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INTRODUCTION

The genesis of this book was a set of notes taken by students who
attended a course of fifteen 2 hour lectures in the University of London at
Queen Mary College in 1986/87. After rewriting these notes, I used them
in Chicago at the University of Illinois in 1987/88, in a slightly longer
course comprising twenty 2 hour lectures. The subsequent expansion and
revision of the notes is what appears here, though the appendices largely
contain material not covered in the courses. As to the overall structure, the
first five éhapt,ers deal with the general theory, while Chapters 6-10 cover
important special cases. Chapters 2 and 3 are essential to most of what
follows, but after that one can be a little more selective. For example a
reader wishing to learn about affine buildings and their groups could omit
most of Chapters 4, 7 and 8. The Leitfaden which follows gives some idea
of the interdependence of the chapters.

A historical account of the origin of buildings is contained in the in-
troduction to the book on spherical buildings by Tits [1974], and I quote,
“The origin of the notions of buildings and BN-Pairs lies in an attempt to
give a systematic procedure for the geometric interpretation of the semi-
simple Lie groups and, in particular, the exceptional groups.” Not only
has this attempt succeeded, but the theory has been developed far beyond
that point, largely by Tits. The term “building”, incidentally, is due to
Bourbaki.

The buildings for semi-simple Lie groups, and their analogues over
arbitrary fields, are of spherical type. Work of Iwahori and Matsumoto
[1965] on p-adic groups then led to affine buildings, and the general theory
of such buildings, and their groups, has been developed by Bruhat and
Tits [1972] and [1984]. Later, Moody and Teo [1972] used Kac-Moody Lie
algebras to produce a new class of groups having a BN-Pair, and therefore
provided new buildings, of “Kac-Moody type”. There is now a class of
“Moufang buildings” (Tits [1986], and Chapter 6 section 4) which includes
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all spherical buildings (having rank > 3 and a connected diagram), and
all buildings of “Kac-Moody type”; these include some, but not all, affine
buildings (e.g. not the p-adic ones). Moreover these buildings can be con-
structed independently of the groups (Ronan-Tits [1987], and Chapter 7).
There may yet be further interesting classes of buildings, with interesting
groups, waiting to be discovered, but certainly the theory has now moved a
long way beyond the study of spherical buildings. In fact, affine buildings
have been particularly important; they are used for example by Macdonald
[1971] in the study of spherical functions on p-adic groups, by Borel-Serre
[1976] and Serre [1977/80] in studying arithemetic groups, and by Quillen
(see Grayson [1982]) to prove that the K-groups of a curve are finitely
generated - see Ronan [1989] for further references.

Finally my thanks are due to all who helped bring this project to
fruition: to W.M. Kantor for his excellent lectures on the subject 12 years
ago, and his helpful comments on this text; to P. Johnson and S. Yoshiara
for very helpful and detailed comments; to J. Tits for some important
remarks and suggestions; to Mrs. Ann Cook for typing the first version,
and to Ms. Shirley Roper for typesetting the final version. Needless to say
the project would never have got underway without the interest of those
who attended my lectures in London, and in Chicago: my thanks to all of
them and in particular L. Halpenny, M. lano, M. Mowbray, C. Murgatroyd
and M. Whelan who originally took notes in London.

Chicago, September 1988
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Chapter 1
CHAMBER SYSTEMS AND EXAMPLES

This chapter introduces chamber systems, and a “geometric realisa-
tion” which exists in the finite rank case. The examples include two differ-
ent families of buildings.

1. Chamber Systems.

A set C is a chamber system over a set I if each element i of I de-
termines a partition of C, two elements in the same part being called i-
adjacent. The elements of C are called chambers, and if two chambers z
and y are i-adjacent we shall often write £ ~ y. If I is a finite set having n
elements (as in most of the cases we considér) then, as explained below, C
has a “geometric realisation” in which chambers are simplexes of dimension

n — 1, and are adjacent if they share a face of dimension n — 2.

Example 1. Let G be a group, B a subgroup, and for each i € I let there
be a subgroup P; with B < P; < G. Take as chambers the left cosets of B,
and set

9B o hB if and only if gP; = hP;.

The fundamental nature of this example is exhibited in Exercise 2.

Example 2. In the example above let G be given by generators and re-
lations as (r;|r? = (r;v;)™2 =1, Vi, j€ ). Set B =1, P, = (r;). This
is a Cozeler system and G is called a Cozeter group; the next chapter is

devoted to the study of such systems.

Further Notation. A galleryis a finite sequence of chambers (co, ... ,ck)
such that c¢;_, is adjacent to ¢; for each 1 < j < k; and we shall always
assume ¢j_; # ¢j. The gallery is said to have type #;72 ...7x (a word in the
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free monoid on I) if ¢j—; is j-adjacent to ¢; (there may in general be more
than one possible type, though this is not the case for buildings). If each
i; belongs to some given subset J of I, then we call it a J-gallery.

We call C connected (or J-connected) if any two chambers can be joined
by a gallery (or J-gallery). The J-connected components are called residues
of type J, or simply J-residues.

In Example 1, for which chambers are left cosets gB, the J-residues
correspond to left cosets gPy where Py = (Pj|j € J).

Notice that every J-residue is a connected chamber system over the
set J. The rank of a chamber system over I is the cardinality of I; the
residues of rank 1 are called panels, or i-panels if of type {i}, and those of
rank 0 (type @) are simply the chambers.

A morphism ¢ : C — D between two chamber systems over the same
indexing set I will mean a map defined on the chambers and preserving
i-adjacency for each ¢ € I (thus if z,y € C are i-adjacent then ¢(z) and
&(y) are too); the terms isomorphism and automorphism have the obvious
meaning. In Example 1 the group G acts by left multiplication as a group
of automorphisms.

Given chamber systems C}, ... ,Cy over I, ..., I, their direct product
Ci X ... x Cy is a chamber system over the disjoint union I) U...U I. Its
chambers are all k-tuples (cy,...,cx) where ¢, € Ct, and (cy,...,ck) is
t-adjacent to (dy,... ,di) fori € I if ¢; = dj for j # ¢ and ¢, o d; in C;.

The Geometric Realisation.

Given residues R and S of types J and K respectively we say S is
a faceof Rif S D Rand K D J. If we let cotype J mean type I — J,
then given any residue R of cotype J the following two observations are
immediate:
(1) for each K C J, R has a unique face of cotype K.
(i1) If Sy, Sy are faces of R of cotypes K and K, then S| and S, have the

same face of cotype K; N Ks.

We now recall the standard notion of a simplez: a 0-simplex is a point,
a l-simplex is a line segment, a 2-simplex is a triangle with interior, etc.
More generally an n-simplex is a convex portion of R"™ spanned by n + 1
vertices, and each subset of these vertices spans a face of the simplex. The
observations above suggest that if I is finite then to each residue R of
cotype J we could associate a simplex (having |J| vertices) and its faces,
and then glue these simplexes together to form a topological space. We do
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this as follows.

Associate to each residue of corank 1 (cotype {i} for some i € I) a
vertex; then associate to each residue R of cotype {7, 5} an edge (1-simplex),
identifying its boundary with the vertices corresponding to the faces of R.
Continue inductively, associating to each residue R of cotype {i1,...,ir}
a simplex o of dimension r — 1 (r vertices), and identifying the faces of
o with the simplexes already associated to the faces of R. The resulting
structure, in which each simplex is assigned the type of the corresponding
residue, will be called the geometric realisation (or the cell complez) of C.

If o is a simplex, we let St(o) (St for “star”) denote the corresponding
residue. If each simplex is uniquely determined by its set of vertices one has
a simplicial complex, but as Example 3 shows that is not necessarily the
case. For buildings however, the geometric realisation is always a simplicial
complex (Exercise 11 of Chapter 3). Notice that a chamber system of finite
rank can be recovered immediately from its geometric realisation, by taking
the chambers to be simplexes of maximal dimension, and i-adjacency to be
sharing a face of type 1.

Example 3. Let C = {z,y}, I = {1,2,3}, and suppose = and y are 1, 2
and 3-adjacent. Then both £ and y become 2-simplexes, and they share all
three of their edges. Topologically speaking this is a 2-sphere; see Figure
1.1.

=

Figure 1.1 Figure 1.2

If in this example we introduce 4-adjacency, with £ and y not 4-
adjacent, then z and y become 3-simplexes sharing three common triangu-
lar faces, and topologically speaking we have a 3-ball, as in Figure 1.2.
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2. Two Examples of Buildings.
Buildings will be defined in Chapter 3. Here we just give two families
of examples.

Example 4. The A,(k) building A.

Let V be an n+1 dimensional vector space over a field k, not necessarily
commutative. The chambers of A are the maximal nested sequences of
subspaces

icVaC...CVy

where V; denotes a subspace of dimension i. Two chambers V; C ... C V,
and V{ C ... C V, are i-adjacent if V; = VJ for all j # i. This gives
a chamber system over I = {1,...,n}. Notice that a residue of type 7
corresponds to the set of 1-spaces in a 2-space V;41/Vi_1, or in other words
to the points of the projective line over k.

We now consider the geometric realisation of A. If J = {i;,...,i,} C
I, the reader should check that a residue of cotype J (not type J) corre-
sponds to a nested sequence of subspaces (usually called a flag)

Vi,C...CcV,. *)

Its chambers are those maximal flags Vi C ... C V; where V] = V; for
j € J. In particular the residues of cotype i correspond to the i-dimensional
subspaces of V; these are the vertices of the geometric realisation. The
simplexes of dimension (r—1) are those flags such as (*) above; in particular
two simplexes are the same if and only if they have the same set of vertices
(so we have a simplicial complex, unlike Example 3 above). Figure 1.3
shows the geometric realisation of the A2(k) building when k is the field of
two elements.

Figure 1.3
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A, Apartments. An important subcomplex of this building, called an
apartment, is obtained as follows. Fix a basis vy,... ,vn41 of V, and take
every subspace spanned by a proper subset of this basis, and all nested
sequences of such subspaces. The chambers of the apartment are thus all

(Yo(1)) C (Vo(1)Vo(2)) C -+ C (Vo(1)s-+ s Va(n))

where o ranges through all permutations of 1,... ,n + 1. Evidently the
symmetric group Sp4; acts simple-transitively on the set of (n+1)! cham-
bers of this apartment. The reader should note that every panel of this
apartment is a face of exactly two chambers of the apartment. If n = 2
an apartment contains six chambers arranged in a circuit; in Figure 1.3
there are 28 apartments. In Figure 1.4 we show an A3 apartment; it has 24
chambers, 6 on each face of the tetrahedron. For any n the A, apartment is
the barycentric subdivision of the boundary of an n-simplex (in particular
it is a triangulation of an (n — 1)-sphere).

24 chambers - 6 on each

LT

Figure 1.4

face of the tetrahedron.

Example 5. C,(k).

Let V be a 2n-dimensional vector space over a commutative field k,
endowed with a symplectic form (i.e. a non-degenerate, alternating, bilin-
ear form). Such a form can be defined on a basis z;,... ,Zn, Y1,... ,Yn

via:

(2, 95) = 8 = —(yj, %)
(1:,',131') =0= (y,-,yj).

A subspace S is called totally isotropic (t.i.) if (v,w) = 0 for all
v,w € S; for example (z1,y2,y3). Notice that all 1-spaces are t.i., and
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that all maximal t.i. subspaces have dimension n (see Exercise 5). Let
I ={1,...,n} and for each i € I let S; denote a t.i. subspace of dimension
i.

A maximal nested sequence

51CSQC...CS,,

of t.i. subspaces is called a chamber. As in the previous Example, two
chambers S; C ... C S, and S} C ... C S, are said to be -adjacent if
S; = §; for all j # i. This is the building Cs(k) as a chamber system.
As in Example 4, its geometric realisation is obtained by taking the t.i.
subspaces as vertices, and taking all t.i. flags as simplexes.

Given the basis z;,... ,z,, ¥1,... ,yn above, we obtain an apartment
by taking every t.i. subspace spanned by a subset of this basis, and all
nested sequences of such subspaces. The chambers of this apartment are
thus all

(Vo(1)) C (Vo(1)rVo(2)) T - C{Vo(1)s-++ 1Vo(n))

where v; is either z; or y;, and ¢ ranges through all permutations of
1,...,n. Its automorphism group is the semi-direct product 2"*S, which
acts simple-transitively on the set of 2"n! chambers. Its geometric reali-
sation is isomorphic to the barycentric subdivision of the boundary of a
cross-polytope (i.e. the convex polytope whose vertices are precisely the
2n unit vectors on the coordinate axes of Euclidean n-space); for n = 3 the
cross-polytope is the octahedron (Figure 1.5).

. n=3
48 chambers - six on each

face of the octahedron.

Figure 1.5
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Notes. Chamber systems were introduced by Tits [1981] in “A Local Ap-
proach to Buildings”, a paper whose main results will be dealt with in
Chapter 4. Although Examples 4 and 5 are usually thought of as simplicial
complexes, it is not always desirable or appropriate to think of a building
in that way (cf. Appendix 4) and for this reason, and also for the results
of Chapter 4, the chamber system formalism seems to be a good way of
doing things.

Exercises to Chapter 1

1. Show that the chamber system of Example 1 is connected if and only
ifG=(PRliel).

2. Let C be a chamber system admitting G as a group of automorphisms
(i.e. preserving i-adjacency for each ¢ € I) acting transitively on the
set of chambers. Given some chamber ¢ € C, let B denote its stabilizer
in G, and let P; denote the stabilizer of the i-panel on ¢. Show that C
is the chamber system given by cosets of B and the P; as in Example
1.

3. Let C be the direct product C; x...x Cy where C, is a chamber system
over I;. Let £ and y be i-adjacent chambers of C, and let X and Y
be the I,-residues containing z and y, where i ¢ I,. Show that each
chamber of X is i-adjacent to a unique chamber of Y, and i-adjacency
gives an isomorphism between X and Y.

4. In Example 4, the group GL,4+1(k) acts on V and hence on the building
An(k); check that this action preserves i-adjacency for each 1.

(1) Show that the stabilizer of a chamber is the subgroup of upper
triangular matrices using a suitable ordered basis.
(i1) Show that any two chambers lie in a common apartment.
(ii1) Show that the subgroup fixing all the chambers of an apartment is
the group of diagonal matrices corresponding to a suitable basis.
5. Let V be the 2n dimensional vector space of Example 5 having a

non-degenerate, alternating, bilinear form. For any subspace W, let
Wt = {ve V|(v,w) =0 Vw € W}. Show that

dimW + dim W+ = 2n

and conclude that all maximal t.i. subspaces have dimension n.
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6. Let G = S3, B =1, and Py, Py, P5 the three subgroups of order 2; this
defines a chamber system as in Example 1. Its geometric realisation C
has three vertices (one of each type) on each of which the six chambers
(2-simplexes) are arranged in a circuit. Thus C is a 2-manifold; its
Euler characteristic is 3 — 9+ 6 = 0 (there being three panels of each
type), and so C is either a torus or a Klein bottle. Which is it?



Chapter 2
COXETER COMPLEXES

In this chapter we shall study Coxeter complexes and Coxeter groups.
The material here is essential to everything that follows, though only the
first three sections will be used in Chapter 3.

1. Coxeter Groups and Complexes.

Let I be a set, and for any i,j € I let m;; € Z U {oo} with m;; =
mj; > 2 if i # j, and m;; = 1. The set of such m;; will be denoted by the
symbol M. We shall represent M by its diagram: the nodes of the diagram
are the elements of I (sometimes labelled as such), and between two nodes
there is a bond according to the following rule.

d J
o o no bond if m;; =2
o _o if mi; =3

o———o if m;; =4
o™ o if m=m>5
For example the diagram

2 3

0, oO——————©°

means that my2 = 3, my3 =2, mo3z = 4.
The Cozeter group of type M is the group W given by generators and
relations as:
W = (ri|rf = (rr;)™ = 1for all §,5 € I).

For any subset J of I we let W, denote the subgroup of W generated by
all rj for j € J.



10 LECTURES ON BUILDINGS

(2.1) LEMMA. (i) The element r;v; in W has order m;;.
(ii) If r; € Wy, theni € J.

ProoF: (i) Take a real vector space V having basis {e;|i € I} indexed by
I, and define a symmetric bilinear form on V via
™
(ei,ej) = —cos -1—7;
In particular (e;,e;) = 1, and if m;; = oo , then (e;,ej) = —1. Now for
each i € I, let s; be the linear transformation defined by

si(v) = v —2(v,e;)e;, for all v € V;

and let G be the subgroup of GL(V') generated by the s;. Let V;; denote
the subspace of V spanned by e; and e;, and let V,Jl denote its orthogonal
complement. It is straightforward to check that on V;; the element s;s;
has order m;; (see Exercise 1), and on V,} it is the identity. If m;; = oo,
this shows s;s; has infinite order on V. If m;; # oo , then V = V; + V,Jl
(Exercise 1), so s;s; has order m;; on V. This shows that the map r; — s;
extends to a homomorphism of W onto G, and therefore »;r; has order m;;
in W.

(i1) As j ranges over J, let V; denote the subspace spanned by the
ej, and let G; denote the subgroup of G spanned by the s;. If r; € Wy,
then s; € Gy, and hence s;(v) € v+ Vy, for all v € V. In particular
—e; = si(e;) € e; + Vy, s0 e; € Vy, and therefore i € J. D

The Coxeter Complex. Take the elements of W as chambers and for
each ¢ € I, define i-adjacency by

W~ wr.
1

This gives a chamber system over I (it is Example 2 in Chapter 1, section
1) and its cell complex is called the Cozeter complex of type M; since the
r; generate W it is connected. Notice that each rank 1 residue has exactly
two chambers and, by Lemma (2.1), each {¢, j}-residue has 2m;; chambers
because r; and r; generate a dihedral group of that order. The cell complex
of a rank 2 residue is thus a polygonal graph; one sometimes thinks of an
{7, j}-residue as being the set of incident point-line pairs of an m;;-gon,
two such being i-adjacent (or j-adjacent) if they share a common point (or
line) - indeed the dihedral group Dap, acts simple-transitively on the set of
incident point-line pairs of a regular m-gon.
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Examples. For the diagrams Az(o o o) and

Cs(o o—————0) the cell complex is a triangulation of the 2-sphere,
illustrated in Chapter 1 (Figures 1.4 and 1.5). Here are two further exam-
ples: the chambers are triangles, and the three types of adjacency are
illustrated by the different types of edges.

Diagram A,. AU

Figure 2.1

Diagram C;. o ) o)

-1 :‘:;,g'.. 1 _."*_*"'_ 1_

Figure 2.2

Throughout these notes we shall use W to denote both the Coxeter
group, and the Coxeter complex. As in Chapter 1, an eutomorphism of
a chamber system is a bijective map on the set of chambers preserving i-
adjacency for each i. A group action on a set X is called simple-transitive
if it is transitive and the stabilizer of z € X is the identity.
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(2.2) LEMMA. The automorphism group of the Coxeter Complex is the
Coxeter group, and it acts simple-transitively on the set of chambers.

PRrROOF: Clearly the action of W on itself by left multiplication preserves
i-adjacency. On the other hand if we fix one chamber we fix all chambers
adjacent to it because each rank 1 residue has exactly two chambers. By
connectivity we therefore fix all chambers, and simple-transitivity follows.

O

2. Words and Galleries.

Given a word f = i;...% in the free monoid on I, we set r; =
ri, ...7ri, € W; if 0 denotes the null word, rp = 1. Given z,y € W, notice
that there is a gallery of type f from z to y if and only if y can be written
as zr; (the gallery being (z,zr;,,zri,7i,,...)), or equivalently z7'y = r;.
For distinct i, j € I with m;; finite, we write p(i, j) to mean ...ijij (my;
factors); e.g. if m;; = 3 then p(¢, j) = jij.

An elementary homotopy is an alteration from a word of the form
fip(i,7) f2 to the word fip(j,7)f2. Two words are called homotopic if one
can be transformed into the other by a sequence of elementary homotopies,
and we write f ~ g to mean f and g are homotopic. Notice that two
homotopic words necessarily have the same length.

An elementary contraction (or ezpansion) is an alteration from a word
of the form fyiif, to the word f) f> (or from f, f> to fiiifs).

We now define two words to be equivalent if one can be transformed
into the other by a sequence of elementary homotopies, expansions and
contractions.

(2.3) LEMMA. Two words f and g are equivalent if and only if ry = r,.

PROOF: Since r? = 1, the relation (r;7;)™#% = 1 is equivalent to the rela-
tion 7p(; ;) = Tp(j,i)» and so the result is immediate from the presentation
of W in terms of generators and relations. O

A word is called reduced if it is not homotopic to a word of the form
fitifs. Notice that each equivalence class contains a reduced word. We
will show later (2.11), that if two reduced words are equivalent then they
are homotopic.

Example. Consider the diagram 2{2 (ie., m2 = myz3 = me3 = 3), as
in the Examples above. Using the theorem (2.11) just alluded to, it
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follows that the Coxeter group is infinite, because a word of the form
123123123... isreduced, and such a word may be arbitrarily long.

A gallery (z = zo,z1,...,Zr = y) is said to have length k, and the
distance d(z,y) between z and y is the least such k; a gallery from z to y is
called minimal if its length is d(z,y). Given w € W we define the length of
w to be ¢(w) = d(1, w), the length of a minimal gallery from 1 to w; notice
that d(z,y) = d(1,z71y) = £(z~1y).

(2.4) LEMMA. If y' is adjacent to, and distinct from, y, then d(z,y’) =
d(z,y) £ 1.

PRroOF: If f and g are the types of two galleries from z to some chamber
z, then r; = 27!z = ry, so by (2.3) f and g are equivalent, and hence
both galleries have even length or both have odd length. Since a gallery of
length k£ from z to y extends to one of length k + 1 from z to y’, we see
that d(z,y) and d(z,y’) cannot both be even or both be odd. Therefore

d(z,y) # d(z,y’), and the result follows. 0

Reflections and Walls. A reflection r is by definition a conjugate of
some 7;; its wall M, consists of all simplexes (of the Coxeter complex)
fixed by r (acting on the left of course). A panel lies in M, if and only if its
two chambers are interchanged by r, and since the reflection r = wr;w=!
interchanges the i-adjacent chambers w and wr;, M, is a subcomplex of
codimension 1.

Notice that if = is any i-panel and z is one of the two chambers on
m, then zr; is the other chamber on 7, and r = zr;z~! is the unique
reflection interchanging & and 2r;. Thus each panel lies on a unique wall,
and there is a bijective correspondence between the set of walls and the set
of reflections.

We shall say that a gallery (cop,... ,ct) crosses M, whenever r inter-
changes ¢;_ with ¢;, for some i, 1 <7 < k. We will show that M, splits
W into two parts interchanged by r.

(2.5) LEMMA. (i) A minimal gallery cannot cross a given wall twice.

(ii) Given chambers = and y, the number of times mod 2 that a gallery
from z to y crosses a given wall is independent of the gallery (i.e., it
is either even for each gallery, or odd for each gallery).

PRroorF: (i) If a minimal gallery ¥ = (co, ... ,ck) crosses M, twice, at (i —
1,7) and (j—1,7), then the reflection r sends the subgallery (c;,... ,cj—1) to
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a gallery of the same length from c;_, to ¢;. This contradicts the minimality
of 4.

(i) Given r; = z~'y, let n(f) be the number of times the gallery
of type f from z to y crosses the wall M,. If r; = r,, then by (2.3) f
and g are equivalent. If they are equivalent via an elementary homotopy
then n(f) = n(g). Indeed an elementary homotopy takes place in a rank 2
residue R, so if the wall M, contains a panel of R then it actually meets
R in two opposite panels (because a reflection fixes two opposite panels
in a polygon), in which case both galleries cross M, exactly once in R.
If g is equivalent to f via an elementary expansion or contraction then
n(g) = n(f) or n(f) £ 2. o

Let us temporarily call a gallery even or odd depending on whether
it crosses the wall M, an even or odd number of times. The preceding
Lemma (2.5) implies that a given chamber ¢ partitions W into two parts
according to the parity of a gallery from c. Given another chamber ¢/, the
same partition is achieved, as the reader may readily verify, although there
is a switch of parity if a gallery from ¢ to ¢’ is odd. These two parts of W
are called the roots (or half-apartments) determined by the wall M,. They
form complementary subsets of W, and are said to be opposite one another;
if one is denoted «, the other is denoted —a, and if r is the reflection we
let +a, denote the two roots.

Before stating the next proposition we define a set X of chambers to

be convez if any minimal gallery between two chambers of X lies entirely
in X.

(2.6) ProPoOSITION. (i) Roots are convex.

(ii) If o is a root, and z,y adjacent chambers with z € o and y € —q,
then

a = {c|d(z,¢c) < d(y,¢)}.

(iii) There are bijective correspondences between the set of reflections, the
set of walls, and the set of pairs of opposite roots.

PRrROOF: (i) If ¢,¢’ € a, then by (2.5) a minimal gallery from ¢ to ¢ does
not cross M,. Thus every chamber on this gallery lies in a,.

(ii) If ¢ € @ = o, then by (2.5) a minimal gallery from z to ¢ can-
not cross M,, and hence cannot go via y, so by (2.4) d(z,¢) < d(y,c).
Conversely, if d(z,c) < d(y,c), then since z and y are adjacent there is a
minimal gallery from y to ¢ via z, and this crosses M,, so ¢ ¢ —a.
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(iii) A reflection determines a wall, and since a given panel is fixed by
only one reflection, the wall determines the reflection. Moreover a wall M
determines two opposite roots +a as above, and if ¢ € @ and y € —a share
a panel 7, then by (2.5) and the definition of +a, the minimal gallery (z,y)
crosses M, so # € M. Since m determines M, this shows that two opposite
roots are associated to a unique wall. 0

Foldings. Let o be any root, and r the corresponding reflection; using
(2.6)(ii) one sees that r switches @ and —ca. Thus one has a map

Poa W —a

defined by po(z) = z if z € @, and po(z) = r(z) if z ¢ . It is a morphism
(i.e. preserves i-adjacency for each 7), because if z € «a is adjacent to y ¢ a,
then clearly po(y) = pa(z) = z. This pq is called the folding of W onto a.

The wall M, determined by a will be denoted da because it is the
boundary of « in the usual sense (see Exercise 6). Since any gallery v from
a chamber ¢ € a to d € —a crosses the wall Oa, its image p,(7y) contains
at least one repeated chamber, and hence there is a shorter gallery from ¢
to pa(d); this fact will be used later.

(2.7) PrROPOSITION. Let z and y be chambers, and (z = zo,z1,... ,Tk =
y) any minimal gallery from z toy. Fori=1,... ,k let B; denote the root
containing z;_, but not z;; these 3; are mutually distinct and are precisely
all roots containing x but not y. In particular d(z,y) equals the number of
roots containing z but not y.

Proor: If a root f contains z but not y, then any minimal gallery from
z to y goes from f to —f3 at some point, and hence 3 is one of the ;. By
convexity (2.6) a minimal gallery cannot enter and exit from a given root,
so z € f;, y ¢ B; and the §; are distinct. o

Example. Figure 2.3 shows three minimal galleries from z to y in the Zg
Coxeter complex. Each of these galleries determines an ordering of the
roots containing z but not y; these are:
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B1B2B3P4Ps, BrP2P8sP4P3 and BsB2018403.

\V/ \/ AVA

[ 23

SN N

Figure 2.3

(2.8) PROPOSITION. Given chambers z and y, a chamber lies on a minimal
gallery from z to y if and only if it lies in every root containing  and y.

PROOF: By convexity (2.6) any chamber lying on a minimal gallery from
z to y lies in every root containing z and y. Conversely suppose z is
contained in every such root. If « is a root containing z but not z, then
by hypothesis y is not in «; and if # is a root containing z but not y then
again by hypothesis 3 contains . Any root containing z but not y is one of
the o or 8, hence by (2.7) d(z, z) + d(z,y) = d(z,y), so z lies on a minimal
gallery from z to y. 0

Remark. If in the preceding proposition there are no roots containing
both z and y, then every chamber lies on a minimal gallery from z to y. In
this case (2.7) implies that W has only finitely many roots, and its diameter
is finite. This implies (Exercise 5) that W is finite.

(2.9) THEOREM. Given any w € W and any residue R, there is a unique
chamber of R nearest w (call it projpw), and for any chamber © € R,
there is a minimal gallery from w to x via projrw.

ProOOF: If b, c are distinct chambers of R at minimal distance from w, take
a root containing one but not the other. Without loss of generality this
gives a root a with w,c € a, b ¢ a. If v is a minimal gallery from w to b,
then it crosses from a to —a, and hence p,(7) gives a shorter gallery from
w to pa(b) = ¥'. However po(c) = ¢ implies po(R) C R, so b’ € R. This
contradicts the minimality of d(w,b), proving that projprw exists.
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To prove the last statement of the theorem it suffices, by (2.8), to show
that if « is any root containing w and z, then « contains projpw. Since
z € « one has pa(R) C R, and if projrw ¢ a, then p,(projrw) € R is
nearer w than projgpw is, a contradiction. O

(2.10) LEMMA. If z and y are chambers in a common J-residue, then
any minimal gallery from z to y is a J-gallery. In particular, residues are
convex.

PROOF: Let R be the J-residue concerned, and suppose z lies on a minimal
gallery from z to y. If z ¢ R, set 2/ = projrz; by (2.9) d(z,?') < d(z, 2)
and d(2’,y) < d(z,y), contradicting the minimality of a gallery from z to
y via z. Thus 2z € R. Hence any minimal gallery from z to y lies in R,
and it remains to show that if z, z’ € R are i-adjacent, then ¢ € J, but this
follows from (2.1)(ii). 0

3. Reduced Words and Homotopy.

We observed earlier, following Lemma (2.1), that the {i, j}-residues of
a Coxeter complex have 2m;; chambers arranged in a circuit. If z and y
are chambers in such an {7, j}-residue joined by a gallery of type p(%, ),
then they are also joined by a gallery of type p(j,7). Thus an elementary
homotopy of words f = fip(i, 7)f2 ~ fip(j,?)f2 = f' can be realized at the
gallery level by making an alteration in some {3, j}-residue. Recall that a
word f is reduced if it is not homotopic to a word of the form fiiifs. As
promised earlier we now prove:

(2.11) THEOREM. A gallery of type f is minimal if and only if f is reduced.
Moreover any two reduced words f and g which are equivalent (i.e. ry = 1,)
must be homotopic.

PRrOOF: The proof consists of two main steps.

Step 1. If f; and f, are the types of two minimal galleries from z to y,
then f; ~ f,.

Let f, end in 7, and fy in j. If i = j, then fi = f]i and fo = f3i, so
f1 and f; are the types of two minimal galleries with the same extremities.
Induction on the length of the gallery shows f] ~ fJ, hence f; ~ f;. Now
suppose i # j; let R be the {i,j}-residue containing y, let z = projgrz,
and let y; and y» be the chambers respectively i- and j-adjacent to y. By
(2.9) there are minimal galleries from z via z to y; and y respectively, and
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these extend (by one chamber) to galleries from z via z to y - see Figure
2.4.

Figure 2.4

By (2.10) the subgalleries from z to y are {i,j}-galleries, and since R
is a 2m;j-gon, by (2.1), these sub-galleries have types p(j,¢) and p(%,j)
respectively. Thus if fo is the type of some minimal gallery from z to z,
then there exist galleries of types fop(j,i) and fop(i,j) from = to y. By
induction, as above, f1 =~ fop(j,?) =~ fop(i,3) =~ fo-
Step 2. If f is a reduced word then any gallery of type f is minimal.
Again by induction we assume this to be true if the length of f is less
than k (for k = 0 the result is trivial). Now let f = gij (¢,j € I) be reduced,
and v = (2o, ... ,2k) a gallery of type f. By induction v; = (zo,... ,Zk-1)
is minimal. If v is not minimal, then d(zo,z¢) = k — 2, so there exists a
minimal gallery vy2 from zg to z;_; via z - see Figure 2.5.

——-—— -

Figure 2.5

Since v; has type gi and v, has type hj, for some word h, we apply Step
1 to see that f = gij ~ hjj is not reduced. This contradiction shows v is
minimal, as required.
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To conclude the proof of the theorem, notice that a minimal gallery
must have reduced type otherwise we could replace it by a gallery in which
a repeated chamber occurs; the converse is given in Step 2. Now any two
reduced words f and g which are equivalent give minimal galleries from 1
to w = r; = ry, and hence by Step 1, f and g are homotopic. 0

(2.12) CoRroOLLARY. If f; and f, are reduced words and fif ~ fof (or
ffi= ff2), then fi =~ f,.

PRrOOF: Indeed rp,ry =1y y =15,y =rs,17,50 14, =14, and the result is
immediate from (2.11). o

(2.13) CoRroLLARY. If f is reduced and fj (or jf) is not reduced, then f
is homotopic to some word ending (or beginning) with j.

PROOF: Let g be a reduced word such that ry = ry;. If f has length &,
then g has length k — 1 by (2.4); and if gj is not reduced then r; = ry;
has length k — 2, a contradiction. Therefore gj is reduced and f ~ gj by
(2.11). The jf case follows by symmetry. o

If J is a subset of I we let M; denote (m;;) for i,5 € J.

(2.14) CoroLLARY. The subgroup W; = (r;j|j € J) of W is the Coxeter
group of type M.

ProoF: It suffices to show that an equivalence between two words f and g
(i.e., 7y = ry) in the free monoid on J can be realized using only elements
of J (i.e., W inherits no further relations from W).

From our definition of a reduced word, f and g can be turned into
reduced words f’ and ¢’ by means only of elementary homotopies and con-
tractions (i.e. without using any elementary expansions), and therefore
without using elements outside J. Moreover by (2.1) f’ and g’ are homo-
topic, so f and g are equivalent via a sequence of elementary equivalences
involving only elements in J. O

4. Finite Coxeter Complexes.

If W is a finite Coxeter complex, let diam(W) denote its diameter,
the maximum distance between two chambers, and define two chambers
to be opposite if the distance between them is diam(WW). Notice that W
necessarily has finite rank (cf. Exercise 5).



20 LECTURES ON BUILDINGS

(2.15) THEOREM. If W is finite, then:

(i) diam(W) = 1 (no. of roots of W).

(ii) Two chambers are opposite if and only if they lie in no common root.
(iii) Every chamber has a unique opposite.

(iv) Ifz and y are opposite chambers, then every chamber lies on a minimal
gallery from z to y.

Proor: We first claim that if z and y lie in a common root then they
cannot be opposite. Indeed if « is a root containing z and y, set y’ =
p-a(y). Then d(z,y’) > d(z,y) because a minimal gallery ¥ from z to y’
must cross the wall da, so p,(y) contains a repeated chamber and hence
gives a shorter gallery from z to y. Thus 2 and y are not opposite.

To prove (i) notice first that diam(W) < 1 (no. of roots of W) by
(2.7). On the other hand if z and y are opposite in W, then by the above,
no root containing z can contain y, and therefore diam(W) = d(z,y) > %
(no. of roots of W), again by (2.7). This proves (i).

To prove (ii) it remains to show that if z and y lie in no common root
then they are opposite; but in this case (2.7) implies d(z,y) > 1 (no. of
roots of W) so the result follows from (i).

To prove (iii), suppose y and z are distinct chambers opposite z. Take
a root a containing one but not the other; either a or —a contains z, so
without loss of generality 2 and y lie in a common root, contradicting (ii).
By definition at least one chamber has an opposite in W and hence by
transitivity of the group they all do.

(iv) We have shown z and y lie in no common root, so this is immediate
from (2.8). n]

Sphericity. A Coxeter complex which is finite is often called spherical,
or of spherical lype because the geometric realisation of a finite Coxeter
complex of rank n is a triangulation of the (n — 1)-sphere. The most useful
way of seeing this is to use the real vector space V defined in the proof of
(2.1); for more details of the following facts see Tits [1968] and Bourbaki
[1968/81]. The Coxeter group W acts faithfully on V, and the fixed points
for each reflection of W form a hyperplane of V. When W is finite it
obviously acts discretely on V, and these hyperplanes partition V' into
open sets called Weyl chambers, each of which is a fundamental domain
for W. The reflection hyperplanes intersect a sphere S™~! centreed at
the origin of V to give a triangulation of V, which may be identified with
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the Coxeter complex. Each reflection hyperplane H meets S*! in a wall
M of this Coxeter complex, and the two half-spaces on either side of H
correspond to the roots having boundary M. Finiteness of W corresponds!
to the case of the symmetric bilinear form (e;, ej) = —2 cos(7/m;;) being
positive definite, so finite Coxeter groups can be classified by considering
these forms. An alternative mode of classification is given in Exercises 9-12.

Observation. Writing (wr;) < £(w) is another way of stating that there
is a minimal gallery, whose type ends in ¢, from 1 to w.

(2.16) THEOREM. Suppose {(wr;) < l(w) for all j € J. Let R be the
J-residue containing w, and let z = projrl be the unique chamber of R
nearest 1. Then R is finite and z is opposite w in R.

Proor: It suffices to show that every chamber of R lies on a minimal
gallery from 2z to w. Indeed in this case (2.8) implies that z and w lie in
no common root of R, hence by (2.7) R has finitely many roots and hence
finite diameter; therefore R itself is finite by Exercise 5, and by (2.15) (ii)
z and w are opposite. Consider first the case |J| = 2. In this case the two
chambers of R adjacent to w are closer to 1, and hence closer to z, than w
is. Therefore z and w are opposite in the 2m;;-gon R, and every chamber
of R lies on a minimal gallery from z to w (a fact we shall use below).
For the general case, assume that every chamber of R at distance < k
from w lies on a minimal gallery from z to wj; this is true by hypothesis
if Kk =2. Now let v € R be at distance £ > 2 from w in R on a minimal
gallery (w,...,v",v',v) of type ...ij, where i,j € J - see Figure 2.6).

Figure 2.6
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Let S be the {7, j}-residue containing v, and vo = projsw, so d(w,ve) <
d(w,v"”) = k—2. The two chambers which are i- and j-adjacent to v are at
distance at most £ — 1 from w, hence by induction lie on minimal galleries
from z to w; in particular they are both closer to z than vy is. We may
therefore apply the case |/| = 2, in which S takes the place of R, v takes
the place of w, and z takes the place of 1. Thus vg is opposite projsz in
S, and so v lies on a minimal gallery from projsz to vp = projsw, hence
from 2z to w as required. 0O

5. Self-Homotopy.

The purpose of this last section of Chapter 2 is to prove a theorem
which will be applied in Chapters 4 and 7; the details could be omitted
at a first reading. For notational convenience we now let ~ mean only
elementary homotopy.

A self-homolopy is a sequence of elementary homotopies beginning and
ending with the same word. Given a word f we let H(f) denote the graph
whose vertices are words homotopic to f, and whose edges are elementary
homotopies. A self-homotopy is then a circuit in this graph.

Let us call a self-homotopy inessential if it is of the form

f=foxfix.. . >ficixficficr..2fixfo=f

i.e., “do then undo” - a degenerate circuit in H(f); or if it is of the form

fip(2, 3) fap(k, 1) f3 =~ fip(3, i) fap(k, 1) f3

~ ~

fip(, 3) fap(L, k) f3 = fip(3,8) fap(l, k) f3

“do then undo in reverse order”.
We shall say that a circuit = in a graph decomposes into two circuits

mmg and 75 'w3 il 7 = my 73 (here 77!

means 7 in reverse order). This def-
inition extends to the decomposition of a circuit into finitely many circuits,

or a self-homotopy into finitely many self-homotopies.

(2.17) THEOREM. Every sell-homotopy decomposes into self-homotopies
each of which is nessential or lies in a rank 3 residue of spherical type (i.e.
type J with W finite).

Proor: By induction on the length of the word f, we may assume it is
true for words of shorter length than f.
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We shall show that a sequence of elementary homotopies of the form

fi~ . j~. . jx. . > gk *)

fim i~ x>~ k> L kx>gk **)

by decomposing into circuits which are either inessential or else lie in the
{#, 7, k}-residue R containing w = ry; = rg.

Note first that by (2.16) R is of spherical type, and w = wyw; where
w = projrl is the unique element of R of shortest length, and w; is the
longest element of Wy; ; r}. Let us write wy = rj for some reduced word h,
and wp = 7, where A’ may be chosen to end in i, j, or k. Applying (2.16)
to the {7, j}-residue S of R containing w, we see that h’ is homotopic to
hip(t,7), where h; is some reduced word such that r,, = projs1. Similarly
h' is homotopic to h;p(j, k) and h;p(k,7), with h; and hj suitably defined.
By (2.12) a homotopy between .../ and ...! can be done using only words
ending in I, so we may alter the original sequence (*) as follows:

fi cedd all end in j cedd gk
all : . all all . . all
end . A . end B end : c . end
in i . . in j in j . . in k
[} ... all end in j ven ——O0—6
hhyqi j, 1} hhypqii, j) hhjq(k,Jj)  hhjq{j,k:
: 5 .

“.all end in i..0———————0.. all end in k.~
hhjq(k, i hhjqii,k:

Now, circuits A and C decompose into inessential circuits; B decom-
poses as required because all terms end in j and we may apply the induction
hypothesis; and D involves only self-homotopies in the rank 3 residue R
of spherical type. Note that if i = k, then hhgp(j,i) = hh;p(j, k) and the
bottom path reduces to a point.

Finally by using alterations as above from (*) to (**) we may decom-
pose any circuit to one all of whose terms end in ¢, and then the result
follows by induction. O
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Notes. Coxeter groups were first studied in complete generality by Tits
[1968], and many of the results on Coxeter complexes in this chapter are
taken from Tits [1974], though the material in section 5 is from Tits [1981].
Those which act discretely on Euclidean space, namely the finite ones (of
spherical type) and those of affine type (Chapter 9) were classified by Cox-
eter [1934]; see also the elegant paper by Witt [1941]. This classification
also appears in the book on Regular Polytopes by Coxeter [1947] which
contains a wealth of historical detail and an extensive bibliography; for
example, Coxeter remarks that polyhedra of types Eg, F7 and Eg were
constructed in 1897 by Thorold Gosset, a lawyer practising in London - see
[loc. cit.] pp. 202 and 164. All finite Coxeter groups satisfying the crys-
tallographic condition (i.e. all m;; = 2,3,4 or 6) appear as Weyl groups of
semisimple Lie algebras. For more details on this, see Bourbaki [1968/81],
particularly the historical sketch on pages 234-240; this book also contains
an excellent account of Coxeter groups in the general case.

Exercises to Chapter 2

1. Using the notation of Lemma (2.1) show that s;s; has order m;; on
V;j and is the identity on V;} . If m;; is finite show that V;; + Vi =V
and show that this can fail for m;; = co. [HINT: if m;; < oo identify
Vi; with R? (having the usual dot product) in such a way that e; and
e; are unit vectors and ™ — 7/m;; is the angle between them).

2. Show that a gallery is minimal if and only if it crosses no wall twice.

3. Show that IV, (see (2.14)) is the stabilizer of the J-residue (of the
Coxeter complex) containing 1, and that W; N Wg = Wjak, and
(W;,Wk) = Wyuk. In particular, when I is finite, the geometric
realisation of W is a simplicial complex, because a simplex wWj is
uniquely determined by its vertices, namely the wWg, where J C K
and K = I — {i} for some i.

4. (The Ezchange Property) Let f =i, ...i, and suppose £(ry) > £(ry;).
Prove that ry; = r, where ¢ = i, ...ij ...1n (#; removed for some
J). [HINT: Let a be the root containing ry; but not ry, and let y be
the gallery of type f from 1 to ry; consider the gallery obtained by
applying the folding pa to 7].
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If the diameter of W is finite show that I is finite, and then show W
is finite.

Let a be a root, and r the reflection switching a with its opposite —a.
Treating a as a subcomplex of the geometric realisation, by including
all faces of chambers in «, show that its boundary da is the wall M,
fixed by », and that dv = o« N (—a).

Let Mj,..., M} be the connected components of the diagram M, and
let I, denote the nodes of M, (so I is the disjoint union I, U...U I}).
Writing W, = W;,, show that W is isomorphic to W; x ... x W} both
as a group and as a chamber system. (The W, are called the irreducible
components of W.)

Give all possible reduced words f such that r; is the longest word for
o (there are 16 of them), and exhibit an

the A3 diagram o o

inessential self-homotopy (cf. Chapter 8, section 1).

If W is finite show that its diagram cannot contain a circuit. [HINT:
For a circuit diagram write down a word of arbitrary length which is
unique in its homotopy class].

AW is finite show that its diagram cannot contain any of the following

subdiagrams. [HINT: Apply the previous hint to the first case, and
generalize this technique to the other cases].

o % o i o0__ ¥ _ o z,y>4

o__o__ ™M™ o m > 6
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(More difficult). If W is finite, then show that its diagram cannot
contain any of the following subdiagrams:

o
)
o——o0
o
)

(o]
o o (o] o o o o
(o) [e] o (o] (o] o (o]
o

Using the results of Exercises 9, 10, and 11 show that if W is finite
then its diagram must be the union of connected components, each of
which is one of those given in Appendix 5.



Chapter 3
BUILDINGS

This chapter introduces buildings and proves two important proper-
ties: the existence of apartments, and the fact that for any chamber ¢
and any residue R, there is a unique chamber of R nearest c. There is
also a section on generalized m-gons, which are the same thing as rank 2
buildings.

1. A Definition of Buildings.

We use the notation W, M, I of the previous chapter, and recall that if
f =11...4, then r; means r;, ...r;, € W. We can now define a building
of type M. It 1s a chamber system A over I such that each panel lies on at
least two chambers, and having a W-distance function

§:AxA—=W,

such that if f is a reduced word, then é6(z,y) = r; if and only if £ and y
can be joined by a gallery of type f. In particular any two chambers can be
joined by a gallery of reduced type. The W-distance é(z,y) should not be
confused with the distance d(z,y) which is the length of a minimal gallery
from z to y; in fact d(z,y) is the length of §(z,y) as an element of W. Of
course to any building there is an associated cell complex, as in Chapter
1; we shall make no formal distinction between these, and refer to the cells
(or simplexes) of a building without further ado.

Example. Coxeter complexes are buildings; simply set §(z,y) = z™'y.

Remark. If v = (a,b,c) is a gallery of type i, then either a = ¢ (as for a
Coxeter complex) in which case we can replace v by a null gallery, or else
a # c in which case we can replace vy by the gallery (a,c) of type i. Thus a
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gallery of type fiiifs cannot generally be replaced by one of type f; f2. In
particular if f is not reduced, the existence of a gallery of type f from z to
y does not imply that é(z,y) = r;, but on the other hand if é(z,y) = ry
then there is a gallery of type f from z to y (Exercise 1).

(3.1). Here are some elementary consequences of the definition:

(o) A is connected, § maps onto W, and §(z,y) = 6(y,z)~".

(i) é(x,y) = ri < = and y are distinct and i-adjacent.

(ii) i- and j-adjacency are mutually exclusive for i # j.

(iii) If there is a gallery of type f (not necessarily reduced) from z to y,
and if f is homotopic to g, then there is also a gallery of type g from
T toy.

(iv) A gallery of type f is minimal < f is reduced.

(v) If f is reduced, a gallery of type f from z to y Is unique.

PRrROOF: (0), (i) and (ii) are easy cxcrcises, and (iii) follows from the fact
that if there is a gallery of type p(7,j) from z to y, then there is also a
gallery of type p(Jj, i), since both these words are reduced and give the same
element of W.

(iv) Let v be a gallery of type f from z to y. If f is not reduced, then
by (iii) we can replace it by a gallery of type f1iifs, and hence a gallery of
shorter length, so v is not minimal. Conversely suppose v is not minimal,
and let g be the type of some minimal gallery. We have shown g¢ is reduced,
so if f is also reduced then »; = 6(x,y) = ry; therefore f ~ g by (2.11),
contradicting the fact that g is shorter than f.

(v) Let (z,...,y1,y) and (2,...,y2,y) be galleries of reduced type
fi (1 € I) from z to y. Then y» is i-adjacent to y;, because both are
i-adjacent to y. Therefore if y; # y2 we have galleries of reduced types f
and fi from z to y», a contradiction since r; # ry;. Thus y; = y», and a
simple induction on the length of the gallery completes the proof. u}

2. Generalised m-gons - the rank 2 case.

For any integer m > 2, or for m = oo, a generalized m-gon is a con-
nected, bipartite graph of diameter m and girth 2m, in which each vertex
lies on at least two edges. (A graph is bipartile if its set of vertices can
be partitioned into two disjoint subsets such that no two vertices in the
same subset lie on a common edge; the diameter is the maximum distance
between two vertices, and the girth is the length of a shortest circuit.) If
m = oo this is simply a tree with no end points (Exercise 12).
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(3.2) PROPOSITION. A rank 2 building of typeo___ ™ o is a general-
ized m-gon, and vice versa.

ProOF: We leave the details to the reader after making two elementary
observations. In a Coxeter group of type o™ o the reduced words
are precisely the finite alternating sequences iji... of length < my;; they
give distinct group elements except for equality between iji... and jij...
when both have m;; terms. A generalized m-gon is then considered as a
building by taking the edges as chambers, and adjacency to mean having
a common vertex, of one of the two appropriate types. O

Example. A generalized 3-gon was illustrated in Figure 1.3 of Chapter 1.

We now define a building to be thick if every panel is a face of at least
three chambers (i.e. each i-adjacency class has size > 3). It is called thin
if every panel is a face of exactly two chambers; thin buildings are nothing
other than Coxeter complexes, as the reader may immediately verify. The
valency of a panel will denote the number of chambers having it as a face.

(3.3) ProPOSITION. In a thick generalized m-gon, vertices of the same
type have the same valency, and if m is odd, then all vertices have the
same valency.

PRrOOF: Define two vertices £ and y to be opposite if the distance d(z,y)
between them is m; they will be of the same or different type according to
whether m is even or odd.

Step 1. Two opposite vertices have the same valency. Given opposite
vertices z and y, let e be any edge on z, and let ' be its other vertex.
Since z and 2’ have different types, d(2’,y) < d(z,y), and so there is
a path from z to y starting with e, and ending with f, say. The girth
assumption implies that f is uniquely determined by e, and e by f; this
gives a canonical bijection between the set of edges on z and those on y.

Step 2. If z,y are two vertices both joined to a common vertex z, then
there exists a vertex opposite both z and y. Indeed since z has valency > 3
we take an edge on z different from zz and zy, and continue this to a path
of length m — 1 ending at a vertex v. Then d(z,v) = d(y,v) = m.

Now if z and y are vertices of the same type we take a path from z to
¥, and use Steps 1 and 2 to see that @ and y have the same valency. Il m
1s odd then opposite vertices have different types, so by Step 1 all vertices
have the same valency. O
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A generalized m-gon is said to have parameters (s,t), where s and
t are (possibly infinite) cardinals, if the two valencies are s + 1 and t +
1. Before leaving the subject of generalized m-gons, we mention that a
generalized 2-gon is simply a complete bipartite graph, and a generalized
3-gon is nothing other than (the flag-graph of) a projective plane. This and
other information and examples are contained in the exercises at the end of
this chapter. Later on we shall deal with generalized m-gons admitting a
large group of automorphisms (the Moufang m-gons); for these important
examples m = 3,4,6 or 8. However there is no such restriction on m in
general, as Exercise 21 shows, unless the generalized m-gon is finite. We
remark in passing that in this case W. Feit and G. Higman [1964] proved
the following theorem using character theory. We shall not prove it, but
simply refer the reader to [loc. cit.], and also to D. Higman [1975].

(3.4) THEOREM. (W. Feit - G. Higman): A finite thick generalized m-gon
exists only if m = 2,3,4,6 or 8. Moreover if the parameters are (s,t) then
there are restrictions on s and t such as:

st(st+ 1)

s+
form =6 st is a perfect square

€z

for . =4

for m =8 2st is a perfect square

Moreover, D. Higman [1975] proves that form =4 or 8, s <t*> and t < s
(see also Exercise 19); and W. Haemers [1979] proves that form = 6, s < 3
and t < s3.

3. Residues and Apartments.

We now continue with further basic results on buildings. If J is a
subset of I, then as in Chapter 2, M, is the subdiagram spanned by the
elements of J (i.e., all my;, for ¢, j € J), and W the appropriate Coxeter
group (cf.(2.14)). For the rest of this chapter A will denote a building of
type M.

(3.5) THEOREM. Every J-residue of A is a building of type M.

Proor: It suffices to show that if z and y are any two chambers in a
common J-residue then é(z,y) € W;, so let ¥ be a shortest J-gallery
joining them. If its type f is not reduced, then by (3.1)(iii) there is a J-
gallery of type fiiifs from z to y, and hence a shorter J-gallery. Thus f
is reduced, and &(x,y) =r; € W,. 0
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Given any subset X C W we define a map ¢ : X — A to be an
isometry if it preserves the W-distance §. In other words, using éw for
distance in W, and 64 for distance in A, we require

bala(z), a(y)) = bw(z,y)

for all z,y € X; recall that éw (z,y) = z7y.

An apartment will mean an isometric image a(W) of W in A. A root
or wall of A will mean a root or wall in an apartment of A; notice that
if X is a root (or wall) in an apartment A, then the same is true for any
apartment containing X. Moreover by the following theorem an isometric
image of a root of W is a root of A.

(3.6) THEOREM. Any isometry of a subset X C W into A extends to an
isometry of W into A.

PROOF: Let a : X — A denote the isometry, and assume X # W. By
Zorn’s lemma it suffices to extend the domain of a to a strictly larger subset
of W. If X = 0 this is a triviality, so suppose X is non-empty, in which
case we can find z, € X and 7 € I such that z,7; ¢ X. Modifying X and
a by z;! € W, we may assume z, = 1 € X and r; ¢ X. We extend a by
defining a(r;).

Case 1. {(r;z) > {(z) for all z € X (Figure 3.1)

Figure 3.1

In this case let a(r;) be any chamber distinct from and i-adjacent to a(1).
We need to show that é(a(r;),a(z)) = riz for all 2 € X, solet z = r,
with g reduced. Then there is a gallery of type ig from a(7;) to a(z), and
since £(r;z) > £(z) we know ig to be reduced. Thus é(a(r;),a(z)) = riy =
rirg = r;T, as required.
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Case 2. {(r;z1) < {(z,) for some z; € X. In this case there is, in W,
a minimal gallery from 1 to z; via »; of reduced type f. Let y be the
second term in the unique gallery of type f from «(1) to a(z;), and define
a(r;) = y. Again we need to show that é(y,a(z)) = riz for all z € X,
so define B(z) = r;6(y,a(z)). Since y is i-adjacent to (1), we see that
b(y,a(z)) = riz or z, and therefore

B(z) = z or r;z.

Now, as a map from X to W, 8 is a composite of three maps: a, é(y, )
and 7; (left multiplication). The first and last of these preserve distances,
and the middle one does not increase distances, because it preserves adja-
cency. Therefore 3 does not increase distances, and moreover §(1) = 1 and
B(z1) = z,. Now if ¢; is the root of W containing 1 but not r; (see Chapter
2), then z; € —a;. Therefore B(z) # riz otherwise B increases either the
distance from 1 to z (if z € ;) or the distance from z; to z (if £ € —a;)
because in each case r;z lies in the opposite root. This contradiction shows
that B : X — W is the inclusion map, and hence §(y, a(z)) = r;z. 0

(3.7) CorROLLARY. Any two chambers lie in a common apartment. 0

Notice that an isometry o : W — A is uniquely determined by its
image A = a(W) together with the chamber ¢ = a(1), because if o’ is

another such isometry, then a™!

o' is an isometry of W fixing the element
1 € W, and is therefore the identity map. Now fix any apartment A and

chamber ¢ € A. We define a map
pea:A— A

called the retraction of A onto A with centre ¢. Let A = a(W) with
a(1) = ¢, and set

pe.a(z) = a(b(c, 7).

It is straightforward to see that for z € A, p. a(z) = z; and indeed as a
map of simplicial complexes p. 4 is a retraction in the usual topological
sense.

If o and 1 are simplexes, a gallery from o to r means a gallery (c, ... ,d)
where o is a face of ¢, and 7 a face of d; of course if ¢ is a chamber then
c=o.
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(3.8) THEOREM. Let A be an apartment containing a chamber ¢ and a
simplex o. Then every minimal gallery from c to o lies in A; in particular
apartments are convex.

ProoF: Let ¥ = (¢ = ¢o,€1,-.-,¢k) be a minimal gallery from ¢ to . If
v ¢ A then for some ¢, ¢;—; € A and ¢; ¢ A. Let b # ¢, be the other
chamber of A adjacent to c;—; and ¢, so py a(ci—1) = ps,a(c:). Hence
pb,4(7) contains a repetition and therefore gives a shorter gallery from c to
o, contradicting the minimality of . 0

(3.9) CorOLLARY. If o is any simplex of A (i.e., St(c) is any residue),
and c is any chamber, then there is a unique chamber nearest ¢ having o
as a face (i.e., belonging to St(o)).

Proor: By (3.7) ¢ and o (in fact ¢ and any chamber having o as a face)
lie in a common apartment A. By (3.8) any chamber having o as a face
and at minimal distance from c lies in A. The result now follows from the

same result for W, namely (2.9). 0
The chamber of St(o) nearest ¢ in (3.9) will be called proj, ¢, or projre
if R = St(0).

Direct Products and Disconnected Diagrams. Let M = M,U.. .UM,
be the decomposition of the diagram into connected components, where M,
1s over the set I,. In particular I is the disjoint union I, U ... U I}, and
m;; = 2 if < and j belong to different components. Fix some chamber ¢ of
a building A of type M, and let A, denote the I,-residue containing c.

(3.10) THEOREM. With the notation above, A is isomorphic to the direct
product Ay x ... x Ag.

ProoF: Setting W, = W, (the Coxeter group of type M,), we have W =
Wi x...x W by Exercise 7 of Chapter 2, and so any w € W can be written
wy ... wx where w, € Wy, and for each t we may write w = w,w;, where
wy; = wy ... W ... w (w, removed).

Now let d € A be any chamber, let w = §(c,d), and let d;, denote the
unique chamber at distance w, from ¢ on a minimal gallery from ¢ to d,
characterised by

8(c,dy) = wy and 8(d;, d) = w;.
We define a map ¢ : A — Ay x ... x Ay via

o(d) = (dy,....d)



34 LECTURES ON BUILDINGS

and show it to be an isomorphism. If R is an I;-residue, then ¢ followed by
projection to A; maps R isomorphically onto A; (indeed if vp is a gallery
of reduced type fo from ¢ to projgre, and v a gallery of reduced type f in R
from projgec to d, then there is a unique gallery y'v{ of type f fo from ¢ to d,
and ¢(y) = v’). This shows ¢ is a surjective morphism. To show injectivity,
suppose ¢(d) = p(d’), so in particular é(c,d) = é(c,d’) = w = wy ... wg.
Take galleries y = v;...v¢ and ¥ = v} ...7} from ¢ to d and from ¢ to d’
respectively, where v; and v; are I;-galleries. Obviously v, and 7} have the
same end chamber d;, and so v, and 7/ are galleries in the same I5-residue.
Since ¢(72) and p(v5) have the same end chamber ds, so do vz and v5. An
obvious induction shows d = d'. O

An Alternative Definition. The definition given at the beginning of this
chapter is of recent vintage. Earlier definitions presupposed the existence
of apartments in some form or other, and we now give a formulation of this
sort. It can be used to check that a given chamber system is a building,
without needing to define a W-distance having the required properties (cf.
Exercise 8).

(3.11) THEOREM. Let C be a chamber system containing subsystems
(called apartments) isomorphic to a given Coxeter complex (over the same
indexing set I), and such that any two chambers lie in a common apart-
ment. Then C is a building if, given two apartments A and A’ containing
a common chamber z and chamber or panel y, A and A’ are isomorphic

via an isomorphism fixing z and y.

ProoOF: Given chambers 2 and y we define é§(z,y) to be the IW-distance
in any apartment containing ¢ and y; by hypothesis this is well-defined.
Furthermore if f is a reduced word and é(x,y) = ry, then there is a gallery
of type f from z to y in any such apartment. Conversely assume there is
a gallery (z,...,y’,y) of reduced type f = gi ( € I) from z to y; then
we must show that é(z,y) = r;. Let A be an apartment containing z and
y, and let 7 be the panel (of type i) common to y and y’. By induction
on the length of f, we know that é(z,y") = r,4, and therefore there is a
gallery ¥ of type g in an apartment A’, from z to y’. Let ¢ : A’ — A be
an isomorphism fixing + and 7. Then (2(7), y) is a gallery of type gi = f

in A from 2 to y, so 8(z,y) = ry, as required. 0

Notes. The definition of a building at the beginning of this chapter is
given in Tits [1986b]. It is equivalent to the definition given by Tits [1974]
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which is much closer to that furnished by Theorem (3.11). The proof of
Theorem (3.6) is taken from Tits [1981], where chamber systems were first

introduced.

10.

Exercises to Chapter 3

If 6(z,y) = r; with f not necessarily reduced, show there is a gallery
of type f from z to y.

If A is any apartment and o a simplex in A, show that AN St(o) is
an apartment of St(o).

Let a be aroot, and 7 a panel in da. If z,y ¢ a are chambers in St(r),
show that a U {z} is isometric to a U {y}. Conclude that a U {z} lies
in an apartment, and show that « is the intersection of all apartments
containing it.

Given any two chambers z and y in a thick building, show that the
set of all chambers on minimal galleries from z to y is the same as the
intersection of all apartments containing both z and y. [HINT: Use
(3.8), (2.8) and Exercise 3].

Let W be finite, and define two chambers =z and y to be opposite if
they are opposite in some apartment A containing both. Show that A
is the only apartment containing both z and y. [HINT: Use (2.5) (iv)
and Exercise 4).

. Let A and A’ be apartments having a chamber in common. Show that

AN A’ is a convex set of chambers (together with their faces), and that
there is an isomorphism from A to A’ fixing AN A’. [HINT: Use (3.6)].

. Let A and A’ be apartments containing simplexes ¢ and 7. Show

there is an isomorphism from A to A’ fixing ¢ and 7. [HINT: Take
chambers ¢ € St(6)NA and d € St(7)NA’, and let A” be an apartment
containing ¢ and dJ.

. Show that Example 4 of Chapter 1 is a building. [HINT: Use (3.11)].
. In Example 4 of Chapter 1, let ¢ = (V4 C Vo C ... C V) be any

chamber, and let ¢ = W,, be any subspace of dimension n. Find the
unique chamber nearest ¢ having o as a face, as in (3.9).

Let A be a building and let A’ be a sub-chamber system which is a
union of apartments such that any two chambers of A’ lie in one of
these apartments. Show that A’ is a building (having the same type
as A, of course).
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11.

12.

13.

14.

15.

16.

17.

18.
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If Ry,..., Ry are residues of types Jy,...,J; in a building A, show
that Ry N...N R, is a residue of type JyN...N Jy, and hence if A has
finite rank its geometric realisation (in the sense of Chapter 1 section
1) is a simplicial complex. [HINT: Use (2.1)(ii)].

Show that a generalized co-gon (i.e., W infinite dihedral) is the same
thing as a tree with no end point (i.e. no vertex on only a single edge).
Show that a generalized 2-gon is a complete bipartite graph (i.e., two
sets of vertices X and Y with edges being all pairs {z,y} with z € X,
yeYyY).

Given a generalized m-gon A with m > 3, call the two types of vertices
points and lines and define a point to be on a line if they are the
vertices of a common edge of A. Using this interpretation, show that
thick generalized 3-gons are the same thing as projective planes (i.e.,
any two distinct points lie on a unique common line, any two lines have
a point in common, and there exists a non-degenerate quadrangle.)
Given parameters (s,t) for a generalized m-gon with m finite, show
that the number of chambers (edges) opposite a given chamber is

(st)™/2 if m is even, and s™3" ™5 if m is odd; for m odd, reversing

the roles of s and t gives an alternative proof that s = ¢. If m is even
show that the total number of chambers is (s +1)(t +1)(1 +st+...+
(st)71).

Let A be a generalized 2m-gon having vertices of types 1 and 2, and
suppose each vertex of type 1 has valency 2 (i.e. lies on exactly 2
edges). Show that A is obtained from a generalized m-gon Ay by
introducing a new vertex (of type 1 in A) in the middle of each edge
of Ay and taking the vertices of Ay to be the type 2 vertices of A. If
A has parameters (1,t) with ¢ # 1, conclude that Ag has parameters
(t,1), and hence by the Feit-Hligman Theorem (3.4) that m = 2,3,4 or
6 only.

A polarity of a generalized m-gon is an (outer) automorphism of order
2 interchanging the two types of vertices. Show that the chambers
fixed by a polarity are mutually opposite, and if there are no fixed
chambers then every chamber is carried to an opposite one.

Show that generalized 4-gons (quadrangles) are those point-line ge-
ometries, in the sense of Exercise 14, satisfying:

(i) two points lie on at most one line;

(ii) there exists a non-degenerate quadrangle;
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(iii) for any line L and point p not on L, there is a unique point of L
collinear with p.

Let V be a 4-dimensional vector space over k with basis {z},z2,y1, y2}

and alternating bilinear form

(xisxj) = (yny]) =0

and
(zi,95) = —(yj,%i) = 6ij.

Let points be 1-spaces and lines be totally isotropic 2-spaces S (i.e.,
(s,t) = 0Vs,t € S). Show that this is a generalized quadrangle in the
sense of Exercise 18. If k = F,, it has parameters (¢,¢).
Let @ denote the geometry of Exercise 19, and let p be any point
(1-space) of Q. Define a new geometry Q' as follows:

points of @’ are points of @ not collinear with p;

lines of Q' are all lines of @ not on p, and all non-isotropic 2-spaces

containing p.
Show that, with the obvious incidence (containment) relation, Q' is a
generalized quadrangle. If k = Fy it has parameters (¢ — 1,9 + 1).
Let G be any bipartite graph of finite diameter and girth 2m containing
a circuit. Adjoin new vertices and edges to get a larger graph G’ as
follows: if x and y are vertices of G with d(z,y) = m + 1, introduce
m — 1 new edges and m — 2 new vertices forming a chain of length
m — 1 joining z to y. Then G’ has girth 2m, finite diameter, and
contains a circuit. Moreover if z,y € G and dg(z,y) = d > m, then
dg/(z,y) < d. Repeating this procedure ad infinitum, show that one
obtains a generalized m-gon G. What modification is necessary to
ensure that G is thick?
(P.J.Cameron) Consider a generalized quadrangle with parameters
(s,t). For any point z, let 1 denote the set of points collinear with
z. Two points 2 and y which are not collinear are called opposite; in
this case |[zX Nyt| =t + 1. Now let {z),...,2,} be the set of points
opposite both z and y, and for each z; let a; = [zt Nyt Nz

(1) Show that n = s2t — st — s + t.

(i1) Show that a; = (t + 1)(t — 1)s and Za;(a; — 1) = (¢t + 1)t(t - 1).
[HINT: Count pairs (v, z;) and triples (v, w, z;) where v,w € zt N
yt Nz
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(iii) Using the inequality (Za;)? < nXa?, derive the inequality
(s —1)(s>—=1t)>0.

(iv) Conclude that for a thick generalized quadrangle, t < s
(dually) s < ¢2.

2 and

(v) If t = s* what does this say about the number of points collinear
with three mutually opposite points?



Chapter 4
LOCAL PROPERTIES AND COVERINGS

This chapter deals mainly with coverings of chamber systems (defined
in section 2), particularly those chamber systems whose rank 2 residues are
buildings. Most of the chapter is independent of the rest of this book; in
particular there is no connection with Chapters 5 and 6, and only section
1 will be used in Chapter 7.

1. Chamber Systems of Type M.

In Theorem 3.5 we saw that every residue of a building is a build-
ing; in particular by (3.2), the {1, j}-residues are generalised m;;-gons. We
now define a chamber system of type M to be a chamber system over I for
which each {i, j}-residue is a generalised m;;-gon. Although such a cham-
ber system is not necessarily a building, we shall show that its universal
cover (section 3) is a building, provided the same is true for all J-residues
whenever |J| = 3 and W, is finite.

In a chamber system of type M, we define a strict elementary homotopy
of galleries to be an alteration from a gallery of the form v;v¢v2 to one of
the form v1v§y2 where v has type p(7,j) and vy has type p(j,7). Two
galleries are then called strictly homotopic if one can be transformed into
the other via a sequence of strict elementary homotopies.

Notice that if ¥ and 4 are strictly homotopic galleries of types f and
f’, then f and f’ are homotopic as words and hence vy = ry:; thus each
strict homotopy class of galleries determines an element of W.

(4.1) LEMMA. Let C be a chamber system of type M. Given a gallery v
in C of reduced type f from z to y, and a homotopy f =~ g of words, there
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exists a gallery v’ of type g from z to y which is strictly homotopic to 7.
Moreover a minimal gallery must have reduced type.

PROOF: In a generalised m;j-gon a gallery of type p(i, j) is certainly strictly
homotopic to one of type p(j,7) so a homotopy of words may be realised
at the gallery level, proving the first statement. To prove the second state-
ment, let ¥ be a minimal gallery of type f from z to y. If f is not reduced
it is homotopic to a word of the form f,iif,, and hence there is a shorter
gallery, of type fiifs or fi fa, from z to y. O

We now give a characterization of buildings as connected chamber
systems of type M satisfying the following condition for one single chamber.

(Pz). If two reduced words f, f' are the types of two galleries from z to
some common chamber, then ry = rj:.

If (P;) is satisfied, then there is a well-defined distance é(z,y) = r;
from z to any other chamber y, where f is a reduced word which is the type
of a gallery from z to y (such a gallery exists and is obviously minimal,
cf. 4.1). Moreover if r; = r, (g reduced), then f ~ g by (2.11), and by
(4.1) there is also a gallery of type g from z to y. Thus if (P;) is satisfied,
8(z,y) = ry (f reduced) if and only if there is a gallery of type f from z
to y.

(4.2) THEOREM. A connected chamber system C of type M is a building
if and only if (P.) holds for some chamber ¢ € C.

PRrooF: By definition (P;) holds for all chambers in a building. Conversely
the preceding discussion shows that C is a building if (P;) holds for all 2.
By connectivity it therefore suffices to prove that (P.) = (P.) whenever
¢’ is adjacent to c.

We suppose ¢’ is j-adjacent to ¢, and ¢’ # c. Given two galleries v, v’
from ¢’ to d, having reduced types f, f’ we must show that r; = 7.

Case 1. Suppose both jf and jf’ are reduced.
By applying (P.) to the galleries (¢,7) and (c,7’) one has rj; = rjy,
and hence r; = /.

Case 2. Neither jf nor jf’ is reduced.

By (2.13) f ~ jg and f' ~ jg' where both jg and j¢' are reduced.
By (4.1) we therefore have galleries (¢’,7;) = (¢',c1,...,d) and (¢',7]) =
(c',ch,...,d) of types jg and jg' respectively. Clearly c,c’,c; and ¢} are
all mutually j-adjacent.
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If ¢c; = ¢ = ¢} we apply (P.) to 71 and 7] to conclude that ry = ry
and hence 7y = ry.

If ¢; # ¢ # ¢ we apply (P.) to (¢,71) and (c,7]) to conclude that
Tjg = Tjgr, and hence ry = 7.

If c; = ¢ # ¢} we apply (P.) to (71) and (¢,7]) to conclude that
rq = 7jg. This implies g =~ jg', contradicting the fact that jg is reduced.
A similar contradiction eliminates the possibility ¢; # ¢ = ¢}, completing
the proof of Case 2.

Case 3. Exactly one of jf or jf’ is reduced.

We show this cannot happen. Without loss of generality jf is reduced
and jf’ is not, so by (2.13) f' ~ jg. As in Case 2 we have a gallery
(¢y,7m)=(,c1,...,d) of type jg, and ¢, ¢’ and ¢; are mutually j-adjacent.

If ¢ = ¢, we apply (P;) to 71 and (c,7v) to conclude that », = »jy,
hence g >~ jf, so f' ~ jg is not reduced, a contradiction.

If ¢ # c¢1 we apply (P.) to (c,71) and (c,7) to conclude that rj; = rjy,
and hence g >~ f. Therefore by (4.1) there is a gallery ¥’ of type f from ¢,
to d. The galleries (c,v) and (¢, ¥’) both have reduced type j f; this implies,
using (P,.), that they must be the same gallery (the proof of (3.1)(v) goes
through unchanged), and hence ¢’ = ¢;, a contradiction. o

2. Coverings and the Fundamental Group.

A morphism ¢ : C — D of chamber systems is called a covering if it
maps each rank 2 residue of C isomorphically onto a rank 2 residue of D
of the same type (the term 2-covering is also used). We say also that C
covers D.

Remark on Topology. Any chamber system C of finite rank n has a
geometric realization as a CW-complex A of dimension n — 1, built from
simplexes, as explained in Chapter 1, section 1. If g4 : A—Aisa covering
of topological spaces, then A inherits a cellular decomposition from A,
and can be viewed as the geometric realization of a chamber system c
(chambers being faces of dimension n — I, panels being faces of dimension
n — 2). Since pa is a homeomorphism in the neighborhood of each point,
it induces a map ¢ : C — C which is an isomorphism on each residue
of rank < n. We shall call such coverings topological; if n > 3 every
topological covering is a covering in the sense defined above, and for n = 3
the two concepts coincide. Of course for n > 3 our coverings need not be



42 LECTURES ON BUILDINGS

isomorphisms on rank 3 residues; in topological terms they are “branched”
(or “ramified”) over a subcomplex of codimension > 3.

To investigate coverings of topological spaces one uses the “flundamen-
tal group” whose elements are homotopy classes of paths beginning and
ending at some given vertex. There is an analogous notion for chamber
systems, which we now discuss.

In any chamber system an elementary homotopy of galleries is an al-
teration from a gallery of the form ywé to yw’é where w and w’ are galleries
(with the same extremities) in a rank 2 residue. We then say that two gal-
leries are homotopic if one can be transformed to the other by a sequence
of elementary homotopies. Notice that in a chamber system of type M two
galleries which are strictly homotopic are obviously homotopic.

If ¢ is a chamber in a connected chamber system C, a closed gallery
based at ¢ will mean a gallery starting and ending at c. The fundamental
group m(C,c) is the set of homotopy classes [y] of closed galleries 7 based
at c, together with the binary operation [v]-[y'] = [y7'] where vy’ means v
followed by v'; using v~ ! to denote the reversal of v, one has [y]~! = [y7!].

Notice that if ¢’ is any other chamber, and § is a gallery from ¢ to ¢/,
then [y] — [67176] gives an isomorphism from m(C, ¢) to 7(C,c'). We call
C simply-connected if it is connected and 7(C,c) = 1. Given a morphism
@ 1 C — D with p(c) = d (sometimes written ¢ : (C,c) — (D,d)), one
defines a map

. :7(C,c) — 7(D,d)

via [7] — [@(7)]; this is obviously a group homomorphism, and if ¢ is a
covering it is injective (Exercise 1).

(4.3) THEOREM. Buildings are simply-connected.

PROOF: Let 7 be any closed gallery based at ¢ which is minimal in its
homotopy class. If v # (¢) then its type f is not reduced, otherwise §(¢c,¢) =
ry; therefore there is a sequence of elementary homotopies from f to a word
of the form fyiif,. By (4.1) v is strictly homotopic to a gallery of this
type and therefore homotopic to a shorter gallery, of type fi17f2 or fi fa, a
contradiction. Thus the fundamental group is trivial. 0

(4.4) LEMMA. Let ¢ : C — D be a covering. Given a gallery v in D
starting at some chamber z, and given ¥ € ¢~(z), there is a unique
gallery ¥ in C starting at Z and with p(Y) = 7.

ProoF: Exercise. O
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(4.5) LEMMA. Given coverings ¢ : (C,c) — (D,d) and ¢ : (E,e) — (D, d)
with C and E connected, there exists a covering a : (C,c) — (E,e) with
Ya = ¢ if and only if p,7(C,c) < Y.7(E,e).

C LN E

N V'
D

PRrROOF: If a exists, then for any [y] € 7(C, ¢) we have

0.[7] = (Ya)u[r] = [a(7)] = ¥u[a(7)] € Yun(E,¢).
Conversely, to define a, take any chamber z of C, and let v be a gallery
in C from ¢ to z. By (4.4) the gallery ¢(v) in D has a unique lifting to a
gallery ¢ in E starting at e. The final chamber of ¢ is defined to be a(z),
(see Figure 4.1); obviously pa(z) is the final chamber of ¢(v), namely ¢(z),

and hence Ya = ¢. We must show a is well-defined; it will then follow that

a is a morphism, and hence a covering since ¢ and ¢ are.

® O @
\ i
-®

Figure 4.1

O

Thus let 4’ be another gallery from ¢ to z, and let €’ be the lifting of
©(v') starting at e. By hypothesis ¢(7’'y~!) is homotopic to ¥(8) for some
closed gallery 6 in E based at e. Any sequence of elementary homotopies
from ¥(8) to p(y'y~!) lifts to E giving a homotopy from 6 to a closed
gallery 0 with ¥(0) = ¢(y'y~!). By the uniqueness of liftings (4.4) one has
0 = e’e~1; thus ¢ has the same end chamber as ¢, and o is well-defined. O
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Remark. If g is an automorphism of C, then go ¢ : (5 €) — (C,c) is
a covering, and usmg (4.5) one finds that g lifts to an automorphlsm g of
C sending ¢ to g(c) € ¢~}(g(c)) if and only if grx(C, ) = pu7(C, g(c))
(Exercise 5). B o

(C,9) —  (C,9(c))

gop\ Ve

(C,g(c))

Since g. is an automorphism of #(C,c), this will certainly be the case
whenever ¢, 7(C,¢) is a characteristic subgroup of #(C,¢c); in particular
whenever m(C,¢) = 1 (see Exercises 6-8).

3. The Universal Cover.
We assume from here on that all our chamber systems are connected.

Definition. A covering ¢ : (C,¢) — (C,c) is called universal if whenever
¥ : (C,€) — (C,c) is a covering there exists some covering « : (C,&) —
(6,6) such that Ya = ¢

(4.6) ProposITION. Universal coverings always exist and are unique up
to isomorphism. Moreover a covering ¢ : (C, &) — (C,¢c) is universal if and
only if C is simply-connected (i.e., #(C,¢) = 1).

PRrooOF: Uniqueness up to isomorphism follows from the universal property
as usual. Moreover if 7(C, ¢) = 1, then (4.5) implies that C is universal.
To prove the converse it suffices to construct a simply-connected covering
C~‘, as follows.

The chambers of C are homotopy classes of galleries in C starting at c,
and we let ¢ denote the class of the trivial gallery [c]. Define i-adjacency by
lco, ... ex—1,¢k) ~ [co, ... yer—1,¢;) and [co, ... ,ck—1] where ¢}, ~ ¢k, and
define ¢ by ¢]c, . N ,d] = d. In arank 2 residue two galleries are h'omotopic
if and only if they have the same end chambers, so ¢ is an isomorphism
when restricted to rank 2 residues. To see that 7(C,é) = 1 let J be a
closed gallery in C based at é. The definition of C implies that when we
lift a gallery 6 of C starting at ¢, to a gallery §of C starting at ¢, the
end chamber of § is the homotopy class of 8. Since ¥ has end chamber ¢,
the homotopy class of ¢(%) is that of the null gallery (¢). Moreover, since
@ 1s an isomorphism when restricted to rank 2 residues, each elementary
homotopy in C can be lifted to 6', and therefore a homotopy in C from
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¢(¥) to (c) lifts to a homotopy in C from ¥ to the null gallery (¢), showing
(C,¢é) = 1. ]

(4.7) PROPOSITION. Let ¢ : (C,é) — (C,c) be a universal covering of a
chamber system of type M. Then Cisa building if and only if whenever
two galleries in C starting at ¢, and of reduced type, are homotopic they

are strictly homotopic.

PROOF: Suppose homotopic implies strictly homotopic; to show Cisa
building it suffices, by (4.2), to verify P:. So let v,v’ be two galleries in C
from ¢ to some common chamber and of reduced types f, f’ respectively.
Since C is simply-connected v and 4’ are homotopic. Therefore ¢(y) and
©(y') are also homotopic, so by hypothesis there is a sequence of strict
elementary homotopies from ¢(v) to ¢(v'), and these pull back under ¢!
to show that v and 4’ are strictly homotopic. Therefore f ~ f’, and
ry =y as required.

Now suppose C is a building and let v;, 2 be galleries in C of reduced
types f1, f2 starting at ¢, and which are homotopic. The unique liftings
(see 4.4) to galleries 51,7, in C starting at & therefore have the same end
chamber. Since f; and f, are reduced we have f; ~ f, and therefore by
(4.1) 7, is strictly homotopic to a gallery of type f and by uniqueness
(3.1)(v) this is ¥2. The appropriate sequence of strict elementary homo-
topies is mapped by ¢ to a sequence of strict elementary homotopies from
71 to 72, showing v; and v, are strictly homotopic as required. m}

(4.8) PrROPOSITION. The universal cover of a chamber system C of type
M is a building if and only if (R.) holds for some ¢ € C.

(R¢)- Any two galleries from ¢ to a common chamber which are strictly
homotopic and of the same reduced type must be equal.

PRroOF: Let ¢ : (C~',5) — (C,c) be a universal cover. If v;,v, are galleries
in C of reduced type f starting at ¢, and which are strictly homotopic,
then their liftings 5,72 to galleries in C starting at & have the same end
chambers and the same type f. By (3.1)(v), 91 = %2, hence v; = 72, and
(R.) holds.

Conversely suppose (R.) is satisfied. We shall show that homotopy
implies strict homotopy, in the sense of (4.7), and hence C is a building.
Recall first that, as in (4.5), the chambers of C correspond to homotopy
classes of galleries in C starting at ¢, and ¢[c,... ,d] = d. Similarly we
define C by taking its chambers to be strict homotopy classes of galleries of
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reduced type in C starting at c. We let [y], denote the strict homotopy class
of v, and let ¢ = [c],, (the class of the null-gallery). Adjacency is defined as
in (4.5) for C, by setting [co,. .. ,ck-1,ck]s -adjacent to [co,. .. ,Ck-1,CL)s
and [co, ... ,ck—1]s if ¢} T k- There is an obvious morphism a : C — C
sending a strict homotopy class to the homotopy class containing it. Using
¢ : (C,) — (C,c) for the obvious projection ¥[c,...,d], = d we have
pa =19 -
(Csy = (C)3

/AN 7P
(C,e)

It suffices to show that i is a covering, for then the universality of C
shows a is an isomorphism, so homotopic implies strictly homotopic, and
(4.7) does the rest. Thus let R be a rank 2 residue, of type J, in C; we
shall use (R.) to define a special chamber 2z € R, and use z to show ¥|p is
an isomorphism. Let 2 € R be any chamber; it is a strict homotopy class
of galleries in C starting at ¢, and determines a unique element w(z) € W
(namely r; where f is the type of such a gallery). Let w(z) = w'w” where
w’ is the shortest word in the J-residue of W containing w, and w” € W;
(this factorization is uniquely determined by J), and let f' and f” be
reduced words with ;. = w', ;v = w”. In the class = there is a gallery
¥ = ¥'y" where 4’ has type f’, and 4" has type f’. We define z to be [y];.
If instead of f’, f" we use g’,¢", there is a gallery 6 = 6’6" in the class of
z, where 6’ has type ¢’ and §” type g”, and we claim [§']; = [y']s. Indeed
8’ and 8" are strictly homotopic to galleries 87 and 87 respectively of types
f' and f”, and by (R.), ¥'y" = 6187. Therefore 4’ is strictly homotopic to
§’', and z is well-defined. Moreover, had we started with a chamber y ~ z,
then ¥’ would be unaffected (only 4 would change), and so z is uniq:lely
determined by any chamber of R (it is actually projg¢).

If S is the J-residue containing ¢(R) we can now show that ¥|r is an
isomorphism onto S, as required. The existence of z shows that if z is any
chamber of R, then 2 = [y'y"],, where [¥'] = z and v” is a J-gallery of
reduced type in S from 9(z) to ¢(z). Since every chamber s € S lies at
the end of such a gallery 4" (because S is a rank 2 building), we see that

¥ is surjective, and since s determines ¥ uniquely up to strict honmotopy
(v" is in fact unique unless s is opposite ¥(z) in S), ¥ is injective. o

We conclude this section with a beautiful result which is the principal
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goal of Tits’ paper “A Local Approach to Buildings” [1981]. Recall that
“spherical type” means W is finite, so a J-residue is of spherical type if
W is finite.

(4.9) THEOREM. Let C be the universal cover of a chamber system C of
type M. Then Cisa building if and only if all residues of C of rank 3 and
spherical type are covered by buildings.

Proor: IfCisa building, then by (3.5) so are its residues, and since these
cover the appropriate residues of C, the “only if” part is clear.

To prove the converse we verify that the condition (R.) of (4.8) is
satisfied, so consider a strict homotopy between two galleries of the same
reduced type f. This gives a self-homotopy of words, and by (2.17) this
decomposes into self-homotopies each of which is either non-essential or
lies in a rank 3 residue of spherical type. The former type give an equality
of galleries because after a sequence of type fip(i,7)fo ~ fip(j,i)fo ~
fip(3, §) f2 the gallery is left unchanged; and the latter type give an equality
of galleries because (R.) is satisfied in any rank 3 residue of spherical type,
by (4.8) and the hypothesis. Therefore the two galleries are equal, and so
(R.) is satisfied. 0

(4.10) CoroLLARY. Let C be a chamber system of type M and finite
rank > 4, and suppose all residues of C are buildings. If the geometric
realization of C is simply-connected in the topological sense, then C is a
building.

PRrRoOOF: Since each residue is simply-connected, by (4.3), Exercise 9 shows
that C is its own universal cover, and hence a building. 0

4. Examples.
In this section we shall look at two examples: a family of chamber
systems of type Aa, and an exceptional chamber system of type Cj.

Example 1. As is the rank 3 diagram below for which each mi;; = 3.

VAN

In other words, each of the three types of rank 2 residues is a projective

plane (generalised 3-gon), in fact a plane of order 2 in our examples.
First we construct a projective plane of order 2 as follows. Let Frob(21)

denote the Frobenius group of order 21; it has a normal Z;-subgroup with
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Z3 acting non-trivially by conjugation. If P, and P, are two of its Z3-
subgroups, then using the notation of Example 1 in Chapter 1, the chamber
system (Frob(21) : B = 1, P, P;) is a projective plane (generalized 3-gon)
having 21 chambers and 7 panels of each type. This can be verified directly,
or indirectly as in Exercise 10, using the fact that Frob(21) is a subgroup
of SL3(2) acting simple-transitively on the 21 chambers of the building for
SL3(2).

Now let A, B and C be Frob(21) groups, and take distinct Z3-subgroups
A1,As < A; By, Bz < B; C3,Cy < C. We wish to construct a group G
by amalgamating A, B and C so that A; becomes identified with By, B3
with C3, and C; with A, (see Tits [1986b] regarding amalgams). First
notice that if s has order 7, and z has order 3 in Frob(21), then zsz~! = s
or s*. Indeed the two non-identity elements of a Z3-subgroup of Frob(21)
play different roles: conjugation by one sends each 7-element to its square,
conjugation by the other sends it to its fourth power. When we identify A,
with Bg, etc., we either prescribe a “straight” identification (i.e., the two
squaring elements are identified), or a “twisted” one (i.e., each squaring
element is identified with the inverse of the other). This distinction yields,
up to a rcordering of A, B and C, four different amalgamations, which we
indicate by the following diagrams:

8L L L

where the corner is straight or twisted in accordance with the identification
of the corresponding Zz-subgroups.

Let éu (n=0,1,2 or 3), denote the amalgamation of 4, B and C in
each of the four cases above; it is shown in Tits [1986b] Theorem 1 that
this amalgam does not collapse, but contains A, B and C as subgroups (in
Cases 0, 1 and 3 this also follows by our construction of quotients of 6’,,).
Now let P, P> and P; denote the Zz-subgroups of én corresponding to
A, =Cy, A2 = By and B3 = Cj3 respectively. Then

~

Cn=(Gn:B=1,P, P, P3)
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is a chamber system of type .Zg.

Notice that if G is any group generated by three Z3-subgroups Py, Ps, P3
such that (P;, Pj) = Frob(?l) then C=(G:B=1,P, Pz,Pa) is a cham-
ber system of type . \» Morcover (¢ must be a quotient of Gnforn=0,1,2
or 3, and therefore C,, covers C. In fact C’,, must be the universal cover
(see Exercise 8), and by (4.9), C, is a building.

In Cases 0 and 3, Kohler, Meixner and Wester [1984] and [1985] give
matrices generating G

Case 0.
1 00 0 1 t
z=10 0 1 T = 0 1+t 1
011 +1+ t 1+t
z,7 € GL3(F2(1)).
Case 3.
1 0 =Xx-1 0 1 0
z=10 0 -1 T = 0 01
01 -1 =3=2 0 0

where A2+ A+ 2 =0 and z,7 € GL3(Q(v/=T)). In either case set y = 2"
and z = y7; then let P, = (z), P> = (y) and P53 = (2).

They also show that the group G generated by z and 7 acts transitively
on the chambers of the affine building of type A, over Fy(t), or Q(v/=7)
with the 2-adic valuation (such buildings are dealt with in Chapters 9 and
10), and hence G is one of the (7',, above. In Case 3 it is natural to try
reducing G modulo a prime p, and this is shown to give:

SLy(F,) il p=1,20or 4(mod T7)
SU3(Fp2) if p=3,5 or 6(mod 7)
72SLo(F7)ifp=17

Thus each of these groups acts on a finite chamber system of type 22,
and in each case the universal cover is C3 (notation above).

In Case 0 one can reduce modulo a prime ideal in Fp[t,t~1,(1+1¢)7"].
If f is an irreducible polynomial of degree n, reduction mod (f) gives a
subgroup of PG 13(2"). A result of Kohler-Meixner-Wester [1984], modified
by Kantor [1986], is that when n > 10 this procedure yields inore than 2"/
different (pairwise non-isomorphic) finite chamber systems of type Z'_,, each
with a group acting simple-transitively on the set of chambers, of course.

In Case 1 a finite example is given in Exercise 12. In Case 2 I do not
know of any finite example.



50 LECTURES ON BUILDINGS
Example 2. This example shows that the rank 3 restriction in Theorem
4.9 is essential. We exhibit a chamber system C of type C3

(o} oO———oO

1 2 3

which is simply-connected, but not a building. Infinite examples of such
objects were discovered years ago by J. Tits. This finite example was first
discovered by A. Neumaier, and later independently by M. Aschbacher;
it appears as a residue in some higher rank cases (see Exercise 18 for an
example).

Take a set of seven elements 1,...,7 and call them points, and define
a line to be any subset of three points. Using these points there are exactly
30 ways of choosing seven lines to form a projective plane of order 2, such
as the one in Figure 4.2.

Figure 4.2

This set of planes splits into two orbits nnder the alternating group A;: 15
z-planes and 15 y-planes. Two planes are in the same orbit if and only if
they have exactly one line in common (Exercise 14).

To define C let its chambers be triples (p, L, X) where p is a point on a
line L in an z-plane X'; two chambers are 1-, 2- or 3-adjacent il they differ
in at most one point, line or z-plane respectively. Obviously {1,2}-residues
are projective planes (generalised 3-gons), {1,3}-residues are generalised 2-
gons and, as shown in Exercise 15, {2,3}-residues are generalised 4-gons,
hence the C3 diagram.

To show C'is not a building, count the number of chambers; it is 315.
Yet in a C3 building having 3 chambers per panel, there are 2° chambers
opposite a given chamber ¢ (9 being the length of the longest word): to
see this, count the number of galleries of a given type 7, ...ig from ¢ to an
opposite chamber. Alternatively one could, in the spirit of this chapter,
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exhibit galleries of types 2132 and 321323 having the same extremities;
these words are both reduced, but not homotopic.

To show C is simply-connected, it suffices to show that any closed
path in the geometric realization A is null-homotopic (see the remark at
the beginning of section 2). It is a simple matter (Exercise 17) to reduce to
considering paths of the form (p, M, p’, M’, p) where M and M are lines on
both p and p’, and Figure 4.3 shows that such a path (with p =1, p’ = 2,
M =123, M' = 127) is null-homotopic. In this picture points, lines and
planes are represented as vertices, edges and triangles (it is an exercise to
check the planes are z-planes). After making the obvious identifications
the illustration shows an octahedron with a slit in one edge, and this is
homeomorphic to a disc with the closed path (p, M, p', M’, p) as boundary.

' 123 2 127 1
156 289, 235 136
126
¢ 367
5
356 3
156 45 26 Bus 136
I 124 4 124 !

Figure 4.3

Notes. The main results of this chapter are taken from Tits [1981]. In
that paper, Tits develops some earlier ideas he had on buildings, which
became particularly relevant with the discovery in 1978 of a 52 geometry
(chamber system) for the Lyons sporadic simple group. It was only later
that the examples in section 4 were discovered. The paper on amalgams,
Tits [1986b], mentioned in Example 1, is similar in spirit to this chapter
and is recommended as further reading.

Exercises to Chapter 4

l. Prove Lemma (4.4), and show that if ¢ : C — D is a covering, and
two galleries 71, 72 in D starting at d are homotopic, then their liftings
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¥2,72 to galleries in C starting at ¢ € ¢~ !(d) must have the same end
chamber. Show also that if 4,9, are homotopic galleries of C, then
©(7), ¢(7') are homotopic, thus verifying injectivity of ..

. Show that any closed gallery in a building can be reduced to the

trivial gallery by a sequence of operations each of which is either a
strict elementary homotopy, or an alteration in a rank 1 residue (i.e.,
(e, ¢, ¢") = (c,c") where ¢ o d o ).

(Peter M. Johnson). Show that (P;) is equivalent to (P,): The only
gallery of reduced type from z to z is the null-gallery. [HINT: With
f and f’ as in (P;) use induction on min(4(f),¢(f')); (P;) allows the
induction to start).

. Show that the universal cover of a chamber system of type M is a

building if and only if the only closed gallery of reduced type which is
null-homotopic is the null-gallery.

In Exercises 5-9, C is any chamber system, not necessarily of type M.

. Let g be an automorphism of C, and let ¢ : (6‘,5) — (C,c) be a

covering. Show that ¢ lifts to an automorphism § of C (ie., po
g = g o) sending ¢ to g(c) for some g(c) € ¢~'(g(c)) if and only if
(gop)em(C,&) = p.m(C,g(c)). [HINT: Use (4.5)].

. Let ¢ : C — C be a universal covering, and let I denote the group of

automorphisms § of C which are liftings of the identity (i.e., po§ = ).
Show that II acts simple-transitively on ¢~1(c) for any chamber ¢ € C.
[HINT: Use Exercise 5 for transitivity].

. Show that the group II of Exercise 6 is isomorphic to (C,c). [HINT:

Chambers of ¢~!(c) correspond to homotopy classes of closed galleries
based at c].

. I C s a universal cover of C, show that any group G of automorphisms

of C lifts to a group G of automorphisms of C such that G~'/I'I = G,
where I is the fundamental group of C. Moreover if R is a residue

of C such that ® maps R isomorphically onto a residue R of C, then
StabaR =~ Stabg R.

. Let C have finite rank n > 3, and suppose (the geometric realization

of) each residue of rank k, for 3 < k < n, is simply-connected in
the topological sense. Show that every covering of C is a topological
covering. [HINT: A covering restricts to a covering on each residue;
use induction on n).
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Show that the group SL3(2) has a Frobenius subgroup of order 21
acting simple-transitively on the flags of the projective plane (i.e., V; C
V2 where dim V; = 7 in the 3-space on which SL3(2) acts). Use this to
verify the assertion in Example 1 that each {i, j}-residue is a projective
plane.

Let Py, P, and P; be any three distinct Zsz-subgroups of Frob(21).
Show that (Frob(21) : B = 1, Py, P», P3) is a chamber system of type
A,, belonging to Case 0 of Example 1.

Let P, = (z;), P, = (z;) and P; = (z3) be Zs-subgroups of the
alternating group Az, where z; = (123)(456), 2 = (124)(375) and
z3 = (153)(276). Show that (A7 : B = 1,P;, P, P5) is a chamber
system of type .:1'2, belonging to Case 1 of Example 1.

What is the universal cover of the rank 3 chamber system derived from
S3 in Exercise 6 of Chapter 1?7

Verify that, as claimed in Example 2, there are exactly 30 ways of
choosing 7 lines to form a projective plane. Show that A7 has two or-
bits of size 15 on this set of planes, and that any two distinct planes are
in the same orbit if and only if they have exactly one line in common.
Define a bipartite graph whose vertices are the duads (ab) and syn-
themes (ab)(cd)(ef) of a set {a,..., f} of six symbols, with incidence
being given in the obvious way [(ab)(cd)(ef) incident with (ab), (cd)
and (ef)]. Show that this is a generalized 4-gon, and corresponds in a
natural way to the {2, 3}-residue of Example 2.

Treating a generalized 4-gon as a point-line geometry as in Exercise
10 of Chapter 3, show that there is a unique one with parameters
(2,2), which is therefore sell-dual (i.e., isomorphic to the one obtained
by interchanging the roles of points and lines). Conclude, using the
preceding exercise, that the symmetric group Ss admits an outer au-
tomorphism interchanging involutions of type (ab) with those of type
(ab)(cd)(ef) [it is the only symmetric group admitting an outer auto-
morphism].

Let A be the geometric realization of the C3 chamber system of Ex-
ample 2. Show that if every path in A of the form (p, M,p', M’,p),
where A and A" are lines on points p and p/, is null-homotopic then
any closed path in A can be deformed to a point. [HINT: first de-
form a closed path to a path consisting of edges of A whose vertices
are points and lines; any closed path of this form lying in a plane is
null-homotopic].
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18. In Example 2, let B denote the stabilizer of a chamber ¢, and let Py, P»
and P; be the stabilizers of the panels of ¢ (indexed by the diagram,
so Pj3 stabilizes (p, L), where p is a point on a line L). Show that if
o € S7, then P§ is conjugate to P, in A7, and similarly for P3, but not
for P, unless 0 € A7. Thus S7 preserves 2-adjacency and 3-adjacency
but not l-adjacency. Define 1’-adjacency between chambers of C by
¢ dif o(c) ~ o(d) for 0 € S7 — A7. Show that this gives a rank 4

chamber system C with diagram
1 c\
2
ll

If o normalizes B3, then Py is the stabilizer of the I’-panel of ¢, and
C = (A7 : B, P\, P{, Pa, P3). (The {1,2,1’}-residue is the building, of
type As, for SL4(2) = As, which admits A; as a chamber-transitive
automorphism group.)



Chapter 5
BN - PAIRS

This chapter deals with the relation between groups having a Tits
system (also called a BN-Pair) and buildings. Parabolic subgroups are
defined, and characterised as being those subgroups containing a chamber
stabilizer B.

1. Tits Systems and Buildings.
A Tits System, or BN-Pair, in a group G is a pair of subgroups B, N
satisfying:

BNO. (B,N)=G

BN1. H = BNN<aN and N/H = W is a Coxeter group with distinguished
generators sy,...,8q.

BN2. BsBwB C BwB U BswB whenever w € W, and s = s;.
BN3. sBs # B for s = s;.

Note 1. If n,n’ € N have the same image w € W, then nB = n’B, so wB
is well defined (cf.BN2).

Note 2. BNO and BN2 imply that G = BNB.

Note 3. Taking inverses in (BN2) and replacing w by w™! gives BwBsB C
BwB U BwsB.

(5.1) LEMMA. (i) If BwB = Bw'B then w = w', and hence G is the
disjoint union UBwB (called the Bruhat decomposition).
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(ii) If ¢(sw) > ¢(w) then BsBwB = BswB.

ProOOF: (i) Without loss of generality ¢(w) < #(w’). Let w = sw; where
{(w) < £(w). By assumption swy; B C Bw'B. Therefore

w; B C sBw'B C Bw'BU Bsw'B,

and so Bwu;B = Bw’'B or Bsw'B. By induction on ¢(w) (the result ob-
viously being true for £(w) = 0 - i.e., w = 1), we have w; = v’ or su'.
However w; # w’ because f(w;) < £(w'), so w; = sw’, and hence w = w'.
(i1) Again using induction on the length of w, we may assume that if
€(v) < Yw), £(sv), €(vs’), then BsBvB = BsvB and BvBs'B = Bvs'B

(cf. Note 3). Since w = vs’ for some v and s’, with £(v) < ¢(w), we have

BsBwB = BsBvs'B = BsBvBs'B
= BsvBs'B
C BsvB U BswB.

Moreover
BsBwB C BwBU BswB.

Now sv # w, otherwise v = sw, and since ¢(sw) > £(w) by hypothesis, this
contradicts £(v) < £(w); hence BsvB # BwB by (i), and the result {ollows.
O

If A is a building, a group G of automorphisms of A will be called
strongly transitive if the following two conditions are satisfied:

(i) for each w € W, G is transitive on ordered pairs of chambers (z,y)

where §(z,y) = w.

(i1) there is some apartment ¥ whose stabilizer in G is transitive on the

chambers of ¥ (and hence induces the Coxeter group W on X).

In the spherical case, strong transitivity is equivalent to transitivity on
the set of all pairs (z, A) where  is a chamber in an apartment A (Exercise
4). In general, however, strong transitivity is a weaker condition; a strongly
transitive group need not be transitive on the set of all apartments - an
example will appear in Chapter 9 section 2.

The following two theorems explain the connection between strong
transitivity and Tits systems. Before stating them we note that if A is any
chamber system and G a group of automorphisms of A acting transitively
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on the set of chambers, then the chambers of A correspond to the left cosets
gB where B is the stabilizer of a given chamber (we are taking group action
on the left). Thus a double coset BwB consists of those chambers in the
same suborbit as wB under the action of B. With this interpretation,
axiom BN2 says that s sends a chamber in this suborbit to one either in
the same suborbit or in the suborbit containing swDB.

(5.2) THEOREM. Let A be a thick building admitting a strongly transitive
group G of automorphisms, let £ be as in the definition of strong transi-
tivity, and let W be the corresponding Coxeter group. Let c¢ be a given
chamber of ¥, and let B = stabge, N = stabgX.

Then (B,N) is a Tits system, and

6(c,d)=w & d C BwB
" where we are taking d to be a left coset of B.

ProOOF: Given g € G let w = §(c,g(c)). By strong-transitivity there exists
n € N such that é(c,n(c)) = w, and b € B such that g(c) = bn(c),so g €
bnB C BwB; this proves BNO. Conversely if ¢ € BwB, then g(c) = bn(c)
for some b € B, and hence é(c, g(c)) = é(c,bn(c)) = é(c,n(c)) = w. Thus
we have shown
6(c,d) =w & d=gB C BwB.

BN1. By (2.2) BN N is the kernel of the action of N on £,s0 BNNaN,
and by strong transitivity N/JBNN = W.

BN2. Let d = ¢B C BwB and suppose s € N projects to s;. We need to
prove that 6(c, s(d)) = w or sw. Since §(c,d) = w, we have é(s(c),s(d)) =
w. Now let ¢’ be the unique chamber nearest to s(d) in the i-residue
containing ¢ and s(c) (i.e., ¢’ = proj,s(d) where 7 is the panel common to
¢ and s(c)). There are three cases:

1) ¢ # ¢, s(c): therefore 6(c,s(d)) = 6(s(c),s(d)) = w (and €(sw) <

€(w)
2) ¢’ = s(c): therefore é(c, s(d)) = sé(s(c), s(d)) = sw (and £(sw) > £(w))
3) ¢’ = c: therefore é(c, s(d)) = sw (and £(sw) < £(w))

BN3. Using the thickness hypothesis, there is a third chamber d adjacent
to both ¢ and s(c); note that s(d) # ¢ because s?(c) = c. Now by strong
transitivity there exists b € B sending s(c) to d. Therefore

shs(c) = s(d) # ¢
Therefore shs ¢ 3. O



58 LECTURES ON BUILDINGS

(5.3) THEOREM. Every Tits system (B,N) in a group G defines a building,
the chambers being left cosets of B, with i-adjacency given by

gB ~hB & g~ h € B(si)B.

Moreover §(B,gB) = w < ¢gB C BwB where 6 is the distance function on
this building, N stabilizes an apartment, and the action of G is strongly
transitive.

PROOF: Define 6(9B,hB) = w <> g~'h € BwB. We must show there is
a gallery of reduced type f from gB to hB if and only if 6(¢9B,hB) = r;.
Since § is invariant under group action we restrict attention to 6(c,d) where
c=B.

Suppose 6(c,d) = w = ry with f reduced. Let f = jf' be reduced,
with j € I, and so w = sw’ where s = s; and v’ = r;». Without loss of
generality d = wB, so s(d) = swB = w’'B. By induction on {(w) there is
a gallery 7' of type f’ from ¢ to s(d), and hence ¥ = (s(c),¥’) has type
Jf = f from s(c) to s(d). Thus s~1(y) is a gallery of type f from c to d.

Conversely suppose there is a gallery ¥ = (c,e;,...,d) of reduced
type f = jf’ from ¢ to d; once again set w = ry, w' = rp and s = s;.
Without loss of generality ¢; = s(c), so s(v) = (s(¢),¢,...,s(d)). Thus
there is a gallery of type f' from ¢ to s(d), and by induction on {(w),
s(d) C Bw'B. Therefore d C s'Bw'B = sBw'B C Bsw'B by (5.1).
Therefore §(c,d) = sw' = w =ry.

Finally let £ be the set of n(c) for n € N; by (BN1) this is the set
of wB as w ranges over W. By definition §(wB,w'B) = w™!w', so &
is isometric to W and is hence an apartment, and N induces W on X.
Furthermore if 6(B, ¢gB) = w, then ¢B = bwB for some b € B, so b sends
the pair (B,wB) to (B, yB) showing (' is strongly transitive. O

Remarks.

1. The thickness assumption of (5.1) was only used to prove (BN3), and
(BN3) was not used in (5.2); so one sees that thickness is equivalent
to (BN3).

2. A building A with a strongly transitive automorphism group deter-
mines a Tits system by (5.2), and by (5.3) this in turn determines
a building, which is obviously isomorphic to A. On the other hand,
given a Tits system in a group G we obtain a building A, but G is not
uniquely determined by A. For example G might be SL,, (k): its centre
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acts trivially on A and therefore does not appear in Aut A (the auto-
morphism group of A). Moreover Aut A contains more than PSL,(k);
it is generated by PGL, (k) together with field automorphisms.

3. Even in a given group there can be more than one Tits system giving
the same building. The subgroup B is uniquely determined because it
has to be a chamber stabilizer, but N can often be replaced by one of
its subgroups (see Exercise 1).

Example. For G = GLn41(k) take:

B = upper triangular matrices -
0 *
N = matrices with one non-zero entry in each row and

column (permutation matrix x diagonal matrix)

B NN = diagonal matrices

Here W = S, 41 with distinguished generators si,...,sn, where s; is the
image of those permutation matrices which are zero off the diagonal except
in positions (¢,7 + 1) and (¢ + 1,7). The building in this case is that of
Example 4 in Chapter 1 (where the chambers are the maximal flags of

projective n-space).

2. Parabolic Subgroups.

For any subset J C I, recall from Chapter 2 that W, = (s;|j € J)
(see (2.14)). We now let P; = BW; B denote the union of the double
cosets BwB over all w € W;; by BN2, P; is a subgroup of G. A parabolic
subgroup is a conjugate of one of the P;; the conjugates of B = Py are also
called Borel subgroups.

(5.4) THEOREM. (i) The subgroups containing B are precisely the P;.

(ii) PyN Pg = Pk, and (P, Pi) = Pyyk.

(iif) Ng(Py) = Py, and Py is the stabilizer of the J-residue containing c.

(iv) There is a bijection of double coset spaces Wy \W /Wy — P;\G/Px
defined by W wWy — PjwPy.

PROOF: (i) Let P be a subgroup containing B, and let J = {j € I|Bs; B C
P}; we claim P; = P. Since Py is generated by the Bs;B for j € J
(immediate from (5.1)(ii)), we have P; C P. Conversely suppose BuB C P
and let w = sw’ where €(w’) < €(w). Since BwB = BsBw'B it suffices, by
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induction on £(w), to show BsB C P; to do this let d be a third chamber
in the rank 1 residue containing ¢ and s(c) (this uses (BN3)) - see Figure
5.1.

Figure 5.1

The stabilizer of w(c), namely wBw™!, is transitive on chambers at
some given distance from w(c), and since é(c, w(c)) = w = 6(d, w(c)), there
exists ¢ € wBw~! C P sending ¢ to d. Since §(c,d) = s we have g € BsB,
hence BsB C P, completing the proof.

(ii) The fact that P; N Px = P;nk follows immediately from W; N
Wk = Wik (Exercise 3 of Chapter 2). To see that (P;, Px) = Pjuk
we note that by (i), (Ps, Pk) = Pt for some L containing J and K’; but
Py, Py C Pjyuk,so LC JUK, and hence L = JUK.

(ii1) Let R be the J-residue containing c; its chambers are all 2 for
which é(c.z) € W, and so for g € GG, we have

9(R) = R& 8(c,g(c)) EW, & g€ Py

To show these P, are self-normalizing, note that by (i) Ng(Py) = Pg for
some K D J. If i € K then s;Bs; = s;Bs;! C P;y. Moreover by BN2 and
BN3, s;Bs; N Bs;B # 0 and therefore P, must contain the double coset
Bs;B, showing i € J and so J = K.

(iv) Using (5.1)(ii) it is a straightforward exercise to see that Py wPk =
BW;wWg B, and hence the map W wWyg — PjwPg is well-defined.
Moreover by (5.1)(i) it is both injective and surjective. O

Example. In the example of G L, 4, (k) above, let J = {t{,t+1,...,t+
m—1} C {l,....,n} =1I. Then P; has GLn4 (k) as a quotient group, and
consists of all matrices, as shown below, which are zero below the diagonal
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except in the m x m block whose top left corner occupies the diagonal
position (t,1).

* *

o)

L0 *
Notes. The axioms for a BN-Pair were given by Tits [1962]; for the genesis
of these ideas see Tits [1974] page IX, where work of Curtis [1964] is also
mentioned. The subgroups B and N appear in a natural way in the theory
of linear algebraic groups: B is a maximal, connected, solvable subgroup
(called a Borel subgroup, after A. Borel), and N is the normalizer of a
torus.

Exercises to Chapter 5

1. In the GLn41(k) example of this chapter, let N be the group of permu-
tation matrices. Show that (B, Ng) is also a BN-pair for G determining
the same building as (B, N); notice that BN Ng = 1, and Nog = W.

2. Set Hy = () nBn~!. A BN-Pair (B, N) is called saturated if H, =
nenN
BN N. If T is the apartment stabilized by N, show that Stabg¥X = N

il and only if (3. A) is saturated. In general show that (3, N /) is
saturated, and determines the same building as (B, N).

3. Let K be the kernel of the action of G on the building determined by
a Tits system (B, N). Show that K is the largest normal subgroup of
G contained in B.

4. Show that for buildings of spherical type, strong transitivity is equiv-
alent to transitivity on pairs (z, A) where z is a chamber in an apart-
ment A.

5. If Py is conjugate to Pk show that J = K.

6. If v: N — W is the natural projection, let Ny = v='(14;). Show that
Ny =NnNPyand that (B, Ny) is a BN-pair for Py.

7. Let K be a normal subgroup of (. If BK = P; then show that for
i€l —J and j € J one has my; = 2 (ie., s; and s; commute). In
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particular if the diagram is connected then either K < B or BK = G.
[HINT: Show Bs; N K # 0, hence s7'Bs;js; N Py # 0, and therefore
Bsjsi NsiBwB # 0 for some w € Wy; apply (5.1)].

. Suppose G has a Tits system (B, N) with a connected diagram, and

suppose B is solvable and G perfect. Show that any normal subgroup
of (7 lies in 3; moreover if i acts faithfully on the building determined
by (B, N) then G is simple.

. Let A be the building for GL3z(k), i.e. vertices are 1- and 2-spaces

of a 3-dimensional vector space V over k (and edges are given by
containment); here W = Ds. Then let A’ denote the barycentric
subdivision of A (i.e., obtained by interposing an additional vertex in
the middle of each edge of A); A’ is a non-thick building with W =
D,2. Let ¢ be an isomorphism switching V with its dual; obviously
o acts on A switching 1-spaces with 2-spaces. Let G be the group
generated by o and GL3(k). Show that G acts strongly transitively
on A’ and use this to verify that G has a “weak Tits system”, i.e.,
satisfying BNO, BN1, BN2, but not BN3.



Chapter 6
BUILDINGS OF SPHERICAL TYPE AND ROOT GROUPS

A building of spherical type is one for which W is finite (so each apart-
ment is a triangulation of a sphere - see Chapter 2 section 4). A powerful
theorem in Chapter 4 of Tits [1974], repeated here without proof as (6.6),
shows that a spherical building admits non-trivial automorphisms when
the rank is at least three. Moreover if each connected component of the
diagram has rank at least 3, this implies (6.7) that a thick spherical build-
ing necessarily admits “root groups”, and these generate a group with a
BN-pair. All buildings in this chapter will be thick, and also spherical,
except in section 4 when we discuss a generalization of “root groups” to
non-spherical buildings.

1. Some Basic Lemmas.

An important fact about finite Coxeter complexes W is that every
chamber has a unique opposite, and W is the convex hull of any two oppo-
site chambers (see Theorem (2.15)). In a spherical building two chambers
are called opposite if they are opposite in some apartment containing them,
in which case this apartment is unique as it is the convex hull of  and y
(cf. Exercise 5 in Chapter 3). Notice that if d = diam(W), then z and y
are opposite if and only if d(z,y) = d.

One of the first things we want to do is to extend the idea of opposites
to all simplexes of a spherical building; we first deal with panels.

(6.1) LEMMA. Let 7 be a panel (of type i) on chambers z and z' in an
apartment A. If y and y' denote the chambers of A opposite z and &'
respectively, then y and y' are adjacent. Moreover if 7' is the panel (of
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type i') common to y and y’, then m and n’ determine the same wall of A,
and ry = w; 'r;jw, where w, is the longest word of W.

ProoF: Since 2’ is opposite ¥’ and adjacent to z, we have d(z,y’) = d—1.
Moreover by (2.15) (iv) ¥’ lies on a minimal gallery from z to y, so

d(y',y) = d(z,y) — d(z,y’) = 1

showing y and y’ are adjacent. Now if a is the root of A containing z but
not z’, then y € —a and y’ € « so the wall o contains both 7' and =.

For the final statement, treat A as the Coxeter complex W, in which
case ' = zri, y = 2W,, ¥ = z'w, and ¥y’ = yry. Thus zw,ryr = zriw,, so
roo = wy rw,. o

For an apartment A, let ops : A — A denote the map sending each
chamber of A to its opposite; we call it the opposition involution. Although
op,4 is not necessarily an automorphism, Lemma (6.1) shows that it sends
i-adjacency to ¢’-adjacency where r;w, = wory». It is an automorphism if
and only if ¢/ = 7 for all ¢ € I, in which case opw = w, € W. Notice
that the opposition involution induces a symmetry of the diagram, and so
opw = w, whenever the diagram exhibits no non-trivial symmetry (e.g.,
Cp for n > 3). For types A, and Eg it reverses the diagram (Exercise
1), and for D, it induces a non-trivial symmetry precisely when n is odd
(Exercise 2). Finally, as mentioned in Chapter 2 section 4, a finite Coxeter
group W prescrves a dot product on R"”, and the Coxeter complex can be
taken as a triangulation of the (n — 1)-sphere S™~!; opw is then simply
the antipodal map, sending v to —v for all v € R".

We now define two simplexes of W to be opposite if they are inter-
changed by opw . More generally, two simplexes of a spherical building are
opposite if they are opposite in some apartment containing them (hence in
every such apartment, by Exercise 7 of Chapter 3).

(6.2) LEMMA. Given opposite panels = and =’ in a spherical building, and
chambers z € St(7) and y € St(n') one has d(z,y) = d unless = projxy
in which case d(z,y) = d — 1. In particular proj.|St(w') is inverse to
proj.|St(w). (Recall that projrx is the unique chamber of St(w) nearest
PRrooF: It suffices to show that z is opposite some (hence all but one)
chamber on 7', but of course if A is any apartment containing  and 7',
then z is opposite op 4(z) which has 7' = op (=) as a panel. O
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Recall that a root of a building is a root in an apartment of that
building (i.e., a half-apartment).

(6.3) LEMMA. Let o be a root in a spherical building, and * a chamber
having a panel 7 in da. Then there is a unique root containing z and Oa,
and if ¢ ¢ a there is a unique apartment containing z and c.

PrOOF: By (6.1) da contains a panel 7’ opposite w. Let y’ = proj.'z, and
let y denote the chamber of & on 7', so 2’ = projry is the chamber of o on
m - see Figure 6.1.

(<P

N>

Figure 6.1

By (6.2) d(z,y') = d — 1 = d(2',y), so by Exercise 5 the convex hull of =
and y’ is a root we call 3, and similarly « is the convex hull of £’ and y. If
z ¢ «, then by (6.2) z is opposite y, and we let A be the unique apartment
containing z and y. Since A contains 2’ it contains a, completing the proof.

]

Before stating our next proposition we introduce the notation F£;(c)
to mean the set of chambers adjacent to c.

(6.4) PrROPOSITION. Let ¢ and b be opposite chambers of a spherical build-
ing (assumed to be thick of course), and suppose ¢ is an automorphism
fixing b and all chambers of Ey(c). Then ¢ is the identity.

PRoOOF: By connectivity (and induction along a gallery from b) it suffices
to show that if &’ ~ b, then ¢ fixes b’ and all chambers of E}(¢’) for some ¢’
opposite b’. Let © be the common panel of b and &', and let o be the panel
of ¢ opposite m. By (6.2) ' = proj.z for some z € St(o), hence ¢ fixes V';



66 LECTURES ON BUILDINGS

and since b’ may be chosen arbitrarily ¢ fixes all chambers of E;(b). If b’
is opposite ¢ we are done, so suppose not. Using the thickness assumption
there exists a chamber ¢’ of St(¢) opposite both b and b (namely any
¢’ € St(o) with ¢’ # projsb or proj,b’). Since ¢ fixes ¢’ and E;(b), the
argument above shows it fixes E;(c’), concluding the proof. 0

Remark. Without the thickness assumption (always valid in this Chapter)
the above Proposition is false; see Exercise 18.

2. Root Groups and the Moufang Property.
For any root « (i.e., half-apartment) in a spherical building, let

Ua = {g € Aut A | ¢ fixes every chamber having a panel in o — da}.

This will be called a root group if the diagram has no isolated nodes. In
fact given this condition on the diagram there is a chamber ¢ € o such
that no panel of ¢ is in da (see Exercise 7), or equivalently such that
every chamber of E)(c) has a panel in @ — Oa. Since any apartment A
containing « contains a chamber opposite ¢, it is immediate from (6.4) that
only the identity of U, fixes A. If for each root «, U, is transitive, and
hence simple-transitive, on the set of apartments containing «, we call the
building Moufang. In fact it sufflices to assume this condition for the roots
« in a given apartment T. Indeed if g sends o to 3, then gU,g~! = Up,
and it is not difficult to show that for those « in ¥ the U, generate a group
having a BN-Pair (see 6.16); in the spherical case such a group is transitive
on the set of apartments, hence on the set of roots, so each Ug acts in the
required manner. Notice that by (6.3) the set of apartments containing «
corresponds bijectively to the set of chambers £ ¢ a on some given panel
7 of Oa; if the chambers of St(w) correspond to the points of a projective
line, as they do in many cases, then U, is the translation group of this line,
isomorphic to the additive group of the field (cf. Example | below).

(6.5) LEMMA. If « contains a chamber ¢ having no panel in da, and if
U, is transitive on apartments containing o (e.g. as in the Moufang case),
then

Us = {9 € Aut A | g fixes a and every chamber of E\(c)}.

ProoF: Exercise. 0
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Example 1. Let A be the building of Example 4 in Chapter 1, where the
chambers are the maximal flags V; C ... C V;; of an (n + 1)-dimensional
vector space V over k. As explained in Chapter 1, a basis e,... ,en41 of
V determines an apartment A of A, whose chambers are all maximal flags
(es(1)) C ... C (€s(1),--- 1€0(n)) as o ranges over Spy1. The reflection r
switching e; with e; determines two opposite roots of A, which we call o
and —a. Writing matrices with respect to the basis e;,...en41, the root
groups U, and U_, are (after possibly interchanging a and —a) the groups
of matrices having 1 in each diagonal position and 0 in every other position
except the (2, §) position for Uy, and the (7, %) position for U_, (see Exercise
11). Notice that U, and U_, are isomorphic to the additive group of the
field k. ]
Extending the F|(c) notation, we let E5(c) denote the set of chambers
lying in one of the rank 2 residues containing ¢ - i.e. having a face of
codimension 2 in common with ¢. If A has rank 2, then of course E2(¢) = A.
The following very strong theorem is (4.16) of Tits [1974], and we shall not
prove it here.
(6.6) THEOREM. Let A and A’ be apartments containing chambers ¢ and
¢, in spherical buildings A and A’ respectively. Then any isomorphism
from E3(c) U A to Ey(c’) U A’ extends to an isomorphism from A to A’.
0

(6.7) CoroLLARY. If A is a spherical building such that each connected
component of the diagram has rank > 3, then A is Moufang.

Proor: The condition on the diagram ensures that any root o contains
a chamber ¢ none of whose faces of codimension 1 or 2 lies in da (see
Exercise 8), in which case E2(¢)N A C « for any apartment A containing a.
Therefore if A and A’ are apartments containing a, then the isomorphism
from A to A’ fixing a must also fix EF5(¢)NA, and hence can be extended by
the identity to an automorphism from Ex(c)UA to E2(c')UA’. By Theorem
6.6 this extends to an automorphism g of A fixing « and all chambers of
Ey(c), and sending A to A’. It remains to show that g fixes all chambers
having a panel 7 in @ — Oq; this is Exercise 9. 0

Not all rank 2 spherical buildings are Moufang; for example many
non-Moufang projective planes are known, and the generalized quadrangle
constructed in Exercise 20 of Chapter 3 is not Moufang if £ is a field with at
least 4 elements. Moreover Exercise 21 of Chapter 3 constructed “free” gen-
eralized m-gons and these have zero probability of being Moufang. However
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the following theorem eliminates non-Moufang m-gons from consideration
as residues in higher rank cases.

(6.8) THEOREM. If A is Moufang, so is every residue whose residual subdi-
agram does not contain isolated nodes (so that the term Moufang applies).

ProOF: Let R be such a residue; a, a root of R, and = € da, a panel of
the chamber ¢ € a,; we must show U,, is transitive on St(x) — {c}. By
(3.6), a, lies in an apartment A of A (if R has type J, a, is isometric to a
subset of Wy, hence also of W), and if a denotes the root of A such that
¢ € a and 7 € Ja, then a, C a, and U, C U,,. Now since A is Moufang,
U, is transitive on St(7) — {c¢} (and in fact Uy = U,,), completing the
proof. ]

The following remarkable theorem was proved by Tits [1976/79] and
Weiss [1979] (see Appendix 1 for more details).

(6.9) THEOREM. (Tits-Weiss): Moufang generalized m-gons can exist only
for m = 3,4,6 and 8.

ProoFr: Given in Appendix 1. u]

Remark. There do indeed exist Moufang m-gons for m = 3,4,6 and 8
(see Appendix 2 for more details).

(6.10) CoroLLARY. There is no (thick) building whose diagram has an

5

Hj; (ie. o__o o) subdiagram.

ProoF: By (6.7) an Hj residue is Moufang, and by (6.8) it contains Mo-
ufang 5-gons, which do not exist. 0

3. Commutator Relations.

In this section we consider the commutator [Uq, Ug] of two root groups,
but first we prove a lemma in the rank 2 case. Let ¥ be an apartment of a
Moufang m-gon (i.e., ¥ is a 2m-gon), let A be a gallery of ¥ having at least
three chambers, and let ¢ be an interior chamber of A. If A is contained in
aroot, let Uy,... ,U; be the root groups in a natural cyclic order for those
roots of ¥ containing A.

(6.11) LEMMA. The group X fixing A and all chambers of Ey(c) is the
product Uy ... Uy, unless A lies in no root in which case X is the identity.

ProoF: If A lies in no root then ¥ is the only apartment containing it;
in this case X fixes Ej(c) and a chamber opposite ¢, and is therefore the



6. SPHERICAL BUILDINGS AND ROOT GROUPS 69

identity by (6.4). Now suppose A lies in a root a; then U, fixes A and
Ei(c), so Uy...Ur C X. Conversely let ¢ € X. If v is an end vertex
of A, and w ¢ A the next vertex in X (see Figure 6.2), then there exists
u € U; (or U, but without loss of generality we take it to be U;) such that

w(w) = g(w).

Figure 6.2

Letting A’ denote A plus the edge vw, we see that u=!g fixes A’ and all
chambers of E|(c¢); by a simple induction u='g € Us...Ur and hence
XcU,...Us. 0

Now let £ be an apartment in a spherical building, and let ¢ denote
the set of roots of . For roots a, 8 € ® such that a # £4, we set

[@,Bl={ye®|anpCr}

Regarding ¥ as a sphere (see the remarks on sphericity in Chapter 2 section
4), its roots are hemispheres and the condition a # £f implies that the
walls da and 913 intersect (transversely), and hence §and has codimension
2. If o is any codimension 2 simplex in daNJP, then its opposite o’ also lies
in da N 9B, and if ¥ € [a, B] then ¢ and ¢’ lie in the wall 0y (see Exercise
4). Thus YN St(o) is a root in the rank 2 apartment £ N St(a). Moreover
7 is the unique root of ¥ containing ¥ N St(o) and with o € Jv, so there
is no loss in considering [«, 8] in the rank 2 residue St(c) (more precisely
[a, B] N St(o) = [@ N St(c), BN St(c)]). See Figure 6.3 for an illustration
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in the rank 3 case:

Figure 6.3

If the rank of ¥ is greater than 3, then da N 9B is connected and there are
several choices for ¢ and ¢'.

We next observe that since the elements of Uy are uniquely determined
by their action on the chambers of St(7) for any panel = € d7, we may take
7 € St(o), in which case it is clear that U, is identical to the root group
Uynsi(o) defined on the rank 2 residue St(o). Furthermore if g € (Uy | v €
[a, B]) is the identity on St(c), then it is the identity on A (because each
U, fixes the simplex of £ opposite o, so by Exercise 6, g fixes X, and by
(6.4) g is the identity). In particular when we consider the commutator
[Us, Ug] we may restrict our attention to a single rank 2 residue.

Finally we set (a,f) = [a, 8] — {a,8}, and for any set ¥ of roots we
write Uy = (Uqy | a € W).

(6.12) THEOREM. In a Moufang building of spherical type, one has:
(i) for roots a,3 € & with o # £

[Ua,Up) < Uta,p)
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(ii) Let {p1,...,Br} = [B1,B:] in the natural cyclic order. Then the com-
mutator relation above implies that

Uig, px1 = Up, -- - Ups

In particular Ug, ...Up, = Up, ...Up,.

PROOF: (i) As observed above it suffices to work in the rank 2 case (i.e.
in an apartment of St(o) for some ¢ in daNJB). In this rank 2 apartment
X, let £ and y be the end vertices of @ N B with z in the interior of « - see
Figure 6.4.

Figure 6.4

If e is a chamber on z, then U, fixes e; hence [Uq, Ug] fixes e, and similarly
any chamber on y. Now let A denote aN 3 plus the other chamber in T on
z, and that on y. Certainly A contains at least one interior chamber ¢, and
[Uq, Ug] fixes all of Ey(c) and A. Since (a, 3) is the set of roots containing
A, (6.11) implies [Uq, Up] < U(q,p)-

(i1) By induction on k, it suffices to show that if u; € Ug, for i =
1,...,k, then ugu;...up_y € Up, ...Up,. By part (i) upu;...up_; =
U ULVUy . .. Ug—; Where v € Up, ... Up,_,, and the induction hypothesis
shows vug...ug_; = vy...vk_; where v; € Ug,. Repeating this procedure
on u;vs...vg—1, an obvious induction completes the proof. O

Our next proposition shows that if « and B are roots containing a
chamber ¢ with a panel in da and a panel in 88, then [U,, Ug] is non-trivial,
unless the walls Ja and 88 are perpendicular. More precisely consider a
rank 2 apartment ¥ having 2m chambers, with m > 3, and let ¢ be a
chamber of &. If 81, ..., Bn denote the roots of ¥ containing ¢, in one of
two natural cyclic orders, then for z € Ug, and y € Us,,, (6.12) yields

[IL‘,y] =22...Zm-1

where z; € Ug,. We shall write [z, y], for

ey
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(6.13) PrRoOPOSITION. Let m > 3 and let z € Ug, —{1}. Then with the no-
tation above, y — [z,y]2 is an isomorphism from Ug,, to Ug,. Furthermore
if m = 3 then the root groups are abelian.

PROOF: Let d, e be the chambers of 82 — §;, B3 — B2 respectively, and let =
be the panel common to d and e - see Figure 6.5; we also define d’ = z~!(d)
and 7 =z~ ().

Figure 6.5

We claim first that Ug,, acts simple-transitively on St(7’) — {d’}. Indeed
if g € Ug,,,, sends d to c, then gUp, g~ = Ug,, by (6.12), and hence Ug,,
acts the same way on St(7’') — {d'} as it does on St(g(7')) — {c}, namecly
simple-transitively.

Now let v € Ug, be any element, and set ¢/ = v(e). We shall find
y € Ug,, such that [z,y]2 sends e to €/, hence [z, y]2 = v. First notice that
for t > 2, e € B, and so Up, fixes e, and we have [z,y]z(e) = [z,y](e) =
zyz~!(e). Now since Ug,, is simple-transitive on St(n’) — {d'}, zUp, 27}
is simple-transitive on St(w) — {d}, so there is a unique y € Up, with
[z,y)2 = v, and y — [z, y]2 is an isomorphism from Ug,, to Ug,.

Finally let m = 3, and let u,v € Ug,. Then v = [z,y] for suitable
z € Ug,, y € Up,, and since Ug, commutes with Ug, and Up,, we have
[u,v] = [u,[=,9]] = 1. ]

Remark 1. Let o be any root in a Moufang building (of spherical type),
and let m be a panel of type ¢ in the wall da. If the i-node of the diagram
lies on a single bond and so m;; = 3 for some j € I, then 7 has a face o
of type {7, 7}, and by (6.13) the root group U, is abelian. This is the case
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whenever each connected component of the diagram has rank at least 3 and
is not of type C,, (see Appendix 5 for diagrams); for example F4 buildings
have two conjugacy classes of root groups both of which are abelian (see
Exercise 13). In the C, case there are two types of roots in one of which
all panels in the boundary wall da have type n, where n is the end node on
the double bond of the diagram; in this case U, is not necessarily abelian.

Remark 2. For the case m = 3, (6.12) and (6.13) give complete informa-
tion on the commutator [U,,Ug] when 8 # —a. For m = 4, 6 or 8 see Tits
[1976a) and [1983] for further details.

4. Moufang Buildings - the general case.

In this section we consider subgroups generated by root groups, and
define an analogue of the Moufang condition for thick buildings which are
not necessarily of spherical type. Let & be the set of roots in a given
apartment T (not necessarily of spherical type!). Following Tits [1987] we
call a pair of roots a, 8 € ® prenilpotent if both a N B and (—a) N (=74)
are non-empty sets of chambers. In the spherical case this is equivalent to
saying @ # —f3, and in the general case it means that either the walls Ja
and 9 intersect and are distinct, or else @« C B or B C a (Exercise 14).
Given such a pair a, 3 we write

[0,8] = {y €® | aN B C 7 and (=a) N (=B) C =7}

This set [a, 3] is finite (Exercise 15), and in Figure 6.6 we illustrate the

generic rank 3 case with § C a, in which roots are half-spaces of the hyper-
(e 0]

bolic plane (a rank 3 Coxeter complex, containing no o o subdiagram,

and which is not spherical or affine (see Chapter 9) is a triangulation of
the hyperbolic plane).

g (3
Figure 6.6

In the spherical case the condition aNB C v implies (—a)N(—=F) C —v
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(see Figure 6.3), so [«, 8] agrees with the definition given earlier in this case.
As before we set (a, 3) = [a, 8] — {a, 8}.

We now define A to be Moufang if there is a set of groups (Ua)aea
satisfying the following conditions, in which case the U, are called root
groups.

(M1) If 7 is a panel of 8a, and c is the chamber of St(«) in a, then U, fixes

all the chambers of a and acts simple-transitively on St(7) — {c}.

(M2) If {a, B} is a prenilpotent pair of distinct roots, then [Uq, Ug] < U(a,p)-

(M3) For each u € Uy — {1} there exists m(u) € U_, u U_4 stabilizing
(i.e. interchanging a with —a).

(M4) If n = m(u) then for any root 8, nUs n~! = Upp.

This definition of a Moufang building is given by Tits [1987] p.563.
As shown below, it agrees with the earlier definition of a Moufang building
when the diagram is of spherical type having no isolated nodes. In general
however a will not uniquely determine U, - there can be many choices for
systems (Uq)aeo satisfying (M1) - (M4); see Chapter 9 section 2. Notice
however that given u € U, — {1} there is a unique m(u) = vuv’ where

v,v" € U_4 as in (M3); this follows from the simple-transitivity of U, and
U_a.

Examples. Not all buildings admit a system (Uq )ae e, even il they admit
a group with a BN-Pair; a good example is the affine building for SL, (Q,)
where n > 3 and @, is the p-adic numbers (described in Chapter 9 section
2). Examples of Moufang buildings which are not of spherical type come
from Kac-Moody groups (see Tits [1987]); in the affine case they arise from
algebraic groups over function fields, such as SL,(k(t)) (again see Chapter
9 section 2).

(6.14) ProPOSITION. A root group U, fixes every chamber having a panel
in a — Oa. In particular in the spherical case the U, are root groups in the
earlier sense, and moreover satisfy (M1) - (M4).

PROOF: Let 2 ¢ o be a chamber having a panel 7 in a—08c, and let u € U,
be any element. The wall of £ containing = determines two opposite roots;
let B be the one whose opposite —3 has non-empty intersection with —ev,
so {a, B} is a prenilpotent pair - see Figure 6.7.
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SN

Figure 6.7

If y is the unique chamber of St(7)N(—p), then y = v(z) for some v € Up.
For v € [a, B8], with v # 8, we have y € v, so Uy fixes y, and by (M2)

v(z) = y = [v,u)(y) = vuv™(y) = vu(z).

Therefore u(z) = z, proving the first statement.

For the last statement, let the U, be root groups in a Moufang building
of spherical type. Then (M1) follows from the definition, as explained at
the beginning of section 2, (M2) is (6.12) (i), and (M4) follows from the
fact that « uniquely determines U,. To prove (M3), let = be a panel of
Ba, and let ¢, ¢’ be the chambers of St(r) in a, —a respectively. Given
u € Uy — {1}, let v € U_, send u(c’) to c, and let v’ € U_, send ¢ to
u~!(c’). Then vuv’ switches ¢ and ¢/, and fixes the wall da, so by (6.3) it
interchanges o with —o. O

Definition of U,,. Let ¢ € £ be some fixed chamber, and identify W with
the automorphism group of £. Given w € W take some reduced expression

w=r; ...15, andset w, =1, w,=r; ...7,.

If B; € ® denotes the unique root of £ containing wj_;(c) but not w;(c),
then by (2.7) the §; are precisely the roots containing ¢ but not w(c). We
set

Uw = Up, ...Ug,.

Recall that, by (2.11), any reduced expression for w can be transformed to
any other by a sequence of elementary homotopies, replacing r;r; ... (m;; times)
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by r;jr;...(m;; times). In the sequence fi,..., B this replaces a subse-
quence 7i,...,Ym in an {i,j}-residue by ym,...,y1 (where m = my;),
and so U, will be well-defined if U,, ...U,,, = Uy, ...Uy,, and this lol-
lows from the commutator relation (M2), as in (6.12)(ii). Moreover U,
is a group; this can be seen by applying (M2) again and using the fact
that any pair of the roots 81,..., B¢ is prenilpotent, and for s < t, [8s, (]
is a subset of f,...,0; (Exercise 15). Furthermore the factorization of
u € U, = Us,...Ug, as uy...u,, where uy € Up,, is unique: indeed if
u=u}...u, with u} € Ug,, then uy...u, = uT v ... uj fixes the chamber
of —p; adjacent to c; this implies uy!
does the rest.

uj = 1, and an obvious induction

(6.15) THEOREM. If A is a Moufang building, then U,, acts simple-

transitively on the set of chambers d such that §(c,d) = w. In particular
if (B,N) is a Tits system on A, with B stabilizing ¢ and N stabilizing X,
then every such chamber can be written uniquely as a coset wwlB3 where

U € Uy.

PRrOOF: Let w = w's be reduced (i.e., €(w’') < £(w)) and let 3 be the
unique root of ¥ containing d’ = w’(c) but not d = w(c). If z is any
chamber with §(c,z) = w, let 2’ be the unique chamber adjacent to z with
8(c,z’) = w'. By induction on £(w) there is a unique element u € Uy
sending d’ to z’. Moreover there is a unique element v € Us sending d
to u~!(z). Clearly uv € U, sends d = w(c) to z, so U,, is transitive on
{z | 8(c,z) = w}, and simple-transitivity follows from the uniqueness of u
and v. o

Given a Moufang building with a system of root groups (Us)aca, let
G be the group generated by the U,. Then take N to be the subgroup
generated by the m(u) for u € U,, as a ranges over ®, and let H denote
the subgroup of N fixing all chambers of £. Given some chamber ¢ € X,
let &t denote the set of roots of £ containing c, called the positive roots,
and define
B =(H,U, | a € ®%).

(6.16) ProrosiTioN. With the notation above (B,N) is a Tits system for
G,and BNN = [I.

PRrROOF: First notice that G = (B, N). Indeed if a is any root then either
a € ®* in which case U, C B, or —a € ®* in which case for u € U, — {1},
Ua = m(u)U_qm(u)~! C (B,N). Now using (5.2) it suffices to check
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strong transitivity. This follows from the fact that U, C B is transitive on
chambers at distance w from ¢, and that by (M3) N is transitive on the
chambers of L. 0

We.now set

U= (Uas|a€dt).

By (M4) H normalizes each U,, so B = UH where U is normal in B. In
the spherical case U = U,, where w is the longest word of W (Exercise 16),
so by (6.15) U acts simple-transitively on the chambers opposite c.

(6.17) THEOREM. For any Moufang building of spherical type, let B be
a group of automorphisms containing U and fixing ¢, and let H be the
subgroup of B fixing ¥ pointwise. Then B is the semi-direct product
UxH.

ProoOF: Since o determines U, uniquely, H normalizes U, for all o € @,
so U is normal in B. Moreover if ¢’ is the chamber of ¥ opposite ¢, then
for any g € B there is a unique u € U such that g(c’') = u(c’). Since u™!y
fixes ¢ and ¢’ it fixes £; thus u='g € H, and the uniqueness of u implies

B=UxH. ]

Example. GL,(k). In Chapter 5 we saw that the stabilizer B of a cham-
ber is the group of upper triangular matrices. In this case H is the group
of diagonal matrices, and U is the subgroup of B consisting of unipotent
matrices (eigenvalues all equal to 1)

Notice that the group generated by the U, (for a € &) is SL,(k), not
GL,(k).

Notation. Recall from Chapter 5 that P, is the parabolic subgroup which
is the stabilizer of the face of ¢ of type J, call it o;. We shall write
Ly =EZNSt(oy) (an apartment of St(ay)), and &; = {o € & | 0, € Ja}
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- see Figure 6.8, where the shaded area denotes I;.

Figure 6.8

We now set.

Ujy=(Ua | ¥y Caed)
Ly=(H, Uy | a€dy).

Notice that the roots containing ¥; are all positive, so U is a subgroup of
U. Moreover the sets of roots for Uy and L, are disjoint.

(6.18) THEOREM. For a Moufang building of spherical type
Py, =U;xLy.

Moreover if ¢’ is the simplex of ¥ opposite oy, then [.j is the subgroup
fixing oy and ¢’.

ProoF: Every positive root either contains £j or liessin ®;,so0 B =UH <
(Uy,Ly). Therefore (Uy, L;) is a parabolic subgroup Pk . Moreover Uy and
L, stabilize 05, so K C J; but L; does not stabilize o for K g J, hence
K = J, and (UJ, LJ) = PJ.

We now show that L; normalizes Uy, so let a be a root containing
Ly,. If B € &, then o # 3, and all roots of [a, ], except 8 itself,
contain £,. By (6.12) [l/,. /5] < U/, 5,. and hence for g € l/;3 one has
qUng™ ' C [, U, 2y C U, Moreover H{ noralizes each /. and thercfore
Ly normalizes Uy, and P; = Uy Ly.

Finally let ¢’ be the simplex of £ opposite o;. Since ¢’ € 98 for each
B € &, (by Exercise 4), we see that L, fixes ¢’. Moreover by Exercise
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17, U acts simple-transitively on the set of simplexes opposite o, and
therefore Uy N Ly = 1, and P; = Uy x Lj. Moreover if ¢ € Py, then
g = uh where u € Uy, h€ Ly, and so if g fixes 6/ thenu=1and g € L,.

]

Example GL,(k). In Chapter 5 we gave an example of a parabolic sub-
group of GL,(k) which had a GL,,(k) block on the diagonal.

[ * * ]
P, = GLn (o)
L0 *
In this case
"1 e
w=| |
L0 1]
F* 0'
L, = ‘GL,,,(L’)
[0 *

Here Ly = GL,(k) x k* x ... x kX, where there are (n — m) copies of k*.

Notes. Much of this chapter can be found in Tits [1974]: everything in
section 1 is in his Chapters 2 and 3, and the important theorem (6.6)
is proved in Chapter 4; the definition of root groups and the Moufang
condition for spherical buildings appears in the Addenda on pages 274-276,
where the non-existence of (thick) H3 buildings (6.10) is stated. The proof
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of that result appeared later in Tits [1977]. The concept of root groups and
a Moufang condition in the general case is very recent and appears in work
of Tits [1987] on Kac-Moody groups (for an introduction to the theory of
these groups, and further references, see Tits [1985]).

Exercises to Chapter 6

1. Show that the opposition involution induces a reversal of the diagram
in the cases of A, and Es. [HINT: For A, you may use the fact that
W = S,41 has a trivial centre; for Eg you may use the well-known
fact that there are exactly 27 vertices corresponding to each of the two
end nodes].

2. Show that opw induces a non-trivial diagram symmetry for D, if and
only if n is odd. [HINT: Show that the vertices of W can be regarded
as all n-tuples whose entries are +,— or 0, except those with a single
zero: opy switches + and —].

3. Show that if o and ¢’ are opposite simplexes, then St(c) and St(o’)
are isomorphic as simplicial complexes (though-as chamber systems
they may be defined over different subsets J and J' of I).

4. Let o and ¢’ be opposite simplexes of an apartment . If ¢ lies in a
wall M of X, show that ¢’ does too, and il o,0’ both lic in a root 7,
then 0,0’ € d7.

5. Given chambers z and y, in a spherical building, such that d(z,y) =
d—1(d = diam(W)), show that the convex hull of z and y is a root.
[HINT: In an apartment containing z and y, use (2.7) and (2.15) to
count the roots containing both, then apply (2.8) and (3.8)].

6. Let £ be an apartment of a spherical building, and let o, ¢’ be opposite
simplexes of £. Show that ¥ is the only apartment containing £NSt(o)
and o’.

7. For any root a, let d € a be a chamber having an i-panel in da, and let.
¢ € a be j-adjacent to d, where ¢ and j are connected in the diagram.
Show that ¢ has no panel in da.

8. If each connected component of a spherical diagram has rank > 3,
show that any root o contains a chamber ¢ none of whose faces of
codimension 1 or 2 lie in da. [HINT: Reduce to considering only
Az,C3 and Hj3 because in a higher rank case da must contain a face
of one of these types].
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Given a and c as in Exercise 8, show that an automorphism fixing o
and E,(c) must fix every chamber having a panel in o — da. [HINT:
Reduce to the rank 3 case].

Recall (from Exercise 14 of Chapter 3) that a generalized 3-gon A is
a projective plane. A plane is called Moufang if for each flag (p, L)
the group U, 1) stabilizing each line on p, and each point on L, is
transitive on the points # p of a line M # L on p (or equivalently the
lines # L on a point ¢ # p of L). Show that the Moufang condition
for A means the same whether we treat A as a plane or a generalized
3-gon.

In Example 1 show that:

(i) Uq is isomorphic to the additive group of k.
(ii) Uq and U_, generate SLa(k).

(iii) The chambers of a are (after possibly interchanging o and —a)
the maximal flags

(ea(l)> C (ea(l);ea('z)) c...C (ea(l)y'-' ;ea(n))

where o(7) < o(j).

(iv) Uq is indeed the root group for the root a.

In Example 1 let ¢ be a chamber of a having no panel in da, so U, is
the group fixing a and all chambers of St(7) for each of the n panels
m of ¢ (see (6.5)). Show that the group fixing o and all chambers of
St(w), for only m of the panels 7 of ¢, is isomorphic to Uy x k* x. .. x k*
(n — m copies of k).

Consider a spherical Coxeter complex with a connected diagram. Show
that for the cases An, Dy, Es, E7, Es, H3, Ha, and I2(m) with m odd
(see Appendix 5) W is transitive on the set of roots, and in the other
cases there are two orbits. Conclude that in a Moufang building of
spherical type there is only one conjugacy class of root groups in the
single bond case, and two classes otherwise.

Let o and § be roots in an arbitrary Coxeter complex. Show that:
(i) a ¢ £8 and B8 ¢ +a < da NP has codimension 2.
(i1) In the spherical case o ¢ £8 < o # £0.

(iii) {o,B} is prenilpotent < o C B, or 8 C a, or da N JB has codi-
mension 2.
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If {a,B} is a prenilpotent pair of roots in a Coxeter complex, show
that [a, ] is finite. Moreover let (co,c1, ... ,c¢) be a minimal gallery,
and let B; denote the unique root containing ¢; but not ¢;_;. Then for
1<i<j<¢ {Bi B} is prenilpotent, and [B;, B;] C {B: | i <t < j}.

Show that B is the normalizer of U, and in the spherical case show
that U = U,, where w is the longest word of W.

With the notation of this chapter, prove that U acts simple-transitively
on the simplexes opposite o, (compare (5.4)(iv)). If 7 is any such sim-
plex what is the stabilizer of o; and 7?7 What is the normalizer of L
in P;?

Let A be the barycentric subdivision of the Sps(k) quadrangle of Ex-
ercise 19 in Chapter 3. It is not a thick building, and has parameters
(1,t) where t = card k. If ¢ and b are opposite chambers show that
the subgroup fixing E(c) and b is not the identity (cf. (6.4)).



Chapter 7
A CONSTRUCTION OF BUILDINGS

In this chapter we construct buildings which conform to a blueprint;
this is the case for all Moufang buildings.

1. Blueprints.

In this section we shall introduce blueprints, and construct buildings
which conform to a blueprint. We use I and M as before.

A parameter system will mean a collection of disjoint parameter sets
(Si) i € 1, each having a distinguished element co; € S;. We shall write
Si=Si — {=i}.

A labelling of a building A over I, based at ¢ € A, assigns to each
i-residue R a bijection

ér : Si— R

such that ¢r(00;) = projgec. For z € R, ¢z!(z) is called its i-label.

Example. Let S be a generalized m-gon over {¢, j}, with a labelling based
at s € S using the parameter system (S;, Sj). Given any chamber z € S at
distance d from s one has a gallery (s = z,,21,... ,24 = z). If d < m thisis
unique, and if d = m there are two such galleries, of types p(z, 5) and p(j,1).
Now let u; be the label attached to z, in the rank 1 residue containing z;—
and z;. The gallery thus determines the sequence (uy,...,uq) where the
uq lie alternately in S/ and SJ'-, and any such sequence obviously determines
a unique gallery, and hence a unique chamber at the end of this gallery. If
d = m exactly two sequences determine the same chamber; we call these
sequences equivaleni. These equivalences, one for each chamber opposite s,
give complete data for reconstructing S. 0

A blueprint is a parameter system (S;) together with, for each distinct
i,j € I, a generalized m;;-gon S;; having a labelling by (S;, Sj) based at
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some chamber co0;; € S;;j. (In particular, in the rank 2 case a blueprint is
simply a labelling of a rank 2 building).

A building A of type M will be said to conform to a blueprint if it
admits a labelling by the (S;) such that for every {%,j}-residue R there is
an isomorphism @g : Sij — R with the property that z and ¢r(z) have
the same 7 and j-labels for each z € S;;.

Now let A be a building having a labelling based at ¢, using the
parameter system (S;);e;. For any chamber z € A take a gallery v =
(¢ = ¢o,€1,...,¢¢ = z) of reduced type f = 4;...4, from ¢ to z (where
ry = 6(c,z) of course). Then v determines a sequence (ui, ... ,ue), where
u; € S, is the i;-label of ¢;. Conversely such a sequence determines a
gallery v starting at ¢, and hence a chamber z at the end of this gallery.

Now suppose A conforms to a blueprint (S;, Sj)ijer- If f' is elemen-
tary homotopic to f, then we have a gallery ¥’ = y,w’y2 of type f’ from c to
z, where ¥ = yjwy2 and w,w’ are galleries in an {1, j}-residue, correspond-
ing to sequences which are equivalent in S;;. Thus using the blueprint,
and concatenating elementary homotopies, we can transform one sequence
(u1,...,ur) to another. The chambers of A could then be defined as equiv-
alence classes of such sequences, but there is a problem. Transforming
(u1,...,u¢) to another sequence of the same type f should give the same
sequence; this means we must consider what happens to (uy, ..., u¢) when
we apply a self-homotopy of f. By (2.17) self-homotopies are generated
in rank 3 spherical residues, and so this leads to the following theorem, in
which we call a blueprint realisable if there is a building which conforms to
it.

(7.1) THEOREM. A blueprint is realisable if its restriction to each spherical
rank 3 subdiagram is realisable. In this case there is a unique building which
conforms to it.

The Construction. Given a blueprint we first construct a chamber sys-
tem S as follows. The chambers of S are sequences

= (up,...,ue)

where u, € S] and f =i, ...i¢ is reduced. We call f the fype of w. We
define i-adjacency via

(u1,--.,ue) o (w1, Ut W) o (U1, ..., ug, upy ),

if weyr, upy, € Si; this is evidently an equivalence relation, so S is a
chamber system.
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We define an elementary equivalence to be an alteration from a se-
quence @ a2 of type fip(i,j) f2 to U U, of type fip(j,1)f2 where @ and
u’ are equivalent in S;j;. Two sequences U and ¥ are called equivalent,
written ¥ ~ 7, if one can be transformed to the other by a sequence of
elementary equivalences.

The chamber system we want is S/equivalence; we call it C. Its cham-
bers are equivalence classes of sequences ¥ = (uy,...,u¢), denoted [u] or
[u1,... ,ue]. Notice that [u] determines a unique element r; € W where f
is the type of @; we call this p[u]. We now define i-adjacency in C by z ~ y
if z = [@], y = [v] with @~ ¥; in Step 2 of the proof below we shall see that
this is in fact an equivalence relation.

PROOF OF THEOREM (7.1): We show that C is a building conforming to
the given blueprint.

Step 1. If u ~ v, and u,v both have type f, then u = 7.

Certainly the equivalence u ~ 7 induces a self-homotopy of f, and by
(2.17) we need only consider equivalences W ~ W’ giving self-homotopies
which are either inessential or lie in rank 3 spherical residues. The former
case is easily seen to imply @ = w’, and the latter case does too because of
our rank 3 hypothesis.

Step 2. i-adjacency is an equivalence relation.

Let z TYTE If p(z), p(y) and p(z) are not i-reduced on the right,
then we have z = [w,v'], y = [4,u] = [v,v], z = [7,?'], where %, ¥ have
types f, g respectively, and v/, u, v, v’ € S;. Evidently fi ~ gi,so0 f ~ g,
and ¥ ~ 7, for some 7, of type g. Therefore (4, u) ~ (v,, u) of type gi, so
by Step 1 ¥, = ¥ and u = v. Therefore 2 = [7,u'] ~ [¥,v'] = z as required.
A similar proofl works if one of p(z), p(y), p(2) is‘i—reduced on the right;
one simply deletes v/, u, v, v’ as appropriate.

Step 3. C is a chamber system satisfying (P.) where ¢ = [0] [Recall (P.):
Given two galleries starting at ¢ and ending at the same chamber, of reduced
types f and f’, one has r; = r/].

C is a chamber system by Step 2, and it is straightforward to see,
by induction on the length of f, that a gallery (¢ = ¢1,c2,... ,c¢ = d) of
reduced type f corresponds to a sequence % of type f such that [7] = d.
Now if @ has type f' and @~ @', then f =~ f', sor; = ry.

Step 4. C is a chamber system of type M.
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Let R be any {¢,j}-residue, and £ = [,7] any chamber of R, where
the type of @ is {1, j}-reduced on the right, and the type of ¥ involves only i
and j. If £ ~ y, then y = [u,7’] where ¥ ~ 7, so by {i, j}-connectivity of R
each of its chambers has the form (u, @) where the type of W involves only i
and j. Moreover any such chamber lies in R, so the map [u, @] — [@] from
R to Sjj is surjective, and by Step 1 it is an isomorphism. Thus R = S;;,
as required.

Finally from Steps 3 and 4 it follows, by (4.2), that C is a building.
Moreover C obviously acquires a labelling conforming to the blueprint, and
its uniqueness is an immediate consequence of this. O

Remark. We could have defined i-adjacency as the equivalence relation
generated by the i-adjacency we in fact defined. In this case Step 2 would
have to be rephrased by saying that if = TY then we can write z = [T, u],
y = [u, v] where u,v are either non-existent or contained in S} .

Before leaving this section we state a theorem which follows immedi-
ately from the proof of (7.1).

(7.2) THEOREM. A blueprint is realisable if and only if for any two se-
quences U, T of the same reduced type, U ~ ¥ implies T = T.

ProoF: The hypothesis is Step 1 of the proof of (7.1), so the remainder
of the proof of (7.1) goes through unchanged. The “only if” part follows
from the fact that a sequence % of type f corresponds to a gallery of type
f from ¢ = [0] to (], and such galleries are unique (3.1)(v). 8]

2. Natural Labellings of Moufang Buildings.

In Chapter 6 section 4 we defined Moufang buildings. If A is Moufang,
and @ is the set of roots in an apartment L, then there is a set of root
groups Uy, one for each « € ®, having certain properties (M1) - (M4). All
spherical buildings are Moufang if the diagram has no connected component
of rank < 2. In this section we show that a Moufang building conforms to a
blueprint, in fact a “natural” blueprint defined using root group elements.

Choose a chamber ¢ € I, let m; be its panel of type 7, and define
a; € ® to be the root containing ¢ and with m; € da;. We let r; denote the
reflection interchanging o; and —a; and write U; = U,,. Now for eachi € |
select some element e; € U; — {1}. Recall from Chapter 6 that for each
u € Uy —{1} there is a unique element m(u) € U_,ulU_,NN interchanging
a and —a.
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(7.3) LEMMA. Setting n; = m(e;) one has
ninj... = njn;...(my; terms alternating n; and n;j on each side).
Consequently for any w € W, there is a unique n(w) € N, where

n(w) =ni, ...n;, forw=r; ...r; (reduced).

ProOF: The first statement is proved in Appendix 1, and the second state-
ment is an immediate consequence of the first, using (2.11). o

In Chapter 6 section 4 we defined a group U, for each w € W. It acts
simple-transitively on the set of chambers d such that é6(¢,d) = w, and if B
denotes the stabilizer of ¢, then by (6.15) every such d can be represented in
a unique way as a coset uwB, where u € U,,. Since wB = n(w) B, we have
a bijection between chambers of A and elements un(w), where u € U,,.
The fact that we are able to omit B (which is in general a complicated
group) means that the structure of the building is remarkably simple; in
fact it conforms to a blueprint.

(7.4) LEMMA. If w = »; for some reduced word f = i, ...i;, then for
u € Uy,

un(w) = uin;, ... ugn;,
where u, € U;,, and this factorisation is unique.

PROOF: Let w’ =r, where g = iy...4,sow =r;,w’. If By,..., Bk are the
roots separating ¢ from w(c) in I, their order determined by the gallery of
type f from 1 to w, then u = v, ... v; where v, € Ug, (see 6.15). Therefore

un(w) = vy ... vgn(w)
= vlnhnﬂlvg . ueng, n(w')

= vyn;,vn(w’)

where v € Uy, because n;, switches f2,...,8r with the roots separating
¢ from w'(c), their order determined by the gallery of type g from 1 to
w'. The factorisation now follows by induction on the length of w, and its
uniqueness follows from the uniqueness of the decomposition u = v; ... v
which is a consequence of (6.15). o
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The Natural Labelling given by the (e;);e;. The lemma above implies
that each chamber of A can be written as an equivalence class un(w) of
elements of the form u;n;, ... urn;, having type f =14, ...4 wherery = w.
It is this which gives what we call a natural labelling of the building A. More
precisely let R be any i-residue of A, and let projre = d and w = §(c, d).
As cosets of B the chambers of R may be written un(w)B (this is d), and
un(w)vn; B where u € Uy, and v € U;. We assign them the i-labels co; and
v, using S; = U; U {o0;}. If we let S;; be the {7,j}-residue containing c,
then S;; acquires a labelling and we have a blueprint given by the (e;)ie;.

(7.5) ProposITION. The natural labelling of A above conforms to the
blueprint given by its restriction to E5(c). In particular a Moufang building
conforms to a blueprint.

ProoF: If A is any {4, j}-residue, let w = é(c,projac). As a coset of B,
projac is un(w)B for some u € Uy, and left multiplication by un(w) gives
an isomorphism from the {%, j}-residue containing ¢ to A, preserving ¢ and
j-labels. 0

(7.6) LEMMA. A Moufang plane has a unique natural labelling in the
sense that any natural labelling can be transformed to any other by an
automorphism of the plane fixing the base chamber.

ProoF: We shall not prove this here: a proof is given in Ronan-Tits [1987]
Lemma 2. u)

We now extend the concept of a natural labelling to generalized 2-gons,
by defining a labelling using (S, S2) to be naturalif (u;, uz) is equivalent to
(u2,uy) for any u; € S, uz € S5. If A is a Moufang building with a natural
labelling given by e; € U; — {1} then any A, x A, residue acquires a natural
labelling in this sense (because the appropriate root groups commute - see
Exercise 1).

Finally we remark that if A is a direct product A; x ... x A,, then
labellings of the A; generate a labelling of A in an obvious way: il A; is
over I; (so A is over Ulj), and if ¢ € I; then the chamber (c,... ,¢c;) of
Ap x ... x A, has the same i-label as ¢j in A;. If A = A} x Ay is an
A; x Aj building, this gives what we have called a natural labelling.



7. A CONSTRUCTION OF BUILDINGS 89

3. Foundations.
Take a parameter system (S;);es, and for each 7,5 € I a generalized
m;j-gon Sj; (not labelled) with a base chamber oco;;. Let

¢ij : Si— Sij

be a bijection onto the i-residue of S;; containing oo;;, and sending oo;
to 00;;. A foundation of type M is the amalgamated sum of the S;; with
respect to the ¢;;; in other words the union of the S;; with the identifica-
tions ¢;;(s;) = dir(s;) for all s; € S;, and for all 7,5,k € I. It is a chamber
system E over I having a base chamber c identified with all co; and oo;j,
and is the union of the rank 2 residues containing ¢. We say E supports
a building A if it is isomorphic to the union of the rank 2 residues of A
containing some given chamber ¢ of A (i.e. Ez(c)).

A labelling of F is defined in the obvious way: if = is the i-panel of
¢, then St(w) = S;, and il 7 is any other i-panel one takes a bijection
Si « St(7) such that co; corresponds to the chamber of St(w) nearest the
base chamber c¢. Notice that a labelling of a foundation is nothing other
than a blueprint.

(7.7) LEMMA. Let E be a rank 3 foundation of reducible type (i.e. dis-
connected diagram). Then E supports a building A which is uniquely de-
termined up to isomorphism, and A conforms to any labelling of E whose
restriction to Ay x A, residues is natural.

PRrROOF: Let I = {1,2,3} with m;, = m;3 = 2. By (3.10) any such building
is a direct product A; x Ajz, so A must be S; x So3 with the labelling
generated as above. 0

(7.8) ProPOSITION. Let E be an Az or C3 foundation which supports a
building A. Then A conforms to any labelling of E whose restriction to the

rank 2 residues is natural, and A is uniquely determined up to isomorphism
by E. n]

ProoF: Let I = {1,2,3} with mj2 = 3 and m;3 = 2, and let £ be a
labelling of E whose restrictions £;; to S;; are natural. By (6.7) A is
Moufang, and hence conforms to a natural labelling £’ of E extending L3
(given e, e3 choose any e;). By (7.6) there is an automorphism 0 of Sy,
fixing Sa and carrying L1, to L2, and we extend 0 to an automorphism of
E which is the identity on Saz (and hence fixes L£43). Since £y3 is uniquely
determined by its restrictions to S| and S3, we see that 0 sends L1 to L3,
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and hence sends £’ to £. Thus A conforms to £, as required. Moreover,
if A is any other building supported by E, it too conforms to the given
labelling of E, and is therefore isomorphic to A. n]

(7.9) THEOREM. Let E be a foundation with no residue of type Hs. If
each residue of type Az or Cs supports a building, then E supports a
building. If E is of spherical type this building is uniquely determined up
to isomorphism.

PROOF: Choose a natural labelling for each S;; whenever {i,j} is in an
A3z or Cj residue, or is of type A; x A; in a spherical triple. Choose
other labellings arbitrarily. This gives a blueprint which by (7.7) and (7.8)
is realisable for rank 3 spherical residues, and hence by (7.1) there is a
building A which conforms to it.

To prove uniqueness it suffices to consider the case of a connected dia-
gram, since A is a direct product of buildings for the connected components
of the diagram. In this case we may assume a diagram of rank > 3, and
since E is of spherical type, A is Moufang and the diagram has at most
one double bond. We apply the technique in the proof of (7.8): let £ be a
labelling of E' whose restrictions £;; to S;; are natural. If z,y € I are the
nodes of the double bond (or any two nodes if no double bond exists), then
A conforms to a natural labelling £’ extending L., (given e;,e, choose the
other e; arbitrarily). As in the proof of (7.8), (7.6) allows us to define an
isomorphism of F sending £’ to £. Thus A conforms to £, and is therefore
unique up to isomorphism. n}

Remark. In the next chapter we shall deal with the case of Az and Cjs
blueprints (A3 in detail, but C3 only by using Tits’ classification [1974]).
When we have done so it will be quite clear that buildings exist for all
possible diagrams which have no Hz subdiagram. However, the reader
certainly has enough information at the moment to deal with many cases
(see Exercises 3 and 4).

Notes. Everything in this chapter appears in Ronan-Tits [1987], except
that “BN-Pairs with a splitting” appear there in place of Moufang build-
ings. These BN-Pairs have root groups U, for a € ®, which satisfy condi-
tions similar to (M1) - (M4) of Chapter 6, although (M2) is weakened.
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Exercises to Chapter 7

. Let U; and U, be the fundamental root groups in an A; x A; residue

of a Moufang building. Given u;,v; € U; and uz,v2 € Uz with
uiniuny = vanaviny, show that u; = vy and uy = v,. [HINT:
[U1,U2] = 1 by (M2), and for z € U; (or Uz), m(z) commutes with U,
(or Uy); use (7.3)].

.If A = A; x...x A, and each A; has a labelling conforming to

a blueprint, show that the labelling generated on A conforms to a
blueprint.

. Using the existence of buildings of type Ap(co——o0__...___o) and of

generalized m-gons for all m (see Exercise 17 of Chapter 3), prove the
existence of buildings of typeo__...__o_™ o for any m > 5.

. Try Exercise 3 for some other diagrams, and find some diagram for

which existence of a suitable foundation cannot be inferred using the
results of this chapter.



Chapter 8
THE CLASSIFICATION OF SPHERICAL BUILDINGS

This chapter deals with the classification and existence of buildings
of spherical type for which each connected component of the diagram has
rank at least three. According to Theorem (7.9) of the preceding chapter
the buildings of spherical type M are uniquely determined by foundations
of type M (this is also a consequence of Theorem (6.6) in Chapter 6),
and such foundations support buildings when their A3z and Cj residues do.
Therefore the first thing we shall do here is to examine A3 foundations.

1. A; Blueprints and Foundations.

Since an A3 building is Moufang, we know by (7.7) that it conforms
to a blueprint whose rank 2 restrictions are natural. We therefore need to
know what the natural labelling of a Moufang plane looks like. The details
are given in Appendix 1, and the main points are as follows.

The three positive root groups U;,U;, and U, (in a natural order) are
abelian (by (6.13)) and may be identified with an abelian group A written
additively. Moreover, a natural labelling is determined by non-identity
elements e; € U; and e; € U,, and the identification can be done in such
a way that ey, eo, and ejz = [e1, e2] are identified with a common element
e € A. Using subscripts to denote membership of Uy, U;2 or Uz one has
a multiplicative structure on A defined via (zy)12 = [z1,y2] (again see
Appendix 1 for details). With this addition and multiplication A becomes
an alternative division algebra in which e plays the role of multiplicative
identity. We mention in passing that such an algebra is either a field
(not necessarily commutative), in which case the plane is Desarguesian;
or, by the Bruck-Kleinfeld theorem [1951], it is a Cayley-Dickson algebra,
8-dimensional over its centre, in which case the plane is sometimes called
a Cayley plane.
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For the purposes of this section, we need the fact that the natural
labelling is given by setting the following two sequences equivalent:

sequence type
Ty z 121
2y z 212

where y + ¥’ = —(z2);.

The subscript is needed because if we interchange the roles of 1 and 2,
then we obtain the opposite algebra structure (see Appendix 1 section 2,
or use the uniqueness of the natural labelling); thus

(.’L‘Z)l = (ZI)2.

In fact we shall think of (zz); as referring to the algebra structure induced
on Uy, so in other words U; with its algebra structure is identified with the
opposite of Us.

We now return to the subject of Az blueprints. For an A3z blueprint
to be realizable it is necessary and sufficient, by (7.2), that an equivalence
between two sequences of reduced type f is an equality. If the corresponding
self-homotopy of f is inessential then one certainly gets equality. Moreover
the only essential self-homotopy is obtained from the longest word, by
working around an apartment as shown below.

sequence type
a b ¢ d e f 1 2 3 1 2 1
a b d ¢ e f 1 2 1 3 2 1
d V¥V a ¢ e f 2 1 2 3 2 1
d bV e ¢ a f 2 1 3 2 3 1
d e bV ¢ f a 2 3 1 2 1 3
d e f "V a 2 3 2 1 2 3
f €& d <V a 3 2 3 1 2 3
f €& < d V¥V a 3 2 1 3 2 3
f € ¢ a bV d 3 2 1 2 3 2
f a " ¢ ¥V d 3 1 2 1 3 2
a f "V € d 1 3 2 3 1 2
a W " f ¢ d 1 2 3 2 1 2
a bW dmd ¢ f 1 2 3 1 2 1

This self-homotopy is an equality if and only if ¥’ = b, ¢’ = ¢, and " = e.
We now compute using the multiplication (zy); or (zy)s, but not (zy), as
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it may (and in fact does) depend on which A residue it is induced from.
One has
b+b = —(ad);, and ¥’ + 4" = —(da)s,

so b” = b if and only if

(zy) = (yz)s. (1)
Given this equality we find that e = ¢”. Similarly:
c+c = —(ea)s = —(ae)y,
d+c = —(blf)l,
cll + cII/ — —(ael)l,

CIII + C”" — —(fb)3 = _(bf)l

Using ¢’ = —(fd)s — e = —(df); — e, and deleting the subscript 1, one
obtains:

c— " = a(df) - (ad)f.

"

So ¢ = ¢"" if and only if

2(yz) = (2y)2. (2

Thus we find that our blueprint is realizable if and only if equations (1)
and (2) are satisfied. Equation (2) gives the well-known result that the
coordinate ring is a field, so each plane is Desarguesian. Moreover since the
ring structure induced (after one has chosen a unit element) on U, from the
{1,2}-plane is opposite that induced on U, (see above), and similarly with
1 replaced by 3, we see from equation (1) that the blueprint is realizable if
and only if the two planes induce opposite field structures on Us.
We rephrase this as a theorem.

(8.1) THEOREM. An Ajz foundation E supports a building if and only if the
two planes are Desarguesian and induce opposite field structures on their
common punctured rank 1 residue (i.e. with the base chamber removed).

ProoF: If E supports a building then by (7.8) this building conforms to
a labelling of E of the type investigated above. On the other hand such a
blueprint is realizable by (7.2). 0

2. Diagrams with Single Bonds.
The connected spherical diagrams with single bonds are A,, D,, Es,
E+, Fs.
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Es o o [ o o
E; o ) o ) o o
)
Eg o o o ) o o o
)

Using the results above, we have the following classification.

Type A,. By the A3 result the fundamental root groups Uy, ... ,U, ac-
quire field structures, and for t = 2,... ,n — 1 the structure induced on Uj;
by the {{ — 1,i}-residue is opposite that induced by the {z,i + 1}-residue.
For each field k (not necessarily commutative) there is a unique founda-
tion (up to isomorphism) and therefore by (7.9) a unique A, building, and
vice versa. This A, (k) building is the flag complex of projective space,
exhibited in Example 4 of Chapter 1.

o2
1 0/
Type D,. o o
\0 3

Here the field structures induced on Uy by the three types of residual
planes are mutually opposite. Therefore the field is commutative (an alter-
native proof of this fact is given by Tits [1974] (6.12), and see also Exercise
9).
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Types D,, Fs, E7, Es. By the A3 result and the Dy result above, each
root group acquires the structure of a commutative field, and these are
mutually isomorphic. Therefore for each commutative field k£ there is a
unique such foundation (up to isomorphism) giving a unique building, and
vice versa.

The D, (k) Building. In the D, case the building can be obtained as
follows. Take a 2n-dimensional vector space over k with basis z,,... ,z,,
Y1,.-- ,Yn. Define the quadratic form Q(v) = La;b; where v = Za;z; +
Lb;y;. There are totally singular subspaces S (i.e. @(s) =0 Vs € S) of di-
mensions 1 up to n, those of dimension n— 1 being contained in exactly two
of dimension n (Exercise 1). For this reason the totally singular subspaces
do not give a thick C, building. However, the following construction gives
a thick D, building (see Exercises 2-4).

The chambers of the building are nested sequences of totally singular
subspaces of the form

S1CS2C...CSn_2

where those of dimension n—1 have been omitted, and dim(S,NS;,) = n—1.
Such sequences are called oriflammes in [loc. cit.] (7.12); two are adjacent
if they differ in at most one term. Considering the building as a simplicial
complex its vertices are all totally singular subspaces of dimension # n—1;
two vertices are joined by an edge if and only if, as subspaces, one contains
the other, or they both have dimension n and intersect in dimension n — 1.

If k£ is an algebraically closed field, the appropriate group is the or-
thogonal group Ozn (k). If k is a finite field Fy this is usually written O%,(q)
to distinguish it from the other orthogonal group O3, (g), also known as
2D, (q), whose building has type C,_;.
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3. C3 Foundations.

Since a Cj3 building is Moufang, its A; and C, residues are Moufang
(see (6.8)), and, as mentioned earlier, a Moufang plane is either Desargue-
sian, or is a Cayley plane. We shall treat these two cases separately.

The Case of Desarguesian planes. In this case the quadrangle has to
be of classical type (cf. Exercise 8). This means it arises, as in section 4,
from a hermitian or a pseudo-quadratic form of Witt index 2 on a vector
space V over a field K (not necessarily commutative). The vertices (points
and lines) of the quadrangle are the totally isotropic (or singular) 1- and
2-spaces of V respectively. The residues for the 2-spaces will be called line-
residues because their chambers correspond to the points of a projective
line (1-spaces in a 2-space) over K.

In fact the quadrangle induces a field structure K on its punctured
line-residues, and in the spirit of (8.1) we can now state the following
consequence of the classification in [loc. cit.] Chapter 8.

(8.2) THEOREM. A Cj; foundation whose plane is Desarguesian supports a
building if and only if the plane and the quadrangle induce oppposite field
structures on their common punctured rank 1 residue. 0

Remarks.

1. It can happen that both types of residues in the quadrangle can be
taken as line-residues, namely when the dual (interchanging roles of
points and lines) also arises from the 1 and 2-spaces of a vector space;
these cases are shown in section 5 when we deal with the Tits diagram
for a simple algebraic group.

2. In one of these special cases where both residues can be taken as line
residues (the D4/A? case), one residue acquires a canonical pair of
opposite quaternion structures. In all other cases the field structure is
canonical (again see section 5).

The Case of Cayley planes. A non-Desarguesian, Moufang plane in-
duces a Cayley algebra K (8 dimensional over a commutative field k) on
its punctured rank 1 residues. The quadrangle then has to arise from a 12-
dimensional vector space K @k* with quadratic form ng(z,)—z 23+ 2224,
where ng is the norm form of the Cayley algebra. Moreover it is the point-
residue (as opposed to the line-residue) which the quadrangle has in com-
mon with the plane (a diagrammatic illustration for this is given in section
5).
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(8.3) THEOREM. A Cj foundation whose plane is a Cayley plane supports
a building if and only if the quadrangle arises from a 12-space as above,
and the plane and the quadrangle induce the same proportionality class of
8-dimensional anisotropic forms on their common punctured residue (one
form from the Cayley algebra, the other from the quadratic form on W+ /W
where W is a totally singular 2-space of the 12-space). O

4. C, Buildings for n > 4.

O, o RN [e] (o}

Given a C,, diagram with n > 4, as shown, there is an A3 subdiagram,
and by (8.1) this forces the planes to be Desarguesian. In fact these C,
buildings are classified by their C; residues, as the following theorem makes
clear.

(8.4) THEOREM. A (3 foundation whose plane is Desarguesian and which
supports a building, extends to a unique C,, foundation supporting a unique
building, and for n > 4 every C, building arises in this way.

ProoF: This is an immediate consequence of Theorems (7.9) and (8.1).0

As is shown in [loc. cit.] Chapter 8, all such C,, buildings can be ob-
tained using a vector space endowed with a hermitian or pseudo-quadratic
form of Witt index n. Here I shall simply explain the terminology, details
being available in [loc. cit.].

Let K be a field (not necessarily commutative), o an anti-automorphism
of K with ¢? = id., and let ¢ = +1. Define

Kyo={t—e’ |te K}

Now let V be a right vector space over K (not necessarily finite dimen-

sional), and let f : V x V — K satisfy:

(0) f(za,yb)=a’f(z,y)bforalz,y€eV and a,b € K.

(1) f(y,z) = ef(z,9)°.

(2) f(z,z) =0ifo =id. and € = —1, in which case f is called a symplectic
(or alternating) form.

Condition (0) means f is a sesquilinear (“l%-linear”) form relative to o,
and condition (1) implies in particular that the relationship L y (meaning
f(z,y) = 0) is symmetric. Such a form will generally be called hermitian,
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or more precisely (o,€)-hermitian. If ¢ = id. and € = 1 it is often called a
symmetric bilinear form.

We now define ¢ : V — K/K,  to be a pseudo-quadratic form associ-
ated to f if:

(3) g(za) =a%q(z)aforallz €V anda € K.
(4) 9(z +y) = q(z) + q(y) + f(z,9) + Ko for z,y € V.
When o = id. and € = 1 one has K, = 0 and q is called a quadratic form.

Notice that a non-zero sesquilinear form must map onto K, so q de-
termines f except when K = K, .. In fact K = K, . if and only if 0 = id.
and € # 1 (Exercise 5), in which case char K # 2 (because ¢ # 1) and f is
a symplectic form.

Notice also that ¢ is uniquely determined by its associated sesquilinear
form f when char K # 2, because ¢(z) = 1f(z,z) + K,,.. More generally
if there is an element X in the centre of K such that A + A = 1, then
q(z) = Af(z,2) + K, (see Exercise 6); this occurs for char k' = 2 when
the restriction of o to the centre of K is not the identity (the A, case).
A necessary and sufficient condition for f to determine q is given in [loc.
cit.] 8.2.4.

A subspace W of V is called totally isotropic for f if f(z,y) = 0 for all
z,y € W, and totally singular for g if ¢(z) = 0 for all z € W. All maximal
totally isotropic (or totally singular) subspaces have the same dimension,
called the Witl indez (see e.g. Artin [1957] 3.10). Notice that the subspace
Vi ={z eV | f(z,V) = 0} is totally isotropic; we call f non-degenerate
if V4 = 0. A pseudo-quadratic form ¢ is called non-degenerate if VL (for
the associated f) has no non-zero singular vectors (i.e., V+ Ng~1(0) = 0).

We say f is trace-valued if

f(z,z) = a+ €a’® for some a € K.

When there are totally isotropic subspaces not contained in V1, the prop-
erty of being trace-valued is equivalent to the property that the totally
isotropic subspaces span V ([loc. cit.] 8.1.6). If f arises from a pseudo-
quadratic form, then it must be trace-valued (see Exercise 7 for a proof).
Moreover if f is trace-valued and is not a symplectic form in odd charac-
teristic, then it must arise from a pseudo-quadratic form.

The Building. If f is non-degenerate and trace-valued, or if ¢ is a non-
degenerate pseudo-quadratic form, of Witt index n, then the totally isotropic
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(t.i.), or totally singular (t.s.), subspaces determine a building of type C,.
The chambers are all maximal nested sequences

Sic...cS,

of t.i., or t.s., subspaces, and the other simplexes are subsequences of these
(see Example 5 in Chapter 1). In particular the vertices are the t.i., or t.s.,
subspaces themselves. This building is thick providing the form is not the
one mentioned in section 2 giving a D, building; in that special case each
t.s. (n — 1)-space lies in exactly two t.s. n-spaces.

Theorem (8.2) is a consequence of the following theorem [loc. cit.]
(8.22).

(8.5) THEOREM. Every C3 building whose planes are Desarguesian, and
every C, building for n > 4 arises from a non-degenerate pseudo-quadratic
form, or a non-degenerate hermitian form of Witt index n. (8]

We emphasize that this vector space could be infinite dimensional;
indeed its dimension might not even be countable. For example let Z be
any set and let X be the disjoint union of Z and {z),... ,Zn,¥1,--- »Yn}-
We let V' denote the real vector space with basis X, whose vectors are all

m
v = alxl+...+a,,z,,+b1y1+...+bny,,+zc;z,~ where 2; € Z and

i=1
m
ai,bi,c; € R. We define q(v) = a1y + ... + anbp + Y ¢?. This quadratic

i=1
form has Witt index n, and if Z is non-empty we obtain a thick C,, building.

5. Tits Diagrams and F; Buildings.

To classify F4 buildings one needs to know which Moufang quadrangles
have the property that they and their duals arise from a form (of Witt index
2) on some vector space. It is then a straightforward matter to use (7.9),
(8.1), (8.2) and (8.3) to obtain a classification. In order to distinguish the
various cases it is helpful to use Tits diagrams for reductive algebraic groups
over an arbitrary field. Indeed these diagrams also help to explain and
illustrate Theorem (8.3) and Remarks 1 and 2 in section 3. Our discussion
of these things will necessarily be rather sketchy because we shall avoid
using algebraic groups!

First we consider quadratic forms. Let A be the building obtained
using the totally singular subspaces of a quadratic form ¢ of Witt index r
on a vector space of dimension N over a commutative field K. When taken
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over a suitable extension L of K (for example if L is the algebraic closure
of K) this form has Witt index n = (N —1)/2 if N is odd, or n = N/2 if
N is even. The corresponding building Ap is therefore of type Cp(= Bn)
if N is odd, and type D, if N is even.

The building A is a subcomplex of A, and its vertices belong only to
the first 7 nodes of the Ay diagram; the Tits diagram for A is obtained by
circling these nodes, so it is one of the following:

®_..._@__|__..._f—_-;::' B, N =2n+1

@_..._@__.'_...‘< D,

@__@__.__c: 2p,

N =2n

The distinction between D, and 2D,, depends on the discriminant. If » = 0
the form is called anisotropic in which case A is vacuous, and there are no
circled nodes. For example if K = R, the dot product is anisotropic;
furthermore for K = R and N = 2n one has the D, case when n — r is
even, and 2D,, when n — r is odd. We shall be particularly interested in

ool o

which represent quadratic forms of Witt index 2 on vector spaces of dimen-
sions 12 and 8 respectively, over a commutative field.

Now let K be a non-commutative field having finite dimension over its
centre k. If L is a maximal commutative subfield of K containing k, then
dimy L = dimy, K = d, so dim K = d? (d is called the degree of K over its
centre, and in fact L is a splitting field for K in the sense that K @ L is
a d x d matrix algebra over L). For example if K is the quaternions, then
k=Rand L=C.

Consider the A,(K) building. Its vertices are subspaces of a vector
space V of dimension r + 1 over K. They become certain subspaces of
dimension d,2d, ... ,rd when we take V as a d(r + 1)-dimensional vector
space over L. Thus the A,(K') building is a subcomplex of the A4y 41)-1(L)
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building, whose vertices have only those types circled in the following dia-
gram:

We shall be particularly interested in the diagram :
which represents a projective plane (A2 building) over a quaternion algebra
(i.e., d = 2). The subdiagram b——@—| represents a projective line
over a quaternion algebra.

In general, given a pseudo-quadratic or sesquilinear form of Witt index
r on a finite dimensional vector space over a field, where the field has finite
degree d over its centre k, the diagram is By, Cn, Dy, 2D, or 24, (see
Appendix 2) in which nodes d,2d,... ,rd are circled. These are the cases
which arise from algebraic groups, the finite-dimensional over k.

Non-Desarguesian Moufang Planes (Cayley Planes). As mentioned
earlier, a non-Desarguesian, Moufang plane is coordinatised by a Cayley
division algebra K, 8-dimensional over its centre k. We let K, denote a
maximal commutative subfield of K'; it has dimension 2 over k. For example
if K is the Cayley numbers, then £ = R and Ky = C. The points and lines
of this Cayley plane can be taken as certain vertices in an Eg(K) building
(see [loc. cit.] (5.12), and earlier references cited there for more details);
the two types of vertices are circled in the following diagram.

Each rank 1 residue is represented by a subdiagram of shape

In particular if L is a line, its points correspond to the totally singular
subspaces of a quadratic form ¢ of Witt index 1 on a 10-dimensional vector
space W over k. If p is a point of L, and (w) the corresponding t.s. 1-space
of W, then (w)1/(w) is an 8-space on which g is anisotropic, and the root
group fixing all points of L and all lines on p is the additive group of this
8-space. This space also acquires a multiplicative structure (Appendix 1
section 2) making it a Cayley algebra, and the anistropic form induced by
q is nothing other than the norm form of the Cayley algebra.
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Cs Buildings having Cayley Planes. We now explain Theorem 8.3
using diagrams. We have seen that a rank 1 residue of a Cayley plane has
diagram

The only Moufang quadrangle having such a rank 1 residue is that with
diagram

.L]:'r@@

This quadrangle arises from a quadratic form ¢ of Witt index 2 on a 12-
dimensional vector space V, and if U is the 2-space corresponding to a line
of the quadrangle, then ¢ induces an anisotropic quadratic form on the 8-
space UL /U. After multiplication by a scalar, this is the norm form of the
Cayley algebra for the plane. The diagram for the C3 building is obtained
by glueing the plane and quadrangle diagrams along their common residue
to obtain the following form of E-.

Both residues of the quadrangle are also residues of Moufang planes. If one
of these is a Cayley plane, then the quadrangle is that given above, and
the two C3 subdiagrams are forced to be

—

C;

)
d

and

L y oD Fan @
f T AW A\ 1
Identifying the common rank 2 (quadrangle) residue gives a form of E3
-

&— —0—0—9

This is the diagram for an Fy building having a Cayley plane.
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Now suppose both planes are Desarguesian. In this case the quadran-
gle must have the property that both types of vertices can be thought of
as points, represented by totally singular (or isotropic) 1-spaces under a
suitable form (see Remark 1 in section 3). This reduces us to four possible
cases (see [loc. cit.] (10.10), and compare with the list of diagrams in
Appendix 2). These are:

G—= == B,, C;

— a—L) 2A5, 2Ds

@—®< »—@<® Du/A}

@::@ BQ mixed

k K

The diagrams on the left are those arising from the quadratic form

nk(z,) — 123 + T2z4 on K @ k* with z, € K, and z;,... ,z4 € k, where
k is commutative and K is one of:

(1) k itself, and ng(z,) = z2 B,
(2) a separable quadratic extension of k, with norm ng 2A;
(3) a quaternion algebra over k, with norm ng D,/A?

Those on the right arise from a form f on a 4-dimensional vector space
over K, where one of the following holds:

(1) K is commutative, and f is alternating C,
(2) K is commutative, and f is (o, 1)-hermitian with [K : K9] =2 2Dj3
(3") K is a quaternion algebra with centre k, and f is D4/A?

psuedo-quadratic (equivalently (o, —1)-hermitian if
char k # 2) and trg i (z) = ¢ + o(z).

The final diagram represents the B, quadrangles of “mixed type” where
K Dk D K2, and the quadratic form is z3 + z,23 + z224 where 29 € K
and z,,... ,x4 € k.
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Digression. We now briefly explain Remark 2 of section 3. In each quad-
rangle diagram of classical type, the line-residue has diagram

f._..._@_...__|

This represents a 2-dimensional vector space U over K, and the re-
versal of the diagram represents the dual vector space U*. In every case
except D4/A? this subdiagram is connected at one end to the rest of the
quadrangle diagram, and so this gives a preferred choice between U and
U*. However in the Dy/A? case

4

the residual diagram I———@-—-i has no preferred direction, so there
is no distinction between U and its dual, and consequently no distinction
between K and its opposite. In this special case K has degree 2 over its
centre, or in other words is a quaternion algebra.

The F, Classification. Using the quadrangle diagrams above we are now
able to write down the full classification of F4 buildings, which the reader
should check (Exercise 10). For completeness we include the diagram in-
volving a Cayley plane, obtained earlier.

The full list of diagrams for F buildings is

O—H>—— j —Q Es/Ds4

&— E; /A3
ca s mpm) 2
O—=—0 Fy

o——0—0 Fi mixed
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The last diagram is for char k = 2 and K D k D K?; if k = K this is the
usual Fy diagram.

6. Finite Buildings.

A finite building is always of spherical type because its apartments are
finite Coxeter complexes. Assuming a connected diagram, the classifica-
tion for rank > 3 corresponds to the cases in sections 3-5 where the field is
finite; and for rank 2, the classification of finite Moufang m-gons was done
group theoretically by Fong and Seitz [1973] and [1974]). The groups con-
cerned are called finite groups of Lie type, and are tabulated in Appendix
6 (this includes the rank 1 case for which the building is just a finite set of
points). Our purpose here is to understand the effect of finiteness on the
classification, and to remark on the order of the group and the fact that
the subgroup U (of Chapter 6 section 4) is a Sylow-p-subgroup.

The fact that a finite field is commutative makes an immediate simpli-
fication; it implies for example that there is no Fy building of type E;/A3
as this requires a quaternion algebra. Furthermore there is no finite Cayley
division algebra, so this eliminates C3 buildings having Cayley planes, and
hence F4 buildings of type Es/D4. The Fj buildings of mixed type can-
not occur either because finite fields are perfect; thus the Fy classification
reduces to two cases: ®FEg(g) and F4(q), one for each ground field F,.

As to C, buildings, the classification of non-degenerate (¢, €)-hermitian
forms on a vector space of dimension N over a finite field is well-known.
If N is odd the Witt index is (N — 1)/2 and the form can be taken to be
unitary (¢ # id.) or orthogonal (¢ = id.). If N is even, either the index
is % and the form is symplectic, unitary or orthogonal (group O%), or the
index is & — 1 and the form is orthogonal (group Oy). Given Witt index
n and an arbitrary finite field Fy there is in each case a unique class of
forms for which F, is the fixed field of 0. Each of them gives a (thick) C,
building, except OF;, which gives a D, building. The finite simple groups
are usually denoted respectively: Uzn4+1(9), O2n+1(¢), Sp2n(q), Uz2.(q),
O;n(Q)! O3n42(q) - see Appendix 6.

To conclude this discussion we state a theorem.

(8.6) THEOREM. The finite buildings having a connected diagram and
rank > 3 are those (of rank > 3) listed in Appendix 6. O

Now let A be such a building (or a finite Moufang m-gon) and let
p be the characteristic of the field. Let G = Aut A, and let B be the
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stabilizer of a chamber ¢ € A. From Chapter 6 section 4, B = UH where
U is generated by a set of positive root groups and acts simple-transitively
on the set of apartments containing ¢, and H is the pointwise stabilizer
of such an apartment X. We shall demonstrate that U is a p-group and
that p { |G : U|. Thus U is a Sylow-p-subgroup of G, and B is a Sylow-p-
normalizer (Exercise 16 of Chapter 6).

As a first step let w = r;, ...7;, be a reduced expression for w € W.
Then the number of chambers d such that 6(c,d) = w is the same as the
number of galleries of type i, ..., starting at ¢, and this in turn equals the
product ¢;, ...q;, where 1+ g¢;; is the number of chambers in a residue of
type #;. In all but one case the chambers of such a residue correspond to
the points of a projective line, or of a quadric, so ¢; is a power of p (the
exception is for 2F; where one type of residue is a Suzuki oval, but g¢; is
still a power of p). Thus the number of chambers d with é(c,d) = w is a
power of p. In particular this is true of chambers opposite p (equivalently
apartments containing c), and so by (6.15) U is a p-group.

To continue our argument notice that for a panel 7, any p-element
fixing two chambers of St(7) must fix a third (because St(7) has 1(mod p)
chambers), and hence acts trivially on St(7). Therefore by (6.4) any p-
element fixing ¢ and the apartment ¥ acts trivially on A, so p t |H|. Thus
p 1 |B : U] and it remains to show that p + |G : B|. In fact |G : B| is
the number of chambers and this is 1(mod p) because, as shown above, the
number of chambers at distance w from c is a power of p (greater than 1 if
w # 1). We therefore have the following theorem.

(8.7) THEOREM. U is a Sylow-p-subgroup of the full automorphism group,
and B is a Sylow-p-normalizer. 0O

Remarks. Notice that if G is any group of automorphisms of A, contain-
ing U, the subgroup B stabilizing a chamber is a Sylow-p normalizer. As
to H, it could contain p-elements, but only acting trivially on A of course.
Notice also that we almost have a formula for the order of G. In the “un-
twisted” case where each rank 1 residue can be regarded as a projective line
over the same field Fy, the number of chambers opposite ¢ is q" where N is
the length of the longest word. Furthermore the total number of chambers

is 3 ¢“®). Thus
weWw

IG:H|=q" ) ¢

wew
and the only imponderable is the order of H. If G = GL,(q) then H is
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the group of diagonal matrices, isomorphic to Fy x ... x F¥ (n copies);
it contains the kernel of the action of G on A, namely the group of scalar
matrices, isomorphic to Fy. In PGLn(g), H is the product of n — 1 copies
of F¥, one for each panel 7 of the chamber ¢ (cf. Exercise 12 of Chapter
6). This is the usual form of H - for example in E3(q), H is isomorphic to
a direct product of 8 copies of F. Finally we remark that the expression

¥ ¢%*) can be written as a product H 9—— where n is the rank. For this

and for further details on these ﬁmte groups the standard reference is the
book by Carter [1972].

Notes. The classification of spherical buildings (having a connected dia-
gram of rank > 3) is one of the principal objectives of Tits [1974], where
the complete solution is given. The main difficulty concerned C,, buildings,
described as polar spaces in Chapter 7, and classified in Chapters 8 and
9 of [loc. cit.]. The reduction to the Cs case (8.4) was proved earlier by
Veldkamp [1959] who determined all such polar spaces, except the ones
involving Cayley planes, and those over non-commutative fields of charac-
teristic 2, where the concept of a pseudo-quadratic form is needed; these
forms were introduced by Tits [1974] Chapter 8. A very simple characteri-
zation of polar spaces is given by Buekenhout and Shult [1974]; the idea is
that they are “point-line geometries” in which for each point p and line L,
p is collinear with one or all points of L (though see their paper for other
conditions on non-degeneracy and finite rank). The use of Tits diagrams
for the classification of Fy buildings appears in Chapter 10 of Tits [1974],
and the diagrams themselves are introduced in Tits [1966]. Finally, in the
case of single bond diagrams, Tits [1974] Chapter 5 uses the existence of
algebraic groups of types Fs, E7 and E3 to obtain buildings of these types,
and it was only recently (Ronan-Tits [1987]) that the buildings could be
obtained independently (section 2 of this chapter). In fact Theorem (6.6)
(proved in Chapter 4 of Tits [1974]) can now be used to obtain the groups
from the buildings.

Exercises to Chapter 8

1. Given a 2n-dimensional vector space with the quadratic form for a D,,
building as in section 2, verify that every totally singular (n— 1)-space
is contained in exactly two t.s. n-spaces. [HINT: The orthogonal group
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is transitive on t.s. (n — 1)-spaces, by Witt’s theorem - see e.g. Artin
[1957] Theorem 3.9].

With the hypotheses of Exercise 1, let X,Y, X’ be t.s. n-spaces such
that X N'Y has dimension n — 1, and XN X’ = X NY N X' has
dimension n — 2. Show that X’ NY has dimension n — 1.

Using Exercise 2, show that the graph whose vertices are t.s. n-spaces
containing a fixed (n—2)-space, and whose edges are pairs X, Y where
dim(X NY) = n— 1, is a complete bipartite graph.

Verify that the chamber system in section 2 obtained using the t.s.
subspaces of dimension # n — 1 is indeed a chamber system of type
D, in the sense of Chapter 4. Show it is simply-connected, and hence
a building. [HINT: For simple-connectivity use (4.10); any path is
homotopic (in the topological sense) to one of points (1-spaces) and
lines (2-spaces), and such paths are easily decomposed into triangles
each of which lies in the residue of a 3-space].

With the notation of section 4, show that K = K, . if and only if o =
id. and € # 1. '

Let K be a field with centre k, and let ¢, f be as in section 4. Given
an element A € k with A + A% = 1, show that ¢(z) = A f(z,z) + Ko ..
Show such a A exists if o # id. [HINT: Expand ¢(z(1 + X)) in two
different ways].

. If a sesquilinear form f arises from a pseudo-quadratic form ¢, show

that f is trace-valued. Infact f(z,2) = a+ea? wherea = g(z). [HINT:
For z € V, t € K expand ¢(z(1 + t)) in two different ways, and use
t7q(z) = €q(z)’t (mod K, ) to derive (f(z,z)—gq(z)—eq(z)’ )t € K, .
for all t € K].

Observe that none of the exceptional Moufang quadrangles in Appen-
dix 2 has a rank 1 residue which is the same as a rank 1 residue of a
Moufang plane (and for this reason cannot form part of a C3 building).
Consider the Tits diagram for a Desarguesian plane over a non-
commutative field (i.e., d # 1). Show it is impossible to have three
such diagrams sharing a common rank 1 diagram

(this is a diagrammatic way of seeing that there is no D4 building over
a non-commutative field).

Verify that the list of diagrams for F, buildings is complete. In the
E7/A3 case let k and K be the fields for the residual planes; what is
the relationship between k and K?



Chapter 9
AFFINE BUILDINGS I

In this chapter we shall define affine buildings, and show that every
affine building gives rise to a spherical building “at infinity”. This build-
ing at infinity is a generalization of the “celestial” sphere at infinity of
Euclidean space, whose points may either be taken as parallel classes of
half-lines, or half-lines emanating from some fixed point.

1. Affine Coxeter Complexes and Sectors.

A building is called affine (or of affine type) if for each connected com-
ponent of the diagram, the corresponding Coxeter complex can be realized
as a triangulation of Euclidean space in which all chambers are isomorphic.
Since any building is a direct product of buildings, one for each connected
component of the diagram, nothing is lost by restricting attention to con-
nected diagrams, and we shall do this. We remark however that for non-
connected diagrams, the Coxeter complex can be regarded as a tesselation
of Euclidean space in which each chamber is a product of simplexes (e.g.
in the /L X ;1'2 case a chamber is a prism); in such cases the building can
be described as a “polysimplicial complex” - Bruhat-Tits [1972].

The various classes of connected affine diagrams are listed below; the
number of nodes is n+1 for type f,,(X = A,...,G), and the nodes marked
by an s are the possible types of “special vertices” (explained later).

DIAGRAM TYPE

~

o__®_o A 1

lo
)
1
)
o
|o
)

ny n 22
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DIAGRAM TYPE
Q
\o_ _o—o én,n23
/
o—o_..._o—o Ch, n>2
o o
\ _...__o/ 13,,, n>4
SN
o__o__o__o__o Es
)
)
) o o ) o o o Er
)
o ) ) ) ) o ) o FEg
L
0O_o0o_o—o__o Fy4
o__o0_% o G

In the A; case the Coxeter complex is nothing other than a doubly
infinite sequence of chambers ---¢_1, co, €1, €2, -+ each of which is adjacent
to its two neighbors, and this can obviously be realized as the Real line
with integer points as panels and unit intervals as chambers. For the other
diagrams, which have at least three nodes, each chamber can be taken as a
Euclidean simplex such that for each 7,j € I the angle between the i-face
and the j-face is m/m;j. For example, if I = {1,2,3} then since the sum of
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the angles of a Euclidean triangle is 7, one has:

1 1 1
—+—+—=1,
mya M3 Ma3
giving the diagrams Zg, 5’2 and ég‘

More generally consider an n-dimensional Euclidean simplex ¢ in R",
whose codimension 1 faces are labelled by elements of an (n + 1)-set I,
such that the angle between the i-face and j-face is /m;; for some integer
m;;. The group generated by reflections in the codimension 1 faces of c is
the Coxeter group W of type M = (m;;). Indeed if s; is the reflection in
the i-face, then s;s; has order m;; and hence the s; certainly generate a
quotient of W. This shows that the Coxeter complex maps onto R"*, and
once this map is shown to be a homeomorphism in the neighborhood of
each point (see Exercise 6), it follows from the simple-connectivity of R"
that the map is an isomorphism of simplicial complexes, and the s; generate
W itself. This also shows that a connected diagram is affine precisely when
there exists a Euclidean simplex whose dihedral angles are 7/m;;.

In its action on R™, W is a discrete subgroup of the group of affine
isometries, of shape R™ - O(n), where R" is the normal subgroup of trans-
lations, and O(n) is the orthogonal group, stabilizing a point. Thus W
has a normal subgroup Z" of translations whose quotient W,, being a dis-
crete subgroup of the compact group O(n), is finite. Moreover since W
is generated by reflections, W, is generated by images of these reflections;
but a finite group generated by reflections is a Coxeter group and in this
case it is generated by just n linearly independent reflections (see Bourbaki
[1968/81] Ch. V, section 3.9, Prop. 7, p.85). Let s1,...,sn be reflections
in W, whose images in W, generate W,, and let My,..., M, be the walls
fixed by s;,...,s, respectively. Since the M; have codimension 1 and are
linearly independent their intersection is a vertex. Such vertices are called
special.

Notice that any finite subgroup of W maps (via W — W/Z") isomor-
phically into W,, because Z™ contains no non-identity elements of finite
order. Therefore using the orders of finite Coxeter groups in Appendix 5,
it is a simple matter to check which vertices are special.

Sectors. Let s denote a special vertex, and ¢ a chamber having s as one of
its vertices. The panels of ¢ having s as a vertex determine roots e, ... , an
containing ¢, and their intersection S = a; NayN...Nay, is called a sector
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(French: quartier) with vertez s and base chamber c. In terms of the affine
space structure, a sector is a simplicial cone; Figure 9.1 shows an example
in the G2 case.

<
>,
0
B

Figure 9.1

A4V

K

That part of a wall bounding a sector (e.g., day Naz N ... N ay) will be
called a sector-panel (French: cloison de quartier).

(9.1) LEMMA. If the sector S, having vertex s, contains the sector T, then
S is the convex hull of s and T.

ProOF: Let V denote the convex hull of s and T, which by (2.8) is an
intersection of roots. Let a be any root containing s and T, and let o' C a
be a root having s on its boundary. Since the boundary walls dc and 9o’
must be parallel, the strip a — ¢/ = a N (—a’) cannot contain a sector. In
particular T ¢ —a’, hence S ¢ —a', and therefore S lies in o’ (it must
lie in o or —a’, since s € Ja’). Therefore V lies in o', and is hence
an intersection of roots whose boundary walls contain s. Thus V is a
simplicial cone, and since S is a minimal simplicial cone (having only one
base chamber) we conclude that V = S. O

(9.2) LEMMA. Given sectors S and S’ in an affine Coxeter complex, S’ is
a translate of S if and only if SN S’ contains a sector, in which case SNS’
is a sector. In particular if S contains subsectors S; and Sy, then S; N S,
is a sector.

PRrRoOOF: If S’ is a translate of S, then it is a straightforward exercise to
show that SN .S’ is a sector (Exercise 2). To prove the converse it suffices
to show that if a sector S contains a sector T, then S is a translate of T.
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Indeed let g be a translation for which g(T') has the same vertex as S. Then
g(T) N T is a sector lying in both g(T) and S, and since these have the
same vertex, (9.1) implies ¢(T) = S. To prove the final statement notice
that S; and S, are both translates of S, hence S is a translate of Sj, so
S1 N S, is a sector. 0

2. The Affine Building ,Z,,_I(K, v).

The Discrete Valuation. Let K be a field (not necessarily commutative)
with a discrete valuation v; after multiplying v by a suitable positive real
number this means that we have a surjective map v : K* — Z satisfying

v(ab) = v(a) + v(b)
v(a + b) > min(v(a),v(b))

for all a,b € K, with the convention that v(0) = +o00. Let O denote the
valuation ring of K with respect to v:

O = {a € K|v(a) > 0}.
This ring has a unique maximal ideal m:
m = {a € K|v(a) > 1}.
We let m € K> be a uniformiser, i.e., v(7) = 1. For each a € K'* one has
a0 = Oa = 10O = {z € K|v(z) > v(a)}.

In particular the ideals of @ are the m¢ where £=1,2,.... We let k denote
the residue field O/m = O/nO. For details on fields having a discrete
valuation, see for example the book Local Fields by Serre [1962/79].

Exercise. If v(a) < v(b), show that v(a + b) = v(a).

Example 1. Let ' = Q (the rational numbers), and let p be a prime.
Every rational can be written as p”a/b where a and b are integers not
divisible by p. We set v(p"a/b) = n. The valuation ring is the ring Zpy of
integers localised at the prime ideal (p), and the residue field is the finite
field Z/(p) of integers modulo p. Every discrete valuation of Q is obtained
in this way for some prime p.
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Example 2. Let k be a commutative field and let K = k(t), the field
of rational functions in one variable. If f and g are polynomials then
Voo (i—) = deg g—deg f is a discrete valuation. Moreover one obtains discrete
valuations v, for each element a € k, as follows. Any rational function can
be written (¢ — a)"% where f and g are polynomials not divisible by (1 — a);
set va((t —a)® 5) = n. If k is algebraically closed, every discrete valuation
which is trivial on k is v or v, for some a € k.

Lattices. Let V be an n-dimensional vector space over K. A v-lattice (or
simply a lattice) of V will mean any finitely generated O-submodule of V
which generates the K-vector space V; such a module is free of rank n. If
L is a lattice, and a € K*, then since aQ = Qa, we see that aL is also a
lattice. We shall call two lattices equivalent if one is a multiple of the other
in this way; this is clearly an equivalence relation, and we let [L] denote
the equivalence class of the lattice L.

We now define the building A as a simplicial complex as follows. Its
vertices are the classes [L] of lattices. Its edges are the unordered pairs of
vertices z and y such that if L is in the class of z, there is an L’ in the class
of y for which 7L C L’ C L; the existence of such an L’ is independent
of the lattice L chosen to represent z. The simplexes are given by sets of
vertices any two of which lie on a common edge. Such sets of vertices can
be written as [L,],[L2], ... ,[L] where

LiDLaD...DL DL, (t)

. Since L;/wL, is a subspace of the n-dimensional k-vector space L,/wL, (k
is the residue field O/7mQ), one sees that maximal simplexes have n vertices
- these are the chambers.

We shall show (below) that there are n different types of vertices,
and chambers have one of each. We therefore define two chambers to
be i-adjacent if they differ in at most a vertex of type i. By (}) above
the residue of a vertex ([Li] in that case) is isomorphic to the A,_;(k)
building, whose simplexes are the flags of an n-dimensional k-vector space
(Ly/7Ly in that case). Therefore A is a chamber system of type ;fn-—lv
and by (4.10) it will be a building once it is shown to be simply-connected
as a simplicial complex. This is done in Exercise 10, using apartments. A
thorough discussion of the n = 2 case (where A is a tree) is given in Serre’s
book on Trees [1977/80] Chapter II section 1.
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Some Subgroups of GL(V). The group GL(V) (i.e., GL2(K)) acts tran-
sitively on the set of all O-lattices, and preserves equivalence between lat-
tices. Its subgroup SL(V') can be defined in one of the following equivalent
ways (see e.g., Artin [1957] Chapter 4).

(1) It is the subgroup of GL(V) generated by root groups (unipotent ele-

ments).

(ii) It is the commutator subgroup [GL(V),GL(V)].

(iii) It is the kernel of the Dieudonné determinant

det : GL(V) — K* J[K*, K¥].

Since the valuation v is trivial on [K*, K*], one has for each g € GL(V) a
well-defined integer v(det(g)). We shall write:

GL(V)°® = {g € GL(V)|v(det(g)) = 0}
GL(V)°*™ = {g € GL(V)|v(det(g)) = 0(mod n)}.

Obviously:
SL(V) C GL(V)° c GL(V)°™™ c GL(V).

Consider now the stabilizer of a vertex z = [L]. If g-z = ¢, then gL =
cL for some ¢ € K*, so v(det(g9)) = n - v(c) = 0(mod n). If g € GL(V)?,
then v(¢) = 0, so ¢ is a unit in O, and L = cL. Thus, using G, to denote
the stabilizer of a, we have:

If G is a subgroup of GL(V)®, then G, =Gy ™

Types. We define the type of a vertex as an integer mod n. Start with
some lattice L and assign type 0 to [L]. If L’ is any lattice, then L' = gL
for some g € GL(V'), and we define [L’] to have type v(det(g))mod n. By
the discussion above this is well-defined mod n, and GL(V)*™) preserves
types.

Consider a chamber, represented by L; O ... D L, D wL,; regarding
L;/wL, as a subspace of L,/wL,, we immediately find a basis e,,... ,e,
for V such that:

Ly = (e1,...en)o0

Lz = (7!'61,62, .. .e,,)o

L, = (mey,... ,men_1,€n)0
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If gLy = L; then v(det(g)) = i — 1, so the n vertices of a chamber have n
different types. As explained above this allows us to regard A as a chamber
system.

Exercise. Show that SL(V) is transitive on the set of vertices of a given
type.

Bounded Subgroups. Given a basis for V, every element ¢ € GL(V)
can be written as a non-singular n X n matrix (gi;;). A subgroup G of
GL(V) will be called bounded if there is an integer d such that v(g;;) > d
for all (gi5) = g € G (obviously d < 0 because v(1) = 0). This definition
is independent of the choice of basis (though d itself is, of course, not
independent of the basis). The > sign is due to the fact that each element
¢ € K has a “norm” |¢| = e=*(%), s0 v(c) is bounded below if and only if |¢|
is bounded above.

(9.3) THEOREM. A subgroup G of GL(V)° is bounded if and only if it
stabilizes a vertex of A. Furthermore the vertices of A are in bijective
correspondence with the maximal bounded subgroups of GL(V)°.

Proor: If z = [L] is any vertex, take an O-basis for L; using this as a
basis for V, we have G < GL,(0), which is bounded (using d = 0). Thus
by (*) above G, = G is bounded. Conversely if G is a bounded subgroup
of GL(V)?, take any lattice L and set

Lo = ZgL

9€G

Since G is bounded, Ly is also a lattice, and is stabilized by G.

For the final statement of the theorem it suffices to show that if G =
GL(V)?°, then Gy fixes no vertices apart from z = [L]. Since Gy = GL,(0)
acts as GL, (k) on St(z) (recall k is the residue field O/70), it fixes nothing
in St(z), and hence by Exercise 12 fixes no other vertex. 0

Apartments. Take a basis e;,...,e, of V, and let A be the subcomplex
of A whose vertices are all [L], where L = (7"'e;y,... , 7 "e,)0 is the O-
lattice spanned by 7"ey,...,n"™"e,. Without loss of generality we may
scale e,... ,e, so that (e;,... ,e,)o has type 0, in which case L has type
r(mod n), where r =1y + ...+ 7r,.

Notice that [L] is equivalent to the set of n-tuples (ry +¢,... ,rq + 1)
for t € Z, and hence is equivalent to the single n-tuple (z1,... ,z,) where
z; = r; — =. Thus the vertices of A correspond to certain points of R"
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lying in the hyperplane z; + ... + z, = 0. To see that these are the
vertices of the Coxeter complex of type An_;, it suffices to check that

the following involutions si,... , s, preserve this structure and satisfy the
relations required by a Coxeter group of type An_1: s; switches z; with
zip1ifi=1,... ,n—1, and s, replaces z, by z; + 1, and z; by z, — 1.
Exercise. After a suitable rescaling and reordering of the basis ey, ... ,e,
show that the vertices in a sector are those [L] for which L =
(e1,7%ez,... ,m"en)o Wwhere 0< rp < ... < 7p.

The Affine Tits System. After choosing a suitable basis for V, a cham-
ber stabilizer B in GL(V)°(™) is the inverse image of the group of upper
triangular matrices under the projection from O to O/xOQ = k. Thus

o o
B =
0 o
The stabilizer N of an apartment is almost the same as that for the spherical
building A,—1(K), namely permutation matrices times diagonal matrices,

except that we must ensure N is a subgroup of GL(V)*™) otherwise it will
not preserve types. The panel stabilizers (minimal parabolics) are:

Y 10
Py =

| 70 (¢

0 01

| 7O k 0]

where P, differs from B only in the (1,n) entry, andfori=1,... ,n—1, P
differs only in the (i + 1,%) entry, and has a GL3(O) block on the diagonal
as shown. Obviously (P,...,P,—1) = GL,(O) stabilizes a vertex.
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Root Groups in an Affine Moufang Building. In Chapter 6 section 4
we introduced Moufang buildings, and we can now give an example of affine
type. Suppose K contains its residue field k as a subfield; e.g., K = k(t)
as in Example 2, with valuation v = vy determined by v(t) = 1. Consider
the Zz(K ,v) building, and take “root groups” of the form

1 at™ 0
Uas=1]0 1 0
0 0 1

where r is fixed, and a ranges over the residue field k; obviously U, is
isomorphic to the additive group of k. The root groups U; = U,, for the
“fundamental roots” a; (see Chapter 7 section 2) are the following, where
a,b, c range over the residue field &:

- - - -

1 a O 1 00
Uy=10 1 0 U.1=}a 1 0
[0 0 1] [0 0 1]
[1 0 0] [1 0 0]
U;=10 1 b U_.=101 0
[0 0 1] [0 b 1)
(1 0 0 1 0 ct!
Us=]1 01 0 Us=10 1 0
[t 0 1 0 0 1

We may let B be the same as before, but must restrict N to permutation
matrices times diagonal matrices of the form

at™ 0 0
0 ™ 0
0 0 ctm

where a,b, ¢ € k*, and of course r; +ro+7r3 = 0(mod 3) in order that N be
type preserving. It is left to the reader to check that the U, and N satisfy
(M1) - (M4) of Chapter 6 section 4. Before leaving this example, notice
that the U, are not unique. We could equally well have chosen some other
rational function f, with v(f) = 1, in place of ¢.

Exercise. Given ¢; € U; — {1}, and n; = m(e;) € U_;e;U_; N N, in this
example, show that ninsny; = naning, nynsn; = nzninz, and nanzn, =
nanang (cf. (7.3) and Appendix 1 (A.5)).



120 LECTURES ON BUILDINGS

Completion. Let K be the completion of K with respect to v; it is the
quotient field of its valuation ring 0= lim O/x"0. (Completing K to K
is the same as adjoining all limits of Cauchy sequences, where the distance
between two elements z and y is |z —y| = e~?(*~¥) - in particular |z—y| — 0
when v(z—y) — 00). For example if K = Q with the p-adic valuation, as in
Example 1 above, then K = Q, with valuation ring Z, (the p-adic integers);
if K is a function field of degree 1, for example k() as in Example 2, then
K = k((t)) with valuation ring k[[t]] (the ring of formal power series).

Weset V=V QK K , and associate to each lattice L of V the lattice
L = L®o O of V. This gives a bijection of the set of O-lattices of V
onto the set of O-lattices of V, showing that the affine building A of V' is
isomorphic to that of V. This fact can also be seen geometrically because
the building obtained from V obviously embeds in that obtained from v,
yet their residues are isomorphic (because the residue field is the same in
both cases), so the embedding is an equality.

There is however an important difference which will be made precise
in the next chapter when we deal with apartment systems. Each basis of
v gives an apartment of A, as explained earlier, and in fact all apartments
of A (i.e., isometric images of the Apn_y Coxeter complex) arise in this way
- see Exercise 2 of Chapter 10. The bases of V' do not give all possible
apartments, only those in a particular “apartment system” A. Using all
apartments of A we shall, in the next section, obtain a “building at infin-
ity” A%, isomorphic to the spherical building A,,_l(I? ). Using only those
apartments in A, one obtains a smaller “building at infinity” (A,A)*,
isomorphic to the spherical building A,_;(K).

3. The Spherical Building at Infinity.

A sector has been defined in an affine Coxeter complex or apartment;
we now define a sector of an affine building to mean a sector in some
apartment of the building. Of course if S is a sector in some apartment
then it is a sector in any apartment containing it, since the two apartments
are isometric via an isometry fixing their intersection (Exercise 6 of Chapter

3).
(9.4) LEMMA. Given any chamber ¢, and any sector S, there exists a sector
S1 C S such that S and ¢ lie in a common apartment.

PRrROOF: Let A be an apartment containing S, and assume ¢ ¢ A. By
induction along a gallery from ¢ to A it suffices to prove the lemma when
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¢ has a panel 7 in A. Of the two roots of A whose boundary contains =,
let & be the one containing a sector Sy C S (see Figure 9.2).

—

N

\Y

Figure 9.2

If d is the chamber of A—a on =, then clearly {c}Ua is isometric to {d}Ua,
and hence by (3.6) ¢ and « lie in a common apartment. n]

The retraction ps 4. Now let ¢, S and S; be as in the preceding lemma,
and let A be any apartment containing S. The fact that {c}US) is isometric
to a subset of W, shows that for any chambers z,y € S}, one has p; a(c) =
py,a(c). Welet ps _4(c) denote this common chamber of 4; it is independent
of S; because any two subsectors of S intersect non-trivially. (If we treat
A as a simplicial complex then ps 4 is a retraction of A onto A).

(9.5) PrROPOSITION. Any two sectors S and T contain subsectors Sy and
T lying in a common apartment.

ProoF: The proof is deferred to section 4. ]

We now define a sector-face to mean a face of a sector treated as a
simplicial cone; thus sector-faces are themselves simplicial cones, and those
of codimension 1 are the sector-panels. Two sector-faces, or walls, are said
to be parallel if the distance between them is bounded (i.e., if the distance
from any point of one to the nearest point of the other is bounded).

Obviously parallelism is an equivalence relation, and in a given apart-
ment two walls, or sector-faces, are parallel if one is a translate of the
other. As a matter of notation we let X denote the parallel class of X,
and sometimes call it the direction of X, or the trace of X at infinity.

Using (9.2) and (9.5) it is straightforward to see that two sectors are
parallel if and only if their intersection contains a sector (Exercise 3). In
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Figure 9.3 the sectors S and T are parallel and intersect in the cross-shaded
area; the sector-panels p; and ¢; of S and T are parallel, as are p; and g¢».
In this example p, and ¢2 contain a sector-panel in common, but p; and ¢;
do not; this distinction will be important in Chapter 10 when we define two
sector-panels to be asymptotic if their intersection contains a sector-panel
(a refinement of parallelism).

e
L

1

Figure 9.3

We now define the building at infinity, A>, as a chamber system over
I, where I, = I — {0}, o being some fixed type of special vertices. The
chambers of A™ are defined to be parallel classes of sectors of A, and two
chambers ¢ and d are adjacent if there are representative sectors S and T
(i.e., ¢ = 8, d = T°°) having sector-panels D and E which are parallel;
this is independent of the choice of S and T', because if ¢ = (S’)*® then S’
has a sector-panel parallel to D, and hence to E. Evidently the panels of
A are parallel classes of sector-panels, and we determine the type i € I,
of a panel as follows. In each parallel class take a sector-panel having a
vertex of type o; its base panel, the one on the vertex, must have some
type i € I,: we take this to be the type of the parallel class. To check that
this is well-defined it suffices, by (9.5), to check it in a single apartment,
so consider two parallel sector-panels in a common apartment. They are
translates of one another, and if they both have vertices of the same type
(o in our case), then the translation may be done by an element of W, and
hence their base panels have the same type.

To show A% is a building we use apartments as in (3.11). Given
an apartment A of A, let A = {S°°|S a sector in A}. Then A is a
Coxeter complex of type W, because if s is a vertex of A of type o, every
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parallel class of sectors in A contains a unique sector having vertex s, and
so A% is isomorphic to St(s). By (9.5) any two chambers of A* lie in a
common A®. Moreover let £ be a chamber and y a chamber or panel of
A contained in A{® and A3°; then again by (9.5) z = X* and y = Y*®
where X and Y lie in A; N A;. Now by Exercise 6 of Chapter 3 there is
an isomorphism from A; to A, fixing A; N A2, and hence an isomorphism
from A$° to AP fixing £ and y. Thus by (3.11) A% is a building.

(9.6) THEOREM. With the above notation A% is a building of spherical
type M,. Moreover the apartments of A are in bijective correspondence
with the apartments of A, via A — A®. The faces of A, considered as a
simplicial complex, are the parallel classes of faces of A, and the walls of
A are parallel classes of walls of A.

ProOF: The first statement has already been proved. To prove the second,
let X be an apartment of the spherical building A*, and let ¢ and d be
opposite chambers of X. Then by (9.5) we can find sectors S and T in the
directions ¢ and d, and lying in a common apartment A. Thus ¢ and d lie
in A%, but being opposite they lie in a unique apartment (see (2.15)(iv)
or Exercise 5 of Chapter 3), so A~ = X. Moreover if (4’)*® = X then
after possibly replacing S and T by subsectors we may assume they lie
in A’ also. Since AN A’ is convex (see (3.8)), either A = A’ or AN A’
is an intersection of half-apartments, by (2.8); but S and T do not lie in
a common half-apartment, so A = A’. The third statement is left as an
exercise. D

Having defined A* by using parallel classes of sectors, and their faces,
we shall now show that it could equally well be obtained by choosing a
special vertex s and using those sectors, and their faces, having vertex s.

(9.7) LEMMA. If s is a special vertex, then each parallel class of sectors
contains a unique sector having vertex s.

Proor: If S is any sector in the given class, then by (9.4) it contains a
subsector S lying in a common apartment A with s. The translate of S;
in A having vertex s is then parallel to S by (9.2). It remains to show that
if two parallel sectors S and T have the same vertex s, then they are equal.
This follows from (9.1) because S and T are both equal to the convex hull
of s and some sector R contained in SNT. 0

Let us now suppose that our special vertex s has type o and, as before,
define a sector-panel with vertex s to have type i if its base panel (the one
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on s) has type i. Two sectors having vertex s will be called i-adjacent if
they share such a sector-panel.

(9.8) THEOREM. The sectors having vertex s, together with the adjacen-
cies just defined, form a chamber system isomorphic to A™.

Proor: Obviously if two sectors S and T having vertex s are i-adjacent
then S® and T are i-adjacent in A®. Therefore in view of (9.7) it
suffices to prove that for sectors S and T having vertex s, if S and T
are i-adjacent in A®, then S is i-adjacent to T

Let A; be any apartment containing a subsector S; C S; if a is a
half-apartment of A;, minimal with respect to containing S, then a and s
lie in a common apartment. Now by (9.5) choose A, to contain subsectors
S1 C S and 77 C T, and then take a to be a root containing them both
(this is possible since S{° and T7° are adjacent in A®). Hence there is an
apartment A containing S;,7) and s. By (9.1) S is the convex hull of s
and S, and T is the convex hull of s and 71, so S and T are sectors in A
having a common vertex. Since S® and T are adjacent in A* they have
sector-panels which are parallel, but these sector-panels lie in A and have
the same vertex; hence they are equal, and S is adjacent to T. O

4. The Proof of (9.5).

To prove (9.5) we use “sector directions” which we now define. Let ¢
be a chamber in an apartment A, which we treat as Euclidean space. If
S is any sector of A, and s its vertex, take an e-neighborhood of s in S,
translate it to the barycentre of ¢, and call it S(c). Here € should be small
enough so that a ball of radius € lies entirely inside c. We call S(c) the
sector direction of S at c. It is independent of A, because if A’ is any other
apartment containing ¢ and S, then p. 4 maps A’ to A, preserving the
Euclidean space structure and fixing ¢ and S. Notice that the set of sector
directions at ¢ is in bijective correspondence with the set of chambers on a
special vertex, and hence corresponds to the elements of the finite Coxeter
group W,. If M is a wall dividing the apartment A into two roots +a, then
a sector direction will be said to be on the +a (or —a) side of M if, after
translating its vertex to a point of M, it lies in +a (or —a).

Before proving (9.5) we obtain a subsidiary result.

(9.9) LEMMA. If S is a sector in an apartment A, and if T is any sector,
then T contains a subsector T\ such that ps a|Ti is an isometry.

PROOF: Write p = pg 4. Since p preserves adjacency of chambers it is
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a question of finding a subsector T such that for any two distinct and
adjacent chambers z,y € T1, p(z) # p(y). Indeed since T is convex, any
two chambers z,z’ € T are joined by a gallery in T} of reduced type f,
and p sends this to another gallery of type f, hence §(p(2), p(2')) = é(z2, 2').
Now let m be the panel common to z and y, and take z to be nearer the
base chamber of T. We set 2/ = p(z), ¥ = p(y), " = p(x), and let a be
the root of A containing z’ but not y’ - see Figure 9.4.

Figure 9.4

For any chamber 2 € T, consider the two sector directions

S(p(2)) and p(T(2)).
Without loss of generality let S(p(z)) correspond to 1 € W,, and let
w(z) € W, denote p(T(2)).
Step 1. If 2/ # 3 then w(z) = w(y).
Indeed if 2’ # y’ then p restricted to {z,y} is an isomorphism.

Step 2. If 2’ = y then w(y) = rw(z) where r is the reflection of W,
determined by the wall M of A.

This follows from Step 1 since p|{z,y} may be taken as an isomorphism
followed by a folding across M.

Step 3. If 2’ = y then S contains no subsector in a.
Suppose S contains a subsector in a. By (9.2) any two subsectors of
S intersect non-trivially, so there is a chamber ¢ € a NS such that p. 4
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agrees with p on {z,y}. Since ¢ € a, we have z’ = y/ = projarc; however
p(c) = ¢, and for z € St(x) if p(z) = projxrc, then z = projxc. Therefore
T = projx¢ = ¥, a contradiction.

Step 4. If 2/ = ¢/, then f(w(y)) > &(w(z)).

Since z is nearer the vertex of T than y is, the sector direction T'(z) points
towards 7 rather than away from it. Thus p(7T'(z)) is on the —a side of
M, and by Step 3 this is true of S(p(z)) also (see Figure 9.4). In other
words the elements w(z) and 1 of W, lie on one side of a wall, and by Step 2
w(y) = rw(z) lies on the opposite side of the wall, hence #(w(y)) > #(w(z)).

We now define T; to be any subsector of T" with base chamber z, such
that w(z,) has maximal length in W,. Using Step 4 we see that if z and
y are adjacent and distinct chambers of T}, then p(z) # p(y), completing
the proof. (n]

Proof of (9.5). We have two sectors S and T', and wish to find subsectors
S; €S and T; C T lying in a common apartment.

Let A be an apartment containing S, set p = ps 4 and let T} C T be
a subsector as in (9.9), having base chamber z,, and such that p|T; is an
isometry. If S’ denotes the translate of S in A having the same vertex as
p(T1), then we let S; C SNS’ be a subsector lying in a common apartment
with z,. It suffices to show that for all chambers ¢ € Sy, p¢ a|Th = p|Th.

Given ¢ € S) and y € T} we work by induction along a minimal gallery
from z, to y. Since S; and z, lie in a common apartment, the induction
can start. Now as in the proof of (9.9) let z,y € T\ be distinct chambers
on a common panel 7, and with z closer to z,; again write z’ = p(z),
¥y = p(y), @ = p(r), and let a be the root of A containing z’ but not y'.
By induction p. 4(z) = ', and we must show p. 4(y) = ¥'.

If ¢c € , then 2’ = proj,ic, and so £ = projyc is the unique cham-
ber of St(r) mapped onto z’ by p. a; therefore p. a(y) # z’, and hence
pe,a(y) = ¥ as required.

If c € —a, then y = proj,sc, and it suffices to show that y = projrc.
We first claim that p|St(7) = p, 4|St(r) for some chamber e € —a. Indeed
S1 contains a subsector lying entirely in —a (because it lies in a sector
having vertex p(T}) € a, and has a chamber ¢ € —a), hence contains a
chamber e as required. Thus p, 4(projxc) = p(projxc) = projyic = y' =
pe,a(y). Since y' = projyse its inverse image under p. 4 is projxe, so we
have projyc = projre = y, as required. o
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Notes. Tits systems (B, N) of affine type were introduced by Iwahori and
Matsumoto [1965], and in the literature the terms “Iwahori subgroup” for
B, and “parahoric subgroups” for the Pj, are often used. The general
theory of affine buildings, and the construction of the building at infinity,
is developed by Bruhat and Tits [1972]; their work includes a description
of the building as a metric space - see also Brown [1979] Ch. VI, and “non-
discrete buildings” obtained from non-discrete valuations - see Appendix
3. The proof of (9.5) is taken from [loc. cit.] 2.9.5 (pages 58-60).

Exercises to Chapter 9

1. In a given affine Coxeter complex, let ey, ..., a; be roots whose walls
are linearly independent, and for each ¢ = 1,... ,t let §; be a translate
of a;. Prove that there is a translation g (not necessarily in W) such
that B; = g(a;) foralli=1,... ,t

2. If S’ is a translate of a sector S in an affine Coxeter complex, show
that SN S’ is a sector. [HINT: Use Exercise 1].

3. Show that two sectors are parallel if and only if their intersection
contains a sector.

4. Given a chamber ¢, and a half-apartment (root) a, is there necessarily
a half-apartment 8 C a such that ¢ and 8 lie in a common apartment?
(cf. 9.4).

5. Describe the tnangulatlons of R3? determined by the Coxeter com-
plexes of types Cs, Bs and Aj.

6. Show that the map, in the early part of section 1, from the Coxeter
complex W onto R" is a local homeomorphism. [Hint: For each sim-
plex o consider this map restricted to St(s), and work by induction
on the codimension of a].

7. Show that if a sector-face contains two sector-faces of the same dimen-
sion, then their intersection is also a sector-face of that dimension. (cf.
9.2 for sectors).

8. Show that in an affine Coxeter complex a convex set of chambers is
closed and convex in the Euclidean sense. [HINT: A convex set of
chambers is either the whole Coxeter complex, or is an intersection of
roots, by (2.8)].
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9.

10.

11.

12.
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Show that the intersection of two apartments is closed and convex in
both. [HINT: If p and ¢ are points of A and A’,let z € Aand y € A’ be
chambers containing p and ¢ respectively, and let A” be an apartment
containing z and y: cf. Exercise 6 in Chapter 3].

Exercises 10-12 deal with the Z,,_l example of section 2.

If L and L' are O-lattices show there is a basis e;,... ,e, for L such
that L’ is spanned by 7"te;,... , 7" "e,. Conclude that any two vertices
lie in an apartment determined by a basis of V.

Define a circuit of vertices and edges to be minimal if it contains a
path of shortest length joining any two of its vertices. Show that a
minimal circuit lies in an apartment determined by a basis of V. Use
this to show A is simply-connected in the topological sense.

Show that if a group of automorphisms fixes two vertices z and y, then
it fixes something in St(z). [HINT: Consider an apartment containing
z and y].



Chapter 10
AFFINE BUILDINGS II

This chapter deals with the relationship between an affine building
A having a system of apartments .4, and its spherical building at infinity
denoted (A,.A)*®°. When this building at infinity is Moufang (e.g. whenever
A has rank at least 4), one obtains root groups with a valuation (section
3), which are then used in section 4 to recover (A, .A), and assist in the
classification (section 5). An application to finite group theory is given in
section 6.

As a matter of notation the term root will be reserved for spherical
buildings such as (A,.A)*, and we use Latin letters a,b,c,... for such
roots. A root of an affine building will be called a half-apartment or affine
rool, and we use Greek letters o, 8,7, ... for these.

1. Apartment Systems, Trees and Projective Valuations.

Given an affine building A, an apartment system for A (or more pre-
cisely a discrete apartment system - cf. Appendix 3) will mean that a set
A of apartments of A is given, satisfying (i) and (ii) below. This data will
be referred to as (A,.A), and a sector-face, or a wall, of (A, A) will mean a
sector-face, or a wall, in some apartment of A. The conditions are:

(i) every chamber lies in some apartment of A.
(ii) any two sectors of (A,.A) contain subsectors lying in a common apart-

ment of A.

For example if A is the set of all apartments of A, then by (3.6) and
(9.5) both (i) and (ii) hold, and in this case A is called complete.

The Building at Infinity. For any apartment system A, the parallel
classes of sector-faces are the simplexes of a building at infinity, which we
denote (A, A)®. To see this notice that (A, A)® is a subcomplex of the
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A of Chapter 9, and by condition (ii) any two chambers of (A, A)* lie in
a common apartment A where A € A. Therefore by (3.11), or Exercise
10 of Chapter 3, (A,.A)™ is a sub-building of A®, and its apartments are
the A for A € A. If X is a sector-face or wall of (A, A), then as before we
let £ = X°° be the simplex or wall it determines “at infinity” in (A, A)*,
and we say X has direction x.

Example 1. As in Chapter 9 section 2, let K be a field with a discrete
valuation v, and K its completion with respect to v. Let V be an n-
dimensional vector space over K, let V = V ®x K , and let @ and O be
the valuation rings of K and K. The building Xn_l(K, v) (or .Z,,_l(l?, v))
has as its vertices the equivalence classes [L] of O-lattices (or 6—lattices)
in V (or V), under the equivalence relation [L] = [L] & L = aL' for
some a € K (or K ); these buildings are isomorphic as chamber systems.
Let A denote this common building; it acquires a system of apartments
A(K) or A(K) (as in Chapter 9 section 2), by taking decomposmons of
V or V respectively into 1-spaces (1) @ ... ® (ea). In fact A(K) is the
complete system of apartments - see Exercxses 1 and 2. Thus the building
at infinity A® of Chapter 9, obtained by using all possible apartments, is
the A,_;(K) building, whereas (A, A(K))® is the A,_;(K) building.

Trees with sap - the rank 2 case. An affine building of rank 2 is a tree
with no end points (Exercise 12 of Chapter 3), and if an apartment system
is specified, we shall call it a tree with sap. Its ends are the parallel classes
of sectors; there are no sector-panels, and (A,.A)* is just the set of ends -
a rank 1 building of spherical type.

Example 2. SL;(K). Let n = 2 in Example 1; the building ZI(K,v)
is a tree with sap, whose ends are the 1-spaces (v) C V. Sectors (i.e.
half-apartments) having (v) as an end are given by sequences of lattices:

Ln=1"L, + (Lo N (1))

where 7 is a uniformizer (i.e., 7 generates the maximal ideal of O). ]

By definition two distinct ends @ and b of a tree with sap lie in a
common apartment of A, which is obviously unique; we denote it [a,b].
Moreover three distinct ends a,b, ¢ determine a unique junction £(a, b, c)
(French: carrefour), the vertex common to [a,b], [b, ¢] and [c, a].

We assume our trees with sap are endowed with a metric, in other
words a distance between any two vertices £ and y, equal to the sum of
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the distances between adjacent vertices on the path from z to y. The trees
in section 2, which are obtained from affine buildings of higher rank, will
come equipped with a metric induced from a metric on Euclidean space,
and for this case the distance between any pair of adjacent vertices is a
constant.

Now given four distinct ends a,b,c,d we let w(a,b;c,d) denote the
distance from «(a,b,c) to k(a,b,d), in the direction from a to b (i.e., with
a + or — sign according to whether (a, b, c) precedes or follows «(a, b,d)
in the line from a to b) - see Figure 10.1.

Kb, K(a,b,d)
a < S = > b

wia,b; c,d)

Figure 10.1

(10.1) LEMMA. The function w satisfies:
(wl) w(a,b;c,d) = w(c,d;b,a) = —w(a,b;d,c),
(w2) ifw(a,b;c,d) =k > 0, then w(a,d;c,b) = k and w(a,c;b,d) =0,
(w3) w(a,b;e,d) +w(a,b;d,e) = w(a,b;c,e).

ProoF: Exercise. O

Any function w taking values in R and satisfying (w1), (w2) and (w3)
is called a projective valuation. If it takes values in a discrete subset of R
we call it discrete.

(10.2) THEOREM. Let (T,.A) be a tree with sap in which each vertex lies
on at least three edges, and let w be the projective valuation on (T, A)*.
Then w determines (T, A) up to unique isomorphism.

Proor: Exercise. n]

Notice that if we did not require each vertex to have valency at least
three, we could subdivide T, for instance by inserting a vertex in the middle
of each edge, to obtain the same (T, A)® and w. However, using a more
general notion of “tree” as a union of copies of R, vertices no longer exist.
as such, and (10.2) can be greatly strengthened (see (A.16) in Appendix
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3) to say that if w is a projective valuation on a set having more than
two elements, then it arises from such a “tree” which is determined up to
unique isomorphism.

Example 3. Let K be a field, and w a projective valuation on the set
K U {00}, invariant under the affine group {z—az+b|a€ K*,be K}.
Define v : K — R U {o0} by:

v(z) = w(0,0;1,z) for z £ 0,1
v(0) = o0
v(1)=0
We will show that v is a (rank 1) valuation in the usual sense, namely

that
v(ab) = v(a) + v(b)

and
v(a + b) > min(v(a),v(b)).

We first observe that invariance under the affine group implies:
w(00,b;¢,d) = w(00,0;(c —b),(d = b)) = v((c—b)~'(d - b)).
Thus

v(ab) = w(oo,0;1, abd)
= w(00,0;a”",b)
= w(00,0;a7 1, 1) 4+ w(o0,0;1,b)
= v(a) + v(b)

Now suppose, by way of contradiction, that v(a + b) < v(a),v(b). Since

v(a+b) =w(oo,0;1,a +b)
w(00,0;1,a) + w(o0,0;a,a + b)

= v(a) + w(oo, —a;0,b),

we have w(o0,—a;0,b) < 0, hence w(oo, —a; b,0) > 0. By (w3) this implies
w(00,0;b,—a) > 0, and hence v(—b~'a) > 0. Similarly, interchanging a
and b, we have v(—a~'b) > 0. Thus v(1) > 0, a contradiction; hence
v(a + b) > min(v(a),v(b)) as required.
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Finally we remark that by using (w2) it is straightforward to show
that:

w(a,b;c,d) = v((d— 1)~ (c — a)(c—b)"'(d - b)),

and it follows from this that the invariance of w under the affine group
implies its invariance under the projective group - see Exercise 3.

2. Trees associated to Walls and Panels at Infinity.

Given a wall m of the building at infinity (A,.A)*, we shall define a
tree with sap T(m) whose ends are the roots of (A, .4)* containing m; this
set of roots will be denoted St(m). Similarly, given a panel 7 of (A, A)* we
shall define T'(7), a tree with sap, whose ends are the chambers containing
w, this set of chambers being denoted as usual by St(w). If 7 is contained
in m, there is a canonical isomorphism from T'(7) to T(m). This induces a
bijection from St(7) to St(m) which associates to each chamber x of St(w)
the unique root having wall m and containing z - see (6.3).

The tree T(m) with sap. For a given wall m of (A, A)*, the vertices
of T(m) are walls M of (A, A) such that M = m, and two vertices are
joined by an edge if they are walls of a common apartment with no wall in
between. The apartments of T(m) are taken to consist of those vertices,
and edges joining them, which are walls of some common apartment in A.
The half-apartments (i.e. sectors) of T'(m) then correspond in an obvious
way to those half-apartments of (A, A) whose boundary wall has direction
m. Thus the ends of T'(m) are simply the roots of (A,.4)* having boundary
wall m.

Given two distinct roots of a spherical building ((A,.A)* in our case)
having a common boundary wall, there is a unique apartment containing
them both - cf. (6.3). Thus each pair of ends of T'(m) determines an apart-
ment of (A, A)®, hence an apartment of (A,.A), and hence an apartment
of T(m) itself. We have therefore proved:

(10.3) LEMMA. T(m) is a tree with sap whose ends correspond to the
roots of (A, A)*® having boundary wall m (i.e., to St(m)). O

Before dealing with T(w), we define two sector-panels to be asymp-
totic if their intersection contains a sector-panel. By Exercise 5 this is
an equivalence relation which is finer than the relation of being parallel.
The equivalence classes will be called asymplote classes, and the asymptote
class of D will be denoted D.
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The tree T(w) with sap. For a given panel 7 of (A, A)* the vertices
of T(w) are the asymptote classes of sector-panels D for which D*® = =,
and two vertices are joined by an edge if there are sector-panels from the
two classes, lying in the same sector, and with no sector-panel in between.
Before defining the apartments of T'(w) we observe that if D*° = 7, and S
is any sector of (A, A) having D as a sector-panel, then the other sector
panels parallel to D and contained in S form a half-line in T'() - see Figure
10.2.

Figure 10.2

We define the apartments of T'(7) by requiring these half-lines to be
the half-apartments (i.e., sectors) of T(w). Thus if two sectors S and T
lie in a common apartment and intersect in the sector-panel D, then the
sector-panels of S U T parallel to D form an apartment of T(w). Since
any two sectors of (A, A) contain subsectors lying in a common apartment,
the same is true for half-apartments of T'(7), and we have a tree with sap.
Moreover two half-apartments of T'(w) have the same end if and only if the
corresponding sectors S and S’ contain a common sector (i.e., S and S’
give the same chamber S = (5')* of (A,.A)*). Thus the ends of T(r)
correspond to the chambers of St(r), and we have proved:

(10.4) LEMMA. T(m) is a tree with sap whose ends correspond to the
chambers of (A, A)*® having © as a panel (i.e., chambers of St(w)). 0

The idea is now to use section 1, applied to T(m) and T(x), to ob-
tain projective valuations w,, and w, on St(m) and St(w) respectively.
This requires a metric on T'(m) and T(7) which we define as follows. The
affine Coxeter complex, regarded as Euclidean space, can be given a metric
(unique up to multiplication by a positive real number). This gives a met-
ric on each apartment, and hence on (A, A), so we have a distance between

any two parallel walls or sector-panels, which in turn defines a metric on
T(m) and T(m).
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Remark. The distance between adjacent vertices of T(m) or T'(w) cannot
be 1 in all cases. In fact if the Coxeter group has two orbits on the set
of walls, then the ratio of the distances between adjacent walls in the two
orbits is V2 (in the E’n, 6’,, and 1?'4 cases) or V3 (in the 6‘2 case). For
example Figure 10.3 shows the C; case.
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Figure 10.3

We now choose a fixed Euclidean metric, and let w,, and w, be the
projective valuations induced on St(m) and St(r).

The following theorem is proved by Tits [1986a] section 18, but in
a more general setting in which the “building” may not be discrete - see
Appendix 3. We shall not prove it here.

(10.5) THE UNIQUENESS THEOREM. If (A, A)™ is thick, then (A, A) is
determined up to unique isomorphism by the wy (or the wy,) for all panels
w (or walls m) of (A, A)™. |

The data w, for all panels 7w can in fact be inferred from knowing just
one or two of the wy, namely one in each of the one or two types of walls
of (A, A)®. The idea is that one can transfer the data w, to the data wys
whenever m and 7’ lie in a common wall. The following proposition makes
this precise.

(10.6) ProposITION. If 7 is a panel in a wall m, then for each asymptote
class D of sector-panels in the direction w, there Is a unique wall M in
the direction m containing a representative of D. The map D — M is
an isomorphism from T(w) to T'(m) and induces on the set of ends a map
txm sending a chamber of St(w) to the unique root of St(m) containing it.
Moreover wx = Wy O txm.
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PRrRoOOF: Let D) be any sector-panel in the direction =. Take an apartment
A, € A which contains D, and let S; and T} be the distinct sectors of A,
having D; as a face. The chambers S{° and TT° each have a panel, namely
7, in m, and therefore by (6.3) S{°,7t° and m lie in a unique common
apartment A%,

In A there are subsectors S and T of S; and T; respectively, and since
the convex hull of S and T is the same in both A; and A, it contains a
subsector D of D, - see Figure 10.4.

Figure 10.4

Let M be the unique wall of A containing D; then M is the wall of A%
containing D*®° = m, and hence M = m.

Given D, the uniqueness of M is an immediate consequence of the
fact that two parallel walls are either equal or disjoint. Moreover the map
D— Misa bijection since all sector-panels of M in the direction m are
obviously asymptotic.

The remainder of the proof is straightforward and is left as an exercise.

0



10. AFFINE BUILDINGS II 137

If # and ' are two panels of m, then L;,lm O Lyxm is a bijection from
St(r) to St(='); any combination of such bijections is called a projectivity,
and we let GP(w) denote the group of projectivities from St(w) to itself.
By (10.6) any projectivity from 7 to 7’ sends wx to wy/; in particular wy
is invariant under the group GP(w).

In a spherical Coxeter complex (with a connected diagram) there are
at most two types of walls (this was discussed earlier in Chapter 6 section
4). Moreover in a thick building of spherical type, given two panels 7; and
w9 of the same type, there is a third panel 7’ opposite both of them (it is
an exercise to verify this - cf. (3.3) Step 2). Hence ; lies in a common wall
with 7/ which in turn lies in a common wall with m3. Therefore in (A, A)*
there are at most two “projectivity classes” of panels, and we have the
following.

(10.7) CoROLLARY TO THE UNIQUENESS THEOREM. If A is thick, then
(A, A) is determined up to unique isomorphism by wy for a single panel @
in one of at most two “projectivity classes”.

Application - the classification of A, buildings for n > 3. Let A
be an affine building of type /Z,, for n > 3, and let A be a system of
apartments for A. Then (A, A)*® is a spherical building of type A,, and
since n > 3 it is the A,(K’) building for some field K (not necessarily
commutative). If 7 is a panel of (A,.A)*®, then St(r) can be identified
with the projective line K U {0}, and GP(7) = PGL2(K). It therefore
follows from Example 3 in section 1 that w, is equivalent to a discrete
valuation v of A'. The same building at infinity with the same wy could
be obtained by using the .Z,,([\", v) building of Chapter 9 section 2, and
so (10.7) implies that (A, A) = g,,([\",v). (The isomorphism is uniquely
determined by the isomorphism of the buildings at infinity).

This argument apphes to other types of affine buildings, namely those
of types D,,, Es, E'-,-, Es, where there is only one “projectivity class” of
panels, and St(7) is a projective line; it shows that every such building
Is associated to a field K with a discrete valuation v. However we have
not yet constructed these affine buildings, and do not therefore yet have a
classification. In the next section we study “root groups with a valuation”
which we use in section 4 to construct affine buildings. In section 5 we
then use X' and v to obtain a system of “root groups with valuation” to
conclude the classification of these cases.
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N

3. Root Groups with a valuation.

In this section we assume (A, A)® to be Moufang. By (6.7) this is
always the case when (A, A)® has rank at least 3 (recall we assume a
connected diagram for (A, A), and hence also for (A, .A4)*). Now fix some
apartment A € A, and let ® be the set of roots of A®. For each a € ® let
U, denote the corresponding root group.

(10.8) ProPosITION. IfG is the group generated by the U,, the action of
G on (A, A)™ extends to an action on (A, A).

Proor: If U, is any root group we must show that its action extends to
(A, A). By (10.7) it suffices to check that U, preserves wy for 7 in one or
two possible classes. In either case 7 may be taken to lie in a — da, so U,
acts trivially on St(r), and hence on wy. 0

We now fix a point s € A (not necessarily a vertex). Each root a € ¢
corresponds to a half-space a, of A, having s on its boundary (if we treat
A as a vector space V, with origin s, each a, is a half-space of V, as in
Chapter 2 section 4). Now given u € Uy — {1}, ANuA is a half-apartment
of A, and its boundary wall M, is parallel to da,. We define p,(u) to
be the distance from da, to M, in the Euclidean space A, measured in
the +a, to —a, direction (i.e. with a + sign if Jda, C uA, and a — sign
otherwise) - see Figure 10.5 where ¢,(u) is negative.

Qs — —-as

wea)

Figure 10.5

As mentioned in section 2 we do not have a metric defined on A «
priori; it is only unique up to a multiplicative constant. After fixing this
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metric on A, each root a € ® determines ¢, up to an additive constant
depending on the choice of the point s.

Since (A, A)*™ is Moufang, U, acts simple-transitively on the set of
apartments of (A,.A4)*® containing a, and so for m = da, U, corresponds to
the set of roots of St(m) different from a (see (6.3)). Thus St(m) consists
of a and u(—a) as u ranges over U,.

(10.9) LEMMA. w,,(a,u(—a);u'(—a),u”(—a)) = pa(u~1u") — pa(u="'u’').

ProoF: By (10.8) u~! fixes wy,, so the left hand side equals
wm(a, —a;u~'u'(-a), u=!v”(—a)). The result follows immediately from
the definitions of ¢, and wy,. u]

Root Data with Valuation. (Données radicielles valuées).

As in Chapter 6 let ® be the set of roots in an apartment ¥ of a
(thick) Moufang building of spherical type, with a connected diagram, and
for each a € ® let U, denote the corresponding root group. As mentioned
in Chapter 2 section 4 we may regard roots as half-spaces, and walls da
as hyperplanes, in a real vector space V (the Coxeter group W acts on
V preserving a dot product). We let 1, denote the vector of length 1
perpendicular to da and contained in a, and let r, denote the reflection in
the wall da, switching a and —a.

A collection ¥ = (¥4)see of maps ¢, : U, — R will be called a
valuation of the U, if they satisfy the following.

(V0) Card va(Ua) 2 3
(V1) Uay := 97 '[t,00] is a group, and U, . = {1}.
(V2) Given b # +a, the commutator

[Ua,k,Ub,[] S (Uc,pk+ql l S (avb))

where 1, = p 1, + ¢ 1, (recall from Chapter 6 section 3 that (a,b) is
the set of roots ¢ with anNb C ¢ # a,b).

(V3) Given a,b € ¢, and u € U, — {1}, there exists t € R (depending on b
and u) such that for all z € U,

Yro o) (m(u)zm(u)™!) = ¢y(z) +¢.
Moreover if @ = b, then t = —24,4(u), or in other words
1/)_a(m(u)zm(u)") = Ya(z) — 2¢a(u).

The element m(u) was defined in Chapter 6 section 4; it stabilizes £, switch-
ing a with —a. It is the unique element vuv’ € U_,ulU_s,N N.
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(10.10) EXERcCISE. Given m(u) = vuv’ then m(v) = m(u) = m(v’) by
(A.1) in Appendix 1. Use this to prove:

() ¥-a(v) = _a(v")

(b) Ya(u) = —¢-a(v).

[HINT: (a) is immediate from m(v) = m(v’) and (V3); for (b) let m(v) =
ujvy, m(uy) = viurv, so m(uy)um(u;)~! = vy - now use (a).]

Remark. We have not assumed that ¥,(U, — {1}) is a discrete subset of
R; if it is we call the valuation discrete. These are the valuations that
arise from affine buildings, and in section 4 we shall use such valuations to
construct an affine BN-Pair. However, even in the non-discrete case it is
possible to construct a geometry having “at infinity” the Moufang building
for the root groups U,; these “non-discrete buildings” are discussed in
Appendix 3.

Example 4. Let ® = {ta,+b,+c} be the roots in an A, apartment in
such a way that 1. = 1, + 1;, as shown.

Let K be a field with a valuation v satisfying the conditions of Chapter 9
section 2, though v need not be discrete. Then v determines a valuation of
the root groups in SL3(K) as follows. After choosing a suitable basis we

may write

1 =z O

Usr:|{0 1 0 where v(z) > k
0 0 1
1 00

U 01 y where v(y) > ¢
0 0 1
I 0 :

Um:10 1 0 where u(z) > m
0 0 1
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1z0 100 102y
If g = <010) and h = <Oly) then [g,h] = {01 0 ) Since v(zy) =
001
=k+

001 001
v(z) + v(y), this gives [Usk,Us,e] = Uem where m = k + £ (a case where
p=¢=1). ]

(10.11) THEOREM. The (¢,) defined earlier, using a point s in the affine
apartment A, are a valuation of the root groups (U,).

PRrROOF: Since (A, A) is thick, ¢, takes infinitely many values, so (V0) is
clear.

(V1): Notice first that uAN A = u=!AN A, hence pa(u) = pa(u?),
and so U, contains the inverse of each of its elements. Furthermore for
u,u’ € U, the part of A fixed by u and u’ is certainly fixed by uw/, so
uANUYANA C uu’ANA; hence pq(uu’) > min(p,(u), pa(u’)), and U, ¢ is
a group. Moreover if u € Uj o, then u fixes A and hence u = 1.

(V2): Let K and L be the walls parallel to, and at distance k and ¢
from, fa, and b, respectively - see Figure 10.6.

Sl

o 77

Figure 10.6

We now consider the underlying affine space A as a vector space with
origin s, and let ¥ denote the point of intersection of L and K in the 2-
space spanned by 1, and 1,. By (6.12) [U,,Us) < (Uc | ¢ € (a,b)). Ifu € U,
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is a factor in such a commutator then 4 must fix ¥, and hence u € U, n,
where m is the (signed) distance from Jc, to U (see Figure 10.6). We let
M denote the wall through ¥ parallel to dc, so m is the distance from dc¢,
to M. To evaluate m, notice that the equations for points T on the walls
K,L and M are respectively:

T -l =—-k
T -1ly=—¢
T-l.=-m

As v lies on K, L and M this gives
m=-v-1,=—pv-1,—qv-1, = pk + ¢¢

where 1, = pl, + ql,.

(V3) Given a,b € ® write b’ = rq(b). For u € Uy — {1}, My is the wall
fixed by m(u), and we let t be the distance from M, N db, to 9b, (in the
b, to —b) direction) - see Figure 10.7.

77,

Figure 10.7

Then using signed distances as usual, m(u) sends a wall at distance k from
0b, to a wall at distance k+t from 9b/,. Thus gy (m(u)zm(u)~!) = pp(2)+¢
for all z € Uy, as required.
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Finally if a = b, then b, = b, and we let h be the distance from 9V
to My (+ if M, C b, and — if M, C b,) - see Figure 10.8.

Xrw "

Figure 10.8

Then m(u) sends a wall at distance k from da, to a wall at distance k + 2h
from da,, sot = 2h = —2p,(u) in this case. ]

Equivalence and equipollence. To conclude this section, replace the
point s by s’, and keep the same metric on A. If v is the vector s’ — s, and
¢’ the valuation obtained using s’, then

SOZ(U) =pa(u)+v-1,

- see Figure 10.9.

Figure 10.9

Two valuations related in this way are called equipollent, and we write

=9+
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Altering the metric on A turns @4(u) into Aps(u) for some positive real
number A, and if we alter both the metric and the point s then in place of
¢ we obtain Ay + v, for some A > 0 and v € V, where

(Ap + v)a(u) = Apa(u) + v - 1a.

We call ¢ and A\p + v equivalent. If ¥ is any valuation (satisfying (VO) -
(V3)), then so is Ay + v (Exercise 7).

4. Construction of an Affine BN-Pair.

In this section we start with a discrete valuation 1 = (%,) of the root
groups (Us)aea as defined in section 3, and construct an affine BN-Pair.
We let N be the subgroup generated by the m(u), and show that it acts as
an affine Coxeter group W2 on the affine space whose points are valuations
equipollent to one another. The finite Coxeter group acting on ® will be
denoted W (®).

Recall again from Chapter 2 section 4 that W(®) acts on a real vector
space V preserving a dot product. The roots a € ® correspond to half-
spaces of V and the walls da to hyperplanes of V. As in section 3 we let 1,
denote the unit vector perpendicular to da and lying in the half-space a.

For n € N with image w € W(®) we define an action on the set of
valuations, as follows:

(n-¢Y)a(u) = 1J)w-n(a)(n'lun).

In fact n - ¢ is a valuation equipollent to ¥, by (10.11) below, but first
notice that since v - 1,,-1(4) = w(v) - 1, one has

n- (A +v) = A(n-9¥) + w(v).
(10.12) LEMMA. Given u € U, — {1}, then for m = m(u) one has
m-y = — 2kl,

where k = 94(u).

PROOF: For b € ® and z € Uy with ¢,(z) = £ we shall evaluate (m-9);(z).
Assume first that b # +a, and let ¥ be the set of roots ¢ € ® such that
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1. = pls + q1; with ¢ > 0 (see Figure 10.10 in which ¥ = {b,¢,d}).

b7

Figure 10.10

Notice that both ¥ U {a}, and ¥ U {—a} are a full set of positive roots.
Also, the reflection 7, switching a and —a, stabilizes ¥. Now for ¢ € ¥, set

h(c) = pk + qf;

in particular h(b) = £. By (V2) the product
H Uc,n(c) =U'
cEVY

is a group, and one has
UyNnU' = Us.e

and

Urv) VU = Up o), n(r3))-

Since 1,3y = 1, —2(14-13)14, we have h(r(b)) = £—2(14-13)k. Furthermore
if we write m = vuv’ where v,v' € U_,, then by (10.10) 9,(u) = k implies
Y_a(v) = Y_a(v’) = —k. Using (V2) again we see U’ is normalized by v,
u, and v’, and hence by m. Therefore

m—lUb,lm =m~UymnU’' = Uy N U'= Us(b),h(r(8))-
Hence

(m - ¥)o(2) = Yry(m~rzm) = € > h(r(b)) = £ — 2(14 - 1)k.
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Similarly £ > ¢ — 2(1a - 1,5))k = € + 2(15 - 1)k, and therefore ¢ =
£ —2(14 - 1p)k. Thus (m - ¥)s(z) = ¥s(z) — 2kl, - 15, as required (for
b # ta).

For b= a, 15 -1, = 1, and (V3) immediately gives

(m - $)p(z) = Y_p(m™1zm) = ¢y(z) — 2k1, - 1,.

For b = —a, then using (V3) and the fact (see (A.1) in Appendix 1)
that m = m(v) for the second equality, and ¥,(v) = —k and 1, - 1 = —1
for the third, one has

(m-9)s(z) = Yp_s(m™'zm) = y(z) — 29s(v) = Ps(2) — 2k14 - 1.

This completes the proof that m - ¢ = ¢ — 2k1,. u}

We now take some given valuation 3 of the root groups, and let A
denote the set of valuations equipollent to ¥, namely all ¥ + v with v € V.
It has the structure of an affine space by taking the distance between ¢ + v
and ¥ + w to be the length of the vector v — w. We know that each root
a € ® corresponds to a half-space of V', and hence to a half-space of A,
namely (a,0) = {¢+v | v-1, > 0}. More generally set 'y = ¥4(Us — {1})
and for each k € T, define the affine root (a,k) as

(a,k)={v+v|v-1, > —k}

@'&) é‘al—‘*)

@°)

Figure 10.11

In Figure 10.11 k£ > 0. Let ®> be the set of affine roots, which we denote
by Greek letters a, (3, ...; their boundaries da are called the walls of A. If
a is the affine root (a, k) we let U, denote Uy x. For n € N, n - a means
the set of n -9y for ¥ € a, and we have:
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(10.13) LEMMA. nUan™! = Up.q.
PROOF: Let o = (a,k), and let n induce w € W(®). One has

nUgn™! = {u | n7'un € Uy and a(n~'un) > k}
= {u € Uw(a) | (n : 1»b)w(a)(u) 2> k}

Let v=mn-9¥p -9 €V,s0k <(n-%)ya)(¥) = Yua)(w) + v - lya). Thus
nUgn~! = Ug where 3 = (w(a),k—v- ly(a)), and we must show 8 =n-a.
This can be seen as follows:

B={p€A|(p—v) lu@)>—(k—v-1y@a)}
={peA|(p—¥—v) ly@) > -k}
={p€A|(p—n-9¥) lyu) > -k}
={peA|(ntp-9) 1,> -k}
={peA|n pe€a)

=n-a
]

(10.14) CoRroLLARY. N acts on A as an affine Coxeter group, and the
walls subdivide A into a Coxeter complex.

PRrROOF: If a = (a,k) then the reflection across the wall a sends v to
r(v) — 2kl,, where r € W(®) is the reflection switching a and —a. Now
if m € Mar = {m(u) | ¥a(u) = k} then m induces r € W(®); and using
(10.12) we have

m-(+v) = m-p+r(v) = § = 2kla +r(v).

Thus m acts on A as the reflection across the wall da. It therefore only
remains to show that N sends walls to walls. This follows from the preced-
ing lemma because if @ = (a, k) is an affine root, then nUan~! = Uy for
some affine root 3, and we have n-a = g. u]

We let W(®2), or simply W2, denote this affine Coxeter group, and
let H be the kernel of the action of N on A. Thus N/H = Waf

We can now define the subgroup B of our affine Tits system. Take a
chamber ¢ of A (regarded as a Coxeter complex) and let ®*T(c) denote the
affine roots containing c¢. Then B is the group generated by H and the U,
for a € ®*(c). Before proving (B, N) is an affine Tits system, we need
some technical lemmas.
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(10.15) LEMMA. Let u € U, and v € U_, with ¢a(u) + ¥_s(v) > 0.
Then uwv = vihu; where uy € Uy, vi € U_, and h € H. Furthermore

"/’a(ul) = '(/)a(‘ll) and "/’—a(vl) = ¢-a(v)'

ProorF: If weset L, = (U,,U_,, H) and M, = (H,m(u) | u € U,), then it
is an exercise having nothing to do with valuations (see Bruhat-Tits [1972]
page 108 (6.1.2) (7)) that

Lo =M,U,UU_oHU,.

Moreover uv ¢ M,U,, otherwise for some v’ € U, we would have uvu’ € N,
so m(v) = uvy’, hence by (10.10) ¥,(u) = —tp_4(v), contradicting our
hypothesis. Thus uv = vihu;, where vy € U_4, u; € Us and h € H.

For the final statement we may suppose u,v # 1. Therefore v; # 1
and writing m = m(v;) we have v; = usmus where us,uz € U,, and by

(10.10)
Ya(uz) = —_q(v1)
This gives v = u~lupmughu; = u~'uymhulu; € U,NU, Again (10.10)

implies

Y-a(v) = —a(u " ug).

Therefore 1,(u~'u2) < ¥4(u), and hence, using (V1)
¢a(u_lu'2) = ¢'a(u2)-

Therefore ¥_4(v) = —¥4(u2) = Y_q(vy), and similarly Ya(u) = Pa(u;). O

If we select some chamber z of the spherical Coxeter complex W(®)
then ® = ®* U &~ where the positive roots ®t (or negative roots $~) are
those containing (or not containing) z - see Chapter 6 section 4. We now
define:

U(C) = (Ua,k I c€E (a’k))
Ut(c)=(Usx | a € ®* and c € (a, k))
U™ (¢) = (Uak | a € ®~ and c € (a,k))

Since H normalizes each U, x, U(c) is normal in B, and B = U(c) - H.
Furthermore we can describe the structure of U(c) as follows.
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(10.16) LEMMA. (i) U(c) = Ut (c)U(c)(NNU(c)), and NNU(c) C H.
(ii) For any a € ®, Us NU(c) = Uy where a is minimal with respect to
containing c.

PRrRoOF: Set X, = U, where o is minimal with respect to containing c,
as in (ii); thus U(c) is the group generated by the X, for a € . We set
H(c) = HNU(c) and first show that Ut(c)U~(c)H(c) = U(c). Since this
product is contained in U(c) it suffices to show it remains stable under left
multiplication by X, for each a € ®. Certainly this is true if a € %, so we
need only show that the product is the same regardless of the decomposition
of ® into positive and negative roots.

If ¥ denotes the apartment of which & is the set of roots, then ®* is
the set of roots containing some chamber z € L, so it suffices to show the
product is unchanged when we replace z by an adjacent chamber y € L.
If a € ® is the root containing z but not y, then y gives positive roots
&+ = {—a} Ud+ — {a}, and negative roots &~ = {a} U®~ — {—a}. We
let X} (or X' ,) be the group generated by the X, for b € ®* and b # a
(or b € @~ and b # —a). Then with an obvious notation U+ (¢) = X/ X_,
and U~'(c) = X' X,.

Notice that X, and X_, normalize both X and X’ ,, and moreover
by (10.15) X, X_sH(c) = X_,XsH(c). Therefore:

Ut(e)U™(e)H(c) = X;XaX_a X H(c)

= X, XL, XaX_aH(c)

XX X_aXaH(c)
= XiX_oX! ,XsH(c)
= U+ (c)U~"(c)H(c).

As explained above, this shows that U(c) = U*(c)U~(c)H(c).

We now show H(c) = N NU(c), so take n € N NU(c) and write
n = utu~h with an obvious notation. Then u~h fixes the chamber 2’ of £
opposite z, and u* sends it to a chamber opposite z; but n(z’) € £, hence
n(z’) = z’, and so n acts trivially on . This shows n € H, and completes
the proof of (i).

To prove (ii) let u € U,NU(c) where without loss of generality a € ®+.
By (i) u = utu~h with the notation above, and u~h fixes z’, so u(z’) =
u*(z’). Since Ut = (U, | a € ®*) acts simple-transitively on chambers 2’
opposite z (see Chapter 6 Exercise 16 and (6.15)) we have u = u*. Again
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using (6.15), after suitably ordering the roots of ®* (according to a gallery

determined by the longest word in W(®)), the map [[ U, — Ut is a
a€dt

bijection. By (V2) this holds equally for [] X, — U*(c), and therefore
aedt
u € X,, completing the proof. O
In the next lemma, which is needed to prove (BN2), a = (a, k) is any
affine root, and —at = (—a,¢) where £ is minimal satisfying k£ + ¢ > 0.
Thus a and —a*t have parallel walls with no wall between - see Figure
10.12.

—ot 077
< N\

Figure 10.12

(10.17) LEMMA. If m € M, ;, and L, denotes the group generated by
H,Uy and U_,, then Lo = (UamHU,)U(UgHU,), where B = —a™.

Proor: Let X = UymHUy and X2 = UgHU,. Since m € U, U_, U, and
Up C U_, we see that X; U X2 C L,.

Conversely let X = X; U X,. Since mU,m~! = U_, we have L, =
(H,Uq,m), and so it suffices to show that HX C X, U, X C X and
mX C X. The first is immediate because H normalizes U, and Ug, and
m normalizes H. As to the second, U, X; = X is clear, and U, X2 C X
follows from (10.15).

Finally we show mX C X. First notice that

mXo = mUgHUy C mU_qHUy C UomHU, = X;.
Moreover since m? € H we have

mX) = mUsmHU, = U_,HU,,



10. AFFINE BUILDINGS II 151

so it suffices to show that U_,HU, C X. To see this let u € U_, — Ug,
50 Y_q(u) = —k and there exist v,v’ € U, with vuv' € My C mH.
Therefore u € U,mHU,, and hence

U—o CUs UUamHU,.

Therefore U_oHU, C X2 U X; = X, completing the proof. O

We are now ready to prove the main theorem of this section.

(10.18) THEOREM. If G denotes the group generated by the U,, then
(B,N) is an affine Tits system for G.

ProoF: We verify axioms (BNO) - (BN3); recall that ¢ is a chamber of 4,
and B is generated by H and U(c).

(BNO) Certainly B and N are subgroups of G, and for any u € U,
with ¥4(u) = k, either ¢ € (a,k) in which case u € B, or ¢ € (—a,—k) in
which case m(u)um(u) € B and u € (B, N). Thus G = (B, N).

(BN1) From the action of N on A we know N/H = W%, moreover
H C BN N, so we need only show BN N C H. As mentioned earlier H
normalizes U(c), so B = U(c)H and since NN U(c) C H by (10.16)(i) we
have NNB C H.

(BN2) Let s be a reflection in some wall da containing a panel of c;
we must show BsBwB C BswB U BwB for any w € W2, Let ¢ € a, and
set ¥ = ®*T(¢) — {a}. If U’ denotes the group generated by the Us for
B € ¥, then from (10.16)(i) we have

B=U'HU,.
Moreover s stabilizes ¥, and hence normalizes U’, so this gives

sB C BsU,. *)
Recall that L, is a group containing s (or rather its inverse image in N),
and therefore L,wB = L,swB. Replacing w by sw if necessary we may
assume w~!(a) contains ¢, in which case w™'U,w C B. Now letting g
denote the translate of —a which is minimal with respect to containing c,

(10.17) gives

LowB =UyssHU,wBUUgHU,wB C BswBU BwB
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Using (*) this implies
BsBwB C BsU,wB C BL,wB C BswBU BwB

as required.

(BN3) With the notation above, sUs,s = U_4, and by (10.16)(ii)
U_o ¢ B. Therefore sBs # B. 0

If we let A denote the affine building determined by B and N, then
we obtain an apartment system .4 as follows. Treat chambers of A as left
cosets gB as in Chapter 5, and let ¥ be the apartment whose chambers
are all nB, for n € N. The images of ¥ under G are the apartments of A;
they correspond to the apartments of the spherical building for (U,)seca
(because both correspond to the conjugates of the set (Us)aes), and hence
(A, A)% is this spherical building.

Moreover there is a canonical isomorphism between ¥ and the simpli-
cial complex of A, given by nB — w(c) where w = nH € W>T. Let s be
the point of ¥ corresponding to ¢ € A. If we take the metric on ¥ induced
by A, and let ¢ be the valuation determined by ¥ and s, as in section 3,
then ¢ = ¢. Indeed if u € U, with ¥,(u) = k, then m(u) € N fixes a wall
of A at distance k from 9 (in the +a to —a direction), and therefore a wall
of ¥, similarly at distance k from s. This must be the boundary wall of
L NuX, and therefore p,(u) = k. We have therefore proved:

(10.19) CoROLLARY. Any set of root data with a discrete valuation arises
from an apartment system in an affine building. 0

5. The Classification.

This section deals mainly with the classification of affine buildings
(A, A) having rank > 4 (and a connected diagram). In this case (A, A)™®
has rank > 3, so we can apply the classification of spherical buildings in
Chapter 8.

The first step (10.20) is to show that when (A, A)* is Moufang (in
particular when its rank is at least 3), the problem reduces to classifying
root data with valuation. If (A,.A4)* has rank 2, then it is a generalised
m-gon which might not be Moufang, and a classification is not possible, as
we shall explain.

(10.20) THEOREM. The (A, A) for which (A, A)® is Moufang correspond
to equivalence classes of root data with valuation.

ProoF: By (10.19) every set of root data with valuation arises from a
suitable affine system (A, .A), uniquely determined by (10.5). Conversely
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we saw in section 3 how a given (A, A) gives rise to a set of root data
with valuation when (A, A)*® is Moufang. That involved choosing a point
s in an apartment A and assigning a Euclidean metric to A. The choice
of apartment is irrelevant because if A’ is any other apartment there is an
automorphism of (A, A) inducing an isometry from A to A’; and the choice
of metric and point s gives an equivalent evaluation, as explained at the
end of section 3. 8]

We now show that a valution ¥ = (3,) is determined up to equipol-
lence by a single ;.

(10.21) THEOREM. If ¢ and ¢ are valuations of the same root groups,
then ¢, = Y4 for some a € ® if and only if ¢ = ¢ + v for some v € V
perpendicular to 1,.

PRroOOF: Given any root b € ®, let ¢ = ry(a) where 7 is the reflection
interchanging b and —b, and let m = m(z) for some z € Uy — {1}. Given
y € Uc — {1}, recall that (m - ¢).(y) = va(m~'ym) by definition, and
therefore by (10.12) we have

Ya(m™ ym) = (¥ — 2¢(z)1s)c(v)
= Ye(y) — 2¢p(x) 15 - 1¢
= Yc(y) + 2¢s(z)1a - 1y

We rewrite this as:
2(1a - L) ¥(z) = Il)a(m_lym) — ¥e(y)-

If 1, -1 # 0, this shows that 1, determines ¥, up to an additive constant.
Moreover, if ¥, and ¥, are known, so is ¥., and therefore 3 is uniquely
determined by its components at a set of fundamental roots a, ... ,a; we
choose these so that a, = a.

Let @,; = %a, + k; where k; € R is a constant (and of course k; = 0),
and let v € V be the unique vector such that v-1,, = k;. Then the valuation
¥’ = ¥ + v has the property that ¢, = %4, + ki, and hence ¢’ = ¢. Thus
pa = Yq implies ¢ = ¥+ v where v-1, = 0, and the converse is a triviality.

0

Single Bond Diagrams of Rank > 4. The single bond cases of rank
> 4are X, = An (n > 3),Dn(n > 4) or E(n = 6,7 or 8), and the
classification of spherical buildings (Chapter 8) shows that (A, .A)*® must
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be the X,(K) building for some field K (necessarily commutative except
in the A, case). Furthermore if 7 is any panel in a wall m of (A, .A)%,
then St(7) and St(m) both correspond to the projective line K U {o0}.
Now let ® denote the roots in some given apartment of (A,.A4)*, and
let a € &, and m = da. Without loss of generality we identify St(m)
with K U {oo} so that a corresponds to oo, and —a to 0 € K. The root
group U, is the group of affine translations, and we label its elements
by subscripts belonging to K, so that uy = id., and uz(—a) € St(m)
corresponds to the point £ € K of the affine line. By Example 3 in section
2, wm(a, —a; ui(—a), uz(—a)) = v(z) for some discrete valuation v of K.

+— u(x) —

a

4

» —a

u&a) U Ca)
Figure 10.13

It is clear from Figure 10.13 that if p,(u;) =t € R, then ¢, (uz) = t+v(z);
in particular after identifying K with U,, v determines ¢, up to an additive
constant. Recall that after multiplying v by a suitable positive real number,
we have v(K*) = Z, in which case v is called normalized.

(10.22) THEOREM. Thereisa buectlve correspondence between thick affine
systems (A, A) of type X,, = A,,, D,,,E'e, E'7 or Es, and pairs (K,v) where
K is a field (necessarily commutative except for A,,) with a discrete, nor-
malized valuation v.

PrROOF: As mentioned above, (A, A)*® is the X,(K) building, and by
(10.20), (A,.A) corresponds to an equivalence class of X,(K) root data.
By the discussion above, this gives a discrete, normalized valuation v of
K, and although v only determines ¢, up to an additive constant, (10.21)
shows that it determines the root data up to equipollence. It therefore only
remains to show that any v gives a set of root data with valuation.

To see this, let G be the group generated by the U,, and take a non-
trivial representation of G over the field K. Each U, is then represented as
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a group of unipotent matrices with a single non-zero entry off the diagonal.
If w € U, let ey, denote this non-zero element, and set

valu) = v(ey).

It remains to check that the (p,) satisfy (VO0) - (V3) of section 3. In fact
(V0) and (V1) are immediate, and to check (V2) and (V3) we first note that
if a # b then a and b span either an A, or an A; x A, subsystem, because
each rank 2 residue is of this type. Thus it suffices to check (V2) and (V3)
in an A; x A; or A, system, and this is completely straightforward; we
leave it to the reader, and refer to Example 4 of section 3. O

Double Bond Diagrams of Rank > 4. These cases are f4, E,, and 5,,
for n > 3. In all such cases (A, A)*® has two types of walls m, and for
at least one type St(m) is a projective line over a field K (not necessarily
commutative). Indeed the classification of Chapter 8 shows that a C,
residue of (A,.A)* must be a Moufang quadrangle of classical type; that
is to say, it arises from those 1-spaces and 2-spaces in a vector space over
K, which are totally singular or isotropic under a suitable form of Witt
index 2. This implies there are panels 7 for which St(7) corresponds to
the 1-spaces in a 2-space over K, hence our assertion above about St(m).
The discussion in the single bond case then gives:

(10.13) ProrosITION. Each system (A, A) of type f‘4, B, or C~',,, for
n > 3, gives rise to a field K having a discrete valuation v. 0

Remark. In general K is not uniquely determined, because the quadran-
gle (Cy residue) and its dual may both arise from a form of Witt index
2 as above, but over different fields (see Chapter 8 section 5). However if
(A, A) has type By or Cn, then (A, A)*™ has type C,, and there is a canon-
ical choice for K': if the A, residues are Desarguesian (which is always the
case for n > 4), let K be the associated field, and in the C3 Cayley plane
case there is only one choice for K anyway (corresponding to the end node
of the double bond - see Chapter 8 section 5).

We come now to the following question. Given a field K with a discrete
valuation v, and given a C,, or Fy building associated to K as above, does
there exist an appropriate affine system (A,.A)? In other words can one
find a valuation (p,) of the root data inducing the valuation v on K7 In
general the answer is no, because a C residue (or indeed the whole building,
except in the Fy or C3 Cayley plane cases) arises from a (o, €)-hermitian
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form and v must certainly be invariant under o. However, assuming this
to be the case, the answer is yes when K is complete with respect to v (at
least in the C, or F4 case considered here) - see Tits [1986a] p.173.

In general let G(K') be the group generated by the root groups of the
C, or F4 building, and let G(I?) be obtained by completing the field with
respect to v (considering G(K) as a group of matrices over K, satisfying
certain polynomial conditions, G(I:’) is obtained under the same conditions
but by extending the field from K to K) Then assuming v is invariant
under o as above, one has:

A valuation (p,) of the root data inducing v on K ezists if and only

if G(K) and G(K) have the same rank.

In fact if Sk and Sg are the (spherical) buildings for G(K) and G(I?),
then by the remarks in the preceding paragraph, S}? = A for some affine
building A. If G(KX) and G([?) have the same.rank then Sk is a sub-
building of Sg of the same type and is therefore the union of apartments
in some subset A of all apartments for Sz; thus Sk = (A, A)*. Conversely
if Sk = (A, A), then G(K) is generated by the root groups of (A,.A),
and so G(I:) is generated by the root groups of A®; thus G(K) and G( K)
have the same rank.

If G(K) is a classical group arising from a (o, €)-hermitian form, then
to say that G(K) has the same rank as G(K) means that the Witt index
of this form does not increase when we extend the scalars from K to K. In
the non-classical case we have either a C; building with Cayley planes, or
an Fjy building, and in the Fy4 case the rank can only increase if the building
involves Cayley planes or quaternion planes (see the diagrams in Chapter 8
section 5). To say that the rank remains the same amounts to saying that
the appropriate Cayley or quaternion division algebra does not split when
we pass from K to K (if it does, then S}? has type E7, Eg or F7 respectively
in. the three cases). We conclude this discussion with a theorem.

(10.24) THEOREM. Suppose we have a C,, or Fy building S over a field K
having a discrete valuation v, invariant under o, as explained earlier. Then
v determines an affine system (A, A) with (A, A)*® = S if and only if one
of the following holds:
(i) S is “classical”, arising from a (o, ¢)-hermitian form whose Witt index
remains the same over K .
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(ii) S is of type Cs having Cayley planes, or of type F4 having Cayley
planes or quaternion planes, and the relevant Cayley or quaternion
division algebra over K does not split when K is extended to K. 0O

Example. Let K = Q (the rational numbers). If S involves Cayley planes,
then no discrete valuation v gives an affine system (A, .A), because there
is no Cayley division algebra over the p-adics Q,. The same is true if S
arises from a quadratic form of Witt index n in at least 2n + 5 variables,
because there is no such form over Q, (any quadratic form in 5 variables
over Q, has non-trivial singular vectors).

Finally we state a corollary of the results above, made possible by the
fact that if K is complete and has a finite residue field k£ then K is either a
p-adic field (finite algebraic extension of Q,) or a power series field k((t));
in each such case the discrete valuation is unique up to multiplication by
a positive real number.

(10.25) CorROLLARY. The thick locally finite affine buildings of rankn > 4
(with a connected diagram) are the affine buildings of simple algebraic
groups of rank (n — 1) over a p-adic field or a power series field. 0

The Rank 3 Case. If (A, A) has rank 3 then (A, A)*™ is a generalized
m-gon, for m = 3,4 or 6. A classification is impossible because of a general
construction (Ronan [1986]) in which one starts with a single chamber and
builds outwards: for each rank 2 residue there is complete freedom of choice
amongst all rank 2 buildings having the appropriate type and parameters
(number of chambers per panel). The building at infinity, however, can not
be chosen arbitrarily; for example it cannot be finite! In the 132 case, Van
Maldeghem [1987] and [1988] shows that the projective plane at infinity
is coordinatized by a ternary ring having a discrete valuation (in a sense
made precise in those papers), and any such plane arises as a building at
infinity of an A, building.

6. An Application.

In this section we apply the classification of affine buildings, and the
results of Chapter 4, to obtain a result in finite group theory, following
recent work of Kantor, Liebler and Tits [1987]. To simplify the exposition
we deal with only one case of their work, namely 134, though a similar
argument works for other affine diagrams of rank at least 4.

Consider a finite group G acting transitively on a chamber system C
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of type l~)4: T'
hs o

° 2
03

We assume the D, residues are buildings (though in view of transitivity
one can assume less, such as A; residues being Desarguesian planes); in
particular these residues are D4(k) buildings where k = F is a finite field
of characteristic p.

(10.26) THEOREM. Except for the ¢ = 2 case, no such group G can exist.

Remark. When ¢ = 2 a family of examples was constructed by Kantor
[1985]; see also Tits [1986b] (3.2).

ProoF: By Theorem 4.9 the universal cover Cisa building of type 54,
and hence by the classification of section 5 it is the D4(K,v) building,
where K is a commutative field with a discrete valuation v and residue
field k. Without loss of generality we may take K to be complete in which
case it is either a finite extension of Q, (when char K = 0), or the power
series field k((t)) (when char K = p). ‘

Now consider the group G. By Chapter 4 Exercise 8, G lifts to a
group G acting transitively on C; moreover the stabilizer in G of a vertex
of C is isomorphic to the stabilizer in G of its image in C. In particular
vertex stabilizers in G are finite, and in fact this is the starting point for
the Kantor-Liebler-Tits paper [loc. cit.].

The argument is now roughly as follows (see below for more details): if
z is a vertex of type ¢ = 1,2,3 or 4 then the finite simple orthogonal group
0% (q) acts on St(z), and acquires a non-trivial projective representation in
the 8-dimensional K-vector space V, for D4(K). If char K = 0 this forces
¢ = 2 (by a result in representation theory which we shall simply “pull
out of a hat”). On the other hand if char X' = p then this is the natural
representation, but we can play off the actions of four separate O (¢) (for
vertices of types 1, 2, 3 and 4) to show their representations cannot coexist
m V.

To fill in the details of this argument, a theorem of Seitz [1973] shows
that, since the stabilizer G, is transitive on St(z), it contains a subgroup
inducing the simple orthogonal group OF (g) on St(z); let I'; be the small-
est such subgroup. Since the full automorphism group of C contains an
orthogonal group Oz(K) as a normal subgroup with a solvable quotient,
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the simplicity of OF (¢) implies that T; lies in Og(K). Thus I'; has a non-
trivial projective representation in 8-dimensions over K. We now consider
separately the cases where the characteristic of K is 0 or p.

Case 1. char K = 0. In this case the smallest dimension for a non-
trivial projective representation of OF (g) is known (see Landazuri-Seitz
[1974]), and it is greater than 8 in all cases except ¢ = 2 for which an 8-
dimensional representation exists. Furthermore a theorem of Feit and Tits
[1978] then implies that T; itself can have no characteristic zero, projective
representation in dimension < 8 if ¢ # 2. Thus if char K = 0, then ¢ = 2.
We shall now complete the proof by showing char K = p is impossible.

Case 2. char K = p. By Exercise 9, regardless of the characteristic, the
stabilizer of the vertex z in Og(K') is Og(O) where O is the valuation ring of
K. The elements of Os(O) congruent to the identity modulo the maximal
ideal of O form a normal subgroup which is a pro-p-group, and its quotient
is an 8-dimensional orthogonal group over k. Thus the finite subgroup
I'; has a normal p-subgroup U; whose quotient G; is an 8-dimensional
orthogonal group with G;/Z(G;) = OF (¢q). We shall argue that U; = 1.

Since we are in the characteristic p case, U; is a unipotent subgroup
(i.e. can be put in upper triangular form with diagonal entries all 1), and
hence acts trivially on a totally singular 1-space V;. However I'; cannot fix
V1 otherwise it would fix a sector-face having vertex z and direction V) in
the building at infinity, contradicting the fact that it acts transitively on
St(z). Therefore under the action of I';, V; generates a non-trivial module
Vo for the orthogonal group G;. No such module exists in dimension < 8;
so Vo = V, and since U; acts trivially on Vj, we have U; =1.

We can now complete the argument by comparing the actions of
I'i,..., T4 0on V, to obtain a contradiction. We have established that I'; 1s
an orthogonal group; and V is a natural module for T';, when i = 1,2,3 or
4. Let B be the stabilizer in G of a chamber ¢, and let P; be the stabilizer
of the j-panel of ¢ (e.g. T'y = (Po, P2, P3, P4)). Let U be the normal Sylow-
p-subgroup of Bj; it fixes a l-space X C V, and under the action of P;
generates either a 1-space or a 2-space. In fact considering V' as a natural
I';-module, X is a totally singular 1-space, and its stabilizer is, without
loss of generality, (Po, Pa, Ps); also it lies in a t.s. 2-space whose stabilizer
is (P2, P3, Ps). Thus under P4, X generates a 2-space, and under Py, P2, P3
a l-space.

A similar situation holds for I's,I'3 and I'4, so each node j of the
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diagram must be assigned a 1 or a 2, such that in each D4 subdiagram
exactly one end node has a 2, and the others have a 1.

This is plainly impossible. Therefore these representations cannot coexist
in V, and the characteristic p case cannot occur. O

Remark. In the preceding theorem we have dealt with the generic case.
When ¢ = 2, Kantor, Liebler and Tits are able to show that A has to be
over Q2 (rather than an extension thereof) and that there is essentially
only one possibility for the group G acting on A.

Notes. Sections 1,2, 3 and 5 of this chapter are adapted from Tits [1986a],
where the non-discrete case is also dealt with (see Appendix 3), and Section
4 is extracted from Chapter 6 of Bruhat-Tits [1972]. For the classification
of locally finite affine buildings (10.25), see Tits [1979].

Exercises to Chapter 10

In all these exercises K is a field with a discrete valuation v, and &
denotes its residue field.

1. Let T be the tree A;(K,v) of Example 2. Show that A(K) (Example
1) is the set of all possible apartments if and only if K is complete with
respect to v. [HINT: Let z be any end of T, and let z,y;1,y2,... be
ends of apartments in A(K) such that [z,y;]N[z,2] G [z, %i41] N [z, 2].
With a suitable choice of basis, an element of SLy(K) sending [z, y;]
to [z,y;] has the form ((1) “l) - consider the sequence ay,as,...].

2. Consider the building A, (X, v) and show A(K) is the set of all possible
apartments if and only if K is complete with respect to v. [HINT: Use
Exercise 1 and the trees T'(7) in section 2].

3. If K is afield, identify the projective line KU{oo} with the 1-spacesin a

2-space, by setting z « (¥) and 0o « (). The affine transformation

1

z +— az + b can then be represented by the matrix (g i’) If the

projective valuation w of section 1 is invariant under the affine group



10.

10. AFFINE BUILDINGS II 161

(Example 3), show it is invariant under the projective group. [HINT:
It suffices to consider invariance under (-01 é), which for a,b,¢c,d € K*
means w(a,b;c,d) = w(—a~!,—b"1;—c"1,—d71)].

. Let T be a (discrete) tree, and v some fixed vertex. For any vertex

z # v, let n = n(v,z) denote the number of edges from v to z, and
define d(v,z) = 1 — 2=". This distance d determines a metric on T,
such that the projective valuation on T is not discrete.

. If a sector-face X contains a sector-face X, of the same dimension,

show that X, is a translate of X (in any apartment containing X), and
therefore parallel to X. Conclude that for sector-panels the property
of being asymptotic is an equivalence relation, finer than that of being
parallel.

. Let Ay, Az, A3 be apartments of an affine building, such that A; N A;

is a half-apartment, for each i,j € {1,2,3}. Show that A; NA;N Az is
non-empty (though it might not contain any chambers). [HINT: First
consider trees, then use T(m)].

. If ¥ is a valuation of root groups (satisfying (V0) - (V3)), show that

AY + v is too.

. A valuation of root groups is called special if 0 € T, for each a € &

[recall Tq = @a(Ug — {1})]. Show that the special valuations obtained
from an affine building, using a point s € A as in section 3, are precisely
those for which s is a special vertex.

. Let A be the affine building with a single bond diagram X, as in

section 5, obtained using a field K with discrete valuation v, and let

G be generated by the root groups. Regarding G as a matrix group,

as in section 5, show that the subgroup stabilizing a special vertex is

obtained by taking all those matrices with entries in the valuation ring

O (given a suitable choice of basis, of course).

Let X be an A; building (a tree). For a vertex z and chamber ¢ on

z, let Uz, be the set of ends e = S where S has vertex z and base

chamber c¢; call this a basic open set.

(i) Show that the intersection of two basic open sets is a union of
basic open sets.

(i1) The U; . are a basis for a Hausdorff topology on X°°; if each
vertex has valency < s for some finite number s, show that this
topology makes X*° compact.

(iii) Show that (X,.A)* is not compact if A is not complete (assuming
X is an infinite set).



APPENDIX 1
Moufang Polygons

This appendix has three sections. The first deals with the function
u — m(u) introduced in Chapter 6, and proves the first statement of
Lemma (7.3). The second section deals with Moufang planes, and derives
the formula for the natural blueprint, used in Chapter 8. The third section
proves the theorem (6.9) due to J. Tits and R. Weiss, that for a Moufang
(generalised) d-gon, d = 3, 4, 6 or 8.

1. The m-function.

We recall from Chapter 6 that for any Moufang polygon (or indeed
any Moufang building, given a root « in the apartment £, and given any
u € Uy — {1} there are unique elements v, v’ € U_, such that

m(u) = vuv' € N.

Abusing notation slightly, we let m denote the function sending u € U, —
{1} to m(u) € N, and let v, v’ denote the functions interchanging U, with
U_q, where v(u) = v and v'(u) = v’ above.

If ¢, ¢ denote respectively chambers of a,—a which are adjacent (i.c.
share a pancl of da), then v is uniquely determined by sending u(c’) to c,
and v’ by sending ¢ to u™'(c) - see Figure 1; remember that group action
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N
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Figure 1

is on the left.

(A.1) LEMMA. (i) m(u) = m(v) = m(v'), where v = v(u), v = v'(u),
(i) v(v'(w) = ' (o(w)) = u.

PROOF: Since vu sends ¢’ to ¢ we have
(vu)U_qo(vu)™! = Uy

and hence

z = vuv'(vu)~! € Uy,

Thus zvu = vuv’ € N, and therefore m(v) = zvu = m(u), and v'(v(u)) =
u.
Similarly:
y = (uw') " lv(w’) € U,.

Therefore uv'y = vuv’ € N, hence m(v') = m(u), and v(v'(u)) = u. o

Notation. To avoid cumbersome notation we shall write 9z to mean gzg~!,

and (occasionally) z9 to mean g~ !lzg.

(A.2) LEMMA. m(u~!) = m(u)~! and m("u) = "m(u) forn € N.

PROOF: Both these equations are immediate consequences of the fact that
U_ouU_o NN is a single element, namely m(u); for instance both m(u~")
and m(u)~! liein U_qu™'U_o N N. 0

Now consider a generalised d-gon (d for diameter). Let U,, r(mod 2d),
be the root groups in a natural cyclic order for the roots in a fixed apart-
ment; in particular U_, = U,;4. As before, the commutator [z,y] =
a:y:c'ly'l.
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Given e; € Uy — {1} and eq € Ug — {1} we know by (6.12) that we
may write
leT! eq) = e2...€a-1

where e, € U,. Now define
erya =v'(er) € Uy
so the e, are defined for all . We also set
n, = m(e,).
(A.3) LEMMA. e,41 = n] legqr—1ny.

PROOF: Set v = v(e1) € Ugt1.

Then
ea+1ny v = eqq1v'(e1) " ler?
=v'(e;)v'(e;) " er! (definition of eg41)
=ej'. (*)
Therefore
e2...eq_1€q = [eT}, eqdleq (by definition)
= lea+1n7 'v, edleq, by (*)
= [eas1n] !, edlea, since [Ug41,Uq4) = 1

-1 -1
= ed+1nl ednled+1
= ed_,.lze;il, where ¢ = nl'lednl €U,

=z[z7! ea1).

Since z € Us, [z7!, e441] € Us,q) by (6.12). Therefore by the uniqueness of
the decomposition of the product U, ... Uy, we have

eg =z = nl"ednl
which is the » = 1 case of the lemma. Moreover this shows that
-1
e3...eq =[5, ed41)-

Therefore we can proceed as above with all indices increased by 1, obtaining
e3 = nyleqpinz, and [e3),e442] = e4...e441, and proceed inductively,
completing the proof. o
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(A.4) LEMMA. (i) np4q = n,.
(i) nenpy1 = ne_gn,.

ProoF: (i) Using (A.1)(i) for the middle equality, one has
nr4a = m(V'(er)) = m(e,) = n,.

(ii) Using (A.2) and (A.3) for the first equality, and (i) for the second,
one has

) | S |
Nrpl =Ny Ndpr—1Ny = Ny " Nyp_ 1Ny

]

We can now prove (7.3), namely that n;nj... = njn;...(d = m;;
factors). Here n; = n;, and n; = n,.

(A.5) PROPOSITION. njng... = ngn; ... where each side has m factors

alternating between n, and ny.

ProoF: By (A.4)(i) ng = n,. Therefore the left hand side equals nyn,n; ...
= n1nz...n4 by repeated use of (A.4)(ii). Similarly the right hand side
equals nynyn, ... = nny...ny. 0

2. The Natural Labelling for a Moufang Plane.
Let ay, a2, aa be the positive roots, and U;, Ujs, U, the corresponding
root groups in a natural cyclic order in the apartment X - see Figure 2.

///\\\ P
«, S Pad
o ~ .

NL/ I )

« 1
%
Figure 2

These roots groups are abelian (by (6.12)), and conjugate to one an-
other (e.g., n; conjugates Us to U;2). We shall identify them with a com-
mon abelian group A written additively, and use subscripts to indicate
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membership of Uy, U;2 or Us. Moreover A will be given a multiplicative
structure, making it an alternative division ring. This will be done via the
identification of A with Ui, and in such a way that specified non-identity
elements e; € U; and e, € Us become the unity of A.

Given e; and e; we write n; = m(e;), n2 = m(ez), and set

€12 = [61,62]-

(A.6) LEMMA. e)5 = nyeT'n;! = njeonyl.

PrROOF: We apply (A.3) for m = 3, with eJ! in place of e;, and hence
n7!in place of n; by (A.2) (theey,... ,es of (A.3) become ej,e€;2,€3,...).
Setting 7 = 0 in (A.3) gives e7! = n3le;ony, and setting r = 1 in (A.3)
gives e = njeany . O

In view of (A.6) we identify U; and U, with Uj2 by conjugation, as
follows: .

_ -1, -1 _ -1 *
Tiz = Npx] Ny = N1Tan] *)

Addition on A is multiplication in a root group; since root groups
are abelian this is well-defined, and commutative. Multiplication in A is
defined via identification with U, as:

Try = [21,).

In particular exe = e. Before describing the natural blueprint we need
the following lemma.

(A.7) LEMMA. (i) [z1,¥5Y) = [z1,92) 7! = [z71, v2)-
(ii) noz1on3! = 21 and nyzyony! = 25

(iii) n?zan7? = z3! and n3z n;? = 271
ProoF: (i) This is a straightforward exercise; it suffices to check the image
of the chamber e in Figure 2.

(i1) By (i) if we replace all elements of U; and U, by their inverses (so,
by A.2, n; becomes ny!, and ny becomes n;!), the elements of U2 remain
unchanged ([z7!,y5!] = [z1,y2]). The result follows from (*).

(ii1) Immediate from (ii). o

Now suppose the sequences (aj,b2,¢1) and (z2,y1, z2) are equivalent
in the natural blueprint. In other words, following Chapter 7,

aynybanacing = zonoyny2on,.
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Using (*) and (A.7) we can write the left hand side as
arbianiciynong = arbiaconinang
and the right hand side as
xgyl'zlngzlnlng = 1!23/1_2121112111112.
Using (A.5) and the fact that Uy, commutes with U; and U, , we have
a1b12c2 = Toysy' 21 = Yip T221 = Uiy [%2, 21)2122 = 2197y (22, 21)2o.
By uniqueness of the factorization U = U,U;,U, we have
a = 21, €3 = &3, b1y = Yy [22, 21] = yiy [21, 22] 7.
Therefore as elements of A,
a=z2,¢c=z, andy+b=—2z%z = —a=xc.
Interchanging the roles of U; and Ua gives a different multiplication
z+'y = [z2,y; ] for which e¥’ e = e. By (A.7)(i) z#'y = [y1,z2] = y*z. In
Chapter 8 we write (zy); for = * y, and (zy); for z *' y; with this notation

the equivalence of sequences of types 121 and 212 in the natural blueprint
may be written:

sequence type
Ty z 121
2y z 212

where y + 3 = (22); = (z2)2.

Exercise. In SL3(k) identify k with the root groups U;, U;2 and Ui as

follows:
1 = 0 1 0 =z 1 0 0
) = 010 Iy = 010 Ty = 01 =z .
0 0 1 0 0 1 0 01

Thus

1 10 0 10
e1;=|0 1 0], ny=11-1 0 0],etc.
0 01 0 01
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Show that
ac+b —a 1
aynybangcing = c -1 0
1 0 0
and
-y -z 1
TanaYini2ny = T -1 0
1 0 0

Remark. By (6.12) [z, Us] = Ujs for £ € U, — {1}, hence every non-zero
element of A has a multiplicative inverse. Moreover for z,y € U; and
z € Uy one has

1 1

(z,2].[y, 2] = ylz, 2]y~ 127! = yzzz~ly~ 27t = [yz, 2],

so A satisfies the distributive law, and is therefore a division ring. Moreover
it can be shown that A satisfies the alternative laws: z?y = z(zy), and
zy? = (zy)y. By the Bruck-Kleinfeld theorem [1951] an alternative division
ring is either a field (not necessarily commutative) or a Cayley-Dickson

algebra. Thus a Moufang plane is either Desarguesian or is a Cayley plane.

3. The Non-existence Theorem.

The purpose of this section is to prove that there are no Moufang
(generalized) d-gons except for d = 3,4,6 or 8.

This theorem was originally proved by Tits, and the proof appeared
in two parts [1976] and [1979]. While part II was in press, a much simpler
proof was given by Weiss, using ideas from part I of Tits [1976]. Tits then
gave a different, very simple proof using some of Weiss’s ideas, and this is
what appeared in part II, simultaneously with the paper of Weiss [1979].

The proof given here is based on part II of Tits’ paper, with extracts
from part I. The main idea is to show first that 1 # Z(U) C U; where
i= d—%—l for d odd, and i = ‘5’ —1lor % for d even. One then uses elements
u € Z(U) to obtain inequalities showing that: if d is odd, then d < 3; if
d is 2(mod 4), then d < 6; and if d is O(mod 4), then d < 12. The case
d = 12 requires further work before a contradiction is reached.

Before going further, we recall that U = U, ...Uy with uniqueness of
decomposition. In particular if 1 < i, j < d, then Upy jyNUp g = Uy j
if i < j, and 1 otherwise. All indices are written mod 2d, and we shall
frequently have occasion to shift our indices, so that, for example, a general
relationship between U; and Ui can be proved by considering U;4; and
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Uik, or U_j and U_g. Notice that if u € U, then m(u), acting by
conjugation, switches U; with Usr4a—j. In particular if d is odd, all root
groups Uy, ..., Usq are conjugate, and if d is even, there are two conjugacy
classes: those with even indices, and those with odd indices. To avoid
cumbersome notation we shall set d’ = % for d even, and -‘%l- for d odd.

(A.8) LEMMA. If for some 1 < k < d, u € U,aq;, y € Upy,q) and Yu €
Upt,k-1), then u =1.

PROOF: Set y = z7!z where z € Uni,k—-1) and z € Ux,q)- Then *u € U, q),
but on the other hand *u = *(Yu) € Uy -y}, proving that *u = 1. O

(A.9) LEMMA. Let u € U;, v € U; where d' +i < j < d + i, and let
z €Upj_y) If [vz,u] =1, thenu=1orv=1.

Proor: Without loss of generality we take j = d, to simplify notation.
Suppose v # 1, and let m = m(v) = wvw’, where w,w’ € U,.

Set y = "(w'"'z) € "Vpo,a-1) = Upn,a)-

-1

Since ym = mw'~ 'z = wvz, we have

Y(Mu) = “"Tu= Yu=|wulu€ Uy,

Moreover ™u € Ug—; C Ujj41,4), because d'+i < j = d implies ¢ < %,
and hence i + 1 < d — i. Therefore by the previous lemma ™u = 1, and so
u=1. O

(A.10) CoROLLARY. Let i < j < i+ d, and suppose u € U; commutes
with y € Uy j). Then j <i+d'. 8]

(A.11) CorOLLARY. Let u € Uy — {1}, v € Ug — {1}. Then, using C to
mean centralizer,

Cu {u,v) { Ugr 41 if d is odd
u, v = . .
v UaUgyr i dis even.
ProoF: By the previous Corollary, Cy(u) C Upy,a'41), and Cy(v) C Upg-a,4)-
For dodd,d—d' = d' 41, and for d even d — d' = d’, so the result follows.
0

(A.12) LEMMaA. Z(U) # 1.

PROOF: We first show Z(Ula,p)) # 1 for some interval [a, b]. If U is abelian,
there is nothing to prove, so assume non-abelian and let j < k£ with & — 3
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minimal subject to [U;, U] # 1 (so k > j+2). By this minimality assump-
tion U; and Uy centralize Upjy1,k—1), hence 1 # [Uj,Ux] C Z(Upj41,k-1)) as
required.

Now by induction it suffices to show that if 1 < s < t < d with
Z(Us,) # 1, then Z(Upy,141)) # 1. To prove this write z € U as z;...z4
where z; € U;, and define A(z) = least i such that z; # 1, and set A(1) = oo.
Now let X = {z € Z(U,,4j) | = # 1, A(z) maximal}; we shall show that
X C Z(Up,041))- To prove this, notice first that Uy, normalizes U, 4,
hence normalizes Z(U, q}). Thus for £ € X, [z,Uy41] C Z(Uy, ). However
for u € Uiy1, M[z,u]) > A(z), and therefore [z,u] = 1, proving that
z € Z(Uls,141)), as required. 0

(A.13) THEOREM. For d odd, 1 # Z(U) C Ug 41, where d' = 5. For d
even, 1 # Z(U) C Uy or Ugr 41, where d' = %.

PRrROOF: By the previous lemma Z(U) # 1, and for d odd the result is
immediate from (A.11). To deal with the case of d even, suppose the result
is false. Then by (A.11) we can find

z=uv € U,U,; ﬂZ(U[l_d,,d,]) where l Zu €U, 1#£vel;

and
' e UgUgp1 N Z(U), z' ¢ Ua.
Set
y=[z,2'] = [u,2'] € Up,ay-

The fact that the group Up 4-1) centralizes z’, and is normalized by
U,, implies, by an elementary argument, that it centralizes y = [u, '], and
therefore also centralizes [U,,y] and [U,, [U,,y]] C Upy,ar—2). However by
(A.10) the only subgroup of U 4:_9) centralized by Ua_; is the identity.
Therefore [U,, [U,, y]] = 1.

Thus both U, and Uy 4-1) centralize [U,,y], and hence Up, 4—1) cen-
tralizes [U,,y] C Upy,ar—1). However Z(Upo 4-1)) C Ugr—1Uar, and we have
assumed by way of contradiction that Z(Upa-1)) ¢ Ua—1. Therefore
[Uo,y] = 1.

This, together with the fact (above) that Uy 4_y) centralizes y, shows
that

Y € Z(Upo,a-1)) C Uar—1Ug.

Interchanging the roles of z and z’ in the argument above gives

y~ ! =[z',z] € U,Us.
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Consequently d' = 2, and d = 4. In this case y is central in U, 3}, and
y = y1y2 with y; € U;. Since y and y» centralize U; and Us, so does y;
but y, € U, centralizes U, and Us, so y1 € Z(U,,3)). This contradicts our
original assumption, and completes the proof. O

The following lemma will be crucial in obtaining bounds on d.

(A.14) LEMMA. Let u € U; — {1}, and suppose
[u,Ui—p] =1 = [u,Usyp)

where 0 < p < %, and p is even, or p and d are both odd. Then 3p < d.

Proor: Without loss of generality take i = 0. Write m = m(u) = vuv’' =
u'vu where v,v' € Ug and v’ € U,. Let z € Up, so Yz = Yz = ('":c)“'.
Now ™z € Us_p, so ¥z = (Mz)* = [v/,™z])(™z)"! € Ul1,a-p)- Therefore
[z,v] € Ujy,a-p), but on the other hand [U,,v] C Upp41,4-1), S0 we have

(Up,v] C Uppsr,a-p) (1)
Similarly:
(U-p,¥] C Ul—dip,—p-1) @)

Now let M; be the set of elements of N inducing the reflection o;
Q2 4+4—j on our given apartment (e.g. for z € Ug, m(z) € My). For p even,
let g € My/3, 50 9U; = Upyd-j. For p and d odd, let g € M(44p)2M,, sO
YUj = Uptasj- In both cases v € U,. If p is even apply g to (1), and il p
is odd apply g to (2) to obtain:

[Ua, ?v] C Upzp,a-1) 3)
Combining (1) and (3) gives:
(v, v] € Upp+1,4-p) N Upzp,a-13-

Moreover [fv,v] # 1 by (A.10) because v € Up, v € Uy, and d — p > d/2.
Therefore 2p < d — p. O

Remark. The case where p is even did not use (2), and therefore only the
condition [u, Ujyp] = 1 was needed.
We are now in a position to prove the main theorem of this section.
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(A.15) THEOREM. For a Moufang d-gon, d = 3,4,6 or 8.

PRrROOF: By (A.13) there exists u € Z(U) C U; with u # 1.
(i) If d is odd, then i = 2¥L, and [u,Uisp) = 1 for p = 451, Therefore by

(A.14) 3p < d. Thus 3d — 3 < 2d, so d < 3 (and d = 3 in this case).

(ii) If d is even, then i = % or g-+ 1, so [u,Uszp) = 1 for p < % -1
If d = 2(mod 4), then p = § — 1 is even, and hence by (A.14)
3($-1) < d. Thus 3(d—2) < 2d, so d < 6 (and d = 6 in this case).
If d = 0(mod 4), then p = § — 2 is even, and hence by (A.14)
3(4-2) <d Thus3(d—4) < 2d,s0d <12 (and d = 4,8 or 12 in
this case).
It remains to deal with the d = 12 case.

(iii) d = 12 is impossible.
Without loss of generality we may assume Z(U) C Us. Since for each

2k, Us; is conjugate to Ug by some element of N, the set

Ude = Z(Upzk—s2x+6)) = {1} C Uae

is non-empty. With the notation above, u € Us. We set m = m(u) =
vuv’ = u'vu, where v,v' € Ujs and v’ € Ug . Given w € Uy, — {1}, it
suffices to show that v and w commute, because this contradicts (A.10).
The proof that [w,v] = 1 will be achieved in two steps, but at one point
in the second step we shall need to know that v € Ulg; this fact will be
proved in Step 3.

Notice first that [w,v] € Upa,19-

Step 1. [w,v] € U[l2,13]~
Since u commutes with w, we have

V= YUy = (mw)u'.

Therefore
‘w= [y, "w]. "w € Uys,13) since "w € Uy3.

Hence
[w, v] € Upz,13), and so [w,v] € Upa,13)-

Step 2. [w,v) € Upga17)-
Let n = twt’ € My, where t,t’ € Ua3. By Step 3, v € U,'S and hence
v commutes with ¢/, so we have

wy, — ,wt'v = (nv)t.
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Therefore
Yv =[t," v]. "v € Upy6,22) since "v € Uss.
Hence
[w,v] € Upg,19)-

Steps 1 and 2 show [w,v] = 1 contradicting (A.10) as required. It
remains to prove:

Step 3. v € U
To prove this take z € U,; it suffices to show that v is conjugate to z
by an element of N.

Step 3A. [u,z] = ™z. (A)
Notice first that ™z € U;o. Since £ commutes with v’ € U;3, we have

(mx)v — uv'z= Yy

Therefore [u,z] = (™z)’z~! = ™z[™z~!,v]z"! € ™z.Upy1,17). Moreover
[u, 2] € Ujz,13), hence [u,z] € ™2.Uj11,13) C Upro,13)- And interchanging the
roles of z and u shows [u, z] € U,10. Thus [u,z] € Upz,100N ™z.Up1,13)
so [u,z] = ™=z.

Step 3B. Let y = ™z € Ujo. Then [y~1,v] = z~!. (B)
Indeed using Step 3A for the fourth equality,

y= YW=z = *([u,z)z) = Y(yz) = "y.z = y[y~!,v]z; hence
[yl oe=1.
Step 3C. [y~!, mWz=1] = -1 (©)

By (A.2), m~! = m(u~!), so z = ™y, and formula (A) can be
rewritten as:

[w, ™ y] = y where u € U}, y € U},

In this formula replace y € Uyo by 2~! € Ult,,, and u € Ug by y"' € U to
obtain

[y, ™Wz='] = 2"!, as required.’

Combining (B) and (C) shows [y~!, ™¥)z.v] = 1, and since ")z, v € U3,
and the only element of U;s commuting with y=! € Ujg is the identity, we
have v = ™W)z-1,
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Thus v € Uy since it is conjugate, via m(y) € N, to an element of
U/,. This concludes the proof. 0

According to the preceding theorem, Moufang d-gons only exist if
d = 3,4,6 or 8. There are examples in all these cases, and in fact an almost
complete classification. For d = 3 the classification is well-known (a Mo-
ufang plane is coordinatised by a (skew) field or a Cayley division algebra),
and was dealt with in Section 2 of this appendix. For d = 6 an explicit
classification, using Jordan algebras, was given by Tits [1976a], though
his proof was not included in that paper. Subsequently, Faulkner [1977]
gave a very detailed proof, though he starts with an ostensibly stronger
assumption than the Moufang condition; however it can be shown, using
the commutator relation [U;,Uy] = 1 from Tits [1976a], that all Moufang
6-gons satisfy this condition. For d = 8 all examples arise from groups of
type 2F4, and a complete proof of this fact and an analysis of these groups
was given by Tits [1983]. Finally, for d = 4 only very partial results arc
available (Faulkner [1977] and Tits [1976b]), except in the finite case where
a complete proof was given by Fong and Seitz [1973] and [1974]; much more
complete results have, however, been obtained, though not published, by
Tits. A list of Moufang d-gons, given in terms of diagrams, can be found
in Appendix 2, which is based on Tits [1966] and [1976a].



APPENDIX 2
Diagrams for Moufang Polygons

Moufang Planes.

—ee == D - — Asa-1/A]_,

As explained in Chapter 8 section 5, this is the diagram for a Desarguesian
plane over a field K of finite degree d (dimension d?) over its centre k; if

d=1thisis ®O—) a

@:].rﬁ) Es/ D4

This is the diagram for a Cayley plane, over a division Cayley algebra K.
The anisotropic part of the diagram (that obtained by deleting the circled
nodes) represents an anisotropic quadratic form (no singular subspaces),
namely the reduced norm of K.

Moufang Quadrangles - the Classical Cases.

The “classical” Moufang quadrangles all arise from a (o, €)-hermitian
or pseudo-quadratic form of Witt index 2 on some vector space. For these
diagrams it is assumed the vector space has finite dimension N over a field
K, which in turn has finite degree d (dimension d?) over its center k. In all

cases except 2 Ay, o fixes k and so o is the identity when K is commutative.

o— - - B,

In this case K = k, ¢ = 1, and we have a quadratic form (of Witt index 2)
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in dimension N = 2n + 1. If k is a finite field n = 2; if k is p-adic n = 2
or 3; if k = R there is a unique example for each n; and for number fields
there is no restriction of n.
If char. k = 2 and K is a commutative field such that K D k D K?
(so k is not perfect) then the fundamental root groups (U;,U,) can be
associated to (k, K) to provide an exotic form of “mixed type” - see Tits
[1976a] (2.5). We assign this the diagram
®=@ B, mixed

k K
0

H@@ T neven
. 2An
o TS nodd

One has d | n+ 1, and if n + 1 = 4d the diagram is : @: :::@
Here [k : k°] = 2, N = 21 and the form is (o, 1)-hermitian. If & is finite
d=1landn=3or4;ifkispadicd=1andn=3,4,0or 5 if k7 = R,
d = 1; and if k is a number field there is no special restriction on d or n.0

,_._@_.@._—|=¢=| C.

Here d = 2° | 2n,and N = 2. The form is (¢, —1)-hermitian, and if d = 1,
then n = 2 and the form is symplectic; in this case the diagram is (B==@)
which is the dual of the B, case. If k is finite d = 1; if k is p-adic d = 1, or
d=2andn=4or5;if k=R or anumber field d =1 or 2. o

+—--@--@-—4<: D,

For n = 2d this is '— '@““(@ and the case n = 4, d = 2

isthedualof n=4,d=1
Here d = 2° | 2n,n # 2d+ 1 and N = %. The form is pseudo-
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quadratic. For k finite there is no (rank 2) case; if k is p-adic either n = 4
(and d =1 or 2 - see diagrams),orn=7 and d=2;if k =R then d=1
and n is even, or n = 4 and d = 2; if k is a number field either n is even
andd=1lor2,orn=7and d=2. o

I—°~°-®-°°'—@—--°—{: 2D,

If n =2d+1 then d =2 or 1 and we have '—-@—-C@ or (D:@ the

latter being the dual of 2Aj;.

Here again,d = 2° | 2n, N = 27", and the form is pseudo-quadratic; for
a given n, the distinction between D,, and 2D,, depends on the discriminant
of the form. If k is finite d = 1 and n = 3; if k is p-adic either d = 1 and
n=3, ord=2and n =5o0r 6;if k = R either d =1 and n is odd, or
d=12 and n = 5; if k is a number field d = 1 or 2. 8]

Moufang Quadrangles - the Exceptional Cases.

o—C_ () s/ s

This does not exist over finite fields or p-adic fields, but does exist over the
reals and over number fields. The root group dimensions are 6 and 9. O

F @ t ]V + @ E7/A1D4

This does not exist over finite fields, p-adic fields or the reals but does exist
over some number fields. The root group dimensions are 17 and 8. D

@ + ¥ + ‘]V + @ ES/DG

This does not exist over finite, p-adic or number fields, nor the reals. The
root group dimensions are 12 and 33.
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Moufang Hexagons.

== G

This arises from a split Cayley algebra, and exists for all fields k; if char. k& =
3 and K D k D K3 then the fundamental root groups (U;,U,) can be as-
sociated to (k, K) to provide an exotic form of “mixed type” - see Tits
[1976a] (2.5). We assign it the diagram

@E@ G9 mixed

k K 0

These arise from a building of type D,, taking the chambers fixed under a
triality automorphism involving a field automorphism (if there is no field
automorphism one gets G,). The fundamental root groups (U, U2) can be
associated to (k, K') where K is a separable cubic extension of k£ with Galois
group Z3 or S3. These cases exist for any field k£ having the appropriate
Galois extension. 0

D G

o Es/A}

Iere (U1, Us) can be associated to (k, K') where K is a skew field of degree
3 over its centre k. They exist for all such skew fields (e.g. for k any p-adic
field). D

o—a_, 2Fs /A3

Here (U1, Usz) can be associated to (k, K') where k is a commutative field
having a quadratic extension k’ over which there is a central division algebra
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D of degree 3 admitting an involutory automorphism ¢ such that k£ = &’°
and K = D? has dimension 9 over k. They exist for all such situations. O

@@*i-[:1 Es/Es

Here (Uy,U;) can be associated to (k,J) where J is a 27-dimensional ex-
ceptional Jordan division algebra over the commutative field k. They exist
for all such Jordan algebras. n}

Remark. The existence of these Moufang hexagons is a consequence of
an explicit construction given by Tits [1976a).

Moufang Octagons.

These arise over any commutative field K of characteristic 2 admitting an

2.z — z?). The

automorphism o whose square is the Frobenius (i.e. o
root groups U, and U, are isomorphic to K+, and to the set K x K with

roup structure (¢,u).(¢,u') =t +t',u+u' +1'19).
g

Note. With the exception of 2F, and the B; and G, of mixed type, these
are the Tits diagrams for simple algebraic groups of relative rank 2 over the
field k. They all appear in the general classification given by Tits [1966).



APPENDIX 3
Non-Discrete Buildings

In Chapters 9 and 10 we examined affine buildings and showed how
they arise from a group, such as SL,(K), over a field K having a discrete
valuation v. More generally one can consider non-discrete valuations v :
K* — R, where v(ab) = v(a) + v(b), and v(a + b) > min{v(a),v(d)},
in which case Bruhat and Tits [1972] (Chapter 7) define a “non-discrete
building” whose “apartments” are affine spaces; it is a topological space,
but cannot be regarded as a simplicial complex or chamber system, unless
v(K™) is discrete. In this brief appendix we shall do little more than give
a definition, and discuss the classification of these objects, which will be
called affine apartment systems. Further details can be obtained from the
paper of Tits [1986a], which has already been used extensively in Chapter
10.

First we need some notation. Let W be a finite Coxeter group, let V
be the vector space of (2.1) on which W acts, and let A be the affine space
associated to V. We define W to be the group of affine isometries of A
whose vector part is W; in other words R" - W where R" is the translation
group of A. This notation is exactly that used in [loc. cit.], but notice that
W is not a Coxeter group; it is different from the W in Chapter 10.

A wall of A means a hyperplane fixed by a reflection of W (in other
words a translate of a wall of V); it divides A into two half-apartments.
Again this is different from Chapters 9 and 10 because these walls are
everywhere dense in A. Similarly one defines sectors, sector-panels and
sector-faces of A by taking all translates of those in V.

Remark. In Chapters 9 and 10 an affine Coxeter group belonged to an
affine diagram, and both B, and C, give rise to the same W, of type C,.
The distinction between these cases relies on the distance between adjacent
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walls in a parallel class. Here however such walls are everywhere dense and
there is no affine diagram, only the spherical diagram for W.

The idea is now to define an object (A, F) which is a set A together
with a collection F of injections of A into A satisfying axioms (Al),...,(A5)
below. For f € F, the subset f(A) C A will be called an apartment of
(A,F), and a wall, sector, etc. of (A,F) will mean the image of a wall,
sector, etc. of A under some f € F. The conditions are:

(A1) fwe W and f € F, then fow € F.
(A2) If f,f' € F, then X = f~!(f'(A)) is closed and convex in A, and

flx = f' ow|x for some w € W.

(A3) Any two points of A lie in a common apartment.

(A4) Any two sectors contain subsectors lying in a common apartment.

(A5) If Ay, A2, As are three apartments such that each of A; N Az, A; N A3
and A; N Aj is a half-apartment then A; N AN A3 # 0.

Remarks. 1. (A2) and (A3) allow one to define a metric d: given two
points p and ¢q of A, take d(p,q) to be the Euclidean distance between p
and ¢ in any apartment containing both.

2. An alternative to (A5) is:

(A5') Given f € F and a point p € f(A) there is a retraction p : A — f(A)
such that p~!(p) = {p} and the restriction to each apartment diminishes
distances.

Both (A5) and (A5') were suggested by Tits as replacements for the
(A5) given in Tits [1986a] which, as pointed out by K. Brown, cannot be
used in Proposition 17.1 of that paper. In fact the (A5) above was given
by Tits in the original lectures on which [loc. cit.] was based; it can be
shown to be a consequence of (A5’).

Example 1. Take an affine building A with a system of apartments A.
Treat A as a topological space via its simplicial structure, and let A be
the Coxeter complex treated as an affine space. For each A € A take an
isometry f from A to A, and let F denote the set of all fow forw € W
(W being as above, not the Coxeter group). Then (A, F) satisfies (A1) -
(A5): in fact (A1) is immediate from the definition of F; (A2) is Exercise
9 of Chapter 9; (A3) and (A4) are immediate from conditions (i) and (ii)
for (A, A) at the beginning of Chapter 10; and finally (A5) is Exercise 6 in
Chapter 10.

Example 2. A =R (ie. n =1, W = Z,). Following [loc. cit.] we shall
simply call T = (A, F) a tree (it is also sometimes called an R-tree). Each
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apartment is a copy of the real line, and two apartments intersect either
in the empty set or a closed line segement; in particular between any two
points p and ¢ there is a unique line segment of length d(p, ¢).

As in Chapter 10 section 1, a tree T' determines a projective valuation
wr on its set T of ends. Conversely the following proposition (combining
Propositions 2 and 3 of [loc. cit.]) provides a generalization of 10.2.

(A.16) ProposITION. For any set E having at least 3 elements and a
projective valuation w (in the sense of Chapter 10 section 1), one can
identify E with the ends of a tree T such that w = wr; moreover E and w
determine T up to unique isomorphism. o

The proof of uniqueness is given in [loc. cit.] section 16, using a
method which can be adapted to prove the existence of T, given w. The
idea is that for each pair a,b € E one takes a model A(a,b) of the real line,
whose points are functions z from E — {a, b} to R satisfying z(d) — z(c) =
w(a,b;c,d). The tree is then obtained as the disjoint union of all sets
A(a,b), factored out by an equivalence relation.

The Building at Infinity. :

As in Chapter 9, one defines two sector-faces to be parallel if they
are at bounded distance, and it is then straightforward to verify, as in
Chapters 9 and 10, that the parallel classes of sector-faces of (A, F) are the
simplexes of a spherical building (A, )™ “at infinity”. Although (A, F)
may be non-discrete, (A, F)% is a building in the usual sense of being a
chamber system: its chambers are parallel classes of sectors, and its panels
are parallel classes of sector-panels.

Much of the work in Chapter 10 carries through with very little change.
As in section 2 of that Chapter, for each wall m of (A, F)®, there is a tree
T'(m) (in the sense of this appendix); its points are the walls M of (A, F)
in the direction m, and its ends correspond to the roots of (A, F)* having
wall m. Letting St(m) denote this set of roots, T'(m) provides a projective
valuation w,, of St(m). Similarly for a panel = of (A, F)* one obtains a
projective valuation wy on St(7). The analogue of (10.5) holds, namely
that (A, F)* together with the w,, or wy determines (A, F) up to unique
isomorphism.

Also, as in Chapter 10 section 3, if (A, F)*® is Moufang, then one
obtains a set of root data with valuation (y,). Moreover each equivalence
class of root data with valuation gives rise to an affine apartment system
(A, F), but here the work of Chapter 10 is not sufficient. In the discrete
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case, section 4 of that Chapter gave an explicit construction of an affine
BN-Pair, but in general (A, F) cannot be realized as a chamber system so
there is no such BN-Pair. However the construction of (A, F) is given in
Chapter 7 of Bruhat-Tits [1972].

If (A, F) has dimension > 3, and the diagram (of W) is connected, then
(A,F)* has rank > 3 (and the same diagram) and is therefore Moufang.
As in the discrete case we obtain the following theorem.

(A.17) THEOREM. Every affine apartment system of dimension n > 3,
having a connected diagram, arises from a spherical building of rank n
over a field K with a valuation v : KX — R.. Furthermore these apartment
systems are classified by equivalence classes of root data with valuation.O

In fact root data with valuation can be classified, at least in the case of
rank > 3 considered here, and a necessary and sufficient condition can be
given for a spherical building over K with valuation v to lead to an affine
apartment system. More details are available in Chapter 10, and also of
course in Tits [1986a].



APPENDIX 4
Topology and the Steinberg Representation

In Chapter 3 Buildings were defined in terms of chamber systems,
and in the finite rank case they can also be regarded as simplicial com-
plexes, and hence acquire a topological structure. In the spherical case
each apartment becomes a triangulation of a sphere, and the building has
the homotopy type of a bouquet of spheres. In the affine case with a con-
nected diagram each apartment becomes a triangulation of Euclidean space
and the building is contractible - see the Theorems below.

However in general the simplicial structure is not necessarily appro-
priate. For example in the affine case with a non-connected diagram it is
better to regard the Coxeter complex as a product of Euclidean spaces (one
for each component of the diagram) in which a chamber is a direct ploduct,
of simplexes. For example the Coxeter complex of type Al x A; x A, would
be the tesselation of R3 by cubes. A cube has, of course, six faces; these
correspond to the six panels of a chamber, opposite faces corresponding to
the same A, subdiagram. The building in this case would have dimension
3 (though if we treat each chamber as a simplex the dimension is 5); in the
terminology of Bruhat-Tits [1972] it is a polysimplicial complez. We shall
not discuss the general case but refer to Davis [1983], which contains a dis-
cussion of topological spaces associated to Coxeter groups, and uses them
to construct some interesting aspherical manifolds. For the remainder of
this appendix we stick to the spherical and affine case.

Homotopy Type.

If X is a metric space and z is a point of X such that for every point y
there is a unique geodesic joining z and y then X is contractible in a very
simple way. At time ¢ (0 <t < 1) send y to y;, where y; is the point on
the unique geodesic from z to y such that d(z,y,) =t -d(z,y). When this
is the case we shall call X geodesically contractible.
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(A.18) THEOREM. An affine building A is contractible.

PROOF: Let z be some given point of A. If y is any point, the apartments
containing z and y intersect in a convex set (Exercise 8 of Chapter 9), and
hence there is a unique geodesic from z to y, as this is true in each such
apartment. Thus A is geodesically contractible. 0

Remark. This theorem and its proof apply equally well to the afline apart-
ment systems of Appendix 3.

(A.19) THEOREM. A spherical building A of rank n is homotopic to a
bougquet of (n — 1)-spheres, and the number of spheres equals the number
of phambers opposite a given chamber.

PrOOF: Fix a chamber ¢ and let z be its barycentre. Each apartment
A containing c is a sphere; it has a unique chamber ¢’ opposite ¢, and
A—{c'} is geodesically contractible to z. Now remove from A all chambers
opposite ¢, and call the remaining complex A’. Since the intersection of
two apartments is convex, A’ is geodesically contractible to . Therefore
A is homotopic to the set of chambers opposite ¢ with their boundaries
identified to z. After this identification each chamber becomes a sphere,
and the result follows. m}

Homology and the Steinberg Representation.
It follows from Theorem (A .19) that if A is a building of spherical type
and rank n, then its integral homology is:
Y/ ifi=0
0 ifi#0,n—1
Hi(AZ)=(¢ Z&®...9Z ifi=n—1, where the number of copies of
Z equals the number of apartments
containing a given chamber
Now let G be a finite group of Lie type having rank n and characteristic
p, and let A be its building (see Chapter 8 section 6). Then Hn_1(A)
provides a representation for G, called the Steinberg representation. It was
originally discovered in a different form by Steinberg [1956] and [1957], and
the interpretation via homology is due to work of Curtis [1966] and Tits
and Solomon [1969]. For some applications of this representation, and an
extensive list of references, see Humphreys [1987].
To study the action of G on A, we regard A as a simplicial complex,
and let

On- a3
Cpo1 == ... — C1—Co
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be the associated chain complex. As usual we write Z, = Ker 0., B, =
Im 8,41, Bn = Z0 =0, and H, = Z,/B,. We then let v,,{,, 8- and 7, be
the characters of G on Cy, Z,, B, and H, respectively. Since H, = Z,. /B,
we have

r =C —Br

and since C,/ Ker 8, = Im 0, we have
Yr =G = Br-1.

(A.20) ProprosiTioN (HopF TRACE FORMULA).

n-1 n—1
Z("l)r')'r = Z("l)rnr-
r=0 r=0

ProoF: Indeed (—1)" (v — ) = E(=1)" (Br=1+ Br)=P-1+ 8. =0.0

If G is a group and H a subgroup, the permutation character of G
on cosets of H is denoted lg. Notice that v, is the sum of permutation
characters ng for which Pj corresponds to a face of dimension » (in which
case |[J| = n — 1 —r). Therefore

n—1

Y (-1)y = (=) S (=g,

r=0 ng

Moreover knowing Hi(A,Z) we have ng = 1, 7; = 0 for i # 0, n — 1, and
Mn—1 = St, the Steinberg character. Therefore by (A.20):

L+ (=) 1St = (=" Y (-1)Vhig,

JGI

Since Py = G, we have IG’ =1, hence

st=S(-1hg,.

JCI

This formula for the Steinberg character was discovered by Curtis [1966],
using Steinberg’s original definition of the representation.
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(A.21) THEOREM. The Steinberg representation is irreducible, and if K
is a field of characteristic p, then H,_1(A, K) is a projective module for G.

ProoF: First consider the Coxeter group W acting on the Coxeter com-
plex which we think of as an (n — 1)-sphere S. Clearly H,_1(S) provides
a l-dimensional (hence irreducible) representation of W; let ¢ denote its
character - this is the “reflection character” defined by €(r;) = —1 for each
i € I. As in the case of St above, we have the formula:

e=> (-,

JcI

Furthermore, using ( , ) for the inner product of characters, we have

(18,,18,) = (0w, 1w,)-

This is because the inner product of two permutation characters lf’;l and
1%2 counts the number of double cosets H1\G/H, and from (5.4) (iv) we
have a bijection between P;\G/Px and W;\W/Wg. Therefore (St,St) =
(e,€), and since ¢ is irreducible we have (¢,¢) = 1, showing that St is
irreducible.

To show that M = H,_,(A,K) is a projective G-module, we first
consider it as a U-module My. By (6.15) U acts simple-transitively on the
set of chambers opposite the chamber ¢ stabilized by U, and hence also
on the set of apartments containing ¢. These apartments form a basis for
M, so My is a free U-module. Therefore the induced module Mg is a free
G-module, and it suffices to prove M is a direct summand of M§ (this is
a standard result in representation theory but we give a direct proof). Let
1 ==x,...,z, be aset of coset representatives for U in G. The projection
0: M§ — My sending Tz; ® m; to m, is a U-module homomorphism,
and its kernel provides a complement to My as a submodule of Mg. Since

|G : U| # 0 in K we can define 6 = lG—{-U—IXi::c,-G:c{l; it is a G-module

homomorphism from MS to M, and its kernel provides a G-module com-
plement for M in M§. 0

Cohomology with Compact Support. By (A.18) an affine building A
is contractible, so its cohomology H¥(A) is zero for i > 0. However A is
not compact, and the cohomology Hi(A) with compact support is not zero.
In the locally finite case, A is locally compact and it can be compactified
by adjoining the building A at infinity, but one must be careful about
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the topology. Let S be a sector and let S;,S2,... be sectors having a
sector-panel in common with S, and such that the intersections S N Sy,
SNS,,... become increasingly large, and lim S, = S.

n— 00

S

S3

S4

S,

D

When we compactify A by adjoining A%, we need a topology in which the
sequence of chambers 5§°,55°,... gets closer and closer to S°. Such a
topology was given in the A; case (i.e. when A is a tree) in Exercise 10
of Chapter 10, and it can be extended to cases of higher rank. When A is
locally finite (more precisely if card St(7) < some finite number s, for all
panels 7 of A), this topology makes A* compact.

The locally finite case arises from algebraic groups over a local field K,
namely F,((t)) or a p-adic field - see (10.25). This is the case treated by
Borel and Serre [1976] who show in their Theorem 5.4 that for A = AUA®
there is a unique topology having the desired properties. The space A
is compact and contractible; its boundary A is A® with the topology
discussed in the paragraph above.

For cohomology with compact support one has a long exact sequence

.. — H{(A - 0R) — H'(B) — H'(0A) — H*' (A - 9B) — ...
where H = Hi for i #0is “reiiuced cohomology”. The fact that A—0A =
A, and A is contractible (so H*(A) = 0) gives:

H*Y(A) = Hi(0D)
Borel and Serre [loc. cit.] 2.6 also prove that

CrWU;Z2) ifi=n-1
0 otherwise

Hi(9A) = {
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where CZ° means C*°-functions with compact support. Here U can be
thought of as a set of points in bijective correspondence with the set of
chambers of A% opposite a given chamber; it inherits a topology from the
topology of OA. Alternatively, think of U as a group, as in Chapter 6
section 4, in which case it acquires a topology as a group of matrices over
the locally compact field K. To summarize, we have

CeWU;2Z) ifi=n
0 otherwise

i) =

where A is an affine building of dimension n over a local field.



APPENDIX 5
Finite Coxeter Groups (i.e. of spherical type)

Diagram W] Shape of Group
(Atlas Notation)
A, ) ) ) o (n+1) Sita
Cn o o o o 2% n! 2"S,
(o]
D, o ) ... n-lint  on-lg,
o

o—

Es o o ) o 27315 05(2).2

o
E; o o o o o___o 2103157 2 x 07(2)

/o

Es o o ) o ) o o 2143%527 2.0F(2).2
Fy ) o o__o 1152 23:6,:8;
Hj o__o % o 120 2 x As
Hy o__o__o_ 5% o (120)2 245 : (2 x As)

Gg(m) o™ o 2m Dim
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Finite Buildings and Groups of Lie Type

Type of Type of  Simple Group Parameters
Building  Group (Atlas notation,
where different)
q-t
q-1
An An (@) Lyyy (@) e —. —
20
~— @ D@1 ... @+ 1)
Cn B, @ O+l @ ° — —eo="
q q q
2n-1 2 n
a1 (Q+1)(@7+1) ... (q +1)
Cn Cn @ S @ ° — —t=c
q q q
2n 2n
a8 Ce @@ @ e
2 4
Cn A1 (@) Uy, (@) ° — e 0 = °
q qz q
20 +1 2a
(9 __+@g -1)
, S @@ .. @
C” AZ" (‘I) Uznq.l (q) [ cee —mm 0 — ©
2 2 3
q q q

)
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Type of Type of  Simple Group Parameters
Building  Group (Atlas notation,
where different)
n«l” 2, ntl“ 2n-l
2 _ q-1 qz-l
Cn [)lhl-l (q) 02"+2 (‘I) O — oo tee — 0 — o
q q q2
(!n-l”“ n_” (qol)(qzol)...(q"'lol)
+ Q‘l - o
D, 0 — . e — o
n D, (q) 02" q) <,
2.1 (feqtar
q-1
E6 E6((]) 6 —— 0 —0——o0—o
I (5‘41)(36033411(3'24)
o q-1
sol 94] l"-l 80 "ol 12‘ 60] 14 1
q-1 q-1
E’] E‘](q) 0 —m—m0 —0c—e0o——0—o0
60! lz#l lo*l 30_l
q-1
Es Es(q) 0 ——0—0-——0—0—0—o0
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Type of Type of  Simple Group Parameters
Building  Group (Atlas notation,
where different)

F4 F4(q) 6 —— 0 —— 0 — o

@ ened-dene' 2y @@ +)q' 1)
q-1 2
2 e
Fy Eg (9) ° 6 — o — o
q q < <
(q*l)(q"*qz*l)
G, Gy (@) o ————%
q q
s (q3¢l)(qs¢q‘tl) (Q‘l)(qs‘q“l)
G Dy (¢ o — 8
3
q q
R @@ e’ @@+ @ »
I (8) Fq (@) o« — 8 q=2
2
q q
4, 282 Q@ Sz (q) q2+1 points q= 20"d
2 . odd
4 Gy (q) Ree (q) q3+l points q=3

The number of chambers per panel is s+1, where s is shown below the node of the
appropriate type, or if nothing is shown, s = q. The number above a node is the number
of vertices of the appropriate cotype.
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