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PREFACE

Pancreatic cancer remains a deadly disease that is receiving more and more 
attention nowadays. Its diagnosis is still considered a death sentence and 
sadly every two minutes a patient dies from the disease somewhere in the 
world (∼300,000 annual deaths). It is quite unfortunate to note that unlike 
other cancers that have witnessed major progress in early diagnostics, better 
management and some success in the identification of molecularly targeted 
drugs, the field of pancreatic cancer research lags behind on all these fronts. 
There is an urgent need for the identification of diagnostic and prognostic 
markers and a dire need for effective drugs to tame the disease. A major 
reason for such poor progress is due to the reductionism in approaches that 
for the past few decades have focused on studying single or few pathways 
and searching for magic bullet drugs. Being a heterogeneous disease, there 
is a need for interdisciplinary strategies that take a holistic view at the whole 
system instead of individual components.

The scale of the complexity of pancreatic cancer calls for equally com-
plex solutions and holistic computational technologies, especially systems 
biology, are expected to play pivotal roles in current and future research. The 
depth and breadth of opportunities provided by systems sciences are endless 
and researchers are increasingly relying on these interdisciplinary areas to 
enhance the understanding of this invariably terminal disease of the pan-
creas. Although the cross talk between different scientific disciplines has 
increased, a wide gap still exists between basic biologist and computational 
experts; the former hesitant to dwell into unchartered bioinformatics terri-
tory and the later unable to obtain opportunities to test and validate their 
powerful analytical tools in actual biological systems.

The literature on pancreas cancer systems biology is sparsely distributed 
in the web of knowledge and no previous work has satisfactorily integrated 
this new interdisciplinary subject area. Unlike prior works, this book brings 
together wide-ranging modern topics and for the first time, showcases the 
recent advancement in systems approaches to pancreatic cancer under one 
comprehensive volume. The 18 chapters presented here are from leading 
pancreas cancer experts who have been using many novel computational 
tools to get new information by reaching to previously unfathomable 
depths. Many of these experts are founders in their own fields. They have 
discussed a wide range of topics such as pancreatic cancer bioinformatics, 
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expression analysis, and proteomics. Other topics highlight the use of sys-
tems sciences in unraveling the complexities of pancreas cancer signaling, 
understanding disease metabolomics, the role of microRNAs, overcoming 
therapy resistance, resolving the pancreatic cancer stem cell debate, under-
standing the cross talk between different components that make up the 
microenvironment, pursuing patient stratification for tailored treatments, 
and many more. These chapters carry more than a thousand updated refer-
ences and numerous web resources and detailed illustrations. They should 
be very helpful for the researchers that are seriously engaged in the area of 
translational pancreatic cancer research. It is anticipated that this book will 
bridge the gap among basic researchers, clinicians, and computational biolo-
gists, all of whom have a common goal—to defeat pancreatic cancer.

Asfar S. Azmi, PhD.
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CHAPTER 

Epidemiology, Treatment, and 
Outcome of Pancreatic Cancer
Robert Grützmann
Department of General, Thoracic, and Vascular Surgery, University Hospital “Carl Gustav Carus”, Dresden 
University of Technology, Dresden, Germany

INTRODUCTION

Pancreatic cancer is a relatively rare cancer type, but a major cause of 
 cancer-related death because there are quite rare histologically proven long-
time survivors of pancreatic cancer. The main reasons for the worse progno-
sis are: late clinical presentation, aggressive biology, and failure of surgical 
and systemic treatment. The aim of this introductory chapter is to provide 
an update on the known causes, clinical presentations, and most current 
management strategies of pancreatic carcinoma.

EPIDEMIOLOGY AND ETIOLOGY OF PANCREATIC CANCER

Pancreatic adenocarcinoma comprises only 3% of estimated new cancer 
cases each year but with 44,030 new cases and 37,660 deaths expected in 
2011 is the fourth most common cause of cancer mortality [1]. The annual 
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incidence rate of pancreatic cancer is approximately 8/100,000 persons 
worldwide. Adenocarcinoma is the most frequent type of pancreatic cancer. 
Others are endocrine and cystic tumors, which have a different, mostly bet-
ter, prognosis [2]. There are established risk factors for developing pancreatic 
cancer including chronic pancreatitis, increased age, family history, smoking, 
and diabetes [3]. Obesity and physical activity have been implicated in pan-
creatic cancer etiology.

TYPES OF PANCREATIC CANCER

Ninety-five percent of pancreatic cancers originate from the exocrine 
portion of the gland. A proposed mechanism for the development of 
invasive pancreatic adenocarcinoma is a stepwise progression through 
genetically and histologically well-defined noninvasive precursor lesions, 
called pancreatic intraepithelial neoplasias (PanINs). They are micro-
scopic lesions in small (less than 5 mm) pancreatic ducts and are classi-
fied into three grades (PanIN 1–3). The understanding of molecular 
alterations in PanINs has provided rational candidates for the develop-
ment of early detection biomarkers and therapeutic targets. Another 
precursor of invasive pancreatic carcinomas is pancreatic intraductal 
papillary mucinous neoplasia (IPMN). IPMNs belong to the increas-
ingly diagnosed and treated group of cystic tumors. They progress from 
a benign intraductal tumor through increasing grades of dysplasia to 
invasive adenocarcinoma and therefore provide models of neoplastic 
pancreatic progression [4]. Other tumor types within the pancreas are 
endocrine tumors and a variety of rare pancreatic tumors like acinar cell 
carcinoma (Table 1.1) [5].

Table 1.1 Main Types of Pancreatic Cancer

Pancreatic Exocrine Cancers
Pancreatic Endocrine Neuroendocrine 
Tumor

Pancreatic ductal adenocarcinoma Nonfunctional islet cell tumor 
 insulinoma

Intraductal papillary mucinous  
neoplasia (IPMN)

Gastrinoma

Mucinous cystadenocarcinoma Glucagonoma
Adenosquamous carcinoma Somatostatinoma
Solid pseudopapillary tumors Vasoactive intestinal peptide releasing 

tumor (VIPoma)
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CLINICAL PRESENTATION OF PANCREATIC CANCER

Most cases of pancreatic cancer are diagnosed for nonspecific abdominal 
pain or jaundice or both. The peak incidence for pancreatic cancer is in the 
seventh and eighth decades of life. Men are affected slightly more often than 
women.

The only specific clinical sign, jaundice, develops if the tumor is growing 
in the pancreatic head near to the bile duct. Many patients present late with 
secondary symptoms related to a larger malignant tumor and/or metastatic 
spread with back pain (direct invasion of the celiac plexus) or malignant 
ascites. Unexplained weight loss is sometimes the only sign. Approximately 
80% of patients have unresectable disease at the time of diagnosis due to 
metastatic spread or locally advanced disease.

Development of diabetes should strongly alert the physician to the pos-
sibility of pancreatic cancer. Patients over the age of 50 with late onset 
diabetes have an eightfold increased risk of developing pancreatic cancer 
within three years of the diagnosis compared to the general population [6]. 
Most malignant tumors develop in the pancreatic head; because of late pre-
sentation the tumors within the pancreatic tail have a lower resectability and 
worse prognosis.

DIAGNOSIS OF PANCREATIC CANCER

Tumor markers seemed to be ideal for early diagnosis of cancer. However, 
the lack of sensitivity and specificity has been a major problem in the use of 
most serum tumor markers for diagnosis of pancreatic cancer. In the vast 
majority of research studies over the past two decades, CA19-9 alone has 
been applied as the “gold standard” for monitoring and diagnosis of patients 
with pancreatic cancer [7].

The aim of imaging is to detect pancreatic cancer, to detect metastases, 
to evaluate the risk for malignancy, and to predict resectability. Transab-
dominal ultrasonography (US) serves as a basic imaging examination. In 
experienced hands, it is possible to predict resectability with high accuracy 
using US. Endoscopic ultrasonography is a useful diagnostic method, espe-
cially in small pancreatic tumors. It enables fine-needle aspiration for patho-
logical analysis. Pancreatic cancer also can be visualized by endoscopic 
retrograde cholangiopancreatography (ERCP) [6]. The appearance of dou-
ble duct sign (occlusion of both the pancreatic and the bile duct) is a patho-
gnomic of a malignant pancreatic head tumor. However, ERCP has been 
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mostly replaced by contrast enhanced multislice computed tomography 
(CT) and magnetic resonance cholangiopancreatography (MRCP) because 
they are much less invasive than ERCP. Both CT and magnetic resonance 
imaging with MRCP are useful for the diagnosis and characterization of 
pancreatic masses. Both modalities provide an accurate assessment of a 
tumor and its relationship with surrounding organs and vessels.

TREATMENT OF PANCREATIC CANCER

At present, surgical resection is the only curative treatment for pancreatic 
adenocarcinoma. For unresectable tumors and patients unwilling or not 
medically fit enough to undergo major pancreatic surgery, alternatives 
include systemic chemotherapy, chemoradiotherapy, image guided stereo-
tactic radiosurgical systems (such as CyberKnife), surgical bypass, ablative 
therapies, and endoscopic biliary and gastrointestinal stenting. These are pal-
liative procedures that can improve patients’ quality of life by alleviating 
tumor-related symptoms like pain.

POTENTIALLY CURATIVE SURGICAL TREATMENT

The majority of pancreatic adenocarcinomas are located within the head, 
neck, and uncinate process of the pancreas and require a pancreaticoduode-
nectomy with lymphadenectomy. First described in the 1930s, it involves 
resection of the proximal pancreas, along with the distal stomach, duode-
num, distal bile duct, and gallbladder as an en bloc specimen. It is the so-
called Whipple procedure. Intestinal reconstruction is restored via a 
gastrojejunostomy, hepaticojejunostomy, and pancreatojejunostomy. It has 
been shown that the preservation of the stomach is oncologically safe, faster, 
and blood sparing, and therefore most of the pancreatic head resections 
today are performed as pylorus preserving pancreaticoduodenectomy. Pan-
creatic tail tumors are treated with a pancreatic left resection.

The absolute contraindications to pancreatic resection are distant metastases 
to the liver or the peritoneum. The age of the patient, size of the tumor, local 
(and even distant) lymph node metastases, and continuous invasion of the stom-
ach or duodenum are no general contraindications to resection. Tumor involve-
ment of the major vessels around the pancreas is no longer an absolute 
contraindication to curative resection, especially in venous infiltration. Encase-
ment of the hepatic artery, superior mesenteric artery, and coeliac axis means 
that potentially curative surgery is unlikely but not always impossible.
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A complete resection with microscopically free margin (R0) should 
always be intended, but cannot always be achieved. If an R0 resection can 
be obtained, median survival is vastly improved compared to resections with 
tumor positive.

Advances in surgical techniques and perioperative care made pancreatico-
duodenectomy safe and feasible, but morbidity following pancreatic head 
resection can be as high as 50%. The most common complications are pancre-
atic fistula formation, delayed gastric emptying, and postpancreatectomy hem-
orrhage. In many specialized centers the operation has a 30-day mortality 
below 5%, dependent on the surgical volume of the center and the surgeon [8].

ADJUVANT AND NEOADJUVANT TREATMENT

Adjuvant treatment of pancreatic cancer is standard of care. The ESPAC-1 
(European Study Group for Pancreatic Cancer) trial showed a clear advan-
tage for adjuvant chemotherapy in patients with resected pancreatic cancer 
over chemoradiotherapy, which had a deleterious impact on survival [9]. 
Therefore, in Europe the standard of care after resection of pancreatic cancer 
is adjuvant chemotherapy [10]. The ESPAC-3 trial showed there was no dif-
ference between 5-flurouracil/folinic acid and gemcitabine, which is now 
the most commonly used chemotherapy agent [11].

The rationale for neoadjuvant therapy is to increase the incidence of R0 
resections, downstage borderline resectable disease to allow resection, and 
reduce loco-regional recurrence. However, there are no large multicenter 
randomized controlled trials of neoadjuvant therapy for pancreatic cancer. 
Meta-analysis of the available data shows that one-third of patients with 
locally advanced disease without distant metastases can achieve a significant 
oncological response to neoadjuvant treatment, increasing the chances of 
achieving an R0 resection, thereby reducing local recurrence and poten-
tially improving disease-free survival [12].

Palliative Treatment
Biliary tract or duodenal obstruction can be relieved by surgical, endo-
scopic, or radiological techniques. Palliative chemotherapy usually involves 
gemcitabine-based regimes. Efforts to improve survival outcomes with 
gemcitabine-based combination chemotherapy regimens have been largely 
disappointing, with the possible exception of the addition of the targeted agent 
erlotinib. The multiagent cytotoxic chemotherapy regimen FOLFIRINOX 
(FOL- Folinic_acid(leucovorin), F – Fluorouracil (5-FU) IRIN – Irinotecan 
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(Camptosar), OX – Oxaliplatin (Eloxatin)) (sequential administration of 
oxaliplatin immediately followed by leucovorin over 2 h, and then irinote-
can, followed by a bolus dose of 5-fluorouracil, and finally, a 46-h infusion 
of 5-fluorouracil) has significantly improved survival compared with gem-
citabine alone [13]. However, this regimen can be highly toxic and may 
need to be reserved for those with an excellent performance status.

PROGNOSIS OF PANCREATIC CANCER

PDA is still extremely resistant to currently available regimens, which results 
in poor prognosis, with only 5% of patients alive at three years. Surgery with 
curative intent has a five-year survival of 10–25%, and median survival of 
11–18 months. Main prognostic factors include age, tumor size, nodal and 
margin status, and tumor grade [7]. Patients with locally advanced disease have 
a median survival time of 8–12 months, and patients with distant metastases 
have significantly worse outcomes, with a median survival time of 3–6 months 
[14]. Recently, a new our algorithm using computational approaches has been 
proposed for personalized pancreatic cancer therapy [15].

OUTLOOK

The surgical treatment of pancreatic cancer has a high quality in many special-
ized centers. Rather than from new surgical techniques, improvement of the 
treatment and prognosis of pancreatic cancer will come from new diagnostics 
and (molecular) targets. There has been a spurt in the application of newer tech-
nologies, particularly computational biology, which is being utilized for diag-
nostic and therapeutic discoveries in pancreatic cancer. Researchers and 
clinicians are able to model the disease and obtain information on critical weak 
points within the complex molecular network in pancreatic cancer. The predic-
tive models and networks have been shown to respond to novel agents in pan-
creatic cell lines and xenograft models. In the clinical setting, such technologies 
are projected to be helpful in stratifying responsive patient populations and may 
also provide the blueprints for tailored therapies. Nevertheless, these computa-
tional developments are still in their infancy. Therefore, more computational 
research efforts should be put into the field of pancreatic cancer.
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INTRODUCTION

Pancreatic cancer is a lethal disease, and despite the low incidence, it is in 
fact a major cause of cancer-related deaths in industrialized countries. At 
the time of diagnosis, 75–85% of patients present with advanced tumors 
and are not amenable to surgical resection with curative intent [1]. Con-
servative therapeutic strategies, such as chemotherapy and/or radiother-
apy, have not shown to improve the prognosis of pancreatic cancer that is 
not operable [2]. Improvement of the surgical technique in high-volume 
centers has reduced the intraoperative mortality below 5%, and conse-
quently increased the number of resections with curative intent. However, 
the local recurrence rate remains very high and, although in subgroups of 
patients there has been reported actual survival of more than 20% five 
years post diagnosis, the real long-term survivors are rare (<2%) [1,3].  
The reasons for this aggressive nature of the disease are not fully known, 
but they seem to have to be sought in the particular biological structure 
that characterizes cancer of the pancreas. In the last two decades, scientific 
and technological progress in the field of molecular biology have made it 
possible to elucidate many of the genetic and epigenetic mechanisms 
underlying this disease, with the hope that they will lead to the develop-
ment of better diagnostic and therapeutic modalities. Nevertheless, the 
lack of known risk factors and the absence of symptoms in the early stages 
of the disease make the implementation of strategies for primary or sec-
ondary prevention very unlikely.

Epidemiology
Pancreatic cancer has the highest incidence in industrialized countries such 
as the United States, Japan, and Europe, where rates are higher in the north-
ern than the Mediterranean regions. The African and Asian countries are 
characterized by a low incidence (1–2 cases/105 habitants/year) [4]. In Italy 
there are regional variations; in fact, it has been reported that the incidence 
is around 1–2 cases/105 habitants/year, with an average of 8.4 new 
1–2 cases/105 habitants/year (National Cancer Registry). Epidemiological 
studies have shown a constant growth in the overall incidence rate and age-
standardized incidence rate until the eighties, followed by a plateau phase. 
The mortality rate has been shown to coincide with that of incidence [3,5]. 
Males are more commonly affected than females, with a ratio ranging from 
1.4:1 to 2.9:1 in Brazil and France, respectively. However, in recent decades 
there has been an increase in the number of female patients suffering from 
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pancreatic cancer, probably because of increased cigarette smoking in women 
[5]. Cigarette smoking is a clear and well-established risk factor (from two to 
six times higher) for pancreatic cancer, as demonstrated by some epide-
miological studies. However, there is no clear evidence linking cigar or 
pipe smoking or chewing tobacco with the disease. The consumption of 
alcohol, coffee, or tea showed no clear association with the development 
of the disease either. In contrast, medical conditions such as chronic pan-
creatitis, cystic fibrosis, and diabetes do show strong correlation with the 
disease. Speaking of chronic pancreatitis, for example, a multicenter study 
conducted by Lowenfels showed a 14.4- to 16.5-fold increase in the inci-
dence of pancreatic carcinoma compared to the general population [6], 
with the risk increasing even higher over the years from the onset of the 
disease. Individuals with hereditary chronic pancreatitis, which is character-
ized by an early onset, can achieve a 75% cumulative risk of developing 
pancreatic cancer if they have inherited the disease from the male branch of 
the family [7]. Although most cases of pancreatic cancer are sporadic, the 
disease also occurs in the context of hereditary syndromes, such as dysplastic 
nevus syndrome, Lynch syndrome type II (colon cancer hereditary nonpol-
yposis), breast-ovarian cancer syndrome, ataxia-telangiectasia, Peutz-Jeghers 
syndrome, and the aforementioned hereditary pancreatitis [7]. Furthermore, 
the possibility of an autosomal dominant inheritance of the disease in the 
absence of an apparent genetic disorder may have other hereditary links to 
it. For example, through linkage analysis, change at locus 4q32-34 has 
recently been identified to associate with the disease significantly, even 
though no specific gene has been identified responsible [8]. Overall, it is 
estimated that up to 10% of pancreatic cancer cases are transmitted with an 
autosomal dominant pattern of inheritance [7].

The Molecular Genetics of PDAC
In the last decade, with the advancement of molecular biology tools and the 
development of transgenic animal models, researchers have been able to 
identify some fundamental genetic alterations underlying the development 
of pancreatic cancer. Four main events are believed to be critical for the 
pathogenesis and/or progression of ductal adenocarcinoma:
 •  Activating point mutations of the K-Ras
 •  Inactivation of the tumor suppressor gene TP53
 •  Inactivation of the tumor suppressor gene p16
 •  Inactivation of the tumor suppressor gene Dpc4 (deleted in pancreatic 

cancer 4).
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K-Ras
K-Ras mutations are more frequent in pancreatic cancer than in any other 
type of human neoplasia: >80% of carcinomas of the pancreas have activat-
ing mutations in the first or second base of codon 12 [9]. The Ras family 
proteins have a function of transmitting growth signals within the cell: they 
are capable of binding GTP molecules and transform them into GDP 
(GTPase activity) once the signal is transmitted. Point mutations at codons 
12, 13, or 61 lead to loss of the GTPase activity. As a consequence, the ras 
protein remains in the active state to continuously transmit growth signals. 
K-Ras mutations appear to be an early event in pancreatic carcinogenesis, as 
shown by numerous experimental data. In fact, the same type of mutation 
has been found in tumors and in the lesions associated with them [10]; also, 
animal models of pancreatic carcinogenesis have revealed a high incidence 
of ras mutations in the early stages of neoplastic transformation. Finally, 
K-Ras mutations have been identified in preneoplastic ductal lesions found 
in the pancreas of a patient with a family history of pancreatic cancer [11].

p53
The alterations of the p53 tumor suppressor gene are common in human 
cancers. This gene encodes a nuclear protein with a short half-life. It acts  
as a transcription factor to exert a negative regulation of cell growth and 
proliferation by inducing apoptosis in the presence of genomic damage that 
is unrepairable. Loss of heterozygosity at the p53 locus occurs in almost 90% 
of pancreatic tumors, while in 50–75% of cases there is complete loss  
of function of the protein due to alterations involving the inactivation of the 
remaining copy of the gene [12,13]. Of all the p53 gene alterations, missense 
point mutations are the most frequent ones; frameshift mutations may also 
occur predominantly represented by intragenic microdeletions, which occur 
in pancreatic cancer with a frequency significantly higher (up to 30%) com-
pared to other human cancers. The majority of p53 mutations, with excep-
tions frequently represented by microdeletions and more rarely by nonsense 
mutations, lead to the synthesis of a mutant protein with increased half-life, 
which can be easily detected by immunohistochemistry staining [14,15].

p16
P16INK4a/CDKN2/MTS1 gene is located on chromosome 9p21 and 
encodes a protein that binds the cyclin-dependent kinase 4 (Cdk4) to prevent 
its interaction with cyclin D1. The cyclin D1-Cdk4 interaction regulates the 
transition from G1 phase to S phase of the cell cycle. In the absence of 
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inhibition by p16, it leads to continuous activation and therefore uncontrolled 
cell growth. Three mechanisms are responsible for the loss of function of p16 in 
almost all cases of carcinomas of the pancreas: (1) homozygous deletions due to 
loss of both alleles; (2) loss of one allele and mutation in the other allele resulting 
in altered function (loss of heterozygosity); and (3) methylation of cytosine 
nucleotides in the promoter region to suppress the expression of the gene [16].

Dpc4
Dpc4 (Smad4) is a tumor suppressor gene located on the long arm of chromo-
some 18 and encodes a transcription factor that participates in the cascade 
mediated by signal transduction-dependent growth factor TGF. It is frequently 
altered in pancreatic cancer. The loss of its function was observed in 50% of 
pancreatic carcinomas and is due to two mechanisms: (1) loss of heterozygos-
ity; and (2) homozygous deletion. Immunohistochemistry staining allows one 
to obtain a very sensitive and specific assessment of the expression level of 
Dpc4 [17,18]. Recently, it was shown that the loss of expression of Smad4 is 
associated with a poorer prognosis of carcinoma of the pancreas.

Other Genes
Alterations of other genes, mainly tumor suppressors, have also been reported 
in pancreatic cancer. Mutations of the gene APC (adenomatous polyposis coli) 
are rare in ductal adenocarcinoma but are reported more frequently in solid 
pseudopapillary pancreatic tumors, acinar carcinoma, and ampullary cancer [19].  
DCC (deleted in colorectal cancer) is a tumor suppressor gene that  
encodes a protein with receptor functions involved in cell migration and 
apoptosis. It is located on the long arm of chromosome 18 near the gene Dpc4, 
leading to an underestimation of its involvement in the molecular pathogenesis 
of pancreatic cancer because the consequence of the chromosomal deletions 
discussed in this topic has been mainly attributed to the loss of the Dpc4 locus. 
However, it has recently been shown that there are some pancreatic carcino-
mas in which there is a real loss to the locus DCC, while the locus Dpc4 
remains intact. BRCA2 is another tumor suppressor gene involved in the 
pathogenesis of some familial forms of pancreatic carcinoma [19].

General Considerations
As previously described, at the time of diagnosis pancreatic cancer appears to 
be an incurable disease in almost all cases, since the rate of incidence of this 
disease is almost coinciding with the rate of mortality. The cases that are 
defined as long-term survivors, disease free after five years, make up a very 
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small cohort of patients, estimated at around 2%. This is due to the absence of 
early diagnosis of pancreatic cancer. The radiodiagnostic methods that are the 
current ones for diagnosis are not able to detect the presence of this cancer in 
its early stages, so at the time of diagnosis, this cancer is already in advanced 
stages and in some cases not operable [20]. Pancreatic surgery has made great 
strides in substantially reducing the operative mortality and improving mor-
bidity of patients with unresectable tumors, but the absence of an effective 
drug therapy seems to be the problem [21]. Until now, the gold standard in 
the treatment of pancreatic cancer has been the use of gemcitabine in adju-
vant setting chemotherapy in favor of other drugs such as 5-fluorouracil or 
platinum derivatives, both of which are less tolerable in therapy [21,22].

Our goal in the presented study was to obtain an in vitro model that 
closely mimics pancreatic ductal adenocarcinoma (PDAC) patients; the pur-
pose was to measure the levels of expression of the molecular determinants 
involved in the metabolism of gemcitabine and relate them to the survival 
of patients treated with this drug in monochemotherapy [23]. To eliminate 
the interference of the abundant desmoplastic component, the tumor epi-
thelial component was isolated using the laser microdissection (LMD) tech-
nology. To complete the study of expression in vivo and in vitro, primary 
cell cultures of pancreatic cancer have been set up [24].

The purpose of this chapter is to describe the techniques for the isola-
tion of the epithelial component of pancreatic cancer. These methods are:
 •  The realization of primary cultures of PDAC
 •  The LMD of normal and cancerous pancreatic tissues.

The LMD and cell cultures focus on removing the “stroma”, which can 
mask the true expression at the mRNA level of tumor cells. With microdis-
section you can study the molecular signature in a static manner for the 
reason that the tissue is locked in a precise biological moment. Cell cultures 
offer the opportunity to study the characteristics of the tumor in a dynamic 
way. Study of the molecular biology of the epithelial component of the 
tumor, desmoplastic excluding the component, can lead to the realization of 
a valid system for the study of ductal carcinoma of the pancreas.

CELL CULTURE OF PDAC
Cell Lines of PDAC
There are also many lines available for PDAC (primarily from the American 
Tissue Culture Collection). These biological systems can be used by 
researchers as a benchmark for their experiments. The main lines of PDAC 
used (about 20) and their characteristics were summarized by Moore [25].
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Primary Cell Cultures of PDAC
The first evidence of tissue culture was done by Roux in the nineteenth 
century, showing its role in the basic sciences. However, it was almost 
50 years later that the first tumor cell line obtained from human tissue was 
established [26]. The first pancreatic cell culture from a human patient was 
done in the 1960s [27]. This preparation was known as a primary cell cul-
ture, which can be cultivated for many passages for a long time period; these 
primary cell cultures were called “Cell Line” or “Immortalized Cell Culture”. 
To isolate primary pancreatic tissues for cell culture, researchers described 
three most important approaches: isolation procedure, enzymatic digestion, 
and cell recovery from malignant fluids.

ISOLATION AND ESTABLISHMENT PROCEDURE
Pancreatic Resections for PDAC
Surgical intervention on resectable pancreas can be sorted into three types: 
total pancreatectomy (TP), when the entire gland is removed in a single 
intervention; pancreatic duodenectomy (PD), which provides for the enu-
cleation of the head of the pancreas at the neck and the adjoining section of 
the duodenum; left pancreatectomy (LP), when the body and tail of the 
pancreas are resected. Cases where the spleen is removed surgically (in 99% 
of patients) are said to be left spleen-pancreatectomy. In some cases there 
were collected fragments of tumor tissue enucleated in the course of lapa-
roscopy or laparotomy from patients in advanced stage of disease and there-
fore not operable. In the following images we can see a typical specimen of 
pancreatectomy (Figures 2.1 and 2.2).

The Role of Surgical Pathology Unit: Diagnosis of PDAC 
(Macroscopic Features)
Ductal adenocarcinoma is a malignant epithelial neoplasm composed of 
mucus-secreting glandular structures that show evidence of ductal differen-
tiation. This tumor has even been called ductal adenocarcinoma or squa-
mous cell carcinoma, pancreatic exocrine, or more simply, cancer of the 
pancreas. It is, together with its most common variants (nonmucinous cystic 
carcinoma, carcinoma with signet-ring cell carcinoma, adenosquamous car-
cinoma and undifferentiated), the most frequent histological type of pancre-
atic cancer. It represents 85–90% of all pancreatic tumors.

According to autopsy case studies, 60–70% of carcinomas of the pancreas 
are localized in the head of the gland, 5–10% in the body, and 10–15% in 
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the queue in a combination of sites. The surgical series report the head of 
the pancreas as the most frequent site (80–90% of cases); 50% of cases are 
localized in the upper half of the head, close to the intrapancreatic portion 
of the common bile duct; and, the remaining in the region behind the 
ampoule Vater or, more rarely, in the uncinate process. The size of the head 
of the carcinoma is between 1.5 and 10 cm, with an average of between 3.5 
and 4.5 cm. The tumors of the body-tail are generally larger (on average 
5–7 cm), given the late onset of clinical manifestations that characterize 

Figure 2.1 Surgical Resection of Pancreas. Pancreatic duodenectomy (PD). (For color 
version of this figure, the reader is referred to the online version of this book.)

Figure 2.2 Magnification of Head of Pancreas. Pancreatic resection margin. (For color 
version of this figure, the reader is referred to the online version of this book.)
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them. Macroscopically, ductal adenocarcinoma is presented as a hard mass, 
in ill-defined margins, with a cutting surface of whitish-yellow color that is 
lost imperceptibly in the surrounding parenchyma (Figure 2.3).

Hemorrhage and necrosis are rare, while there may be microcystic areas. 
With the exception of neoplasms originating in the uncinate process, carci-
nomas of the head of the pancreas are closely related to the common bile 
duct and the main pancreatic duct. The invasion of the wall of these ducts 
and growth determines stenosis and sometimes complete obstruction, with 
dilatation of the upstream segment of the occluded portion. The obstruc-
tion of the common bile duct leads to the development of jaundice, which 
is one of the most frequent clinical signs of carcinoma of the head of the 
pancreas; obstruction of the duct of Wirsung determines obstructive chronic 
pancreatitis. Involvement of the duodenum wall invasion leads to ulceration, 
in more advanced cases. The extrapancreatic retroperitoneal extension is 
often present at the time of diagnosis, with involvement of the mesenteric 
vessels and nerve plexus. In more advanced cases there is extension to the 
peritoneum, stomach, gallbladder, and retroportal tissue. This is in fact not a 
real anatomical structure present in the human body, but rather it is a surgi-
cal margin that separates the gland from the retroperitoneum. Histopatho-
logical evaluation of this fragment tissue is important in providing the 
surgeon with the success of pancreatic resection performed, since the 

Figure 2.3 Pancreatic Ductal Adenocarcinoma. Macroscopic features of tumor. Des-
moplastic reaction (red arrow). (For interpretation of the references to color in this figure 
legend, the reader is referred to the online version of this book.)



Niccola Funel20

presence of tumor in the retroportal tissue is indicative of the presence of a 
residual tumor in the patient, which is indicated by the acronym of R1. In 
the case in which the lamina retroportal is negative, it is called pancreatic 
resection R0, where there is no residual tumor in the retroperitoneum of 
the patient (Figure 2.4). Tumors of the body-tail can infiltrate the main 
pancreatic duct. The extrapancreatic diffusion involves first the retroperito-
neum and can thereafter extend to the spleen, stomach, adrenal gland, and 
peritoneum, with development of carcinomatosis [28].

Microscopic Features
From a microscopic point of view, most of the ductal adenocarcinomas are 
moderately or well-differentiated tumors. The well-differentiated tumors 
(Figure 2.5) consist of large glandular-like structures and glands of medium 
size, irregularly arranged in the context of a desmoplastic stroma. The latter 
is a typical element ductal adenocarcinoma and is responsible for the hard 
consistency that characterizes this malignancy. The neoplastic glands are 
located close to normal structures (acini, ducts, islet), and they may show a 
pattern of growth cribriform, micropapillary or clear mucus secretion. 
Mitotic activity is generally low. The moderately differentiated carcinomas 
are composed of glands of medium size and by tubular structures of irregu-
lar shapes and sizes and variables (Figure 2.6). Usually they completely 

Figure 2.4 Surgical Resection of Pancreas. Posterior margin (green arrows) close to 
mesenteric vein structures (black ink). (For interpretation of the references to color in 
this figure legend, the reader is referred to the online version of this book.)
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replace the acinar parenchyma. The cytological atypia are marked with 
nuclei varied in size, irregular chromatin and nucleoli, and frequent mitosis. 
The production of mucus is reduced.

The poorly differentiated (Figure 2.7) carcinomas are made up of small 
and irregular glands, as well as solid nests and cords of neoplastic cells. The 
stromal reaction is usually very strong, while there may be foci of necrosis 
and hemorrhage. The neoplastic cells are markedly atypical and do not pro-
duce mucin, although there may be individual cells containing cytoplasmic 

Figure 2.5 Well-Differentiated PDAC. H&E staining, 10× magnification. (For color ver-
sion of this figure, the reader is referred to the online version of this book.)

Figure 2.6 Moderately Differentiated PDAC. H&E staining, 10× magnification. (For 
color version of this figure, the reader is referred to the online version of this book.)
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vacuoles. Mitotic activity is high [28]. The microscopic grading of ductal 
adenocarcinomas is based on the combined evaluation of histological, cyto-
logical, and mitotic activity (Table 2.1).

Histological Diagnosis
To evaluate the samples eligible for primary cell culture, we evaluated the 
definitive histological diagnosis of 202 patients who underwent surgery; 
118 cases were classified as ductal adenocarcinoma, according to the Union 
for International Cancer Control (UICC) classification of 2002 and the 
degree of differentiation according to the criteria set by the World Health 
Organization (WHO).

The various degrees of differentiation and Classification of Malignant 
tumors (TNM) were synthesized in the following report (Table 2.2). Eighty-
one carcinomas (68.64%) were from patients who underwent pancreatic 
resection, and 37 (31.36%) were from patients undergoing laparotomy or 

Figure 2.7 Poorly Differentiated PDAC. H&E staining, 10× magnification. (For color  
version of this figure, the reader is referred to the online version of this book.)

Table 2.1 Grading of Exocrine Pancreatic Tumor (i.e., PDAC)
Grading Differentiation Mitoses (10 HPF) Nuclear atypia

1 Well <5 Low
2 Middle 6–10 Moderate
3 Poor >10 High

HPF, high-power field.
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laparoscopy (LE) (Table 2.3). The incidence of pancreatic cancer in both sexes 
were almost identical with a M/F ratio = 1.24 (66 males and 52 females). We 
used a subgroup of them [23,24] to set up the primary cell culture.

Isolation of Tumor Tissue
To set up the primary cell cultures of pancreatic adenocarcinoma, we grew 
only primary tumors derived from pancreatic resections total or partial as 
tumor biopsies of adenocarcinomas from exploratory laparotomy have never 
been cultured before [23,24]. The fragments of tumor tissue (Figure 2.8) cell 
cultures were placed in cold saline solution (4 °C) and brought under a lami-
nar flow hood for primary cell culture preparation. For all operations we 
used the same synthetic medium composed as follows: RPMI 1640 supple-
mented with 1% l-glutamine, 1% antibiotics (ampicillin, streptomycin), and 
10% fetal bovine serum. The first day the tumor is subjected to mechanical 
fragmentation and enzymatic digestion (collagenase type XI concentration 
1 mg/mL in complete culture medium—overnight at 37 °C or for a period 
of time between 18 and 20 h). The second day the cellular part is harvested 
by centrifuging the contents of the flasks at 1200 rpm for 5 min, the super-
natant is discarded, and the cell pellet is plated on two primary culture flasks. 
The third day finally eliminates the supernatant and adhesion of cells onto 
the surface of the plate occurs. Sometimes in the supernatant there is a sig-
nificant component of the cell, so far as could be possible to perform 

Table 2.2 Relationship between Staging and TNM in PDAC Cases
TNM Total Cases G1/3 G2/3 G3/3

Laparoscopy (LE) 37
pT1 N0 Mx 1 1
pT2 N0 Mx 1 1
pT2 N1 Mx 1 1
pT3 N0 M1 2 1 1
pT3 N0 Mx 12 2 4 6
pT3 N1 M1 10 8 2
pT3 N1 Mx 54 3 29 22

Table 2.3 Cases of PDAC Sorted by Surgical Resection Type
Pathology Total PD LE LP TP

PDAC 118 51 37 22 8
Other 84 50 6 24 4
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subcultures with the same rules. Usually during the plating of the tumor at 
most six flasks from primary culture were established. If the procedure has 
been carried out correctly and there has been no contamination by bacteria 
or fungi, in the best cases we observed a mixed cell culture composed of 
fibroblasts, resulting from the tissue surrounding desmoplasia and from a 
fraction of epithelial tumor cells (Figure 2.9).

Figure 2.8 PDAC at the Surgical Pathology Unit after Its Resection. Sampling of tissue 
to start with the primary cell culture. (For color version of this figure, the reader is 
referred to the online version of this book.)

Figure 2.9 Few Days after Culture. Both epithelial and fibroblast cells (desmoplasia) 
are present in primary cell culture (magnification 20×; contrast phase microscopy). (For 
color version of this figure, the reader is referred to the online version of this book.)
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Selection of Epithelial Cell Population
To eliminate fibroblasts we used a solution of trypsin and EDTA (2 mL for the 
25 cm2 flasks) that is able to detach the fibroblasts prematurely compared to 
tumor cells. This operation is performed under a sterile hood, has a duration of 
about 1 min, and is reconstituted with an equal amount of complete medium 
used to cultivate the cells. The procedure is repeated at least every 10 days or 
when the growth of fibroblasts blocks the expansion of the epithelial clusters. 
From our observation, to totally eliminate fibroblasts from primary culture one 
may need a period of two to four months (Figure 2.5). After this period, the 
epithelial cells and fibroblasts are kept separate and grown in parallel for a short 
period of time (2–3 weeks), after which the fibroblasts and their culture 
medium are frozen for long-term preservation. After this stage the epithelial 
cells can be “passed” or “split” and transferred into another flask for primary 
cell culture. The cells are detached from the support on which they are attached 
forming a cell monolayer using the same solution of trypsin and EDTA used 
for fibroblasts extrusion, but for a longer period of time longer, about 8 min.

Culturing and Storage
After checking the detachment of the monolayer to the inverted micro-
scope, the enzymatic action is blocked with complete medium (quantitative 
ratio enzyme solution/complete medium = 1:1). The cells at this moment 
are in suspension and are centrifuged (1200 rpm × 5 min), recovered, and 
resuspended in the culture medium (same solution mentioned above). This 
phase serves to remove the trypsin and the cells that have dissolved in the 
medium can be counted using a Burker chamber and seeded again with a 
dilution factor according the researcher’s needs. In the first 10–15 passages 
the cells are diluted to the maximum three-fold. With the progress of life 
time and the increase of the steps, the dilution factor is enhanced. After the 
70th passage cell cultures are passed with a dilution factor of 100.

To preserve the epithelial cells and fibroblasts, samples are cryopreserved in 
complete culture medium containing 10% dimethyl sulphoxide in the ratio 
volume/volume and 30% fetal bovine serum (FBS). This type of solution 
should always be freshly prepared and not exposed to direct light. The cells to 
be retained are suspended in 1 mL of this medium for freezing and stored in an 
ultrafreezer to −80 °C for a few days and then permanently transferred to liq-
uid nitrogen at −196 °C temperature. In this way the cells can be stored even 
for very long periods of time. It is possible to restore frozen cells after a storage 
period. It is advisable not to use such cryopreserved cells beyond three years.
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CHARACTERIZATION OF CELL CULTURES

Primary cultures are important to gain molecular insights in order to under-
stand, in primis, whether the primary cell cultures originate from their cog-
nate pancreatic tumor tissues [24,28]. Since 1986, about 30 research groups 
have been obtaining primary cell cultures from PDAC, also showing their 
characteristics [29]. Here we will try to give some characterization of the 
primary cultures.

MORPHOLOGY

PDAC generally exhibits middle/high grade of differentiation in the tissue 
(Figure 2.10). Concerning cell lines their morphology is normally assessed 
by contrast phase microscopy. More details could be acquired by other 
methods such as electron microscopy and immunostaining, and histological 
staining is to usually find two different morphologies as reported in the fol-
lowing figure (Figure 2.11).

GENOTYPING

The selection of primary cell culture from the tumor, could be referred to 
“gain of function”. As reported previously the effects of four more-frequent 
genetic mutations/alterations are observed in PDAC. These genes—Kras, 
Smad4, p53, and Dpc4 [25,30,31]—are related to the preneoplastic lesion 
process of PDAC [32,33]. In this group of genes only one oncogene  

Figure 2.10 Primary Cell Culture of PDAC. Pure population of epithelial cells (magnifi-
cation 4×; contrast phase microscopy). (For color version of this figure, the reader is 
referred to the online version of this book.)



Advances in Primary Cell Culture of Pancreatic Cancer 27

(i.e., Kras) has been reported. However another important oncogene is the 
epithelial growth factor receptor (EGFR). This resulted in alteration (gain 
of function) in PDAC patients who underwent surgical resection [34], in 
PDAC cell culture [35] and in mouse model obtained by orthotopic implant 
of primary cell culture of PDAC [36]. The genes cited above are used rou-
tinely in PDAC cell culture genotyping.

PHENOTYPING

The PDAC cells usually show the phenotype behaviors according to the 
differentiation grade of cognate origin tissues. Indeed we can find the 
expression of some markers related to epithelial derivation. Included in the 
list are: CEA, cytokeratins (i.e., Ck7, Ck8, Ck18, Ck19), EGFR, and CA 
19.9 [36]. Sometimes, it could be possible to detect enhanced expression of 
vimentin [37].

Cell Culture vs. Origin Tissue
It should be necessary to compare the primary cell cultures and their cog-
nate tissues to investigate whether there could be some differences in geno-
type and phenotype patterns. Of course, the phenotype sometimes could be 
different, because after many passages, the cells could shed away the anti-
gens. Indeed, the genotypes must be close to each other, especially in the 
first steps of cellular growth [24]. So far K-Ras gene seems to be the first 
gene showing the pancreatic origin of primary tumor cell culture. In all 
cases it could be better to compare the pure population of cell vs. their ori-
gin tissues submitted to LMD. This approach could take out only epithelial 
cells, which represent the true target of analyses.

Figure 2.11 Pure Population of Primary Cell Culture of PDAC. Cellular growth by two 
different models: by cluster (left) and by single cell (right). (For color version of this fig-
ure, the reader is referred to the online version of this book.)
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Cellular Growth (Doubling Time)
The doubling time (DT) of the cells directly expresses the speed of cell growth. 
Often this parameter is directly associated with the aggressiveness of the cell 
culture and then also with the tumor from which it originates.  The DT expresses 
the interval of time associated with the duplication of cell starting number. To 
obtain this measure (hours are the conventional unit), it should be necessary to 
perform a triplicate experiment, counting the variation of cell number in front 
of the time. One of these formulas was reported in [29]. However, we would 
like to introduce a new approach to evaluate this parameter. According to the 
 criteria described above, we would like to define the speed of growth as follows:

The function is:

 f (x) = Cellular Growth 

 f (x) =
(Nt1 − Nt0)

(Tt1 − Tt0)
 (2.1)

where (N) represents the number of cells, (T) represents the time. t1 and t0 
are two different moment of cellular growth (CG). So far we can express 
the Eqn (2.1) as “delta” of number of cells out of time.

 f (x) =
Δ N

Δ T
 (2.2)

To have the variation of time could be easy, because this represents the 
time of experimentation, but how is it possible to measure the variation 
of cell number? From each cellular division we obtain two new cells, but 
the cell number gains one more cell only. This concept is showed in  
Figure 2.12.

We can consider that the number of cells increases by one unit after each 
cellular division. The “delta N”, the number of new cells, is equal to the 
number of cellular divisions (D).

 
(t1 − t0) ⇒ Δ N = D
f (x) = D

Δ T
 (2.3)

 f (x)Nt0 =
Dt1

Δ Tt1 − t0
 (2.4)

In conclusion we can express the “DT” as:

 DT(t1 − t0) =
Dt1

Nt0

= 2 
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The calculation of the DT is important in order to count the final num-
ber for each interval of time, which is presented as Funel’s equation.

SECOND LEVEL OF BIOLOGICAL MODELS
LMD on Primary Cell Cultures
LMD is a technique that has been developed over the last decade and has 
had great success in the molecular study of tumors. The method is defined 
by the third generation as this appears to be a development of the two 
methods specified previously that microdissected samples with two differ-
ent procedures. It is worth mentioning that in all the techniques of micro-
dissection, a laser beam is controlled by the operator who is able to directly 
select the affected area on the histological preparation. In the first genera-
tion the levy of the material was carried out directly on the histological 
preparation fixed to the slide by affixing to a solid support containing a 
synthetic resin that is able to withdraw the tissue following the activation of 

Figure 2.12 The Scheme Shows the Theory According to Which We Have One Addi-
tional Cell After Each Division. The number of additional cells is equal to the number of 
total divisions. (For color version of this figure, the reader is referred to the online ver-
sion of this book.)
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the laser beam. In the second generation, the method changed radically as 
the histological sample was fixed on a membrane, which was then micro-
dissected by laser beam, which also had the task of “catapulting” the speci-
men within the desired container. This technique is also known as laser 
microdissection and pressure catapulting, manufactured by PALM Microla-
ser Technologies, Bernried, Germany. Between the first and the second 
generation techniques, three substantial differences emerged: The laser 
beam that was initially directed from above is directed from below in 
microdissection of the second generation. The chemical support containing 
the resin used to capture the histological preparation is replaced by a film 
PET (Poly-Ethylene Terephthalate), which exclusively serves as a support 
for the microdissection of the sample. Finally, the recovery of the material 
no longer occurs due to a chemical reaction, but allows the mechanical 
action, the fact of “catapult” [38].

The latest generation of laser microdissectors uses two approaches 
described previously, with a third additional approach. The laser beam strikes 
the specimen from above (as in the first instrument generation) and the 
sample is fixed on a support film (as in the second instrument generation), 
but the collection of the microdissected material occurs by gravity due to 
the fact that the sample is reversed. The advantages of this application are 
the following: (1) the laser beam is collinear to the optical path of the 
microscope, then the operator can physically follow the microdissection; (2) 
the collection of the material by gravity is much easier compared to other 
systems of previous generations.

In the study of pancreatic cancer this aspect is most important because 
this method allows one to select a population of pure cancer cells enucle-
ated from the peritumoral tissue (Figure 2.13). The LMD, as we have 
described above, is a preparative method, since it guarantees the recovery of 
distinct cell populations. Through this technique it is possible to study, in 
the pancreas, the non-neoplastic parenchyma, separating it from infiltrating 
carcinomatous component [39]. By this procedure it is possible to separate 
and study different cell populations present in the same tissue sample. For 
this reason, quantitative PCR appears to be by far the most used technique, 
that is frequently used in combination with the LMD in the pancreatic 
cancer studies [40,41], in chronic pancreatitis and preneoplastic lesions [42], 
since the expression levels of RNA of specific molecular determinants can 
be compared in different cell types present within a sample [23,24,28]. Fur-
thermore, the LMD technique is applicable also to primary cell culture 
through two different modalities. In the former it is possible to cut the fixed 
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primary cells (Figures 2.14 and 2.15); in the latter it is possible to separate 
the live cells, during their cultivation (Figures 2.16 and 2.17) [43].

The goal of both LMD and primary cell cultures is to keep out a pure 
population of epithelial cells not only in PDAC but in all carcinomas. This 

(A) (B)

(C) (D)

Figure 2.13 Laser Microdissection of PDAC Tissue. The figure shows the four most impor-
tant phases of procedure: (A) Identification of Area; (B) Selection of Areas of interest;  
(C) Cutting: (D)Harvested fragment of Tissue. Magnification 10×; Hematoxylin staining. 
(For color version of this figure, the reader is referred to the online version of this book.)

(A) (B) (C)

Figure 2.14 Preparation of Primary Cell Culture for LMD. (A) Cells seeding in appropri-
ate chamber and condition to allow the best cell adhesion on PET membrane; original 
magnification; (B) Primary cell culture on PET membrane. Contrast phase light micros-
copy, magnification 4×; (C) Magnification 10×. (For color version of this figure, the reader 
is referred to the online version of this book.)
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(A)

(B)

(C)

(D)

Figure 2.15 LMD Procedure on Primary Cell Culture Fixed on PET Membrane and 
Stained with Hematoxylin Only; Magnification 20×. (A) Identification and (B) Selection 
of interest areas; (C) Cutting; (D) Pooled samples. (For color version of this figure, the 
reader is referred to the online version of this book.)
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(A) (B)

Figure 2.16 Images of Primary Cell Cultures from Two Different Conditions. (A) Normal 
cultivation of plastic support; (B) Cultivation on IDIDI support (Leica, Munchen, Ger-
many) and direct light microscopy observation; magnification 4×. (For color version of 
this figure, the reader is referred to the online version of this book.)

(A) (B)

(C)

Figure 2.17 LMD Procedure on Live Primary Cell Culture Cultivated on PET Mem-
brane. Microdissected areas showing living cells at different magnifications (A) 4×; (B) 
10×; (C) 20×. (For color version of this figure, the reader is referred to the online version 
of this book.)
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procedure allows the study of the true part of carcinoma that represents the 
real target of different therapeutic approaches.

THREE-DIMENSIONAL CELL CULTURES

Three-dimensional (3-D) culture of tumor cells was introduced as early as 
the 1970s. Initially, investigations focused on the morphology of and inter-
actions between tumor cells [44]. Various PDAC cell lines were tested for 
their ability to grow as spheroids in 3-D culture [45,46]. Among these, the 
widely used Panc-1, which carries both KRAS and p53 mutations, was 
shown to form aggregates under appropriate culture conditions [45]. It 
became apparent that 3-D cultures are generally more resistant to chemo- 
and radiotherapy than their 2-D counterparts [47,48], however three-
dimensional in vitro tumor cell models allowing for fast and standardized 
drug screening are not routinely employed. Based on these observations, a 
new hypothesis relating chemoresistance to the microenvironment, i.e., the 
stroma and extracellular matrix, was proposed. This novel concept, called 
cell adhesion mediated drug resistance (CAM-DR), was proposed for bone 
marrow–derived malignancies [49], but has not been applied to solid tumors, 
including PDAC [50]. In this study, we characterize a 3-D tumor model in 
which the PDAC acquires a more stroma-rich phenotype, which simulates 
more closely the in vivo situation and provides evidence for the CAM-DR 
concept. However, the 3-D model is not referred to as spheroid only to 
describe their chemoresistant effects [51]. Some authors used this term to 
indicate the matrigel-embedded cell culture of PDAC. This model could be 
also important to study the modulation of growth factors (i.e., TGF-β) 
involved in the growth of cells and their chemoresistance [52]. Indeed, 
another 3-D model is represented by the integration of cell lines and pri-
mary cell culture of PDAC with different polymeric scaffold [53]. So far 
microenvironmental conditions regulate tumorigenesis [54,55], and biomi-
metic model systems are necessary to study how cancer is dependent on 
these conditions.

IN VIVO MODELS

It is also possible to obtain in vivo models of pancreatic cancer using cell 
lines [56] and primary cultures of PDAC [36]. This, for a number of fea-
tures previously mentioned, could be a better preclinical model for drug 
testing. In the orthotopic murine model obtained using primary cultures, 
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morphological, pathological, and molecular profiles entirely similar to 
those found in cognate human tissues [36] have been observed. For this 
reason, these types of models may be better than those obtained from cell 
lines in which there is no trace of the original tissue.

APPLICATIONS

Realizing that PDAC primary cell cultures could allow multiple applica-
tions in oncology, the five most important levels for primary cell culture 
applications are: (1) 2-D cell culture, (2) 3-D Gel matix-embedded, (3) 
spheroids (3-D mixed cell cultures), (4) 3-D scaffold embedding cell culture, 
and (5) in vivo models. The goal for each model is to test the efficacy of 
therapeutic approaches against PDAC. The more complicated preclinical 
models (i.e., in vivo systems) return better results in terms of clinical 
applications.

CONCLUSION

All experimental preclinical models that we have described here aim to 
highlight the morphological, molecular, and genetic features of PDAC 
in vitro and in vivo. The possibility to select pure cell populations using cell 
cultures and LMD allows us to have experimental models that closely mimic 
human PDAC. All of these models have room for improvement and are 
expected to become more advanced in the coming years. This will impact 
the development of new experimental therapies based on the molecular 
characteristics in vitro and in vivo. Collectively, the primary models can 
become the major research tools to understand and fight the drug resistance 
of this devastating disease.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) comprises the fourth most com-
mon cause of cancer lethality in Western countries with a less than 5% 
reported five-year survival [1,2]. General increases in the life expectancy of 
citizens in industrialized countries primarily lead to an elevation in reported 
cases of PDAC [3,4] with an annual incidence rate similar to its death rate. 
PDAC is characterized by late diagnosis, aggressive local invasion, early sys-
temic dissemination, and resistance to chemo- and radiotherapy [5]. Despite 
advances in surgical techniques and therapeutic regimens in the past 30 years, 
no substantial improvement in the survival of PDAC patients has been 
noted. We aim to provide an overview on the current status and major chal-
lenges of local and systemic treatments for PDAC. Further, novel rationales 
behind the development of promising next-generation therapy strategies 
for pancreatic cancer are explored.
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Diagnosis, Grading, and Treatment Strategies of Pancreatic 
Cancer
Following diagnosis of PDAC, planning the patient’s treatment regimen is 
optimally based on the results of diagnostic and imaging tests, and in con-
sultation with experienced multidisciplinary professionals, preferably in 
high-volume care centers. Variations in clinical evaluation and local man-
agement of pancreatic tumors exist among medical institutions in Europe 
and the United States. Nevertheless, general guidelines have been estab-
lished for selection of the best treatment options for different subentities of 
pancreatic cancer (http://www.nccn.org). These involve proper assessment 
of tumor stage at the time of diagnosis, particularly with respect to discrimi-
nation between resectable, locally advanced or metastatic, unresectable dis-
ease. Accordingly, the assignment of stage-specific treatment strategy could 
be appropriately designed (Figure 3.1).

Resectable Pancreatic Cancer
Only approximately one-fifth to one-sixth of patients diagnosed with 
PDAC are currently eligible for surgical resections, most of which display 
marginal clinical benefit and postoperative disease recurrences either locally 
(50–80%), peritoneally (25%), and/or in the liver (50%) [6,7]. Identification 

Figure 3.1 Current Therapy Options in Management of Pancreatic Cancer. The sche-
matic shows the three key entities and different possible treatment approaches. (For 
color version of this figure, the reader is referred to the online version of this book.)

http://www.nccn.org
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of patients with resectable disease constitutes an initial challenge in the 
adequate management of pancreatic cancer. Classification of the resection 
state of cancer patients is highly dependent on preoperative radiographic 
imaging such as abdominal computed tomography (CT) and magnetic res-
onance imaging (MRI), as well as on endoscopic ultrasound-guided fine-
needle biopsy, minimally invasive laparoscopy, and serum CA 19-9 levels [8]. 
Abdominal CT imaging (optimized for pancreas) is the preferred method at 
most centers as the diagnostic tool for defining resectability [6,8]. Based on 
CT assessment, tumors are considered resectable when three major criteria 
are achieved: (1) localized intrapancreatic disease; (2) no involvement of, or 
extension into, the celiac axis or superior mesenteric artery (SMA), and (3) 
patent confluence of the superior mesenteric-portal vein (SMPV) [9].

Minimally invasive laparoscopic distal pancreatectomy (LDP) and lapa-
roscopic pancreaticoduodenectomy (LPD) were originally introduced in 
the mid-1990s [10]. Studies of LDP have thereafter primarily focused on 
evaluating clinical outcome in patients with low-grade lesions rather than 
PDAC. Despite decreased blood loss, shortened hospitalization, and reduced 
complications, as recorded by a meta-analysis comparing LDP to open sur-
gery, mortality rates observed for both operations were similar [11]. Improve-
ments made later in laparoscopic devices and incorporation of robotic 
platforms optimized the speed, mobility, precision, and aptitude of these 
minimally invasive surgeries [10,12,13] as concluded by a comprehensive 
study of robotic-assisted LDP [14]. However, decisive conclusions on the 
efficacy of LDP have been impeded by the particular nature and position of 
the pancreas, as well as its proximity to vascular structures and the 
 insufficiency of available data outcomes.

Postoperative Adjuvant Therapy
Improved local tumor control and increased overall survival were reported 
in patients with gastrointestinal (GI) malignancies (pancreatic-rectal- 
stomach) exposed to chemoradiation succeeding their surgery [15–17]. This 
improved outcome might be attributed to potency of chemoradiation in 
targeting microscopic lesions within the primary tumor area, or in decreas-
ing the possibility of recurrence in regional lymph nodes [8]. Up to approx-
imately 90% success rate in controlling local disease has been reported in a 
population of pancreatic cancer patients after accurate diagnosis and 
 multidisciplinary treatment consisting of surgery and chemoradiation [18].

To date, no standard adjuvant treatment has been unambiguously 
accepted for treatment of pancreatic cancer, in part due to the lack of 
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sufficiently powered randomized trials and heterogeneity of in therapy pro-
tocols. An overview of some key clinical studies is provided in Table 3.1. 
While chemotherapy is considered the standard treatment in Europe, cen-
ters in the United States provide chemotherapy alone, chemoradiotherapy, 
or chemotherapy followed by chemoradiotherapy [19]. The efficacy of 
5-fluorouracil (5-FU) and 5-FU-based chemoradiation after surgical resec-
tion of pancreas tumor was evaluated in an initial clinical trial that was first 
reported in 1985 and was led by the Gastro-Intestinal Tumor Study Group 
(GITSG) [20,21]. As compared to the observation group (surgery alone), 
patients who received the adjuvant external beam radiotherapy (EBRT, 
40 Gy) delivered in split course and chemotherapy (500 mg/m2 5-FU), dis-
played significantly longer median survival times (20 vs. 11 months) and 
two-year survival (43% vs. 19%). However, this study was terminated due to 
the poor accrual of enrolled candidates (43 patients in eight years). Treat-
ment of 30 additional patients in an expanded trial yielded a median 

Table 3.1 Randomized Trials of Adjuvant Therapy for Resectable Pancreatic Cancer 
Patients

Trial Year Patients Assigned Treatment

Overall 
Survival 
(months) p-value

GITSG 1985 43 5-FU chemoradiation
Observation (surgery alone)

21
10.9

0.035

GITSG 
expanded

1985 30 5-FU chemoradiation 18 n/a

EORTC-
40891

1999 114 5-FU chemoradiation
Observation (surgery alone)

17.1
12.6

0.09

ESPAC-1 2004 289 5-FU/Leucovorin  
chemotherapy

No chemotherapy
5-FU chemoradiation
No chemoradiation

20.1
15.5
15.9
17.9

0.009
0.05

RTOG-
9704

2006 388 Gemcitabine → 5-FU 
chemoradiation →  
Gemcitabine

5-FU → 5-FU chemoradia-
tion → 5-FU

20.6
16.9

0.033

CONKO-
001

2007 354 Gemcitabine chemotherapy
Observation (surgery alone)

22.1
20.2

0.06

ESPAC-3 2010 1088 Gemcitabine chemotherapy
5-FU/Folate chemotherapy

23.6
23.0

0.39
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survival of 18 months and a two-year survival of 46%, thus confirming the 
findings of the initial GITSG trial.

In 1999, a second trial was reported by the European Organization for 
Research and Treatment of Cancer (EORTC-40891) investigating pancre-
atic head and peri-ampullary cancer [22]. Patients were randomized to 
receive either 40 Gy EBRT in a split dose with 5-FU or no treatment 
(observation arm) after surgery. The median survival was 19 months for 
observation vs. 24.5 months in the chemoradiation group (p = 0.2). Due to 
the ambiguity of data from both trials, the European Study Group for Pan-
creatic Cancer (ESPAC-1) initiated a randomized multicenter clinical trial 
investigating the effectiveness of chemoradiotherapy and chemotherapy 
after pancreas cancer resection [23]. Patients were randomly allocated into 
four treatment groups: chemotherapy (425 mg/m2 5-FU, 20 mg/m2 leu-
covorin); chemoradiotherapy (40–60 Gy EBRT split course, 425 mg/m2 
5-FU, 20 mg/m2 leucovorin); chemoradiotherapy followed by chemother-
apy; or no further treatment. This study reported beneficial effects of adju-
vant 5-FU-based chemotherapy as compared to surgery alone. However, 
addition of radiotherapy was associated with inferior survival as compared 
to surgery alone or adjuvant chemotherapy arms. The outcome of the 
ESPAC-1 trial is controversially debated in the community. In particular, 
the rationale behind different radiotherapy schemes administered in these 
trials, i.e., split-course radiotherapy, was conceived in the 1970s. In analogy 
to the EORTC-40891, for example, patients were treated for two weeks 
with 5 × 2 Gy fractions, then the progression of tumor was assessed, and 
eventually after an interval of two weeks, the treatment was repeated to a 
total dose of 40 Gy. Another example would have been two courses of 20 Gy 
in 10 fractions each followed by a three to four week rest period. Depend-
ing on the response and the patient’s clinical status, another 10–20 Gy in 
5–10 fractions was administered as a final boost. Moreover, irradiation 
was administered sometimes with only two fields (anterior-posterior and  
posterior-anterior). Likewise, 5-FU-based chemotherapy was started,  
e.g., prior to radiotherapy as bolus or at 25 mg/kg per 24 h (at max. daily 
dose of 1500 mg). This is in contrast to continuous administration of 5-FU 
or gemcitabine-based chemotherapy delivered with modern radiotherapy 
techniques, i.e., four or more fields, allowing, e.g., integrated boost concepts 
using IMRT or additional dose escalation with IORT in doses of 45–54 Gy. 
Therefore, the relatively high local tumor recurrence rates constituting 62% 
of all recurrences (as compared to the more common pattern of distant 
recurrences observed in this disease), and the excess mortality observed 
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primarily in the second year, suggest a potential role for late radiation toxic-
ity in surrounding normal organs, such as kidney damage, and suboptimal 
doses prescribed to the tumor region among possible mechanisms discussed 
for the poor outcome of the radiotherapy arm in ESPAC-1 trial [24]. In 
conclusion, the low quality of radiation administered at different centers in 
the ESPAC-1 clearly indicates the need for randomized prospective trials 
using modern radiotherapy techniques to ultimately evaluate the role of this 
 therapeutic modality in the adjuvant treatment of PDAC.

The Radiation Therapy Oncology Group (RTOG-9704) investigated the 
efficacy of gemcitabine (1000 mg/m2/week) or 5-FU (250 mg/m2/day)  
chemotherapy administered before and after 5-FU-based chemoradiation 
(50.4 Gy EBRT) in 388 patients with pancreatic head cancers [25]. Evalua-
tion of data revealed prolonged overall survival in patients treated with  
gemcitabine (20.6 months median survival) as compared to 5-FU (16.9 months 
median survival). In contrast to the European ESPAC trials, the RTOG  
investigators have shown that failure in adhering to the specified radiation 
therapy protocols was associated with decreased survival in RTOG-9704 [26].

Additional evidence for the beneficial effects of adjuvant chemoradiation 
in PDAC is further provided by two large volume U.S. centers, Johns  
Hopkins University and the Mayo Clinic, which together investigated more 
than 1200 patients. They found an improved overall survival (OS) after 5-FU-
based adjuvant chemoradiation (50.4 Gy EBRT) as compared to surgical 
resection alone (median survival 21.1 vs. 15.5 months, p < 0.001) [27]. Their 
data indicate sustained benefits of chemoradiation with improved two- and 
five-year OS rates as compared to surgery alone (44.7% vs. 34.6%; 22.3% vs. 
16.1%, p < 0.001).

Encouraging five-year survival rate (55%) was obtained by an adjuvant 
interferon-based chemoradiation phase II trial performed at the Virginia 
Mason University and followed up by the American College of Surgeons 
Oncology Group (ACOSOG) [28,29]. However, these data were not con-
firmed by the randomized phase III trial led by the University of Heidel-
berg [30]. In this study, patients were treated after surgery with cisplatin, 
interferon alpha2b, 5-FU, and radiotherapy followed by two cycles of 5-FU 
monotherapy (arm A) or with six cycles of 5-FU monotherapy (arm B). 
Median survival for the patients who received at least one dose of the study 
medication was 32.1 months in the combination arm A and 28.5 months in 
5-FU alone arm B (p = 0.49). Patients treated with the combination therapy 
more frequently experienced grade III/IV toxicities as compared to the 
5-FU alone arm (85% vs. 15%). Nonetheless, this study demonstrates that 
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management of operable PDAC patients with surgery and chemotherapy 
and/or chemoradiotherapy has improved over time as the relatively high 
median survival in both arms suggest. Currently, a phase III trial conducted 
by the RTOG-0848 is joining American and European efforts (EORTC) 
in evaluating efficacy of postoperative erlotinib treatment after five months 
of gemcitabine-based chemoradiation [7].

Toward further development in the direction of chemotherapy alone in 
the adjuvant setting, the ESPAC-3 trial compared the influence of gem-
citabine to that of 5-FU/folate–based adjuvant chemotherapies [31]. 
Although no differences in median survival were observed for both treat-
ment modalities (23.6 vs. 23 months), better tolerance to gemcitabine 
(revealed by fewer adverse effects) was detected in corresponding patients. 
In a randomized trial initiated in Germany and Austria by the Charité 
Onkologie Clinical Studies in GI Cancer-001 (CONKO-001), patients 
treated with gemcitabine also revealed significantly longer median disease-
free survival (13.4 months) as compared to the surgery alone group 
(6.9 months) [32]. Consequently, based on these studies postoperative che-
motherapy has become standard in treatment of operable PDAC in Europe. 
Later on, the Japanese Study Group of Adjuvant Therapy for Pancreatic 
Cancer conducted a randomized phase III trial comparing gemcitabine 
with surgery, but only in 118 patients with resectable disease [33]. Treatment 
with gemcitabine (1000 mg/m2) contributed to prolonged disease-free 
 survival as compared to surgery alone (11.4 vs. 5 months).

Preoperative Neoadjuvant Therapy
Several rationales favor the implementation of radiochemotherapy prior 
to surgery in a “neoadjuvant” setting [7,8]. First, surgery itself is associated 
with increased risk of morbidity and mortality, which may consequently 
result in delayed/canceled postoperative adjuvant treatment. Therefore, 
preoperative chemo- or radiotherapy may ensure full dose delivery, unlike 
for adjuvant treatment. Second, development of metastatic disease during 
the time frame of neoadjuvant therapy would select patients with advanced 
systemic disease that might benefit less from more aggressive local regi-
mens including surgery. Third, improved delivery of chemotherapeutic 
agents may be possible by the still intact blood supply prior to surgery. 
Fourth, disrupted perfusion caused by the interruption of the tumor’s 
blood flow after initial surgery reduces oxygen levels within tumors, ren-
dering cells resistant to radio- as well as chemotherapy. Fifth, reduced 
adverse and toxic effects have been reported in patients with GI 
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malignancies exposed to preoperative  treatment regimens, as shown by a 
German Rectal Cancer Study [34].

Successive phase II clinical trials testing the efficacy of neoadjuvant  
therapy have been initiated at MD Anderson Cancer Center [35–39]. In 
1992, efficacy of 5-FU (300 mg/m2/day) and irradiation (50.4 Gy, in certain 
cases intraoperative radiation therapy (IORT)) was tested in 28 patients 
with cytologic or histologic proof of localized adenocarcinoma of the  
pancreas head [35]. Four to five weeks of neoadjuvant chemoradiation  
provided a window for metastatic development in approximately 40% of 
enrolled patients, as displayed by pathological restaging. The remaining 
patients were treated with 5-FU (300 mg/m2/day) and irradiated with rapid 
fractionation (30 Gy in 2 weeks, i.e., 10 daily fractions of 3 Gy, ±10–15 Gy 
intraoperative radiotherapy (IORT) in 74% of patients) [36]. Around 40% 
of subjects displayed a pathologic partial response to treatment (>50% non-
viable tumor cells). Both irradiation modalities (standard 50.4 Gy [35] vs. 
rapid [36]) yielded similar local tumor control. Median survivals recorded 
were 18 and 25 months for standard and rapid chemoradiation regimens, 
respectively. This study concluded that favorable locoregional control may 
require a combination of preoperative 5-FU/rapid fractionation chemora-
diation, surgery, and IORT [36]. Investigation of the influence of paclitaxel 
(60 mg/m2) in combination with rapid fractionation (30 Gy EBRT), con-
ducted later on resectable pancreas cancer, showed no advantage of this 
neoadjuvant therapy over 5-FU-based chemoradiation [37]. Of note, pacli-
taxel-based neoadjuvant chemoradiation demonstrated a higher relative 
toxicity (nausea, dehydration, vomiting) as compared to conventional 
5-FU-based regimens. Subsequently, two phase II trials, including 86 and 
90 resectable pancreatic cancer patients, evaluated preoperative chemora-
diation using gemcitabine alone (400 mg/m2) or in combination with cis-
platin (30 mg/m2) and radiotherapy (30 Gy in 10 fractions), respectively 
[38,39]. Patients treated with gemcitabine displayed better pathological 
findings, i.e., higher rates of microscopic tumor clearance (R0 resection) 
and longer overall survival than those treated with 5-FU– or paclitaxel-
based neoadjuvant treatments. Addition of cisplatin with gemcitabine had 
no obvious improvement on patient outcome as compared to gemcitabine 
alone [39]. In conclusion, the MD Anderson data clearly suggest favorable 
outcomes for primarily operable patients using a neoadjuvant gemcitabine-
based hypofractionated (30 Gy in 10 fractions ± IORT) radiochemotherapy 
regimen.
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Borderline Resectable Pancreatic Cancer
In clinical practice, definition of resectability of PDAC is often made by 
multidisciplinary boards consisting of specialist surgeons and radiologists. 
Nevertheless, an operable tumor may turn out to be not resectable and vice 
versa during the preoperative laparoscopy or later surgery. Considering 
these uncertainties, the final decision on operability is made by surgeons 
and could tremendously vary between different centers, depending on their 
expertise. Based on CT assessment, and in the absence of metastatic disease, 
two definitions of borderline resectable have been introduced by the MD 
Anderson Cancer Center (MDACC) [40] and the National Comprehensive 
Cancer Network (NCCN) [41]. The NCCN describes borderline resect-
able pancreatic head cancer as “tumor abutment of the superior mesenteric 
artery (SMA), severe unilateral superior mesenteric vein (SMV) or portal 
vein (PV) impingement, gastroduodenal artery (GDA) encasement up to its 
origin from the hepatic artery, or colon and mesocolon invasion” [41]. Like-
wise, borderline resectable tumors are defined at MD Anderson by tumors 
with “encasement of a short segment of the hepatic artery, without evi-
dence of tumor extension to the celiac axis, that is amenable to resection 
and reconstruction; abutment of the SMA involving ≤180° of the circum-
ference of the artery; or short-segment occlusion of the SMV, PV, or SMPV 
confluence with a suitable option for vascular reconstruction available 
because of a normal SMV below and normal PV above the area of tumor 
involvement” [40].

One therapy strategy for this category of PDAC involves induction che-
motherapy followed by chemoradiation and restaging prior to surgery [7]. 
Katz et al. recently reported the outcome of a trial including borderline 
resectable patients treated with either chemotherapy, chemoradiation, or 
both [42]. Out of the 125 patients who completed neoadjuvant therapy, 
partial response (PR, >50% reduction of viable tumor cells) was observed 
in 56%, 79 patients were eligible for surgery after restaging, and 94% under-
went a margin-negative pancreatectomy. Data revealed that neoadjuvant 
therapy succeeded by surgery prolonged median survival by 27 months as 
compared to those patients who could not undergo surgical resection  
(40 vs. 13 months, p < 0.001). A pilot study, led by the Alliance for Clinical 
Trials in Oncology, National Cancer Institute (NCI), is currently testing 
the feasibility of FOLFIRINOX (5-FU, leucovorin, oxaliplatin, and irino-
tecan) and 5-FU-based chemoradiation for patients with borderline resect-
able disease [7].
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Locally Advanced Unresectable Pancreas Cancer
Patients with surgically unresectable disease and with no sign of metastatic 
spread comprise around 15–20% of pancreatic cancer patients. Until recently 
these patients were treated similar to those with advanced metastatic disease. 
However, a growing body of data indicated a higher median survival 
(∼1 year) in these patients as compared to patients with metastatic lesions 
[38,40] suggesting that they may benefit from a more intensified therapy. 
Treatment options optimally selected for these patients are still to be estab-
lished. Chemoradiation in addition to chemotherapy comprise the founda-
tion of treatment for locally advanced unresectable pancreatic cancer 
(LAPC) disease. Various clinical studies have been initiated to investigate 
clinical outcome in this relatively new category of pancreatic cancer patients 
(Table 3.2).

Table 3.2 Randomized Trials of Therapy for Advanced Pancreatic Cancer Patients

Trial Year Patients Assigned Treatment

Overall 
Survival 
(months)

GITSG 1981 194 5-FU + moderate dose radiation
5-FU + high dose radiation
High dose radiation

10
10
5.5

GITSG 
follow-up

1988 43 5-FU chemoradiation → Strepto-
zocin/Mitomycin/5-FU

Streptozocin/Mitomycin/5-FU 
chemotherapy

9.5
7.5

ECOG 1985 191 5-FU chemoradiation
5-FU chemotherapy

8.3
8.2

Taiwan study 2003 34 Gemcitabine chemoradiation
5-FU chemoradiation

14.5
6.7

GERCOR 2007 181 Chemotherapy → Chemoradiation
Chemotherapy

15
11.7

MDACC 2007 323 Gemcitabine chemotherapy →  
Gemcitabine chemoradiation

Gemcitabine chemoradiation

11.9
8.5

FFCD/SFRO 2008 119 Gemcitabine chemotherapy →  
Gemcitabine chemotherapy

5-FU/Cisplatin chemoradiation →  
Gemcitabine chemotherapy

13
8.6

ECOG 2011 74 Gemcitabine chemoradiation
Gemcitabine chemotherapy

11.1
9.2
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5-FU-Based Clinical Studies
The earliest clinical trial investigating 194 LAPC patients was conducted in 
1981 by the GITSG [43]. Three study groups were randomized and assigned 
to either high dose irradiation (60 Gy in split course), moderate dose irra-
diation (40 Gy in split course) with 5-FU chemotherapy or to high dose 
with 5-FU. The median survival and one-year survival were 5.5 months and 
10% for radiotherapy vs. 10 months and 40% for combined chemoradiation. 
No difference in OS was observed between the two chemoradiation arms 
[43]. In a prospective follow-up GITSG trial, the overall survival efficacy of 
multidrug chemotherapy alone (streptozocin, mitomycin, and 5-FU (SMF)) 
or continued after chemoradiation (5-FU) was evaluated in LAPC patients 
[44]. Patients allocated to the chemotherapy/chemoradiotherapy treatment 
protocol had an improved median survival (42 weeks) as compared to che-
motherapy alone (32 weeks). Chemotherapy succeeding 5-FU-based 
chemoradiation yielded increased toxicities in patients with no evidence of 
improved benefit. In contrast to the GITSG trial, efficiency of 5-FU-based 
chemoradiation over chemotherapy alone was not demonstrated by an 
Eastern Cooperative Oncology Group (ECOG) trial [45]. Similar clinical 
outcome (median survival between 8.2 and 8.3 months) was obtained upon 
treatment of patients with 5-FU chemotherapy (600 mg/m2/day) or 5-FU 
chemoradiation (600 mg/m2/day, 40 Gy).

Gemcitabine-Based Clinical Trials
Recognition of gemcitabine’s radiosensitizing properties in multiple phase 
I trials triggered its introduction into chemoradiation regimens for LAPC 
[46–50]. The Cancer and Leukemia Group B (CALGB) 89805 phase II 
clinical study evaluated the efficacy of gemcitabine (40 mg/m2/day) admin-
istered twice weekly with upper abdominal irradiation (50.4 Gy), directly 
followed by five cycles weekly gemcitabine (1000 mg/m2, three weeks on, 
one week off per cycle) [51]. The high rate of local control (∼87%) was not 
translated into a substantial improvement of overall survival (OS) (median 
survival 8.5 months). This might have been in part due to the considerable 
toxicity of this protocol with 58% and 21% of patients experiencing grade 
III and IV hematologic toxicities (leukocytopenia and neutropenia) and 
31% and 10% of patients displaying grade III and IV gastrointestinal toxici-
ties, respectively. In a phase I study initiated later by the University of 
Michigan, the maximum tolerated dose (MTD) for radiotherapy was deter-
mined at the fixed dose of gemcitabine (1000 mg/m2 on days 1, 8, and 
15 of a 28-day cycle) concurrent to radiotherapy [48]. The dose-limiting 
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toxicity (DTL) was identified at 42 Gy in 2.8-Gy fractions. Out of six 
patients treated at DTL one experienced grade 4 vomiting, one patient 
developed duodenal ulceration, and two patients developed late gastrointes-
tinal toxicity that required surgical management. Therefore, 36 Gy in 2.4 Gy 
fractions were recommended to be safely administrated for further phase II 
evaluation. Accordingly, a phase II clinical trial was conducted using this 
36 Gy in 3 weeks and full dose gemcitabine schedule in patients with non-
metastatic pancreatic cancer; one-year survival rates were 73% for all, 94% 
for resectable, 76% for borderline resectable, and 47% for unresectable 
patients [52]. Further developments moved toward lowering the gem-
citabine dose (to reduce toxicity) while increasing the radiotherapy dose 
that has been progressively more frequently administered with better tech-
niques to reduce toxicity and to improve the therapeutic window in order 
to achieve local tumor control in LAPC. For example, ECOG conducted a 
trial validating the impact of 50.4 Gy radiotherapy administered at 1.8 Gy 
fractions combined with concurrent reduced dose gemcitabine GEM 
(600 mg/m2 week 1–5) followed by four weeks break, followed by full dose 
maintenance gemcitabine (1000 mg/m2 for three of four weeks). This radio-
chemotherapy scheme showed an acceptable toxicity profile and was supe-
rior to full dose gemcitabine alone with median survival of 11.1 vs. 9.2  
months, p < 0.01 [53].

Capecitabine-Based Clinical Trials
Capecitabine has gained attention as an orally administered radiosensitizing 
agent to substitute for 5-FU-based regimens from studies on various malig-
nancies including advanced pancreas cancers [54–56]. In a phase II trial, 
treatment of 42 pancreatic cancer patients (advanced or metastatic) with 
capecitabine (2500 mg/m2/day) resulted in significantly beneficial effects 
on tumor-related symptoms [57]. Combining other drugs with capecitabine, 
such as bevacizumab and cisplatin, along with radiation therapy was also 
shown to be well tolerated by LAPC patients [58,59].

Gemcitabine-Based Combination Chemotherapy
Gemcitabine and FU: Apart from gemcitabine as a sole chemotherapeutic 
drug in LAPC treatment, several other studies have evaluated additional 
combinations to be delivered with, or in comparison to, gemcitabine. For 
example, a small study in Taiwan assigned 34 LAPC patients to receive either 
5-FU-based (500 mg/m2/day) or gemcitabine-based (600 mg/m2/day) 
chemoradiation (50.4–61.2 Gy) [60]. Both treatments were similarly 
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tolerated, however, the gemcitabine-based therapy was more effective as 
compared to 5-FU chemoradiation, with median survival of 14.5 vs. 6.7  
months. A phase III trial was later conducted by the Fédération Franco-
phone de Cancérologie Digestive (FFCD) and the Société Francophone de 
Radiothérapie Oncologique (SFRO) [61]. The two treatment arms of this 
study involved either induction chemoradiotherapy (CHRT) with concom-
itant 5-FU (300 mg/m2/day), cisplatin (20 mg/m2/day), and radiation 
(60 Gy), or induction gemcitabine chemotherapy (1000 mg/m2/week). 
Maintenance gemcitabine succeeded both treatment regimens until signs of 
disease progression or adverse toxic effects were detected. Patients undergo-
ing the intensive CHRT suffered more from toxicity, thus reporting a shorter 
median survival (8.6 months) as compared to chemotherapy alone 
(13 months). On the other hand, the Groupe Coopérateur Multidisciplinaire 
en Oncologie (GERCOR) has adopted other therapeutic strategies and 
compared survival of LAPC patients enrolled onto prospective phase II and 
III studies. In their trial, 181 patients randomly received gemcitabine-based 
chemotherapy either alone or in combination with 5-FU or oxaliplatin. This 
was followed by treatment with 5-FU-based chemoradiation or continua-
tion with chemotherapy alone. Of note, chemotherapy and chemoradiation 
significantly increased survival as compared to chemotherapy alone (15 vs. 
11.7 months) [62]. This finding was confirmed by a separate study in which 
323 patients received either initial chemoradiotherapy (30 Gy in 10 fraction 
(85%) combined with 5-FU (41%), gemcitabine (39%), or capecitabine 
(20%)) or 2.5 months of gemcitabine-based induction therapy followed by 
chemoradiotherapy. As observed in the first trial, induction gemcitabine 
treatment preceding chemoradiotherapy improved patients’ median OS as 
compared to chemoradiotherapy alone (11.9 vs. 8.5 months) [63].

Gemcitabine and capecitabine (GemCap): Capecitabine and gemcitabine 
combination regimens have also shown promising outcomes on advanced 
and metastatic pancreatic cancer patients in phase I/II clinical studies 
[64,65]. Based on these promising findings, three major phase III clinical 
studies have been initiated to further evaluate the efficacy of GemCap com-
binations on clinical outcome [66–68]. In the first trial led by the Swiss 
Group for Clinical Cancer Research and the Central European Coopera-
tive Oncology Group (319 patients), GemCap combination failed to 
improve overall survival as compared to gemcitabine alone (8.4 vs. 
7.2 months) [66]. In a recent phase III trial including meta-data, GemCap 
combinations significantly prolonged median overall survival compared to 
the gemcitabine alone group (7.4 vs. 6 months) [68].
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In conclusion, LAPC patients seem to benefit from an intensified local 
therapy. In these populations resectability is achieved in approximately one-
third of patients with median survival almost equal to those with primary 
resectable disease [69,70]. Therefore, efficient local control and effective 
maintenance regimens beyond classical chemotherapy may further improve 
the management of LAPC.

Metastatic Disease
Unfortunately, metastatic spread is detected in 60–70% of pancreatic cancer 
patients. A median survival of only six months from time of diagnosis is 
reported for patients with metastatic disease [71]. Control of symptoms, 
psychological support, and aid in decision-making fall into the context of 
palliative care (the standard approach) for this category of patients [71,72]. 
Numerous morbidities usually accompany advanced pancreatic disease such 
as pain, cachexia (body weight loss), hyperbilirubinuria (jaundice, icterus, 
due to blockade of bile duct), bowel obstruction, as well as increased risk of 
thromboembolic complications [71,73].

In an attempt to improve outcome for patients diagnosed with advanced 
pancreatic disease, several trials have been initiated using gemcitabine as a 
backbone. Drugs such as oxaliplatin [74,75], cisplatin [76,77], irinotecan 
[78], exatecan [79], and pemetrexed [80] have all shown limited improve-
ment when combined with gemcitabine. Therefore, development of novel 
treatment protocols is highly crucial for improving clinical outcome in 
patients with metastatic pancreatic cancer.

Establishment of FOLFIRINOX treatment: Conroy and colleagues were 
first to introduce a combination of infusional 5-FU, irinotecan, and oxali-
platin into the therapy of metastatic pancreatic cancer [81]. Promising data 
observed in phase I trials prompted the initiation of single-arm phase II 
studies in metastatic pancreatic and colorectal cancer patients [82,83]. Eligi-
bility criteria for enrollment of patients included good World Health Orga-
nization performance status (0 or 1), an age below 70 years old, levels of 
total bilirubin 1.5 times or less than the normal upper limit, as well as 
resectability. Cases that met these conditions involved 11 LAPC and 35 
metastatic patients. FOLFIRINOX treatment resulted in median overall 
survival of 9.5 months in metastatic patients and 15.7 months in LAPC 
cases. No cases of toxicity-related deaths were reported.

The promising results of these studies encouraged conducting a phase 
III PRODIGE 4/ACCORD 11 study. The major aim of this French ran-
domized trial was to compare the efficacy of FOLFIRINOX vs. 
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gemcitabine in metastatic pancreatic cancer patients [81]. The data indi-
cated a 31.6% response rate for FOLFIRINOX combination as compared 
to 9.4% for gemcitabine alone. Although no significant difference was 
shown between the treatments on the median duration of response, FOL-
FIRINOX displayed 70.2% disease control rate as compared to only 50.9% 
for gemcitabine. Significantly longer progression-free (PFS) and overall 
(OS) survivals were also reported for FOLFIRINOX in contrast to gem-
citabine (PFS: 5.4 vs. 3.3 months, OS: 11.1 vs. 6.8 months). One-year sur-
vival rates recorded for FOLFIRINOX and gemcitabine were 48.4% and 
20.6%, respectively. As anticipated, FOLFIRINOX delivery was associated 
with higher toxicities than gemcitabine (Grade III/IV neutropenia: 45.7% 
vs. 21%; febrile neutropenia: 5.4% vs. 1.2%; thrombocytopenia: 9.1% vs. 
3.6%; diarrhea: 11.4% vs. 1.2%; and peripheral neuropathy: 9% vs. 0%). 
Nevertheless, FOLFIRINOX regimen proved superior over gemcitabine 
in improving outcome of metastatic pancreatic cancer patients with a good 
performance status.

Promising data from this study paved the way for additional clinical tri-
als. A clinical benefit of FOLFIRINOX was also reported by a multi-insti-
tutional study enrolling a total of 61 patients (median age of 58 years, 31% 
LAPC) [84]. Similar to the French trial, no toxicity-related fatalities were 
recorded. Approximately one-fifth of patients suffered from grade III/IV 
neutropenia including 5% febrile neutropenia. Out of the 40 evaluated 
cases, 25% had an overall response and 47% had a stable disease rate. Subse-
quent to FOLFIRINOX therapy, all borderline resectable as well as 4/19 
LAPC cases were eligible for surgical resection. Including patients with 
poor performance status (higher than 1) in a U.S. multi-institutional study 
yielded a median overall survival of only 7.2 months, arguing against  
FOLFIRINOX as a standard of care due to its limitation to patients with 
only good performance [85]. Numerous other clinical studies are currently 
in progress to evaluate clinical advantages of FOLFIRINOX over 
 gemcitabine-based therapy arms [85].

Activity of FOLFIRINOX treatment in combination with chemora-
diotherapy on LAPC has also been recently described in various studies 
[85,86]. A clinical trial was initiated at the Massachusetts General Hospital 
in Boston to test the efficacy of this combination regimen on 22 LAPC 
patients. Irradiation following chemotherapy was performed on 20 patients. 
The overall response rate was 27.3%, and the median progression-free sur-
vival (PFS) was 11.7 months. Five patients exposed to this combination 
became resectable and underwent a R0 resection [87]. Despite some 
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encouraging data of FOLFIRINOX, the value of this relatively toxic regi-
men in treatment of patients with limited survival expectation is still not 
well elaborated.

A New Chemotherapeutic: nab-paclitaxel
The extensive hypovascularity of stroma surrounding pancreas tumor cells is 
thought to hinder proper delivery of cytotoxic drugs that are administered 
to the systemic circulation. Therefore finding methodologies to increase 
accessibility of cytotoxic drugs to tumor cells is considered highly desirable. 
The original formulation of paclitaxel (Taxol®) utilized cremophor and oil-
based solvents and that resulted in significant systemic toxicities in patients. 
Therefore, a modified albumin-bound formulation named nab-paclitaxel 
(Abraxane®) was developed using nanoparticle technology. The phase I 
clinical trial of nab-paclitaxel showed that it was better tolerated than the 
original formulation [88]. The exact mechanism of action of nab-paclitaxel 
is not yet fully elucidated but is thought to involve improved tumor uptake. 
Coadministration of nab-paclitaxel with gemcitabine into a genetically 
engineered mouse model of pancreatic cancer strikingly resulted in tumor 
regression, increased intratumoral gemcitabine levels, as well as reduced  
levels of the primary gemcitabine metabolizing enzyme cytidine deami-
nase [89]. Neesse and colleagues have recently shown that chemical inhibi-
tion of cytidine deaminase resulted in increased gemcitabine concentration 
within the tumor of the KPC mouse model, but that was insufficient to 
enhance tumor cell apoptosis or to alter the growth of the pancreatic tumors 
[90]. Together, these observations suggest that the tumor regression observed 
upon treatment of mice with nab-paclitaxel and gemcitabine did not result 
from the enhanced delivery of gemcitabine. Improved clinical outcome was 
observed in a phase I/II clinical trial of nab-paclitaxel and gemcitabine in 
metastatic patients [91]. Several other trials evaluating nab-paclitaxel with 
other combinations are currently in progress, and their outcomes will likely 
be reported over the next several years. Based on improvement of overall 
survival and progression-free survival (by 1.8 months for each) in a phase III 
clinical trial [92] the U.S. FDA approved nab-paclitaxel for treatment of 
pancreatic cancer on September 6, 2013.

Novel Molecular Targeted Therapies
Better comprehension of cellular and molecular mechanisms governing 
the resistant phenotype of this devastating disease is urgently needed.  
Dissecting critical players of aberrant tumor cell behavior (genetic 
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modifications, signaling cascades) as well as altered extracellular communi-
cation (tumor stroma) is indispensable as they can be amendable to  targeted 
therapy (Figure 3.2).

Prostaglandin synthase: Elevated levels of cyclooxygenase-2 (COX-2), 
crucial for prostaglandin synthesis, have been detected in pancreatic pre-
cursor lesions as well as PDAC [93,94]. Aberrant COX-2 overexpression 
usually predicts for a poor prognosis in pancreatic cancer [95]. Preclinical 
studies have reported resistance in tumor development within COX-2–
deficient mice, while overexpression of COX-2 in various transgenic 
mouse models promotes angiogenesis, dysplasia, and tumorigenesis [94]. A 
phase II trial, enrolling 42 cytologically or histologically confirmed PDAC 
patients, tested the effect of the COX-2 inhibitor celecoxib when deliv-
ered in combination with gemcitabine (GECO) [96]. As compared to the 
gemcitabine-alone group, 62% of patients treated with GECO had stable 
disease and 71% showed total disease control. This combination was also 
less toxic than gemcitabine alone. Further clinical investigation is thus 
warranted.

Figure 3.2 Molecular Targets for Pancreas Cancer. Inhibitors of (1) critical tumor cell 
effectors, e.g., cyclooxygenase-2 (COX-2), Ras, mitogen-activated protein kinases (MEK), 
phosphatidylinositol 3-kinases (PI3K), Akt, mammalian target of rapamycin (mTOR), epi-
dermal growth factor receptor (EGFR), and insulin-like growth factor receptor (IGFR); (2) 
tumor stroma, e.g., connective tissue growth factor (CTGF), transforming growth factor 
beta (TGFβ), hepatocyte growth factor receptor (c-Met), and albumin-conjugated pacli-
taxel (Abraxane); (3) tumor endothelium, e.g., vascular endothelial growth factor recep-
tor (VEGFR); and (4) cancer stem cell markers, e.g., c-Met, Sonic hedgehog (Shh), CD133, 
CD44, CD24, and epithelial-specific antigen (ESA). Adapted from Ref. [119]. (For color 
 version of this figure, the reader is referred to the online version of this book.)
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Ras synthesis and downstream signaling: GTPases of the Ras superfamily 
act as binary switches controlling multiple signaling pathways in eukary-
otic cells. They exist in an inactive guanosine diphosphate (GDP)-bound 
“off ” state and an active guanosine triphosphate GTP-bound “on” state. 
Stimulation of a vast array of upstream receptors by ligand binding, e.g., 
binding of ligand to the epidermal growth factor tyrosine kinase receptor 
(EGFR), elicits a signaling cascade activating adaptor molecules, which in 
turn switch Ras between both of its states. SOS-1 and SOS-2 are guanine 
nucleotide exchange factors (GEFs) known to be crucial activators of Ras 
via the replacement of a GDP by a GTP moiety [97,98]. They act down-
stream from GRB2, which binds to the autophosphorylated tail of EGFR 
[99]. Activation of Ras is terminated by another set of adaptor proteins 
called Ras-GTPase activating proteins (Ras-GAP). These soluble cyto-
solic proteins increase the rate of intrinsic GTPase activity of normal Ras 
proteins [100]. Upon hydrolysis of GTP, Ras-GTP shifts back to its inac-
tive Ras-GDP state, thus terminating all Ras-stimulated signaling 
[101,102].

Mutationally activated Ras proteins share a potent ability to transform 
cells, and their activation is mostly correlated with cancer development. 
Activating mutations in the K-Ras proto-oncogene are the earliest genetic 
alterations associated with pancreatic cancer development [103,104]. 
Therefore, aberrant Ras signaling is thought to play a crucial role in  
initiating pancreatic carcinogenesis [105].

Inhibition of farnesyl protein transferase (FPT), a critical enzyme of Ras 
protein synthesis, was thought to demolish aberrant protein activity in pan-
creatic tumors. Examples of FPT inhibitors include lonafarnib (SCH66336) 
and tipifarnib (BMS-214662) inhibitors. Unfortunately, in a randomized 
phase III trial (688 advanced pancreatic cancer patients) treatment with 
gemcitabine and tipifarnib had no clinical advantage over gemcitabine and 
placebo combination [106]. Both treatment arms yielded overall survival of 
around 185 days.

These disappointing findings suggested that inhibitors that target crucial 
downstream effectors of K-Ras signaling such as the mitogen-activated pro-
tein kinases 1/2 (MEK1/2) might be a more effective intervention point for 
tumors with activated Ras. Therapeutic efficacy of several MEK inhibitors 
GSK1120212 (trametinib), MSC1936369B, and AZD6244 (selumetinib) 
was successfully validated in vitro [107]. This led to initiation of a series of 
phase II clinical trials evaluating MEK inhibitors in combination with 
 gemcitabine or EGFR inhibitors [108].
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A second critical Ras downstream signaling pathway involves the 
phosphatidylinositol 3-kinases (PI3K)/Akt/mammalian target of rapamy-
cin (mTOR) regulating growth, proliferation, and survival of cells [109]. 
Activation of the PI3K/Akt/mTOR pathway has been associated with 
carcinogenesis, and therefore its inhibition reflects an attractive therapeu-
tic option. PI3K inhibitor BKM120 and PI3K/mTOR inhibitor BEZ235 
are currently being tested in combination with MEK inhibitors in phase 
I trials of solid tumors with K-Ras, N-Ras, or B-Raf mutations. Abroga-
tion of Akt/mTOR signaling using MK-2206 (allosteric Akt inhibitor) 
alone or in combination with c-Met or EGFR inhibitors are currently 
under investigation [91]. Use of RX-0201 antisense oligonucleotides 
selectively inhibiting Akt is also thought to be therapeutically promising 
as indicated in preclinical setting [110]. Combination of RX-0201 with 
gemcitabine is currently being evaluated in a phase II trial for metastatic 
pancreatic cancer patients. Inhibitors of mTOR such as RAD001 (evero-
limus) have also been investigated in a phase II study. Treatment of 33 
metastatic PDAC patients, who were refractory to gemcitabine, with 
RAD001 was of minor benefit [111]. Based on these findings, two smaller 
studies enrolling patients with advanced disease examined the efficacy of 
temsirolimus (study A) and everolimus combined with EGFR inhibitor 
erlotinib (study B). Unfortunately both studies displayed no objective 
responses or disease stability [112].

Epidermal growth factor receptor (EGFR): Four main members belong to 
the human epidermal growth factor receptor family: EGFR, Her-2/Neu, 
Her-3, and Her-4. Aberrant EGFR signaling was reported in pancreatic 
cancer to causally contribute to its therapy-refractoriness [113]. Therefore, 
EGFR inhibitors were evaluated in PDAC. Erlotinib is a small molecule 
inhibitor of EGFR kinase that prevents its autophosphorylation and conse-
quently inhibits its downstream signaling. A randomized phase III trial was 
conducted at the National Cancer Institute of Canada to compare gem-
citabine treatment alone to gemcitabine combined with erlotinib in patients 
with advanced pancreatic disease [114]. The combination regimen led to a 
slight but statistically significant improvement of median OS and one-year 
survival as compared to gemcitabine alone (6.24 months and 23% vs. 
5.91 months and 17%, respectively). In a separate phase III German trial, led 
by the Arbeitsgemeinschaft Internistische Onkologie (AIO), first-line treat-
ment with gemcitabine plus erlotinib was compared to therapy with 
capecitabine plus erlotinib, demonstrating similar survival benefit in both 
arms (6.6 vs. 6.9 months) [115].
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Cetuximab is a monoclonal antibody that inhibits EGFR signaling by 
binding to the extracellular domain of the receptor. Therapeutic efficacy of 
cetuximab in combination with gemcitabine was compared to gemcitabine 
alone in advanced pancreatic disease by Southwest Oncology Group–
directed intergroup Phase III trial (SWOG-S0205) [116]. In line with erlo-
tinib data, combined modality treatment showed a trend toward improved 
OS of 6.3 months in cetuximab + gemcitabine vs. 5.9 months in gemcitabine 
alone, but it did not reach statistical significance. The time to treatment fail-
ure was significantly, but only two weeks, longer in combination vs. gem-
citabine monotherapy (p = 0.006). In another randomized phase II study, the 
effect of trimodal therapy consisting of gemcitabine, intensity-modulated 
radiation therapy (IMRT) and cetuximab was investigated in LAPC patients 
[117]. The initial treatment consisted of concurrent gemcitabine weekly 
(300 mg/m2), and cetuximab weekly (loading dose 400 mg/m2 day 1, con-
comitant with RT 250 mg/m2). After trimodal therapy, patients in arm A 
received gemcitabine weekly (1000 mg/m2) over four weeks, and patients in 
study arm B received gemcitabine weekly (1000 mg/m2) over four weeks 
and cetuximab (250 mg/m2) weekly over 12 weeks. IMRT was delivered 
using an integrated boost concept (54 Gy to the gross tumor volume (GTV), 
45 Gy to the clinical tumor volume (CTV)) over five weeks. One- and two-
year survival was 61% and 20%, respectively, and median survival was 
15 months. After trimodal therapy 40/68 patients were amenable for sec-
ondary, potentially curative resection, i.e., with no local tumor progression 
or appearance of metastatic lesions. Fourteen patients could be resected. 
These encouraging data suggest further exploration of multimodal regi-
mens in the LAPC patients using advanced radiotherapy, and targeted agents 
are warranted [118].

Vascular endothelial growth factor receptor (VEGFR): Tumors are dependent 
on their vasculature to provide nutrients and remove wastes and have there-
fore developed mechanisms to promote angiogenesis, including increased 
expression of VEGFs. VEGF binding to VEGFR2 on endothelial cells 
induces their proliferation, motility, and survival, thereby promoting angio-
genesis. The result in many tumors is increased vascularity that facilitates 
tumor growth and metastasis [119–121].

Bevacizumab, a humanized monoclonal antibody targeting VEGF-A, 
was investigated in combination with gemcitabine and erlotinib in a phase 
III trial enrolling metastatic patients. Adding bevacizumab to gemcitabine-
erlotinib significantly improved PFS as compared to placebo, however, did 
not significantly improve OS (7.1 vs. 6.0 months) [122]. Similarly, 
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combination of bevacizumab with gemcitabine and capecitabine demon-
strated no clinical benefit in a phase II study of advanced pancreatic cancer 
[123]. Failure of other VEGF signaling pathway inhibitors in combination 
with various gemcitabine-based regimens to improve survival of advanced 
pancreatic patients was also reported in multiple studies [122–126].

In addition to a scarcity of blood vessels in PDAC tumors, high intersti-
tial pressure appears to contribute to poor tumor perfusion. This poor tumor 
perfusion impairs delivery of chemotherapeutic agents to the tumor. One of 
the mechanisms contributing to high interstitial pressure is elevated expres-
sion of hyaluronic acid. In genetically engineered mouse models of PDAC, 
tumor perfusion and delivery of chemotherapeutic agents to tumors was 
improved by administration of a pegylated hyaluronidase (PEGPH20). This 
resulted in objective tumor responses and increased survival of the mice 
[127,128]. A phase II clinical trial is now in progress to test the activity of a 
pegylated hyaluronidase in combination with nab-paclitaxel and 
gemcitabine.

Insulin-like growth factor receptor (IGF-1R): The relevance of the IGF sig-
naling pathway in pancreatic cancer has been previously described. Elevated 
levels of IGF-1R was associated with increased tumorigenicity and metas-
tasis in transgenic mouse models of pancreas cancer [129]. Moreover, inhi-
bition of IGF-1R by siRNA resulted in reduced tumor growth of various 
gastrointestinal malignancies [130,131]. Therefore, targeting the IGF signal-
ing axis appeared to represent a promising therapeutic approach. Several 
IGF-1R inhibitors are currently being investigated for clinical benefit. In 
preclinical studies, the AMG-479 monoclonal antibody (specifically raised 
against IGF-1R) reduced downstream Akt signaling favoring proapoptotic 
and antiproliferative stimuli [132]. Although patients treated with a combi-
nation of AMG-479 and gemcitabine displayed slight improvement over 
gemcitabine in a randomized phase II trial, AMG-479 failed to achieve its 
efficacy in a phase III study [108]. Cixutumumab, a second IGF-1R inhibi-
tor, also demonstrated no improved clinical outcome in combination with 
gemcitabine or erlotinib as reported by a recent phase II trial [108].

Targeting pancreas tumor stroma: Another characteristic of PDAC is the 
presence of “desmoplasia”, defined as proliferation of fibrotic tissue with an 
altered extracellular matrix (ECM) conducive to tumor growth and metas-
tasis [133]. Pancreatic cancer cells produce many extracellular matrix (ECM) 
proteins themselves. However, tumor cell activation of pancreas stellate cells 
(PSC) within the tumor stroma comprises the predominant pattern of 
ECM deposition in PDAC. This paracrine activation is mediated by a series 
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of enriched growth factors notably transforming growth factor β (TGFβ), 
hepatocyte growth factor (HGF), IGF-1, and EGF. Moreover, autocrine sig-
naling via TGFβ1 and connective tissue growth factor (CTGF) maintain 
sustained activation of PSCs [133–135]. Therefore, these factors appear to 
represent attractive therapeutic targets for treatment of pancreatic cancer.

CTGF is upregulated in many pancreatic cancers. CTGF overexpression 
in Panc1 cells was previously reported to induce proliferation of cells in a 
dose-dependent fashion [136,137]. It also led to increased migration and 
invasiveness of the CTGF-overexpressing Panc-1 cells in vitro [136,137]. 
Moreover, elevated CTGF levels increased pancreas tumor cell growth in soft 
agar and decreased their apoptosis [138,139]. Robust selection of cells over-
expressing CTGF was associated with enhanced tumor growth, as observed 
in subcutaneous and orthotopic pancreas models [138]. Blocking of CTGF 
using FG-3019, a human anti-CTGF antibody, inhibited tumor growth gen-
erated by subcutaneous injection of CTGF-overexpressing MIA PaCa-2 
cells in a xenograft model [139]. Treatment of mice with FG-3019, alone or 
in combination with gemcitabine, also reduced tumor burden and metastasis 
in an orthotopic Panc1 tumor model [136]; [139]. In addition, FG-3019 in 
combination with gemcitabine promoted apoptosis of pancreatic carcinoma 
cells in a genetically engineered mouse model of PDAC, thereby inhibiting 
tumor growth and metastasis, and improving survival [128].

Inhibition of CTGF using FG-3019 in combination with gemcitabine 
and erlotinib has been tested in a phase I/II trial on locally advanced and 
metastatic pancreatic cancer patients [140]. Results, reported at the  
American Society of Clinical Oncology (ASCO) meeting, showed that the 
antibody was well tolerated up to the highest doses tested (45 mg/kg every 
two weeks or 22.5 mg/kg weekly), in combination with gemcitabine and 
erlotinib. No adverse events were attributed to antibody administration. The 
median overall survival of the 75 subjects in the study was 9.1 months. No 
subjects in the two lowest dose cohorts (3 and 10 mg/kg every two weeks) 
survived for one year. However, at higher doses, one-year survival increased 
in a dose-dependent manner and reached a plateau at about 30%. Examin-
ing overall survival as a function of baseline plasma CTGF levels and expo-
sure to FG-3019 (based on trough level after the first dose) suggested that 
clinical outcome correlates with both. Subjects with the lowest baseline 
CTGF and the highest exposure to FG-3019 exhibited a median overall 
survival of greater than 11 months, compared to less than four months for 
subjects with the highest baseline CTGF levels and the lowest antibody 
exposure [140].
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CTGF promotes the activity of TGFβ by enhancing mitogenic and che-
motactic activity of connective tissue cells and their synthesis of ECM pro-
teins collagen and fibronectin [141,142]. Among various TGFβ inhibitors, 
efficacy of trabedersen (antisense oligodeoxynucleotide inhibiting TGFβ2) 
monotherapy was evaluated in 61 patients with refractory solid tumors, out 
of which 37 were diagnosed with pancreatic cancers [143,144]. In phase I 
of the study, Oettle and colleagues described excellent tolerance of the drug 
when administered at the dose of 140 mg/m2/day, a dose adopted in phase 
II of the study. Patients receiving trabedersen at the recommended dose 
displayed highly satisfactory clinical outcome with a reported 13.4 months 
median overall survival. Another randomized trial testing the impact of spe-
cific TGFβ1 receptor inhibitor LY2157299 in combination with  gemcitabine 
is currently ongoing [108].

The receptor for hepatocyte growth factor (HGF), c-Met, and HGF are 
essential for normal mammalian development and play a crucial role in 
branching morphogenesis [145]. Multiple studies have shown an overex-
pression of c-Met in pancreatic cancer. Binding of HGF to c-Met initiates 
a signaling cascade favoring pancreatic tumor cell motility, invasion, and 
metastasis [146]. Cabozantinib, a novel potent dual c-Met/VEGFR-2 
inhibitor, was accepted by the FDA at the end of 2012 for treatment of 
patients with medullary thyroid carcinoma [147]. Preclinical data have 
shown the drug’s ability to regress tumor vasculature, hypoxia, and apoptosis 
as well as to decrease aggressiveness of pancreatic tumors [147–149]. Meta-
static spread of intracardiac-injected pancreatic cancer cells was also pre-
vented after two weeks of cabozantinib delivery in mice [149]. Moreover, 
cabozantinib reduced viability and induced apoptosis of gemcitabine-resis-
tant pancreas cell lines [147]. Based on these striking findings, various phase 
II trials including metastatic pancreatic cancer patients are currently 
 investigating its clinical benefit.

Evidence for self-renewing cells within solid tumors, referred to as  
cancer stem cells (CSC), has been described for many cancers [150–152].  
Li and colleagues were the first to relate CSC to pancreatic cancer progres-
sion [153]. In their work, isolation of pancreatic CSC was guided by enrich-
ment for the previously assigned CSC markers CD44, CD24, and 
epithelial-specific antigen (ESA). CD44+ CD24+ ESA+ pancreatic CSC 
demonstrated typical stemness features such as self-renewal, generation of 
differentiated progeny, and activation of developmental signaling pathways 
such as sonic hedgehog (Shh) [153]. Systemic inhibition of Shh by IPI926 
inhibitor resulted in a significant depletion of pancreas tumor stroma in a 
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transgenic mouse model. This was accompanied by an enhanced vascularity 
and concentration for coadministered gemcitabine [154]. A clinical trial 
investigating efficacy of IPI926 has recently been terminated due to an 
observed inferiority to gemcitabine therapy arm on LAPC patients [108]. A 
subpopulation of pancreas cells with high c-Met expression also displayed 
stem cell–like properties. In contrast to c-Met negative, cells with high 
c-Met levels had better sphere formation capabilities and exhibited higher 
tumor uptake in nude mice. Therefore, further evaluation of c-Met as a 
cancer stem cell marker is of extreme importance [149]. Cabozantinib treat-
ment downregulated expression of c-Met and several other stem cell mark-
ers (CD133, SOX-2) in primary spheroid cultures, thus emphasizing the 
importance of further clinical investigation [147].

Next Generation Radiation Oncology
Introduction of particle therapy into the clinic provides a novel option to 
improve sensitivity of cancer to radiotherapy [155]. However, biological and 
molecular rationales favoring particle over conventional radiotherapy are 
not yet fully explored.

In vitro experimentation elucidated possible mechanisms for the 
observed superiority of high linear energy transfer (LET) particles, e.g., 
carbon over conventional photon. Precise dose localization, increased rela-
tive biological effect, reduced oxygen enhancement ratio, decreased cell 
cycle–dependent radiosensitivity, and induced complex DNA damage are 
among the thus far validated advantages provided by heavy ions [156]. 
Strong correlation with radiobiological effects of heavy ions has been previ-
ously shown in pancreas cells [157]. Unlike photon radiotherapy, carbon 
ions induced more DNA damage and reduced the clonogenic survival of 
pancreas cancer as well as cancer stem-like cells [156]. High LET particles 
also enhanced cellular death in human pancreatic cancers with different 
genetic status. Additionally, high LET strongly correlated with G2/M arrest 
in pancreas cancer cell lines [157]. Advantageous killing of heavy ions was 
not only restricted to pancreas tumors cells. For instance apoptosis induc-
tion, autophagy, and cellular senescence are among postulated mechanisms 
underlying enhanced glioma cell kill by carbon irradiation [158,159].

Pancreas cells are highly aggressive and show a great potential for traversing 
from primary tumor site into a metastatic niche. This renders pancreatic can-
cers among the most therapeutically resistant tumors. Migration and invasive-
ness of various pancreas cell lines such as MIA-PaCa-2, BxPC3, and AsPC-1 
have been previously shown to be reduced by carbon radiotherapy [160]. 
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Apart from tumor cells, carbon radiotherapy also influenced endothelial cells 
[161] and enhanced antiangiogenic effects in lung [162] and colorectal cancer 
models [163]. The introduction of raster scanning carbon ion radiotherapy 
constitutes a landmark technological development in high precision radio-
therapy. Efficacy of chemoradiation using gemcitabine in combination with 
raster scanning carbon ion on pancreas cancer cells in vitro was recently 
described [164]. Additional preclinical experimentation will increase our 
understanding of heavy ion radiotherapy. Nevertheless, current in vitro and 
preliminary in vivo data demonstrate a firm basis for further investigating the 
efficacy of heavy ion therapy alone or in  combination with chemotherapy in 
highly resistant pancreatic cancer patients.

Initial promising data on the safety of short-course carbon ion radio-
therapy in patients with resectable pancreatic cancer were shown in a  
Japanese clinical phase I/II study [165]. Dose escalation was performed at 
5% increments from 30 to 36.8 GyE administered in eight fractions over 
two weeks prior to surgery. The reported five-year survival rates for all  
26 patients receiving carbon radiotherapy and those who underwent  
surgery post radiotherapy were 42% and 52%, respectively. These very 
promising data need to be validated in randomized prospective trials.

CONCLUSION

Pancreatic cancer is among the most therapeutically resistant tumors. For 
the relatively small fraction of operable tumors, the surgical resection has 
evolved substantially by reducing mortality and morbidity, in particular at 
specialized centers with high patient volumes. In this chapter, evidence is 
provided for beneficial effects of adjuvant chemotherapy as well as preop-
erative (neoadjuvant) radiochemotherapy. Based on the promising phase I/II 
data, the value of modern radiotherapy techniques, such as IMRT, IORT, 
and particle radiotherapy with carbon ions has to be evaluated in random-
ized trials. Nonetheless, the maintenance chemotherapy is still suboptimal, 
and considering the low overall survival, the impact of antiangiogenic, 
tumor stroma, immune-, and other targeted therapies in tertiary prevention 
of tumor metastasis and local recurrence need further exploration. Failure 
of a plethora of targeted agents observed in advanced metastatic PDAC 
might not necessarily translate when the switch of micro- to macro- 
metastatic tumors is targeted. Intensified multimodal therapies are war-
ranted in locally advanced PDAC. Approximately one-third of LAPC 
patients become resectable after multimodal therapies and perform similarly 
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to primary operable patients. After a long series of setbacks with iteration of 
a plethora of gemcitabine-containing chemotherapy combinations, the 
clinical approval of albumin-conjugated-taxol (nab-Paclitaxel) landmarks a 
novel era in the management of metastatic PDAC. Further studies are 
needed to evaluate the impact of eradicating tumor bulks, e.g., via radio-
therapy or  surgery in oligometastatic PDAC.
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The Role of Notch Signaling 
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INTRODUCTION

Pancreatic cancer (PC) is a highly aggressive malignancy and ranks as the 
fourth leading cause of cancer-related death in the United States [1]. This 
high mortality is partly due to the absence of specific symptoms and signs, 
and the lack of early detection tests for PC, as well as the lack of effective 
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chemotherapies [2]. Although the molecular mechanisms of PC develop-
ment remain largely unclear, many factors have been reported to be associ-
ated with increased incidence of PC [3]. For example, a history of diabetes 
or chronic pancreatitis, chronic cirrhosis, a family history of PC, a high-fat 
and high-cholesterol diet, tobacco smoking, alcohol and coffee intake, and 
specific blood type have been found to contribute to PC development [4]. 
Accumulated evidence has demonstrated that many key genes and cell sig-
naling pathways also play critical roles in pancreatic tumorigenesis [5–7]. 
Recently, some studies have demonstrated that the Notch signaling pathway 
contributes to PC development and progression [8]. Therefore, in the fol-
lowing sections, we will discuss the roles of the Notch signaling pathway in 
the regulation of cell proliferation, apoptosis, migration, invasion, metastasis, 
angiogenesis, drug resistance, epithelial-to-mesenchymal transition (EMT), 
and cancer stem cell (CSC) functions in PC.

NOTCH SIGNALING PATHWAY

It has been well documented that the Notch signaling pathway plays critical 
mechanistic roles in the development of organs, tissue proliferation, differ-
entiation, and apoptosis [8]. It is known that mammals express four trans-
membrane Notch receptors (Notch-1, Notch-2, Notch-3, and Notch-4) 
and five canonical transmembrane ligands (Delta-like 1, Delta-like 3, Delta-
like 4, Jagged-1, and Jagged-2) [9]. All four Notch receptors are very similar, 
although they have subtle differences in their extracellular and cytoplasmic 
domains (Figure 4.1). The extracellular domains of the Notch proteins pos-
sess multiple repeats that are related to epidermal growth factor (EGF) and 
are thought to participate in ligand binding. The amino-terminal EGF-like 
repeats are followed by a cysteine-rich region termed the LNR (LIN-12/
Notch-related region), which prevents signaling when a ligand is absent 
[10]. The cytoplasmic region of the Notch conveys the signal to the nucleus; 
it contains a recombination signal-binding protein 1 for J-kappa (RBP-J)- 
association molecule (RAM) domain, ankyrin (ANK) repeats, nuclear local-
ization signals (NLS), a transactivation domain (TAD), and a region rich in 
proline, glutamine, serine, and threonine residues (PEST) sequences [11]. 
Notch ligands have multiple EGF-like repeats in their extracellular domain 
and a cysteine-rich region (CR) in serrate which are absent in delta [12].

The Notch signaling pathway is activated after Notch-ligand binding 
 followed by three consecutive proteolytic cleavages by multiple enzyme 
complexes including γ-secretase complex [13]. This produces an active 
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fragment, the Notch intracellular domain (NICD), which enters the nucleus 
and binds to CSL, displaces corepressors from CSL, and subsequently recruits 
a coactivator complex containing mastermind, p300, and other coactivators, 
leading to the activation of Notch target genes [8]. So far, many Notch target 
genes have been identified such as hairy enhance of split (Hes) family, Hey family, 
Akt, cyclin D1, c-myc, cyclooxygenase-2 (COX-2), extracellular signal-regulated 
kinase (ERK), matrix metalloproteinase-9 (MMP-9), mammalian target of rapamy-
cin (mTOR), nuclear factor-kappa B (NF-κB), p21, p27, p53, and vascular endo-
thelial growth factor (VEGF) [14]. Since these target genes are critically 
involved in tumorigenesis, the Notch signaling pathway plays a pivotal role 
in the development and progression of human cancers including PC via 
regulating its target genes [15].

THE ROLE OF NOTCH IN PC

It is worth mentioning that the function of Notch signaling in tumorigenesis 
can be either oncogenic or oncosuppressive, suggesting that its function is con-
text dependent to some extent [16]. For example, one study has shown that 
Notch-1 has an oncosuppressive function in skin cancer [17]. In contrast, most 
studies have revealed that Notch activation is oncogenic in a variety of human 
cancers including PC [11]. In the following paragraphs, we will discuss how the 
Notch signaling pathway is involved in the development and progression of PC.

Figure 4.1 Structure of Notch Receptors (1–4) and Ligands (Jagged-1, 2, Dll-1, 3, 
Four). Notch receptors and ligands contain multiple conserved domains. The extracel-
lular domain contains EGF-like repeats and a cysteine-rich region. The intracellular 
domain contains the RAM domain, NLS, ANK, TAD and PEST domain. Notch ligands have 
multiple EGF-like repeats in their extracellular domain and a CR in Jagged which are 
absent in delta. (For color version of this figure, the reader is referred to the online ver-
sion of this book.)
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Notch is Overexpressed in PC
Aberrant Notch pathway activation has been implicated in the initiation and 
progression of PC [18]. For instance, Miyamoto et al. reported that Notch 
pathway components and Notch target genes are upregulated in invasive 
human PC [19]. Consistently, Terris et al. found that the Notch gene was 
highly expressed in human PC [20]. Similarly, Fukushima et al. also reported 
that Jagged-1 and Hes-1 were overexpressed in PC [21]. In line with this, 
Cavard et al. showed that members of the Notch pathway (Hey-1, Hey-2, 
Notch-2) were also upregulated in PC [22]. To further support the onco-
genic role of Notch in PC, Büchler et al. found that Notch-3 and Notch-4 
expressed at higher levels in human PC tissues compared with normal pan-
creatic tissue [23]. They also found that Jagged-1, Jagged-2 and Dll-1 were 
significantly upregulated in PC tissue specimens [23]. In agreement with 
these findings, overexpression of Jagged-2 and Dll-4 has been reported in 
the vast majority of PC cell lines [24]. All of these reports clearly suggest the 
possible link between Notch gene overexpression and PC.

Notch Promotes Cell Growth in PC
Studies have demonstrated that Notch regulates cell proliferation in human 
cancers including PC. Our previously studies have documented the role of 
Notch-1 in controlling cell growth in PC [25]. Using MTT assay, we found 
that downregulation of Notch-1 expression by its siRNA caused cell growth 
inhibition in PC cell lines. Moreover, overexpression of Notch-1 by its 
cDNA transfection promoted cell growth in PC cells [25]. To further sup-
port the role of Notch signaling pathway, one study has shown that blockade 
of delta-like ligand four inhibited tumor growth of pancreatic cancer [26]. 
Similarly, the suppression of Notch-3 expression inhibited cell growth in PC 
cells [27]. Moreover, genetic and pharmacologic inhibition of Notch signal-
ing mitigated anchorage-independent growth in PC cells [24]. For example, 
MRK-003, a potent and selective γ-secretase inhibitor, treatment led to the 
downregulation of nuclear NICD and inhibition of anchorage-independent 
PC cell growth [28]. Treatment of PC cells with MRK-003 in cell culture 
significantly inhibited the subsequent engraftment in immunocompromised 
mice. Furthermore, MRK-003 treatment significantly blocked tumor 
growth in PC xenografts [28]. Mechanistically, it has been revealed that acti-
vation of Notch-mediated cell growth may be mediated in part through the 
activation of NF-κB activity [29]. Taken together, the Notch signaling path-
way that promotes tumor cell growth in PC is a scientific fact.
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Notch Inhibits Cell Apoptosis in PC
It has been known that cell growth inhibitory effects are often partially 
associated with the induction of apoptosis. Indeed, it has been reported that 
the downregulation of Notch-1 induced apoptosis in PC cell lines, indicat-
ing that the growth inhibitory activity of Notch-1 depletion is partly attrib-
uted to an increase in cell death [25]. In line with this notion, over-expression 
of Notch-1 inhibited apoptosis in PC cell lines, suggesting that activation of 
the Notch signaling pathway could protect cells from apoptosis in PC [25]. 
Recently, it has been shown that the interaction of exosomal nanoparticles 
with PC cells led to decreased expression of Hes-1 and activation of the 
apoptotic pathway [30]. It is known that Bcl-2 plays a central role in cell 
apoptosis. One study has shown that the inhibition of Bcl-2 induced apop-
tosis is partly through downregulation of Notch-1 expression in PC [31]. 
Altogether, Notch could regulate the cell apoptosis in PC.

Notch Regulates Cell Cycle in PC
Accumulated evidence has revealed that Notch-1 controls the cell cycle in 
PC. For example, it has been shown that the downregulation of Notch-1 
could induce cell cycle arrest in G0-G1 phase [29]. Specifically, Notch-1 
knockdown by its siRNAs caused a typical G0-G1 phase arrest pattern in 
PC cells. In contrast, PC cells with overexpression of Notch-1 have a greater 
reduction in the fraction of cells at G0-G1 phase [29]. In line with the cell 
cycle arrest, expression of cyclin A1, cyclin D1, and cyclin-dependent kinase 
(Cdk)-2 was found to be decreased, while p21 and p27 expression was 
increased [29], suggesting that these cell cycle regulatory factors are involved 
in Notch-1-induced cell cycle progression and cell cycle arrest.

Notch Regulates Tumor Cell Invasion in PC
Emerging line of evidence has suggested that the Notch signaling pathway 
plays a critical role in the regulation of tumor invasion in PC. To support this 
concept, PC cells transfected with small interfering Notch-1 RNA showed 
a low level of penetration through the Matrigel-coated membrane, suggest-
ing that downregulation of Notch-1 could decrease cell invasion [32]. In 
contrast, overexpression of Notch by its cDNA transfection led to increased 
tumor cell invasion by about 3.5 fold [32]. More importantly, it has been 
demonstrated that Notch-1-induced tumor cell invasion could in part be 
due to activation of NF-κB DNA-binding activity, which leads to the  
upregulation of NF-κB target genes, such as MMP-9, VEGF, survivin, and 
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COX-2 [32]. Moreover, inhibition of epidermal growth factor receptor sig-
naling suppressed tumor cell invasion via downregulation of Notch-1 and 
its target genes in PC [33]. In support of the role of Notch in the regulation 
of cell invasion, it has been reported that PDGF-D downregulation was 
mechanistically associated with the downregulation of Notch-1, and its tar-
get genes such as NF-κB, VEGF, and MMP-9, resulting in the inhibition of 
tumor cell invasion in PC [34]. However, further in-depth studies are 
required to investigate the precise underlying mechanism of Notch-induced 
invasion in PC.

Notch Regulates Tumor Angiogenesis in PC
It is noteworthy that the Notch signaling pathway plays a critical role in 
tumor angiogenesis in PC. For example, blockade of delta-like ligand four 
(Dll-4) signaling inhibits angiogenesis of PC [26]. Dll-4 allele deletion or 
soluble Dll-4 treatment led to increased tumor vessel density, reduced vessel 
perfusion, resulting in reduced tumor size, suggesting that inhibition of 
Dll-4 is highly effective in disrupting tumor angiogenesis in PC [35] even 
though PC is not an angiogenic tumor in human. Recently, we found that 
downregulation of platelet-derived growth factor-D inhibits angiogenesis 
through inactivation of Notch-1 and NF-κB signaling and its target genes 
such as MMP-9 and VEGF in PC cells [34]. Taken together, Notch signal-
ing pathway is critically involved in governing tumor angiogenesis in PC.

Notch Predicts for Poor Prognosis in PC
Multiple studies have demonstrated that aberrant expression of the Notch 
signaling pathway could predict for poor prognosis in PC. Indeed, high Dll-4 
expression is significantly associated with poor prognosis for surgically resected 
PC, advanced tumor stage, and lymph node metastasis [36]. Moreover, Notch-
1, Notch-3, and Notch-4 were found to be significantly elevated in PC tumor 
tissues [37]. Higher nuclear expression of Notch-1, Notch-3, Notch-4, Hes-1, 
and Hey-1 was observed in advanced and metastatic PC tumors [37]. More 
importantly, nuclear Notch-3 and Hey-1 expression were correlated to 
reduced overall and disease-free survival following tumor resection with cura-
tive intent, suggesting that Notch-3 and Hey-1 could function as biomarkers 
for diagnosis, prognosis and treatment efficacy [37].

Notch Regulates EMT in PC
It has been documented that epithelial-to-mesenchymal transition (EMT) 
is a process where epithelial cells acquire a mesenchymal phenotype, leading 
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to increased motility and invasion [38]. EMT is characterized by the loss of 
expression of epithelial markers such as E-cadherin and γ-catenin, and up-
regulation in the expression of mesenchymal molecular markers such as 
zinc-finger E-box binding homeobox (ZEB), snail, slug, vimentin, fibronec-
tin, α-smooth muscle actin (SMA), and N-cadherin [39]. Recently, Notch 
has been reported to be involved in EMT processes [40]. Higher expression 
of Notch-2 and Jagged-1 has been observed in gemcitabine-resistant cells, 
which show the acquisition of EMT phenotype, as evidenced by elongated 
fibroblastoid morphology, downregulation of epithelial marker E-cadherin 
and upregulation of mesenchymal markers such as ZEB and vimentin [41]. 
Furthermore, depletion of Notch-2 and Jagged-1 by siRNA partially 
reversed the EMT phenotype, leading to the mesenchymal-to-epithelial 
transition; MET [41].

In order to directly address the role of Notch in EMT, Bao et al. dem-
onstrated that forced overexpression of Notch-1 resulted in the acquisi-
tion of EMT phenotype by upregulation of mesenchymal cell markers, 
such as ZEB1, ZEB2, Snail2, and vimentin, and downregulation of epithe-
lial cell marker E-cadherin in PC cells [42]. Consistent with this finding, 
Kang et al. found that overexpression of Dll-4 in PC cells upregulated the 
expression of Vimentin, ZEB and Snail, leading to EMT phenotype [43]. 
In line with these findings, it has been found that Midkine-Notch-2 
interaction activated Notch signaling and subsequently induced EMT in 
PC cells [44]. Therefore, targeting Notch signaling would be able to 
inhibit the acquisition of EMT phenotype, which could result in the 
reversal of drug resistance which may be important in the treatment of 
metastatic disease.

Notch is Involved in Regulation of Cancer Stem Cells
Accumulating evidence has shown that there is a molecular link between 
Notch and cancer stem cells (CSCs) [45]. It is known that CSCs have been 
identified and isolated based on the expression of a specific molecule or 
combination of molecules such as CD24, CD34, CD44, CD133, epithelial-
specific antigen (ESA), and aldehyde dehydrogenase (ALDH) [46]. Using 
these molecular markers, CSCs have been isolated from tumors of the 
hematopoietic system, breast, lung, prostate, colon, brain, head and neck, and 
pancreas [47]. Li et al. first described that CD44+/CD24+/ESA+ pancreatic 
cancer cells show the stem cell properties consistent with self-renewal and 
increased tumorigenic potential [48]. Similarly, Hermann et al. reported that 
human pancreatic cancer tissue contains CSCs as defined by CD133 and 
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CXCR4 expression [49]. Moreover, ABCG2 and CD133 may also repre-
sent markers for pancreatic CSCs [50,51].

The Notch signaling pathway is believed to play a critical role in CSCs 
[52]. In support of such a claim, Wang et al. found that pancreatic CSCs 
show considerably higher levels of expression for Notch-1 [51]. Ji et al. also 
reported that pancreatic CSCs contain high levels of Notch-1 and Notch-2 
[53]. These data suggest that the activation of Notch signaling may be 
involved in pancreatic CSCs self-renewal. Moreover, overexpression of 
Dll-4 in PC cells simultaneously stimulates the expression of Oct4 and 
Nanog, resulting in increased numbers of CSCs [10]. Our recent study 
showed that overexpression of Notch-1 in PC cells enhanced the formation 
of pancreatospheres consistent with a high level of CSC surface markers 
CD44 and EpCAM [42]. MRK-003, a potent and selective γ-secretase 
inhibitor, treatment resulted in the reduction of tumor-initiating cells that 
are capable of extensive self-renewal [28]. Taken together, activation of 
Notch signaling could contribute to CSC self-renewal capacity [54].

Notch Crosstalks with miRNA in PC
The Notch signaling pathway could be regulated by microRNAs (miRNAs) 
[55]. It is clear that miRNAs exert their inhibitory effects on gene expres-
sion through binding to the 3′ untranslated region of target mRNA [56]. 
Some miRNAs function as either an oncogene or a tumor suppressor gene 
[57]. In general, there are increased oncogenic miRNAs and decreased 
tumor suppressor miRNAs [58]. The extensive study of miRNAs over the 
past decades has demonstrated that miRNAs are frequently deregulated in 
PC and contribute to the pathogenesis and aggressiveness of the disease [59]. 
Since a single miRNA can affect a myriad of cellular processes, targeting 
miRNAs could become a promising strategy for aiding PC treatment [59].

Interestingly, miRNAs have been found to crosstalk with the Notch path-
way in PC [53]. For example, miR-34a targeted the expression of Notch-1 
and Notch-2 in PC cells [53]. Moreover, miR-34 has been found to be 
involved in pancreatic CSCs self-renewal through direct modulation of the 
Notch pathway [53]. To support the role of miRNA in regulating the Notch 
pathway, it has been revealed that miR-200 members target Notch pathway 
components, such as Jagged-1 and the mastermind-like coactivators Maml-2 
and Maml-3 in PC cells [60]. Consistently, we found that overexpression of 
Notch-1 up-regulated miR-21 expression and downregulated the expression 
of miR-200b, miR-200c, and let-7 family in PC cells [42]. Altogether, these 
results demonstrated the crosstalks between Notch and miRNAs in PC.
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Notch is Involved in Drug Resistance in PC
Although chemotherapy is an important therapeutic strategy for PC treat-
ment, chemotherapy fails to eliminate all tumor cells because of intrinsic or 
acquired drug-resistance, which could lead to tumor recurrence and metas-
tasis [61]. Increasing evidence has suggested that the Notch pathway plays a 
critical role in drug resistance in PC [62]. For instance, inhibition of Notch-3 
enhances sensitivity to gemcitabine in PC through inactivation of PI3K/
Akt-dependent pathway [27]. Kang et al. showed that over-activation of 
DLL-4/Notch pathway can simultaneously impair chemo-drug delivery 
and enhance chemoresistance in PC [43]. Moreover, it has been reported 
that gamma-secretase complexes regulate the responses of human PC cells 
to taxanes [63]. Our recent finding showed that Notch-2 and Jagged-1 are 
highly upregulated in gemcitabine-resistant PC cells [41]. Moreover, gem-
citabine-resistant PC cells have shown acquired EMT phenotype with acti-
vation of Notch signaling pathway, suggesting that the activation of Notch 
signaling is mechanistically linked with the chemoresistance phenotype in 
PC [41]. CSCs have also been believed to play critical roles in drug- 
resistance partly because CSCs express drug transporters, leading to CSCs 
resisting resist the killing effects of the drug. Since the Notch signaling 
pathway regulates CSCs, targeting the Notch pathway could be a novel 
strategy to increase drug sensitivity through inhibiting CSCs function.

NOTCH INHIBITION IS A NOVEL STRATEGY FOR PC 
TREATMENT

The Notch signaling pathway is involved in cell growth, migration, inva-
sion, EMT, CSCs and drug resistance. Thus, targeting the Notch pathway 
could be a novel strategy for the treatment of PC through inhibition of 
cell growth, reversal of EMT and eliminating CSCs as well as overcom-
ing drug resistance [64]. Since Notch signaling is activated via the activ-
ity of γ-secretase, γ-secretase inhibitors (GSIs) could be useful for cancer 
therapy [9,65]. Indeed, emerging evidence has suggested that several 
forms of GSIs inhibited tumor cell growth, migration and invasion in 
various human cancers including PC [66]. For example, the inhibition 
of Notch activity by GSIs retarded tumor development in a murine 
model of PC [66]. Notably, GSI can block EMT, migration and invasion 
in PC cells, and suppress the tumor growth induced by pancreatic CSCs 
in a xenograft mouse model [67]. Although GSI has shown antitumor 
activity in human cancer, GSIs exhibit multiple side-effects. For instance, 
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GSIs could block the cleavage of all four Notch receptors and multiple 
other γ-secretase substrates, which could be important for normal cell 
survival [66]. Additionally, GSIs have unwanted cytotoxicity in the gas-
trointestinal tract [66].

To overcome the limitations of GSIs, several studies have used natural 
compounds, which are typically non-toxic to human cells, to inhibit the 
Notch signaling pathway in human malignancies. For example, natural 
agents such as genistein, curcumin, and sulforaphane have been reported 
to inhibit Notch expression [25,68]. Studies from our group have dem-
onstrated that genistein and curcumin inhibited the expression of 
Notch-1 and its target genes including Hes-1, Cyclin D1, Bcl-xL and 
NF-κB in PC cells [25,68]. Recently, we further revealed that genistein 
inhibited cell growth, migration, invasion, EMT phenotype, and the for-
mation of pancreatospheres via suppressing Notch-1 expression in PC 
cells [42]. We also observed that genistein could inhibit Notch-1 expres-
sion through upregulation of miR-34a in PC cells [69]. Sulforaphane, a 
natural compound derived from cruciferous vegetables, was shown to 
target the pancreatic CSCs [70–72]. Moreover, the synergistic activity of 
sulforaphane and sorafenib was found to be due to elimination of CSCs 
derived from PC cells [73]. Furthermore, sulforaphane increased the 
sensitivity of cells to chemotherapeutic agents such as cisplatin, gem-
citabine, doxorubicin and 5-flurouracil through targeting CSCs medi-
ated by the inactivation of Notch-1 in PC [70]. Studies from our group 
have also shown that curcumin inhibits cell growth and induced apop-
tosis in pancreatic cancer through inactivation of the Notch pathway 
[25]. Taken together, these findings suggest that natural compounds 
could function as non-toxic inhibitors of the Notch pathway in PC 
cells, and thus natural agents could be useful either alone or in combina-
tion with conventional therapeutics in the management of PC with 
better treatment outcome.

UNDERSTANDING NOTCH SIGNALING THROUGH SYSTEMS 
BIOLOGY

To understand the contributions of Notch signaling to normal develop-
ment and cancer, a systematic identification of the different components 
in the pathway, the underlying control circuitries, and of the connec-
tions to other pathways is crucial. However, a major challenge for such 
comprehensive systems biology studies in human cells is the complexity 
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and genetic redundancy in many of its pathways that make a systematic 
loss-of-function analysis difficult. This is especially true for Notch sig-
naling, which is recognized to crosstalk with so many different parallel 
signaling. In this direction, Saj and colleagues using in vivo RNAi librar-
ies for Drosophila dissected the complexity of Notch signaling on a 
genome-wide scale [74]. Their binary expression system allowed for 
tissue- specific knockdown of genes. Using this systems they described a 
combined ex vivo and in vivo RNAi screening approach to identify 
regulators of Notch [74]. Their cell-based genome-wide RNAi screen 
selected a list of 900 potential modulators of Notch activity. These pre-
selected candidates were then analyzed in vivo in a range of assays and 
allelic series, which enabled a large-scale confirmation of the data from 
the cell-based assay [74]. These studies lead to the establishment and 
analysis of a Notch interaction network. In summary, their results showed 
that such a systems approach can identify genes (401 in total) as regula-
tors of Notch, and determined several cellular modules linking Notch 
and cancer [74]. This systems and network-deduced Notch interaction 
map opens up entirely new and interesting perspectives for the regula-
tion of Notch signaling in development and diseases such as pancreatic 
cancer. Nevertheless, there is a need for more robust biological analyses, 
such as proteomic approaches, in order to place the interactors within 
the Notch pathway and to reveal the exact links to other pathways and 
the cellular metabolic network.

CONCLUSION

In summary, evidence has convincingly shown that the Notch signaling 
pathway plays a central role in the development and progression of PC 
through regulation of cell growth, apoptosis, migration, invasion, angiogen-
esis, and metastasis (Figure 4.2). Moreover, the Notch pathway is critically 
involved in controlling the acquisition of EMT phenotype and the formation 
of CSCs in PC. More importantly, Notch signaling is associated with drug 
resistance in PC (Figure 4.2). Therefore, due to its multiple functions, target-
ing the Notch pathway could become a promising strategy for the treatment 
of PC. To that end, natural compounds could become a major player because 
they are less toxic or non-toxic to humans. Therefore, these natural agents 
could be useful for the prevention of tumor progression and/or for successful 
treatment of PC mediated through inactivation of the Notch signaling path-
way. However, further pre-clinical and clinical studies are warranted.
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INTRODUCTION

The technology revolution by the Human Genome Project from 1986 to 
2003 [1] has propelled the field of bioinformatics into a new era, with the 
formidable challenge of organizing, classifying, making available, and inter-
preting complex genomic data within the context of large biological data-
bases and repositories containing the accumulated information.

The major advances in experimental methods for genome characteriza-
tion based on deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) 
microarrays and DNA sequencing—for example, capillary-based DNA 
Sanger sequencing and, more recently, next-generation sequencing (NGS)—
make analysis mutations, gene expression, and copy number alterations pos-
sible in a large number of cancer genomes [2]. Indeed, 21st-century 
sequencing-based experiments generate substantially more data and are 
more broadly applicable than microarray technology, allowing for various 
novel functional assays, including quantification of protein–DNA binding 
or histone modifications (chromatin immunoprecipitation followed by 
sequencing, ChIP-seq), transcript levels using RNA sequencing (RNA-
seq), and genome (WGS) and exome sequencing (WES) variant discovery.

New genomic technology has come at a cost, however, resulting in a 
greater challenge for associated bioinformatics analyses. The fast develop-
ment of bioinformatics and the complex combination of related biology, 
computer science, and information technology often make it difficult for 
biomedical researchers to use the available technology to its fullest and, in 
many cases, even to select the appropriate tools and computational resources.

This chapter provides an overview of the high-throughput genomics 
technologies (with an emphasis in NGS), the data currently available 
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(cancer-related databases) and the types of bioinformatic analyses that need 
to be applied. It emphasizes the specific challenges posed by the analysis of 
pancreatic samples and provides specific examples.

HETEROGENEITY AND QUALITY OF SAMPLES FOR HIGH-
THROUGHPUT GENOMIC TECHNOLOGIES

Standardized protocols for sample quality are essential to ensure reproduc-
ible results and comparability. In general, clinical sample experiments are 
complicated due to the differences in sample quantity, quality and purity. 
Tumor samples often include substantial fractions of necrotic or apoptotic 
cells as well as a mixture of malignant and nonmalignant cells. Also, nucleic 
acids isolated from cancer are often of lower quality than those purified 
from peripheral blood. Along this line, tumors may be highly heterogeneous 
and composed of different clones with different genomes [3,4]. Further-
more, the control samples are also problematic because peripheral blood 
provides only an imperfect reference and surgical resections are difficult to 
obtain. Bioinformatics methods are being designed to alleviate most of these 
issues, but they still impose constraints that have to be taken into account 
during the organization and interpretation of cancer genome projects.

Aside from the pancreatic tissue samples, cellular components and 
their function pose additional challenges to the analysis. The pancreas is 
composed of three major cell types (acinar, ductal, and endocrine). The 
acinar component is the largest in normal tissue, accounting for about 
80% of all cells. Therefore, a comparison of different origin tumors with 
the normal pancreas is not fully suited per se. Moreover, pancreatic tumors 
are characterized by a massive desmoplastic reaction and “contamination” 
from inflammatory/stromal components, which often result in a tumor 
mass that contains around 38% (ranging from 5% to 85%) of cancer cells 
[5]. Unlike other neoplasms, histological evaluation of the cellular com-
position of the specimens used for analyte isolation is essential. In addi-
tion, the exocrine pancreas produces large amounts of hydrolytic enzymes, 
which prevent quality samples from being obtained for analysis. Appro-
priate controls should be used to examine analyte degradation. It is a fact 
that an RNA integrity number (RIN) score higher than 7, as recom-
mended for RNA-seq experiments, is hard to obtain in human pancreas 
samples.

The purity and quality of the material (DNA/RNA) required will have 
a decisive influence on the quality of the raw data obtained and should be 
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taken into account during the design of the analysis, selection of algo-
rithms, and the follow-up interpretation of the results. The basic bioinfor-
matics approaches applied to the initial raw data are described in detail in 
the following section.

MICROARRAYS

The development of the microarray technology at the end of the past cen-
tury was a revolution in the molecular biology field. Microarrays allowed 
multiple hypotheses to be interrogated simultaneously with robust methods, 
thereby leading to an application in gene discovery, gene regulation, bio-
marker determination, and disease classification. Microarrays have been 
used widely in research, and they commonly are found in the facilities of 
many academic institutions and biotechnology companies.

Technique
Microarrays are hybridization based and commonly are used to measure the 
binding of a nucleic acid analyte on the basis of sequence complementarity. 
This allows both analysis of expression and genotyping. cDNA (two colors) 
and oligonucleotide (single color) microarrays are the two main microarrays 
platforms and both have been used widely. cDNA microarrays are useful to 
measure transcript abundance and are based in printed cDNA with size 
ranging from a few 100 bases to several kilobases. In two-color arrays, the 
test and reference samples are labeled with fluorescent Cy5 or Cy3 dyes, 
using reverse transcriptase, and subsequently are hybridized. The slides are 
scanned to measure fluorescence, and the signal is relative to the abundance 
hybridized transcripts. In oligonucleotide microarrays, the probes are 
directed synthesized on glass slides using photolithography technology. The 
probes are usually 9–50 nucleotide oligonucleotides that hybridize with 
samples labeled with biotin or Cy3 dye (single-color arrays).

Bioinformatic Analysis
The first step in the analysis of microarray data is normalization, which is 
aimed at compensating differences in labeling, hybridization, and detection 
methods. Data normalization is essential for comparison of different experi-
ments. The selection of the appropriate method depends on the type of 
array and expected biases. Total intensity normalization assumes that the 
total hybridization intensities summed over all elements in the arrays should 
be the same for each sample. In addition, there are a number of alternative 
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approaches to the total intensity normalization method, including linear 
regression analysis, log centering, rank invariant methods, and others. 
Because these methods can have a systematic dependence on intensity, the 
effect of which is often nonlinear and can vary from different slides, locally 
weighted linear regression normalization has been proposed as a method to 
remove intensity-dependent effects, taking into account individual slides to 
remove slide-dependent dye effect [6].

Most normalization algorithms can be applied to the entire data set 
(global normalization) or to some subset of the data (local normalization). 
Local normalization helps to correct spatial variations in the array, such as 
variability in slide surface or slight differences in hybridization conditions 
across the arrays. Then the variability between regions of an array or between 
arrays should be corrected so that their variance is the same, normally 
achieved by adjusting the log2 (ratio) measurements [6].

Housekeeping genes frequently have been used to normalize microarray 
expression data under the assumption that they display stable levels across 
samples. This is not always the case, however, leading to erroneous conclusions 
as shown by Welsh et al. [7] and Yu et al. [8]. Other strategies have been pro-
posed to overcome the housekeeping limitations based on identifying genes 
that are not expressed differentially across different biological samples in the 
same data set, to normalize the data. A major normalization effort should be 
made using standardized spike-in controls of known concentration, defined 
length, and guanine–cytosine (GC) content [9]. Finally, visual inspection is 
recommended using box plots, scatter plots, or MA plots—plots of the distri-
bution of the Cy5/Cy3 intensity ratio (‘M’) versus the average intensity 
(‘A’)—to identify possible errors introduced during the normalization proce-
dure. Even though many normalization algorithms have been developed, the 
Limma package [10] has gained wide acceptance and includes all of the nec-
essary tools for the analysis of the different types of array-based experiments. 
Limma is part of Bioconductor (http://www.bioconductor.org/), an open-
source package based on the R programming language for the analysis of 
high-throughput genomic data, including microarrays.

After data normalization, the analysis of expression microarrays can be 
carried out with supervised or unsupervised methods. Supervised methods 
identify differential gene expression (DGE) patterns between samples of 
known phenotypes—for example, cells that are exposed or not exposed to 
experimental manipulation. A number of statistical tests are applied—such as 
the t-test, Wilcoxon rank-sum test, or significant analysis of microarray—to 
identify the DGE between two groups or tests based on analysis of variance 

http://www.bioconductor.org/
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to identify differential expression between multiple groups. Microarrays test 
multiple hypotheses in a single experiment and can produce hundreds of 
false-positive results. These false positives that result from multiple compari-
sons are controlled by family-wise error rate or the false discovery rate (FDR) 
estimations. The first represents the probability of having at least one false-
positive result for all the tests and the second is less stringent and provides the 
expected proportion of false positives among the significant results.

Unsupervised methods group samples or genes based on their expression 
distance, without using information about the associated phenotypes. The 
most common method used is hierarchical clustering, which groups the sam-
ples that have similar expression patterns, genes that are highly correlated, or 
both, producing dendrograms in which the length of the branches is inversely 
proportional to the similarity between samples or genes. Other unsupervised 
methods are K-means, principal component analysis, or self-organizing maps.

Moreover, the unit of analysis can be “gene modules” instead of indi-
vidual genes, as the latter can be grouped based on previous biological 
knowledge. The genes can be grouped according to biological pathway, 
motif sharing, or tissue expression. This kind of analysis has been termed 
“functional analysis”. Three types of methods follow this strategy. One is the 
singular enrichment analysis (SEA), which is the best strategy established for 
enrichment analysis and is based on a preselected list of genes defined by the 
user. This is measured by different statistics, such as chi-squared, Fisher’s, 
binomial, or hypergeometric tests. Another is the Gene-Set Enrichment 
Analysis (GSEA), which is based on a ranked list of genes and Kolmogorov–
Smirnov statistics. This method has the advantage of not requiring arbitrary 
cutoffs. The third method is the modular enrichment analysis, which incor-
porates extra network discovery algorithms into the SEA methodology.

In the case of microarrays used for genotyping, the software provided by 
the manufacturers normally is used for the normalization and genotype 
analysis step. Currently, microarrays are able to genotype more than a mil-
lion single-nucleotide polymorphisms (SNPs) simultaneously. The first step 
is to summarize the probe intensities for each SNP, followed by a call based 
on the summarized intensities. There are three possible genotypes (assuming 
diploidy): AA, BB (homozygous), and AB (heterozygous), where A and B 
denote the two possible alleles. Further steps include linkage disequilibrium 
and phasing, where alleles at two or more loci appear together in the same 
individual more often than would be expected by chance.

Genome-wide association studies (GWAS) use germline DNA to iden-
tify genetic variants that are more common in individuals with a given 
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phenotype than in the control population. They provide a powerful tool to 
analyze genetic variation but are limited by the false-positive rate derived 
from the large number of comparisons performed. To acquire statistical sig-
nificance—in the case of common, low-penetrance, alleles—large numbers 
of affected (cases) and unaffected (controls) individuals are needed. In 
microarray genotyping, the signal intensity is related with the DNA amount 
harboring the region interrogated by the probe. Therefore, the probe inten-
sity can be used for further analyses, including DNA copy changes, the 
detection of loss of heterozygosity (LOH) and uniparental disomies, and 
other structural alterations. Algorithms for copy number—such as WaviCGH 
[11]—follow similar steps, including the summarization of the intensity of 
consecutive probes (2-40) into a single measure, followed by segmentation 
to infer chromosomal segments of constant copy number, the calling of 
gains and losses regions, and the identification of minimal common regions 
over a set of samples.

Microarrays in the Pancreas
Expression Microarrays
Microarrays have been used widely in the cancer field for more than a 
decade for detection of biomarkers, sample classification, response to treat-
ment, and drug screening. Unlike with other tumor types, the number of 
data sets and samples available in pancreatic cancer is limited. For example, 
across the 715 microarray data sets and 87,633 samples included in Onco-
mine (see description in databases and resources section) only 29 data sets 
with 606 samples referred to pancreatic cancer. In contrast, other frequent 
tumors (such as colorectal, breast, lung, or brain) are represented by more 
than twice the number of the data sets, with up to 132 data sets, which 
include 14,277 samples, in the breast. This reflects the difficulty of accessing 
pancreatic samples and obtaining sufficient quantity and quality compared 
with other tumor types as noted in the previous sections.

The earliest studies using expression microarrays focused on the use of 
gene expression profiles to characterize pancreatic ductal adenocarcinoma 
(PDAC) [12–15]. These studies identified sets of genes differentially 
expressed between PDAC and normal samples ranging from 75 to 587 
genes. Grutzmann et al. [16] carried out the first meta-analysis, which 
showed 568 deregulated genes in pancreatic cancer, of which only 22% had 
been described previously. Following these studies, Badea et al. [17] defined 
their own DGE set in 36 pancreatic tumor tissues, and compared the list 
with previous results on pancreatic cancer and microarrays from 25 different 
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publications, to define a list of target genes involved in pancreatic cancer. 
This strategy allowed the identification of 135 genes of the 239 from its data 
set in any of the other studies, some of them with prognosis and survival 
implications. Collisson et al. (128) were the first to use transcriptomic data 
to identify subtypes of pancreatic adenocarcinoma, characterized on the 
basis of their gene expression profiles, with potential implications for thera-
peutic response [18,19]. These studies need to be validated in independent 
series. Expression microarrays also have been applied to assess the drug 
response of pancreatic cancer cell lines, primary cultures, or xenografts. 
These approaches have identified genes such as Rrm1, Top2a, Casp3, and 
others that have shown resistance to gemcitabine, the standard treatment for 
advanced pancreatic cancer. A review on gene expression profiling and pan-
creatic cancer can be consulted in reference [20]. Recently, Gadaleta et al. 
[21] performed the most significant integrated analysis in pancreas cancer to 
date using microarrays expression data, for a total of 309 samples from dif-
ferent studies and sources (cancer pancreas samples, cell lines, xenografts) 
using the same microarray platform. The main findings of this study pointed 
out that normal samples adjacent to tumors often display transcriptomic 
changes, and the xenografts and cell line models do not fully recapitulate the 
transcriptome of primary tumors (detailed results can be consulted in the 
Pancreatic Expression Database (PED)). This may explain the differences 
between studies and the difficulty in moving gene expression profiles to the 
clinic. Another interesting resource for pancreatic cancer studies is the 
microarray transcriptome characterization in islets of healthy human donors 
carried out by Dorrel et al. [22]. These authors used cell type-specific sur-
face-reactive antibodies to capture dispersed single cells and to characterize 
the transcriptome of alpha, beta, large-duct, small-duct, and acinar cells.

Genotyping Microarrays
The largest GWAS conducted in pancreatic cancer was reported by Petersen 
et al. [23]. This report included 3851 cases and 3934 controls from 20 stud-
ies and identified eight SNPs overlapping with three regions associated with 
pancreatic cancer risk (1q32.1, 5p15.33, and 13q22.1). The region 1q32.1 
includes five specific SNPs associated with pancreatic cancer susceptibility 
for gene LRH1/NR5A2, an “orphan” nuclear receptor critical in develop-
ment. Another SNP identified in 5p15.33 was placed in CPTM1L-TERT 
locus, genes that have been implied in carcinogenesis. The region 13q22.1 
is a large nongenic region with two associated SNPs that appear to be spe-
cific to pancreatic cancer. As commented previously, genotyping 
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microarrays have been used widely in pancreatic cancer to assess copy num-
ber aberrations. Several amplifications have been described in different 
studies, but those related to oncogenes, such as KRAS, MYC, or AKT2, have 
been described in multiple cases, as well as deletions affecting tumor sup-
pressors, such as TP53, CDKN2A, and SMAD4. Unfortunately, until now 
neither RNA- nor DNA-based studies have provided the basis for improved 
diagnostic or predictive tools. Lack of replication studies together with the 
challenges related to the disease and the need to obtain samples using inva-
sive procedures contribute to this slow progress. In fact, access to clinical 
samples is difficult because only 20% of cases with pancreatic cancer undergo 
surgery and most patients are very sick at the time of diagnosis and have an 
extremely short life expectancy.

NEXT-GENERATION SEQUENCING

Next-generation sequencing (NGS) is used for the identification of protein 
binding to chromatin, quantification of RNA levels, and identification of 
mutations, as well as for other applications. Some bioinformatic processing 
of the data is common to all of these, as seen in the schematic workflow 
provided in Figure 5.1.

ChIP-seq
One of the earliest applications of NGS is ChIP-seq. This technique gener-
ates genome-wide profiling of DNA-bound proteins by sequencing the 
DNA fragments hybridized to the proteins recognized by the antibodies. Pro-
teins are therefore in contact with the DNA directly or as part of larger pro-
tein complexes [24,25]. ChIP-seq outperforms previous techniques (e.g., 
ChIP–ChIP microarrays) in terms of resolution, coverage, and dynamic range. 
It also presents fewer artifacts, for small- and large-scale approaches, including 
the first genome-scale view of DNA–protein interactions [26], and for these 
reasons, it has become widely used.

Technique
Briefly, the DNA-binding protein is cross-linked to DNA sheared into 
small fragments (200–600 bp) and immunoprecipitated with an antibody 
specific to the protein of interest. The immunoprecipitated DNA fragments 
then are used as the input for the sequencing library preparation protocol 
and finally are sequenced. Although the Illumina/Solexa Genome analyzers 
dominate the NGS market, multiple platforms have been developed.
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ChIP-seq Encyclopedia of DNA Elements Guidelines
Guidelines for good practices and quality metrics for ChIP-seq experi-
ments have been developed by the Encyclopedia of DNA Elements 
(ENCODE) consortium [27]. In brief, ideally the objective is (1) to obtain 
≥10 million uniquely mapping reads per replicate experiment, (2) to gener-
ate and sequence a control ChIP library for each experiment (cell type, 
tissue, or embryo collection), and (3) to perform experiments at least twice 
to ensure reproducibility.

Bioinformatics Analysis
The first step of the bioinformatics analysis workflow is a quality check, 
beginning with the use of a browser for the direct inspection of the quality 
of the raw sequence data. Fastqc [28] or TEQC [29] algorithms are used to 
assess sequencing error rates, per-base/read Phred scores (a quality score 
related to the probability of an erroneous call per nucleotide), total number 
and distribution of the reads along the genome, and read duplication (a 
potential polymerase chain reaction (PCR) artifact introduced during 
library construction). These initial quality analyses constitute essential steps 
for any genome analysis exercise.

Figure 5.1 Bioinformatic Analysis Workflow in Next-Generation Sequencing 
Approaches. *Additional software in references [17,22,23]. **Additional softwares in 
references [57,58]. ***Additional software in reference [59]. (For color version of this 
 figure, the reader is referred to the online version of this book.)
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Following quality analysis, the raw sequenced reads are aligned to the 
reference genome. The regions of the genome with repeats, poor quality 
reads, possible sequencing artifacts, and reads that do not match the refer-
ence genome are common problems and can be present at different levels. 
The obvious recommendation is to use the latest stable release of the refer-
ence genome, although in many cases the need to take previous publica-
tions into account makes the use of previous versions necessary. Genome 
references can be downloaded from databases, such as Ensembl [30] or Uni-
versity of California, Santa Cruz (UCSC) [31,32], and visualized using the 
corresponding browsers.

The vast amount of NGS data has required the development of specific 
alignment strategies. The most commonly used ones among these are Bur-
rows-Wheeler Aligner (BWA) [33], Bowtie [34], and BLAT-Like Fast Accu-
rate Search Tool (BFAST) [35]. The first two methods are faster than BFAST, 
although BFAST is more accurate and consumes more memory.

After aligning the reads, a preprocessing step is required to analyze the 
data. Reads with aligned gaps, more than two mismatches, or multiple align-
ments in the genome as well as duplicate reads (a potential PCR artifact) are 
removed for further analysis. Once again, direct visualization of the data in 
a genome browser is important to assess the quality of the resulting align-
ments. Moreover, data visualization helps to choose the most appropriate 
peak caller for the type of signal obtained, to identify the binding regions of 
the transcription factor (TF) of interest. DNA-bound proteins can provide 
different binding patterns, while most TFs have narrow signals, others such 
as chromatin modifications tend to be broader. These differences in the sig-
nal patterns require the use of specific algorithms for a correct identification 
of the true binding sites.

Dozens of peak callers have been developed for the identification of true 
protein-binding sites from the background of spurious sequence reads. 
Briefly, DNA fragments pulled down from sense and antisense strands in the 
immunoprecipitation typically are sequenced as single-ended reads and, 
therefore, local enrichment is expected in both strands in similar reads. This 
pattern results in a strand-dependent bimodality of read-density that shifts 
from the source point (i.e., actual binding site, “summit”) by half the average 
sequenced fragment length and that typically is referred to as the “shift”. 
The reads from both strands will form a single peak where the summit cor-
responds closely to the binding site [36].

In the typical ChIP-seq experiment, a relatively small number of reads 
will align directly in true binding sites (peaks), while most of them will 
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represent unspecific binding and can be considered as background. To mini-
mize the prediction of false-positive binding sites, peak callers incorporate 
different modalities of background correction. In some cases, ChIP-seq 
experiments use control samples to model the background distribution of 
reads, in others, the computational methods estimate the background distri-
bution using the experimental data directly. Although both nonspecific 
immunoglobulin G (IgG) antibodies and random sheared chromatin frag-
ments without previous antibody immunoprecipitation (“input chroma-
tin”) have been used as controls, IgG is less recommended because “input 
chromatin” provides greater, more evenly distributed coverage of the 
genome [37]. If IgG antibodies are used, they should be of the same species 
as the relevant antibody; moreover IgG immunoprecipitates much less DNA 
than specific antibodies. The use of control samples allows for the estimation 
of the statistical significance of the peaks on the basis of an empirical back-
ground. Although different biases have been described in control libraries 
[38], control samples are important, as open chromatin regions are easier to 
shear than closed regions and they tend to generate more reads and a higher 
background signal [39]. Moreover, the heterogeneous efficiency of sequenc-
ing in different genome regions and the variable specificity and cross-reac-
tivity of the antibodies [37] complicates the results.

Once the candidate peaks are selected, the main criterion to select the 
binding sites is the statistical significance of the enrichment relative to the 
background.

Because the number, size, and position of the detected binding sites, as 
well as the associated statistical significance, can vary greatly, the choice of a 
peak detection algorithm is a key question. Even if the default parameters 
of the peak callers work well in most cases, they might not be optimal for 
particular cases. The large number of adjustable parameters is, without a 
doubt, a major complication for the users of peak detection methods. Ref-
erences [36,40,41] describe efforts to compare peak callers.

The predicted binding regions are the entry point for downstream func-
tional analysis, such as motif discovery and annotation. Sequence motifs for 
DNA-binding proteins are recurrent nucleotide patterns that indicate 
sequence-specific binding sites, with a presumed biological function. The 
analysis on DNA sequence motifs has become important because of its role 
in DNA three-dimensional (3D) structure and gene regulation. In the case 
of TF with well-defined canonical binding motifs, this information can be 
used to facilitate the analysis of the quality and confidence of the ChIP-seq 
peaks. In this sense, motif databases, such as TRANSFAC [42] and JASPAR 
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[43], can be used to assess the results of the different algorithms. The Mul-
tiple Em for Motif Elicitation (MEME) Suite is a good example of a soft-
ware tool kit that allows for different types of motif analysis, such as motif 
discovery, motif–motif database searching, motif-sequence database search-
ing, and function assignment [44].

For the exploration of the biological significance of the predicted bind-
ing sites, the annotation of the associated genomic features are combined 
and explored. This process of annotation can be carried out with multiple 
algorithms [45,46]. Annotations, usually in gene transfer format (GTF), are 
obtained from Ensembl [30] or UCSC [31] genome references. The meth-
ods then carry out the assignment of the peaks to the annotated features—
transcription start site (TSS), transcription termination site (TTS), Exon 
(Coding), 5′ untranslated region (UTR) Exon, 3′ UTR Exon, Intronic, or 
Intergenic—using a variety of distance statistics. The resulting associations 
between TF (or other DNA-binding proteins) and genes (or gene features) 
are then subject to enrichment analysis strategies, as mentioned in the 
microarrays section, which are applied to such classes as gene ontologies, 
pathways, disease annotations, or drug target identification. Methods to per-
form enrichment analysis include the Database for Annotation, Visualiza-
tion, and Integrated Discovery (DAVID) [47] or the Molecular Signatures 
Database from GSEA [48]. Finally, in many cases, it is useful to complement 
the downstream analysis with the direct visualization of the distribution of 
aligned reads using density heat-map plot methods, such as EpiChIP [49] or 
SeqMiner [50].

Further ChIP-seq Applications
Further applications of ChIP-seq technology are based on the recognition 
of other DNA-binding proteins in addition to TFs, including histone modi-
fications, polymerases, and cytosine modifications, which are all of particular 
interest in epigenomics. Even if all of these applications are technically simi-
lar, important differences should be taken into account during the interpre-
tation of the results of the peak callers. TF peaks tend to be narrow, covering 
a few hundred base pairs, whereas peaks of histone modifications such as 
H3K27me3 (mark of repression) or H3K36me3 (mark of transcription 
elongation) tend to be broad and can occupy several kilobases, and Pol II 
peaks show both patterns, narrow and broad peaks. As noted, the selection 
of the appropriate peak caller for each type of signal is a key step in the 
analysis and interpretation of the results, and data visualization can help to 
choose the best strategy.
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Nucleosome positioning plays a key role in organizing higher order 
chromatin structures in eukaryotic cells. The organization of nucleosomes is 
important to expose selectively functional important sequence domains and 
to allow the interaction between DNA and binding proteins that regulate 
or prevent gene expression. Modifications to ChIP-seq protocols have been 
developed to identify specific DNA regions potentially associated with 
nucleosome positioning and regulation of gene expression.

DNase I hypersensitive sites sequencing (DNase-seq) is based on the 
genome-wide sequencing of free-histone regions sensitive to cleavage by 
DNase I [51] and requires the permeabilization of cells or isolation of cell 
nuclei. Alternatively, Formaldehyde-Assisted Isolation of Regulatory Ele-
ments sequencing (FAIRE-seq) [52] cross-links the chromatin with form-
aldehyde, sequestering the DNA linked to histones and leaving histone-free 
DNA fragments for sequencing. These techniques help to identify DNA 
regions with nucleosome depletion associated with regulatory chromatin 
domains. In principle, FAIRE-seq is more adequate to detect distal regula-
tory elements, whereas DNase-seq is better for detecting promoter regions. 
Actually, algorithms to handle this type of data are not well established and 
ChIP-seq peak finders are used in the absence of specific algorithms. There-
fore, these algorithms do not completely fit the patterns formed in a DNase-
seq or FAIRE-seq experiment. To date, F-seq [53] is considered the most 
appropriate algorithm to handle this kind of data, but it is limited as it does 
not have any available statistical assessment and it does not allow for the 
inclusion of control samples in the analysis.

One more method to determine nucleosome positioning is Micrococcal 
Nuclease sequencing (MNase-seq), based on the capacity of the micrococcal 
nuclease restriction enzyme to degrade genomic DNA that is not protected 
by histones [54]. The sequencing of the remaining DNA reveals the sections 
of the genome occupied by nucleosomes. MNase-seq can be combined with 
ChIP-seq to map nucleosomes that contain specific histone modifications. A 
complete list of software to infer nucleosome positioning from MNase-seq 
and ChIP-seq histone modifications experiments can be consulted at http://
generegulation.info/index.php/nucleosome-positioning.
Once the position of  TFs, histone marks, or nucleosomes have been deter-
mined, the information can be combined to determine the segmentation of 
the genome in regions with different levels of regulatory or transcriptional 
activity. ChromHmm [55] or Segway [56], based on hidden Markov models, 
are the first generation of methods able to generate genome segmentation 
corresponding to potential cell type–specific activity patterns.

http://generegulation.info/index.php/nucleosome-positioning
http://generegulation.info/index.php/nucleosome-positioning
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ChIP-seq Analysis of Pancreatic Cancer
Very little genomic information is available using genome-wide ChIP-seq 
profiling of pancreatic cancer. Several studies have assessed the occupancy 
of TFs in normal exocrine pancreas: PTF1A, a TF that regulates exocrine 
pancreas-specific gene expression, and LRH1/NR5A2 a member of the 
nuclear receptor family that is required for exocrine differentiation. Hol-
mstrom et al. [24] identified 17,108 binding sites for LRH1, 62% of which 
were mapped in gene bodies predominantly around the TSS. These genes 
revealed enrichment for exocrine pancreas-related processes, including 
digestion, secretion, and mitochondrial metabolism. Out of 17,108 bind-
ing sites for LRH1, 1533 colocalized with PRF1 and RBPJL (compo-
nents of the PTF1-L complex). Further analysis confirmed that LRH1 
and the PTF1-L complex cooperate in activating acinar-specific gene 
transcription [24].

Recently, Tzatsos et al. [25] showed that KDM2B, an H3K36me2 
demethylase, promotes tumor development through Polycomb Repressive 
Complex 2 (PRC2)–mediated gene repression through integral roles in 
both Polycomb group- and v-myc avian myelocytomatosis viral oncogene 
homolog (MYC)-mediated transcriptional regulation.

RNA-seq
Expression microarrays have been the standard tool for gene expression 
quantification for more than a decade, but they now are being replaced by 
RNA-seq (whole-transcriptome shotgun sequencing), an NGS technology 
that is able to discover, map, and quantify transcripts. Although both tech-
nologies have similar results in terms of relative gene expression quantifica-
tion, RNA-seq has clear advantages because it covers a wider range of 
expression values [57,58], it does not have the problems of cross-hybridiza-
tion typical of microarrays, it provides information about RNA splice events 
that cannot be obtained by standard expression microarrays, and in general 
it has the capacity to explore new genome features instead of analyzing only 
a predetermine version of the genome as occurs with expression arrays [59].

Technique
In general, a population of RNAs, whether total or fractionated, such as 
poly(A)+, microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs) or 
short interfering RNAs (siRNAs), is converted to a library of cDNA frag-
ments. During library preparation, cDNA is fragmented into smaller pieces 
to obtain short sequences that serve as the template for sequencing with or 
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without amplification (to increase the number of DNA copies), from one 
end (single-end sequencing), which frequently is used for quantification, or 
from both ends (pair-end sequencing), which is more appropriate for tran-
script assembly. The usual steps of RNA fragmentation and size selection for 
200-base-pair fragments should be taken with care because they may under-
represent the shortest transcripts [60,61].

The typical reads are 30–400 bp, depending on the RNA-seq purpose. 
For example, short reads (30–60 bp) are more adequate for gene expression 
quantification, whereas longer (70–400 bp) and pair-end reads are better for 
detecting connectivity between multiple exons, to interrogate transcrip-
tome isoforms, or to map splicing sites.

RNA-seq ENCODE Guidelines
As with ChIP-seq, the ENCODE consortium developed guidelines, prac-
tices, and quality metrics for RNA-seq experiments [62]. To ensure that 
the data are reproducible, the experiments should be performed with at 
least two biological replicates having a typical R-squared correlation of 
gene expression between 0.92 and 0.98 for cell lines, as some variation 
between biological replicates under the same conditions is expected 
because of slight technical variations in library preparation, sequencing 
efficiency, mapping, and others. The correlation can be lower for individu-
als or samples from transgenic animals or embryos because of differences 
between individuals.

For experiments that are to evaluate the similarity between the tran-
scriptional profiles of two samples, only modest sequencing depths may be 
required, for example, one lane yielding 30 million of which 20–25 million 
reads are mappable. Experiments with the objective of discovering novel 
transcribed elements will require more extensive sequencing. The ability to 
detect reliably low-copy-number transcripts depends on the depth of 
sequencing. Toung et al. [63] stated that in B cells, the expression values of 
the highly expressed isoforms increased with higher sequencing depths, 
whereas the isoform with the lowest level of expression was fairly constant. 
The authors claimed that although 100 million reads are enough to detect 
most expressed genes and transcripts, about 500 million reads are needed to 
measure their expression levels accurately.

Bioinformatic Analysis
The steps of quality assessment of the raw sequence are the same for bioin-
formatic analysis as described for the ChIP-seq experiments. Further steps 
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can include the alignment of the reads to the reference genome or to the 
proposed reference set of transcripts to produce a genome-scale transcrip-
tion map or to quantify the level of expression of specific genes.

The alignment methods for available reference genomes are similar to 
ChIP-seq with the main difference being the alignment of reads across splice 
junctions. The primary approach is to map the ungapped sequence reads 
across sequences, representing known splice junctions. This also can be sup-
plemented with any set of predicted splice junctions from spliced expressed 
sequence tags (ESTs) or gene-finder predictions, such as those implemented 
by Enhanced Read Analysis of Gene Expression (ERANGE) [59]. All of 
these approaches, however, ultimately are limited to recovering previously 
documented splice variants. Alternatively, packages such as TopHat [64] first 
identify enriched regions representing transcribed fragments (transfrags) and 
build candidate exon–exon splice junctions to map additional reads across 
samples. These strategies work much better with data from RNA-seq librar-
ies that preserve information about which strand originally was transcribed. 
This strategy provides information about adjacent genes transcribed in dif-
ferent strands or antisense transcripts (noncoding) with potential regulatory 
roles overlapping coding genes. De novo transcriptome assemblies, applying 
programs such as Velvet [65], are useful to detect chimeric transcripts from 
chromosomal rearrangements typical of tumors, a complex process that can 
consume substantial computational resources.

After mapping reads, a final goal is to measure relative gene expression 
abundance or to capture DGE across multiple samples, even if, in principle, 
it could be assumed that transcript abundance would be directly propor-
tional to the number of reads aligned on the corresponding transcript or 
gene. A number of factors, however, have to be taken into account, namely, 
the length of the transcripts or genes, and the differences in sequencing 
depth and quality of the compared samples. Reads/fragments per kilobase 
per million (RPKM/FPKM) is the simplest way to normalize the read 
count using the length of the transcript or gene and the number of million 
reads that can be mapped. Therefore, transcript or gene RPKMs/FPKMs 
allow samples to be directly comparable by providing a relative ranking of 
expression. To ensure comparability across transcripts, samples, protocols, 
and platforms, a major normalization effort should be made using standard-
ized spike-in RNA controls of known concentration, defined length, and 
GC content [9]. A big issue in pancreas RNA-seq experiments is the high 
levels of expression in acinar genes, which affect the analyses for gene 
expression, detection, and quantification.
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Finally, it is important to find a statistical distribution approximating the 
nature of the data to compare gene expression across samples. RNA-seq 
data can be described by a Poisson distribution, but library preparation and 
mapping errors can increase the variance of the expected distribution (over 
dispersion). The development of methods to estimate over dispersion is an 
active field of research and new methods are being developed. So far, 
RPKMs values can differ between different algorithms and the first com-
parisons between available methods are now available [66,67]. At the same 
time, there are different statistical methods to estimate DGE and to provide 
a statistical measure of the differences between treatments or populations 
(p-values, q-values, FDRs, etc.) [68].

In general, the list of genes with differential expression that can be 
obtained from these experiments have limited interest, and external infor-
mation is required to infer biological functions. Functional enrichments 
analysis or network interactions [69,70] based on the list of DGE is the usual 
procedure, in a similar way to that described previously for microarrays or 
ChIP-seq experiments. In addition, the GSEA discussed in the microarrays 
section can be applied in DGE analysis derived from RNA-seq.

RNA-seq in the Pancreas
RNA-seq has been applied to characterize different pancreatic cell popula-
tions. Ku et al. [71] characterized the pancreatic β-cell transcriptome in 
mice providing a useful resource for further analysis. The de novo assembly 
approach used by these authors not only provided information about gene 
expression but also allowed the description of promoters and cell-specific 
patterns of alternative splicing. In addition, these authors described more 
than 1000 lincRNA expressed in β-cells, most of them β-cell specific. Other 
interesting resources include the characterization of the pancreatic islet 
transcriptome carried out by Eizirik et al. [72] or Bramswig et al. [73] and 
the lncRNAs analyses carried out by Moran et al. [74] in human islet cells. 
These pancreatic RNA-seq resources might be useful as references for 
direct comparison with cancer. Studies by Rodriguez-Seguel [75] compar-
ing transcriptomes in hepatic and pancreatic progenitors, isolated from 
mouse embryo, described gene expression programs in liver and pancreatic 
progenitors. Moreover, the wingless-type MMTV integration site family 
(WNT) pathway was described as a potential regulator to reprogram adult 
hepatic cells into pancreatic cells, whereas at the same time, the WNT path-
way has had implications in pancreatic metastases by applying the RNA-seq 
technique to pancreatic circulating tumor cells [76].
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Cancer Genome Sequencing
A large number of articles have been published in the past few years identi-
fying somatic mutational signatures in various cancers based on full cancer 
genome-sequencing biology.

The technique is based on complete DNA fragmentation of an individual 
sample, sequencing, and accurate alignments.  An alternative to whole-genome 
sequencing is to target only specific regions of the genome, by selecting them 
using a specific capture technology. Today’s technology can capture up to 
70 Mb of exons, noncoding RNAs, noncoding regions with high regulatory 
potential, or other regions of specific interest. Exome sequencing reduces the 
cost of sequencing and increases the sensitivity of detection, but it misses vari-
ants in regions nontargeted by the capture methods.

Variant calling is highly dependent on alignment quality, which can be 
improved by the combination of fast aligners, such as BWA with sensitive 
aligners like BFAST [77]. In addition, a common strategy is to use long and 
paired-end reads (reads from the 5′ and 3′ ends of the same DNA fragment) 
to improve the quality of the alignments, particularly in the regions that 
present a higher variability with respect to the reference genome. Incor-
rectly aligned reads will imply wrongly predicted variants or wrongly 
assigned genotypes.

Systems such as the Integrative Genomics Viewer (IGV) [78] commonly 
are used for the downstream steps of alignment visualization and inspection 
of specific positions. IGV is a light-weight, high-performance visualization 
tool that enables intuitive real-time exploration of diverse, large-scale 
genomic data sets. IGV manage large alignment files in an efficient and fast 
way. Moreover, IGV provides a summary including the reads supporting the 
reference and the variant nucleotide in the selected positions.

On the basis of the short-read sequence alignments, variant calling algo-
rithms will determine the positions presenting nucleotide changes, inser-
tions, or deletions with respect to the reference genome. Genotype calling 
will use these positions to assign genotypes. Variants or genotypes of higher 
confidence are obtained by combining quality scores and number of reads 
covering the base or supporting each allele. Other filtering criteria include 
the differences in quality scores for major and minor alleles; extreme read 
depths, due to PCR artifacts; and strand bias, different proportion of reads 
covering the base between strands.

Somatic variants are obtained after comparing the list of variants 
obtained from tumor and “normal” samples. Variants in both samples are 
considered as germline variants, whereas variants exclusive of the tumor 
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sample are considered somatic. In solid tumors, “normal” samples frequently 
are obtained from peripheral blood mononuclear cells, but surgical margins 
or proximal lymph nodes also commonly are used. In both cases, contami-
nations cannot be completely disregarded, peripheral blood may contain 
circulating tumor DNA or tumor cells and marginal tissues might include 
residual disease or early tumor cells.

Somatic variants include not only single-nucleotide changes but also 
copy number variations (CNVs), copy-neutral regions of loss of heteroge-
neity (cnLOH), and inversions and translocations among others. The list of 
somatic variants from the primary analysis then will be analyzed in a further 
step to identify potential functional alterations of the corresponding gene 
and protein products. Single-nucleotide variants in an exon that would 
change the coding frame or replace a key residue (nonsynonymous muta-
tions) can strongly affect the catalytic function of a given protein and its 
associated biological function. Even if the prediction of the consequences of 
point mutations in coding regions is still an area of intense research activity, 
a number of methods commonly are used to predict the potential pathoge-
nicity of point mutations [79–81].

A second indicator of the importance of the mutations is their accumu-
lation in key genes and mutational hot spots. Indeed, the combination of the 
damaging potential of the mutations and statistical accumulation (mutation 
recurrence in a cohort) are the main indicators for the selection potential of 
driver mutations and drivers genes.

Additionally, some algorithms can include information on copy number 
alterations and gene expression (RNA-seq to improve the predictions of genes 
and mutations that could be cancer drivers) [82,83]. A note of caution is neces-
sary in many cases, because genome discovery cohorts often are limited in size 
and the statistical value of their conclusions should not be overestimated.

Once a list of variants or genes is selected for interpretation, the first 
approach is to look for known recurrent mutated genes in cancer as TP53 
or KRAS. Usually, these lists include a higher number of nonrecurrent 
mutations that make further interpretations difficult. The upper interpreta-
tion step to overcome this issue is to link variations or genes with signaling 
pathways, protein networks, or a gene ontology database to assess enrich-
ment for functional interpretation. The enrichment is measured by different 
statistical methods and implemented in algorithms, such as those cited in 
the microarrays and ChIP-seq sections.

The GSEA method can be applied in gene-ranked lists obtained from 
Oncodrive [82] or MutSigCV [83]. These methods rank the genes using a 
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score based in sample recurrence or predicted damaging of the variants for 
each gene, but large cohorts are required for effective results. In addition, 
variants can be associated with coding regions so that with protein domains, 
an enrichment analysis can be conducted in protein families with similar 
domains. The information contained in the Pfam database [84], a database of 
protein domains, is used. More complex analysis on how the variants affect 
protein–protein interactions or protein 3D structure can be performed. A 
revision on cancer genome analysis can be visited in reference [85].

Recently, other tasks such as clonal evolution characterization have led 
to characterizing cancer types or subtypes [3,4], but the methodology and 
the bioinformatics approaches that are available are naïve and future 
improvements are required to address these kind of questions. Moreover, 
thanks to NGS technology and bioinformatics development, the sequenc-
ing genome studies have allowed previously unknown mutational phenom-
ena to be identified, together with descriptions of new variants, driver genes 
for diseases, and their functional impact.

The novel mutational phenomenon called “kataegis” was first described 
by Nik-Zainal et al. [3]. This process is characterized by a pattern of hyper-
mutation clusters with the same nucleotide substitution in small genomic 
regions. Kataegis has been related to defects within the APOBEC protein 
family, and further studies to determine its role and functional impact in 
disease are required in the near future. Another new phenomenon described 
by Stephens et al. [86] is called “chromothripsis”. Chromothripsis describes 
a massive genomic rearrangement in one or more chromosomes in a single 
catastrophic event during the cells’ history, but the mechanism and the 
functional impact remain unclear. Bioinformatic tools or algorithms to 
explore these types of processes have not yet been standardized and well-
trained bioinformaticians are required to conduct this type of analysis.

The expectations regarding personalized medicine that have been gener-
ated over the past few years have increased because of the power of sequenc-
ing together with bioinformatic development identifying variants linked to 
diseases in whole–exome genomes. The main challenge of bioinformatics in 
this field is to improve the effectiveness of the analysis and interpretation 
steps, together with a decrease in the variant–gene target identification times 
and treatment options before deciding on a patient treatment. The combina-
tion of information of a different nature, such as the potential disease variants 
and their altered function, the knowledge about drug targets, and pathologi-
cal and clinical information could help clinical decisions in the future, as 
demonstrated by Villarroel et al. [87] and discussed in the next section.
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Genome–Exome Sequencing Studies in the Pancreas
A group at Johns Hopkins led the pathway to cancer exome sequencing 
using the first-generation techniques of PCR amplification of exons and 
Sanger sequencing analysis. Jones et al. [88] were the first to describe muta-
tional patterns in 24 advanced cases of PDAC. These authors found 39 
genes recurrently mutated across the samples; only 4 of these samples, previ-
ously known to be involved in pancreatic cancer, showed a probability of 
harboring passenger mutations <0.001: KRAS, INK4A, SMAD4, and 
TP53. The 39 recurrently mutated genes were further assessed in a preva-
lence screen, including xenografts, leading to the identification of 12 path-
ways that were altered consistently in 67% of the cases analyzed as KRAS, 
TGF-β, and Wnt/Notch signaling. A reanalysis of the data that considered 
familial history of pancreatic cancer led to the identification of a new breast 
cancer 2, early onset (BRCA2)-related pancreatic cancer susceptibility gene: 
the partner and localizer of BRCA2 (PALB2) [89]. Moreover, Villarroel 
et al. [87] reported a patient with pancreatic cancer and a germline PALB2 
mutation, identified by sequencing, who was an exceptional responder to 
the DNA cross-linking agent mitomycin C. These pioneering studies 
showed the potential of the genome-wide mutational analyses to identify 
new cancer driver genes that could lead therapeutic intervention in person-
alized medicine. Subsequent analyses carried out by Roberts et al. [90], 
sequencing 38 cases of pancreatic cancer from 16 families, identified ataxia 
telangiectasia mutated (ATM) as another familial pancreatic cancer predis-
position gene.

The largest sequencing study, carried out using second-generation tech-
nology, on 99 pancreatic cancer cases was published by the International 
Cancer Genome Consortium (ICGC) [5]. Again, this study revealed the 
predominant involvement of the four major pancreatic cancer genes across 
tumors with the additional contribution of other genes with a low overall 
frequency. This study further highlighted the importance of damage repair 
mechanisms in sporadic PDAC—including both the BRCA and ATM-
related pathways—as well as familial disease. Biankin et al. [5] also described 
a pathway analysis revealing axon guidance as a novel biological function 
altered in this tumor, related with the activity of the met proto-oncogene 
(MET) and WNT pathways, possibly providing new therapeutic opportuni-
ties. The ICGC also has underscored the difficulties in the genomic study of 
PDAC, resulting from the associated desmoplasia and the biases derived 
from the use of samples from patients with resectable tumors.
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The analysis of the genome of rare types of pancreatic tumors also has 
unveiled new drivers involved therein. Studies using fluid from neoplastic 
pancreatic cysts showed that mutations in five genes (VHL, RNF43, 
CTNNB1, GNAS, and KRAS) are able to distinguish among cystic tumor 
subtypes [91]. Although VHL mutations are exclusive in serous cystadeno-
mas and CTNNB1 are exclusive for solid pseudopapillary neoplasms, intra-
ductal papillary mucinous neoplasms (IPMNs) never have mutations in 
these genes, and mucinous cystic neoplasms carry exclusively KRAS or 
RNF43 mutations. Functional annotation has revealed the involvement of 
genes involved in protein degradation is as important in cystic tumors. The 
limited number of samples (eight per cyst type) included in these studies 
calls for independent replication before their application in clinical studies. 
In fact, the prevalence of GNAS and KRAS mutations in the IPMN sam-
ples study was higher than those performed by Furukawa et al. [92]. The 
ICGC now has a project dealing with rare and neuroendocrine pancreatic 
tumors, and it is expected that in the next few years, their genomic land-
scape will be revealed.

Regarding neoplastic progression, Yachida et al. [93] studied seven 
metastatic pancreatic cancers with matched primary tumors. These authors 
were able to define the genomic changes that drive the progression from 
invasive cancer to widespread metastases. They observed that genetic het-
erogeneity in metastases is represented and evolved from the original pri-
mary tumor. Moreover, timing analysis of the genetic changes from the 
initial mutation in a cell to the acquisition of metastatic properties takes a 
long period, more than 10 years. These findings suggest a broad window 
of opportunity for early pancreatic tumor detection. Similar results were 
described by Campbell et al. [94] that focused on rearrangements. Many 
of them in the metastases were present in the primary tumor. Moreover, 
rearrangements occurred at early stages of the metatases driving clonal 
expansion. Afterward, a model of PDAC kinetics of metastasis was pro-
posed by Haeno et al. [95].

DATABASES AND RESOURCES

The vast amount of cancer genomic data generated has to be collected, pro-
cessed, and integrated to be accessible and manageable by the scientific 
community. This part of the chapter introduces some of the basic resources, 
placing special emphasis on pancreas data.
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Sequence Read Archive
The Sequence Read Archive (SRA) store raw sequence data from NGS tech-
nologies. The data stored in this database have increased from ∼2 Tb of infor-
mation in 2009 to more than 1000 Tb. The SRA now includes more than 100 
different pancreas entries, including ChIP-seq, FAIRE-seq, and RNA-seq 
experiments among others. The dbGaP study “Expressed Pseudogenes in the 
Transcriptional Landscape of Human Cancers” includes 28 neoplasms and 25 
non-neoplasm samples from the pancreas of human participants. In this study, 
the authors described a systematic analysis of pseudo-gene transcription from 
an RNA-seq resource of 293 samples from 13 cancer and normal tissue types, 
including the pancreas [96]. Another dbGaP study that includes pancreas sam-
ples in te SRA, is the Genotype-Tissue Expression (GTEx). Its main goal is 
to create a data resource to allow for the systematic study of genetic variation 
and the regulation of gene expression in multiple reference human tissues 
[97]. Other pancreas-related resources include ChIP-seq data for different TFs 
related to pancreas development, such as Ptf1a [24,98] or Lrh1 [24], and 
FAIRE-seq for open chromatin from the ENCODE consortium.

Website: http://www.ncbi.nlm.nih.gov/sra

GenBank and the European Nucleotide Archive
In the GenBank and the European Nucleotide Archive (ENA) repositories 
are annotated collections of publicly available DNA sequences, such as the 
SRA GenBank, which have increased the number of DNA sequences from 
the NGS experiments to more than 167 million sequences, 13,206 of which 
include the annotation of pancreas. GenBank is divided into three divisions: 
the main collection called CoreNucleotide; dbEST, which is a collection of 
short single-read transcript sequences from GenBank, which provides a 
resource to evaluate gene expression, find potential variation, and annotate 
genes, with 432,972 annotated for pancreas; and dbGSS (Genome Survey 
Sequences), which is a collection of unannotated short single-read primar-
ily genomic sequences from GenBank, including random survey sequences, 
clone-end sequences, and exon-trapped sequences.

Website GenBank: http://www.ncbi.nlm.nih.gov/genbank/
Website ENA: http://www.ebi.ac.uk/ena/

The ENCODE Project
The ENCODE project is an international collaboration with the aim of iden-
tifying all functional elements in the human genome sequence.  The ENCODE 
project has systematically mapped regions of transcription, TF association, 

http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/genbank/
http://www.ebi.ac.uk/ena/
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chromatin structure, and histone modification in 147 different cell types. The 
elements mapped (and approaches used) include RNA transcribed regions 
(RNA-seq, Cap analysis gene expression, RNA paired-end tags, and manual 
annotation), protein-coding regions (mass spectrometry), transcription-factor-
binding sites (ChIP-seq and DNase-seq), chromatin structure (DNase-seq, 
FAIRE-seq, histone ChIP-seq, and MNase-seq), and DNA methylation sites 
(Reduced representation bisulfite sequencing assay). The 9 years of research 
are summarized in more than two dozen articles published in Nature, Science, 
and other journals showing that 80% of DNA has a function (see the Nature 
ENCODE explorer website).  All data generated is accessible to download or 
can be viewed directly in the UCSC browser, enabling researches to integrate 
the ENCODE with their own data. Table 5.1 shows and describes the seven 
pancreas cell lines included in the project and Table 5.2 shows the data avail-
able for each one with the accession codes, if available.

Website: http://www.genome.gov/10005107
Nature ENCODE explorer website: http://www.nature.com/encode/

#/threads
ENCODE at UCSC website: http://genome.ucsc.edu/ENCODE/

Gene Expression Omnibus
The Gene Expression Omnibus (GEO) is a public repository of high-through-
put data from microarrays and NGS technologies. This database contains pri-
mary data as expression values from RNA-seq experiments or binding sites 
(peaks) from ChIP-seq. In addition to download data, GEO allows researchers 
to perform basic analysis. The GEO Profiles database stores gene expression 
profiles derived from curated GEO DataSets. Each profile is presented as a 
chart that displays the expression level of one gene across all samples within a 
data set. Moreover, GEO2R allows for a comparison of two or more groups 
of samples to identify genes that are differentially expressed across experimen-
tal conditions. Currently, 260 entries from among the more than 1400 entries 
with a pancreas term are studies related to pancreatic cancer.

Website: http://www.ncbi.nlm.nih.gov/geo/

Array-Express
ArrayExpress is the European version of GEO, a database of functional 
genomics experiments that includes gene expression data from microarrays 
and high-throughput sequencing studies with public access for the scientific 
community to download data for downstream analysis.

Website: http://www.ebi.ac.uk/arrayexpress/

http://www.genome.gov/10005107
http://www.nature.com/encode/
http://www.nature.com/encode/
http://genome.ucsc.edu/ENCODE/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ebi.ac.uk/arrayexpress/
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Oncomine
Oncomine is a cancer-profiling database containing published data, which has 
been collected, standardized, annotated, analyzed, and presented to the end 
user. This database contains data sets available from the GEO and the Stanford 
Microarray Databases, but of greatest interest is the fact that it includes more 
downstream analysis than other databases. Differential expression analysis, 
either in one study or across multiple independent studies, can be performed 
between cancer and “normal” tissues, high versus low grade, and different 
outcomes. Further analysis that easily may be performed by researchers 
includes coexpression or cancer outlier profile analysis (COPA), which 
searches for the gene expression profiles that display the most profound over-
expression in a subset of tumors. Twenty-nine pancreatic cancer microarray 
data sets are present in this database out of 715 included. Half are from cell 
lines and the others are from human samples, ranging from 6 to 78 cases.

Website: https://www.oncomine.org/resource/login.html

Table 5.1 Pancreas Cell Lines Included in the ENCODE Project (17/09/2013)
Cell Type Description

8988T Pancreas adenocarcinoma (PA-TU-8988T), 
“established in 1985 from the liver metastasis of a 
primary pancreatic adenocarcinoma from a 
64-year-old woman”—DSMZ.

BC_Pancreas_H12817N Pancreas, donor H12817N, age 71 years, Caucasian.
HPDE6-E6E7 Pancreatic duct cells immortalized with E6E7 gene 

of HPV.
PANC-1 Pancreatic carcinoma, (PMID: 1140870) PANC-1 

was established from a pancreatic carcinoma, 
which was extracted via pancreatico- 
duodenectomy specimen from a 56-year-old 
Caucasian individual. Malignancy of this cell line 
was verified via in vitro and in vivo assays.

Pancreas_OC Primary frozen pancreas tissue from NCTC donor IDs 
09-0144A (Rep B1) and 10-0021A (Rep B2).

PanIsletD Dedifferentiated human pancreatic islets from the 
National Disease Research Interchange (NDRI), 
same source as PanIslets.

PanIslets Pancreatic islets from two donors, the sources of 
these primary cells are cadavers from the NDRI 
and another sample isolated as in Bucher et al., 
assessment of a novel two-component enzyme 
preparation for human islet isolation and trans-
plantation. Transplantation 79, 917 (2005).

http://https//www.oncomine.org/resource/login.html
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Table 5.2 Data Type Available in the ENCODE Project for Pancreas Cell Lines (17/09/2013)

Data_Type Cell_Type Experimental_Factors Lab GEO_Accession DCC_Accession
Date_
Unrestricted

DNase-seq 8988T none Duke GSM816667 wgEncodeEH001103 8/1/2011
Exon Array
Exon Array

8988T
8988T

Version=V2
none

Duke
Duke

wgEncodeEH001057
wgEncodeEH001057

9/16/2010
9/14/2011

Methyl 
Array

Methyl 
RRBS

DNase-seq

BC_Pancreas_
H12817N

BC_Pancreas_
H12817N

HPDE6-E6E7

LabVersion=Methyl27
none
none

HudsonAlpha
HudsonAlpha
Duke

GSM999429
GSM816639

wgEncodeEH000870
wgEncodeEH001392
wgEncodeEH001106

10/19/2011
12/21/2011
9/6/2011

Exon Array
Exon Array

HPDE6-E6E7
HPDE6-E6E7

Version=V2
none

Duke
Duke

wgEncodeEH001065
wgEncodeEH001065

9/16/2010
9/14/2011

ChIP-seq PANC-1 Antibody=H3K27ac 
Control=UCDavis Input 
Control

USC GSM818826 wgEncodeEH002080 6/19/2012

ChIP-seq PANC-1 Antibody=H3K4me1_ 
(pAb-037-050) 
Control=UCDavis Input 
Control

USC wgEncodeEH002081 6/19/2012

ChIP-seq PANC-1 Antibody=H3K4me3 UW GSM945261 wgEncodeEH001911 3/24/2012
ChIP-seq PANC-1 Antibody=H3K4me3B 

Control=UCDavis Input 
Control

USC GSM945856 wgEncodeEH002876 12/29/2012

ChIP-seq PANC-1 Antibody=Input UW wgEncodeEH001900 3/24/2012
ChIP-seq PANC-1 Antibody=Input 

Control=UCDavis Input 
Control

USC wgEncodeEH002070 6/19/2012

Continued
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ChIP-seq PANC-1 Antibody=NRSF 
Protocol=ChIP AMpure XP

HudsonAlpha GSM1010859 wgEncodeEH003285 4/28/2013

ChIP-seq PANC-1 Antibody=NRSF  
Protocol=PCR 2-round

HudsonAlpha 4/19/2010

ChIP-seq PANC-1 Antibody=NRSF  
Protocol=PCR 2-round

HudsonAlpha GSM803370 wgEncodeEH001552 5/6/2011

ChIP-seq PANC-1 Antibody=NRSF 
Protocol=biorupter,  
PCR 1-round

HudsonAlpha GSM1010792 wgEncodeEH002280 3/29/2012

ChIP-seq PANC-1 Antibody=Pol2-4H8 
Protocol=biorupter,  
PCR 1-round

HudsonAlpha GSM1010788 wgEncodeEH002265 3/27/2012

ChIP-seq PANC-1 Antibody=RevXlinkChromatin 
Protocol=ChIP  
AMpure XP

HudsonAlpha GSM1010853 wgEncodeEH003429 5/1/2013

ChIP-seq PANC-1 Antibody=RevXlinkChromatin 
Protocol=PCR  
2-round

HudsonAlpha 4/19/2010

ChIP-seq PANC-1 Antibody=RevXlinkChromatin 
Protocol=PCR 2-round

HudsonAlpha GSM803394 wgEncodeEH001525 10/20/2011

ChIP-seq PANC-1 Antibody=RevXlinkChromatin 
Protocol=biorupter, PCR 
1-round

HudsonAlpha GSM1010796 wgEncodeEH002285 4/18/2012

Table 5.2 Data Type Available in the ENCODE Project for Pancreas Cell Lines (17/09/2013)—cont’d

Data_Type Cell_Type Experimental_Factors Lab GEO_Accession DCC_Accession
Date_
Unrestricted
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ChIP-seq PANC-1 Antibody=Sin3Ak-20 
Protocol=biorupter, PCR 
1-round

HudsonAlpha GSM1010785 wgEncodeEH002266 3/27/2012

ChIP-seq PANC-1 Antibody=TCF7L2 
Control=UCDavis Input 
Control

USC wgEncodeEH002071 6/19/2012

DNase-seq PANC-1 none UW 6/19/2010
DNase-seq
Exon Array

PANC-1
PANC-1

none
none

UW
UW

GSM736517 wgEncodeEH000500 6/19/2010
6/21/2010

Exon Array PANC-1 none UW GSM472939 wgEncodeEH000373 6/21/2010
Genotype
Methyl 

Array

PANC-1
PANC-1

none
LabVersion=Methyl450K

HudsonAlpha
HudsonAlpha

GSM999315
GSM999395

wgEncodeEH001276
wgEncodeEH002227

10/20/2011
6/30/2012

Methyl 
RRBS

RNA-seq

PANC-1
PANC-1

none
RnaExtract=Long PolyA+ 

RNA

HudsonAlpha
HudsonAlpha

GSM683866
GSM923421

wgEncodeEH001408
wgEncodeEH001251

10/6/2011
5/30/2012

ChIP-seq
ChIP-seq

Pancreas_OC
Pancreas_OC

Antibody=CTCF
Antibody=Input

UT-A
UT-A

GSM1006881 wgEncodeEH003463
wgEncodeEH003454

4/30/2013
4/26/2013

FAIRE-seq
DNase-seq

Pancreas_OC
PanIsletD

none
none

UNC
Duke

GSM1011129
GSM816666

wgEncodeEH003497
wgEncodeEH001102

3/19/2013
7/29/2011

Combined PanIslets Composite=wgEncodeOpen 
ChromSynth

Duke GSM1002652 wgEncodeEH002261 4/28/2012

DNase-seq PanIslets none Duke 9/17/2010
DNase-seq PanIslets none Duke GSM816660 wgEncodeEH000575 9/17/2010
FAIRE-seq PanIslets none UNC 7/14/2010
FAIRE-seq PanIslets none UNC GSM864346 wgEncodeEH000573 7/14/2010
Methyl 

RRBS
PanIslets none HudsonAlpha GSM683874 wgEncodeEH001373 6/29/2011
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IntOGen
At the beginning, IntOGen was a database focusing on the analysis of genes 
and pathways affected by expression and copy number changes in tumors. 
Data from public studies was summarized and reanalyzed to identify upreg-
ulated, downregulated, lost, or amplified genes and pathways in different 
tissues. Recently, the analysis have been extended to somatic mutations. The 
platform contains information about driver genes and pathways from 13 
different anatomical sites, including pancreas (214 cases). A list of predicted 
driver genes in pancreatic cancer with this tool is presented in Figure 5.2(A).

Website: http://www.intogen.org/

The Gene Expression Barcode
The Gene Expression Barcode database contains information about the 
expressed and unexpressed genes in a tissue. This database not only provides 
information but also allows the users to process their own data.

Website: http://barcode.luhs.org/index.php?page=intro

The Single-Nucleotide Polymorphism Database
The Single-Nucleotide Polymorphism Database (dbSNP) is the largest 
database of nucleotide variations. Among the variations included are SNPs, 
short deletion and insertion polymorphisms, microsatellites (short tandem 
repeats), multinucleotide polymorphisms, and heterozygous sequences. As 
of version 138 (available April 2013), dbSNP had amassed more than 
40.5 million submissions representing more than 9.5 million distinct vari-
ants for human. This database is a useful resource for population genetics, 
evolutionary relationships, pharmacogenomics, or associations of genetic 
variation with phenotypic features. In genome–exome sequencing projects, 
dbSNP is useful to discard potential germline variations in predicted somatic 
variation lists.

Website: http://www.ncbi.nlm.nih.gov/SNP/snp_summary.cgi

The Catalogue of Somatic Mutations in Cancer
The Catalogue of Somatic Mutations in Cancer (COSMIC) collects 
genomic somatic variations in human cancers curated from the scientific 
literature or large-scale projects, such as  The Cancer Genome Atlas (TCGA). 
Release version 66 includes more than 1.5 million somatic variants from 
more than 900,000 samples. COSMIC can be used to perform gene- or 
tissue-specific analysis to obtain the distribution of variations across the gene 

http://www.intogen.org/
http://barcode.luhs.org/index.php?page=intro
http://www.ncbi.nlm.nih.gov/SNP/snp_summary.cgi
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or the most frequently mutated genes in a tissue. A summary of 4911 pan-
creatic tumor mutations included in COSMIC are showed in Figure 5.2(B).

Website: http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/

The cBioPortal for Cancer Genomics
The cBioPortal for Cancer Genomics is a web resource that provides visu-
alization, analysis, and downloads of large-scale cancer genomic data sets. 
Currently, this database contains 13,106 tumor samples from 43 cancer 
studies. This tool reduces molecular profiling data from cancer tissues and 
cell lines into readily understandable genetic, epigenetic, gene expression, 
and proteomic events. Researchers can explore genetic alterations across 
samples, tissues, genes, and pathways in an interactive way. When clinical 
outcomes are available, integrative analysis can be performed. An example 

Figure 5.2 Data Visualization in Different Resources and Databases. (A) IntOGen view 
of predicted driver genes in pancreatic cancer. (B) COSMIC top 20 recurrent pancreas 
mutated genes (left) and total mutations distribution (right). (C) cBioPortal view of the 
top five recurrent pancreas mutated genes in COSMIC database (up) and co-occurrence 
analysis (down); Blue → Mutual exclusivity (0 < Odds Ratio < 0.1); Yellow → Tendency 
toward co-occurrence (2 < Odds Ratio < 10); Orange → Strong tendency toward co-
occurrence (Odds Ratio > 10). (For interpretation of the references to color in this figure 
legend, the reader is referred to the online version of this book.)

http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/
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of COSMIC data visualization performed in the 66 samples of the pancre-
atic adenocarcinoma data set with the top five recurrent mutated genes in 
the pancreas is shown in Figure 5.2(C).

Website: http://www.cbioportal.org/public-portal/index.do

The Cancer Genome Atlas
The TCGA is a large-scale collaborative project to characterize the 
genomic changes in cancer. TCGA’s goal is to advance molecular under-
standing of cancer to improve diagnosis, treatment, and prevention. For 
this purpose, all of the data sets and tools that are developed are publicly 
available to the research community. TCGA collects clinical information, 
histopathology slide images, and molecular information derived from the 
samples, such as somatic mutations, RNA/miRNA expression, CNV, and 
methylation data. The update on September 13, 2013, included 66 samples 
from pancreatic adenocarcinoma with public access across the TCGA data 
portal.

Website: http://cancergenome.nih.gov/

The International Cancer Genome Consortium
The ICGC aims to obtain a comprehensive catalogue of genomic, transcrip-
tomic, and epigenomic changes in 50 different tumor types or subtypes and 
to make the data available to the research community. Five different projects 
on pancreatic cancer are included in the ICGC. These studies are focused 
on different pancreatic cancer subtypes (adenocarcinoma, ductal, neuroen-
docrine, and rare pancreatic exocrine tumors), and raw data from 46 pan-
creatic adenocarcinoma and 225 ductal adenocarcinomas samples are 
available across the data portal.

Website: http://icgc.org/#about

The 1000 Genomes Project
The objective of the 1000 Genomes Project is to sequence the genomes of 
a large number of people and to provide a comprehensive resource on 
human genetic variation. The goal of this project is to find genetic variants 
that have frequencies of at least 1% in the populations studied. Although this 
project is not focused on cancer, the data obtained is useful to filter somatic 
variants, which could appear in a final list of genome–exome projects, with 
high frequency in a population.

Website: http://www.1000genomes.org/home

http://www.cbioportal.org/public-portal/index.do
http://cancergenome.nih.gov/
http://icgc.org/
http://www.1000genomes.org/home
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The Cancer Cell Line Encyclopedia
The Cancer Cell Line Encyclopedia (CCLE) project is a detailed genetic 
and pharmacologic catalogue with a large panel of human cancer cell lines. 
The CCLE includes 55.7 GB of data, including gene expression, mutations, 
sample annotations, Affy SNPs, and drug response data. The project server 
enables researchers to conduct simple analysis or visualization of the avail-
able data. The pancreas is represented within 46 cell lines out of 1046 of the 
total cell lines included.

Website: http://www.broadinstitute.org/ccle/home

The Pancreatic Expression Database
The Pancreatic Expression Database (PED) is the main, specific repository 
for pancreatic cancer-derived omics data. The database provides an open 
access tool to mine currently available pancreatic cancer experimental data 
sets generated by using large-scale transcriptomic, genomic, proteomic, 
miRNA and methylomic platforms. The website also provides users the 
opportunity to include their own data set in the database. Currently, the 
PED includes around 100 manually processed and checked public studies. 
Moreover, the Pancreatic Expression Landscape tool derived from the 
Gadaleta et al. [21] (as discussed in the microarrays section), enables research-
ers to conduct meta-analysis by integrating data from diverse resources.

Website: http://www.pancreasexpression.org/index.html

CONCLUSION AN D FUTURE PERSPECTIVES

The technology revolution propelled by the Human Genome Project has 
made substantial inroads in the field of medicine, especially cancer treat-
ment. Bioinformatics is an integral part of this technology revolution and 
has become essential in the interpretation of the genomic information. As 
such, it is a fundamental element in the study of the molecular causes of 
pancreatic cancer pathophysiology. This chapter provided an overview of 
the bioinformatics analysis that currently is being applied to genome-wide 
studies in the field of pancreatic cancer. These bioinformatics methodolo-
gies cover a wide range of topics, from data organization to the assessment 
of sample quality and from the analysis of sequencing data to the prediction 
of cancer driver genes and processes. The various stages of the bioinformat-
ics analysis, with actual examples taken from pancreatic cancer genome 
projects, and with descriptions of the available technologies and resources in 
each case were illustrated. The current limitations in the interpretation of 

http://www.broadinstitute.org/ccle/home
http://www.pancreasexpression.org/index.html
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cancer genome data, difficulties in the integration of clinical and genomic 
data, and challenges in the interpretation of the genomic information in 
clinical settings also were highlighted. It is anticipated that in the this decade 
the field will witness major efforts in utilizing these technologies in the 
diagnosis as well as development of successful therapeutics for the deadly 
pancreatic cancer.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of 
pancreatic cancer, arising from the lesions that occur in pancreatic ducts. It 
is one of the leading causes of cancer deaths in the United States due to 
poor diagnosis in the early stage [1]. Despite extensive research over the 
past 30 years, the five-year survival rate is still less than 5%, and we are still 
far from developing effective strategies for the early diagnosis and treat-
ment of this lethal disease [2,3]. PDAC is characterized by early and aggres-
sive metastasis and high resistance to conventional chemotherapy and 

*  Equally contributed first authors.

6

Contents

Introduction 133
LASSO Penalized Cox Regression 137

Variable Selection via LASSO Regularized Partial Likelihood 137
Cyclic Coordinate Descent for LASSO Penalized Cox Regression 138

Doubly Regularized Cox Regression 140
Doubly Regularized Cox Regression for Non-Overlap Case 140
Coordinate Descent Algorithm for DrCox Regression 141
DrCox Regression via Coordinate Descent for Overlap Cases 143

Pancreatic Cancer Survival Analysis 144
Microarray Data and Signaling Pathways 144
Data Analysis with LASSO Penalized Cox Regression 145
Data Analysis with Doubly Regularized Cox Regression 145

References 148



Haijun Gong et al.134

radiotherapy due to the stromal interaction between the pancreatic cancer  
cells and fibrous tissue composed of extracellular matrix (ECM) proteins [4]. 
Tumor signaling is regulated by the complex interactions of thousands of 
genes and tens or hundreds of signaling pathways. The cross talk between 
different signaling pathways may be responsible for the pancreatic cancer 
cell survival even if some pathways are blocked by certain single-gene 
 targeted therapies.

Modern molecular pathologic and genetic technologies have changed 
the way that we study the complex biological systems. Researchers in the 
area of pancreatic cancer are able to make genome-wide expression profil-
ing [5,6] within tumors in order to better understand the nature of the 
disease and eventually design multigene targeted therapy. To analyze those 
high throughput data, statistical methods are designed and developed spe-
cifically to those types of data [7–11]. Due to the high-dimensional nature, 
two major approaches—feature extraction and feature selection—have 
been taken to extract the important information from the massive data. The 
feature extraction approach, for example, principal component analysis 
(PCA), projects the high-dimensional feature spaces into lower dimensions; 
while the feature selection approach, for example, least absolute shrinkage 
and selection operator (LASSO), selects a subset of features from the large 
number of candidates in the data [10]. The shortcomings associated with the 
feature extraction approach are well recognized, which include lack of 
meaningful scientific interpretation. Therefore we focus on the second 
approach and introduce two statistical methods for high-dimensional data 
in the chapter. The advantages of the feature selection approach include, but 
are not limited to, alleviating the effect of the curse of dimensionality, retain-
ing scientific meaning, enhancing generalization capability, improving 
 stability, and accelerating computational speed [12]. This approach can be 
used in many areas, and, of course, include pancreatic cancer studies.

For different purposes, different statistical models and methods are used 
to explore novel molecular and epigenetic targets for pancreatic cancer 
from DNA microarray data and RNA sequencing data. A number of dif-
ferentially expressed and metastasis-associated genes have been found in 
pancreatic cancer. For example, recent global genomic analyses [5] identi-
fied 69 gene sets and 12 core signaling pathways that are frequently mutated 
in most pancreatic cancers. Most of those studies focused on the inference 
and identification of the frequently mutated or metastasis-associated genes. 
However, an important clinical factor—survival time—has been neglected 
for a long time. The two methods introduced in this chapter focus on 
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survival analysis in high-dimensional data. Similar ideas can be used in other 
statistical models (e.g., regression and generalized linear regression) in dif-
ferent studies.

A comprehensive understanding of the genetic signatures and signaling 
pathways that are directly correlated with pancreatic cancer survival will 
help cancer researchers to develop effective multigene targeted and per-
sonalized therapies for pancreatic cancer patients at different stages of the 
disease, and improve their survival rates. Stratford et al.’s work [13] ana-
lyzed the microarray data of 102 PDAC patients and identified six genetic 
signatures associated with metastatic pancreatic cancer using a sequence of 
statistical techniques, including the significance analysis of microarray 
(SAM) [14], centroid-based predictor [15], Pearson correlation, X-Tile 
[16], Kaplan–Meier estimator [17], and Cox model [18]. Though the 
authors applied the Cox model to test whether the six-gene signature is 
significantly correlated with survival time, the prediction was not based 
on survival time. These genes could only help discriminate high- and 
low-risk patients, and they are not directly related to pancreatic cancer 
survival. The two methods in this chapter are to infer and identify the 
genetic information that is directly associated with survival time. Both are 
based on the Cox proportional hazards model [18], which is a classic 
model used to describe the relationship between survival time and predic-
tor variables.

Survival data differ from the data we usually observe because of the 
partial missingness. Partial missingness occurs in two forms: censoring and 
truncation. Right censoring is the most commonly observed type in sur-
vival analysis, and we deal with right-censored data here. Ideally, the time 
when the event of interest happens is observed and collected, but some-
times we only know that the event happens after some time but not 
exactly when. The former is true survival time and the latter is right-
censored survival time. For example, a study is performed to measure the 
lifetime of cancer patients. If the death of a patient is observed, the life-
time of the patient is known (complete data, as it is safe to assume the 
birth is known). If the patient is still alive when the study ends, it is only 
known that the death date is after the study’s endpoint (right-censored). 
Here the event of interest is the survival time of the pancreatic cancer 
patient, so event/survival time is when the patient dies. Right censoring 
also occurs for the loss-to-follow-up subjects. With censored observations, 
the censoring effect has to be considered for unbiased estimation. The 
Cox proportional hazards model can handle right-censored data with a 
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simple form and easy interpretation. The downside of the Cox model is 
that it requires the proportionality assumption of the hazards rates, which 
is strong and not valid in some cases.

In high-dimensional data, the number of features/predictors (genes) far 
exceeds the number of subjects (patients). The goal of the feature selection 
approach is to identify a subset of predictors from the large pool of candi-
dates. To this end, one can use the regularization method and penalize the 
Cox model [8,9,19–21]. For example, a LASSO penalty can be imposed to 
individual variables to automatically remove unimportant ones by shrink-
ing their regression coefficients to be exactly zero [9]. In this chapter, we 
first describe a LASSO penalized Cox regression method on individual 
genes [11]. This model has been applied to analyze the localized and 
resected PDAC data collected between 1999 and 2007. Twelve signature 
genes that are directly correlated to the pancreatic cancer survival time are 
found out of 43,376 probes using this model. Eight of the 12 genes are 
confirmed to be genetically altered and differentially expressed in the can-
cer of stomach, colon, ovaries, breast, skin, kidney, lung, and pancreas in 
in vivo and in vitro experiments [22–27]. As some genes belong to the 
same pathways and get involved in the same biological processes, it is 
important to incorporate the pathway information into the analysis. The 
pathway information is biologically essential to our understanding of gene 
regulatory network and cancer development [5]. Therefore, we introduce a 
doubly penalized Cox regression method secondly. By imposing two pen-
alties, one on pathways and the other on individual genes, we can achieve 
both group and within-group selection for the pancreatic cancer survival 
analysis. Both models need well-designed computational algorithms for 
the high-dimensionality data. Cyclic coordinate descent algorithms will 
also be described in this chapter.

In the next section, we describe the LASSO regularized Cox regression 
based on the partial likelihood function and the coordinate descent algo-
rithm, which can quickly dismiss irrelevant variables and speed up the esti-
mation of the regression coefficients. Later, we describe the non-overlap 
and overlap cases of doubly regularized Cox (DrCox) regression model. A 
modified version of the cyclic coordinate descent algorithms for parameter 
estimation is also talked about. At last, we apply the two methods to analyze 
the high-dimensional microarray data of pancreatic cancer patients with 
localized and resected PDAC collected between 1999 and 2007. The genes 
and pathways that are found by the two methods are shown in this 
section.
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LASSO PENALIZED COX REGRESSION

The LASSO penalized regression method is a popular variable selection 
technique used for the analysis of the high-throughput and high-dimensional 
data. Given high-dimensional microarray data, the LASSO method can iden-
tify the most important genes that are related to the phenotype of interest in 
a fast and effective way. Variable selection and estimation of regression coef-
ficients are performed simultaneously—important variables will have non-
zero regression coefficients and unimportant variables will have zero 
coefficients in the model.

Next, we will describe the general framework for variable selection 
through regularized partial likelihood of the Cox model first. We then 
derive the cyclic coordinate descent algorithm, which can estimate the 
regression coefficients coupled with Newton’s method.

Variable Selection via LASSO Regularized Partial Likelihood
Suppose there are n subjects, and each subject has p predictor variables 
X = (X1,…,Xp)t. The survival time and the censoring time for the subject 
i are denoted by Ti and Ci, respectively. We use the triplets {(Yi,δi,Xi), 
i = 1,…,n} to represent the observed survival data, where Yi = min(Ti,Ci) 
denotes the observed survival time since it might be right-censored, and 
δi = I(Ti ≤ Ci) is a censoring indicator which equals 1 if the actual death 
is observed and 0 otherwise. The censoring mechanism is assumed to be 
noninformative. The censoring time Ci and the survival time Ti are 
assumed to be conditionally independent given the predictor Xi.

The Cox proportional hazards regression model is written as

  (6.1)

where h0(t) is the nonparametric baseline hazards function, and βj is the 
regression coefficient for Xj. It is reasonable to assume no ties in the observed 
time when the failure time is continuous. The partial likelihood of the Cox 
model is

  

where D is the set of indices of uncensored events (i.e., observed deaths), 
and Ri is the set of the subjects available for the event (i.e., still alive) at time 
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Yi. Variable selection can then be conducted by minimizing the negative 

log-partial likelihood function  plus a penalty function 
Pλ(β) on the coefficients β:

  

The penalty function Pλ(β) has to be singular in order to achieve the desired 

sparsity, hence variable selection. In LASSO penalized method, we penalize 
the log-partial likelihood by the LASSO penalty ,  

which is nondifferentiable at point βj = 0, and therefore it is able to elimi-
nate the irrelevant variables and keep the most relevant ones. The objective 
function is written as

  (6.2)

where λ > 0 is a tuning constant, which controls the number of variables 
included in the final model. The larger λ is, the fewer variables are retained 
in the model. By minimizing the objective function [2], one can select 
important predictor variables and estimate regression coefficients simulta-
neously. The variables with nonzero coefficients will be selected and the rest 
are eliminated.

Cyclic Coordinate Descent for LASSO Penalized Cox  
Regression
Since there are usually more predictor variables than subjects (p > n) in 
microarray studies, to tackle the high-dimensionality problem we use a 
cyclic coordinate descent algorithm. This algorithm has been shown to be 
computationally efficient [28–32]. Interested readers can refer to [29,30] 
for more details. The idea of this algorithm is to break a large optimization 
problem into a sequence of small problems. In other words, instead of 
estimating all the parameters at the same time, we can update parameters 
one by one. The advantages of using coordinate descent algorithms 
include: (1) no matrix operations are involved and only scalar operations 
are performed, which reduces the computational burden; (2) most updates 
of the parameters are skipped because of the LASSO penalty; (3) the non-
differentiability of the LASSO penalty is well handled; (4) it is numerically 
robust.
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Although the LASSO penalty is nondifferentiable at the origin, its for-
ward and backward directional derivatives exist. We first calculate the for-
ward and backward directional derivatives of βj along its coordinate direction 
ej, which are

  

and

  

where I(·) is an indicator function equal to 1 if the condition is true. The 
directional derivative of ln(β) along ej is equal to its ordinary partial 
derivatives

  

Its directional derivative along −ej equals .

Next, we need to decide the direction of the update. If both dejg(β) 
and d−ejg(β) are nonnegative, then the update for βj is skipped as no 
improvement can be made. If either directional derivative is negative, 
then we solve for the minimum along that direction. The two direc-
tional derivatives cannot be negative at the same time because of the 
convexity of g(β). After determining the direction of updating, Newton’s 
method can be used to solve for the minimum since the objective func-
tion is twice differentiable. The update for βj at the (m + 1)th iteration 
is given by
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where βm is the estimate at the mth iteration and

  

All parameters should be initiated at the origin.
Unlike the traditional model selection methods, e.g., forward and back-

ward selection, the “threshold” for the LASSO penalized method is not 
explicitly specified. Instead, the number of selected predictors is controlled 
by the tuning parameter λ in Eqn (6.2). The bigger is λ, the fewer predictors 
will be selected. The value of λ can be determined by data-driven methods, 
for example, k-fold cross validation.

DOUBLY REGULARIZED COX REGRESSION

In the gene regulatory network, genes in the same pathways might get involved 
in the same biological processes. Therefore, we extend the LASSO method 
described in the previous section to integrate pathway information and intro-
duce a doubly regularized Cox (DrCox) regression model [21] for the pancre-
atic cancer survival analysis. We first consider the case where the groups do not 
overlap, i.e., each gene belongs to only one signaling pathway. Then, we extend 
to the overlap case, i.e., one gene can belong to multiple groups.

Doubly Regularized Cox Regression for Non-Overlap Case
We assume there are n subjects and p predictor variables (genes) that occur 
in K groups (pathways). X(k) = (Xk1,…,Xkpk)T denotes the pk predictors in 
the kth group, and β(k) = (βk1,…,βkpk)T denotes the corresponding regres-
sion coefficients. We further write the predictor variables of the ith subject 

as , where , and 

i = {1,…,n}. The definition of survival time is the same as before.
The Cox proportional hazards regression model with p genes and K 

signaling pathways in the non-overlap case is written as

  (6.3)
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The partial likelihood of this Cox model is given by

  

To achieve the goal of both group and within-group variable selection 
and retain the convexity property, the doubly regularized Cox (DrCox) 
regression model imposes a mixture of LASSO penalty and group LASSO 

penalty to the negative of log-partial likelihood . The dou-

bly penalized objective function is

  (6.4)

where  is the LASSO penalty on individual parame-

ters βkj in group k, and  is the group LASSO penalty 

on kth group of parameters, and λ1 and λ2 are two nonnegative tuning 

constants that control the strength of individual and group selection, 
which can be determined using data-driven methods (e.g., k-fold cross 
validation).

Coordinate Descent Algorithm for DrCox Regression
In the non-overlap case, where each variable belongs to only one group, 
estimation of parameters and selection of important variables can be con-
ducted via the minimization of the Eqn (6.4) iteratively w.r.t. one parameter 
by one parameter. The first step is to calculate the forward and backward 
directional derivatives of each parameter. If ekj is the coordinate direction 
along which βkj varies, then the forward and backward directional deriva-
tives of βkj are
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and

  

where

  

If both of the directional derivatives dekjg(β) and d−ekjg(β) are non-
negative, then the update for βkj is skipped. If either directional deriva-
tive is negative, then we can use Newton’s method to solve for the 
minimum along that direction. The update for βkj at iteration m + 1 is 
given by
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where βm is the estimate at the mth iteration.

DrCox Regression via Coordinate Descent for  
Overlap Cases
In reality, many different pathways can share one gene. To allow overlapping, 
we modify the notation and objective function for the non-overlap case. We 
denote the p variables by X1,…,Xp with the corresponding regression coef-
ficients β1,…,βp. Let  be the set of indices of variables in the 
kth group. The objective function designed for the overlap case can be writ-
ten as

  (6.5)

Note one predictor Xj can belong to several pathways but it is only 
associated with one regression coefficient βj. The parameter estimation 
needs to be modified accordingly. If we consider the coordinate direc-
tion ej for βj, the forward and backward directional derivatives of βj are

  

and
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where  are the indices of groups that Xj belongs to. We can 
update the coefficient by

  

PANCREATIC CANCER SURVIVAL ANALYSIS
Microarray Data and Signaling Pathways
The microarray data of pancreatic cancer summarized in Stratford et al.’s 
work [13] includes 43,376 probes in ROMA platform with 102 samples 
(PDAC patients), which are publicly available at Gene Expression Omnibus. 
Among these 102 PDAC patients, 66 died at the end of the study (35% 
censoring rate). The survival times of these patients range from one month 
to five years. For each patient, the survival time and the censoring indicator 
(the patient is still alive or not) were recorded. Additionally, two stage vari-
ables, T stage and N stage, were given to describe the stages of pancreatic 
cancer, where T stage describes the size of the primary tumor ranging from 
1 to 4, and N stage describes the spread to nearby (regional) lymph nodes 
with values 0 or 1. The readers can refer to Stratford et al.’s work for more 
details.

Jones et al.’s work [5] organized 130 signaling pathway sets that belong 
to 12 core groups in the pancreatic cancer studies, including the core groups 
of Wnt/Notch signaling, TGF-beta signaling, Small GTPase-dependent  
signaling, KRAS signaling, JNK, Integrin signaling, Homophilic cell 
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adhesion, Hedgehhog signaling, DNA damage control, Control of G1/S 
phase transition, Invasion, and Apoptosis.

In our studies, the whole pancreatic cancer survival dataset of 102 
patients is randomly split into the training, validation, and testing sets with 
equal sizes. The training set is used for model fitting, and the validation set 
is used for tuning constants selection. The results are then applied to the 
testing set to examine the model performance.

Data Analysis with LASSO Penalized Cox Regression
We first applied the LASSO penalized Cox regression method [11] to 
investigate the signature genes that are correlated to the pancreatic cancer 
survival time. Using the three-fold cross validation, we got the optimal 
values of λ = 0.3475. Twelve genes are identified to be associated with the 
pancreatic cancer survival, and eight of them have been confirmed to be 
genetically altered and differentially expressed in the cancer of stomach, 
colon, ovaries, breast, skin, kidney, lung, and pancreas in in vivo and in vitro 
experiments [22–27,33–40]. These survival-associated genes can be used to 
grade the stage of PDAC and estimate the survival time of the cancer 
patients, and help select appropriate therapies for the patients in different 
stages. These eight genetic signatures and their functions are summarized in 
Table 6.1. The functions of the rest four genes (SLC22A8, C4orf35, 
C6orf81, and C6orf58) remain unknown at this point and are worth  
further investigation.

Data Analysis with Doubly Regularized Cox Regression
Next, we applied the doubly regularized Cox (DrCox) regression model 
with the cyclic coordinate descent algorithm [21] to the dataset. Different 
from the analysis using LASSO penalty, this DrCox model can incorporate 
both genes and pathways information, and simultaneously infer both genetic 
signatures and important signaling pathways that are related to the pancre-
atic cancer survival.

Again, we used the three-fold cross validation. We got the optimal tun-
ing constants λ1 = 0.3 and λ2 = 0.1. The DrCox method inferred four sig-
naling pathways and 15 genes within these pathways from the pool of 
12,660 probes of 6910 genes and 130 pathway sets [5] in the pancreatic 
cancer. The inferred signaling pathways include the four major pathways of 
“regulation of DNA-dependent transcription” (6 out of 2096 genes are 
selected), “Ion transport” (7 out of 555 genes are selected), “immune phago-
cytosis” (1 out of 215 genes is selected), and “TGFβ (spermatogenesis)”  
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(1 out of 268 genes is selected). The selected genes and pathways are sum-
marized in Table 6.2.

Several experimental studies have confirmed that these signaling 
components are frequently altered in the pancreatic, oral, prostate, colon, 
breast, and lung cancer [39,41–54], and they could be possible biomark-
ers of pancreatic cancer survival. Pancreatic cancer patients with these 
mutated genes and/or deregulated signaling pathways might have a 
shorter survival time. Especially, the inferred TRP (Ca2+) channel-
related genes and KCNK (K+) channel-related genes in the ion trans-
port pathway could be useful biomarkers for early pancreatic cancer 
detection, help researchers to grade the cancer stage, and select appro-
priate therapies to prolong the patients’ survival time at different  
stages.

Table 6.1 Eight Genes that are Associated with the Pancreatic Cancer Survival and 
their Functions Inferred from the LASSO Penalized Cox Regression Model
Genes Functions

RPS13 Promote cell cycle progression from G1 to S phase. It is frequently 
mutated or deregulated in colorectal carcinoma, gastric cancer, 
and pancreatic cancer [22].

PCYT1B Regulates the phosphatidylcholine biosynthesis. Aberrant choline 
phospholipid metabolism is associated with the tumors of breast, 
colon, and ovaries, and gliomas [23,25,33]. It could help to grade 
the stage of the pancreatic cancer patients.

TREX2 TREX2 is a proapoptotic tumor suppressor that can maintain the 
genomic integrity under the condition of genotoxic stress. It is 
downregulated during G2/M phase transition through the cell 
cycle [26,27].

ZNF233 Zinc finger protein 233 is correlated to the chromosomal 
abnormality, and it is frequently deregulated in the kidney  
and pancreatic cancer [5,34].

ATPAF1 ATPAF1 could regulate the oxidative phosphorylation pathway 
and reduce oxidative stress in tissues. Downregulated ATPAF1 
could suppress the mitochondrial biogenesis and G1/S arrest 
[35,36].

RIMS1 It is a RAS superfamily member that is significantly deregulated 
in the classical multidrug resistance (MDR) gastric  
carcinoma [37].

SLC43A2 Regulate the transport of large neutral amino acids across  
membranes. Its overexpression is associated with the  
adenocarcinomas and squamous cell carcinoma [38,39].

NRAP It is one of the top 20 upregulated genes in peripheral and central 
zones of human pancreatic cancer [40].
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Table 6.2 Four Signaling Pathways and 15 Genes that are Associated with the 
Pancreatic Cancer Survival and Their Functions Inferred from the Doubly Regularized 
Cox Regression Model
Signaling Pathways Genes Functions

Regulation of 
DNA-dependent 
transcription 
pathway

DENND4A DENND4A is a c-myc promoter-
binding protein, which mediates 
signal transduction in the nucleus, 
regulates the transcription and 
DNA replication [41].

KLF13 KLF13 can inhibit the cell growth 
and neoplastic transformation 
mediated by K-RAS [42,43].

ZNF229, ZNF233,  
ZNF395, ANF432

Some Zinc finger proteins, e.g., 
ZNF233, are associated with the 
chromosomal abnormality, and 
also the kidney and pancreatic 
cancers [34].

Ion transport 
pathway

TRP channel and  
TRPV5, TRPM6

Regulate the calcium-mediated 
signal transduction. TRPM6 
can enhance the secretion of 
angiogenic factors and  
promote angiogenesis [44–46].

KCNK channel and  
KCNK3, KCNK18

Regulate the potassium (K+) 
transport and membrane 
potential (Vm) in response to 
different physical and chemical 
factors [47–49].

SLC22A8, SLC8A3,  
SLC24A6

Regulate the transport and 
excretion of the organic ions, 
drugs, and toxicants; some genes 
are cancer-related [39].

Immune  
phagocytosis 
pathway

CYBA The tumor suppressor CYBA 
regulates the immune system cells, 
phagocytes, which are involved in 
autophagy. CYBA’s mutation will 
cause the failure of phagocytosis 
and immune defects [50–53].

TGFβ signaling 
pathway  
(spermatogenesis)

PCYT1B TGFβ signaling pathway is of 
importance in the cell growth, 
cell differentiation, and apoptosis. 
PCYT1B regulates the choline 
phospholipid metabolism, which 
is associated with progression of 
tumors of breast, colon, and 
ovaries, and gliomas 
[23,25,33,54].
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INTRODUCTION

In recent years omics technologies have generated a wealth of information 
regarding differences between normal and tumor cells. Therefore these 
technologies have slowly become an integral part of modern cancer research. 
Their use has led to the identification of new targets in several cancers; 
however, in pancreatic cancer most of the efforts have remained futile. The 
lack of the implementation of omics technologies, coupled with no clear 
diagnostic markers or effective therapies, has blocked any progress against 
pancreatic cancer, which is still associated with a poor survival rate.

Gene expression analysis is based on the analysis of the amount of RNA 
molecules in a given sample and on the comparison of samples generated 
from different states of a given tissue or cell line. This leads to two main focus 
points for such an analysis: (1) the composition of the tissue/cell line, and (2) 
the quality of the RNA prepared from such samples. Expression profiling 
can be performed on several types of specimen. Whereas cell lines, xenograft 
tumors, and tissues from genetically engineered mice models can be obtained 
fresh and in a standardized fashion, obtaining material from human tumors 
and/or body fluids is a rather laborious task that might result in only a small 
amount of usable tissue [1–4]. Collection of a large number of tissue samples 
is therefore needed to generate a usable tissue bank for further analysis.

Often times tissue sampling is performed by individual members of dif-
ferent parts of a hospital in an unorganized fashion. This leads to the collec-
tion of an inadequate number of samples, double collection, and inappropriate 
handling of samples. Collections of such a type also lack usability since 
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project descriptions submitted to the institutional review boards (IRB) are 
usually highly specific and therefore the tissue cannot be used for other 
investigations. This unorganized approach leads also to the absence of stan-
dard operating procedures (SOP), which are important to standardize tissue 
quality. Finally, these efforts result in a lack of specimens from control groups. 
To produce highly reliable expression data, selection of the right control 
group is crucial.

The successful model that has been established in recent years is banking 
of tissues and body fluids from a large number of probands, and a large num-
ber of tissue repositories have been established that are seeking the collabo-
ration of other academic groups in different scientific fields. There are even 
efforts to establish tissue banks on national and international levels [5]. The 
advantage of this model is multiple. In a tissue bank, SOP should exist to 
obtain the sample in a reproducible manner, the tissue can be used in differ-
ent projects after additional application at the local IRB, and quickly after 
the establishment of a tissue bank a large number of samples are available for 
analysis. Comprehensive tissue bank approaches allow for the integration of 
various tissue samples from one subject, i.e., frozen and paraffin-embedded 
tissue. Such tissue banks are usually established by large organizations, which 
are also able to integrate clinical metadata into such a bank, enhancing the 
intrinsic value of the sample for cooperation and analysis. As an example, in 
pancreatic cancer it is very interesting to know the special subtype of a 
given sample and other clinical pathological data, which enable the researcher 
to find new markers for those subtypes [6].

The best practice for a pancreatic cancer expression–profiling project 
today would be to obtain the tissue from a tissue bank with all clinically 
relevant data. The researchers should also strive to obtain all the different 
tissue types (frozen, paraffin-embedded tissue, serum, plasma, other) not 
only for the patients to be analyzed but also from a larger number of benign 
controls.

Solid tumor samples consist of a variety of tissues, of which the tumor 
cells might comprise only a small part [7]. The adjacent additional tissues 
might contain surrounding stromal and endothelial cells but at least in clini-
cal samples also normal tissue. Depending on the tissue of interest, microdis-
section might be needed to delineate the true expression changes between 
the tumor cell and their normal counterpart. In pancreatic cancer, due to its 
high content of stromal tissue, this is usually the case. Microdissection can 
be performed either manually or by the aid of a laser-based system. Both 
methods differ in their resolution. Manual microdissection might only lead 
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to an enrichment of the tumor tissue to about 90%, whereas with a laser-
based system, pure tumor cells can be obtained. Manual microdissection 
enables the researcher to produce samples much faster with superior quality, 
which is needed for gene expression profiling [8]. If laser assisted microdis-
section is used, the selection of instruments can be crucial for the success of 
the project, but individual cells can be picked and investigated [9]. However, 
manual microdissection performed by educated researchers is a cheap tech-
nology, since laser-based microdissection needs special equipment and con-
sumables. The key to a successful experiment is not dependent on the used 
technology but is associated with the knowledge of the individual perform-
ing the isolation procedure. In pancreatic cancer, the distinction between 
benign and tumor epithelial tissue is difficult, therefore pathologists experi-
enced with the pancreatic cancer histology should be involved in such a 
project. Microdissection is also the technique of choice if other tissue in a 
tumor should be analyzed. If microdissection is employed, usually only low 
amounts of RNA can be obtained. Therefore, RNA amplification has to be 
performed. The standard technique is the linear amplification based on T7 
RNA polymerase initiated by a T7 promoter sequence, which is generated 
during first strand synthesis. If the resulting amount of RNA is still not 
adequate, a second RNA amplification can be used. Amplification of RNA 
is an integral part of the sample preparation in Affymetrix 3′IVT microarray, 
making Affymetrix microarray the technology of choice for samples with 
small RNA amounts since the RNA amplification can be started from 
amounts as low as 1 ng of total RNA. However, it can also be used in RNA-
Seq, but the inherent loss of 5′ sequences during amplification will diminish 
the return of RNA-Seq information if splicing or chimeras are to be ana-
lyzed. For those scientific questions, unamplified high quality total RNA 
should be used.

In recent years it has become clear that the surrounding stromal tissue is 
of great importance in the growth of the pancreatic tumors and that eliminat-
ing stromal tissue might be a feasible way to treat it successfully [10]. However, 
not always pure cancer tissue needs to be obtained. In those cases the cancer 
tissue in question should be sectioned, stained, and screened for tumor con-
tent by qualified pathologists. Care should be taken in those cases that the 
tissue composition between the different sample groups is comparable.

Today preparation of RNA from tissues has become mainstream tech-
nology. It is advisable that in modern expression analysis approaches kits 
should be used from reliable suppliers, and they should be the same during 
the whole experiment. Isolation of ribonucleic acid with such a system 
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should also result in the preparation of miRNA as a component of the total 
RNA. Such systems enable the researchers to investigate the miRNA 
expression by a separate array or by RNA-Seq from the same sample from 
which other expression profiles are generated. The second important step in 
expression profiling, beside identification of the right tissue compartment, 
is the quality control of the obtained RNA. An industry standard like the 
Bioanalyzer System from Agilent should be used. As a result, from such an 
analysis, not only the amount of RNA but also the quality determined by 
the RNA integrity number (RIN) can be obtained (Figure 7.1). RNA with 
a RIN number below 4 should not be used in any gene expression profiling 
experiment. For some RNA-Seq procedures (as the analysis of alternative 
splicing and chimera detection) the RIN should be at least 8. Most of the 
gene expression profiling experiments employ at least one step of reverse 
transcription. This step is crucial for the success of the experiment. It should 
always be performed with the same reagents and carefully controlled.

The best practice is to use kits from commercial sources for RNA prepa-
ration and following enzymatic manipulation. The quality of the RNA 
should be monitored with an Agilent Bioanalyzer and finally within in an 

Figure 7.1 Example of the Result from Agilent Bioanalyzer 2100 Assay. The numbers 
above the lanes indicate the RNA integrity number (RIN), an estimate for the quality of 
the prepared RNA. On the outer most left lane the molecular weight marker is displayed. 
N/A: RIN is not accessible, typically shown if the assay failed or the RIN is too low. (For 
color version of this figure, the reader is referred to the online version of this book.)
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experimental set up. The supplier of the components should not be changed 
and the lot numbers should be documented.

Within the omics technologies, expression profiling is one of the oldest 
areas of research. Whereas the beginning of expression profiling could be 
dated to the invention of the northern blot, gene expression profiling took 
stage with the invention of TaqMan PCR systems and came to fruition with 
reverse hybridization techniques during the late 1990s and 2000. Nowadays 
three major types of expression profiling are performed in the lab. Quanti-
tative RT-PCR (qRT-PCR) enables the researcher to analyze the expres-
sion of genes fast in a high number of samples, but is usually restricted to a 
gene number in the low hundreds if special adapted technologies are used. 
Based on the nature of PCR, only a very small amount of RNA is needed 
to successfully complete an assay. Due to these reasons, quantitative PCR is 
also used in the routine clinical chemistry workup with standardized expres-
sion assay like Oncotype DX in breast cancer [11].

Quantitative real-time polymerase chain reaction (qRT-PCR) is a well-
established tool for the quantification of gene expression [12,13]. It is based 
on the polymerase chain reaction (PCR) developed by Mullis et al. in the 
1980s [14]. QRT-PCR allows quantifying the amount of template, usually 
the gene of interest, and an amplification control called housekeeping gene 
in the original sample. QRT-PCR systems detect and quantify a fluorescent 
reporter signal, which increases in proportion to the amount of PCR prod-
uct in a reaction. To generate comparable data, the fluorescence is collected 
at each cycle, making it possible to monitor the PCR during the exponen-
tial amplification phase. The most common methods for detecting target 
templates include the 5′ nuclease (TaqMan) and the SYBR green assays. 
The TaqMan assay uses an oligonucleotide probe, which specifically anneals 
to a complementary sequence in the amplicon [15]. To generate and detect 
fluorescence the oligonucleotide probe carries a fluorescein group at 5′ end 
and a quencher. When the oligonucleotide probe is intact, the proximity of 
the reporter dye to the quencher dye results in suppression of the reporter 
fluorescence. As the Taq DNA polymerase extends the PCR primer, the 5′ 
exonuclease activity of the polymerase will degrade the oligonucleotide 
probe. As a result, the reporter dye gets separated from the quencher dye, 
resulting in increased fluorescence of the reporter. Since the fluorescent 
signal is generated only if the oligonucleotide probe hybridizes with its 
complementary target, nonspecific amplification is not detected. In contrast 
to the TaqMan assay, the SYBR green assay uses the unique feature of 
SYBR green to emit light only if the substance is bound to double-stranded 
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DNA, therefore the generated fluorescence signal is a measure of the total 
dsDNA amount in the reaction at the end of each cycle [16]. SYBR green 
assays can be performed fast and cheap for a lot of different genes but are 
highly sensitive to amplification artifacts. Therefore, during the establish-
ment of a qRT-PCR assay using SYBR green, a quality control step has to 
be introduced assuring that the PCR product is free of contaminants. This 
can be achieved by a combination of agarose gel electrophoresis and melt-
ing point analysis. Multiple options are available for quantitation of the 
resulting PCR products. For gene expression analysis relative quantitation is 
commonly used for quantitative measurement. Within a sample a compari-
son is made between the gene of interest to that of a control gene, and it is 
based on the cycle threshold (Ct) value. This value is calculated based on the 
numbers of PCR cycles at which the reporter fluorescence emission 
increases beyond a threshold level. The Ct value is correlated to the level of 
starting mRNA. The higher the starting mRNA amounts, the lower the Ct 
value, as less PCR cycles are required for the reporter fluorescence emission 
intensity to reach the threshold [17]. In relative quantitation the Ct of the 
control gene is subtracted from the Ct of the gene of interest. The resulting 
difference in cycle number (ΔCt) is the exponent of the base 2 (due to the 
doubling function of PCR), representing the fold difference of template for 
these two genes. A prerequisite for the application of the relative quantita-
tion method is that the genes analyzed have similar abundance in the tissue 
analyzed and PCR efficiencies [18].

The best practice is to perform reverse transcription with random primer 
with a well-established commercially obtainable enzyme and qRT-PCR 
with SYBR green assays for a large number of genes of interest with opti-
mized primer combinations (obtainable from various commercial resources) 
using the appropriate control gene or set of control genes. If the number of 
genes has been reduced, a repetition of the experiments using TaqMan 
assays might be reasonable.

In the field of high-throughput analysis of gene expression, either micro-
arrays or next-generation sequencing technologies are used. The most com-
mon microarray technology now is the Affymetrix platform, enabling the 
researcher to quickly analyze gene expression in a sample of interest based 
on a standardized array product with defined performance. As a result of the 
advent of massive parallel sequencing technology, sequencing of RNA mol-
ecules has been become one of the central analysis technologies for cancer 
researchers. Both technologies have their advantages. Microarrays represent 
a stable technology with well-understood limitations. The bioinformatics 
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analysis is due to a number of freeware programs that are straightforward 
and can be performed without specialized bioinformatics know-how on 
basic computer hardware. Streamlined analysis pipelines are available for 
larger experiments. In recent years microarray platforms have become 
cheaper, enabling more researchers to perform gene expression analysis 
during their experiments.

Microarray technologies for gene expression profiling have clearly 
derived from the northern blotting method dating back to the mid-1970s 
[19]. To measure the gene expression profile of a given sample, one crucial 
invention was to reverse the direction of the blotting in reverse Northern 
blot approaches for the identification of cDNAs in cloning [20]. The large-
scale expressed sequence tag (EST) projects generated cDNA clones and 
made clone libraries freely available to researchers [21]. Therefore, early 
arrays for expression profiling were made of cDNA clones spotted in order 
for hybridization with RNA or cDNA. Additional miniaturization and the 
use of a rigid surface instead of the membranes used for classic blotting 
systems led to the technology that is now known as cDNA microarrays in 
the 1990s [22,23]. cDNA microarray platforms have been used in many 
laboratories but have failed to generate substantial commercial interest. This 
was due in part to the lack of standardization and quality control. Since the 
individual cDNA clones used to generate the arrays could be different 
between laboratories, the results from the hybridization might be different 
as well. cDNA microarrays were almost exclusively used as two-color analy-
sis array, and the data generated were based on the ratio of the fluorescence 
generated. Since the type of reference RNA used for analysis varied between 
the laboratories, those ratios varied as well, making comparison of the data 
between sets of experiments performed in different laboratories difficult. 
Most of the cDNA microarrays were produced in house in academic 
research centers, making it difficult to control the quality of each array, lead-
ing to dropouts and other artifacts and resulting in difficult-to-interpret 
data. Taken together, spotted cDNA microarray performed in an inferior 
manner compared to other gene expression platforms and is therefore cur-
rently only used in a minor fraction of experiments if other means of gene 
expression profiling are not available [24].

During the years when cDNA microarrays were invented, other scien-
tists worked on a different technology using in situ–synthesized oligonucle-
otide microarrays for gene expression profiling [25,26]. The arrays are 
produced by generating 25 sequences directly onto a planar array surface, 
using light-directed chemical synthesis of nucleic acids and technologies, 
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borrowed from semiconductor manufacturing. Photolithographic synthesis 
uses a chemically activated silica substrate, and light-sensitive masking agents 
construct the sequence one nucleotide at a time across the entire array [26]. 
A different concept underlies the so-called bead arrays. For those, an optical 
“imaging” fiber is etched such that a bead can fit into etched wells right on 
the tip of the fiber. Different oligonucleotide sequences are attached to each 
bead, and thousands of beads can be self-assembled onto the fiber bundle. A 
subsequent decoding process is carried out to determine which bead occu-
pies which well. Complementary oligonucleotides present in the sample 
bind to the beads, and bound oligonucleotides are measured by using a fluo-
rescent label [27].

Oligonucleotide and bead arrays usually are so-called “single-chan-
nel” or “one-color” microarrays. In contrast to most of the cDNA 
microarrays, the results represent an estimate of the absolute levels of 
gene expression. These values of gene expression may be compared to 
other genes within the same sample or to the same gene across a large 
panel of array experiments. This format of data can easily be normalized 
and compared to other arrays from other sources. Thanks to the large 
amount of data generated by the international academic research commu-
nity based on those platforms, comparability is one of the major advantages. 
A PubMed literature search showed that most of the different cancers have 
been profiled and that the daunting task at hand is to integrate those data 
into the more complex picture of genetic changes during pancreatic cancer 
development.

The large amount of data generated a need for standardization, which 
was addressed by a number of academic efforts, prior to the flood of data 
from expression profiling experiments [28]. The results of these efforts have 
since been adopted by many journals as a minimal requirement for the sub-
mission of papers incorporating microarray results, leading to the publica-
tion of “raw” data from a huge number of experiments. The data are stored 
in large public data repositories, such as NCBI gene expression omnibus 
(GEO) and EBI ArrayExpress. Also meta-databases have been established to 
provide the researcher a picture of the expression of a gene of interest in a 
diverse set of cancer-related tissues, such as Oncomine or the Pancreas 
expression database (Table 7.1) [29].

As the field of gene expression profiling progressed and the black spots 
on the map of molecular biology were filled, great hopes developed for the 
further use of microarrays in molecular classification in cancer. This would 
have introduced the field of gene expression profiling into the clinical 
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workup of patient tumors, perhaps leading to new measures for the 
improvement of cancer patient survival. Several studies in this field gener-
ated signatures for various stages of the disease [30]; as well, pancreatic 
cancer signatures to determine the postoperative survival time of patients 
could be determined [31]. However this field sustained a serious setback 
after it was shown by the MAQC-II study that the extraction of signatures 
with current software packages is not feasible [32].

Existing microarray data have been proven to be a reliable source for  
the extraction of genes of interest for further analysis. The use of highly 
controlled input material, preferably from microdissected tissue, led to  
an improved understanding of the different pathways that are involved in 
the subtypes of ampullary carcinoma [6]. Gene expression analysis has also 
been helpful in understanding the crucial changes between normal and 
cancerous epithelia as well as benign and tumor-associated stroma 
[33–40,40–45].

Table 7.1 Collection of Web Links for Databases and Software for Gene Expression 
Profiling

Cloud services for RNA sequencing data analysis
http://nimbusinformatics.com
http://www.lcsciences.com
https://igor.sbgenomics.com
https://dnanexus.com
Software repository for R packages
http://www.bioconductor.org
Software for statistical analysis of microarrays
http://www.hsph.harvard.edu/cli/complab/dchip/
http://www-stat.stanford.edu/∼tibs/SAM/
Data repositories
http://www.ebi.ac.uk/arrayexpress/
http://www.ncbi.nlm.nih.gov/geo/
http://dcc.icgc.org/projects
https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp
Packages for the detection of gene expression signatures
http://www.broadinstitute.org/cancer/software/genepattern/
http://tnasas.bioinfo.cnio.es
Software for the functional annotation of gene sets
http://david.abcc.ncifcrf.gov
http://akt.ucsf.edu/EGAN/
Database for cancer-related gene expression data
https://www.oncomine.org/
http://pancreasexpression.org/

http://nimbusinformatics.com
http://www.lcsciences.com
http://https//igor.sbgenomics.com
http://https//dnanexus.com
http://www.bioconductor.org
http://www.hsph.harvard.edu/cli/complab/dchip/
http://www-stat.stanford.edu/%7Etibs/SAM/
http://www.ebi.ac.uk/arrayexpress/
http://www.ncbi.nlm.nih.gov/geo/
http://dcc.icgc.org/projects
https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp
http://www.broadinstitute.org/cancer/software/genepattern/
http://tnasas.bioinfo.cnio.es
http://david.abcc.ncifcrf.gov
http://akt.ucsf.edu/EGAN/
https://www.oncomine.org/
http://pancreasexpression.org/
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As with other technologies, the use of DNA sequencing for gene 
expression profiling has its roots in the early days of the omics revolution. 
The first approaches employed the sequencing of cDNA libraries to gen-
erate small bits of genetic information to understand which part of the 
genome is actually transcribed—the so-called expressed sequence tags 
[46]. Using the results from these efforts, databases were created allowing 
for expression profiling in the computer for the identification of candi-
date genes in pancreatic cancer [47]. With the advent of next-generation 
sequencing instruments, large-scale sequencing of RNA regained focus 
in the science community. A typical sample goes through billions of frag-
mented DNAs (reads) simultaneously in a highly parallel way (massively 
parallel sequencing). The occurring sequencing errors in reading numer-
ous bases are compensated by reading multiple (30–40x) DNA fragments 
for an accurate determination of the sequence, thereby determining 
somatic mutations and allelic status of polymorphisms. Typically around 
90 Gb of sequence representing 30-fold coverage is obtained to call 99% 
of all variant alleles [48,49]. High coverage with multiple reads are needed 
to identify mutations that may exist only in low allele frequencies in 
many situations since cancer samples from patients are “contaminated” 
with normal tissues. Multiple tumor subclones with different genetic 
alterations within a tumor, comprising intratumor heterogeneity, exist, 
aggravating the need for even more coverage [50]. The pathogenesis of 
cancer is heterogeneous in terms of the spectrum of gene mutations 
within the same histology subtype. Therefore, sequencing of many differ-
ent tumor samples is necessary to understand the full spectrum of caus-
ative mutations. Several ongoing projects are analyzing large numbers of 
cancer specimens, in the Cancer Genome Atlas (TCGA) initiated by 
NIH/NCI in the United States and the International Cancer Genome 
Consortium (ICGC), a network of institutes from multiple nations [51] 
(Table 7.1).

RNA-Seq can be used to overcome major shortcomings of whole 
exome sequencing. It can detect somatic mutations, and the importance 
to monitor recurrent mutations in cancer has been shown in ovarian can-
cer [52]. RNA-Seq can be used for gene expression profiling with possi-
ble higher sensitivity than microarrays, since the detection rate of 
transcripts is only limited by the number of reads produced. This has to be 
countered by the intrinsic problems of RNA-Seq. Since every available 
RNA molecule is sequenced, the gene expression profiling is biased to 
highly expressed genes. In contrast, microarrays tend to limit the signal of 
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highly expressed genes and therefore generate expression profiles that 
overrepresent genes with intermediate expression [53,54]. RNA-Seq 
starts to replace microarray analysis for gene expression profiling for dif-
ferent reasons, but the major reason is that RNA-Seq acts as a one-stop 
shop for the determination of mutations, allele frequency, gene expression 
(mRNA, but also non-coding RNA), and most importantly for the detec-
tion of chimeric RNA molecule, differential splicing events, and identifi-
cation of unknown classes of RNA molecules. The detection of chimeric 
RNA molecules enabled researchers for the very first time to identify 
translocation candidates for further analysis. Translocations are notoriously 
difficult to identify, since the partners are unknown and conventional 
cytogenetic analysis lacks the resolution. However, the current limits of 
RNA-Seq limit the usable samples with large amounts of high-quality 
RNA typically found in cell lines and tumor xenografts [55]. Moreover, 
next-generation sequencing is a converging technology like the smart-
phone. By its ability to integrate the different technologies relevant to 
cancer research (mutation detection, copy number assignment, gene 
expression profiling, and others), it frees the researcher from specific chal-
lenges of each technological platform, leading to new scientific questions. 
Advancements in molecular biology of pancreatic cancer have led to an 
already interesting picture. The resulting picture from gene expression 
profiles and other investigations demonstrates a number of changes. This 
leads to questions about which cells in the cancer are associated with these 
type of changes, making it worthwhile to analyze not just whole tumors 
but also parts of the cancer [56].

During the early days of gene expression profiling with microarray, the 
bioinformatics challenge was to isolate the data, estimate the experimental 
(technical and biological) error, and assign a gene expression value to a 
given gene. These merely technical issues have been solved so that new 
challenges can be tackled. In case of a gene expression analysis with Affyme-
trix microarrays, for the non-bioinformatician the program dChip (see 
Table 7.1) is a good starting point to begin the analysis. It is easy to use, fast, 
the workflow is very well streamlined, and it is also able to handle non-
Affymetrix data.

However, the best software for non-bioinformaticians for RNA-Seq still 
has to emerge. The major challenge in working with RNA-Seq data is the 
huge amount of data produced. Handling the data is mostly out of the scope 
of biologists, therefore collaboration with a bioinformatician or the use of 
turnkey Web applications is advised (Table 7.1).
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The real challenge for scientists working on gene expression data still is 
the assignment of biological information to their resulting list of genes of 
interest. Databases connecting biological information from other sources 
are available but often presented so they are difficult to use. However, in 
recent years some packages, like DAVID or EGAN (Table 7.1), have evolved 
that enable the researcher to analyze the biologic relevance of differentially 
expressed genes using networks of genes. As with all other software in this 
field, they rely on the computerized analysis of natural language, therefore 
their output has to be scrutinized before proceeding with additional experi-
ments. Additionally, after performing such analysis, many genes are uncon-
nected to other parts and remain single in a biologic network. This is 
inherent to such software and shows the amount of effort that still has to be 
put into the assignment of function to a huge number of genes. Therefore, 
it remains obligatory for scientist in this field to search on their own in lit-
erature databases for their highest-ranking genes. As with interpreting bio-
logical information into gene expression data, the analysis of gene expression 
signatures software has evolved to help the scientist to identify those genes. 
GenePattern and TNASAS are the best examples (see Table 7.1).

This is especially true in the comparison of tumor to normal tissue. The 
identification of differential expressed genes leads to a long list of potential 
candidate genes. After the annotation of those genes to different classes of 
molecular function of cellular organization, the scientist can investigate if 
there is a constant pattern in the expression profiling data. Grützmann et al. 
reported a comparison between ductal adenocarcinoma tissue and normal 
ductal tissue of the pancreas leading to several hundred candidate genes [37]. 
More detailed analysis of different classes of proteins showed a distinct pat-
tern in protein kinases. Interestingly, in ductal adenocarcinoma, protein 
kinases associated with the cell cycle are highly overexpressed, whereas the 
expression of proteins in the class of receptor tyrosine kinases is lost in the 
cancer (Figure 7.2).

Another area to analyze the genes of interest from gene expression 
experiments, which is still an open research area, is the comparison of gene 
expression experiments. Data collection is done in two central databases 
(GEO and ArrayExpress, Table 7.1), but they do not enable the researchers 
to obtain the big picture of the gene expression of a given gene throughout 
the vast number of experiments performed. Curated databases like Onco-
mine (Table 7.1) are better suited for this purpose but lack the latest experi-
ments due to the fact that all the data must be reanalyzed and prepared for 
integration.
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Several groups have described expression data. Since the comparison of 
data is difficult, evaluation of these data has to be performed on the basis 
of each experiment. The lack of reproducibility of gene expression data is 
mainly due to the fact that the number of analyzed tumors remains small 
compared to the number of genes analyzed. Whereas statistical concerns 
can be addressed in post hoc investigations, the mere fact that each group 
decided to analyze only a minute fraction of naturally occurring pancreas 
cancers might lead to different results. Inclusion of published data might 
on the other hand enable the researcher to find new insights into pancre-
atic cancer as was demonstrated elegantly by Collisson et al. [57]. By a 
combination of internal and external data they were able to show that 
pancreatic cancer might consist of three different subtypes, warranting the 
further analysis of those for different therapeutic approaches. Gene 

Figure 7.2 Expression of Different Protein Kinases in Pancreatic Ductal Adenocarci-
noma. The human kinome was grouped in functional classes and the differential 
expressed kinases annotated. Red: overexpressed in tumors; green: underexpressed 
(CAMK: Ca2+/calmodulin-dependent protein kinase; TK: tyrosine kinase). The expression 
of the well-known tumor suppressor gene LKB1/STK11 associated with the Peutz-Jegh-
ers syndrome is lost in pancreatic cancer, indicating a fundamental role of this protein in 
the development of sporadic pancreatic ductal adenocarcinoma. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of 
this book.)
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expression analysis in pancreatic cancer also includes the analysis of 
miRNA expression. As in gene expression profiling, using mRNA differ-
ential expression of various miRNA molecules is reported [58,59]. Since 
the number of miRNAs is still growing, important miRNAs might still be 
discovered. MiRNA analysis displays also the advantage of RNA-Seq. 
With RNA-Seq every molecule might be discovered, which might be 
dependent only on the technical expertise of the scientist. MiRNA analy-
sis with arrays lead to a skewed picture since only those miRNAs can be 
analyzed that are known at the date of array design. With all gene expres-
sion data, additional validation is needed to demonstrate the clinical rele-
vance of a given gene. The technology of choice is high-throughput tissue 
microarray (TMA) analysis, enabling the investigation of protein expres-
sion in a large number of cases of pancreatic cancer [31,60]. From the 
results, the relevance of a protein for the treatment of patients might be 
deduced by associating the gene expression with parameters like postop-
erative survival. TMAs switch the problem of large-scale gene expression 
analysis from small number of samples—large number of genes into large 
number of samples—to small number of genes. Successful analysis of TMA 
data relies on the availability of the associated clinical data (and of course 
their quality) and the suitability of the technology used for the detection 
of a gene or protein. TMAs are usually produced from formalin-fixed par-
affin-embedded (FFPE) tissue. This results in the availability of large sets of 
patient samples with a long follow-up time, but also in the restriction of 
available standard technologies to use such a class of tissues. Immunohisto-
chemistry is the method of choice to investigate the protein expression of 
a given gene. Unfortunately, results for only the minority of protein anti-
bodies that can be used with FFPE tissue are available, restricting the pos-
sible investigative space considerably.

SUMMARY

Since the inception of molecular biology beginning in the 1970s, gene 
expression profiling of RNA, structural and sequence analysis of DNA, and 
the delineation of the proteome have provided a powerful insight in the 
aberrations of cancer tissue, leading to the first drugs that attack those 
changes. In the future, technological progress will enable researchers to 
understand crucial changes even better, and gene expression profiling will 
aid in the successful evaluation of pancreatic tumors that may lead to the 
establishment of superior biomarkers and therapeutic targets.
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CHAPTER 

Genetic Susceptibility and Risk of 
Pancreatic Cancer
Jason Hoskins, Jinping Jia, Laufey T. Amundadottir
Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer 
Institute, National Institutes of Health, Bethesda, MD, USA

INTRODUCTION

This year in the United States, an estimated 45,220 people will be  diagnosed 
with pancreatic cancer and 38,460 will die from the disease [1]. Although 
pancreatic cancer is the 10th most commonly diagnosed cancer in the 
United States, it is the 4th most common cause of cancer death in both 
sexes [1]. The best chance for survival is early detection when the tumor 
can be removed surgically. Most pancreatic cancers are asymptomatic at 
early stages, however, and by the time they are diagnosed, the majority 
of patients present with distant metastases. Only about 15–20% of pan-
creatic adenocarcinoma (PDAC) cases are diagnosed early enough for 
surgery [1]. Survival is correlated to stage: patients who present with 
distant metastases at diagnosis have dismal 5-year survival rates of only 
2%, whereas patients diagnosed at an early stage exceed 20%, indicating 
the potential benefit of early detection [2]. These rates are still bleak, 
however, and call out for new and better strategies for prevention, early 
diagnosis, and treatment of pancreatic cancer to reduce the burden of 
this disease.
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Known risk factors for pancreatic cancer include smoking, diabetes, 
obesity, chronic pancreatitis, heavy alcohol consumption, age, and a family 
history of the disease [3–12]. A small proportion of the familial aggregation 
of pancreatic cancer can be explained by hereditary cancer syndromes and 
inherited forms of pancreatitis, caused by rare high-risk inherited mutations 
[13–21]. The genetic basis for the majority of familial aggregation of pan-
creatic cancer has yet to be explained. The search for common and rare 
germline variants that influence risk of pancreatic cancer through genome-
wide association studies (GWAS) and high-throughput sequencing based 
studies is under way, and this search holds the promise of increasing our 
knowledge of variants and genes that play a role in inherited susceptibility 
of this devastating disease.

FAMILIAL RISK OF PANCREATIC CANCER

Epidemiological studies have shown that individuals with a family history 
of pancreatic cancer are at an increased risk of developing pancreatic cancer. 
One of the largest studies reported to date was conducted within the Pan-
creatic Cancer Cohort consortium (PanScan) and included 11 studies (10 
cohort and 1 case–control studies) with 1183 cases and 1205 controls.  
A family history of pancreatic cancer in a first-degree relative was associated 
with an increased risk of pancreatic cancer with an odds ratio (OR) of 1.76 
(95% confidence interval, CI 1.19–2.61). Individuals with two or more 
first-degree relatives diagnosed with pancreatic cancer, although not com-
mon, were at even greater risk (OR = 4.26, 95% CI 0.48–37.79) [11]. 
Results from other large studies have described similar increases. A cancer 
registry–based analysis conducted within the Swedish Family-Cancer Data-
base reported a 1.73-fold increase in the incidence of pancreatic cancer 
(standardized incidence ratio, SIR = 1.73, 95% CI 1.13–2.54) among off-
spring of patients diagnosed with PDAC [22].

A study linking the Utah Cancer Registry to the Utah Population 
Database, showed a significant familial clustering for pancreatic cancer, both 
in first-degree (RR = 1.84; 95% CI 1.47–2.29; P < 0.0001) and second-
degree (RR = 1.59; 95% CI 1.31–2.91; P < 0.0001) relatives of individuals 
with pancreatic cancer [23]. A population-based study in Iceland, linking 
cancer registry information, including all pancreatic cancer patients diag-
nosed in the country from 1955 to 2002 (n = 930) with a population-wide 
genealogy database, reported somewhat higher risk to first-degree relatives 
(RR = 2.33, 90% CI 1.83–2.96) [24].
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RARE, HIGH-RISK PANCREATIC CANCER SUSCEPTIBILITY 
GENES AND MULTICANCER SYNDROMES

Up to 10% of pancreatic cancer cases in the United States occur in the con-
text of a familial pattern [25–27]. Many cases of inherited pancreatic cancer 
are attributable to inherited chronic inflammatory conditions like hereditary 
pancreatitis (HP) and cystic fibrosis (CF), or familial multi-cancer syndromes 
like Peutz–Jeghers syndrome (PJS), Familial Atypical Multiple Mole Mela-
noma (FAMMM), or Lynch syndrome. Hereditary pancreatic cancer cases 
containing ≥2 afflicted first-degree family members, and not attributed to 
such predefined syndromes, are classified as familial pancreatic cancer (FPC) 
syndrome [26]. Because only ∼20% of these FPC cases have been associated 
with specific mutations, the hereditary basis for FPC remains largely unclear.

HP is characterized by recurrent bouts of acute pancreatitis (inflamma-
tion of the pancreas) in childhood or early adolescence that eventually 
develops into chronic pancreatitis [27,28]. The most common mutation 
found in HP cases is in the cationic trypsinogen gene PRSS1, although 
mutations also have been observed in SPINK1 (encoding a serine protease 
inhibitor), PRSS2 (encoding anionic trypsinogen), and CTRC (encoding 
chymotrypsin C). These mutations lead to inappropriate protease activity 
within the pancreatic parenchyma, causing autodigestive injury and inflam-
mation. Patients with HP have a 26- to 60-fold increased risk of pancreatic 
cancer depending on the etiology, with a lifetime risk of up to 40% [26–28]. 
This lifetime risk is increased to 75% with onset typically 20 years earlier for 
smokers with HP. Chronic pancreatitis is a PDAC risk factor even without 
a genetic basis, and in each case, persistent inflammation appears to promote 
this effect. Pancreatic acinar cells display surprising resistance to robust 
oncogenic insults in mouse models (including heterozygous expression of 
KrasG12V or conditional TP53 or Cdkn2a knockouts), but induction of pan-
creatitis greatly accelerates PanIN and PDAC development in KrasG12V-
expressing mice [29,30]. This protumorigenic effect may work by abrogating 
oncogene-induced senescence [29].

Consistent with the important role of inflammation in pancreatic tumor 
progression, CF patients have a PDAC risk ratio of 5.3 [26,28,31]. CF is 
caused by an autosomal recessive mutation in the CFTR gene, which encodes 
a cyclic AMP (cAMP)-mediated chloride channel. The pancreatic pathology 
of CF stems from obstruction of pancreatic ducts by excessively thick mucus 
secretions, which can lead to chronic inflammation and fibrosis. Interestingly, 
a study of young onset pancreatic cancer cases found that 8.4% were 
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heterozygous carriers of the CFTR mutation, compared with the 4.1% fre-
quency in controls, despite the lack of CF symptoms in carriers [32].

PJS is associated with monoallelic mutations in the STK11 gene (also 
called LKB1), resulting in haplo-insufficient tumor suppressor activity. This 
leads to benign gastrointestinal polyps and a greatly increased lifetime risk of 
breast, gynecologic, and gastrointestinal cancers [33]. Individuals with PJS 
have a 132-fold increased risk of developing pancreatic cancer, making 
STK11 one of the most penetrant susceptibility genes identified thus far for 
inherited pancreatic cancer [26]. STK11 encodes a serine–threonine kinase 
involved in the regulation of diverse processes, such as cell growth, cell 
polarity, energy metabolism, and apoptosis [33]. Many of these effects are 
mediated through AMP-activated protein kinase and mammalian target of 
rapamycin signaling, although STK11 directly regulates other pathways as 
well. Although STK11 knockout in murine pancreatic epithelium does 
result in ductal metaplasia and cystadenomas, there is no progression to Pan-
INs or PDAC without additional mutations like oncogenic KRAS, suggest-
ing that STK11 mutations support, rather than drive, tumorigenesis [33].

FAMMM syndrome commonly is caused by inactivating mutations of the 
p16INK4A tumor suppressor, which increases PDAC risk 13- to 20-fold 
[25,34–36]. The p16INK4A and p19ARF tumor suppressors overlap in the 
CDKN2A gene, although they are encoded by distinct first exons and shared 
downstream exons with alternative reading frames. In several PDAC cases, 
however, germline and sporadic mutations were identified that alter p16INK4A 
without affecting p19ARF, strongly suggesting that changes in p16INK4A 
activity are the source of heritable risk [25,37–39]. Expression of p16INK4A 
is induced by environmental stresses, age, and aberrant proliferation, leading to 
inhibition of CDK4/6-mediated RB phosphorylation, ultimately blocking 
S-phase entry [25,40–42]. This senescence effect must be overcome for full 
progression of pancreatic neoplasias to PDAC, and germline mutations in one 
allele puts carriers at a much higher risk of total loss of p16INK4A function.

Lynch syndrome results from germline mutations in mismatch repair 
(MMR) genes (e.g., MSH2, MSH6, MLH1, PMS1, or PMS2) [26–28]. 
Upon biallelic deficiency of an MMR gene, genomic instability rises, 
which is manifest in microsatellite-instable tumors of the colon. Lynch 
syndrome patients are at extremely high risk of colon cancer, but risks for 
some extracolonic cancers are increased as well. This includes pancreatic 
cancer, for which up to an ∼8.6-fold increased risk has been reported [27]. 
Microsatellite instability testing in pancreatic and breast tumors from 15 
patients afflicted with Lynch syndrome showed minor instability in only 
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one tumor, and no biallelic deficiency was revealed by genotyping or 
immunohistochemistry of relevant MMR genes in any case [43]. Further-
more, microsatellite instability was identified in only 1 of 338 sporadic 
PDAC tumors, which was due to apparent epigenetic downregulation of 
MLH1 [44]. These results raise the possibility that at least some proportion 
of Lynch syndrome–related pancreas tumors could be promoted through 
mechanisms independent of MMR impairment.

Familial adenomatous polyposis (FAP) syndrome results from autosomal 
dominant germline mutations in APC, which encodes a scaffold protein 
that forms a complex with Axin, GSK3, and β-catenin [28]. Wnt signaling 
disrupts this interaction, causing release and accumulation of β-catenin, thus 
activating transcription of the protumor factors c-Myc, c-Jun, and cyclin 
D1. Mutations in APC causing FAP lead to constitutive activation of the 
Wnt signaling cascade. FAP syndrome presents with early onset colonic or 
gastric polyps that can progress to carcinomas. Additionally, FAP causes a 
4.6-fold increased risk of developing PDAC [26,28].

Pancreatic cancer is also part of the broad multicancer spectrum of   
Li–Fraumeni syndrome, which is caused by germline mutations in the 
TP53 tumor suppressor gene [26,28]. TP53 encodes p53, whose transcrip-
tional activity is greatly induced in response to a wide range of cellular 
stresses, including DNA damage, hypoxia, nutrient deprivation, or onco-
gene activation [25,28]. Induction results largely from stabilization of p53 
and can lead to cell-cycle arrest, apoptosis, senescence, modulation of nutri-
ent consumption, or changes in reactive oxygen species production, 
depending on various post-translational modifications [45]. Given the well-
established role of p53 in tumor suppression, along with observed somatic 
TP53 mutations in >50% of PDAC tumors, it is not surprising that pancre-
atic cancer is part of the Li-Fraumeni spectrum of cancers. It is estimated 
that ∼1.3% of Li-Fraumeni cases develop PDAC, making it a relatively 
minor genetic risk factor [26,28].

Hereditary breast and ovarian cancer (HBOC) syndrome features high 
risk of early onset familial breast or gynecologic cancers and modestly 
increased risk of prostate and pancreatic cancer [26,27,46,47]. Germline 
mutations in BRCA1 or BRCA2, identified nearly 20 years ago, are respon-
sible for ∼90% of HBOC cases. Both BRCA1 and BRCA2 are important 
in homologous repair and double-strand break repair of DNA, and BRCA1 
also plays a role in cell-cycle regulation. Although well established as a cause 
of HBOC, the relevance of BRCA1 to pancreatic cancer risk is murky. 
Studies have found 0 to 2.56-fold increased pancreatic cancer risk in 
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BRCA1 mutation carriers. In contrast, up to 16% of cases from FPC kin-
dreds reportedly carried BRCA2 mutations, and a large study of BRCA2-
mutated HBOC cases estimated a 3.5-fold increased risk of PDAC. Some 
germline BRCA2 mutations have been identified in sporadic or familial 
pancreatic cancer cases with no reported family history of breast or ovarian 
cancer, or in some cases, any cancer at all [27,47]. For this reason, BRCA2 
mutations often are associated with FPC syndrome in addition to HBOC.

Because of the large proportion of unexplained FPC cases, whole 
genome sequencing (WGS) and exome sequencing (ES) of FPC kindreds 
recently were performed to identify causal mutations. This led to the discov-
ery of germline deleterious mutations in the PALB2 and ATM genes in 
∼3.1 and ∼2.4% of tested FPC cases, respectively [16,48]. ATM encodes a 
serine–threonine kinase involved in initiating DNA double-strand break 
repair by phosphorylating downstream effectors, including BRCA1 [46,48]. 
PALB2 encodes a protein scaffold for BRCA1 and BRCA2 and promotes 
intranuclear localization and stabilization of BRCA2. It is an interesting 
coincidence that BRCA2, ATM, and PALB2 are all involved in the same 
double-strand break and homologous DNA repair pathway. A germline mis-
sense mutation of the PALLD gene was identified in all affected members of 
one FPC family; however, mutations in this gene have not been found in any 
other families tested, suggesting it is not a common cause of FPC [28].

COMMON, LOW-RISK PANCREATIC CANCER 
SUSCEPTIBILITY LOCI

Many common diseases are known to cluster in families and are believed to 
be influenced by both genetic and environmental factors. As discussed, pan-
creatic cancer is no exception. It most likely is influenced by environmental 
interactions with multiple germline variants with a wide range in allele 
frequencies and effect sizes. Until a few years ago, family-based linkage 
studies were the main approach to map genes for disease, including pancre-
atic cancer. The strength of linkage analysis is in finding high-risk, mostly 
uncommon, germline variants in families with a high concentration of cases 
with a specific disease. The linkage approach was quite successful for 
 Mendelian disorders, but it has limited power and low resolution for  variants 
of small effects that probably explain much of the inherited susceptibility to 
complex diseases.

GWAS have now become an important addition to the linkage approach. 
The identification of genetic variants that contribute to the risk of common 
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diseases has become possible in the last several years, through the generation 
of the human genome sequence and annotation of human genetic variation 
by the HapMap and 1000G consortia [49–52]. These advances, coupled 
with improvements in technology, allowed the construction of so-called 
single-nucleotide polymorphism (SNP) chips or SNP arrays that enable 
genome-wide interrogation of germline variants with relative ease. These 
brought on the GWAS era, which has been tremendously successful for a 
multitude of complex diseases, including various cancers and traits associated 
with a risk of cancer (e.g., body mass index (BMI), diabetes, and smoking) 
in identifying approximately 2000 associations for more than 300 complex 
diseases and traits [53,54]. Genotyping arrays used for GWAS are designed 
to identify common susceptibility alleles in an agnostic manner, and for the 
first few years, assessed hundreds of thousands of SNPs in thousands of indi-
viduals. Newer arrays assess even higher numbers of SNPs (up to 5 million) 
and thereby can target both common and less common variants.

Although the first GWAS for pancreatic cancer was not published until 
2009, these studies now have been performed in individuals of both European 
and Asian ancestry. The first pancreatic cancer GWAS studies were performed 
by PanScan, conducted within the framework of the National Cancer 
 Institute–sponsored Cohort Consortium, with the aim of identifying suscepti-
bility markers for this deadly disease. Two phases of the GWAS have been 
reported, PanScan I and II [55,56]. East phase consisted of 12 nested case–
control studies within prospective cohort studies and 8 case–control studies. 
The total number of subjects included 3851 patients diagnosed with PDAC 
and 3934 control subjects, of which ∼95% were of European ancestry [55,56]. 
A combined analysis identified four genome-wide significant pancreatic can-
cer risk loci marked by common variants with small effect sizes: chromosome 
9q34.2 marked by SNP rs505922 in the ABO blood group gene 
(P = 5.37 × 10−8; ORAllele = 1.20), chr1q32.1 in the NR5A2 gene (rs3790844; 
P = 2.5 × 10−10; ORAllele = 0.77); chr5p15.33 in the CLPTM1L-TERT gene 
region (rs401681; P = 3.7 × 10−7; ORAllele = 1.19); and chr13q22.1 in a non-
genic region (rs9543325; P = 3.3 × 10−11; ORAllele = 1.26). Common variants 
in the CLPTM1L-TERT locus have been associated with multiple cancers, 
through a number of GWAS, including lung, bladder, prostate, breast, mela-
noma, glioma, ovarian, testicular, and basal cell cancer, whereas the other three 
loci appear to be pancreatic cancer specific [57–68].

Two additional pancreatic cancer GWAS are ongoing in subjects of Euro-
pean ancestry. One study is the third phase of PanScan (PanScan III), which 
includes a GWAS of ∼2000 pancreatic cancer cases and ∼5000 control 
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subjects with replication of top findings in ∼2500 case and ∼3500 control 
subjects. In addition, the Pancreatic Cancer Case Control Consortium 
(PanC4) is conducting a GWAS that includes ∼4000 case–control pairs. 
These two studies will bring the total number of subjects with GWAS data 
to ∼10,000 pancreatic cancer cases and ∼13,000 controls, leading to much 
improved statistical power and presumably the discovery of additional PDAC 
risk loci.

The main risk SNPs on 9q34.2 in the ABO gene (rs505922,  
ORAllele = 1.20, P = 5.37 × 10−8) reportedly have been associated with risk 
for venous thrombosis, stroke, ulcer, and Grave’s disease, as well as with cir-
culating tumor necrosis factor (TNF)α, soluble intercellular adhesion mol-
ecule (sICAM), and alkaline-phosphatase levels through GWAS [69–74]. 
The protective allele of rs505922 is in complete linkage disequilibrium 
(LD) with the O allele of the ABO locus (r2 = 1). The ABO gene encodes a 
glycosyltransferase (histo-blood group ABO system transferase) that cata-
lyzes the transfer of carbohydrates to the H antigen, forming the structure 
of the ABO blood groups first described by Karl Landsteiner in 1900. Small 
studies published in the 1950 and 1960s reported an association between 
ABO blood type and gastrointestinal cancers, both gastric and pancreatic 
cancer, consistent with the results from PanScan [75,76].

The discovery of the ABO risk locus reawakened interest in the blood 
groups and risk of pancreatic cancer. Using PanScan I GWAS data, individ-
ual ABO alleles were inferred and their association with pancreatic cancer 
risk determined [77]. Individuals with inferred A (AA and AO), AB, and B 
(BB and BO) blood groups had an increased risk of pancreatic cancer as 
compared with the O group: 1.38 (95% CI 1.18–1.62), 1.47 (95% CI 1.07–
2.02), and 1.53 (95% CI 1.21–1.92), respectively, indicating that ABO geno-
types are risk alleles for pancreatic cancer [77]. Extending this study to 
investigate whether glycosyltransferase activity influences pancreatic cancer 
risk, genotypes were established in a similar manner to mark the A1 and A2 
alleles, as the former has higher glycosyltransferase activity than the latter 
[78]. The A1 alleles conferred an increased risk of pancreatic cancer 
(OR = 1.38, 95% CI 1.20–1.58), whereas A2 alleles did not (OR = 0.96, 95% 
CI 0.77–1.20) [79]. A significant difference was not seen between the two 
nonfunctional O variants (O-01 and O-02) or by secretor status as charac-
terized by alleles at rs601338 in the FUT2 gene on 19q13.33 [79]. This gene 
encodes galactoside 2-alpha-l-fucosyltransferase 2 (the H antigen), and an A 
allele at rs601338 introduces a stop codon at amino acid 154 (W154X). 
Individuals homozygous for this allele do not express an intact H antigen 
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and do not produce ABO antigens in body fluids [80]. Although more work 
is needed to solve the mechanism of action at 9q34.2, an increased glycosyl-
transferase activity, either toward the H antigen or other proteins glycosyl-
ated by the protein product of the ABO gene, may explain the risk.

Studies investigating the underlying mechanism for the link between 
blood groups and pancreatic cancer risk suggested a possible mechanistic 
link to gastric infection by Helicobacter pylori, as both non-O blood groups 
and gastric colonization by H. pylori are risk factors for pancreatic cancer 
[55,81]. In this study, an increased risk of pancreatic cancer was associated 
with non-O blood groups (OR = 1.37, 95% CI 1.02–1.83, P = 0.034) and 
seropositivity for CagA-negative H. pylori (OR = 1.68, 95% CI 1.07–2.66, 
P = 0.025). Furthermore, the association between pancreatic cancer risk and 
seropositivity for CagA-negative H. pylori was found in individuals with 
non-O blood types (OR = 2.78, 95% CI 1.49–5.20, P = 0.0014), but not in 
those with the O blood type (OR = 1.28, 95% CI 0.62–2.64, P = 0.51), sug-
gesting that the presence of A and B blood group antigens may influence 
how the bacteria binds to the gastric mucosa [82].

The most significant SNP on chr1q32.1 maps to the first intron of the 
NR5A2 gene (rs3790844, ORAllele = 0.77, P = 2.5 × 10−10). This gene 
encodes an orphan nuclear receptor subfamily 5 group A member 2 and is 
a plausible candidate gene for the action of risk variants on chr1q32.1. 
NR5A2 (sometimes referred to as liver receptor homolog-1) is a transcrip-
tion factor that plays vital roles in early development, cholesterol synthesis, 
bile acid homeostasis, and steroidogenesis [83]. NR5A2 can replace octamer-
binding protein 4 (Oct-4) during the reprogramming of somatic mouse 
cells to induce pluripotent stem cells, indicating an important role in regu-
lating stemness, probably in part through its interaction with DAX1 and 
transcriptional activation of the OCT4 gene [84,85]. It activates expression 
of cyclin E1, cyclin D1, and c-Myc by directly binding the CCNE1 pro-
moter but indirectly binding the CCND1 and MYC promoters. In the 
former case, β-catenin acts as a coactivator for promoter-bound NR5A2, 
but in the latter cases, the roles are reversed and NR5A2 acts as a coactivator 
for promoter-bound β-catenin [86]. In the adult pancreas, NR5A2 is an 
important regulator of exocrine pancreatic function where it cooperates 
with pancreas-specific transcription factor 1 to directly bind and activate a 
series of acinar specific genes [87].

Mice heterozygous for NR5A2 exhibit increased rates of acinar to ductal 
metaplasia and impaired recovery after caerulein-induced acute pancreatitis 
[30]. Furthermore, NR5A2 haploinsufficiency cooperates with pancreatitis 
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in a pancreatic cancer mouse model driven by oncogenic KRAS, increasing 
the number of preneoplastic PanIN lesions and driving their progression 
toward PDAC [30]. Likewise, in mouse models, caerulein-induced pancreati-
tis leads to a transient downregulation of multiple acinar and endocrine 
genes, including NR5A2, HNF1A, and pancreas–duodenum homeobox 
protein 1 (PDX1). This effect correlates with increased proliferation of acinar 
cells [88]. HNF-1A was shown to bind the promoter and to regulate expres-
sion of the NR5A2 gene [88]. Thus, reduced expression of NR5A2 and 
other acinar genes may contribute to increased proliferation and faster pro-
gression of PanINs in mouse pancreatic cancer models. Although the mech-
anism of NR5A2’s apparent tumor suppressive effects are still unclear, they 
may be related to the functional action of the risk variants on chr1q32.1.

The most significant pancreatic cancer GWAS SNP on chr5p15.33 was 
rs401681 (P = 3.7 × 10−7, ORAllele = 1.19, 95% CI 1.11–1.27) located in a 
multi–cancer-risk locus containing two genes, TERT and CLPTM1L [89]. 
TERT encodes the catalytic subunit of telomerase, which is well known for 
its essential role in maintaining telomere ends and increased telomerase 
activity commonly seen in human cancers [90–92]. Telomerase also has 
telomere-independent functions, including in the regulation of gene expres-
sion, cell survival, epithelial to mesenchymal transition, and mitochondrial 
function [93]. The function of CLPTM1L is not as clear, although its 
encoded protein, cleft lip and palate-associated transmembrane 1-like pro-
tein, has been proposed to be a survival factor in lung cancer in which case 
it protects cancer cells from apoptosis after treatment with DNA-damaging 
agents [94,95]. A gain of chromosome 5p is one of the most recurrent chro-
mosomal abnormalities in human cancers, including pancreatic cancer [96]. 
In many tumors, the amplified region includes the TERT gene but not 
CLPTM1L. This is reversed, however, in many tumors in which only 
CLPTM1L is amplified and overexpressed, indicating that TERT may not 
be the only gene in this region important for cancer [97,98].

Haplotype analysis based on the PanScan GWAS data indicated that 
5p15.33 was the only one of the four susceptibility loci with more signifi-
cant haplotypes as compared with the individual SNPs (by three orders of 
magnitude) [56]. Intriguingly, the T allele of rs401681 has been associated 
with increased risk of pancreatic cancer and melanoma [56,63,67] while 
also having been associated with decreased risk of lung, prostate, bladder, 
and basal cell carcinoma [58,59,63,67]. It is not clear how the same locus 
can confer increased or decreased risk depending on the cancer type, but 
this suggests that more than one mechanism may be at play.
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The top-ranked GWAS SNP on chr13q22.1, rs9543325 (P = 3.27 × 10−11, 
ORAllele = 1.26, 95% CI 1.18–1.35), is found in a 600 kb nongenic region 
[56]. The lack of transcription near the risk locus suggests that the func-
tional variant could affect a putative regulatory element in an allele-specific 
manner. This regulatory element could affect gene expression at great 
distance through intra- or interchromosomal interactions. The chr13q22.1 
risk locus is flanked by two genes encoding transcription factors of the 
Kruppel-like family: KLF5 and KLF12 [99]. Both genes play a role in 
regulating cell growth and transformation [100,101] and KLF5 is upreg-
ulated in pancreatic cancer [102]. Other genes in the region include 
PIBF1, DIS3, BORA, and MZT1, all of which are located upstream of 
KLF5. PIBF1 is overexpressed in a number of malignant tumor types, 
and it is thought to play a role in progesterone-dependent immuno-
modulation [103,104]. DIS3 encodes a ubiquitously expressed nuclear 
3′–5′ riboexonuclease broadly involved in RNA processing and surveil-
lance [105,106]. Mutations in DIS3 have been identified in acute myeloid 
leukemia and multiple myeloma, and its expression correlated with meta-
static potential in colorectal cancer [107–109]. BORA is a cofactor of 
aurora kinase A, which regulates cell proliferation and frequently is 
amplified in tumors [110]. MZT1 is a member of the gamma-tubulin 
ring complex that is involved in mitotic spindle organization [111]. 
Although to date MZT1 has not been associated with any cancers, its role 
in mitosis and chromosomal segregation suggests possible relevance to 
tumor progression. Any of these distantly neighboring genes could be 
functionally relevant to the mechanism by which the chr13q22.1 GWAS 
locus confers risk of PDAC.

COMMON PANCREATIC CANCER RISK LOCI IN NON-
EUROPEAN POPULATIONS

In fully interrogating risk loci for any disease, it is important to conduct 
GWAS across multiple populations. In addition to the PanScan GWAS, in 
which the majority of subjects were of European ancestry, GWAS have 
now been performed in case–control studies from China and Japan. Addi-
tional studies of Asian ancestry are needed to increase the power for 
detection. Hopefully these will continue to grow, as well as those for other 
ethnicities like populations of West Asian, African, South American, and 
Middle Eastern ancestry, for whom pancreatic cancer GWAS have not 
been reported.
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The Japanese GWAS was performed with 991 cases diagnosed with 
advanced pancreatic ductal adenocarcinoma and 5209 control subjects. This 
study identified three loci with GWAS significance on chromosomes 
6p25.3/FOXQ1 (rs9502893: ORAllelic = 1.29, P = 3.30 × 10−7), 
12p11.21/BICD1 (rs708224: ORAllelic = 1.32, P = 3.3 × 10−7) and 
7q36.2/DPP6 (rs6464375: ORRecessive = 3.73, P = 4.4 × 10−7) [112]. Risk 
loci previously discovered in Europeans (PanScan) showed moderate 
(chr13q22.1: rs9543325, PAllelic = 1.69 × 10−4) or weak (chr9q34.2: rs505922, 
PAllelic = 0.0369; 1q32.1: rs3790844, PAllelic = 0.0124) association in the Japa-
nese study population [112].

In the Chinese scan (ChinaPC), a two-phased approach was performed 
with a GWAS of 981 pancreatic cancer cases and 1991 control subjects in the 
discovery phase and a replication in 2603 cases and 2877 controls. Five risk 
loci were noted: chr21q21.3/BACH1 (rs372883: OR = 0.79 P = 2.24 × 10−13), 
chr21q22.3/TFF1 (rs1547374: OR = 0.79, P = 3.71 × 10−13), 
chr10q26.11/PRLHR gene (rs12413624: OR = 1.23, P = 5.12 × 10−11), 
chr22q13.32/FAM19A5 (rs5768709: OR = 1.25, P = 1.41 × 10−10), and 
chr5p13.1/DAB2 gene (rs2255280: OR = 0.81, P = 4.18 × 10−10) [113]. This 
group also replicated the chr13q22.1 locus initially discovered in PanScan 
(through a perfectly correlated SNP, rs4885093, P = 1.57 × 10−12), and noted 
loci on chr1q32.1 (rs3790843, P = 0.0106) and chr5p15.33 (rs401681, 
P = 7.35 × 10−5), albeit at lower significance. On the other hand, SNPs mark-
ing 9q34.2 (rs505922) in the European scan and those marking 6p25.3 
(rs9502893), 12p11.21 (rs708224), and 7q36.2 (rs6464375) in the Japanese 
scan were not nominally significant in the Chinese scan [113].

A replication of the Chinese and Japanese pancreatic cancer risk loci recently 
was attempted in 1299 PDAC cases and 2884 controls from the  European 
PANcreatic Disease ReseArch (PANDoRA) case–control consortium. None 
of the seven pancreatic cancer susceptibility loci identified in the two Asian 
populations were associated significantly with the risk of pancreatic cancer in 
Europeans, although one SNP was monomorphic in Europeans [114].

We are slowly filling in the landscape for inherited susceptibility variants 
that influence risk of pancreatic cancer (Figure 8.1). Even as this picture 
evolves, however, each risk locus uncovered requires significant functional 
exploration. All pancreatic cancer risk loci identified to date through GWAS 
are nonprotein coding. Because our understanding of the nongenic regions of 
the genome is limited, this task may be even more arduous than the identifi-
cation of the risk variant themselves. It involves the identification of target 
genes influenced by risk variants and the mechanism by which they mediate 
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altered risk in people with different genotypes. The marker SNPs identified in 
the GWAS is in most cases a proxy for the functional variant; therefore, fine-
mapping efforts followed by genomic and functional analysis of multiple 
highly correlated tag SNPs are the next steps after a GWAS identifies a risk 
locus for a specific disease or trait. These efforts involve genomic and func-
tional approaches, such as investigating gene expression levels, splicing, pro-
moter or enhancer strength, DNA methylation, protein to DNA binding, and 
chromosome conformation, to link risk genotypes to differences in specific 
molecular phenotypes to establish the underlying mechanism at each locus.

PATHWAY ANALYSES OF PANCREATIC CANCER GWAS DATA 
SETS

GWAS interrogate the association between hundreds of thousands or even 
millions of genetic variants and a phenotype of interest. Since their launch 
approximately 8 years ago, studies of the genetic underpinnings of disease 
have entered a new era and led to the identification of a large number of 
risk loci for multiple diseases, including pancreatic cancer as described 

Figure 8.1 The Current Picture for Inherited Pancreatic Cancer Risk. Allele frequencies 
ranging from rare to common are shown on the x-axis, and effect sizes ranging from low 
to high are shown on the y-axis. GWAS loci are color coded by population (Euro-
pean = blue; Chinese = red; Japanese = purple). (For interpretation of the references to 
color in this figure legend, the reader is referred to the online version of this book.)
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previously. Although extremely successful, the GWAS approach does have 
limitations. Because of its agnostic methodology, every SNP on a given 
genotyping platform is examined in an identical manner, without prior 
knowledge of a biological function or known functional impact. In one 
sense this is a great plus, as we are not always “smart” enough to pinpoint the 
genes most likely to be associated with a phenotype, as numerous unsuccess-
ful candidate gene association studies in the past have shown [115]. To utilize 
the benefits of the GWAS approach while reducing false-positive signals 
from testing large numbers of hypotheses, stringent thresholds are used for 
significance in GWAS [116]. Through the large numbers of cases and con-
trols used in a typical GWAS, a number of significant risk loci usually are 
discovered, and the list typically grows with increased sample sets and addi-
tional phases and meta-analyses of each study. Extremely large data sets are 
required to assess variants with small effects, and the risk loci usually do not 
explain a large fraction of the heritability of the trait under investigation 
[115]. Some genes or loci therefore may be truly associated with disease but 
may not reach the stringent threshold of  “genome-wide significance” due to 
limited power. Because of these limitations, approaches have been pursued 
that can complement the standard single-marker GWAS approach. One of 
these is pathway-based analysis of GWAS data [117]. Genes and their encoded 
proteins do not function in isolation, but rather they interact with other 
genes and proteins to perform specific tasks, or mediate signals that result in 
specific outcomes (i.e., gene expression, signal transduction, altered meta-
bolic rates, etc.). The analysis of groups of related genes therefore can be a 
complementary approach to GWAS, using biological insight to reduce the 
space of genes tested from that of the whole genome to a much smaller set 
of genes. Pathway analyses thus aim at combining weak signals from a num-
ber of SNPs located within genes that lie in the same pathway.

Genes in a pathway can either be coparticipants in specific biological 
pathways or networks, or each can act in a similar functional manner. The 
GWAS pathway approach investigates whether test statistics for markers in a 
group of genes are associated consistently with a phenotype, above what can 
be expected by chance. The association can be detected from investigating 
the joint effect of multiple SNPs in a single gene or from groups of genes 
that are related because they are members of the same pathway. Two main 
approaches to pathway-based analysis of GWAS data exist: one is an SNP 
P-value enrichment approach, and the other uses individual SNP genotypes 
to derive test statistics for each gene. The former uses P-values as input, 
whereas the latter requires genotype data to derive gene- and pathway-level 



Genetics of Familial Pancreatic Cancer 183

significance through permutations. The latter thus can use more than one 
marker per gene for significance tests. Enrichment scores for pathways are 
derived from gene P-values using resampling procedures to assess statistical 
significance. This can be achieved by comparing genes in a pathway to genes 
that are not associated (self-contained methods) or to all other genes in the 
genome (competitive methods).

Most pathway studies use a single association signal for each gene. This 
is commonly the SNP with the lowest P-value (minP) within each gene, 
which—after adjustment for multiple comparisons—is assigned as the gene 
level P-value. A drawback to this approach is that it may miss additive effects 
among SNPs within a gene. Other methods apply a supervised principal 
component analysis to extract independent signals within a gene [118,119]. 
This method examines joint effects of genes with a phenotype while 
accounting for the LD between correlated SNPs. Another option is to use 
resample-based procedures to correct for biases introduced by differences in 
gene lengths and regional LD, such as the SNP ratio test [120], the set-based 
analysis in PLINK [121], and the adaptive rank truncated product (ARTP) 
method [122,123]. Numerous curated pathway annotation databases, 
including Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene 
Ontology, BioCarta, and many others are valuable sources for pathway-
based GWAS (for review see [117] and [124]).

For pancreatic cancer, four individual pathway-based studies have taken 
slightly different approaches to analyze pancreatic cancer GWAS data from 
the PanScan consortium [55,56]. These studies nicely highlight different 
strategies that can be undertaken to mine GWAS data by (1) using a narrow 
set of specific pathways that are thought to be involved in pancreatic cancer, 
(2) an agnostic pathway-based approach using a comprehensive set of 
known pathways, (3) interrogating risk variants for diseases other than pan-
creatic cancer, and (4) using external data sets, such as protein–protein inter-
action networks, to enrich for genes that are important for specific functions 
within cells. In the first study, 23 biological pathways and gene sets hypoth-
esized to be relevant for pancreatic cancer, based on pathway database and 
literature searches, were tested for pathway-based association using an adap-
tive combination of P-values in the ARTP method [122,123]. SNPs from 
the two GWAS (PanScan I and II) were selected in each gene with a bound-
ary of 20 kb upstream to 10 kb downstream of each gene. Of the 23 path-
ways, a nominally significant association was noted for five pathways: 
pancreatic development, H. pylori infection, hedgehog signaling, allergies 
related to Th1/Th2 immune response, and apoptosis (Table 8.1). After 
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excluding genes identified in the original pancreatic cancer GWAS [55,56] 
(NR5A2, ABO, and SHH), only the pancreatic development pathway 
remained significant (P = 8.3 × 10−5). The most significant genes in this 
pathway were NR5A2 (P = 1.0 × 10−6), HNF1A (P = 1.4 × 10−4), HNF4G 
(P = 4.8 × 10−4), PDX1 (P = 0.0079), and HNF1B (P = 0.019) [123]. These 
five genes encode important components of the transcriptional networks 
that govern embryonic development of the pancreas and maintain homeo-
stasis in adults [125,126]. The earliest steps of exocrine pancreatic develop-
ment are regulated by PDX1 (encoding PDX1), which is a direct regulator 
of NR5A2 in this process [127,128]. HNF1A and HNF1B encode hepato-
cyte nuclear factors 1 alpha and beta (HNF1A and HNF1B) also known as 
transcription factors 1 and 2 (TCF1 and TCF2), respectively. HNF1A pri-
marily is known to regulate the growth and function of islet cells, and 
HNF1B plays an essential role in controlling pancreatic organogenesis and 
differentiation [125]. Heterozygous compound knockout mouse models 
have shown that PDX1, NR5A2, HNF1A, and HNF1B act in a tightly 
regulated feedback circuit in regulating pancreas development and homeo-
stasis [128,129]. Furthermore, mutations in HNF1A, PDX1, and HNF1B 

Table 8.1 Pathways and Genes Noted through Pathway-Based Analyses of Pancreatic 
Cancer GWAS Data Sets
Approach Pathway Most significant genes

ARTP Pancreatic development NR5A2, HNF1A, HNF4G, 
PDX1, HNF1B

Helicobacter pylori infection ABO
Hedgehog signaling SHH, BTRC, HHIP
Th1/Th2 immune response TGFBR2, CCL18, 

IL13RA2
Apoptosis MAPK8, BCL2L11, FAS, 

FASLG, CASP7
Pleiotropy scan HNF1A
GRASS Neuroactive ligand–receptor 

interaction
ABO, HNF1A, and SHH

Olfactory transduction OR13C4
DMS/PPI Myc-mediated apoptosis 

signaling, Neuregulin  
signaling, ERK/MAPK 
signaling, FAK signaling, 
PTEN signaling

EGFR, ATF7IP, GRB2, 
NCK1, ESR1, ACTB, 
RAC1, MEPCE, STAT3, 
FASLG, SRC, EP300, 
ATXN1, BCAR1, MYC, 
LCK, FAS, DLG2, 
DOCK1
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are responsible for maturity onset diabetes of the young (MODY) types 3, 
4, and 5, respectively [130–132]. Both mutations and common variants in 
HNF1A and HNF1B have been associated with risk of type II diabetes 
[133–135]. SNPs in the HNF1B gene also have been associated with pros-
tate and endometrial cancer [136–138]. These results suggest possible func-
tional interrelationships between inherited variation in genes important for 
pancreatic development and cancer risk.

The second approach was an agnostic search that analyzed a large set of 
predefined pathways from the KEGG database using the gene set ridge regres-
sion in association studies (GRASS) method [139]. Of the 197 pathways ana-
lyzed, 2 were associated significantly with the risk of pancreatic cancer after 
adjusting for multiple testing: neuroactive ligand–receptor interaction 
(P = 0.00,002) and olfactory transduction (P = 0.0001) (Table 8.1) [140]. 
Using a logistic kernel machine test, four genes were deemed to significantly 
contribute to these two pathways after Bonferroni correction: ABO, HNF1A, 
OR13C4, and SHH [140]. The third approach analyzed PanScan data for 
associations between pancreatic cancer risk and the full catalog of published 
GWAS SNPs from the National Human Genome Research Institute 
(NHGRI) [141]. The authors termed their method “pleiotropy scan” as it 
restricted the association analysis to variants putatively influencing multiple 
phenotypes. This approach used a two phased strategy, by first analyzing Pan-
Scan I and then using PanScan II for replication. This study also identified 
SNPs in the HNF1A gene as being important for pancreatic cancer risk 
(Table 8.1), but no additional loci were significant [142].

Biologically meaningful information can be extracted from GWAS data 
by integration with additional high-throughput data sets, such as transcrip-
tome, epigenome, or protein–protein interaction data sets. This layered 
approach also aims to reduce the amount of hypotheses tested, but instead 
of using predefined pathways, it seeks to apply functionally relevant data 
sets. The goal is to examine whether association signals from GWAS are 
enriched within the space of biologically relevant data that can include  
(1) potentially active genomic regions (using epigenome data that define 
histone modification marks, DNase hypersensitivity region, and DNA 
methylation), (2) genes or gene sets that are either coexpressed or differen-
tially expressed in normal and tumor-derived pancreatic samples (transcrip-
tome data sets), or (3) genes known to encode proteins that interact with 
each other or lie in specific protein networks.

An illustration of the last example is a recent study that used dense mod-
ule searching to look for genes or pathways within human protein–protein 
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interaction (PPI) modules and networks that were enriched in significant 
association signals from pancreatic cancer GWAS data [143]. SNPs from 
PanScan I were mapped to genes if they were located within 20 kb upstream 
or downstream of the gene body; the most significant SNP in each gene was 
then selected to represent that gene, followed by integration with PPI net-
works. This approach yielded 93 significantly enriched modules, containing 
159 unique genes. These were combined and used to construct a PPI sub-
network for pancreatic cancer. The genes showing the highest degree if 
interaction in this network (degree ≥6) were EGFR, ATF7IP, GRB2, 
NCK1, ESR1, ACTB, RAC1, MEPCE, STAT3, FASLG, SRC, EP300, 
ATXN1, BCAR1, MYC, LCK, FAS, DLG2, and DOCK1 (Table 8.1). Path-
way analysis for these genes indicated enrichment in Myc-mediated apop-
tosis signaling (P = 1.70 × 10−7), Neuregulin signaling (P = 2.82 × 10−7), 
extracellular signal-regulated kinase/mitogen activated protein kinase 
(ERK/MAPK) signaling (P = 1.62 × 10−6), FAK signaling (P = 2.51 × 10−6), 
and PTEN signaling (P = 3.24 × 10−6). The epidermal growth factor recep-
tor (EGFR) was the most connected protein in the pancreatic cancer sub-
network. EGFR is a plasma membrane growth factor receptor located 
directly upstream of RAS. As KRAS mutations are extremely frequent in 
pancreatic cancer, one might believe that an active EGFR would not aug-
ment signals from an already mutated KRAS. However, overexpression of 
TGF-alpha, one of the EGFR ligands, dramatically increases the progression 
of PanIN lesions to metastatic pancreatic cancer in transgenic KRASG12D 
mouse models, indicating that activation of the EGFR indeed can cooper-
ate with an enhanced KRAS-mediated transformation in the pancreas [144].

A limiting factor to pathway approaches in general is that it involves 
mapping SNPs from GWAS to genes; for pragmatic reasons, this usually is 
the closest gene (gene body and 10–20 kb up- and downstream of the start 
and stop codon of each gene). One must keep in mind, however, that the 
SNP(s) in question may or may not functionally influence the gene they 
reside in or lie close to. Many examples of long-range interactions within 
and between chromosomes that regulate gene expression are missed by this 
approach. A second caveat is that the results from GWAS are preliminary, 
and in many cases, fine-mapping yields much improved association signals. 
The latter caveat can be overcome by imputation before pathway analysis.

FUTURE GWAS AND GENE MAPPING APPROACHES

GWAS has yielded enormously helpful insight into the etiology of pan-
creatic cancer. As compared with more common cancers, the GWAS 
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approach is at a relatively early stage for pancreatic cancer and more can 
be expected as increased sample sets and additional populations are ana-
lyzed. The reasons for this are twofold: First, pancreatic cancer is not com-
mon, ranking number 10 in incidence in the United States and number 
13 worldwide [1,145]. Second, pancreatic cancer is highly lethal [145,146], 
and patients often have passed away before they can be recruited to par-
ticipate in studies. Furthermore, only a subset of pancreatic cancer patients 
undergoes surgery, resulting in low recruitment rates. This disproportion-
ally affects hospital-based case–control studies versus cohort-based studies 
and can lead to biased estimates for risk loci if they are correlated with 
severity or survival of pancreatic cancer. The GWAS approach has led to 
the identification of 67 risk loci for breast cancer [147] and 77 for prostate 
cancer [148]. Together, these loci explain approximately 30% of the famil-
ial risk of prostate cancer and 28% for breast cancer [147,148]. For pan-
creatic cancer, 18 risk loci have been identified to date through GWAS 
(10 in Europeans and 8 in Asians) albeit with limited replication between 
European and Asian populations.

Additional GWAS continue to become available, and as sample sizes 
grow, statistical power will increase and additional loci likely will be identi-
fied. Imputation and meta-analyses of existing and new GWAS data sets are 
bound to uncover even more loci. Efforts in pancreatic cancer GWAS out-
side of main effects likely will expand by investigations of susceptibility 
variants for survival, pharmacologic responses as well as gene–gene and 
gene–environmental interactions [149–151]. For other diseases, however, 
susceptibility loci identified through GWAS are not likely to explain the 
majority of inherited risk for pancreatic cancer. With the emergence of 
next-generation sequencing, these efforts will grow in use for gene map-
ping. The recent identification of mutations in the ATM and PALB2 genes 
in pancreatic cancer kindreds with unknown etiology nicely demonstrated 
this use of next-generation sequencing [16,48]. ES and WGS also likely will 
be undertaken in sporadic cases as well as in cases with specific phenotypes, 
such as an early age of onset and epidemiologic risk factors (e.g., BMI, 
smoking, pancreatitis). ES and WGS are well suited for the discovery of less 
common risk variants, with low to intermediate effects, in contrast to link-
age or GWAS approaches. As population-based sequencing studies already 
have shown, the number of uncommon and rare polymorphic variants in 
the human genome, although underrepresented in public databases to date, 
is very high [152], and may explain a substantial portion of germline risk for 
disease. Furthermore, high-throughput sequencing approaches will enable 
the assessment of variants not captured on GWAS platforms, such as indels 
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and copy number variants. We therefore enter another exciting era of 
genome mapping in the discovery of susceptibility variants for destructive 
diseases like pancreatic cancer.
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INTRODUCTION

Despite advances in our understanding of pancreatic cancer development in 
the past decade, the disease remains the fourth most common cause of can-
cer death in the United States [1,2]. Unfortunately, its 5-year survival rate 
has not been improved significantly in the past 30 years. The major reason 
for this poor prognosis is that the majority of pancreatic cancer patients are 
diagnosed at a late stage with metastatic, inoperable disease, in which no 
effective treatments are currently available. Even for the small group of 
patients diagnosed with resectable cancer and who do undergo surgical 
resection, the 5-year survival rate approximates 15–40% [3,4]. Methods for 
earlier detection and more effective therapeutic treatments are much needed 
to improve the clinical outcome of pancreatic cancer.

Proteins are the essential molecules that regulate and participate in bio-
logical functions. Proteome alterations that are associated with diseases may 
include changes in protein expression, post-translational modifications (PTMs) 
and protein–protein interactions, which may all lead to malfunction of cellular 
biological processes. Identification and quantification of protein abnormalities 
associated with pancreatic cancer pathways, thus, may supply molecular infor-
mation that provides new disease surrogates for diagnosis or novel therapeutic 
targets. In some cases, identification of a key regulatory protein could provide 
information for both diagnostics and treatment, known as theranostics.

Over the past decade, researchers have looked beyond the scope of 
genomics to explore protein-driven functional changes that are associated 
with pancreatic tumorigenesis. Advances in proteomics, especially quantita-
tive proteomics, enables systematic investigation of malignancy-related pro-
teome alterations that affect cellular physiology and function. This type of 
information can provide for new hypotheses bridging the gap between basic 
biological understanding and translational research. As illustrated in Figure 
9.1, clinical specimens for proteomics investigation can include pancreatic 
tissues, plasma/serum, pancreatic juice, and cyst fluids, as well as isolated cells, 
from individuals who are in good health and those with cancer or other pan-
creatic diseases. Such samples are investigated to identify signaling pathways 
and molecular events underlying pancreatic tumorigenesis—laying a founda-
tion for translational exploration of key proteins to improve patient care.

OVERVIEW OF PROTEOMICS TECHNOLOGIES

A major challenge in proteomics analysis arises from the enormous complex-
ity of protein constituents and the vast dynamic range in protein abundance 
in biological samples. Comprehensive interrogation of a protein profile, 



Proteomics in Pancreatic Cancer Translational Research 199

particularly of low-abundant proteins in a complex biological system that may 
consist of thousands or more protein species with the addition of their iso-
forms, PTMs, mutations, and polymorphisms is a dedicated task and requires 
a concerted approach drawn from different techniques. A typical proteomics 
pipeline requires four technical modules, including sample preparation, pro-
tein/peptide separation, mass spectrometric analysis, and bioinformatics. In 
addition, shotgun proteomics-based quantitative analysis entails a variety of 
stable isotope-labeling methodologies that can be used to introduce differen-
tial mass tags on proteins or peptides to facilitate the quantitative analysis.

Separation of Proteins and Peptides
In large-scale proteomics profiling experiments, effective fractionation and 
separation of proteins and peptides before mass spectrometric analysis enhances 
the analytical range and capacity. The nature of the biological specimens and 
experimental design can influence the approach used to prepare proteins for 
analysis. For gel-based quantitative analysis, two-dimensional electrophoresis 
(2-DE) is the most common way to separate proteins in a complex biological 

Figure 9.1 Proteomics in Pancreatic Cancer Studies. (For color version of this figure, 
the reader is referred to the online version of this book.)
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sample, and the staining intensities of proteins are used to achieve comparative 
quantification [5]. The identification of selected protein spots is accomplished 
through mass spectrometric analysis, typically via in-gel digestion of proteins. 
Alternatively, shotgun proteomics-based approaches rely on analysis and 
assignment of peptides for protein identification. Because mass spectrometric 
analysis at the peptide level provides substantially better analytical sensitivity 
and mass accuracy compared with direct protein analysis, shotgun proteomics 
permits sophisticated amino acid sequence identification using an automatic 
database search. Digestion of a vast number of proteins in a biological sample, 
however, can generate numerous peptide species with significant dynamic dif-
ferences in abundance, unavoidably multiplying the complexity of the sample 
for analysis. In such a setting, a variety of separation techniques have been 
utilized to effectively separate or fractionate a complex biological sample at 
either the protein or peptide level before the mass spectrometric interroga-
tion. Typically, orthogonal mechanisms are coupled to maximize the separa-
tion efficiency. Proteins can be separated using electrophoresis, liquid 
chromatography (LC), or size exclusion before enzymatic digestion, whereas 
at the peptide level, 2D LC is commonly used for peptide fractionation with 
the combination of ion chromatography and reverse-phase LC, such as is used 
in the multi-dimensional protein identification technology (MudPIT) [6].

Quantitative Methods for Global Protein Profiling
Differential stable isotopic labeling is the most common and versatile approach 
for quantitative proteomics analysis. This technique provides mass tags, which 
allow mass spectrometry to distinguish peptides with identical sequence but 
from different sample origins (e.g., diseased cases versus healthy controls) for 
quantitative comparison. There are different ways to incorporate stable isotope 
labeling onto proteins or peptides, including chemical derivatization and met-
abolic and enzymatic labeling [7,8]. Chemical derivatization is the most widely 
used methodology for stable isotope labeling and can be categorized into two 
types, isotopic and isobaric, based on how the isotopic signals are generated in 
mass spectrometric analysis. Isotopic-type stable isotope labeling methods, 
such as isotope-coded affinity tags (ICAT) [9] and isotope-coded protein label 
(ICPL) [10], quantify peptides at the MS level, while isobaric types, such as 
isobaric tags for relative and absolute quantitation (iTRAQ) [11] and tandem 
mass tags (TMT) [12], allow the mass spectrometer to generate and acquire 
differential isotopic reporting peaks at the tandem mass spectrometry (MS/
MS) level after collision-induced dissociation (CID). Chemical derivatization 
approaches are post protein isolation methods that are well suited for analyzing 
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almost any sample types, including clinical specimens such as tumor tissue, 
plasma/serum, and pancreatic juice. Metabolic incorporation of stable isotope 
labeling, such as stable isotope labeling by amino acids in cell culture (SILAC) 
[13,14], utilizes cell culturing to introduce isotopic tags on proteins by supple-
menting stable isotopic-labeled amino acid in cell culture medium and is par-
ticularly suitable for cell model studies. The enzymatic method, such as O18 
labeling [15], takes a different route to introduce isotopic labeling on peptides 
by enzymatic digestion of proteins in an O18-enriched buffer. Last, with 
advances in high-resolution mass spectrometric instrument and bioinformat-
ics, label-free-based quantitative proteomics, based on spectral count or signal 
intensity, also have been applied in a variety of studies [16,17].

Mass Spectrometry
Mass spectrometer is the center of proteomics analysis, and its major com-
ponents consist of the ion source, mass analyzer, and detection unit. Ion 
plume is produced and introduced into mass spectrometer through ion 
source; the ions are then separated in mass analyzer under an ultra-high 
vacuum based on their mass-to-charge value and recorded by a detector. 
The most commonly used ion source techniques are electrospray ionization 
(ESI) and matrix-assisted laser desorption/ionization (MALDI), both of 
which are used widely in proteomics analysis [7]. Several types of mass ana-
lyzers are available, including ion trap, orbitrap, time-of-flight (TOF), and 
quadrupole. These mass analyzers can be used independently or can be 
combined to achieve a tandem analysis. Recently, an ion mobility technique 
has been introduced, providing an additional dimension for resolving a 
complex biological sample within a mass spectrometer. In MS/MS analysis, 
peptides are fragmented in a collision cell and the fragmentation pattern of 
each of the peptide is used for sequence identification. In addition to the 
most commonly used CID mechanism, other soft ionization methods, 
including electron-transfer dissociation (ETD) and electron-capture disso-
ciation (ECD) have been developed to facilitate protein PTM analysis [18].

Bioinformatics for Protein/Peptide Analysis
The last module of a proteomics pipeline is bioinformatics data processing, 
which includes a series of integrated software, from data format conversion 
to peptide/protein sequence assignment, statistical validation, and quantita-
tive analysis. The MS/MS spectra generated are searched against a protein 
database for peptide/protein sequence identification using database search-
ing algorithms, such as SQUEST [19], MASCOT [20], and X!tandem [21], 
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followed by statistical validation and false discovery assessment. For quanti-
tative experiments, based on peptide/protein registry, analytical software is 
used to compare the differential signal intensities between the sample and 
the control to obtain quantitative information reflecting peptide/protein 
relative abundance in the samples compared.

Targeted Proteomics
In addition to nonbias quantitative proteomics methods for global protein 
profiling, targeted proteomics utilizes the concept of isotope dilution and 
provides highly specific and sensitive detection of candidate analytes in a 
complex biological sample. This approach is increasingly applied in transla-
tional and biomarker studies [22,23]. The most widely used mass spectrom-
etry technique for targeted proteomics analysis is the triple quadrupole-based 
selected (or multiple) reaction monitoring (SRM or MRM) technique. The 
development of targeted proteomics technology has opened a new avenue 
for quantitative detection of targeted proteins, peptides, or even specific 
forms of PTMs in a complex biological system, carrying great promise to 
facilitate biomarker development for pancreatic cancer and other diseases.

PROTEOMICS STUDY OF PANCREATIC TISSUE
Pancreatic Ductal Adenocarcinoma
A variety of proteomics approaches have been applied to investigate the 
proteome of pancreatic tumor tissue in comparison to noncancerous tissue. 
These studies include 2-DE based [24,25], ICAT-based [26,27], iTRAQ-
based [28], and label-free-based [29] quantitative proteomics, identifying a 
group of valuable proteins associated with PDAC progression and metasta-
sis. Although much work remains to be done to fully characterize the 
translational value of these protein candidates, some of the overexpressed 
proteins in PDAC have been further studied for their potential value for a 
variety of clinical applications. Galectin-1 (LGALS1) [25,26,28,29] was 
characterized as a functional receptor of tissue plasminogen activator (tPA, 
PLAT) and has been implicated in pancreatic cancer progression [30] and 
survival [31]; its expression, which is associated with dampening of the 
immune response, is negatively associated with long-term survival in 
resectable PDAC patients [31]. Gelsolin (GSN) [26,29] and lumican (LUM) 
[26,28,29] were further evaluated in plasma using SRM-based targeted 
proteomics as biomarker candidates to distinguish early stage PDAC (stages 
I and II) from chronic pancreatitis and healthy controls [32]. Plectin-1 
(PLEC), another pancreatic cancer–associated protein [26,29] has been 
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developed into a molecular imaging agent for the identification of primary 
and metastatic pancreatic cancer [33,34]. Annexin II (ANXA2) [26,28,29] 
and cofilin (CFL1) [26,28] are significantly associated with chemoresis-
tance in patients with resected pancreatic cancer [35–37]. 14-3-3 sigma 
(SFN) [26] was found upregulated in the malignant epithelia of lymph 
node metastases [38] and was also involved with the resistance of pancreatic 
cancer cells to cisplatinum-induced apoptosis [39]. Moesin (MSN) [28] 
was characterized to be associated with lymph node metastases along with 
c14orf166 and radixin [40]. Tissue proteomics studies of pancreatic cancer 
have revealed that protein-driven  stromal–epithelial interactions regulate 
neoplastic cell expansion, migration, invasion, and immunologic escape. 
The secretion of growth factors and cytokines by tumor cells and the sur-
rounding stromal cells further induce cancer-associated angiogenesis and 
suppress the immune response [41,42].

Pancreatic Intraepithelial Neoplasia
Pancreative intraepithelial neoplasia (PanIN) represents the precancerous 
lesions of pancreatic adenocarcinoma and is grade 1–3. PanIN 3 is believed 
to be the most clinically relevant stage for early detection of pancreatic can-
cer when intervention and cure is possible. Quantitative proteomics using 
ICAT and iTRAQ labeling techniques was applied to investigate the tissue 
proteome of PanIN 3 lesions using PDAC, chronic pancreatitis, and normal 
pancreas as comparisons [28]. Over 200 differentially expressed proteins 
were identified in PanIN 3 tissues with many of them concurrently expressed 
in pancreatic cancer tissue, suggesting that proteome dysregulation in PanIN 
3 lesion may start before cancer invasion. Some of the cancer-associated 
proteins that were overexpressed in PanIN 3 lesions included laminin beta 1 
(LAMB1), 14-3-3 theta (YWHAQ), decorin (DCN), LGALS1, vimentin 
(VIM), and actinin-4 (ACTN4). On the basis of the immunohistochemistry 
(IHC) analysis, LAMB1 was highly expressed in stroma adjacent to both 
PanIN lesion and cancerous tissue; ACTN4 showed increased expression in 
both the epithelial and stromal elements of advanced PanIN lesions (75%) 
and tumor tissues (76%); LGALS1 expressed strongly in stroma of advanced 
PanIN lesions (70%) and tumor tissues (95%). Functional clustering and 
network analysis of the differentially expressed proteins in PanIN 3 lesions 
reveals that many of the key proteins are involved in cell mobility and inflam-
matory response; myc proto-oncogene protein (c-MYC) was an important 
regulatory protein in these PanIN 3 lesions [28]. The dysregulations of pro-
teome in PanIN 3 lesion before cellular invasion of cancer was also observed 
in an engineered mouse model of pancreatic cancer [43].
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Chronic Pancreatitis
As a chronic inflammatory disorder of pancreas, chronic pancreatitis is a risk 
factor for pancreatic cancer and the two diseases share many common clini-
cal and molecular features [44–46]. A tissue proteomics study observed that 
many differentially expressed proteins in chronic pancreatitis were fre-
quently involved in PDAC [27]. Using clinically well-characterized  formalin- 
fixed paraffin embedded (FFPE) tissues and a label-free quantitative 
 proteomics, it was observed that in comparison with normal pancreas the 
number of proteins differentially expressed in the tissues of mild chronic 
pancreatitis, severe chronic pancreatitis, and PDAC increased as the disease 
severity increased [29]. Similarities in proteome alterations between severe 
chronic pancreatitis and PDAC included a decrease of digestive enzymes 
and an increase of extracellular matrix (ECM) proteins, glycoproteins, and 
inflammatory proteins. Although several molecular events, including activa-
tion of acute phase response, prothrombin activation, and pancreatic fibrosis, 
were commonly shared between chronic pancreatitis and PDAC, metabolic 
changes were significantly associated with PDAC only. Validation of protein 
expression using IHC or Western blot confirmed that ANXA2 and insulin-
like growth factor binding protein 2 (IGFBP2) were overexpressed in can-
cer but not in chronic pancreatitis, whereas cathepsin D (CTSD), integrin 
beta-1 (ITGB1), plasminogen (PLG), versican (VCAN), LUM, and collagen 
alpha-1(XIV) chain (Col14A1) were overexpressed in both diseases [27,29]. 
Overall, the studies suggested that more than 50% of the differential proteins 
in chronic pancreatitis were expressed concurrently in PDAC tissue.

Analysis of Isolated Cells
Proteomics and mass spectrometry were also applied to study isolated cells 
from pancreatic cancerous tissue using laser capture microdissection. The stud-
ies of isolated pancreatic neoplastic cells using 2-DE have identified the over-
expression of S100A6 in malignant epithelial cells [47] and S100P and SFN in 
lymph node metastatic malignant epithelial cells [38]. Stromal cells play an 
important role in pancreatic tumorigenesis. Using a similar approach, S100A8 
and S100A9 were found to be overexpressed in isolated stromal cells sur-
rounding malignant pancreatic ductal cells [48]. A subpopulation of pancreatic 
tumor cells with cell surface markers CD44+CD24+ESA+ has been identified 
as pancreatic cancer stem cells [49]. Using capillary isoelectric focusing and 
LC MS/MS, 169 differential proteins were identified in pancreatic cancer 
stem cells isolated from human xenograft tumors in mice using noncancerous 
cells as a comparison [50]. Signaling pathway analysis suggested that molecular 
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events related to apoptosis, cell proliferation, inflammation, and metastasis were 
involved significantly in the pancreatic cancer stem cells.

BLOOD BIOMARKER DISCOVERY
Global Profiling of Plasma/Serum
Early detection of pancreatic cancer when it is curable would significantly 
improve the survival rate of this highly lethal disease. The current clinically 
used blood biomarker for pancreatic cancer, CA19-9, does not provide suf-
ficient accuracy for early detection of pancreatic cancer. New blood tests 
that afford better specificity and sensitivity for diagnosis or prognosis are 
much needed. Proteomics provides a unique and powerful approach for 
blood biomarker discovery, allowing systematic profiling of hundreds and 
thousands of proteins in plasma or serum in a high-throughput fashion. 
Comparison of blood specimens obtained from pancreatic cancer patients 
versus diseased and healthy controls, renders a nonbiased approach to iden-
tify significant proteins or signature peptides that may be quantitatively 
associated with the presence and progression of pancreatic cancer.

The proteome of human plasma or serum is highly complicated, compris-
ing tens of thousands of proteins with a dynamic range in concentrations 
exceeding 10-orders of magnitude [51,52]. In addition to the functional pro-
teins that are endogenous to the circulatory system, a large number of tissue 
proteins can shed into the blood, including proteins that are secreted from 
tumor cells. Several studies have reported global profiling of plasma or serum 
from patients with PDAC, attempting to identify novel surrogate biomarkers 
to improve current pancreatic cancer detection [53–59]. Plasma profiling 
studies using 2-DE [53,55] identified leucine-rich alpha-2-glycoprotein 
(LRG) as an upregulated protein in the plasma from patients with pancreatic 
cancer. Since the origin and function of plasma LRG remains unclear, its 
clinical value as a blood biomarker for pancreatic cancer detection requires 
additional validation. More recently, shotgun  proteomics-based large-scale 
quantitative protein profiling experiments were carried out to systematically 
study the proteomics alterations associated with pancreatic cancer. One study 
used genetically engineered mouse models to investigate the proteome of 
plasma from tumor-bearing mice at early and late stage of pancreatic cancer 
and identified more than 1400 proteins in the mouse plasma [54]. Using 
enzyme-linked immunosorbent assay (ELISA), a subset of mouse model-
based protein candidates were tested in human sera, suggesting that the mea-
surement of ALCAM protein (ALCAM), intercellular adhesion molecule 1 
(ICAM1), neutrophil gelatinase-associated lipocalin (LCN2), tissue inhibitor 
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of metalloproteinase 1 (TIMP1), lithostathine 1 (REG1A), regenerating islet-
derived protein 3 (REG3), and insulin-like growth factor-binding protein 4 
(IGFBP4), as a panel, was able to outperform CA19-9 in distinguishing pan-
creatic cancer patients from the matched controls (healthy and chronic pan-
creatitis). In a different investigation in human plasma, large-scale quantitative 
proteomics experiments were conducted to profile the proteome of plasma 
from patients with PDAC in comparison with chronic pancreatitis and healthy 
controls [56]. More than 1300 proteins, across eight orders of magnitude in 
plasma concentration, were identified using stringent identification criteria. 
Among these proteins, 76% and 6% of them were also identified in pancreatic 
tissues and pancreatic juice, respectively, suggesting the feasibility of detecting 
tumor-associated signals in blood. Many differential proteins in pancreatic 
tumor tissue and pancreatic juice were also found concurrently expressed in 
pancreatic cancer plasma, including neutrophil defensin 1 (DEFA1), pancre-
atic secretory trypsin inhibitor (SPINK1) thrombospondin-1 (THBS1), 
TIMP1, ICAM1, LUM, flavin reductase (BLVRB), collagen alpha-1(I) chain 
(COL1A1), EGF-containing fibulin-like extracellular matrix protein 1 
(EFEMP1), L-lactate dehydrogenase B chain (LDHB), transforming growth 
factor beta-1 (TGFB1), IGFBP2, Ig mu chain C region (IGHM), glutathione 
peroxidase 3 (GPX3), immunoglobulin J chain (IGJ), and ZYX protein 
(ZYX), just to name a few. Using an independent plasma cohort, ELISA vali-
dation showed that a biomarker panel of TIMP1 and ICAM1 provided better 
sensitivity and specificity compared to CA19-9 in identifying pancreatic can-
cer patients from the diseased and healthy matched controls.

Targeted Proteomics for Protein Biomarker Detection
Although large-scale quantitative proteomics profiling studies can identify 
differentially expressed proteins in pancreatic cancer specimens, the specific-
ity and sensitivity of each individual protein associated with pancreatic can-
cer needs to be further evaluated for their value in clinical application, 
regardless of whether these proteins are discovered in pancreatic cancer tis-
sue, PanIN lesions, or body fluids. This is particularly the case in developing 
blood-based biomarkers for pancreatic cancer detection. For instance, the 
blood concentration of a dysregulated tissue protein discovered in pancreatic 
tumor may or may not quantitatively correspond to its tissue expression, 
depending on its function, origin, cellular location, abundance, and other 
factors. With mass spectrometry-based targeted proteomics, the plasma/
serum concentration of a large number of protein candidates can be mea-
sured accurately without the dependence on an ELISA assay for each tar-
geted protein. Using a clinically well-characterized plasma cohort, including 
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patients with early stage PDAC, chronic pancreatitis and healthy control, five 
pancreatic cancer–associated proteins that are overexpressed in pancreatic 
tumor, including LUM, GSN, TIMP1, transglutaminase 2 (TGM2), and 
SFN, were evaluated with a multiplexed SRM assay [32]. The receiver oper-
ating characteristic (ROC) analysis of the plasma concentration of these 
proteins indicated that TIMP1, LUM, and GSN had an area-under-curve 
(AUC) value greater than 0.75 in distinguishing pancreatic cancer from the 
controls. In a different study, proline-hydroxylated α-fibrinogen was ana-
lyzed in plasma using SRM technique [60]. By measuring the concentration 
of proline-hydroxylated and unmodified α-fibrinogen in the plasma samples 
from pancreatic cancer patients and healthy controls, the study indicated that 
the percent hydroxylation of α-fibrinogen and concentration of hydroxyl-
ated α-fibrinogen were both significantly greater in the plasma of pancreatic 
cancer patients, including some of those with a negative test in CA19-9.

ANALYSIS OF PANCREATIC JUICE AND CYST FLUID
Pancreatic Juice
PDAC accounts for more than 90% of all pancreatic neoplasms [61]. Pancreatic 
juice is rich in proteins secreted from pancreatic duct where PDAC arises, and 
thus it is a proximate source for investigating tumor-associated proteomics 
changes. The protein constituents in pancreatic juices have been analyzed using 
specimens collected from individuals with no apparent pancreatic pathology 
[62], patients with pancreatic adenocarcinoma [63] and chronic pancreatitis 
[64]. These nonquantitative studies have identified up to 473 proteins in human 
pancreatic juice with different pathological states. In addition to the tumor-
associated proteins shed into the pancreatic duct, a number of proteins identi-
fied in pancreatic juice are digestive enzymes and related proteins. To reveal the 
proteins that are expressed differentially in PDAC, quantitative proteomics 
studies were conducted to study the  cancer-associated proteome alterations in 
pancreatic juice. ICAT-based shotgun proteomics was applied to investigate the 
differential proteins present in cancerous pancreatic juice in comparison with 
pancreatic juice collected from noncancerous controls [65]. The cancer-related 
overexpressed proteins (≥twofold) identified included kallikrein 1 (KLK1), 
IGFBP2, REG1A and REG1B, pancreatic secretory granule membrane major 
glycoprotein (GP2), SPINK1, pancreatitis-associated protein 1 (PAP1), pancre-
atic ribonuclease (RNASE1), and T-cell receptor beta chain (TCRB). In addi-
tion, a difference gel electrophoresis (DIGE)–based study identified 
overexpression of matrix metalloproteinase-9 (MMP9), oncogene DJ1 
(PARK7), and alpha-1B-glycoprotein (A1BG) in pancreatic juices from 
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pancreatic cancer patients [66]. The comparison of pancreatic juice from 
patients with PDAC and chronic pancreatitis indicated that some of the over-
expressed proteins in cancer were expressed congruently in chronic pancreati-
tis [67], consistent with the notion that the two diseases share many common 
clinical and molecular features. An iTRAQ-based quantitative proteomics 
study further investigated the proteome of pancreatic juices collected from 
patients with PanIN 3 lesion and healthy controls; and found 20 proteins ele-
vated in PanIN cases [68]. Among them, anterior gradient-2 (AGR2) was fur-
ther evaluated in a pancreatic juice cohort consisting of patients with PDAC, 
premalignant lesions (including PanIN 3, PanIN 2, intraductal papillary muci-
nous neoplasms (IPMNs)), and benign pancreatic disease (including chronic 
pancreatitis). AGR2 levels in the pancreatic juice were elevated significantly in 
patients with premalignant conditions (PanINs and IPMNs) as well as pancre-
atic cancer, compared with the control samples, suggesting its potential value as 
pancreatic juice biomarker for pancreatic cancer early detection.

It is notable that among the proteins identified in pancreatic juice, there 
is a low overlap in protein identification among the reported studies. 
Although this may be in part due to the differences in the methodologies 
used, it reflects the heterogeneous and dynamic nature of protein profile 
present in pancreatic juice. A 2-DE study suggested that the level of obstruc-
tion of the main pancreatic ducts because of cancer or other diseases was 
probably the main factor affecting the protein composition, especially the 
digestive enzymes and related proteins, in pancreatic juice [69]. In addition, 
bile and blood can be contaminants of pancreatic juice. Identification of 
large number of blood proteins in pancreatic juice may be an indication of 
a possible contamination of blood during pancreatic juice collection.

Pancreatic Cyst Fluid
Pancreatic cysts have been increasingly detected with the widespread use of 
cross-sectional imaging techniques [70]. However, management of increas-
ingly prevalent pancreatic cystic lesions has been a challenging task largely 
because of the lack of an effective diagnosis method for detecting clinically 
relevant neoplasm associated with cysts. Pancreatic cyst fluid, which can be 
obtained via needle aspiration at endoscopic ultrasound, appears to be a 
suitable source for protein biomarker development. Using 2-DE and mass 
spectrometry, one study investigated the cyst fluids obtained from a group 
of patients who were categorized according to their cytology results, includ-
ing benign (no evidence of benign mucinous epithelium, atypical cells, or 
carcinoma), benign mucinous epithelium, atypical–suspicious for neoplasm, 
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and malignant cysts [71]. The study suggested that the expression of certain 
mucins, carcinoembryonic antigen-related cell adhesion molecules 
(CEACAMs), and S100 proteins in cyst fluid were associated with pancre-
atic cancer. In a different study, a similar proteomics approach was applied 
to investigate surgically collected cyst fluids from symptomatic patients who 
underwent partial pancreatectomy [72]. The study identified up to 727 pro-
teins in the cyst fluids analyzed and showed that different protein patterns 
were associated with specific cyst types, including serous cystadenomas, 
mucinous neoplasms (MCN), pancreatic neuroendocrine tumors (NET), 
malignant IPMN, and pseudo-cyst (PC). The expressions of two proteins, 
olfactomedin-4 (OLFM4) (identified in MCN and IPMN cyst fluids) and 
cell surface glycoprotein MUC18 (MUC18) (identified in NET cyst fluid) 
were confirmed with immunohistochemistry using pancreas tissue.

FUNCTIONAL AND HYPOTHESIS-DRIVEN  
PROTEOMIC STUDIES
Targeted Interrogation of KRAS Proteins
KRAS is one of the most frequently mutated genes associated with pancre-
atic cancer, presenting in approximately 90% of PDAC [3]. Mutations in the 
k-ras gene (e.g., G12D, G13D, G12V) are missense, and such small differ-
ences in translated protein structure cannot be measured by Western-blot-
ting or ELISA because no antibody is available to reliably distinguish the 
wild-type and mutant protein forms. Because of its high specificity in dis-
tinguishing molecular mass, mass spectrometry has been applied to detect 
the wild-type and mutant KRAS proteins in pancreatic tumor tissue, cells, 
and cyst fluids [73–75]. Stable isotope-labeled synthetic reference peptides 
representing wild-type and mutant variants of KRAS protein are used as 
internal standard for absolute quantification. Coupling with immunopre-
cipitation for protein enrichment, the SRM assays were able to detect 
mutant KRAS proteins in pancreatic tissue at low femtomole/milligram 
(fmol/mg) range [74,75]. In a different study, using gel electrophoresis to 
separate KRAS proteins for SRM analysis, the concentrations of wild-type 
and mutant KRAS proteins were also measured in pancreatic cyst fluids col-
lected from patients with invasive carcinoma, carcinoma in situ and benign 
controls [73]. On the basis of the 15 cases tested, wild-type KRAS concen-
trations in pancreatic cyst fluids varied between 0.08 and 1.1 femtomole/
microgram (fmol/μg), whereas mutant KRAS concentrations varied 
between 0.08 and 0.36 fmol/μg.



Sheng Pan et al.210

Identification of Protein Receptors
Tissue plasminogen activator (tPA) is associated with pancreatic tumor 
growth and invasion, and its interaction with cell membrane receptors has 
been related to increased proteolytic activity and transduction of tPA signal-
ing in pancreatic tumor [76]. A proteomics approach utilizing antibody 
affinity capturing was applied to characterize the tPA receptors in pancre-
atic cancer cell lines [77]. Using nonpancreatic cancer endothelial cells as a 
comparison, 31 proteins were identified in the pull-down of tPA; and 
annexin A2 and galectin 1 were verified to be the functional receptors of 
tPA in pancreatic cancer [30,76,77].

Determination of Protein Activities
Activity-based proteomics approach enables characterizing enzyme activ-
ities in a diseased setting, and was applied to investigate serine hydrolase 
activity in primary PDAC [78]. Using bifunctional active site-directed 
probes, which covalently bind the active site of serine hydrolases, to 
enrich for the proteins for mass spectrometric analysis, the study identi-
fied retinoblastoma-binding protein 9 (RBBP9) as a pancreatic tumor 
associated serine hydrolase with increased activity in pancreatic carci-
noma. Although RBBP9 protein abundance was expressed at similar lev-
els in both normal and cancerous tissue, its increased activity associated 
with pancreatic tumorigenesis may contribute to the suppression of TGF-
β signaling [78].

Investigation of Cancer-Associated Cell Invasiveness
Overexpression of palladin (PALLD) in cancer-associated fibroblasts has 
been related to pancreatic tumor invasion and metastases [79,80]. To dis-
cover the mechanism underlying the invasive capability of PALLD-activated 
stromal fibroblasts in the setting of pancreatic cancer, quantitative pro-
teomics was conducted to examine the invadopodia of activated fibroblasts 
in comparison with the control quiescent fibroblasts [79]. The podia that 
invaded through matrix-covered pores of an invasion chamber were isolated 
and analyzed, leading to the identification of more than 200 differentially 
expressed proteins in invasive PALLD-activated fibroblasts, including known 
invadopodia proteins, ras-related proteins, GTP-binding proteins, and pro-
teolytic enzymes. The increased proteolytic enzymes in invadopodia of 
PALLD-associated fibroblasts enhanced ECM degradation and creation of 
tunnels through the matrix, thus promoting the invasion of cancer cells 
through multiple modes of matrix remodeling [81].
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POST-TRANSLATIONAL MODIFICATIONS

Protein PTMs occur on many proteins and play important roles in regulat-
ing a variety of protein functional activities and cellular physiology. Pro-
teomics investigation of PTMs can reveal unique information uncovering 
the pathways and molecular events involved in pancreatic tumorigenesis 
and provide useful clues for clinical application.

Phosphorylation
Protein kinase phosphorylation is central to the regulation and control of 
cell functions in both normal and disease states. Phosphoproteomics studies 
were carried out to investigate pancreatic cell lines that have upregulation 
of tyrosine kinase signaling [82]. Using immunoprecipitation, the enriched 
tyrosine phosphoproteins were resolved with sodium dodecyl sulfate- 
polyacrylamide gel electrophoresis (SDS-PAGE), digested, and analyzed by 
LC MS/MS. The analysis of tyrosine kinase pathways led to the identifica-
tion of aberrant activation of epidermal growth factor receptor (EGFR) 
pathway in the PDAC cell line. Mouse xenograft studies demonstrated that 
the EGFR inhibitor, erlotinib, was effective in reducing the growth of the 
tumor size, confirming the EGFR pathway to be responsible for the pro-
liferation of these tumors. In a different study, the effect of inhibition of the 
transketolase activity on signaling pathways in pancreatic cancer cell lines 
was investigated using 2-DE and MALDI TOF/TOF [83]. Using oxythia-
mine (OT), a metabolic inhibitor to suppress pancreatic cancer cell prolif-
eration, the study identified 12 phosphor proteins that were suppressed 
significantly by OT treatment; and further revealed that phosphorylation at 
serine 78 of heat shock protein 27 (Hsp27) was inhibited dramatically by 
the treatment. These observations suggested that the inhibition of transke-
tolase pathway may cause a decrease in the phosphorylation of proteins 
associated with cancer proliferation and survival. Using 2-DE and mass 
spectrometry, a third study investigated the response of circulating autoan-
tibodies to r-enolase (ENOA) in PDAC patients by examining the expres-
sion of ENOA isoforms in pancreatic tissues and cell lines and by quantifying 
the autoantibody response in sera from PDAC and noncancerous patients 
[84]. The study found that 62% of PDAC patients produced autoantibodies 
to two ENOA isoforms (ENOA1, 2) with phosphorylation on serine 419 
and found that the presence of autoantibodies against phosphorylated 
ENOA1, 2 correlated with a significantly better clinical outcomes in 
advanced patients treated with standard chemotherapy.
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Glycosylation
Altered glycosylation has long been recognized as a hallmark in epithelial 
cancer, including pancreatic cancer. Cancer-associated glycoproteins can 
be altered in two main ways: (1) protein sites that are normally glycosyl-
ated are either hypo- or hyperglycosylated, and (2) the glycan moiety 
itself is altered. Ultimately, malignant transformation is usually associated 
with one or both of these types of abnormal glycosylation events, leading 
to the accumulation of tumor-specific glycoproteins actively involved in 
the neoplastic progression and metastasis. Glycoproteins that are secreted 
from pancreatic tumor cells can have abnormal glycosylation compared 
with normal cells, such as the alterations in sialylation and fucosylation 
[85]. Tumor-specific glycoproteins, such as mucins (MUC) and 
CEACAMs [86–91], are involved actively in the neoplastic progression 
and metastasis of pancreatic cancer. CA19-9, which detects the epitope 
of sialyl Lewis(a) on mucins and other adhesive molecules, is currently 
the only clinical blood biomarker for pancreatic cancer [92]. Using lectin 
affinity chromatography and LC MS/MS, N-glycan profiling studies to 
compare human sera from pancreatic cancer patients and healthy con-
trols have identified approximately 130 sialylated N-linked glycoproteins 
[93] and 105 unique carbohydrates, including 44 oligosaccharides that 
were distinct in the pancreatic cancer serum [94]. Glycomic analysis of 
pancreatic cyst fluid, including mucinous cystic neoplasms and IPMN, 
identified 80 N-linked glycans with high mannose or complex structures 
[95]. The study also observed hyperfucosylation of complex N-linked 
glycans on several glycoproteins, including triacylglycerol lipase and pan-
creatic α-amylase. Tissue proteomics studies have demonstrated the 
enrichment of glycoproteins among the proteins upregulated in PDAC 
and chronic pancreatitis tissues, implicating their potential roles in malig-
nancy and inflammation [29].

Membrane and secreted proteins are frequently glycoproteins. A study 
of cell surface glycoproteins from five pancreatic cancer cell lines identified 
several surface glycoproteins that not only are overexpressed but also play a 
functional role in tumor cell survival, including integrin β6 (ITGB6), CD46, 
tissue factor (TF), and chromosome 14 open-reading frame 1 (C14ORF1) 
[96]. A global-scale glycoproteomics study to systematically profile the 
N-glycoproteome of pancreatic tumor tissue in comparison with normal 
pancreas identified a group of glycoproteins with aberrant N-glycosylation 
occupancy (hyper- or hypoglycosylated) associated with PDAC, including 
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mucin-5AC (MUC5AC), carcinoembryonic antigen-related cell adhesion 
molecule 5 (CEACAM5), IGFBP3, and galectin-3-binding protein 
(LGALS3BP) [97]. The study revealed an emerging phenomenon that 
increased N-glycosylation activity was implicated in several pancreatic can-
cer pathways, including TGF-β, TNF, NF-kappa-B, and TFEB-related lyso-
somal changes. The study also found that aberrant glycosylation occupancy 
corresponding to pancreatic malignancy or inflammation could be not only 
protein-specific but also glycosylation site-specific, reflecting the complex 
molecular mechanisms involved in the pathogenesis of pancreatic cancer.

SUMMARY

Pancreatic cancer is a highly lethal disease that is difficult to detect at an 
early stage when curable treatments are possible. With the advances in 
mass spectrometry and bioinformatics, proteomics—especially quantita-
tive and functional proteomics—have been increasingly applied to inves-
tigate a variety of clinical specimens, ranging from neoplastic tissues to 
bodily fluids. These translational studies will be pivotal in the efforts toward 
better diagnosis and therapeutic treatment. Although some of the novel 
pancreatic cancer–associated proteins discovered in proteomics studies 
have been under investigation to further define their roles in the patho-
genesis of the disease and their potential clinical value, much work remains 
to be done to follow up the vast information obtained from the discovery 
studies [98–100]. As an emerging technology, the current challenges in 
pancreatic cancer proteomics include the limited scope of proteome cov-
erage and the reproducibility issues associated with studies with different 
methodologies and sample sources. Nonetheless, the reported studies have 
provided a wealth of knowledge integrating with our existing understand-
ing at genomics level to shed light on the molecular mechanisms underly-
ing pancreatic tumorigenesis and have offered guidance for future 
experimentation. The integration of proteomics, genomics, systems biol-
ogy, and other molecular techniques carries a great promise to improve the 
outcome of pancreatic cancer.
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CHAPTER 

Proteomic Differences and 
Linkages between 
Chemoresistance and Metastasis 
of Pancreatic Cancer Using 
Knowledge-Based Pathway 
Analysis
Jin-Gyun Lee, Kimberly Q. McKinney, Sun-Il Hwang
Proteomics and Mass Spectrometry Research Laboratory, Carolinas HealthCare System, Charlotte, NC, USA

INTRODUCTION

Pancreatic cancer (PC) has been recognized as one of the most life-threatening 
diseases because of the lack of diagnostic methods in the early stage as well 
as its rapid progression [1,2]. Among the well-known key barriers for the 
effective cure of PC are chemoresistance and metastasis [3–5], which com-
plicate therapeutic strategies. A thorough understanding of the specific cellular 
and molecular mechanisms of PC development and progression is required 
for early detection strategies and effective therapy [5].

Aggressive growth behavior makes PC resistant to chemotherapy, radio-
therapy, and immunotherapy [6–8]. Gemcitabine (GEM) has been recognized 
as a primary chemotherapeutic agent, which may increase relative survival 
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rates [9,10], although it showed limited improvement. The poor prognosis of 
PC is derived from the unpredictable and uncontrollable metastatic pattern, 
which comes along with the development of chemoresistance. Recently, 
some transcription factors have been shown to play a key role in epithelial-to-
mesenchymal transition (EMT). One of these transcription factors, Snail, has 
been reported to be one of the markers related to resistance against chemo-
therapy [11]. Metastasis is a multistep process including the loss of cell-to-cell 
adhesion, which promotes cell motility and migration–invasion into sur-
rounding tissues, as well as transport through the blood stream. Chemo-
resistance has been considered to be an integrated process with metastatic 
progression, although the identified markers are not sufficient so far to 
hypothesize the interconnection between the two biological networks.

This chapter introduces knowledgebase pathway analysis. This analysis 
has been performed using comparative data sets generated by the subcel-
lular proteomics of matched pairs of PC cell lines by phenotypic and geno-
typic grouping. Specifically, Su8686 and BXPC-3 were utilized as 
representatives for GEM-sensitive cell lines, MiaPaCa-2 and Panc-1 for 
GEM-resistant cell lines, BXPC-3 and Capan-2 for primary cell lines, and 
Su8686 and Capan-1 for metastatic cell lines. Identified proteins with 
upregulation from the GEM-resistant and metastasis group compared with 
the baseline (GEM sensitive or primary) were processed using MetaCore™ 
(Thomson Reuters, NY, USA) analysis, which provided biological infor-
mation through the generation of pathway maps with high data relevancy. 
During the course of analysis, lists of proteins with signal-to-noise (STN) 
were uploaded into the web-based application, which clustered relevant 
proteins into specific biological networks. MetaCore™ analysis provided 
the most relevant biological processes, from which plausible linkages 
between development of chemoresistance and metastatic progression were 
identified. This data was further supported using gene knockdown and 
GEM treatment experiments. The knowledgebase pathway analysis has 
demonstrated that it may provide useful systemic information regarding 
correlation of protein data sets in a high-throughput data mining approach 
that generates disease marker candidates for therapeutic targeting with a 
minimal time investment.

PROTEOMIC ANALYSIS AT SUBCELLULAR LEVEL

A brief work flow for the proteomic analysis followed by pathway analysis 
is introduced in Figure 10.1A. Proteomic analysis was performed using six 
cell lines—namely, Panc-1, BXPC-3, MiaPaCa-2, Su8686, Capan-1, and 
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Capan-2, for which phenotypic and genotypic characteristics are depicted 
in Figure 10.1B.

Capan-1, Su8686, and MiaPaCa-2 cells are classified as metastatic cell 
lines generated from PC metastatic lesions of the patients while BXPC-3, 
Capan-2, Panc-1, and MiaPaCa-2 as primary cell lines, derived from pri-
mary pancreatic tumor tissue [1,5]. The cell lines have been well known to 
show different sensitivity to chemotherapeutics, such as GEM [4]. The six 
cell lines were classified as either drug sensitive or resistant by their sensitiv-
ity to GEM treatment as demonstrated by viability assays. Capan-1,  Capan-2, 
Su8686, and BXPC-3 cells are classified as chemosensitive, while Panc-1 
and MiaPaCa-2 cell lines are considered chemoresistant.

Cells were obtained from the American Type Culture Collection (ATCC; 
Manassas, VA, USA), and cultured in ATCC-recommended media with 10% 
fetal bovine serum. Cells were maintained at 37 °C under humidified 5% CO2 
and grown to 80% confluence in culture dishes and used for the experiments. 
Trypsinized cells were washed with phosphate-buffered saline (PBS) three 
times, and then subcellular fractionation was performed using the Proteo 

Figure 10.1 (A) A work flow of pathway analysis using proteomic data sets. (B) Various 
phenotype and genotype of pancreatic adenocarcinoma cells. (For color version of this 
figure, the reader is referred to the online version of this book.)
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Extract Subcellular Proteome Extraction Kit (Calbiochem, CA, USA) accord-
ing to the manufacturer’s protocol. Four fractions were generated: fraction 1 for 
cytosolic proteins, fraction 2 for membrane proteins, fraction 3 for nuclear pro-
teins, and fraction 4 for cytoskeletal proteins. Then, 30 μg of denatured protein 
from the subcellular fractions from each cell line were separated on sodium 
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by 
in-gel digestion by the method reported previously. Peptides were extracted 
from the gel matrix by adding 100 μL 50% (v/v) acetonitrile (ACN) containing 
5% (v/v) formic acid and incubated at room temperature for 30 min three 
times. The extracts were dried under vacuum and then were suspended in 10% 
(v/v) ACN containing 3% (v/v) formic acid to be subjected to liquid 
 chromatography with tandem mass spectrometry (LC MS/MS).

Peptide samples were separated on a Nano-Acquity ultra performance 
liquid chromatography system with a Nano-Acquity C18 trap column 
(5 μm, 180 μm × 20 mm) and a Nano-Acquity BEH130 C18 analytical col-
umn (1.7 μm, 75 μm × 150 mm) (Waters Corporation, Milford, MA, USA) 
and then analyzed by a high-resolution linear ion trap mass spectrometer 
(Linear Trap Quadrupole/Orbitrap-XL, Thermo Finnigan, San Jose, CA, 
USA) equipped with a nano-scale electrospray source (Thermo Finnigan, 
San Jose, CA, USA). A linear gradient system that consisted of binary mobile 
phases (A, water with 0.1% formic acid; B, ACN with 0.1% formic acid) 
flowing from 5% mobile phase B to 45% mobile phase B for 75 min at the 
flow rate of 0.35 μL/min was employed for separation of peptides. Tandem 
MS scan was conducted by a data dependent scan for the top-10 intense 
ions acquired from each full MS scan using the dynamic exclusion option.

PROTEIN IDENTIFICATION AND DATA COMPILING

MS spectra were searched in the human International Protein Index (IPI) 
database v3.72 FASTA database (86,392 entries) using the SEQUEST search 
algorithm (SRF v.5) of the Bioworks software v3.3.1sp1 (Thermo Fisher 
Scientific, San Jose, CA, USA) with the following parameters: parent mass 
tolerance of 10 ppm, fragment tolerance of 0.5 Da (monoisotopic), variable 
modification on methionine of 16 Da (oxidation), and maximum missed 
cleavage of two sites assuming the digestion enzyme trypsin. Data were 
compiled with Scaffold software (v3_06_03, Proteome Software, Portland, 
OR, USA) for comparison of spectral counts with filtering criteria of two 
peptides minimum; XCorr scores of greater than 1.9, 2.3, and 3.4 for singly, 
doubly, and triply charged peptides; and  deltaCn scores of greater than 0.10.
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COMPARATIVE ANALYSIS OF DIFFERENTIALLY EXPRESSED 
PROTEINS

Raw spectral counts from duplicate analysis of each fraction were compared 
within the cell line group of GEM-sensitive versus resistant and primary versus 
metastatic individually. For the identification of proteins involved in GEM 
resistance, Su8686 and BXPC-3 versus MiaPaCa-2 and Panc-1 were com-
pared. For the identification of proteins involved in metastasis, BXPC-3 and 
Capan-2 versus Su8686 and Capan-1 were compared. Comparative analysis 
was performed by the method based on the power law global error model 
(PLGEM) [12,13] to identify statistically significant protein changes by STN 
and p-value according to previous method [14]. PLGEM software was down-
loaded from http://www.bioconductor.org and imported into our web-based 
interface working on a Firefox platform. Although PLGEM was developed 
using a normalized spectral abundance factor (NSAF) as input, its performance 
with a limited number of replicates has been shown to improve when raw 
spectral count rather than NSAF is used. Therefore, raw spectral count was 
used as the input in our PLGEM analysis. Estimated false-discovery rates for 
PLGEM-generated significance lists were estimated using the Benjamini–
Hochberg estimator [15]. The list of proteins given by PLGEM analysis with 
STN and p-value was filtered by the degree of change and the significance. 
Proteins that showed high significance (p < 0.01) were chosen from among 
those showing increased expression in each comparison group (sensitive versus 
resistant and primary versus metastatic). The most upregulated proteins identi-
fied from the subcellular fractions are shown in Tables 10.1 and 10.2.

As shown in Table 10.1, vimentin, a member of cytoskeletal protein was 
found mostly within fraction 4, and is highly overexpressed in both Mia-
PaCa-2 and Panc-1 compared with Su8686 and BXPC-3. Also prominent is 
the upregulation of proteins in the cytokeratin family, especially keratin type 
1, which showed higher cellular levels overall. Peripherin is another one of 
the most upregulated proteins in fraction 4. The marked changes in cytoskel-
etal proteins implies that the development of chemoresistance may involve 
enhanced cell adhesion through cytoskeletal modifications or that cytoskel-
eton remodeling is a protective cellular response to drug influx or drug-
receptor binding. Table 10.2 presents a number of proteins upregulated that 
are related to cytoskeletal remodeling, cell-to-cell junction, and EMT. Inter-
estingly, vimentin was increased in Su8686, one of the metastatic cell lines. 
Anterior gradient protein 2 (AGR2) was increased in metastatic cell lines. 
AGR2 is well known to be present in various cancer cell types and is regu-
lated by hypoxia inducing factor-1 (HIF-1) [16,17]. Because the EMT 

http://www.bioconductor.org/


Jin-G
yun Lee et al.

226Table 10.1 List of Proteins with Significant Up-regulation in GEM Resistant Cell Lines

Protein ID Description STN p-Value

Raw Spectral Counts

Drug Sensitive Drug Resistant

Su8686 BXPC-3 MiaPaCa-2 Panc-1

1st 2nd 1st 2nd 1st 2nd 1st 2nd

Fraction 1 IPI00418471 Vimentin 5.71 0.0001 6 5 0 0 88 84 28 26
IPI00009865 Keratin, type I 

cytoskeletal 10
5.18 0.0001 168 170 163 136 334 321 284 244

IPI00021812 Neuroblast  
differentiation-
associated protein 
AHNAK  
(Fragment)

3.98 0.0004 17 15 8 3 99 71 19 17

IPI00218914 Retinal 
 dehydrogenase 1

3.78 0.0005 0 0 0 0 49 57 0 0

IPI00220327 Keratin, type II 
cytoskeletal 1

3.37 0.0008 173 174 155 128 266 262 235 204

Fraction 2 IPI00418471 Vimentin 14.56 0.0000 38 36 5 5 371 395 106 117
IPI00440493 ATP synthase alpha 

chain, mitochon-
drial precursor

8.54 0.0001 54 51 47 69 286 290 102 108

IPI00303476 ATP synthase beta 
chain, mitochon-
drial precursor

7.81 0.0001 85 99 121 127 359 346 168 174

IPI00007765 Stress-70 protein, 
mitochondrial 
precursor

5.45 0.0003 105 120 68 65 231 234 142 135

IPI00328753 Isoform 1 of 
Kinectin

5.33 0.0003 46 42 33 33 94 87 132 131
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Fraction 3 IPI00220327 Keratin, type II 
cytoskeletal 1

3.53 0.0004 221 219 232 197 349 370 315 342

IPI00009865 Keratin, type I 
cytoskeletal 10

3.40 0.0004 253 231 231 182 367 360 323 340

IPI00021304 Keratin, type II 
cytoskeletal 2 
epidermal

2.65 0.0010 101 104 117 88 183 181 162 157

IPI00030363 Acetyl-CoA 
 acetyltransferase, 
mitochondrial 
precursor

2.43 0.0012 26 24 8 4 63 63 30 30

IPI00150057 Isoform 2 of SWI/
SNF-related 
matrix-associated 
actin-dependent 
regulator of 
chromatin 
subfamily C 
 member 2

2.29 0.0015 2 3 6 3 8 9 32 39

Fraction 4 IPI00418471 Vimentin 26.29 0.0000 302 319 13 15 1852 1741 1296 1298
IPI00013164 Peripherin 7.77 0.0004 27 25 5 3 179 171 137 123
IPI00239405 Isoform 1 of 

Nesprin-2
7.19 0.0005 18 16 5 5 139 132 118 114

IPI00217963 Keratin, type I 
cytoskeletal 16

5.76 0.0009 4 4 20 17 176 139 36 28

IPI00554788 Keratin, type I 
cytoskeletal 18

5.34 0.0011 764 804 348 369 698 670 1051 1025
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Table 10.2 List of Proteins with Significant Up-regulation in Metastatic Cell Lines

Protein ID Description STN p-Value

Raw Spectral Counts

Primary Metastatic

BXPC-3 Capan-2 Su8686 Capan-1

1st 2nd 1st 2nd 1st 2nd 1st 2nd

Fraction 1 IPI00334627 Similar to annexin A2 
isoform 1

3.90 0.0005 122 112 63 58 98 86 286 323

IPI00002459 annexin VI isoform 2 3.41 0.0008 4 3 3 2 44 47 19 25
IPI00014424 Elongation factor 

1-alpha 2
3.32 0.0008 116 112 175 171 281 247 247 241

IPI00418169 annexin A2 isoform 1 2.93 0.0012 41 30 15 16 30 24 124 114
IPI00246975 Glutathione 

 S-transferase Mu 3
2.71 0.0016 6 8 0 0 6 5 57 47

Fraction 2 IPI00472102 Heat shock protein 60 9.77 0.0000 77 90 261 239 476 508 557 527
IPI00386854 HNRPA2B1 protein 4.27 0.0001 9 8 7 9 9 15 103 100
IPI00296337 Isoform 1 of DNA-

dependent protein 
kinase catalytic 
subunit

4.24 0.0001 33 43 46 50 30 40 214 203

IPI00413728 Isoform 1 of Spectrin 
alpha chain, brain

4.06 0.0002 23 37 49 45 49 59 166 168

IPI00005614 Isoform Long of 
Spectrin beta chain, 
brain 1

3.97 0.0002 18 22 30 28 41 47 128 123
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Fraction 3 IPI00021812 Neuroblast  
differentiation- 
associated protein 
AHNAK (Fragment)

3.25 0.0004 88 48 70 94 296 274 138 161

IPI00004671 Golgin subfamily B 
member 1

2.08 0.0023 5 3 17 24 0 0 100 99

IPI00007427 AGR2 1.86 0.0032 45 33 130 138 136 140 180 194
IPI00009865 Keratin, type I 

 cytoskeletal 10
1.79 0.0035 143 125 163 153 177 153 301 325

IPI00019359 Keratin, type I 
 cytoskeletal 9

1.38 0.0073 47 39 38 41 36 29 118 134

Fraction 4 IPI00167941 Midasin 2.99 0.0013 5 5 2 0 79 85 21 11
IPI00418471 Vimentin 2.60 0.0017 10 12 53 47 202 216 0 0
IPI00334775 Hypothetical protein 

DKFZp761K0511
2.36 0.0022 32 29 7 10 58 63 94 81

IPI00007289 Alkaline phosphatase, 
placental type 
precursor

1.89 0.0038 0 0 10 10 0 0 67 54

IPI00007752 Tubulin beta-2C chain 1.88 0.0038 4 7 10 14 34 37 43 37
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process can be induced by tumor growth factor-β (TGF-β) dependent EMT 
induction pathways as well as by hypoxic conditions[18,19], it may be 
assumed that the metastasis of PC is related to hypoxia-induced EMT  
[20–22]. From Tables 10.1 and 10.2, it may be hypothesized that develop-
ment of both chemoresistance and metastasis possibly share common cellular 
pathways in which  cytoskeletal proteins such as vimentin play pivotal roles.

BIOLOGICAL NETWORK ANALYSIS

Three biological pathway analysis programs were utilized for further analysis of 
PLGEM data. The input data was generated by filtration of the PLGEM upreg-
ulated protein data set using a p-value cutoff of 0.01. Because of the majority of 
upregulated proteins residing in cytoskeletal fraction, only cytoskeletal proteins 
(fraction 4) were chosen for the downstream pathway analysis.

Figure 10.2 shows the top-10 biological networks from the three pathway 
analysis tools used—namely, MetaCore™, Thomson Reuters, MN, USA; 

Figure 10.2 Top-10 Biological Networks Provided by the Analysis Using MetaCore™, 
IPA®, and Panther Classification System. Proteomic data sets from (A) GEM-sensitive 
versus GEM-resistant cell lines and (B) primary versus metastatic cell lines were used for 
the comparative analysis. (For color version of this figure, the reader is referred to the 
online version of this book.)
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IPA®, Ingenuity Systems, CA, USA; and Panther Classification  System v8.1 
(http://www.pantherdb.org/). Each pathway tool uses a different data 
enrichment algorithm and may provide different results. The Panther Classi-
fication System is a public source for classification of proteins and genes 
according to family and subfamily, molecular function, associated biological 
processes, and pathways. The input data for  MetaCore™ and IPA® were 
prepared as a Microsoft Excel spreadsheets containing protein identification, 
fold change (e.g., STN), and p-value; however, the Panther Classification 
System only required a list of IPI  protein  accession numbers.

Figure 10.2A and B exhibits the top significant networks calculated from 
the drug-resistance group and metastasis group, respectively. The significance 
of the respective pathway maps were expressed as –log(p-value), score, and 
percent for MetaCore™, IPA®, and Panther analysis. The top-10 biological 
networks generated by MetaCore™ and IPA® are representative of the same 
or similar pathways, although the pathway nomenclature differs. The top-10 
networks from MetaCore™ were found to be correlated with those of IPA® 
when comparing a list of genes involved in each pathway. In Figure 10.2(A), 
most of the top-10 networks from MetaCore™ indicate that the upregulated 
proteins in GEM-resistant cell lines are related to cytoskeleton remodeling, 
mRNA processing for transcription, cell cycle, and cell death, which also are 
shown in the top networks from IPA®. For example, the network titled by 
MetaCore™ as transcription_mRNA processing corres ponds to the networks 
from IPA® entitled molecular transport/RNA trafficking and RNA post-
transcriptional modification/DNA replication, recombination and repair. The 
network from MetaCore™ cytoskeleton_intermediate filaments network 
describes cellular networks similar with connective tissue development and 
function, cellular assembly and organization, and tissue morphology within 
IPA®. Likewise, Metacore’s Apoptosis_apoptotic nucleus networks also cor-
respond to cell death and survival, cellular growth, and proliferation networks 
from IPA®. The scores of the networks were slightly different, which is thought 
to come from the difference in algorithms for enrichment processing. Because 
Panther analysis was conducted with the list of proteins without fold change 
or p-value, the significance of the top-10 networks was expressed as the per-
centage of identified proteins that participated in corresponding canonical 
pathways. These pathways still include similar networks, such as cytoskeletal 
regulation, apoptosis signaling pathways, and DNA replication.

From the biological network analysis of the two data sets shown in  
Figure 10.2A and B, one of the common biological networks with high 
relevance is the cytoskeleton_intermediate filaments network, which 

http://www.pantherdb.org/
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includes keratin 1, keratin 14, lamin B, keratin 16, keratin 8, peripherin, 
SYNE2, keratin 8/18, vimentin, nestin, keratin 18, lamin B1, desmuslin, and 
lamin A/C. Because vimentin is one of the most overexpressed proteins in 
both data sets, it is expected that vimentin could be a key protein in the 
development of chemoresistance and metastasis of PC.

Classification analysis was performed with the data sets from GEM resis-
tant and metastatic cell lines individually using MetaCore™ enrichment 
analysis, which consists of matching gene IDs of possible targets for the “com-
mon”, “similar”, and “unique” sets with gene IDs in functional ontologies in 
MetaCore™. The probability of a random intersection between a set of IDs 
and a set of ontology entities is expressed by the p-value of hypergeometric 
intersection. The lower p-value indicates higher relevance of the entity to the 
data set and thus shows a higher rating for the entity. Figure 10.3 summarizes 
the classification by functional ontologies using enrichment analysis from the 
data set of GEM-sensitive versus -resistant cell lines, and also showing vimen-
tin involvement in top-ranked pathways and diseases.

Figure 10.3 Classification by Functional Ontologies Given by the Enrichment Analysis 
Using MetaCore™. Proteomic data set from GEM-sensitive versus -resistant cell lines 
was used for the analysis. (For color version of this figure, the reader is referred to the 
online version of this book.)
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Interestingly, in both drug resistance and metastasis, the cytoskeleton 
remodeling pathway by keratin filaments and neurofilaments was revealed 
to be the most relevant pathway with the lowest p-values (Figure 10.4).

CANONICAL PATHWAY ANALYSIS USING METACORE™

Canonical pathway maps represent a comprehensive set of human cellular 
signaling and metabolic pathways. All maps are created based on published 
peer reviewed literature. Experimental data are visualized on the maps as red 
(upregulation) histograms, in which case height corresponds to the degree 
of increased expression for particular genes or proteins. Enrichment analysis 
with the lists of proteins from the data sets of drug-resistant cell lines and 
metastatic cell lines has provided two highly relevant pathways: cytoskeleton 
remodeling by keratin filaments and cytoskeleton remodeling by neurofila-
ments (Figure 10.5A and B).

Figure 10.4 Comparative Pathway Maps from GEM Resistance and Metastasis Data Sets.
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Figure 10.5 (A) Canonical pathway presenting the cytoskeletal remodeling by keratin 
filaments. (B) Canonical pathway presenting the cytoskeletal remodeling by neurofila-
ments. (For color version of this figure, the reader is referred to the online version of this 
book.)
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Two additional pathways with high relevance were identified by grouping 
the network objects related with cytoskeleton remodeling: (1) TGF-β-
dependent induction of EMT via RhoA, PI3K, and ILK; and (2) cell adhesion 
by endothelial cell contacts by junctional mechanisms (Figures 10.6 and 10.7).

It has been well known that chemoresistance of the cancer cell is deeply 
related to the regulation of keratin and integrin gene expression. These proteins 
are recognized biomarkers in the metastasis of cancer [23,24]. This regulatory 
process includes a signaling reaction involving the extracellular matrix 
(ECM) and integrins, which are members of a transmembrane receptor 
family that play essential roles in cell attachment and signal transduction 
from the extracellular environment [25,26]. Usually, integrins mediate the 
linkage between the ECM system and the intracellular actin filament system, 
which promotes cell-to-cell adhesion [27]. At the same time, the ligation of 
integrin with ECM ligands triggers a variety of intracellular signaling, 
which regulates cell migration, differentiation, and proliferation [28–30]. 

Figure 10.6 Canonical Pathway Presenting the Development TGF-β-Dependent Induction 
of EMT via RhoA, PI3K, and ILK. (For color version of this figure, the reader is referred to 
the online version of this book.)
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The integrin-signaling system is an important pathway for cancer cell signaling 
and development of chemoresistance.

Figure 10.5A demonstrates how marker proteins upregulated in GEM 
resistant cell lines are correlated with each other with high significance in 
the pathway of cytoskeleton remodeling by the alteration of keratin fila-
ments. Keratin family proteins, which are major components of the path-
way, were found to be upregulated in the GEM-resistant cell lines overall. In 
general, integrins mostly interact with ECM ligands to trigger intracellular 
signal transduction with one exception, that is, integrin α6β4 links to the 
keratin filament system in epithelial cells [31], which may explain the sug-
gested relationship in our data between the keratin filament system and 
integrin-mediated signaling within the setting of chemoresistance. Actually, 
the observed spectral counts of integrin α protein in the GEM-resistant 
Panc-1 cell line was found to be larger than that of GEM sensitive cell lines 
(data not shown). This finding supports the position that the development 
of chemoresistance may accompany increased cell-to-cell interconnection 
via integrin-mediated keratin filament rearrangement.

Recently, integrin mediated intracellular signal transduction has been 
reported to also regulate various cytoplasmic proteins, such as  

Figure 10.7 Canonical Pathway Presenting Cell Adhesion and Endothelial Cell Contacts 
by Junctional Mechanisms. (For color version of this figure, the reader is referred to the 
online version of this book.)
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phosphatidylinositol-3 kinase (PI3K) [32,33], the serine–threonine kinase AKT, 
and the mitogen-activated protein kinase/extracellular regulated kinase 
(MAPK/ERK) [34,35]. Additionally, integrin ligand binding has been reported 
to activate focal adhesion kinase (FAK), integrin-linked kinase (ILK), and Src 
kinases that are related to EMT [36–38]. Figure 10.6 shows the canonical path-
way of the development of EMT via PI3K and ILK, in which some of the 
proteins, such as vimentin, upregulated in GEM-resistant cell lines are involved.

Although Figure 10.6 is suggestive that the PI3K- and ILK-mediated 
EMT pathway has a partial role in chemoresistance of PC as evidenced by 
the upregulation of common proteins like vimentin, most of the involved 
protein identifications are from the data generated by the metastatic cell 
lines. As shown in Figure 10.6, EMT is regulated by tight junction disas-
sembly, adherent junction disassembly, and cytoskeleton remodeling. Metas-
tasis of cancer cells via mesenchymal transition is known to be initiated by 
the disassembly of the cell-to-cell junction (tight junction or adherent junc-
tion), which results in cell movement and motility [39,40]. Meanwhile, 
development of chemoresistance is triggered by the integrin–keratin fila-
ment system, which results in increased cellular adhesion and produces a 
tight protective barrier. From Figure 10.5, it may be assumed that the devel-
opment of chemoresistance and metastasis undergo cytoskeleton remodel-
ing in the opposing ways. It is interesting, however, that vimentin is 
overexpressed in GEM-resistant cell lines and metastatic cell lines, being 
involved in both the cytokeratin and EMT pathways.

As shown in Figure 10.7, vimentin overexpression was correlated to the 
mechanism of cell adhesion by endothelial cell contacts.

On the other hand, one of the common mechanisms of cancer cell move-
ment is mesenchymal-type movement, inducing EMT [41]. Metastatic cancer 
progression by EMT consists of two phases. The first phase includes desmo-
somal disruption, cell spreading, and partial separation at cell-to-cell borders, 
and the second phase involves the induction of cell motility, repression of cyto-
keratin expression, and activation of vimentin expression [42,43]. Cytokeratin 
expression also is regulated by the p63 factor in epithelial cancer [44]. Figure 
10.5B shows the canonical pathway of cytoskeleton remodeling by neurofila-
ments with upregulated cytoplasmic intermediate filament proteins in meta-
static cell lines. The cytoskeleton consists of three major structural categories, 
that is, actin filaments, microtubules, and intermediate filaments (IFs), which are 
interconnected with one another [45]. Cells usually are connected or assem-
bled by the IFs or interactions with various types of ECM ligands, such as 
fibronectin, vitronectin, collagen, and laminin [46]. Figure 10.5B shows the 
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changes in cytoplasmic IF proteins, like vimentin, peripherin, nestin, and des-
muslin, without keratin overexpression. Plectin-1, which was overexpressed in 
our metastatic cell line data, is responsible for the maintenance of cellular and 
tissue integrity by the coordinated interconnection of three distinct cytoskeletal 
filament systems [47]. Additionally, this figure demonstrates how tubulins, 
upregulated in metastatic cell lines, form microtubules, which are components 
of the cytoskeleton that maintain cell structure in conjunction with microfila-
ments and IFs [48]. On the basis of our proteomic data showing the repression 
of keratin and overexpression of vimentin, it may be assumed that metastasis of 
PC is developed mostly via the EMT pathway.

Enrichment analysis by MetaCore™ provided important information 
about the relationship between chemoresistance and metastasis. Namely, that 
two common pathways involved in cytoskeleton remodeling were identified 
from the data sets of GEM-resistant cell lines and metastatic cell lines. The 
development of chemoresistance in PC has been proven to include cyto-
skeleton remodeling via the alteration of keratin filaments. Upregulated pro-
teins from metastatic cell lines have been shown to be involved in cytoskeleton 
remodeling by the change of neurofilaments and the EMT pathway. The 
pathway analysis results were suggestive that cytoskeleton-remodeling processes 
contribute to the development of not only chemoresistance but also metastasis 
of PC, although specifically through different mechanisms of action. Further-
more, regulation of vimentin expression has been revealed as a common 
denominator at the intersection of these pathways.

VIMENTIN EXPRESSION AND CHEMORESISTANCE

Vimentin is expressed by cells undergoing cell-to-cell adhesion, EMT, and cyto-
skeleton remodeling, cellular processes observed during metastatic progression 
of epithelial cancers [49]. Vimentin recently has been reported as one of the 
most increased proteins in multiple metastatic PC cell lines [50]. Figure 10.8 
shows various pathway in which vimentin has been known to be involved.

From the enrichment analysis using MetaCore™, vimentin was revealed 
to be one of the potential markers linked to both chemoresistance and 
metastasis. Vimentin overexpression and its role in the metastasis of cancer 
cells has been well documented by a number of previous studies; however, 
the specific effect of vimentin expression on chemoresistance is still unclear. 
In this chapter, chemosensitization of Panc-1 cells by abrogation of vimentin 
expression and subsequent GEM treatment was introduced to test the 
hypothesis generated by the knowledgebase pathway analysis.
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Vimentin Knockdown in Panc-1 Cells
Panc-1 cells were plated and incubated overnight in complete media in six well 
plates. The following morning, media was removed and replaced with Optimem 
media and transfected with 50 pmol vimentin oligonucleotides complexed 
with 6 μL RNAiMax transfection reagent in a final volume of 2.5 mL. Control 
samples included transfection reagent alone or no treatment at all. Cells were 
incubated for 4 h, then 2.5 mL of complete media were added and samples were 
incubated at the representative time points. At the time of harvest, wells were 
washed two times with 5 mL PBS, and then were aspirated completely. Then, 
100 μL of 1X-RIPA with 2X-protease inhibitor cocktail solutions were added 

Figure 10.8 Vimentin has been Known to Participate Various Biological Networks, Mostly 
Related to the Maintenance of Cellular Structure (e.g., Cytoskeleton Remodeling, EMT). 
(For color version of this figure, the reader is referred to the online version of this book.)



Jin-Gyun Lee et al.240

to the well. Cells were scraped from the monolayer and transferred to a 1.5 mL 
centrifuge tube. Cell lysates then were centrifuged and transferred to clean 
tubes where total protein concentrations were determined via bicinchoninic 
acid assay. Then, 30 μg of each sample were separated by SDS-PAGE and 
immunoblotting for detection of vimentin expression was carried out using 
standard Western blotting procedures. Results indicate complete knockdown 
of vimentin expression at 144 h (Figure 10.9A). This indicates a good condition 
for knockdown of vimentin expression and subsequent GEM treatment.

Figure 10.9 (A) Vimentin expression was inhibited completely with small interfering 
ribonucleic acid transfection at 144 h: (1) 24 h, (2) 48 h, (3) 72 h, (4) 144 h. (B) Panc-1 
vimentin knockdown cells showed significantly (p < 0.001) decreased viability with 
25 μM GEM 72 h treatment.
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Sensitivity on GEM Treatment of Vimentin Knockdown Panc-1
Sensitivity of vimentin-deficient Panc-1 cells to GEM treatment was evalu-
ated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
(MTT cytotoxicity assay). Monolayer Panc-1 cells were trypsinized and 
 suspended in the culture medium and 200 μL of a single-cell suspension 
containing 3.5 × 104 cells/mL were seeded into each well of a 96-well cul-
ture plate. After 3 h incubation at 37 °C in a humidified 95% air/5% CO2 
incubator, small interfering ribonucleic acid complexes for vimentin knock-
down were added at 3 pmol per well in 12 wells. After incubation for 72 h, 
GEM was added to final concentration of 25 μM into each transfected well. 
GEM treatment also was carried out in untransfected wells and negative 
control wells (lipid transfection reagent with no oligonucleotide present). 
After further incubation for 72 h, cytotoxicity was measured by a cell viabil-
ity assay based on the colorimetric method using MTT assay. Cell viability 
of GEM-treated cells was compared with untreated cells where viability 
was determined by dividing the OD570 of the treated cells by the OD570 of 
the untreated, untransfected cells. Ratios were multiplied by 100 to generate 
percent viability. The means and standard errors of means were calculated 
for all experiments. The data were subjected to one-way analysis of variance 
followed by Duncan’s multiple-range test to determine whether means 
were significantly different from the control. As shown in Figure 10.9B, 
Panc-1 cell viability with 25 μM GEM treatment was identified to be 
decreased significantly by gene knockdown, which support the theory that 
vimentin overexpression may contribute to the development of chemore-
sistance of PC. This result is suggestive that decreased or absent vimentin 
expression may sensitize chemoresistant PC to respond chemotherapy and 
therefore vimentin could be a promising molecular target against 
chemoresistance.

CONCLUSION

This chapter introduced differences and linkages between chemoresistance 
and metastasis identified by knowledgebase pathway analysis. Proteomic data 
sets from the matched pairs of cell lines representing chemosensitive versus 
chemoresistant and primary versus metastatic PC cells. From MetaCore™ 
analysis, two common pathways related to cytoskeletal remodeling were iden-
tified with high relevance. On the basis of this data, we support the theory that 
development of chemoresistance in PC accompanies cytokeratin overexpres-
sion, which mediates increased cellular protection against drugs, whereas 
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metastastatic progress of PC involves the repression of keratin and vimentin 
overexpression. Common proteins with upregulation in both pathways were 
identified, with vimentin being chief among these and highly involved in 
both biological processes. Vimentin is a well-known biomarker in terms of the 
metastatic progress of cancer. Interestingly, the level of vimentin expression 
was higher in chemoresistant cell lines than in sensitive cell lines as well. The 
putative role of vimentin in chemoresistance was demonstrated by a gene 
knockdown experiment in which vimentin knockdown decreased chemore-
sistance and thus viability with GEM treatment. These results imply that che-
moresistance of PC is developed along with metastasis, and both of the 
biological processes share specific proteins, such as vimentin, which drive 
these phenotypic changes. On the basis of the clear evidence revealing the 
contribution of vimentin to GEM resistance in our experimental system, we 
believe that global proteomics combined with knowledgebase pathway analy-
sis may provide opportunities to develop systems-based biological under-
standing of disease markers and associated pathways.
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INTRODUCTION

Unlike most other cancers, incidences of pancreatic cancer have been on the 
rise [1,2]. It is the fourth leading cause of cancer death in the United States; in 
2013, an estimated 45,220 men and women will be diagnosed with pancreatic 
cancer, and 38,460 will die from this disease [3]. Pancreatic cancer is a challeng-
ing disease as symptoms experienced by patients are often nonspecific. Since 
there are no early detection tools available, patients are often diagnosed at a late 
stage. As such, even with today’s best treatment efforts, only 5% of pancreatic 
cancer patients will survive 5 years beyond their initial diagnosis [4,5].

With only 15–20% of cases deemed to be operable, the standard of care 
for nonresectable patients remains to be treatment with the chemothera-
peutic gemcitabine [6]. It is discouraging to note that gemcitabine provides 
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a median survival rate of only 6 months. Though a number of alternative 
treatment options have been in clinical testing, the majority of these have 
failed to demonstrate improvements. The most promising so far is FOL-
FIRINOX, a chemotherapeutic combination (oxaliplatin, irinotecan, fluo-
rouracil, and leucovorin) that has been proven under phase III clinical trial 
setting to extend overall survival rate to 11.1 months [4]. Whilst this result is 
encouraging, it is clear that there is an urgent need for the identification of 
new diagnostic and therapeutic strategies for this disease.

In recent years, there has been increasing interest in targeted approaches 
for cancer. For certain types of cancers, such as breast cancer [7], chronic 
myeloid leukemia [8], lymphomas [9], and non-small cell lung cancer [10], 
this approach has been proven to be very effective. For pancreatic cancer, 
development of targeted therapy has been more challenging [11]. Geneti-
cally, pancreatic ductal adenocarcinoma (PDA, the most common form of 
pancreatic cancer), universally carry one of four defects: activating KRAS2 
oncogene (70–90% of tumors), inactivation of p16/CDKN2A gene  
(75–80% of tumors), TP53 abnormality (50–75% of tumors), and deletion 
in SMAD4 gene (50–60% of tumors) [12,13]. Unfortunately, none of these 
mutations is targetable by the two approaches that have proven to be suc-
cessful for cancer treatment: targeted small molecules and antibody-based 
therapies. Whilst strategies that target druggable enzymes downstream of 
these modifications are being pursued, they have so far been ineffective in 
the clinical setting. For example, inhibitors for farnesyltransferase, an enzyme 
that is important for Ras activation, demonstrated no survival benefit for 
pancreatic cancer patients when compared to standard therapy [13].

Cell surface proteins account for more than two-thirds of known drug 
targets [14]. These proteins are easily accessible and play significant, functional 
roles in tumorigenesis and are involved in processes such as cell proliferation, 
cell adhesion, and cell invasion. The identification of cell surface proteins that 
specifically target pancreatic cancer may therefore yield novel treatment tar-
gets for this disease. However, due to their hydrophobic nature and low abun-
dance, it has been difficult to identify new candidates for drug therapy.

Proteomics is a technique that offers the opportunity to identify hun-
dreds of differentially expressed proteins. This often leaves the researcher 
with the daunting task of having too many potential targets to validate 
[15,16]. One of the goals in our laboratory is to reduce sample complexity 
so the proteomic can be performed at greater depth. This enabled us to 
obtain a focused list of differentials, each of which can then be thoroughly 
validated using an array of well-defined expression and functional validation 
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methods [16]. To this end, we isolated cell surface membrane proteins from 
cell lines and performed LC-MS/MS on this specific subcellular compart-
ment [17,18]. The expression validation platform and the RNAi target vali-
dation platform that was utilized to assign roles these proteins play in 
pancreatic tumorigenesis will be described. Example proteins that were 
identified and validated using this platform, namely Tissue Factor, Integrin 
Beta 6, and Na+/K+ ATPase Beta 3, will be presented. We provide here a 
first report of identification and validation of Na+/K+ ATPase Beta 3 sub-
unit as a pancreatic cancer target. We believe this strategy, as outlined in 
Figure 11.1, has allowed us to identify potentially valuable therapeutic and 
diagnostic targets.

Proteomics Platform for the Identification of Novel Plasma 
Membrane Proteins
Biological Samples for Analysis
Proteomics is a tool that offers the opportunity to identify thousands of new 
targets for biomarkers and therapeutics development. Given the numbers of 
proteins that could potentially be discovered, it is vital that a focused iden-
tification and validation platform be employed.

The process must first begin with samples that appropriately represent 
the disease in question. The samples may include blood/serum, urine, or 
pancreatic juice from patients, tissues from surgically obtained samples, or 
disease-relevant cell lines. Given the clinical ease of obtaining blood and 
urine samples, they represent excellent potential sources of biomarkers. To 
this end, numerous proteomic-based profiling studies utilizing serum or 
urine have been published [19–22]. For example in the Xue study [21], 
potential diagnostic panels with apolipoprotein C-II (ApoC-II) and apoli-
poprotein A-II (ApoA-II) as biomarkers were identified from profiling of 
20 resectable and 18 stage IV pancreatic cancer patient serum samples fol-
lowing comparisons with control serum samples from healthy volunteers. 
Similarly, in a study by Weeks et al. [19], urine samples from pancreatic 
cancer patients were compared to urine samples from healthy volunteers 
and chronic pancreatitis patients, and this study permitted the identification 
of a number of proteins associated with pancreatic cancer, including annexin 
A2, gelsolin, and CD59 [19].

Due to proximity to the pancreas, pancreatic juice can also represent a rich 
source of biomarkers for pancreatic cancer [23–25]. However, since endo-
scopic retrograde cholangiopancreatography, the process from which pancre-
atic juice is obtained, is a complex process that carries a risk of development of 
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pancreatitis, proteomic analysis of pancreatic juice from nondiseased humans 
for use as comparisons to pancreatic cancer patient samples has been limited 
[26]. These limited studies include the work by Doyle et al. [24], who com-
pleted profiling experiments with pancreatic fluid from three patients with no 
significant pancreatic pathology. They then compared their results with the 
published results from Goggins’s group [27], who performed proteomics on 
samples from three pancreatic cancer patients. One hundred twenty proteins 
were subsequently identified as only expressed in the tumor samples, including 
putative tumor markers azurocidin, carcinoembryonic antigen (CEA), 

Cell line or tissue
samples

Capture of cell surface
proteins

Mass spec analysis
LC/MS quantitation

MS/MS identification

6fold

50–80fold

Reduction in peptide
complexity

Labeling, Digestion, Cys peptide
capture

Enrichment and reduction
in complexity

Untreated Treated

Normal Tumor

LC/MS MS/MS

Normal
vs. Tumor

ICAT  = Isotope coded affinity tag

Biotin Linker Reactive group

Figure 11.1 Schematic Diagram of the Proteomics Process Developed for Identification 
of Overexpressed Tumor Antigens. In this process, either cell lines or tissue samples can 
be utilized. Cell surface glycoproteins are first captured by sodium periodate treatment 
of live cells. Capture of these glycoproteins led to a 50 to 80-fold reduction in sample 
complexity. The samples were then labeled with ICAT™, digested with trypsin, and the 
collection of cysteine-containing peptide fraction further led to another six-fold reduc-
tion in sample complexity. Relative quantitation is then performed using LC/MS, fol-
lowed by MS/MS identification. (For color version of this figure, the reader is referred to 
the online version of this book.)
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insulin-like growth factor (ILGF) binding protein 2, lipocalin 2, mucin 1 
(MUC1), pancreatitis-associated protein/hepatocarcinoma-intestinepancreas 
(PAP/HIP), and tumor rejection antigen. Another study was performed by 
Tian et al. [25], who performed comparisons of pancreatic juice from nine 
pancreatic ductal adenocarcinoma patients with nine cancer-free controls. In 
this study, 14 proteins were found to be upregulated in the cancerous samples, 
including MMP-9, DJ-1, and A1BG. A third study was published by Parks 
et al. [23], who used 2-D gel electrophoresis combined with MALDI- 
TOF-MS, and identified 35 proteins, including BIG2, PRDX6, and REG1a, 
that were upregulated by at least two-fold in pancreatic cancer patients com-
pared to normal control and chronic pancreatitis controls.

These studies clearly demonstrate the feasibility of using serum, urine, 
and pancreatic juice to identify biomarkers and potential proteins for a 
diagnostic panel. Secreted proteins from the serum or pancreatic juice may 
also serve as potential therapeutic targets. Of course, a more direct means of 
identifying therapeutic and diagnostic targets is from the analysis of neo-
plastic cells from tissues, or cell lines that represent the relevant disease.

Unlike some forms of cancers, pancreatic tissue is not readily available, 
and the acquisitions of quality tissue from pancreatic cancer patients repre-
sent a significant challenge. Firstly, biopsies are not often indicated given the 
remote location of the organ within the body, and the serious safety risks 
the procedure itself carries for the patient that includes tumor seeding, and 
development of complications such as pancreatic leak and pancreatitis [28]. 
Secondly, it may not be possible to obtain tissues that represent all stages of 
disease. Pancreatic cancer is often diagnosed at a later stage, so tissues that 
represent early stages of cancer development may be impossible to obtain 
[6,29]. It may also not be possible to obtain tissues that present the most 
advanced stages of the disease, since patients with advanced disease are not 
candidates for surgery [6]. Furthermore, since the pancreatic organ is full of 
proteases, the task of obtaining enough quality protein for proteomic analy-
sis from these precious sources can be challenging [30].

In the literature, a restricted number of proteomic studies performed with 
resected, whole tissue patient specimens have been reported. These studies 
mainly focused on the use of gel-based fractionation, usually by two-dimen-
sional gel electrophoresis (2-DE) followed by mass spectrometry identification 
[31–34]. For example, Chen et al. [32] analyzed tissues from three pairs  
of pancreatic cancer samples and compared the samples to adjacent non-
can cerous tissues resected from the same patient, and found that  
S100A11 and  galectin-3 were overexpressed in pancreatic cancer.  
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Chung et al. [33] performed 2-DE proteomic analysis on 10 pairs of PDAC 
specimens and matched adjacent normals, and identified galectin-1 as a poten-
tial biomarker. Similarly, Qi et al. [31] utilized tissues from eight matched 
PDAC and noncancerous tissues and identified TBX4 to be expressed on 
PDAC samples. Another example is the study by Shen et al. [34], who utilized 
frozen tissue from the National Cancer Institute Human Tissue Network and 
completed proteomic analysis on whole tissue homogenates from pancreatic 
adenocarcinoma tissues compared to normal adjacent, normal, and chronic 
pancreatitis tissues. In this study, galectin-1 was validated by IHC and western 
blot to be elevated in pancreatic cancer.

It should be remembered though that since tissue is made up of a het-
erogeneous population of cells, proteomic analysis of whole tissues may lead 
to the identification of proteins that are upregulated in the cancer speci-
mens due to the differences in proportion of cell types rather than due to 
true elevation following dysregulation of a biological process. In a normal 
mature pancreas, ductal epithelial cells make up 14% of normal pancreatic 
tissue [35]. In contrast, pancreas from a pancreatic cancer patient may consist 
of 30–90% of tumor ductal epithelial cells.

As such, proteins identified directly through a comparison of the epithe-
lial cells isolated from tumor versus normal samples may serve as better 
therapeutic candidates. One technique that has been utilized to capture a 
pure population of ductal epithelial cells is laser capture microdissection 
(LCM) [36,37]. However, as only several hundred to a few thousand cells 
can be isolated by using this technique, only a limited number of proteomic 
studies on pancreatic cancer have been performed with LCM-resected cells. 
As the study by Shekouh et al. [38] outlined, sample size from LCM is so 
low that even quantification of protein yield was not possible with conven-
tional techniques. Instead, following the isolation of pancreatic epithelial 
cells, Shekouh et al. [38] had to utilize silver staining and densitometry to 
ensure that equal amounts of proteins from the normal and disease controls 
were loaded onto 2-D gels. In this limited study, five proteins, including 
S100A6, were found to be upregulated in pancreatic tumor epithelial cells 
but not in normal cells. What is apparent from this study is that protein yield 
can severely limit the types of proteomic analysis that can be accomplished. 
For us, protein yield is especially important since we wanted to focus our 
efforts on the proteomics of cell surface membrane proteins for the identi-
fication of potential therapeutic targets. As this class of proteins is predicted 
to be of low abundance, an approach that will allow protein to be isolated 
at a higher yield is clearly required [39].
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Preparation of single cell suspension from the heterogeneous tissue may 
offer the opportunity for a greater number of epithelial cells to be isolated, 
and therefore an increase in protein yield can be obtained. Mechanical and 
enzymatic dissociation of pancreatic tissue has been previously described 
[40,41]. By using chelating agent EDTA in combination with trypsin, Li 
et al. [41] demonstrated that it was feasible to dissociate murine pancreas 
into a single suspension with >90% viability. Using snap frozen tissue, Boyd 
et al. [40] isolated keratin 7, and keratin 8 positive pancreatic adenocarci-
noma cells by combining mechanical cell dissociation with flow cytometry. 
In our laboratory, we developed a similar process that permitted the isola-
tion of single cell suspensions of epithelial cells prepared from surgically 
resected human neoplastic lesions and normal tissue specimens. This process 
has so far been adopted successfully for colon, lung, and kidney cancers 
(Figure 11.2). By using a series of mechanical disaggregation and enzymatic 

Before cell sorting After cell sorting

Lung tumor

Kidney tumor

Colon tumor

Figure 11.2 Epithelial Cell Enrichment of Tumor Clinical Specimens. Tumor specimens 
are first dissociated into single cell suspensions and red cells are lysed (left panel). 
 Suspension cells are then enriched by flow cytometry or bead capture for EpCAM+ epi-
thelial cells. (For color version of this figure, the reader is referred to the online version of 
this book.)
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digestion steps, we first prepared a single cell suspension from resected tissue 
samples. Red blood cells were then removed through addition of ACK lysis 
buffer. This was followed by a depletion of CD45+ hematopoietic cells by 
flow cytometry, and selection of epithelial cell surface antigen (ECSA/
EpCam) positive cells by a bead-based enrichment process (Dynal CELLec-
tion Epithelial Enrich kit, Invitrogen, Carlsbad, CA). Greater than 80% 
enrichment of epithelial cells was achieved by using this isolation method. 
Since EpCAM positive cells from the pancreas also contain tumor-initiating 
cells, a mechanical/enzymatic tissue dissociation process followed by an 
antibody-based selection similar to the process described herein may allow 
a highly enriched population of pancreatic epithelial cells to be isolated 
[42,43].

In the absence of available tissue, cell line models can serve as a valid 
alternative for the proteomic identification process. Cell line models are not 
only readily available but are well defined and represent difference stages of 

Hs766T

AsPc-1

Capan-2

Mpanc-96 HPAF-II

BXPc-3 SU.86.86

HPAC-I

Panc-1

Pancreatic cancer cell line model

Hs7Hs7Hs7Hs7HHs7Hs7Hs7Hs7Hs7Hs7Hs7Hs7HsHs7Hs7Hs7Hs7s7Hs7Hs7Hs7Hs7Hs7Hs7HHs7HH 7HHs7Hs7HsHs7Hs7Hs7HHs7HHs7Hs7Hs7Hs77HHHHs7HHHHH 7HHHHHHHs7HHHHHHHHHHs77777HHH 7777666T66T66T66T6666T66666T6666T66T66666666666666666T66T66666666666666T6666666666

AsPc-1

Capan-2

Mpanc-96 HPAF-II

BXPc-3 SU.86.86

HPAC-I

Panc-1

Resembles normal duct epithelium
by gene expression (SAGE)

Increasing differentiation state

Figure 11.3 Pancreatic Cell Line Models Represent Different Stages of Pancreatic Can-
cer Differentiation. Hs766t cell line was chosen as the normal comparator since this cell 
line has been shown by SAGE to have a genetic signature that is similar to normal ductile 
epithelial cells. From left (least differentiated) to right (most differentiated): PANC-1 and 
MPANC-96 (poorly differentiated cell lines), ASPC-1 (poorly to moderately differentiated 
cell line), BXPC-3 and HPAC (moderately differentiated cell lines), Su86.86 and HPAF 
(moderately to well-differentiated cell lines), and Capan-2 (well-differentiated cell line). 
(For color version of this figure, the reader is referred to the online version of this book.)
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pancreatic cancer differentiation (see Figure 11.3). A number of groups, 
including ours, have used these models for proteomic identification [18,30]. 
For example, McKinney et al. [30] used cell lines to identify differences in 
protein expression between metastatic site–derived cell lines verses primary 
tumor cell lines. In this study, they identified vimentin to be expressed only 
on Su.86.86 (a cell line of metastatic origin) but not in BXPC-3 and 
Capan-2 (cell lines derived from primary tumors). In our own study using 
pancreatic cancer cell line models [18], we looked at differences between 
the “normoid” cell line Hs766T and PANC-1 (poorly differentiated), 
BXPC-3 (moderately differentiated), HPAC (moderately to well differenti-
ated), and Capan-2 (well differentiated) cell lines. By using a decoupled 
ICAT process described in the following section, we not only looked at 
global differences between tumor and normal cells but also identified pro-
teins that are upregulated at difference stages of tumor development. It 
should be highlighted that we also utilized an activity-based process to iso-
late a specific subcellular compartment, namely the cell surface membrane 
compartment, to increase our ability to find therapeutically relevant 
targets.

Enrichment for Cell Surface Glycoproteins
As has already been demonstrated in the numerous studies published to  
date, many proteins can potentially be identified by differential proteomic 
 analysis [15,16]. Proteomics can therefore provide complicated results if not 
utilized effectively. We chose to focus our proteomics work on plasma 
membrane proteins, since we were interested in identifying potential thera-
peutic targets. Out of 120 known protein targets of marketed drugs, two-
thirds are represented by plasma membrane proteins [14,44]. Their functional 
significance highlights their importance in drug discovery and develop-
ment; they not only play a vital role in the regulation of cell signaling but 
are also important for cell–cell interactions as well as metabolite and ion 
transport. The ability to target cell surface proteins using antibody-based 
approaches, irrespective of the existence of a druggable domain, further 
contributes to their amenability as therapeutic targets.

Though it is estimated that approximately 20–30% of genes within the 
human genome are represented by membrane proteins, detailed analysis of 
this protein class has traditionally been difficult to accomplish [45–47]. As 
membrane proteins are hydrophobic, they are almost impossible to solubi-
lize. Furthermore, most membrane proteins are of low abundance. A num-
ber of subcellular fractionation methods have been described, but most of 
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these methods allow all membrane proteins, not just cell surface membrane 
proteins, to be identified [48–50]. For example, the ProteoExtract kit  
(Calbiochem, Billerica, MA) used by Paulo et al. [49] led to the identifica-
tion of 47–48% membrane proteins, in addition to 34–36% cytoplasmic 
proteins and 8–12% nuclear proteins.

As such, a novel method that specifically enriched for cell surface proteins 
for LC-MS/MS analysis was developed [17,18,51]. Most transmembrane pro-
teins are glycosylated. As previously described, we utilized sodium periodate 
to oxidize glycoproteins on the cell surface (see Figure 11.4(A)) [18,52,53]. 

Figure 11.4 Cell Surface Glycoprotein Isolation Process. (A) Schematic outline of the 
glycoprotein isolation process. Cell surface glycoproteins are first activated by sodium 
periodate treatment. Since the cells remain >95% viable, only cell surface glycoproteins 
were activated. The oxidized glycoproteins can then be captured on a hydrazide resin. 
(B) Flow cytometry confirmation of cell viability (left panel) and glycoprotein oxidation 
(right panel). >95% cell viability was confirmed by PI exclusion. Flow cytometry binding 
assay using a fluorescently labeled hydrazide probe confirms oxidation of cell surface 
glycoproteins. (C) Western blot of protein samples before sodium periodate treatment 
and after treatment. In the absence of periodate activation, no oxidized glycoproteins 
are captured on the hydrazide resin. Both intracellular protein GRP78 and cell surface 
protein ICAM-1 are eluted following resin washing. After sodium periodate activation, 
cell surface proteins such as ICAM-1 are captured on the hydrazide resin and are there-
fore not eluted following washing of the resin. Intracellular protein GRP78 is not oxi-
dized and therefore is not captured on the resin. (For color version of this figure, the 
reader is referred to the online version of this book.)
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Cellular viability played a key role in ensuring that only cell surface glycopro-
teins were oxidized. To this end, we utilized a concentration of sodium peri-
odate, i.e., 1 mM for pancreatic cells, that permitted oxidation of glycoproteins. 
As the cells remained intact, only cell surface glycoproteins were oxidized. In 
our experiments, cells typically remained >85% viable following sodium peri-
odate treatment (see Figure 11.4(B)). Following sodium periodate treatment 
and confirming viability, the cells are washed and lysed, and periodate-treated 
proteins are captured on a hydrazide resin. A visualization of the resin capture 
process was possible by staining cells with a biotinylated agent that mimics the 
resin capture process and analyzing the samples by flow cytometry (Figure 
11.4(B)). As shown in Figure 11.4(C), capture of these oxidized glycoproteins 
on the hydrazide resin allowed us to specifically enrich for cell surface proteins 
such as ICAM-1, but endoplasmic reticulum proteins such as GRP-78 are 
eluted from the column and can be detected in the residual wash flow through.

Quantitative Proteomics Using ICAT Technology
As demonstrated in the published studies mentioned previously, numerous 
proteomic studies have already been performed on pancreatic cancer serum, 
urine, pancreatic juice, tissue, and cell lines. Many of these studies relied on 
using gel-based fractionation methods (usually two-dimensional gel elec-
trophoresis, or 2-DE) followed by identification by mass spectrometry. That 
is, protein samples from the normal controls and tumor comparisons are 
run (usually separately) on different gels, and any protein spots that appear 
to have a difference in intensity between the two samples are extracted and 
identified by mass spectrometry. This technique has been popular since it 
permits the comparison of intact proteins, thereby making it possible to 
identify posttranslation modifications, proteolytic cleavage, and polypeptide 
variations [54]. However, not only is it difficult to compare gel spots from 
experiment to experiment, but the spots may contain multiple proteins, and 
very acidic and basic proteins are not usually well presented on a standard 
gel [54]. This method is also biased against membrane proteins due their 
hydrophobic nature, and against low abundant proteins due to limits in 
dynamic range. Since the technique has a dynamic range of 104, the exces-
sive presence of actin at 108 molecules per cell will mask any proteins that 
are expressed at levels less than 105 molecules per cell [50]. This method will 
therefore exclude membrane proteins such as cell surface receptors, which 
are expressed at 100 to 1000 molecules per cell.

This, plus the fact that 2-DE is a low throughput method that has been 
difficult to automate, led us to use alternative methods for quantitating 
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differences in protein expression in our tumor versus “normoid” pancreatic 
cell lines. Given these limitations, we chose to use the uncoupled ICAT 
approach for proteomics analysis [17].

Isotope coded affinity tag (ICAT) is a probe that is made up of a biotin 
tag, a linker, and iodoaceramide handle. The linker maybe a light version 
(8 hydrogen atoms) or a heavy version (8 deuterium atoms). In this 
method, ICAT reagent is first added to the protein mixture to label cys-
teine residues on peptides. Digestion with trypsin followed by purifica-
tion of cysteine-containing peptides by liquid chromatography allowed 
further reduction in the complexity of the protein mixture for LC/MS 
quantitation. In our laboratory, we went further and developed a decou-
pled ICAT process that has a distinct advantage over a coupled ICAT 
process. As outlined in the paper published by Kim et al. [17], and as illus-
trated in Figure 11.5, the coupled process of using a light version of ICAT 
on one sample versus the usage of the heavy version of ICAT on a second 
sample limits the analysis to a pair-wise comparison. In our proteomic 
analysis of cell lines from different stages of differentiation, we wanted to 
use a technique that will not only allow us to identify proteins that are 
upregulated in tumor cells but also to complete multiplex analysis that 
will allow us to look at expression of proteins across different stages of 
disease development. In the decoupled approach, as shown in Figure 11.5, 
both the tumor and normal samples are labeled separately using the same 
version of the ICAT reagent. Peptide ion peaks of LC/MS maps from 
normal and tumor samples are aligned based on mass-to-charge ratio 
(m/z), corrected retention time (RT), and charge state (z). Peptide ion 
peaks were detected from the LC/MS maps by using RESPECT™ soft-
ware. The intensities of ions in each map were then compared to the 
mean intensities of those ions across all maps in the alignment. Using ions 
with mean intensities in the 10th–90th percentiles, and unconstrained 
nonlinear optimization, it was possible for a normalization factor to be 
generated for each map. This minimizes the sum of the differences between 
intensities of each ion and the mean intensity for that ion across all maps. 
Scatter plot of the aligned peptide ions can be produced by using Spot-
fire™ (TIBCO Spotfire, Somerville, MA), and from there differential 
ratios could be calculated. Peptide ions, in our case those with a differen-
tial expression of greater than three-fold between tumor and normal sam-
ples, were then selected for LC-MS/MS–based peptide sequencing, and 
peptide/protein identification can be accomplished by using MASCOT 
(Matrix Science, London, UK).
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As illustrated in Figure 11.5(B), this method permits multiplex analysis 
and the generation of heat map comparisons across disease states, and even 
across disease areas. As shown in Figure 11.5(C), for each cell line, the repro-
ducibility of intensities of common features between process replicates is 
greater than that of a tumor versus normal comparison, indicating that the 
differences observed between tumor and normal samples are significant. In 
our example, 99.4% of the common features’ intensities are within three-
fold for BXPC3 replicates compared to 80.0% for that of BXPC3 versus 
Hs766T.

Figure 11.5 Decoupled ICAT Process for Multiplex Proteomic Comparisons. (A) Tradi-
tional proteomic analysis using ICAT is limited to pair-wise comparisons. In the decou-
pled process, each sample is labeled separately with the same ICAT reagent. Peptide ion 
peaks are detected and aligned based on mass-to-charge ratio (m/z), corrected retention 
time (RT), and charge state (z). Scatter plots of the aligned peptide ions are produced, 
and differential ratios can be calculated. (B) Example heat map of peptides that can be 
generated using the decoupled approach. Expression of any protein, e.g., CEA shown, 
can be compared across numerous tissues and cell lines. (C) Scatter plot of peptide align-
ment between biological replicas, 99.4% of the common features’ intensities are within 
three-fold for BXPC3 replicates compared to 80.0% for that of BXPC3 versus Hs766T. (For 
color version of this figure, the reader is referred to the online version of this book.)
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Figure 11.6 shows the peptide intensity plot of tissue factor Na+/K+ 
ATPase Beta 3 (also known as CD298) and Integrin Beta 6 (β6) from 
decoupled proteomics analysis. Tissue factor is a 47-kDa membrane-bound 
glycoprotein that is expressed by many cancer cells, including pancreatic 
cancer cells [55]. The expression of tissue factor has been demonstrated to 
correlate with tumor progression, with the highest levels observed in poorly 
differentiated tumors [56]. In xenograph models, pancreatic cancer cells that 
produce tissue factor consistently produced tumors that are larger in size 
than pancreatic cancer cells that don’t produce tissue factor [57]. The family 
of integrin heterodimeric receptors plays key roles in cell adhesion, inva-
sion, migration, and proliferation differentiation [58]. The subunit Integrin 
β6 is unique since it can only partner with the alpha v (αv) subunit. Its 
expression has been shown to be exclusive to developing and cancerous 
epithelial cells, and to epithelial cells undergoing wound healing. A number 
of studies, including studies performed on ovarian, colon, and pancreatic 
cancer, have correlated Integrin αvβ6 expression with progression into 
advance stages of disease [59–61]. Na+/K+ ATPase is a family of isoenzymes 
that are found on the plasma membrane that catalyzes the efflux of cyto-
plasmic Na+ and uptake of extracellular K+ [62]. The isoenzyme consists of 
alpha subunits, beta subunits, and FXYD proteins. Diversity of this  isoenzyme 
comes from the association of different molecular forms of the alpha (alpha1, 
alpha2, alpha3, and alpha4) and beta (beta1, beta2, and beta3) subunits. The 
catalytic alpha subunit hydrolyzes ATP and transports the cations. The beta 
subunits, including beta3-type subunit, and FXYD proteins may contribute 
the function of Na+/K+ ATPase in different tissues [63,64]. Steroidal cardiac 
Na+/K+ ATPase inhibitors have been demonstrated to have antitumor 
activity in prostate and lung xenografts [65].

As shown in Figure 11.6, tissue factor, Integrin β6, and Na+/K+ ATPase 
Beta 3 were identified to be overexpressed in pancreatic cancer cell lines. 
The decoupled process allowed us to perform comparative analysis across 
different pancreatic cell lines and tissues, even with tissues from other organs. 
As such, tissue factor was found to be overexpressed in not only pancreatic 
cancer cell lines but also in lung and breast cancer cell lines, as well as in 
conditioned media from colon and breast cancer cell lines. Similarly, Integ-
rin β6 was shown to be overexpressed in breast cell lines, lung cell lines, 
gastric tissues, and colon stem cells; whilst Na+/K+ ATPase Beta 3 was 
found to be overexpressed in pancreatic, liver, lung, ovarian, kidney, and 
colon tumor cell lines, as well as in colon cancer stem cells and lung tumor 
tissues.
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Figure 11.6 Peptide Intensity Plots for Tissue Factor, Integrin Beta 6, and Na+/K+ ATPase 
Beta 3. Black squares: intensity of peptides from normal samples; black circles: intensity 
of peptides from tumor samples; dotted line: median intensity of all peptides for each 
protein. Differential expression of each peptide sequence in breast (Br), colon (Co), kid-
ney (Ki), lung (Lu), melanoma (Me), ovarian (Ov), and pancreatic (Pa) cancer samples 
versus normal comparators are shown. Samples analyzed include samples from cell 
lines (CL), conditioned media (CM), endothelial cells from tissues (EC), stem cells from 
tissues (SC), and epithelial cells from tissue (TS).
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It should be noted that the proteomics identification platform should 
really only serve as a beginning; it is only following validation with other 
expression methods, and functional validation with methods such as RNAi, 
that any given target we identified becomes important. These platforms, 
using tissue factor, Integrin Beta 6, and Na+/K+ ATPase Beta 3 as examples, 
will be described next.

Expression Validation Methods
Given the complexity of performing proteomics on tissues from pancreatic 
cancer patients, we chose to complete our proteomics identification by 
using cell lines. Whilst cell lines provide a valuable source of homologous 
cells to work with, they have well-documented, distinct disadvantages 
[66,67]. For example, since they have been in culture for numerous passages, 
it is recognized that most cell lines have acquired a molecular phenotype 
that differs from the phenotype of primary cells. Furthermore, since the 
origins of a number of cell lines have been in dispute, whether cell lines 
truly represent the intended disease has been called into question.

Thus, to verify what we discover from our cell line proteomics discovery 
platform, a robust validation platform must be put into place. Figure 11.7 
shows an example schematic of the validation process that we had employed. 
In the outlined schematic, the expression validation process depended on 
the availability of antibodies against the intended target. In our validation 
scheme, if antibodies were available, immunohistochemistry (IHC) was uti-
lized to confirm expression on tumor pancreatic tissues versus normal 
tumor tissues. Validation of expression on vital organs was also completed. 
To validate cell surface membrane localization, FACS and immunofluores-
cence were utilized. Western blotting was used to validate expression in cell 
lines if other methods were not readily available. If antibodies against the 
target of interest were not available, quantitative PCR was used as a first step 
expression validation tool, and production of antibodies directed against the 
intended target were initiated once validated by mRNA. Details of two of 
these methods we most often utilized for expression validation, namely 
IHC and quantitative flow cytometry, will be described in more detail fol-
lowing. Once candidates are validated to be expressed in pancreatic cancer, 
they may serve as potential candidates for biomarker development. It is also 
possible to further functionally validate these candidates by RNAi, neutral-
izing antibody, and/or small molecule tool compounds. Validation of func-
tion is essentially for determining value of any candidate for therapeutic 
development. Further details of RNAi for functional validation will be 
described below.
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Validation of Expression in Tumor Cells by IHC
IHC could be one of the most powerful expression validation techniques if 
an experienced pathologist is involved with the interpretation of the results. 
Not only is it possible to determine differences in staining intensity, and 
therefore expression levels, but it also provides a means of visualization of 
the subcellular location of any given protein. What makes this technique 
particularly useful is the fact that tissue arrays are now readily available [68]. 

Figure 11.7 Schematic of the Validation Process for Proteomically Identified Candi-
dates. Each candidate identified from proteomic analysis first undergoes expression 
validation. Validation of protein expression is dependent on antibody availability. If 
appropriate antibodies are available, expression is validated by IHC, FACS/Q-FACs, immu-
nofluorescence, and/or western blotting. If no antibodies are initially available, candi-
dates are first validated by Q-PCR before generation of antibodies is triggered. Once 
antibodies are generated, the protein candidates are further validated. If expression is 
confirmed, the candidates may serve as candidates for biomarker development. All can-
didates validated to be overexpressed in pancreatic tumors are functionally validated by 
RNAi. If neutralizing antibodies or tool compounds for targets of interest are available, 
further functional validation is completed. Candidates for therapeutics development are 
selected from those candidates identified to play a functional role in pancreatic cancer. 
(For color version of this figure, the reader is referred to the online version of this book.)
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Tissue arrays typically contain cylindrical tissue samples from thousands of 
different archival tissue blocks, thereby allowing a pathologist to rapidly 
analyze hundreds of patient samples simultaneously. For example, LifeSpan 
Biosciences have an internal collection of over 2 million tissue specimens, 
including tissue arrays for pancreatic tissues from primary and metastatic 
cells. Using tissue arrays, it was possible for us to validate our proteomic 
findings from a number of patients and determine if the targets that were 
identified were truly upregulated in pancreatic cancer [18]. Since tissue 
arrays are available for normal and tumor tissues, including tissues from 
other organs, it was possible to determine if the targets we identified were 
of therapeutic value. That is, by using IHC, expression of target protein in 
vital organs such as the heart, lungs, brain, liver, etc. can be determined early 
on, and any target with intense staining in the vital organs can be quickly 
de-prioritized [69]. This is especially important since a similar level of stain-
ing within vital organs and tumor tissues suggests that it may not be possible 
to obtain an adequate therapeutic window from which patients could be 
treated without affecting a vital organ. Furthermore, since it is possible to 
perform IHC on other cancer tissues, added value can be provided by IHC 
validation since a target’s application across different tumor types can also be 
determined.

Figure 11.8 shows the expression validation of tissue factor, an example 
target that was identified through our proteomics platform. As shown in 
Figure 11.8(A), tissue factor expression was found to be expressed on all 10 
pancreatic carcinoma samples from different subjects tested. When exam-
ined closely, the positive staining was identified to be membranous, and 
nuclear staining was not encountered. Expression was also found in the 
majority of lung carcinomas and occasional samples of ovary, prostate, colon, 
and breast carcinomas (see Figure 11.8(B) for staining in NSCLC and pros-
tate cancer). Figure 11.8(C) shows staining of tissue factor on normal tis-
sues. Either no, or very weak, staining was detected in all normal tissues 
tested to date. Prominent positivity was present in the reserve cell layer of 
respiratory epithelium, basal epithelial cells in the prostate, pneumocytes, 
and renal glomerular visceral epithelial cells. Focal positivity was present in 
neuroendocrine cells in the intestine, testicular fibroblasts, ovarian follicles, 
adrenal medulla, and in developing follicles in the ovary. Only rare staining 
was present in cardiac myocytes. The majority of positive staining in normal 
tissues was found to be cytoplasmic. This data therefore suggests that it 
might be possible to target tissue factor therapeutically; the difference in 
expression levels of tissue factor in pancreatic cancer compared to normal 
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vital organs would provide a therapeutic index from which on target adverse 
events could be minimized. A differential response to therapeutics may also 
be possible with tissue factor, since expression was identified to be within 
the cytoplasm of normal cells, but membranous in pancreatic cancer cells.

Validation of Expression in Tumor Cells and Membrane  
Localization by FACS
A second technique that we employed for expression validation is quantita-
tive flow cytometry (Q-FACS) [70,71]. As a highly specific technique, flow 
cytometry makes it possible to quickly, and simultaneously, measure numer-
ous cellular physical parameters on a large number of suspension cells. The 
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Figure 11.8 Expression Validation of Tissue Factor by Immunohistochemistry 
(IHC). Numbers on each image (40×) indicate pathologist grading scale and percent-
age of section showing staining. (A) Tissue factor staining in pancreatic carcinomas.  
(B) Tissue factor staining in prostate and non-small cell lung cancer. (C) Left: Tissue factor 
staining in representative normal tissue sections; Right: pathologist score of cell types 
within each normal organ. Occ = occasional staining. (For color version of this figure, the 
reader is referred to the online version of this book.)
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usage of flow cytometry also makes it feasible to confirm cell surface local-
ization of the protein target in question. The measurement of these physical 
parameters, such as receptors on a cell, can be quantified and compared 
between laboratories by using commercially available fluorescent calibra-
tion beads [70,72]. By using bead standards combined with a known 
 fluorochrome-to-antibody ratio, the fluorescence axis can be calibrated to 
calculate the number of fluorochrome molecules attached to the cell. Using 
this technique, also known as quantitative flow cytometry, it is possible to 
quantify the number of membrane proteins per cell. A number of methods 
are available, based on the types of standards employed. We chose to use the 
Quantum Simply Cellular System (Bangs Laboratories, Fishers, IN), which 
utilizes Type IIIC calibration standards. This particular type of standard is 
reported to produce the best spectra matching since the beads bind the 
same conjugated antibody as the cell sample [71].

Quantum Simply Cellular System kits consist of five polystyrene micro-
bead sets, where each set is labeled with a predetermined number of ligands 
on each bead. As shown in Figure 11.9(A), following staining with a specific 
fluorochrome-conjugated antibody, each population of beads will produce 
a distinct fluorescent signal on the flow cytometer. A calibration curve for 
the antibody can then be established by using linear regression analysis and 
plotting the mean fluorescent intensity against its assigned antibody binding 
capacity (ABC). By labeling the cells with the same antibody as the beads, 
and by using the same instrument settings on the flow cytometer, the ABC 
for the cells can be calculated from the calibration cure. The calculated anti-
body binding capacity ultimately correlates to the number of antigenic sites 
present on the cell surface.

As an example, Figure 11.9(B) shows the relative copy number of tissue 
factor on seven pancreatic cell lines. Compared to the normoid cell line 
HS766t, tissue factor was found to be greater than 12-fold overexpressed in 
the more differentiated cell lines—namely, the moderately differentiated 
cell lines (BXPC-3, SU.86.86), moderately to well-differentiated cell lines 
(HPAC1, HPAF-II), and well-differentiated cell lines (Capan-2). However, 
no difference was reported in the least, poorly differentiated cell line 
(PANC-1). As shown in Figure 11.9(C), there is good correlation between 
the QFACS data and the proteomics data. By both QFACS and quantitative 
proteomics, tissue factor was found to be overexpressed in the moderately 
differentiated cell line BXPC-3, moderately to well-differentiated cell line 
HPAC, and well-differentiated Capan-2, as compared to “normoid” cell 
line Hs766t. At the same time, it was determined by both techniques that 
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tissue factor was not overexpressed in the poorly differentiated cell line 
MPANC96 cells. Therefore, for tissue factor, we were able to verify our 
proteomics findings by quantitative flow cytometry.

A second application of Q-FACS is the ability to quantitate any given 
target on specific populations of hematopoietic cells. Hematoxicity, espe-
cially myelosuppression, is a major dose-limited factor in drug development 
[73]. Disruption to the different specific lineages of the hematopoietic devel-
opment process may have different clinical consequences. Disruption to 
erythrocyte development may lead to anemia, disruptions to the development 
of granulocytes may lead to neutropenia, disruptions to the development of 
monocytes may lead to immunosuppression, and disruptions to the 
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Figure 11.9 Expression Validation of Tissue Factor by Quantitative Flow Cytometry 
(Q-FACS). (A) Left: QSC Beads coated with goat anti-mouse antibody with known anti-
body binding capacity values are incubated with a PE-conjugated tissue factor anti-
body, and geometric mean fluorescence for each bead population is recorded by flow 
cytometry. Right: standard curve for tissue factor antibody. (B) Left: copy number of tis-
sue factor in pancreatic cancer cell lines; (C) Right: fold overexpression of tissue factor in 
pancreatic cancer cell lines PANC-1, BXPC-3, HPAC, and CAPAN-2 compared to reference 
cell line HS766t. Black bars = fold overexpression calculated by QFACS; White line 
bars = fold overexpression calculated by LC-MS. (For color version of this figure, the 
reader is referred to the online version of this book.)
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development of platelets may lead to thrombocytopenia. Cytopenia is often 
an indicator for tolerable dose and frequency of administration. By using 
QFACS, it is possible to quantitate the expression of a particular cell surface 
protein in different hematopoietic cell populations and compare these val-
ues to the tumor cells in question. It is therefore possible to utilize this 
information as part of a package to predict if a therapeutic index exists that 
will allow the targeting of tumor cells and not hematopoietic cells.

Functional Validation by RNA Interference
Large-scale genomics and proteomic studies have ushered in a new era of 
discovery for cancer research [15]. The challenge now is not only to verify 
the variations in expression of proteins in the tumor cell but to map out the 
specific roles the dysregulated proteins play in the context of disease. Whilst 
it is recognized that protein function is not essential for therapeutic anti-
body development, knowledge of the underlying mechanism will still pro-
vide key information necessary for developing a strategic path. Not only 
will functionality provide vital information regarding how best to disrupt 
protein function but this information may also be used to predict potential 
adverse reactions and reveal mechanisms of resistance [74,75]. The genera-
tion and optimization of small molecule inhibitors for a given protein target 
involves a lengthy and costly process—a lead scaffold must first be identified 
from screening compound libraries, followed by substantial medicinal 
chemistry efforts in enhancing specificity and sensitivity [76]. As such, 
mechanistic information will help decipher if a small molecule screening 
campaign is worth pursuing. Similarly, tool grade antibodies are expensive 
and time consuming to produce and validate, and naked antibodies with 
robust antitumor activities are rarely available [69,77]. Thus, the underlying 
mechanism of an antigen will determine if it is even feasible to target the 
protein antigen by using a naked antibody, or if the antibody requires drug 
or radiolabeling, or if other modifications such as glycoengineering will be 
required. Therefore, a functional validation method that can quickly and 
cheaply decipher a protein’s role in tumor development should first be 
employed before embarking on a journey toward small molecule or anti-
body development.

Since its inception in 1998, RNA interference (RNAi) has quickly 
developed into a vital tool for high-throughput target validation [78]. Its 
importance is highlighted by the fact that a mere eight years following its 
discovery, its founders, Craig Mellow and Andrew Fire, were awarded the 
Nobel Prize in Physiology or Medicine (2006). Compared to antisense and 
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ribozyme technology, RNAi is more robust, enabling more efficient down-
regulation of a target gene with a lower dose, and is also more specific 
[79,80]. Unlike antisense, RNAi takes advantage of a naturally occurring 
cellular process that is thought to be a defense mechanism against viruses. 
Numerous comprehensive reviews of the RNAi mechanism have been 
published, including review articles by Cejka et al. [79], Hannon et al. [81], 
Meister et al. [82], and Kim et al. [83]. A simplification of the RNAi mecha-
nism is as follows: during the first RNAi initiating step, an RNase III endo-
nuclease called Dicer acts to cleave foreign long double-stranded RNA 
entered into the cellular cytoplasm. The cleavage products are shorter, 21 to 
23 nucleotide strands known as small interfering RNA (siRNA). The 
siRNA is then passed onto the RNA-induced silencing complex (RISC), 
through RNA-binding proteins, the TAR-RNA–binding protein (TRBP), 
PACT, and Argonaute-2 (Ago-2) enzyme that are complexed with Dicer. 
Once the double-stranded siRNA is bound to RISC, the “passenger” (or 
less thermodynamically stable) strand is cleaved and released by Ago-2, 
thereby activating RISC. The complex then utilizes the “guide” (or more 
thermodynamically stable) strand to target its exact complementary mes-
senger RNA sequence. Subsequent cleavage of the target messenger RNA 
by Ago-2 prevents transcription of the target sequence.

This natural mechanism can be adapted to validate cancer targets, since 
RNAi mediated gene knockdown is a universal mechanism, and the RNAi 
machinery remains intact in the cancer cell [84]. Experimentally, the RNAi 
process in the pancreatic cancer cell could either be mediated by using syn-
thetic siRNA that is transiently transfected into a cell or by using short 
hairpin (sh) RNA plasmid constructs where siRNAs are produced from 
Dicer processing of transcribed shRNA [85]. For target validation purposes, 
the synthetic siRNA method is the method of choice; they are cheap to 
manufacture, readily available, and can easily be introduced into a cell via 
transient transfections. Since the effect is transient, they are more likely to 
mimic a therapeutic response. For example, siRNA against BCR-ABL imi-
tated the apoptotic response induced by imatinib in K562 CML cells [86]. 
Whilst we will focus our attention in this chapter on the siRNA method, it 
should be pointed out that the shRNA method does possess several distinct 
advantages. For example, for difficult-to-transfect cells, RNAi experiments 
are still possible through the use of an infection method for shRNA delivery 
[85]. Secondly, since the plasmids can be stability integrated into the DNA, 
long-term evaluations of nonlethal genes are possible. Thus, if the phenotype 
is not detectable within the transient transfection time frame, i.e., within 
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five days, shRNA can provide an effective, alternative way of RNAi screen-
ing. However, there are a number of disadvantages to the shRNA method, 
including the need for cloning and stable transfection of the plasmid con-
structs. Furthermore, since genomic integration into the DNA may induce 
unexpected changes, we chose to validate our short list of proteomic targets 
by using synthetic siRNA.

There were a number of other considerations that needed to be addressed 
before we embarked on an RNAi validation program. Firstly, siRNA target 
sequences must be optimized in order to ensure specificity and reduce the 
potential for off-target effects. Secondly, cellular assays that appropriately 
address the biological functionality in question must be optimized. Thirdly, 
depending on the cellular assay, the RNAi screening format must be cho-
sen, and RNAi transfection conditions must be optimized for each cell type 
in question.

For a thorough RNAi validation program, siRNAs against the target of 
interest must be specific, and the effects must be reproducible by siRNAs 
that target different portions of the mRNA sequence. Any off-target effects 
must be minimized, whilst specific mRNA knockdown activity must be 
optimized. A set of initial rules governing siRNA design was published by 
Elbashir et al., in 2001 [87], and these design rules continues to evolve [88]. 
To date, there have been a number of publications in this area, and quite 
sophisticated algorithms have been developed [89]. Essentially, consider-
ations into siRNA design can be thought of as those parameters that influ-
ence activity or potency, and those parameters that influence specificity. 
Potency is known to be influenced by parameters that determine the acces-
sibility of the target sequence, which include parameters such as overall 
siRNA G/C content, structure of mRNA target region, strand selection, 
and positional preferences of specific bases [90–92]. siRNA specificity is 
critical in reducing the likelihood of nonspecific effects; though rules are 
not fully defined, parameters that govern specificity include homology to 
other target sequences and presence of immunogenic sequences within the 
siRNA duplex [89,93,94].

For our initial screens, we utilized a pool of four siRNAs that target the 
same mRNA, but within different regions. Not only did this allow us to 
increase our throughput and decrease reagent consumption, but screening 
with siRNA pools has also been demonstrated to increase the likelihood of 
finding putative hits, and generate a more severe penetrant phenotype [95]. 
To confirm hits from our initial screens, follow-up experiments were per-
formed with individual duplexes, and any effective duplexes were titrated 
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down to 1 nM. The same phenotype produced by at least two siRNAs tar-
geting different regions within the same mRNA is far less likely to be due 
to sequence dependent off-target effect, such as miRNA effects [96]. Fur-
thermore, since the RNAi machinery is saturable, phenotypic and knock-
down verification with a low concentration of siRNA can reduce chances 
of the phenotype being the result of an off-target effect [97].

Another consideration is the high-throughput layout of the experiment. 
There are a number of different RNAi experimental formats, and the for-
mat chosen largely depends on throughput requirements and the types of 
cell assays available. siRNA transfections can be performed by traditional 
forward transfections, whereby cells are first plated, and followed by addi-
tion of siRNA-transfection reagent complex to cells. Alternatively, siRNA 
can be performed by reverse transfection, whereby cells are plated onto 
wells already containing siRNA-transfection reagent complex. One advan-
tage to forward transfections is that master plates with siRNA/transfection 
reagents can be made, and multiple plates for different cell assays can be 
transfected by using aliquots from the same master plates [98]. Automation 
using forward transfections are feasible; for example, Chung et al. [98] auto-
mated their platform by utilizing robotic liquid handling systems, separating 
the RNA procedure into making the master or intermediate plates first, 
followed by transfection, and completed a genome-scale siRNA screen in 
HeLa cells. Many laboratories, though, prefer reverse transfection for auto-
mation and genome-wide screens; not only does this method reduce exper-
imental time by one day, as cells do not need to be plated the day before 
transfection, but since microtiter plates or siRNA chips are now readily 
available (much akin to microarray technology), this method is highly suit-
able for HTS [99].

In our laboratory, we utilized a forward transfection platform and took 
advantage of commercially available siRNA libraries. This platform allowed 
us to functionally validate our proteomically identified targets in a number 
of pancreatic cancer cell lines, including cell lines from the more differenti-
ated stages that do not form confluent monolayers. For cell lines that are 
more fragile, the seeding of cells a day prior to transfections allowed the cells 
to “settle down” before they were transfected, which in our hands helped us 
to decrease transfection-induced cellular toxicity (results not published). For 
initial screening, we wanted to focus our biological assessments on two fun-
damental processes in cancer: apoptosis and proliferation. Unless proper 
controls are in place and cells are growing confidently, it is easy to mistake 
transfection toxicity with proper biological function. It was also important 
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for us to access knockdown simultaneously with every experiment, so that 
biological differences are always confirmed by target knockdown. The for-
ward transfection platform we adopted allowed us to assess mRNA knock-
down and assess multiple biological functions simultaneously from the same 
transfection.

A robust RNAi validation platform is only possible if a transfection 
agent that allows high transfectivity whilst maintaining cellular viability can 
be identified. Traditionally, siRNA transfections can be carried out by using 
lipid-based transfection reagents or by using electroporation. For our pur-
poses, since our aim is to perform RNAi in a high-throughput manner, 
lipid-based transfection became the method of choice. Our functional vali-
dation process began with the optimization of cell numbers for each assay. 
During this process the assay limits are identified, including initial cell seed-
ing numbers, since cells should still be in log phase growth within the time 
frame of the biological assay, usually within four days of a siRNA transient 
transfection. If too many cells are plated at the beginning of the experiment 
and are in lag phase by the time of the biological assay (that is, cells have 
already stopped proliferating), a wrong assessment of function could be 
made. Subculturing of adherent pancreatic cancer cells before assay readout 
is not advisable for high-throughput format, since this will simply induce 
assay errors due to inadequate dissociation of cells from plates, and errors 
due to inadequate mixing before cell dilutions are re-plated.

Once assay limits and proper cell seeding numbers are identified for 
each assay, a panel of transfection reagents were typically tested in various 
dose-ranging conditions, where the initial doses are normally tested in 
0.5 μl increments, up to 2.5 μl per 100 μl volume. In our forward transfec-
tion platform, the optimization experiments were always carried out by 
simultaneous mRNA knockdown and alamar blue toxicity assessment. As 
shown in Figure 11.10(A), the transfection reagent and volume is always 
chosen where the cells transfected with negative control siRNA are at least 
90% live, including scrambled negative, and nontargeting firefly luciferase 
siRNA, and mRNA knockdown assessed the day after transfection is maxi-
mum with housekeeper control cyclophilin siRNA (>90% efficient).

Figure 11.10(B) shows RNAi knockdown results of tissue factor, Integ-
rin β6, and Na+/K+ ATPase Beta 3 subunit. As shown, 24 h following tissue 
factor, Integrin β6, and Na+/K+ ATPase Beta 3 siRNA transfection, over 
75% knockdown was observed. Three days following tissue factor or Integ-
rin Beta 6 siRNA transfection, a dose-dependent inhibition of cell growth, 
as measured by cellular metabolic activity, was observed in MPANC96 and 
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ASPC-1 cell lines (Figure 11.10(C)). Similar inhibitory effects were 
observed for our positive control X-linked Inhibitor of Apoptosis Protein 
(XIAP) which is known to inhibit proliferation of cancer cells in vitro and 
in vivo [100]. As anticipated, no inhibitory effects were observed for the 
negative control siRNA. Knockdown of Integrin β6 and Na+/K+ ATPase 
Beta 3 mRNA also induced apoptosis in both MPANC96 and ASPC-1 cell 
lines. As shown in Figure 11.10(D), the level of caspase 3/7 induction was 
comparable or higher than the positive control XIAP.

Figure 11.10 RNAi Functional Validation of Tissue Factor, Integrin Beta 6 and Na+/K+ 
ATPase Beta 3 in Pancreatic Cancer Cell Lines. (A) Optimization of transfection condi-
tions. Amount of transfection reagent chosen for RNAi experiments typically provides 
>90% knockdown with housekeeper control siRNA one day following transfection, and 
exhibits minimal toxicity. (B) Knockdown of tissue factor, Integrin Beta 6 and Na+/K+ 
ATPase Beta 3 mRNA. (C) Alamar blue cell proliferation following titration of tissue fac-
tor, and Integrin Beta 6 siRNA in ASPC-1 and MPANC-96 cell lines. Data is plotted as a 
percentage of the scrambled negative control. The positive control, ribonucleotide 
reductase M2 polypeptide (RRM2) siRNA, is also shown. (D) Apoptotic cell death, as 
measured by caspase 3/7 activity, following transfection of ITGB6 or Na+/K+ ATPase Beta 
3 siRNA into MPANC96 or ASPC-1 cell lines. Results shown are relative to scrambled 
negative control. Positive control, XIAP, is also indicated. (E) Alamar blue proliferation 
following transfection with 1 nM Integrin Beta 6 siRNA (black triangles) or negative con-
trol siRNA (white squares) plus 0–1μM Gemzar in MPANC-96 cells (F) Caspase 3/7 apop-
tosis of BXPC-3 cells following transfection with 25 nM Na+/K+ ATPase Beta 3 siRNA or 
negative control siRNA plus 0–100 nM Gemzar. (For color version of this figure, the 
reader is referred to the online version of this book.)
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As discussed in earlier sections, the standard of care for the nonresectable 
pancreatic cancer patients is treatment with gemcitabine. Therefore, any 
efficacy assessment during a clinical trial must be referenced to this standard 
treatment. For our in vitro functional validation platform, either an additive 
or synergistic apoptotic or antiproliferative effect when gemcitabine treat-
ment is combined with target knockdown will add significant value and 
increase a protein’s priority for further development.

MPANC96 cells were either transfected with 25 nM of negative control 
siRNA or Integrin β6 siRNA (Figure 11.10(E)). The cells were treated 
with no gemcitabine or increasing concentrations of gemcitabine, from 
1 nM up to 0.1μM. As shown in Figure 11.10(D), gemcitabine treatment 
alone induced a dose-dependent inhibition of MPANC96 proliferation, 
with maximum inhibition of ∼50% observed with treatment with >50 nM 
gemcitabine treatment. Meanwhile, with only 1 nM of integrin β6 siRNA, 
57% decrease in proliferation was observed in MPANC96 cells. The decrease 
in proliferation was greater than 50% when 1 nM of integrin β6 siRNA was 
combined with 5 nM of gemcitabine, with greater than 60% growth inhibi-
tion reached when siRNA treatment was combined with 50 nM or greater 
of gemcitabine. An additive effect on apoptosis was also observed when 
Na+/K+ ATPase Beta 3 siRNA was combined with Gemzar (Figure 
11.10(F)). When the cells were treated with either 0.1, 1, or 10 nM Gemzar, 
the level of caspase 3/7 activity increases by approximately two-fold when 
treatment with Gemzar was combined with Na+/K+ ATPase Beta 3 siRNA. 
This additive effect was not observed at the highest levels of Gemzar tested 
(100 nM), suggesting that the highest level of apoptosis was reached.

SUMMARY

In this chapter, we described the high-throughput LC-MS–based proteomics 
platform that was developed in our laboratory. Since access to quality pan-
creatic tissues at a high yield was not possible, and considering the goal of 
our platform is to discover novel cell surface glycoproteins, we completed 
our proteomics analysis using pancreatic cell line models. By putting a robust 
expression validation platform in place that included IHC and quantitative 
flow cytometry methods, not only was it possible to verify expression in 
pancreatic tumor tissues but it was also possible to determine if any given 
proteins were upregulated in other tumor types. As we also extended expres-
sion validation to vital organs within a healthy volunteer, our platform 
enabled us to formulate initial insights regarding possible therapeutic 
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windows and therefore develop a strategic plan forward for diagnostic and 
therapeutic development. We further added value to our proteomics discov-
ery by developing a functional validation platform using RNAi. Thus, it was 
possible to decipher if our expression-based discovery played any role in the 
functional dysregulation of a pancreatic tumor cell. Certainly, it is our hope 
that the work from this novel platform will ultimately lead to the discovery 
of new targets for the diagnosis and treatment of pancreatic cancer.
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CHAPTER 

The Significance of the Feedback 
Loops between Kras and Ink4a  
in Pancreatic Cancer
Baltazar D. Aguda
DiseasePathways LLC, Bethesda, MD, USA

INTRODUCTION

Molecular feedback mechanisms lend robustness and the ability of living 
cells to respond and adapt to their environment. As a means to ward off 
cancer, for example, the expression of proto-oncogenes in response to 
growth factors is normally followed by the expression of tumor suppressor 
genes. Myc and p53—a proto-oncogene and a tumor suppressor gene, 
respectively—are good examples of genes with concomitant expressions; 
and, in fact, several molecular pathways (direct and indirect) by which Myc 
upregulates p53, as well as pathways by which p53 downregulates Myc, have 
been identified (see [1] for a review). Thus, negative feedback loops (nFBLs) 
between Myc and p53 exist (and we have analyzed and modeled how these 
nFBLs coordinate cell proliferation and differentiation [1]). In this chapter, 
we investigate the nFBL between two genes, Kras and Ink4a, that are implicated 
in the early stages of pancreatic ductal adenocarcinoma (PDAC) development. 
Oncogenic mutations in Kras and loss or deficiency of Ink4a are exhibited 
by an overwhelming majority of PDAC patients [2–5] and in various other 
human cancers [6].
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The significance of the Kras-Ink4a nFBL may be related to its role in 
determining thresholds of Kras activation. Note that individuals with oncogenic 
Kras mutations can remain normal and healthy, perhaps because a certain 
threshold of Kras activity has not been reached. To explore this idea, we discuss 
the possible factors determining this threshold in the section Threshold of 
Kras Activation. At the single molecule level, Kras switches between inactive 
and active protein conformations; but, at the level of protein population (in a 
single cell), Kras activity behaves more like a rheostat rather than a switch [7]. 
We shall discuss how positive feedback from Kras effector signaling pathways 
to Kras itself can influence the value of Kras activation threshold. A few of 
these effector pathways are considered in the section Kras Effector Pathways 
in PDAC Development, with discussion of their potential control points and 
the effects of their perturbations on the cell cycle and apoptosis—processes 
that ultimately determine the rate of tumor growth.

In our review of Myc-p53 interactions [1], we indicated pathways by 
which Myc downregulates p53 in abnormal conditions (as in various cancers). 
The mutual downregulation between Myc and p53 constitutes a positive 
feedback loop (pFBL) that weakens the normal nFBL between them.  
A similar pFBL can occur between Kras and Ink4a. In the section Negative 
versus Positive Feedback Loops between Kras and Ink4a, we discuss a case 
where Kras indirectly downregulates Ink4a, thus forming a pFBL between 
Kras and Ink4a. This pFBL creates a potentially unstable situation where 
Ink4a is suppressed and a runaway Kras activation may ensue.

In the section Ink4a against microRNAs in the Control of Kras, we give 
examples of Kras-mediated pathways that affect the expressions of microRNAs 
(miRs) whose targets feed back to Kras. Although these feedbacks are all 
pFBLs, they are different in details: one set is characterized by mutual 
upregulation between Kras and a miR, while the other set involves mutual 
antagonism between Kras and a miR. This section illustrates how the nFBL 
between Kras and Ink4a may play a role in suppressing the deregulatory 
effects of the miR-mediated pFBLs that can amplify Kras activity.

In the last section, Concluding Remarks, we give a summary of the 
complexity and confounding features of these Kras pathways, and the role 
that mathematical and computational modeling can play to increase our 
understanding of the system.

THRESHOLD OF KRAS ACTIVATION

Activating mutations in the KRAS gene (e.g., KrasG12D) may also be 
found in normal healthy individuals and are therefore not reliable markers 
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for PDAC [8,9]. It is believed that Kras proteins must be activated beyond a 
certain threshold before initiating cell transformation. We define a “thresh-
old” to mean a particular level of an input signal below which there is no 
(or insignificant) response and above which there is a significant response  
(a binary switch would have a zero or full response below or above the 
threshold, respectively). As we shall see in this section, there can be different 
thresholds of Kras activation—one viewed at the single-protein level where 
switching between structural conformations occurs, and another at the  
protein population level where Kras effector pathways are involved, particu-
larly those that positively feed back to Kras.

A property of a Ras (Kras, Hras, Nras) protein that makes it an appropriate 
decision element for signal transmission is the ability to act as a binary 
switch between different structural conformations depending on whether it 
is bound to GDP (guanosine diphosphate) or GTP (guanosine triphos-
phate) (see Figure 12.1 and Refs [10–12]). GTP-bound Ras is said to be 
active because it can interact with proteins involved at the head of Ras 
effector pathways. GDP-bound Ras has significantly reduced ability for 
such interactions and is therefore referred to as inactive. Guanine nucleotide 
exchange factors (GEFs) catalyze Ras activation by stimulating the exchange 
between the GDP bound to Ras and cytosolic GTP. On the other hand, 
GTPase-activating proteins (GAPs) inactivate Ras by catalyzing the hydrolysis 
of bound GTP to GDP. Ras itself has an intrinsic GAP activity. The detailed 
mechanism and kinetics of these processes have been and are being investigated 
(for example, see Refs [12–15]).

In a population of Ras proteins (in a single cell), because of the variable 
ratios between active and inactive Ras proteins, the activity of the ensemble 
of Ras proteins is expected to behave more like a rheostat [7]—one in 
which the overall Kras population activity is monotonously regulated and 
without noticeable switching features. Activating mutations in the Kras 
gene have been found to drastically change the ratio of GDP-bound to 
GTP-bound Ras. Under basal resting conditions, it is estimated that the 
percentage of GTP-bound Ras is less than 5% for wild-type Ras, compared 
to over 50% for Ras with oncogenic mutations [16]. Among the possible 
reasons for the increased levels of GTP-bound Ras mutants, insensitivity to 
GAPs and significant reduction of the intrinsic GTPase activity of Kras have 
been shown to be the primary reasons [8,17–19].

As depicted in Figure 12.1, Kras effector pathways can induce cells to 
produce cytokines, growth factors, and inflammatory mediators that drive 
Kras activation in autocrine or paracrine manner in a cell population [7,8]. 
For example, it has been shown by various groups [8,20] that the NF-κB 
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pathway is involved in the pFBL that drives Kras activity to prolonged and 
sustained levels (this loop involves an NF-κB target, Cox-2, which is an 
enzyme that induces several mediators of inflammation such as PGE2).

The positive feedback to the KRas GTPase cycle (see Figure 12.1) gen-
erates an interesting threshold on Kras activity. We have shown earlier [21] 
that a positive feedback to a cyclic reaction can create a threshold that 
depends on the total level of the proteins involved in the cycle (in the pres-
ent case, the total of inactive and active Kras proteins). Our previous results 
are summarized in Figure 12.2. In Figure 12.2(B), the steady state level of 
active Ras (Ra,ss) is plotted against total Ras protein (Rtotal). It was shown 
that below a certain level of Rtotal (this level is indicated by R* in Figure 
12.2(B)), active Ras always goes to zero at steady state (the “s” above  
the zero horizontal line for Rtotal less than R* in the figure indicates that  
the zero steady state is stable—in the sense that any perturbation out of the 
zero state always returns to zero eventually; in other words, there could be 
transient Ras activities, but these transients eventually go to zero). This zero 
steady state still exists beyond R* but is now unstable (shown by the dashed 
line in Figure 12.2(B) and labeled “u”) in the sense that a small perturbation 
will always increase until a positive value of the steady state is reached; this 
locus of positive steady states is shown by the solid diagonal line to the right 

Figure 12.1 The Kras GTPase Cycle Showing Cycling between GDP-Bound and  
GTP-Bound Kras, Catalyzed by a GAP (GTPase activating proteins) and a GEF (Guanine 
nucleotide exchange factor). The long dashed curve represents positive feedback loops 
from molecules induced by Kras effector pathways. Figure is modified from Ref. [7].
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of R*. As shown, Ra,ss increases as Rtotal increases beyond R*. We emphasize 
that as long as Rtotal is below R*, the inactive state is the only state that exists 
at steady state.

The parameter that controls the Kras activation threshold is Rtotal (Figure 
12.2(B)), the total Ras protein, and attention should be given to studies on 
the regulation of total Ras protein levels [8,22,23]. For a better understand-
ing of Kras activity thresholds, the details of the pFBLs between Kras and its 
effector pathways (dashed curves in Figures 12.1 and 12.2(A)) would have 
to be elucidated.

KRAS EFFECTOR PATHWAYS IN PDAC DEVELOPMENT

Signals from membrane receptors (such as receptor tyrosine kinases) are 
transduced to Kras proteins via adapter proteins that may act as GEFs. These 
signals are then transmitted through cascades of protein–protein interactions 
that may or may not reach cellular machineries such as the cell cycle engine 
driven by the CDKs (cyclin-dependent kinases) or the apoptotic machinery 
driven by caspases. In this section, we briefly discuss a couple of the Kras 
effector pathways that have been implicated in pancreatic cancer. We do not 
give a comprehensive review of these pathways here but merely intend to 
give examples of the complexities in the cell-fate decision programs orches-
trated by the Raf/Erk and Pi3k/Akt signaling pathways as they are currently 
understood (Figure 12.3).

Figure 12.2 (A) A positive feedback loop (dashed curve) coupled with the Ri–Ra cycle. 
This loop means that the rate of production of Ra is a function of Ra as well as Ri. 
(Ra = active Ras, Ri = inactive Ras); (B) The steady state of Ra (Ra,ss) as a function of Rtotal 
(= Ri + Ra) for the case when the kinetics of the forward and reverse reactions is mass 
action (see Ref. [21] for more details). Figure is modified from Ref. [21].
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Step 1 represents processes leading to the activation of Pi3k or Raf—the 
initial proteins in the Pi3k/Akt pathway and Raf/Erk pathway, respectively. 
Pi3k (a lipid kinase and a p85/p110 heterodimer) and Pdk1 (a serine–threonine 
protein kinase) participate in the activation of Akt (a serine–threonine pro-
tein kinase); for a detailed review of Akt signaling, see [24]. Akt and Pdk1 are 
separately recruited to the plasma membrane by binding to PIP3 (phospha-
tidylinositol-3,4,5-trisphosphate). PIP2 (phosphatidylinositol-4,5-bisphos-
phate) is phosphorylated to PIP3 by Pi3k. Pdk1 phosphorylates Akt, thereby 
contributing to the activation of the latter. Pten, a lipid phosphatase, indirectly 
inhibits Akt (Step 10 in Figure 12.3) by dephosphorylating PIP3 (that is, 
counteracting the action of Pi3k). Akt is referred to as a survival factor 
because it suppresses apoptosis in various ways, including the sequence of 

Figure 12.3 Simplified Picture of the Kras Effector Pathways that Involve Raf/Erk and 
Pi3k/Akt. Solid curves are direct interactions. Dashed curves are indirect. An arrow 
means “activates” or “upregulates”; a hammerhead means “inhibits” or “downregulates”. 
See text for more details. White boxes are proto-oncogenes; gray boxes are tumor sup-
pressor genes.
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Steps 11, 8, and 14; other pathways that may involve suppression of pro-
apoptotic factors are represented by Step 15. There also are various Akt 
pathways that promote cell proliferation, for example, the sequence of Steps 
11, 8, and 12, and others not shown in Figure 12.3 (reviewed in Ref. [24]).

The cycle composed of Steps 8, 9, 10, and 11 effectively represents a 
mutual antagonism between the potentially oncogenic proteins Akt and 
Mdm2, on the one hand, and the tumor suppressors p53 and Pten, on the 
other hand [1,25,26].

As represented in Step 2, the Pi3k/Akt and Raf/Erk pathways induce 
the expression of the Cdkn2a gene locus that gives rise to two distinct proteins, 
Ink4a and Arf, by translating a common exon in alternative reading frames. 
Both Ink4a and Arf are tumor suppressors. In Step 5, Ink4a binds and inhibits 
Cdk4 and Cdk6 (cyclin-dependent kinases that drive the G1 to S phase 
transition of the cell cycle). Arf binds to Mdm2, thus preventing the latter’s 
ability to downregulate p53; also, Arf arrests the cell cycle indirectly via 
Steps 6, 8, and 12 (net of Cdk inhibition), and can also promote apoptosis 
via Steps 6, 8, and 14. As indicated by Step 6, the absence of Raf would 
promote the Mdm2-induced degradation of p53. Pten is then expected to 
be downregulated, thereby increasing Akt activity. Loss of Pten has been 
shown to accelerate oncogenic mutant Kras-induced pancreatic cancer [27]; 
and combination of oncogenic Kras and Pten loss has been observed to 
induce NF-κB activity [28], which could further accelerate Kras activation 
through the positive feedback loop (dashed curve) shown in Figure 12.1.

Activation of the Pi3k/Akt pathway has been claimed to be necessary 
and sufficient for initiating pancreatic carcinogenesis [7,29]. A central role 
for the Raf-Mek-Erk pathway in generating PDAC has also been proposed 
[30]. Indeed, it may be necessary to inhibit multiple Kras-effector pathways 
in order to succeed in suppressing PDAC development.

Step 13 represents pathways that drive the cell cycle engine, including 
the Rb (retinoblastoma)/E2f pathway. Kras-induced senescence is believed 
to occur via pathways that are downstream of Ink4a and Arf, leading to 
inhibition of Cdk4/6. As depicted in Step 4, however, there exist possible 
pathways from Kras that positively regulate the cell cycle [31,32] or inhibit 
senescence [33]. It has been observed that increasing the activity of the 
Pi3k/Akt pathway dampens Ras-induced senescence [33]. This observation 
could be explained by the fact that there are pathways from Akt that promote 
Cdk activity (e.g., the sequence of Steps 11, 8, and 12).

Figure 12.3 is a schematic diagram of a more complex network. Every 
step of the Raf/Erk pathway has a nFBL [34]. Also, there are nFBLs in the 
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Pi3k/Akt pathway as shown in Step 16 in Figure 12.3 (for example, the 
nFBL involving mTORC1, S6K, IRS1, and Pi3k) [34,35]. It is conceivable 
that these nFBLs also contribute to the cell’s repertoire of fine tuners and 
failsafe mechanisms against pathologically overactive proliferative signals.  
A very important negative feedback to Kras, represented by Step 7 in Figure 
12.3, comes from Ink4a and will be discussed next.

NEGATIVE VERSUS POSITIVE FEEDBACK LOOPS BETWEEN 
KRAS AND INK4A

The Ink4a tumor suppressor is a sensor of oncogenic stress, being upregu-
lated in response to potentially oncogenic signals such as high levels of Kras 
activity [36,37]. Kras-mediated induction of Ink4a is shown by Steps 1 and 
2 in Figure 12.3.

Some details of the negative feedback from Ink4a to Kras (Step 7, Figure 
12.3) are reported in a recent work of Rabien et al. [22]. It was shown that 
Ink4a suppresses Kras expression and reduces Kras protein stability. Steps 1, 
2, and 7 (Figure 12.3) therefore form a nFBL (we refer to the Kras-Ink4a 
nFBL as the KI-nFBL). The significance of the KI-nFBL in the regulation of 
Kras activity in PDAC development is manifested in the consequences of the 
loss of Ink4a function in early PanINs (pancreatic intraepithelial neoplasia). 
The KI-nFBL may act to counterbalance the pFBLs shown in Figure 12.1  
that promote runaway Kras activity.

Intriguingly, oncogenic Ras effector pathways that inhibit expression of 
Ink4a (Step 2 in Figure 12.4(A)) may exist. An example would be the com-
bination of Steps 2a and 2b in Figure 12.4(B), which is a network model 
proposed by Ohtani et al. [37]. Kras-induced elevation of DNMT1 (DNA 
(Cytosine-5-)-Methyltransferase 1) causes epigenetic repression of Ink4a 
and subsequent proliferative burst of oncogenic Kras mutant cells; this burst 
generates accumulation of DNA damage and increase in ROS (reactive 
oxygen species), ultimately blocking DNMT1 expression. This is an exam-
ple of a cross talk between the Ink4a and p53 pathways through the DNA 
damage response (DDR) pathway. An interesting conclusion of Ohtani 
et al. [37] is that the DDR pathway–induced expression of Ink4a is acceler-
ated when p53 function is lost. Another example of Kras repressing the 
expression of Ink4a is provided by Lee et al. [38] who showed that a Kras-
induced transcription factor, Twist, abrogates Ink4a induction.

The pFBL between Kras and Ink4a (Steps 2 and 3 in Figure 12.4(A)) is 
a potential source of instability in the system because suppression of Ink4a 
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could lead to runaway activation of Kras. The interplay between a nFBL 
(Steps 1 and 3) and a pFBL (Steps 2 and 3) is also a phenomenon observed 
in the interactions between Myc and p53, which we analyzed earlier [1]. 
Applying the same analysis, we can make the prediction that when the 
strength of the pFBL exceeds that of the nFBL between Kras and Ink4a, a 
switch to a significantly higher Kras activity occurs. The “strength” of a 
cycle is defined as the product of the individual strengths of the component 
edges (interactions) comprising the cycle [1].

INK4A AGAINST microRNAs IN THE CONTROL OF KRAS

MicroRNAs (miRs) are short (∼18–24 nucleotides) endogenous noncoding 
RNAs that inhibit translation or induce degradation of their target mRNAs. 
Over half of mammalian transcripts have been predicted to be conserved 
targets of microRNAs [39]. MiRs play significant roles in the development 
of multicellular organisms, including processes that also occur during carci-
nogenesis. Changes in miR expression are investigated for their potential as 
diagnostic, prognostic, and therapeutic agents in cancer.

In this section, we focus on miRs that are differentially expressed during 
the early PanINs. We look at some miRs whose expressions are affected by 
Kras and are involved in pFBLs that amplify Kras oncogenic activity. The 
nFBL between Ink4a and Kras can then be viewed as acting to suppress 
these pFBLs. For more extensive discussions on the miRs involved in PDAC 
progression, see Refs [40–42].

Figure 12.4 (A) Negative (edges 1,3) and positive (edges 2,3) feedback loops between 
Kras and Ink4a; (B) Kras can induce pathways that either inhibit or activate cell prolifera-
tion. A proliferative burst may occur with Kras-mediated upregulation of the DNMT1, 
which causes repression of Ink4a expression (edges 2a, 2b); the DNA damage response 
pathway (DDR) then downregulates DNMT1. Figure B is modified from Ref. [37].
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MiRs that have been identified to target Kras include the following: let-
7, miR-96, miR-143/145, miR-216b, and miR-126 [42–46]. Associated 
with elevated Kras activity, these miRs are observed to be downregulated in 
pancreatic cancer cells. Using transgenic mouse models that recapitulate 
PDAC progression, Ali et al. [42] report 187 miRs that significantly vary in 
expression between oncogenic mutant KrasG12D mice with and without 
Ink4a/Arf deficiency; among these, they further validated five oncogenic 
miRs (miR-21, miR-155, miR-221, miR-27a, miR-27b) and four tumor 
suppressor miRs (miR-216b, miR-216a, miR-217, miR-146a). It would be 
useful to elucidate the pathways that induce the expression of these miRs 
and how these pathways are connected to Kras.

Shown in Figure 12.5 are the Kras effector pathways that affect the 
expressions of miR-21 and the miR-143/145 cluster; note that the miR 
targets feed back to Kras and other steps in the Kras effector pathway.

MiR-21, an oncogenic miR that is elevated in early PanINs, is upregu-
lated by Kras and EGFR, through the transcription factor AP-1 [43,47,48]. 
Important targets of miR-21 are the tumor suppressor Pten and the cell 
cycle inhibitor p21Cip1 [43,49]. MiR-21 can also drive tumorigenesis by 
targeting negative regulators of the MAPK (Ras/Erk) pathway such as 
Pdcd4, Sprouty genes, and Btg2 [50,51]. Btg2 reduces the active GTP-
bound Kras state [52,53]. It has been shown that treating a panel of pancre-
atic cancer cell lines with antisense oligonucleotides against miR-21 arrests 
cell proliferation and induces apoptosis, and sensitizes cells to the effects of 
gemcitabine, a drug commonly used in PDAC therapy [43,54].

Loss of the miR-143/145 cluster is often observed in pancreatic cancers 
with oncogenic Kras mutants, and Kras activation causes downregulation of 
miR-143/145 in human and murine cells [45]; restoration of these miRs 
suppresses tumorigenesis [45]. Interestingly, it was also shown [45] that these 
miRs directly target RREB1 and Kras, thus, forming double-negative 
interactions (which are pFBLs) as shown in Figure 12.5.

The Kras-miR-21 pFBL is a double-positive loop, while that of Kras-
miR-143/145 is a double-negative loop. Both are pFBLs but have different 
dynamics. The Kras-miR-143/145 loop acts as toggle switch that gives rise 
to an inverse relationship between Kras and miR levels. The Kras-miR-21 
loop gives a direct relationship between Kras and miR-21 (this could act 
like a switch depending on the nonlinearity of the feedback interactions). 
Such relationships in terms of FBLs are not yet known for the miRs men-
tioned previously that directly target Kras, but it would be useful in the 
future to map the pathways between Kras and these miRs so we can have a 
handle on controlling their levels.
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CONCLUDING REMARKS

The concomitant Kras activating mutations and deficiencies in Ink4a/Arf in 
an overwhelming fraction of pancreatic cancers, especially in the early stages 
of PDAC development, illustrate the importance of studying the interactions 
between oncogenes and tumor suppressor genes that respond to these onco-
genes. As with the Myc-p53 interactions [1], we have summarized here the 
evidence that there exists a negative feedback loop between Kras and Ink4a 
(KI-nFBL)—that is, activated Kras itself upregulates its downregulator, Ink4a, 
presumably to avoid overshooting a normal range of Kras activities. (In the 
language of dynamics, the KI-nFBL is a stabilizing feature of the network.) 
We have summarized the Kras effector pathways, Pi3k/At and Raf/Erk 
(Figure 12.3), to show examples of the confounding or even conflicting 
routes of signaling that decide whether a cell enters the cell cycle, becomes 
quiescent, or dies by apoptosis. We also highlighted recent reports about Kras 
effector pathways, especially those involving NF-κB, that induce cytokines 
and inflammatory mediators that then amplify Kras activity (Figure 12.1).  
These Kras effector pathways contribute to Kras activation thresholds (e.g., 
the value R* shown in Figure 12.2(B)). Thus, the broad picture for  

Figure 12.5 The Kras-Ink4a Negative Feedback Loop versus the Positive Feedback 
Loops between Kras & miR-21, and between Kras & miR-143/145. Figure is modified from 
Ref. [50].
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Kras activation involves not only the molecular-level parameters determining 
protein conformations but also the protein population–level kinetics and 
mechanisms of the nFBLs and pFBLs involving Kras effector pathways.

We have proposed the hypothesis that the KI-nFBL serves to counteract 
the pFBLs mediated by certain miRs (Figure 12.5) and the pFBLs induced 
by Kras effector pathways (Figure 12.1). If this hypothesis is valid, the dis-
ruption of KI-nFBL (due to loss or deficiency of Ink4a) would be predicted 
to have profound consequences on Kras activity and on all the pFBLs that 
Kras initiates—increasing Kras activity to pathological levels and accelerating 
cell transformation.

Admittedly, we have oversimplified the situation. It will be necessary to 
include the interactions of the Myc oncogene and p53 with Ras as depicted 
in Figure 12.6. Myc is overexpressed in pancreatic cancers [55], and p53 
inactivating mutations show up in a majority of late PanINs and PDAC. The 
cooperation between Myc and Ras in cell transformation has been the subject 
of many papers (e.g., see Refs [56–58]). As shown in Figure 12.6, a nFBL 
between Ras and p53 exists (for the indirect interactions, see Ref. [59]).

To aid in the discovery of drug targets in complex pathways, it will be 
necessary to employ tools of mathematical network analysis and computer 
simulations [35]. These tools would allow us to perform network stability 
analysis (to discover nodes or edges that can be perturbed to elicit desired 
states of the cell) as well as in silico experimentation or simulations of drug 
dosing protocols. The reason for our focus on FBLs in this chapter is based 
on the results of stability analysis that cycles in qualitative networks (those 
with only arrows and hammerheads) are the determinants of stability [1]. We 
have provided an example of this stability analysis in our previous work on 
the Myc-p53 loop [1] where we also demonstrated how to define strengths 
of feedback cycles and find their relative values that destabilize the system.

It will also be necessary to deal with quantitative issues regarding Kras 
activity. As with Myc, and perhaps all proto-oncogenes, Ras promotes cell 

Figure 12.6 Interactions among oncogenes (white boxes) and tumor suppressor genes 
(gray boxes).
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proliferation but, when overexpressed beyond a certain threshold, could 
trigger apoptosis [1,60]. The inhibition or insensitivity to apoptotic factors 
at Ras levels that would have triggered apoptosis in normal cells is a poten-
tial driver of cancer development. Thus, as with Myc, we predict that there 
is a range of Ras activities that lie within a “cancer zone” where the prob-
ability of initiating carcinogenesis becomes significant [1,61].
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INTRODUCTION

Pancreatic cancer (PC) kills ∼300,000 individuals worldwide, and each 
year in the United States there are an estimated 43,920 new diagnoses 
with an annual mortality of 37,390 [1,2]. It is one of the most difficult 
cancers to treat, with a five-year survival (<5%) due in part to the high 
degree of  treatment resistance leading to failure of most of the available 
therapies. The etiology of the disease is mostly unknown. It is suggested 
that PC is  correlated with tobacco use, diabetes, obesity, and chronic 
 pancreatitis [3]. There also is a genetic basis to acquiring the disease, since 
5–10% of patients have a family history of PC. A major stumbling block is 
that PC is diagnosed at a very late stage of the disease where invasion or 
metastatic spreads (both micro- and macro-metastases) have already 
occurred, contributing to a poor prognosis. In spite of the increased 
 understanding of the mechanisms of PC development, there is no 
 standardized diagnostic methodology for its early detection. Many of the 
symptoms initially described by patients go  unnoticed by physicians due 
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to their nonspecific and variable nature, resulting in misdiagnoses. This 
delay in identification after the onset of some symptoms is crucial for the 
future prospects of PC patients. Sadly, at the time of actual diagnosis, nearly 
half of the patients exhibit metastasis.  Typically >80% have advanced or 
locally advanced disease, and less than 15% of patients have organ-confined 
disease at the original PC site. This is partly due to the long duration of 
time between disease onset and diagnosis. Frequently, PC can be identified 
during unrelated CT scans of patients, and several studies have attempted 
to derive structural similarities that may alert radiologists to a malignant 
presence before diagnosis. Some patients were identified as having PC 
retrospectively about 18 months prior to diagnosis while asymptomatic. 
The chance observations call for urgent innovations in the areas of early 
diagnosis and novel development of cytotoxic agents, as well as agents for 
“personalized medicine”. Emerging advances would likely help in early 
diagnosis, for example, identification of circulating tumor cells related to 
PC metastasis and epithelial–mesenchymal transition (EMT), as well as 
identification of the PC stem-like cells (CSLCs or CSCs) that are increas-
ingly being recognized to play a role in sustaining the heterogeneous and 
resistant nature of the disease.

THE COMPLEXITY OF PANCREATIC CANCER

Like many other cancers, PC can be defined in terms of accumulating 
genetic mutations in key tumor activator and inhibitor genes such as 
K-ras and a myriad other regulatory molecules [4]. Analyses of upstream 
 regulators in PC progression models have identified members of the 
sonic hedgehog signaling pathway (SHH and Smo) as being aberrantly 
expressed in the precursor PanIN lesions, which highlights the role and 
degree of K-ras and HER2/neu mutations and their significance in the 
initial appearance of PanIN lesions [5]. The significance of the SHH 
pathway in PC was  emphasized when it was demonstrated that  inhibition 
of this pathway strengthened the efficacy of chemotherapy in vivo [6]. 
Related to K-ras is the delicate balance maintained through TGF-β 
 family molecules with dual functions, both as oncogenic and as a tumor 
suppressor. Smad7 was found to inhibit the function of TGFβRI from 
phosphorylating Smad2 or Smad3, resulting in an increased tumorigenic 
potential in PC by preventing nuclear localization of Smad4 [7]. Disrup-
tion of Smad4 function has been realized as an indicator of decreased 
survival, yet some ambiguity of results has posed problems in accurately 
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ascertaining the role of Smad4 dependency or TGFβ resistance in PC 
cells [8]. Moreover, studies have shown that inhibition of hedgehog sig-
naling had a measurable effect on the EMT that is thought to be crucial 
for PC invasiveness and metastasis, mediated by downstream  inhibition 
of Snail and Slug transcription factors [9] (the role of these important 
signaling molecules will be further clarified when we present the PC 
stem cell work following). Hedgehog has also been implicated in the 
development of stem cells, which are normally part of the gastrointestinal 
(GI) tissue development [10]. Generally, progression of PC involves 
 mutations or abnormal expression of Pdx1, hedgehog signaling, K-ras, 
p16, p53, DPC4, and BRCA2, as well as their interacting molecules, 
resulting in carcinoma [11]. Figure 13.1 is the Ingenuity Pathway  Analysis 
(IPA)–derived pathway depicting the involvement of various signaling 
pathways during the different stages of PC development. In addition to 
frequently cited mutations and aberrant expression of the DNA sequence, 
epigenetic factors have been implicated whether they are  methylations 
or  dysregulations of microRNAs (miRNAs), notably a detectable 
 hypermethylation in developing PanINs [12].

Even with extensive knowledge gained over the vast array of molecular 
mechanisms involved in PC, early stage identification remains problematic 
and at times incidental. Under ideal circumstances, the majority of patients 
do not possess those traits. The resectability of a PC tumor represents the 
initial line of defense for the treatment of PC. Detection at early stages is 
key, yet even with resection under ideal circumstances, the five-year sur-
vival postresection holds at 20% [13]. Mortality postresection has been a 
point of debate with different attempts being made to measure markers of 
success or failure [14]. Problems in risk stratification and availability of the 
surgery have contributed to many patients not being offered this course of 
 treatment, and despite resection, adjuvant therapies such as 5-FU, 
 FOLFIRINOX, and gemcitabine are still the standard line of care for both 
unresectable and resectable tumors [15]. There is high desirability of testing 
for PC presence and treatment progress through serum biomarkers, yet 
one such strategy, the testing for biomarker CA19-9, a molecule frequently 
observed in PC patients, has shown low sensitivity and specificity [16]. 
Other molecules such as HCGβ and CA-72-5 have shown higher 
 sensitivity than CA19-9 in the laboratory setting; however, these and other 
markers continue to be under investigation for further clinical efficacy as 
efficient biomarkers in PC [17]. Interestingly, some groups have used gem-
citabine as a filter for  resistance or sensitivity to treatments, and at least one 
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Figure 13.1 Pathway View of Pancreatic Ductal Adenocarcinoma. Ingenuity Pathway Analysis (IPA)–generated pathway showing different 
important signaling involved during the various stages of pancreatic cancer development from Normal Duct to PanIN-1A to PanIN-1B, PanIN-
2, PanIN-3 to adenocarcinoma. (For color version of this figure, the reader is referred to the online version of this book.)
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study was able to correlate  treatment success by testing for the hENT1, a 
molecule that regulated  gemcitabine uptake [18]. Using such a strategy, a 
more  personalized approach was used in determining future treatment 
choice. The early models for studies have been aimed at precisely identify-
ing the genetic basis of  occurrence, especially of familial PC, by establish-
ing a  database to pinpoint what classifies the at-risk individuals [19]. A 
more generalized approach has been the use of traditional family medical 
 histories, including diagnostic data, compared with data-based repositories 
to identify at-risk individuals through factors also outside genetics, such as 
risky behavior or environmental determinants [20]. Such a model is not 
new; however, it hedges a bet on the development of precise risk factors to 
ascertain the likelihood of PC development, some of which  epidemiologically 
have seen a strong correlation to disease development [21]. The databases 
are a key step but are still in their infancy, with results anticipated in the 
future. Many other molecules have been characterized as possibly having 
high prognostic, diagnostic, or druggable values, although different studies 
performed have so far provided conflicting information as to their true 
nature in the management of PC [22]. This provides a unique problem that 
is only now being realized where single targets or even a small subset of 
related targets may not confer the expected outcome when targeted or 
used as biomarkers in PC.

The traditional strategies in designing treatment have centered around 
combination therapies as well as single-agent targeted therapies but have 
slowly shifted toward a multitargeted approach [23]. The identification of 
multiple pathways and effective targets has produced several approved 
inhibitors and multitarget drugs, yet a proper sequence of delivery remains 
a question due to the lack of comparative clinical studies [24]. One of the 
difficulties in the use of combination therapies is in part due to an unclear 
picture of precise molecular interactions between the different drugs within 
the used combination. In a previous study, we were able to demonstrate the 
delicate tug-of-war where oxaliplatin, a key component of FOLFOX and 
FOLFIRINOX combination therapies, participates in the activation of 
tumorigenic mechanisms [25]. PC is an inherently complex disease, with 
multiple factors influencing tumor growth, and contains very intricate 
genetic composition [26]. The key to better targeting and treatment depends 
on proper validation in the appropriate preclinical and clinical stages where 
accurate identification of biomarkers becomes vital in order to identify a 
patient population, predict efficacy in their treatment, and assess the 
 mechanism of treatment failure [27].
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WHY SYSTEMS BIOLOGY IS NEEDED FOR PC

Systems biology is the study of the interactions between different 
 components of a biological system. It is the science that helps sieve through 
the complexity of interactions at multiple levels in any biological system, 
for example, how amino acids or DNA base pairs interact to give rise to a 
protein and gene, respectively. At the next level, it can help understand 
how different proteins interact in a single pathway. Further, using 
 systems-based methods, one can evaluate how different pathways interact 
in a major signaling to give rise to a cellular phenotype. At the next level 
the science can help in deciphering the interaction between different cells 
in a tissue giving rise to the tissue phenotype, and, finally, how the different 
tissues interact at the organism level. Systems biology is characterized as an 
approach that utilizes isolated molecular and biological data and provides 
a macro context through “holistic” analysis, thereby providing the overall 
structural relationships, system dynamics, and internal interactions [28]. A 
number of fields have evolved from systems biology, and among them 
 network pharmacology is increasingly being utilized in cancer research 
and drug discovery. Network pharmacology is the science that takes the 
information from biological networks and then identifies the important 
druggable entities within these networks that can be targeted to induce 
phenotypically meaningful changes in that network. Network 
 pharmacology can allow disease stratification, biomarker identification, 
and other areas of cancer research that have been elaborated in our  previous 
thematic issues and reviews [29]. A network approach to PC translational 
medicine has far-reaching potential in both cutting the cost and increasing 
accuracy of molecular understanding of the disease and in some instances 
delivering prognostic and diagnostic indicators [30]. The true value of 
these technologies in PC molecular diagnostics and therapy is due in part 
to obtaining meaningful data using modeling and simulation involving 
predictive methodologies, thereby giving conclusive and accurate results 
 noninvasively. Additionally, through curation of available data on  individual 
patients or from consolidated databases aggregating molecular profiles, 
superior  diagnostics and drug combinations can be designed [31]. Data can 
be extracted to provide very attractive information related to the  biological 
 system-wide function of PC, providing context and discovery potential 
not previously seen [32]. High-throughput analysis of the proteomic 
 profile of PC patients has established specificity and sensitivity to 100% in 
the identification of the disease [33].
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Using such curation methodologies, evidence has surfaced from 
 microarray analysis of a distinction in the genomic expression signatures of 
PC patients versus normal individuals [34]. Particularly useful is the ability 
to create an in silico environment improving upon the gained knowledge 
and observations through animal data, providing a uniquely  human- databased 
analysis shedding light on key interactions possibly not obtainable through 
studies using orthotopic model alone. Evidence of this can be found through 
a simple comparison of genetically engineered and xenograft models, iden-
tifying the genetically engineered mice to provide more context for PC 
understanding in which we can infer the next logical step to be an in silico 
model of human PC [35]. Network and mathematical modeling have shed 
light on key questions of regulatory mechanisms in PC such as serine-
phosphorylation of STAT1, opening up a new avenue in understanding 
signal transduction and regulation that may be related to specific patient 
subtypes [36]. Indeed, systems level analysis has provided a window of 
opportunity to fill the gaps of information between the xenograft model of 
PC and hypothesized mechanisms as well as a categorization (stratification) 
of data into unique patient groups [37].

Systems level analyses also provide context for the drivers of the disease 
that are outside the inherited genetic mutations yet frequently implicated in 
cancer progression. The role of microRNAs (miRNAs) has also been 
 frequently cited as a robust and dynamic regulator of PC invasiveness and 
disease progression, mainly due to frequent finding of miR-21 in multiple 
models of tumor metastasis [38]. Through systems level analysis, these same 
miRNAs can be shown to harbor an acquired functional nature, either 
 inhibiting or promoting disease formation in PC with diagnostic value [39]. 
Interestingly, through the systems perspective of the relationship between 
miRNAs and the wider network they function within, it is apparent that 
their ability to carry out multiple functions both good and bad while 
encompassing large chunks of biological pathways renders them some of the 
most robust class of molecules in epigenetic regulation [40]. Proper identifi-
cation and analysis of miRNAs have rendered some of them capable of 
accurately determining disease type in the pancreas between normal pan-
creas tissue, pancreatitis, and PC with a hypothesized ability to ascertain 
prognostic outcome [41]. The presence of circulating miRNAs satisfies the 
noninvasive desire of any future standardized diagnostic target, and has been 
shown to be useful in PC diagnosis and prognosis, although it is still in the 
early stages of elucidation and validation [42]. Theoretically, as our under-
standing of miRNA interactions grow through systems study, it is not 
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unlikely that some miRNAs might be considered candidates as biomarkers 
for disease development based on vast amounts of data resolving the epigen-
etic chain of events causing aberrant regulation or expression profiles [43].

A cornerstone of systems science is that a single factor (gene, protein, or 
even one pathway) alone cannot be useful as a definitive indicator as we 
now understand that there is a complex interaction between biological 
components. Early attempts have shown an acceptable initial degree of 
accuracy in differentiating tumor classes simply based on algorithmic anal-
ysis of gene expression in tumors [44]. The most probable scenario in the 
future will be a unique, patient-specific molecular signature derived from 
both genomic and proteomic analysis tested against epidemiological PC 
data or general cancer data for diagnosis, stratification, and treatment [45]. 
One such example was the identification of neutrophil gelatinase- associated 
lipocalin (NGAL), previously thought to simply function as an endocrine 
modulator but now seen as a dynamic component of malignancy regula-
tion in some of the earliest predecessors to PanIN lesions, with a clear dif-
ferentiation from normal, pancreatitis, and PC tissues [46].

Because the foundations of systems biology and the search for diagnostic 
indicators have yielded potential directions for research, a similar approach 
to treatment modalities has also resulted in greater insight into drug design. 
Subcategorizing PC into multiple types has generated common identifiable 
markers conserved through the disease type, and in designing compounds 
targeting these components, survivability and efficacy may be increased 
rationally [47]. Utilizing systems biology, it was shown that new efficacious 
combinations could be discerned from already available compounds 
 displaying higher potency than single pathway or single target motifs in PC 
[48]. Not only does network modeling show chemical interactions, it also 
provides insight on new combinatorial possibilities, but it could also be 
 useful in isolating key network centers eligible for targeting due to their 
highly active nature either in PC formation or progression [49]. The same 
strategy can be utilized to overcome chemoresistance, and it was shown in 
one in vitro model targeting Notch signaling to bypass the effect, which 
also partially reversed the EMT, a characteristic of metastatic and invasive 
cells [50]. The use of neutraceutical (naturally found biologically active 
compounds in diet and diet-derived agents) compounds within this  context, 
although controversial, represents a prime opportunity in the era of new 
treatment strategies as well as identifying previously unseen network players 
in PC [51]. Although natural agents may not work in the most targeted 
manner, many have shown potency in preclinical PC models with minimal 
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toxicity compared to traditional cytotoxic chemotherapeutic agents. 
 Therefore, identification of key active molecules within such entities in 
combination with a network-based strategy for PC treatment should yield 
not just single target goals but also multinodal targeting objectives through 
capitalizing on the promiscuity of such compounds against the complex 
cancer networks. Identifiable promiscuity thus becomes an asset; it was 
demonstrated by Keiser et al., in 2009 through analysis of 3665  FDA-approved 
chemical entities that yielded 23 novel associations, five of which showed 
remarkable potency against novel and unrelated pathways at submicromolar 
concentrations [52]. It is well recognized that PC research has benefited 
immensely from the development of transgenic mice models that mimic 
the disease very closely. Such transgenic mice models have allowed deeper 
evaluations of PC microenvironment as these animals harbor desmoplastic 
stroma, which replicates that present in human carcinoma. Specifically, the 
PDX-1-Cre;LSL-KRASG12D (KPC) model has played a pivotal role in 
understanding the early forms of PC [53]. However, computational biology 
analysis, particularly systems and network biology, has not been fully 
exploited on these models. This remains an uncharted area of research that 
can immensely benefit from systems and network technologies. In all 
 likelihood, future directions of diagnosis will combine such factors,  including 
miRNA expression profiling, protein and gene expression profiling, as well 
as the traditional phenotypic (e.g., histologic) indicators of malignancy for 
a complete picture of PC development, like a full painting with many colors 
placed in the right context.

It is quite possible that the most effective combination treatments are 
currently on the market yet have not been evaluated for their efficacy 
against PC. Considering that new chemical entities for cancers in general 
have so far experienced >80% failure rate, especially during phase II and 
phase III trials, it would be both economically valuable and time saving to 
validate efficacies in proper cellular and animal models prior to the advanced 
stages of treatment development for PC [54]. Current data and evidence 
highlight the strong need to better model strategies in PC for both drug 
design and patient stratification [55]. By analyzing such association from a 
network pharmacology perspective, more reliable predictive models can be 
created for PC with molecularly driven and patient-specific personalization 
tracking the success of any given treatment [56]. Vitally, an in silico model 
for targeting potential, synergy, and combination design represents an asset 
in drug identification, the same model in one instance identifying 52 drug 
targets, half of which already exist as approved drugs for targeting them [57]. 
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This methodology has seen success in determining the most relevant 
 bioactive ingredients in some neutraceuticals and will most likely expand to 
PC models for efficacy identification [58]. Furthermore, elaborated  statistical 
and computational methods can build upon already identified patterns of 
interaction and could predict drug-target dynamics in PC through in silico 
analyses and a highly efficient possibility for high-throughput chemical 
screening [59].

One of the major challenges in treatment of PC that can be suitably 
addressed by systems science is the early assessment of toxicity and 
 treatment failure of any novel regimen. During the drug selection process, 
PC patients are typed into a one-size-fits-all category that is based on the 
targeted  molecule or a phenotypic characteristic. This is the primary rea-
son for high failure rates, which could be due in part to either ineffective-
ness of the drugs being used or the associated toxicity in phase III clinical 
 development, where sometimes there is an unclear endpoint for assessing 
treatment  outcome due to unreliable biomarkers [60]. Just as the search for 
versatile and reliable biomarkers is important in preclinical studies, they 
serve much the same purpose in assessing treatment success. Utilizing the 
same  mechanisms of analysis and understanding in drug targeting and 
 perturbation effects, similar information and methods can be extracted to 
predict toxicity and its mechanism relevant to whole organ systems [61]. As 
the PC-specific perturbations can be explained mechanistically and 
 systematically, the same drug-based perturbations can be correlated to 
markers already known  physiologically related to toxicity [62]. One of the 
most basic methods has been the extrapolation of genetic polymorphisms 
on a patient-specific scale rendering them susceptible to adverse reactions 
from one compound or another [63]. By combining preexisting omics 
data with other cursory metabolite response data, information can be 
derived from perturbations that not only serve a biomarker function but 
also a macro-scale survey of the intricate metabolic balance [64]. Access to 
large databases and  high-throughput analytics provides a widespread net-
work of raw  information that would allow a systematically analyzed and 
statistically validated approach to provide a full global picture of chemical 
function, uptake, and  metabolism [65]. Systems of this nature are already in 
place and have seen an inclusion in translational research as a predictive 
risk management and patient  selection tool with reliable dosage selection 
in clinical trials, rendering them scalable to clinical-level monitoring dur-
ing treatment duration [66].  Rationally chosen combinations of targeted 
agents may improve  therapeutic outcome by overcoming drug resistance. 
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However, the lack of molecular biomarkers for patient selection and 
 current reductionist clinical trial  methodologies limit successful drug 
development for PC. Application of new research tools including systems 
and network biology is expected to assist in the design of effective drug 
combinations in PC.

In spite of these advances, there is little data available on mid-trial 
 analyses on PC patient tissue samples that are undergoing first-round 
 therapies. We propose that systems and network-based analyses should be 
performed  midway in PC clinical trials to influence decision making, i.e., 
incorporating newer and optimal drugs or their combinations. This would 
depend on the proper selection of time points as to when the test material 
should be  collected for mRNA expression, central gene analysis, gene 
enrichment analysis, and pathway network analysis. Ideally, once the 
advanced cancer is selected through molecular profiling, the patients 
undergo first biopsy for gene expression and systems analysis. In this case 
the drug selection is  dependent on a single or combination regimen that 
has shown preclinical efficacy. However, in systems-based clinical trial 
design, we propose that once treated, the patient should undergo a second 
biopsy that is again  subjected to gene expression and systems analysis to 
evaluate whether the drugs were effective in eliminating the intended tar-
get and their network. Depending on the outcome of the second biopsy, 
clinicians can either  continue treatment or optimize it to enhance the effi-
cacy by incorporating newer drugs. It should be noted that such studies 
have their own restrictions that have statistical limitations. In the end, the 
success of such tailored trials depends heavily on the close interaction 
between laboratory researcher,  clinician, and computational biologist. 
Therapies that have undergone  rigorous lab–clinic and lab evaluations and 
are supported by systems level sciences are expected to drive the future of 
clinical trials for PC.

PC THERAPY RESISTANCE AND THE ROLE OF CANCER STEM 
CELLS

The high drug resistance observed in PC significantly contributes to the 
low prognosis of the disease and represents the biggest barrier to effective 
treatment. Thus, improving our understanding of the mechanisms 
 underlying drug resistance in PC may contribute to new strategies in 
 combating the disease. Although much of the mechanism is still under 
investigation, there has been increasing evidence over the past decade that 
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points to the critical role of cancer stem cells (CSCs) in regulating drug 
resistance [67]. CSCs, similar to normal stem cells, have the ability to 
 self-regenerate, replicate heterogeneously, and resist apoptosis. They were 
first discovered in human leukemia cells in 1997, and further investigations 
have identified CSCs in numerous solid tumors including breast, brain, 
colon, prostate, lung, and PC tumors [68,69]. Even though CSCs represent 
only a small subpopulation of the tumor cells (0.05–1%), current evidence 
 suggests that they are responsible for producing the complex, differentiated 
tumor cell lineages present in highly malignant tumors. CSCs share many 
 characteristics with EMT cells, including CD44 and CD24 cell surface 
marker expression, vimentin upregulation, and cadherin 1 downregulation 
[70]. Further clinical theories suggest that the presence of CSCs  contributes 
to the low efficacy of chemoradiation therapy. Even though  chemoradiation 
may reduce tumor mass by killing differentiated cell progenies, the 
 continued existence of CSCs has been suggested to result in recurring PC 
tumors. The molecular mechanism of CSC tumorigenic regulation and 
signaling pathways is currently being investigated in order to find more 
effective therapies for patients. miRNAs have been shown to support the 
pathways that maintain gastric CSCs [71,72]. Further studies with PC also 
suggest that suppression of these CSC sustaining miRNAs decrease the 
aggressive phenotype of the tumors [73].

PC stem cells (or stem-like cells) have been identified through various 
cellular and animal models as a small subset of malignant cells capable of 
initiating new tumor tissue either through metastatic spread or at the origi-
nal site [74]. Evidence suggests that these CSCs play a critical role in cell 
proliferation/migration, metastasis, and chemotherapy resistance, thus 
resulting in high mortality rates. Inhibiting CSCs and their downstream 
effects may provide a novel, effective strategy in treating pancreatic and 
other malignant cancers. However, the challenges lie in the identification 
and mechanism of inhibiting CSCs.

ISOLATION AND BIOLOGICAL CHARACTERIZATION OF PC 
CSCS

Using flow-sorting methodologies, our laboratory has recently identified 
triple-positive (CD44+/CD133+/EpCAM+) CSCs from human PC cell 
lines MiaPaCa-2 and AsPC-1 (Figure 13.2(A)). The CSCs have the ability 
to self-regenerate (spheroid formation assay), which replicates increased 
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clonogenicity that is a characteristic of CSCs obtained in breast, colon, and 
other tumor models (Figure 13.2(B) and (C)).

These triple-positive PC CSC cells have increased cell migratory 
 capabilities (as analyzed through scratch assay), which attests to their  plasticity 
and invasive potential (Figure 13.3(A)). The flow-sorted markers in these 
CSCs could be validated using confocal microscopy where we observed 
enhanced expression of CD44, CD133, and EpCAM (Figure 13.3(B)). 
Confirming their stem-like characteristics, few triple positive CSCs could 
give rise to tumors at subcutaneous and orthotopic sites in SCID mice. This 
is unlike regular PC cell lines that need more than a  million cells to grow at 
subcutaneous and orthotopic sites. Furthermore, we evaluated the  expression 
of the above markers in xenograft-derived tumors using immunohisto-
chemistry (Figure 13.3(C)). Our findings could replicate that of flow-sorted 
cells where we observed enhanced expression of Notch1, CD44, and 
CD133. These multiple lines of evidence support our  hypothesis attesting to 
the stem-like characteristics, although these experiments do not provide 

CSC triple posi�veCSC triple nega�ve

Sphere Forma�on Colony Forma�on

CSC triple posi�veCSC triple nega�ve

(A)

(B) (C)

Figure 13.2 Isolation and Biological Analysis of Pancreatic Cancer Stem-Like 
Cells.  MiaPaCa-2 cells were flow sorted for CD44+CD133+EpCAM+ cells using FACs anal-
ysis (A). The propensity of cells to form colonies was evaluated using colonogenic and 
sphere forming assays. Briefly, 1000 single suspended cells were plated on ultra-low 
attachment wells of Costar six-well plates (Corning Inc., Corning, NY) in 2 ml of sphere 
formation medium. After seven days of incubation, the sphere cells were collected by 
centrifuge (300× g for 5 min), and the number of pancreatospheres was counted under a 
microscope (B). Colony formation was performed according to established protocols (C). 
(For color version of this figure, the reader is referred to the online  version of this book.)
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information on the signaling networks that support their resistant nature for 
which we exploited systems level analyses.

SYSTEMS AND PATHWAY ANALYSIS OF CSCS

While the evaluation of recognized CSC markers can be useful in isolating 
these resistant cells among the general PC cell population, such reductionist 
analysis cannot provide information on the molecular networks that sustain 

Figure 13.3 Molecular Analysis of Pancreatic CSCs. The invasive and metastatic 
 potential of the FACs sorted CSCs was evaluated using wound healing (scratch assay) 
(A). The markers for CSCs were evaluated using immunofluorescence. Cells were grown 
on chambered slides and stained, immunofluorescence assay was performed using 
 previously published methods [75]. (B) 40× immunofluorescence images showing 
 comparative staining of triple negative vs. triple positive cells using EVOS imaging 
 system. Note: enhancement of CD44, CD133, and EpCAM in triple positive population. 
(C) FACs sorted cells were grown in subcutaneous site, tumors were harvested, and IHC 
was  performed to evaluate the expression of CSC markers. As can be seen, CSC-derived 
tumors showed higher expression of stemness markers, CD44, CD133, and Notch, which 
was not found in parent MiaPaCa-2–derived tumors. (For color version of this figure, the 
reader is referred to the online version of this book.)
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their unique characteristics. It is logical that deeper evaluations of the CSCs 
sustaining signaling will help identify the drivers of stemness, which in turn 
can help design effective strategies that can eliminate these resistant cells. 
However, the intricate cross talk among the CSC sustaining pathways can-
not be gleaned through isolationist approaches. Rather, systems biology 
methodologies that take a holistic view of the different signaling molecules 
involved in CSC sustenance need to be applied. Therefore, we undertook a 
computational approach to study these CSCs as presented following.

In order to validate the differences between (−−−) and (+++) cells, the 
mRNA microarray assay was conducted for gene expression profiling anal-
ysis. Differential gene expression analysis was used to compare parent cell 
line vs. triple negative cells vs. triple positive cells, which revealed some 
striking results. A total of 1653 mRNAs were identified to be differentially 
expressed in CSLCs (+++) vs. (−−−) (Figure 13.4(A)). Among these genes, 
753 mRNAs were upregulated and 900 mRNAs were downregulated in 
the CSLCs (triple positive cells), compared to triple negative cells; 1,581 
mRNAs were identified to be differentially expressed in CSLCs (triple pos-
itive) vs. its parental MiaPaCa-2 cells. There was a 1216 differentially 
expressed gene overlap between the CSLCs (triple positive cells) vs. triple 
negative or MiaPaCa-2 cells. The pathway enrichment analysis shows that 
the differentially expressed genes are involved in 21 (top 10 shown here) of 
the major biological function groups including cell cycle, polo-like kinase, 
tight junction, cell–cell junction, IGF-1, PI3K/Akt, ERK/MAPK, and 
VEGF signaling (Figure 13.4(B)). Notably, FoxQ1 (forkhead box Q1) was 
found to be elevated in CSCs, which is a member of the forkhead transcrip-
tion factor family that is recognized to be critically involved in the regula-
tion of gene expression during early development, metabolism, and immune 
function [76,77]. Emerging evidence suggest that FoxQ1 may have an 
important function during tumorigenesis and tumor progression mediated 
by deregulation of several signaling pathways such as EMT, a biological 
process known to be associated with drug resistance and metastasis, and also 
known to be linked with CSC characteristics [78]. Recent clinical studies 
have shown high levels of FoxQ1 expression in breast, gastric cancer, 
colorectal cancer and non-small cell lung cancer [79]. Moreover, several 
in vitro and in vivo experimental studies have shown that FoxQ1 expres-
sion increases cell growth/proliferation, migration/invasion, angiogenesis, 
tumorigenicity, and metastasis, which was found to be mediated by the 
upregulation of NRXN3 (neurexin 3, a tumor prognostic marker), ZEB1/2, 
VEGF, Wnt, and BCL in different tumor cells such as breast, liver, glioma, 
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Figure 13.4 Systems Analysis of Pancreatic Cancer Stem Cell Gene Expression. The  purified 
total RNAs from parent MiaPaCa-2, triple negative MiaPaCa-2, and triple  positive MiaPaCa-2 
were isolated by using Vana mRNA Isolation kit (Ambion Inc., Austin, TX),  following the man-
ufacturer’s instructions. Total RNA quantity and quality was examined by analysis using the 
NanoDrop and Agilent Bioanalyzer (Agilent Technologies). All the RNA samples had RIN 
scores equal or above seven. The whole genome expression  profiling was analyzed by a 
two-color microarray-based approach. The RNA samples were hybridized to Agilent 4 x 44K 
human arrays and scanned with the Agilent G2505B scanner system. All the data were ana-
lyzed by Agilent Feature Extraction software that generated expression data parameters 
including LogRatio expression levels, LogRatio error, and p values LogRatio. The features 
included in further analysis were annotated, gene level that passed a p value LogRatio cutoff 
equal or less than 0.001. ANOVA  analysis and multiple test correction (Benjamin-Hochberg 
p ≤ 0.05) was conducted using Partek software to compare the two sets of four two-color 
arrayed replicates for the  identification of the gene expression level changes (≥2 fold 
changes). (A) Venn diagram showing the number of differentially expressed genes in parent, 
triple negative, and triple positive cells. (B) The pathway enrichment analysis shows that dif-
ferential  expression of selected genes are involved in 21 (top 10 shown here) of the major 
 biological function groups, including cell cycle, polo-like kinase, tight junction, cell–cell junc-
tion, IGF-1, PI3K/Akt, ERK/MAPK, and VEGF signaling. (C) siRNA silencing of FoxQ1 suppresses 
spheroid forming ability of triple positive CSCs indicating their role in stem cell sustenance. 
(For color version of this figure, the reader is referred to the online version of this book.)

colorectal, and ovarian cancers [80]. In addition, the expression of FoxQ1 is 
regulated by TGF-β, which suggests that TGF-β–mediated overexpression 
of FoxQ1 may lead to the acquisition of EMT, a process that is reminiscent 
of CSC (CSLC) characteristics [81]. The blockage of FoxQ1 by its siRNA 
inhibitor has been found to inhibit cell invasion and metastasis in vitro 
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through the reversal of EMT in bladder cancer cells [82]. However, the role 
of FoxQ1 in the regulation of CSC phenotypes and functions during PC 
tumorigenesis and tumor progression has not been clearly elucidated. In our 
systems analysis, we demonstrate for the first time that higher expression of 
FoxQ1 is associated with CSC signatures/markers and functions in triple 
positive cells isolated from PC cells. Further analysis of FoxQ1 and other 
identified markers is ongoing and is the subject of another article. Most 
importantly, the knockdown of FoxQ1 by its siRNA inhibitor resulted in 
the attenuation of spheroid forming ability (Figure 13.4(C)), aggressive 
CSC phenotypes, consistent with the inhibition in the expression of 
EpCAM and Snail in triple positive cells. These data clearly suggest that 
FoxQ1 plays a key role in the regulation of CSC phenotypes and functions 
in PC. We also found overexpression of bone morphogenic proteins (BMPs) 
such as BMP4, which belongs to a class of important extracellular signaling 
transducer proteins and is part of the transforming growth factor-β  (TGF-β) 
superfamily, and have been considered to exhibit a critical role in early tis-
sue development [83]. There is available clinical data showing that  alterations 
in the expression of BMP4 in various tumors including PC are associated 
with poor overall prognosis [84]. There is a large body of in vitro and in vivo 
evidence supporting the important role of BMP4 in  tumorigenesis and 
tumor progression mediated by promoting cell growth/proliferation and 
migration/invasion via several different signaling pathways/networks 
including apoptosis and PI3K/Akt, Wnt, hedgehog, and EMT in different 
cancers including PC [85]. However, there are some controversial reports 
showing an inhibitory effect of BMP4 on tumor cell growth in vitro and 
in vivo [86]. Therefore, the biological function of BMP4 appears to be 
tumor context dependent. Nevertheless, the exact role of BMP4 in the 
regulation of PC CSC phenotypes has not been molecularly investigated. 
There are some limited studies that suggest that BMP4 may be involved in 
the regulation of CSC phenotypes and functions [87]. For example, BMP4 
could decrease cell growth and proliferation in CSC-like CD133+ cells of 
glioblastoma in vitro and in vivo. It has also been noted that Lin-28 and 
Oct4, two recognized stem cell factors, work together to upregulate the 
expression of BMP4 at the posttranscriptional level, which contributes to 
the modulation of ovarian tumor microenvironment [88]. In our present 
study, we found that CSLCs (triple positive cells) exhibit aggressive tumor 
cell phenotypes and functions, which was consistent with overexpression of 
BMP4 and other stem cell markers, suggesting that BMP4 may have an 
important role in the regulation of PC CSC characteristics. However, 
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further mechanistic studies are needed for determining the role of BMP4 in 
CSLCs of PC.

We were able to validate the top-ranked differentially expressed genes in 
(+++) CSCs using molecular assays such as western blotting, confocal 
microscopy, and RT-PCR. Interestingly, knockdown of some of the top-
ranked differentially expressed genes could reverse stemness and sensitivity 
to chemotherapeutic drugs (data for FoxQ1 shown here). These studies 
prove that systems and pathway analysis–identified genes can help not only 
characterize the PC CSCs but can also help in defining key CSC drivers 
that can be used as therapeutic markers for targeted therapies and their 
combinations.

SYSTEMS ANALYSIS OF PC CSC microRNA NETWORK

Aside from differential gene expression analysis, we also performed 
 differential miRNA analysis to analyze the role of different miRNAs in 
sustaining the PC CSC signaling. For these studies, miRNA microarray 
assay was performed. The miRNA expression profiling analysis was 
 performed by miRBase version 16 (LC Sciences). The values of log (2) of 
each miRNA from data comparisons were used to represent fold change, 
and the data were normalized by using selected housekeeping genes.  Systems 
and pathway analysis was performed by using the Web-based bioinformatics 
tool IPA (Ingenuity Systems, Redwood, CA) for predicting functional 
 network. Microarray analysis was performed to examine the differential 
expression of miRNAs of CSLCs (triple positive cells), compared to either 
the parental MiaPaCa-2 cells or triple negative cells. Our results showed 438 
miRNAs to be differentially expressed in CSLCs (triple positive) vs. triple 
negative cells. Among these miRNAs, 191 miRNAs were upregulated and 
247 miRNAs were downregulated in CSLCs (triple positive cells),  compared 
to triple negative cells. Moreover, we found 486 miRNAs that were 
 differentially expressed between CSLCs (triple positive) and the parental 
MiaPaCa-2 cells. Among those miRNAs, 243 miRNAs were upregulated 
and 243 miRNAs were downregulated. However, there were only 180 
 differentially expressed miRNAs between triple negative cells and the 
parental MiaPaCa-2 cells. Among those miRNAs, 108 miRNAs were 
upregulated and 72 miRNAs were downregulated (Figure 13.5 (A)).

We further subjected the differentially expressed miRNAs to IPA 
miRNA target filter to better understand the miRNA target pathways that 
are involved and how they influence their target genes. The algorithms of 
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networks of selected miRNAs that are involved were generated based on 
their pathway connectivity. Our pathway enrichment analysis of CSCs 
 (triple positive) vs. triple negative cells was found to be similar to that of 
CSCs (triple positive) vs. the parental MiaPaCa-2 cells. There are 10 
 biological functional groups that showed such connectivity, including 
 cancer, GI disease, and genetic disorder. These results suggest that differential 
expression of miRNAs in CSCs (triple positive cells) is highly associated 
with the development and progression of tumors, including GI tumors. The 
network analysis of selected miRNAs in CSCs (triple positive) vs. triple 

180
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Control An�-miR-125b

438
Triple 

nega�ve CSC triple
posi�ve 

486

243 
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(C)
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Figure 13.5 Systems Analysis of miRNA Microarrays in Pancreatic Cancer Stem 
Cells. Purified total RNAs were isolated by using mirVana miRNA Isolation kit (Ambion 
Inc., Austin, TX), following the manufacturer’s instructions. The miRNA microarray assay 
was performed by LC Sciences (Houston, TX). The miRNA expression profiling analysis 
was performed by miRBase version (LC Sciences). The values of log (2) of each miRNA 
from data comparisons were used for the fold change levels. Data were normalized by 
using selected housekeeping genes. (A) Venn diagram depicting differentially expressed 
genes. (B) Pathway analysis of mirs that were found differentially expressed in CSCs 
compared to triple negative cells. System network analysis was performed by using the 
Web-based bioinformatics tool IPA software (Ingenuity Systems, Redwood, CA) for pre-
dicting functional networks. (C) Silencing of mir125b results in abrogation of spheroid 
forming ability of triple positive CSCs. (For color version of this figure, the reader is 
referred to the online version of this book.)
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negative cells is similar to that of CSCs (triple positive) vs. MiaPaCa-2 cells 
(Figure 13.5(B)). Furthermore, our network analysis showed that many 
miRNAs were intricately regulated by each other either directly or 
 indirectly, which were also further regulated by several target genes, 
 indicating a very complex interaction system. We found changes in a 
 number of miRNAs in CSCs (triple positive cells), compared to MiaPaCa-2 
and triple negative cells including let-7f,i, miR-30a,b, miR-125b, and 
 miR-335, compared to its parental MiaPaCa-2 cells and triple negative cells 
(Table 13.1). The knockdown of miR-125b by transfecting siRNA  inhibitor 
reduced spheroid forming ability (Figure 13.5(C)), clonogenicity, cell 
migration, and self-renewal capacity. These experiments validated their role 
in sustaining CSCs networks. Collectively, these systems studies identified 
key miRNAs that promote CSC signaling that could not have been 
 pinpointed using traditional molecular biology.

SUMMARY AND FUTURE DIRECTIONS

PC is a deadly and by far incurable disease harboring a signaling circuitry as 
complex as that present in super computers. It is logical that such complex 
circuitry cannot be fully evaluated using traditional biology and a 
 computational component in our analyses system is needed. This is  especially 
critical knowing the heterogeneous nature of PC tumors that are composed 
of different types of cells, each emanating unique signatures that form the 
very complex tumor microenvironment. It has now been well accepted that 
CSCs (or cancer stem-like cells) hold a major place in this heterogeneous 
tumor microenvironment and play an important role during PC 
 tumorigenesis. Such rare populations of CSCs comprise less than 1% of the 
PC tumor cells and have been implicated in therapy resistance and poorer 

Table 13.1 List of Differentially Expressed miRNAs Identified through miRNA 
 Microarray Analysis

miRNAs
CSC Triple +ve vs. Parent  
(Fold Change)

CSC Triple +ve vs. Parent  
(p Value)

Let-7f
Let7i
miR-30a
miR-30c
miR-125b-5p
miR-335-5p

−0.33
−4.00
−5.12
−0.71

6.87
2.13

9.78E-05
2.54E-07
2.59E-06
1.12E-05
3.01E-07
4.61E-04
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clinical outcomes such as reduced disease-free survival rate and increased 
mortality [89]. The CSLC subpopulations exhibit distinct features such as 
superior self-renewal capacity, prolonged survival potential, and enhanced 
ability to differentiate into multiple different cell types of tumor cells or 
tumor-associated cells. Most of the chemotherapeutics used in the clinic 
can eliminate the bulk of the tumor cells. However, it is this distinct sub-
population of cells that do not respond to standard chemotherapeutics, and 
such residual population has been attributed to giving rise to recurring 
tumors. Therefore, understanding and targeted killing of these CSCs would, 
in principle, provide an effective therapeutic approach for the treatment of 
aggressive PC. However, the regulation of CSC characteristics during 
tumorigenesis and tumor progression has not been clearly elucidated, espe-
cially in PC. Therefore, further characterization of CSCs may lead to the 
discovery of genes that could be targeted for therapy. As shown here, such 
understanding requires holistic molecular characterization that is coupled 
with systems level approaches that look at the entire set of CSC-associated 
pathways, both genetic and epigenetic, and their cross talk and the ensuing 
signaling. The molecular biology allowed isolation of a highly purified 
 fraction of cells from PC cell lines that were CD44+/CD133+/EpCAM+ 
and behaved like CSCs/CSLCs. These triple positive CSCs have aggressive 
phenotypes and functions, which is consistent with overexpression of CSC 
signatures/markers. In the next phase that involved holistic characterization, 
the systems level analysis demonstrated the differential expression of large 
numbers of genes unique to triple positive CSC fraction. Targeted elimina-
tion of these differentially expressed genes could suppress CSC signaling 
networks, resulting in their elimination.

In relation to miRNA signatures, our systems analysis revealed that the 
aggressive phenotypes displayed by CSCs and functions such as increased 
cell growth, clonogenicity, cell migration, and self-renewal capacity are 
 supported by a large number of miRNAs, including let-7f,i, miR-30a,b, 
miR-125b, and miR-335, compared to its parental MiaPaCa-2 cells and 
triple negative cells. The knockdown of miR-125b by transfecting siRNA 
 inhibitor reduced clonogenicity, cell migration, and self-renewal capacity, 
which was consistent with downregulation of CSC signatures/mediators 
such as CD44, EpCAM, EZH2, and Snail, strongly indicating that 
 miRNA- targeted approach could become a novel therapeutic strategy for 
the  successful  elimination of PC.

In the future, more rigorous systems level analysis of CSCs from a larger 
number of sources such as cell lines, primary tumors, and  genetic 
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model–derived cells will bring forward the hidden players supporting 
 stemness in PC tumors. Such exercises are expected to drive the discovery of 
CSC-targeted therapies that will shape future personalized medicine for 
 better treatment outcomes in patients suffering from this devastating disease.
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CHAPTER 

Characterizing the Metabolomic 
Effects of Pancreatic Cancer
Oliver F. Bathe
Departments of Surgery and Oncology, University of Calgary, Calgary, AB, Canada

INTRODUCTION

Pancreatic cancer is the fourth most common cause of cancer death in 
North America. The five-year survival rate is only 5.1% [1]. The high lethal-
ity related to pancreatic cancer is due to a number of factors. It is biologi-
cally aggressive, it has profound effects on the host, and it is resistant to most 
cytotoxic agents. Moreover, early diagnosis is infrequent, and so resection 
(which represents the only chance for long-term control of this devastating 
disease) can be performed only in a minority of patients. Because of the 
limited success in diagnosing and treating pancreatic cancer, it is timely to 
consider alternative approaches to understanding the underlying patho-
physiology. Pancreatic cancer is known to have metabolic effects on the 
host, and the tumor itself contains genetic aberrations with a number of 
metabolic consequences. Enhancing our understanding of the metabolic 
sequelae of pancreatic cancer therefore may lead to the development of new 
methods for diagnosis, as well as novel approaches to treatment.
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With advances in technologies capable of the multiparametric inter-
rogation of the metabolome, a more comprehensive view of the meta-
bolic alterations that characterize pancreatic cancer is now possible. A 
number of groups have initiated such an effort. Some novel biological 
observations have been derived from metabolomics studies, although 
there is considerable potential to leverage on those initial observations. 
Metabolomic studies also have provided a foundation for development of 
novel diagnostic tests.

Metabolic Derangements Associated with Pancreatic Cancer
The metabolic derangements observed in any individual with pancreatic 
cancer are related to a multitude of factors. The diseased tissue (i.e., 
tumor cells and stroma) displays aberrant metabolism. Environmental 
and host factors that have predisposed the individual to pancreatic  
cancer in the first place also will be evident. Finally, established  
disease induces bioenergetic changes in adjacent and remote host tissues  
(Figure 14.1).

Metabolic Derangements in Tumor Cells
One of the hallmarks of a cancer cell is the reprogramming of energy 
metabolism [2]. Large amounts of adenosine triphosphate (ATP) and 
substrate are required to support rapidly proliferating cells. Adaptations 
in metabolic pathways that typify cancer cells produce sufficient ATP as 
well as carbohydrates, proteins, lipids, and nucleotides to sustain the high 
metabolic demand. The classic example of metabolic reprogramming is 
the Warburg effect, described decades ago [3]. In normal cells, in the 
presence of sufficient oxygen, glucose is processed through oxidative 
phosphorylation, generating a maximal amount of ATP. Glycolysis, a less 
efficient means to produce ATP, only becomes a primary means to 
metabolize glucose in hypoxic conditions. In contrast, in cancer cells, 
glycolysis is the dominant pathway for glucose metabolism regardless of 
oxygen supply. Although glycolysis is not as efficient as oxidative phos-
phorylation at generating ATP, it is a much more rapid means of ATP 
production, necessary to support multiple cellular divisions. This phe-
nomenon of increased glucose processing in cancer cells forms the basis 
of using 18F-fluorodeoxyglucose positron emission tomography (FDG-
PET) to detect and monitor tumors [4,5]. In addition to accelerated 
glycolysis, tumor cells have other characteristic features of metabolic 
reprogramming, each functioning to support the rapidly expanding 
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biomass within the tumor. For example, glutamine uptake is enhanced, 
to replenish the tricarboxylic acid cycle; glutaminolysis also contributes 
to the production of acetyl coenzyme A for subsequent lipid biosynthe-
sis, and increased fatty acid and lipid synthesis sustain synthesis of cell 
membranes and lipid derivatives.
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Figure 14.1 Schematic representation of tissues contributing to the circulating pool of 
metabolites, in individuals with cancer. In addition to cancer cells, tumors consist of an 
assortment of cells, including vascular endothelial cells, fibroblasts, and various inflam-
matory cells—forming the tumor microenvironment. Thus, not only do cancer cells 
affect the circulating metabolome; other (stromal) cells forming the tumor microenvi-
ronment contribute as well. Tumors have metabolic effects on adjacent normal tissue, 
as well as distant tissues, including muscle, fat, and liver. The metabolic response derived 
from the host also contributes to the circulating metabolome and may further modify 
tumor biology. The inflammatory and metabolic behavior of tumor and host tissues 
together contribute to the health of the pancreatic cancer patient. (For color version of 
this figure, the reader is referred to the online version of this book.)
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The metabolic phenotype of cancer cells is regulated by both onco-
genes and tumor suppressor genes (reviewed in [6]). In pancreatic cancer, 
mutations in the KRAS oncogene are found in more than 90% of pan-
creatic cancers [7,8]. Tumors with KRAS mutations express high levels of 
glucose transporter-1 (GLUT1), providing the ability for enhanced glu-
cose uptake and glycolysis, enabling survival in low glucose conditions 
[9]. High levels of c-MYC expression are seen in almost 80% of pancreatic 
cancers [10]. c-MYC overexpression accelerates glutaminolysis by several 
mechanisms, including increased expression of mitochondrial glutamin-
ase (GLS) [6,11–13]. Interestingly, c-MYC transcriptionally represses 
microRNAs mIR23a and mIR23b, resulting in increased expression of 
mitochondrial GLS [12]. One additional effect of c-MYC overexpression 
is increased synthesis of acetyl-CoA in mitochondria, which subsequently 
increases histone acetylation and fatty acid biosynthesis [13,14]. Hypoxia-
inducible factor (HIF)-1α protein expression is seen in about half of pan-
creatic cancers [15] as a result of intratumoral hypoxia and paracrine 
insulin [16]; hypoxia stabilizes the transcription factor and the protein [6]. 
HIF-1 transcription factor activates numerous target genes (reviewed in 
[17]). HIF-1 transcription factor not only is a pivotal regulator of oxygen 
homeostasis but also encourages glycolysis, contributes to the metabolism 
of nucleotides and iron, and exerts additional effects on cellular bioener-
getics through its mitogenic effects. Both c-MYC and HIF-1α increase the 
rate of transcription of some of the GLUT transporters (increasing glu-
cose uptake by the cell) and hexokinase-2 [6]. Thus, genetic alterations in 
the tumor can contribute to the metabolic phenotype of tumor cells and 
subsequently disturb host energy homeostasis (Figure 14.2).

The metabolic phenotype of tumor cells can be influenced further by 
events at the transcriptional and protein levels. One example of this is the 
enzyme pyruvate kinase (PK), the enzyme that catalyzes the last step of 
glycolysis. In cancer cells, the M2-PK isoform (normally found in embry-
onic tissue) is the predominant PK isoform. Selective binding of M2-PK to 
tyrosine-phosphorylated peptides causes inhibition of M2-PK enzymatic 
activity [18], causing a shift in cellular metabolism to aerobic metabolism 
(the Warburg effect) [19]. Impaired PK activity also leads to an accumula-
tion of metabolites, preceding PK in the glycolytic pathway, which act as 
precursors for nucleic acids, amino acids, and phospholipids. This metabolic 
switch has been shown to provide a selective growth advantage to tumor 
cells [19].
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Figure 14.2 General features of the reprogrammed energy metabolism that charac-
terizes pancreatic cancer cells. Generally, the metabolic changes that typify cancer 
cells support cell growth and proliferation. Glucose uptake is increased, and glycol-
ysis is accelerated. Lactic acid fermentation is prominent, even in the presence of 
high oxygen levels. Glutamine (Gln) uptake is markedly enhanced, then converted 
to glutamate (Glu). Glutamate replenishes the tricarboxylic acid (TCA) cycle, which 
is essential because metabolites of the TCA cycle are required for synthesis of lipids, 
nonessential amino acids, and nucleotides. Fatty acid and lipid synthesis are 
increased, which provides the necessary products to sustain synthesis of cell mem-
branes and other lipid derivatives. Overexpression of KRAS, c-MYC and HIF-1α fre-
quently occur in pancreatic cancer; known metabolic effects are summarized. 
(aKG = a-ketoglutarate; GLS = glautaminase; GLUT = glucose transporter.) (For  
color version of this figure, the reader is referred to the online version of this  
book.)
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Metabolic Alterations Accompanying Pathogenic Processes Leading to 
Pancreatic Cancer
It has become clear that the pathogenesis of pancreatic cancer is promoted 
by environmental and host factors, which may contribute to the overall 
metabolic milieu of the patient with established pancreatic cancer. Obesity 
increases the risk of gastrointestinal cancers [20], including pancreatic can-
cer [21]. Similarly, diabetes is a risk factor for pancreatic cancer. These 
conditions have clear metabolic consequences. Inflammation also may be 
an important factor in the pathogenesis; chronic pancreatitis predisposes to 
pancreatic cancer [22,23]. Experimentally, interactions between dietary 
factors, inflammation, and genetic predisposition have been shown. In 
mice with pancreas-specific activation of oncogenic KRAS, a high-fat  
diet accelerates development of pancreatic intraepithelial neoplasm (the 
lesion preceding development into malignancy) [24]. In that model, 
 obesity-related promotion of pancreatic malignancy is mediated by tumor 
necrosis factor (TNF), as abrogation of TNF signaling inhibits this effect. 
In this same model, inflammation and tissue damage are essential to the 
development of pancreatic cancer [22]. Thus, in addition to the aberrant 
metabolism of pancreatic cancer cells, the environmental and host factors 
that have predisposed an individual to pancreatic cancer will contribute to 
the many metabolic derangements seen in pancreatic cancer patients.

Metabolic Alterations Originating in Host Tissues
Pancreatic cancer is known to have profound effects on key metabolic path-
ways in host tissues, with detrimental effects on the health of the host and 
further adding to the eccentric metabolic milieu. Jaundice frequently 
accompanies tumors in the head of the pancreas, with gross effects on fat 
absorption and coagulation factors, as well as more subtle effects on menta-
tion (lethargy, fatigue, anorexia), presumably influenced by metabolic 
 mediators. Diabetes mellitus (DM) and cachexia are frequent sequelae of 
pancreatic cancer.

The prevalence of DM in pancreatic cancer is reported as 40–47%, of 
which the majority of cases are new onset (i.e., within two years of the diag -
nosis of pancreatic cancer) [25–27]. It has been suggested that pancreatic 
cancer causes DM due to secretion of diabetogenic factors by tumor [28], 
although these factors have not yet been identified. Hyperinsulinemia and 
peripheral insulin resistance is the prevailing trait in pancreatic cancer, 
which distinguishes it from the diabetes that typifies chronic pancreatitis, 
which is accompanied by islet cell destruction and impaired insulin 
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production [29,30]. Yet the diabetes of pancreatic cancer is also atypical 
for type II DM. Family history is often noncontributory, there is an 
absence of obesity, and there is a rapid progression to insulin dependence 
[31]. Although it is known that different mechanisms of DM have variable 
metabolic consequences, such as different effects on lipid metabolism 
[32,33], the full range of metabolic effects of different causes of DM are 
unknown. Moreover, the underlying metabolic effects of the tumor are 
poorly understood.

Cachexia involves weight loss, skeletal muscle wasting (sarcopenia), and 
loss of adipose tissue. Unlike simple malnutrition (lack of food), this 
tumor-associated syndrome is characterized by hypermetabolism, activa-
tion of catabolic processes (including lipolysis and proteolysis), and sys-
temic endocrine and metabolic alterations. Cachexia is especially apparent 
in pancreatic cancer and portends a worse prognosis [34,35]. Muscle wast-
ing in cachexia occurs as a result of depressed protein synthesis and 
increased protein degradation [36]. Fat metabolism also appears to be 
altered markedly. There is depletion of circulating phospholipids and defi-
cits of essential fatty acids [37–39]. Lipolysis at the level of the adipocyte 
is accelerated and loss of fat accelerates as patients approach death [38,40] 
In all, the higher metabolic rates seen with cachexia increase demand for 
energy substrates; a 40% increase in metabolic rate would require approxi-
mately 600 additional calories per day if no change in dietary intake 
occurred to accommodate metabolic need.

Metabolomic Characterization of Pancreatic Cancer
Given the multiplicity of cancer-derived, environmental, and host-derived 
factors that can influence the metabolic milieu in a whole cancer patient, it 
is clear that understanding the overall impact of each of these factors will 
require a systems biology approach. That is, a more comprehensive picture 
of the metabolome is required in tumor and host tissues, factors that influ-
ence their interactions will need to be elucidated, and effects on the health 
of the whole patient will need to be delineated. The field of metabolomics 
represents a tool for developing this understanding.

Metabolomics is the multiparametric characterization of low-molecu-
lar-weight metabolites in a biological system, including in the pathophysi-
ologic state. The metabolome can be evaluated in a multiplexed fashion 
using two primary technologies: nuclear magnetic resonance (NMR) spec-
troscopy and mass spectrometry (MS). These two technologies are comple-
mentary, as metabolites detectable in one technology are not necessarily 
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detectable in the other. Moreover, the methodology is now well established 
for combining data obtained from the two technologies [41].

Proton nuclear magnetic resonance (1H-NMR) spectroscopy exploits 
the magnetic properties of protons (i.e., the 1H nucleus). The sample is 
exposed to radiofrequency (RF) radiation generated from a magnetic field, 
and an NMR spectrum is produced by the emission of absorbed RF energy 
by a compound at a particular magnetic field strength. This analytical 
method is particularly useful for investigating abnormal body fluid compo-
sitions, as a wide range of metabolites can be quantified simultaneously, with 
no sample preparation or sample destruction [42,43].

MS represents a means of obtaining more comprehensive multivariate 
metabolic data, useful for the analysis of clinical samples [44]. Mass spectra 
are generated by the mass-to-charge ratio of various compounds. MS is 
analytically more sensitive than NMR, but differential ionization suppres-
sion can make pattern quantification difficult [43], particularly in a complex 
mixture such as serum. Combining MS with a separation technique (e.g., 
gas chromatography, liquid chromatography) reduces the complexity of the 
mass spectra, and delivers additional information on the physicochemical 
properties of the metabolites [45]. Alternatively, tandem MS, in which some 
form of fragmentation occurs between multiple steps of MS, is a means to 
perform a focused analysis of amino acids [46].

Currently, no single analytical technology is capable of detecting all 
metabolites in a biological sample. 1H-NMR spectroscopy is excellent for 
the nontargeted analysis of metabolites, but it lacks the sensitivity to detect 
metabolites present at lower levels. Gas chromatography–MS (GC–MS) is 
useful for the detection of volatile organic compounds as well as a number 
of metabolites made amenable to detection by chemical derivatization [45]. 
Liquid chromatography–MS does not require chemical derivatization, it is 
sensitive, and it is useful for the detection of a large variety of metabolite 
classes, including lipids and fatty acids because of its high resolution [47,48].

From a biological perspective, understanding the metabolome as it 
relates to malignancy has a number of advantages. Metabolites represent the 
end product of transcription and translation, providing functional insight. 
Analytical platforms are sensitive and high throughput, allowing the study 
of real-time metabolic perturbations that result from events such as cancer 
initiation, progression, and metastasis.

From a biomarker perspective, metabolomic biomarkers have a number 
of advantages over transcriptomic and proteomic biomarkers. First, changes 
in the metabolome are amplified relative to changes in the transcriptome 
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and proteome [49]. Therefore, metabolites may change even when protein 
levels do not; changes in physiology are relatively immediately associated 
with metabolomic perturbations. Second, metabolomic profiling is cheaper, 
easier, and higher throughput than proteomic and transcriptomic profiling. 
Thus, a test based on metabolomics could be implemented easily in the 
clinic, even in mass screening. Third, changes in metabolism result in altera-
tions of the abundance of groups of metabolites. Therefore, identification of 
the patterns of changes in metabolites would provide insight on the func-
tional changes that occur because of any given condition. The metabolomic 
profile therefore represents a biomarker (or metabiomarker) of considerable 
interest, albeit one that has been studied relatively little so far.

The metabolome can be studied using practically any biofluid, 
including serum, plasma, and urine, as well as tissues, including tumor 
and normal tissue. So far, no attempts have been made to evaluate the 
metabolome of tumor tissue in pancreatic cancer, although other tumor 
types have been studied in this fashion [50–52]. Because a large compo-
nent of pancreatic cancer is composed of nontumor (stromal) cells, there 
may be challenges in the interpretation of data from this type of 
analysis.

A number of groups have analyzed circulating metabolites in pancreatic 
cancer, as well as excreted (urinary) metabolites [46,53–60]. Most studies 
have consisted of small groups of patients. In some studies, disease-free con-
trols were used as comparators; and, in others, patients with benign pancre-
atic disease were used as comparators. The heterogeneity of study design, 
differences in analytical modalities, and reports on small groups of patients 
make it difficult to derive consistent observations, although some metabolic 
features are reported on repeated occasions.

Studies on the serum metabolome using 1H-NMR spectroscopy have 
been reported by several groups [53–55,57]. Increased glucose, decreased 
lactate, increased triglycerides, increased leucine and isoleucine, decreased 
proline and asparagine, and decreased urea have been observed. Analysis of 
serum by GC–MS in a small group of patients demonstrated a reduction 
phenylalanine, tryptamine, and inosine [56]. A larger study [59] revealed 
decreased valine, methionine, asparagine, histidine, tyrosine, and uric acid in 
pancreatic cancer compared with healthy controls. Decreased glutamine 
and increased glutamate frequently have been reported by studies utilizing 
various analytical platforms.

The urine metabolome has been studied using 1H-NMR spectroscopy 
[60]. Cancer-specific increases in a number of amino acids and amino acid 
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derivatives were noted. Elevations of hypoxanthine, choline, trimethyl-
amine-N-oxide, o-acetylcarnitine, and acetone also were seen.

Biological Insights Derived from Metabolomic Studies
Interrogating circulating and excreted metabolites provides some insight on 
the biological effects of pancreatic cancer. On the other hand, blood and 
urine metabolites may originate from the tumor or the host, and the chal-
lenge remains to dissect how metabolomic perturbations reflect processes 
originating in the tumor microenvironment or in normal host tissues. 
Despite that caveat, some metabolomic features of pancreatic cancer can be 
extrapolated from available data.

Pancreatic cancer is associated with disordered carbohydrate metabolism 
as manifested by impaired glycemic control. 1,5-anhydro-d-glucitol, a 
serum biomarker of short-term glycemic control [61], is decreased in pan-
creatic cancer [59]. In our interrogation of the metabolome associated with 
pancreatic cancer, we have observed that even in patients without overt 
DM, changes in carbohydrate metabolism congruent with latent diabetes 
were seen [54]. Galactose, a glucose substitute, is increased for reasons that 
are not understood.

In pancreatic cancer, there are decreases in serum levels of amino acids. 
At the same time, excreted amino acids are increased. Serum urea, a nitrog-
enous waste product generated with protein and nucleic acid catabolism, 
can be increased. This pattern may be reflective of muscle protein break-
down, during which all constituent amino acids enter oxidative pathways. 
This is perhaps reflective of cachexia, which is common in pancreatic 
cancer.

Glutamine is decreased and glutamate is increased. This pattern often is 
seen in other malignancies, likely reflecting accelerated glutaminolysis, 
which is known to be an important source of fuel in tumor cells [62–64]. 
Oxidative metabolism of glucose and glutamine produces citrate, and citrate 
subsequently is metabolized to acetyl-coenzyme A for lipid synthesis, as 
well as intermediates that contribute to the tricarboxylic acid (TCA) cycle. 
Thus far, this has not been reported in metabolomics studies. Moreover, 
little is known about the lipidomic changes associated with pancreatic 
cancer.

To better understand the host contribution of changes in circulating and 
excreted metabolites in pancreatic cancer, further studies are required. Spe-
cifically, it will be important to understand exactly how the metabolome of 
pancreatic cancer-associated DM differs from type I and type II DM, the 
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effects of jaundice must be further delineated, and the effects of pancreatic 
cancer-associated cachexia must be understood. It is becoming clear that 
the overall health of the patient with pancreatic cancer is not only a func-
tion of tumor biology but also of the host response to tumor. Understand-
ing the range of host responses to pancreatic cancer and the effects on 
clinical outcomes will perhaps provide novel opportunities for therapeutic 
intervention.

Once we have improved knowledge of the contributions of tumor and 
host to the circulating metabolome and once the implications of each of 
these changes are understood, the genetic basis of these phenomena as well 
as the proteomic correlates can be dissected. The multiplexed metabolomic 
information derived from metabolomic studies provides a means to identify 
pathways putatively affected by pancreatic cancer using bioinformatic 
approaches [65,66]. Pathways so extrapolated from metabolomic data gen-
erate hypotheses, allowing interrogation of metabolomic changes associated 
with tumor or host genotype. Alternatively, multiplexed genomic, transcrip-
tomic, proteomic, and metabolomic data sets can be derived in parallel to 
catalog linkages in genotype and phenotype. Some attempts have been 
made to integrate “omics” information [67–69]. Even alterations in the 
activity of a single metabolic enzyme, however, can affect multiple cellular 
signaling pathways [70]. Therefore, such an approach would be challenging 
from a bioinformatics perspective and little mechanistic insight would be 
derived, except in discreet experimental systems. So far, few studies linking 
genotype and metabolic phenotype have been done, and this represents an 
important direction in the field.

Interestingly, we also have seen that the metabolomic profile of pancre-
atic cancer differs slightly from that of other periampullary adenocarcinomas 
(i.e., bile duct cancer, duodenal cancer, and ampullary cancer) (unpublished 
data). Our studies so far suggest that the disordered carbohydrate metabolism 
that typifies pancreatic cancer is much less pronounced in nonpancreatic 
periampullary adenocarcinomas. Nonpancreatic periampullary adenocarci-
nomas generally have a better prognosis related to a less aggressive biology. 
Further studies will be required to understand how differences in metabo-
lism might contribute to these different biologies.

Development of Metabolomics-Based Diagnostic Testing
Biomarkers may be defined as any biomolecule or panel of biomolecules 
that can aid in the diagnosis of disease, prognostication, prediction of biol-
ogy, or prediction of sensitivity to specific therapies. For pancreatic cancer, 
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biomarkers may be clinically useful in a number of instances. A biomarker 
that aids in diagnosing pancreatic cancer would be useful. Biomarkers that 
identify prognostic subsets of patients with pancreatic cancer may be useful, 
perhaps to refine selection of operative candidates. One subset of patients 
that may be particularly important to identify is the subset that is susceptible 
to cancer cachexia, for it may be possible to inhibit progression of that con-
dition if detected early. Predictive biomarkers may become more important 
as better (and more diverse) systemic therapy options become available. In 
the setting of pancreatic cancer, the serum or plasma and urine represent the 
biofluids of greatest interest, as they are most convenient to collect.

Clinically, one difficult diagnostic dilemma is whether any pancreatic 
mass or biliary stricture is benign or malignant. None of the clinical features 
or radiographic findings is pathognomonic. Obtaining a tissue diagnosis is 
difficult. Bile duct brushings (in the event of a biliary stricture) only have a 
yield of 23–41% [71,72]. The diagnostic rate of endoscopic ultrasound 
(EUS)-guided biopsies for pancreatic masses is only about 71% [73]. 
Although their sensitivity is about 85%, the negative predictive value is only 
about 64% [74]. Percutaneous biopsies have similar sensitivities and negative 
predictive values [75]. Therefore, negative biopsies are not particularly infor-
mative and do not aid in clinical decision making [76].

Serum tumor markers, such as the carbohydrate antigen CA19-9 and 
carcinoembryonic antigen (CEA), also have been utilized to aid in the diag-
nosis of pancreatic and other periampullary malignancies [77–82]. Unfortu-
nately, neither of these markers is particularly sensitive or specific. CA19-9 
has been best characterized in this context because it is more frequently 
elevated in pancreatic and periampullary cancers. Unfortunately, a number 
of related benign conditions cause elevated CA19-9 levels [77,79,83]. In 
most series, the sensitivity of serum CA19-9 is 50–80% and the specificity 
is about 90% [77,78,81,82]. This implies that very high levels of CA19-9 
strongly support the diagnosis of malignancy, but normal or slightly elevated 
levels of these tumor markers do not rule out malignancy. CEA levels have 
a similar diagnostic value.

The inherent difficulty in distinguishing benign and malignant lesions 
has a number of consequences. First, gastroenterologists and other referring 
physicians are reluctant to refer patients to a surgeon without convincing 
evidence that there is a cancer. This may lead to treatment delays, perhaps 
even resulting in growth of the tumor beyond resectability. Second, sur-
geons often are faced with deciding whether to resect a suspicious (but 
undiagnosed) mass. This is not a trivial decision, as pancreatic resections are 
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extensive operations associated with high morbidity and mortality rates 
[84–86]. In the United States, the overall in-hospital mortality rate for pan-
creatic resections is 7.6% [87]. In surgical series, 7–16% (and as high as 25%) 
of patients who undergo a Whipple procedure or a radical pancreatectomy 
are found on final pathology to have benign lesions [88–92]. In our center, 
26% of patients who have major pancreatic resections ultimately are found 
to have benign disease [93]. Third, even in patients with advanced disease, a 
tissue diagnosis is sometimes not possible, and decisions related to chemo-
therapy must be made based on best clinical evidence. Clearly, there is a 
substantial need for an improved means of distinguishing benign and malig-
nant pancreatic lesions.

A metabolomics-based test represents one potential solution to enhance 
the clinician’s capability to distinguish benign and malignant pancreatic and 
periampullary lesions. Our group has demonstrated the feasibility of using 
1H-NMR spectroscopy to derive metabolomics profiles that distinguish 
benign and malignant lesions [54]. In that series, which did not include an 
external validation set, the area under the receiver operating curve (AUROC) 
for identifying pancreatic cancer was 0.8372. Further studies are required to 
validate the metabolomic profile diagnostic for pancreatic cancer. GC–MS 
similarly has been shown to identify a metabolomic profile diagnostic for 
pancreatic cancer with an AUROC of 0.76 on an external validation cohort 
[59]. Our experience is that combining GC–MS and 1H-NMR spectro-
scopy does not add to diagnostic power, despite the more comprehensive 
interrogation of the metabolome (unpublished data). More studies are 
required to determine the clinical utility of metabolomics-based tests, which 
reflects to what degree such tests could affect clinical decision making.

Cancer cachexia, a prominent sequela of pancreatic cancer, is known to 
be associated with poor clinical outcomes. Although additional studies are 
required to understand what tumor- or host-derived factors predispose to 
cachexia, the metabolic disturbances that accompany cachexia are becom-
ing apparent. Therefore, potentially useful therapeutic interventions can be 
devised in the hopes that the pathogenesis of cachexia can be halted to the 
patient’s benefit. Clinical trials of therapies require accurate identification of 
the subgroup that has cachexia. Cross-sectional imaging (using computed 
tomography [CT] scan) demonstrating muscle wasting (sarcopenia) is useful 
for identifying patients who have advanced cachexia [94,95]. Using 1H-
NMR spectroscopy, the profile of urine metabolites associated with the CT 
scan-evident sarcopenia has been described [95]. It may be possible, using 
longitudinal studies in which the trajectory of muscle wasting is known, to 
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identify earlier metabolomic changes that characterize a precachectic state. 
Earlier identification of individuals susceptible to cachexia may enhance the 
likelihood that any given therapeutic intervention would provide benefit.

Development of Therapeutics Targeting Disordered 
Metabolism
Systemic agents presently used to treat pancreatic cancer (gemcitabine, 
5-fluoropyrimidine, capecitabine) employ metabolic strategies to impair 
nucleic acid synthesis. Unfortunately, they have minimal impact on survival, 
although there is some benefit to quality of life. Therefore, there is a need 
for novel strategies to treat pancreatic cancer. Information derived from 
metabolomics studies may point the way to improved ways of targeting the 
disordered metabolism seen in pancreatic cancer.

The most obvious means to target metabolism is to direct interventions 
at the disordered carbohydrate metabolism that characterizes pancreatic 
cancer. Small molecule metabolic inhibitors such as oxythiamine, a trans-
ketolase inhibitor, have been shown to inhibit pancreatic cancer cell prolif-
eration [96] and therefore may have some therapeutic potential. Oral 
hypoglycemics used to treat diabetes are being investigated, and retrospec-
tive studies have demonstrated reductions in cancer-related mortality in 
diabetics taking metformin [97,98], although this has not been shown in 
pancreatic cancer [99]. Interestingly, metformin is toxic to cancer stem cells 
[100], including some populations of pancreatic cancer stem cells [101]. In 
breast cancer patients, metformin is associated with higher response rates to 
cytotoxic chemotherapy [102]. Metformin is known to inhibit pancreatic 
cancer cell growth in vitro and in vivo [103,104]. Thus, further studies are 
required to understand how targeting carbohydrate metabolism may 
improve clinical outcomes in pancreatic cancer.

Tumors with KRAS and MYC mutations may be particularly suscep-
tible to such interventions. Oncogenic MYC promotes glutaminolysis 
and addiction to glucose and glutamine; cells with c-MYC overexpres-
sion die in the absence of glucose or glutamine [11]. KRAS transformed 
fibroblasts lose their proliferative ability with glutamine deprivation 
[105]. In preclinical models, targeting metabolic enzymes to disrupt glu-
cose metabolism is effective in the treatment of tumors driven by KRAS 
and c-MYC [9,106,107]. Glutaminolysis is catalyzed by GLS, which has 
two major isoforms, GLS1 and GLS2. Mitochondrial GLS (GLS2) is a 
downstream effector of MYC, encouraging entry of glutamine into the 
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TCA cycle [11,12]. Therefore, in pancreatic cancer, inhibition of gluta-
minolysis, perhaps by interference with GLS2 represents one potential 
therapeutic strategy.

The main challenge in designing agents that target metabolism will be 
to avoid toxicity related to targeting metabolic pathways in normal prolif-
erating cells. Therefore, it will be imperative to identify pathways that are 
redundant in normal cells but absent in cancer cells. Identification of such a 
therapeutic window may be facilitated by comprehensive analysis of the 
metabolome in cancer cells and normal cells.

Finally, clinical outcomes may be enhanced if the metabolic and inflam-
matory features of the host response to pancreatic cancer could be ablated. 
For example, if the early metabolic changes of cachexia were recognized 
and cachexia could be anticipated, nutritional or pharmacologic interven-
tion could be instituted. A number of agents for the treatment of cachexia 
are in clinical development, including anabolic agents, but none have yet 
been approved for this indication [94].

CONCLUSION

Pancreatic cancer has long been known to have metabolic consequences, 
including DM, obstructive jaundice, and any attending liver dysfunction, 
as well as cachexia. Multiplexed analysis of the metabolome in normal 
and malignant tissues using 1H-NMR spectroscopy and MS has the 
potential to provide a more comprehensive picture of the metabolic 
changes associated with pancreatic cancer. This will yield an improved 
understanding of the biology of pancreatic cancer, particularly when 
metabolomic data are linked with genomic and proteomic data. The 
practical implications of this information will become apparent when 
these data are linked with data on clinical outcomes. With the develop-
ment of systemic therapies that can target tumor metabolism or that can 
moderate any adverse host responses to cancer, there will be a need to 
catalog the specific metabolic alterations associated with pancreatic can-
cer. In addition, with properly designed biomarker studies, analysis of 
the circulating or urinary metabolome will allow identification of bio-
markers, which could enhance the diagnosis and subcategorization of 
pancreatic cancer. Progress in the field will require meaningful collabo-
rations between clinicians, basic scientists, experts in metabolomics, and 
biostatisticians.
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AN INTRODUCTION AND BRIEF OVERVIEW OF MicroRNAs

MicroRNAs (miRNAs) are short noncoding RNAs 22 nucleotides in 
length that carry out complex regulatory functions through post- 
transcriptional targeting and modification. Initially, these miRNAs were 
discovered through analyses of Caenorhabditis elegans development, in 
which it was shown that the lin-4 and let-7 antisense RNAs exhibited 
developmental regulatory function in the organism post-transcriptionally 
[1]. The miRNAs are exported from the nucleus and undergo processing 
from larger to smaller segments via various endonucleases [2]. For a time, 
their role relative to or within cellular function was largely unknown, yet 
with increasing analyses of sequence complementarity, mounting evidence 
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suggested that miRNAs function as a family formed of RNA duplexes 
directly capable of gene regulation post-transcriptionally [3].

Given the remarkable placement of miRNAs in the regulatory chain, it 
makes sense that a corresponding expression variance could be ascertained 
through different cell types or cell states. Indeed this is the case, wherein vari-
ous specific types of miRNAs are found exclusively in specific cellular sys-
tems in a context-dependent manner. An example of this is the highly 
concentrated presence of miR-122 in the liver or miR-223 in mouse bone 
marrow granulocytes and macrophages [4]. Such nuanced differences in 
expression levels also could be seen in stem versus differentiated cells in ani-
mal models. Recently, an experiment demonstrated the use of miR-291-3p, 
miR-294, and miR-295 in the enhancement of induced pluripotency, high-
lighting the valuable role of these molecules in normal development [5].

Logic stands that, given the delicate placement of miRNAs within the 
post-transcriptional regulatory pathway, disease development and progres-
sion could be correlated closely to aberrant miRNA function. Indeed, this 
is the case because erroneous expression (deregulated expression) or deple-
tion of this class of molecules results in a concurrent defect in cellular func-
tion, ranging from contrasting phenotypic changes, such as developmental 
aberrations, to physiological abnormalities, such as degenerative conditions 
linked to malignancies [6].

This chapter thus explores the significance of miRNAs in disease and 
the various facets surrounding their relevance clinically and experimentally 
as well as their future implications in the ever-changing omics paradigms.

MicroRNAs AND DISEASE PRIMING AND PROGRESSION

Because of the intricate links of miRNAs in genetic post-transcriptional 
control, their aberrant behavior can be analogous to “disease priming” 
whereby a fine homeostatic balance is effectively disturbed, initiating the 
development of a disease state. Key within this fact is the very basis of many 
clinically presented malignancies essentially being deregulated cells, no lon-
ger able to carry out apoptosis. The miRNAs have presented themselves as 
regulators of many aspects of cell function, and when their mechanisms fail, 
they contribute to cancer development [7]. Healthy cells thus require a cas-
cade of events to take place dissociating the cell from its regulatory mecha-
nisms. The miRNAs contribute to this cascade as a form of a switch that 
functions to activate or deactivate pathways or “microcircuits” within the 
regulatory schematic [8]. These control points vary in location and function 
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both regulating the progression and timing of cellular events as well as dis-
rupting them in a highly regulated context-dependent fashion.

If we subdivide the process of cancer development according to the 
Hallmarks of Cancer scheme of Hanahan and Weinberg, then we arrive at 
six distinct phases of cellular function that must be analyzed synergistically: 
proliferative signaling, evasion, invasiveness and metastasis, replicative 
immortality, angiogenesis, and resisting cell death (Figure 15.1) [9]. Each of 
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Figure 15.1 A Representative Diagram of the Interrelated Drivers of Human Cancer. 
(For color version of this figure, the reader is referred to the online version of this book.)
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these has had miRNAs implicated in one form or another either as direct 
interacting partners with molecules or as part of larger feedback loops for 
regulatory control.

A search through any article database will yield thousands of articles 
highlighting the many thousands of possible mechanisms miRNAs use to 
exert their regulatory control over physiology. Generally, under normal 
conditions, many miRNAs have been shown to provide oversight, earlier 
characterized as microswitches. This regulatory oversight has been impli-
cated in multiple pathways, one of which is progenitor cell proliferation and 
downstream function [10]. Placed in the context of the well-studied  
epithelial-to-mesenchymal transition (EMT) exhibited in highly malignant 
cells, many of the same miRNAs were shown to exert a concerted control 
over crucial signaling pathways—for example, Hedgehog signaling leading 
to concurrent proliferation of the cells [11]. It then becomes readily appar-
ent that aberrations in miRNA signaling stimulate a breakdown of the reg-
ulatory cascade of cellular function from a genetic perspective. One telling 
example is reduced expression of the let-7 tumor suppressor miRNA 
through phosphorylating the human miRNA-generating complexes, which 
in turn mediate the mitogen-activated protein kinase/extracellular signal-
regulated kinase (MAPK/ERK) signaling pathway [12]. MAPK/ERK is 
particularly important because of its involvement in maintaining stem cell 
pluripotency [13]. From this can be inferred further the maintenance of 
cancer stem cell populations contributing to the later proliferative phases of 
cancer but still sharing the same signaling malfunctions expressed earlier in 
the cell cycle [14]. This signaling motif contributes to the self-sustainability 
of the cancer cells, which also enhances their ability to evade the body’s 
regulatory policing by responding to various stimuli. In glioma cells, an 
interesting relationship was established between glucose levels and the 
expression of miR-451 [15]. When glucose is present, miR-451 exists at 
elevated levels, but when the reverse takes place, a concurrent decrease in 
miR-451 results in slowed proliferation but enhanced evasion in terms of 
migration and survival. Thus, miR-451 was established as a possible regula-
tor of the liver kinase B1/adenosine monophosphate-activated protein 
kinase signaling pathway. A similar mechanism was elucidated for the PI3K/
AKT pathway also in gliomas where miR-451 was downregulated, causing 
inhibition of cell growth and initiation of apoptosis [16]. Interestingly, an 
upregulation of miR-451 expression (albeit without glucose starvation) 
elicited a different response in esophageal carcinoma, whereby apoptosis 
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was initiated, and cell invasiveness and proliferation were diminished in the 
EC9706 cell line [17].

Many examples could be found in which miRNAs present themselves 
as important components of key regulatory pathways related to cellular 
communication and function [18]. In some pathways, miRNAs exert a 
direct and stringent function on downstream regulators. Some of these very 
mechanisms are inherently important for basic physiological functions; 
when they are aberrant, however, they become the root causes of cancer 
development even when no outright phenotypic patterns are demonstrated 
[19]. The same pathways involving miRNAs in their chain of function also 
regularly are perturbed when analyzed in patients, such as the forkhead box 
protein M1 transcription factor [20]. Representing some of the complexi-
ties arising from dynamic miRNA function, it has been shown that some 
cancer cells have even evolved through a scheme of deleting miRNA rec-
ognition sequences evading regulation by the molecules in B-cell lympho-
mas [21]. The perturbations can vary and the family of miRNA can be 
quite different in function, depending on their location in the body [22]. 
One malfunctioning miRNA, implicated in one disease model in fact may 
be benign in another, and several seemingly unrelated benign miRNAs 
together may interact to form a disease phenotype [23].

DIAGNOSTIC, PROGNOSTIC, AND THERAPEUTIC VALUE  
OF miRNAs IN PANCREATIC CANCER

Pancreatic cancer (PC) is one of the leading causes of cancer mortality in the 
United States, with an estimated 43,920 new diagnoses and 37,390 resulting 
mortalities in 2012 [24]. Despite many advances in targeted drug discovery, 
progress on the five-year survival averages remains horrifically dismal at 5–6% 
[25]. PC continues to be an invasive and aggressive disease, combined with 
the late stages of discovery and diagnosis, ultimately resulting in low life 
expectancy. Multiple factors have been known to contribute to PC develop-
ment and progression, ranging from environmental and genetic predisposi-
tion to epigenetic regulation and lifestyle habits, which collectively are 
increasing the risk for PC, such as through chronic pancreatitis [26].

One of the key elements making a dramatic entrance into PC research 
has been the presence of miRNA within several regulatory pathways of the 
disease, either contributing to the development or playing an important role 
in tumor aggressiveness. In a general survey of miRNA presence in cell 
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lines and surgical specimens, Zhang et al. identified eight miRNAs (miR-
296a, miR-190, miR-186, miR-221, miR-222, miR-200b, miR-15b, and 
miR-95) previously unidentified as components of the PC disease network 
[27]. Similarly, expression profiling of cancer cells led to the identification of 
miRNA signatures capable of discriminating between tumors and healthy 
tissues [28]. Within this same study, interestingly, many of the small number 
of identified perturbed miRNAs also were the same miRNAs initially 
uncovered as regulators of growth and development, such as the let-7 family 
of miRNAs. A key question that inevitably is asked is can miRNAs be used 
to correctly identify and distinguish cancer types? Collins et al. in a recent 
study were able to utilize a reasonably small number of miRNAs  
(8 miRNAs) to distinguish distinct signatures of cholangiocarcinoma and 
pancreatic adenocarcinoma [29]. Critically, miRNAs have been implicated 
in the regulation or bolstering of cancer stem cells (CSCs) circulating in the 
body [30]. Targeting these CSCs through regulation of miRNA expression 
was demonstrated repeatedly. Furthermore, it has shown great promise in 
the creation of targeted synergistic combinations inhibiting or reversing the 
much-described EMT that is known to be a key phenotype of aggressive or 
metastatic behavior of cancer cells [31].

A large part of the high mortality and low five-year survival rate for PC 
result from its inability to be diagnosed at an early enough stage, rendering 
it a high priority to uncover early strategies for diagnosis [32]. Often, no 
obvious symptoms present themselves to direct diagnostic tests, and thus 
identification frequently is incidental to a search for another illness. Unfor-
tunately, at this stage of identification, the disease usually has progressed 
aggressively into the surrounding tissues if not metastasized (locally advanced 
nonmetastatic disease). Additionally, a subset of patients with metastatic dis-
ease have tumors that are unresectable (80% of patients are not surgical 
candidates).

Within the scope of diagnosis and prognostic biomarkers, computational 
analysis of high-throughput data has shed some light on previously obscured 
genetic or epigenetic regulators of disease in PC. Computational analyses of 
these same pathways has shed light on the precise involvement and the level 
of control carried out by miRNAs, which can exert different functions 
depending on their partnered molecules. These relationships without 
sophisticated statistical analysis are hidden within the functions of the part-
nered molecules, which often are masked. The short life of miRNAs also 
contributes to their ability to fleetingly affect many cellular components, 
with many of the more highly studied miRNAs typically exhibiting 
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prolonged and sustained levels of their concentrations during the biological 
function. Systems biology and computational analyses are able to derive 
relationships between seemingly unrelated networks of molecules, which 
are some of the characteristic nature of miRNA and their function. This 
was vividly implicated within the heavily studied p53 tumor-suppressing 
network as one of the key components of dysregulation in terms of the 
regulatory role of miR-34 [33]. Network analyses of 377 microarrays of 
pancreatic ductal adenocarcinoma (PDAC), chronic pancreatitis, and nor-
mal pancreas tissues were able to home in on 26 miRNAs highlighted in 
perturbation within PDAC [34]. The same study also was able to confirm 
the characteristic miRNA signature of miR-216/miR-217 expression, 
while lacking the expression of miR-133a. Multiple studies either in the 
form of direct analysis or meta-analysis have been able to link multiple 
miRNAs between different cancers, conserved along developmental aber-
ration phenotypes that eventually lead to the development of cancer. With-
out systems analysis, an miRNA in one location with its direct partners can 
on the surface appear to exert a form of feedback control on a seemingly 
disconnected network unrelated to it without a contextual understanding 
of this relationship. Mathematical analysis of high-throughput data, such as 
that previously described, was able to discern expression correlations 
between what appear to be disconnected networks through biological anal-
ysis, and through that, it was determined that miRNAs exert orders of 
magnitude levels of control through this motif of regulation by interacting 
with binding partners and initiating both downstream effects and feedback 
loops within the scope of post-transcriptional regulation [35]. In this par-
ticular study, Gusev and colleagues, using the combinatorial target predic-
tion algorithm miRgate and a two-step data reduction procedure, 
determined Gene Ontology categories as well as biological functions, dis-
ease categories, toxicological categories, and signaling pathways that are tar-
geted by multiple miRNAs, statistically significantly enriched with target 
genes, and known to be affected in specific cancers (especially pancreatic 
cancer). Their global analysis of predicted miRNA targets suggested that 
coexpressed miRNAs collectively provide systemic compensatory response 
to the abnormal phenotypic changes in cancer cells by targeting a broad 
range of functional categories and signaling pathways known to be affected 
in PC. Such systems biology–based approaches provides new avenues for 
biological interpretation of miRNA profiling data and generation of exper-
imentally testable hypotheses regarding collective regulatory functions of 
miRNA in cancer.
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The same procedures and information potentially can be used for the 
identification of prognostic biomarkers to both stratify patients by their 
individual cancer subtype as well as to determine treatment efficacy down 
to the patient’s own molecular level. Many such miRNAs have been uncov-
ered and studied as candidates for prognosis [36]. One such example, the 
identification of miR-21 as a possible prognostic indicator in resectable 
PDAC, showed a marked ability to stratify success with adjuvant therapy 
[37]. The miR-21 in another study also was able to show as a good indicator 
of success with gemcitabine therapy or an indicator of gemcitabine resis-
tance, which was able to predict for better treatment efficacy [38]. This is a 
highly important aspect of miRNA involvement in clinical diagnosis and 
prognosis as it provides a measurable molecular marker for predicting pos-
sible chemoresistance, a recurring problem in clinical treatment, as well as 
determination of suitable combination therapy tailored to the patient 
phenotype.

PRIORITIZING miRNAs FROM PANCREATIC BIOSPECIMENS 
USING PATHWAY TOOLS

To prioritize pancreatic miRNAs, our group evaluated large-scale PDAC 
patient samples. Using serum and paraffin-embedded tissue from fine- 
needle aspirate (FNA) biopsies, we were able to selectively pinpoint the dif-
ferential expression of a number of miRNAs in tumor versus normal tissue. 
Among the major miRNAs discovered, the levels of mirR-21, miR-155, 
and miR-205 were found to be higher in tumors compared with normal 
tissue (Figure 15.2(A)). On the other hand, let-7b mir-146a, and miR-185 
were consistently lower in patient tumor samples compared with normal 
counterparts (Figure 15.2(B)).

Evaluation of the differentially expressed miRNAs using pathway analysis 
demonstrated that the lower expression of mir-146 led to the activation of 
prosurvival signaling NF-κB and related pathway (Figure 15.2(C)). These 
studies provide insights into how pathway analysis can help prioritize PDAC-
related miRNAs that can further be incorporated in therapeutic strategies.

CLINICAL TARGETING OF miRNAs

Because of the many miRNAs uncovered throughout the past decade of 
research and the focus on their relationship to cancer and disease, a tremen-
dous amount of work has been done to examine the viability of miRNAs 
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Figure 15.2 Prioritizing PDAC miRNAs Using Differential Expression and Pathway Anal-
yses in Patient Derived Samples. Serum and FNA biopsies from 22 patients and 7 normal 
healthy individuals were compared for differences in expression of miRNAs. (A) The 
expression of miR-21, miR-155 and miR-205 was higher in tumor samples compared 
with normal. (B) On the other hand, miR-146, let-7b and miR-185 were found to be 
downregulated. (C) Pathway analysis demonstrated a direct link to activation of prosur-
vival signaling by lowering of miR-145 expression. (For color version of this figure, the 
reader is referred to the online version of this book.)



Osama M. Alian et al.354

as both biomarkers of disease and treatable targets. It has been reported that 
in ovarian cancer, miR-200, miR-100, miR-141, miR-200b, and  
miR-200c presented themselves as suitable candidates as prognostic bio-
markers in patients with distinct differential expression levels [39]. Similar 
screening of miRNA expression profiles yielded another closely linked set 
of molecules from the same family (e.g., miR-141) as a clinical diagnostic 
and prognostic indicator of bladder cancer [40]. The value of such miRNAs 
is in their ability to control function at a post-transcriptional genetic level, 
essentially cutting off the disease at its start [41]. Some may be targeted for 
upregulation as antagomiRs, antagonizing the misregulated expression of 
oncogenic miRNAs or oncomiRs, and others can be targeted for knockout 
or inhibition. This concept in a colorectal cancer model was explored by 
Akao et al., in which miR-143 was modified chemically yielding a greater 
inhibitory effect in what is believed to be tumor initiation than with endog-
enous miR-143 [42]. Many studies were carried out demonstrating the 
clinical potential of miRNA-based therapies yet one of the unique scien-
tific potentials in miRNAs clinically relies on the ability to better quantify 
disease data. Many of these studies have been based on thorough analysis of 
high-throughput data in a large number of samples for statistical reliability. 
Some of the studies yielded new miRNA targets for clinical potential 
whether diagnostic or treatment markers, but their reliability requires  
further validation and wet-lab testing [43].

In the omics era, clinical medicine is moving toward a more computa-
tional approach of disease management, from the search for biomarkers in 
early diagnosis to unique high-throughput signatures of individual patient 
and population disease characteristics [44,45]. Initially, these studies were 
based on proteomics or genomics alone in terms of the central dogma of 
biology (DNA > RNA > Protein). Yet as our knowledge increased and with 
the discovery of miRNAs as key regulators of cellular function, which rep-
resent hundreds if not thousands of individual functioning miRNAs, their 
relationship to each other as well as the physiological system as a whole 
became a highly dynamic and complicated network of interactions [46]. 
These interactions also fail to be standard in the normal sense, but rather 
they are unique to each individual’s physiology and environment, respond-
ing to their homeostatic needs. The goal essentially then becomes a  
question of being able to properly quantify disease characteristics as they 
change from patient to patient and how this heterogeneity of functional 
interactions can be utilized in both diagnosis and treatment [47]. The tradi-
tional methods of diagnosis and treatment thus are no longer adequate 
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when compared with the amount of fine-tuned cellular regulation uncov-
ered and its variability between patients. Because miRNAs function at a 
regulatory level, their analysis is crucial within the framework of dynamic 
genetic networks displaying such interaction and stochasticity [48]. This 
stochasticity and variability in theory can be used to categorize both popu-
lations of patients as well as subpopulations of disease in concert with 
genetic and protein partners, thereby specifying treatment modalities for 
better clinical outcomes [49]. Understanding these complex interactions is 
a feat that can be accomplished only through mathematical modeling along 
with the traditional biological tools of research. This is a basic tenet of com-
putational biology and a key goal of personalized medicine as further 
knowledge is gained.

How do miRNAs fit in this paradigm? A distinction needs to be made 
between the older antiquated reductionist approach to cancer and the cur-
rent evolving holistic approach. Understanding a tremendous amount of the 
detailed workings of molecular biology, we still lack a true understanding of 
how complex systems function or interact with other systems [50]. With the 
continuous development of sophisticated molecular tools for the analysis 
and understanding of molecular biology, there is highly anticipated hope 
that with the discovery and mapping of genes and proteins, a disease such as 
cancer could be wiped out through the targeting of a unique protein or 
gene. This goal has been met with strategic setbacks because of the incred-
ibly dynamic nature of genes and their regulatory components either in 
dosage or transcriptional control [51]. Much of the research focused on the 
development and testing of highly specific compounds aimed at targeting 
either genetic function or protein products. Such was the excitement over 
the introduction of the highly targeted receptor tyrosine kinases, but increas-
ing problems of relapse have demonstrated the insufficiency of such a single 
target-oriented treatment modality [52]. Over the past several decades, 
however, although other new classes of drugs were introduced, there were 
only modest increases in survival with relatively steady if not increasing 
drug attrition rates [53].

Then came the development of computational models to analyze the 
role of molecular networks in disease to ask a fundamental question of why 
some of these highly discriminating drugs failed [54]. The reality of our 
physiology, either normal or aberrant, is that no one magic molecule or 
gene is responsible for success or failure [55]. A disease such as cancer rep-
resents a series of compounding failures of the cellular regulatory chain that 
ultimately results in the disease. By working backward from disease to genes 
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to understand the makeup of the malignancy, much of the evidence over-
whelmingly was based on the most consistently expressed aberrant proteins, 
and then mutated genes and gene products, whereby each successive discov-
ery was touted as the answer to defeating cancer. Unfortunately, this has 
created an environment of false hope surrounding much research as it is 
translated into the media [56]. The advent of network science as a means to 
bring mathematical sense to high-throughput data in step with the increas-
ingly attractive realm of miRNA research leads us to the logical next phase 
of cancer research within the omics methodologies and that is not just 
characterizing erroneous expression but also the level or aberrant relation-
ship between regulatory components [57]. Indeed, sophisticated analyses 
have been carried out such as the mirDREM (MIRna Dynamic Regula-
tory Events Miner) method for determining computationally and mathe-
matically the interactive relationships of miRNAs and their targets [58]. By 
establishing these relationships and following up with biological validation 
in a lung-development model, Schulz et al. were able to, within a reasonable 
degree of certainty, quantify the depth of regulatory interaction taking place 
between several previously unpredicted associated miRNAs (miR-466d, 
miR-466a, miR-23b, miR-30a, miR-30d, miR-125a) in addition to the 
already established miR-337 and miR-476c in development.

It is believed that miRNAs in humans, which are nearly a thousand or 
possibly more unique molecules, are capable of manipulating almost 60% of 
human genes [59]. This is in addition to their interactions with one another 
and the various feedback regulatory loops existing within their relationships 
[60]. Here we end up with an elegant example of nature’s efficiency in 
which case a small number of molecules through dense and layered interac-
tions exert orders of magnitude greater influence on their targets than their 
original number [61]. This is where the earlier presented microswitch anal-
ogy really shines, as miRNAs indeed present themselves as sophisticated 
microswitches within a highly interactive system. The only reasonable way 
to analyze this role is through an in silico to in vitro to in vivo approach 
coupled with a reasonable analytical platform to bring about better contex-
tual understanding of data [62].

Many of miRNA placements within functional regulation are strategic 
in nature, providing first, second, third, or more degrees of interactions 
which is a basic mechanism of signal amplification in biology and is the 
only logical explanation for such an extensive control of human genes [63]. 
Computational studies have shown indeed that the level of control exerted 
by miRNAs goes far into the traditional signaling networks extensively 
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studied in all aspects of biology, such development, cell cycle control, prolif-
eration, metastasis, and invasiveness [64]. At times, some key questions in 
canonical pathways or disease models were not answered until miRNA 
placement in the chain, sometimes many molecules away in relationship or 
perceived interaction [65].

IMPLICATIONS—NEW HOPE OR WILD-GOOSE CHASE?

There is a striking reality to the ubiquity of miRNAs and that is simply 
because of their ubiquitous nature in feedback or feed-forward regulation 
[66]. In a chemical study aimed at determining miRNA concentrations 
within various body fluids, Weber et al. found that detectable numbers of 
molecules can range from 204 in urine to 458 in saliva [67]. This begs a simple 
question of statistical viability (and variability)—that is, given the propensity 
of miRNAs to have many targets, sometimes unaccountable, do they repre-
sent enough of a fine-tuned platform of experimental or clinical significance? 
Table 15.1(A–C) represents a simple example of the difficulties posed  
with miRNAs as targets for either biomarkers or therapy. Utilizing a selected 
set of candidate miRNAs compiled from literature, each was run through 
an algorithmic database (miRanda) to determine target probabilities [68]. 
The results, although theoretical and statistical in nature, perfectly illustrate 
the tremendously complex dynamic interactions among miRNAs. Further-
more, does intervention via miRNAs and their relevant mechanisms pres-
ent a reliable approach to disease fighting that does not threaten the body’s 
own homeostatic balance or its omic ecosystem, given their remarkable and 
intricate involvement in nearly all facets of function? This remains one of 
the questions to be answered by researchers considering the fragility of the 
pathways within which miRNAs function. It becomes a dangerous scenario 
wherein manipulation of one chain of miRNA function inadvertently 
results in the collapse of another, causing yet another problem requiring 
intervention [69]. Intriguing examples exist; however, the lack of efficacious 
response to miRNA targeting is biological. Torrisani et al. were able to 
restore let-7 levels in pancreatic cancer cells that aberrantly expressed it, but 
contrary to expectation, while relevant gene expression was deregulated 
(e.g., K-Ras and MAPK), tumors still grew at a measurable rate [70]. This is 
much the same dilemma facing standard chemotherapeutic treatments since 
their inception and that is the balance between benefit to the system, no 
effect and harm. The one-size-fits-all methodology of medical treatment is 
no longer viable, and it is well recognized by the medical community, which  
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in response has been hesitant in the adoption of gene therapies and highly 
novel experimental treatments [71]. Currently, extensive studies and clinical 
trials have been focused on determining whether there is a suitable combi-
nation of highly potent and highly targeted compounds capable of working 
on multiple targets to halt various aspects of cancer. Indeed, it has been seen 
that a promiscuous drug indeed may be more efficacious in a treatment 
modality than a highly specific compound [72]. This is the new paradigm in 
translational medicine where, fundamentally, all the tools of science inher-
ently are combined to both uncover disease and target it on multiple fronts 
with as little side effect to the patient as possible.

A suitable treatment will not only target miRNAs or genes or aim at 
increasing or decreasing protein expression alone. Instead, it will entail a 
host of strategies to both return the patient to a state of physiological health 
and maintain a personalized approach to the methodology. Several examples 

Table 15.1 Selected Candidate miRNAs

miRNA
Number of Predicted 
Gene Targets

A: Selected Candidate miRNAs in Bladder Cancer and Their Predicted Number of Target 
Genes

miR-20a 9156
miR-106b 9046
miR-130b 7771
miR-141 7721
miR-200a 7645
miR-200a* 5770

B: Selected Candidate miRNAs in Gastric Cancer and Their Predicted Number of Target 
Genes

miR-21 5203
miR-27a 9154
miR-106b 9046
miR-146a 6798
miR-148a 7402
miR-433 6659

C: Selected Candidate miRNAs in Cervical Squamous Cell Carcinoma and Their 
Predicted Number of Target Genes

miR-1246 5983
miR-20a 9156
miR-3147 5839
miR-3162-5p 5521
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exist of a highly dynamic team of both clinicians and researchers applying 
the latest knowledge to patient treatment [73]. Treatments cannot solely rely 
on targeting one component for mass effect, and they will be based on the 
nuanced differences between patient populations and disease subtypes, a 
stratification strategy that is still under development for reliable use [74]. 
Key strategies should utilize computational–network pharmacology and 
biology for more targeted drug delivery and disease monitoring that even-
tually will lead to better treatment outcomes of cancer patients, especially 
for patients diagnosed with PC.

CONCLUSION

Pancreatic cancer, along with other cancers, inherently is due to the loss of 
entire systems of regulation and control. These system are connected intri-
cately through multiple layers of both genetic and epigenetic regulation, 
which require sophisticated analyses to provide insight into their dynamic 
actions. In the omics era, it is no longer feasible to simply examine both 
miRNAs and their relevant counterparts solely in terms of the reductionist 
biochemical principles, of which over many years we have elucidated some 
of the most nuanced biochemical and physiological mechanisms. The reality 
is that this entire system contains layer upon layer of fine control that at 
times can be redundant and seemingly unrelated to the disease in question. 
By bridging the vast science of network analysis with the various basic sci-
ence disciplines as well as with the clinical application of basic science tools, 
an incredible detailed and versatile picture of cancer can be ascertained, 
targeted, and manipulated to better fight the disease. Through this very same 
mechanism, truly personalized treatments can be created that both more 
efficiently target patients’ cancer cells as well as limit the harm caused to 
their healthy cells. It thus only makes sense to increase our knowledge of 
miRNA function, its relationship to the larger physiological system, and its 
greater implication in patient health and treatment outcome.
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CHAPTER 

Integration of Protein Network 
Activation Mapping Technology for 
Personalized Therapy: Implications 
for Pancreatic Cancer
Mariaelena Pierobon, Julie Wulfkuhle, Lance A. Liotta,  
Emanuel F. Petricoin III
Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA

INTRODUCTION

The underpinning and ultimate promise of personalized therapy is that the 
molecular fingerprint of a patient’s tumor becomes the rationale for targeted 
and patient-tailored therapy. Until recently, this fingerprint has been a genom-
ics-centered analysis using exome panels, whole genome sequencing, and/or 
RNA sequencing comprising the details that most scientists and treating 
oncologists consider when considering a “precision medicine”–based 
approach. Stratification and selection of patients for certain targeted therapies 
based on genomics analysis has certainly been successful in a number of 
instances such as with non-small cell lung cancer (NSCLC), where EGFR 
mutations [1] and ROS/ALK translocations [2] can be highly predictive for 
therapeutic response, or HER2 amplification in breast cancer [3], BRAFV600E 
mutations in melanoma [4], etc., but these approaches have imperfect sensi-
tivity and specificity and often show little to no predictive value [5,6].

16

Contents

Introduction 367
Defective Protein Signaling Networks Underpin Tumorigenesis 368

Phosphoproteins as Critical CDx Markers 368
Reverse Phase Protein Microarrays as a Tool for Personalized Cancer Therapy 371
Pre-Analytical Factors Influence Phosphoprotein Pathway Activation Mapping 374
Case Studies in Pathway Activation Mapping of Human Cancer 375
Generation of a Cellular Circuit Diagram for Patient Management: A Summary 377
References 379



Mariaelena Pierobon et al.368

However, while these examples show the potential for genomic-
based therapy prediction, not every NSCLC patient that harbors an 
EGFR mutation responds to EGFR-directed therapy, not every HER2+ 
breast cancer responds to Herceptin™, etc., thus genomic derangement 
analysis alone is unable to completely explain all targeted therapeutic 
response even in an enriched population. Cancer is certainly causally 
determined by specific genomic derangements, but in fact cancer is a 
proteomic disease. It is the proteins that are the “software” of the cell 
and do nearly all the work of the cell. More practically, the mechanism 
of action of most cancer therapies works at the protein level and protein 
enzymatic level (e.g., kinase inhibitors). It is proteins that are the drug 
targets and make up the signaling circuitry and biochemical networks of 
the cell. When scientists refer to aberrant signaling “pathways” or target-
ing cellular “networks”, it is the proteins, not genes that make up these 
pathways and networks.

Molecularly targeted agents for cancer treatment are now being cleared 
by the FDA on a regular basis, and thus the era of personalized therapy for 
cancer treatment has begun in earnest. In the near future, the oncologist 
will have a large number of FDA-approved agents to select from for any 
given patient, along with a compendium of molecular profiling–based 
companion diagnostic tests (CDx) that would be used for drug selection. 
However, based on these molecular profiling technologies, while drugs 
such as imatinib, sunitinib, traztuzumab, etc. have had a dramatic impact 
on GIST, CML renal cancer, and c-erbB2+ breast cancers, respectively, the 
emphasis will shift from the specific therapies themselves to the CDx bio-
markers that will be used to stratify and select the right therapy for each 
patient. The new CDx biomarkers will serve as the gatekeepers to the 
drugs. Thus, CDx marker discovery is under intense current investigation 
because of their elevated status within the treatment selection process, and 
the near-future CDx will not be single markers but panels of dozens or 
hundreds of markers that are the gateways to dozens to hundreds of tar-
geted therapies.

DEFECTIVE PROTEIN SIGNALING NETWORKS UNDERPIN 
TUMORIGENESIS
Phosphoproteins as Critical CDx Markers
Aberrantly activated protein signaling networks are the key central feature in 
tumorigenesis and metastatic progression [7–14], and posttranslational 
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modifications, such as phosphorylation, play the dominant role in 
orchestrating and regulating cell signaling processes. Thus, phosphopro-
tein pathway biomarkers may be among the most important class CDx 
markers [10,14–16]. As discussed previously, EGFR mutations can iden-
tify NSCLC patients that respond to EGFR-directed therapy, however, 
recent findings point to the fact that EGFR activation/phosphorylation 
may be much more predictive for response to EGFR-targeted therapy 
than any other measurement [17], even in EGFR wild-type NSCLC 
patients [18]. The hope that gene transcription profiling will effectively 
predict ongoing protein signaling events and provide an effective mole-
cular surrogate for protein pathway biomarkers has not come to pass as 
recent studies have revealed little example correlation between gene 
expression and protein expression [19,20]. Indeed, measurement of total 
protein expression levels of a given protein often do not correlate with 
the phosphorylation levels of a given protein since cellular signaling 
works by rapid phosphorylation of a large substrate pool, and total levels 
of a protein often do not predict therapy response whereas the phos-
phorylation level carries the weight of response prediction [17]. Very 
recently, a series of papers that utilize a systems level analysis of genomic 
and functional protein activation analysis of drug response prediction in 
breast cancer models revealed the advantages provided by phosphopro-
tein analysis over a genomics oriented approach [21]. Consequently, 
there is a critical need for technologies that can directly assess and  
measure the phosphorylation/activation state of the signaling  
network and thus provide a snapshot of the activity of many of the pro-
teins that are the drug targets of a large number of therapeutics for 
oncology.

It is now widely known that most cancers are caused by aberrant and 
hyperactivated kinase-driven signaling pathways that arise from the aggre-
gate genomic alterations. Moreover, posttranslational protein modifications 
(PTM), mainly phosphorylation, control the kinase-driven signaling net-
works through SH2, SH3, etc. protein–protein interactions [22–36]. The 
majority of protein phosphorylation occurs on serine and threonine resi-
dues with the remainder (approximately 10%) occurring on tyrosine resi-
dues. A large number of receptor tyrosine kinases (RTK) are hyperactivated 
in cancer and are the targets for clinically used anticancer therapeutics (e.g., 
EGFR, VEGFR, ROS, HER2 MET, KIT, PDGFR, ALK), and are them-
selves kinase enzymes. After the receptor binds ligand, or is conformation-
ally altered due to mutation or is overexpressed due to genomic amplification, 
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the receptors hetero- or homodimerize, transphosphorylate, and then form 
new binding sites for downstream scaffolding and protein kinase interac-
tions [22–36].

The overarching mechanisms and homologous control of these signal-
ing networks are largely unknown and under intense investigation since 
these mechanisms will undoubtedly help to elucidate better ways to target 
deranged cellular machinery. New approaches using mathematical model-
ing of normal and aberrant protein signaling networks is now being 
explored in order to both reconstruct signaling networks de novo and/or 
exploit the architecture to identify optimal therapeutic strategies [37–44]. 
The complexity of the human kinome, comprised of less than a thousand 
proteins [45], is of low dimensional space compared to the genome or the 
entire proteome, which ranges from tens of thousands to potentially mil-
lions of individual molecular analytes. Indeed, recent full-scale whole 
genome sequencing of individual human tumor specimens under consor-
tium-based approaches such as the TCGA has shown that each patient’s 
individual tumor is a complex heterogenous portrait of hundreds of inde-
pendent somatic genetic mutations [11–13] with each tumor being very 
different from patient to patient. The puzzling aspect of this tremendous 
heterogeneity is further amplified since it is not known for any individual 
patient tumor which mutations are the driving mutations and which are 
the “by-standard” mutations. However, this heterogenous background is 
resolved at the level of the functional protein pathway networks, which 
then reveals more clearly what are the functional effects of the mutational 
load. DNA mutations that ultimately provide a survival advantage to the 
evolving tumor cell are selected out, and this functional selection is mani-
fest in cell signaling pathway changes that are responsible for altered cell 
growth, death, motility, differentiation, and metabolism. As the plethora of 
individualized tumor-by-tumor DNA mutation alterations are realized 
and condensed down to protein pathway–centered analysis, we start to see 
that disparate tumor types, defined in the past by organ location and his-
tomorphology, may share common pathway architectural modules. Recent 
data supports this characterization as a growing cadre of data points to an 
entirely new categorization of human cancer based on functional protein 
pathway activation themes and not on mutational status, location, grade, 
and gene expression. An example of this is the ubiquitous nature of AKT/
mTOR pathway derangements, growth factor receptor-mediated signal 
pathway activation, and ras-raf-ERK network activation in a large 
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number of human cancers, regardless of location and organ microenviron-
ment [46–51].

Indeed, for pancreatic cancer wherein KRAS mutations (as ubiqui-
tous as they are for this tumor) represent a potentially intractable non-
druggable target, the focus now is on the downstream targets of KRAS, 
mainly the AKT-mTOR and MEK-ERK signaling infrastructure 
[52,53]. These signaling pathways are not pancreatic cancer specific and 
are central to nearly all tumors. Recent studies have revealed that con-
current targeting of the PI3K and MEK pathways, regardless of KRAS 
status, could provide a new therapeutic strategy wherein monitoring of 
the phosphorylation of 4E-BP1 and S6 may serve as a predictive bio-
marker for response to treatment [53,54]. This is very similar to the 
recent data that suggest monitoring of these same mTOR markers is of 
benefit to breast cancer patients [21]. Further evidence of drug “reposi-
tioning” is seen as targets such as HER2, EGFR, and STATs (all of 
which have been extensively exploited in other solid tumors) are now 
under intense investigation for use in pancreatic cancer [53–55]. Another 
recent example that demonstrates the profound utility of a protein path-
way–centered approach to identify new therapeutic targets and kinase 
inhibitor drug repositioning for pancreatic cancers is the new initial trial 
(RECAP:NCT01423604) results whereby an already FDA-approved 
drug for myelofibrosis (ruxolitinib) that targets JAK kinases 1 and 2 
showed exciting response rates [56].

REVERSE PHASE PROTEIN MICROARRAYS AS A TOOL FOR 
PERSONALIZED CANCER THERAPY

Based on the need to effectively measure the functional activated protein 
signaling architecture for targeted therapy applications, our laboratory 
developed a planar array-based technology that can concomitantly quan-
titatively measure the phosphorylation/activation state of dozens to 
hundreds of signaling proteins. This technology, the reverse phase pro-
tein microarray (RPPA), is proving to be a key enabling technology for 
the analysis of clinical material [57–65] (Figure 16.1). Unlike a forward 
phase array format (e.g., antibody array) where the analyte-detecting 
molecule is immobilized, with the RPPA format, cellular or tissue lysates 
(or even body fluids) from individual samples are printed directly and 
immobilized on a planar surface. Depending on the size of the pin used 



Mariaelena Pierobon et al.372

to print the samples, it is possible to print a few hundred to several thou-
sand spots on each slide. Since each printing deposits as little as 1–5 nl, it 
is possible to create as many as 100 slides from a lysate of only a few 
thousand cells. The most widely used substrate is nitrocellulose, which 
has the aggregate attributes of low cost, high binding capacity, and low 
relative background. With the RPPA format, each slide is incubated with 
one specific primary antibody, and a single analyte endpoint is measured 
and directly compared across multiple samples on each slide. Each array 
is printed with a series of high and low controls and calibrator samples 
that contain predetermined and varying amounts of the target analyte 
that span the expected linear dynamic range of the analyte. The RPPA, 
when used as a calibrated immunoassay, provides a straightforward means 
of quantifying any input by interpolation or extrapolation to the printed 
calibrator. While the RPPA was initially designed for colorimetric detec-
tion, florescent detection using near-infrared dye coupled reagents [66] 
has become popular due to the dramatically increased within spot 
dynamic range of the assay.

The RPPA is capable of extremely sensitive analyte detection, for exam-
ple, with reported levels of a few hundred molecules per spot and a CV of 
less than 10% [64]. Overall analytical sensitivity is ultimately dependent on 

Figure 16.1 Reverse Phase Protein Microarray Format. The reverse phase protein 
microarray is a planar array wherein of denatured or non-denatured cellular lysates, 
body fluids, culture media, LCM tissue cells, organelles, recombinant proteins, analytes, 
etc. are immobilized onto a planar substrate. This format allows the direct comparison 
of hundreds to thousands of individual samples at once since each array is exposed to a 
single primary antibody. (For color version of this figure, the reader is referred to the 
online version of this book.)



Protein Network Interaction Mapping in Pancreatic Cancer 373

analyte concentration and antibody affinity and avidity, however, the gen-
eral sensitivity of detection for the RPPA is such that even extremely low 
abundance phosphorylated signaling proteins can be measured from a lysate 
containing less than 10 cell equivalents [64]. The ability to generate a quan-
titative linear signal from such small amounts of material, and do so in high 
multiplex, is the unique attribute of the RPPA that distinguishes it from 
every other proteomic technique. This attribute becomes extremely impor-
tant for clinical applications where often the starting input material is only 
a few hundred cells from a needle biopsy or fine needle aspirate specimen. 
RPPA, like immunohistochemistry, is dependent on the availability of high 
quality, specific antibodies, particularly those specific for posttranslational 
modifications or active states of proteins, and is a major limiting factor for 
the successful implementation of any immunoassay-type platforms. Up-
front rigorous validation of each antibody is essential in order to be confi-
dent that the signal generated on the array is a result of the specific analyte 
being detected. Most RPPA work flows include background subtraction 
from arrays that have been exposed to the secondary antibody alone as well 
as local intra-array background subtraction. In addition, normalization of 
the signal itself is usually obtained by measuring the total amount of protein 
printed on the array, although newer techniques that normalize by DNA 
content of the lysate can be extremely helpful in instances where the sample 
is contaminated by exogenous proteins such as blood [67].

Key technological components of the RPPA offer several advantages 
over other array-based platforms such as tissue arrays [68] or antibody 
(forward phase) arrays [69] or ex vivo library kinase activity profiling. 
The RPPA can employ denatured lysates, so that antigen retrieval of 
sterically hindered phosphorylated epitopes, a significant limitation for 
tissue arrays, antibody arrays, and immunohistochemistry technologies, 
is not an issue. Kinase profiling efforts require maintenance of cellular/
tissue kinase activity, yet maintaining that activity to reflect only what 
had occurred in the patient and not influenced by exogenous tissue 
processing artifact is extremely difficult. RPPAs only require a single 
class of antibody per analyte protein and do not require direct tagging 
of the protein as readout for the assay. Other technologies, such as sus-
pension bead array platforms, have significant limitations in the portfo-
lio of analytes that can be measured, even in multiplex, because of the 
requirement of a two-site assay. Moreover, since the RPPA platform can 
measure the activation state of so many individual signaling molecules at 
once, broadscale analysis of the signaling architecture on a pathway basis 
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can provide a detailed understanding of the interconnections within the 
cellular circuitry even though a single snapshot in time (e.g., biopsy) is 
the input for analysis.

PRE-ANALYTICAL FACTORS INFLUENCE PHOSPHOPROTEIN 
PATHWAY ACTIVATION MAPPING

Clinical and preclinical tissues are most often a heterogenous mixture of 
interacting cell populations, such as fat cells, nerve cells, endothelial ves-
sel cells, muscle cells, fibroblasts, epithelial cells, and immune cells, as 
well as acellular material such as collagen and serum. Work flows where 
whole tissue is lysed and analyzed as a whole may generate inaccurate 
measurements of signaling activation or deactivation since most signal-
ing molecules are ubiquitously expressed in different cell populations. 
The use of laser capture microdissection (LCM) [70] combined with 
RPPA provides a facile means of detailed molecular analysis of discreet 
cell populations within a clinical biopsy specimen [51–65]. The impact 
of uncontrolled cellular heterogeneity on phosphoprotein measure-
ments was recently described whereby pathway activation mapping was 
performed on patient-matched undissected and LCM procured colorec-
tal and breast cancer tumor epithelium and revealed significant and 
numerous differences in pathway activation portraits between the two 
[60,71], with most patient pairs not revealing any overarching similarity. 
Moreover, despite the dramatic differences seen between LCM and 
undissected cells, these past approaches utilized studies wherein many of 
the cases contained over 50% tumor, which would represent a relatively 
high upper end of what would normally be seen in a large clinical trial 
setting (where an average of approximately 20–30% tumor content is 
seen in a core needle biopsy) [60,71].

Even if the impact of uncontrolled cellular heterogeneity is mini-
mized by cellular enrichment techniques such as LCM, proteins and 
phosphoproteins are inherently labile and are acutely affected by pre-
analytical variables such as post-excision delay, time of the tissue on the 
pathologist bench prior to fixation, etc. Recent results have found that 
within 15–30 min after a tissue specimen is removed from the body, 
many phosphoproteins become both activated and deactivated as the 
still-living tissue undergoes hypoxic and acidotic changes ex vivo and 
activate survival signaling [72,73]. Obviously, treatment decisions cannot 
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be based on molecular changes that occur because of how long the tis-
sue sat on the pathologist’s table. Since formalin fixation of tissue occurs 
so slowly (∼1 mm/h), simply dropping a piece of tissue into formalin 
does not solve the issue of preserving the in vivo signaling portraits of a 
tissue sample. The development of next-generation rapid penetrating 
fixatives or tissue processing methods that can preserve the labile phos-
phoprotein signaling architecture while maintaining formalin-equiva-
lent histomorphology is of critical importance, and such reagents and 
methods are being developed [74,75].

CASE STUDIES IN PATHWAY ACTIVATION MAPPING OF 
HUMAN CANCER

RPPA technology was first described by our group over a decade ago 
wherein LCM-RPPA work flow revealed that AKT signaling is activated 
at the invasion front during prostate cancer progression with a number of 
those AKT pathway members activated in early stage prostatic intraepi-
thelial neoplasia [51]. Since then, the technology has been used to evaluate 
the signaling changes in colonic tumor cells undergoing epithelial mesen-
chymal transition (EMT) [63] whereby LCM-procured tumor, normal 
epithelium, and matched stromal cells next to each compartment were 
compared using RPPA analysis. In another study, a phosphoprotein-based 
signature comprised of multiple members of the AKT-mTOR pathway 
were found to be systematically activated in rhabdomyosarcoma tumors 
from children who did not respond to chemotherapy and progressed rap-
idly [65].

Since cancer is often diagnosed at later stages, many treatments center 
on management of metastatic disease. Since metastasis is the lethal aspect 
of the disease, analyzing the signaling profile of the metastatic lesion may 
be a critical requirement for the correct selection of targeted agents since 
there is a distinct possibility that the signaling architecture of the meta-
static tumor cells will differ significantly from those of the primary tumor 
cells. In fact, recent analysis of patient-matched primary colorectal cancer 
lesions and liver metastases suggested that signaling in metastatic hepatic 
lesions differed considerably from that in the matched primary lesions 
[76]. These observations are consistent with those in a similar study of six 
primary ovarian tumors and patient-matched omental metastases taken 
simultaneously at surgery [77].
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Uncovering mechanisms of the development of resistance to targeted 
agents is another important area where the RPPA technology can have 
significant impact. In fact, RPPA analysis was to identify protein markers 
predictive for therapeutic response or resistance in a number of different 
types of cancers [78]. Studies in ovarian cancer and colon cancer cell lines 
identified pathway markers involved in nucleotide excision repair that were 
associated with chemotherapy drug activity [78]. Pathway analysis of mela-
noma cell lines and patient samples revealed that phosphorylation of 4E-BP1 
was increased in melanoma cell lines carrying mutations in BRAF and 
PTEN compared to cells with wild-type RAS/RAF/PTEN and was asso-
ciated with worse overall and post-recurrence survival [79]. Analysis of 
breast cancer cell lines found that distinct patterns of signaling were present 
in groups representing different molecular subtypes of breast cancer that 
were not obvious from gene transcription profiling [80]. In another study, 
the investigators found that treatment of basal-type cells with MEK inhibi-
tors resulted in AKT signaling activation, which could have implications for 
treatment response to other therapeutic agents [81]. RPPA analysis of the 
signaling architecture of cells being evaluated for response and resistance to 
the PI3K inhibitors found that mutations in the genes for PI3K and loss of 
PTEN activity were potential predictors of sensitivity to these inhibitors 
[81]. Interestingly, Ras mutations (so prevalent in pancreatic cancers) were a 
major resistance marker in this study, even in the presence of PI3K muta-
tions and measurements of phosphorylated AKT (S473). Moreover, expres-
sion of c-Myc and cyclin B, which are downstream targets of Ras, were 
upregulated in PI3K inhibitor resistant cell lines in vivo and were also nega-
tively associated with response to the drug in vivo.

Drugs targeting the EGFR and HER family signaling pathway are some 
of the most intensely studied in the field of molecular-targeted therapies.  
A recent study by Xia et al. identified an entirely novel mechanism of lapa-
tinib resistance, a small-molecule inhibitor of EGFR and HER2, in breast 
cancer [82]. Using a series of isogenic lapatinib-sensitive cell lines and those 
with acquired resistance and broadscale RPPA-based pathway activation 
mapping of hundreds of key signaling proteins, the investigators found that 
resistance was due to the “leaky” nature of lapatinib, whereby incomplete 
inhibition of EGFR phosphorylation by lapatinib supplied effective selec-
tive pressure to cause the cells to increase the production of the heregulin 
ligand and switch from HER2-HER3 signaling to heregulin-driven 
EGFR-HER3 signaling. Investigators utilized RPPA-based pathway 
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activation mapping to study mechanisms of estrogen resistance in breast 
cancer, also using matched resistant/sensitive cell lines, and found that sev-
eral pathways involved in cell proliferation and survival were activated in 
tamoxifen-resistant lines [83]. The ability to integrate multiplexed RPPA 
phosphoprotein analysis with multi-omic data (RNA, miRNA, DNA, 
metabolomic, drug sensitivity data, etc.) was recently described for the 
NCI-60 cell line series and revealed the distinct nature of the activated 
protein signaling networks. Interestingly, while a large number of phospho-
protein signaling correlates were found that predicted certain drug sensitivi-
ties, little to no correlation was seen between the phosphoprotein/protein 
signaling architecture and any genomic measurement performed to date 
[84]. This result emphasizes the need to directly measure the activated pro-
tein machinery and the inability to predict this activation from inferential 
genomic analysis alone.

GENERATION OF A CELLULAR CIRCUIT DIAGRAM FOR 
PATIENT MANAGEMENT: A SUMMARY

Certainly, RPPAs have become one of the most widely published protein 
array technologies and perhaps the most dominant technological platform 
for multiplexed phosphoprotein analysis of clinical biopsy samples. More-
over, recent data indicate that the platform has achieved the necessary 
analytical fidelity to be used in clinical trial settings. Comparison of HER2 
data obtained from RPPA to that generated from the same samples using 
FDA-approved IHC and FISH measurement technologies revealed excel-
lent concordance (>95%) [85]. The RPPA is a biomarker discovery engine 
of many cutting edge clinical trials, such as the ISPY-2 TRIAL, where the 
discovery of rigorously validated CDx markers would be used to acceler-
ate promising molecularly targeted inhibitors to Phase III testing. Tech-
niques such as IHC are a mainstay of many protein-based CDx efforts; 
however, the use of such methods in a rapidly evolving personalized ther-
apy may become obsolete. Based on the current drug development pipe-
line, in less than five years there may be >50 targeted therapies cleared for 
use by the FDA, with as many or more protein CDx markers being offered. 
Consequently, it will not be possible to measure 50–75 CDx proteins at 
once from a single biopsy specimen using IHC, ELISA, etc. At this time, 
the RPPA format is uniquely positioned to produce a quantitative readout 
of the activation state of dozens to hundreds of drug targets at once. In 
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addition, as combination therapies tailored to each patient’s tumor archi-
tecture begin to become part of routine pathological workup, the need to 
effectively measure the activated protein “circuitry” will be central to this 
effort. Indeed, one can envision a future for pancreatic cancer patients 
(Figure 16.2) whereby a “wiring diagram” of each patient’s tumor biopsy 
is produced by RPPA technology and provided to the treating oncologist 
as part of a pathology report, providing a circuit view of the actionable/
druggable landscape and a molecular rationale for patient-tailored 
therapy.

Figure 16.2 A new paradigm for personalized therapy can be envisioned whereby a 
patient-specific tumor “wiring diagram” of the activated signaling architecture is pro-
duced by RPPA data. The “Pathways in Human Cancer” diagram (reproduced courtesy of 
Cell Signaling, Inc). The Cscape (Cancer Landscape) Program used to map the RPPA data 
to the image was developed by Eli Lilly, and Company (Kelly Gallagher, Scott McAhren, 
Loius Stancato) and used collaboratively for RPMA data analysis. Red are high relative 
levels of drug target activation/phosphorylation and green are low relative levels of 
drug target activation/phosphorylation. (For color version of this figure, the reader is 
referred to the online version of this book.)
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CHAPTER 

Computational and Biological 
Evaluation of Radioiodinated 
Quinazolinone Prodrug for 
Targeting Pancreatic Cancer
Pavel Pospisil1, Amin I. Kassis2
1Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland, 2Department of 
Radiology, Harvard Medical School, Boston, MA, USA

INTRODUCTION TO EMCIT CONCEPT

The concept of enzyme-mediated cancer imaging and therapy (EMCIT) 
[1–5] involves the use of an enzyme specifically overexpressed on the sur-
face of cancer cells. As such, the enzyme can act as a mediator for the hydro-
lysis of a soluble, radioisotopically labeled prodrug to a water-insoluble drug. 
This enzyme-dependent and site-specific hydrolysis provides a noninvasive 
technique for imaging and therapy, based on the rapid in vivo precipitation 
and entrapment of water-insoluble radioactive molecules within the extra-
cellular spaces of solid tumors and minimal uptake into normal tissues.
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The working prototype for the EMCIT approach was first developed 
and confirmed for alkaline phosphatase (ALP) [1,2,4], a hydrolase with 
monophosphoesteric activity that is known to be overexpressed on the 
plasma membranes of many tumor-cell types including breast and ovarian 
carcinoma [2,6]. In 2008, the EMCIT concept was also successfully  
established for prostatic acid phosphatase (PAP) in prostate cancer [3]. In 
both cases, the radiolabeled prodrug, a derivative of quinazolinone, was 
shown to have very EMCIT-suitable properties. Namely, ammonium 
2-(2′-phosphoryloxyphenyl)-6-iodo-4-(3H)-quinazolinone (IQ2–P) was 
shown to be hydrolyzed by ALP and PAP to the water-insoluble, fluorescent 
2-(2′-hydroxyphenyl)-6-iodo-4-(3H)-quinazolinone (IQ2–OH) [1–5]. In vitro 
incubation of 125IQ2–P/127IQ2–P with several human and mouse tumor cell 
lines (e.g., breast, colon, lung, ovary, and prostate) resulted in the efficient and 
rapid transformation of the prodrug to the corresponding water-insoluble 
derivative, which was effectively retained on the surface of cancer cells. The 
prodrug was minimally hydrolyzed in the presence of normal human mam-
mary epithelial cells (HMEC) and mouse liver, spleen, kidney, and muscle 
cells [3–5]. Importantly, IQ2–P can be readily radiolabeled with an isotope 
having decay characteristics suitable for single-photon emission computed 
tomography (SPECT) or positron emission tomography (PET) imaging 
(e.g., 123I, 124I) or for therapy (e.g., 131I).

Here we present the application of the EMCIT approach to pancreatic 
cancer. To a large extent, this chapter is based on the results of our previ-
ously published results [7]. In the United States, it is estimated that 45,220 
men and women will be diagnosed with pancreatic cancer in 2013, and an 
estimated 38,460 patients will die from this disease in 2013 (www.cancer. 
gov/cancertopics/types/pancreatic). Despite the lethal nature of pancreatic 
tumors, the possibility of early diagnosis is practically nonexistent. Thus, the 
development of technologies that enable noninvasive sensing of this disease 
and therapeutic intervention at an early stage is clearly desirable. Therefore, 
in analogy with our earlier investigations in which the overexpression of 
ALP was utilized to target such iodoquinazolinone derivatives to various 
tumors (e.g., colon, lung, ovarian) and PAP in prostate tumors, the intention 
of our studies is to (1) identify an enzyme that is overexpressed by pancre-
atic cells and that is able to hydrolyze the quinazolinone prodrug; (2) design, 
synthesize, and characterize an iodoquinazolinone analog that is a substrate 
for the extracellular pancreatic cancer–identified hydrolase and with 
EMCIT-suitable characteristics; and (3) perform in silico as well as in vitro 
binding assays of such derivatives with the data-mining-identified target 
prior to in vivo assessment.

http://www.cancer.gov/cancertopics/types/pancreatic
http://www.cancer.gov/cancertopics/types/pancreatic


Quinazolinone Prodrug for Pancreatic Cancer 387

In order to investigate a pancreatic target candidate, we have drawn on 
our recently developed bioinformatics methods of data mining that are 
based on the combined exploration of scientific literature, gene–protein 
databases, and knowledge-pathway databases [8,9]. Using this approach, a 
new target that has been identified is an enzyme overexpressed in human 
pancreatic cancer called extracellular sulfatase 1 (SULF1). The primary 
activity of SULF1 is the desulfation of heparan-sulfate-proteoglycan 
(HSPG) [10]. This sulfatase has also been shown to regulate the growth of 
pancreatic cancer cells and is overexpressed in pancreatic cancer [11,12]. 
The enzyme belongs to the arylsulfatase family, whose members have the 
ability to desulfate molecules with sulfate-attached aromatic rings, e.g., 
para-nitrocatechol sulfate (pNCS) [13]. Because of this activity, and in anal-
ogy with the arylphosphatase activity of ALP and PAP, we have modified 
IQ2–P to its sulfur-derived analog 2-(2′-sulfooxyphenyl)-6-iodo-4-(3H)-
quinazolinone (IQ2–S), performed modeling studies, characterized the com-
pound, and determined its hydrolysis in silico and in vitro.

This chapter is mainly based on our published paper [7]. We briefly pres-
ent how the SULF1 was identified using the combined data mining 
approaches. We then carried out the in silico molecular docking to predict 
the potential enzymatic selectivity for the analogs followed by in vitro incu-
bation of the three enzymes (arylsulfatase A (ARSA), ALP, and PAP) with 
sulfate- and phosphate-quinazolinone derivatives. To further prove that the 
hydrolysis of these prodrugs occurs on the surface of the cancer cells, T3M4 
pancreatic cancer cells (as well as other cancer cell lines: ovarian cancer cells 
OVCAR-3 and prostate cancer cells LNCaP) were incubated in vitro with 
the iodoquinazolinone derivatives and showed that their hydrolysis leads to 
the formation and precipitation of 127IQ2–OH fluorescent crystals on the cell 
surface. These findings were the first to report the targeting of a radioactive 
substrate to SULF1 and revealed that such structures would be useful in 
imaging (123I/124I/131I) and radiotherapy (131I) of pancreatic cancer.

COMPUTATIONAL EVALUATION
Searching for the Target
The search for hydrolases expressed in the extracellular space of pancreatic 
cancer cells was completed using our data mining strategy. This approach in 
a combined manner explores scientific literature, gene and protein data-
bases, and pathway knowledge bases. Our first strategy published in 2006 
utilized the text mining software LSGraph and the pathway knowledge 
bases of Ingenuity Pathways Analysis® (IPA) (version 2.0) [8]. This 
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combined approach of data mining identified 450 proteins related to pan-
creatic cancer from which one relevant target, SULF1, was identified (see 
following) [7].

In 2008, we published the data mining approach based on the knowl-
edge base of IPA including the exploration of the cancer microarray 
platform Oncomine™ (oncomine.org), in order to identify extracellular 
hydrolases in cancer cells and blood-borne biomarkers for early diagno-
sis of cancer [9]. Oncomine™ was chosen because it is a cancer microar-
ray platform incorporating over 670 public independent microarray 
datasets totaling more than 73,000 samples, which span 20 major cancer 
types (September 2013). It unifies a large compendium of other pub-
lished cancer microarray data (Gene Expression Omnibus (GEO; ncbi.
nlm.nih.gov/geo)) and Stanford Microarray Database (smd.princeton.edu), 
and uniquely provides differential expression analyses comparing most 
major types of cancer with their respective normal tissues. For example, 
to identify potentially important genes in a particular cancer, users can 
perform a “cancer vs. normal” analysis for a given cancer type (e.g., pan-
creas) and those genes that are upregulated in cancer relative to its nor-
mal tissue can be retrieved as a list [9]. Recently, we checked the presence 
of SULF1 in the oncomine.org database and found that in three out of 
seven microarray datasets, the gene of this enzyme meets the threshold 
of being in the top 1% genes of cancer vs. normal datasets. Thus, using 
this more recent approach, SULF1 would have been identified as the 
potential target as well.

Extracellular SULF1 is a potential EMCIT target (Figure 17.1). While 
this enzyme is situated in the endoplasmic reticulum and Golgi stack, it 
has been shown, by its similarity to homologous proteins, to be secreted 
outside the cell (UniProt ID: SULF1_HUMAN; Entrez Gene ID: 23213). 
As indicated in protein and gene databases, its localization in the extracel-
lular space infers from direct assays [14,15]. Thus, the combined data min-
ing approach used brings together the information on enzyme function, 
localization, ontology, and known expression in pancreatic cancer micro-
array datasets.

SEQUENCE ALIGNMENT OF EXTRACELLULAR SULFATASE

In order to situate the selected enzyme SULF1 with respect to protein family 
and to determine the closest available structural homologs, sequence align-
ments against known protein sequences of the UniProt Knowledgebase 9.2 

http://oncomine.org
http://smd.princeton.edu
http://oncomine.org
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(uniprot.org) were queried using BLAST network service of the Swiss NCBI 
BLAST program reference (PMID:9254694) [16]. The blastp option was set as 
restricted to mammalian taxon, searched only in UniProt-curated sequences 
and excluding fragments. The assessment of SULF1 against sequences of pro-
teins with experimentally determined 3-D structures was performed against 
nonredundant sequences of the Protein Data Bank (PDB, rcsb.org) also using 
NCBI BLAST2 software (Figure 17.2). Furthermore, sequence alignment of 
SULF1 against all mammalian proteins in the UniProt database placed SULF1 
into the “alkaline-phosphatase-like clan” (Interpro ID: IPRO17849; ebi.
ac.uk/interpro/entry/IPR017849). Such findings encouraged us once more 
to consider SULF1 for the EMCIT concept as this approach was demon-
strated to work for the prostatic acid and ALPs [2,3].

Docking into Sulfatase
Since the 3D-resolved structure of SULF1 is not known, we identified 
in the Protein Data Bank the best aligned structural homolog, arylsulfa-
tase A (ARSA, PDB code 1E2S) (Figure 17.2). As can be seen, the key 

Figure 17.1 Schematic of Enzyme-Mediated Cancer Imaging and Therapy (EMCIT) 
Showing Overall Data Mining Approach Used To Identify Hydrolases for Radiolabeled 
Quinazolinone Derivative Substrates.

http://uniprot.org
http://rcsb.org
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residues of both sulfatase active sites are identical. When the ARSA crys-
tal structure 1E2S is complexed with pNCS, its sulfate group position 
showed the expected positioning of sulfate (or phosphate) for the dock-
ing of our quinazolinone derivatives (Figure 17.3). Pure ARSA enzyme 
is available commercially and as such is suitable for in vitro binding 
assays. Its crystallographically determined structure is the complex 
ARSA C69A–pNCS that mimics the reaction intermediate during sul-
fate ester hydrolysis by the active enzyme [17]. The active site of ARSA 
contains positively charged residues Lys123, Lys302, His229, and Ser150, 
and divalent Mg2+ cation in a small deep pocket capable of coordinating 
the sulfate moiety (Figure 17.3(B) and (C)). The crystal structure con-
tains one water molecule (WAT57) in close proximity to pNCS. Our 
docking simulations of all derivatives, which have been performed both 
keeping and removing water in the active site during the docking pro-
cess, showed that our derivatives prefer the water-deprived active site. 

Figure 17.2 SULF1 Sequence Alignment Against Proteins With Resolved 3-D Struc-
tures. (A) SULF1 precursor (blue submission line) is aligned to proteins that are sulfa-
tases with arylsulfatase activities (colored by scale of identities—lowest identity: red; 
highest identity: green) belonging to alkaline-phosphatase-like family of proteins: 
1P49-A – arylsulfatase C (ARSC), 1FSU – arylsulfatase B (ARSB), 1N2L-A through 1E1Z – 
arylsulfatase A. (B) Sequence shows common pattern of sulfatases that corresponds to 
active sites. Numbering of residues is consistent with Swiss-Prot original query sequence 
of SULF1 (1–861). (For interpretation of the references to color in this figure legend, the 
reader is referred to the online version of this book.)



Quinazolinone Prodrug for Pancreatic Cancer 391

pNCS is docked deeply in the pocket within 1.5 Å RMSD of distances 
of docked vs. crystal ligand atoms, in close proximity to the Mg2+ cation 
and Ala69 (Figure 17.3(B)).

Three-dimensional conformers of all sulfate and phosphate derivatives 
studied were prepared and docked fully flexible into rigid proteins as 

(A) (B) (C)

(D) (E)

Figure 17.3 Docking Positions of pNCS, IQ2–S, and IQ2–P in Active Sites of ARSA, ALP, 
and PAP. Compounds are docked charged as depicted (A). Original crystallographic 
position of pNCS and its docked position in ARSA are shown with C atoms in white 
and orange, respectively (B). IQ2–S and IQ2–P, depicted with C atoms colored in 
orange and violet, respectively, are docked in energetically most favorable posi-
tions in ARSA (C), ALP (D), and PAP (E). Positively charged residues are green, histi-
dines cyan, and negatively charged residues are red. H-bond interactions to sulfuric 
group of docked pNCS (B), IQ2–S (C–E), or phosphatidic group of IQ2–P (C–E) are 
shown as green dotted lines. White surface (B–D) represents amino acid residues 
complexing Mg2+ (green ball) or Zn2+ (magenta ball) cations. Ionic groups (sulfate, 
phosphate) are ideally positioned for nucleophilic attack on sulfur/phosphorus 
atom. (For interpretation of the references to color in this figure legend, the reader 
is referred to the online version of this book.)



Pavel Pospisil and Amin I. Kassis392

described previously [3,13]. The protein active sites were defined as amino 
acid residues 7 Å from the sulfurous or phosphorous atoms of their respec-
tive crystal structure substrates. All ligands were docked in the active site of 
the arylsulfatase ARSA (PDB ID: 1E2S, monomer A) in their charged form. 
The sulfate group of IQ2–S and pNCS, as well as the phosphate group of 
IQ2–P, were dehydrogenated in order to simulate the intermediate state of 
these compounds [3,13]. To test the accuracy of docking to ARSA, model-
ing was run first with complexed ligand pNCS, then for IQ2–S and IQ2–P. 
The best docking poses were estimated in terms of docking energy and 
closest position of sulfur (for IQ2–S and pNCS) or phosphorus (for IQ2–P) 
atom to the Mg2+ cation and the Cβ of Ala69.

Docking into Phosphatases
In order to compare the ability of the arylsulfatase to accommodate IQ2–S 
with the ability of phosphatases to accommodate IQ2–P, both quinazolinone 
derivatives have been docked to ARSA, ALP, and PAP. Docking poses of 
IQ2–S and IQ2–P in the sulfatase were compared to those done to alkaline 
and acid phosphatases, keeping in account particular differences between 
the protein active sites [2,3]. For docking into ALP, the structure of human 
placental ALP (PDB ID: 1EW2) was used. The metal ions Zn and Mg at the 
active binding site were retained with +2.0 charges, whereas all bound 
waters except the five involved in interactions with the substrates were dis-
carded. Water hydrogen atoms were added by the PDB2PQR program [18], 
and then the hydrogen-bonding network was optimized while keeping the 
heavy atoms rigid. Binding free energy (ΔG) and inhibition constant (Ki) 
values were calculated and estimated within the AutoDock scoring func-
tion. The obtained complexes were utilized for interpretation of the bioac-
tivity potential of the ligands.

Comparison of docking poses and energies can be seen for all compounds 
in Figure 17.3. The iodine atom of the quinazolinone derivatives point out-
ward from the active site, and the quinazolinone moiety itself does not hinder 
the binding to studied enzymes (Figure 17.3(C–E)). IQ2–P docks successfully 
into all three enzymes ARSA, ALP, and PAP. The favorable binding selectivity 
of IQ2–S and IQ2–P is, therefore, given in terms of the difference of their 
respective free energies of binding to the enzyme, ΔΔG. Thus, IQ2–P binds 
more tightly than IQ2–S to ALP (ΔΔG = 3.65 kcal/mol) and at similar ener-
gies to PAP (ΔΔG = 0.35 kcal/mol) (Figure 17.3, Table 17.1). Similarly to 
ARSA, docking orientations are almost identical, with the phosphate placed 
closer to the anchoring residues then sulfate (Figure 17.3(D) and (E)).
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Table 17.1 Hydrolysis of IQ2–S and IQ2–P by Arylsulfatase A (ARSA), Alkaline Phosphatase (ALP), and Prostatic Acid Phosphatase (PAP)

Experiment Target
IQ2–S 
Hydrolysis

IQ2–P 
Hydrolysis Note

In silico docking 
binding in terms 
of ΔG (kcal/mol)

ARSA −7.96 −5.88 ARSA is closest 3-D–structure available homolog to 
SULF1. IQ2–S docks successfully and more favorably than 
IQ2–P

(ΔΔG = ΔG(IQ2–S)−ΔG(IQ2–P) = −2.08 kcal/mol)

ALP −9.92 −13.57 IQ2–S docks successfully but less favorably than IQ2–P
(ΔΔG = 3.65 kcal/mol)

PAP −13.04 −13.39 Both IQ2–S and IQ2–P dock at favorable energies to PAP
(ΔΔG = 0.35 kcal/mol)

Phosphatase inhibitorsa

In vitro incubations No Yes No Yes
In solution (HPLC) ARSA 98% ND 7% 12% Arylsulfatase from Helix pomatia

ALP 44% ND 98% 18% Human placental alkaline phosphatase
PAP 45% ND 98% 17% Human semen prostatic acid phosphatase

Tumor cells 
(microscopy)b

Pancreatic cancer 
(T3M4)

++ ++ ++ − Data mining identified SULF1 and 
PPAP2A (phosphatidic acid phosphatase 
2A) related to pancreatic cancer

Ovarian cancer 
(OVCAR-3)

++ − ++ − ALP and PAP are known to be expressed 
in ovarian cancerc

Prostate cancer 
(LNCaP)

++ − ++ − PAP is known to be expressed in prostate 
cancer LNCaP cells shown to overex-
press PAPc

aInhibition determined by HPLC with 5% inhibitor (20× dilution); enzyme concentration 0.01 unit/μl.
bDensity of crystals: −, no fluorescent crystals; +, few scattered fluorescent crystals; ++, cells covered with crystals.
cReference [3].
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BIOLOGICAL EVALUATION
Enzymatic Catalysis
We have designed, characterized, and synthesized IQ2–S using organic syn-
thetic methods that are analogous to those used with phosphate-containing 
IQ2–P [2]. Syntheses of 2-(2′-phosphoryloxyphenyl)-6-[125I/127I]iodo-
4-(3H)-quinazolinone (IQ2–P), its hydroxylated analog 2-(2′-hydroxyphenyl)-
6-iodo-4-(3H)-quinazolinone (IQ2–OH), and the stannylated analog 
2-(2′-hydroxyphenyl)-6-tributylstannyl-4-(3H)-quinazolinone (SnQ2–OH) 
were published in [3,4]. IQ2–OH and SnQ2–OH are starting materials for the 
synthesis of IQ2–S and 125IQ2–S, respectively. Synthesis of pure (>96%) com-
pounds 2-(2′-sulfooxyphenyl)-6-[127I]iodo-4-(3H)-quinazolinone (IQ2–S), 
2-(2′-sulfooxyphenyl)-6-tributylstannyl-4-(3H)-quinazolinone (SnQ2–S), 
and 2-(2′-sulfooxyphenyl)-6-[125I]iodo-4-(3H)-quinazolinone (125IQ2–S) is 
shown in [7].

In analogy with the in silico docking simulations, we have performed 
comparable experiments in vitro. The hydrolysis of compounds was 
assessed by measuring the formation of radioactive 125I-labeled products 
with HPLC [1–5]. The retention times of each sample were determined 
and compared with those obtained prior to the addition of enzymes. In 
essence, 125IQ2–S and 125IQ2–P were incubated with (1) 1 unit of ARSA 
from Helix pomatia; (2) 1 unit of ALP from human placenta; or (3) 1 unit 
of PAP from human semen. The enzymes were examined at three con-
centrations (0.1, 0.01, and 0.001 units/μl). Figure 17.4 shows HPLC pro-
files and retention times of the radiolabeled prodrugs 125IQ2–S and 125IQ2–P 
in solution in the absence and presence of the enzymes. All three enzymes 
mediate the hydrolysis of 125IQ2–S and 125IQ2–P, but, at different rates 
(Table 17.1). Arylsulfatase (0.01 unit/μl) cleaves sulfate very efficiently 
from 125IQ2–S, completely transforming this molecule to 125IQ2–OH within 
10 min. At the same concentration, this sulfatase is quite inefficient at the 
hydrolysis of 125IQ2–P (∼7%). When the concentration of the enzyme was 
10-fold higher, only partial hydrolysis (37%) was observed (Figure 17.4(B)). 
These results indicate that arylsulfatase exhibits partial phosphatidic activ-
ity. Hydrolysis of both compounds with alkaline and acid phosphatases 
demonstrates the reverse pattern. With both phosphatases (0.01 unit/μl), 
there is partial hydrolysis of 125IQ2–S (∼45%), as seen previously [3–5]. 
Complete hydrolysis of 125IQ2–P occurs in the presence of either enzyme 
(Figure 17.4, Table 17.1). Therefore, it seems that besides the enzymes’ 
prime activities, both ALP and PAP also have sulfatidic activity, while 
ARSA has phosphatidic activity.
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Enzymatic hydrolysis in solution of 125IQ2–P by ARSA, ALP, and PAP was 
also determined in the presence of phosphatase inhibitors. A mixture of com-
pounds, “Phosphatase Inhibitor Cocktail 2” known to inhibit acid and ALPs 
(10 μl), was used in a total volume of 20 μl solution (two-fold dilution of pur-
chased inhibitor concentration) containing 125IQ2–P (200 μCi in 5 μl), Tris buf-
fer (0.1 M, pH 7.4), and selected enzyme concentrations (0.1, 0.01, or 
0.001 units/μl). The hydrolysis of IQ2–P is completely inhibited in the presence 
of the phosphatase inhibitors. When IQ2–S was incubated with these tumor 
cells, efficient hydrolysis and formation of crystals occurred (Figure 17.5). The 
addition of phosphatase inhibitors led to an absence of fluorescent crystals 
only with the LNCaP and OVCAR-3 cells and not the T3M4 cells.

Figure 17.4 ARSA-, ALP-, and PAP-Mediated Hydrolysis of 125IQ2–S and 125IQ2–P. HPLC 
profiles of 125IQ2–S (left column) and 125IQ2–P (right column) are shown for pure com-
pounds in solution (A), and after 10-min incubation (Trizma® buffer, pH 7.4, 37 °C) of 
derivatives with ARSA (B), ALP (C), and PAP (D). All profiles are performed with 0.01 unit/μl 
enzyme with exception of ARSA assay with 125IQ2–P, which is done at 10-fold-higher con-
centration of enzyme (0.1 unit/μl).
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In Vitro Hydrolysis by Human Tumor Cells
The in vitro hydrolysis of IQ2–S and IQ2–P with pancreatic T3M4, ovarian 
OVCAR-3, and prostate LNCaP cancer cells was assessed by fluorescence 
microscopy examined under the same conditions (pH 7.4, 37 °C) as 

Figure 17.5 In vitro incubation of IQ2–S and IQ2–P (±phosphatase inhibitors; 10 μl, 1 mg/
ml) with viable human pancreatic, ovarian, and prostatic cancer cells showing hydrolysis 
of compounds and precipitation of IQ2–OH (green crystals) before washing cells (low 
power) and after washing cells (high power). Cell nuclei (blue) are counterstained with 
DAPI. (For interpretation of the references to color in this figure legend, the reader is 
referred to the online version of this book.)
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published [3,7]. Briefly, logarithmically growing cells were trypsinized, sus-
pended in medium, and allowed to adhere by an overnight incubation at 
37 °C. The chambers were then washed, the medium removed, and the 
slides reincubated for up to 24 h with IQ2–S or IQ2–P (30 μg/ml). The slides 
were incubated an additional 24 h, the cells were observed under a fluores-
cence microscope, and the density of the green crystals formed was semi-
quantitatively recorded (− (minus): no fluorescent crystals; ++: cells covered 
with crystals, (Table 17.1)). The slides were then washed 3× in PBS and 
then fixed in ice-cold acetone. The washed fixed cells were counterstained 
with diamidino-2-phenylindole (DAPI), a nuclear stain, and the distribu-
tion and intensity of fluorescent crystals were observed and compared with 
those prior to washing of the cell monolayer. The inhibition of IQ2–S or 
IQ2–P (10 μg/ml) hydrolysis was assessed in the presence of the phosphatase 
inhibitors by the simultaneous addition of the aqueous solution of inhibitor 
mixture (30 μl, Phosphatase Inhibitor Cocktail 2, 1 mg/ml). When the three 
cell lines are incubated with IQ2–P, fluorescent crystals, i.e., the correspond-
ing product of hydrolysis IQ2–OH, are formed and retained (before and after 
cell washing) on the cell surface (Figure 17.5). No hydrolysis and formation 
of fluorescent IQ2–OH crystals are observed when HMEC are incubated 
with IQ2–S or IQ2–P or when both compounds are incubated in medium in 
the absence of cells.

DISCUSSION

The computational data mining approach utilized in our studies, which uses 
a combination of searches through scientific literature, gene and protein 
databases, and pathway knowledge bases, identified 450 entities hits (gene/
protein). This number is much larger than that obtained using the classic 
search exploring the protein database only. Interestingly, most of these pro-
teins (390 of 450, >86%) are expressed in the extracellular space of the 
pancreatic cancer cell or are integral to its plasma membrane, which is a 
considerable number of cell-surface entities. As we are interested in finding 
an EMCIT-suitable hydrolase, we identified five phosphatases and one sul-
fatase—extracellular sulfatase 1 that we predicted would be an excellent 
target suitable for EMCIT (Figure 17.1). SULF1 has been shown to have 
high specific endoglucosamine-6-sulfatase activity [14] and to exhibit aryl-
sulfatase activity, described as the cleavage of sulfate from the aromatic phe-
nyl ring. Thus, arylsulfatase activity can be compared to the arylphosphatase 
activity known for ALP and PAP that has been successfully applied to the 
hydrolysis of IQ2–P in our previous EMCIT studies [1–5]. Interestingly, 
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SULF1 sequence alignment to all mammalian proteins (Figure 17.2) dem-
onstrated its “alkaline-phosphatase-like” properties, which provided us an 
additional argument for using SULF1 as the target for enzyme-mediated 
imaging.

Therefore, we have modified IQ2–P to its sulfate-derived analog IQ2–S 
and docked it into the closest homologous 3-D structure of SULF1, ARSA. 
The accurate docking pose of pNCS into its ARSA binding pocket (1.5 Å 
RMSD) shows the right selection of the docking procedure. Docking of 
both derivatives IQ2–S and IQ2–P into ARSA, ALP, and PAP (Figure 17.3) 
showed that besides the common classification of the three enzymes in the 
alkaline-phosphatase-like family, they are known to bind para-nitrophenyl 
sulfates or phosphates and have both partial sulfatidic and phosphatidic 
activities [19,20]. From the point of view of the ligand structures alone, 
pNCS and IQ2–S and IQ2–P share some chemical–structural similarities that 
make quinazolinones promising scaffolds. Particularly, IQ2–S contains a sul-
fate group that is attached to the phenyl ring as in pNCS that can be hydro-
lyzed. Actually, this characteristic is successfully predicted by the docking of 
IQ2–S, which embeds the sulfate in its pocket of ARSA (Figure 17.3(B)). 
Additionally, we gain new aromatic hydrophobic interactions between the 
quinazolinone phenyl moiety and Val91 residue. The phenyl portion of the 
quinazolinone moiety of IQ2–S lies parallel to the phenyl portion of pNCS 
in the crystal complex. It seems that the sulfate drives the binding. Com-
parison of pNCS and IQ2–S energies indicates that the resulting free-energy 
binding value of IQ2–S (−7.96 kcal/mol) is similar to that of pNCS 
(−8.21 kcal/mol). The slight difference of 0.25 kcal/mol indicates that iodo-
quinazolinone does not prohibit the sulfate ion from being anchored into 
the sulfate pocket.

IQ2–P docks into the active site of ARSA exactly as IQ2–S, placing the 
phosphate moiety into the sulfate-binding pocket (Figure 17.3(C)). The 
H-bonding system between phosphate and Mg2+ cation is somewhat 
weaker (fewer bonds and longer interactions, ΔG = −5.88 kcal/mol) and 
2 kcal/mol less favorable than that for IQ2–S. Despite the number of H-bonds 
and the difference in docking pose, the program shows a distinct preference 
toward a sulfate rather than a phosphate moiety. Even with the −2 charge 
of phosphate compared with the −1 charge of sulfate, the sulfate derivative 
binding energy (−7.96 kcal/mol) is more favorable than that of the phos-
phate derivative (−5.88 kcal/mol) (Figure 17.3(C)). Overall, docking pre-
dicts that replacing phosphate by sulfate on the iodoquinazolinone scaffold 
would permit shifting the EMCIT concept from phosphatases to sulfatases 
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and suggests a novel prodrug target system. Particularly with respect to pan-
creatic cancer, the sulfate-derived IQ2–S is a potential prodrug for ARSA 
and subsequently its closest analog SULF1 (due to its high sequence homol-
ogy and identical key active site interacting residues).

The successful docking of IQ2–S and IQ2–P into sulfatase (though with 
different binding energies) led us to carry out the reciprocal tests of docking 
into alkaline and PAPs [2,3]. The favorable binding selectivity of IQ2–S and 
IQ2–P is given in terms of ΔΔG (Table 17.1). Similarly to ARSA, docking 
orientations are almost identical (Figure 17.3(D) and (E)) and the prefer-
ence of the enzymes for their respective substrates is given in binding ener-
gies predicted by docking. In analogy with the in silico docking simulations, 
we have performed comparable experiments in vitro, and it can be seen that 
all three enzymes mediate the hydrolysis of 125IQ2–S and 125IQ2–P. The 
binding determinants here are the % rates (Table 17.1). The results indicate 
that arylsulfatase exhibits partial phosphatidic activity, while phosphatases 
show partial sulfatidic activities. These findings are in agreement with previ-
ous studies showing enzymatic promiscuity of ALP toward hydrolysis of 
sulfate derivatives and vice versa [19,20]. Furthermore, based on the differ-
ence in the observed percentage of hydrolysis in solution, it is possible to 
conclude that this sulfatase is very effective at the hydrolysis of IQ2–S while 
being quite ineffective at hydrolyzing IQ2–P. On the other hand, both phos-
phatases, which very efficiently hydrolyze IQ2–P, seem to exhibit stronger 
sulfatidic activities with IQ2–S (∼45% hydrolysis at 0.01 unit/μl enzyme).

Proof of Concept
In order to confirm that the hydrolysis of IQ2–s is mediated by sulfatase, 
both quinazolinone derivatives were also incubated with each hydrolase in 
the presence of the phosphatase inhibitors. As expected, the presence of 
inhibitors reduced the ALP and PAP-mediated hydrolyses of IQ2–P approx-
imately five times to 18% and 17%, respectively (Table 17.1). Since ARSA 
poorly hydrolyzes this quinazolinone derivative (∼7%), it was difficult to 
ascertain the effect of these inhibitors (similar hydrolysis was seen, ∼12%). 
These data confirm the poor ability of this sulfatase to hydrolyze the phos-
phorylated quinazolinone derivative.

Recently, we demonstrated that in vitro incubation of water-soluble 
nonfluorescent IQ2–P with various viable ALP-expressing human and 
mouse tumor cell lines (breast, colorectal, lung, ovarian, rhabdomyosarcoma, 
and teratocarcinoma) leads to its hydrolysis and the formation of large fluo-
rescent water-insoluble crystals of IQ2–OH [1,2,4], and no hydrolysis occurs 
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when the tumor cells are in the presence of levamisole, a specific inhibitor 
of ALP [2,4]. In an analogous study [3], we determined that three human 
prostatic cancer cell lines (LNCaP, PC-3, and 22Rv1) hydrolyze IQ2–P or its 
radiolabeled analog 125IQ2–P to IQ2–OH or 125IQ2–OH, respectively, with 
time-dependent formation of very large (up to 20-μm long) fluorescent 
crystals, many of which were irreversibly bound at the surface of the tumor 
cells.

The in vitro hydrolysis assay of IQ2–S and IQ2–P with the three cancer 
cells (T3M4, OVCAR-3, and LNCAP) showed in all cases clear formation 
of crystals of the corresponding product IQ2–OH (Figure 17.4). However, 
the addition of phosphatase inhibitors inhibited the formation of fluores-
cent crystals only with the LNCaP (PAP positive) and OVCAR-3 (ALP 
positive) cells, and not the T3M4 (pancreatic) cells. Taken together, these 
findings indicate the presence of (1) phosphatase hydrolytic activity on all 
three cell lines, and (2) sulfatase activity on the extracellular surface of pan-
creatic tumor cells only. Based on the results obtained from the combined 
data-mining approach, docking, and in vitro HPLC assay, it can be sug-
gested that the observed hydrolysis-dependent fluorescence is due to a pres-
ence of an arylsulfatase (the group of which SULF1 is a member). From the 
lack of formation of crystals when both compounds are incubated with 
ovarian and prostatic cancer cell lines in the presence of phosphatase inhibi-
tors, it can be further concluded that the above-mentioned sulfatase, poten-
tially responsible for the hydrolysis of IQ2–S in T3M4 cells, is not expressed 
by OVCAR-3 and LNCaP cells. This is in agreement with our data mining, 
which has identified phosphatases (ALP, PAP)—whose activity here is suc-
cessfully inhibited—but not sulfatases, overexpressed in the extracellular 
space of ovarian and prostatic cancer cells.

Novel Target?
As mentioned previously, when we assess the hydrolysis of IQ2–P without 
inhibitors in pancreatic cancer cells, the substrate is hydrolyzed on the cell 
surface. Interestingly, this in turn could be explained by the activity of a 
phosphatase specifically expressed by pancreatic cells of which we are 
unaware. The observations that in vitro HPLC profiles show weak phospha-
tidic activity of arylsulfatase and that neither ALP nor PAP is known to be 
excreted in the outer space of pancreatic cancer cells suggest that there is a 
phosphatase specifically expressed in the extracellular space of these cells. 
Retrospectively, we have checked the results of our data mining and have 
identified a phosphatidic acid phosphatase type 2A (PPAP2A) (see open 
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access additional file in reference [8]). PPAP2A is an integral membrane 
glycoprotein that hydrolyzes a number of structurally related lipid phos-
phate substrates and plays an active role in the hydrolysis and uptake of lipids 
[21]. Two human isoforms of membrane-associated phosphatidic acid phos-
phatase have been described (PPAP-2A and PPAP-2B), and both enzymes 
have been shown to have broad substrate specificity and wide tissue distri-
bution [21,22]. The isoform 2A is predominantly present in heart and pan-
creas and also expressed in prostate, and it belongs to the same family of 
proteins as PAP [23]. For example, PPAP2A is known to dephosphorylate 
phosphatidic acid (PA) and its activity (as PAP) is Mg2+ independent [22]. 
Several of these indications point to a possible PPAP-2A arylphosphatase 
activity hydrolyzing IQ2–P on the surface of T3M4 pancreatic cells. In the 
recent characterization of the pancreatic juice proteome in patients with 
pancreatic adenocarcinoma, PPAP2A was identified and described as a 
potential biomarker of pancreatic cancer suitable for early diagnosis [24]. It 
suggests one new direction where the EMCIT efforts could be focused in 
the future.

CONCLUSIONS

Using advanced computational data mining and modeling methods, we have 
identified human extracellular SULF1 as a suitable target for the enzyme-
mediated cancer imaging and therapy technology in pancreatic cancer. Based 
on previously published work, we have synthesized, radiolabeled, and charac-
terized a sulfate derivative, IQ2–S. In vitro incubation of 125IQ2–S with a 
SULF1-homologous arylsulfatase leads to its hydrolysis and the formation of 
fluorescent crystals of its product IQ2–OH. Similarly, its incubation with pan-
creatic cancer cells leads to fluorescent crystals of product IQ2–OH irreversibly 
attached to the extracellular membranes of these cells. Furthermore, we have 
unveiled the possible role of PPAP2A phosphatase in the hydrolysis and have 
suggested this protein too as a potential EMCIT target.

It is our hope that these quinazolinone-based radiopharmaceuticals will 
eventually lead to the development of a novel noninvasive approach for 
imaging (123I-SPECT; 124I-PET) and treating (131I) pancreatic cancer. We 
believe that the EMCIT concept works for sulfatase, as well as phosphatase-
mediated hydrolysis of quinazolinone derivatives, providing an active insol-
uble drug, IQ2–OH, that can move meaningful intervention to a much earlier 
point in the path of progression of pancreatic cancer before the disease 
becomes untreatable.
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INTRODUCTION

According to the World Cancer Research Fund (WCRF) there were 
279,000 cases of pancreatic cancer diagnosed worldwide in 2008 (http:// 
www.wcrf.org/cancer_statistics/). The estimated five-year prevalence of 
people living with pancreatic cancer is projected at 3.5% per 100,000 and it 
is the 13th most common cancer in the world. Pancreatic cancer is almost 
always fatal and is the eighth leading cause of cancer-related deaths in the 
world. The most common form of pancreatic cancer is the pancreatic ductal 
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adenocarcinoma (PDAC). In the United States it is the fourth leading cause 
of cancer-related deaths [1]. PDAC kills ∼39,000 patients each year [1], 
which translates to two American deaths every 30 min. The disease is pre-
sented at a very late stage and the symptoms are very complex, oftentimes 
overlapping with that of other disorders, leading to misdiagnoses. Aggressive 
and therapy resistant PDAC is refractory to any of the currently available 
treatment modalities. Gemcitabine and its combination with platinum-
based compounds have minimal impact and improve the survival by a mere 
few weeks. Recently, gemcitabine-nab-paclitaxel (Abraxane) has been 
investigated, and that too has shown very nominal benefits. These morbid 
statistics and lack of effective drugs indicate that modern approaches to 
understanding the disease as well as novel molecularly targeted therapies are 
urgently needed in order to advance the current state of PDAC therapy.

The genetics of therapy resistant PDAC is highly complex [2]. The 
refractory tumors harbor multiple aberrations in oncogenic and tumor 
suppressor signaling pathways [3]. PDAC signaling networks are highly 
intertwined and robust, meaning that they resist changes such as that 
induced by targeted therapies. According to the most accepted PDAC 
progression model, normal duct epithelium progresses to infiltrating can-
cer through a series of histologically defined precursors (PanINs). The 
overexpression of HER-2/neu and point mutations in the K-ras gene 
occur early, inactivation of the p16 gene at an intermediate stage, while 
the inactivation of p53, DPC4, and BRCA2 occur relatively late [4]. It has 
previously been proposed that PDAC robustness stems from “passing of 
the baton” between genes responsible for driving the various stages of the 
tumor, and therefore an effective therapy should likely target an entire set 
of genes across a succession of stages to break such robustness [5]. It is 
interesting to note that to date the moderately successful agents against 
PDAC have been the nucleoside analogs such as gemcitabine, 5FU, plati-
num drugs such as cisplatin or oxaliplatin, and recently nab-paclitaxel. 
While nucleoside analogs and platinum are considered DNA intercalators 
[6] and nab-paclitaxel was originally discovered as an antimicrotubule 
agent [7], studies have shown that most of these agents have multiple net-
work pharmacology type of effects on cancer cells [8]. For example, the 
nucleoside analog gemcitabine has been shown to interact with a wide 
range of proteins such as P8 [9], and oxaliplatin (a component of  
FULFIRNOX) was shown to form 10 times more protein adducts than 
its originally designated DNA adduct forming anticancer mechanisms 
[10]. Similarly the permutations and combinations of targets of individual 
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components in FULFIRINOX have not been fully elucidated. Although 
stagnated at six to eight months overall survival benefit for the past 40 
years, the multitargeted therapeutics mentioned previously have remained 
the most widely used agents for the treatment of PDAC. There is no 
doubt that these chemotherapeutic drugs work through network pharma-
cology principles. In this chapter, we present the case for using systems 
and network biology sciences to better understand PDAC complexity and 
provide examples of how network pharmacology strategies can be used to 
design superior network targeted single agent and combination strategies 
against PDAC leading to better treatment outcome.

NEED FOR REVISITING THE PROGRESSION MODEL OF 
PDAC: DEPARTURE FROM GENES TO NETWORK

There is general consensus over the heterogenous nature of PDAC. Advances 
in genomic assessment tools have highlighted the intricate signaling net-
work complexity that emanates from the interactions between the different 
components in PDAC tumor microenvironment. Differential gene expres-
sion (DE) analysis has been the traditionally adopted model to identify 
driver genes. This is the criteria used in the Hruban’s progression model 
where a set of driver gene mutations have been attributed to each specific 
stage in PDAC development. While these analyses manage to capture sev-
eral major genes that show noticeable changes in expression/mutation, 
there are many more important genes that often do not display such drastic 
changes (do not fall under the DE criteria or cutoff values). These genes are 
not identifiable through their own behavior, rather, their changes are only 
quantifiable when evaluated in conjunction with other genes within their 
vicinity (i.e., through their role in the networks) [5]. However, traditional 
molecular biology cannot sieve through this complexity, and systems and 
network level investigations that take a holistic view are needed [11]. In this 
direction, Srihari and colleagues have utilized PDAC expression datasets 
comparing 39 paired normal vs. tumor samples to track the progression 
based on protein–protein (PPI) and gene interactions. Their analysis utilized 
a novel algorithm, MIN FLIP (FLIP are genes that are flipped in response 
to stage transition or perturbations). Their analysis shows that serine/threo-
nine kinase are the major genes that act as ON/OFF switches regulating 
cell cycle progression during the PDAC differentiation process [5]. The 
MIN FLIP resulted in the discovery of genes that were not marked in the 
traditional DE system.
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Logically, the approaches that could break down the PDAC signaling 
complexity into smaller easily decipherable fragments should make rational 
design of drugs or their combination easier. There are a number of different 
network visualizing tools available that can be used to evaluate PDAC 
expression datasets to obtain sub network information both for diagnostic 
and therapeutic purposes. With the advent of high-throughput analyses sys-
tems, diseases such as PDAC are routinely investigated at multiple levels 
such as genomics, transcriptomics, and interactomics (metabolomics) levels. 
These large-scale analyses systems can further be benefited by applying net-
work interaction visualization tools that are readily and publicly available. 
Table 18.1 lists some of the major network visualization tools that are freely 
available to evaluate expression datasets such as that derived from PDAC cell 
line, animal models, human primary tumors, and patient samples. These net-
work visualization tools give a fairly good amount of insight into the inter-
actions between the defined set of differentially identified genes (for 
example, differentially expressed genes) within a given expression dataset.

DEFINING BIOLOGICAL NETWORKS

The selection of important network positions as drug targets faces major 
hurdles. An ideal target in cancer network has to be important enough to 
influence the disease, however, such network position must not be so criti-
cal for normal cell physiology that targeting it leads to outward toxicity.  

Table 18.1 Network Visualization Resources
Network Visualization 
Resources (2012) Website Resource

Arena3D http://arena3d.org
BiologicalNetworks http://biologicalnetworks.net
BioTapestry http://www.biotapestry.org
Hive Plots http://www.hiveplot.com
Hybridlayout http://www.cadlive.jp/hybridlayout/hybridlayout.html
Hyperdraw http://www.bioconductor.org/packages/release/bioc/ 

html/hyperdraw.html
ModuLand www.linkgroup.hu/modules.php
Multilevel Layout http://code.google.com/p/multilevellayout
MAVisto http://mavisto.ipk-gatersleben.de
Multilevel Layout http://code.google.com/p/multilevellayout
RedeR http://bioconductor.org/packages/release/bioc/html/ 

RedeR.html
VANTED http://vanted.ipk-gatersleben.de

http://arena3d.org/
http://biologicalnetworks.net/
http://www.biotapestry.org/
http://www.hiveplot.com/
http://www.cadlive.jp/hybridlayout/hybridlayout.html
http://www.bioconductor.org/packages/release/bioc/html/hyperdraw.html
http://www.bioconductor.org/packages/release/bioc/html/hyperdraw.html
http://www.linkgroup.hu/modules.php
http://code.google.com/p/multilevellayout
http://mavisto.ipk-gatersleben.de/
http://code.google.com/p/multilevellayout
http://bioconductor.org/packages/release/bioc/html/RedeR.html
http://bioconductor.org/packages/release/bioc/html/RedeR.html
http://vanted.ipk-gatersleben.de/
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The answer to this problem can come from detailed knowledge on the struc-
ture and dynamics of complex cancer related networks that are presented in 
the following discussion. A biological network is composed of nodes and 
edges [12]. Nodes can be either amino acids, genes, microRNAs, or proteins, 
and edges are the interactions between two nodes. Depending on the thresh-
old of detection limits, the edges can connect more than two nodes. Even 
though these simplistic definitions hold true, there are exceptions, such as in 
case the node is a protein that is secretory in nature, and then definitions of 
nodes become diffused. There are a number of excellent reviews that detail 
the network identification methods and dilemmas associated with defining 
certain molecular networks [13]. This chapter will not rereview the existing 
knowledge but will instead focus on how these existing resources will be 
applied for PDAC biomarker identification and drug discovery.

Local Network Topology (Hubs, Motifs, and Graphlets)
When a node in a biological network has an unusually higher number of 
neighbors, it is termed as a hub. It is imperative that if a hub is disturbed then 
the information is rapidly distributed across all the partnering neighbors. 
Cancer hubs have more interacting partners compared to noncancer proteins, 
thereby making them good targets in network-based drug design [14,15]. 
Nevertheless, if the hubs are critical/essential proteins (such as transcription 
factors that are needed for normal cell function as well), their targeting 
becomes problematic. At the next level, there have been attempts to define 
amino acid hubs as intraprotein information distributors, thereby making 
them targets for drug intervention [16,17]. In this direction, Laonnis and col-
leagues using mass spectrometry–based quantitative proteomics and stable 
isotope labeling of amino acids in cell culture coupled with bioinformatics 
gave indirect evidence identifying interferons as the major hub in cardiac 
glycoside (e.g., digoxin, digitoxin) mediated PDAC cell death [18]. On the 
other hand motifs are circuits of 3–6 nodes in directed networks that are highly 
overrepresented as compared to randomized networks [19]. Graphlets are 
similar to motifs, but are unidirected [20,21]. Nevertheless, targeting local 
network topology has its limitations, and network robustness overcomes the 
specific attacks against hubs, motifs, or graphlets. For example, Schramm and 
colleagues demonstrated that in many different malignancies including PDAC 
the signaling networks were more diverse (average number of nodes in the 
networks of tumor > normal tissue nodes), shorter path length (average path 
length for cancer < normal), less centralized (average clustering coefficient of 
cancer < normal tissue), and less dependent on hubs (average increase of 
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network diameter after hub removal, for cancer < normal tissue) [22]. They 
concluded that cancer (PDAC) networks demonstrated signaling mainte-
nance and increased error tolerance to punctual attacks even at hubs, making 
the design of highly specific drugs (targeted therapies) extremely challenging. 
These challenges have forced researchers to define and identify opportunities 
in the broader network topology as presented below.

Broader Network Topology: Modules, Bridges, Bottlenecks, 
and Choke Points
The broader network topology definitions became necessary once it was 
realized that the impact of targeting hubs alone may not lead to desirable 
therapeutic outcome. Modules represent the networking nodes that are 
linked to a particular group and classified for a single function (readers are 
referred to our comprehensive review on network pharmacology for details 
on network topology and illustrations that can be found at Azmi et al., [12]). 
Modules in the networks are responsible for giving a cellular/molecular 
function. Modules arise when nodes are more densely connected with one 
another as compared to their neighborhood. In cancer the modules of dis-
ease-related genes in PPI networks have been suggested as attractive net-
work drug targets. On the other hand, bridges connect two neighboring 
modules and they are independently regulated from the nodes belonging to 
both modules, which they interconnect. Such module interconnecting 
properties makes them attractive as drug targets. An agent against a bridge 
can impact numerous modules at the same time, resulting in synergistic 
effects. By definition, a bottleneck is a phenomenon where the performance 
or capacity of an entire system is limited by a single component. Bottlenecks 
are in fact key connector proteins with key functional and dynamic proper-
ties. In the past a number of computational strategies have been applied to 
identify bottleneck proteins in cancer. In particular, they are more likely to 
be essential proteins such as transcription factors. Choke defines a point of 
attack that requires a lesser degree of effort to achieve the desired outcome 
on the entire network. Therefore, choke points in a network serve as excel-
lent points for drug intervention. Ideally a choke point would allow an infe-
rior drug or its combination to successfully prevent the entire network of 
major protein functions even though the latter may be comprised of highly 
resistant components. For example, the nuclear export protein Exportin1/
Xpo1/CRM1 is a recognized exporter of most of the tumor suppressor 
proteins (TSPs) and fits the bill of a choke point (Figure 18.1). High expres-
sion of CRM1, as observed in most cancers including PDAC, results  
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in constant nuclear expulsion (cytoplasmic retention/mislocalization) 
 of major TSPs. Inhibition of CRM1 should result in blocking of the nuclear 
export of most of the target TSPs. As demonstrated by our group, the tar-
geted inhibition of CRM1 results in nuclear retention of different TSPs in 
PDAC cell nuclei leading to inhibition of proliferation and suppression of 
tumor growth in subcutaneous and orthotopic mice tumor models [23]. 
Older examples of the importance of choke points came from pathogens 
such as bacteria for enzymes that either uniquely produce or consume a 
given metabolite leading to their survival. Once verified, inhibition of these 
enzymes was proven to result in either lethal inability to produce an essen-
tial metabolite or toxic accumulation of another metabolite.

Applications on Network Pharmacology
Network-based approaches are increasingly being applied in different areas 
of cancer research. A number of different network methodologies presented 
in the last decade have allowed superior understanding of cancer heteroge-
neity, biomarker identification, microRNA stratification, drug design, drug 
repurposing, and even clinical trial design. In the following section, we 

Figure 18.1 Network Topology. Modules, Bridges, Intermodular Hubs, and Bottle-
necks. Showing module in a protein network that represents the networking nodes 
related to a particular group and classified, for example, for a single function. Bridges 
connect two neighboring modules. Intermodular hubs are key connector proteins 
between two modules. Choke points are critical entities in the network attacking that 
require lesser degree of effort to achieve the optimal outcome on the entire network. 
(For color version of this figure, the reader is referred to the online version of this book.)
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elaborate on some of the uses of network-based approaches in cancer, par-
ticularly PDAC.

Network-Based PDAC Biomarker Identification
The concept of utilizing networks in identifying PDAC-related biomarkers 
has been presented by many different groups [24]. The last several years have 
witnessed the emergence of several network-based methods that have been 
developed to help in the identification of specific genes and proteins related 
to a particular disease. Most of these methods couple protein microarrays 
with bioinformatics and computational analyses such as principal compo-
nent analysis and hierarchical clustering [25,26]. Table 18.2 lists the net-
work-based methods that are being used to identify novel disease-associated 
genes as biomarkers. These network-based methods show marked improve-
ments over their predecessor that utilized sequence-based methods in the 
classification of novel, disease-associated genes. The methods, including 
nonlocal information of network topology, usually perform better than 
methods based on local network properties. As a general trend, the more 
information the method includes, the better prediction it may achieve. 
However, with the multiplication of datasets, biases may also be introduced, 
which will lead to an overestimation of the performance of the test system. 

Table 18.2 Web Resources to Evaluate Disease, Drug, MicroRNA, and Environment 
Interactions
Types of Network 
Investigated Alternative Names and Website

Disease and disease-related 
genes

Human disease network (Cytoscape plug-in 
DisGeNET: http://ibi.imim.es/DisGeNET/ 
DisGeNETweb.html)

Disease, drug associations, 
tissue, interactome

iCTNet: a Cytoscape plug-in to construct an 
integrative network of diseases, associated 
genes, drugs, and tissues (http://www.cs. 
queensu.ca/ictnet)

Disease, gene ontology Biomine: an integrated bio-entity network with 
more than a million entities and 8 million 
edges (http://biomine.cs.helsinki.fi)

Expression patterns, 
microRNAs

PAGED: an integrated bio-entity network with 
more than a million entities from 20 organisms 
(http://bio.informatics.iupui.edu/PAGED)

Disease and environment-
related factors, patients’ 
response

Etiome: a database + clustering analysis of 
environmental + genetic (=etiological) factors 
of human diseases

http://ibi.imim.es/DisGeNET/DisGeNETweb.html
http://ibi.imim.es/DisGeNET/DisGeNETweb.html
http://www.cs.queensu.ca/ictnet
http://www.cs.queensu.ca/ictnet
http://biomine.cs.helsinki.fi/
http://bio.informatics.iupui.edu/PAGED
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Moreover, it is difficult to dissect the performance contribution of the data-
sets and the prediction method itself. Additionally, each type of dataset may 
require a different method for optimal analysis. Therefore, the separate anal-
ysis of each data source has been suggested with a subsequent combination 
of the ranking lists using rank aggregation algorithms. This procedure also 
facilitates backtracking the origin of the most relevant information. The 
functional gene ontology term annotations usually bring crucially impor-
tant information to the analyses. The inclusion of interactome edge-based 
disease perturbations may improve the performance of these methods even 
further in the future. Aside from disease-associated genes, there has been a 
recent spurt in evaluating metabolic networks, microRNAs networks, drugs 
association networks, environment associated networks, and many more.

Optimal Intervention Strategies in PDAC Networks Using 
Network Pharmacology
A number of research groups have presented PDAC network–targeted strat-
egies using network pharmacology and other systems methodologies. 
Recently, Jing Tang and colleagues used maximization and minimization 
averaging (TIMMA) approaches to selectively target PDAC survival path-
ways [27]. Their focus was to evaluate combinatorial effects of kinase inhibi-
tion by utilizing the results from a kinome-wide drug sensitization screen, 
in which the kinase siRNA silencing was combined with the treatment of 
Aurora kinase inhibitors in BxPC-3 PDAC cell line. As the Aurora kinases 
(A–C) are frequently overexpressed in many tumors (such as PDAC), they 
have been proposed to be potential cancer therapeutics that can interfere 
with cancer cell division. The purpose of their TIMMA study was to iden-
tify a specific set of kinases that when silenced would sensitize PDAC cells 
to the Aurora kinase inhibitors. The RNAi screen was done using the 
Human Validated Kinase Set (HVKS) siRNA library. Their study identified 
a total of 17 kinases and confirmed in a validation screen to have at least two 
out of four siRNA sequences showing greater than 1.5-fold decreases in 
EC50 or EC30 values of the Aurora kinase inhibitor AKI-1. Their group 
further evaluated whether the TIMMA model could help in predicting the 
kinases that would sensitize the pancreatic cancer cells to the AKI-1. Their 
TIMMA analysis identified 19 kinases that showed stronger synthetic lethal-
ity interactions with Aurora B than with itself. Two (MET, PDGFRA) out 
of the three targets (MET, PDGFRA, and PYK2) were experimentally vali-
dated as sensitizing targets of AKI-1 in the pancreatic cancer, representing a 
highly significant enrichment (that was hypergeometric).
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Working in this direction, our group had earlier presented p53 reactiva-
tion optimizing strategies using network identified combinations of MDM2 
inhibitors in PDAC [28]. Considering p53 as a network object, its direct and 
indirect activators were analyzed using network-based predictions leading 
to the identification of MDM2 inhibitor–oxaliplatin combination [29]. 
Through these approaches synergy unique genes were mapped and mod-
eled using pathway analyses that demonstrated the role of important hubs 
such as CDH1, CARF, EGR, RelA, and CREBP in promoting optimal p53 
reactivation [30]. When investigated in resistant PDAC animal tumor mod-
els, the combination resulted in synergistically enhanced tumor growth 
inhibition and 50% cure [31]. These are examples where systems and net-
work pharmacology can be applied in the design of optimal intervention 
strategies to desirable therapeutic outcome in PDAC.

A number of resources are available for the identification of network 
targeted drugs (Table 18.3). However, at present, there are not many groups 
working on utilizing these resources for PDAC. We anticipate that in the 
coming years, researchers will put more emphasis on network-based drug 
strategies that could positively impact modern PDAC therapy.

NETWORK PHARMACOLOGY TO UNWIND PDAC microRNA 
COMPLEXITY

MicroRNAs are key players in the gene regulatory networks that can influ-
ence the expression of numerous genes by binding to complementary 
sequences on target mRNAs leading to the repression of their translation 

Table 18.3 Drug Interactions, Target Visualization, and Prioritization Tools
Drug Target Prioritization, 
Validation Website

Pubchem http://pubchem.ncbi.nlm.nih.gov
chEMBLdb https://www.ebi.ac.uk/chembldb
DailyMed http://dailymed.nim.nih.gov
DrugBank http://drugbank.ca
MATADOR http://matador.embl.de
Supertarget http://insilico.charite.de/supertarget
KEGG drug http://genome.jp/kegg/drug
TDR http://tdrtargets.org
PROMISCUOUS http://bioinformatics.charite.de/promiscuous
MANTRA http://mantra.tigem.it
CDA http://cda.i-pharm.org

http://pubchem.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/chembldb
http://dailymed.nim.nih.gov/
http://drugbank.ca/
http://matador.embl.de/
http://insilico.charite.de/supertarget
http://genome.jp/kegg/drug
http://tdrtargets.org/
http://bioinformatics.charite.de/promiscuous
http://mantra.tigem.it/
http://cda.i-pharm.org/
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[32]. This inherent multigene modulating property indicates that microRNAs 
should have a major regulatory role on gene networks. This is especially 
important when earlier studies have demonstrated that the hubs, bottlenecks, 
and their targets such as TFs are more frequently regulated by microRNAs 
than other nodes in the biological networks [33]. These findings indicate that 
microRNAs have a systems function and, therefore, their targeting should also 
be approached using systems and network sciences. The complexity of 
microRNAs can be appreciated from the fact that although occupying <15% 
of the genome, they can influence more than 30% of the genes in the entire 
genome [34]. The weak and promiscuous nature of the interactions of 
microRNAs with the 3′ UTRs of their many target genes can result in an 
exponential number of interaction possibilities. As the microRNA targets 
include a diverse set of signaling proteins, enzymes, and TFs [35], their targets 
appear to form complex regulatory networks that are intertwined with other 
cellular networks. It is still not clear how microRNAs might orchestrate the 
regulation of different cellular signaling networks and how this may contrib-
ute to the myriad biological functions of microRNAs. As with other cancers, 
there is published evidence that in PDAC, the microRNAs either regulate or 
are themselves under epigenetic control [36]. In recent years tumor suppressor 
miRNA mimics and oligonucleotide inhibitors complementary to onco-
genic miRNA have been shown to restore normal cell programming [37]. 
The most important question is whether in cancer a set of microRNA target 
genes regulated by an individual miRNA generally constitute a functionally 
associated network or simply reflect a random set of unrelated entities. Key 
questions remain such as what kind of biological networks does the human 
microRNAome most actively regulate? Answering such questions may allow 
clinical progress in the direction of incorporating microRNA into main-
stream PDAC medicine.

Network biology has shown that the microRNA network is arranged in 
hierarchical layers that harbor hundreds of “target hubs” and each is poten-
tially subject to massive regulation by scores of additional secondary micro-
RNAs [38]. Most importantly, striking differences between cancer cells 
(including PDAC) and normal cell microRNA networks have been noted 
with microRNA-regulated drug targets closely interacting with each other 
and tending to form hub bottlenecks in the human interactome [39]. How-
ever, the history of microRNA-based drug development strategies has shown 
that there are many important challenges in this area [40]. As one microRNA 
can regulate many genes, it is still not clear whether targeting a single 
microRNA would result in a restricted set of gene modulations with minimal 
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desired effect or whether it may cause multigene changes leading to undesir-
able or toxic side effects. Therefore, true understanding of microRNA regula-
tory network is integral to the successful design of microRNA-based targeted 
therapy. Despite several technical advances, there are still many challenges, 
such as determining the ideal design of antimicroRNA sequence, bypassing 
the activation of the immune system, off-target effects, and competition with 
endogenous microRNAs for cellular miRNA-processing machinery. Addi-
tionally, one must first identify the correct and relevant target microRNA that 
is critical in the disease of choice prior to designing anti- or premicroRNA 
therapy. Therefore, the translation of microRNA-targeted technology into 
the clinic depends on resolving these important systems level challenges.

Expression profiles of microRNAs could be highly informative in dis-
criminating malignant from the normal pancreas in view of the different pat-
terns of expression of microRNAs in PDAC tumors. In tumors from 
K-ras–driven transgenic pancreas mice model (KCI), we observed overex-
pression of miR-21, miR-221, miR-27a, miR-27b, and miR-155, and down-
regulation of miR-216a, miR-216b, miR-217, and miR-146a. These findings 
were replicated in KCI-derived RInk-1 cells. Most interestingly, biological 
validation experiments revealed a significant induction of aberrant micro 
RNA-driven overexpression of EGFR, K-Ras, and MT1-MMP protein 
expression in tissues from tumorigenic mice models. Again, tumor tissue analy-
sis was comparable to RInk-1 cells and MIAPaCa-2 cells indicating the involve-
ment of common networks [41,42]. Ingenuity modeling extracted key 
microRNAs that were targeted using different strategies (RNAi and chemical) 
to induce cell killing in these transgenic mice–derived Rink-1 cells. As a proof 
of concept, instead of targeting all deregulated miRNAs, we focused on key 
microRNAs (miR-21, miR-155, miR-220, miR-143, and miR-217) in the 
entire network. Knocking down miR-155 in RInk-1 cells inhibited PDAC 
growth, colony formation, and was consistent with suppression of K-ras signal-
ing expression. On the contrary, forced expression of Ras targeting miR-216b 
inhibited PDAC cell proliferation and colony formation with consequent 
reduction of Ras and related signaling. These findings clearly suggest that net-
work-based approaches would be useful for preclinical evaluation of novel 
microRNA-targeted agents for designing personalized therapy for PDAC.

NETWORK PHARMACOLOGY IN DRUG REPOSITIONING  
FOR PDAC

The cost of bringing one drug from the researcher’s lab bench to the patient’s 
bedside ranges from 3 to 5 billion dollars. Even if a drug passes through all 
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the stringent preclinical screening procedures, there is no guarantee that the 
agent may prove efficacious in patients. While the cost of developing new 
drugs has witnessed a continuous upward trend, drug attrition has risen con-
siderably as well. Therefore, strategies that can cut the cost of drug develop-
ment are being aggressively pursued by the pharmaceutical industry 
worldwide. Drug repositioning or drug repurposing aims to find a new ther-
apeutic modality for an existing or established drug, and thus provides a cost-
efficient way to enhance the repertoire of available drugs and also the 
druggable space. Drug repurposing uses a compound having a well-estab-
lished safety profile, such as the IND-approved drugs from the FDA that have 
passed the strict criteria of having proven good lab practice (GLP) formula-
tion procedures and clinically acceptable pharmacokinetic parameters. It is 
through these efforts that the utility of multikinase HIV treatment drugs [43] 
and the diabetes drug metformin [44] have been realized in  cancer. Drug 
target networks are highly useful in drug repositioning. It has been proposed 
that modularization/edge prediction of drug target networks may reveal 
novel applications of existing drugs [45]. Novel drug indications can be 
revealed from central drugs of drug therapy networks in which two drugs are 
connected, if they share a common therapeutic application. For example, 
intermodular drugs that connect two distant therapies oftentimes reveal 
novel drug indications. Tightly interacting modules of drug–drug interaction 
networks have been shown to also reveal unexpected therapeutic applica-
tions [46]. Perhaps the biggest advantage of utilizing network approaches to 
drug discovery is that the technology allows us to make sense of side effects 
of drugs. Such analysis, in many instances, reveals novel therapeutic areas and 
offers a number of options for network-based drug repositioning [47]. Our 
group has earlier shown that the diabetes drug metformin can induce PDAC 
cell growth inhibition and apoptosis in multiple cellular models including 
highly resistant pancreatic cancer stem cells (CSC) and their corresponding 
xenograft tumor models [48]. Mechanistically, it is still not clear how this 
agent can eliminate PDAC cells as our preliminary studies demonstrated a 
highly promiscuous behavior involving metformin-induced suppression of 
CSC, microRNAs, and notch signaling. Nevertheless, based on the work 
done from our laboratory and those of others (in different tumor models), 
metformin is in 23 different clinical trials (clinicaltrial.gov). These studies 
not only support the network theory in drug action but also lend support 
to drug reposition principles in PDAC. Although this is one successful 
example, drug repositioning nevertheless has more challenges than one 
would expect, such as validation of the drug candidate from incomplete 
and outdated data (oftentimes discontinued drugs). However, most 

http://Clinicatrial.gov
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network-based methods helping drug repositioning may also be used to pre-
dict multitarget drugs.

Most of the drug repositioning efforts utilize large-scale screens of FDA-
approved drugs against a multitude of novel targets [49]. From literature 
data mining–driven network-based method modularization, edge predic-
tion, or machine learning methods, researchers have unexpectedly found 
links between remote drug targets highlighting possible cross-reactivity of 
known drugs with novel targets [50,51]. Network-based comparison of 
drug-induced changes in gene expression profiles that is combined with 
disease-induced gene expression changes, disease drug associations, interac-
tomes, or signaling networks have been used to identify unexpected or 
previously understudied uses of existing drugs [52]. Further, genome-wide 
association studies (GWAS) have been used to construct drug-related net-
works, helping drug repositioning even in a personalized manner [53]. 
Ongoing studies include the comparison of phosphoproteome and metab-
olome datasets to reveal additional drug repositioning options. These 
approaches are expected to aid the design of personalized drug application 
protocols.

NETWORKS IN POLYPHARMACOLOGY STRATEGIES 
AGAINST PDAC

Rewiring of cancer related signaling networks to that of healthy cells is the 
primary aim of drugs that work on signal transduction pathways [54]. As 
most cellular proteins belong to multiple network modules in the human 
interactome, efficient targeting of a single protein may influence multiple 
cellular functions at the same time. In contrast, efficient restoration of a 
particular cellular function to that of the healthy state can often be accom-
plished only by a simultaneous attack on multiple proteins. The targeting 
efficiency on each protein may only be partial since these target sets prefer-
entially contain proteins with an intermediate number of neighbors having 
an intermediate level of influence of their own. The above systems-level 
considerations explain the success of polypharmacology, i.e., the develop-
ment and use of multitarget drugs. The goal of polypharmacology is to 
identify a multitargeted compound with a desired biological profile across 
multiple targets whose combined modulation reverses disease state to nor-
mal. Multiple targeting is a well-established strategy as more than 20% of 
approved agents are multitarget drugs [55]. Most treatments against deadly 
diseases such as AIDS and cancer have a multicomponent attached to it. 
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Multitarget drugs possess a number of beneficial network-related proper-
ties: (1) they can be designed to act on a carefully selected set of primary 
targets influencing a set of key, therapeutically relevant secondary targets;  
(2) they may need a compromise in binding affinity, however, even low-
affinity binding multitarget drugs are efficient; (3) indirect targeting via 
their low-affinity binding multitarget drugs has been shown to overcome 
the dual trap of drug resistance and toxicity; and (4) low-affinity binding 
multitarget drugs may often stabilize diseased cells, which may be some-
times at least be as beneficial as their primary therapeutic effect [56].

A number of natural compounds from dietary sources, especially from 
fruits and vegetables, have been investigated for their cancer preventive ben-
efits [57,58]. Researchers have tried to identify the exact mechanism behind 
their cancer preventive activities and also their cancer cell selectivity. Such 
work has led to the identification of multitargeted and promiscuous mecha-
nism of action of agents such as grape polyphenol resveratrol (Stilbene), 
curcumin, Catechins, and compounds such as Delphinidin and Anthocyna-
dins that are found in pomegranate [59]. However, the promiscuous behav-
ior of most of these natural agents is a heatedly debated topic [60]. As 
identified by network pharmacological analysis, the vast majority (>80%) of 
the cellular protein, signaling, and transcriptional networks are in a low-
affinity, or transient, “weak linkage” with each other, i.e., forming a complex 
network. Therefore, natural compounds are a perfect fit where network 
pharmacology can be applied to predict their scope of action against 
cancer.

Difluorinated-Curcumin (CDF) is a difluoro synthetic analog chemopre-
ventive agent curcumin (difluoro curcumin) [61,62]. It has pleiotropic activity 
with proven anticancer effects in vitro and in vivo [63,64]. Like other natural 
agents, CDF has lower target binding affinity to different proteins than a tar-
geted SMI. Using pathway network modeling, we previously showed that 
CDF can modulate a unique set of microRNAs resulting in the activation of 
a c-Myc hub, and these perturbations orchestrated a unique set of events that 
eventually led to the induction of apoptosis [65]. Fitting into the model of a 
multitargeted agent, CDF has also been reported to influence epithelial- 
to-mesenchymal transition (EMT), inhibit bottleneck transcription factors 
such as NF-kB, and also inhibit different cancer-promoting microRNAs in 
PDAC. It is highly possible that there may be other potential targets of CDF 
that are context driven and tumor dependent and yet to be discovered.

Two other agents, Diindolylmethane (DIM) and its more bioavailable 
form BR-DIM, have been extensively investigated for their anticancer 
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effects. They primarily work through downregulation of the TF NF-kB. 
Nevertheless, numerous other mechanisms have also been proposed such as 
through activation of pro-death protein prostate apoptosis response 4  
(Par-4) [66], suppression of androgen receptor (AR) [67], MMP9 [68],  
uPA [69,70], FOXO3 [71], and mTOR pathway [72]. They act as potent 
chemosensitizers and are now under clinical investigation for treating patients 
with prostate cancer undergoing radical prostatectomy. We proposed that 
such multitargeted effects of DIM/BR-DIM may be through rewiring of 
cancer cell networks that lead to resensitization to chemotherapeutic agents. 
In order to explore this hypothesis, our group recently utilized network 
analysis to identify the set of target genes of BR-DIM. Ingenuity analysis 
showed both isoflavone- and BR-DIM–induced changes in multiple signal-
ing pathways such as AR/PSA, NKX3-1/Akt/p27, MITF, etc. [42,73]. These 
studies proved that BR-DIM with their multitargeted effects could be useful 
for the prevention of progression, especially by attenuating bone metastasis in 
a prostate model. Other promising anticancer activities of BR-DIM include 
the modulation of noncoding RNAs. These proof-of-concept investigations 
showed that network-based studies could be useful in designing promiscu-
ous strategies incorporating such multitargeted therapeutic agents, which 
would likely aid in designing optimized therapy for cancer in future.

CONCLUSIONS AND FUTURE PERSPECTIVES

PDAC remains a deadly and by far incurable disease. The last 40 years have 
not seen any major advancement in the area of PDAC diagnostics and ther-
apeutics. Targeted therapies have largely failed to deliver expected promise. 
On the other hand, promiscuous chemotherapeutics and their combina-
tions show some efficacy, but these too do not prolong the life of patients 
beyond a few additional weeks. The incidence and death rates closely mir-
ror each other, and such poor overall statistics indicate that the field of 
PDAC research needs a major revamp in its approach in order to impact the 
disease. Systems and network biology have allowed researchers to dwell 
much deeper into the complexity of PDAC and sieve through the hetero-
geneity in more meaningful ways. Such approaches have emerged to iden-
tify key points in the highly robust and resistant PDAC network attacking 
that can lead to superior outcomes in patients. However, selection of key 
network positions in PDAC as drug target options has a major dilemma. On 
the one hand, the network position has to be important enough to influ-
ence the PDAC tumor; conversely, the selected network position must not 
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be so important that its attack would lead to toxicity to normal tissue. The 
successful solution of this dilemma requires a detailed knowledge on the 
structure and dynamics of the complex PDAC sustaining networks. Incor-
poration of personalized information, such as mutations, singalome or 
metabolome profiles to the molecular networks is expected to enhance 
patient and disease stage–specific drug targeting in the future. The current 
boom in network methods (listed in the three tables in this chapter) can 
help in discovering the truly surprising, novel actors of the cellular com-
munity, which are the hidden masterminds responsible for initiation, suste-
nance, and resistance of PDAC. Nevertheless, proponents of this technology 
must be proactive in presenting convincing evidence that promotes these 
emerging tools and rapidly merge them into mainstream PDAC biomarker 
identification and cancer drug discovery. These strategies may help revive 
some shelved drugs and could also reduce the cost of new drugs entering 
the PDAC treatment pipeline. It is predicted that within the next 10 years, 
newer technological advances plus methodologies better developed to make 
analysis software economical, easy to use, and more acceptable to molecular 
biologists and pharma researchers will, no doubt, result in the use of net-
work analyses as a priority tool in PDAC-related research. In conclusion, 
systems biology in general and network pharmacology in particular cer-
tainly have the potential to change our view of PDAC complexity as well 
as aid in the successful design of drugs for better treatment outcome of 
therapies against this important disease. If used correctly, network pharma-
cology is predicted to significantly de-risk PDAC drug discovery.
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