. Freifeld, B. Y. Reis, and K. D. Mandl, 
“Surveillance Sans Frontières: Internet-Based Emerging Infectious 
Disease Intelligence and the HealthMap Project,” PLoS Medicine 
Vol. 5, No. 7. (1 July 2008), e151. 

was first detected in the US and soon led to an outbreak in Mexico. It is 

of La Gloria in the state of Veracruz that reportedly infected 60% of the 

information on the novel flu virus on April 1, weeks before the news emerged 

Figure 14-3 shows a global alert map of the H1N1 disease during its 2009  

HealthMap represents a successful practice of mining the Internet for 

public health infrastructure. It demonstrates that news reports in particular 

outbreak as of the end of May 2009. Zooming to a specific region and clicking 

officials may or may not be present to report on potential disease outbreaks. 

can be a valuable resource for information as inherently the media has the 

on a balloon bring up a list of disease related news articles at that region. 
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Chapter 15 

CHALLENGES AND FUTURE DIRECTIONS 
 

 
 

We conclude this monograph by discussing key challenges facing syndro-
mic surveillance research and summarizing future directions. 

1. CHALLENGES FOR SYNDROMIC 
SURVEILLANCE RESEARCH  

Although syndromic surveillance has gained wide acceptance as a response 
to disease outbreaks and bioterrorism attacks, many research challenges remain. 

First, there are circumstances in which syndromic surveillance may not 
be effective or necessary. The potential benefit of syndromic surveillance as 
to the timeliness of detection could not be realized if there were hundreds or 
thousands of people infected simultaneously. In extreme cases, modern 
biological weapons could easily lead to mass infection via airborne or 
waterborne agents. In another scenario, syndromic surveillance could be 

outbreak in 2001) and thus would not trigger any alarms and could go 
undetected (2005b). In this situation, one single positive diagnosis of a spore 
of anthrax could be sufficient to confirm the event. 

Second, disease data tend to be noisy and incomplete. Although reporting 

required by law, the hospitals, laboratories, and clinicians participate largely 
on a voluntary basis. Patients making ER visits may not be representative of 
the population in the neighboring community; the participating hospitals and 
laboratories are not necessarily good random samples from which reliable 
statistical inference can be successfully made. This reinforces the need for 
careful evaluation of data sources and collection procedures.  

and BioDefense, Integrated Series in Information Systems 21, DOI 10.1007/978-1-4419-1278-7_15, 

of most notifiable diseases through the chain of public health agencies is 

rendered ineffective if the cases involved only a few people (e.g., the anthrax 
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Third, many public health practitioners are unfamiliar with advanced 
surveillance analytics. Model selection, interpretation, and fine-tuning all 
require proper training. One approach that can potentially reduce the learning 
curve is to provide a carefully-engineered interactive visualization environment 
for the user to experiment with analysis methods, explore the analysis results, 
and validate hypotheses in an intuitive and visually informative environment. 

Fourth, many false alarms are being generated by syndromic surveillance 
systems daily or weekly, as it is difficult to distinguish natural data variations 
from real outbreaks. Human reviews and follow-up investigations are necessary 
for signaled outbreaks, which are costly in time and labor. A typical 
investigation requires a group of epidemiologists, public health officials, 
healthcare providers, and their support staff to go through a multistep procedure 
for alert review and event evaluation. 

Fifth, there is a critical need to develop computational and mathematical 
methods to facilitate response planning and related policy- and decision-
making. Such methods should rely on an understanding of specific disease 
spreading patterns. They can be used to evaluate alternative policies and 
interventions and provide guidelines for scenario development, risk assessment, 
and trend prediction (Roberts, 2002). 

2. SUMMARY AND FUTURE DIRECTIONS 

• Existing systems differ significantly in scope and purpose (e.g., geo-
graphical cover-age, types of data and diseases monitored). For instance, 
a majority of systems surveyed focus on biodefense and detecting bio-
terrorism attacks; while other systems target at outbreak detection for 
specific diseases such as influenza (Hyman and LaForce, 2004). 

• The absence of standard vocabularies and messaging protocols leads to 
interoperability problems among syndromic surveillance systems and 
underlying data sources. HL7 standards and XML-based messaging 
protocols represent a potential solution for addressing these problems. 

• Each syndromic surveillance system implements a set of outbreak 
detection algorithms. There is an urgent need for a better understanding 
of the strengths and limitations of various detection techniques and their 
applicability. Also, implemented algorithms could be potentially reused 
across systems as sharable resources.  

• System evaluation and comparison are confounded by a number of 
practical issues. Systematic, field-based, objective comparative studies 
among systems are critically needed.  
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With regard to promising future research directions in syndromic 
surveillance, we see a number of opportunities for informatics studies on a 
wide range of topics. We list some of the potentially fruitful areas of studies 
below. (a) Data visualization techniques, especially interactive visual data 
exploration techniques, need to be further developed to meet the specific 
analysis needs of syndromic surveillance. (b) Outbreak detection algorithms 

needed. (c) System interoperability research and event management models 

certain time window. (e) This survey is focused on human diseases. 
Agricultural bio-attacks and certain animal diseases (e.g., mad cow, foot-
and-mouth, and avian flu) are gaining increasing attention in biosurveillance 
practice. For example, the US Department of Agriculture and the US 

other partners, administer and manage databases for wildlife diseases (e.g., 
http://www.usda.gov/). How to detect and respond to agricultural bioattacks 
and disease events poses interesting technical challenges (e.g., the importance 
of environmental data such as air, water, or weather). Developing cross-species 
syndromic surveillance approaches and cross-fertilizing methods from human 
and animal syndromic surveillance research hold interesting potentials.  

In closing, we briefly discuss the expanding scope of syndromic sur-
veillance systems. Although syndromic surveillance systems have been 
developed and deployed in many state public health departments, there is a 
critical need to create a cross-jurisdictional data sharing infrastructure to 
maximize the potential benefit and practical impact of syndromic surveillance. 
In a broader context, public health surveillance should be a truly global 
effort for pandemic diseases such as SARS. There is a need to address issues 
concerning global data sharing (including multilingual information processing) 
and development of models that work internationally. International politics, 
global commerce interests, and cultural and regional considerations are some 
of the issues that need to be considered in global syndromic surveillance. 

need to be improved in terms of sensitivity, specificity, and timeliness. In 

are worth studying. (d) In the context of bioterrorism preparation, research 

study: by examining the preceding events based on historical data of 

particular, how to deal with incomplete data records, how to perform privacy- 

Geological Survey (USGS), through its National Wildlife Health Center and 

reported in (Harmon, 2003) points to an interesting direction in this area of 

outbreak detection algorithms using synthetic or real data is critically 
all interesting research questions. Furthermore, thorough evaluation of 

on predicting and responding to bio-attacks is critically needed. Work 

conscious data mining, and how to leverage multiple data streams are 

terrorism attacks, the culminating event can be predicted to occur within a 
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