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Introduction

Today’s STEM (science, technology, engineering, and mathematics) student must mas-
ter vast quantities of applied mathematics. This is why I wrote Advanced Engineering
Mathematics with MATLAB. Three assumptions underlie its structure: (1) All students
need a firm grasp of the traditional disciplines of ordinary and partial differential equa-
tions, vector calculus, and linear algebra. (2) The digital revolution will continue. Thus
the modern student must have a strong foundation in transform methods because they
provide the mathematical basis for electrical and communication studies. (3) The biologi-
cal revolution will become more mathematical and require an understanding of stochastic
(random) processes. Already, stochastic processes play an important role in finance, the
physical sciences, and engineering. These techniques will enjoy an explosive growth in the
biological sciences. For these reasons, an alternative title for this book could be Advanced
Engineering Mathematics for the Twenty-First Century.

This is my fourth attempt at realizing these goals. It continues the tradition of including
technology into the conventional topics of engineering mathematics. Of course, I took this
opportunity to correct misprints and include new examples, problems, and projects. I now
use the small rectangle O to separate the end of an example or theorem from the continuing
text. The two major changes are a section on conformal mapping (Section 10.11) and a
new chapter on stochastic calculus.

A major change is the reorganization of the order of the chapters. In line with my
goals I have subdivided the material into three groups: classic engineering mathematics,
transform methods, and stochastic processes. In its broadest form, there are two general
tracks:

Differential Equations Course: Most courses on differential equations cover three gen-
eral topics: fundamental techniques and concepts, Laplace transforms, and separation of
variable solutions to partial differential equations.

The course begins with first- and higher-order ordinary differential equations, Chapters
1 and 2, respectively. After some introductory remarks, Chapter 1 devotes itself to present-
ing general methods for solving first-order ordinary differential equations. These methods



include separation of variables, employing the properties of homogeneous, linear, and exact
differential equations, and finding and using integrating factors.

The reason most students study ordinary differential equations is for their use in ele-
mentary physics, chemistry, and engineering courses. Because these differential equations
contain constant coefficients, we focus on how to solve them in Chapter 2, along with
a detailed analysis of the simple, damped, and forced harmonic oscillator. Furthermore,
we include the commonly employed techniques of undetermined coefficients and variation
of parameters for finding particular solutions. Finally, the special equation of Euler and
Cauchy is included because of its use in solving partial differential equations in spherical
coordinates.

Some courses include techniques for solving systems of linear differential equations. A
chapter on linear algebra (Chapter 3) is included if that is a course objective.

After these introductory chapters, the course would next turn to Laplace transforms.
Laplace transforms are useful in solving nonhomogeneous differential equations where the
initial conditions have been specified and the forcing function “turns on and off.” The
general properties are explored in Section 12.1 to Section 12.7; the actual solution technique
is presented in Section 12.8.

Most differential equations courses conclude with a taste of partial differential equa-
tions via the method of separation of variables. This topic usually begins with a quick
introduction to Fourier series, Sections 5.1 to 5.4, followed by separation of variables as
it applies to the heat (Sections 8.1-8.3), wave (Sections 7.1-7.3), or Laplace’s equations
(Sections 9.1-9.3). The exact equation that is studied depends upon the future needs of the
students.

Engineering Mathematics Course: This book can be used in a wide variety of engi-
neering mathematics classes. In all cases the student should have seen most of the material
in Chapters 1 and 2. There are at least four possible combinations:

e Option A: The course is a continuation of a calculus reform sequence where elementary
differential equations have been taught. This course begins with Laplace transforms and
separation of variables techniques for the heat, wave, and/or Laplace’s equations, as outlined
above. The course then concludes with either vector calculus or linear algebra. Vector
calculus is presented in Chapter 4 and focuses on the gradient operator as it applies to
line integrals, surface integrals, the divergence theorem, and Stokes’ theorem. Chapter
3 presents linear algebra as a method for solving systems of linear equations and includes
such topics as matrices, determinants, Cramer’s rule, and the solution of systems of ordinary
differential equations via the classic eigenvalue problem.

e Option B: This is the traditional situation where the student has already studied differen-
tial equations in another course before he takes engineering mathematics. Here separation of
variables is retaught from the general viewpoint of eigenfunction expansions. Sections 9.1-
9.3 explain how any piece-wise continuous function can be reexpressed in an eigenfunction
expansion using eigenfunctions from the classic Sturm-Liouville problem. Furthermore, we
include two sections that focus on Bessel functions (Section 6.5) and Legendre polynomials
(Section 6.4). These eigenfunctions appear in the solution of partial differential equations
in cylindrical and spherical coordinates, respectively.
The course then covers linear algebra and vector calculus as given in Option A.

eOption C: I originally wrote this book for an engineering mathematics course given to
sophomore and junior communication, systems, and electrical engineering majors at the
U.S. Naval Academy. In this case, you would teach all of Chapter 10 with the possible



exception of Section 10.10 on Cauchy principal-value integrals. This material was added to
prepare the student for Hilbert transforms, Chapter 14.

Because most students come to this course with a good knowledge of differential equa-
tions, we begin with Fourier series, Chapter 5, and proceed through Chapter 14. Chapter 11
generalizes the Fourier series to aperiodic functions and introduces the Fourier transform.
This leads naturally to Laplace transforms, Chapter 12. Throughout these chapters, I make
use of complex variables in the treatment and inversion of the transforms.

With the rise of digital technology and its associated difference equations, a version
of the Laplace transform, the z-transform, was developed. Chapter 13 introduces the z-
transform by first giving its definition and then developing some of its general properties.
We also illustrate how to compute the inverse by long division, partial fractions, and con-
tour integration. Finally, we use z-transforms to solve difference equations, especially with
respect to the stability of the system.

Finally, there is a chapter on the Hilbert transform. With the explosion of interest in
communications, today’s engineer must have a command of this transform. The Hilbert
transform is introduced in Section 14.1 and its properties are explored in Section 14.2.
Two important applications of Hilbert transforms are introduced in Sections 14.3 and 14.4,
namely the concept of analytic signals and the Kramers-Kronig relationship.

eOption D: Many engineering majors now require a course in probability and statistics
because of the increasing use of probabilistic concepts in engineering analysis. To incorpo-
rate this development into an engineering mathematics course we adopt a curriculum that
begins with Fourier transforms (minus inversion by complex variables) given in Chapter
11. The remaining portion involves the fundamental concepts of probability presented in
Chapter 16 and random processes in Chapter 17. Chapter 16 introduces the student to
the concepts of probability distributions, mean, and variance because these topics appear
so frequently in random processes. Chapter 17 explores common random processes such as
Poisson processes and birth and death. Of course, this course assumes a prior knowledge
of ordinary differential equations and Fourier series.

A unique aspect of this book appears in Chapter 18, which is devoted to stochastic
calculus. We start by exploring deterministic differential equations with a stochastic forcing.
Next, the important stochastic process of Brownian motion is developed in depth. Using this
Brownian motion, we introduce the concept of (It6) stochastic integration, Itd’s lemma, and
stochastic differential equations. The chapter concludes with various numerical methods to
integrate stochastic differential equations.

In addition to the revisions of the text and topics covered in this new addition, MATLAB
is still employed to reinforce the concepts that are taught. Of course, this book still continues
my principle of including a wealth of examples from the scientific and engineering literature.
The answers to the odd problems are given in the back of the book, while worked solutions
to all of the problems are available from the publisher. Most of the MATLAB scripts may
be found at http://www.crcpress.com/product/isbn/9781439816240.
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Definitions

Function Definition
o(t—a) —{OO’ t=a, /OO(S(t—a)dt—l
0, t # a, .
2 r 2
erf(x) =—— / e Y dy
VT Jo
'(z) gamma function
1, t>a,
H(t —a) _{0, t <a.

Hankel functions of first and second kind and of order n
imaginary part of the complex variable z
modified Bessel function of the first kind and order n
Bessel function of the first kind and order n
modified Bessel function of the second kind and order n
Legendre polynomial of order n
real part of the complex variable z
_ { -1, t<a,

1, t>a.

Bessel function of the second kind and order n



Chapter 1
First-Order Ordinary
Differential Equations

A differential equation is any equation that contains the derivatives or differentials of
one or more dependent variables with respect to one or more independent variables. Because
many of the known physical laws are expressed as differential equations, a sound knowledge
of how to solve them is essential. In the next two chapters we present the fundamental
methods for solving ordinary differential equations - a differential equation that contains
only ordinary derivatives of one or more dependent variables. Later, in Sections 11.6 and
12.8, we show how transform methods can be used to solve ordinary differential equations,
while systems of linear ordinary differential equations are treated in Section 3.6. Solutions
for partial differential equations—a differential equation involving partial derivatives of one
or more dependent variables of two or more independent variables—are given in Chapters
7,8, and 9.

1.1 CLASSIFICATION OF DIFFERENTIAL EQUATIONS
Differential equations are classified three ways: by type, order, and linearity. There

are two types: ordinary and partial differential equations, which have already been defined.
Examples of ordinary differential equations include

e —2y=u, (1.1.1)

(xr —y)dx +4ydy =0, (1.1.2)
d d

£+£ =1+ 5a, (1.1.3)
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and 2 p
Y Y —
In2 + 2das + y = sin(z). (1.1.4)
On the other hand, examples of partial differential equations include
ou  Ou
el E e ) 1.1.5
9 "oy ¥ (1.1.5)
ou ou
— — =2 1.1.6
Vo + oG =2 (1.16)

and o2 5 o
u u u

In the examples that we have just given, we have explicitly written out the differ-
entiation operation. However, from calculus we know that dy/dz can also be written y/'.
Similarly the partial differentiation operator 8*u/dx20y? is sometimes written ugyy,. We
will also use this notation from time to time.

The order of a differential equation is given by the highest-order derivative. For exam-
ple, ,

3 2
&y &y <Zz) —y =sin(x) (1.1.8)

is a third-order ordinary differential equation. Because we can rewrite

(x+y)dy—xdex =0 (1.1.9)
as J
Y

— = 1.1.10

4L =g (1.1.10)

by dividing Equation 1.1.9 by dz, we have a first-order ordinary differential equation here.
Finally
o'u  0%u
0x20y?  Ot2
is an example of a fourth-order partial differential equation. In general, we can write an
nth-order, ordinary differential equation as

dy d"y\

(1.1.11)

The final classification is according to whether the differential equation is linear or
nonlinear. A differential equation is linear if it can be written in the form:

n n—1
Y ] dy
an(2) 7+ an-1(2) 72y o an() oo+ ao(w)y = f(). (1.1.13)
Note that the linear differential equation, Equation 1.1.13, has two properties: (1) The
dependent variable y and all of its derivatives are of first degree (the power of each term
involving y is 1). (2) Each coefficient depends only on the independent variable x. Examples
of linear first-, second-, and third-order ordinary differential equations are

(x+1)dy —ydr =0, (1.1.14)
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Yy + 3y + 2y = e”, (1.1.15)
and 8 p
xﬁ — (a2 + 1)% +y = sin(z), (1.1.16)

respectively. If the differential equation is not linear, then it is nonlinear. Examples of
nonlinear first-, second-, and third-order ordinary differential equations are

d
ﬁﬂcyﬂf =, (1.1.17)
& dy Y
d—x‘z - (di> + 22y = sin(z), (1.1.18)
and
yy" 4 2y = e*, (1.1.19)
respectively.

At this point it is useful to highlight certain properties that all differential equations
have in common regardless of their type, order, and whether they are linear or not. First, it
is not obvious that just because we can write down a differential equation, a solution exists.
The existence of a solution to a class of differential equations constitutes an important aspect
of the theory of differential equations. Because we are interested in differential equations
that arise from applications, their solution should exist. In Section 1.2 we address this
question further.

Quite often a differential equation has the solution y = 0, a trivial solution. For
example, if f(z) = 0 in Equation 1.1.13, a quick check shows that y = 0 is a solution.
Trivial solutions are generally of little value.

Another important question is how many solutions does a differential equation have?
In physical applications uniqueness is not important because, if we are lucky enough to
actually find a solution, then its ties to a physical problem usually suggest uniqueness.
Nevertheless, the question of uniqueness is of considerable importance in the theory of
differential equations. Uniqueness should not be confused with the fact that many solutions
to ordinary differential equations contain arbitrary constants, much as indefinite integrals
in integral calculus. A solution to a differential equation that has no arbitrary constants is
called a particular solution.

e Example 1.1.1
Consider the differential equation

dy
L =z+1 1) =2. 1.1.20
gy =t y(1) ( )

This condition y(1) = 2 is called an initial condition and the differential equation plus the
initial condition constitute an initial-value problem. Straightforward integration yields

y(x) = /(33 +1)de+C =% +a+C. (1.1.21)

Equation 1.1.21 is the general solution to the differential equation, Equation 1.1.20, because
it is a solution to the differential equation for every choice of C'. However, if we now satisfy
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the initial condition y(1) = 2, we obtain a particular solution. This is done by substituting
the corresponding values of x and y into Equation 1.1.21, or

2=1(12+14C=2%+C, or C=31. (1.1.22)

Therefore, the solution to the initial-value problem Equation 1.1.20 is the particular solution
y(z) = (z+1)%/2. (1.1.23)

O

Finally, it must be admitted that most differential equations encountered in the “real”
world cannot be written down either explicitly or implicitly. For example, the simple differ-
ential equation 3y’ = f(x) does not have an analytic solution unless you can integrate f(x).
This begs the question of why it is useful to learn analytic techniques for solving differential
equations that often fail us. The answer lies in the fact that differential equations that we
can solve share many of the same properties and characteristics of differential equations
which we can only solve numerically. Therefore, by working with and examining the dif-
ferential equations that we can solve exactly, we develop our intuition and understanding
about those that we can only solve numerically.

Problems

Find the order and state whether the following ordinary differential equations are linear or
nonlinear:

1Ly /y=2*+x 2. y% =2 +3

3. sin(y’) = by 4. 4" =y

5. y" = 3z? 6. (y3)' =1-3y

7. 9y" =3 8.y’ — 4y + by = sin(x)

9. v + xy = cos(y”) 10. 2z +y)dx+ (z —3y)dy =0
11. (1+22)y = (1 +y)? 12, yy" =z(y* + 1)

13. y +y+y>=x+¢€° 14. y"" + cos(z)y’ +y =0

15. 22y" + 22y )P 4y =e® 16. y" + xy” + ¥ = 22

1.2 SEPARATION OF VARIABLES

The simplest method of solving a first-order ordinary differential equation, if it works, is
separation of variables. It has the advantage of handling both linear and nonlinear problems,
especially autonomous equations." From integral calculus, we already met this technique
when we solved the first-order differential equation

dy
- = f@) (1.2.1)

L An autonomous equation is a differential equation where the independent variable does not explicitly

appear in the equation, such as y’ = f(y).
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By multiplying both sides of Equation 1.2.1 by dx, we obtain
dy = f(x) dx. (1.2.2)

At this point we note that the left side of Equation 1.2.2 contains only y while the right
side is purely a function of x. Hence, we can integrate directly and find that

y= /f(m) dx + C. (1.2.3)

For this technique to work, we must be able to rewrite the differential equation so that all
of the y dependence appears on one side of the equation while the = dependence is on the
other. Finally we must be able to carry out the integration on both sides of the equation.

One of the interesting aspects of our analysis is the appearance of the arbitrary constant
C in Equation 1.2.3. To evaluate this constant we need more information. The most
common method is to require that the dependent variable give a particular value for a
particular value of x. Because the independent variable x often denotes time, this condition
is usually called an initial condition, even in cases when the independent variable is not
time.

e Example 1.2.1

Let us solve the ordinary differential equation

d Yy
L (1.2.4)
dr xy
Because we can separate variables by rewriting Equation 1.2.4 as
d
ye Ydy = —x, (1.2.5)
x
its solution is simply
—ye ¥ —e Y =Inlz|+C (1.2.6)
by direct integration. ad
e Example 1.2.2
Let us solve
dy g (1.2.7)
- = xe"y, 2.
d Y Y
subject to the initial condition y(0) = 1.
Multiplying Equation 1.2.7 by dz, we find that
dy +ydr = ze*ydzx, (1.2.8)
or p
YW (ze® —1) da. (1.2.9)

Y
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A quick check shows that the left side of Equation 1.2.9 contains only the dependent variable
y while the right side depends solely on x and we have separated the variables onto one side
or the other. Finally, integrating both sides of this equation, we have

In(y) = ze® — e —x + C. (1.2.10)
Since y(0) =1, C' =1 and

y(x) =exp[(z — 1)e* +1 —a]. (1.2.11)

In addition to the tried-and-true method of solving ordinary differential equations by
hand, scientific computational packages such as MATLAB provide symbolic toolboxes that
are designed to do the work for you. In the present case, typing
dsolve (’Dy+y=x*exp(x)*y’,’y(0)=1’,"x’)
yields
ans =
1/exp(-1)*exp (~x+x*exp (x) -exp(x))
which is equivalent to Equation 1.2.11.

Our success here should not be overly generalized. Sometimes these toolboxes give
the answer in a rather obscure form or they fail completely. For example, in the previous
example, MATLAB gives the answer

ans =
-lambertw((log(x)+C1)*exp(-1))-1

The MATLAB function lambertw is Lambert’s W function, where w = lambertw(x) is the
solution to we® = z. Using this definition, we can construct the solution as expressed in
Equation 1.2.6. a
e Example 1.2.3

Consider the nonlinear differential equation

=%y + 9% =0. (1.2.12)
Separating variables, we find that
dy dx 1 1 T
Y =—-24C, = . 1.2.13
y2 a2’ o y x + YT or 1 ( )

Equation 1.2.13 shows the wide variety of solutions possible for an ordinary differential
equation. For example, if we require that y(0) = 0, then there are infinitely many different
solutions satisfying this initial condition because C can take on any value. On the other
hand, if we require that y(0) = 1, there is no solution because we cannot choose any constant
C such that y(0) = 1. Finally, if we have the initial condition that y(1) = 2, then there is
only one possible solution corresponding to C' = %

Consider now the trial solution y = 0. Does it satisfy Equation 1.2.127 Yes, it does.
On the other hand, there is no choice of C' that yields this solution. The solution y = 0 is
called a singular solution to this equation. Singular solutions are solutions to a differential
equation that cannot be obtained from a solution with arbitrary constants.
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Figure 1.2.1: The solution to Equation 1.2.13 when C' = —2,0,2,4.

Finally, we illustrate Equation 1.2.13 using MATLAB. This is one of MATLAB’s strengths
— the ability to convert an abstract equation into a concrete picture. Here the MATLAB
script

clear
hold on
x = -5:0.5:5;
for ¢ = -2:2:4
y =x ./ (cxx-1);
if (c== -2) subplot(2,2,1), plot(x,y,’*’)
axis tight; title(’c = -2’); ylabel(’y’,’Fontsize’,20); end
if (c== 0) subplot(2,2,2), plot(x,y,’"’)
axis tight; title(’c = 0’); end
if (c== 2) subplot(2,2,3), plot(x,y,’s’)
axis tight; title(’c = 2’); xlabel(’x’,’Fontsize’,20);
ylabel(’y’,’Fontsize’,20); end
if (c== 4) subplot(2,2,4), plot(x,y,’h’)
axis tight; title(’c = 4’); xlabel(’x’,’Fontsize’,20); end
end

yields Figure 1.2.1, which illustrates Equation 1.2.13 when C' = —2,0, 2, and 4. a

The previous example showed that first-order ordinary differential equations may have a
unique solution, no solution, or many solutions. From a complete study? of these equations,
we have the following theorem:

2 The proof of the existence and uniqueness of first-order ordinary differential equations is beyond the
scope of this book. See Ince, E. L., 1956: Ordinary Differential Equations. Dover Publications, Inc.,
Chapter 3.
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Theorem: Existence and Uniqueness

Suppose some real-valued function f(x,y) is continuous on some rectangle in the xy-
plane containing the point (a,b) in its interior. Then the initial-value problem

dy

x
has at least one solution on the same open interval I containing the point x = a. Further-
more, if the partial derivative Of /0y is continuous on that rectangle, then the solution is
unique on some (perhaps smaller) open interval Iy containing the point r = a. a

e Example 1.2.4

Consider the initial-value problem ¢ = 3y'/3/2 with y(0) = 1. Here f(z,y) = 3y*/3/2
and f, = y~2/3 /2. Because f, is continuous over a small rectangle containing the point
(0,1), there is a unique solution around 2 = 0, namely y = (x + 1)3/2, which satisfies the
differential equation and the initial condition. On the other hand, if the initial condition
reads y(0) = 0, then f, is not continuous on any rectangle containing the point (0,0) and
there is no unique solution. For example, two solutions to this initial-value problem, valid
on any open interval that includes = = 0, are y; (z) = z%/2 and

_ @=1)"2 x>1, 1.2.15
ve() { 0, x < 1. (1.2.15)

a

e Example 1.2.5: Hydrostatic equation

Consider an atmosphere where its density varies only in the vertical direction. The
pressure at the surface equals the weight per unit horizontal area of all of the air from sea
level to outer space. As you move upward, the amount of air remaining above decreases
and so does the pressure. This is why we experience pressure sensations in our ears when
ascending or descending in an elevator or airplane. If we rise the small distance dz, there
must be a corresponding small decrease in the pressure, dp. This pressure drop must equal
the loss of weight in the column per unit area, —pg dz. Therefore, the pressure is governed
by the differential equation

dp = —pgdz, (1.2.16)

commonly called the hydrostatic equation.

To solve Equation 1.2.16, we must express p in terms of pressure. For example, in
an isothermal atmosphere at constant temperature T, the ideal gas law gives p = pRTj,
where R is the gas constant. Substituting this relationship into our differential equation
and separating variables yields

P (1.2.17)

p(z) = p(O)eXp< 9 > : (1.2.18)
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Thus, the pressure (and density) of an isothermal atmosphere decreases exponentially with
height. In particular, it decreases by e~! over the distance RT,/g, the so-called “scale
height.” O

e Example 1.2.6: Terminal velocity

As an object moves through a fluid, its viscosity resists the motion. Let us find the
motion of a mass m as it falls toward the earth under the force of gravity when the drag
varies as the square of the velocity.

From Newton’s second law, the equation of motion is

d
md—: =mg — Cpv?, (1.2.19)

where v denotes the velocity, g is the gravitational acceleration, and Cp is the drag coeffi-
cient. We choose the coordinate system so that a downward velocity is positive.

Equation 1.2.19 can be solved using the technique of separation of variables if we change
from time t as the independent variable to the distance traveled x from the point of release.
This modification yields the differential equation

d
mvé =mg — Cpv?, (1.2.20)

since v = dx/dt. Separating the variables leads to

vdv
= gd 1.2.21
1—Fkv?/g 94, ( )
or )
k
ln(l - ”) = 2%k, (1.2.22)
9

where k = Cp/m and v = 0 for x = 0. Taking the inverse of the natural logarithm, we
finally obtain
v (z) = % (1— e 2wy, (1.2.23)
Thus, as the distance that the object falls increases, so does the velocity, and it eventually
approaches a constant value /g/k, commonly known as the terminal velocity.
Because the drag coefficient Cp varies with the superficial area of the object while
the mass depends on the volume, k increases as an object becomes smaller, resulting in a
smaller terminal velocity. Consequently, although a human being of normal size will acquire
a terminal velocity of approximately 120 mph, a mouse, on the other hand, can fall any
distance without injury. a

e Example 1.2.7: Interest rate

Consider a bank account that has been set up to pay out a constant rate of P dollars
per year for the purchase of a car. This account has the special feature that it pays an
annual interest rate of » on the current balance. We would like to know the balance in the
account at any time ¢.
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Although financial transactions occur at regularly spaced intervals, an excellent ap-
proximation can be obtained by treating the amount in the account z(t) as a continuous
function of time governed by the equation

z(t + At) ~ x(t) + re(t) At — PAL, (1.2.24)

where we have assumed that both the payment and interest are paid in time increments
of At. As the time between payments tends to zero, we obtain the first-order ordinary

differential equation
dz

dt

If we denote the initial deposit into this account by x(0), then at any subsequent time

=rz — P. (1.2.25)

z(t) = z(0)e"™ — P (e — 1) /r. (1.2.26)

Although we could compute x(t) as a function of P, r, and x(0), there are only three
separate cases that merit our close attention. If P/r > z(0), then the account will eventually
equal zero at rt = In{P/ [P — rx(0)]}. On the other hand, if P/r < z(0), the amount
of money in the account will grow without bound. Finally, the case z(0) = P/r is the
equilibrium case where the amount of money paid out balances the growth of money due
to interest so that the account always has the balance of P/r. O

e Example 1.2.8: Steady-state flow of heat

When the inner and outer walls of a body, for example the inner and outer walls
of a house, are maintained at different constant temperatures, heat will flow from the
warmer wall to the colder one. When each surface parallel to a wall has attained a constant
temperature, the flow of heat has reached a steady state. In a steady-state flow of heat,
each surface parallel to a wall, because its temperature is now constant, is referred to as an
isothermal surface. Isothermal surfaces at different distances from an interior wall will have
different temperatures. In many cases the temperature of an isothermal surface is only a
function of its distance x from the interior wall, and the rate of flow of heat @ in a unit
time across such a surface is proportional both to the area A of the surface and to dT'/dxz,
where T is the temperature of the isothermal surface. Hence,

= —KrA—, 1.2.27
Q=—ra’ (1.2.27)
where k is called the thermal conductivity of the material between the walls.
In place of a flat wall, let us consider a hollow cylinder whose inner and outer surfaces
are located at » = r; and r = rq, respectively. At steady state, Equation 1.2.27 becomes

dr

ar
Q= —/@A% = —K(QT(’I‘L)E,

(1.2.28)
assuming no heat generation within the cylindrical wall.

We can find the temperature distribution inside the cylinder by solving Equation 1.2.28
along with the appropriate conditions on T'(r) at » = vy and r = ry (the boundary con-
ditions). To illustrate the wide choice of possible boundary conditions, let us require that
inner surface is maintained at the temperature 77. We assume that along the outer surface
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heat is lost by convection to the environment, which has the temperature T,,. This heat
loss is usually modeled by the equation

dr

- = (T —Tx), 1.2.29
L (1.2.29)

T2

where h > 0 is the convective heat transfer coefficient. Upon integrating Equation 1.2.28,

Qr
“onnl In(r) + C, (1.2.30)

T(r) =

where @, is also an unknown. Substituting Equation 1.2.30 into the boundary conditions,
we obtain

T(r)="T+ 23;: In(ry/7), (1.2.31)

with L )
2k L(T) — T
r= . 1.2.32
@ k/ro + hln(ra/ry) ( )

As ry increases, the first term in the denominator of Equation 1.2.32 decreases while the
second term increases. Therefore, @), has its largest magnitude when the denominator is
smallest, assuming a fixed numerator. This occurs at the critical radius 7., = k/h, where

2k L(Ty — Tho)

@ = 14 In(re/r)

(1.2.33)
O

e Example 1.2.9: Population dynamics
Consider a population P(t) that can change only by a birth or death but not by immi-

gration or emigration. If B(t) and D(t) denote the number of births or deaths, respectively,
as a function of time ¢, the birth rate and death rate (in births or deaths per unit time) is

B(t+At)—B(t) 1dB

M= —Fnar - Pa (1.2:34)
and
Now,
_ lim [B(t + At) — B(t)] — [D(t + At) — D(t)] (1.2.37)
At—0 At
= B'(t) — D'(t). (1.2.38)
Therefore,

P'(t) = [b(t) — d(t)|P(t). (1.2.39)
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When the birth and death rates are constants, namely b and d, respectively, the pop-
ulation evolves according to

P(t) = P(0)exp [(b—d) ] (1.2.40)
O
e Example 1.2.10: Logistic equation

The study of population dynamics yields an important class of first-order, nonlinear,
ordinary differential equations: the logistic equation. This equation arose in Pierre Francois
Verhulst’s (1804-1849) study of animal populations.® If z(¢) denotes the number of species
in the population and k is the (constant) environment capacity (the number of species that
can simultaneously live in the geographical region), then the logistic or Verhulst’s equation
is

¥ =ax(k —x)/k, (1.2.41)

where a is the population growth rate for a small number of species.
To solve Equation 1.2.41, we rewrite it as

dx dz x/k
— = — 4+ ———dxr =rdt. 1.2.42
(1—z/k)x = +1—m/k e ( )
Integration yields
Injz| —In|l —z/k| = rt + In(C), (1.2.43)
or .
—— =Ce", 1.2.44
1—a/k e ( )
If 2(0) = x,
]{ixo
t) = . 1.2.45
l’( ) zo + (k _ l’o)@irt ( )
As t — o0, z(t) — k, the asymptotically stable solution. O

e Example 1.2.11: Chemical reactions

Chemical reactions are often governed by first-order ordinary differential equations.

For example, first-order reactions, which describe reactions of the form A LA B, yield the
differential equation

1d[A]
— = E[A], (1.2.46)

where k is the rate at which the reaction is taking place. Because for every molecule of A
that disappears one molecule of B is produced, a = 1 and Equation 1.2.46 becomes

— == — k[A] (1.2.47)

3 Verhulst, P. F., 1838: Notice sur la loi que la population suit dans son accroissement. Correspond.
Math. Phys., 10, 113-121.



First-Order Ordinary Differential Equations 13

Integration of Equation 1.2.47 leads to

/‘i[gf]] :k/ it (1.2.48)

If we denote the initial value of [A] by [A]y, then integration yields
—In[A] = kt —In[A],, (1.2.49)

" [A] = [A] e ¥ (1.2.50)

The exponential form of the solution suggests that there is a time constant 7, which is called
the decay time of the reaction. This quantity gives the time required for the concentration
of decrease by 1/e of its initial value [A],. It is given by 7 = 1/k.

Turning to second-order reactions, there are two cases. The first is a reaction between

two identical species: A + A LA products. The rate expression here is
LdA] o
———— = k[A]". 1.2.51
S = kA (1.251)
The second case is an overall second-order reaction between two unlike species, given by A

+ B * X. In this case, the reaction is first order in each of the reactants A and B and the

rate expression is
d[A
—% = k[A][B]. (1.2.52)

Turning to Equation 1.2.51 first, we have by separation of variables

B [A]M B t :
/[ —Zk/o dr, (1.2.53)

Al [A)?
or 1 1
m = m + 2kt. (1.2.54)

Therefore, a plot of the inverse of A versus time will yield a straight line with slope equal
to 2k and intercept 1/[A],.

With regard to Equation 1.2.52, because an increase in X must be at the expense
of A and B, it is useful to express the rate equation in terms of the concentration of X,
[X] = [A], — [A] = [B], — [B], where [A], and [B], are the initial concentrations. Then, this
equation becomes

d[X]

— = (Al = XD (Bl - X)) (1.255)
Separation of variables leads to
X dé B t
/[X]o ([Aly - & (Blo—€&) k/O dr. (1.2.56)

To integrate the left side, we rewrite the integral

dé¢ B de B de
/ (Al — & (B, — & / (1A, — [Bl,) (B, — €) / (Ao — Bly) (Al, — ) (1.2.57)



14 Advanced Engineering Mathematics with MATLAB

Carrying out the integration,

1 o BlolATY _
[A]o—[B]ol ([A]O[B]) . (1.2.58)

Again the reaction rate constant k£ can be found by plotting the data in the form of the left
side of Equation 1.2.58 against t.

Problems

For Problems 1-10, solve the following ordinary differential equations by separation of
variables. Then use MATLAB to plot your solution. Try and find the symbolic solution
using MATLAB’s dsolve.

dy dx
1. == =xe¥ 2. (1+y*)de— (1 +2%)dy = cIn(z)— =
1 = e (I+y?)de—(1+2%)dy=0 3. In(x) i xy
2 2
y* dy 2 dy 2z +uwy dy 1/3
4. L% 5, W _crtay” 6. W _
x dx T dr  y+ 22y dx (zy)
dy +y dy 3 2
L= =€ L— = 1
7 7 € 8 Iy (zZ+5)(y" + 1)

9. Solve the initial-value problem

dy b
EZ—GZU‘*‘Ea y(0) = vo,

where a and b are constants.
10. Setting u = y — x, solve the first-order ordinary differential equation

dy y-—=
de 22

+ 1.

11. Using the hydrostatic equation, show that the pressure within an atmosphere where
the temperature decreases uniformly with height, T'(z) = Ty — I'z, varies as

TO—FZ g/(RT)
= (7))

where pg is the pressure at z = 0.

12. Using the hydrostatic equation, show that the pressure within an atmosphere with the
temperature distribution

() = { To-Tz, 0

<z<H,
Ty —TH, H <z,
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is

_ 1 \9/(RD)
<7_'0T‘FZ> ) O S z S H7
0
p(z) = po
Ty —TH 9/(RF>eXp _ g(z—H) e
Ty R(T,—TH)|’ =

where pg is the pressure at z = 0.

13. The voltage V as a function of time t within an electrical circuit? consisting of a
capacitor with capacitance C' and a diode in series is governed by the first-order ordinary
differential equation

av v V2

C—+—5+—5=0

d¢ R S ’
where R and S are positive constants. If the circuit initially has a voltage V) at ¢t = 0, find
the voltage at subsequent times.

14. A glow plug is an electrical element inside a reaction chamber, which either ignites the
nearby fuel or warms the air in the chamber so that the ignition will occur more quickly.
An accurate prediction of the wire’s temperature is important in the design of the chamber.

Assuming that heat convection and conduction are not important,® the temperature T’

of the wire is governed by

drT

A— + B(T* - T2)

dt
where A equals the specific heat of the wire times its mass, B equals the product of the
emissivity of the surrounding fluid times the wire’s surface area times the Stefan-Boltzmann
constant, T, is the temperature of the surrounding fluid, and P is the power input. The
temperature increases due to electrical resistance and is reduced by radiation to the sur-
rounding fluid.

Show that the temperature is given by

B ot (L) ot ()] <[ L= Dot )],

where v* = P/B + T.¢ and Ty is the initial temperature of the wire.

P,

15. Let us denote the number of tumor cells by N(¢). Then a widely used deterministic

tumor growth law® is

dN

— =bNIn(K/N

dt H( / )3
where K is the largest tumor size and 1/b is the length of time required for the specific
growth to decrease by 1/e. If the initial value of N(¢) is N(0), find N(¢) at any subsequent
time ¢.

4 See Aiken, C. B., 1938: Theory of the diode voltmeter. Proc. IRE, 26, 859-876.
5 See Clark, S. K., 1956: Heat-up time of wire glow plugs. Jet Propulsion, 26, 278-279.

6 See Hanson, F. B., and C. Tier, 1982: A stochastic model of tumor growth. Math. Biosci., 61, 73-100.
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16. The drop in laser intensity in the direction of propagation = due to one- and two-photon
absorption in photosensitive glass is governed” by

dI
— = —al — pI?
. al —pI7,

where [ is the laser intensity, a and [ are the single-photon and two-photon coefficients,
respectively. Show that the laser intensity distribution is

al(0)e=**
o+ BI0) (1 —eov)

I(x) =
where T(0) is the laser intensity at the entry point of the media, 2z = 0.

17. The third-order reaction A + B + C * Xis governed by the kinetics equation

X (1, ~ ) (1Bl, — (X)) (Clo — X)),

where [A]p, [Blo, and [C]o denote the initial concentration of A, B, and C, respectively. Find
how [X] varies with time t.

k1
18. The reversible reaction A — B is described by the kinetics equation®
2

% = k1 ([Aly — [X]) — ko (B, + (X)),

where [X] denotes the increase in the concentration of B while [A]g and [B]o are the initial
concentrations of A and B, respectively. Find [X] as a function of time ¢. Hint: Show that
this differential equation can be written

d[X]

k1 [A]o — k2[B]0
dt

= (k1 — ko) (a+[X]), a= k1 + ko

1.3 HOMOGENEOQOUS EQUATIONS
A homogeneous ordinary differential equation is a differential equation of the form
M(z,y)dz+ N(z,y)dy =0, (1.3.1)
where both M (z,y) and N(z,y) are homogeneous functions of the same degree n. That
means: M (tz,ty) = t"M(z,y) and N(tz,ty) = t"N(x,y). For example, the ordinary

differential equation
(z* +y?) da + (2? — xy) dy = 0 (1.3.2)

7 See Weitzman, P. S., and U. Osterberg, 1996: Two-photon absorption and photoconductivity in
photosensitive glasses. J. Appl. Phys., 79, 8648-8655.

8 See Kiister, F. W., 1895: Ueber den Verlauf einer umkehrbaren Reaktion erster Ordnung in homogenem
System. Z. Physik. Chem., 18, 171-179.
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is a homogeneous equation because both coefficients are homogeneous functions of degree
2:

M(tz, ty) = t?2? + t2% = *(2® + %) = t* M (2, y), (1.3.3)
and

N(tx, ty) = 22 — *zy = t*(2? — xy) = *N(z,v). (1.3.4)

Why is it useful to recognize homogeneous ordinary differential equations? Let us set
y = ux so that Equation 1.3.2 becomes

(2% + u?2?) do + (2 — uz®)(udx + 2 du) = 0. (1.3.5)
Then,
22(1+u)de +2*(1 —u)du = 0, (1.3.6)
1—
Yt 3 g (1.3.7)
1+u T
or ) p
(—1 + ) du+ 2 = 0. (1.3.8)
1+u T

Integrating Equation 1.3.8,

—u + 21In|1 4 u| + In|z| = In|c|, (1.3.9)
Y 4 _
—;+21n‘1—|—;‘ +Injz| = In¢|, (1.3.10)
2
ln[w] =4 (1.3.11)
cx x
or
(z +y)? = cxev/®. (1.3.12)
Problems

First show that the following differential equations are homogeneous and then find their
solution. Then use MATLAB to plot your solution. Try and find the symbolic solution using
MATLAB’s dsolve.

dy dy dy 2 2
(@+y)o =y (@+y) - =z—y vy = (@ +y)
d
4. x(ery)%:y(xfy) 5. xy =y + 2Ty 6. vy =y — /2% + y?
7.y =sec(y/z) +y/x 8.y =e¥/* 4 y/x.

1.4 EXACT EQUATIONS

Consider the multivariable function z = f(x,y). Then the total derivative is

S
dz = D dx + Dy dy = M(x,y)dz + N(z,y) dy. (1.4.1)
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If the solution to a first-order ordinary differential equation can be written as f(x,y) = ¢,
then the corresponding differential equation is

M(z,y)dz + N(z,y)dy = 0. (1.4.2)

How do we know if we have an ezact equation, Equation 1.4.27 From the definition of
M(z,y) and N(z,y),
oM 9*f  9*f ON
oy  Oydxr Oxdy Oz’

if M (z,y) and N(z,y) and their first-order partial derivatives are continuous. Consequently,
if we can show that our ordinary differential equation is exact, we can integrate

(1.4.3)

% = M(z,y) and % = N(z,y) (1.4.4)
to find the solution f(z,y) = c.
e Example 1.4.1
Let us check and see if
[y? cos(z) — 3x2y — 22] dx + [2ysin(z) — 2® + In(y)]dy = 0 (1.4.5)

is exact.
Since M(z,y) = y?cos(x) — 32%y — 2z, and N(z,y) = 2ysin(z) — 2® + In(y), we find

that
oM

oy 2y cos(z) — 322, (1.4.6)
and ON

= 2y cos(x) — 327, (1.4.7)
Because N, = M,, Equation 1.4.5 is an exact equation. a

e Example 1.4.2

Because Equation 1.4.5 is an exact equation, let us find its solution. Starting with

g—f = M(x,y) = y*cos(z) — 32y — 2z, (1.4.8)
x
direct integration gives

fla,y) =y sin(z) — 2%y — 2® + g(y). (1.4.9)

Substituting Equation 1.4.9 into the equation f, = IV, we obtain

% = 2ysin(z) — 2° + ¢'(y) = 2ysin(z) — 2 + In(y). (1.4.10)

Thus, ¢'(y) = In(y), or g(y) = yIn(y) — y + C. Therefore, the solution to the ordinary
differential equation, Equation 1.4.5, is

y?sin(z) — 23y — 22 +yln(y) —y = c. (1.4.11)
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O
e Example 1.4.3
Consider the differential equation
(x+y)de+zln(zx)dy=0 (1.4.12)
on the interval (0,00). A quick check shows that Equation 1.4.12 is not exact since
oM ON
However, if we multiply Equation 1.4.12 by 1/2 so that it becomes
(1+2) do+In(z)dy =0, (1.4.14)
x
then this modified differential equation is exact because
oM 1 ON 1
=2, and — =-. (1.4.15)
dy T dr =z
Therefore, the solution to Equation 1.4.12 is
z+yln(z) =C. (1.4.16)

This mysterious function that converts an inexact differential equation into an exact one
is called an integrating factor. Unfortunately there is no general rule for finding one unless
the equation is linear.

Problems

Show that the following equations are exact. Then solve them, using MATLAB to plot them.
Finally, try and find the symbolic solution using MATLAB’s dsolve.

1. 2zyy’ = 2% — 9 2. (z4+y)y +y==
3. (y* — 1) dz + [2zy — sin(y)] dy = 0 4. [sin(y) — 2xy + 2?] dz

+[z cos(y) — 2] dy = 0
5 —ydx/2®> + (1/z +1/y)dy =0 6. (322 — 6zy)dr — (322 +2y)dy =0
7. ysin(zy) dz + xsin(xy) dy =0 8. (2xy? + 32?) dx + 222y dy = 0
9. (2zy3 + baty) dx 10. (2® +y/x)dz + [y* + In(x)]dy = 0

+(B32%y? +2° +1)dy =0

11. [z +e ¥+ 21n(y)] dy 12. cos(4y?) dx — 8zysin(4y?) dy = 0
+lyn(y) + €] dz =0

13. sin*(x +y) dx — cos?(z + y) dy = 0
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14. Show that the integrating factor for (z —y)y’ + ay(1 —y) = 0is u(y) = y*/(1 — y)**2,
a+1=1/a. Then show that the solution is

ya—i-l Y ga—i—l _
“xu—ywﬂ*‘l gz ®=¢

1.5 LINEAR EQUATIONS

In the case of first-order ordinary differential equations, any differential equation of the
form

a1(@) 2+ ao(a)y = f(a) (1.5.1)

is said to be linear.
Consider now the linear ordinary differential equation

d

x% — 4y = 25" (1.5.2)
or J A

Y 5

Dy = . 1.5.

i At (1.5.3)

Let us now multiply Equation 1.5.3 by z=*. (How we knew that it should be 2% and not
something else will be addressed shortly.) This magical factor is called an integrating factor
because Equation 1.5.3 can be rewritten

1dy 4
or d
Y x

Thus, our introduction of the integrating factor =% allows us to use the differentiation
product rule in reverse and collapse the right side of Equation 1.5.4 into a single x derivative
of a function of = times y. If we had selected the incorrect integrating factor, the right side
would not have collapsed into this useful form.

With Equation 1.5.5, we may integrate both sides and find that

% = /xe”’ dz + C, (1.5.6)
x
or
x% = (z —1)e” + C, (1.5.7)
or
y=at(zx —1)e” + Cat. (1.5.8)

From this example, it is clear that finding the integrating factor is crucial to solving
first-order, linear, ordinary differential equations. To do this, let us first rewrite Equation
1.5.1 by dividing through by a4 (z) so that it becomes

% + P(x)y = Q(x), (1.5.9)
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dy + [P(z)y — Q(z)] dz = 0. (1.5.10)

If we denote the integrating factor by u(z), then
ul(w)dy + u(@) [P()y — Q)] dz =0, (15.11)

Clearly, we can solve Equation 1.5.11 by direct integration if it is an exact equation. If this
is true, then

e = o W@ [Pe)y - Q@) (15.12)
or - a
i w(x)P(x), and T P(z)dz. (1.5.13)

Integrating Equation 1.5.13,

(@) zexp{/zP(g) dg} . (1.5.14)

Note that we do not need a constant of integration in Equation 1.5.14 because Equation
1.5.11 is unaffected by a constant multiple. It is also interesting that the integrating factor
only depends on P(z) and not Q(x).

We can summarize our findings in the following theorem.

Theorem: Linear First-Order Equation

If the functions P(x) and Q(z) are continuous on the open interval I containing the
point xq, then the initial-value problem

dy

- + P(z)y = Q(x), y(To) = Yo,

has a unique solution y(x) on I, given by

C 1 z
mmM@+M@/Wm&@ms

with an appropriate value of C, and u(x) is defined by Equation 1.5.14. a
The procedure for implementing this theorem is as follows:

e Step 1: If necessary, divide the differential equation by the coefficient of dy/dxz. This
gives an equation of the form Equation 1.5.9 and we can find P(z) by inspection.

e Step 2: Find the integrating factor by Equation 1.5.14.
e Step 3: Multiply the equation created in Step 1 by the integrating factor.
e Step 4: Run the derivative product rule in reverse, collapsing the left side of the

differential equation into the form d[u(x)y]/dz. If you are unable to do this, you have
made a mistake.



22 Advanced Engineering Mathematics with MATLAB

e Step 5: Integrate both sides of the differential equation to find the solution.
The following examples illustrate the technique.
e Example 1.5.1
Let us solve the linear, first-order ordinary differential equation
2y —y =4z In(z). (1.5.15)

We begin by dividing through by x to convert Equation 1.5.15 into its canonical form.
This yields

1
y — —y =4ln(x). (1.5.16)
T

From Equation 1.5.16, we see that P(x) = 1/x. Consequently, from Equation 1.5.14, we

have that P [/x re dg} ) eXp(_ /w d&) _1 (1.5.17)
)-1 5.

Multiplying Equation 1.5.16 by the integrating factor, we find that

/

Y y _ 4In(x)

7 7 1.5.18
. s ( )
o d 41n(z)
y) n(x
— (=)= . 1.5.19
dz (a: T ( )
Integrating both sides of Equation 1.5.19,
1
¥ _ 4/ @) 1 — 9m2(2) + €. (1.5.20)
x x
Multiplying Equation 1.5.20 through by x yields the general solution
y = 2z1n®(z) + Cxz. (1.5.21)

Although it is nice to have a closed-form solution, considerable insight can be gained
by graphing the solution for a wide variety of initial conditions. To illustrate this, consider
the MATLAB script

clear
% use symbolic toolbox to solve Equation 1.5.15
y = dsolve (’x*Dy-y=4*x*log(x)’,’y(1) = c’,’x’);
% take the symbolic version of the solution
% and convert it into executable code
solution = inline(vectorize(y),’x’,’c’);
close all; axes; hold on
% now plot the solution for a wide variety of initial conditions
x =0.1:0.1:2;
for ¢ = -2:4

if (c==-2) plot(x,solution(x,c),’.’); end

if (c==-1) plot(x,solution(x,c),’0’); end

if (c== 0) plot(x,solution(x,c),’x’); end
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Figure 1.5.1: The solution to Equation 1.5.15 when the initial condition is y(1) = c.

if (c== 1) plot(x,solution(x,c),’+’); end

if (c== 2) plot(x,solution(x,c),’*’); end

if (c== 3) plot(x,solution(x,c),’s’); end

if (c== 4) plot(x,solution(x,c),’d’); end
end
axis tight
xlabel(’x’,’Fontsize’,20); ylabel(’y’,’Fontsize’,20)
legend(’c = -2’,’c = -1’,’c = 0’,’c = 1’,...

’c = 2’,’c = 3",’c = 4’); legend boxoff

This script does two things. First, it uses MATLAB’s symbolic toolbox to solve Equa-
tion 1.5.15. Alternatively, we could have used Equation 1.5.21 and introduced it as a
function. The second portion of this script plots this solution for y(1) = C' where C' =
—-2,-1,0,1,2,3,4. Figure 1.5.1 shows the results. As x — 0, we note how all of the
solutions behave like 22 In?(z). O

e Example 1.5.2

Let us solve the first-order ordinary differential equation

d
i — (1.5.22)
dr y—=x
subject to the initial condition y(2) = 6.
Beginning as before, we rewrite Equation 1.5.22 in the canonical form
(y—x)y —y=0. (1.5.23)

Examining Equation 1.5.23 more closely, we see that it is a nonlinear equation in y. On the
other hand, if we treat x as the dependent variable and y as the independent variable, we
can write Equation 1.5.23 as the linear equation

dr =x

—+==1 1.5.24
oty ( )
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Figure 1.5.2: Schematic diagram for an electric circuit that contains a resistor of resistance R and an
inductor of inductance L.

Proceeding as before, we have that P(y) = 1/y and p(y) = y so that Equation 1.5.24
can be rewritten

d
— = 1.5.25
ay W = ( )
or
yz = sy* + C. (1.5.26)
Introducing the initial condition, we find that C' = —6. Solving for y, we obtain

y— /TR (1.5.27)

We must take the positive sign in order that y(2) = 6 and

=zt a1 12 (1.5.28)

e Example 1.5.3: Electric circuits

A rich source of first-order differential equations is the analysis of simple electrical
circuits. These electrical circuits are constructed from three fundamental components: the
resistor, the inductor, and the capacitor. Each of these devices gives the following voltage
drop: In the case of a resistor, the voltage drop equals the product of the resistance R
times the current I. For the inductor, the voltage drop is L dI/dt, where L is called the
inductance, while the voltage drop for a capacitor equals Q/C, where @ is the instantaneous
charge and C is called the capacitance.

How are these voltage drops applied to mathematically describe an electrical circuit?
This question leads to one of the fundamental laws in physics, Kirchhoff’s law: The alge-
braic sum of all the voltage drops around an electric loop or circuit is zero.

To illustrate Kirchhoff’s law, consider the electrical circuit shown in Figure 1.5.2. By
Kirchhoff’s law, the electromotive force E, provided by a battery, for example, equals the
sum of the voltage drops across the resistor RI and L dI/dt. Thus the (differential) equation

that governs this circuit is

L% +RI=E. (1.5.29)

Assuming that E, I, and R are constant, we can rewrite Equation 1.5.29 as

AT riyL _F ryr
= [e I(t)] = e/, (1.5.30)
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Figure 1.5.3: The temporal evolution of current I(¢) inside an electrical circuit shown in Figure 1.5.2 with
a constant electromotive force E.

Integrating both sides of Equation 1.5.30,

E
ePE(t) = ReRt/L + O, (1.5.31)

or
I(t) = % + Cre BYL (1.5.32)

To determine C7, we apply the initial condition. Because the circuit is initially dead,
1(0) = 0, and

I(t) = % (1 - e*Rt/L) . (1.5.33)

Figure 1.5.3 illustrates Equation 1.5.33 as a function of time. Initially the current increases
rapidly but the growth slows with time. Note that we could also have solved this problem
by separation of variables.

Quite often, the solution is separated into two parts: the steady-state solution and the
transient solution. The steady-state solution is that portion of the solution which remains
as t — oo. It can equal zero. Presently it equals the constant value, F/R. The transient
solution is that portion of the solution which vanishes as time increases. Here it equals
—Ee RY/L/R,

Although our analysis is a useful approximation to the real world, a more realistic one
would include the nonlinear properties of the resistor.” To illustrate this, consider the case
of an RL circuit without any electromotive source (E = 0) where the initial value for the
current is Iy. Equation 1.5.29 now reads

I
L% + RI(1 —al) =0, 1(0) = Io. (1.5.34)

Separating the variables,

dl dl dl

R
— = = —dt. 1.5.
I(al-1) I—-1/a I Ldt (1.5.35)

9 For the analysis of
dI 8
LE + RI+ KIP =0,

see Fairweather, A., and J. Ingham, 1941: Subsidence transients in circuits containing a non-linear resistor,
with reference to the problem of spark-quenching. J. IEE, Part 1, 88, 330-339.
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Figure 1.5.4: The variation of current I /Iy as a function of time Rt/L with different values of alp.

Upon integrating and applying the initial condition, we have that
Ioeth/L

T 1—aly + alpe R/L

(1.5.36)

Figure 1.5.4 shows I(t) for various values of a. As the nonlinearity reduces resistance,
the decay in the current is reduced. If aly > 1, Equation 1.5.36 predicts that the current
would grow with time. The point here is that nonlinearity can have a dramatic influence
on a physical system.

Consider now the electrical circuit shown in Figure 1.5.5, which contains a resistor with
resistance R and a capacitor with capacitance C. Here the voltage drop across the resistor
is still RI while the voltage drop across the capacitor is @Q/C. Therefore, by Kirchhoff’s
law

Q

I+=X=E. 1.5.37
R+O ( )

Equation 1.5.37 is not a differential equation. However, because current is the time rate of
change in charge I = dQ/dt, our differential equation becomes

dQ  Q

R— 4+ 2 =E, 1.5.38

da C ( )

which is the differential equation for the instantaneous charge.
Let us solve Equation 1.5.38 when the resistance and capacitance are constant but the
electromotive force equals Ey cos(wt). The corresponding differential equation is now
dQ  Q

R% + 5 = EO cos(wt). (1539)

)

The differential equation has the integrating factor e*/(i¢) so that it can be rewritten

AT re) o] = B0 ti(rO) o
o {e Q(t)} =R¢ cos(wt). (1.5.40)

Integrating Equation 1.5.40,

CEy

t/(RC) _
W = et

¢/ (RO [cos(wt) + RCwsin(wt)] + Cy (1.5.41)
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Figure 1.5.5: Schematic diagram for an electric circuit that contains a resistor of resistance R and a
capacitor of capacitance C.

or

CEy

If we take the initial condition as Q(0) = 0, then the final solution is

CEy

Q) = 1T R2c2e? cos(wt) — e V) L ROw sin(wt)} . (1.5.43)

Figure 1.5.6 illustrates Equation 1.5.43. Note how the circuit eventually supports a purely
oscillatory solution (the steady-state solution) as the exponential term decays to zero (the
transient solution). Indeed, the purpose of the transient solution is to allow the system to
adjust from its initial condition to the final steady state. a

e Example 1.5.4: Terminal velocity

When an object passes through a fluid, the viscosity of the fluid resists the motion by
exerting a force on the object proportional to its velocity. Let us find the motion of a mass
m that is initially thrown upward with the speed vy.

If we choose the coordinate system so that it increases in the vertical direction, then
the equation of motion is

m— = —kv —mg (1.5.44)

with v(0) = vy and k& > 0. Rewriting Equation 1.5.44, we obtain the first-order linear
differential equation
dv k

Lt =y 1.5.45
e ( )

Its solution in nondimensional form is

o) _ g4 <1 + kvo) e=kt/m. (1.5.46)
mg

The displacement from its initial position is

K2x(t) k2 kt k
o(t) _ Kzo Kt (1 n ”0> (1 _ efkt/m) , (1.5.47)
mg
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Figure 1.5.6: The temporal evolution of the nondimensional charge (1 + R2C?w?)Q(t) /(CEp) in the
electric circuit shown in Figure 1.5.4 as a function of nondimensional time wt when the circuit is driven by
the electromotive force Eg cos(wt) and RCw = 2.

As t — o0, the velocity tends to a constant downward value, —mg/k, the so-called “terminal
velocity,” where the aerodynamic drag balances the gravitational acceleration. This is the
steady-state solution.

Why have we written Equation 1.5.46 and Equation 1.5.47 in this nondimensional
form? There are two reasons. First, the solution reduces to three fundamental variables,
a nondimensional displacement x, = k?x(t)/(m?g), velocity v. = kv(t)/(mg), and time
t. = kt/m, rather than the six original parameters and variables: g, k, m, t, v, and «.
Indeed, if we had substituted t,, v,, and z, into Equation 1.5.45, we would have obtained
the following simplified initial-value problem:

dv, dx, kvo k2xo
= —]_’ = Uy, * 0 = —, * O frd
dt, v dt, v v=(0) mg 2+(0) m2g

(1.5.48)

right from the start. The second advantage of the nondimensional form is the compact
manner in which the results can be displayed, as Figure 1.5.7 shows.

From Equation 1.5.46 and Equation 1.5.47, the trajectory of the ball is as follows: If
we define the coordinate system so that zqg = 0, then the object will initially rise to the
height H given by

KH  k 3
=0 <1 + ”0) (1.5.49)
m2g  mg myg
at the time L )
Kmas _ 1, <1 + ”0) : (1.5.50)
m mg

when v(tmq) = 0. It will then fall toward the earth. Given sufficient time kt/m > 1, it
would achieve terminal velocity. O

e Example 1.5.5: The Bernoulli equation

Bernoulli’s equation,

% +p@)y =q(x)y", n#0,1, (1.5.51)
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NONDIMENSIONAL DISPLACEMENT

NONDIMENSIONAL TIME

Figure 1.5.7: The nondimensional displacement k2?z(t)/(m?2g) as a function of nondimensional time kt/m
of an object of mass m thrown upward at the initial nondimensional speed v = kvg/(mg) in a fluid that
retards its motion as —kv.

is a first-order, nonlinear differential equation. This equation can be transformed into a
first-order, linear differential equation by introducing the change of variable z = y!'~".
Because

=(1-— 1.5.52
-y, (1.5.52)
the transformed Bernoulli equation becomes
dz
e + (1 —n)p(x)z = (1 —n)g(x). (1.5.53)

This is now a first-order linear differential equation for z and can be solved using the
methods introduced in this section. Once z is known, the solution is found by transforming
back from z to y.

To illustrate this procedure, consider the nonlinear ordinary differential equation

dy
2 2
- — =1 1.5.54
ety —wyt =1, ( )
or )

dy 'y _y~

— - == 1.5.55

de = a? ( )
Equation 1.5.55 is a Bernoulli equation with p(z) = —1/z, ¢(z) = 1/2%, and n = —1.
Introducing z = 32, it becomes

dz 2z 2

@ = _ 2 (1.5.56)

de «z 2

This first-order linear differential equation has the integrating factor p(x) = 1/2? and

d [z 2
— (=) = —. 1.5.57
dx (xQ) r ( )
Integration gives
2
Zoo- = (1.5.58)
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Therefore, the general solution is

y? =z2=Cz?— —. (1.5.59)

Problems

Find the solution for the following differential equations. State the interval on which the
general solution is valid. Then use MATLAB to examine their behavior for a wide class of
initial conditions.

1.y +y=e¢e" 2.y +2zy ==z

3. 2% +ay=1 4. 2y + 2%)dx = x dy

5.y — 3y/z = 22 6. ¥ + 2y = 2sin(x)

7.y +2cos(2x)y =0 8. zy +y=In(x)

9.y +3y=4, y0)=5 10. ¢ —y=¢"/z, yle)=0

11. sin(z)y’ + cos(z)y =1 12. [1 — cos(z)]y’ + 2sin(x)y = tan(z)

13. ¢ + [atan(z) + bsec(x)]y = csec(x) 14. (zy+y—1)de+xzdy=0

z  sin(2wx) z+1

15. y 4+ 2ay = = —
v =g A

2k
y(0)=0. 16. y’+$3y—ln< >, k>0, y(1) =0.

17. Solve the following initial-value problem:

dy 2
kay—2 = y* — a, 1) =0.
Ty =y - y(1)

Hint: Introduce the new dependent variable p = y2.

18. If 2(t) denotes the equity capital of a company, then under certain assumptions!® x(¢)

is governed by

dx
W _1-nN
o ( yre + S,

where N is the dividend payout ratio, r is the rate of return of equity, and S is the rate of
net new stock financing. If the initial value of x(t) is z(0), find x(¢).

19. The assimilation'! of a drug into a body can be modeled by the chemical reaction A Li%
B & C, which is governed by the chemical kinetics equations

d[A]
dt

= mial, g km D

10 See Lebowitz, J. L., C. O. Lee, and P. B. Linhart, 1976: Some effects of inflation on a firm with
original cost depreciation. Bell J. Economics, T, 463—477.

11 See Calder, G. V., 1974: The time evolution of drugs in the body: An application of the principle of
chemical kinetics. J. Chem. Educ., 51, 19-22.
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where [A] denotes the concentration of the drug in the gastrointestinal tract or in the site
of injection, [B] is the concentration of the drug in the body, and [C] is either the amount
of drug eliminated by various metabolic functions or the amount of the drug utilized by
various action sites in the body. If [A]y denotes the initial concentration of A, find [A], [B],
and [C] as a function of time ¢.

20. Find the current in an RL circuit when the electromotive source equals Ey cos?(wt).
Initially the circuit is dead.

Find the general solution for the following Bernoulli equations:

dy |y 2 2dy 2 dy 4y

21, =+ = =— 22. x°—= = 23. - — = =
dx + T y . dx Wty dzx x Yy
d d d

24. —y+g:—xy2 25. 2xy—y—y2+z:0 26. x—ery:%z:y?’
dr =x dxr dzx

1.6 GRAPHICAL SOLUTIONS

In spite of the many techniques developed for their solution, many ordinary differen-
tial equations cannot be solved analytically. In the next two sections, we highlight two
alternative methods when analytical methods fail. Graphical methods seek to understand
the nature of the solution by examining the differential equations at various points and
infer the complete solution from these results. In the last section, we highlight the numeri-
cal techniques that are now commonly used to solve ordinary differential equations on the
computer.

e Direction fields

One of the simplest numerical methods for solving first-order ordinary differential equa-
tions follows from the fundamental concept that the derivative gives the slope of a straight
line that is tangent to a curve at a given point.

Consider the first-order differential equation

y' = fz,y), (1.6.1)

which has the initial value y(xzg) = yo. For any (z,y) it is possible to draw a short line
segment whose slope equals f(x,y). This graphical representation is known as the direction
field or slope field of Equation 1.6.1. Starting with the initial point (z¢,yo), we can then
construct the solution curve by extending the initial line segment in such a manner that
the tangent of the solution curve parallels the direction field at each point through which
the curve passes.

Before the days of computers, it was common to first draw lines of constant slope
(isoclines) or f(x,y) = c. Because along any isocline all of the line segments had the same
slope, considerable computational savings were realized. Today, computer software exists
that performs these graphical computations with great speed.

To illustrate this technique, consider the ordinary differential equation

dz 9
— =z -t 1.6.2
at " (1.6.2)
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Figure 1.6.1: The direction field for Equation 1.6.2. The solid lines are plots of the solution with various
initial conditions.

Its exact solution is
z(t) = Cet + 1% + 2t + 2, (1.6.3)

where C is an arbitrary constant. Using the MATLAB script

clear
% create grid points in t and x
[t,x] = meshgrid(-2:0.2:3,-1:0.2:2);
% load in the slope
slope = x - t.*t;
% find the length of the vector (1,slope)
length = sqrt(1 + slope .* slope);
% create and plot the vector arrows
quiver(t,x,1./length,slope./length,0.5)
axis equal tight
hold on
% plot the exact solution for various initial conditions
tt = [-2:0.2:3];
for cval = -10:1:10
x_exact = cval * exp(tt) + tt.*tt + 2%xtt + 2;
plot(tt,x_exact)
xlabel(’t’,’Fontsize’,20)
ylabel(’x’,’Fontsize’,20)
end

we show in Figure 1.6.1 the directional field associated with Equation 1.6.2 along with
some of the particular solutions. Clearly the vectors are parallel to the various particular
solutions. Therefore, without knowing the solution, we could choose an arbitrary initial
condition and sketch its behavior at subsequent times. The same holds true for nonlinear
equations.

e Rest points and autonomous equations
In the case of autonomous differential equations (equations where the independent

variable does not explicitly appear in the equation), considerable information can be gleaned
from a graphical analysis of the equation.
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Figure 1.6.2: The phase line diagram for the ordinary differential equation, Equation 1.6.4.

Consider the nonlinear ordinary differential equation

d
= d—f =z(z? - 1). (1.6.4)
The time derivative z’ vanishes at x = —1,0, 1. Consequently, if (0) = 0, z(¢) will remain
zero forever. Similarly, if (0) = 1 or (0) = —1, then x(¢) will equal 1 or —1 for all

time. For this reason, values of x for which the derivative z’ is zero are called rest points,
equilibrium points, or critical points of the differential equation.

The behavior of solutions near rest points is often of considerable interest. For example,
what happens to the solution when z is near one of the rest points z = —1,0,17

Consider the point x = 0. For z slightly greater than zero, ' < 0. For z slightly less
than 0, 2’ > 0. Therefore, for any initial value of x near x = 0, x will tend to zero. In
this case, the point x = 0 is an asymptotically stable critical point because whenever x is
perturbed away from the critical point, it tends to return there again.

Turning to the point z = 1, for x slightly greater than 1, ' > 0; for z slightly less
than 1, ' < 0. Because any x near z = 1, but not equal to 1, will move away from z = 1,
the point = 1 is called an unstable critical point. A similar analysis applies at the point
x = —1. This procedure of determining the behavior of an ordinary differential equation
near its critical points is called a graphical stability analysis.

e Phase line

A graphical representation of the results of our graphical stability analysis is the phase
line. On a phase line, the equilibrium points are denoted by circles. See Figure 1.6.2. Also
on the phase line we identify the sign of 2’ for all values of z. From the sign of 2/, we then
indicate whether x is increasing or deceasing by an appropriate arrow. If the arrow points
toward the right, x is increasing; toward the left = decreases. Then, by knowing the sign
of the derivative for all values of x, together with the starting value of x, we can determine
what happens as t — co. Any solution that is approached asymptotically as t — oo is called
a steady-state output. In our present example, z = 0 is a steady-state output.

Problems
In previous sections, you used various techniques to solve first-order ordinary differential
equations. Now check your work by using MATLAB to draw the direction field and plot
your analytic solution for the following problems taken from previous sections:

1. Section 1.2, Problem 5 2. Section 1.3, Problem 1

3. Section 1.4, Problem 5 4. Section 1.5, Problem 3
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For the following autonomous ordinary differential equations, draw the phase line. Then
classify each equilibrium solution as either stable or unstable.

5.2 =ax(l—2z)(z—1) 6. 2’ = (22 — 1)(2% — 4)

3 3

7.2 =4z —x 8. 2/ =4x —x

1.7 NUMERICAL METHODS

By now you have seen most of the exact methods for finding solutions to first-order
ordinary differential equations. The methods have also given you a view of the general
behavior and properties of solutions to differential equations. However, it must be admitted
that in many instances exact solutions cannot be found and we must resort to numerical
solutions.

In this section we present the two most commonly used methods for solving differen-
tial equations: Euler and Runge-Kutta methods. There are many more methods and the
interested student is referred to one of countless numerical methods books. A straightfor-
ward extension of these techniques can be applied to systems of first-order and higher-order
differential equations.

e Fuler and modified Fuler methods
Consider the following first-order differential equation and initial condition:

D=t vl =w (1.7.1)

Euler’s method is based on a Taylor series expansion of the solution about z or
y(wo +h) = y(wo) + hy'(xo) + 39" (E)h*,  x0 <& <wo+h, (1.7.2)

where h is the step size. Euler’s method consists of taking a sufficiently small h so that
only the first two terms of this Taylor expansion are significant.
Let us now replace y'(xg) by f(xo,y0). Using subscript notation, we have that

Yir1 = yi + hf (zi,9:) + O(h7). (1.7.3)

Equation 1.7.3 states that if we know the values of y; and f(x;,y;) at the position x;, then
the solution at x;1; can be obtained with an error'? O(h?).

The trouble with Euler’s method is its lack of accuracy, often requiring an extremely
small time step. How might we improve this method with little additional effort?

One possible method would retain the first three terms of the Taylor expansion rather
than the first two. This scheme, known as the modified Fuler method, is

Yir1 = yi + by (z;) + LRPy) + O(B?). (1.7.4)

This is clearly more accurate than Equation 1.7.3.

12 The symbol O is a mathematical notation indicating relative magnitude of terms, namely that f(e) =
O(e™) provided lime_,0 |f(€)/e€?| < oco. For example, as ¢ — 0, sin(e) = O(e), sin(e2) = O(€?), and
cos(€) = O(1).
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An obvious question is how do we evaluate y}, because we do not have any information
on its value. Using the forward derivative approximation, we find that

/ /

= 1.7.5
Yi " (1.7.5)
Substituting Equation 1.7.5 into Equation 1.7.4 and simplifying
h
Using the differential equation,
h 3
Yirr = Yi+ 5 (@i, 9) + f(@irn, yir)] + O(R7). (1.7.7)

Although f(x;,y;) at (x;,y;) are easily calculated, how do we compute f(z;y1, yit1) at
(Zi+1,Yi+1)? For this we compute a first guess via the Euler method, Equation 1.7.3;
Equation 1.7.7 then provides a refinement on the value of y;1.

In summary then, the simple Euler scheme is

Yir1 =i + k1 + O(R®), ki = hf(zi,y:), (1.7.8)
while the modified Euler method is

Yir1 = Yi + 5 (ki + ko) + O(R®), ky = hf(zi,yi), ko = hf(zi + hy; + k). (1.7.9)

e Example 1.7.1
Let us illustrate Euler’s method by numerically solving
=z +1t, z(0) = 1. (1.7.10)

A quick check shows that Equation 1.7.10 has the exact solution Teyact(t) = 2e* — ¢ — 1.
Using the MATLAB script

clear
for i = 1:3
% set up time step increment and number of time steps
h =1/10"i; n = 10/h;
% set up initial conditions
t=zeros(n+1,1); t(1) = 0;
x_euler=zeros(n+1,1); x_euler(l) = 1;
x_modified=zeros(n+1,1); xmodified(1) = 1;
x_exact=zeros(n+1,1); x_exact(l) = 1;
% set up difference arrays for plotting purposes
diffl = zeros(n,1); diff2 = zeros(n,1); tplot = zeros(n,1);
% define right side of differential equation, Equation 1.7.10
f = inline(’xx+tt’,’tt’, ’xx’);
for k = 1:n
t(k+1) = t(k) + h;
% compute exact solution
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x_exact(k+1) = 2xexp(t(k+1)) - t(k+l) - 1;
% compute solution via Euler’s method
ki = h * £(t(k),x_euler(k));
x_euler(k+1) = x_euler(k) + ki;
tplot(k) = t(k+1);
diff1(k) = x_euler(k+1l) - x_exact(k+1l);
diff1(k) = abs(diffi1(k) / x_exact(k+1));
% compute solution via modified Euler method
k1 = h * £(t(k),xmodified(k));
k2 = h * f(t(k+1),xmodified(k)+k1);
xmodified(k+1) = x_modified(k) + 0.5%(k1+k2);
diff2(k) = xmodified(k+1) - x_exact(k+1);
diff2(k) = abs(diff2(k) / x_exact(k+1));
end
% plot relative errors
semilogy(tplot,diffl,’-’,tplot,diff2,’:’)
hold on
xlabel (’TIME’,’Fontsize’,20)
ylabel(’IRELATIVE ERROR|’, ’Fontsize’,20)
legend (’Euler method’,’modified Euler method’)
legend boxoff;
numl = 0.2%n; num2 = 0.8%n;
text(3,diff1(numl),[’h = ’,num2str(h)], ’Fontsize’,15,...
’HorizontalAlignment’,’right’,...
’VerticalAlignment’,’bottom’)
text(9,diff2(num2),[’h = ’,num2str(h)], Fontsize’,15, ...
’HorizontalAlignment’,’right’,...
’VerticalAlignment’,’bottom’)

end

Both the Euler and modified Euler methods have been used to numerically integrate Equa-
tion 1.7.10 and the absolute value of the relative error is plotted in Figure 1.7.1 as a function
of time for various time steps. In general, the error grows with time. The decrease of error
with smaller time steps, as predicted in our analysis, is quite apparent. Furthermore, the
superiority of the modified Euler method over the original Euler method is clearly seen. O

e Runge-Kutta method

As we have just shown, the accuracy of numerical solutions of ordinary differential
equations can be improved by adding more terms to the Taylor expansion. The Runge-
Kutta method!'3 builds upon this idea, just as the modified Euler method did.

Let us assume that the numerical solution can be approximated by

Yit1 = Yi + aky + bk, (1.7.11)

13 Runge, C., 1895: Ueber die numerische Aufldsung von Differentialgleichungen. Math. Ann., 46, 167—
178; Kutta, W., 1901: Beitrag zur Naherungsweisen Integration totaler Differentialgleichungen. Zeit. Math.
Phys., 46, 435-453. For a historical review, see Butcher, J. C., 1996: A history of Runge-Kutta methods.
Appl. Numer. Math., 20, 247-260 and Butcher, J. C., and G. Wanner, 1996: Runge-Kutta methods: Some
historical notes. Appl. Numer. Math., 22, 113-151.
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Figure 1.7.1: The relative error [x(t) — Texact (t)]/Texact (t) of the numerical solution of Equation 1.7.10
using Euler’s method (the solid line) and modified Euler’s method (the dotted line) with different time steps
h.

where
k1 = hf(l‘“yz) and ko = hf(l‘z + Alh,yi + B1k‘1). (1.7.12)

Here a, b, A1, and B; are four unknowns. Equation 1.7.11 was suggested by the modified
Euler method that we just presented. In that case, the truncated Taylor series had an error
of O(h3). We anticipate such an error in the present case.

Because the Taylor series expansion of f(z + h,y + k) about (x,y) is

f(SC +h,y+ k) = f(x,y) + (th + kfy) + % (th”I:.r + Qhkfacy + k2fyy)

+ & (13 fowa + 302k fomy + 3RK? foyy + K3 fyyy) +---,  (1.7.13)

ko can be rewritten
k2 = hf[l'z + Alh, Y; + Bhf(ﬂ;‘z, yz)] (1714)
= hf+ Aih*f, + Bih*f f,, (1.7.16)

where we have retained only terms up to O(h?) and neglected all higher-order terms. Finally,
substituting Equation 1.7.16 into Equation 1.7.11 gives

Yir1 = Yi + (@ + b)hf + (A1bfo + Bibf f,)h°. (1.7.17)
This equation corresponds to the second-order Taylor expansion:
Yirr = Y + hyl + $hy) . (1.7.18)
Therefore, if we wish to solve the differential equation y' = f(x,y), then
y' = fo+ oy = fo + [y (1.7.19)
Substituting Equation 1.7.19 into Equation 1.7.18, we have that

Yir1 =yi + hf + 3K (fo + [ fy)- (1.7.20)
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Although Carl David Tolmé Runge (1856-1927) began his studies in Munich, his friendship with
Max Planck led him to Berlin and pure mathematics with Kronecker and Weierstrass. It was his
professorship at Hanover beginning in 1886 and subsequent work in spectroscopy that led him to his
celebrated paper on the numerical integration of ordinary differential equations. Runge’s final years
were spent in Gottingen as a professor in applied mathematics. (Portrait taken with permission from
Reid, C., 1976: Courant in Géttingen and New York: The Story of an Improbable Mathematician.
Springer-Verlag, 314 pp. ©1976, by Springer-Verlag New York Inc.)

A direct comparison of Equation 1.7.17 and Equation 1.7.20 yields
a+b=1,  Ab=1%, and Bib=3. (1.7.21)

These three equations have four unknowns. If we choose a = %, we immediately calculate
b= % and A; = B; = 1. Hence the second-order Runge-Kutta scheme is

Yit1 = Yi + %(lﬁ + ko), (1.7.22)

where k1 = hf(x;,y;) and ko = hf(x; + h,y; + k1). Thus, the second-order Runge-Kutta
scheme is identical to the modified Euler method.

Although the derivation of the second-order Runge-Kutta scheme yields the modified
Euler scheme, it does provide a framework for computing higher-order and more accurate
schemes. A particularly popular one is the fourth-order Runge-Kutta scheme

Yirr = Yi + 5 (k1 + 2k + 2ks + ky), (1.7.23)
where
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and

e Example 1.7.2

Let us illustrate the fourth-order Runge-Kutta by redoing the previous example using
the MATLAB script

clear
% test out different time steps
for i = 1:4

% set up time step increment and number of time steps
if i==1 h = 0.50; end; if i==2 h = 0.10; end;
if i==3 h = 0.05; end; if i==4 h = 0.01; end;
n = 10/h;

% set up initial conditions
t=zeros(n+1,1); t(1) = 0;
x_rk=zeros(n+1,1); xrk(1) = 1;
x_exact=zeros(n+1,1); x_exact(l) = 1;

% set up difference arrays for plotting purposes
diff = zeros(n,1); tplot = zeros(n,1);

% define right side of differential equation
f = inline(’xx+tt’,’tt’,’xx’);
for k = 1:n

x_local = xrk(k); t_local = t(k);

k1 = h * f(t_local,x local);

k2 = h * f(t_local + h/2,x_local + k1/2);
k3 = h * f(t_local + h/2,x_local + k2/2);
k4 = h * f(t_local + h,x_local + k3);
t(k+1) = t_local + h;

x_rk(k+1) = x_local + (k1+2xk2+2%k3+k4) / 6;
x_exact(k+1) = 2xexp(t(k+1)) - t(k+1l) - 1;
tplot(k) = t(k);
diff (k) = xrk(k+1) - x_exact(k+1);
diff (k) = abs(diff(k) / x_exact(k+1));
end
% plot relative errors
semilogy(tplot,diff,’-’)
hold on
xlabel (’TIME’, Fontsize’,20)
ylabel(’ |RELATIVE ERROR|’,’Fontsize’,20)
numl = 2%i; num2 = 0.2%*n;
text (numl,diff (num2),[’h = ’,num2str(h)], ’Fontsize’,15,...
’HorizontalAlignment’,’right’,...
’VerticalAlignment’,’bottom’)
end

The error growth with time is shown in Figure 1.7.2. Although this script could be used
for any first-order ordinary differential equation, the people at MATLAB have an alternative
called ode45, which combines a fourth-order and a fifth-order method that are similar to
our fourth-order Runge-Kutta method. Their scheme is more efficient because it varies the
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Figure 1.7.2: Same as Figure 1.7.1 except that we have used the fourth-order Runge-Kutta method.

step size, choosing a new time step at each step in an attempt to achieve a given desired
accuracy.
O

e Adams-Bashforth method

All of the methods presented so far (Euler, modified Euler, Runge-Kutta) are single
point methods; the solution at i+ 1 depends solely on a single point i. A popular alternative
to these schemes are multistep methods that compute y;11 by reusing previously obtained
values of y,, where n < i.

We begin our derivation of a multistep method by rewriting Equation 1.7.1 as

dy = f(z,y) dz. (1.7.28)

Integrating both sides of Equation 1.7.28, we obtain

i) —ve) = [ a= [ peya (1.7.29)

Ty i

The Adams-Bashforth method'* replaces the integrand in Equation 1.7.29 with an approx-
imation derived from Newton’s backward difference formula:

fay) = fi +EVfi+ 36E+ DV i+ €€+ D(E+2) VP fi, (1.7.30)
where & = (x — x;)/h or x = x; + hE,
V= f(@i,yi) — f(@io1,9i-1), (1.7.31)

V2 fi = f(zivyi) — 2f (@im1, yio1) + F(@iz2, Yio2), (1.7.32)

14 Bashforth, F., and J. C. Adams, 1883: An Attempt to Test the Theories of Capillary Action by
Comparing the Theoretical and Measured Forms of Drops of Fluid. With an Explanation of the Method
of Integration Employed in Constructing the Tables Which Give the Theoretical Forms of Such Drops.
Cambridge University Press, 139 pp.
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and
V3 fi = f(zi,yi) — 3f(Tic1,yio1) + 3f (T2, yi—2) — f(%i—3,Yi—3). (1.7.33)

Substituting Equation 1.7.30 into Equation 1.7.29 and carrying out the integration, we find
that

y(wipr) = y(x:) + % [55f (@5, yi) — 59f (zi—1,yi-1) + 3Tf(xi—2,yi—2) — 9f (zi—3,yi—3)].
(1.7.34)
Thus, the Adams-Bashforth method is an explicit finite difference formula that has a global
error of O(h*). Additional computational savings can be realized if the old values of the
slope are stored and used later. A disadvantage is that some alternative scheme (usually
Runge-Kutta) must provide the first three starting values.

e Example 1.7.3

The flight of projectiles provides a classic application of first-order differential equa-
tions. If the projectile has a mass m and its motion is opposed by the drag mgkv?, where
g is the acceleration due to gravity and k is the quadratic drag coefficients, Newton’s law

of motion gives
dv

dt

where 6 is the slope of the trajectory to the horizon. From kinematics,

= —gsin(0) — gkv?, (1.7.35)

de gcos(6)
i — (1.7.36)
An interesting aspect of this problem is the presence of a system of ordinary differential
equations.

Although we can obtain an exact solution to this problem,'® let us illustrate the Adams-
Bashforth method to compute the solution to Equation 1.7.35 and Equation 1.7.36. We
begin by computing the first three time steps using the Runge-Kutta method. Note that
we first compute the k1 for all of the dependent variables before we start computing the
values of ko. Similar considerations hold for k3 and k4.

clear

a=0; b=7.85; N=100; g =9.81; c
(b-a)/N; t = (a:h:b+h);

% set initial conditions

v(1) = 44.69; theta(l) = pi/3; x(1) = 0; y(1) = 0;

0.000548;

=
1l

for i = 1:3
angle = theta(i); vv = v(i);
k1l vel = -gxsin(angle) - gkcxvv*vv;

kl_angle = -g*xcos(angle) / vv;

klx = vv * cos(angle);

kly = vv * sin(angle);

angle = theta(i)+h*kl_angle/2; vv = v(i)+h¥kl vel/2;
k2 vel = -gxsin(angle) - gkcxvv*vv;

15 Tan, A., C. H. Frick, and O. Castillo, 1987: The fly ball trajectory: An older approach revisited. Am.
J. Phys., 55, 37-40; Chudinov, P. S., 2001: The motion of a point mass in a medium with a square law of
drag. J. Appl. Math. Mech., 65, 421-426.
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k2_angle = -gxcos(angle) / vv;

k2 x = vv * cos(angle);

k2.y = vv * sin(angle);

angle = theta(i)+h*k2_angle/2; vv = v(i)+h*k2 vel/2;

k3_vel = -g*xsin(angle) - gxc*xvv*vv;

k3_angle = -g*xcos(angle) / vv;

k3x = vv * cos(angle);

k3_y = vv * sin(angle);

angle = theta(i)+h*k3_angle; vv = v(i)+h*k3_vel;

k4 vel = -g*sin(angle) - gxc*xvv*vv;

k4_angle = -gxcos(angle) / vv;

k4x = vv * cos(angle);

kd_y = vv * sin(angle);

v(i+1l) = v(i) + hx(kl_vel+2xk2_vel+2*k3_vel+k4 vel)/6;

x(i+1) = x(i) + h*x(k1l_x+2*k2_x+2*k3_x+k4 x)/6;

y(i+1l) = y(i) + h*x(kl_y+2xk2_y+2*k3_y+kd_y)/6;

theta(i+1) = theta(i) + h*(kl_angle+2*k2_angle ...
+2xk3_angle+k4_angle)/6;

end

fo

/)

Having computed the first three values of each of the dependent variables, we turn to
the Adams-Bashforth method to compute the remaining portion of the numerical solution:

r i=4:N
angle = theta(i); vv = v(i);
k1l vel = -g*sin(angle) - gxc*xvv*vv;

kl_angle = -g*cos(angle) / vv;

klx = vv * cos(angle);

kly = vv * sin(angle);

angle = theta(i-1); vv = v(i-1);
k2 vel = -gxsin(angle) - gkcxvv*vv;
k2_angle = -gxcos(angle) / vv;

k2. x = vv * cos(angle);

k2.y = vv * sin(angle);

angle = theta(i-2); vv = v(i-2);
k3_vel = -g*sin(angle) - gxc*xvv*vv;
k3_angle = -g*cos(angle) / vv;

k3x = vv * cos(angle);

k3_y = vv * sin(angle);

angle = theta(i-3); vv = v(i-3);
k4 vel = -g*xsin(angle) - gxc*xvv*vv;
k4_angle = -gxcos(angle) / vv;

k4x = vv * cos(angle);

k4.y = vv * sin(angle);

Use Equation 1.7.35 and Equation 1.7.36 for v, =, y and 0
v(i+1) = v(i) + h*x(55%kl_vel-59%k2_vel+37*k3_vel-9*kd _vel)/24;

x(i+1) x(1) + hx(55%kl_x-59*k2 x+37*k3_x-9*k4 x)/24;

y(i+1) = y(i) + hx(55%k1_y-59*k2_y+37xk3_y-9xkd_y)/24;

theta(i+l) = theta(i) + h*(55*kl_angle-59*k2_angle ...
+37*xk3_angle-9*k4_angle) /24;

end
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Figure 1.7.3: The trajectory of a projectile with and without air resistance when it is initial fired with a
muzzle velocity of 44.69 m/s and an elevation of § = 60°. All units are in the MKS system.

Figure 1.7.3 illustrates this numerical solution when k& = 0 and k = 0.000548 2 /m?
and the shell is fired with the initial velocity v(0) = 44.69 m/s and elevation 6(0) = /3
with 2(0) = y(0) = 0.

Problems

Using Euler’s, Runge-Kutta, or the Adams-Bashforth method for various values of h =
10™", find the numerical solution for the following initial-value problems. Check your
answer by finding the exact solution.

l.a'=x—t, x(0)=2 2.2 =tz, z(0)=1

5. Consider the integro-differential equation
t
G+ [ e Bsm@Rl =1 Bs>0
0

where the signum function is defined by Equation 11.2.11. This equation describes the
(nondimensional) current,'® z(t), within an electrical circuit that contains a capacitor,
inductor, and nonlinear resistor. Assuming that the circuit is initially dead, x(0) = 0, write
a MATLAB script that uses Euler’s method to compute z(t). Use a simple Riemann sum to
approximate the integral. See Figure 1.7.4. Examine the solution for various values of B
and [ as well as time step At.

16 Monahan, T. F., 1960: Calculation of the current in non-linear surge-current-generation circuits. Proc.
IEE, Part C, 107, 288-291.
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Figure 1.7.4: The numerical solution of the equation describing an electrical circuit with a nonlinear
resistor. Here 8 = 0.2 and At = 0.01.

—_

0

Further Readings

Boyce, W. E., and R. C. DiPrima, 2004: FElementary Differential Equations and Boundary
Value Problems. Wiley, 800 pp. Classic textbook.

Ince, E. L., 1956: Ordinary Differential Equations. Dover, 558 pp. The source book on
ordinary differential equations.

Zill, D. G., and M. R. Cullen, 2008: Differential Equations with Boundary-Value Problems.
Brooks Cole, 640 pp. Nice undergraduate textbook.



Chapter 2
Higher-Order Ordinary

Differential Equations

Although first-order ordinary differential equations exhibit most of the properties of
differential equations, higher-order ordinary differential equations are more ubiquitous in
the sciences and engineering. This chapter is devoted to the most commonly employed
techniques for their solution.

A linear nth-order ordinary differential equation is a differential equation of the form

m n—1

1@ @D Y@ gy = @) (201)

If f(z) = 0, then Equation 2.0.1 is said to be homogeneous; otherwise, it is nonhomogeneous.

A linear differential equation is normal on an interval I if its coefficients and f(x) are
continuous, and the value of a,,(z) is never zero on I.

Solutions to Equation 2.0.1 generally must satisfy not only the differential equations
but also certain specified conditions at one or more points. Initial-value problems are
problems where all of the conditions are specified at a single point £ = a and have the
form: y(a) = bo, ¥'(a) = by, y"(a) = ba, ..., y" "V (a) = b,_1, where by, b1, ba, ..., by_1
are arbitrary constants. A quick check shows that if Equation 2.0.1 is homogeneous and
normal on an interval I and all of the initial conditions equal zero at the point x = a that
lies in I, then y(z) = 0 on I. This follows because y = 0 is a solution of Equation 2.0.1 and
satisfies the initial conditions.

45
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At this point a natural question would be whether the solution exists for this initial-
value problem and, if so, whether it is unique. From a detailed study of this question,! we
have the following useful theorem.

Theorem: Existence and Uniqueness

Suppose that the differential equation, Equation 2.0.1, is normal on the open interval

I containing the point © = a. Then, given n numbers by, by, ..., by_1, the nth-order linear
equation, Equation 2.0.1, has a unique solution on the entire interval I that satisfies the n
initial conditions y(a) = by, y'(a) = b1,...,y"* D(a) = b,_1. O

e Example 2.0.1

The solution y(x) = %ew—%e’zx to the ordinary differential equation 3"’ +2y" —y'—2y =
0 satisfies the initial conditions y(0) = 1, y’(0) = 2, and y”(0) = 0 at = 0. Our theorem
guarantees us that this is the only solution with these initial values. O

Another class of problems, commonly called (two-point) boundary-value problems, oc-
curs when conditions are specified at two different points z = a and z = b with b > «a.
An important example, in the case of second-order ordinary differential equations, is the
Sturm-Liouville problem where the boundary conditions are a1y(a) + 513'(a) =0 at x = a
and asy(b) + B2y’ (b) = 0 at © = b. The Sturm-Liouville problem is treated in Chapter 6.

Having introduced some of the terms associated with higher-order ordinary linear dif-
ferential equations, how do we solve them? Omne way is to recognize that these equations
are really a set of linear, first-order ordinary differential equations. For example, the linear
second-order linear differential equation

y"' =3y +2y =3z (2.0.2)
can be rewritten as the following system of first-order ordinary differential equations:
y —y=v, and v —2v=3x (2.0.3)

because
y' —y =v =20 +3x =2y — 2y + 3, (2.0.4)

which is the same as Equation 2.0.2. This suggests that Equation 2.0.2 can be solved by
applying the techniques from the previous chapter. Proceeding along this line, we first find
that

v(z) = Cre** — 3z — 3. (2.0.5)
Therefore,
Yy —y=Cre* — 3z -3, (2.0.6)
Again, applying the techniques from the previous chapter, we have that
y = C1e* + Coe® + %x + %. (2.0.7)

Note that the solution to this second-order ordinary differential equation contains two ar-
bitrary constants.

I The proof of the existence and uniqueness of solutions to Equation 2.0.1 is beyond the scope of this
book. See Ince, E. L., 1956: Ordinary Differential Equations. Dover Publications, Inc., Section 3.32.
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e Example 2.0.2

In the case of linear, second-order ordinary differential equations, a similar technique,
called reduction in order, provides a method for solving differential equations if we know
one of its solutions.

Consider the second-order ordinary differential equation

2y" — 5y’ + 9y = 0. (2.0.8)

A quick check shows that y;(z) = 2®In(x) is a solution of Equation 2.0.8. Let us now
assume that the general solution can be written y(x) = u(z)z3In(z). Then

y =/ ()2 In(z) + u(z) [32® In(z) + 2?] (2.0.9)
and
y" =" (2)2’ In(z) + 20/ (z) [32* In(z) + 2%] + u(z) [6z In(z) + 5z] . (2.0.10)
Substitution of y(x), y'(x), and y”(x) into (2.0.8) yields
2’ In(z)u” + [z In(z) + 22'] v’ = 0. (2.0.11)
Setting «' = w, separation of variables leads to

! 1 2
Lo o= (2.0.12)
w xz xIn(x)

Note how our replacement of u/(z) with w(x) has reduced the second-order ordinary differ-
ential equation to a first-order one. Solving Equation 2.0.12, we find that

Cy
= () =————, 2.0.13
w(z) =u'(z) @) ( )
and
()= e (2.0.14)
u In(z) 2- .0.
Because y(z) = u(x)x® In(z), the complete solution is
y(x) = Cra® + Gy’ In(z). (2.0.15)

Substitution of Equation 2.0.15 into Equation 2.0.8 confirms that we have the correct solu-
tion.
We can verify our answer by using the symbolic toolbox in MATLAB. Typing the com-
mand:
dsolve (’x*x*D2y-5xx*Dy+9*y=0,’x’)
yields
ans =
Cl*x~3+C2*x"~3*log(x) O
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In summary, we can reduce (in principle) any higher-order, linear ordinary differential
equations into a system of first-order ordinary differential equations. This system of differ-
ential equations can then be solved using techniques from the previous chapter. In Chapter
3 we will pursue this idea further. Right now, however, we will introduce methods that
allow us to find the solution in a more direct manner.

e Example 2.0.3

An autonomous differential equation is one where the independent variable does not
appear explicitly. In certain cases we can reduce the order of the differential equation and
then solve it.

Consider the autonomous ordinary differential equation

y" =2y (2.0.16)
The trick here is to note that
dv dv
"= =p— =2y 2.0.17
dx vdy v ( )

where v = dy/dz. Integrating both sides of Equation 2.0.17, we find that
v =yt + O (2.0.18)
Solving for v,

d
W_ T (2.0.19)

dx
Integrating once more, we have the final result that

dy
r+Cy = / —_—. (2.0.20)
VO +y?
Problems

For the following differential equations, use reduction of order to find a second solution.
Can you obtain the general solution using dsolve in MATLAB?

1ay’"+2y =0, yi(zx)=1 2.y +y —2y=0, yi(x)=¢"

3. 2%y +dry —4y=0, yi(x)=ux 4. 2y —(x+ 1)y +y=0, yi(x)=¢€"

5 2z — 22y’ +2(x - 1)y —2y =0, 6. vy + tan(z)y’ — 6(:0t2(x) =
yx)=x-1 y()—sm(m)

7. 422y + 4oy’ + (422 — 1)y = 0, 8. y' +ay +b(1l+ax —bx?)y =0,

(z) = cos(w)/ Ve (z) = e 012

Solve the following autonomous ordinary differential equations:

9. yy' =y” 10. v =2yy’, y(0)=9'(0)=1
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11. yy// — y/ + y/2 192. 2yy// — 1+ y,2

13. y" =e*, y(0)=0,4(0)=1 14. y" =3yy’, y(0) =y (0)=1,9"(0) =3

(2) solving for v(z), and finally (3) integrating v’ = v to find u(z).
16. Consider the differential equation
ax(x)y” + ar(x)y’ +ao(z)y =0,  as(x) #0.

Show that this ordinary differential equation can be rewritten

Wt fau=0,  fla)="2) 1 {m(x)r_;d{al(x)y

using the substitution

-] [ 804

2.1 HOMOGENEOQUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

In our drive for more efficient methods to solve higher-order, linear, ordinary differential
equations, let us examine the simplest possible case of a homogeneous differential equation
with constant coefficients:

d" n—ly " dy

anw—&—an_lm—i—--wi—agy +a1%+a0y:0. (211)

Although we could explore Equation 2.1.1 in its most general form, we will begin by studying
the second-order version, namely

ay” +by' +cy =0, (2.1.2)

since it is the next step up the ladder in complexity from first-order ordinary differential
equations.

Motivated by the fact that the solution to the first-order ordinary differential equation
y +ay =01is y(zr) = Cre”**, we make the educated guess that the solution to Equation
2.1.2 is y(z) = Ae™*. Direct substitution into Equation 2.1.2 yields

(am® + bm + ¢) Ae™" = 0. (2.1.3)
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The constant A cannot equal 0 because that would give y(z) = 0 and we would have a
trivial solution. Furthermore, since e™* # 0 for arbitrary z, Equation 2.1.3 simplifies to

am? +bm+c=0. (2.1.4)

Equation 2.1.4 is called the auziliary or characteristic equation. At this point we must
consider three separate cases.

e Distinct real roots

In this case the roots to Equation 2.1.4 are real and unequal. Let us denote these roots
by m = m1, and m = msy. Thus, we have the two solutions:

y1(x) = Cre™”, and ya(x) = Cae™?". (2.1.5)
We will now show that the most general solution to Equation 2.1.2 is
y(x) = C1e™T 4 Coe™?". (2.1.6)
This result follows from the principle of (linear) superposition.

Theorem: Let y1,ys, ...,y be solutions of the homogeneous equation, Equation 2.1.1, on
an interval I. Then the linear combination

y(z) = Cry1(x) + Coya(z) + - - - + Cryx(x), (2.1.7)
where C;, i =1,2,... k, are arbitrary constants, is also a solution on the interval I.
Proof: We will prove this theorem for second-order ordinary differential equations; it is
easily extended to higher orders. By the superposition principle, y(z) = Cyy1 (z) + Coya ().
Upon substitution into Equation 2.1.2, we have that

a (Cryy + Cayy) + b (Cry) + Cays) + ¢ (Crys + Cays) = 0. (2.1.8)

Recombining the terms, we obtain

C1 (ayy +bys + cyn) + Ca (ayy + bys + cy2) =0, (2.1.9)

or
0C) 4 0Cy = 0. (2.1.10)
O

e Example 2.1.1

A quick check shows that y1(x) = €® and ya(z) = e~* are two solutions of y” —y = 0.
Our theorem tells us that any linear combination of these solutions, such as y(x) = 5e* —
3e™7, is also a solution.

How about the converse? Is every solution to y” —y = 0 a linear combination of y; (z)
and ya(x)? We will address this question shortly. O
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e Example 2.1.2
Let us find the general solution to
y" +2y — 15y = 0. (2.1.11)
Assuming a solution of the form y(x) = Ae™*, we have that
(m? 4 2m — 15) Ae™™ = 0. (2.1.12)
Because A # 0 and e™* generally do not equal zero, we obtain the auxiliary or characteristic

equation
m?+2m — 15 = (m + 5)(m — 3) = 0. (2.1.13)

Therefore, the general solution is
y(x) = C13% + Cre™". (2.1.14)

O

e Repeated real roots

When m = my = maq, we have only the single exponential solution y; (z) = Cre™%.
To find the second solution we apply the reduction of order technique shown in Example
2.0.2. Performing the calculation, we find

—bz/a
Yo () :CQemlz/ Sy e (2.1.15)

Since m1 = —b/(2a), the integral simplifies to [ dz and

y(z) = C1e™ + Coxe™ ", (2.1.16)

e Example 2.1.3
Let us find the general solution to
Yy + 4y + 4y = 0. (2.1.17)
Here the auxiliary or characteristic equation is
m? +4m+4 = (m+2)*=0. (2.1.18)
Therefore, the general solution is

y(x) = (Cy + Cox)e 2", (2.1.19)
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e Complex conjugate roots

When b? — 4ac < 0, the roots become the complex pair m; = o+ i and my = a — /34,
where o and 3 are real and i2 = —1. Therefore, the general solution is

y(z) = Crel@ti)T 4 Cyela=Piz, (2.1.20)

Although Equation 2.1.20 is quite correct, most engineers prefer to work with real
functions rather than complex exponentials. To this end, we apply Euler’s formula® to
eliminate ¢*** and e~"* since

e = cos(Bx) + isin(Bz), (2.1.21)
and
e~ = cos(Ba) — isin(Bx). (2.1.22)
Therefore,
y(x) = C1e** [cos(Bx) + isin(Bz)] + Cae™” [cos(Bx) — isin(fx)] (2.1.23)
= C5e*” cos(Bz) + Cre™* sin(fx), (2.1.24)

where C3 = Cy + Cs, and Cy = iCy — iCs.
e Example 2.1.4
Let us find the general solution to
y" + 4y + 5y = 0. (2.1.25)

Here the auxiliary or characteristic equation is

m?*4+4m+5=(m+2)>2+1=0, (2.1.26)

or m = —2 £ 4. Therefore, the general solution is
y(x) = e~ 2*[Cy cos(z) + Cy sin()]. (2.1.27)
O

So far we have only dealt with second-order differential equations. When we turn
to higher-order ordinary differential equations, similar considerations hold. In place of
Equation 2.1.4, we now have the nth-degree polynomial equation

apm”™ + apym™ L+ agmPtam+tag=0 (2.1.28)

for its auxiliary equation.

When we treated second-order ordinary differential equations, we were able to classify
the roots to the auxiliary equation as distinct real roots, repeated roots, and complex
roots. In the case of higher-order differential equations, such classifications are again useful

2 If you are unfamiliar with Euler’s formula, see Section 10.1.
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although all three types may occur with the same equation. For example, the auxiliary
equation
m® —m® +2m* —2m> 4+ m? —m =0 (2.1.29)

has the distinct roots m = 0 and m = 1 with the twice repeated, complex roots m = =+i.
Although the possible combinations increase with higher-order differential equations,
the solution technique remains the same. For each distinct real root m = mq, we have a
corresponding homogeneous solution e™**. For each complex pair m = a + i, we have the
corresponding pair of homogeneous solutions e** cos(fx) and e** sin(fx). For a repeated
root m = my of multiplicity %k, regardless of whether it is real or complex, we have either
emM® ge™?® g2e™® | gkem™® ip the case of real mq or
e“? cos(Bx), e*” sin(Bz), ze™* cos(fx), xe*” sin(Bz),

22e%% cos(fz), 2™ sin(Bz), . . ., 2%e® cos(Bx), x¥ e sin(Bx)

in the case of complex roots o + Fi. For example, the general solution for the roots to
Equation 2.1.29 is

y(x) = Cy + Cae” 4+ C5 cos(x) + Cysin(z) + Csx cos(z) + Ca sin(z). (2.1.30)

e Example 2.1.5
Let us find the general solution to
Yy +y — 10y = 0. (2.1.31)

Here the auxiliary or characteristic equation is

m? +m—10= (m —2)(m? +2m +5) = (m — 2)[(m + 1) + 4] =0, (2.1.32)

or m = —2 and m = —1 &£ 2¢. Therefore, the general solution is
y(x) = Cre™" 4+ e "[Cy cos(2z) + Cy sin(2z)]. (2.1.33)
O

Having presented the technique for solving constant coefficient, linear, ordinary differ-
ential equations, an obvious question is: How do we know that we have captured all of the
solutions? Before we can answer this question, we must introduce the concept of linear
dependence.

A set of functions f1(z), fa(z),. .., fn(z) is said to be linearly dependent on an interval
I if there exist constants Cy,Cs, ..., C,, not all zero, such that
Cifi(z) + Cofao(x) + Cs f3(2) + -+ + Cpfulz) =0 (2.1.34)

for each x in the interval; otherwise, the set of functions is said to be linearly independent.
This concept is easily understood when we have only two functions fi(x) and fo(z). If the
functions are linearly dependent on an interval, then there exist constants C7 and Cs that
are not both zero, where

lel ($) + C’Qfg(.’t) =0 (2135)
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for every x in the interval. If C; # 0, then

fi(@) = == fa(@). (2.1.36)

In other words, if two functions are linearly dependent, then one is a constant multiple of
the other. Conversely, two functions are linearly independent when neither is a constant
multiple of the other on an interval.

e Example 2.1.6
Let us show that f(z) = 2z, g(z) = 322, and h(z) = 5z — 822 are linearly dependent
on the real line.
To show this, we must choose three constants, C;, Cs, and Cj3, such that
C1f(x) + Cag(x) + Csh(x) =0, (2.1.37)
where not all of these constants are nonzero. A quick check shows that
15f(x) — 16g(x) — 6h(x) = 0. (2.1.38)
Clearly, f(x), g(z), and h(z) are linearly dependent. O
e Example 2.1.7
This example shows the importance of defining the interval on which a function is
linearly dependent or independent. Consider the two functions f(z) = z and g(z) = |z|.
They are linearly dependent on the interval (0,00) since Cyz + Co|z| = Ciax + Cox = 0
is satisfied for any nonzero choice of C7 and Cs where C; = —Cy. What happens on the
interval (—o0,0)? They are still linearly dependent but now C; = Cs. O
Although we could use the fundamental concept of linear independence to check and see
whether a set of functions is linearly independent or not, the following theorem introduces

a procedure that is very straightforward.

Theorem: Wronskian Test of Linear Independence

Suppose f1(z), fo(x),. .., fn(x) possess at least n — 1 derivatives. If the determinant®

fi f . fn
fi o Ta
n:—l n:—l n:—l
1( ) f2( ) gD
is not zero for at least one point in the interval I, then the functions fi(x), fa(x), ..., fu(2)

are linearly independent on the interval. The determinant in this theorem is denoted by
Wifi(z), fa(z),..., fo(x)] and is called the Wronskian of the functions.

3 If you are unfamiliar with determinants, see Section 3.2.
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Proof: We prove this theorem by contradiction when n = 2. Let us assume that W{f; (o),
fa(xo)] # 0 for some fixed z¢ in the interval I and that fi(z) and fao(x) are linearly
dependent on the interval. Since the functions are linearly dependent, there exists C; and
Cs, both not zero, for which

lel (iE) + Cgfg(x) =0 (2.1.39)

for every z in I. Differentiating Equation 2.1.39 gives
Cifi(z) + Cafs(x) = 0. (2.1.40)

We may view Equation 2.1.39 and Equation 2.1.40 as a system of equations with C; and Cs
as the unknowns. Because the linear dependence of f; and fs implies that C; # 0 and/or
Cs # 0 for each x in the interval,

Wi, @) = 5 ] =0 (2.1.41)

fi /s
for every x in I. This contradicts the assumption that W[ fi(zo), f2(x0)] # 0 and f1 and f>
are linearly independent. ad

e Example 2.1.8

Are the functions f(z) = x, g(x) = xe®, and h(x) = 2%e® linearly dependent on the
real line? To find out, we compute the Wronskian or

e’ e’ x%e® 1 = 2°
Wf(x),g9(x),h(z)] =|e* (z+1)e” (22 +2z)e® | =0 1 22|=2e3#£0.
e® (z+2)e* (z2+ 4w+ 2)e” 00 2
(2.1.42)
Therefore, x, ze®, and z2e® are linearly independent. a

Having introduced this concept of linear independence, we are now ready to address
the question of how many linearly independent solutions a homogeneous linear equation
has.

Theorem:

On any interval I over which an n-th order homogeneous linear differential equation is
normal, the equation has n linearly independent solutions y1(z),y2(x),...,yn(z) and any
particular solution of the equation on I can be expressed as a linear combination of these
linearly independent solutions.

Proof: Again for convenience and clarity we prove this theorem for the special case of n = 2.
Let y1(x) and y2(z) denote solutions on I of Equation 2.1.2. We know that these solutions
exist by the existence theorem and have the following values:

yl(a) = 17 y?(a) = 07 yi(a’) = 07 yl2(a‘) =1 (2'1'43)

at some point a on I. To establish the linear independence of y; and y, we note that,
if Cy1(z) + Caya(z) = 0 holds identically on I, then Cyyj(z) + Cayb(z) = 0 there too.
Because © = a lies in I, we have that

Clyl (CL) + Czyz(a) = 0, (2144)
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and
C1y1(a) + Cays(a) = 0, (2.1.45)

which yields C7 = Cy = 0 after substituting Equation 2.1.43. Hence, the solutions y; and
yo are linearly independent.

To complete the proof we must now show that any particular solution of Equation
2.1.2 can be expressed as a linear combination of y; and ys. Because y, y1, and yo are all
solutions of Equation 2.1.2 on I, so is the function

Y(x) =y(@) - y(a)yi(z) — ' (a)y2 (), (2.1.46)

where y(a) and y'(a) are the values of the solution y and its derivative at x = a. Evaluating
Y and Y’ at © = a, we have that

Y(a) = y(a) — y(a)yi(a) — y'(a)y2(a) = y(a) — y(a) =0, (2.1.47)
and
Y'(a) = o/ (a) — y(a)¥} (@) — ' (@)y(a) = /(@) — ¢/(@) = 0. (2.1.48)
Thus, Y is the trivial solution to Equation 2.1.2. Hence, for every x in I,
y(@) = y(a)yr(z) — y'(a)yz(x) = 0. (2.1.49)
Solving Equation 2.1.49 for y(z), we see that y is expressible as the linear combination
y() = y(a)yi(z) + 3 (a)y2(x) (2.1.50)
of y1 and y9, and the proof is complete for n = 2.

Problems

Find the general solution to the following differential equations. Check your general solution
by using dsolve in MATLAB.

1y +6y +5y=0 2. y" — 6y +10y =0 3.y =2 +y=0
4y =3y +2 =0 5.y — 4y +8y =0 6. y" +6y' +9y =0
7.y +6y — 40y =0 8.y +4y +5y =0 9. y" + 8y +25y =0
10. 4" =12/ +9y =0 11y’ +8y + 16y =0 12. 4" + 49" =0

13. " +4y" =0 4. " 420" +9" =0 15. y"" =8y =0

16 y//I/ _ 3y/1/ + 3y// _ y/ — 0

17. The simplest differential equation with “memory” — its past behavior affects the present
— is
A [t
/o —(t—z)/T
= —— e z)dx.
Y or | y(z)

Solve this integro-differential equation by differentiating it with respect to ¢ to eliminate
the integral.
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Figure 2.2.1: Various configurations of a mass/spring system. The spring alone has a length L, which
increases to L+ s when the mass is attached. During simple harmonic motion, the length of the mass/spring
system varies as L + s + x.

2.2 SIMPLE HARMONIC MOTION

Second-order, linear, ordinary differential equations often arise in mechanical or elec-
trical problems. The purpose of this section is to illustrate how the techniques that we just
derived may be applied to these problems.

We begin by considering the mass-spring system illustrated in Figure 2.2.1 where a
mass m is attached to a flexible spring suspended from a rigid support. If there were
no spring, then the mass would simply fall downward due to the gravitational force mg.
Because there is no motion, the gravitational force must be balanced by an upward force
due to the presence of the spring. This upward force is usually assumed to obey Hooke’s
law, which states that the restoring force is opposite to the direction of elongation and
proportional to the amount of elongation. Mathematically the equilibrium condition can
be expressed mg = ks.

Consider now what happens when we disturb this equilibrium. This may occur in
one of two ways: We could move the mass either upward or downward and then release
it. Another method would be to impart an initial velocity to the mass. In either case,
the motion of the mass/spring system would be governed by Newton’s second law, which
states that the acceleration of the mass equals the imbalance of the forces. If we denote the

downward displacement of the mass from its equilibrium position by positive x, then
d’z
My = —k(s+x) + mg = —kx, (2.2.1)

since ks = mg. After dividing Equation 2.2.1 by the mass, we obtain the second-order
differential equation

d?z  k
— + —x=0 2.2.2
dt? + m ’ ( )
or d2
z 2

where w? = k/m and w is the circular frequency. Equation 2.2.3 describes simple harmonic
motion or free undamped motion. The two initial conditions associated with this differential
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Summary of Simple Harmonic Motion
Displacement,x(t)
A
Velocity =0 .
/ Amplitude, A
. Initial /A Maximum
displacement velocity
Time, ot
Phase =@
- 2% —_—
Period
’U2 1/2
x(t) = (2 + wg) sin(wt + @)
@ =tan™! (0) , vo = initial velocity
Vo
equation are
z(0) = a, z'(0) = B. (2.2.4)

The first condition gives the initial amount of displacement while the second condition
specifies the initial velocity. If a > 0 while 5 < 0, then the mass starts from a point below
the equilibrium position with an initial upward velocity. On the other hand, if a < 0 with
B = 0 the mass is at rest when it is released |a| units above the equilibrium position. Similar
considerations hold for other values of « and (.

To solve Equation 2.2.3, we note that the solutions of the auxiliary equation m?+w? = 0
are the complex numbers m; = wi, and my = —wi. Therefore, the general solution is

x(t) = Acos(wt) + Bsin(wt). (2.2.5)
The (natural) period of free vibrations is T' = 27/w while the (natural) frequency is f =
1/T =w/(2m).
e Example 2.2.1

Let us solve the initial-value problem

d*z ,
2 +4x =0, z(0) = 10, 2'(0) = 0. (2.2.6)

The physical interpretation is that we have pulled the mass on a spring down 10 units
below the equilibrium position and then release it from rest at ¢ = 0. Here, w = 2 so that

x(t) = Acos(2t) + Bsin(2t) (2.2.7)

from Equation 2.2.5.




Higher-Order Ordinary Differential Equations 59

Because z(0) = 10, we find that
z(0)=10=A-14+B-0 (2.2.8)
so that A = 10. Next, we note that

d
d—f — —20sin(2t) + 2B cos(2t). (2.2.9)
Therefore, at t = 0,

2'(0)=0=-20-0+2B1 (2.2.10)

and B = 0. Thus, the equation of motion is z(t) = 10 cos(2t).

What is the physical interpretation of our equation of motion? Once the system is set
into motion, it stays in motion with the mass oscillating back and forth 10 units above and
below the equilibrium position z = 0. The period of oscillation is 27/2 = 7 units of time.O

e Example 2.2.2

A weight of 45 N stretches a spring 5 cm. At time ¢ = 0, the weight is released from
its equilibrium position with an upward velocity of 28 cm s~!. Determine the displacement
x(t) that describes the subsequent free motion.

From Hooke’s law,

F=mg=45N=Fk x5cm (2.2.11)

so that £ =9 N cm~!. Therefore, the differential equation is

d*z 9
The initial displacement and initial velocity are z(0) = 0 cm and 2/(0) = —28 cm s~ 1. The

negative sign in the initial velocity reflects the fact that the weight has an initial velocity
in the negative or upward direction.
Because w? = 196 s~2 or w = 14 s~ !, the general solution to the differential equation
is
x(t) = Acos(14s™'t) + Bsin(14s™ ). (2.2.13)

Substituting for the initial displacement x(0) in Equation 2.2.13, we find that

2(0)=0cm=A-1+B-0, (2.2.14)
and A = 0 cm. Therefore,
z(t) = Bsin(14s™'t) (2.2.15)
and
2'(t) = 14s ' Bcos(14s~'t). (2.2.16)

Substituting for the initial velocity,
2'(0) = —28cms™! = 1457 B, (2.2.17)
and B = —2 cm. Thus the equation of motion is

z(t) = —2cm sin(14s7't). (2.2.18)
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static
equilibrium

Figure 2.2.2: Schematic of a floating body partially submerged in pure water.

e Example 2.2.3: Vibration of floating bodies

Consider a solid cylinder of radius a that is partially submerged in a bath of pure water
as shown in Figure 2.2.2. Let us find the motion of this cylinder in the vertical direction
assuming that it remains in an upright position.

If the displacement of the cylinder from its static equilibrium position is x, the weight of
water displaced equals Agp,,x, where p,, is the density of the water and ¢ is the gravitational
acceleration. This is the restoring force according to the Archimedes principle. The mass
of the cylinder is Ahp, where p is the density of cylinder. From second Newton’s law, the
equation of motion is

pAhz" + Agpyx =0, (2.2.19)
or
2"+ %x = 0. (2.2.20)

From Equation 2.2.20 we see that the cylinder will oscillate about its static equilibrium
position z = 0 with a frequency of

PARE
= (2=2) 2.2.21
“ ( ph ) ( )

O

When both A and B are both nonzero, it is often useful to rewrite the homogeneous
solution, Equation 2.2.5, as
x(t) = Csin(wt + @) (2.2.22)

to highlight the amplitude and phase of the oscillation. Upon employing the trigonometric
angle-sum formula, Equation 2.2.22 can be rewritten

x(t) = Csin(wt) cos(p) + C cos(wt) sin(p) = A cos(wt) + Bsin(wt). (2.2.23)
From Equation 2.2.23, we see that A = C'sin(yp) and B = C cos(y). Therefore,
A? 4 B? = C?sin?(p) + C? cos?(p) = C?, (2.2.24)

and C' = v/ A? + B2. Similarly, tan(¢) = A/B. Because the tangent is positive in both the
first and third quadrants and negative in both the second and fourth quadrants, there are
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two possible choices for ¢. The proper value of ¢ satisfies the equations A = C'sin(p) and
B = Ccos(p).
If we prefer the amplitude/phase solution

x(t) = C cos(wt — ), (2.2.25)
we now have
x(t) = C cos(wt) cos(p) + C'sin(wt) sin(p) = A cos(wt) + B sin(wt). (2.2.26)

Consequently, A = C cos(p) and B = C'sin(p). Once again, we obtain C = v/ A2 + B2. On
the other hand, tan(p) = B/A.

Problems

Solve the following initial-value problems and write their solutions in terms of amplitude
and phase:

1. 2" 4 25z =0, x(0) = 10, 2'(0) = -10
2. 42" + 9z =0, x(0) = 2m, 2'(0) = 37
3. 2" +nx =0, z(0) =1, 2'(0) = /3

4. A 4-kg mass is suspended from a 100 N/m spring. The mass is set in motion by giving it
an initial downward velocity of 5 m/s from its equilibrium position. Find the displacement
as a function of time.

5. A spring hangs vertically. A weight of mass M kg stretches it L m. This weight is
removed. A body weighing m kg is then attached and allowed to come to rest. It is then
pulled down sy m and released with a velocity vg. Find the displacement of the body from
its point of rest and its velocity at any time t.

6. A particle of mass m moving in a straight line is repelled from the origin by a force
F. (a) If the force is proportional to the distance from the origin, find the position of the
particle as a function of time. (b) If the initial velocity of the particle is av/k, where k is
the proportionality constant and a is the distance from the origin, find the position of the
particle as a function of time. What happens if m < 1 and m =17

2.3 DAMPED HARMONIC MOTION

Free harmonic motion is unrealistic because there are always frictional forces that act to
retard motion. In mechanics, the drag is often modeled as a resistance that is proportional
to the instantaneous velocity. Adopting this resistance law, it follows from Newton’s second
law that the harmonic oscillator is governed by

d’x dx
m—s = —kz — BE’

T (2.3.1)

where [ is a positive damping constant. The negative sign is necessary since this resistance
acts in a direction opposite to the motion.
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Dividing Equation 2.3.1 by the mass m, we obtain the differential equation of free
damped motion,

——+ —z=0 2.3.2
dt2  m dt * m> ’ ( )
or d2 d
X X
— 42— 2x=0. 2.3.
72 + /\dt +wz=0 (2.3.3)

We have written 2\ rather than just A because it simplifies future computations. The
auxiliary equation is m? 4+ 2Am + w? = 0, which has the roots

mi = —A+ VA2 —w?, and mo = =\ — VA2 — w2, (2.3.4)

From Equation 2.3.4 we see that there are three possible cases which depend on the
algebraic sign of A2 — w?. Because all of the solutions contain the damping factor e=*t,

A > 0, z(t) vanishes as t — co.
e Case I: A > w

Here the system is overdamped because the damping coefficient [ is large compared to
the spring constant k. The corresponding solution is

z(t) = Ae™"' + Be™2!, (2.3.5)
or
2(t) = e M (Aemz—wz + Be—tV*z—wz) . (2.3.6)

In this case the motion is smooth and nonoscillatory.
o Case II: A=w

The system is critically damped because any slight decrease in the damping force would
result in oscillatory motion. The general solution is

z(t) = Ae™' 4+ Bte™?, (2.3.7)

or

z(t) = e M(A + Bt). (2.3.8)

The motion is quite similar to that of an overdamped system.
o Case III: A < w

In this case the system is underdamped because the damping coefficient is small com-
pared to the spring constant. The roots m; and msy are complex:

m; = =X+ ivw? — A2 and me = =X —ivw? — A2 (2.3.9)

The general solution now becomes

x(t) = e M {A cos(t w? — )\2> + Bsin(t w? — A2 )} . (2.3.10)
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(1)

Figure 2.3.1: The displacement z(t) of a damped harmonic oscillator as a function of time and ¢ = \/w.

Equation 2.3.10 describes oscillatory motion that decays as e~*. Equations 2.3.6, 2.3.8, and
2.3.10 are illustrated in Figure 2.3.1 when the initial conditions are 2:(0) = 1 and 2/(0) = 0.

Just as we could write the solution for the simple harmonic motion in the ampli-
tude/phase format, we can write any damped solution Equation 2.3.10 in the alternative

form
z(t) = Ce M sin (t\/ w2 — A2 + go) ) (2.3.11)

where C' = v/ A% 4+ B2 and the phase angle ¢ is given by tan(p) = A/B such that A =
C'sin(p) and B = C cos(p). The coefficient Ce=*! is sometimes called the damped coefficient
of vibrations. Because Equation 2.3.11 is not a periodic function, the quantity 27 /vw? — A?
is called the quasi period and vw? — A2 is the quasi frequency. The quasi period is the time
interval between two successive maxima of z(t).

e Example 2.3.1

A body with mass m = % kg is attached to the end of a spring that is stretched 2 m
by a force of 100 N. Furthermore, there is also attached a dashpot® that provides 6 N of
resistance for each m/s of velocity. If the mass is set in motion by further stretching the
spring % m and giving it an upward velocity of 10 m/s, let us find the subsequent motion.

We begin by first computing the constants. The spring constant is £ = (100 N)/(2 m)
= 50 N/m. Therefore, the differential equation is

12" + 62’ + 50z =0 (2.3.12)
with (0) = 4 m and 2/(0) = —10 m/s. Here the units of z(t) are meters. The characteristic
or auxiliary equation is

m? 4+ 12m + 100 = (m + 6)* + 64 = 0, (2.3.13)

4 A mechanical device — usually a piston that slides within a liquid-filled cylinder — used to damp the
vibration or control the motion of a mechanism to which is attached.
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Review of the Solution of the
Underdamped Homogeneous Oscillator Problem

maz” + fa’ + kx = 0 subject to 2(0) = xg, 2'(0) = vy has the solution
z(t) = Ae M sin(wgt + @),

where
w = y/k/m is the undamped natural frequency,

A = B/(2m) is the damping factor,
wg = Vw? — A2 is the damped natural frequency,

and the constants A and ¢ are determined by

2
= \/xg N (W)
Wy

and
_ ZToWd
=t R [ R
® an (’UO + /\(E0>
or m = —6 £ 8i. Therefore, we have an underdamped harmonic oscillator and the general

solution is
x(t) = e % [Acos(8t) + Bsin(8t)]. (2.3.14)
Consequently, each cycle takes 27/8 = 0.79 second. This is longer than the 0.63 second
that would occur if the system were undamped.
From the initial conditions,

r(0)=A=1

5, and 2'(0) =—10= —6A+8B. (2.3.15)

Therefore, A = % and B = —%. Consequently,

V65

z(t) = e % [} cos(8t) — % sin(8t)] = ?6_& cos(8t + 2.62244). (2.3.16)
O

e Example 2.3.2: Design of a wind vane

In its simplest form a wind vane is a flat plate or airfoil that can rotate about a vertical
shaft. See Figure 2.3.2. In static equilibrium it points into the wind. There is usually a
counterweight to balance the vane about the vertical shaft.

A vane uses a combination of the lift and drag forces on the vane to align itself with
the wind. As the wind shifts direction from 6y to the new direction 6;, the direction 6 in
which the vane currently points is governed by the equation of motion®

429 NRdf
%5 + =2 = N6 - 0), (2.3.17)

5 For a derivation of Equation 2.3.12 and Equation 2.3.13, see subsection 2 of Section 3 in Barthelt,
H. P., and G. H. Ruppersberg, 1957: Die mechanische Windfahne, eine theoretische und experimentelle
Untersuchung. Beitr. Phys. Atmos., 29, 154-185.
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Wind vector

Vane

Figure 2.3.2: Schematic of a wind vane. The counterbalance is not shown.

where [ is the vane’s moment of inertia, N is the aerodynamic torque per unit angle, and
R is the distance from the axis of rotation to the effective center of the aerodynamic force
on the vane. The aerodynamic torque is given by
N = 1CLpAV?R, (2.3.18)
where Cp, is the lift coefficient, p is the air density, A is the vane area, and V is the wind
speed.
Dividing Equation 2.3.17 by I, we obtain the second-order ordinary differential equation

(0 —6;)  NRd®-0;) N

—(0—-6;,)=0. 2.3.19
w twvooa =0 (2:3.19)
The solution to Equation 2.3.19 is
NRt
0 —0; =Aexp (2]V> cos(wt + ), (2.3.20)
where N 2R
2 —_———— — —
=+ - v (2.3.21)

and A and ¢ are the two arbitrary constants that would be determined by presently unspec-
ified initial conditions. Consequently an ideal wind vane is a damped harmonic oscillator
where the wind torque should be large and its moment of inertia should be small.

Problems

For the following values of m, 8, and k, find the position z(t) of a damped oscillator for the
given initial conditions:

L.m=3, pB=3 k=4, z0)=2 a(0)=0
2. m=1, B=10, k=125, z(0)=3, 2'(0)=25
3.m=4, B=2, k=169, z(0)=4, 2/(0)=16

4. For a fixed value of A\/w, what is the minimum number of cycles required to produce a
reduction of at least 50% in the maxima of an underdamped oscillator?
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5. For what values of ¢ does z” + ¢z’ + 4z = 0 have critically damped solutions?

6. For what values of ¢ are the motions governed by 42" + ca’ + 92 = 0 (a) overdamped,
(b) underdamped, and (c) critically damped?

7. For an overdamped mass-spring system, prove that the mass can pass through its equi-
librium position z = 0 at most once.

2.4 METHOD OF UNDETERMINED COEFFICIENTS

Homogeneous ordinary differential equations become nonhomogeneous when the right
side of Equation 2.0.1 is nonzero. How does this case differ from the homogeneous one that
we have treated so far?

To answer this question, let us begin by introducing a function y,(z) — called a par-
ticular solution — whose only requirement is that it satisfies the differential equation
dn—lyp
dxn—1

d™yp
dx™

Wy 1 ao(@)yy = (). (2.4.1)

+ an_1(2) + -+ ai(x) T

an(z)

Then, by direct substitution, it can be seen that the general solution to any nonhomoge-
neous, linear, ordinary differential equation is

y(@) = yu(x) + yp(x), (2.4.2)

where yy (x) — the homogeneous or complementary solution — satisfies

d

dn—lyH
d$n71

dzm™ * an-1(7)

Why have we introduced this complementary solution - because the particular solution
already satisfies the ordinary differential equation. The purpose of the complementary
solution is to introduce the arbitrary constants that any general solution of an ordinary
differential equation must have. Thus, because we already know how to find yy(x), we
must only invent a method for finding the particular solution to have our general solution.

e Example 2.4.1
Let us illustrate this technique with the second-order, linear, nonhomogeneous ordinary

differential equation
y" — Ay + 4y = 2> + 4z — 12. (2.4.4)

Taking y(z) = yu(z) + yp(x), direction substitution yields
vty — Ay +up) + 4Aym + yp) = 263 + 4z — 12, (2.4.5)
If we now require that the particular solution y,(z) satisfies the differential equation
y, — 4y, +4dyp = 2e%" 4o — 12, (2.4.6)
Equation 2.4.5 simplifies to the homogeneous ordinary differential equation

Yi — 4y +4dyr =0. (2.4.7)
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A quick check® shows that the particular solution to Equation 2.4.6 is y,(z) = 2%€?** +2 —2.
Using techniques from the previous section, the complementary solution is yg (z) = C1e2* +
Comwe?®, 0

In general, finding y,(z) is a formidable task. In the case of constant coefficients, several
techniques have been developed. The most commonly employed technique is called the
method of undetermined coefficients, which is used with linear, constant coefficient, ordinary
differential equations when f(z) is a constant, a polynomial, an exponential function e**,
sin(Bx), cos(Bz), or finite sum and products of these functions. Thus, this technique applies
when the function f(z) equals e®sin(z) — (32 — 2)e~2% but not when it equals In(z).

Why does this technique work? The reason lies in the set of functions that we have
allowed to be included in f(x). They enjoy the remarkable property that derivatives of
their sums and products yield sums and products that are also constants, polynomials,
exponentials, sines, and cosines. Because a linear combination of derivatives such as ay;)’ +
byl’) + cy, must equal f(x), it seems reasonable to assume that y,(z) has the same form as
f(z). The following examples show that our conjecture is correct.

e Example 2.4.2

Let us illustrate the method of undetermined coefficients by finding the particular
solution to
y"' =2y +y=ux+sin(z) (2.4.8)

by the method of undetermined coeflicients.
From the form of the right side of Equation 2.4.8, we guess the particular solution

yp(x) = Az + B + Csin(z) + D cos(z). (2.4.9)
Therefore,
y,(z) = A+ C cos(x) — Dsin(z), (2.4.10)
and
y, (r) = =C'sin(z) — D cos(z). (2.4.11)

Substituting into Equation 2.4.8, we find that
Yy — 2y, +yp = Az + B — 2A — 2C cos(x) 4 2D sin(x) = = + sin(x). (2.4.12)
Since Equation 2.4.12 must be true for all x, the constant terms must sum to zero or
B —2A = 0. Similarly, all of the terms involving the polynomial x must balance, yielding
A =1and B =2A = 2. Turning to the trigonometric terms, the coefficients of sin(x) and
cos(x) give 2D =1 and —2C' = 0, respectively. Therefore, the particular solution is
Yp(2) =z + 2+ 1 cos(z), (2.4.13)

and the general solution is

y(z) = yu(x) + yp(x) = Cre” 4+ Coze”™ + x + 2+ 5 cos(z). (2.4.14)

6 We will show how y,(z) was obtained momentarily.
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We can verify our result by using the symbolic toolbox in MATLAB. Typing the com-
mand:

dsolve (’D2y-2#Dy+y=x+sin(x)’,’x’)
yields

ans =
x+2+1/2%cos (x) +Clxexp (x) +C2*xexp (x) *x a

e Example 2.4.3
Let us find the particular solution to
' +y -2y =xe” (2.4.15)

by the method of undetermined coefficients.
From the form of the right side of Equation 2.4.15, we guess the particular solution

yp(x) = Aze® + Be”. (2.4.16)
Therefore,
y,(x) = Aze® + Ae® + Be”, (2.4.17)
and
Yy, () = Aze® + 2Ae” + Be®. (2.4.18)

Substituting into Equation 2.4.15, we find that
3Ae” = xe®. (2.4.19)

Clearly we cannot choose a constant A such that Equation 2.4.19 is satisfied. What went
wrong?
To understand why, let us find the homogeneous or complementary solution to Equation
2.4.15; it is
yu(z) = Cre™* + Che®. (2.4.20)

Therefore, one of the assumed particular solutions, Be”, is also a homogeneous solution
and cannot possibly give a nonzero left side when substituted into the differential equation.
Consequently, it would appear that the method of undetermined coefficients does not work
when one of the terms on the right side is also a homogeneous solution.

Before we give up, let us recall that we had a similar situation in the case of linear
homogeneous second-order ordinary differential equations when the roots from the auxiliary
equation were equal. There we found one of the homogeneous solutions was e™*. We
eventually found that the second solution was ze™*. Could such a solution work here? Let
us try.

We begin by modifying Equation 2.4.16 by multiplying it by z. Thus, our new guess
for the particular solution reads

yp(z) = Az?e” + Bze”. (2.4.21)

Then,
y, = Az’e® + 2Axe” + Bxe® + Be”, (2.4.22)
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and
yy = Az’e” + 4Aze” + 2Ae” + Bre® + 2Be”. (2.4.23)

Substituting Equation 2.4.21 into Equation 2.4.15 gives
vy + Y, — 2yp = 6Aze” + 2Ae” + 3Be” = xe”. (2.4.24)

Grouping together terms that vary as ze®, we find that 6A = 1. Similarly, terms that vary
as e” yield 2A + 3B = 0. Therefore,

Yp(x) = §a’e” — Swe”, (2.4.25)

so that the general solution is
y() = yu(x) + yp(z) = Cre™" + Coe” + ga’e” — fue”. (2.4.26)
O

In summary, the method of finding particular solutions to higher-order ordinary differ-
ential equations by the method of undetermined coefficients is as follows:

e Step 1: Find the homogeneous solution to the differential equation.

e Step 2: Make an initial guess at the particular solution. The form of y,(x) is a lin-
ear combination of all linearly independent functions that are generated by repeated
differentiations of f(x).

e Step 3: If any of the terms in y,(x) given in Step 2 duplicate any of the homogeneous
solutions, then that particular term in y,(z) must be multiplied by =™, where n is the
smallest positive integer that eliminates the duplication.

e Example 2.4.4
Let us apply the method of undetermined coefficients to solve

y" +y = sin(z) — €** cos(5x). (2.4.27)

We begin by first finding the solution to the homogeneous version of Equation 2.4.27:

Y +ym =0. (2.4.28)
Its solution is
yu(z) = Acos(z) + Bsin(x). (2.4.29)

To find the particular solution we examine the right side of Equation 2.4.27 or
f(z) = sin(x) — 3* cos(5z). (2.4.30)
Taking a few derivatives of f(x), we find that
f'(x) = cos(z) — 3¢3® cos(5x) 4 5e3” sin(5z), (2.4.31)

f"(x) = —sin(x) — 9€3* cos(5z) + 303 sin(5x) + 25¢3 cos(5x), (2.4.32)
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and so forth. Therefore, our guess at the particular solution is
yp(z) = Casin(x) + Dz cos(z) + Ee>® cos(5x) + Fe” sin(5x). (2.4.33)

Why have we chosen zsin(x) and x cos(z) rather than sin(z) and cos(z)? Because sin(x)
and cos(z) are homogeneous solutions to Equation 2.4.27, we must multiply them by a
power of x.

Since

Yy, (x) = 2C cos(x) — Csin(x) — 2D sin(x) — D cos(x)
+ (30F — 16E)e>” cos(5x) — (30E + 16F)e*” sin(5z), (2.4.34)

Yy, +yp = 2C cos(z) — 2D sin(x)
+ (30F — 15E)e3® cos(5z) — (30E + 15F)e® sin(5x) (2.4.35)
= sin(z) — 37 cos(5x). (2.4.36)

Therefore, 2C = 0, —2D =1, 30F — 15F = —1, and 30F + 15F = 0. Solving this system

of equations yields C'=0, D = —%, E = %, and F' = —72—5. Thus, the general solution is

y(z) = Acos(z) + Bsin(z) — sz cos(z) + 7=e3*[cos(5x) — 2sin(5z))]. (2.4.37)

Problems

Use the method of undetermined coefficients to find the general solution of the following
differential equations. Verify your solution by using dsolve in MATLAB.

Ly +4y +3y=z+1 2.y —y=e"—2e

3.y +2y +2y =227+ 2z +4 L y'+y =a+a

By 42 =2z +5— e % 6.y — 4y +4dy = (x+1)e*
Ty 4y +dy = ae” 8. y" — 4y = 4sinh(2z)

9. " + 9y = x cos(3x) 10. y" +y = sin(z) + z cos(z)
11. Solve

y" +2ay’ =sin*(wz),  y(0) =y'(0) =0,

by (a) the method of undetermined coefficients and (b) integrating the ordinary differential
equation so that it reduces to

in(2ax)
'y oqy = © sin(
Yy +2ay B) da

and then using the techniques from the previous chapter to solve this first-order ordinary
differential equation.
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2.5 FORCED HARMONIC MOTION

Let us now consider the situation when an external force f(t) acts on a vibrating mass
on a spring. For example, f(¢) could represent a driving force that periodically raises and
lowers the support of the spring. The inclusion of f(¢) in the formulation of Newton’s second
law yields the differential equation

Pz dxr
d’x  Bdx k f@®)
—_—t —— + —r = —= 2.5.2
dt2+mdt+mx m’ (2:5.2)
or -2 p
T T
—— 42—+ Wl =F(t 2.5.3

where F(t) = f(t)/m, 2XA = 8/m, and w? = k/m. To solve this nonhomogeneous equation
we will use the method of undetermined coefficients.

e Example 2.5.1
Let us find the solution to the nonhomogeneous differential equation
y" + 2y 4+ y = 2sin(t), (2.5.4)

subject to the initial conditions y(0) = 2 and 3'(0) = 1.
The homogeneous solution is easily found and equals

yu(t) = Ae™" + Bte™". (2.5.5)

From the method of undetermined coefficients, we guess that the particular solution is

yp(t) = C cos(t) + Dsin(t), (2.5.6)
so that
y,(t) = =C'sin(t) + D cos(t), (2.5.7)
and
y, (t) = —C'cos(t) — Dsin(t). (2.5.8)

Substituting y,(t), y,(t), and y, (t) into Equation 2.5.4 and simplifying, we find that
—2C'sin(t) + 2D cos(t) = 2sin(t) (2.5.9)

or D=0and C = —1.
To find A and B, we now apply the initial conditions on the general solution

y(t) = Ae ' + Bte™?t — cos(t). (2.5.10)
The initial condition y(0) = 2 yields

y(0)=A+0—-1=2, (2.5.11)
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or A = 3. The initial condition y'(0) = 1 gives
y'(0)=—-A+B=1, (2.5.12)

or B =4, since
y'(t) = —Ae™ "+ Be " — Bte™" +sin(t). (2.5.13)

Therefore, the solution that satisfies the differential equation and initial conditions is
y(t) = 3e~ !t +4te™" — cos(t). (2.5.14)

O

e Example 2.5.2

Let us solve the differential equation for a weakly damped harmonic oscillator when
the constant forcing Fy “turns on” at ¢t = ¢g. The initial conditions are that x(0) = z¢ and
2’(0) = vy. Mathematically, the problem is

0, 0<t<ty,

R, o<t (2.5.15)

2+ 207 + Wl = {

with 2(0) = z¢ and 2/(0) = vo.
To solve Equation 2.5.15, we first divide the time domain into two regions: 0 <t < tg
and ty < t. For 0 <t < tg,

z(t) = Ae M cos(wqt) + Be M sin(wqyt), (2.5.16)
where w? = w? — A\?. Upon applying the initial conditions,

Vo + ATy _yy
—e

sin(wgqt), (2.5.17)
W

z(t) = zoe * cos(wat) +

as before.
For the region ¢ty < t, we write the general solution as

F
z(t) = Ae M cos(wgt) + Be M sin(wqt) + ;g
+ CeM710) coslwg (t — to)] + De ™ 710) sinfwy(t — to)]. (2.5.18)

Why have we written our solution in this particular form rather than the simpler
=Xt —At o Fy
z(t) = Ce™ " cos(wqt) + De™ " sin(wat) + —7 (2.5.19)
w

Both solutions satisfy the differential equation, as direct substitution verifies. However, the
algebra is greatly simplified when Equation 2.5.18 rather than Equation 2.5.19 is used in
matching the solution from each region at ¢ = t3. There both the solution and its first
derivative must be continuous or

z(ty) = 2(td), and  2'(ty) =2/ (t]), (2.5.20)



Higher-Order Ordinary Differential Equations 73

Review of the Solution of the
Forced Harmonic Oscillator Problem

The undamped system ma’' +ka = Fy cos(wot) subject to the initial conditions z(0) =
xo and 2'(0) = vg has the solution

x(t) = %0 sin(wt) + <x0 - w2Jiow2) cos(wt) +
0

Jo

2 2

cos t
w? — Wl (WO )a

where fo = Fy/m and w = /k/m. The underdamped system mz” + Bz’ + kx =
Fy cos(wot) has the steady-state solution

_ fo . 1 ( 2)\&)0 >:|
o V(W2 = wd)? + (22wp)? o [wot e wi )]’

where 2\ = 3/m.

where ¢, and tar are points just below and above ¢, respectively. When Equation 2.5.17
and Equation 2.5.18 are substituted, we find that C' = —Fy/w?, and wyD = AC. Thus, the
solution for the region ty < t is

A F
z(t) = zoe~ cos(wgt) + me"\t sin(wqt) + —g (2.5.21)
wq w
F, AF
_ w—ge**“*to) cos[wg(t — to)] — Wda?Q e~ M=10) ginfwy(t — to)].

As we will see in Chapter 12, the technique of Laplace transforms is particularly well suited
for this type of problem when the forcing function changes abruptly at one or more times.O

As noted earlier, nonhomogeneous solutions consist of the homogeneous solution plus
a particular solution. In the case of a damped harmonic oscillator, another, more physical,
way of describing the solution involves its behavior at large time. That portion of the
solution which eventually becomes negligible as ¢ — oo is often referred to as the transient
term, or transient solution. In Equation 2.5.14 the transient solution equals 3e~t + 4te~".
On the other hand, the portion of the solution that remains as t — oo is called the steady-
state solution. In Equation 2.5.14 the steady-state solution equals — cos(t).

One of the most interesting forced oscillator problems occurs when § = 0 and the
forcing function equals Fj sin(wgt), where Fy is a constant. Then the initial-value problem
becomes

d’x 9 :
pel + w*x = Fpsin(wopt). (2.5.22)
Let us solve this problem when z(0) = z'(0) = 0.
The homogeneous solution to Equation 2.5.22 is

xp(t) = Acos(wt) + Bsin(wt). (2.5.23)
To obtain the particular solution, we assume that

zp(t) = C cos(wot) + D sin(wot). (2.5.24)
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Figure 2.5.1: The solution, Equation 2.5.31, as a function of time when w = 1 and wo equals (a) 1.02, (b)
1.2, and (c) 2.

This leads to

,(t) = —Cuwyg sin(wot) 4 Duwyg cos(wot), (2.5.25)
2y (t) = —Cw cos(wot) + Duwg sin(wot), (2.5.26)

and
) + w?z, = C(w? — wd) cos(wot) + D(w? — w) sin(wot) = Fy sin(wot). (2.5.27)

We immediately conclude that C(w? — w?) = 0, and D(w? — w?) = Fy. Therefore,

Fy

Cc=0 d D=—— 2.5.28
) an w2 — w% ) ( )
provided that w # wgy. Thus,
Fo .

To finish the problem, we must apply the initial conditions to the general solution

2
%oﬂ sin(wot). (2.5.30)

x(t) = Acos(wt) + Bsin(wt) + e
0

From z(0) = 0, we find that A = 0. On the other hand, 2/(0) = 0 yields B = —wqFp/[w(w? —
wd)]. Thus, the final result is

x(t) = O [wsin(wgt) — wo sin(wt)] . (2.5.31)

Equation 2.5.31 is illustrated in Figure 2.5.1 as a function of time.
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The most arresting feature in Figure 2.5.1 is the evolution of the uniform amplitude
of the oscillation shown in frame (c) into the one shown in frame (a) where the amplitude
exhibits a sinusoidal variation as wy — w. In acoustics these fluctuations in the amplitude
are called beats, the loud sounds corresponding to the larger amplitudes.

As our analysis indicates, Equation 2.5.31 does not apply when w = wy. As we shall
shortly see, this is probably the most interesting configuration. We can use Equation 2.5.31
to examine this case by applying L’Hopital’s rule in the limiting case of wy — w. This
limiting process is analogous to “tuning in” the frequency of the driving frequency [wo/(27)]
to the frequency of free vibrations [w/(27)]. From experience, we expect that given enough
time we should be able to substantially increase the amplitudes of vibrations. Mathematical
confirmation of our physical intuition is as follows:

wsin(wot) — wo sin(wt)

A — lim F 2.5.32
x(t) Jim F w(@? —o?) ( )
dlow si t) — in(wt)]/d
1 A~ 2535
wo—w dlw(w? — wg)]/dwo
t t) — sin(wt
_ Fy lim 2EC08(0f) —sin(wt) (2.5.34)
wo—w —2wow
_ R wt cos(wt) — sin(wt) (2.5.35)
—2w?
Fo . FOt
=53 sin(wt) — o cos(wt). (2.5.36)

As we suspected, as t — oo, the displacement grows without bounds. This phenomenon is
known as pure resonance. We could also have obtained Equation 2.5.36 directly using the
method of undetermined coefficients involving the initial value problem

2
(Cile + Wwir = Fy Sin(wt), 1’(0) = :L'/(O) =0. (2.5.37)

Because there is almost always some friction, pure resonance rarely occurs and the

more realistic differential equation is

d? d
ﬁf + 2)\d—3tc +w?z = Fysin(wot). (2.5.38)

Its solution is

SV Fo .
z(t) = Ce M sin (t\/uﬂ —wi + (p) + T e sin(wot — 6), (2.5.39)

where

2 wo w? — wd

sin(6) = V(Ww? —wd)2 + 4/\%137 cos(9) = V(Ww? —wd)? + 4/\2w§’

(2.5.40)

and C and ¢ are determined by the initial conditions. To illustrate Equation 2.5.39 we
rewrite the amplitude and phase of the particular solution as
F() FO

= and tan(0) =
VW2 —w2)2+ 43202 w2/(1—12)2 + 4822 (6)

_2pr
1—7r2’

(2.5.41)
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Figure 2.5.2: The amplitude of the particular solution Equation 2.5.39 for a forced, damped simple
harmonic oscillator (normalized with Fy/w?) as a function of r = wp/w.

where r = wp/w and 8 = A/w. Figures 2.5.2 and 2.5.3 graph Equation 2.5.41 as functions
of r for various values of .

e Example 2.5.3: Electrical circuits

In the previous chapter, we saw how the mathematical analysis of electrical circuits
yields first-order linear differential equations. In those cases we only had a resistor and
capacitor or a resistor and inductor. One of the fundamental problems of electrical circuits
is a circuit where a resistor, capacitor, and inductor are connected in series, as shown in
Figure 2.5.4.

In this RCL circuit, an instantaneous current flows when the key or switch K is closed.
If Q(t) denotes the instantaneous charge on the capacitor, Kirchhoff’s law yields the differ-

ential equation
dI Q
L— +RI+==E(t 2.5.42
where E(t), the electromotive force, may depend on time, but where L, R, and C are

constant. Because I = dQ/dt, Equation 2.5.42 becomes

’Q  ,dQ  Q
L—+R— + = = E(t). 2.5.43
aw TRy to =W (2:5.43)
Consider now the case when resistance is negligibly small. Equation 2.5.43 will become
identical to the differential equation for the forced simple harmonic oscillator, Equation
2.5.3, with A = 0. Similarly, the general case yields various analogs to the damped harmonic
oscillator:

Case 1 Overdamped R*>4L/C
Case 2 Critically damped R? =4L/C
Case 3 Underdamped R? < 4L/C

In each of these three cases, Q(t) — 0 as t — oo. (See Problem 6.) Therefore, an RLC
electrical circuit behaves like a damped mass-spring mechanical system, where inductance
acts like mass, resistance is the damping coeflicient, and 1/C is the spring constant.
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Figure 2.5.3: The phase of the particular solution, Equation 2.5.39, for a forced, damped simple harmonic
oscillator as a function of r = wg/w.

Problems
1. Find the values of ¥ so that =" + 62’ + 18 = cos(7t) is in resonance.

2. The differential equation
z” + 2z’ 4+ 2z = 10sin(2t)

describes a damped, forced oscillator. If the initial conditions are x(0) = zy and 2/(0) = 0,
find its solution by hand and by using MATLAB. Plot the solution when xy = —10,-9,...,9
, 10. Give a physical interpretation to what you observe.

3. At time t = 0, a mass m is suddenly attached to the end of a hanging spring with a
spring constant k. Neglecting friction, find the subsequent motion if the coordinate system
is chosen so that z(0) = 0.

Step 1: Show that the differential equation is

2

moy + kx = mg,

with the initial conditions z(0) = 2/(0) = 0.
Step 2: Show that the solution to Step 1 is

z(t) = mg [l — cos(wt)] /k, w? =k/m.
4. Consider the electrical circuit shown in Figure 2.5.4, which now possesses negligible
resistance and has an applied voltage E(t) = Ey[l — cos(wt)]. Find the current if the circuit
is initially dead.
5. Find the general solution to the differential equation governing a forced, damped har-

monic equation
mz"” + cx’ + kx = Fysin(wt),
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Figure 2.5.4: A simple electrical circuit containing a resistor of constant resistance R, capacitor of constant
capacitance C, and inductor of constant inductance L driven by a time-dependent electromotive force E(t).

where m, ¢, k, Fy, and w are constants. Write the particular solution in amplitude/phase
format.

6. Prove that the transient solution to Equation 2.5.45 tends to zero as t — oo if R, C, and
L are greater than zero.

2.6 VARIATION OF PARAMETERS

As the previous section has shown, the method of undetermined coefficients can be
used when the right side of the differential equation contains constants, polynomials, expo-
nentials, sines, and cosines. On the other hand, when the right side contains terms other
than these, variation of parameters provides a method for finding the particular solution.

To understand this technique, let us return to our solution of the first-order ordinary
differential equation

Z—Z + P(x)y = f(x). (2.6.1)
Its solution is
y(gj) = Cle_fp(z) dx + e—fP(r) dx/ef P(z) drf(.’l?) dx. (262)

The solution, Equation 2.6.2, consists of two parts: The first term is the homogeneous

solution and can be written yg(x) = Cyy1(z), where y;(x) = e~ JP@d Ty second term
is the particular solution and equals the product of some function of x, say uj(z), times

y1(x):
yp(x) = ¢~ J P@)da / e £@) “p () do = uy (z)yr (). (2.6.3)

This particular solution bears a striking resemblance to the homogeneous solution if we
replace v (z) with Cj.

Variation of parameters builds upon this observation by using the homogeneous solution
y1(x) to construct a guess for the particular solution y,(x) = u1(x)y1(z). Upon substituting
this guessed y,(z) into Equation 2.6.1, we have that

d
7 (W) + P@)uiyy = f(x), (2.6.4)
dy duy B
Ula + yla + P(x)uyr = f(x), (2.6.5)
or
dU1

v = f@), (2.6.6)
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since y1 + P(z)y; = 0.
Using the technique of separating the variables, we have that

duy = G dz, and up(x) = f(z) dx. (2.6.7)
yi(z) 1 ()
Consequently, the particular solution equals
(z)
yp() = ur(z)1(z) = n(x dx 2.6.8
p(r) = u1(z)y1(z) = y1(x) @) (2.6.8)
Upon substituting for y;(x), we obtain Equation 2.6.3.
How do we apply this method to the linear second-order differential equation
as(x)y” + a1y’ (z) + ap(z)y = g(x), (2.6.9)
or
y" + P(x)y + Q(z)y = f(x), (2.6.10)

where P(z), Q(z), and f(x) are continuous on some interval I?
Let y1(z) and yo(z) denote the homogeneous solutions of Equation 2.6.10. That is,
y1(z) and yo(x) satisfy

Y + P(a)y; + Qz)y1 =0, (2.6.11)
and
Yy + P(x)ys + Q(x)y2 = 0. (2.6.12)
Following our previous example, we now seek two functions wu;(x) and us(z) such that
yp(x) = w1 ()1 (z) + u2(z)y2(x) (2.6.13)

is a particular solution of Equation 2.6.10. Once again, we replaced our arbitrary constants
Cy and Cs by the “variable parameters” uq(x) and us(z). Because we have two unknown
functions, we require two equations to solve for u;(z) and uz(z). One of them follows from
substituting y,(z) = w1 (z)y1(x) + ua(x)y2(z) into Equation 2.6.10. The other equation is

y1(x)uf () + yo(z)ub(z) = 0. (2.6.14)

This equation is an assumption that is made to simplify the first and second derivative,
which is clearly seen by computing

Yp = Uryy + Y1y + uzys + youh = w1y + ugys, (2.6.15)
after applying Equation 2.6.14. Continuing to the second derivative,
Yy = wiyy +yiuy + uayy + yous. (2.6.16)

Substituting these results into Equation 2.6.10, we obtain

Yy + P(x)y, + Q(@)yp = ury! + yiul + uays + yhuh

+ Puy; + Pugys + Quiyr + Quays, (2.6.17)
= u [y + P(@)y) + Q@)y1] + w2 [y2 + P(2)y; + Q(x)ys]
+yruy +yous = f(a). (2.6.18)
Hence, u1(z) and ug(z) must be functions that also satisfy the condition
yiu + youy = f(). (2.6.19)

It is important to note that the differential equation must be written so that it conforms to
Equation 2.6.10. This may require the division of the differential equation by as(x) so that
you have the correct f(x).

Equations 2.6.14 and 2.6.19 constitute a linear system of equations for determining the
unknown derivatives u} and wj. By Cramer’s rule,” the solutions of Equation 2.6.14 and

7 If you are unfamiliar with Cramer’s rule, see Section 3.3.
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Equation 2.6.19 equal

0%
G =g and ) = (26.20)
where
Wz‘y} v, le‘ 0 Y21 and WQ:’y} N (2.6.21)
Y1 Y2 f(@) s y1  f(z)

The determinant W is the Wronskian of y; and y2. Because y; and yo are linearly indepen-
dent on I, the Wronskian will never equal to zero for every x in the interval.
These results can be generalized to any nonhomogeneous, nth-order, linear equation of
the form
y™ 4 P,y (2)y™ Y + Py(2)y + Po(x) = f(x). (2.6.22)

If yu(x) = Cryi(z) + Caya(x) + - - - + Cryn(x) is the complementary function for Equation
2.6.22, then a particular solution is

5p(@) = w (@)1 (2) + Ua (@) (@) + -+ + U (@) (@), (2.6.23)
where the u}, k =1,2,...,n, are determined by the n equations:

y1uy + yous+ -+ ypul, =0, (2.6.24)

y1ul + yaust o+ ypu, =0, (2.6.25)

o s ey D, = (), (2.6.26)

The first n — 1 equations in this system, like Equation 2.6.14, are assumptions made to
simplify the first n — 1 derivatives of y,(x). The last equation of the system results from
substituting the n derivative of y,(z) and the simplified lower derivatives into Equation
2.6.22. Then, by Cramer’s rule, we find that

Wi

== k=1,2,... 2.6.27
Uy, W’ ) &y ,y 1, ( )

where W is the Wronskian of y1, ya, ..., yn, and W}, is the determinant obtained by replacing
the kth column of the Wronskian by the column vector [0,0,0, ---, f(z)].

e Example 2.6.1
Let us apply variation of parameters to find the general solution to
y' +y — 2y = xze”. (2.6.28)
We begin by first finding the homogeneous solution that satisfies the differential equa-

tion
Y + Yy — 2yg = 0. (2.6.29)

Applying the techniques from Section 2.1, the homogeneous solution is

yu(z) = Ae® + Be 27, (2.6.30)
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yielding the two independent solutions y; (x) = €%, and ya(x) = e~2%. Thus, the method of
variation of parameters yields the particular solution

Yp(7) = e ui(z) + e us(x). (2.6.31)
From Equation 2.6.14, we have that
e"ul (x) + e~ uy(z) = 0, (2.6.32)
while
el (z) — 2 uly(z) = xe®. (2.6.33)
Solving for «}(z) and u5(x), we find that
uy(z) = 3, (2.6.34)
or
uy(z) = g, (2.6.35)
and
uh(z) = —1wed”, (2.6.36)
or
us(z) = 5-(1 — 3z)e3?. (2.6.37)
Therefore, the general solution is
y(x) = Ae” + Be ™ + e"uy(z) + e *ug(x) (2.6.38)
= Ae” + Be™* + 12%e® + £ (1 — 3x)e” (2.6.39)
=Ce" + Be " + (Lta2% — L) e”. (2.6.40)
O
e Example 2.6.2
Let us find the general solution to
' +2y +y=e "In(x) (2.6.41)

by variation of parameters on the interval (0, 00).
We start by finding the homogeneous solution that satisfies the differential equation

Y + 2y +yr =0. (2.6.42)

Applying the techniques from Section 2.1, the homogeneous solution is
yr(x) = Ae”® + Bre™*, (2.6.43)
yielding the two independent solutions y; (x) = e~® and y2(z) = xze~*. Thus, the particular

solution equals
yp(x) = e ui(z) + ze” “us(x). (2.6.44)
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From Equation 2.6.14, we have that
e "ul (x) + ze  uh(x) = 0, (2.6.45)

while
—e "uy(z) + (1 — 2)e *uh(z) = e " In(z). (2.6.46)

Solving for v} (z) and u5(x), we find that

uy(z) = —zIn(z), (2.6.47)
or
uy(z) = +2? — 127 In(), (2.6.48)
and
uy(x) = In(x), (2.6.49)
or
us(z) = zln(z) — x. (2.6.50)
Therefore, the general solution is
y(x) = Ae™® + Bre™* + e “uq(x) + ze” “ug(z) (2.6.51)
= Ae”" 4+ Bre " + 1% In(z)e " — 322e7". (2.6.52)

We can verify our result by using the symbolic toolbox in MATLAB. Typing the com-
mand:
dsolve(’D2y+2*Dy+y=exp (-x)*log(x)’,’x’)
yields
ans =
1/2*xexp (-x) *x"2*1og (x) -3/4*exp (-x) *x~2+C1l*exp (-x) +C2*exp (-x) *x O

e Example 2.6.3

So far, all of our examples have yielded closed-form solutions. To show that this is not
necessarily so, let us solve
y' — 4y =e*/z (2.6.53)

by variation of parameters.
Again we begin by solving the homogeneous differential equation

Y — 4y =0, (2.6.54)

which has the solution
yu () = Ae** 4+ Be 27, (2.6.55)

Thus, our two independent solutions are y;(x) = e?* and ya(x) = e~2*. Therefore, the

particular solution equals
2 —2z

Yp() = e ur(x) + e Fuz (). (2.6.56)

From Equation 2.6.14, we have that

Xl (2) + e ub(x) = 0, (2.6.57)
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while
2%} (1) — 27Ul (x) = €27 /x. (2.6.58)

Solving for v} (z) and u5(x), we find that

1
! = 2.6.59
or
uy(z) = 5 Inzl, (2.6.60)
and
: e 2.6.61
Uz(@-‘ga (2.6.61)
or
T At
ug(x) = 75/ Tdt. (2.6.62)
o
Therefore, the general solution is
y(x) = Ae* + Be 2 4 ¥y (z) 4+ e *Puy () (2.6.63)
T 4t
= Ae*” + Be™*" + LIn|z|e?® — iefz"”/ 67 dt. (2.6.64)
o
Problems

Use variation of parameters to find the general solution for the following differential equa-
tions. Then see if you can obtain your solution by using dsolve in MATLAB.

Ly —4y +3y=e" 2.9 —y —2y=x 3.y —dy = we®
4. y" + 9y = 2sec(z) by +4y +dy=we 6.y +2ay = sin’(wa)
Ty Y Ay = (a1 8y —dy =sin’() 9.y =2 +y=e"fu

10. y”" +y = tan(x)
2.7 EULER-CAUCHY EQUATION

The Euler-Cauchy or equidimensional equation is a linear differential equation of the
form

dr d" 1y dy
n n—1 —
ana" +an_1z Jon1 +- 4 @z + apy = f(x), (2.7.1)
where a,,, ap_1, ...., ag are constants. The important point here is that in each term the

power to which x is raised equals the order of differentiation.
To illustrate this equation, we will focus on the homogeneous, second-order, ordinary
differential equation

dy ., dy

2

— +bx— =0. 2.7.2
axdxz—i— xd$+cy 0 ( )
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The solution of higher-order ordinary differential equations follows by analog. If we wish to
solve the nonhomogeneous equation

4y dy

72 _

Yl ey = fa)
we can do so by applying variation of parameters using the complementary solutions that
satisfy Equation 2.7.2.

Our analysis starts by trying a solution of the form y = x™, where m is presently

undetermined. The first and second derivatives are

dy d?y

(2.7.3)

e maz™ 1, and i m(m — 1)z™ 2, (2.7.4)
respectively. Consequently, substitution yields the differential equation
2y dy
d — Yy bm— +ey=az® -m(m— D™ 2 +bx-ma™ " + ca™ (2.7.5)
=am(m — 1)z™ 4+ bma™ + ca™ (2.7.6)
= [lam(m — 1) + bm + ] z™. (2.7.7)

Thus, y = 2™ is a solution of the differential equation whenever m is a solution of the
auzxiliary equation

am(m —1)+bm+c=0, or am? + (b—a)ym+c=0. (2.7.8)

At this point we must consider three different cases that depend upon the values of a, b,
and c.

e Distinct real roots

Let m, and msy denote the real roots of Equation 2.7.8 such that m; # ms. Then,
yi(z)=2™  and  yp(x) = 2™ (2.7.9)
are homogeneous solutions to Equation 2.7.2. Therefore, the general solution is

y(x) = Cra™ + Cox™2. (2.7.10)

e Repeated real roots

If the roots of Equation 2.7.8 are repeated [m; = ma = —(b — a)/2], then we presently
have only one solution, y = ™. To construct the second solution y», we use reduction in
order. We begin by first rewriting the Euler-Cauchy equation as

d?y b dy c
— 4+ —— 4+ —y=0. 2.7.11
de? " azds | az?? ( )

Letting P(z) = b/(ax), we have

o J b/ (az)) dz o (b/a) In(x)
ya(x) = 2™ / W dr =™ / LT dx (2.7.12)
=™ /x_b/ax_le dr = 2™ /J;_b/“m(b_a)/” dx (2.7.13)
=z dr _ ™ In(z). (2.7.14)

x
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The general solution is then
y(x) = Crz™ + Coz™ In(x). (2.7.15)
For higher-order equations, if m; is a root of multiplicity k, then it can be shown that
2™, 2™ In(z), 2™ [In(z))?, ..., 2™ [In(z)]*?

are the k linearly independent solutions. Therefore, the general solution of the differential
equation equals a linear combination of these &k solutions.

e Congugate complex roots

If the roots of Equation 2.7.8 are the complex conjugate pair m; = a4 i3, and mg =
«a — i3, where o and § are real and 8 > 0, then a solution is

y(x) = Cra® TP 4 Coa>=P, (2.7.16)
However, because z%? = [e(®)]¢ = ¢¥01n(#) "\ye have by Euler’s formula
= cos [@In(z)] + isin [ In(z)] (2.7.17)

xi

and
7% = cos [f1n(z)] — isin [f1n(z)] . (2.7.18)

Substitution into Equation 2.7.16 leads to
y(x) = C3z% cos [BIn(z)] + Cyz®sin [BIn(x)], (2.7.19)
where C3 = Cy + Cs, and Cy = iCy — iCs.
e Example 2.7.1
Let us find the general solution to
22y + 5xy’ — 12y = In(z) (2.7.20)

by the method of undetermined coefficients and variation of parameters.
In the case of undetermined coefficients, we begin by letting ¢ = In(z) and y(x) = Y (¢).
Substituting these variables into Equation 2.7.20, we find that

Y" +4Y" - 12Y =t. (2.7.21)
The homogeneous solution to Equation 2.7.21 is
Yy (t) = Ale % + B'e?, (2.7.22)

while the particular solution is
Y,(t) = Ct+ D (2.7.23)

from the method of undetermined coefficients. Substituting Equation 2.7.23 into Equation
2.7.21 yields C' = —% and D = —%. Therefore,

Y(t)=Ae "+ Be - Lt — L (2.7.24)
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or
A
o) = 25+ Ba = hln(o) - (2729

To find the particular solution via variation of parameters, we use the homogeneous
solution

A
yu(z) = — + Ba? (2.7.26)
x
to obtain y;(z) = 2% and yo(z) = z2. Therefore,
yp(z) = 7% (2) + 2%us (z). (2.7.27)

Substitution of Equation 2.7.27 in Equation 2.7.20 yields the system of equations:

a7 %) (x) 4+ 2%ub(x) = 0, (2.7.28)
and
—62~ ") (z) + 2xub(x) = In(x) /22 (2.7.29)
Solving for v} (z) and u(x),
20 In(x In(x
uy(z) = — 8( ), and  uh(z) = — 8:(03) (2.7.30)

The solutions of these equations are

28In(x)  af In(x) 1
=— — d =— — . 2.7.31
u(@) B Twy b el =TT T ( )
The general solution then equals
_ A B 2 —6 2 _ A B 2 1 1 1
y(x) = e + Bz® 4+ 27 %uy (z) + 2 us(z) = s + Bz® — 15 In(z) — 35. (2.7.32)

We can verify this result by using the symbolic toolbox in MATLAB. Typing the com-
mand:

dsolve (’x"2%D2y+5*x*Dy-12*y=log(x)’,’x’)
yields

ans =
-1/12*%log(x)-1/36+C1*x~2+C2/x"6

Problems

Find the general solution for the following Fuler-Cauchy equations valid over the domain
(—00,00). Then check your answer by using dsolve in MATLAB.

122" +ay —y=0 2. 22y’ +2xy —2y =0 3. 2%y —2y=0
4. 2%y —xy' +y =0 5. 2%y +3xy +y=0 6. 22y" —3xy +4y =0
7. 2%y —y +5y=0 8. 4z2y" +8xy + 5y =0 9. 22y +xy +y=0

10. 2%y" — 32y’ + 13y =0 11. 23y —222%y" — 22y’ +8y =0 12. 2%¢y" — 229/ —dy ==z
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2.8 PHASE DIAGRAMS

In Section 1.6 we showed how solutions to first-order ordinary differential equations
could be qualitatively solved through the use of the phase line. This concept of qualita-
tively studying differential equations showed promise as a method for deducing many of
the characteristics of the solution to a differential equation without actually solving it. In
this section we extend these concepts to second-order ordinary differential equations by
introducing the phase plane.

Consider the differential equation

z” + sgn(z) = 0, (2.8.1)

where the signum function is defined by Equation 11.2.11. Equation 2.8.1 describes, for
example, the motion of an infinitesimal ball rolling in a “V”-shaped trough in a constant
gravitational field.®

Our analysis begins by introducing the new dependent variable v = 2’ so that Equation

2.8.1 can be written

v;i—:; +sgn(x) =0, (2.8.2)

since
x,,_d%v_dv_dx@ dv

—_— = — = — = V—. 2..
iz T dt dtdr dx (2.8.3)

Equation 2.8.2 relates v to « and ¢ has disappeared explicitly from the problem. Integrating
Equation 2.8.2 with respect to x, we obtain

/vdv + /sgn(m) dx =C, (2.8.4)

or
10+ 2| = C. (2.8.5)

Equation 2.8.5 expresses conservation of energy because the first term on the left side of
this equation expresses the kinetic energy while the second term gives the potential energy.
The value of C' depends upon the initial condition x(0) and v(0). Thus, for a specific initial
condition, our equation gives the relationship between = and v for the motion corresponding
to the initial condition.

Although there is a closed-form solution for Equation 2.8.1, let us imagine that there
is none. What could we learn from Equation 2.8.57

Equation 2.8.5 can be represented in a diagram, called a phase plane, where z and v
are its axes. A given pair of (x,v) is called a state of the system. A given state determines
all subsequent states because it serves as initial conditions for any subsequent motion.

For each different value of C', we will obtain a curve, commonly known as phase paths,
trajectories, or integral curves, on the phase plane. In Figure 2.8.1, we used the MATLAB
script
clear
% set up grid points in the (x,v) plane
[x,v] = meshgrid(-5:0.5:5,-5:0.5:5);

% compute slopes

8 See Lipscomb, T., and R. E. Mickens, 1994: Exact solution to the axisymmetric, constant force
oscillator equation. J. Sound Vib., 169, 138-140.
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Figure 2.8.1: Phase diagram for the differential equation, Equation 2.8.1.

dxdt = v; dvdt = -sign(x);

% find magnitude of vector [dxdt,dydt]

L = sqrt(dxdt.*dxdt + dvdt.*dvdt);

% plot scaled vectors
quiver(x,v,dxdt./L,dvdt./L,0.5); axis equal tight
hold

% contour trajectories

contour (x,v,v.*v/2 + abs(x),8)

h = findobj(’Type’,’patch’); set(h,’Linewidth’,2);
xlabel(’x’,’Fontsize’,20); ylabel(’v’,’Fontsize’,20)

to graph the phase plane for Equation 2.8.1. Here the phase paths are simply closed, oval-
shaped curves that are symmetric with respect to both the z and v phase space axes. Each
phase path corresponds to a particular possible motion of the system. Associated with each
path is a direction, indicated by an arrow, showing how the state of the system changes as
time increases.

An interesting feature on Figure 2.8.1 is the point (0,0). What is happening there?
In our discussion of phase line, we sought to determine whether there were any equilibrium
or critical points. Recall that at an equilibrium or critical point the solution is constant
and was given by ' = 0. In the case of second-order differential equations, we again have
the condition ' = v = 0. For this reason, equilibrium points are always situated on the
abscissa of the phase diagram.

The condition ' = 0 is insufficient for determining critical points. For example, when
a ball is thrown upward, its velocity equals zero at the peak height. However, this is clearly
not a point of equilibrium. Consequently, we must impose the additional constraint that
2" = v = 0. In the present example, equilibrium points occur where ' = v = 0 and
v/ = —sgn(z) = 0 or x = 0. Therefore, the point (0,0) is the critical point for Equation
2.8.1.

The closed curves immediately surrounding the origin in Figure 2.8.1 show that we
have periodic solutions there because on completing a circuit, the original state returns and
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Figure 2.8.2: Phase diagram for a simple pendulum.

the motion simply repeats itself indefinitely.

Once we have found an equilibrium point, an obvious question is whether it is stable
or not. To determine this, consider what happens if the initial state is displaced slightly
from the origin. It lands on one of the nearby closed curves and the particle oscillates with
small amplitude about the origin. Thus, this critical point is stable.

In the following examples, we further illustrate the details that may be gleaned from a
phase diagram.

e Example 2.8.1
The equation describing a simple pendulum is
ma?0" + mgasin() = 0, (2.8.6)

where m denotes the mass of the bob, a is the length of the rod or light string, and g is the
acceleration due to gravity. Here the conservation of energy equation is

%ma29’2 — mgacos(9) = C. (2.8.7)

Figure 2.8.2 is the phase diagram for the simple pendulum. Some of the critical points
are located at 6 = £2nm, n = 0,1,2,..., and 8’ = 0. Near these critical points, we have
closed patterns surrounding these critical points, just as we did in the earlier case of an
infinitesimal ball rolling in a “V”-shaped trough. Once again, these critical points are
stable and the region around these equilibrium points corresponds to a pendulum swinging
to and fro about the vertical. On the other hand, there is a new type of critical point at
0=+2n—1)m,n=0,1,2,... and 6’ = 0. Here the trajectories form hyperbolas near these
equilibrium points. Thus, for any initial state that is near these critical points, we have
solutions that move away from the equilibrium point. This is an example of an unstable
critical point. Physically these critical points correspond to a pendulum that is balanced
on end. Any displacement from the equilibrium results in the bob falling from the inverted
position.

Finally, we have a wavy line as 6’ — +o00. This corresponds to whirling motions of the
pendulum where 6’ has the same sign and 6 continuously increases or decreases. O

e Example 2.8.2: Damped harmonic oscillator
Consider the ordinary differential equation

" + 22" + 52 =0. (2.8.8)
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Figure 2.8.3: Phase diagram for the damped harmonic oscillator, Equation 2.8.8.
The exact solution to this differential equation is

x(t) = e " [Acos(2t) + Bsin(2t)], (2.8.9)

and
2'(t) = 2e7" [Bcos(2t) — Asin(2t)] — e " [Acos(2t) + Bsin(2t)]. (2.8.10)

To construct its phase diagram, we again define v = 2’ and replace Equation 2.8.8 with
v/ = —2v — 5x. The MATLAB script

clear
% set up grid points in the x,x’ plane
[x,v] = meshgrid(-3:0.5:3,-3:0.5:3);
% compute slopes
dxdt = v; dvdt = -2%v - 5*x;
% find length of vector
L = sqrt(dxdt.*dxdt + dvdt.*dvdt);
% plot direction field
quiver(x,v,dxdt./L,dvdt./L,0.5); axis equal tight
hold
% compute x(t) and v(t) at various times and a’s and b’s
for b = -3:2:3; for a = -3:2:3;
t = [-5:0.1:5];
xx = exp(-t) .* (axcos(2xt) + bxsin(2*t));
vv = 2 * exp(-t) .* (bxcos(2*t) - a*sin(2*t)) - xx;
% plot these values
plot (xx,vv)
end; end;
xlabel(’x’,’Fontsize’,20); ylabel(’v’,’Fontsize’,20)
was used to construct the phase diagram for Equation 2.8.8 and is shown in Figure 2.8.3.
Here the equilibrium point is at = v = 0. This is a new type of critical point. It is called
a stable node because all slight displacements from this critical point eventually return to

this equilibrium point.
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Problems

1. Using MATLAB, construct the phase diagram for z” — 32’ + 2o = 0. What happens
around the point x = v =07

2. Consider the nonlinear differential equation z” = x® — 2. This equation arises in the
study of simple pendulums with swings of moderate amplitude.

(a) Show that the conservation law is

What is special about C' =0 and C = %.

(b) Show that there are three critical points: z = 0 and x = £1 with v = 0.
(c) Using MATLAB, graph the phase diagram with axes z and v.

For the following ordinary differential equations, find the equilibrium points and then clas-
sify them. Use MATLAB to draw the phase diagrams.

1 |z| > 2
v , " o "o ) ?
3.2 =22 4. 2" +sgn(z)z =0 5. 2" = {0, |z < 2.

2.9 NUMERICAL METHODS

When differential equations cannot be integrated in closed form, numerical methods
must be employed. In the finite difference method, the discrete variable x; or ¢; replaces the
continuous variable x or ¢ and the differential equation is solved progressively in increments
h starting from known initial conditions. The solution is approximate, but with a sufficiently
small increment, you can obtain a solution of acceptable accuracy.

Although there are many different finite difference schemes available, we consider here
only two methods that are chosen for their simplicity. The interested student may read any
number of texts on numerical analysis if he or she wishes a wider view of other possible
schemes.

Let us focus on second-order differential equations; the solution of higher-order differen-
tial equations follows by analog. In the case of second-order ordinary differential equations,
the differential equation can be rewritten as

2 = f(z,2',t), xo = x(0), =z =2'(0), (2.9.1)

where the initial conditions z¢ and z{, are assumed to be known.
For the present moment, let us treat the second-order ordinary differential equation

" = f(xz,t), zo = z(0), =z, =2'(0). (2.9.2)

The following scheme, known as the central difference method, computes the solution from
Taylor expansions at x;41 and z;_1:

Tiy1 = @i + hal + ShPa) + LhPa) + O(h") (2.9.3)
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and
xio1 = x; — hal + $hz) — LnPa)" + O(n), (2.9.4)

where h denotes the time interval At. Subtracting and ignoring higher-order terms, we
obtain
/ Tit1 — Li—1
= 2.9.5
7= (2.9.5)

Adding Equation 2.9.3 and Equation 2.9.4 yields

o Tkl — 2z + i1

= 2

(2.9.6)

In both Equation 2.9.5 and Equation 2.9.6 we ignored terms of O(h?). After substituting
into the differential equation, Equation 2.9.2, Equation 2.9.6 can be rearranged to

Tit+1 = 21’1 — X1+ hzf(a:i,ti), ) 2 ]., (297)

which is known as the recurrence formula.

Consider now the situation when ¢ = 0. We note that although we have xy we do
not have x_;. Thus, to start the computation, we need another equation for x;. This is
supplied by Equation 2.9.3, which gives

x1 =z + haj + Lh%x( = zo + haly + 1h* f(zo, to). (2.9.8)

Once we have computed x1, then we can switch to Equation 2.9.6 for all subsequent calcu-
lations.

In this development we have ignored higher-order terms that introduce what is known
as truncation errors. Other errors, such as round-off errors, are introduced due to loss
of significant figures. These errors are all related to the time increment A in a rather
complicated manner that is investigated in numerical analysis books. In general, better
accuracy is obtained by choosing a smaller h, but the number of computations will then
increase together with errors.

e Example 2.9.1
Let us solve " — 4x = 2t subject to x(0) = 2'(0) = 1. The exact solution is

z(t) =

ol~1

e+ 2e7? — Lt (2.9.9)

The MATLAB script

clear
% test out different time steps
for i = 1:3

% set up time step increment and number of time steps
h =1/10"i; n = 10/h;
% set up initial conditions
t=zeros(n+1,1); t(1) = 0; x(1) = 1; x_exact(l) = 1;
% define right side of differential equation
f = inline(P4*xx+2*tt’,’tt’, xx’);
% set up difference arrays for plotting purposes
diff = zeros(n,1); t_plot = zeros(n,1);
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Figure 2.9.1: The numerical solution of z”/ —4z = 2t when z(0) = z/(0) = 1 using a simple finite difference
approach.

o

|RELATIVE ERROR|

% compute first time step
t(2) = t(1) + h; x(2) = x(1) + h + 0.5%h*h*f (£(1),x(1));
x_exact(2) = (7/8)*exp(2*t(2))+(1/8)*exp(-2%t(2))-t(2)/2;
t_plot(1) = t(2);
diff (1)=x(2)-x_exact(2); diff(1)=abs(diff(1)/x_exact(2));
% compute the remaining time steps
for k = 2:n
t(k+1) = t(k) + h; tplot(k) = t(k+1);
x(k+1) = 2*x(k) - x(k-1) + hxh*f (t(k),x(k));
x_exact (k+1) = (7/8)*exp(2*t (k+1))+(1/8)*exp(-2*t (k+1))
- t(k+1)/2;

diff (k) = x(k+1) - x_exact(k+1);
diff(k) = abs(diff(k) / x_exact(k+1));
end

% plot the relative error
semilogy(t_plot,diff,’-’)
hold on
num = 0.2%n;
text (3*i,diff(num),[’h = ’,num2str(h)], ’Fontsize’,15,...
’HorizontalAlignment’,’right’,’VerticalAlignment’, ’bottom’)
xlabel (’TIME’ ,’Fontsize’,20);
ylabel (’ |RELATIVE ERROR|’, ’Fontsize’,20);
end

implements our simple finite difference method of solving a second-order ordinary differential
equation. In Figure 2.9.1 we have plotted results for three different values of the time step.
As our analysis suggests, the relative error is related to hZ. a

An alternative method for integrating higher-order ordinary differential equations is
Runge-Kutta. It is popular because it is self-starting and the results are very accurate.

For second-order ordinary differential equations, this method first reduces the differen-
tial equation into two first-order equations. For example, the differential equation

_ _ /
A el A P (2.9.10)
m
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Figure 2.9.2: The numerical solution of =’/ — 4z = 2t when z(0) = 2/(0) = 1 using the Runge-Kutta

method.
becomes the first-order differential equations

=y, Yy =F(xyt).

(2.9.11)

The Runge-Kutta procedure can then be applied to each of these equations. Using a fourth-

order scheme, the procedure is as follows:

Tit1 = X4 + éh(kl + 2]€2 + 2k3 + k4),

and
Yir1 = Ui + sh(K1 + 2Ko + 2K5 + Ky),
where
kl =Y Kl = F(xi7yi7ti)7
ko =vyi+ 52K,  Ky=F(zi+ %ki, ko, ti + %),
k3:yi+%K2’ KBZF($i+%k2,k37ti+%),
and

ky =vy; + Ksh, K4:F(l‘i—|—hk‘3,k‘4,ti+h).
e Example 2.9.2

The MATLAB script

clear
% test out different time steps
for i = 1:4

% set up time step increment and number of time steps
if i==1 h = 0.50; end; if i==2 h = 0.10; end;
if i==3 h = 0.05; end; if i==4 h = 0.01; end;
nn = 10/h;

% set up initial conditions
t=zeros(n+1,1); t(1) = 0;
x_rk=zeros(n+1,1); xrk(1) = 1;
y-rk=zeros(n+1,1); y_rk(1) = 1;
x_exact=zeros(n+1,1); x_exact(l) = 1;

% set up difference arrays for plotting purposes
t_plot = zeros(n,1); diff = zeros(n,1);

% define right side of differential equation
f = inline(’4*xx+2*%tt’,’tt’,’xx’,’yy’);

(2.9.12)

(2.9.13)

(2.9.14)
(2.9.15)
(2.9.16)

(2.9.17)
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for k = 1:n
t_local = t(k); x_-local = x.rk(k); y-local = y_rk(k);
k1l = y_local; K1 = f(t_local,x local,y_-local);
k2 = y_local + h*K1/2;
K2 = f(t_local + h/2,x_local + hxk1/2,k2);
k3 = y_local + h*K2/2;
K3 = f(t_local + h/2,x_local + hx*xk2/2,k3);
k4 = y_local + h*K3; K4 = f(t_local + h,x_local + h*k3,k4);
t(k+1) = t_local + h;
xrk(k+1) = x local + (h/6) * (k1+2*k2+2*k3+k4);
yrk(k+1) = ylocal + (h/6) * (K1+2+K2+2*K3+K4);
x_exact(k+1) = (7/8)*exp(2*t (k+1))+(1/8)*exp(-2*t (k+1))

- t(k+1)/2;

t_plot(k) = t(k);
diff (k) = xrk(k+1) - x_exact(k+1);
diff (k) abs(diff (k) / x_exact(k+1));

end

% plot the relative errors

semilogy(t_plot,diff,’-’)

hold on

xlabel (’TIME’,’Fontsize’,20);

ylabel(’ |RELATIVE ERROR|’,’Fontsize’,20);

text (2*i,diff(0.2*n), [’h = ’,num2str(h)],’Fontsize’,15,...
’HorizontalAlignment’,’right’,’VerticalAlignment’, ’bottom’)

end

was used to resolve Example 2.9.1 using the Runge-Kutta approach. Figure 2.9.2 illustrates
the results for time steps of various sizes.

Problems

In previous sections, you found exact solutions to second-order ordinary differential equa-
tions. Confirm these earlier results by using MATLAB and the Runge-Kutta scheme to find
the numerical solution to the following problems drawn from previous sections.

1. Section 2.1, Problem 1 2. Section 2.1, Problem 5
3. Section 2.4, Problem 1 4. Section 2.4, Problem 5
5. Section 2.6, Problem 1 6. Section 2.6, Problem 5

Project: Pendulum Clock

In his exposition on pendulum clocks, M. Denny” modeled the system by the second-
order differential equation in time t:

0" + b0 + w20 = kf(0,0), (1)

9 Denny, M., 2002: The pendulum clock: A venerable dynamical system. Eur. J. Phys., 23, 449-458.
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Figure 2.9.3: The phase diagram of the dynamical system given by Equations (1) and (2) by modified
Euler method. Here the parameters are g = 9.8 m/sec?, L = 1 m, b = 0.22/sec, k = 0.02/sec, and
At = 0.005. The initial conditions are 6(0) = w/18 and 6’(0) = 0.

where
1/(At), 6] < At/2, 0" > 0;

10.0") = { 0, otherwise; (2)

and w? = g/L — b?/4. Here At denotes some arbitrarily small nondimensional time. In
Chapter 12 we identify this forcing as the Dirac delta function.

Using the numerical scheme of your choice, develop a MATLAB code to numerically
integrate this differential equation. Plot the results as a phase diagram with 6 as the
abscissa and 6’ as the ordinate. What happens with time? What happens as k varies?
Figure 2.9.3 illustrates the solution.

Further Readings

Boyce, W. E., and R. C. DiPrima, 2004: FElementary Differential Equations and Boundary
Value Problems. Wiley, 800 pp. Classic textbook.

Ince, E. L., 1956: Ordinary Differential Equations. Dover, 558 pp. The source book on
ordinary differential equations.

Zill, D. G., and M. R. Cullen, 2008: Differential Equations with Boundary-Value Problems.
Brooks Cole, 640 pp. Nice undergraduate textbook.



Chapter 3
Linear Algebra

Linear algebra involves the systematic solving of linear algebraic or differential equa-
tions that arise during the mathematical modeling of an electrical, mechanical, or even
human system where two or more components are interacting with each other. In this
chapter we present efficient techniques for expressing these systems and their solutions.

3.1 FUNDAMENTALS OF LINEAR ALGEBRA

Consider the following system of m simultaneous linear equations in nm unknowns
L1, T2,T3y--.,Tp:
a1171 + a2 + -+ + a1,T, = by,

a21%1 + a2 + - -+ + A2p Ty = by,

(3.1.1)
Am1T1 + Gm2X2 + -+ AmpTn = bma

where the coefficients a;; and constants b; denote known real or complex numbers. The
purpose of this chapter is to show how matrixz algebra can be used to solve these systems by
first introducing succinct notation so that we can replace Equation 3.1.1 with rather simple
expressions, and then by employing a set of rules to manipulate these expressions. In this
section we focus on developing these simple expressions.

The fundamental quantity in linear algebra is the matriz." A matrix is an ordered
rectangular array of numbers or mathematical expressions. We shall use upper case letters

1

I This term was first used by J. J. Sylvester, 1850: Additions to the articles, “On a new class of
theorems,” and “On Pascal’s theorem.” Philos. Mag., Ser. 4, 37, 363-370.

97
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to denote them. The m X n matrix

ail a2 a3z - : © o QAln
a21 G2  a23 - : © Q2p
A= (3.1.2)
. . . . a'L] . .
am1 Am2 am3 : © Omn

has m rows and n columns. The order (or size) of a matrix is determined by the number
of rows and columns; Equation 3.1.2 is of order m by n. If m = n, the matrix is a square
matrix; otherwise, A is rectangular. The numbers or expressions in the array a;; are the
elements of A and can be either real or complex. When all of the elements are real, A is
a real matriz. If some or all of the elements are complex, then A is a complex matriz. For
a square matrix, the diagonal from the top left corner to the bottom right corner is the
principal diagonal.

From the limitless number of possible matrices, certain ones appear with sufficient
regularity that they are given special names. A zero matrix (sometimes called a null matrix)
has all of its elements equal to zero. It fulfills the role in matrix algebra that is analogous
to that of zero in scalar algebra. The unit or identity matrix is an n X n matrix having 1’s
along its principal diagonal and zero everywhere else. The unit matrix serves essentially
the same purpose in matrix algebra as does the number one in scalar algebra. A symmetric
matrix is one where a;; = aj; for all ¢ and j.

e Example 3.1.1

Examples of zero, identity, and symmetric matrices are

0 0 O 10 3 2 4
o=\|0 0 0]}, I=<0 1), and A=1(12 1 0], (3.1.3)
0 0 0 4 0 5
respectively. a
A special class of matrices are column vectors and row vectors:
T
T2
X = - v=(y1 y2 - Yn)- (3.1.4)
T

We denote row and column vectors by lower case, boldfaced letters. The length or norm of
the vector x of n elements is "
x| = (Zwi) : (3.1.5)
k=1

Two matrices A and B are equal if and only if a;; = b;; for all possible ¢ and j and
they have the same dimensions.

Having defined a matrix, let us explore some of its arithmetic properties. For two
matrices A and B with the same dimensions (conformable for addition), the matrix C =
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A + B contains the elements ¢;; = a;; + b;;. Similarly, C' = A — B contains the elements
¢ij = ai; — byj. Because the order of addition does not matter, addition is commutative:
A+B=B+A.

Consider now a scalar constant k. The product kA is formed by multiplying every
element of A by k. Thus the matrix kA has elements ka;;.

So far the rules for matrix arithmetic conform to their scalar counterparts. However,
there are several possible ways of multiplying two matrices together. For example, we might
simply multiply together the corresponding elements from each matrix. As we will see, the
multiplication rule is designed to facilitate the solution of linear equations.

We begin by requiring that the dimensions of A be m x n while for B they are n x p.
That is, the number of columns in A must equal the number of rows in B. The matrices A
and B are then said to be conformable for multiplication. If this is true, then C' = AB is a
matrix m X p, where its elements equal

n
cij = Z aik brj. (3.1.6)
k=1

The right side of Equation 3.1.6 is referred to as an inner product of the ith row of A and the
jth column of B. Although Equation 3.1.6 is the method used with a computer, an easier
method for human computation is as a running sum of the products given by successive
elements of the ith row of A and the corresponding elements of the jth column of B.

The product AA is usually written A2; the product AAA, A3, and so forth.

e Example 3.1.2

If
-1 4 1 2
(L) e me(12), @1

_([=DM)+HE)] (D) +@@D]) _ (11 14
AB__<[@X1)+(—3M$] K2XQ)+(_3XQ])—-(_7 _8)- (3.1.8)

Checking our results using MATLAB, we have that

then

>> A = [-1 4; 2 -3];
>> B = [12; 3 4];
>> C = A*B
C =
11 14
-7 -8

Note that there is a tremendous difference between the MATLAB command for matrix
multiplication * and element-by-element multiplication .x. O

Matrix multiplication is associative and distributive with respect to addition:
(kA)B = k(AB) = A(kB), (3.1.9)

A(BC) = (AB)C, (3.1.10)
(A+ B)C = AC + BC, (3.1.11)
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and
C(A+B)=CA+CB. (3.1.12)

On the other hand, matrix multiplication is not commutative. In general, AB # BA.
e Example 3.1.3

Does AB = BA if

1 0 11
= = 7
A (0 O) , and B (1 0). (3.1.13)

(300 0)
pa- (1) (20)=(1 1), 119

Because

and

AB + BA. (3.1.16)
O
e Example 3.1.4
Given
1 1 -1 1
A_<3 3), and B—( 1 _1>, (3.1.17)

find the product AB.
Performing the calculation, we find that

AB_(é ;)) (_11 11)_(8 8). (3.1.18)

The point here is that just because AB = 0, this does not imply that either A or B equals
the zero matrix. 0

We cannot properly speak of division when we are dealing with matrices. Nevertheless,
a matrix A is said to be nonsingular or invertible if there exists a matrix B such that
AB = BA = 1. This matrix B is the multiplicative inverse of A or simply the inverse of A,
written A=Y, An n x n matrix is singular if it does not have a multiplicative inverse.

e Example 3.1.5

If
1 0 1
A=13 3 4], (3.1.19)
2 2 3
let us verify that its inverse is
1 2 -3
Al=-1 1 -1]. (3.1.20)

0 -2 3
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We perform the check by finding AA=! or A7 A4,
1 0 1 1 2 =3 1 00
AAT =13 3 4 -1 1 —-1]=[0 10 (3.1.21)
2 2 3 0 -2 3 0 0 1
In a later section we will show how to compute the inverse, given A. a

Another matrix operation is transposition. The transpose of a matrix A with dimen-
sions m x n is another matrix, written A7, where we interchanged the rows and columns
from A. In MATLAB, AT is computed by typing A’. Clearly, (AT)T = A as well as
(A+ B)T = AT + BT, and (kA)T = kAT, If A and B are conformable for multiplica-
tion, then (AB)T = BT AT. Note the reversal of order between the two sides. To prove this
last result, we first show that the results are true for two 3 x 3 matrices A and B and then
generalize to larger matrices.

Having introduced some of the basic concepts of linear algebra, we are ready to rewrite
Equation 3.1.1 in a canonical form so that we can present techniques for its solution. We
begin by writing Equation 3.1.1 as a single column vector:

anzi  + a2+ -+ Giela by
azxry  + axr: + o+ a2y ba
: : : : =1 : 1. (3.1.22)
am1T1 +  amez2 + +  AmnTn bm
We now use the multiplication rule to rewrite Equation 3.1.22 as
aj;p a2 Ain T b1
a1 22 a2n Ta bo
= : 1, (3.1.23)
Am1  Am2 Amn Tn bm
or
Ax = b, (3.1.24)

where x is the solution vector. If b = 0, we have a homogeneous set of equations; otherwise,
we have a nonhomogeneous set. In the next few sections, we will give a number of methods
for finding x.

e Example 3.1.6: Solution of a tridiagonal system

A common problem in linear algebra involves solving systems such as

biyr + 1y = dy, (3.1.25)
azy1 + bayz + c2ys = da, (3.1.26)
aN—1YN—2 T bn—1yn—1 +eN—1yn = dN -1, (3.1.27)

byyn—1 +enyn = dn.

(3.1.28)
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Such systems arise in the numerical solution of ordinary and partial differential equations.
We begin by rewriting Equation 3.1.25 through Equation 3.1.28 in the matrix notation:

b1 C1 0 0 0 0 Y1 d1
a2 b2 Co 0 0 0 Y2 dg
0 as b3 s 0 0 0 Y3 d3
ST . = A (3.1.29)
0 0 0 an—1 byn_1 cn-1 YN—1 dn_1
0 0 0 te 0 an bN YN dN

The matrix in Equation 3.1.29 is an example of a banded matriz: a matrix where all of
the elements in each row are zero except for the diagonal element and a limited number
on either side of it. In the present case, we have a tridiagonal matrix in which only the
diagonal element and the elements immediately to its left and right in each row are nonzero.
Consider the nth equation. We can eliminate a,, by multiplying the (n — 1)th equation
by a,/bn,—1 and subtracting this new equation from the nth equation. The values of b,, and
d,, become
b, = by — ancp—1/bn-1, and d, =dy — andy_1/bp_1 (3.1.30)
forn=2,3,...,N. The coefficient ¢, is unaffected. Because elements a; and ¢y are never
involved, their values can be anything or they can be left undefined. The new system of
equations may be written

Vi, ¢ 0 0 0 0 i 1
0 b, o 0 0 0 Ys 5
0 0 ¥ 0 o0 0 Y3 5
5 . SO I R (3.1.31)
0 0 0 - 0 Vy, cnv-a1 YN-1 N_1

The matrix in Equation 3.1.31 is in upper triangular form because all of the elements
below the principal diagonal are zero. This is particularly useful because y,, can be computed
by back substitution. That is, we first compute yy. Next, we calculate yy_1 in terms of
yn- The solution yy_o can then be computed in terms of y5 and yy_1. We continue this
process until we find y; in terms of yn,yn—1,--.,y2. In the present case, we have the rather
simple:
and Yn = (d;L —Cn ;z+1)/b;1

yn = dy /by, (3.1.32)

forn=N-1,N—-2,...,2,1.

As we shall show shortly, this is an example of solving a system of linear equations
by Gaussian elimination. For a tridiagonal case, we have the advantage that the solution
can be expressed in terms of a recurrence relationship, a very convenient feature from
a computational point of view. This algorithm is very robust, being stable? as long as
|a; + ¢;| < |b;|. By stability, we mean that if we change b by Ab so that x changes by Ax,
then ||Ax|| < Me, where ||Ab|| <€, 0 < M < oo, for any N.

2 Torii, T., 1966: Inversion of tridiagonal matrices and the stability of tridiagonal systems of linear
systems. Tech. Rep. Osaka Univ., 16, 403—414.
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e Example 3.1.7: Linear transformation
Consider a set of linear equations

Y1 = G11T1 + @12T2 + A13T3 + G1424,
Yo = G21%1 + A22T2 + A23T3 + A14%4, (3.1.33)

Ys = a31T1 + a31T2 + a33T3 + az4ry.

Each of the right-side expressions is called a linear combination of x1, 2, x3, and x4: a sum
where each term consists of a constant times xz; raised to the first power. An expression
such as allx% + algxg + a13x§ + a14xi is an example of a nonlinear combination. Note that
we are using 4 values of z; to find only 3 values of y;.

If we were given values of x;, we can determine a set of values for y; using Equation
3.1.33. Such a set of linear equations that yields values of y; for given x;’s is called a linear
transform of x into y. The point here is that given x, the corresponding y will be evaluated.

Matrix notation and multiplication are very convenient in expressing linear transfor-

mation. In the present case, we would have that

Tl

o ail Gi12 @13 a4 Y1
y = Ax, where x= o | A= a9 az a awu |, y=|y2|. (3.1.34)
24 a3l a3z a33 a3q Y3

In general, a transformation A(x) is a linear transformation that satisfies two conditions:
(1) A(x+y) = A(x) + A(y) and (2) A(kx) = kA(x), where k is a scalar.

Problems
GivenAz(? ;),andB:(; ;),ﬁnd
1.A+B, B+ A 22A-B,B-A 3.3A4 — 2B, 3(2A — B)
4. AT BT (B™T 5. (A+ B)T, AT + BT 6. B+ BT, B—- BT
7. AB,ATB,BA,BT A 8. A%, B? 9. BBT, BB
10. A2 —3A+1 11. A3 +2A 12. A* —4A2 4+ 21

by hand and using MATLAB.

Can multiplication occur between the following matrices? If so, compute it.

3 5 1 2 1 -2 4 1 4 2 3 2
13. (_2 1 2) 4 1 4.1 -4 6 |(1 2 3) 15.{0 0 4 11
1 3 -6 1 0 1 2 2 1

46\ (1 3 6 6 4 2\ (3 1 4
16'(1 2)(1 25) 17 (1 2 3)(206)

1 1
IfA=11 2|, verify that
3 1
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18. TA =4A+ 3A, 19. 104 = 5(24), 20. (AT =4
by hand and using MATLAB.

2 1 1 -2 1 1 .
IfA:(3 1),32(4 O),andC’:<1 1),ver1fythat

21. (A+B)+C = A+ (B+C), 22. (AB)C = A(BC),

23. A(B+C) = AB+ AC, 24. (A+ B)C = AC + BC
by hand and using MATLAB.

Verify that the following A~! are indeed the inverse of A:

0 1 0 0 1 0
25.,4:(_35 _21) A—lz(g é) 2%.A4=(10 0] at=[110 0
0 0 1 0 0 1
by hand and using MATLAB.
Write the following linear systems of equations in matrix form: Ax = b.
27.(13172%2:5 3$1+$2:1
28. 221 + To + 43 =2 4x1 + 222 + 523 =06 6x1 — 3x9 + Dxgz = 2
29I2+2I3+3$4:2 358174.’,53741’4:5 1‘1+1‘2+I3+I4:73

201 —3x9 +x3 — 34 =7
3.2 DETERMINANTS

Determinants appear naturally during the solution of simultaneous equations. Con-
sider, for example, two simultaneous equations with two unknowns z; and xo,

aney + ajprs = by, (3.2.1)

and
211 + agoxe = bo. (3.2.2)

The solution to these equations for the value of 1 and x5 is

2y = 1022 — Ouzhy (3.2.3)

b
11022 — A12G21

and
baa11 — az1by

Ty = (3.2.4)

a11G22 — a12a21
Note that the denominator of Equation 3.2.3 and Equation 3.2.4 is the same. This term,
which always appears in the solution of 2 x 2 systems, is formally given the name of deter-
minant and written

a11 a2

det(A) = 4y g

= G11022 — A12021- (3.2.5)
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MATLAB provides a simple command det (A), which computes the determinant of A.
For example, in the present case,
> A =1[2-12;132;516];
>> det(A)
ans =

0

Although determinants have their origin in the solution of systems of equations, any
square array of numbers or expressions possesses a unique determinant, independent of
whether it is involved in a system of equations or not. This determinant is evaluated (or
expanded) according to a formal rule known as Laplace’s expansion of cofactors.® The
process revolves around expanding the determinant using any arbitrary column or row of
A. If the ith row or jth column is chosen, the determinant is given by

det(A) = aﬂAﬂ + aigAig + 4 amAm = alelj + angQj + 4 anjAnj7 (326)
where A;;, the cofactor of a;;, equals (—1)"*7 M,;. The minor M;; is the determinant of the
(n—1) X (n — 1) submatrix obtained by deleting row i, column j of A. This rule, of course,
was chosen so that determinants are still useful in solving systems of equations.

e Example 3.2.1

Let us evaluate

2 -1 2
1 3 2
5 1 6
by an expansion in cofactors.
Using the first column,
2 -1 2
1 3 2|=2(-1)* 3 2 +1(—1)3 -1 2 +5(=1)* -2 (3.2.7)
1 6 1 6 3 2
5 1 6
=2(16) — 1(—8) + 5(—8) = 0. (3.2.8)

The greatest source of error is forgetting to take the factor (—1)**J into account during the
expansion. 0

Although Laplace’s expansion does provide a method for calculating det(A), the num-
ber of calculations equals n!. Consequently, for hand calculations, an obvious strategy is to
select the column or row that has the greatest number of zeros. An even better strategy
would be to manipulate a determinant with the goal of introducing zeros into a particular
column or row. In the remaining portion of this section, we show some operations that may
be performed on a determinant to introduce the desired zeros. Most of the properties follow
from the expansion of determinants by cofactors.

. : For every square matrix A, det(AT) = det(A).

3 Laplace, P. S., 1772: Recherches sur le calcul intégral et sur le systeme du monde. Hist. Acad. R.
Sci., I1¢ Partie, 267-376. (Buvres, 8, pp. 369-501. See Muir, T., 1960: The Theory of Determinants in
the Historical Order of Development, Vol. I, Part 1, General Determinants Up to 1841. Dover Publishers,
pp. 24-33.
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The proof is left as an exercise.
. : If any two rows or columns of A are identical, det(A4) = 0.

To see that this is true, consider the following 3 x 3 matrix:

bl bl C1
bg bQ Co | = Cl(bgbg - b3b2) — Cg(blbg - b3b1) + C3(b1b2 — bgbl) = 0 (329)
b3 b3 C3

. : The determinant of a triangular matrix is equal to the product of its diagonal
elements.

If A is lower triangular, successive expansions by elements in the first column give

ail 0 . 0 dyy - 0
a1 azz -+ 0

det(A) = . : : . = all = =0Q11022 " Qpn- (3210)
Anl  Gpa 0 Gnn Gp2 -+ Adnn

If A is upper triangular, successive expansions by elements of the first row prove the prop-
erty.

. : If a square matrix A has either a row or a column of all zeros, then det(A4) = 0.

The proof is left as an exercise.

° : If each element in one row (column) of a determinant is multiplied by a number
¢, the value of the determinant is multiplied by c.

Suppose that |B| has been obtained from |A| by multiplying row ¢ (column j) of |A| by
c. Upon expanding |B] in terms of row ¢ (column j), each term in the expansion contains
c as a factor. Factor out the common ¢, and the result is just ¢ times the expansion |A| by
the same row (column).

° : If each element of a row (or a column) of a determinant can be expressed as a
binomial, the determinant can be written as the sum of two determinants.

To understand this property, consider the following 3 x 3 determinant:

ar+dy b ar by ¢ dy b1
ag+dy by co|=l|ay by co|+|dy by cof. (3.2.11)
as + d3 b3 C3 as b3 C3 d3 b3 C3

The proof follows by expanding the determinant by the row (or column) that contains the
binomials.

° : If B is a matrix obtained by interchanging any two rows (columns) of a square
matrix A, then det(B) = — det(A4).



Linear Algebra 107

The proof is by induction. It is easily shown for any 2 x 2 matrix. Assume that this
rule holds for any (n —1) x (n — 1) matrix. If A is n x n, then let B be a matrix formed by
interchanging rows ¢ and j. Expanding |B| and |A| by a different row, say k, we have that

1Bl = (—1) by My, and  [A] = (1) ay N, (3.2.12)

s=1 s=1

where My, and Nj, are the minors formed by deleting row k, column s from |B| and |A],

respectively. For s = 1,2,...,n, we obtain Ni; and M}, by interchanging rows ¢ and j. By
the induction hypothesis and recalling that Ny, and My, are (n—1) x (n— 1) determinants,
Nis = =My for s =1,2,...,n. Hence, |B| = —|A|. Similar arguments hold if two columns

are interchanged.

° : If one row (column) of a square matrix A equals to a number ¢ times some
other row (column), then det(A4) = 0.

Suppose one row of a square matrix A is equal to ¢ times some other row. If ¢ = 0,
then |A| = 0. If ¢ # 0, then |A| = ¢|B|, where |B| = 0 because |B| has two identical rows.
A similar argument holds for two columns.

° : The value of det(A) is unchanged if any arbitrary multiple of any line (row or
column) is added to any other line.

To see that this is true, consider the simple example:

ar b1 chy b1 a1 +cby b1
as by co|+|cby by co|=|as+cby by ca, (3.2.13)
as bg C3 Cbg b3 C3 as + Cb3 b3 C3

where ¢ # 0. The first determinant on the left side is our original determinant. In the
second determinant, we again expand the first column and find that

Cbl bl C1 bl bl C1

Cb2 b2 Cy| =¢C bz bz Co = 0. (3214)

Cb3 b3 C3 b3 b3 C3

e Example 3.2.2
Let us evaluate

1 2 3 4
-1 1 2 3
1 -1 1 2
-1 1 -1 5

using a combination of the properties stated above and expansion by cofactors.
By adding or subtracting the first row to the other rows, we have that

1 2 3 1 2 3 4

4
3 5 7
-1 1 2 3 0 3 5 7
] B O A —33 —22 —92 (3.2.15)
11 -1 5l o3 2 9
3 5 7
—lo 3 5 3’33 2’3)3 ?‘63. (3.2.16)
0 -3 2
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Problems

Evaluate the following determinants. Check your answer using MATLAB.

3.1 2 4 3 0
1—32—512—58_41 312 4 5 4.3 2 2
1 45 5 -2 —4
I I e B R O A | R A
504 1 1] 6|1 3 3| 7 8.
5 1 3 516 16 1 0 -1 2 -1 1
11 -2 3 -3 2 3 1

9. Using the properties of determinants, show that

1 1 1 1

b d
5o e p|=0—alc—a)(d=a)(c—b)d=b)d-c).
a v S B

This determinant is called Vandermonde’s determinant.

10. Show that

a b+ec 1
b a+c 1]=0.
c a+b 1

11. Show that if all of the elements of a row or column are zero, then det(A) = 0.
12. Prove that det(AT) = det(A).
3.3 CRAMER'S RULE

One of the most popular methods for solving simple systems of linear equations is
Cramer’s rule.* It is very useful for 2 x 2 systems, acceptable for 3 x 3 systems, and of
doubtful use for 4 x 4 or larger systems.

Let us have n equations with n unknowns, Ax = b. Cramer’s rule states that

_ det(Ay) _ det(Ay) _ det(A,)
= detd) 2T ded) 7 T ena) (3.3.1)

€

where A; is a matrix obtained from A by replacing the ith column with b and n is the
number of unknowns and equations. Obviously, det(A) # 0 if Cramer’s rule is to work.

4 Cramer, G., 1750: Introduction & l’analyse des lignes courbes algébriques. Geneva, p. 657.
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=4 .
To prove® Cramer’s rule, consider

a11ry a2 aiz -+ Ain
a21xX1 A2 A23 - A2p

x1det(A) = | @311 d32 a3z cc dA3n (3.3.2)
p1T1 Ap2 Ap3 - Apn

by Rule 5 from the previous section. By adding x5 times the second column to the first
column,

1171 + 122 Q12 a3 - Qi
2121 + @222 Q22 Q23 -+ Q2p

rydet(A) = [ @31%1 + az2T2  az2 a3z o A3n | (3.3.3)
ap1T1 + ap2®2  Gp2 Ap3 - Gnp

Multiplying each of the columns by the corresponding x; and adding it to the first column
yields

1121 + a12%2 + + -+ + A1y G12  G13 - Alp
2121 + Q22%2 + + -+ + A2pnxy Q22  G23 - A2p

rydet(A) = | @3121 + @32%2 + -+ A3nTn a32 G330 A3 | (3.3.4)
anp1T1 + Anp2T2 + -+ ApnTn Gp2 (Ap3 N ¢ )

The first column of Equation 3.3.4 equals Ax and we replace it with b. Thus,

by a2 a3z - ain

by aze az3 -+ aszg
zydet(A) = |03 as2 asz o asn | = det(4,), (3.3.5)

bn Ap2 a3 Tt Gpn

o det(Ay)
S 1

= 7 3.3.6
17 det(A) (3.3.6)

provided det(A) # 0. To complete the proof we do exactly the same procedure to the jth
column.

e Example 3.3.1
Let us solve the following system of equations by Cramer’s rule:
2581 + o + 2£E3 = 71, (337)

I + I3 — —]., (338)

5 First proved by Cauchy, L. A., 1815: Mémoire sur les fonctions quine peuvent obtemir que deux valeurs
égales et de signes contraires par suite des transportations opérées entre les variables quelles renferment. J.
I’Ecole Polytech., 10, 29-112.
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and
—x1+ 310 —2x3=17. (339)

From the matrix form of the equations,

2 1 2 X1 -1
1 0 1 x| =1 -11, (3.3.10)
-1 3 -2 T3 7
we have that
2 1 2
det(A)=]1 0 1 |=1, (3.3.11)
-1 3 =2
-1 1 2
det(A;)=|-1 0 1 |=2, (3.3.12)
7T 3 =2
2 -1 2
det(A) =] 1 -1 1][=1, (3.3.13)
-1 7 =2
and
2 1 -1
det(Ad3)=|1 0 —1|=-3. (3.3.14)
-1 3 7
Finally,
2 1 -
v1=7= 2, my= 1= 1, and z3= T3 =-3. (3.3.15)

You can also use MATLAB to perform Cramer’s rule. In the present example, the script
is as follows:

clear; % clear all previous computations
A=10[212;101; -13 -2]; % input coefficient matrix
b=1[-1; -1; 7]; % input right side

Al = A; A1(:,1) = b; % compute A_1
A2 = A; A2(:,2) = b; % compute A2
A3 = A; A3(:,3) = b; % compute A_3

% compute solution vector
x = [det(Al), det(A2), det(A3)] / det(A)

Problems

Solve the following systems of equations by Cramer’s rule:

1. 1 + 224 = 3, 3rx1 +x2=06

2. 221 + a9 = —3, T, — 2o =1

3. 21+ 229 — 223 =4, 2x1 + x9 + 3 = —2, —x1+ X2 —x3 =2
4. 2x1 4 329 — 23 = —1, —x1 — 229 + x3 = 5, 3rx1 —x9 = —2.

Check your answer using MATLAB.
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3.4 ROW ECHELON FORM AND GAUSSIAN ELIMINATION

So far, we assumed that every system of equations has a unique solution. This is not
necessarily true, as the following examples show.

e Example 3.4.1

Consider the system
T+ T =2 (3.4.1)

and
201 4+ 229 = —1. (342)

This system is inconsistent because the second equation does not follow after multiplying
the first by 2. Geometrically, Equation 3.4.1 and Equation 3.4.2 are parallel lines; they
never intersect to give a unique z; and xs. O

e Example 3.4.2

Even if a system is consistent, it still may not have a unique solution. For example,
the system
1+ 29 =2 (343)

and

is consistent, with the second equation formed by multiplying the first by 2. However, there
are an infinite number of solutions. O

Our examples suggest the following:

Theorem: A system of m linear equations in n unknowns may: (1) have no solution, in
which case it is called an inconsistent system, or (2) have exactly one solution (called a
unique solution), or (3) have an infinite number of solutions. In the latter two cases, the
system is said to be consistent.

Before we can prove this theorem at the end of this section, we need to introduce some
new concepts.

The first one is equivalent systems. Two systems of equations involving the same
variables are equivalent if they have the same solution set. Of course, the only reason
for introducing equivalent systems is the possibility of transforming one system of linear
systems into another that is easier to solve. But what operations are permissible? Also,
what is the ultimate goal of our transformation?

From a complete study of possible operations, there are only three operations for trans-
forming one system of linear equations into another. These three elementary row operations
are

(1) interchanging any two rows in the matrix,
(2) multiplying any row by a nonzero scalar, and

(3) adding any arbitrary multiple of any row to any other row.
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Armed with our elementary row operations, let us now solve the following set of linear
equations:

r1 — 3z + Txz = 2, (345)
2x1 + 4dxo — 3x3 = —1, (346)

and
—x1 + 1329 — 2123 = 2. (3.4.7)

We begin by writing Equation 3.4.5 through Equation 3.4.7 in matrix notation:

1 -3 7 X1 2
2 4 -3 | = -1]. (3.4.8)
-1 13 -21 T3 2

The matrix in Equation 3.4.8 is called the coefficient matriz of the system.
We now introduce the concept of the augmented matriz: a matrix B composed of A
plus the column vector b or

1 -3 7|2
B=|2 4 -3|-1]. (3.4.9)
-1 13 -21| 2

We can solve our original system by performing elementary row operations on the augmented
matrix. Because x; functions essentially as a placeholder, we can omit them until the end
of the computation.

Returning to the problem, the first row can be used to eliminate the elements in the
first column of the remaining rows. For this reason the first row is called the pivotal row
and the element aq; is the pivot. By using the third elementary row operation twice (to
eliminate the 2 and —1 in the first column), we have the equivalent system

1 -3 7|2
B=|0 10 -17[-5]|. (3.4.10)
0 10 —14| 4

At this point we choose the second row as our new pivotal row and again apply the third
row operation to eliminate the last element in the second column. This yields

1 -3 7|2
B=|0 10 —17|-5]. (3.4.11)
0 0 319

Thus, elementary row operations transformed Equation 3.4.5 through Equation 3.4.7 into
the triangular system:

x1 — 3x9 + Txz = 2, (3.4.12)
10,@2 - 171’3 = —5, (3.4.13)
3£E3 = 9, (3.4.14)

which is equivalent to the original system. The final solution is obtained by back substitution,
solving from Equation 3.4.14 back to Equation 3.4.12. In the present case, x3 = 3. Then,
10zo = 17(3) — 5, or &9 = 4.6. Finally, 1 = 3z — Tzs +2 = —5.2.



Linear Algebra 113

In general, if an n X n linear system can be reduced to triangular form, then it has a
unique solution that we can obtain by performing back substitution. This reduction involves
n — 1 steps. In the first step, a pivot element, and thus the pivotal row, is chosen from the
nonzero entries in the first column of the matrix. We interchange rows (if necessary) so that
the pivotal row is the first row. Multiples of the pivotal row are then subtracted from each
of the remaining n — 1 rows so that there are 0’s in the (2,1),...,(n,1) positions. In the
second step, a pivot element is chosen from the nonzero entries in column 2, rows 2 through
n, of the matrix. The row containing the pivot is then interchanged with the second row
(if necessary) of the matrix and is used as the pivotal row. Multiples of the pivotal row are
then subtracted from the remaining n — 2 rows, eliminating all entries below the diagonal
in the second column. The same procedure is repeated for columns 3 through n — 1. Note
that in the second step, row 1 and column 1 remain unchanged, in the third step the first
two rows and first two columns remain unchanged, and so on.

If elimination is carried out as described, we arrive at an equivalent upper triangular
system after n — 1 steps. However, the procedure fails if, at any step, all possible choices
for a pivot element equal zero. Let us now examine such cases.

Consider now the system

I1+2I2+£E3 = 71, (3415)
2l‘1 + 4372 + 2]}3 = —2, (3416)
T1 + 4xo + 223 = 2. (3.4.17)
Its augmented matrix is
1 2 1]-1
B=1|[2 4 2| 2]. (3.4.18)
1 4 2| 2

Choosing the first row as our pivotal row, we find that

12 1]-1
B=1[0 0 0|0 |, (3.4.19)
02 1|3
or
12 1]-1
B=1|0 2 1|3 |. (3.4.20)
00 0[O0

The difficulty here is the presence of the zeros in the third row. Clearly any finite numbers
satisfy the equation 0z1 + 0z 4+ 0x3 = 0 and we have an infinite number of solutions. Closer
examination of the original system shows an underdetermined system; Equation 3.4.15 and
Equation 3.4.16 differ by a multiplicative factor of 2. An important aspect of this problem
is the fact that the final augmented matrix is of the form of a staircase or echelon form
rather than of triangular form.

Let us modify Equation 3.4.15 through Equation 3.4.17 to read

r1 4 2x9 + 13 = —1, (3.4.21)
211 + 4xo + 223 = 3, (3.4.22)
T + 41}2 + 2!173 = 2, (3423)
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then the final augmented matrix is

12 1]-1
B=|0 2 1| 3 |. (3.4.24)
00 0|5

We again have a problem with the third row because 0x1+0x5+0x3 = 5, which is impossible.
There is no solution in this case and we have an inconsistent system. Note, once again, that
our augmented matrix has a row echelon form rather than a triangular form.

In summary, to include all possible situations in our procedure, we must rewrite the
augmented matrix in row echelon form. We have row echelon form when:

(1) The first nonzero entry in each row is 1.

(2) If row k does not consist entirely of zeros, the number of leading zero entries in
row k + 1 is greater than the number of leading zero entries in row k.

(3) If there are rows whose entries are all zero, they are below the rows having
nonzero entries.

The number of nonzero rows in the row echelon form of a matrix is known as its rank. In
MATLAB, the rank is easily found using the command rank( ). Gaussian elimination is
the process of using elementary row operations to transform a linear system into one whose
augmented matrix is in row echelon form.

e Example 3.4.3

Each of the following matrices is not of row echelon form because they violate one of
the conditions for row echelon form:

2 2 3
02 1 (8 g 8)<(1) é) (3.4.25)
0 0 4
O
e Example 3.4.4
The following matrices are in row echelon form:
1 2 3 1 4 6 1 3 4 0
01 1],1]0 0 1}),{0 0 1 3 (3.4.26)
0 0 1 0 0 0 0 0 0O
O

e Example 3.4.5

Gaussian elimination can also be used to solve the general problem AX = B. One of
the most common applications is in finding the inverse. For example, let us find the inverse

of the matrix
4 =2 2
A= -2 —4 4 (3.4.27)
-4 2 8
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by Gaussian elimination.
Because the inverse is defined by AA~! = I, our augmented matrix is

4 -2 2|1 0 0
—2 —4 4|0 1 0. (3.4.28)
—4 2 8|0 0 1

Then, by elementary row operations,

4 -2 2[1 0 0 —2 —4 4|0 1 0
—2 -4 4[0 1 0= 4 -2 2/1 0 0 (3.4.29)
—4 2 8|0 0 1 —4 2 8|0 0 1
—2 —4 4]0 1 0
=l 4 -2 21 0 0 (3.4.30)
0 0 10[1 0 1
—2 -4 4|0 1 0
=l 0 -10 10[1 2 0 (3.4.31)
0 0 10/1 0 1
—2 -4 4]0 1 0
= 0 -10 0]0 2 -1 (3.4.32)
0 0 10[1 0 1
—2 -4 0|-2/5 1 -2/5
=l 0o -10 o] 0 2 -1 (3.4.33)
0o o0 10 1 o0 1
-2 0 0|-2/5 1/5 0
=l 0o -10 0] 0 2 -1 (3.4.34)
o o0 10 1 0 1
1 0 0|15 —1/10 0
=lo 10 0o -1/5 1/10]. (3.4.35)
00 1

1/10 0 1/10
Thus, the right half of the augmented matrix yields the inverse and it equals

1/5 —1/10 0
At= o —1/5 1/10 |. (3.4.36)
1/10 0 1/10

MATLAB has the ability of doing Gaussian elimination step by step. We begin by
typing
>>%, input augmented matrix
>aug = [4 -22100; -2-44010;-42800 1];
>>rrefmovie(aug) ;

The MATLAB command rrefmovie(A) produces the reduced row echelon form of A.
Repeated pressing of any key gives the next step in the calculation along with a statement
of how it computed the modified augmented matrix. Eventually you obtain

A =
1 0 0 1/5 -1/10 0
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0 1 0 0 -1/5 1/10
0 0 1 1/10 0 1/10
You can read the inverse matrix just as we did earlier. ad

Gaussian elimination may be used with overdetermined systems. QOverdetermined sys-
tems are linear systems where there are more equations than unknowns (m > n). These
systems are usually (but not always) inconsistent.

e Example 3.4.6

Consider the linear system

xr1+ T = 1, (3437)
—x1 4+ 2x9 = -2, (3.4.38)
T1 — To = 4. (3.4.39)

After several row operations, the augmented matrix

1 111
-1 2 |-=2 (3.4.40)
1 1| 4
becomes
1 1] 1
0 1] 2 |. (3.4.41)
0 0| -7

From the last row of the augmented matrix, Equation 3.4.41, we see that the system is
inconsistent.
If we test this system using MATLAB by typing
>>% input augmented matrix
>aug = [1 11 ; -1 2 -2; 1 -14];
>>rrefmovie(aug) ;

eventually you obtain

A =
1 0
0 1 0
0 1

Although the numbers have changed from our hand calculation, we still have an inconsistent
system because x1 = x5 = 0 does not satisfy 1 + x2 = 1.
Considering now a slight modification of this system to

1+ 2 = 1, (3.4.42)
—x1 + 2x9 =5, (3.4.43)
= -1, (3.4.44)
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the final form of the augmented matrix is

1 1)1
0o 1121, (3.4.45)
0 0]0
which has the unique solution x; = —1 and x5 = 2.
How does MATLAB handle this problem? Typing
>>} input augmented matrix
>>aug = [111; -125; 10 -1];
>>rrefmovie(aug) ;
we eventually obtain
A =
1 0 -1
0 1 2
0 0 0
This yields 1 = —1 and x5 = 2, as we found by hand.
Finally, by introducing the set:
T+ x0 =1, (3.4.46)
21 + 229 = 2, (3.4.47)
3z + 323 =3, (3.4.48)
the final form of the augmented matrix is
1 1)1
0 0/o0]. (3.4.49)
0 0]0
There are an infinite number of solutions: 1 =1 — a, and x5 = a.
Turning to MATLAB, we first type
>>% input augmented matrix
>>aug = [1 11 ;22 2; 33 3];
>>rrefmovie(aug);
and we eventually obtain
A =
1 1 1
0
0 0 0
This is the same as Equation 3.4.49 and the final answer is the same. a

Gaussian elimination can also be employed with underdetermined systems. An under-
determined linear system is one where there are fewer equations than unknowns (m < n).
These systems usually have an infinite number of solutions although they can be inconsis-
tent.
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e Example 3.4.7

Consider the underdetermined system:

2x1 4+ 220 + 3 = —1, (3450)
4y + 4dxo + 223 = 3. (3.4.51)

Its augmented matrix can be transformed into the form:
2 2 1|-1
<o 0 0‘ 5 > (3.4.52)
Clearly this case corresponds to an inconsistent set of equations. On the other hand, if
Equation 3.4.51 is changed to
4$1 + 4$2 + 23}3 = —2, (3453)
then the final form of the augmented matrix is
2 2 1|-1
( 0 0 0‘ 0 ) (3.4.54)
and we have an infinite number of solutions, namely z3 = «, 3 = 8, and 221y = —1—a—25.0
Consider now one of the most important classes of linear equations: the homogeneous
equations Ax = 0. If det(A4) # 0, then by Cramer’s rule ©1 = 23 = 23 = --- =z, = 0.
Thus, the only possibility for a nontrivial solution is det(A) = 0. In this case, A is singular,
no inverse exists, and nontrivial solutions exist but they are not unique.
e Example 3.4.8
Consider the two homogeneous equations:

1+ Tg = 07 (3455)
Tr1 — T2 = 0. (3456)

Note that det(A) = —2. Solving this system yields 1 = x5 = 0.
However, if we change the system to

r] + X9 = 07 (3457)
1+ T = O, (3458)
which has the det(4) = 0 so that A is singular. Both equations yield 1 = —z2 = «,
any constant. Thus, there is an infinite number of solutions for this set of homogeneous
equations. O

We close this section by outlining the proof of the theorem, which we introduced at
the beginning.

Consider the system Ax = b. By elementary row operations, the first equation in this
system can be reduced to

r1+ Q1222 + -+ Q1pTy = ﬁl' (3459)



Linear Algebra 119

The second equation has the form

Tp + Qopp1Tpy1 + -+ + Qopy, = Po, (3.4.60)
where p > 1. The third equation has the form

Tg+ 3g11%q11 + o+ Qann = P, (3.4.61)

where ¢ > p, and so on. To simplify the notation, we introduce z; where we choose the
first k values so that 2y = x1, 22 = xp, 23 = T4, .... Thus, the question of the existence
of solutions depends upon the three integers: m, n, and k. The resulting set of equations
have the form:

T m2 - 7k 7ke1 0 Yn 21 B
0 1T - 7ok Yok+1 0 VYon Z2 Ba
0 0 oo 1 ,Ykk—‘rl . e r)/kn Zk; == /Bk . (34.62)
0 0 - 0 0o - 0 Zk+1 Br+1
0o 0 --- 0 0 e 0 2 Bon
Note that Biy1, ..., Bm need not be all zero.
There are three possibilities:
(a) k < m and at least one of the elements SBii1,. .., Bm is nonzero. Suppose that an

element 3, is nonzero (p > k). Then the pth equation is
0z1 4+ 022 + - -+ 4+ 0z, = Bp # 0. (3.4.63)

However, this is a contradiction and the equations are inconsistent.

(b) ¥ = n and either (i) & < m and all of the elements Bxi1,...,05m are zero, or
(ii) kK = m. Then the equations have a unique solution that can be obtained by back-
substitution.

(¢) k < n and either (i) k¥ < m and all of the elements Siy1,...,Bm are zero, or (ii)
k = m. Then, arbitrary values can be assigned to the n — k variables zx11,...,2,. The
equations can be solved for z1, z2, ..., zx and there is an infinity of solutions.

For homogeneous equations b = 0, all of the 3; are zero. In this case, we have only
two cases:

(b") k = n, then Equation 3.4.62 has the solution z = 0, which leads to the trivial
solution for the original system Ax = 0.

(¢)) k < n, the equations possess an infinity of solutions given by assigning arbitrary
values to zgy1,...,2n.

Problems

Solve the following systems of linear equations by Gaussian elimination. Check your answer
using MATLAB.

1. 221 + x4 =4, dr1 — 229 =1
2. T +£E2:0, 358174:62:1
3. —$1+$2+2(E3:0, 3.’E1 +4(L’2+.’E3:0, —T1 +1’2+2$3:0
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4. 4xq1 4 629 + 23 = 2, 2x1 + x9 — 43 = 3, 3x1 — 2x2 + 513 =8
5. 3r1 + x2 — 203 = —3, r1 — X + 223 = —1, —4x1 4+ 3x9 — 623 =4
6. x1 — 3x9 + Txz = 2, 221 + 4o — 3x3 = —1, —3x1 + Txo + 223 =3
7. x1 —x9 + 3x3 =5, 201 —4xo + Txs =1, 4z — 929 + 223 = —15
. r1+ T+ 23+2T4=-1, 201 —29+ 323 =1,

2x9 4+ 3x4 = 15, -1+ 219 + 14 = —2

Find the inverse of each of the following matrices by Gaussian elimination. Check your
answers using MATLAB.

19 2 -9 1 2 5
9. (_23 ?) 10. (_35 _21> 1. | -4 -1 2 12. |0 -1 2

-2 0 1 2 4 11
13. Does (A2)~1 = (A~1)2? Justify your answer.

Project: Construction of a Finite Fourier Series

In Example 5.1.1 we show that the function f(t) given by Equation 5.1.8 can be reex-
pressed

(oo}
f) = 4 Z ay, cos(nt) + by, sin(nt), —T<t<m,
2 n=1
if -
—1)" —1)
ag z, an:L, and bn:i.
2 n2m n

There we stated the Fourier series fits f(¢) in a “least squares sense.” In Section 5.7 we will
show that we could approximate f(¢) with the finite Fourier series

M-—1
f(t) =140+ > Ay cos(kt) + Bysin(kt) + 3 Ay cos(Mt),
k=1

if we sample f(t) at t,, = 2m +1— M)r/M, where m = 0,1,2,...,M — 1 and M is an

even integer. Then we can use Equation 5.7.12 and Equation 5.7.13 to compute Ay and By.

Because MATLAB solves linear equations in a least-squares sense, this suggests that we could

use MATLAB as an alternative method for finding a finite Fourier series approximation.
Let us assume that

N
ft) = 5 + Z A, cos(nt) + By, sin(nt).
n=1

Then sampling f(¢) at the temporal points t,,, = —7+ (2m—1)7/M, we obtain the following
system of linear equations:

A | < .
5 + Z Ay, cos(nty,) + By sin(nt,,) = f(tm),

n=1

where m = 1,2,..., M. Write a MATLAB program that solves this system for given IV and
M and compare your results with the exact answers ag, a, and b, for various N and M.
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Consider the case when M > 2N + 1 (overspecified system), M < 2N + 1 (underspecified
system), and M = 2N + 1 (equal number of unknowns and equations). Does this method
yield any good results? If so, under which conditions?

Project: Solving Fredholm Integral Equation of the Second Kind

Fredholm equations of the second kind and their variants appear in many scientific and
engineering applications. In this project you will use matrix methods to solve this equation:

b
u(z) = / K(z,t)u(t)dt + f(x), a<z<b,

where the kernel K(x,t) is a given real-valued and continuous function and u(zx) is the
unknown. One method for solving this integral equation replaces the integral with some
grid-point representation. The goal of this project is examine how we can use linear algebra
to solve this numerical approximation to Fredholm’s integral equation.

Step 1: Using Simpson’s rule, show that our Fredholm equation can be written in the matrix
form (I — KD)u = f, where

Ag O 0 0
0 A; 0 0
D= : : ,

0 0 A, 0

0 0 0 A,
K(x0,20) K(zo,z1) -+ K(zo,2p-1) K(xo,zn)
K(z1,x0) K(z1,21) -+  K(z1,2p-1) K(x1,2p)

K= : : : : : )
K(xnflyl'o) K(xnflvxl) K(l'nflwrnfl) K(l'nfluxn)

K(-Tnny) K($n,$1) K(xnwrnfl) K(xnaxn)

u= [u(xo),u(xl), e 7’U’(xn)]Ta and f= [f(l'o),f(xl), o '7f(x7l)]T’
where AO = An = h/?)7 A2 = A4 = = An_g = 2h/3, Al = A3 = = An—l = 4h/3,

x; = ih, and h = (b — a)/n. Here n must be an even integer.

Step 2: Use MATLAB to solve our matrix equation to find u. Use the following known
solutions:

(a) K(xz,t) = 1a%t?, f(x) = 0.922, u(x) = 22,
(b) K(z,t) = a2et@=1), flx) =2+ (1 —xz)e”, u(z) = e,
(c) K(z,t) = 3", fz) = 2e®, u(x) = e,
(d) K(z,t) = —1e2=5/3, f(z) =z + 3, u(x) = e2*,
(e) K(z,t) = —z (e®t — 1), flx) =e® —ux, u(x) =1,
() K(z,t) = at, f(z) = 2=, u(z) =z,

when 0 < 2 < 1. How does the accuracy of this method vary with n (or h)? What happens
when n becomes large? Figure 3.4.1 shows the absolute value of the relative error in the
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Figure 3.4.1: The absolute value of the relative error of the numerical solution of a Fredholm integral
equation of the second kind as a function of n for test problems (a), (b), (d), and (e).

numerical solution at z = 1 as a function of n. For test cases (c) and (f) the error was the

same order of magnitude as the round-off error.
Project: LU Decomposition

In this section we showed how Gaussian elimination can be used to find solutions to sets
of linear equations. A popular alternative involves rewriting the n x n coefficient matrix:

aipr a2 aiz - . © o Qln
a1 Q22 Q23 - : )
A=
aij
anp1  QAp2 Aap3 - . © Qpn

as the product of a lower n x n triangular matrix:

{17 0 o - - - 0

621 622 0 . . . 0
L= 0,

gnl €n2 EnS : . : énn

and an upper n X n triangular matrix:

1w wiz - - - U,
1 weg - - - wuop,
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so that A = LU. By simply doing the matrix multiplication, we find the following Crout
algorithm to compute ¢;; and w;;:

Jj—1
gij:aij_g Cirug;j, 7<%, +1=1,2,...,m
k=1

and

uij =

i—1
aijz&kukj]/fii, 1<j, §=23,...,n
k=1

For the special case of j =1, £;1 = a;1; for i = 1, uq; = a1;/¢11 = a;1/a11. Clearly we could
write code to compute L and U given A. However, MATLAB has a subroutine for doing this
factorization [L,U] = 1u(A).

How does this factorization help us to solve Ax = b? The goal of this project is to
answer this question.

Step 1: Show that Ly = b and Ux = y can be combined together to yield Ax = b.

Step 2: Show that y; and z; can be computed from y; = by /l11,

i1
yi= |bi— Y lib; /Eu" i=23,...,m
=1

and Tn = yn/unn7

n
Ti= |Yi — Z Uij Y5 /Uii, t=n—1n-2...,1

j=it1

Step 3: Write a MATLAB script to solve Ax = b using LU decomposition.
Step 4: Check your program by resolving Problems 4, 6, 7, and 8.

The principal reason that this scheme is so popular is its ecomony of storage. The 0’s
in either L or U are not stored. Furthermore, after the element a;; is used, it never appears
again.

Project: QR Decomposition

In the previous project you discovered that by factoring the matrix A into upper and
lower diagonal matrices, we could solve Ax = b. Here we will again factor the matrix A
into the product QR but @Q will have the property that QTQ = I (orthogonal matrix) and
R is an upper triangular matrix.

Step 1: Assuming that we can rewrite Ax = b as QRx = b, multiply both sides of this
second equation by Q7 and show that you obtain Rx = Q7b =y.
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Step 2: Show that x; can be computed from z,, = y,,/rn, and

n
Ti= |Yi — Z Ti5Yj /Tii, i=n—1n—-2,...,1.

j=i+1

Step 3: Write a MATLAB script to solve Ax = b using QR decomposition.
Step 4: Check your program by resolving Problems 4, 6, 7, and 8.

What advantages does QR decomposition have over LU decomposition? First, solving
Ax = b via Rx = QTb is as well-conditioned as the original problem. Second, QR decom-
position finds the least-squares solutions when no exact solution exists. When there are
exact solutions, it finds all of them.

3.5 EIGENVALUES AND EIGENVECTORS

One of the classic problems of linear algebra® is finding all of the A’s that satisfy the
n X n system
Ax = Ax. (3.5.1)

The nonzero quantity A is the eigenvalue or characteristic value of A. The vector x is the
etgenvector or characteristic vector belonging to X. The set of the eigenvalues of A is called
the spectrum of A. The largest of the absolute values of the eigenvalues of A is called the
spectral radius of A.

To find A and x, we first rewrite Equation 3.5.1 as a set of homogeneous equations:

(A—\)x = 0. (3.5.2)

From the theory of linear equations, Equation 3.5.2 has trivial solutions unless its determi-
nant equals zero. On the other hand, if

det(A — \I) = 0, (3.5.3)

there are an infinity of solutions.

The expansion of the determinant, Equation 3.5.3, yields an nth-degree polynomial in A,
the characteristic polynomial. The roots of the characteristic polynomial are the eigenvalues
of A. Because the characteristic polynomial has exactly n roots, A has n eigenvalues, some
of which can be repeated (with multiplicity £ < n) and some of which can be complex
numbers. For each eigenvalue \;, there is a corresponding eigenvector x;. This eigenvector
is the solution of the homogeneous equations (A — A\;I)x; = 0.

An important property of eigenvectors is their linear independence if there are n distinct
eigenvalues. Vectors are linearly independent if the equation

a1X1 + aoXg + -+ X, =0 (3.5.4)

can be satisfied only by taking all of the coefficients «,, equal to zero.

6 The standard reference is Wilkinson, J. H., 1965: The Algebraic Eigenvalue Problem. Oxford Univer-
sity Press, 662 pp.
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This concept of linear independence or dependence actually extends to vectors in gen-
eral, not just eigenvectors. Algebraists would say that our n linearly independent vectors
form a basis that spans a vector space V. A vector space is simply a set V' of vectors that
can be added and scaled. The maximum number of linearly independent vectors in a vector
space gives its dimension of V. A vector space V can have many different bases, but there
are always the same number of basis vectors in each of them.

Returning to the eigenvalue problem, we now show that in the case of n distinct eigen-
values A1, Ao, ..., \,, each eigenvalue \; having a corresponding eigenvector x;, the eigen-
vectors form a basis. We first write down the linear dependence condition

a1X] + aeXg + -+ apx, = 0. (3.5.5)
Premultiplying Equation 3.5.5 by A,
a1 Ax) + agAxs + -+ o AX, = agAX] + agdoXe + -+ ap X, = 0. (3.5.6)
Premultiplying Equation 3.5.5 by A2,
a1 A%xq + agA%xs + - + a, A%x, = al)\%xl + Ckg)\%Xg 4+t an)\%xn =0. (3.5.7)

In a similar manner, we obtain the system of equations:

1 1 e 1 Q1Xq 0
A1 Ao s An Q2Xo 0
AN N agxg [ — 0], (3.5.8)
APTE ATt A Nagx, 0
Because
1 1
BN N | e a0 A - A0 - X
)\% )\% )\% _ A2 — A1) (A3 — X)) (A3 — A1) (A\g — A3 359
o | (= A) -+ (An = A1) 70, (3:59)
A’Ii],—l )\g—l . )\7?’:—1
since it is a Vandermonde determinant, c1X; = asXs = a3X3 = -+ = a,X, = 0. Because
the eigenvectors are nonzero, oy = as = ag = --- = a, = 0, and the eigenvectors are
linearly independent. d

This property of eigenvectors allows us to express any arbitrary vector x as a linear
sum of the eigenvectors x;, or

X =C1X1 + CXo + -+ Xy (3510)
We will make good use of this property in Example 3.5.3.
e Example 3.5.1

Let us find the eigenvalues and corresponding eigenvectors of the matrix

A= (_411 _21> (3.5.11)
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We begin by setting up the characteristic equation:

det(A — XI) = _4_1 A _12_ A\ =0 (3.5.12)
Expanding the determinant,
(=4=X)(-1=-A)+2=X+51+6=(A+3)(A+2)=0. (3.5.13)
Thus, the eigenvalues of the matrix A are Ay = —3, and Ay = —2.

To find the corresponding eigenvectors, we must solve the linear system:
—4 — )\ 2 T _ 0
(2 ()-(0) 551
-1 2 z1\ _ (0
(_1 2) (m) - (0> (3.5.15)

For example, for A\ = —3,

or

Thus, any nonzero multiple of the vector (2) is an eigenvector belonging to A\; = —3.

1
- . . . 1
Similarly, for Ay = —2, the eigenvector is any nonzero multiple of the vector 1 ) .

Of course, MATLAB will do all of the computations for you via the command eig, which
computes the eigenvalues and corresponding eigenvalues. In the present case, you would

type

> A = [-4 2; -1 -1]; % load in array A
>> Y, find eigenvalues and eigenvectors
>> [eigenvector,eigenvalue] = eig(A)

This yields

eigenvector =
-0.8944 -0.7071
-0.4472 -0.7071
and
eigenvalue =
-3 0
0 -2.

The eigenvalues are given as the elements along the principal diagonal of eigenvalue.
The corresponding vectors are given by the corresponding column of eigenvector. As
this example shows, these eigenvectors have been normalized so that their norm, Equation
3.1.5, equals one. Also, their sign may be different than any you would choose. We can
recover our hand-computed results by dividing the first eigenvector by —0.4472 while in
the second case we would divide by —0.7071. Finally, note that the product eigenvec-
tor*eigenvaluexinv(eigenvector) would yield A. ad
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e Example 3.5.2

Let us now find the eigenvalues and corresponding eigenvectors of the matrix
4 5 5
A= -5 6 5. (3.5.17)
-5 5 6

Setting up the characteristic equation:

det(A — \I)
—4-X 5 5 —4-X 5 5
= -5 6-X 5 |=| -5 6-X 5 (3.5.18)
-5 5  6-—\ 0 A—1 1-2)
—4-X 5 5 -1 1 0
=A=1)| -5 6-X 5 |=AN-1*-5 6-X 5 (3.5.19)
0 1 -1 0 1 -1
-1 0 0
det(A—X)=A-1)*|-5 6-X 0 |=(0\—-1)72*6-))=0. (3.5.20)
0 1 -1

Thus, the eigenvalues of the matrix A are A\; 2 = 1 (twice), and A3 = 6.
To find the corresponding eigenvectors, we must solve the linear system:

(—4 — N)x1 + bxg + bzs =0, (3.5.21)

—5x1 + (6 — Mg + bxg = 0, (3.5.22)
and

—5(E1 + 5(E2 + (6 — )\)(Eg =0. (3523)

For A3 = 6, Equations 3.5.21 through 3.5.23 become

—10z;1 + 52 + dz3z = 0, (3.5.24)
—5x1 + dx3 =0, (3525)
and
*5561 + 51’2 =0. (3.5.26)
1
Thus, r1 = 22 = z3 and the eigenvector is any nonzero multiple of the vector | 1

1
The interesting aspect of this example centers on finding the eigenvector for the eigen-
value A o = 1. If A\; 5 = 1, then Equations 3.5.21 through 3.5.23 collapse into one equation,

—T1+ T+ T3 = 0, (3527)

and we have two free parameters at our disposal. Let us take zo = «, and x3 = 8. Then
1 1

the eigenvector equals o« | 1 | + 3| 0 | for Ay o = 1.
0 1
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1 1
In this example, we may associate the eigenvector | 1 | with A\ =1, and [ 0 | with
0 1
1
A2 = 1 so that, along with the eigenvector | 1 | with A3 = 6, we still have n linearly
1
independent eigenvectors for our 3 x 3 matrix. However, with repeated eigenvalues this is

not always true. For example,
1 -1
A= (O 1 ) (3.5.28)

has the repeated eigenvalues A1 2 = 1. However, there is only a single eigenvector <(1)) for
both A1 and As.
What happens in MATLAB in the present case? Typing in

> A =[-455; -565; -55 6]; % load in array A
>> % find eigenvalues and eigenvectors

>> [eigenvector,eigenvalue] = eig(A)
we obtain
eigenvector =
-0.8165 0.5774 0.4259
-0.4082 0.5774 -0.3904
-0.4082 0.5774 0.8162
and
eigenvalue =
1 0 0
0 6
0 0 1

The second eigenvector is clearly the same as the hand-computed one if you normalize it with
0.5774. The equivalence of the first and third eigenvectors is not as clear. However, if you
choose a = 8 = —0.4082, then the first eigenvector agrees with the hand-computed value.
Similarly, taking @ = —0.3904 and 8 = 0.8162 result in agreement with the third MATLAB
eigenvector. Finally, note that the product eigenvector*eigenvalue*inv(eigenvector)
would yield A. a

e Example 3.5.3

When we discussed the stability of numerical schemes for the wave equation in Section
7.6, we will examine the behavior of a prototypical Fourier harmonic to variations in the
parameter cAt/Az. In this example we shall show another approach to determining the
stability of a numerical scheme via matrices.

Consider the explicit scheme for the numerical integration of the wave equation, Equa-
tion 7.6.11. We can rewrite that single equation as the coupled difference equations:

u:zn—i-l _ 2(1 _ 7,2),“21 + r2(u7n+1 + unmfl) — /U;?w (3529)

and
ot = (3.5.30)
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where r = cAt/Ax. Let u?,; = eP2u? and u?_, = e #2742 where 3 is real. Then
Equation 3.5.29 and Equation 3.5.30 become
A
uttl =2 [1 — 2r?sin? (ﬁQm)] up = vy (3.5.31)
and
ot = (3.5.32)

or in the matrix form

_op2gn2(faz)] _
unt! = (2[1 2r Slm ( > )} 01>u;, (3.5.33)

n

where u}, = (Z?] ) The eigenvalues A of this amplification matriz are given by

m

A
A2 -2 [1 — 22 sin? (6295)] A+1=0, (3.5.34)
or
Ao =1- 2 sin2<ﬁ§x> + 9 sin(ﬂgx> \/r2 sin? (5396) 1. (3.5.35)

Because each successive time step consists of multiplying the solution from the previous
time step by the amplification matrix, the solution is stable only if u}}, remains bounded.
This occurs only if all of the eigenvalues have a magnitude less or equal to one, because

uy = chA"xk = ch)\Zxk, (3.5.36)
k k

where A denotes the amplification matrix and x; denotes the eigenvectors corresponding to
the eigenvalues A;. Equation 3.5.36 follows from our ability to express any initial condition
in terms of an eigenvector expansion

w = chxk. (3.5.37)
k

In our particular example, two cases arise. If 72 sin?(BAz/2) < 1,

A A A
Ao =1-2r"sin’ <B2x) + 2ri sin(62m> \/1 — 72 sin? (T) (3.5.38)

and |A; 2| = 1. On the other hand, if r? sin®(3Az/2) > 1, |A; 2| > 1. Thus, we have stability
only if cAt/Azx < 1.
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» Ax -

Figure 3.5.1: Schematic for finite-differencing a Sturm-Liouville problem into a set of difference equations.
Problems

Find the eigenvalues and corresponding eigenvectors for the following matrices. Check your
answers using MATLAB.

2 -3 1
1.A<§ 22> Q.A(‘;’ _11) 3A=11 -2 1
1 -3 2
010 111 12 1
4. A=(0 0 1 5.A=(0 2 1 6.A=10 3 1
000 00 1 05 -1
4 -5 1 -2 0 1
77A=[1 0 -1 8. A= 3 0 -1
0 1 -1 0 1 1

Project: Numerical Solution of the Sturm-Liouville Problem

You may have been struck by the similarity of the algebraic eigenvalue problem to the
Sturm-Liouville problem. (See Section 6.1.) In both cases nontrivial solutions exist only
for characteristic values of A\. The purpose of this project is to further deepen your insight
into these similarities.

Consider the Sturm-Liouville problem

Yy + Ay =0, y(0) = y(m) = 0. (3.5.39)

We know that it has the nontrivial solutions \,, = m?, y,(x) = sin(mz), where m =
1,2,3,....

Step 1: Let us solve this problem numerically. Introducing centered finite differencing and
the grid shown in Figure 3.5.1, show that

n _2n n—
" Yt (Ay);ry L n=1,2,...,N, (3.5.40)
X
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Table 3.5.1: Eigenvalues Computed from Equation 3.5.42 as a Numerical Approximation
of the Sturm-Liouville Problem, Equation 3.5.39

N A1 A2 A3 A4 As A6 A7

1 0.81057

2 091189 2.73567

3 0.94964 3.24228  5.53491

4 096753 3.50056 6.63156  9.16459

5 097736 3.64756  7.29513  10.94269 13.61289

6 0.98333 3.73855 7.71996 12.13899 16.12040 18.87563

7 098721 3.79857 8.00605 12.96911 17.93217 22.13966  24.95100
8§ 0.98989 3.84016 8.20702 13.56377 19.26430 24.62105 28.98791
20 0.99813 3.97023 8.84993 15.52822 23.85591 33.64694  44.68265
50  0.99972  3.99498 8.97438 15.91922 24.80297 35.59203  48.24538

where Az = 7/(N + 1). Show that the finite-differenced form of Equation 3.5.39 is
I Y1 + 202y, — Py 1 = Ay (3.5.41)
with yo = ynv+1 =0, and h = 1/(Ax).

Step 2: Solve Equation 3.5.41 as an algebraic eigenvalue problem using N = 1,2,.... Show
that Equation 3.5.41 can be written in the matrix form of

2h?  —h? 0 e 0 0 0 U1 U1
—h? 2n? —h* ... 0 0 0 Y2 Y2
0 —h% 2n% ... 0 0 0 Y3 Y3
. . . . . . . . = . (3.5.42)
0 0 0 —h? 2K —h? YN_1 YN_1
0 0 0 e 0 —h? 2h? YN YN

Note that the coefficient matrix is symmetric.

Step 8: You are now ready to compute the eigenvalues. For small N this could be done by
hand. However, it is easier just to write a MATLAB program that will handle any N > 2.
Table 3.5.1 has been provided so that you can check your program.

With your program, answer the following questions: How do your computed eigenvalues
compare to the eigenvalues given by the Sturm-Liouville problem? What happens as you
increase N7 Which computed eigenvalues agree best with those given by the Sturm-Liouville
problem? Which ones compare the worst?

Step 4: Let us examine the eigenfunctions now. Starting with the smallest eigenvalue, use
MATLAB to plot C'y; as a function of x; where y; is the jth eigenvector, j = 1,2,..., N,
x; = iAz, i = 1,2,...,N, and C is chosen so that C?Az Y, y?(x;) = 1. On the same
plot, graph y,(x) = y/2/m sin(jz). Why did we choose C' as we did? Which eigenvectors
and eigenfunctions agree the best? Which eigenvectors and eigenfunctions agree the worst?
Why? Why are there N eigenvectors and an infinite number of eigenfunctions?
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Step 5: The most important property of eigenfunctions is orthogonality. But what do we
mean by orthogonality in the case of eigenvectors? Recall from three-dimensional vectors
we had the scalar dot product

a-b= (lel + a262 + a3b3. (3543)

For n-dimensional vectors, this dot product is generalized to the inner product
n
XY= Ty (3.5.44)
k=1

Orthogonality implies that x -y = 0 if x # y. Are your eigenvectors orthogonal? How
might you use this property with eigenvectors?

Project: Singular Value Decomposition and Linear Least Squares

In the previous section we showed two ways that linear equations can be solved by
factoring the matrix A in Ax = b into a product of two matrices. The LU and QR
decompositions are not the only possible factorization. One popular version rewrites the
square matrix A as PDP~! where D is a diagonal matrix with the n eigenvalues along the
principal diagonal and P contains the eigenvectors in the transition matrix P. MATLAB’s
routine eig yields both D and P via [P,D] = eig(A). See Example 3.6.4. In this project we
focus on singular value decomposition, possibly the most important matrix decomposition
of them all. It is used in signal processing, statistics, and numerical methods and theory.

Singular value decomposition factorizes a matrix A of dimension m x n into the product
of three matrices: A = UDVT, where U is an m x m orthogonal matrix, V is an n x n
orthogonal matrix, and D is an m X n diagonal matrix. The diagonal entries of D are called
the singular values of A. The rank of a matrix equals the number of non-zero singular
values.

Step 1: Consider the matrix A given by

45 —108 36 —45

21 —-68 26 —33
A= 72 =32 -16 24
—-56 64 -8 8
50 =32 -6 10

Using MATLAB’s subroutine svd, confirm that it can factorize the array A into U, D, and
V. Then check that A = UDVT and find the rank of this matrix.

The goal of this project is to find the parameters m and ¢ so that the line y = mx + ¢
gives the best fit to n data points. If there are only two data points, there is no problem
because we could immediately find the slope m and the intercept c¢. However, if n > 2
we cannot hope to choose these coefficients so that the straight line fits them. How does
singular value decomposition come to the rescue?

To find the answer, we begin by noting that each data point (z;,y;) must satisfy the
linear equation mx; + ¢ = y;, or

T 1 rp 1 Y1
2
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Figure 3.5.2: Using 50 “data points,” the singular value decomposition provides a least-squares fit to the
data.

We can write this over-determined system of linear equations Ax = b. Let the residual r be
a vector defined by r = Ax — b. The vector x* that yields the smallest possible residual in
the least-squares sense is ||r|| = ||Ax* — b|| < ||Ax — b||, where || - || denotes the Euclidean
norm. Although a least-squares solution always exists, it might not be unique. However,
the least-squares solution x with the smallest norm ||x|| is unique and equals AT Ax = ATb
or x = (ATA)=tATb. This solution can be found using singular value decomposition as
x = VDy'UTb, where the n x m matrix Dy ' has the diagonal terms:

_1 N 1/2:1‘7 lf Zi > €,
(DO )u _{ 0, otherwise,

even when A is singular or ill-conditioned.

Step 2: In Step 1, we found that the rank for the matrix A is 2. What values of x does
singular value decomposition give if b=(-2446 — 4)T? This solution equals the least-
squares solution of minimum length.

Step 8: Returning to our original goal of finding the best linear fit to data, create data for
your numerical experiment. One way would use the simple line y = maz + ¢ (with arbitrary
chosen values of m and ¢) to create the initial data and then use the random number
generator rand to modify this initial data (both x and y) so that both have “noise.”

Step 4: Construct the array A and column vector y. Using the MATLAB routine svd, find
x=VDy'UTh.

Step 5: Construct the least-squares fit for the data and plot this curve and your data on
the same figure. See Figure 3.5.2.

3.6 SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS

In this section we show how we may apply the classic algebraic eigenvalue problem to
solve a system of ordinary differential equations.
Let us solve the following system:

ZL'/l =2+ 3£U2, (361)
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and
xh = 3x1 + T2, (3.6.2)

where the primes denote the time derivative.
We begin by rewriting Equation 3.6.1 and Equation 3.6.2 in matrix notation:

x' = Ax, (3.6.3)

x:@;) and A:(é f) (3.6.4)

o\ _dfx\ _
()4 (2) 505

Assuming a solution of the form

where

Note that

x = xpet, where Xo = (Z) (3.6.6)

is a constant vector, we substitute Equation 3.6.6 into Equation 3.6.3 and find that
AeMxy = AeMxg. (3.6.7)
Because e does not generally equal zero, we have that
(A—X)xo =0, (3.6.8)

which we solved in the previous section. This set of homogeneous equations is the classic
eigenvalue problem. In order for this set not to have trivial solutions,

det(A—AI)z’lg)‘ 1EA‘:0. (3.6.9)
Expanding the determinant,

(1-X?>=9=0 or A= -24. (3.6.10)
Thus, we have two real and distinct eigenvalues: A = —2 and 4.

We must now find the corresponding xo or eigenvector for each eigenvalue. From
Equation 3.6.8,

(I-=XNa+3b=0, (3.6.11)
and

3a+ (1—-MN)b=0. (3.6.12)
If A = 4, these equations are consistent and yield a = b = ¢;. If A = —2, we have that
a = —b = co. Therefore, the general solution in matrix notation is

X=c G) et + ey (_11> e, (3.6.13)
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To evaluate ¢; and cg, we must have initial conditions. For example, if 21 (0) = 22(0) =

1, then
G)ZQG)*C?(_ll)- (3.6.14)

Solving for ¢; and c3, ¢ = 1, co = 0, and the solution with this particular set of initial

conditions is
X = (}) et (3.6.15)

e Example 3.6.1

Let us solve the following set of linear ordinary differential equations

] = —wo + 13, (3.6.16)
xh =4z — w9 — 43, (3.6.17)
and
Tl = —3w1 — T + 4T3; (3.6.18)
or in matrix form,
0 -1 1 I
xX=(4 -1 —4]|x, x= |z |. (3.6.19)
-3 -1 4 T3
Assuming the solution x = xge’?,
0 -1 1
4 -1 —4 Xp = )\Xo, (3620)
-3 -1 4
or
—A -1 1
4 —1-X -4 |xo=0. (3.6.21)
-3 -1 4—- X
For nontrivial solutions,
—-A -1 1 0 0 1
4 —-1-X -4 |= 4 —4x —-5—-X =4 | =0, (3.6.22)
-3 -1 4— A —34+4X—)X2 3-)X 4-)
and
A=1DA=3)A+1)=0, or A=-1,1,3. (3.6.23)

To determine the eigenvectors, we rewrite Equation 3.6.21 as
—Aa—b+c=0, (3.6.24)

da — (1 +A)b—4c =0, (3.6.25)

and
—3a—b+(4—ANec=0. (3.6.26)
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For example, if A =1,

—a—b+c=0, (3.6.27)
4a — 2b —4c =0, (3.6.28)
and
—3a — b+ 3c=0; (3.6.29)
1
or a = ¢, and b = 0. Thus, the eigenvector for A\ = 11is xg = [ 0 |. Similarly, for A = —1,
1
1 1
xg=| 2 |;and for A =3, x9g = | —1 |. Thus, the most general solution is
1 2
1 1 1
x=c | 0]e+ea|2]etHez| —1|e*. (3.6.30)
1 1 2
O

e Example 3.6.2

Let us solve the following set of linear ordinary differential equations:

x] = x1 — 219, (3.6.31)
and
Th = 2x1 — 3T3; (3.6.32)
or in matrix form,
x’=<§ :§>x, x:(i;) (3.6.33)
Assuming the solution x = xge’?,
(15A _3_3)\>X0:0. (3.6.34)
For nontrivial solutions,
‘1;A —?,_E)\‘:(/\+1)2:O' (3.6.35)

Thus, we have the solution
X =c (1) et (3.6.36)

The interesting aspect of this example is the single solution that the traditional ap-
proach yields because we have repeated roots. To find the second solution, we try the

solution
_fa+tct) _4
X = <b—|—dt>e . (3.6.37)
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We guessed Equation 3.6.37 using our knowledge of solutions to differential equations when
the characteristic polynomial has repeated roots. Substituting Equation 3.6.37 into Equa-
tion 3.6.33, we find that ¢ = d = 2¢9, and a — b = ¢o. Thus, we have one free parameter,
which we choose to be b, and set it equal to zero. This is permissible because Equation

3.6.37 can be broken into two terms: b (1) e~ and ¢ (1 —;tQt) e~ t. The first term can
be incorporated into the ¢y 1 e~t term. Thus, the general solution is
X =c 1 e t+ ey 1 et + 2¢9 1 te . (3.6.38)
1 0 1
d
e Example 3.6.3
Let us solve the system of linear differential equations:
Ty = 2x1 — 329, (3.6.39)
and
rhy = 31 + 2x9; (3.6.40)
or in matrix form,
r_ 2 -3 _ T1
x —(3 9 )x, X—(mz). (3.6.41)
Assuming the solution x = xge*t,
2—-X =3
( 3y /\> xo = 0. (3.6.42)
For nontrivial solutions,
2—-X =3 | _ 2 B
' 3 2_)\‘—(2 A)*+9=0, (3.6.43)
and A =2+ 3. If xg = <Z>, then b = —ai if A =2+ 3¢, and b = a7 if A = 2 — 3¢. Thus,

the general solution is
X =c (_12> et ey (1) e2t=3it (3.6.44)

where ¢ and ¢y are arbitrary complex constants. Using Euler relationships, we can rewrite

Equation 3.6.44 as
_ cos(3t) | o sin(3t) o
X =c3 {sin(3t)} e” + ey ~ cos(3t) e, (3.6.45)

where c3 = ¢1 + ¢ and ¢4 = i(c1 — ¢2). a
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e Example 3.6.4: Diagonalization of a matrix A
Let x1,x%9,---,X, denote the eigenvectors, with corresponding eigenvalues A1, Ao, - -,
An, of an n x n matrix A. If we introduce a matrix X = [x1X2 - - X,,] (the eigenvectors form
the columns of X) and recall that Ax; = A;x;, then
AX = A[x1Xg -+ Xp] = [AX1 AX2 - - AXp] = [AiX1AaXa - ApXy]. (3.6.46)

Therefore, AX = XD, where

M O - 0
0 Ao - 0

D= . . . . . (3.6.47)
0 0 An

Because X has rank n, X! exists and X 'AX = X" 'XD =D. Thus, X 'AX =D isa
process whereby we can diagonalize the matrix A using the eigenvectors of A. Diagonalizable
matrices are of interest because diagonal matrices are especially easy to use. Furthermore,

we note that
D?>=DD=XTAXX1AX = X 1AAX = X1 A%X. (3.6.48)

Repeating this process, we eventually obtain the general result that D™ = X 1A™X.
To verify X 'AX = D, let us use

A= (‘:’ ;‘) (3.6.49)

This matrix has the eigenvalues A1 = 1,5 with the corresponding eigenvectors x; =
(2 1) andxy = (2 —1)". Therefore,

X:(_Q1 ?) and X—I:GZ1 _11/22) (3.6.50)

Therefore,
ca- (I E DY) e
- G?j _11//22) (21 150) = <(1) 2) (3.6.52)

Problems

Find the general solution of the following sets of ordinary differential equations using matrix
technique. You may find the eigenvalues and eigenvectors either by hand or use MATLAB.

1. 2} =21 + 224 xh =211 + 29
2. 2] = a1 — day xh = 311 — 614

! /
3. 2] =21+ 22 x4y = 421 + T2
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4. ) = x1 + bag xh = —2x1 — 629

5. x) = —%xl — 219 xh =211 + %mg.

6. ] = —3x1 — 229 xh = 2x1 + @9

7.2y =x1 — @9 xh = x1 + 3o

8. x} = 3z + 219 xh = -2z — 19

9. 2} = =221 — 1324 xh = 1 + day

10. =} = 3x; — 224 xh = 5y — 31

11. o} = 4x1 — 224 xh = 2521 — 10z

12. o} = —3x; — 4dao xh = 2x1 + @9

13. o} = 3x1 + 42y xh = -2z — 19

14. ) +5x1 + 25+ 322 =0 20 + a1+ axh+22=0

15. 2} —x1 4+ ah — 222 =0 x) — 5wy + 225 —Txe =0

16. o} = x1 — 229 xhb =0 xh = —5x1 + Txs.
17. o} = 22, xh =11 + 23 xh = T3.

18. =) = 3z — 2z3 xh = —x1 + 229 + 23 xh =4z, — 33
19. =} =32 — x5 xh = =221 + 229 + 3 xh = 8x1 — 33

3.7 MATRIX EXPONENTIAL

In the previous section we solved initial-value problems involving systems of linear
ordinary differential equations via the eigenvalue problem. Here we introduce an alternative
method based on the matriz exponential, defined by

eM =T+ At + HA 4+ LARE (3.7.1)
Clearly
=0 =1, and % (eAt) = Aet. (3.7.2)

Therefore, using the matrix exponential function, the solution to the system of homogeneous
linear first-order differential equations with constant coefficients

x = Ax, x(0) = xo, (3.7.3)

is x(t) = e?xq.
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The question now arises as to how to compute this matrix exponential. There are
several methods. For example, from the concept of diagonalization of a matrix (see Example
3.6.4) we can write A = PDP~! where P are the eigenvectors of A. Then,

Afoo(PDpfl)kioo D* — D* 1 _ p.Dp-1
e _ZT_ZPﬁP =P ZF Pt = pePpt (3.7.4)
k=0 k=0 k=0
where
eM 0 0
0 er2 ... 0
e T (3.75)
0 0 - e

Because many software packages contain routines for finding eigenvalues and eigenvectors,
Equation 3.7.4 provides a convenient method for computing e”. In the case of MATLAB,
we just have to invoke the intrinsic function expm(-).

In this section we focus on a recently developed method by Liz,” who improved a
method constructed by Leonard.® The advantage of this method is that it uses techniques
that we have already introduced. We will first state the result and then illustrate its use.

The main result of Liz’s analysis is:

Theorem: Let A be a constant n X n matriz with characteristic polynomial p(A) = A" +
i N" L4+ ey A+ co. Then

eM = () + o)A+ +x, (AT, (3.7.6)
where

1 (1) p1(t)
w2() — B! <p2:(t) , (3.7.7)
ra(t) on(t)
O A ) NIRRT i ()

5o | 2O @ ATV (3.7.8)
enlt) L) o eI

and S = {p1(t), p2(t),...,on(t)} being a fundamental system of solutions for the homoge-
neous linear differential equations whose characteristic equation is the characteristic equa-
tion of A, p(A) = 0. The proof is given in Liz’s paper. Note that for this technique to work,
21(0) =1 and x2(0) = 23(0) = - -+ = 2,(0) = 0.

e Example 3.7.1
Let us illustrate this method of computing the matrix exponential by solving

¥ =2r—y+z (3.7.9)

7 Liz, E., 1998: A note on the matrix exponential. SIAM Rev., 40, 700-702.

8 Leonard, I. E., 1996: The matrix exponential. STAM Rev., 38, 507-512.
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y =3y — 2, (3.7.10)
and
2 =2r+y+ 32 (3.7.11)
The solution to this system of equations is x = e4tx(, where
2 -1 1 x(t)
A=10 3 -1 and x= [ y(t) (3.7.12)
2 1 3 2(t)

The vector x¢ is the value of x(¢) at ¢ = 0.
Our first task is to compute the characteristic polynomial p(A) = 0. This is simply

A-2 1 -1
IM—Al=] 0 X=3 1 |=A-22*X—-4)=0. (3.7.13)
-2 -1 A-3

Consequently, A = 2 twice and A = 4, and the fundamental solutions are S = {e% te? et'}.
Therefore,

ett 4ett 16¢%t
By = | ¢e* 2e?t 4e?t , (3.7.14)
te?t e+ 2te?t  4e*! 4 4te?
and
6 -4 6 1 4 16 -1 0 -4
A= -2 8 —6|,B=(12 4|,B'=(-1 1 3 |. (3715
1 1 1
10 4 10 01 4 TR
The inverse B; ' can be found using either Gaussian elimination or MATLAB.
To find z1(¢), x2(t) and x3(t), we have from Equation 3.7.7 that
x1(t) -1 0 -4 ett et — 4te?t
) |=-1 1 3 et | = e —ett4+3te? |, (3.7.16)
x3(t) i —i -3 te?t gett — e — 2te*
or
z1(t) = e*t — dte?, zo(t) = ' — e + 3te®, a3(t) = 1e* — 162 — Lt (3.7.17)
Note that z1(0) = 1 while 22(0) = z3(0) = 0.
Finally, we have that
1 00 2 -1 1 6 —4 6
M=z (t) |0 1 0 +z@®)|0 3 —1)+zst)[ -2 8 —6]. (3.7.18)
0 01 2 1 3 10 4 10

Substituting for z1(t), x2(t) and x3(t) and simplifying, we finally obtain

. At 4 g2t _ 9pe2t o2t oAt _ o2t
et — 3 et — et 42t 2(t 4 1)e?t 2 — et | (3.7.19)
At g2t 1 g2t 9fe2t At 1 o2t
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. z1(t) = (3e* + $e* — te*) 21(0) — te* z2(0) + (e — Le*') 23(0), (3.7.20)
za(t) = (3 — 2e* +te?) 21(0) + (t + 1)e**z2(0) + (2e* — Le*!) 25(0), (3.7.21)

and
x3(t) = (%e‘“ — 2e* +te?) 21(0) + te*22(0) + (%64t + 3€e*) 25(0). (3.7.22)
O

e Example 3.7.2

The matrix exponential can also be used to solve systems of first-order, nonhomoge-
neous linear ordinary differential equations. To illustrate this, consider the following system
of linear ordinary differential equations:

¥ =z — 4y + e*, (3.7.23)
and
Yy =x+5y+t. (3.7.24)
We can rewrite this system as
x' = Ax + b, (3.7.25)

where

A:G _54>, b:(e;t>7 and x=<Z§3) (3.7.26)

We leave as an exercise the computation of the matrix exponential and find that

3t 3t 3t
At [ et —2te —A4te
et = ( £o3t o3ty 2t63t> . (3.7.27)

Clearly the homogeneous solution is x (t) = eA*C, where C is the arbitrary constant
that is determined by the initial condition. But how do we find the particular solution,
x,(t)? Let x,(t) = eAty(t). Then

x),(t) = Aetty(t) + ey (1), (3.7.28)
x),(t) = Axy(t) + ey (t). (3.7.29)

Therefore,
ety (t) = b(t), or  y(t) =e 4b(t), (3.7.30)

since (eA)fl = e~ 4. Integrating both sides of Equation 3.7.29 and multiplying through by
et we find that

x,(t) = /Ot et =9)b(s) ds = /Ot eb(t — s) ds. (3.7.31)
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Returning to our original problem,
' b /eBs _9ge35  _4ge3s 2(t—s)

Asy (g _ e 2se 4se e
\/O' e b(t S) dS = A < 8635 635 + 28635) ( t—s ) dS (3732)

t 2t (s s 3s

_ e (e’ — 2se®) — 4s(t — s)e

B /0 <62tses T (t — 8)e> + 2s(t — )€ ds (3.7.33)
et =3¢ — Qe — Gt — 5 (3.7.34)

28 3t | 2t | 11,3t _ 1 1
—ﬁe + e + ?te — §t + 27
The final answer consists of the homogeneous solution plus the particular solution.
Problems

Find e“* for the following matrices A:

110
1.A:<(1) ?) 2.A=<3 g) s.4=(0 11
00 1

2 3 4 1 2 0

s A=(0 2 3 5.4=(0 1 2

00 2 00 1

For each of the following A’s and b’s, use the matrix exponential to find the general solution

for the system of first-order, linear ordinary differential equations x’ = Ax + b:

oa=(3 )= (1) ra=(5 5)e=(Y)
S G T % R (O R G

2 1 1 0
10.A:(§ :;),b=<cf’sg))> 1.A=[1 2 1|, b= te
s 11 2 et
1 1 1 ot 1 0 1 —3et
12204=(0 2 1], b=[t+2 13.4=[0 -2 0], b= 6
00 3 3t 4 0 1 —4et
10 2 et 1 1 2 !
4. A=10 1 0],b=|¢ 15.A=(-1 3 4| ,b=|[1
1 0 et 0 0 2 et

Further Readings

Bronson, R., and G. B. Costa, 2007: Linear Algebra: An Introduction. Academic Press,

520 pp. Provides a step-by-step explanation of linear algebra.
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Davis, H. T., and K. T. Thomson, 2000: Linear Algebra and Linear Operators in Engi-
neering with Applications in Mathematica. Academic Press, 547 pp. Advanced textbook
designed for first-year graduate students in the physical sciences and engineering.

Hoffman, J., 2001: Numerical Methods for Engineers and Scientists. Mc-Graw Hill, 823 pp.
A first course in numerical methods that is both lucid and in depth.

Munakata, T., 1979: Matrices and Linear Programming with Applications. Holden-Day,
469 pp. Provides the basic concepts with clarity.

Noble, B., and J. W. Daniel, 1977: Applied Linear Algebra. Prentice Hall, 494 pp. Excellent
conceptual explanations with well-motivated proofs.

Strang, G., 2009: Linear Algebra and Its Applications. Academic Press, 584 pp. A good
supplement to a formal text that provides intuitive understanding.

Wilkinson, J. H., 1988: The Algebraic Figenvalue Problem. Clarendon Press, 662 pp. The
classic source book on the eigenvalue problem



Chapter 4

Vector Calculus

Physicists invented vectors and vector operations to facilitate their mathematical ex-
pression of such diverse topics as mechanics and electromagnetism. In this chapter we focus
on multivariable differentiations and integrations of vector fields, such as the velocity of a
fluid, where the vector field is solely a function of its position.

4.1 REVIEW

The physical sciences and engineering abound with vectors and scalars. Scalars are
physical quantities that only possess magnitude. Examples include mass, temperature,
density, and pressure. Vectors are physical quantities that possess both magnitude and
direction. Examples include velocity, acceleration, and force. We shall denote vectors by
boldfaced letters.

Two vectors are equal if they have the same magnitude and direction. From the limitless
number of possible vectors, two special cases are the zero vector 0, which has no magnitude
and unspecified direction, and the unit vector, which has unit magnitude.

The most convenient method for expressing a vector analytically is in terms of its
components. A vector a in three-dimensional real space is any order triplet of real numbers
(components) ay, as, and ag such that a = a;i + asj + ask, where aji, asj, and azk are
vectors that lie along the coordinate axes and have their origin at a common initial point.
The magnitude, length, or norm of a vector a, |a|, equals \/a? + a3 + a2. A particularly
important vector is the position vector, defined by r = zi + yj + zk.

As in the case of scalars, certain arithmetic rules hold. Addition and subtraction are
very similar to their scalar counterparts:

a+b= (a1 +bi)i+ (a2 +b2)j + (as + b3)k, (4.1.1)
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and
a—b= (a1 - bl)l + (ag - bQ)J + (ag — bg)k (4.1.2)

In contrast to its scalar counterpart, there are two types of multiplication. The dot
product is defined as

a-b = |a|[b|cos(0) = a1bi + azb2 + asbs, (4.1.3)

where 6 is the angle between the vector such that 0 < # < 7. The dot product yields a
scalar answer. A particularly important case is a-b = 0 with |a| # 0, and |b| # 0. In this
case the vectors are orthogonal (perpendicular) to each other.

The other form of multiplication is the cross product, which is defined by a x b =
|a||b] sin(f)n, where 6 is the angle between the vectors such that 0 < § < 7, and n is a unit
vector perpendicular to the plane of a and b, with the direction given by the right-hand
rule. A convenient method for computing the cross product from the scalar components of
aand b is

i j k
as as | . ay as | . aq a9
b= = - k. 4.1.4
a x a1 az as by bt b s 3T by by ( )
b1 by b3

Two nonzero vectors a and b are parallel if and only if a x b = 0.

Most of the vectors that we will use are vector-valued functions. These functions are
vectors that vary either with a single parametric variable ¢ or multiple variables, say z, vy,
and z.

The most commonly encountered example of a vector-valued function that varies with
a single independent variable involves the trajectory of particles. If a space curve is param-
eterized by the equations z = f(¢), y = g(t), and z = h(¢) with a < t < b, the position
vector r(t) = f(t)i+ g(t)j+ h(t)k gives the location of a point P as it moves from its initial
position to its final position. Furthermore, because the increment quotient Ar/At is in the
direction of a secant line, then the limit of this quotient as At — 0, r'(t) gives the tangent
(tangent vector) to the curve at P.

e Example 4.1.1: Foucault pendulum

One of the great experiments of mid-nineteenth-century physics was the demonstration
by J. B. L. Foucault (1819-1868) in 1851 of the earth’s rotation by designing a (spherical)
pendulum, supported by a long wire, that essentially swings in an nonaccelerating coor-
dinate system. This problem demonstrates many of the fundamental concepts of vector
calculus.

The total force! acting on the bob of the pendulum is F = T + mG, where T is
the tension in the pendulum and G is the gravitational attraction per unit mass. Using

Newton’s second law,
d?r T
—_— =—+4+G 4.1.5
e + G, (4.1.5)

inertial m

where r is the position vector from a fixed point in an inertial coordinate system to the bob.
This system is inconvenient because we live on a rotating coordinate system. Employing

1 See Broxmeyer, C., 1960: Foucault pendulum effect in a Schuler-tuned system. J. Aerosp. Sci., 27,
343-347.
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the conventional geographic coordinate system,?> Equation 4.1.5 becomes

d’r dr T
dt2+29 E%—Qx(ﬂxr):E—FG, (4.1.6)
where € is the angular rotation vector of the earth and r now denotes a position vector in
the rotating reference system with its origin at the center of the earth and terminal point at
the bob. If we define the gravity vector g = G — Q x (£ x r), then the dynamical equation
is
2r T
3t2 + 29 x % o +g, (4.1.7)

where the second term on the left side of Equation 4.1.7 is called the Coriolis force.

Because the equation is linear, let us break the position vector r into two separate
vectors: rg and ry, where r = rg + ry. The vector ry extends from the center of the earth
to the pendulum’s point of support, and r; extends from the support point to the bob.
Because rq is a constant in the geographic system,

d? d T
U o0y M

I 41.8
e ot T m T8 (4.1.8)

If the length of the pendulum is L, then for small oscillations r; ~ zi + yj + Lk and
the equations of motion are

d*z dy T
— + 2Q) si - == 4.1.
d?y dr T,
— —2Q == 4.1.10
i SN = ( )
and p T
Y z
2Qcos(A\)— —g= — 4.1.11
cos() L —g ==, (4.1.11)

where A denotes the latitude of the point and (2 is the rotation rate of the earth. The
relationships between the components of tension are T, = T,/L, and T,, = yT,,/L. From
Equation 4.1.11,

dy
dt
Substituting the definitions of T:,c7 y, and Equation 4.1.12 into Equation 4.1.9 and Equation
4.1.10,

T,
— + g =2Qcos(\)— ~ 0. (4.1.12)

g dy
A i - = 4.1.1
o3 + 7% + 2Qsin(A) I 0, ( 3)
and P2 J
y ., 9 T
20 . 4.1.14
Ty~ 20sin(d) - =0 ( )
The approximate solution to these coupled differential equations is
x(t) = Ag cos[Qsin(N)t] sm( g/L ) , (4.1.15)
and
y(t) = Apsin[Qsin(N)¢] sm( g/L ) (4.1.16)

2 For the derivation, see Marion, J. B., 1965: Classical Dynamics of Particles and Systems. Academic
Press, Sections 12.2-12.3.
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Figure 4.1.1: For a two-dimensional field T'(z,y), the gradient is a vector that is perpendicular to the
isotherms T'(z,y) = constant and points in the direction of most rapidly increasing temperatures.

if Q2 < g/L. Thus, we have a pendulum that swings with an angular frequency /g/L.
However, depending upon the latitude A, the direction in which the pendulum swings
changes counterclockwise with time, completing a full cycle in 27 /[Q2sin(\)]. This result is
most clearly seen when A = 7/2 and we are at the North Pole. There the earth is turning
underneath the pendulum. If initially we set the pendulum swinging along the 0° longitude,
the pendulum will shift with time to longitudes east of the Greenwich median. Eventually,
after 24 hours, the process repeats itself. O

Consider now vector-valued functions that vary with several variables. A wvector func-
tion of position assigns a vector value for every value of z, y, and z within some domain.
Examples include the velocity field of a fluid at a given instant:

v =u(x,y, 2)i+v(z,y, 2)j + w(z,y, 2)k. (4.1.17)

Another example arises in electromagnetism where electric and magnetic fields often vary
as a function of the space coordinates. For us, however, probably the most useful example
involves the vector differential operator, del or nabla,

V= a%ci + %j + %k, (4.1.18)
which we apply to the multivariable differentiable scalar function F(x,y,z) to give the
gradient VF.

An important geometric interpretation of the gradient-one which we shall use frequent-
ly-is the fact that V f is perpendicular (normal) to the level surface at a given point P. To
prove this, let the equation F(x,y,z) = c describe a three-dimensional surface. If the
differentiable functions x = f(t), y = g(t), and z = h(t) are the parametric equations of a
curve on the surface, then the derivative of F[f(t), g(t), h(t)] = c is

OF dx OFdy OFdz
— L =TT = 41.1
Ox dt ~ Oy dt 0z dt 0, ( %)

or
VF-r' =0. (4.1.20)

When r’ # 0, the vector VF' is orthogonal to the tangent vector. Because our argument
holds for any differentiable curve that passes through the arbitrary point (x,y, z), then VF
is normal to the level surface at that point.
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Figure 4.1.1 gives a common application of the gradient. Consider a two-dimensional
temperature field T'(x,y). The level curves T'(z,y) = constant are lines that connect points
where the temperature is the same (isotherms). The gradient in this case VT is a vector that
is perpendicular or normal to these isotherms and points in the direction of most rapidly
increasing temperature.

e Example 4.1.2

2

Let us find the gradient of the function f(z,y, z) = 2222 sin(4y).

Using the definition of gradient,

d[x?2? sin(4y)]

O[x?2? sin(4y)]j N O[x?2? sin(4y))]

Vf = i k 4.1.21
/ or 1t Oy 0z ( )
= 2x2” sin(4y)i + 42222 cos(4y)j + 2222z sin(4y k. (4.1.22)
O

e Example 4.1.3

Let us find the unit normal to the unit sphere at any arbitrary point (z,y, 2).
The surface of a unit sphere is defined by the equation f(x,y,2) = 22 +y? + 2% = 1.
Therefore, the normal is given by the gradient

N = Vf = 2zi + 2yj + 22k, (4.1.23)

and the unit normal

Y 221 + 2y + 22k
R (4.1.24)

AVl Az 42 422

because 2% + y? + 22 = 1. a

e Example 4.1.4

In Figure 4.1.2, MATLAB has been used to illustrate the unit normal of the surface
z =4 — 2% —y? Here f(z,y,2) = 2+ 2> +y> = 4 so that Vf = 2zi + 2yj + k. The
corresponding script is:
clear Y, clear variables
clf 7 clear figures
[x,y] = meshgrid(-2:0.5:2); % create the grid
z=4-x."2 - y.”2; } compute surface within domain
% compute the gradient of f(x,y,z) =z + x"2 + y™2 = 4
% the x, y, and z components are u, v, and w
u = 2%x; v =2%y; w=1;
% find magnitude of gradient at each point
magnitude = sqrt(u.*u + v.*v + w.*w);
% compute unit gradient vector
u = u./magnitude; v = v./magnitude; w = w./magnitude;
mesh(x,y,z) % plot the surface
axis square
xlabel(’x’); ylabel(’y’)
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-2

Figure 4.1.2: MATLAB plot of the function z = 4 — 22 — y2. The arrows give the unit normal to this
surface.

hold on
% plot the unit gradient vector
quiver3(x,y,z,u,v,w,0)

This figure clearly shows that gradient gives a vector which is perpendicular to the
surface. O

A popular method for visualizing a vector field F is to draw space curves that are
tangent to the vector field at each z, y, z. In fluid mechanics these lines are called streamlines
while in physics they are generally called lines of force or flux lines for an electric, magnetic,
or gravitational field. For a fluid with a velocity field that does not vary with time, the
streamlines give the paths along which small parcels of the fluid move.

To find the streamlines of a given vector field F with components P(z,y, z), Q(z,y, z),
and R(x,y,z), we assume that we can parameterize the streamlines in the form r(¢) =
x(t)i+ y(t)j + z(t)k. Then the tangent line is r'(t) = 2'(¢)i + y'(¢)j + 2’ (¢t)k. Because the
streamline must be parallel to the vector field at any ¢, r/(¢t) = AF, or

dx dy dz
E - )\P(LL',Z[/,Z), E - )‘Q(xvsz)v and E - )\R(l’,il/,Z), (4125)
or
dx dy dz

P(z,y.2)  Qx,y.2) R(z,y.2) (4.1.26)

The solution of this system of differential equations yields the streamlines.
e Example 4.1.5

Let us find the streamlines for the vector field F = sec(z)i — cot(y)j + k that passes
through the point (7/4,m,1). In this particular example, F represents a measured or com-
puted fluid’s velocity at a particular instant.

From Equation 4.1.26,

dx dy dz
= — ==, 4.1.2
sec(x) cot(y) 1 ( ")
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This yields two differential equations:

cos(z)dx = (sjlor;((z)) dy, and dz= 2)1;2//)) dy. (4.1.28)
Integrating these equations gives
sin(z) =1In|cos(y)| + ¢1, and z=In|cos(y)| + ca. (4.1.29)
Substituting for the given point, we finally have that
sin(z) = In|cos(y)| + v2/2, and =z =In|cos(y)| + 1. (4.1.30)
O

e Example 4.1.6

Let us find the streamlines for the vector field F = sin(z)j 4+ e?k that passes through
the point (2,0,0).
From Equation 4.1.26,
dx dy  dz

T e o (4.1.31)
This yields two differential equations:
dx =0, and sin(z) dz = e¥ dy. (4.1.32)
Integrating these equations gives
T =cy, and eV = —cos(z) + co. (4.1.33)
Substituting for the given point, we finally have that
x =2, and eV =2 — cos(z). (4.1.34)

Note that Equation 4.1.34 only applies for a certain strip in the yz-plane.
Problems

Given the following vectors a and b, verify that a- (ax b) =0, and b- (ax b) =0:

l.a=4i-2j+5k, b=3i+j—-k 2.a=i-3j+k, b=2i+4k

3.a=i+j+k, b=-51+2j+3k 4. a=8i+j—6k, b=i-2j+10k

5. a=2i+7j—4k, b=i+j—k.

6. Proveax (bxc)=(a-c)b—(a-b)c.

7. Proveax (bxc)+bx(cxa)+cx(axb)=0.
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Find the gradient of the following functions:

8. f(z,y,2) = xy?/23 9. f(z,y,2) = xycos(yz) 10. f(z,y,2) = In(2? + y* + 22)
11. f(z,y, 2) = 22y%(22 + 1)? 12. f(2,y,2) = 22 — y? + 2.

Use MATLAB to illustrate the following surfaces as well as the unit normal.

13.2=3 14. 22+ =4 15. z = 22 + ¢2 16. z = /22 + 92

17. 2 =y 8. z4+y+2=1 19. z = 22

Find the streamlines for the following vector fields that pass through the specified point:
20 F=i+j+k;(0,1,1) 21. F = 2i — y?j + zk; (1,1,1)

22. F = 32%i — y?j + 2%k; (2,1,3) 23. F = 2% + %) — 2°k; (1,1,1)

24. F = (1/2)i+ e¥j — k; (2,0,4).

25. Solve the differential equations, Equation 4.1.13 and Equation 4.1.14 with the initial
conditions z(0) = y(0) = y/(0) = 0, and 2/(0) = Ag+/g/L assuming that O? < g/L.

26. If a fluid is bounded by a fixed surface f(x,y,z) = ¢, show that the fluid must satisfy
the boundary condition v - Vf = 0, where v is the velocity of the fluid.

27. A sphere of radius a is moving in a fluid with the constant velocity u. Show that the
fluid satisfies the boundary condition (v —u) - (r — ut) = 0 at the surface of the sphere, if
the center of the sphere coincides with the origin at ¢ = 0 and v denotes the velocity of the
fluid.

4.2 DIVERGENCE AND CURL

Consider a vector field v defined in some region of three-dimensional space. The func-
tion v(r) can be resolved into components along the i, j, and k directions, or

v(r) = u(z,y, 2)i+v(z,y,2)j + w(z,y, 2)k. (4.2.1)

If v is a fluid’s velocity field, then we can compute the flow rate through a small (differential)
rectangular box defined by increments (Axz, Ay, Az) centered at the point (x,y,z). See
Figure 4.2.1. The flow out from the box through the face with the outwardly pointing
normal n = —j is

v (=) = —v(z,y — Ay/2,2) AzAz, (4.2.2)

and the flow through the face with the outwardly pointing normal n = j is
v-j=v(z,y+ Ay/2,2)AxAz. (4.2.3)
The net flow through the two faces is

(z,y+ Ay/2,2) —v(z,y — Ay/2, 2)|AxAz = vy (2, y, z) AxAyAz. (4.2.4)
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Figure 4.2.1: Divergence of a vector function v(z,y, z).

A similar analysis of the other faces and combination of the results give the approximate
total flow from the box as

[uz(z,y,2) + vy (2, Y, 2) + w.(x,y, 2)| AzAyAz. (4.2.5)

Dividing by the volume AxAyAz and taking the limit as the dimensions of the box tend
to zero yield ug +vy +w, as the flow out from (z,y, z) per unit volume per unit time. This
scalar quantity is called the divergence of the vector v:

div(v) =V -v= ((fxi+ %J + ik) (Ul + vj + wk) = ugy + vy + w,. (4.2.6)
Thus, if the divergence is positive, either the fluid is expanding and its density at the point
is falling with time, or the point is a source at which fluid is entering the field. When the
divergence is negative, either the fluid is contracting and its density is rising at the point,
or the point is a negative source or sink at which fluid is leaving the field.

If the divergence of a vector field is zero everywhere within a domain, then the flux
entering any element of space exactly balances that leaving it and the vector field is called
nondivergent or solenoidal (from a Greek word meaning a tube). For a fluid, if there are no
sources or sinks, then its density cannot change.

Some useful properties of the divergence operator are

V- F+G)=V-F+V-G, (4.2.7)
V- (¢F)=¢V -F+F -Vop (4.2.8)

and
Vch =V VY= re + Pyy + @2z (4.2.9)

Equation 4.2.9 is very important in physics and is given the special name of the Laplacian.?

e Example 4.2.1
If F = 222i — 2¢32%j + 23?2k, compute the divergence of F.

0 0 0
V.-F= g(m?z) + a—y(—2y3z2) + a(xygz) = 2xz — 6y%2% + xy?. (4.2.10)

3 Some mathematicians write A instead of V2.
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. +$+ I /E/

—
no divergence divergence no divergence divergence
no curl no curl curl and curl

Figure 4.2.2: Examples of vector fields with and without divergence and curl.

O
e Example 4.2.2
If r = 2i + yj + 2k, show that r/|r|® is nondivergent.
v.(f)-2 v L9 y
w[3) Oz [ (22 +y2+22)%2] Oy | (22 +y? + 22)3/2
0 z

+ B {(xg F 2+ Zz)g/z] (4.2.11)

_ 3 322 + 3y% + 322 B
R T e T R (4.2.12)
O

Another important vector function involving the vector field v is the curl of v, written
curl(v) or rot(v) in some older textbooks. In fluid flow problems it is proportional to the
instantaneous angular velocity of a fluid element. In rectangular coordinates,

curl(v) =V x v = (wy —v)i+ (0 — wy)j + (vz — uy)k, (4.2.13)

where v = ui 4+ vj + wk as before. However, it is best remembered in the mnemonic form:

i 5k
VxF= 6% a% a% = (wy — )i+ (uy —wz)j+ (vz — uy)k. (4.2.14)
U v w

If the curl of a vector field is zero everywhere within a region, then the field is irrotational.

Figure 4.2.2 illustrates graphically some vector fields that do and do not possess diver-
gence and curl. Let the vectors that are illustrated represent the motion of fluid particles.
In the case of divergence only, fluid is streaming from the point, at which the density is
falling. Alternatively the point could be a source. In the case where there is only curl,
the fluid rotates about the point and the fluid is incompressible. Finally, the point that
possesses both divergence and curl is a compressible fluid with rotation.

Some useful computational formulas exist for both the divergence and curl operations:

VX(F+G)=VxF+VxG, (4.2.15)

V x Vo =0, (4.2.16)
V.-VxF=0, (4.2.17)
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VX (pF)=pV xF+ Ve xF, (

VF-G)=F - V) G+ (G-V)F+Fx (VxG)+Gx (VxF), (4.2.19
Vx(FxG)=(G-V)F-(F-V)G+F(V-G)-G(V-F), (
Vx(VxF)=V(V-F)—(V-V)F (

and
V.- (FxG)=G-VxF—-F -VxG. (4.2.22)

In this book the operation VF is undefined.
e Example 4.2.3

If F = 22%i — 22%yzj + 2yz*k, compute the curl of F and verify that V-V x F = 0.
From the definition of curl,

i j k
VxF=|& & £ (4.2.23)
xz3 —22%yz 2yt
= |% (0= = & (-20%2) [ 1= [ (202) = & (o))
+ 2 (~20%y2) - & (22%)| (4.2.24)
= (22" + 22%y)i — (0 — 322°)j + (—4zyz — 0)k (4.2.25)
= (22% 4 22%9)i + 3x2%j — dayzk. (4.2.26)

From the definition of divergence and Equation 4.2.26,

3 3xz2) + 3

0
V-VxF=_—-— 8y( Bz(

637(2Z4 +22%y) +

—4ayz) =4dzy+0— 4oy =0. (4.2.27)
O

e Example 4.2.4: Potential flow theory

One of the topics in most elementary fluid mechanics courses is the study of irrotational
and nondivergent fluid flows. Because the fluid is irrotational, the velocity vector field v
satisfies V x v.= 0. From Equation 4.2.16 we can introduce a potential ¢ such that
v = V. Because the flow field is nondivergent, V - v = V2?¢ = 0. Thus, the fluid flow
can be completely described in terms of solutions to Laplace’s equation. This area of fluid
mechanics is called potential flow theory.

Problems

Compute V-F,V xF, V- (V x F), and V(V - F), for the following vector fields:
1. F = 2221 + y2%j + zy’k 2. F =42%y?i + (22 + 2y2)j + (32 + y?)k
3. F=(z—y)%i+e %j+aze?k 4. F = 3ayi + 222%j + y°k

5. F = byzi + 2%2j + 32°k 6. F =%+ (239% — 29)j — (23yz — 22)k
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7. F = ze Yi+y2%j + 3e 7k 8. F =yln(z)i+ (2 —3yz2)j+ 2yz’k
9. F = ayzi + 23yze®j + zye’k 10. F = (zy® — 21)i + 4aty?2j — y*2°k
11. F = zy?i + 2y2?%j + vy cos(z)k 12. F = zy?i + 2y2?%j + xysin(2)k

13. F = xy?i + xyzj + wy cos(2)k
14. (a) Assuming continuity of all partial derivatives, show that
Vx(VxF)=V(V-F)-V°F.
(b) Using F = 3xyi + 4yzj + 2zzk, verify the results in part (a).

15. f E = E(z,y, 2,t) and B = B(x, y, 2,t) represent the electric and magnetic fields in a
vacuum, Maxwell’s field equations are:

V-E =0, VXE:—la—B,
c Ot
V-B=0, VxB:la—E,
c Ot

where c is the speed of light. Using the results from Problem 14, show that E and B satisfy

1 6°B
T2 o T2 o

16. If f and g are continuously differentiable scalar fields, show that V f x Vg is solenoidal.
Hint: Show that Vf x Vg =V x (fVg).

17. An inviscid (frictionless) fluid in equilibrium obeys the relationship Vp = pF, where
p denotes the density of the fluid, p denotes the pressure, and F denotes the body forces
(such as gravity). Show that F-V x F = 0.

4.3 LINE INTEGRALS

Line integrals are ubiquitous in physics. In mechanics they are used to compute work.
In electricity and magnetism, they provide simple methods for computing the electric and
magnetic fields for simple geometries.

The line integral most frequently encountered is an oriented one in which the path C
is directed and the integrand is the dot product between the vector function F(r) and the
tangent of the path dr. It is usually written in the economical form

/ F.dr= / P(x,y,z)dx + Q(z,y,2) dy + R(z,y, z) dz, (4.3.1)
c c

where F = P(z,y, 2)i+ Q(z,y, 2)j + R(x,y, z)k. If the starting and terminal points are the
same so that the contour is closed, then this closed contour integral will be denoted by 550‘
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Figure 4.3.1: Diagram for the line integration in Example 4.3.1.

In the following examples we show how to evaluate the line integrals along various types of
curves.

e Example 4.3.1

If F = (322 + 6y)i — 14y2j + 20222k, let us evaluate the line integral fc F - dr along
the parametric curves x(t) = t, y(t) = t?, and z(t) = ¢ from the point (0,0,0) to (1,1,1).
Using the MATLAB commands
>> clear
>>t = 0:0.02:1
>> stem3(t,t."2,t.73); xlabel(’x’,’Fontsize’,20);

ylabel(’y’,’Fontsize’,20); zlabel(’z’,’Fontsize’,20);

we illustrate these parametric curves in Figure 4.3.1.

We begin by finding the values of ¢, which give the corresponding endpoints. A quick
check shows that ¢ = 0 gives (0,0,0) while ¢ = 1 yields (1,1,1). It should be noted that
the same value of ¢t must give the correct coordinates in each direction. Failure to do so
suggests an error in the parameterization. Therefore,

/ F.dr= /1(3t2 + 6t2) dt — 14t (%) d(t?) + 20t (t3)?d(t?) (4.3.2)
c 0

1
= / 9f dt — 2816 dt + 60¢° dt = (3t* — 47 + 6t'°) |, = 5. (4.3.3)
0

a

e Example 4.3.2

Let us redo the previous example with a contour that consists of three “dog legs,”
namely straight lines from (0,0, 0) to (1,0,0), from (1,0,0) to (1,1,0), and from (1, 1,0) to
(1,1,1). See Figure 4.3.2.

In this particular problem we break the integration down into integrals along each of

the legs:
/F~dr:/ F-dr—l—/ F~dr+/ F - dr. (4.3.4)
C C1 Cs Cs
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A

<

(1,1,1)

(0,0,0)

(1,0,0)
x

(1,1,0)
Figure 4.3.2: Diagram for the line integration in Example 4.3.2.

For C1,y =2 =dy =dz =0, and

1 1
/ F-dr:/(3x2+6-0)d:v—14~O-0-0+20x-02-O:/ 32%dr=1. (4.3.5)
C1 0 0

For Cy, x =1 and z = dx = dz = 0, so that

1
/ F-dr:/(3~12+6y)-0—14y-0-dy+20~1-02-0:0. (4.3.6)
CQ 0
For C3, x =y =1 and dz = dy = 0, so that

1 1
/ F-dr:/(3~12+6~1)~0—14-1-z~0+20~1o22dz:/ 202°dz = 2. (4.3.7)
Cs 0 0

Therefore,

/ F.dr=2%. (4.3.8)
c

O
e Example 4.3.3

For our third calculation, we redo the first example where the contour is a straight line.
The parameterization in this case is t =y = z =t with 0 < ¢ < 1. See Figure 4.3.3. Then,

1
/ F.dr = / (3t% + 6t) dt — 14(t)(t) dt + 20t(t)* dt (4.3.9)
C 0
1
= /O (3% + 6t — 141 +20t%) dt = 13. (4.3.10)
(|

An interesting aspect of these three examples is that, although we used a common
vector field and moved from (0,0, 0) to (1,1,1) in each case, we obtained a different answer
in each case. Thus, for this vector field, the line integral is path dependent. This is generally
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Figure 4.3.3: Diagram for the line integration in Example 4.3.3.

true. In the next section we will meet conservative vector fields where the results will be
path independent.

e Example 4.3.4

If F = (2% +y?)i — 2xyj + 2k, let us evaluate [, F - dr if the contour is that portion of
the circle 22 4+ y? = a? from the point (a, 0, 3) to (—a,0,3). See Figure 4.3.4.

The parametric equations for this example are z = acos(d), de = —a sin(0) df, y =
asin(f), dy = acos() df, z = 3, and dz = 0 with 0 < 6 < 7. Therefore,

/ F.dr = / 102 cos2(9) + a? sin?(0)][—asin(0) df]
C 0

— 2a? cos(0) sin(6)[a cos(0) db] + acos(f) - 0 (4.3.11)

= —a3/ sin(6) do — 2a3/ cos?(6) sin(0) d (4.3.12)
0 0

= cos(9)|g + 2a® cosij’(0)|z)T = —2a® — 30 = —a?. (4.3.13)

O

e Example 4.3.5: Circulation

Let v(x,y, z) denote the velocity at the point (x,y,z) in a moving fluid. If it varies
with time, this is the velocity at a particular instant of time. The integral 5§C v-dr around a
closed path C'is called the circulation around that path. The average component of velocity
along the path is

_— $o vs ds _ fcv-dr7

s
S S

(4.3.14)

where s is the total length of the path. The circulation is thus §C v - dr = 748, the product
of the length of the path and the average velocity along the path. When the circulation is
positive, the flow is more in the direction of integration than opposite to it. Circulation is
thus an indication and to some extent a measure of motion around the path.
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(a,0,3) oh

X

Figure 4.3.4: Diagram for the line integration in Example 4.3.4.
Problems
Evaluate | o F - dr for the following vector fields and curves:

1. F = ysin(n2)i+ 22e¥j + 3xzk and C is the curve x = t, y = t2, and z = t* from (0,0, 0)
to (1,1,1). Use MATLAB to illustrate the parametric curves.

2. F =yi+ zj + ak and C consists of the line segments from (0,0, 0) to (2,3,0), and from
(2,3,0) to (2,3,4). Use MATLAB to illustrate the parametric curves.

3. F = ei + ze®j + xye®™?k and C is the curve z = t, y = 2, and z = 3 with 0 < ¢ < 2.
Use MATLAB to illustrate the parametric curves.

4. F = yzi + x2j + zyk and C is the curve z = 3, y = t2, and z = ¢ with 1 <t < 2. Use
MATLAB to illustrate the parametric curves.

5. F = yi — xj + 3zyk and C consists of the semicircle 22 + 32 =4, 2 = 0, y > 0, and the
line segment from (—2,0,0) to (2,0,0). Use MATLAB to illustrate the parametric curves.

6. F = (z +2y)i+ (6y — 22)j and C consists of the sides of the triangle with vertices
at (0,0,0), (1,1,1), and (1,1,0). Proceed from (0,0,0) to (1,1,1) to (1,1,0) and back to
(0,0,0). Use MATLAB to illustrate the parametric curves.

7. F = 2xzi+4y%j+2%k and C is taken counterclockwise around the ellipse 22 /4+y2/9 = 1,
z = 1. Use MATLAB to illustrate the parametric curves.

8. F = 2zi+ yj + zk and C is the contour z = ¢, y = sin(t), and z = cos(t) + sin(t) with
0 <t < 27. Use MATLAB to illustrate the parametric curves.

9. F = (2y? + 2)i + 4ayj + 2k and C is the spiral 2 = cos(t), y = sin(t), and z = t
with 0 < ¢ < 27 between the points (1,0,0) and (1,0,27). Use MATLAB to illustrate the
parametric curves.

10. F = 2%i + y2j + (22 + 22y)k and C consists of the edges of the triangle with vertices
at (0,0,0), (1,1,0), and (0,1,0). Proceed from (0,0,0) to (1,1,0) to (0,1,0) and back to
(0,0,0). Use MATLAB to illustrate the parametric curves.
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4.4 THE POTENTIAL FUNCTION

In Section 4.2 we showed that the curl operation applied to a gradient produces the
zero vector: V x Ve = 0. Consequently, if we have a vector field F such that VxF =0
everywhere, then that vector field is called a conservative field and we can compute a
potential ¢ such that F = V.

e Example 4.4.1
Let us show that the vector field F = ye™ cos(z)i + xze®¥ cos(z)j — e*¥ sin(z)k is con-

servative and then find the corresponding potential function.
To show that the field is conservative, we compute the curl of F or

i J k
3 9 9
ye*¥ cos(z) xe™cos(z) —e®¥sin(z)

To find the potential we must solve three partial differential equations:

vr = ye™cos(z) =F -1, (4.4.2)

o, = ze® cos(z) = F - j, (4.4.3)
and

v, = —€e"sin(z) =F - k. (4.4.4)

We begin by integrating any one of these three equations. Choosing Equation 4.4.2,
o(x,y,z) = e cos(z) + f(y, 2). (4.4.5)
To find f(y, z) we differentiate Equation 4.4.5 with respect to y and find that
oy = xe™ cos(z) + fy(y, z) = xze™ cos(z) (4.4.6)
from Equation 4.4.3. Thus, f, =0 and f(y, z) can only be a function of z, say ¢g(z). Then,
o(x,y,z) = e cos(z) + g(2). (4.4.7)

Finally,
2 = —e"sin(z) + () = "V sin(2) (4.4.8)

from Equation 4.4.4 and ¢’(z) = 0. Therefore, the potential is

o(x,y, z) = €™ cos(z) + constant. (4.4.9)

Potentials can be very useful in computing line integrals, because

/F~dr:/ <p$d$+<pydy—|—4pzdz:/d(p:(p(B)—go(A), (4.4.10)
c c c
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where the point B is the terminal point of the integration while the point A is the starting
point. Thus, any path integration between any two points is path independent.
Finally, if we close the path so that A and B coincide, then

f{ F - dr = 0. (4.4.11)
C

It should be noted that the converse is not true. Just because fCF -dr = 0, we do not
necessarily have a conservative field F.

In summary then, an irrotational vector in a given region has three fundamental prop-
erties: (1) its integral around every simply connected circuit is zero, (2) its curl equals zero,
and (3) it is the gradient of a scalar function. For continuously differentiable vectors, these
properties are equivalent. For vectors that are only piece-wise differentiable, this is not
true. Generally the first property is the most fundamental and is taken as the definition of
irrotationality.

e Example 4.4.2

Using the potential found in Example 4.4.1, let us find the value of the line integral
Jo F - dr from the point (0,0,0) to (—1,2,).
From Equation 4.4.9,

(=1,2,m)
/ F - dr = [¢" cos(z) + constant] =—1-e?2 (4.4.12)
c (0,0,0)

Problems

Verify that the following vector fields are conservative and then find the corresponding
potential:

1.F = 2zyi + (22 + 2y2)j + (v® + )k 2.F = (22 +2ze®®)i+ (2y — 1)j + e**k
3.F =yzi+ xzj + zyk 4.F = 2xi + 3y%j + 423k
5.F = [2zsin(y) + €3*]i + 2% cos(y)j + (3ze>* + 4)k 6.F = (2x + 5)i+ 3y?%j + (1/2)k
7.F = e?%i + 3y2%j + 2ze**k 8F =yi+ (z+2)j + vk
9F = (z+ y)i+ zj + zk.
4.5 SURFACE INTEGRALS

Surface integrals appear in such diverse fields as electromagnetism and fluid mechanics.
For example, if we were oceanographers we might be interested in the rate of volume of
seawater through an instrument that has the curved surface S. The volume rate equals
[JsVv -ndo, where v is the velocity and ndo is an infinitesimally small element on the

surface of the instrument. The surface element n do must have an orientation (given by n)
because it makes a considerable difference whether the flow is directly through the surface
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Figure 4.5.1: Diagram for the surface integration in Example 4.5.1.

or at right angles. In the special case when the surface encloses a three-dimensional volume,
then we have a closed surface integral.

To illustrate the concept of computing a surface integral, we will do three examples
with simple geometries. Later we will show how to use surface coordinates to do more
complicated geometries.

e Example 4.5.1

Let us find the flux out the top of a unit cube if the vector field is F = xi + yj + zk.
See Figure 4.5.1.

The top of a unit cube consists of the surface z =1 with0 <z <1l and 0 <y <1. By
inspection the unit normal to this surface is n = k, or n = —k. Because we are interested
in the flux out of the unit cube, n = k, and

11
//Fonda:/ / (ri+yj+ k) -kdrdy =1, (4.5.1)
S o Jo

because z = 1. O
e Example 4.5.2

Let us find the flux out of that portion of the cylinder y? + 22 = 4 in the first octant
bounded by x = 0, z = 3, y = 0, and z = 0. The vector field is F = xi 4+ 2zj + yk. See
Figure 4.5.2.

Because we are dealing with a cylinder, cylindrical coordinates are appropriate. Let
y = 2cos(#), z = 2sin(f), and z = z with 0 < § < 7/2. To find n, we use the gradient in
conjunction with the definition of the surface of the cylinder f(z,y, z) = y?+ 22 = 4. Then,

2uj + 22k
0 Vi  2yj+2z _ Yl Ay

TV T Ymp a2 2

because y? + 22 = 4 along the surface. Since we want the flux out of the surface, then
n = yj/2 + zk/2, whereas the flux into the surface would require n = —yj/2 — zk/2.
Therefore,

(4.5.2)

F-n = (zi+ 2zj + yk) - (% + gk) = % = 6 cos(0) sin(h). (4.5.3)
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Figure 4.5.2: Diagram for the surface integration in Example 4.5.2.

What is do? Our infinitesimal surface area has a side in the x direction of length dx and
a side in the 6 direction of length 2 df because the radius equals 2. Therefore, do = 2 dx df.
Bringing all of these elements together,

3 pm/2 3 /2 3
//F-ndaz/ / 12cos(0)sin(9)d9d$:6/ [sin2(9)|0 ] d:c:6/ dx = 18.
s 0o Jo 0 0
(4.5.4)

As counterpoint to this example, let us find the flux out of the pie-shaped surface at
x = 3. In this case, y = rcos(), z = rsin(f), and

/2 p2 /2 p2
//F-ndaz/ / [3i+2rsin(9)j—|—rcos(9)k}~irdrd9:3/ / rdrdf = 3.
s 0 0 0 0
(4.5.5)

O

e Example 4.5.3

Let us find the flux of the vector field F = y2i + 22j + 5zk out of the hemispheric
surface 22 + y? + 22 = a?, z > 0. See Figure 4.5.3.

We begin by finding the outwardly pointing normal. Because the surface is defined by
fz,y,2) = 2® +y° + 22 = a?,

2xi+ 2yj + 2zk
no Y/ _ eItk oz oy F (4.5.6)
a a

IVl 422 + 442+ 422 a
because 22+ y? + 22 = a%. This is also the outwardly pointing normal since n = r/a, where
r is the radial vector.

Using spherical coordinates, © = acos(p)sin(f), y = asin(p)sin(f), and z = a cos(h),
where ¢ is the angle made by the projection of the point onto the equatorial plane, measured
from the z-axis, and 6 is the colatitude or “cone angle” measured from the z-axis. To
compute do, the infinitesimal length in the 6 direction is a df while in the ¢ direction it

is a sin(#) dp, where the sin(6) factor takes into account the convergence of the meridians.
Therefore, do = a?sin() df dip, and

S Y T 2N o
F-ndo = (y*i+ 2%j + 5zk) (—1 +Zj+ —k) a”sin(f) df dy (4.5.7)
S 0 0 a a a
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X

Figure 4.5.3: Diagram for the surface integration in Example 4.5.3.

27 pm/2 2 2 2
// F-ndo = / (% +IY 5i)a2 sin(f) df de (4.5.8)
s o Jo

a ¢

/2 27
/0 /0 [a* cos(¢) sin® () sin’(0)

+ a” cos®(ip) sin(y) sin®(0) + 5a® cos®(0) sin(0)] dp df  (4.5.9)
/2 at 27
/ {— sin®(p) sin®(6)
0 3 0

27 &4
sin? () — 3 cos®(p)

0
+ 5a® cos?(0) sin(9)30|§ﬂ} de (4.5.10)

/2 3
10

= % (45.11)

. 3

/2 3
= 1071'(13/ cos?(6) sin(6) df = — 107;@ cos®()
0

O

Although these techniques apply for simple geometries such as a cylinder or sphere, we
would like a general method for treating any arbitrary surface. We begin by noting that
a surface is an aggregate of points whose coordinates are functions of two variables. For
example, in the previous example, the surface was described by the coordinates ¢ and 6.
Let us denote these surface coordinates in general by u and v. Consequently, on any surface
we can reexpress z, ¥, and z in terms of v and v: z = z(u,v), y = y(u,v), and z = z(u,v).

Next, we must find an infinitesimal element of area. The position vector to the surface
is r = z(u,v)i+ y(u,v)j + z(u,v)k. Therefore, the tangent vectors along v = constant, r,,
and along u = constant, r,, equal

Ty, = Tul + yud + 20k, (4.5.12)

and
ry, = Tl + yuj + 2k (4.5.13)

Consequently, the sides of the infinitesimal area are r,, du and r, dv. Therefore, the vectorial
area of the parallelogram that these vectors form is

ndo =r, X r,dudv (4.5.14)
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X (2,0,0)

Figure 4.5.4: Diagram for the surface integration in Example 4.5.4.

and is called the vector element of area on the surface. Thus, we may convert F - ndo into
an expression involving only u and v and then evaluate the surface integral by integrating
over the appropriate domain in the uv-plane. Of course, we are in trouble if r,, x r, = 0.
Therefore, we only treat regular points where r, x r, # 0. In the next few examples, we
show how to use these surface coordinates to evaluate surface integrals.

e Example 4.5.4
Let us find the flux of the vector field F = xi + yj + zk through the top of the plane

3z + 2y + z = 6, which lies in the first octant. See Figure 4.5.4.
Our parametric equations are z = u, y = v, and z = 6 — 3u — 2v. Therefore,

r =ui+vj+ (6 —3u—20v)k, (4.5.15)
so that
r,=i—3k, r,=j— 2k, (4.5.16)
and
r, Xr, =3i+2j+k. (4.5.17)

Bring all of these elements together,

2 3-3u/2 2 3-3u/2
//F-nda:/ / (3u+2v+6—3u—2v)dvdu:6/ / dvdu (4.5.18)
s 0o Jo o Jo

2
= 6/ (3 3u/2)du=6 (3u— 3u?)| = 18. (4.5.19)
0

To set up the limits of integration, we note that the area in w, v space corresponds to the
zy-plane. On the zy-plane, z = 0 and 3u + 2v = 6, along with boundaries u = v = 0. a

e Example 4.5.5

Let us find the flux of the vector field F = zi + yj + zk through the top of the surface
z = xy + 1, which covers the square 0 <z <1, 0 <y < 1 in the xy-plane. See Figure 4.5.5.
Our parametric equations are * = u, y = v, and z = wv + 1 with 0 < u < 1 and

0 < v < 1. Therefore,
r = ui+ vj + (uv + 1)k, (4.5.20)
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Figure 4.5.5: Diagram for the surface integration in Example 4.5.5.

so that
r, =i+uk, r, =j+uk,

and
r, Xr, = —vi—uj+k.

Bring all of these elements together,

1o
//F~nd0:/ /[ui+vj+(uv+1)k]~(7vifuj+k)dudv
s o Jo

11 1
://(1—uv)dudv=/ (u—%u%)’;dv
o Jo 0
1
1
S AR DEEICEE [

e Example 4.5.6

167

(4.5.21)

(4.5.22)

(4.5.23)
(4.5.24)

(4.5.25)

Let us find the flux of the vector field F = 4xzi + xyz2%j + 3zk through the exterior
surface of the cone z? = 22 + y2 above the zy-plane and below z = 4. See Figure 4.5.6.
A natural choice for the surface coordinates is polar coordinates r and 6. Because

x =rcos(f) and y = rsin(f), z = r. Then,
r = rcos(f)i+ rsin(0)j + rk
with 0 <r <4 and 0 < 0 < 27 so that
r, = cos(0)i+ sin(0)j + kry = —rsin(6)i + r cos(0)j,
and

r, X rg = —rcos(0)i — rsin(0)j + rk.

(4.5.26)

(4.5.27)

(4.5.28)
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Figure 4.5.6: Diagram for the surface integration in Example 4.5.6.

This is the unit area inside the cone. Because we want the exterior surface, we must take
the negative of Equation 4.5.28. Bring all of these elements together,

//F nda—/ 2#{ 4r cos(0)]r[r cos(6))

+ [r? sin(6) cos(8)]r?[r sin(0)] — 3r*} df dr (4.5.29)
/ {2r [0 + 3 sin(26) ”0 + o3 51113(9)|(2)7r - 37"29‘(2)77} dr (4.5.30)
0

4
-~ /0 (dmr® — 67r) dr = (mr* — 2mr%)| = 128 (4.5.31)

Problems
Compute the surface integral [/, ¢ F -ndo for the following vector fields and surfaces:

1. F = zi — zj + yk and the surface is the top side of the z = 1 plane where 0 < z < 1 and
0<y<1

2. F = xi+ yj + 22k and the surface is the top side of the cylinder 22 + 4% =9, z = 0, and
z=1.

3. F = xyi+ zj + xzk and the surface consists of both exterior ends of the cylinder defined
by 22 +y2=4,2=0, and z = 2.

4. F = zi+ zj + yk and the surface is the lateral and exterior sides of the cylinder defined
by 22 +y? =4, z = -3, and z = 3.

5. F = xyi+ 22j + yk and the surface is the curved exterior side of the cylinder y? + 22 = 9
in the first octant bounded by z =0, z =1, y =0, and z = 0.

6. F = yj + 2%k and the surface is the exterior of the semicircular cylinder y? + 2% = 4,
z > 0, cut by the planes x =0 and z = 1.

7. F = zi + 2j + yk and the surface is the curved exterior side of the cylinder 2% + % = 4
in the first octant cut by the planes z =1 and z = 2.
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8. F = 2%i — 2%2j + yzk and the surface is the exterior of the hemispheric surface of
22 + y? + 22 = 16 above the plane z = 2.

9. F = yi + zj + yk and the surface is the top of the surface z = x + 1, where —1 <z <1
and —1 <y < 1.

10. F = zi + zj — 3zk and the surface is the top side of the plane = + y + z = 2a that lies
above the square 0 < x < a, 0 <y < a in the xy-plane.

11. F = (y% + 22)i+ (22 + 22)j + (2% + 3?)k and the surface is the top side of the surface
z=1-2%2with -1 <z <land -2<y<2.

12. F = y2%i+ 2zj —k and the surface is the cone z = /22 + 92, 0 < z < 1, with the normal
pointing away from the z-axis.

13. F = y?%i + 2%j + 5zk and the surface is the top side of the plane z = y + 1, where
—1<z<land -1<y<1.

14. F = —yi 4+ xj + zk and the surface is the exterior or bottom side of the paraboloid
z=x2+19y% where 0 < z < 1.

15. F = —yi+ xj + 622k and the surface is the exterior of the paraboloids z = 4 — x2 — 72
and z = 22 + y°.

4.6 GREEN'S LEMMA

Consider a rectangle in the xy-plane that is bounded by the lines z = a, x = b,
y = ¢, and y = d. We assume that the boundary of the rectangle is a piece-wise smooth
curve that we denote by C. If we have a continuously differentiable vector function F =
P(x,y)i+ Q(x,y)j at each point of enclosed region R, then

// dA = / [ a dx] dy:/j@(@y)dy—/j@(a,y)dy:fcw,y)dy,

(4.6.1)
where the last integral is a closed line integral counterclockwise around the rectangle because
the horizontal sides vanish, since dy = 0. By similar arguments,

/ —dA= f]{CP(x,y) dx (4.6.2)

// <8Q - 613) A = jip(”»y) d + Q(z,y) dy. (4.6.3)

This result, often known as Green’s lemma, may be expressed in vector form as

so that

j{F-er/ V x F -kdA. (4.6.4)
C R
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Figure 4.6.1: Diagram for the verification of Green’s lemma in Example 4.6.1.

Although this proof was for a rectangular area, it can be generalized to any simply
closed region on the zy-plane as follows. Consider an area that is surrounded by simply
closed curves. Within the closed contour we can divide the area into an infinite number of
infinitesimally small rectangles and apply Equation 4.6.4 to each rectangle. When we sum
up all of these rectangles, we find [ r V x F-kdA, where the integration is over the entire
surface area. On the other hand, away from the boundary, the line integral along any one
edge of a rectangle cancels the line integral along the same edge in a contiguous rectangle.
Thus, the only nonvanishing contribution from the line integrals arises from the outside
boundary of the domain §, F - dr.

e Example 4.6.1

Let us verify Green’s lemma using the vector field F = (322 — 8y?)i + (4y — 62y)j, and
the enclosed area lies between the curves y = \/z and y = 22. The two curves intersect at
x =0 and x = 1. See Figure 4.6.1.

We begin with the line integral:
1
]{ F.dr= / (32 — 82*) dx + (42* — 62°) (22 dx)
c 0
0
+ / (322 — 8z) dw + (4x'/? — 62%/2)(La=1/2 dx) (4.6.5)
1

1
= / (—20z* + 82° + 11z — 2) dz = 3. (4.6.6)
0

In Equation 4.6.6 we used y = 2?2 in the first integral and y = y/z in our return integration.
For the areal integration,

1 vz 1 Ve 1
//VxF~de:/ / IOydyda::/ 5y2’1; da::5/ (a:—x4)dx:% (4.6.7)
R 0 Ja? 0 0

and Green’s lemma is verified in this particular case. a
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Figure 4.6.2: Diagram for the verification of Green’s lemma in Example 4.6.3.

e Example 4.6.2

171

Let us redo Example 4.6.1 except that the closed contour is the triangular region defined

by the lines x =0, y =0, and x +y = 1.
The line integral is

1
j{F.drz/ (322 —8-0%)dx + (4-0—62-0)-0
C 0
+ [ 30— = 8921 + by — 601~ )y
+/0(3~02—8y2)-0+(4y—6~0~y)dy

1 1 1
:/ 3x2dx—/ 4ydy+/ (=3 +4y + 11y*) dy
0 0 0

2y = 220+ (B +27 + 5P = 5.

On the other hand, the areal integration is

1 1—x 1
//VxF-de:/ / 10ydydm=/ 5y?|, " da
R 0 0 0
1
:5/(1—x)2dx=—§(1—x)3\;=g
0

and Green’s lemma is verified in this particular case.

e Example 4.6.3

(4.6.8)

(4.6.9)

(4.6.10)

(4.6.11)

(4.6.12)

Let us verify Green’s lemma using the vector field F = (3x +4y)i+ (22 — 3y)j, and the
closed contour is a circle of radius two centered at the origin of the zy-plane. See Figure

4.6.2.
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Beginning with the line integration,

2m
j{ F.dr = / [6 cos(#) + 8sin(h)][—2sin() df] + [4 cos(0) — 6sin(6)][2 cos(8) db]
c 0

(4.6.13)

= /%[—24 cos(6) sin(@) — 16sin?(#) + 8 cos?()] db (4.6.14)
0

=12 cos®(0)])" — 8 [0 — L sin(20)] |27 + 4 [0 + Lsin(20)] 2" = —8. (4.6.15)

For the areal integration,

2 2m
// VxF~de:/ / —2rdfdr = —8n (4.6.16)
R o Jo

and Green’s lemma is verified in the special case.
Problems
Verify Green’s lemma for the following two-dimensional vector fields and contours:

1. F = (22 +4y)i+ (y — x)j and the contour is the square bounded by the lines z = 0,
y=0,z=1and y = 1.

2. F = (z — y)i + zyj and the contour is the square bounded by the lines x = 0, y = 0,
r=1,and y = 1.

3. F = —9%i + z?j and the contour is the triangle bounded by the lines = 1, y = 0, and
y = .

4. F = (zy — 2%)i + 2%yj and the contour is the triangle bounded by the lines y = 0, x = 1,
and y = z.

5. F = sin(y)i+ x cos(y)j and the contour is the triangle bounded by the lines x + y = 1,
y—x =1 and y=0.

6. F = y?i + 22j and the contour is the same contour used in Problem 4.

7. F = —y2%i 4+ 22j and the contour is the circle 22 4 y? = 4.

8. F = —2%i + zy?j and the contour is the closed circle of radius a.

9. F = (6y + x)i + (y + 2x)j and the contour is the circle (z — 1)? + (y — 2)? = 4.

10. F = (z + y)i + (222 — y?)j and the contour is the boundary of the region determined
by the curves y = z? and y = 4.

11. F = 3yi + 2zj and the contour is the boundary of the region determined by the curves
y=0and y =sin(z) with 0 <z < 7.
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12. F = —16yi + (4e¥ + 322)j and the contour is the pie wedge defined by the lines y = z,
y=—x,224+y>=4,and y > 0.

4.7 STOKES' THEOREM*

In Section 4.2 we introduced the vector quantity V x v, which gives a measure of the
rotation of a parcel of fluid lying within the velocity field v. In this section we show how
the curl can be used to simplify the calculation of certain closed line integrals.

This relationship between a closed line integral and a surface integral involving the curl
is

Stokes’ Theorem: The circulation of F = Pi+ Qj + Rk around the closed boundary C
of an oriented surface S in the direction counterclockwise with respect to the surface’s unit
normal vector n equals the integral of V x F -n over S, or

?{F-dr://VxF~nda. (4.7.1)
C S

Stokes’ theorem requires that all of the functions and derivatives be continuous.

The proof of Stokes’ theorem is as follows: Consider a finite surface S whose boundary
is the loop C. We divide this surface into a number of small elements ndo and compute
the circulation dI' = fL F - dr around each element. When we add all of the circulations
together, the contribution from an integration along a boundary line between two adjoining
elements cancels out because the boundary is transversed once in each direction. For this
reason, the only contributions that survive are those parts where the element boundaries
form part of C. Thus, the sum of all circulations equals fc F - dr, the circulation around
the edge of the whole surface.

Next, let us compute the circulation another way. We begin by finding the Taylor
expansion for P(x,y,z) about the arbitrary point (xg, yo, 20):

OP(z0, Yo, 20) P (0, Y0, 20)

P =P — _
(z,y,2) (20, Y0, 20) + (z — 20) o + (¥ — vo) oy
P
(5 ) 2P @0 Y0 20) (4.7.2)
0z
with similar expansions for Q(z,y, z) and R(x,y,z). Then
P
dF:?(F-dr:P(xo,yo,zo)%d:l:—&—m%(x—zo)dz (4.7.3)
L L Ox L
0P (2o, yo, 9 Yo,
" (xoyozo)?{(y—yo)dy—km—k Q(zo, Yo ZO)%(m—xo)dy—F-",
8y L 61' L

where L denotes some small loop located in the surface S. Note that integrals such as §, dx
and §, (z — xo) dz vanish.

4 For the history behind the development of Stokes’ theorem, see Katz, V. J., 1979: The history of
Stokes’ theorem. Math. Mag., 52, 146—-156.
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Sir George Gabriel Stokes (1819-1903) was Lucasian Professor of Mathematics at Cambridge Uni-
versity from 1849 until his death. Having learned of an integral theorem from his friend Lord Kelvin,
Stokes included it a few years later among his questions on an examination that he wrote for the
Smith Prize. It is this integral theorem that we now call Stokes’ theorem. (Portrait courtesy of the
Royal Society of London.)

If we now require that the loop integrals be in the clockwise or positive sense so that
we preserve the right-hand screw convention, then

n~k50=ﬁ(m—mo)dy:—ﬁ(y—yo)dac, (4.7.4)

n-jécr:?{L(z—zo)dxz—ji(x—wo)dz, (4.7.5)

n'iécf:ﬁ(yfyo)dz:ffi(zfzo)dy, (4.7.6)
and

OR 0Q oP OR 0Q OJOP

(4.7.7)

Therefore, the sum of all circulations in the limit when all elements are made infinitesimally
small becomes the surface integral []. sV x F-ndo and Stokes’ theorem is proven. O

In the following examples we first apply Stokes’ theorem to a few simple geometries.
We then show how to apply this theorem to more complicated surfaces.’?

5 Thus, different Stokes for different folks.
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X

Figure 4.7.1: Diagram for the verification of Stokes’ theorem in Example 4.7.1.
e Example 4.7.1

Let us verify Stokes’ theorem using the vector field F = 22i 4 22j + 22k, and the closed
curve is a square with vertices at (0,0, 3), (1,0,3), (1,1,3), and (0,1, 3). See Figure 4.7.1.
We begin with the line integral:

]{F-dr:/ F-dr+/ F-dr+/ F-dr+/ F - dr, (4.7.8)
C Cl Cz Cs C4

where C7, Cy, C3, and Cy represent the four sides of the square. Along C7, x varies while
y =0 and z = 3. Therefore,

1
/ F~dr=/x2dx+2x-0+9-0=%, (4.7.9)
01 0
because dy = dz = 0, and z = 3. Along C5, y varies with = 1 and z = 3. Therefore,
1
/ F-dr:/12-0+2~1-dy+9-0:2. (4.7.10)
Cz 0
Along C3, x again varies with y = 1 and z = 3, and so,
0
/ F-dr:/xde+2x-O+9-0:—%. (4.7.11)
C3 1

Note how the limits run from 1 to 0 because z is decreasing. Finally, for Cy, y again varies
with x = 0 and z = 3. Hence,

0
/F-dr:/ 02-04+2-0-dy+9-0=0. (4.7.12)
Cy 1

Hence,
7{ F.dr =2. (4.7.13)
C
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(0,a,1)

<Y

Figure 4.7.2: Diagram for the verification of Stokes’ theorem in Example 4.7.2.

Turning to the other side of the equation,

i j k
VxF=|& & #|=2k (4.7.14)
2 2z 22

Our line integral has been such that the normal vector must be n = k. Therefore,

11
//VxF~ndU:/ / 2k -kdxdy =2 (4.7.15)
s o Jo

and Stokes’ theorem is verified for this special case. a
e Example 4.7.2

Let us verify Stokes’ theorem using the vector field F = (22 — y)i + 42j + 2%k, where
the closed contour consists of the x and y coordinate axes and that portion of the circle
x? + y? = a? that lies in the first quadrant with z = 1. See Figure 4.7.2.

The line integral consists of three parts:

%F~dr:/ F-dr—l—/ F~dr—|—/ F - dr. (4.7.16)
C Cy Ca Cs

Along Cy, x varies while y = 0 and z = 1. Therefore,

3

/ F-dr:/(a:2—0)dx+4-1-0+x2-0:%. (4.7.17)
Cy 0

Along the circle Cy, we use polar coordinates with @ = acos(t), y = asin(t), and z = 1.
Therefore,

/2
/ F.dr = / [a? cos?(t) — asin(t)][—asin(t) dt] +4 -1 -acos(t)dt + a? cos?(t) - 0,
Co 0

(4.7.18)
/2

= / —a3 cos?(t) sin(t) dt + a? sin®(t) dt + 4a cos(t) dt (4.7.19)

0

a3 /2 a2 1 /2 /2

3 . .

= — cos’(t) + = {t - - sm(?t)} + 4asin(t) (4.7.20)

3 0 2 2 0 0

3 2

=L 40T g, (4.7.21)

3 4
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Figure 4.7.3: Diagram for the verification of Stokes’ theorem in Example 4.7.3.

because dx = —asin(t) dt, and dy = acos(t) dt. Finally, along C3, y varies with 2 = 0 and
z = 1. Therefore,

0
/ F.drz/(02—y)~0+4.1-dy+02~0=—4a, (4.7.22)
03 a

so that 5
7{ F.dr=2" (4.7.23)
C 4

Turning to the other side of the equation,

i i k
VxF=| & & &|=-i-2j+k (4.7.24)
22—y 4z 2?

From the path of our line integral, our unit normal vector must be n = k. Then,

//SV xF-ndo = /0“ /Oﬂ/Q[—éﬁ —2rcos(0)j+ k] -krdfdr= WTGQ (4.7.25)

and Stokes’ theorem is verified for this case. O
e Example 4.7.3

Let us verify Stokes’ theorem using the vector field F = 2yzi — (z+3y —2)j+ (2% + 2)k,

where the closed triangular region is that portion of the plane x 4+ y 4 z = 1 that lies in the

first octant.
As shown in Figure 4.7.3, the closed line integration consists of three line integrals:

%F-dr:/ F-dr+/ F-dr+/ F - dr. (4.7.26)
C Cq Cy CS

Along C1, z =0 and y = 1 — x. Therefore, using x as the independent variable,

0
/ F~dr:/ 2(1—2)-0-dz—(2+3—3x—2)(—dz)+(2>+0)-0 = —x2|(1)+x|(1) =0. (4.7.27)
C1 1
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Along Co, x =0 and y = 1 — z. Thus,

1
/ F-dr:/ 21—2)2-0—(04+3—32—2)(—d2) + (0* 4+ 2)dz = — 322+z+%z2|320.
Co 0

(4.7.28)
Finally, along C5, y = 0 and z = 1 — z. Hence,

1
/ F.dr :/ 2:0-(1—z)dr—(x+0-2)-0+(2* +1—2z)(—dz) = —323—z+ %x2|(1) =-3
C3 0

(4.7.29)
Thus,
]{ F.dr=-3. (4.7.30)
c
On the other hand,
i j k
VxF=|2 = L = (=22 42)j+ (-1 - 22)k. (4.7.31)

2yz —x—3y+2 2242

To find ndo, we use the general coordinate system © = u, y = v, and z = 1 — u — v.
Therefore, r = ui + vj + (1 — v — v)k and

i j k
r,xr,=1 0 —-1|=i+j+k (4.7.32)
01 -1

Thus,

1 1-u
//VxF-ndJ:/ / [(—2u+2v)j+ (-1 =2+ 2u+2v)k] - [i+j+ k] dvdu
s 0o Jo

(4.7.33)
1 1-u 1

= / / (v —3)dvdu = / [2(1 —u)* = 3(1 — u)] du (4.7.34)
o Jo 0

= / (-1 —u+2u®)du= -3 (4.7.35)
0

and Stokes’ theorem is verified for this case.
Problems
Verify Stokes’ theorem using the following vector fields and surfaces:

1. F = 5yi — 5xj + 3zk and the surface S is that portion of the plane z = 1 with the square
at the vertices (0,0,1), (1,0,1), (1,1,1), and (0,1, 1).

2. F = 2% 4+ 3%j + 2%k and the surface S is the rectangular portion of the plane z = 2
defined by the corners (0,0, 2), (2,0,2), (2,1,2), and (0, 1,2).

3. F = zi + zj + yk and the surface S is the triangular portion of the plane z = 1 defined
by the vertices (0,0, 1), (2,0,1), and (0,2,1).
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4. F = 22i — 3zj + 4yk and the surface S is that portion of the plane z = 5 within the
cylinder 22 + y% = 4.

5. F = zi + zj + yk and the surface S is that portion of the plane z = 3 bounded by the
lines y = 0, 2 = 0, and 22 + y? = 4.

6. F=(2z4+2)i+ (y — 2)j + (z + y)k and the surface S is the interior of the triangularly
shaped plane with vertices at (1,0,0), (0,1,0), and (0,0, 1).

7. F = zi+ xj + yk and the surface S is that portion of the plane 2z + y + 2z = 6 in the
first octant.

8. F = zi + xzj + yk and the surface S is that portion of the paraboloid z = 9 — 22 — 3?2
within the cylinder 2% + 32 = 4.

4.8 DIVERGENCE THEOREM

Although Stokes’ theorem is useful in computing closed line integrals, it is usually very
difficult to go the other way and convert a surface integral into a closed line integral because
the integrand must have a very special form, namely V X F-n. In this section we introduce
a theorem that allows with equal facility the conversion of a closed surface integral into a
volume integral and vice versa. Furthermore, if we can convert a given surface integral into
a closed one by the introduction of a simple surface (for example, closing a hemispheric
surface by adding an equatorial plate), it may be easier to use the divergence theorem
and subtract off the contribution from the new surface integral rather than do the original
problem.

This relationship between a closed surface integral and a volume integral involving the
divergence operator is

The Divergence or Gauss’s Theorem: Let V' be a closed and bounded region in three-
dimensional space with a piece-wise smooth boundary S that is oriented outward. Let
F = P(z,y,2)i+ Q(z,y,2)j + R(z,y,2)k be a vector field for which P, Q, and R are
continuous and have continuous first partial derivatives in a region of three-dimensional
space containing V. Then

%F-nda://‘/V~FdV (4.8.1)

Here, the circle on the double integral signs denotes a closed surface integral.

A nonrigorous proof of Gauss’s theorem is as follows. Imagine that our volume V is
broken down into small elements d7r of volume of any shape so long as they include all of
the original volume. In general, the surfaces of these elements are composed of common
interfaces between adjoining elements. However, for the elements at the periphery of V,
part of their surface will be part of the surface S that encloses V. Now d® = V - Fdr is
the net flux of the vector F out from the element dr. At the common interface between
elements, the flux out of one element equals the flux into its neighbor. Therefore, the sum

of all such terms yields
@:// V-Fdr (4.8.2)
1%
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Carl Friedrich Gauss (1777-1855), the prince of mathematicians, must be on the list of the greatest
mathematicians who ever lived. Gauss, a child prodigy, is almost as well known for what he did not
publish during his lifetime as for what he did. This is true of Gauss’s divergence theorem, which he
proved while working on the theory of gravitation. It was only when his notebooks were published
in 1898 that his precedence over the published work of Ostrogradsky (1801-1862) was established.
(Portrait courtesy of Photo AKG, London, with permission.)

and all of the contributions from these common interfaces cancel; only the contribution
from the parts on the outer surface S is left. These contributions, when added together,
give g::ﬁsF -ndo over S and the proof is completed. O

e Example 4.8.1

Let us verify the divergence theorem using the vector field F = 4zi — 2y2j + 2%k and
the enclosed surface is the cylinder 22 4+ y? = 4, z = 0, and z = 3. See Figure 4.8.1.
We begin by computing the volume integration. Because

o(4r)  0(—2y%) 9(z?)
or oy | o

///VV'FCW: ///V(4‘4y+22) av (4.8.4)

3 2 2
= / / / [4 — 4rsin(8) + 22] dOr drdz (4.8.5)
o Jo Jo

V-F =

=4 — 4y + 2z, (4.8.3)

3 2
= / / [40|(2)7T +4r cos(0)|(2)7T + 220|§ﬂ} rdrdz (4.8.6)
o Jo

3 2 3
/ (8w +4wz)rdrdz = / dm(2 + z)3r? |(2) dz (4.8.7)
o Jo 0

3
47r/ 224 z2)dz =8 (2z + %z2)|3 = 84r. (4.8.8)
0
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Figure 4.8.1: Diagram for the verification of the divergence theorem in Example 4.8.1.

Turning to the surface integration, we have three surfaces:

#F~nd0:// F~nda+// F~nda+// F-ndo. (4.8.9)
S Sl SQ SS

The first integral is over the exterior to the cylinder. Because the surface is defined by
f(:v,y,z) :$2+y2 =4,

v 2 + 2y
no Y/ ZAnI oz (4.8.10)

_‘Vf|_\/4x2+4y2_2 2

Therefore,

//SlF-ndo = //51(2:;;2 —y3)do = /03 /Ozﬂ {2[2cos(0)]* — [2sin(0)]*} 2d0d= (4.8.11)
_8 /O ’ /O 2W{%[1+cos(20)] _sm(e)+cos2(0)sm(a)}2d9dz (4.8.12)

2m

3
= 16/ {50 + 1 sin(26) + cos(6) — })0053(9)} dz (4.8.13)
0

0

3
= 167r/ dz = 48, (4.8.14)
0

because x = 2 cos(d), y = 2sin(f), and do = 2df dz in cylindrical coordinates.
Along the top of the cylinder, z = 3, the outward pointing normal is n = k, and
do = rdrdf. Then,

27 2
// F-nda:// szU:/ /9Tdrd9=27r><9><2=367r. (4.8.15)
S2 Sz 0 0

However, along the bottom of the cylinder, z = 0, the outward pointing normal is n = —k
and do = rdrdf. Then,

2 2
// F~nda:// z2da=/ /Ordrdezo. (4.8.16)
S3 Ss3 0 0
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Consequently, the flux out of the entire cylinder is

# F-ndo =487 + 36w + 0 = 84, (4.8.17)
S

and the divergence theorem is verified for this special case. a
e Example 4.8.2

Let us verify the divergence theorem given the vector field F = 3z2y%i + yj — 62y?zk
and the volume is the region bounded by the paraboloid z = 2% +y?, and the plane z = 2y.
See Figure 4.8.2.

Computing the divergence,

d(3z°y?) L oW d(—6zy>z)
ox dy 0z

V-F= = 6zy® + 1 — 6xy® = 1. (4.8.18)

Then,

7 p2sin(0) p2rsin(0)
N[ voeav=[[[ av= [ [ [ deraras (4.8.19)
14 \4 0 0 r2

m  ,2sin(0)
= / / [2r sin(0) — 72 r dr dO (4.8.20)
0o Jo
™ 2sin(6) 2sin(0)
:/ [37"3 sin(f) — ¢ } de (4.8.21)
0 0 0
= / [L5sin*(0) — 4sin*(0)] d = / 2 sin*(0) do (4.8.22)
0 0
=3 / [1 — 2 cos(26) + cos*(20)] df (4.8.23)
0
= :1))[6 —sin(20)| + 30| + 3 sin(49) ] =I (4.8.24)
0 0 0 0

The limits in the radial direction are given by the intersection of the paraboloid and plane:
r? = 2rsin(f), or r = 2sin(f), and y is greater than zero.
Turning to the surface integration, we have two surfaces:

#F-ndaz// F-nd0+// F - ndo, (4.8.25)
S S1 Sa

where S is the plane z = 2y, and S is the paraboloid. For either surface, polar coordinates
are best so that x = rcos(f), and y = rsin(f). For the integration over the plane, z =
2rsin(f). Therefore,

r = rcos(0)i+ rsin(0)j + 2rsin(0)k, (4.8.26)

so that
r, = cos(f)i+ sin(6)j + 2sin(0)k, (4.8.27)

and
rg = —rsin(0)i + rcos(0)j + 2r cos(0)k. (4.8.28)
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Figure 4.8.2: Diagram for the verification of the divergence theorem in Example 4.8.2. The dashed line
denotes the curve r = 2sin(0).

Then,
i j K
r. Xrg=| cos(f) sin(d)  2sin(f) | = —2rj +rk. (4.8.29)
—rsin(f) rcos(d) 2rcos(d)

This is an outwardly pointing normal so that we can immediately set up the surface integral:

m  p2sin(0)
// F - ndo = / / {3r* cos?(0) sin®(0)i + r sin(0)]
S1

— 6[2r sin(0)][r cos(0)][r* sin®(0)]k} - (—2rj +rk) drdo  (4.8.30)

/ /mn 9 [—2r2 sin(6) — 12¢° sin® () cos(6)] dr df (4.8.31)

_/O [ 20325 gin(9) — 2062 sin (9)008(9)] o (4.8.32)

- /” [_ 6 sin () — 128sin”(0) cos(&):| do (4.8.33)
0

{9|0 — sin(26) |O 19|0 s1n(49)| } — %sin 0(0)|;r (4.8.34)

= —or. (4.8.35)

For the surface of the paraboloid,
r = rcos(f)i+ rsin(6)j + r’k, (4.8.36)

so that
r, = cos(#)i+ sin(0)j + 2rk, (4.8.37)

and
rg = —rsin(6)i + r cos(6)j. (4.8.38)
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Then,
i J k
r, Xxrg = | cos(f) sin(@)  2r| = —2r?cos(#)i — 2r?sin(0)j + rk. (4.8.39)
—rsin(d) rcos(d) 0

This is an inwardly pointing normal, so that we must take the negative of it before we do
the surface integral. Then,

m  r2sin(0)
= r* cos?(0) sin?(0)i + r sin(0)j — 6r2[r cos r? sin?
Il Fondo = [ et cost0)sin0)i + rsin(0)) - 621 cos(0)]r*sin* 0))
- [2r® cos(0)i + 2r* sin(0)j — rk] dr df (4.8.40)

) / /Qsm (676 cos® (6) sin®(8) + 2r® sin®(6) + 6r° cos(8) sin ()] dr df
(4.8.41)

:/ [6 7|2sm(9) cos®(0) 51112(0)+%T4](2)Sin(0) sin?(#)
0
+$ 7|2S‘n % cos(6) sinQ(G)} do (4.8.42)

=[] st o)1 s 0 cos(0) + 85in(9) + 8 sin”0)cos()  a

(4.8.43)

= 1336 gjp 0(9)|;r -4 sin12(9)|g + /077[1 — cos(20)] do (4.8.44)

_ / ﬂ{1 — 3c08(20) + 3 cos?(20) — cos(20)[1 — sin2(20)]}d0 (4.8.45)
0

= 9‘0 — 3 sin(20) ’0 300+ isin(49)” 3 sin(26) ’0 3 si113(29)’;r (4.8.46)

=7+ 3r=23m (4.8.47)
Consequently,
# F-ndo=—2r+3r=1ir, (4.8.48)
s
and the divergence theorem is verified for this special case. ad

e Example 4.8.3: Archimedes’ principle

Consider a solid® of volume V and surface S that is immersed in a vessel filled with a
fluid of density p. The pressure field p in the fluid is a function of the distance from the
liquid/air interface and equals

p=po — P9z, (4.8.49)

6 Adapted from Altintas, A., 1990: Archimedes’ principle as an application of the divergence theorem.
IEEFE Trans. Educ., 33, 222.
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where g is the gravitational acceleration, z is the vertical distance measured from the in-
terface (increasing in the k direction), and pg is the constant pressure along the liquid/air
interface.

If we define F = —pk, then F-ndo is the vertical component of the force on the surface
due to the pressure and f;l"% F - ndo is the total lift. Using the divergence theorem and
noting that V - F = pg, the total lift also equals

//VV'FdV:PQ///V dv = pgV, (4.8.50)

which is the weight of the displaced liquid. This is Archimedes’ principle: The buoyant force
on a solid immersed in a fluid of constant density equals the weight of the fluid displaced.
O

e Example 4.8.4: Conservation of charge

Let a charge of density p flow with an average velocity v. Then the charge crossing the
element dS per unit time is pv - dS = J - dS, where J is defined as the conduction current
vector or current density vector. The current across any surface drawn in the medium is
§hoJ - dS.

The total charge inside the closed surface is [ fv pdV. If there are no sources or sinks
inside the surface, the rate at which the charge decreases is — [[[i, p; dV. Because this
change is due to the outward flow of charge,

_///Vg/;d{/:#gj.ds_ (4.8.51)

Applying the divergence theorem,

/// ( +V- > dvV =0. (4.8.52)

Because the result holds true for any arbitrary volume, the integrand must vanish identically
and we have the equation of continuity or the equation of conservation of charge:

Ip
ap — 48.
o TV I=0. (4.8.53)

Problems

Verify the divergence theorem using the following vector fields and volumes:

1. F = 2% +y?j + 2%k and the volume V is the cube cut from the first octant by the planes
r=1,y=1,and z = 1.

2. F = zyi + yzj + xzk and the volume V is the cube bounded by 0 <2 <1, 0 <y <1,

and 0 < z < 1.

3. F=(y—o)i+(z—y)j+ x)k and the volume V' is the cube bounded by —1 < z <1,
<

(y—
—1<y<l,and -1 <2< 1.



186 Advanced Engineering Mathematics with MATLAB

4. F = 22%i + yj + zk and the volume V is the cylinder defined by the surfaces 22 +y? = 1,
z=0,and z = 1.

5. F = 2%i+9%j+ 2%k and the volume V is the cylinder defined by the surfaces 22 +y? = 4,
z=0,and z = 1.

6. F = 4%+ 22%j + (2 — 1)?k and the volume V is the cylinder bounded by the surface
22 + y? = 4, and the planes z =1 and z = 5.

7. F = 6zyi+4yzj+xe Yk and the volume V is that region created by the plane z+y+z = 1,
and the three coordinate planes.

8. F = yi+ zyj — zk and the volume V is that solid created by the paraboloid z = x2 + y?
and plane z = 1.

Further Readings

Davis, H. F., and A. D. Snider, 1995: Introduction to Vector Analysis. Wm. C. Brown
Publ., 416 pp. Designed as a reference book for engineering majors.

Kendall, P. C., and D. E. Bourne, 1992: Vector Analysis and Cartesian Tensors. Wm.
C. Brown, Publ., 304 pp. A clear introduction to the concepts and techniques of vector
analysis.

Matthews, P. C., 2005: Vector Calculus. Springer, 200 pp. A good book for self-study with
complete solutions to the problems.

Schey, H. M., 2005: Div, Grad, Curl, and All That. Chapman & Hall, 176 pp. A book to
hone your vector calculus skills.



Chapter 5

Fourier Series

Fourier series arose during the eighteenth century as a formal solution to the classic
wave equation. Later on, it was used to describe physical processes in which events re-
cur in a regular pattern. For example, a musical note usually consists of a simple note,
called the fundamental, and a series of auxiliary vibrations, called overtones. Fourier’s the-
orem provides the mathematical language that allows us to precisely describe this complex
structure.

5.1 FOURIER SERIES

One of the crowning glories® of nineteenth-century mathematics was the discovery that

the infinite series
> t t
f(t) = % +n§::lan cos<nz> + b, sin<7§> (5.1.1)

can represent a function f(t) under certain general conditions. This series, called a Fourier
series, converges to the value of the function f(¢) at every point in the interval [—L, L] with
the possible exceptions of the points at any discontinuities and the endpoints of the interval.

L “Fourier’s Theorem ... is not only one of the most beautiful results of modern analysis, but may be
said to furnish an indispensable instrument in the treatment of nearly every recondite question in modern
physics. To mention only sonorous vibrations, the propagation of electric signals along a telegraph wire,
and the conduction of heat by the earth’s crust, as subjects in their generality intractable without it, is to
give but a feeble idea of its importance.” (Quote taken from Thomson, W., and P. G. Tait, 1879: Treatise
on Natural Philosophy, Part 1. Cambridge University Press, Section 75.)

187
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Because each term has a period of 2L, the sum of the series also has the same period. The
fundamental of the periodic function f(¢) is the n = 1 term while the harmonics are the
remaining terms whose frequencies are integer multiples of the fundamental. We must now
find some easy method for computing the coefficients a,, and b,, for a given function f(¢).
As a first attempt, we integrate Equation 5.1.1 term by term? from —L to L. On the right
side, all of the integrals multiplied by a, and b,, vanish because the average of cos(nwt/L)
and sin(nnt/L) is zero. Therefore, we are left with

L
ap = %[L F(t)dt. (5.1.2)

Consequently ag is twice the mean value of f(t) over one period.
We next multiply each side of Equation 5.1.1 by cos(mmt/L), where m is a fixed integer.
Integrating from —L to L,

L L 00 L
] mmt _ ao ) mmt nmt ] mmt
/Lf(t)c05<L ) dt = 5 /LCOb<L ) dt+7§_1an/LCOS<L )cos(L ) dt

o0 L
+an [L sin<nzt> cos(T) dt. (5.1.3)

n=1

The ag and b,, terms vanish by direct integration. Finally, all of the a,, integrals vanish
when n # m. Consequently, Equation 5.1.3 simplifies to

L
Gy = %[L () COS(T) dt, (5.1.4)

because ffL cos?(nmt/L)dt = L. Finally, by multiplying both sides of Equation 5.1.1 by
sin(mnt/L) (m is again a fixed integer) and integrating from —L to L,

b, = ;/_LL ) sin<nL7Tt> dt. (5.1.5)

Although Equation 5.1.2, Equation 5.1.4, and Equation 5.1.5 give us ag, a,, and b, for
periodic functions over the interval [—L, L], in certain situations it is convenient to use the
interval [r, 7 + 2L], where 7 is any real number. In that case, Equation 5.1.1 still gives the

2 We assume that the integration of the series can be carried out term by term. This is sometimes
difficult to justify but we do it anyway.
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Fourier series of f(t) and
e
ap = Z/T f(t) dt,
- i/TTHL £(b) COS(T) dt, (5.1.6)
by = i/:m £1) sin(”L”) dt.

These results follow when we recall that the function f(t) is a periodic function that extends
from minus infinity to plus infinity. The results must remain unchanged, therefore, when
we shift from the interval [—L, L] to the new interval [, 7 + 2L].

We now ask the question: what types of functions have Fourier series? Secondly, if a
function is discontinuous at a point, what value will the Fourier series give? Dirichlet?:*
answered these questions in the first half of the nineteenth century. His results may be
summarized as follows.

Dirichlet’s Theorem: If for the interval [—L, L] the function f(t) (1) is single-valued,
(2) is bounded, (3) has at most a finite number of maxima and minima, and (4) has only
a finite number of discontinuities (piecewise continuous), and if (5) f(t + 2L) = f(t) for
values of t outside of [—L, L], then

N
_ ao nnt . nnt
ft) = 5 +nE_1ancos<L >+bnsm<L >

converges to f(t) as N — oo at values of t for which f(t) is continuous and to $[f(t™) +
f(t7)] at points of discontinuity. The quantities t* and ¢t~ denote points infinitesimally
to the right and left of t. The coefficients in Equation 5.1.7 are given by Equation 5.1.2,
Equation 5.1.4, and Equation 5.1.5. A function f(¢) is bounded if the inequality |f(¢)] < M
holds for some constant M for all values of t. Because the Dirichlet’s conditions (1)—(4) are
very mild, it is very rare that a convergent Fourier series does not exist for a function that
appears in an engineering or scientific problem. a

(5.1.7)

e Example 5.1.1
Let us find the Fourier series for the function

ro={y  TSED

0<t<m.
We compute the Fourier coefficients a,, and b, using Equation 5.1.6 by letting L = &
and 7 = —7. We then find that

(5.1.8)

apg = —
™

s 1 T
f@mz—/tmzi
0 2

x T

(5.1.9)

3 Dirichlet, P. G. L., 1829: Sur la convergence des séries trigonométriques qui servent & représenter une
fonction arbitraire entre des limites données. J. Reine Angew. Math., 4, 157-169.

4 Dirichlet, P. G. L., 1837: Sur l'usage des intégrales définies dans la sommation des séries finies ou
infinies. J. Reine Angew. Math., 17, 57-67.



190 Advanced Engineering Mathematics with MATLAB

A product of the French Revolution, (Jean Baptiste) Joseph Fourier (1768-1830) held positions
within the Napoleonic Empire during his early career. After Napoleon’s fall from power, Fourier
devoted his talents exclusively to science. Although he won the Institut de France prize in 1811 for
his work on heat diffusion, criticism of its mathematical rigor and generality led him to publish the
classic book Théorie analytique de la chaleur in 1823. Within this book he introduced the world to
the series that bears his name. (Portrait courtesy of the Archives de I’Académie des sciences, Paris.)

cos(nm)—1 (—=1)"—1

an = l/ tcos(nt) dt = 7lr [tsm(nt) + cos(nt)}
0

™ n n? 0 n2m n2m
(5.1.10)
because cos(nm) = (—1)", and
1 [ 1 |- i T —1)ntt
b, = —/ tsin(nt) dt = — { Leos(nt) Sm(;lt)] _ _costom) _ (Z1) (5.1.11)
7 Jo T n n o n
for n =1,2,3,.... Thus, the Fourier series for f(¢) is
f) = T4 i cos(nt) (bt sm(nt) (5.1.12)
4 — n
T 2 = cos[(2m — 1)t > (1)
=——— t). 5.1.13
1 7rle (2m —1)2 Z:: nsin(n) ( )

We note that at the points ¢t = £(2n — 1)7, where n = 1,2,3, ..., the function jumps
from zero to m. To what value does the Fourier series converge at these points? From
Dirichlet’s theorem, the series converges to the average of the values of the function just
to the right and left of the point of discontinuity, i.e., (m + 0)/2 = 7/2. At the remaining
points the series converges to f(t).



Fourier Series 191

Second to Gauss, Peter Gustav Lejeune Dirichlet (1805-1859) was Germany’s leading mathematician
during the first half of the nineteenth century. Initially drawn to number theory, his later studies
in analysis and applied mathematics led him to consider the convergence of Fourier series. These
studies eventually produced the modern concept of a function as a correspondence that associates
with each real z in an interval some unique value denoted by f(z). (Taken from the frontispiece of
Dirichlet, P. G. L., 1889: Werke. Druck und Verlag von Georg Reimer, 644 pp.)

Figure 5.1.1 shows how well Equation 5.1.12 approximates the function by graphing
various partial sums of this expansion as we include more and more terms (harmonics). The
MATLAB script that created this figure is:

clear;

t = [-4:0.1:4]; % create time points in plot

f = zeros(size(t)); % initialize function f(t)

for k = 1:length(t) % construct function f(t)
if t(k) < 0; f(k) = 0; else f(k) = t(k); end;
if t(k) < -pi; £(k) = t(k) + 2+%pi; end;
if t(k) > pi ; £(k) = 0; end;

end

% initialize Fourier series with the mean term

fs = (pi/4) * ones(size(t));

clf % clear any figures

for n = 1:6

% create plot of truncated FS with only n harmonic
fs = fs - (2/pi) * cos((2*n-1)*t) / (2#n-1)"2;
fs = fs - (-1)°n * sin(n*t) / n;
subplot(3,2,n), plot(t,fs,t,f,’--’)
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— mean plus 2 terms

— mean plus 1 term
/: - - () -

— meanplus 3terms — mean plus 4 terms
a2 — - (1) : — = f(t)
1

— mean plus 6 terms

— - (1)

-4 -2 0 2 4 -4 -2 0 2 4

Figure 5.1.1: Partial sum of the Fourier series for Equation 5.1.8.

if n==
legend(’mean plus 1 term’,’f(t)’); legend boxoff;
else
legend([’mean plus ’,num2str(n),’ terms’],’f(t)’)
legend boxoff
end
if n >= 5; xlabel(’t’); end;
end
As the figure shows, successive corrections are made to the mean value of the series, 7/2.
As each harmonic is added, the Fourier series fits the function better in the sense of least
squares:

/ﬁmﬂﬂ@—jN@ﬂ%MZImmmmm (5.1.14)

where fn(z) is the truncated Fourier series of N terms. O
e Example 5.1.2

Let us calculate the Fourier series of the function f(¢) = |¢|, which is defined over the

range —m <t < M.
From the definition of the Fourier coefficients,

1 0 & T ow
. —tat tdt| =T+ T = 51.15
a0 ﬂ[/ +/0 } T (5.1.15)

—T

ap = % [/0 —t cos(nt) dt + /Oﬂtcos(nt) dt} (5.1.16)

—T
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4 4
—— mean plus 1 term —— mean plus 2 terms
3t~ = = f(t) A 3 A — - ()
2 2
1 1
0 0
-4 -2 0 2 4 -4 -2 0 2 4
4 4
—— mean plus 3 terms —— mean plus 4 terms
3 — = f(t) 3 — — (1)
2 2
1 1
0 0
—4 -2 0 2 4 ~4 -2 0 2 4
4 4
—— mean plus 5 terms —— mean plus 6 terms
3 — = f(t) 3 — = f(t)
2 2
1 1
0 0
-4 -2 0 2 4 -4 -2 0 2 4
t t
Figure 5.1.2: Partial sum of the Fourier series for f(t) = [¢].
. 0 . ™
ts t) + cos(nt nt sin(nt) + cos(nt
__ mtsin(nt) +cos(ut)|* - nitsinut) + cos(n) 5117
nam o n4m 0
2
=—[(-D)" -1 5.1.18
(-1 = 1] (5.1.18)
and
1 0 ™
b, = — [/ —tsin(nt) dt +/ tsin(nt) dt} (5.1.19)
™ -7 0
_ ntcos(nt)Q— sin(nt) | nt cos(nt)Q—sin(nt) T _0 (5.1.20)
n4m e n4m 0
for n =1,2,3,.... Therefore,
T2 = [(—1)" —1] T 4 = cos[(2m — 1)t]
t| ==+ — —_— t) = — — — 5.1.21
g 2+7rnz::1 s =5 =2 > (2m — 1) ( )

for —m <t <.

In Figure 5.1.2 we show how well Equation 5.1.21 approximates the function by graph-
ing various partial sums of this expansion. As the figure shows, the Fourier series does very
well even when we use very few terms. The reason for this rapid convergence is the nature

of the function: it does not possess any jump discontinuities.

e Example 5.1.3

O

Sometimes the function f(t) is an even or odd function.” Can we use this property to

simplify our work? The answer is yes.

5 An even function fe(t) has the property that fe(—t) = fe(t); an odd function f,(t) has the property

that fo(—t) = —fo(?).
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Let f(t) be an even function. Then

1 [F 2 [F
= f/_L f(t)dt = E/o £(t)dt, (5.1.22)

= E/LL (1) cos<”L”> dt — E/OL £(1) cos(T) dt, (5.1.23)
/ F(t sm( ) dt = 0. (5.1.24)

Here we used the properties that f fe(z)do =2 fo fe(z) dz and f 1 fo(z)dz = 0. Thus,
if we have an even function, we merely compute ag and a,, via Equation 5.1. 22 and Equation
5.1.23, and b,, = 0. Because the corresponding series contains only cosine terms, it is often

called a Fourier cosine series.
Similarly, if f(¢) is odd, then

and

whereas

2 L
ag=a, =0, and b, = —/ f(@) sin(mrt> dt. (5.1.25)
L) L

Thus, if we have an odd function, we merely compute b,, via Equation 5.1.25 and ag = a, =
0. Because the corresponding series contains only sine terms, it is often called a Fourier
sine series. a

e Example 5.1.4

In the case when f(z) consists of a constant and/or trigonometric functions, it is much
easier to find the corresponding Fourier series by inspection rather than by using Equation
5.1.6. For example, let us find the Fourier series for f(x) = sin®(x) defined over the range
—nm<ax<m.

We begin by rewriting f(z) = sin?(z) as f(z) = $[1 —cos(2z)]. Next, we note that any
function defined over the range —m < x < m has the Fourier series

_a |\ .
flz) = 5 + ,; ay, cos(nz) + by, sin(nx) (5.1.26)
= % + a1 cos(x) + by sin(x) + az cos(2x) + basin(2x) + - - -. (5.1.27)

On the other hand,
f(z) =13 — Lcos(2z) = 1 + Ocos(z) + Osin(z) — 3 cos(2z) + Osin(2z) +---.  (5.1.28)
Consequently, by inspection, we can immediately write that
ap=1, a1 =0b =0, a2:7%, bo =0, a,=b,=0, n>3. (5.1.29)

Thus, instead of the usual expansion involving an infinite number of sine and cosine terms,
our Fourier series contains only two terms and is simply

f(z) =3 — % cos(2z), —r<z<m. (5.1.30)
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e Example 5.1.5: Quieting snow tires

An application of Fourier series to a problem in industry occurred several years ago,
when drivers found that snow tires produced a loud whine® on dry pavement. Tire sounds
are produced primarily by the dynamic interaction of the tread elements with the road
surface.” As each tread element passes through the contact patch, it contributes a pulse of
acoustic energy to the total sound field radiated by the tire.

For evenly spaced treads we envision that the release of acoustic energy resembles the
top of Figure 5.1.3. If we perform a Fourier analysis of this distribution, we find that

1 —m/24€ w/2+e€ 4
ap =~ / 1dt+/ 1dt| = =, (5.1.31)
T —m/2—¢€ T/2—¢€ 0

where € is half of the width of the tread and

1 —7/2+e /2+€
ap = — / cos(nt) dt +/ cos(nt) dt (5.1.32)

& —m/2—¢ T/2—¢€
1 : —7/2+4€ . w/2+€

= [S,ln(nt)LW/L6 + sin(nt) ﬂ/%J (5.1.33)
1

= — [Sin(—n;— + ne) - sin(—% - ne) + sin(% + ne) - sin(% - ne)} (5.1.34)
1 nmw nT\1 . 4 e

= — [2 cos(—7> + 2c05(7)] sin(ne) = EC%<7) sin(ne). (5.1.35)

Because f(t) is an even function, b, = 0.

The question now arises of how to best illustrate our Fourier coefficients. In Section 5.4
we will show that any harmonic can be represented as a single wave A,, cos(nwt/L+ @) or
Ay sin(nmt/L 4 1),,), where the amplitude A4,, = \/a2 + b2. In the bottom frame of Figure
5.1.3, MATLAB was used to plot this amplitude, usually called the amplitude or frequency
spectrum 1./a2 4+ b2, as a function of n for an arbitrarily chosen e = m/12. Although the
value of € will affect the exact shape of the spectrum, the qualitative arguments that we
will present remain unchanged. We have added the factor % so that our definition of the
frequency spectrum is consistent with that for a complex Fourier series stated after Equation
5.5.12. The amplitude spectrum in Figure 5.1.3 shows that the spectrum for periodically
placed tire treads has its largest amplitude at small n. This produces one loud tone plus
strong harmonic overtones because the fundamental and its overtones are the dominant
terms in the Fourier series representation.

Clearly this loud, monotone whine is undesirable. How might we avoid it? Just as
soldiers marching in step produce a loud uniform sound, we suspect that our uniform tread
pattern is the problem. Therefore, let us now vary the interval between the treads so that
the distance between any tread and its nearest neighbor is not equal, as illustrated in Figure
5.1.4. Again we perform its Fourier analysis and obtain that

1 —m/2+e€ 7/4+€ de
a = - / 1dt+/ ldt| = =, (5.1.36)
m —m/2—¢€ m/4d—e€ m

6 See Varterasian, J. H., 1969: Math quiets rotating machines. SAE J., 77(10), 53.

7 Willett, P. R., 1975: Tire tread pattern sound generation. Tire Sci. Tech., 3, 252-266.
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Figure 5.1.3: Temporal spacing (over two periods) and frequency spectrum of uniformly spaced snow tire
treads.

1 [ —7/24€ /44
ap = — / cos(nt) dt +/ cos(nt) dt] (5.1.37)
s —/2—€ m/4—e€
| L] (5.1.38)
= —sin(nt 4+ — sin(nt 5.1.38
nm nj2—e DT /A
= —% {Sin(% — ne) — sin(% + ne)] + % {Sin(%w + ne) — sin(% - ne)] (5.1.39)
ap = % [cos(n—;) + cos(%ﬂ)} sin(ne), (5.1.40)
and
1 [ pom/zte 7/dte
by, = — [/ sin(nt) dt +/ sin(nt) dt] (5.1.41)
T\ J—r/2—€ m/4—e
= —% [cos(% — ne) - cos(% + ne)] — % {COS(% + ne) — cos(% — ne)}(5.1.42)
= % [sin(%) - sin(%)} sin(ne). (5.1.43)

The MATLAB script

epsilon = pi/12; % set up parameter for fs coefficient
n = 1:20; % number of harmonics
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Figure 5.1.4: Temporal spacing and frequency spectrum of nonuniformly spaced snow tire treads.

argl = (pi/2)#*n; arg2 = (pi/4)*n; arg3 = epsilon*n;
% compute the Fourier coefficient amn

an = (cos(argl) + cos(arg2)).*sin(arg3);

an = (2/pi) * an./n;

% compute the Fourier coefficient bn

bn = (sin(arg2) - sin(argl)).*sin(arg3);

bn = (2/pi) * bn./n;

% compute the magnitude

cn = 0.5 * sqrt(an.*an + bn.*bn);

% add in the a0 term

cn = [2xepsilon/pi,cn];

n = [0,n];

clf % clear any figures

axes (’FontSize’,20) % set font size
stem(n,cn,’filled’) % plot spectrum

set (gca,’PlotBoxAspectRatio’,[8 4 1]) 7 set aspect ratio
xlabel(’n’) % label x-axis

ylabel(’( an"2 + bn~2 )~{1/2}/2?) ¥ label y-axis,
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was used to compute the amplitude of each harmonic as a function of n and the results
were plotted. See Figure 5.1.4. The important point is that our new choice for the spacing
of the treads has reduced or eliminated some of the harmonics compared to the case of
equally spaced treads. On the negative side we have excited some of the harmonics that
were previously absent. However, the net effect is advantageous because the treads produce

less noise at more frequencies rather than a lot of noise at a few select frequencies.
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If we were to extend this technique so that the treads occurred at completely random
positions, then the treads would produce very little noise at many frequencies and the total
noise would be comparable to that generated by other sources within the car. To find the
distribution of treads with the whitest noise® is a process of trial and error. Assuming
a distribution, we can perform a Fourier analysis to obtain its frequency spectrum. If
annoying peaks are present in the spectrum, we can then adjust the elements in the tread
distribution that may contribute to the peak and analyze the revised distribution. You are
finished when no peaks appear.

Problems

Find the Fourier series for the following functions. Using MATLAB, plot the Fourier spec-
trum. Then plot various partial sums and compare them against the exact function.

1, —m<t<0 t, —-r<t<0
1. f(t)_{o, 0<t<n 2. f(t){o’ 0<t<n
_f-m —m<t<0 1/2+4t, —1<t<0
3 f(t)_{t, O<t<n 4 f(t):{1/2—t, 0<t<1
0, —m<t<0 0, —m <t < —7/2
5. ft)y=q t  0<t<m/2 6. f(t)={ sin(2t), —m/2<t<7/2
T—t, w/2<t<m 0, T/2<t<m
7. f(t)=e€",  —L<t<L 8. f()y=t+13, —-L<t<lL
0 —nm<t<0 1 1
0. 10 ={ ut = . qm={ b St
t 0<t< () =
sin(t), ™ 1—t, T<t<d
|0, —a<t<0 0, —n<t<0

14. f(t) =tcos(nt/L), —L <t <L

z(2L — z), 0<t<2L

15. f(t) = sinh[a (7/2 = |t])], —n <t <7 16. f(t) =

22 —6Lx+8L% 2L <t<A4L

5.2 PROPERTIES OF FOURIER SERIES

In the previous section we introduced the Fourier series and showed how to compute
one given the function f(¢). In this section we examine some particular properties of these
series.

8 White noise is sound that is analogous to white light in that it is uniformly distributed throughout
the complete audible sound spectrum.
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I Differentiation of a Fourier series

In certain instances we only have the Fourier series representation of a function f(t).
Can we find the derivative or the integral of f(¢) merely by differentiating or integrating the
Fourier series term by term? Is this permitted? Let us consider the case of differentiation
first.

Consider a function f(t) of period 2L, which has the derivative f’(¢). Let us assume
that we can expand f'(t) as a Fourier series. This implies that f’(¢) is continuous except
for a finite number of discontinuities and f(¢) is continuous over an interval that starts at
t =7 and ends at t =7 + 2L. Then

! > t t
Fo =%y Z (L) Ly, (L) , (5.2.1)

where we denoted the Fourier coefficients of f/(t) with a prime. Computing the Fourier
coefficients,

1 2L 1
al = Z/T J(t)dt = £ [f(r+2L) - f(7)] =0, (5.2.2)

if f(t4+2L) = f(7). Similarly, by integrating by parts,
a, = i/TTHL (@) cos<nzt> dt (5.2.3)
= % [f(t) cos(nztﬂ :+2L + % TTHL f(t) sin(T) dt (5.2.4)
= ﬂ;" (5.2.5)

and

b, = i/TTHL @ sin(T) dt (5.2.6)
= - [f(t) sin(”L“)] :HL - :m £(0) cos(nzt> dt (5.2.7)
= —mLa" (5.2.8)

Consequently, if we have a function f(¢) whose derivative f’(t) is continuous except for a
finite number of discontinuities and f(7) = f(7 + 2L), then

£(t) = g:l - [bn cos(”Lm) —ap sin(nzt)] . (5.2.9)

That is, the derivative of f(t) is given by a term-by-term differentiation of the Fourier series

of f(t).
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e Example 5.2.1

The Fourier series for the periodic function

0, —r <t <0,
ft) = { ¢, 0<t<m/2, ft) = f(t+2m), (5.2.10)
T —t, w/2<t<m,
f) =%~ i; W 2 > (;ﬂf’:)? sin((2n — 1)1, (5.2.11)

Because f(t) is continuous over the entire interval (—m,7) and f(—7) = f(7) = 0, we can
find f’(t) by taking the derivative of Equation 5.2.11 term by term:

2 o= sin[2(2n — 1)t] 2 &= (—1)"
"t) = = _— — = s[(2n — 1)t]. 5.2.12
r==3 =3 L cosl(en -1 (5.2.12)
This is the same Fourier series that we would obtain by computing the Fourier series for

0, —m <t<O0,
fl(t) = { 1, 0<t<m/2, (5.2.13)
-1, T/2 <t <.

Integration of a Fourier series

To determine whether we can find the integral of f(¢) by term-by-term integration of
its Fourier series, consider a form of the antiderivative of f(t):

F(t) = /Ot [f(T) - %] dr. (5.2.14)
Now
F(t+2L) = t[f(r) - %} dr+/t+2L [f(T)— %} dr (5.2.15)
0 . . t
— F(1) +/_L [f(T) - 5‘)} dr (5.2.16)
= F(t) + /_LL F(r)dr — Lag = F(t), (5.2.17)

so that F'(t) has a period of 2L. Consequently we may expand F'(t) as the Fourier series

oo

F(t) = % +> A, cos(T) + B, Sin(T) . (5.2.18)
n=1
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For A,
1 rr t
7/ F(t cos< T ) dt (5.2.19)
LJ_p
1 bm (nmt/L) 1 [F ap] . (nmt
— - — t)— —|s — ) dt 5.2.20
L[ nr/L ]L mr/_L[f() z}m L ( )
= . 5.2.21
n7r/L ( )
Similarly,
an
B, = . 5.2.22
nw/L ( )
Therefore,

/ P Z a,, sin mrt/LT)m/zn cos(mrt/L). (5.2.23)

This is identical to a term-by-term integration of the Fourier series for f(¢). Thus, we can
always find the integral of f(¢) by a term-by-term integration of its Fourier series.

e Example 5.2.2

The Fourier series for f(t) =t for —m <t <7 is

n

sin(nt). (5.2.24)

HM8

To find the Fourier series for f(t) = t?, we integrate Equation 5.2.24 term by term and find
that

P N G Vg ,u- ()"
3|, = nz::l cos(nt) — ; —— (5.2.25)
But Y77 (=1)"/n? = —x?/12. Substituting and multiplying by 2, we obtain the final
result that
2 > )"
=5 Z cos(nt). (5.2.26)
O

Parseval’s equality

One of the fundamental quantities in engineering is power. The power content of a
periodic signal f(¢) of period 2L is f:“L f?(t)dt/L. This mathematical definition mirrors
the power dissipation I2R that occurs in a resistor of resistance R where I is the root mean
square (RMS) of the current. We would like to compute this power content as simply as
possible given the coefficients of its Fourier series.
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Assume that f(¢) has the Fourier series

agp ad nmt . nnt
_— Leos( ) b, sin (222 2.2
f@®) 5 —|—T;an005< 7 )—i—b bm( T > (5.2.27)
Then,
1 T4+2L a T+2L 0 an T4+2L nat
f/r Pyde= 2 j F(t) dan_:lL/T f(t)cos<L) dt
o0 T+2L
+7;bL"/T £(0) sin(f) dt (5.2.28)
PR
= ?0 + (a2 +12). (5.2.29)
n=1

Equation 5.2.29 is Parseval’s equality.” It allows us to sum squares of Fourier coefficients
(which we have already computed) rather than performing the integration f:+2L F2(t) dt
analytically or numerically.

e Example 5.2.3

The Fourier series for f(t) = t? over the interval [—m, 7] is

t? = 22 +4 i (=1)" cos(nt). (5.2.30)
3 — n?
Then, by Parseval’s equality,
l/ﬂ trdt = 2 Wzﬁﬂ(aii, or (2—4>7T4:16 3 = (5.2.31)
T ) 57 |, 18 ot n* 5 18 ot n*
Consequently,
7t /90 = i % (5.2.32)
n=1
O
I Gibbs phenomena

In the actual application of Fourier series, we cannot sum an infinite number of terms
but must be content with N terms. If we denote this partial sum of the Fourier series by

9 Parseval, M.-A., 1805: Mémoire sur les séries et sur I'intégration complete d’une équation aux dif-
férences partielles linéaires du second ordre, a coefficients constants. Mémoires présentés a l’Institut des
sciences, lettres et arts, par divers savans, et lus dans ses assemblées: Sciences mathématiques et Physiques,
1, 638-648.
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Figure 5.2.1: The scanning function over 0 < x < 27 for N = 5.

Sn(t), we have from the definition of the Fourier series:

N
Sn(t) = gao+ Zan cos(nt) + by, sin(nt) (5.2.33)
n=1
1 2 1 27 N
= o f(x)dx + =/, f(z l; s(nt) cos(nx) + sin(nt) sin(nx) | dr (5.2.34)

1 27
:;/0 { —|—Zcos (t —z)] }d:v (5.2.35)

_ 1 2m msm[(N+ =)z —
=5 ), 1@ sm[1<x—t>]

5.2.36
5 ( )

The quantity sin[(N + £)(z — t)]/sin[5(z — t)] is called a scanning function. Over the
range 0 < x < 27 it has a very large peak at x = ¢t where the amplitude equals 2N + 1.
See Figure 5.2.1. On either side of this peak there are oscillations that decrease rapidly
with distance from the peak. Consequently, as N — oo, the scanning function becomes
essentially a long narrow slit corresponding to the area under the large peak at x = ¢. If we
neglect for the moment the small area under the minor ripples adjacent to this slit, then
the integral, Equation 5.2.36, essentially equals f(¢) times the area of the slit divided by
2. If 1/27 times the area of the slit equals unity, then the value of Sy (t) = f(¢) to a good
approximation for large N.

For relatively small values of N, the scanning function deviates considerably from its
ideal form, and the partial sum Sy (t) only crudely approximates f(t). As the partial sum
includes more terms and N becomes relatively large, the form of the scanning function
improves and so does the agreement between Sy (¢) and f(¢). The improvement in the
scanning function is due to the large hump becoming taller and narrower. At the same time,
the adjacent ripples become more numerous as well as narrower in the same proportion as
the large hump does.
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Figure 5.2.2: The finite Fourier series representation Sy (¢) for the function, Equation 5.2.38, for the range

—1<t<T7for N=27and N = 81.

The reason why Sy (t) and f(¢) will never become identical, even in the limit of N — oo,
is the presence of the positive and negative side lobes near the large peak. Because

Sm[s(ijz[j(i)(i)] Toiss XN: cos[n(t — z)], (5.2.37)

n=1

an integration of the scanning function over the interval 0 to 27 shows that the total area
under the scanning function equals 2. However, from Figure 5.2.1 the net area contributed
by the ripples is numerically negative so that the area under the large peak must exceed 27
if the total area equals 27. Although the exact value depends upon N, it is important to
note that this excess does not become zero as N — oo.

Thus, the presence of these negative side lobes explains the departure of our scanning
function from the idealized slit of area 2. To illustrate this departure, consider the function:

ft) = { E1 gi:j; (5.2.38)
Then,
B i ™ sin[(N + %)(x - t)} . i o Sin[(N + %)(ac — t)] .
WO = o /o sin[5(z — )] o ), sin[L(z — t)] v (52.39)
_ L T snlN+)@—b]  sin[(N+H)@+D)]
ez { sl -0 N T amd@t o } (5.2.40)
1 [7"sin[(N + 5)0] 1 ™ sin[(N + 1)6]
- o 4 T%g)z T on ) T%ei de. (5.2.41)

The first integral in Equation 5.2.41 gives the contribution to Sy (t) from the jump dis-
continuity at ¢ = 0 while the second integral gives the contribution from ¢t = m. In Figure
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5.2.2 we have plotted Sy (t) when N = 27 and N = 81. Residual discrepancies remain
even for very large values of N. Indeed, as IV increases, this figure changes only in that
the ripples in the vicinity of the discontinuity of f(t) proportionally increase their rate of
oscillation as a function of ¢ while their relative magnitude remains the same. As N — oo
these ripples compress into a single vertical line at the point of discontinuity. True, these
oscillations occupy smaller and smaller spaces but they still remain. Thus, we can never
approximate a function in the vicinity of a discontinuity by a finite Fourier series without
suffering from this over- and undershooting of the series. This peculiarity of Fourier series
is called the Gibbs phenomena.'® Gibbs phenomena can only be eliminated by removing
the discontinuity.'!

Problems

Additional Fourier series representations can be generated by differentiating or integrating
known Fourier series. Work out the following two examples.

1. Given
72 —2mx o= cos[(2n + 1)z
- = _ - 0<x<
8 2 2n+1)2 =r="
n=0

obtain

— [(2 Dz

2y — ma? 7Zsm n+ ]7 0<z<m,

2n+1

by term-by-term integration. Could we go the other way, i.e., take the derivative of the
second equation to obtain the first? Explain.

2. Given
2 2
m — 3z cos(nx)
1 = Z(*l)nJrl pEa —n<z<m,
n=1
obtain
wlr— 1} & 1 sin(nx)
S T
n

3
Il
—

by term-by-term integration. Could we go the other way, i.e., take the derivative of the
second equation to obtain the first? Explain.

3. (a) Show that the Fourier series for the odd function:

242, —2<t<0, . 32 1 _[(2n—1)7t
f(t)_{ , is f(t)—w?)n:1 (2n_1)3s1n[ }

10 Gibbs, J. W., 1898: Fourier’s series. Nature, 59, 200; Gibbs, J. W., 1899: Fourier’s series. Nature,
59, 606. For the historical development, see Hewitt, E., and R. E. Hewitt, 1979: The Gibbs-Wilbraham
phenomenon: An episode in Fourier analysis. Arch. Hist. Ezact Sci., 21, 129-160.

Il For a particularly clever method for improving the convergence of a trigonometric series, see Kan-
torovich, L. V., and V. I. Krylov, 1964: Approximate Methods of Higher Analysis. Interscience, pp. 77-88.
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(b) Use Parseval’s equality to show that

> 1
:nz::l (2n —1)6"

This series converges very rapidly to 7°/960 and provides a convenient method for comput-
: 6
ing 7°.

5.3 HALF-RANGE EXPANSIONS

In certain applications, we will find that we need a Fourier series representation for
a function f(z) that applies over the interval (0, L) rather than (—L, L). Because we are
completely free to define the function over the interval (—L, 0), it is simplest to have a series
that consists only of sines or cosines. In this section we shall show how we can obtain these
so-called half-range expansions.

Recall in Example 5.1.3 how we saw that if f(z) is an even function, then b,, = 0 for all
n. Similarly, if f(x) is an odd function, then ag = a,, = 0 for all n. We now use these results
to find a Fourier half-range expansion by extending the function defined over the interval
(0, L) as either an even or odd function into the interval (—L,0). If we extend f(z) as an
even function, we will get a half-range cosine series; if we extend f(z) as an odd function,
we obtain a half-range sine series.

It is important to remember that half-range expansions are a special case of the general
Fourier series. For any f(z) we can construct either a Fourier sine or cosine series over the
interval (—L, L). Both of these series will give the correct answer over the interval of (0, L).
Which one we choose to use depends upon whether we wish to deal with a cosine or sine
series.

e Example 5.3.1
Let us find the half-range sine expansion of
flz) =1, 0<z<m. (5.3.1)

We begin by defining the periodic odd function

~ -1, - <z <0,
@)= { 1, 0<z<m, (5.3.2)
with f(z + 27) = f(z). Because f(z) is odd, ap = a, = 0 and
2 [T 2 .2 2 .
by, = ;/0 1sin(nz)dz = —Ecos(nwﬂo = [cos(nm) — 1] = g [(-1)™ —1].
(5.3.3)

The Fourier half-range sine series expansion of f(z) is therefore

o0

2 [1—(-1) 4 O sinf(2m — 1a]
= - . 5.3.4
777; smnm Fz Y] ( )

m=1
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Figure 5.3.1: Partial sum of N terms in the Fourier half-range sine representation of a square wave.

As counterpoint, let us find the half-range cosine expansion of f(z) =1, 0 < z < 7.
Now, we have that b, = 0,

2 ™
ag = 7/ ldz = 2, (535)
T Jo
and
an = 2 /Tr cos(nz) dr = isin(nm)r =0 (5.3.6)
[ S Conw o e

Thus, the Fourier half-range cosine expansion equals the single term:
flz) =1, 0<z<m. (5.3.7)

This is perfectly reasonable. To form a half-range cosine expansion we extend f(z) as
an even function into the interval (—,0). In this case, we would obtain f(z) = 1 for
—m < < 7. Finally, we note that the Fourier series of a constant is simply that constant.
In practice it is impossible to sum Equation 5.3.4 exactly and we actually sum only the
first N terms. Figure 5.3.1 illustrates f(z) when this Fourier series contains N terms. As
seen from the figure, the truncated series tries to achieve the infinite slope at = 0, but in
the attempt, it overshoots the discontinuity by a certain amount (in this particular case, by
17.9%). This is another example of the Gibbs phenomena. Increasing the number of terms
does not remove this peculiarity; it merely shifts it nearer to the discontinuity. O

e Example 5.3.2: Inertial supercharging of an engine

An important aspect of designing any gasoline engine involves the motion of the fuel,
air, and exhaust gas mixture through the engine. Ordinarily an engineer would consider the
motion as steady flow; but in the case of a four-stroke, single-cylinder gasoline engine, the
closing of the intake valve interrupts the steady flow of the gasoline-air mixture for nearly
three quarters of the engine cycle. This periodic interruption sets up standing waves in the
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intake pipe - waves that can build up an appreciable pressure amplitude just outside the
input value.

When one of the harmonics of the engine frequency equals one of the resonance fre-
quencies of the intake pipe, then the pressure fluctuations at the valve will be large. If the
intake valve closes during that portion of the cycle when the pressure is less than average,
then the waves will reduce the power output. However, if the intake valve closes when the
pressure is greater than atmospheric, then the waves will have a supercharging effect and
will produce an increase of power. This effect is called inertia supercharging.

While studying this problem, Morse et al.!? found it necessary to express the velocity
of the air-gas mixture in the valve, given by

0, —T < wt < —7/4,
f(t) = mcos(2wt)/2, —m/4 < wt < /4, (5.3.8)
0, /4 <wt <,

in terms of a Fourier expansion. The advantage of working with the Fourier series rather
than the function itself lies in the ability to write the velocity as a periodic forcing function
that highlights the various harmonics that might resonate with the structure comprising
the fuel line.

Clearly f(t) is an even function and its Fourier representation will be a cosine series.
In this problem 7 = —7/w, and L = 7/w. Therefore,

9 /4w rdw
ag = ke — cos(2wt) dt = %Sin(2wt)|_/4/4 =1, (5.3.9)
s —7 /4w /A
and
9 7 [4w t
ap = ke — cos(2wt) cos(m> dt (5.3.10)
™ —7 /4w 2 7'('/0)
w 7 /4w
=3 / {cos[(n + 2)wt] + cos[(n — 2)wt]} dt (5.3.11)
—7 /4w
(n2)wt] _ sinf(n—2)wt] |
sin[(n+2)wt sin[(n—2)wt
3nt2) T 2n—2) s , n#2,
= i (5.3.12)
w sin(4dwt
Tt + (4 ) , n=2,
—m /4w
4 nmw
_ | mwaeos(F), n#2 (5.3.13)
T n = 2.

Plotting these Fourier coefficients using the MATLAB script:
for m = 1:21;
n = m-1; % compute the indices for the harmonic
% compute the Fourier coefficients an
if n == 2; an(m) = pi/4; else;
an(m) = 4.*cos(pi*n/4)/(4-n*n); end;

12 Morse, P. M., R. H. Boden, and H. Schecter, 1938: Acoustic vibrations and internal combustion engine
performance. 1. Standing waves in the intake pipe system. J. Appl. Phys., 9, 16-23.
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Figure 5.3.2: The spectral coefficients of the Fourier cosine series of the function given by Equation 5.3.9.

end

nn=0:20; % create indices for x-axis
fzero=zeros(size(nn)); % create the zero line

clf Y clear any figures

axes (’FontSize’,20) % set font size

stem(nn,an,’filled’) % plot spectrum

hold on

plot(nn,fzero,’-’) % plot the zero line

set (gca,’PlotBoxAspectRatio’,[8 4 1]) 7 set aspect ratio
xlabel(’n’) % label x-axis

ylabel(’amn’) % label y-axis,

we see that these Fourier coefficients become small rapidly (see Figure 5.3.2). For that
reason, Morse et al. showed that there are only about three resonances where the acoustic
properties of the intake pipe can enhance engine performance. These peaks occur when

= 30c/NL = 3,4, or 5, where ¢ is the velocity of sound in the air-gas mixture, L is the
effective length of the intake pipe, and N is the engine speed in rpm. See Figure 5.3.3.
Subsequent experiments'® verified these results.

Such analyses are valuable to automotive engineers. Engineers are always seeking ways
to optimize a system with little or no additional cost. Our analysis shows that by tuning
the length of the intake pipe so that it falls on one of the resonance peaks, we could obtain
higher performance from the engine with little or no extra work. Of course, the problem is
that no car always performs at some optimal condition.

Problems

Find the Fourier cosine and sine series for the following functions. Then, use MATLAB to
plot the Fourier coefficients.

1. f(t) =t, O<t<m 2. f(t)=m—1t, O<t<m

3. f(t) =tla—1), 0<t<a 4. f(t) = eFt, 0<t<a

13 Boden, R. H., and H. Schecter, 1944: Dynamics of the inlet system of a four-stroke engine. NACA
Tech. Note 935.
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Figure 5.3.3: Experimental verification of inertial supercharging within a gasoline engine resulting from
the resonance of the air-gas mixture and the intake pipe system. The peaks correspond to the n = 3,4,
and 5 harmonics of the Fourier representation, Equation 5.3.13, and the parameter g is defined in the text.
(From Morse, P., R. H. Boden, and H. Schecter, 1938: Acoustic vibrations and internal combustion engine
performance. J. Appl. Phys., 9, 17 with permission.)

<t<i t, 0<t<1
5= 0 UEEs 6. 110) = {
1—t, 3<t<1 1, 1<t<2
0, O<t<%
T =7 -, 0<t<n SI0=0 .
) 5 a
a a
0, 0<t§§ 0, O<t<Z
a a 2a a 3a
Lf) =R t—=-, - <t<— 10. fi)=¢ 1, —<t<—
9. (1) 3 3~ — 3 ;)L 4
a 2a a
R
3 §§t<a 0, 1 <t<a
1 2t a
> O<t<g P 0<t§5
11. f(t) = " 12. f(t) = 4 3, _ o “_,
1, §<t<a 5q ' 2= <a
t, O<t§%
—t
13. f(t) = 4. ft)=2"", 0<t<a
4 g<t<a a
27 2_

15. Using the relationships'# that

14 Gradshteyn, 1. S., and I. M. Ryzhik, 1965: Table of Integrals, Series, and Products. Academic Press,
Section 3.753, Formula 2 and Section 3.771, Formula 8.
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1 u v
cos(axr) , N VT (2u 1
ﬁ dr = EJO(G/), and /(; (’U, —T ) 2 COS(G,J}) dr = 7 ; T (l/ + 5) JZ,(G/U,)7

with @ > 0, u > 0,R(r) > —1, obtain the following half-range expansions:

1 o0
= g + ﬂ; Jo(nm) cos(nmx), 0<z<l1,
and
J1[(2n — 1)m/2
V1—a2= 22 i 2nn—177/ ]cos[(Qn—l)wx/Q], 0<z<l

Here J,(-) denotes the Bessel function of the first kind and order v (see Section 6.5) and
['(+) is the gamma function.'®

16. The function

t t? t3 t
f(t):1—(1+a);+(a—1)P+(a+1)ﬁ—aﬁ7 O<t<m
is a curve fit to the observed pressure trace of an explosion wave in the atmosphere. Because
the observed transmission of atmospheric waves depends on the five-fourths power of the
frequency, Reed'® had to re-express this curve fit as a Fourier sine series before he could
use the transmission law. He found that

ft) = *Z [ Wz,ﬂ sin(2nt)

2(a—1 48a .
T ; 2n—1 {1 * 71'2((271 — 1))2 S ri(2n—1)4 sin(2n — 1)t

Confirm his result.
5.4 FOURIER SERIES WITH PHASE ANGLES

Sometimes it is desirable to rewrite a general Fourier series as a purely cosine or purely
sine series with a phase angle. Engineers often speak of some quantity leading or lagging
another quantity. Re-expressing a Fourier series in terms of amplitude and phase provides
a convenient method for determining these phase relationships.

Suppose, for example, that we have a function f(¢) of period 2L, given in the interval
[—L, L], whose Fourier series expansion is

—|—Zanc%< )+b sm<n2t>. (5.4.1)

15 Gradshteyn and Ryzhik, op. cit., Section 6.41.

16 Reed, J. W., 1977: Atmospheric attenuation of explosion waves. J. Acoust. Soc. Am., 61, 39-47.
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We wish to replace Equation 5.4.1 by the series:

_ag > . [ nmt
f) =5+ > B, sm(L + ¢n> . (5.4.2)
n=1
To do this we note that
. [ nmt nmt . [ nmt
B, sm(L —|—<pn> =a, COS(L) + b, sm(L> (5.4.3)
t t
=B, sin(nZ) cos(¢n) + Bn sin(ey) cos(nz> . (5.4.4)

We equate coefficients of sin(nnt/L) and cos(nwt/L) on both sides and obtain
apn, = By sin(on), and by, = By, cos(¢n). (5.4.5)
Hence, upon squaring and adding,
B, = /a2 + b2, (5.4.6)
while taking the ratio gives

Pn = tanil(an/bn)- (547)

Similarly we could rewrite Equation 5.4.1 as

_ 0,y nmt
ft) =5 + ;An cos( T 90n> : (5.4.8)
where
Ap, = /a2 + b2, and ©n = tan" ' (=b, /a,), (5.4.9)
and

an = Ay cos(on), and by, = — A, sin(vy). (5.4.10)
In both cases, we must be careful in computing ,, because there are two possible values of
n that satisfy Equation 5.4.7 or Equation 5.4.9. These angles y,, must give the correct a,,
and b,, using either Equation 5.4.5 or Equation 5.4.10.
e Example 5.4.1

The Fourier series for f(t) = e’ over the interval —L <t < L is

sinh(aL) . = aL(-1)" nmt
= —— 2 S h L _— _—
1) alL +2sinh(a )nzzl 22 yn2n? S\ T

. = am(=1)" . [nxt
- QSlnh(aL); MSIH([/) . (5411)
Let us rewrite Equation 5.4.11 as a Fourier series with a phase angle. Regardless of whether
we want the new series to contain cos(nwt/L + ¢,,) or sin(nwt/L + ¢,,), the amplitude A,

or B,, is the same in both series:

2sinh(al)
- B = /a2 b2 =
A, =B, =+/a2 +b2 = T T (5.4.12)
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If we want our Fourier series to read

sinh(alL) os(nmt/L 4 ¢y)
= 2sinh(alL) 5.4.13
i = T v 2smnan Y SRR, (5419
then )
¢n = tan"* (CL") = tan*l(%) , (5.4.14)

where @, lies in the first quadrant if n is even and in the third quadrant if n is odd. This
ensures that the sign from the (—1)™ is correct.
On the other hand, if we prefer

_ sinh(aL) in(nmt/L + @n)
f( ) - aL + ZSlnh aL Z W, (5415)
then I
©n = tan"! <an> = —tan~! (a) , (5.4.16)
by, nmw

where ¢, lies in the fourth quadrant if n is odd and in the second quadrant if n is even.
Problems

Write the following Fourier series in both the cosine and sine phase angle form:

o Y R Ny
n=1 —_
3. f()=-2) (_i)n sin(nt) 4. f(t) = g - jr 3 Coigjn —1)12)t]
n=1

5.5 COMPLEX FOURIER SERIES

So far in our discussion, we expressed Fourier series in terms of sines and cosines. We
are now ready to re-express a Fourier series as a series of complex exponentials. There
are two reasons for this. First, in certain engineering and scientific applications of Fourier
series, the expansion of a function in terms of complex exponentials results in coefficients
of considerable simplicity and clarity. Second, these complex Fourier series point the way
to the development of the Fourier transform in the next chapter.

We begin by introducing the variable w, = nw/L, where n = 0,+1,+2,... Using
Euler’s formula we can replace the sine and cosine in the Fourier series by exponentials and
find that

oo
s bn —i
f(t) _ ?0 + Z “n zw”t +e zw"t) + 277,: (ezw”t _e 'Lwnt) (551)

0 = n b iwnt an bnl —iwnt
=% In _ 2nb) giwnt 4 (o 20t nt. 5.5.2
2+Z(2 2) +<2+2)e (5.5.2)
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If we define c,, = %(an — iby), then

1 [THeL 1 [T+2L ,
n = Han —ib) = o /T F(8)[cos(nt) — isin(w, )] dt = - /T F(t)e—intdt.
(5.5.3)
Similarly, the complex conjugate of ¢,, ¢}, equals
1 T+2L ]
6 = Yan +iby) = 57 / F(t)entdt. (5.5.4)
To simplify Equation 5.5.2 we note that
(=n)m nmw
= == = —w,, 5.5.5
YT L L7 (5.5.5)
which yields the result that
1 T+2L ] 1 T4+2L )
C-n =57 j ft)e ™-rtdt = E/T ft)e“ntdt = ¢ (5.5.6)
so that we can write Equation 5.5.2 as
f(t) = % + ;cneiwnt + C;kle—iwnt — % + ;cneiwnt + C,ne_iw"t. (5.5.7)
Letting n = —m in the second summation on the right side of Equation 5.5.7,
o] —o0 —1 —1
Z c_pe tont = Z Cpe” womt = Z Cmemt = Z cpent, (5.5.8)
n=1 m=—1 m=—00 n=-—00
where we introduced m = n into the last summation in Equation 5.5.8. Therefore,
a oo -1
fy =3+ n; cpent + n;m coetnt, (5.5.9)
On the other hand,
ao 1 T+42L ]
2 =3/ f(t)dt = cy = coe™?, (5.5.10)
because wy = 0m/L = 0. Thus, our final result is
&)=Y cae™n, (5.5.11)
where
1 2L _ (5.5.12)
n = o= tye "t dt -9.
=31 | ft)e
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and n = 0,4+1,42,.... Note that even though ¢, is generally complex, the summation
Equation 5.5.11 always gives a real-valued function f(t).

Just as we can represent the function f(t) graphically by a plot of ¢ against f(¢), we
can plot ¢, as a function of n, commonly called the frequency spectrum. Because c,, is
generally complex, it is necessary to make two plots. Typically the plotted quantities are
the amplitude spectra |c, | and the phase spectra ,,, where ,, is the phase of ¢,,. However,
we could just as well plot the real and imaginary parts of ¢,. Because n is an integer, these
plots consist merely of a series of vertical lines representing the ordinates of the quantity
|cn| or ¢y, for each n. For this reason we refer to these plots as the line spectra.

Because 2¢,, = a,, —ib,, the coeflicients ¢,, for an even function will be purely real; the
coefficients ¢, for an odd function are purely imaginary. It is important to note that we
lose the advantage of even and odd functions in the sense that we cannot just integrate over
the interval 0 to L and then double the result. In the present case we have a line integral
of a complex function along the real axis.

e Example 5.5.1

Let us find the complex Fourier series for

1, 0<t<m,
f@®) = { 1, r<t<0, (5.5.13)

which has the periodicity f(t + 27) = f(¢).
With L =7 and 7 = -7, w, = nw/L = n. Therefore,

1 /0 , 1 (7 -
en==— [ (=De ™at+ —/ (e "™ dt (5.5.14)
2 J_, 21 Jo
0 T
1 i 1 i
= wmn — wm 5.5.15
2nmi 2nmi 0 ( )
- _ 1 — n7e (e 1 5.5.16
2nm ( € ) + 2nm (e ) ’ ( )

nmi

if n # 0. Because "™ = cos(nm) +isin(nm) = (=1)" and e~ "™ = cos(—nm) +isin(—nw) =

(—=1)™, then
1 " 0, n even,
== ={ 5 o (5.5.17)
with -
fO)= > cpe™. (5.5.18)
n=—oo

In this particular problem we must treat the case n = 0 specially because Equation
5.5.15 is undefined for n = 0. In that case,
L[ I 1 0 1,
(—D)dt+— [ ()dt=—(-t)|__+—=(t)|, =0. (5.5.19)
0 21 T 2

COZ% o 2

Because ¢y = 0, we can write the expansion:

p(2m—1)it

f(t) :*% >, =1 (5.5.20)

m=—0o0
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Figure 5.5.1: Amplitude and phase spectra for the function, Equation 5.5.13.

since we can write all odd integers as 2m — 1, where m = 0,+1,4+2, +3,....

MATLAB script

max = 31; % total number of harmonics

(max+1)/2; % in the array, location of c_0

for m = 1:max;
n = m - mid; % compute value of harmonic

% compute complex Fourier coefficient cn = (cnr,cni)
if mod(n,2) == 0; cnr(m) = 0; cni(m) = 0; else;
cnr(m) = 0; cni(m) = - 2/(pi*n); end;

end

nn=(1-mid) : (max-mid) ; % create indices for x-axis

fzero=zeros(size(nn)); % create the zero line

clf % clear any figures

amplitude = sqrt(cnr.*cnr+cni.*cni);

phase = atan2(cni,cnr);

% plot amplitude of c.n

subplot(2,1,1), stem(nn,amplitude,’filled’)

% label amplitude plot

text(6,0.75, ’amplitude’, ’FontSize’,20)

subplot(2,1,2), stem(nn,phase,’filled’) % plot phases of cmn

text (7,1, phase’,’FontSize’,20) % label phase plot

xlabel(’n’,’Fontsize’,20) % label x-axis,

mid

Using the

we plot the amplitude and phase spectra for the function, Equation 5.5.13, as a function of

n in Figure 5.5.1.

e Example 5.5.2

O

The concept of Fourier series can be generalized to multivariable functions. Consider
the function f(z,y) defined over 0 < z < L and 0 < y < H. Taking y constant, we have
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that .
1 ) 2
en(y) = —/ f(x,y)e_lf"w dx, &= Ln. (5.5.21)
L /s L
Similarly, holding &,, constant,
1 [ , 2
Cnm = E/O Cn(y)eiznmy dy7 N = Zm (5522)

Therefore, the (complex) Fourier coefficient for the two-dimensional function f(z,y) is

1 Lo .
cnm:ﬁ/o /0 f(m,y)e_’(é"”Jr”my)dxdy, (5.5.23)

assuming that the integral exists.
To recover f(x,y) given cpm,, we reverse the process of deriving ¢,,,. Starting with

oo
cny) = D Came™Y, (5.5.24)
we find that -
fla,y) = Y ealy)e®. (5.5.25)
Therefore,
(oo} o0 )
flay)= D D cpme’ oty (5.5.26)

n=—00 Mm=——0o0

Problems

Find the complex Fourier series for the following functions. Then use MATLAB to plot the
corresponding spectra.

LfO)=1Jt, —-w<t<m 2. f(t)y=¢€", 0<t<?2
3.f(t)=t, 0<t<2 4. f(t)=t*, —-w<t<m

0, —m/2<t<0

5.f(t){17 0<t<n/2 6. f(t)y=¢t, —-1<t<l1

5.6 THE USE OF FOURIER SERIES IN THE SOLUTION OF ORDINARY
DIFFERENTIAL EQUATIONS

An important application of Fourier series is the solution of ordinary differential equa-
tions. Structural engineers especially use this technique because the occupants of buildings
and bridges often subject these structures to forcings that are periodic in nature.'”

17 Timoshenko, S. P., 1943: Theory of suspension bridges. Part II. J. Franklin Inst., 235, 327-349; Inglis,
C. E., 1934: A Mathematical Treatise on Vibrations in Railway Bridges. Cambridge University Press, 203

pp.
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e Example 5.6.1

Let us find the general solution to the ordinary differential equation
y' +9y = f(b), (5.6.1)
where the forcing is
f@) =11, —w<t<m, o f(t+2m) = f(1). (5.6.2)

This equation represents an oscillator forced by a driver whose displacement is the saw-tooth
function.

We begin by replacing the function f(t) by its Fourier series representation because
the forcing function is periodic. The advantage of expressing f(t) as a Fourier series is its
validity for any time ¢t. The alternative would be to construct a solution over each interval
nm <t < (n+1)7 and then piece together the final solution assuming that the solution and
its first derivative are continuous at each junction ¢ = nw. Because the function is an even
function, all of the sine terms vanish and the Fourier series is

\t|ffffzcos [2n = Dt} (5.6.3)

2n—1

Next, we note that the general solution consists of the complementary solution, which
equals
yr (t) = Acos(3t) + Bsin(3t), (5.6.4)

and the particular solution y,(t), which satisfies the differential equation

cos[(2n — 1)t]
+9yp_f—fz a1 (5.6.5)

To determine this particular solution, we write Equation 5.6.5 as

" _r_ 4 4 4 .
Yp +9yp = 5 - cos(t) o cos(3t) 5 cos(5t) . (5.6.6)

By the method of undetermined coefficients, we guess the particular solution:

yp(t) = aQ—O + ay cos(t) + by sin(t) + ag cos(3t) + be sin(3t) + - - - (5.6.7)
yp(t) = a0 + ian cos[(2n — 1)t] + by, sin[(2n — 1)t]. (5.6.8)
n=1
Because -
Z (2n — 1)*{ay, cos[(2n — 1)t] + by sin[(2n — 1)#]}, (5.6.9)
i (2n — 1)*{a, cos[(2n — 1)t] + by, sin[(2n — 1)t]} (5.6.10)

+ Sao + 9Zan cos[(2n — 1)t] + by, sin[(2n — 1)t

n=1

wm

4icos (2n —1)t]
T (2n—1)2
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92ﬂ - g + nz::l {[9 —(2n —1)?a, + 71_(2714_1)2} cos[(2n — 1)t]
+ i 9 — (2n — 1)%]b, sin[(2n — 1)f] = 0. (5.6.11)

Because Equation 5.6.11 must hold true for any time, each harmonic must vanish separately

and
™ 4

9 T T rEn—129 - 2n— 1)
and b,, = 0. All of the coefficients a,, are finite except for n = 2, where as becomes undefined.
This coefficient is undefined because the harmonic cos(3t) in the forcing function resonates
with the natural mode of the system.

Let us review our analysis to date. We found that each harmonic in the forcing func-
tion yields a corresponding harmonic in the particular solution, Equation 5.6.8. The only
difficulty arises with the harmonic n = 2. Although our particular solution is not correct
because it contains cos(3t), we suspect that if we remove that term then the remaining
harmonic solutions are correct. The problem is linear, and difficulties with one harmonic
term should not affect other harmonics. But how shall we deal with the cos(3t) term in the
forcing function? Let us denote that particular solution by Y (¢) and modify our particular
solution as follows:

ap = (5.6.12)

Yp(t) = $ao + ag cos(t) + Y (t) + az cos(5t) + - - - . (5.6.13)

Substituting this solution into the differential equation and simplifying, everything cancels
except

4
Y +9Y = “or cos(3t). (5.6.14)
T
The solution of this equation by the method of undetermined coefficients is
2

This term, called a secular term, is the most important one in the solution. While the other
terms merely represent simple oscillatory motion, the term ¢ sin(3t) grows linearly with time
and eventually becomes the dominant term in the series. Consequently, the general solution
equals the complementary plus the particular solution, or

o0

y(t) = Acos(3) + Bsin(31) + 1 - %tsin(i%t) - % > & _C‘l)j’g(é"_(;it]_ - (5616
o

e Example 5.6.2
Let us redo the previous problem only using complex Fourier series. That is, let us find
the general solution to the ordinary differential equation

. T ) 0 ei(2n71)t
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From the method of undetermined coefficients we guess the particular solution for
Equation 5.6.17 to be

)=co+ Y cpel@ L (5.6.18)
Then -
yy(t) = > —(2n—1)%c, eVt (5.6.19)

Substituting Equation 5.6.18 and Equation 5.6.19 into Equation 5.6.17,

2 0 1(271 1)t
(2n — 1)2e,ein-Dt = T _ 2 . 5.6.20
9co + Z n—1)%e, 5 ; T ( )

n=-—oo

Because Equation 5.6.20 must be true for any t,

T 2

- d ¢, = ) 5.6.21

OT IR M T Lo 1)2[(2n - 1)2 9] ( )
Therefore,

o0 i(2n—1)t —

Han=2t, 5.6.22

up(t) Z 2n—12[2n—1)2—9]° ( )

However, there is a problem when n = —1 and n = 2. Therefore, we modify Equation 5.6.22

to read
™ 3t 3it - ei(Qnil)t '(2 1)t 5.6.23
t) = — te _qte™" — Han=t, .6.
Up(t) = g5 +eate™ Feate +7rn;m 2n—12[2n—1)2—9]° ( )
n#—1,2

Introducing Equation 5.6.23 into Equation 5.6.17 and simplifying,
1 1

— d eq=—— 5.6.24
2T o MY UT Torg ( )
The general solution is then
tedit =3t 9 0 pi(2n—1)t
t Ae 3it B —3it e — . (5.6.25
y(t) = +Be o 18 27ri | 2tmi | w n;w Gn =112 =9 )
n#—1,2

The first two terms on the right side of Equation 5.6.25 represent the complementary solu-
tion. Although this expansion is equivalent to Equation 5.6.16, we have all of the advantages
of dealing with exponentials rather than sines and cosines. These advantages include ease
of differentiation and integration, and writing the series in terms of amplitude and phase.
O

e Example 5.6.3: Temperature within a spinning satellite

In the design of artificial satellites, it is important to determine the temperature distri-
bution on the spacecraft’s surface. An interesting special case is the temperature fluctuation
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in the skin due to the spinning of the vehicle. If the craft is thin-walled so that there is
no radial dependence, Hrycak'® showed that he could approximate the nondimensional
temperature field at the equator of the rotating satellite by

d*T  dT 3 e F(n) + 8/4
S (-2 = e S 5.6.26
a C( 4) 4 1+7p/4 ( )
where
1678 s, S\ 1+ ap/4\

b= 4r?r? = 14+ —= Too = [ — — 5.6.27
mr*f/a, c ’YTOO<+4)’ <7m€) 1+ 3 oo )

cos(27n), 0<n<i,
F(n) = 0, $<n<3, (5.6.28)

cos(2mn), 3<n<iu,

a is the thermal diffusivity of the shell, f is the rate of spin, r is the radius of the spacecraft,
S is the net direct solar heating, ( is the ratio of the emissivity of the interior shell to the
emissivity of the exterior surface, € is the overall emissivity of the exterior surface, 7 is
the satellite’s skin conductance, and o is the Stefan-Boltzmann constant. The independent
variable n is the longitude along the equator with the effect of rotation subtracted out
(2mn = ¢ —27 ft). The reference temperature T, equals the temperature that the spacecraft
would have if it spun with infinite angular speed so that the solar heating would be uniform
around the craft. We nondimensionalized the temperature with respect to T.
We begin by introducing the new variables

2,.2 2
3__m™ S g =P (5.6.29)

=T — — — =
Y 4 16+ 478’ = apy 0 4+ 7P

and p3 = ¢ so that Equation 5.6.26 becomes

d2

ae — Py = AoF(n). (5.6.30)

d
+ 2povo—— Y
dn

Next, we expand F'(n) as a Fourier series because it is a periodic function of period 1.
Because it is an even function,

f(n) = za0 + i“” cos(2nmn), (5.6.31)
n=1
where
1 1/4 1 1 9
ag = m/o cos(2mx) dx + m /3/4 cos(2mx) dx = s (5.6.32)
1 1/4 1 1 ) 1
a) = 172/0 cos®(2mz) dr + —— 73 /3/4 cos”(2mx) do = 3 (5.6.33)

18 From Hrycak, P., 1963: Temperature distribution in a spinning spherical space vehicle. ATAA J., 1,
96—99. Reprinted with permission of the American Institute of Aeronautics and Astronautics.
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and
1[4 1t
ap, = —/ cos(2mx) cos(2nmx) dx + —/ cos(2mx) cos(2nmx)dx  (5.6.34)
1/2 Jo 1/2 J3/4
o 2(=1)n nm
= —m COS(7> y (5635)

if n > 2. Therefore,

Tl

Fln) = — + 5 cos(2m) — — E [ cos(dnm). (5.6.36)
2 ™=

From the method of undetermined coefficients, the particular solution is

Yp(n) = 3ag + ay cos(2mn) + by sin(27n) + Zagn cos(4nmn) + by, sin(4dnmn),  (5.6.37)

n=1

which yields

Y, (n) = —2may sin(27n) + 27by cos(2mn) + Z [—4nmas, sin(4nmn) + 4dnmby, cos(4dnmn)],

(5.6.38)
and

Yy (n) = —4m*[ay cos(2mn) + by sin(27n)] Z 161272 [ag,, cos(4nmn) + b, sin(4nmn)].

(5.6.39)
Substituting into Equation 5.6.30,
1 A A
—§pga0 — ?0 + (—47r2a1 + 4mpovoby — piay — 20) cos(2mn)
+ (—471'2()1 — dmporoa; — pgbl) sin(27n)
> 2A0(—1)"
+ Z [—16n27r2a2n + 8nTpovoban — paasn + 77(4(72(2—)1) cos(4nmn)
+ Z (716n27r2b2n — 8nmponasy, — pgbgn) sin(4nmn) = 0. (5.6.40)
n=1
To satisfy Equation 5.6.40 for any 7, we set
24
ap = ——, (5.6.41)
TPy
2, 2 Ag
—(47* + p§)ar + dwporoby = X (5.6.42)
4rpovpar + (4% + pg)by = 0, (5.6.43)
2A0(—=1)"
(160272 + p2)ag, — Snmporoba, = o(=1) (5.6.44)

T(4n? — 1)’



Fourier Series 223

16 i D S I B — —

s .~ SOLUTION OF LINEARIZED EQUATION

! T == EXACT SOLUTION GONDUCTION

DISREGARDED
14 A =1 THROUGHOUT
p =237
13 [¢] L
U.=0.370
. 0 —y

12 Lt _\’,'
= TN /

] + bt
':? /{ :‘vo=20
L)

— — e
— VA
(+]
03 l\ \ ™ _// k_u°=0 ——]
O R O O S Y

o8 ==

07 4+ o+

086

Fi

Qg 01 02 03 04 05 08 07 C8 05 10
n

Figure 5.6.1: Temperature distribution along the equator of a spinning spherical satellite. (From Hrycak,
P., 1963: Temperature distribution in a spinning spherical space vehicle. ATAA J., 1, 97. (©1963 AIAA,
reprinted with permission.)

and
8T poroao, + (16027 4 pa)be, = 0, (5.6.45)
or .
4 A
(16720202 + (47% + p2)ay = —%, (5.6.46)
[167%pavd + (472 + p2)?]b1 = 27porp Ao, (5.6.47)
240(—1)" (161272 + p?)
[64n2m%peve + (16n%72 + p2)*ag, = @2 1) o (5.6.48)
and 16(—1)" A
[64n272p208 + (160272 + p2)%|bay = — (_4)2”“”10” 0, (5.6.49)
n2 —
Substituting for ag, a1, b1, asp, and ba,, the particular solution is
Yp(n) = Ao (472 + p3) Ag cos(2mn) 21 poro Ao sin(27n)
P wpg  2[(4m% + p3)? + 16m2p3v2] (42 + pE)? + 1672 p3ud
240 (—=1)" (160272 + p2) cos(2nmn)
T = (4n? — 1)[64n2m2p¢vd + (16n%72 + p?)?]
oo .
_1 n o 2
— 16001040 Y (=1)"n sin(2nm) (5.6.50)

< (4n? — 1)[64n272 318 + (160272 + p3)?]

n—=

Figure 5.6.1 is from Hrycak’s paper and shows the variation of the nondimensional
temperature as a function of 7 for the spinning rate 1y. The other parameters are typical
of a satellite with aluminum skin and fully covered with glass-protected solar cells. As
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a check on the solution, we show the temperature field (the dashed line) of a nonrotating
satellite where we neglect the effects of conduction and only radiation occurs. The difference
between the vy = 0 solid and dashed lines arises primarily due to the linearization of the
nonlinear radiation boundary condition during the derivation of the governing equations.

Problems

Solve the following ordinary differential equations by Fourier series if the forcing is given
by the periodic function
1, 0<t<m,

f(t):{(), T<t<2m,

and f(t) = f(t + 2m):
Ly —y=f(t), 29" +y=ft), 3.y =3y +2y = f(t).

Solve the following ordinary differential equations by complex Fourier series if the forcing is
given by the periodic function

f@ =1, —-m<t<m,
and f(t) = f(t +2n):
4y —y=[f(Q), 5.9" +4y = f(1).

6. An object radiating into its nocturnal surrounding has a temperature y(t) governed by

the equation!?
dy d .
p +ay= A+ E A,, cos(nwt) + By, sin(nwt),

n=1
where the constant a is the heat loss coefficient and the Fourier series describes the temporal
variation of the atmospheric air temperature and the effective sky temperature. If y(0) = Ty,
find y(¢).
7. The equation that governs the charge ¢ on the capacitor of an LRC electrical circuit is
q”—i—2aq'+w2q:w2E,

where a = R/(2L), w? = 1/(LC), R denotes resistance, C' denotes capacitance, L denotes
the inductance, and F is the electromotive force driving the circuit. If F is given by

0
_ inwot
E= )Y @nem™t,

n=—oo
find q(¢).
8. Use Fourier series to find the particular solution?® of the ordinary differential equation

, ) 2 1, 0<z< A4,
y'(z) + ky(z) = -k VL{_L MNA <z <)N2,

19 See Sodha, M. S., 1982: Transient radiative cooling. Solar Energy, 28, 541.

20 See Chabert, P., J. L. Raimbault, J. M. Rax, and M. A. Lieberman, 2004: Self-consistent nonlinear
transmission line model of standing wave effects in a capacitive discharge. Phys. Plasmas, 11, 1775-1785.
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where k, V, and A are constants. Extend the forcing function as an even function into the
interval (—A/2,0).

5.7 FINITE FOURIER SERIES

In many applications we must construct a Fourier series from values given by data or
a graph. Unlike the situation with analytic formulas where we have an infinite number of
data points and, consequently, an infinite number of terms in the Fourier series, the Fourier
series contains a finite number of sines and cosines where the number of coefficients equals
the number of data points.

Assuming that these series are useful, the next question is how do we find the Fourier
coefficients? We could compute them by numerically integrating Equation 5.1.6. However,
the results would suffer from the truncation errors that afflict all numerical schemes. On
the other hand, we can avoid this problem if we again employ the orthogonality properties
of sines and cosines, now in their discrete form. Just as in the case of conventional Fourier
series, we can use these properties to derive formulas for computing the Fourier coefficients.
These results will be exact except for roundoff errors.

We start by deriving some preliminary results. Let us define z,, = mP/(2N). Then,
if k is an integer,

2N

2N-—1 . 2N-1 . 2N-1 1-—r"" 0. r £1
21k, kmmi I—r ) )
E exp( iz > = g exp( N > g r’ = (5.7.1)

m=0 m=0 m=0 2N, r=1,

because 2V = exp(27ki) = 1 if r # 1. If » = 1, then the sum consists of 2N terms, each

of which equals one. The condition 7 = 1 corresponds to k = 0, £2N,+4N,.... Taking the
real and imaginary part of Equation 5.7.1,

2%‘:1 okw,\ [ 0, k#0,+2N, +4N, . ., 5.72)
~ TP ) e, k=0,42N, +4N, ..., -7
and _—
~ . (27kxy,
Z sm( 2 )—0 (5.7.3)
m=0
for all k.

Consider now the following sum:

aN-1 . 2N—1 ) .
2mkx,, 2mja,\ 1 27 (k + §)xm 2n(k — j)am
E cos( 5 ) cos( 5 ) 3 E_ {cos [P + cos —5

m=0 m=0
(5.7.4)
0, |k — 7] and |k +m]| # 0,2N, 4N, ...,
=< N, |k —j| or |k+m|+#0,2N,4N,...(5.7.5)

2N, |k — j| and |k +m| =0,2N,4N,.. ..

Let us simplify the right side of Equation 5.7.5 by restricting ourselves to k+ 7 lying between
0 to 2N. This is permissible because of the periodic nature of this equation. If k + j = 0,
k=j=0;ifk+j=2N,k=j= N. Ineither case, k—j = 0 and the right side of Equation
5.7.5 equals 2N. Consider now the case k # j. Then k+j # 0 or 2N and k—j # 0 or 2N.



226 Advanced Engineering Mathematics with MATLAB

The right side of this equaton must equal 0. Finally, if kK = j % 0 or N, then k£ + j # 0 or
2N but k — j = 0 and the right side of this equation equals N. In summary,

2N-1 . 0 k#j

2k, 2 Ty ’ ’

E cos< TFPI '>cos< W‘;j: > = { N, k=j#0,N (5.7.6)
IN, k=j—0,N.

m=0

In a similar manner,

2N -1 .
2rkxm \ . [ 27jTm

E cos< W}f >sm< W‘ij )O (5.7.7)

m=0

2N-1 . 0 k+#3j
2kxm \ . [ 27jTm ! 7
E sin( 7rPx >sm( Fif ): {N, k=j#0,N, (5.7.8)
0, k=5=0,N.

Armed with these equations we are ready to find the coefficients A,, and B, of the
finite Fourier series,

Ay = 2k 2k An 2r Nz
=0 Ay, cos By, si — .
fla) =~ +k§_1{ k005< 5 )+ k31n< 5 )]+ 5 cos( 5 > (5.7.9)

where we have 2N data points and now define P as the period of the function.
To find Ay, we proceed as before and multiply Equation 5.7.9 by cos(2mjx /P) (j may
take on values from 0 to N) and sum from 0 to 2N — 1. At the point x = @,

2N—-1 27_[_] A 2N—-1 271_]
_ 20 27J
Z f(xm)cos<me) =5 Z cos( 5 xm>

m=0

1
N-1 2N-1 .
2rk 2
+ By, E sin(;xm) cos(;jxm)

Ay 2= 2N 2
+ TN _ cos(TIDxm> cos(lzjxm> . (5.7.10)

If j # 0 or N, then the first summation on the right side vanishes by Equation 5.7.2, the
third by Equation 5.7.8, and the fourth by Equation 5.7.6. The second summation does not
vanish if £ = j and equals N. Similar considerations lead to the formulas for the calculation
of Ak and Bkl

1 2N—1 27'(']{1
Az—g S| —— =0,1,2,...,N 711
k N m:() f(x’m) C05< P 'r"L) ) k 07 y &y ) ) (5 7 )
and ON 1
1 = . [ 2nk
B, = i g f(xm) sm(me) , k=1,2,...,N —1. (5.7.12)
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Table 5.7.1: The Depth of Water in the Harbor at Buffalo, NY (Minus the Low-Water
Datum of 568.8 ft) on the 15" Day of Each Month During 1977

mo n depth mo n depth mo n depth
Jan 1 1.61 May 5 3.16 Sep 9 2.42
Feb 2 1.57 Jun 6 2.95 Oct 10 2.95
Mar 3 2.01 Jul 7 3.10 Nov 11 2.74
Apr 4 2.68 Aug 8 2.90 Dec 12 2.63

If there are 2N +1 data points and f(z¢) = f(zan), then Equation 5.7.11 and Equation
5.7.12 are still valid and we need only consider the first 2V points. If f(zg) # f(z2n), we can
still use our formulas if we require that the endpoints have the value of [f(z) + f(x2n)]/2.
In this case the formulas for the coefficients A, and By are

1 [ flao) + flaon) o= ok
A, — — <N/ —_— 71
R= 5 + m2:1 f(zm) cos P Zm )| (5.7.13)
where £k =0,1,2,..., N, and
2N—1
1 . [ 27k
Bk’ = N mE:1 f(xm) SIH<PIm> , (5714)

where k=1,2,...,N — 1.

It is important to note that 2N data points yield 2N Fourier coefficients Ay and By.
Consequently our sampling frequency will always limit the amount of information, whether
in the form of data points or Fourier coefficients. It might be argued that from the Fourier
series representation of f(t) we could find the value of f(¢) for any given ¢, which is more
than we can do with the data alone. This is not true. Although we can calculate f(¢) at any
t using the finite Fourier series, the values may or may not be correct since the constraint on
the finite Fourier series is that the series must fit the data in a least-squared sense. Despite
the limitations imposed by only having a finite number of Fourier coefficients, the Fourier
analysis of finite data sets yields valuable physical insights into the processes governing
many physical systems.

e Example 5.7.1: Water depth at Buffalo, NY

Each entry?! in Table 5.7.1 gives the observed depth of water at Buffalo, NY (minus the
low-water datum of 568.6 ft) on the 15" of the corresponding month during 1977. Assuming
that the water level is a periodic function of 1 year, and that we took the observations at
equal intervals, let us construct a finite Fourier series from these data. This corresponds to
computing the Fourier coefficients Ag, A1, ..., Ag, By, ..., Bs, which give the mean level and
harmonic fluctuations of the depth of water, the harmonics having the periods 12 months,
6 months, 4 months, and so forth.

21 National Ocean Survey, 1977: Great Lakes Water Level, 1977, Daily and Monthly Average Water
Surface Elevations. National Oceanic and Atmospheric Administration.
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In this problem, P equals 12 months, N = P/2 = 6 mo, and z,, = mP/(2N) =
m(12 mo)/12 mo = m. That is, there should be a data point for each month. From
Equation 5.7.11 and Equation 5.7.12,

11
1 mkm
Ak = émgzof(‘rnl) COS<6> ) k= Oa 1a2737475767 (5715)
and
B—lil Fam)sin(™¥) k123,45 (5.7.16)
k:_6m:0 m 6 ) — Ly 4y 9y %y J. <l

Substituting the data into these equations yields

Ap = twice the mean level = +5.120 ft
Aq = harmonic component with a period of 12 mo = —0.566 ft
B = harmonic component with a period of 12 mo = —0.128 ft
Ay = harmonic component with a period of 6 mo = —0.177 ft
By = harmonic component with a period of 6 mo = —0.372 ft
As = harmonic component with a period of 4 mo = —0.110 ft
Bs = harmonic component with a period of 4 mo = —0.123 ft
Ay = harmonic component with a period of 3 mo = 40.025 ft
B, = harmonic component with a period of 3 mo = +0.052 ft
As = harmonic component with a period of 2.4 mo = —0.079 ft
Bs = harmonic component with a period of 2.4 mo = —0.131 ft
Ag = harmonic component with a period of 2 mo = —0.107 ft

Figure 5.7.1 is a plot of our results using Equation 5.7.9. Note that when we include
all of the harmonic terms, the finite Fourier series fits the data points exactly. The values
given by the series at points between the data points may be right or they may not. To
illustrate this, we also plotted the values for the first of each month. Sometimes the values
given by the Fourier series and these intermediate data points are quite different.

Let us now examine our results in terms of various physical processes. In the long
run the depth of water in the harbor at Buffalo, NY depends upon the three-way balance
between precipitation, evaporation, and inflow-outflow of any rivers. Because the inflow and
outflow of the rivers depends strongly upon precipitation, and evaporation is of secondary
importance, the water level should correlate with the precipitation rate. It is well known
that more precipitation falls during the warmer months rather than the colder months.
The large amplitude of the Fourier coefficient A; and Bj, corresponding to the annual cycle
(k = 1), reflects this.

Another important term in the harmonic analysis corresponds to the semiannual cycle
(k = 2). During the winter months around Lake Ontario, precipitation falls as snow.
Therefore, the inflow from rivers is greatly reduced. When spring comes, the snow and ice
melt and a jump in the water level occurs. Because the second harmonic gives periodic
variations associated with seasonal variations, this harmonic is absolutely necessary if we
want to get the correct answer while the higher harmonics do not represent any specific
physical process. a

e Example 5.7.2: Numerical computation of Fourier coefficients

At the beginning of this chapter, we showed how you could compute the Fourier coeffi-
cients ag, a,, and b,, from Equation 5.1.6 given a function f(¢). All of this assumed that you
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Figure 5.7.1: Partial sums of the finite Fourier series for the depth of water in the harbor of Buffalo, NY
during 1977. Circles indicate observations on the 15" of the month; crosses are observations on the first.

could carry out the integrations. What do you do if you cannot perform the integrations?
The obvious solution is perform it numerically. In this section we showed that the best
approximation to Equation 5.1.6 is given by Equation 5.7.11 and Equation 5.7.12. In the
case when we have f(t) this is still true but we may choose N as large as necessary to obtain
the desired number of Fourier coefficients.

To illustrate this we have redone Example 5.1.1 and plotted the exact (analytic) and
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Figure 5.7.2: The computation of Fourier coefficients using a finite Fourier series when f(t) is given by
Equation 5.1.8. The circles give ay, and by, as computed from Equation 5.1.9, Equation 5.1.10, and Equation
5.1.11. The crosses give the corresponding Fourier coefficients given by the finite Fourier series with N = 15.

numerically computed Fourier coefficients in Figure 5.7.2. This figure was created using the
MATLAB script

clear;

N = 15, M = 2#N; dt = 2%pi/M; Y number of points in interval
% create time points assuming x(t) = x(t+period)
[-pi:dt:pi-dt];

ot
]

f = zeros(size(t)); % initialize function f(t)
for k = 1:length(t) % construct function f(t)
if t(k) < 0; f(k) = 0; else f(k) = t(k); end; end;
)
% compute Fourier coefficients using fast Fourier transform
)
fourier = fft(f) / N;
a_0_comp = real(fourier(1)); sign = 1;

for n = 2:N;
an_comp(n-1) = - sign * real(fourier(n));
bn_comp(n-1) = sign * imag(fourier(n));
sign = - sign;

end

)

% plot comparisons

)

NN = linspace(O0,N-1,N);
exact_coeff (1) = pi/2;
numer _coeff (1) = a_O_comp;
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for n = 1:N-1;
exact_coeff (n+1)
numer_coeff (n+1)

end;

subplot(2,1,1),plot (NN,exact_coeff,’o’ ,NN,numer_coeff, ’kx’)
ylabel(’an’,’Fontsize’,20)

clear exact_coeff numer_coeff

NN = linspace(1,N-1,N-1);

for n = 1:N-1;
exact_coeff(n) = -(-1)"n/n; numer_coeff(n) = bn_comp(n);

end;

subplot(2,1,2), plot(NN,exact_coeff,’o’,NN,numer_coeff, ’kx’)

xlabel(’n’,’Fontsize’,20); ylabel(’bn’,’Fontsize’,20);

((-1)"n-1) / (pi*(2%n-1)"2);
an_comp(n);

It shows that a relative few data points can yield quite reasonable answers.

Let us examine this script a little closer. One of the first things that you will note is
that there is no explicit reference to Equation 5.7.11 and Equation 5.7.12. How did we get
the correct answer?

Although we could have coded Equation 5.7.11 and Equation 5.7.12, no one does that
any more. In the 1960s, J. W. Cooley and J. W. Tukey?? devised an incredibly clever
method of performing these calculations. This method, commonly called a fast Fourier
transform or FFT, is so popular that all computational packages contain it as an intrinsic
function and MATLAB is no exception, calling it £ft. This is what has been used here.

Although we now have an £ft to compute the coefficients, this routine does not directly
give the coefficients a,, and b,, but rather some mysterious (complex) number that is related
to ay, + ib,. This is a common problem in using a package’s FFT rather than your own
and why the script divides by N and we keep changing the sign. The best method for
discovering how to extract the coefficients a,, and b, is to test it with a dataset created by
a simple, finite series such as

f(z) =20 + cos(t) + 3sin(t) + 6 cos(2t) — 20sin(2t) — 10 cos(3t) — 30sin(3t). (5.7.17)

If the code is correct, it must give back the coefficient in Equation 5.7.17 to within round-off.
Otherwise, something is wrong.

Finally, most FFTs assume that the dataset will start repeating after the final data
point. Therefore, when reading in the dataset, the point corresponding to x = L must be
excluded. a

e Example 5.7.3: Aliasing

In the previous example, we could only resolve phenomena with a period of 2 months
or greater although we had data for each of the 12 months. This is an example of Nyquist’s
sampling criteria:?> At least two samples are required to resolve the highest frequency in a
periodically sampled record.

Figure 5.7.3 will help explain this phenomenon. In case (a) we have quite a few data
points over one cycle. Consequently our picture, constructed from data, is fairly good. In

22 Cooley, J. W., and J. W. Tukey, 1965: An algorithm for machine calculation of complex Fourier series.
Math. Comput., 19, 297-301.

23 Nyquist, H., 1928: Certain topics in telegraph transmission theory. AIEE Trans., 47, 617-644.
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Figure 5.7.3: The effect of sampling in the representation of periodic functions.
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Figure 5.7.4: The sea elevation at the mouth of the Chesapeake Bay from its average depth as a function
of time after 1 July 1985.

case (b), we took only samples at the ridges and troughs of the wave. Although our picture
of the real phenomenon is poor, at least we know that there is a wave. From this picture
we see that even if we are lucky enough to take our observations at the ridges and troughs
of a wave, we need at least two data points per cycle (one for the ridge, the other for the
trough) to resolve the highest-frequency wave.

In case (¢) we have made a big mistake. We have taken a wave of frequency N Hz and
misrepresented it as a wave of frequency N/2 Hz. This misrepresentation of a high-frequency
wave by a lower-frequency wave is called aliasing. It arises because we are sampling a
continuous signal at equal intervals. By comparing cases (b) and (c), we see that there is
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Figure 5.7.5: The amplitude of the Fourier coefficients for the sea elevation at the Chesapeake Bay bridge
and tunnel (top) and Baltimore harbor (bottom) as a function of period.

a cutoff between aliased and nonaliased frequencies. This frequency is called the Nyquist
or folding frequency. It corresponds to the highest frequency resolved by our finite Fourier
analysis.

Because most periodic functions require an infinite number of harmonics for their rep-
resentation, aliasing of signals is a common problem. Thus the question is not “can I avoid
aliasing?” but “can I live with it?” Quite often, we can construct our experiments to say
yes. An example where aliasing is unavoidable occurs in a Western at the movies when
we see the rapidly rotating spokes of the stagecoach’s wheel. A movie is a sampling of
continuous motion where we present the data as a succession of pictures. Consequently, a
film aliases the high rate of revolution of the stagecoach’s wheel in such a manner so that
it appears to be stationary or rotating very slowly. a
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Figure 5.7.6: Same as Figure 5.7.4 but with the tides removed.

e Example 5.7.4: Spectrum of the Chesapeake Bay

For our final example, we perform a Fourier analysis of hourly sea-level measurements
taken at the mouth of the Chesapeake Bay during the 2000 days from 9 April 1985 to 29
June 1990. Figure 5.7.4 shows 200 days of this record, starting from 1 July 1985. As this
figure shows, the measurements contain a wide range of oscillations. In particular, note the
large peak near day 90 that corresponds to the passage of Hurricane Gloria during the early
hours of 27 September 1985.

Utilizing the entire 2000 days, we plotted the amplitude of the Fourier coefficients as
a function of period in Figure 5.7.5. We see a general rise of the amplitude as the period
increases. Especially noteworthy are the sharp peaks near periods of 12 and 24 hours. The
largest peak is at 12.417 hours and corresponds to the semidiurnal tide. Thus, our Fourier
analysis shows that the dominant oscillations at the mouth of the Chesapeake Bay are the
tides. A similar situation occurs in Baltimore harbor. Furthermore, with this spectral
information we could predict high and low tides very accurately.

Although the tides are of great interest to some, they are a nuisance to others because
they mask other physical processes that might be occurring. For that reason we would like
to remove them from the tidal gauge history and see what is left. One way would be to
zero out the Fourier coefficients corresponding to the tidal components and then plot the
resulting Fourier series. Another method is to replace each hourly report with an average
of hourly reports that occurred 24 hours ahead of and behind a particular report. We
construct this average in such a manner that waves with periods of the tides sum to zero.2*
Such a filter is a popular method for eliminating unwanted waves from a record. Filters
play an important role in the analysis of data. We plotted the filtered sea level data in
Figure 5.7.6. Note that summertime (0-50 days) produces little variation in the sea level
compared to wintertime (100-150 days) when intense coastal storms occur.

24 See Godin, G., 1972: The Analysis of Tides. University of Toronto Press, Section 2.1.
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Figure 5.7.7: The orography of the earth and its spectrum in meters along three latitude belts using a
topography dataset with a resolution of 1.25° longitude.

Find the finite Fourier series for the following pieces of data:
1. f(0)=0, f(1)=1, f(2) =2, f(3) =3, and N = 2.

2.f0) =1, f(1) =1, f(2) = -

Problems

1, f(3) = —1,and N = 2.
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Project: Spectrum of the Earth’s Orography

Table 5.7.2 gives the orographic height of the earth’s surface used in an atmospheric
general circulation model (GCM) at a resolution of 2.5° longitude along the latitude belts
of 28°S, 36°N, and 66°N. In this project you will find the spectrum of this orographic field
along the various latitude belts.

Step 1: Write a MATLAB script that reads in the data and find A, and B, and then
construct the amplitude spectra for this data.

Step 2: Construct several spectra by using every data point, every other data point, etc.
How do the magnitudes of the Fourier coefficient change? You might like to read about
leakage from a book on harmonic analysis.?®

Step 3: Compare and contrast the spectra from the various latitude belts. How do the
magnitudes of the Fourier coefficients decrease with n? Why are there these differences?

Step 4: You may have noted that some of the heights are negative, even in the middle of
the ocean! Take the original data (for any latitude belt) and zero out all of the negative
heights. Find the spectra for this new data set. How have the spectra changed? Is there a
reason why the negative heights were introduced?

Further Readings

Carslaw, H. S., 1950: An Introduction to the Theory of Fourier’s Series and Integrals.
Dover, 368 pp. A classic treatment of the Fourier technique.

Tolstov, Georgi P., 1976: Fourier Series. Dover, 336 pp. This book covers the basic theory
of Fourier series and its use in mathematical physics.

25 For example, Bloomfield, P., 1976: Fourier Analysis of Time Series: An Introduction. John Wiley &
Sons, 258 pp.
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Table 5.7.2: Orographic Heights (in m) Times the Gravitational Acceleration Constant

(g = 9.81 m/s?) along Three Latitude Belts

Longitude 28°S 36°N 66°N Longitude 28°S 36°N 66°N
—180.0 4. 3. 2532. —82.5 36. 4047. 737.
—177.5 1. —2. 1665. —80.0 —64. 3938. 185.
—175.0 1. 2. 1432. —77.5 138. 1669. 71.
—172.5 1. -3. 1213. —175.0 —363. 236. 160.
—170.0 1. 1. 501. —72.5 4692. 31. 823.
—167.5 1. -3. 367. —70.0 19317. —8. 1830.
—165.0 1. 1. 963. —67.5 21681. 0. 3000.
—162.5 0. 0. 1814. —65.0 9222. —2. 3668.
—160.0 —1. 6. 2562. —62.5 1949. —2. 2147.
—157.5 0. 1. 3150. —60.0 774. 0. 391.
—155.0 0. 3. 4008. —57.5 955. 5. —77.
—152.5 1. —2. 4980. —55.0 2268. 6. 601.
—150.0 —1. 4. 6011. —52.5 4636. —1. 3266.
—147.5 6. —1. 6273. —50.0 4621. 2. 9128.
—145.0 14. 3. 5928. —47.5 1300. —4.  17808.
—142.5 6. —1. 65009. —45.0 —91. 1. 22960.
—140.0 —2. 6. 7865. —42.5 57. —1.  20559.
—137.5 0. 3. 7752. —40.0 —25. 4. 14296.
—135.0 -2 5. 6817. -37.5 13. —1. 9783.
—132.5 1. —2. 6272. —35.0 —10. 6. 5969.
—130.0 -2 0. 5582. -32.5 8. 2. 1972.
—127.5 0. 5. 4412. -30.0 —4. 22. 640.
—125.0 —2. 423. 3206. —27.5 6. 33. 379.
—122.5 1. 3688. 2653. —25.0 —2. 39. 286.
—120.0 -3.  10919. 2702. —22.5 3. 2. 981.
—117.5 2. 16148. 3062. —20.0 -3. 11. 1971.
—115.0 —-3. 17624. 3344. —-17.5 1. —6. 2576.
—112.5 7. 18132. 3444. —15.0 —1. 19. 1692.
—110.0 12. 19511. 3262. —12.5 0. —18. 357.
—107.5 9. 22619. 3001. —10.0 —1. 490. —21.
—105.0 -5, 20273. 2931. -7.5 0. 2164. —5.
—102.5 3. 12914. 2633. =5.0 1. 4728. —10.
—100.0 —5. 7434. 1933. —-2.5 0. 5347. 0.

—-97.5 6. 4311. 1473. 0.0 4. 2667. —6.
—95.0 —8. 2933. 1689. 2.5 —5. 1213. —1.
—-92.5 8. 2404. 2318. 5.0 7. 1612. —31.
-90.0 —12. 1721. 2285. 7.5 —13. 1744. —58.
—87.5 18. 1681. 1561. 10.0 28. 1153. 381.
—85.0 —23. 2666. 1199. 12.5 107. 838. 2472.
15.0 2208. 1313. 5263. 97.5 0. 35538. 6222.
17.5 6566. 862. 5646. 100.0 —2.  31985. 5523.
20.0 9091. 1509. 3672. 102.5 0. 23246. 4823.
22.5 10690. 2483. 1628. 105.0 —4.  17363. 46809.
25.0 12715. 1697. 889. 107.5 2. 14315. 4698.
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Table 5.7.2, contd.: Orographic Heights (in m) Times the Gravitational Acceleration
Constant (g = 9.81 m/s?) along Three Latitude Belts

Longitude 28°S 36°N 66°N Longitude 28°S 36°N 66°N

27.5 14583. 3377. 1366. 110.0 —17.  12639. 4674.
30.0 11351. 7682. 1857. 112.5 302.  10543. 4435.
32.5 3370. 9663. 1534. 115.0 1874. 4967. 3646.
35.0 15.  10197. 993. 117.5 4005. 1119. 2655.
37.5 49.  10792. 863. 120.0 4989. 696. 2065.
40.0 —-31. 11322. 756. 122.5 4887. 475. 1583.
42.5 20.  13321. 620. 125.0 4445. 1631. 3072.
45.0 —17.  15414. 626. 127.5 4362. 2933. 7290.
47.5 —-19.  12873. 836. 130.0 4368. 1329. 8541.
50.0 —18. 6114. 1029. 132.5 3485. 88. 7078.
52.5 6. 2962. 946. 135.0 1921. 998. 7322.
55.0 —2. 4913. 828. 137.5 670. 1983. 9445.
57.5 3. 6600. 1247. 140.0 666. 2511.  10692.
60.0 -3. 4885. 2091. 142.5 1275. 866. 9280.
62.5 2. 3380. 2276. 145.0 1865. 13. 8372.
65.0 —1. 5842. 1870. 147.5 2452. 11. 6624.
67.5 2. 12106. 1215. 150.0 3160. —4. 3617.
70.0 0. 23032. 680. 152.5 2676. —1. 2717.
72.5 2. 35376. 531. 155.0 697. 0. 3474.
75.0 —1.  36415. 539. 157.5 —67. -3. 4337.
77.5 1. 26544. 579. 160.0 25. 3. 4824.
80.0 0. 19363. 554. 162.5 —12. —1. 5525.
82.5 1. 17915. 632. 165.0 10. 4. 6323.
85.0 -2, 22260. 791. 167.5 —5. —2. 5899.
87.5 —1.  30442. 1455. 170.0 0. 1. 4330.
90.0 -3.  33601. 3194. 172.5 0. —4. 3338.
92.5 —-1.  30873. 4878. 175.0 4. 3. 3408.
95.0 0.  31865. 5903. 177.5 3 -1 3407.




Chapter 6
The Sturm-Liouville Problem

In the next three chapters we will be solving partial differential equations using the
technique of separation of variables. This technique requires that we expand a piece-wise
continuous function f(x) as a linear sum of eigenfunctions, much as we used sines and
cosines to re-express f(x) in a Fourier series. The purpose of this chapter is to explain and
illustrate these eigenfunction expansions.

6.1 EIGENVALUES AND EIGENFUNCTIONS

Repeatedly, in the next three chapters on partial differential equations, we will solve
the following second-order linear differential equation:

% {p(z)flﬂ +lg(z) + Ar(@)ly =0, a<z<bh, (6.1.1)

together with the boundary conditions:

ay(a) + By (a)=0 and  ~y(b) +6y'(b) = 0. (6.1.2)

In Equation 6.1.1, p(z), ¢(z), and r(z) are real functions of z; A is a parameter; and
p(z) and r(x) are functions that are continuous and positive on the interval a < z < b.

239
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By the time that Charles-Francois Sturm (1803-1855) met Joseph Liouville in the early 1830s, he
had already gained fame for his work on the compression of fluids and his celebrated theorem on the
number of real roots of a polynomial. An eminent teacher, Sturm spent most of his career teaching
at various Parisian colleges. (Portrait courtesy of the Archives de I’Académie des sciences, Paris.)

Taken together, Equation 6.1.1 and Equation 6.1.2 constitute a regular Sturm-Liouville
problem, named after the French mathematicians Sturm and Liouville! who first studied
these equations in the 1830s. In the case when p(x) or r(z) vanishes at one of the endpoints
of the interval [a, b] or when the interval is of infinite length, the problem becomes a singular
Sturm-Liouville problem.

Consider now the solutions to the regular Sturm-Liouville problem. Clearly there is the
trivial solution y = 0 for all \. However, nontrivial solutions exist only if A takes on specific
values; these values are called characteristic values or eigenvalues. The corresponding
nontrivial solutions are called the characteristic! functions or eigenfunctions. In particular,
we have the following theorems.

Theorem: For a regular Sturm-Liouville problem with p(x) > 0, all of the eigenvalues are
real if p(x), q(x), and r(z) are real functions and the eigenfunctions are differentiable and

continuous.

Proof: Let y(z) = u(z) + iw(z) be an eigenfunction corresponding to an eigenvalue A =

L For the complete history as well as the relevant papers, see Liitzen, J., 1984: Sturm and Liouville’s
work on ordinary linear differential equations. The emergence of Sturm-Liouville theory. Arch. Hist. Ezact
Seci., 29, 309-376.



The Sturm-Liouville Problem 241

Although educated as an engineer, Joseph Liouville (1809-1882) would devote his life to teaching
pure and applied mathematics in the leading Parisian institutions of higher education. Today he
is most famous for founding and editing for almost 40 years the Journal de Liouville. (Portrait
courtesy of the Archives de I’Académie des sciences, Paris.)

Ar + )i, where A, \; are real numbers and u(z), v(x) are real functions of x. Substituting
into the Sturm-Liouville equation yields

{p(@)[/ () +iv" (@)} + la(@) + (Ar +iXo)r(@)] [u(z) + iv(@)] = 0. (6.1.3)
Separating the real and imaginary parts gives
[p(2)u ()] + [g(x) + AJu(z) — Air(z)v(x) = 0, (6.1.4)
and
[p(x)v'(2)]" + [q(z) + NJv(z) + Nir(z)u(z) = 0. (6.1.5)

If we multiply Equation 6.1.4 by v and Equation 6.1.5 by u and subtract the results, we
find that
u(@)[pla)v’ ()] — o(@)[pa)d ()] + Nir(@)[u?(z) +v*(2)] = 0. (6.1.6)

The derivative terms in Equation 6.1.6 can be rewritten so that it becomes

d

7z p(@)V' (@)]u(@) = [p(z)d’ (@)]o()} + Air(@)[u? (z) +v*(2)] = 0. (6.1.7)
Integrating from a to b, we find that

b

b
_)\i/ r(@)[u2(@) + v3(2)] dz = {p(a)[u(z)’ (z) — v(z) ()]} . (6.1.8)

From the boundary conditions, Equation 6.1.2,
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afu(a) +iv(a)] + Bl (a) + iv'(a)] = 0, (6.1.9)

and
y[u(b) + iv(b)] + §[u(b) + v’ (b)] = 0. (6.1.10)

Separating the real and imaginary parts yields
au(a) + Bu'(a) =0, and awv(a)+ Bv'(a) =0, (6.1.11)

and
yu(b) + 6u'(b) =0, and ~v(b)+ dv'(b) = 0. (6.1.12)

Both « and 8 cannot be zero; otherwise, there would be no boundary condition at x = a.
Similar considerations hold for v and §. Therefore,

u(a)v'(a) — v/ (a)v(a) =0, and u(b)v'(b) —u'(b)v(b) =0, (6.1.13)

if we treat a, (8, 7, and J as unknowns in a system of homogeneous equations, Equation
6.1.11 and Equation 6.1.12, and require that the corresponding determinants equal zero.
Applying Equation 6.1.13 to the right side of Equation 6.1.8, we obtain

b
" / r(2)[u2(z) + v (2)] dz = 0, (6.1.14)

Because r(x) > 0, the integral is positive and \; = 0. Since \; = 0, X is purely real. This
implies that the eigenvalues are real. a

If there is only one independent eigenfunction for each eigenvalue, that eigenvalue is
simple. When more than one eigenfunction belongs to a single eigenvalue, the problem is
degenerate.

Theorem: The reqular Sturm-Liouville problem has infinitely many real and simple eigen-
values A\p, n = 0,1,2,..., which can be arranged in a monotonically increasing sequence
Ao < A1 < Ay < -+ such that lim, o A, = 00. FEuvery eigenfunction y,(x) associated
with the corresponding eigenvalue A, has exactly n zeros in the interval (a,b). For each
eigenvalue there exists only one eigenfunction (up to a multiplicative constant).

The proof is beyond the scope of this book but may be found in more advanced treatises.?
O

In the following examples we illustrate how to find these real eigenvalues and their
corresponding eigenfunctions.

e Example 6.1.1
Let us find the eigenvalues and eigenfunctions of

Yy’ 4+ Ay =0, (6.1.15)

2 See, for example, Birkhoff, G., and G.-C. Rota, 1989: Ordinary Differential Equations. John Wiley &
Sons, Chapters 10 and 11; Sagan, H., 1961: Boundary and Eigenvalue Problems in Mathematical Physics.
John Wiley & Sons, Chapter 5.
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Figure 6.1.1: Graphical solution of tan(rz) = z.
subject to the boundary conditions
y(0) =0, and  y(m) —y'(7) = 0. (6.1.16)

Our first task is to check to see whether the problem is indeed a regular Sturm-Liouville
problem. A comparison between Equation 6.1.1 and Equation 6.1.15 shows that they are
the same if p(z) = 1, ¢(x) = 0, and r(x) = 1. Similarly, the boundary conditions, Equation
6.1.16, are identical to Equation 6.1.2 ifa=v=1,d=-1,8=0,a =0, and b = 7.

Because the form of the solution to Equation 6.1.15 depends on A, we consider three
cases: \ negative, positive, or equal to zero. The general solution? of the differential equation
is

y(x) = Acosh(mz) + Bsinh(mz), if A<0, (6.1.17)
ylx)=C+ Dz, if A=0, (6.1.18)

and
y(z) = Ecos(kz) + Fsin(kx), if A >0, (6.1.19)

where for convenience A = —m? < 0 in Equation 6.1.17 and A = k? > 0 in Equation 6.1.19.
Both k and m are real and positive by these definitions.

Turning to the condition that y(0) = 0, we find that A = C = E = 0. The other
boundary condition y(7) — y(7) = 0 gives

Blsinh(mm) — m cosh(mm)] = 0, (6.1.20)
D=0, (6.1.21)

and
Fisin(kw) — k cos(km)] = 0. (6.1.22)

If we graph sinh(mm) —m cosh(m) for all positive m, this quantity is always negative.
Consequently, B = 0. However, in Equation 6.1.22, a nontrivial solution (i.e., F' # 0) occurs
if

F cos(km)[tan(km) — k] =0, or tan(km)=k. (6.1.23)

3 In many differential equations courses, the solution to y” —m?2y = 0, m > 0 is written y(z) = c1e™* +
coe” ™% However, we can rewrite this solution as y(z) = (c1+c2) % (e™® e~ ™M)+ (cq —02)%(67’“7 —em™MT) =
Acosh(mz) 4+ Bsinh(mz), where cosh(mz) = (€™ + e~ ™%)/2 and sinh(mz) = (e™* — e~ ™%)/2. The
advantage of using these hyperbolic functions over exponentials is the simplification that occurs when we
substitute the hyperbolic functions into the boundary conditions.
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Figure 6.1.2: The first four eigenfunctions sin(k,z) corresponding to the eigenvalue problem tan(kw) = k.

In summary, we found nontrivial solutions only when A, = k2 > 0, where k,, is the nth
root of the transcendental equation, Equation 6.1.23. We can find the roots either graph-
ically or through the use of a numerical algorithm. Figure 6.1.1 illustrates the graphical
solution to the problem. We exclude the root k = 0 because A must be greater than zero.

Let us now find the corresponding eigenfunctions. Because A= B=C =D =FE =0,
we are left with y(x) = F'sin(kz). Consequently, the eigenfunction, traditionally written
without the arbitrary amplitude constant, is

yn(x) = sin(kpx), (6.1.24)
because k must equal k,,. Figure 6.1.2 shows the first four eigenfunctions. O
e Example 6.1.2
For our second example let us solve the Sturm-Liouville problem,*
Yy’ 4+ Ay =0, (6.1.25)
with the boundary conditions
y(0) —¢'(0) =0, and y(m)—y'(7)=0. (6.1.26)
Once again the three possible solutions to Equation 6.1.25 are

y(x) = Acosh(mz) + Bsinh(mz), if \=-m? <0, (6.1.27)

ylx) =C+ Dz, if A=0, (6.1.28)

4 Sosov and Theodosiou [Sosov, Y., and C. E. Theodosiou, 2002: On the complete solution of the

Sturm-Liouville problem (d2X/dz?) + A\2X = 0 over a closed interval. J. Math. Phys. (Woodbury, NY),
43, 2831-2843] have analyzed this problem with the general boundary conditions, Equation 6.1.2.
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and
y(x) = Ecos(kx) + Fsin(kx), if \=k%>0. (6.1.29)

Let us first check and see if there are any nontrivial solutions for A < 0. Two simulta-
neous equations result from the substitution of Equation 6.1.27 into Equation 6.1.26:

A—mB =0, (6.1.30)

and
[cosh(mm) — msinh(mm)]A + [sinh(mn) — m cosh(mn)]B = 0. (6.1.31)

The elimination of A between the two equations yields
sinh(mn)(1 —m?)B = 0. (6.1.32)
If Equation 6.1.27 is a nontrivial solution, then B # 0, and
sinh(mm) = 0, or m? = 1. (6.1.33)

The condition sinh(mm) = 0 cannot hold because it implies m = A = 0, which contradicts
the assumption used in deriving Equation 6.1.27 that A < 0. On the other hand, m? = 1 is
quite acceptable. It corresponds to the eigenvalue A = —1 and the eigenfunction is

yo = cosh(z) + sinh(z) = €, (6.1.34)
because it satisfies the differential equation
Yo — Yo =0, (6.1.35)
and the boundary conditions

b0(0) —y(0) =0,  and  yo(m) — yh(x) = 0. (6.1.36)

An alternative method of finding m, which is quite popular because of its use in more
difficult problems, follows from viewing Equation 6.1.30 and Equation 6.1.31 as a system
of homogeneous linear equations, where A and B are the unknowns. It is well known® that
for Equation 6.1.30 and Equation 6.1.31 to have a nontrivial solution (i.e., A # 0 and/or
B # 0) the determinant of the coefficients must vanish:

1 -m
cosh(mm) — msinh(mm) sinh(mr) — mcosh(mm) | 0- (6.1.37)
Expanding the determinant,

sinh(mm)(1 —m?) = 0, (6.1.38)

which leads directly to Equation 6.1.33.
We consider next the case of A = 0. Substituting Equation 6.1.28 into Equation 6.1.26,
we find that
C—-D=0, and C+Dr—D=0. (6.1.39)

5 See Chapter 3.



246 Advanced Engineering Mathematics with MATLAB

6 . 6
4 A,=4 4 A=9
2 2

of { ot

2t { =2t

_4 L L L L L L _4 L L L L L L
00 05 10 15 20 25 30 35 0.0 05 1.0 1.5 20 25 3.0 35
X X

Figure 6.1.3: The first four eigenfunctions for the Sturm-Liouville problem, Equation 6.1.25 and Equation
6.1.26.

This set of simultaneous equations yields C' = D = 0 and we have only trivial solutions for
A=0.
Finally, we examine the case when A > 0. Substituting Equation 6.1.29 into Equation
6.1.26, we obtain
E—kF =0, (6.1.40)

and
[cos(km) + ksin(km)]|E + [sin(kw) — k cos(km)]F = 0. (6.1.41)

The elimination of E from Equation 6.1.40 and Equation 6.1.41 gives
F(1+ k?)sin(kr) = 0. (6.1.42)
If Equation 6.1.29 is nontrivial, F' # 0, and
k*=-1, or  sin(kr)=0. (6.1.43)

The condition k2 = —1 violates the assumption that k is real, which follows from the fact

that A = k2 > 0. On the other hand, we can satisfy sin(k7w) = 0if k = 1,2, 3,...; a negative

k yields the same A. Consequently we have the additional eigenvalues \,, = n>.

Let us now find the corresponding eigenfunctions. Because E = kF, y(z) = F sin(kz)+
Fk cos(kz) from Equation 6.1.29. Thus, the eigenfunctions for A > 0 are
yn(x) = sin(nz) + n cos(nzx). (6.1.44)

Figure 6.1.3 illustrates some of the eigenfunctions given by Equation 6.1.34 and Equation
6.1.44. O

e Example 6.1.3
Consider now the Sturm-Liouville problem

Yy’ 4+ Ay =0, (6.1.45)
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with
y(m) =y(-m), and 9 (7) =1y (-m). (6.1.46)
This is not a regular Sturm-Liouville problem because the boundary conditions are periodic

and do not conform to the canonical boundary condition, Equation 6.1.2.
The general solution to Equation 6.1.45 is

y(x) = Acosh(mz) + Bsinh(mz), if A= -m? <0, (6.1.47)
ylx)=C+ Dz, if A=0, (6.1.48)

and
y(x) = Ecos(kx) + Fsin(kx), if \=k%>0. (6.1.49)

Substituting these solutions into the boundary condition, Equation 6.1.46,

Acosh(mm) + Bsinh(mn) = Acosh(—mm) + B sinh(—mm), (6.1.50)
C+ Drn=C - Dmn, (6.1.51)

and
E cos(km) + Fsin(kr) = E cos(—kn) + F sin(—km), (6.1.52)

or

Bsinh(mn) =0, D=0, and Fsin(kn)=0, (6.1.53)
because cosh(—mm) = cosh(mm), sinh(—mn) = —sinh(mn), cos(—kw) = cos(kw), and
sin(—kw) = — sin(k7). Because m must be positive, sinh(m) cannot equal zero and B = 0.
On the other hand, if sin(k7) =0 or k =n, n = 1,2,3,..., we have a nontrivial solution

for positive A and \,, = n2. Note that we still have 4, C, E, and F as free constants.
From the boundary condition, Equation 6.1.46,

Asinh(mm) = Asinh(—mmr), (6.1.54)

and
—Esin(kr) + F cos(km) = —Esin(—kn) + F cos(—km). (6.1.55)

The solution yg(x) = C identically satisfies the boundary condition, Equation 6.1.46, for
all C. Because m and sinh(mn) must be positive, A = 0. From Equation 6.1.53, we once
again have sin(km) = 0, and k = n. Consequently, the eigenfunction solutions to Equation
6.1.45 and Equation 6.1.46 are

)\(] = 0, yo((E) = ].7 (6156)
and
o [ sin(nz),
Ap =17, yn(z) = {cos(nx), (6.1.57)

and we have a degenerate set of eigenfunctions to the Sturm-Liouville problem, Equation
6.1.45, with the periodic boundary condition, Equation 6.1.46.
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Problems
Find the eigenvalues and eigenfunctions for each of the following;:
1Ly +xy=0, ¢(0)=0, y(L)=0
2.y"+Xy=0, ¢y(0)=0, %' (r)=0
39"+ Ay =0, y(0)+y(0) =0, y(m)+y'(r)=0
49"+ 2y =0, y(0)=0, ylm)—y'(m)=0
5.y + 2y =0, y(0)=y"(0)=0, y(L)=y"(L)=0

Find an equation from which you could find A and give the form of the eigenfunction for
each of the following:

6. y"+Ay=0, y(0)+y(0)=0, y(1)=0
7.y +Ay=0, y(0)=0, y(r)+y'(r)=0
8. 4"+ y=0, y(0)=0, y(1)—y(1)=0
9. y"+ =0, y(0)+y'(0)=0, y(m)=0
10. y" +Ay=0, y(0)+y'(0)=0, y(r)-y(7)=0

11. Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem

d ([ dy A
| x=Z —y = <z <
dac(xdx>+a:y 0, 1<z<e

for each of the following boundary conditions: (a) u(1) = u(e) = 0, (b) u(1) = u/(e) = 0,
and (c) v/(1) = u/(e) = 0.

Find the eigenvalues and eigenfunctions of the following Sturm-Liouville problems:

12.

22y + 2y + X y=0, y(1)=yle)=0, 1<z<e
13. ;

(@) + Ay =0, y(1)=y() =0, I<z<e
14, ] \

1/

(= = 1) = = 1<a<

dx(xy)ery 0, y(1)=yle)=0, 1<z<e
15.

" —My=0, ¥ (0)=¢"0)=y"(1)=4y(1)=0, 0<z<l1
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6.2 ORTHOGONALITY OF EIGENFUNCTIONS

In the previous section we saw how nontrivial solutions to the regular Sturm-Liouville
problem consist of eigenvalues and eigenfunctions. The most important property of eigen-
functions is orthogonality.

Theorem: Let the functions p(x), q(x), and r(x) of the reqular Sturm-Liouville problem,
Equation 6.1.1 and Equation 6.1.2, be real and continuous on the interval [a,b]. If y,(z)
and ym, (x) are continuously differentiable eigenfunctions corresponding to the distinct eigen-
values A, and A, respectively, then y,(z) and y.,(z) satisfy the orthogonality condition:

b
/ 7(2)yn (2)ym (z) dz = 0, (6.2.1)

if A\p £ Am. When Equation 6.2.1 is satisfied, the eigenfunctions y,(z) and y.,(z) are
said to be orthogonal to each other with respect to the weight function r(x). The term
orthogonality appears to be borrowed from linear algebra where a similar relationship holds
between two perpendicular or orthogonal vectors.

Proof: Let y,(z) and y,,(z) denote the eigenfunctions associated with two different eigen-
values \,, and )\,,. Then

2 %]+ ) + Al = (622
£ )2 ] )+ A @) =0 623)

and both solutions satisfy the boundary conditions. Let us multiply the first differential
equation by y,,; the second by y,. Next, we subtract these two equations and move the
terms containing ¥, ¥, to the right side. The resulting equation is

d

e [p0) 52| = L [ 22 = O =A@ (620

Integrating Equation 6.2.4 from a to b yields

/ab{ynczc {p(m)%} - ym% [p(x)ily;] } dz = An — Am) /abr(x)ynym dz.  (6.2.5)

We can simplify the left side of Equation 6.2.5 by integrating by parts to give

/ab{yn;; {p(x)dg”] = ym% [p(:v)(ily;] } dx
= [p(@) iy — D@y Ym], — / oWy — ) de. (626

The second integral equals zero since the integrand vanishes identically. Because y,(z) and
ym () satisfy the boundary condition at x = a,

ayn(a’) + By;(a) =0, (627)
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and
aym(a) + Byp,(a) = 0. (6.2.8)

These two equations are simultaneous equations in « and 3. Hence, the determinant of the
equations must be zero:

Yn(@)ym (@) — Y (a)yn(a) = 0. (6.2.9)
Similarly, at the other end,
Yn (0)ym (b) = 7, (D)yn (b) = 0. (6.2.10)
Consequently, the right side of Equation 6.2.6 vanishes and Equation 6.2.5 reduces to Equa-
tion 6.2.1. O
e Example 6.2.1
Let us verify the orthogonality condition for the eigenfunctions that we found in Ex-

ample 6.1.1.
Because r(z) =1, a =0, b =7, and y,(x) = sin(k,z), we find that

b T
/ 7(Z)YnYm dz = / sin(k,x) sin(k,, ) dz (6.2.11)
a 0

|
I—=
—~
o
@}
2]
—
5
3

— km)x] — cos|(ky, + km )z} dx (6.2.12)

T sin[(kn + km)z] |
e (el (6.2.13)
sin[(kn — km)m|  sin[(kn + km)7]
2(ky — k) 2(kpn + k)
_ sin(kpm) cos(ky,m) — cos(k, ) sin(kp, )
2(kn, — k)
sin(ky,m) cos(kmm) + cos(knm) sin(kpy, )
— 2o + For) (6.2.15)
_ b cos(knm) cos(kpm) — ki cos(kpm) cos(kpy, )
2(kn — k)
ki cos(kn) cos(km™) + km cos(ky ) cos(km)
Q(kn + k'fﬂ)
(kn, — k) cos(knm) cos(kp, )
2(kn — km)
(kn + k) cos(ky,m) cos(ky,m)

- - = 0. (6.2.17)

(6.2.14)

(6.2.16)

We used the relationships k,, = tan(k,7), and k,,, = tan(k,,7) to simplify Equation 6.2.15.
Note, however, that if n = m,

/ sin(k,x) sin(k,z) dz = %/ [1—cos(2k,x)] dx = m _ sin(2k,m) = L[m—cos?(k,7)] > 0,
0 0

4k,
(6.2.18)

|
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because sin(24) = 2sin(A) cos(A), and k,, = tan(k, 7). That is, any eigenfunction cannot
be orthogonal to itself.

In closing, we note that had we defined the eigenfunction in our example as

sin(k,x)

n(T) = 6.2.19
@) = e 2 (6:2.19)
rather than y, (z) = sin(k,z), the orthogonality condition would read
" |0, m#n,
[ @i o) s = { pomzn (6.2.20)

This process of normalizing an eigenfunction so that the orthogonality condition becomes

0, m#n,

L men (6.2.21)

/ab (2 ()Y (2) dz = {

generates orthonormal eigenfunctions. We will see the convenience of doing this in the next
section.

Problems

1. The Sturm-Liouville problem y” + Ay = 0, y(0) = y(L) = 0 has the eigenfunction solution
yn(x) = sin(nmx/L). By direct integration, verify the orthogonality condition, Equation
6.2.1.

2. The Sturm-Liouville problem y” + Ay = 0, ¢/(0) = y'(L) = 0 has the eigenfunction
solutions yo(x) = 1 and y, (x) = cos(nwz/L). By direct integration, verify the orthogonality
condition, Equation 6.2.1.

3. The Sturm-Liouville problem y” + Ay = 0, y(0) = ¢'(L) = 0 has the eigenfunction
solution y,(z) = sin[(2n — 1)7z/(2L)]. By direct integration, verify the orthogonality
condition, Equation 6.2.1.

4. The Sturm-Liouville problem y” + Ay = 0, y'(0) = y(L) = 0 has the eigenfunction
solution y,(z) = cos[(2n — 1)wz/(2L)]. By direct integration, verify the orthogonality
condition, Equation 6.2.1.

6.3 EXPANSION IN SERIES OF EIGENFUNCTIONS

In calculus we learned that under certain conditions we could represent a function
f(z) by a linear and infinite sum of polynomials (z — xo)™. In this section we show that an
analogous procedure exists for representing a piece-wise continuous function by a linear sum
of eigenfunctions. These eigenfunction expansions will be used in the next three chapters
to solve partial differential equations.

Let the function f(z) be defined in the interval a < z < b. We wish to re-express f(x)
in terms of the eigenfunctions y, (z) given by a regular Sturm-Liouville problem. Assuming
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6

that the function f(z) can be represented by a uniformly convergent series,® we write

flx) = Z Cnyn (). (6.3.1)

The orthogonality relation, Equation 6.2.1, gives us the method for computing the coeffi-
cients ¢,. First we multiply both sides of Equation 6.3.1 by 7(x)y.m, (), where m is a fixed
integer, and then integrate from a to b. Because this series is uniformly convergent and
yn(x) is continuous, we can integrate the series term by term, or

oo

b b
/ r(z) f(z)ym(x) de = Z cn/ 7(2)Yn () ym (z) dz. (6.3.2)

n=1

The orthogonality relationship states that all of the terms on the right side of Equation
6.3.2 must disappear except the one for which n = m. Thus, we are left with

b b
/ r(@) F(@)ym(@) de = e / (@) (@) (2) (6.3.3)

or

: (6.3.4)

if we replace m by n in Equation 6.3.3.

Usually, both integrals in Equation 6.3.4 are evaluated by direct integration. In the
case when the evaluation of the denominator is very difficult, Lockshin” has shown that the
denominator of Equation 6.3.4 always equals

dy Oy 0%y /"

/jr(x)y%x)dx — (o) |2~y

for a regular Sturm-Liouville problem with eigenfunction solution y, where p(x), ¢(z), and
r(x) are continuously differentiable on the interval [a, b].

The series, Equation 6.3.1, with the coefficients found by Equation 6.3.4, is a generalized
Fourier series of the function f(x) with respect to the eigenfunction y,(x). It is called a
generalized Fourier series because we generalized the procedure of re-expressing a function
f(z) by sines and cosines into one involving solutions to regular Sturm-Liouville problems.
Note that if we had used an orthonormal set of eigenfunctions, then the denominator of

(6.3.5)

)
a

6 If Sp(x) = ZZ:I ug(x), S(x) = limp 00 Sn(x), and 0 < |Sp(z) — S(z)| < € for all n > M > 0, the

series 220:1 ug (x) is uniformly convergent if M is dependent on € alone and not z.

7 Lockshin, J. L, 2001: Explicit closed-form expression for eigenfunction norms. Appl. Math. Lett., 14,
553-555.
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Equation 6.3.4 would equal one and we reduce our work by half. The coefficients ¢,, are the
Fourier coefficients.

One of the most remarkable facts about generalized Fourier series is their applicability

even when the function has a finite number of bounded discontinuities in the range [a, b].
We may formally express this fact by the following theorem:
Theorem: If both f(x) and f'(x) are piece-wise continuous in a < x < b, then f(x) can
be expanded in a uniformly convergent Fourier series, Equation 6.3.1, whose coefficients ¢y,
are given by Equation 6.5.4. It converges to [f(z) + f(z7)]/2 at any point x in the open
interval a < x < b.

The proof is beyond the scope of this book but can be found in more advanced treatises.®
If we are willing to include stronger constraints, we can make even stronger statements about
convergence. For example,” if we require that f(z) be a continuous function with a piece-
wise continuous first derivative, then the eigenfunction expansion, Equation 6.3.1, converges
to f(x) uniformly and absolutely in [a, ] if f(x) satisfies the same boundary conditions as
does y, (). O

In the case when f(z) is discontinuous, we are not merely rewriting f(x) in a new form.
We are actually choosing the coefficients ¢, so that the eigenfunction expansion fits f(z) in
the “least squares” sense that

/ )

Consequently we should expect peculiar things, such as spurious oscillations, to occur in
the neighborhood of the discontinuity. These are Gibbs phenomena,'® the same phenomena
discovered with Fourier series. See Section 5.2.

2
dz = 0. (6.3.6)

f(‘r) - Z cnyn(x)

e Example 6.3.1

To illustrate the concept of an eigenfunction expansion, let us find the expansion for
f(x) = x over the interval 0 < x < 7 using the solution to the regular Sturm-Liouville
problem of

Yy + Ay =0, y(0) = y(m) = 0. (6.3.7)

This problem arises when we solve the wave or heat equation by separation of variables in
the next two chapters.

Because the eigenfunctions are y,(z) = sin(nz), n = 1,2,3,..., r(z) = 1, a = 0, and
b = 7w, Equation 6.3.4 yields

. o @sin(nz) dz _ —weos(nz)/n + sin(nz) /n?|] _ 2 cos(n) = 72(7”7;
" [ sin®(na) da x/2 — sin(2nz)/(4n)|; n n '

(6.3.8)

8 For example, Titchmarsh, E. C., 1962: Eigenfunction Ezpansions Associated with Second-Order Dif-
ferential Equations. Part 1. Oxford University Press, pp. 12-16.

9 Tolstov, G. P., 1962: Fourier Series. Dover Publishers, p. 255.

10" Apparently first discussed by Weyl, H., 1910: Die Gibbs’sche Erscheinung in der Theorie der Sturm-
Liouvilleschen Reihen. Rend. Circ. Mat. Palermo, 29, 321-323.
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Equation 6.3.1 then gives

n

oo
Z sin(nx). (6.3.9)
This particular example is in fact an example of a half-range sine expansion.

Finally we must state the values of = for which Equation 6.3.9 is valid. At z = 7 the
series converges to zero while f(7) = m. At = 0 both the series and the function converge
to zero. Hence this series expansion is valid for 0 < z < 7. O

e Example 6.3.2

For our second example let us find the expansion for f(z) = z over the interval 0 <
x < 7 using the solution to the regular Sturm-Liouville problem of

y'+xy=0,  y(0)=y(r)—y'(r)=0. (6.3.10)

We will encounter this problem when we solve the heat equation with radiative boundary
conditions by separation of variables.

Because r(z) = 1, a = 0, b = 7, and the eigenfunctions are y,(z) = sin(k,x), where
kn, = tan(k,7), Equation 6.3.4 yields

o — Jo xsin(knz) dz _ Jy zsin(knz)de  2sin(k,x)/k; — 22 cos(kn)/kn|;

Jy sin®(kpz)de 3 [7[1 — cos(2kn)] da B z — sin(2k,z)/(2k,)| g
(6.3.11)

 2sin(ky,m)/k2 — 2w cos(knm)/kn  2(1 — 7) cos(kpm)/kn,
= 7w —sin(2k,7)/(2k,) o 7 — cos2 (k) ) (6.3.12)

where we used the property that sin(k, ) = k,, cos(k, 7). Equation 6.3.1 then gives

F(z) =201 —7) Z - WCOS kn) (). (6.3.13)

To illustrate the use of Equation 6.3.5, we note that

g % _ W T o
y(z) = sin(vVAz), o = VX cos(VAz), Y cos(VAx), (6.3.14)
and o2 52
y 9% _ 1 Ty
20r ~ DroN 3 cos(VAx) 5 sin(VA ). (6.3.15)
Therefore,
" 2 r 2 : 1 L ’
r(z)y;(z) de = = cos®(knx) — sin(k,x) cos(knpz) — = sin(k,x) (6.3.16)
0 2 2k 2 0
IRE: 1 "o cos?(knm)
= [2 T sin(k,z) cos(k, x)} ; =5 — 5 - (6.3.17)

Note that we set A = \,, = k2 after taking the derivatives with respect to .
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Problems

1. The Sturm-Liouville problem y” + Ay = 0, y(0) = y(L) = 0 has the eigenfunction
solution y,(z) = sin(nmz/L). Find the eigenfunction expansion for f(z) = z using this
eigenfunction.

2. The Sturm-Liouville problem y” + Ay = 0, 3'(0) = y'(L) = 0 has the eigenfunction
solutions yo(z) = 1, and y,(x) = cos(nmwz/L). Find the eigenfunction expansion for f(x) =
x using these eigenfunctions.

3. The Sturm-Liouville problem y” + Ay = 0, y(0) = ¢'(L) = 0 has the eigenfunction
solution y,(z) = sin[(2n—1)wz/(2L)]. Find the eigenfunction expansion for f(z) = x using
this eigenfunction.

4. The Sturm-Liouville problem y” + Ay = 0, ¥'(0) = y(L) = 0 has the eigenfunction
solution y,(x) = cos[(2n — 1)wx/(2L)]. Find the eigenfunction expansion for f(x) = =z
using this eigenfunction.

5. Consider the eigenvalue problem
y'+(\—a)y =0, 0<z<l,
with the boundary conditions

y'(0) +ay(0)=0 and  y'(1)+ay(1) =0.

Step 1: Show that this is a regular Sturm-Liouville problem.

—ax

Step 2: Show that the eigenvalues and eigenfunctions are Ag = 0, yo(z) = e and

A\ = a? +n?m2, y,(z) = asin(nmr) — nw cos(nmr).
where n =1,2,3,....

Step 3: Given a function f(x), show that we can expand it as follows:

f(x) = Coe™ ™" + Z C,, [asin(nrz) — nw cos(nmz)],
n=1
where

1
1— —2a Ch =2 —az g ,
(1—e%*) Co a/o f(x)e x

and

1
CL2 n27r2 n — T asin nmxr) — NT Ccos\nmTr XT.
(a2 + n?7)C, = 2 / f() [asin(nrz) ()] d

6. Consider the eigenvalue problem
Y+ Xy =0, 0<z<l1,

with the boundary conditions y(0) = 3(0) = y(1) = (1) = 0. Prove the following points:
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Step 1: Show that the eigenfunctions are

1 — cos(ky,)

m[sln(k’nm) — knx],

yn(z) =1 — cos(kpz) +

where k,, denotes the nth root of

2 — 2cos(k) — ksin(k) = sin(k/2)[sin(k/2) — (k/2) cos(k/2)] = 0.

Step 2: Show that there are two classes of eigenfunctions:
Kn = 20T, yn(x) =1 — cos(2nmz),

and

tan(ky, /2) = Kn /2, yn(x) = 1 — cos(knpz) + 3[sin(/<5nx) — Rpx).

Kn

Step 3: Show that the orthogonality condition for this problem is

1
/0 uh(@)h (@) dr =0,  nAm,

where y,, (x) and y,,, (z) are two distinct eigenfunction solutions of this problem. Hint: Follow
the proof in Section 6.2 and integrate repeatedly by parts to eliminate higher derivative
terms.

Step 4: Show that we can construct an eigenfunction expansion for an arbitrary function

f(z) via
f(aT):ZCnyn(ﬂU), O<z< 1,
n=1

provided
o P d

Cn 1
Jo wn(2)]? d

What are the condition(s) on f(z)?
6.4 A SINGULAR STURM-LIOUVILLE PROBLEM: LEGENDRE’'S EQUATION

In the previous sections we used solutions to a regular Sturm-Liouville problem in the
eigenfunction expansion of the function f(x). The fundamental reason why we could form
such an expansion was the orthogonality condition, Equation 6.2.1. This crucial property
allowed us to solve for the Fourier coefficient ¢, given by Equation 6.3.4.

In the next few chapters, when we solve partial differential equations in cylindrical
and spherical coordinates, we will find that f(z) must be expanded in terms of eigenfunc-
tions from singular Sturm-Liouville problems. Is this permissible? How do we compute the
Fourier coefficients in this case? The final two sections of this chapter deal with these ques-
tions by examining the two most frequently encountered singular Sturm-Liouville problems,
those involving Legendre’s and Bessel’s equations.
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Born into an affluent family, Adrien-Marie Legendre’s (1752-1833) modest family
fortune was sufficient to allow him to devote his life to research in celestial mechanics,
number theory, and the theory of elliptic functions. In July 1784 he read before the
Académie des sciences his Recherches sur la figure des planetes. It is in this paper
that Legendre polynomials first appeared. (Portrait courtesy of the Archives de
I’Académie des sciences, Paris.)

We begin by determining the orthogonality condition for singular Sturm-Liouville prob-
lems. Returning to the beginning portions of Section 6.2, we combine Equation 6.2.5 and
Equation 6.2.6 to obtain

b
O =) [ 1@t iz =lp(b)] D) 0) = p(b)], D )
PO @0 (@) + @@ (@) (64

From Equation 6.4.1 the right side vanishes and we preserve orthogonality if y,, (x) is finite
and p(z)y.,(z) tends to zero at both endpoints. This is not the only choice but let us see
where it leads.
Consider now Legendre’s equation:
d’y ) dy
2 _
(1-=z )@ - 2m£ +n(n+1)y=0, (6.4.2)

or

Tla= ] +ntr vy =0 (6.43)
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where we set a = —1, b= 1, A\ = n(n+ 1), p(x) = 1 — 22, ¢(x) = 0, and r(x) = 1. This
equation arises in the solution of partial differential equations involving spherical geometry.
Because p(—1) = p(1) = 0, we are faced with a singular Sturm-Liouville problem. Before
we can determine if any of its solutions can be used in an eigenfunction expansion, we must
find them.

Equation 6.4.2 does not have a simple general solution. [If n = 0, then y(z) =1 is a
solution.] Consequently we try to solve it with the power series:

z) =Y Apat, (6.4.4)
k=0
() =) kAgab, (6.4.5)
and
= k(k—1)Apz"2, (6.4.6)
Substituting into Equation 6.4.2,
D k(k = 1) ARzt 2+ [n(n + 1) — 2k — k(k — 1)] Aga® = 0, (6.4.7)
k=0 k=0
which equals
o0
> m(m = 1) Az + Z k(k+1)] Apz® = 0. (6.4.8)
m=2

If we define £k = m — 2 in the first summation, then

i(k +2)(k + 1) Apoz® + i [n(n+ 1) — k(k 4+ 1)] Aga® = 0. (6.4.9)
k=0 k=0

Because Equation 6.4.9 must be true for any x, each power of x must vanish separately. It
then follows that
(k+2)(k+ 1)Akro =[k(k+ 1) —n(n+ 1)]Ag, (6.4.10)
or
[k(k+1)—n(n+1)]
(k+1)(k+2)
where kK = 0,1,2,.... Note that we still have the two arbitrary constants Ay and A; that

are necessary for the general solution of Equation 6.4.2.
The first few terms of the solution associated with Ag are

Apyo = Ay, (6.4.11)

nn+1) 4 nn-2)(n+1)(n+3) 4
w(z) = 1— (2! ) g2 4 "= 2)( . J(n+3)

==Y+ D+ H0E5) o
6! ’

(6.4.12)



The Sturm-Liouville Problem 259

Table 6.4.1: The First Ten Legendre Polynomials

Py(z) =1
Pi(x)=1z

Py(z) = $(3z% — 1)

Py(z) = (523 — 3x)

Py(z) = (352 — 3022 + 3)
Ps(z) = §(632° — 702® + 152)
Ps(z) = (23125 — 3152 + 10522 — 5)
Pr(z) = -(42927 — 6932° + 31523 — 35z)
Py(w) = 135 (64352 — 120122° + 69302 — 126022 + 35)
Py(x) = 135 (121552° — 2574027 + 18018z° — 46202° + 315z)
Pio(z) = 555 (461892'% — 1093952% 4 900902° — 300302 + 34652% — 63)

while the first few terms associated with the A; coefficient are

o =10 +2) 3 (n-1)(n=3)n+2)(n+4)
vp(z) =2 30 x” + ] x
n=1)n—=3)(n—-5)(n+2)(n+4)(n+6)
_ o ( AR (6.4.13)

If n is an even positive integer (including n = 0), then the series, Equation 6.4.12, terminates
with the term involving x™: The solution is a polynomial of degree n. Similarly, if n is an
odd integer, the series, Equation 6.4.13, terminates with the term involving ™. Otherwise,
for n noninteger the expressions are infinite series.

For reasons that will become apparent, we restrict ourselves to positive integers n.
Actually, this includes all possible integers because the negative integer —n — 1 has the
same Legendre’s equation and solution as the positive integer n. These polynomials are
Legendre polynomials'' and we may compute them by the power series:

m

(2n — 2k)! n—2k

k=0

where m = n/2, or m = (n — 1)/2, depending upon which is an integer. We chose to use
Equation 6.4.14 over Equation 6.4.12 or Equation 6.4.13 because Equation 6.4.14 has the
advantage that P,(1) = 1. Table 6.4.1 gives the first ten Legendre polynomials.

The other solution, the infinite series, is the Legendre function of the second kind,
Qn(z). Figure 6.4.1 illustrates the first four Legendre polynomials P, (x) while Figure 6.4.2

11 Legendre, A. M., 1785: Sur attraction des sphéroides homogénes. Mém. math. phys. présentés a
l’Acad. sci. pars divers savants, 10, 411-434. The best reference on Legendre polynomials is Hobson, E.
W., 1965: The Theory of Spherical and Ellipsoidal Harmonics. Chelsea Publishing Co., 500 pp.
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Figure 6.4.1: The first four Legendre functions of the first kind.

gives the first four Legendre functions of the second kind @, (z). From this figure we see
that @, (z) becomes infinite at the points x = £1. As shown earlier, this is important
because we are only interested in solutions to Legendre’s equation that are finite over the
interval [—1,1]. On the other hand, in problems where we exclude the points = = +1,
Legendre functions of the second kind will appear in the general solution.'?

In the case that n is not an integer, we can construct a solution'? that remains finite
at £ = 1 but not at x = —1. Furthermore, we can construct a solution that is finite at
x = —1 but not at x = 1. Because our solutions must be finite at both endpoints so that
we can use them in an eigenfunction expansion, we must reject these solutions from further
consideration and are left only with Legendre polynomials. From now on, we will only
consider the properties and uses of these polynomials.

Although we have the series, Equation 6.4.14, to compute P,(z), there are several
alternative methods. We obtain the first method, known as Rodrigues’s formula,'* by
writing Equation 6.4.14 in the form

R ,onl (2n—2k)! . o,
Fule) = 5o 1;0( V= o (6-4.15)
1 d" |« n!
= — —1)F g2k 41
2nnl dx™ kz:%( ) El(n — k)!x (6.4.16)

The last summation is the binomial expansion of (z? — 1)" so that

1 dr

= Gari g (D™ (6.4.17)

P,(x)

12 See Smythe, W. R., 1950: Static and Dynamic Electricity. McGraw-Hill, Section 5.215, for an example.

13 See Carrier, G. F., M. Krook, and C. E. Pearson, 1966: Functions of the Complex Variable: Theory
and Technique. McGraw-Hill, pp. 212-213.

14 Rodrigues, O., 1816: Mémoire sur lattraction des sphéroides. Correspond. UEcole Polytech., 3,
361-385.
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Figure 6.4.2: The first four Legendre functions of the second kind.

Another method for computing P, (x) involves the use of recurrence formulas. The first
step in finding these formulas is to establish the fact that

(14 h2 —2xh)~Y2 = Py(z) + hPy(x) + B2Py(z) + - - -. (6.4.18)

The function (1 + h? — 2zh)~'/2 is the generating function for P,(z). We obtain the
expansion via the formal binomial expansion

(1+h*—2zh)~ 2 =1+ L(20h — h?) + 131 (2zh — 1?2 + - .. (6.4.19)

Upon expanding the terms contained in 2x — h? and grouping like powers of h,
(L+h*—20h) V2 =1+ah+ (322 - HR2+---. (6.4.20)

A direct comparison between the coefficients of each power of h and the Legendre polynomial
P, (x) completes the demonstration. Note that these results hold only if |z| and |h| < 1.

Next we define W (x,h) = (1 + h%? — 2xh)~Y/2. A quick check shows that W (x,h)
satisfies the first-order partial differential equation

(1 —2xh+h2)%—2] + (h—x)W = 0. (6.4.21)

The substitution of Equation 6.4.18 into Equation 6.4.21 yields

(1= 2xh+h%)Y nPy(x)h" '+ (h—x) Y Py(x)h™ = 0. (6.4.22)
n=0 n=0
Setting the coefficients of h™ equal to zero, we find that

(n+1)Pyyi1(x) —2nzPy(x) + (n — 1)Pp_q(z) + Pr—1(x) — 2Py (z) = 0, (6.4.23)

or

(n+1)Poii(z) — 2n+ 1)azPy(z) + nPy-1(2) =0 (6.4.24)

withn =1,2,3,....
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Similarly, the first-order partial differential equation

(1 —2xh + h%%—w —hW =0 (6.4.25)
x
leads to -
(1—2xh+h%))) P(z)h ZP YA =0, (6.4.26)
n=0 n=0
which implies
P! i (z) —2zP)(z) + P,_,(z) — P,(2z) = 0. (6.4.27)

Differentiating Equation 6.4.24, we first eliminate P;_,(x) and then P} () from the
resulting equations and Equation 6.4.27. This gives two further recurrence relationships:

P, i(x) —xP)(z) — (n+1)P,(x) =0, n=0,1,2,..., (6.4.28)

and
P)(z) - P,

n—1

(z) =nP,(z)=0, n=1,23,.... (6.4.29)
Adding Equation 6.4.28 and Equation 6.4.29, we obtain the more symmetric formula

Pl (z) =P, _(z)=(2n+1)P,(z), n=1,2,3,.... (6.4.30)

Given any two of the polynomials P, 1(x), P,(x), and P,_1(z), Equation 6.4.24 or Equation
6.4.30 yields the third.

Having determined several methods for finding the Legendre polynomial P, (z), we now
turn to the actual orthogonality condition.!® Consider the integral

J:/_1 \/1+h272xzx¢1+t2,2 = ALl <1 (6.4.31)
= /_11[P0(x) + hPy(z) + -+ h"Py(x) + -]

* [Po(a) +tPi (@) o4 " Pafa) + - ] da (6.4.32)

= Z Z h”tm/ P ()P, () da. (6.4.33)

n=0m=0

On the other hand, if a = (14 h?)/2h, and b = (1 + t2)/2t, the integral J is

dxr

J:/ VIth? —2zh Vit oat (6.4.34)
7= 7=
zf/ﬁxfxf/¢fmfx (6.4.35)
S [t oL (Var i+ Vbl
_—mln(\/ai—i—\/b )’_l_ml (\/ﬁ+\/ﬁ) (6.4.36)

15 See Symons, B., 1982: Legendre polynomials and their orthogonality. Math. Gaz., 66, 152-154.
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Some Useful Relationships Involving Legendre Polynomials

Rodrigues’s formula
1 dr

= ol dz™

P, (x) (z? —1)"

Recurrence formulas
(n+1)Poyi(x) — 2n+ DazPy(x) + nPp_1(z) =0, n=123,...

P, i (x) =P, _i(z) = (2n+ 1) P, (), n=123,...

Orthogonality condition

1 07 m # n7
/ P, (x)Py,(x)dz = 9
-1 , m=mn
2n +1

But a+1= (1+h%+2h)/2h = (1+h)%/2h, and a — 1 = (1 — h)?/2h. After a little algebra,

J= 1 ln<1+m>: 2 {\/ﬁ+;\/(ht)3+;\/(ht)5+~-- (6.4.37)

 Vhat \1-Vht Vht
ht  h2t? A"
—92(1+ = ... ) 4.
(+3+5+ +2n+1+ ) (6.4.38)

As we noted earlier, the coefficient of A"™t™ in this series is Ll1 P, (x) Py, (x) dz. If we match
the powers of h™t™, the orthogonality condition is

/ 1 Py (2) P (2) dz = { 0, m#mn (6.4.39)

2 —
1 I+l m=n.

With the orthogonality condition, Equation 6.4.39, we are ready to show that we can
represent a function f(z), which is piece-wise differentiable in the interval (—1,1), by the
series:

flz) = i AnPp(z), -1<z<l (6.4.40)
m=0

To find A,, we multiply both sides of Equation 6.4.40 by P, (x) and integrate from —1 to 1:

/_ 1 f@)Py(z)de =Y Ap /_ 1Pn(x)Pm(x) dz. (6.4.41)

m=0
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All of the terms on the right side vanish except for n = m because of the orthogonality
condition, Equation 6.4.39. Consequently, the coefficient A4, is

A /_ P@)de = /_ @)Pa(o) s (6.4.42)

or

_ 2n2+ 1 /_11 ()P () do (6.4.43)

In the special case when f(x) and its first n derivatives are continuous throughout the
interval (—1,1), we may use Rodrigues’ formula to evaluate

/_1 f(z)Py(x)dx = 2nn'/ fla (z —1) do — (;lln)'n /_1(332 _ 1)”]"(”)(36) dr

(6.4.44)
by integrating by parts n times. Consequently,
on+1 [* .
An =y [1(1 — 22" ") () da. (6.4.45)

A particularly useful result follows from Equation 6.4.45 if f(x) is a polynomial of degree k.
Because all derivatives of f(x) of order n vanish identically when n > k, A, =0 if n > k.
Consequently, any polynomial of degree k can be expressed as a linear combination of the
first k+ 1 Legendre polynomials [Py(x),. .., Pr(z)]. Another way of viewing this result is to
recognize that any polynomial of degree k is an expansion in powers of . When we expand
in Legendre polynomials we are merely regrouping these powers of x into new groups that
can be identified as Py(x), Pi(x), Ps(z), ..., Py(z).

e Example 6.4.1

Let us use Rodrigues’ formula to compute Py(z). From Equation 6.4.17 with n = 2,

1 d? 1 d?

Py(x) = 3551 7% (22 —1)%] = g@(f" —22% —1) = %(3‘%2 —1). (6.4.46)

a

e Example 6.4.2
Let us compute Ps(z) from a recurrence relation. From Equation 6.4.24 with n = 2,
3P5(z) — bxPy(x) + 2P (x) = 0. (6.4.47)
But Py(z) = (322 — 1)/2, and Py(z) = z, so that

3P3(z) = 5aPy(x) — 2P (z) = 5z((32% — 1)/2] — 22 = 2% —

o

x, (6.4.48)
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or
Ps(x) = (52 — 3x)/2. (6.4.49)
O
e Example 6.4.3
We want to show that
1
/ P, (x)dz =0, n > 0. (6.4.50)
-1
From Equation 6.4.30,
1 1
(2n+1) / Po(z) da = / P, (2) = P, (2)] do (6.4.51)
-1 -1
= Puya(z) = Paca ()4 (6.4.52)

=PFPo1(1) = Po—1(1) = Poyi(—1) + P,_q(—1) =0, (6.4.53)
because P,(1) =1 and P,(—1) = (-1)™. O
e Example 6.4.4

Let us express f(r) = 22 in terms of Legendre polynomials. The results from Equation
6.4.45 mean that we need only worry about Py(x), Pi(z), and Pa(x):

Substituting for the Legendre polynomials,

2’ = Ao+ Az + 1 A45(322 — 1), (6.4.55)

and
Ag=13%, A1 =0, and Ay=2. (6.4.56)
O

e Example 6.4.5
Let us find the expansion in Legendre polynomials of the function:

0, -1 <z <0,

1 0<z <l (6.4.57)

)= {

We could have done this expansion as a Fourier series but in the solution of partial differ-
ential equations on a sphere we must make the expansion in Legendre polynomials.
In this problem, we find that

n+1 [*
A, = "; /Pn(x)dx. (6.4.58)
0
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Therefore,

1 1
Aozé/ ldx = 3, Alzg/ vdr =3, (6.4.59)
0 0

1 1
Agzg/o 3(322 —1)dz =0, and Az = %/0 1(52% — 3z) dz = — L, (6.4.60)

so that
f(z) = 3Py(x) + 3Pi(z) — L Ps(x) + L Ps(z) + - (6.4.61)

Figure 6.4.3 illustrates the expansion, Equation 6.4.61, where we used only the first four
terms. It was created using the MATLAB script

clear;
x = [-1:0.01:1]; % create x points in plot
f = zeros(size(x)); % initialize function f(x)

for k = 1:length(x) % construct function f(x)
if x(k) < 0; f(k) = 0; else f(k) = 1; end;
end
% initialize Fourier-Legendre series with zeros
flegendre = zeros(size(x));
% read in Fourier coefficients
a(1) 1/2; a(2) = 3/4; a(3)
a(4) = -7/16; a(5) = 0; a(6)
clf 7 clear any figures
for n = 1:6
% compute Legendre polynomial
N = n-1; P = legendre(N,x);
% compute Fourier-Legendre series
flegendre = flegendre + a(n) * P(1,:);
% create plot of truncated Fourier-Legendre series
% with n terms
if n==1 subplot(2,2,1), plot(x,flegendre,x,f,’--’);
legend(’one term’,’f(x)’); legend boxoff; end
if n==2 subplot(2,2,2), plot(x,flegendre,x,f,’--’);
legend(’two terms’,’f(x)’); legend boxoff; end
if n==4 subplot(2,2,3), plot(x,flegendre,x,f,’--’);
legend(’four terms’,’f(x)’); legend boxoff;
xlabel(’x’,’Fontsize’,20); end
if n==6 subplot(2,2,4), plot(x,flegendre,x,f,’--’);
legend(’six terms’,’f(x)’); legend boxoff;
xlabel(’x’,’Fontsize’,20); end
axis([-1 1 -0.5 1.5])
end

0;
11/32;

As we add each additional term in the orthogonal expansion, the expansion fits f(x) better
in the “least squares” sense of Equation 6.3.5. The spurious oscillations arise from trying
to represent a discontinuous function by four continuous, oscillatory functions. Even if
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—— one term — two terms
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Figure 6.4.3: Representation of the function f(z) =1 for 0 < z < 1 and 0 for —1 < z < 0 by various
partial summations of its Legendre polynomial expansion. The dashed lines denote the exact function.

we add additional terms, the spurious oscillations persist, although located nearer to the
discontinuity. This is another example of Gibbs phenomena.'® See Section 5.2. 0

e Example 6.4.6: lterative solution of the radiative transfer equation

One of the fundamental equations of astrophysics is the integro-differential equation
that describes radiative transfer (the propagation of energy by radiative, rather than con-
ductive or convective, processes) in a gas.

Consider a gas that varies in only one spatial direction and that we divide into infinites-
imally thin slabs. As radiation enters a slab, it is absorbed and scattered. If we assume
that all of the radiation undergoes isotropic scattering, the radiative transfer equation is

I !
—=1-1] 1Id 6.4.62

= 3 /_ dn, ( )
where I is the intensity of the radiation, 7 is the optical depth (a measure of the absorbing
power of the gas and related to the distance that you travel within the gas), u = cos(),
and 0 is the angle at which radiation enters the slab. In this example, we show how the
Fourier-Legendre expansion'”

I(r,p) =Y I(7)Pa(p) (6.4.63)
n=0

may be used to solve Equation 6.4.62. Here I,,(7) is the Fourier coefficient in the Fourier-
Legendre expansion involving the Legendre polynomial P, ().
We begin by substituting Equation 6.4.63 into Equation 6.4.62,

= [(n+ 1) P () + 0Pas ()] ALy <
—NCLP () — o, 6.4.64
;) m+1 dr nz_:o () = To ( )

16 Weyl, H., 1910: Die Gibbs’sche Erscheinung in der Theorie der Kugelfunktionen. Rend. Circ. Mat.
Palermo, 29, 308-321.

17 See Chandrasekhar, S., 1944: On the radiative equilibrium of a stellar atmosphere. Astrophys. J., 99,
180-190.
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where we used Equation 6.4.24 to eliminate uP, (). Note that only the Iy(7) term remains
after integrating because of the orthogonality condition:

1 1
[ 1 Pwdn= [ RGP da=o, (6.4.65)
-1 -1
if n > 0. Equating the coefficients of the various Legendre polynomials,

n dIn—l n+1 dIn+1
2n —1 dr 2n+3 dr

=1I,, (6.4.66)

forn=1,2,... and
dl

dr
Thus, the solution for I; is I; = constant = 3F/4, where F' is the net integrated flux and
an observable quantity.

= 0. (6.4.67)

For n =1,
dly 2dIs 3F
— t-—=0LH =—. 6.4.68
dr + 5 dr ! 4 ( )
Therefore,
I+ 2L, =3F7 + A (6.4.69)

The next differential equation arises from n = 2 and equals

%% %% _ D (6.4.70)

Because I is a constant and we only retain Iy, I, and I3 in the simplest approximation,
we neglect dI3/dr and I = 0. Thus, the simplest approximate solution is

Iy=3Fr+A, I =3F, and I,=0. (6.4.71)

To complete our approximate solution, we must evaluate A. If we are dealing with a

stellar atmosphere where we assume no external radiation incident on the star, I(0, u) =0
for —1 < p < 0. Therefore,

1 oo 1
2
/_II(T, 1) P (1) dpe = ;Im(T)/_le(ﬂ)Pn(u) dp = 5= In(7): (6.4.72)
Taking the limit 7 — 0 and using the boundary condition,
9 1 oo 1
1, = I P, = 1, P, P, . 4.
0 = [ HO0P = S 1m0 [ PP (0.473)

Thus, we must satisfy, in principle, an infinite set of equations. For example, for n = 0, 1,
and 2,
215(0) = Io(0) + 311 (0) — £13(0) + 15 15(0) + - - -, (6.4.74)

21(0) = $10(0) + 311(0) + 212(0) — KLu(0) + -+, (6.4.75)

and
215(0) = $11(0) + £1(0) + §13(0) — 135 15(0) + - - -. (6.4.76)
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Using I;(0) = 3F/4,

L10(0) + L 15(0) — S I5(0) + - = & F, (6.4.77)

$10(0) + £12(0) — 4514(0) + - -- = I F, (6.4.78)
and

21,(0) — $13(0) + ZI5(0) + - - = S F. (6.4.79)

Of the two possible equations, Equation 6.4.77 or Equation 6.4.78, Chandrasekhar chose
Equation 6.4.78 from physical considerations. Thus, to first approximation, the solution is

I, 7)=3F (T+3)+3Fpu+---. (6.4.80)
Better approximations can be obtained by including more terms; the interested reader is
referred to the original article. In the early 1950s, Wang and Guth'® improved the proce-

dure for finding the successive approximations and formulating the approximate boundary
conditions.

Problems

Find the first three nonvanishing coefficients in the Legendre polynomial expansion for the
following functions:

1/(2e),  |z] <e,
1 f(a) = {g 51<<z”3<<10’ 2. fl@)={ 0,  e<lt|<1,
’ ’ x, 0<ax <.
3. flz) = ||, |z < 1. 4. f(z) =23, |z] < 1.
-1, 1<z <0, -1, —-1<2<0,
- f(x)_{l, O<zx<l1. 6. f(x)_{:m 0<zx<l.

Then use MATLAB to illustrate various partial sums of the Fourier-Legendre series.
7. Use Rodrigues’ formula to show that Py(z) = £(352% — 3022 + 3).

8. Given Ps(z) = $a° — %m?’ + L2 and P4(x) from Problem 7, use the recurrence formula
for P,y1(x) to find Ps(z).

9. Show that (a) P,(1) = 1, (b) P,(—1) = (=1)", (¢) P2p+1(0) = 0, and (d) P»,(0) =
(—=1)"(2n)!/(2%"n!n!).

10. Prove that

/ Pn(t)dt:TI_FI[Pn—l(x)—PnH(x)]a n > 0.

18 Wang, M. C., and E. Guth, 1951: On the theory of multiple scattering, particularly of charged particles.
Phys. Rewv., Ser. 2, 84, 1092-1111.
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11. Given'?

/ cos|( l) / sin|( l);E] p
) [cos(0 x,
V/2[cos(z) — cos(f V/2[cos(0) — cos()]

show that the following generalized Fourier series holds:

H(0
V/2cos(t) — 2 cos(f

Z [cos(6 Cos[(n+%)ﬂ, 0<t<d<m,

n=0

if we use the eigenfunction y,(z) = cos[(n+3)z], 0 < z < 7, r(z) = 1 and H(-) is
Heaviside’s step function, and

Hit -
V/2cos(0) —

—0) :ZPH[COS(Q)]SiD[(n+%>t]7 0<0<t<m,
2 cos

if we use the eigenfunction y,(z) = sin [(n—i— %) w], 0 <z <mr(z)=1and H() is
Heaviside’s step function.

12. The series given in Problem 11 are also expansions in Legendre polynomials. In that
light, show that
" Paleos(®) sin(0) . sinf(n+4)4

0 \/2cos(6) — 2cos(t) n+i

and
T P,[cos(9)] sin(8) 40 cos[(n+1)t]
¢ \/2cos(t) — 2cos(0) n+1i

where 0 < t < 7.

13. (a) Use the generating function, Equation 6.4.18, to show that

2tx+t2 Z £ Pa |z <1, 1< [t].
(b) Use the results from part (a) to show that
! (et Dl
V) DU AL

Hint:
1 _ V2
Veosh(p) —z Vel =2z 4 e~ vl

19 Hobson, E. W., 1965: The Theory of Spherical and Ellipsoidal Harmonics. Chelsea Publishing Co.,
pp. 26-27.
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14. The generating function, Equation 6.4.18, actually holds?® for |h| < 1 if |#| < 1. Using
this relationship, show that

> 1
d Pi(a) = ————, zl<1,
— 2(1 — )

and

> Po(xz)
Z n+1

n=0

) 1+\/(1—x)/2] ol <1
1-2)/2 |

Use these relationships to show that

41, — P,(z) 1 B
nz::n—i—l 2§::P Zn+1_ (1—x)/2 1

n=1

. 1+\/(1x)/21 .
1—z)/2 ’

if |z < 1.
6.5 ANOTHER SINGULAR STURM-LIOUVILLE PROBLEM: BESSEL'S EQUATION

In the previous section we discussed the solutions to Legendre’s equation, especially
with regard to their use in orthogonal expansions. In this section we consider another classic
equation, Bessel’s equation?!

22y’ + xy + (pPa? —n?)y =0, (6.5.1)

A68) (oo

Once again, our ultimate goal is the use of its solutions in orthogonal expansions. These
orthogonal expansions, in turn, are used in the solution of partial differential equations in
cylindrical coordinates.

A quick check of Bessel’s equation shows that it conforms to the canonical form of the
Sturm-Liouville problem: p(z) = z, q(z) = —n?/x, r(z) = x, and A = p?. Restricting
our attention to the interval [0, L], the Sturm-Liouville problem involving Equation 6.5.2 is
singular because p(0) = 0. From Equation 6.4.1 in the previous section, the eigenfunctions
to a singular Sturm-Liouville problem will still be orthogonal over the interval [0, L] if (1)
y(x) is finite and xy/(z) is zero at x = 0, and (2) y(x) satisfies the homogeneous boundary
condition, Equation 6.1.2, at x = L. Consequently, we only seek solutions that satisfy these
conditions.

We cannot write down the solution to Bessel’s equation in a simple closed form; as in
the case with Legendre’s equation, we must find the solution by power series. Because we
intend to make the expansion about x = 0 and this point is a regular singular point, we must

or

20 TIbid., p. 28.

21 Bessel, F. W., 1824: Untersuchung des Teils der planetarischen Stérungen, welcher aus der Bewegung
der Sonne entsteht. Abh. d. K. Akad. Wiss. Berlin, 1-52. See Dutka, J., 1995: On the early history of
Bessel functions. Arch. Hist. Ezact Sci., 49, 105-134. The classic reference on Bessel functions is Watson,
G. N., 1966: A Treatise on the Theory of Bessel Functions. Cambridge University Press, 804 pp.
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It was Friedrich Wilhelm Bessel’s (1784-1846) apprenticeship to the famous mercantile firm of
Kulenkamp that ignited his interest in mathematics and astronomy. As the founder of the German
school of practical astronomy, Bessel discovered his functions while studying the problem of planetary
motion. Bessel functions arose as coefficients in one of the series that described the gravitational
interaction between the sun and two other planets in elliptic orbit. (Portrait courtesy of Photo
AKG, London, with permission.)

use the method of Frobenius, where n is an integer.?? Moreover, because the quantity n?
appears in Equation 6.5.2, we may take n to be nonnegative without any loss of generality.

To simplify matters, we first find the solution when g = 1; the solution for u # 1
follows by substituting pa for x. Consequently, we seek solutions of the form

r) =Y Bpa®*, (6.5.3)
k=0
= (2k+ s)Bra® e, (6.5.4)
k=0
and
oo
y'(x) = (2k+ 5)(2k + s — 1) Ba® 2, (6.5.5)

~
Il

0

22 This case is much simpler than for arbitrary n. See Hildebrand, F. B., 1962: Advanced Calculus for
Applications. Prentice-Hall, Section 4.8.
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where we formally assume that we can interchange the order of differentiation and summa-
tion. The substitution of Equation 6.5.3 and Equation 6.5.5 into Equation 6.5.1 with =1
yields

(2k +5)(2k+5—1) B +s 4 Z(Qk +5)Bra?*te 4 Z Bya?h et _p? Z Bpz?kts =0,
0 k=0 k=0 k=0

M8

=
Il

(6.5.6)

> 2k +5)? = n?]Bpa® + > Bra®t? = 0. (6.5.7)
k=0 k=0

If we explicitly separate the £k = 0 term from the other terms in the first summation in

Equation 6.5.7,

(s> =n?)Bo+ > _[2m+5)* = n’|Bpa® + Y Bpa®*? =0. (6.5.8)
m=1 k=0

We now change the dummy integer in the first summation of Equation 6.5.8 by letting
m =k + 1 so that

(s> =n?)Bo+ Y {[(2k+s+2)* = n?|Bry1 + Bl 2 = 0. (6.5.9)
k=0

Because Equation 6.5.9 must be true for all z, each power of x must vanish identically. This
yields s = £+n, and
[(2k + s+ 2)2 — n?|Byy1 + B = 0. (6.5.10)

Since the difference of the larger indicial root from the lower root equals the integer 2n, we
are only guaranteed a power series solution of the form given by Equation 6.5.3 for s = n. If
we use this indicial root and the recurrence formula, Equation 6.5.10, this solution, known
as the Bessel function of the first kind of order n and denoted by J, (), is

s $/2)n+2k
. 6.5.11
Zo k' (n+k)! ( )

To find the second general solution to Bessel’s equation, the one corresponding to
s = —n, the most economical method?? is to express it in terms of partial derivatives of
Jn(z) with respect to its order n:

oJ, ()

Yn(x):[ > _(_1)"‘9‘]5';(96)} R (6.5.12)

Upon substituting the power series representation, Equation 6.5.11, into Equation 6.5.12,
2 12 (n—k—1)! fz\2k—n
Va@) = Zaa@inay) - L3 kDl )
(z) = —Ju(z)In(z/2) — — ];) 1 5

%ix—pm[w(lﬁ 1) +4p(k+n+ 1), (6.5.13)
k=0

23 See Watson, G. N., 1966: A Treatise on the Theory of Bessel Functions. Cambridge University Press,
Section 3.5, for the derivation.
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Figure 6.5.1: The first four Bessel functions of the first kind over 0 < z < 8.

where 1 )
w(m+1)=—7+1+§+~-~+g7 (6.5.14)

(1) = —v, and + is Euler’s constant (0.5772157). In the case of n = 0, the first sum in
Equation 6.5.13 disappears. This function Y;,(z) is Neumann’s Bessel function of the second
kind of order n. Consequently, the general solution to Equation 6.5.1 is

y(x) = Adn(px) + BY, (pz). (6.5.15)
Figure 6.5.1 illustrates the functions Jo(z), Ji(x), J2(x), and J3(z) while Figure 6.5.2 gives

Yo(x), Yi(x), Ya(z), and Y3(x).
An alternative solution to Equation 6.5.1 is

y(z) = CH\Y (z) + DH? (), (6.5.16)
where
HWV (z) = J, () + iYn(2), (6.5.17)
and
H?(z) = Jp(z) — iV, (2). (6.5.18)

These functions Hfll)(x)H,(f)(x) are referred to as Bessel functions of the third kind or
Hankel functions, after the German mathematician Hermann Hankel (1839-1873). The
advantage of Hankel functions over the conventional Bessel function is most clearly seen in
their asymptotic expansions:

2
H,(f)(z) ~ | = eilzmnm/2=m/4) (6.5.19)
Tz
and
9 .
H,(f)(z) ~ oy | L pmilzmnm/2—m/4) (6.5.20)
T2

for |z| — oo.
An equation that is very similar to Equation 6.5.1 is
2 d*y dy

2 2\
v +x% —(n*+z%)y =0. (6.5.21)
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Figure 6.5.2: The first four Bessel functions of the second kind over 0 < x < 8.

It arises in the solution of partial differential equations in cylindrical coordinates. If we
substitute ix =t (where i = /—1) into Equation 6.5.21, it becomes Bessel’s equation:

2y d
tQéJ + tdit/ + (2 —n2)y =0. (6.5.22)

Consequently, we may immediately write the solution to Equation 6.5.21 as
y(z) = 1 Jp (i) + oYy, (ix), (6.5.23)
if n is an integer. Traditionally the solution to Equation 6.5.21 has been written

y(z) = 11, () + o Ky (2) (6.5.24)

rather than in terms of J,(iz) and Y, (ix), where

B oo (x/2)2k+"
I(z) = kz=o AT (6.5.25)
and -
K,(z) = 51'"“ [ (iz) + iV, (iz)] . (6.5.26)

The function I, (z) is the modified Bessel function of the first kind, of order n, while K, (x)
is the modified Bessel function of the second kind, of order n. Figure 6.5.3 illustrates Iy(x),
Ii(z), I2(x), and Is(z) while in Figure 6.5.3 Ko(x), K;(z), K2(z), and K3(z) are graphed.
Note that K, (z) has no real zeros while I,,(x) equals zero only at =0 for n > 1.

As our derivation suggests, modified Bessel functions are related to ordinary Bessel
functions via complex variables. In particular, J,(iz) = i"I,(2), and I,(iz) = i"J,(2) for
z complex.

Although we found solutions to Bessel’s equation, Equation 6.5.1, as well as Equation
6.5.21, can we use any of them in an eigenfunction expansion? From Figures 6.5.1-6.5.4 we
see that J,, (z) and I,,(x) remain finite at = 0 while Y,,(z) and K,,(z) do not. Furthermore,
the products xJ/, (z) and zI] (x) tend to zero at = 0. Thus, both J,(x) and I,,(z) satisfy
the first requirement of an eigenfunction for a Fourier-Bessel expansion.

What about the second condition, that the eigenfunction must satisfy the homogeneous
boundary condition, Equation 6.1.2, at x = L? From Figure 6.5.3 we see that I,,(z) can



276 Advanced Engineering Mathematics with MATLAB

Figure 6.5.3: The first four modified Bessel functions of the first kind over 0 < z < 3.

never satisfy this condition, while from Figure 6.5.1, J,,(z) can. For that reason, we discard
I,,(z) from further consideration and continue our analysis only with J,(z).

Before we can derive the expressions for a Fourier-Bessel expansion, we need to find
how J,(x) is related to Jp41(z) and J,_1(x). Assuming that n is a positive integer, we
multiply the series, Equation 6.5.11, by 2™ and then differentiate with respect to x. This
gives

d 0 2n 4 Qk) 2n+2k—1 . 0 1./2)71 142k
% Z 2n+2kkln+k) =T Z kln_1+k) =" Jn-1(2)
=0 k=0
(6.5.27)
or
d n n
[ Ta(@)] = 2" a1 () (6.5.28)
for n =1,2,3,.... Similarly, multiplying Equation 6.5.11 by =", we find that
d -n —n
o (27" Ty (2)] = =27 " Jnqa(2) (6.5.29)
forn =0,1,2,3,.... If we now carry out the differentiation on Equation 6.5.28 and Equation
6.5.29 and divide by the factors *", we have that
T (@) + (@) = Jn_y(2), (6.5.30)
x

and
J () — an(:c) = —Jpi (). (6.5.31)



The Sturm-Liouville Problem 277

4.0

3.0

2.0

Figure 6.5.4: The first four modified Bessel functions of the second kind over 0 < z < 3.

Equation 6.3.30 and Equation 6.3.31 immediately yield the recurrence relationships

Jn_l(a:) + Jn+1($) = %Jn(l’) (6532)

and

Jn—1(x) = Jpi1(x) = 2J) (z) (6.5.33)

for n =1,2,3,.... For n = 0, we replace Equation 6.5.33 by Jj(z) = —Ji(x). Many of the
most useful recurrence formulas are summarized in Table 6.5.1 for Bessel functions and in
Table 6.5.2 for Hankel functions.

Let us now construct a Fourier-Bessel series. The exact form of the expansion depends
upon the boundary condition at = L. There are three possible cases. One of them is
y(L) = 0 and results in the condition that J,(urL) = 0. Another condition is y'(L) = 0
and gives J) (urL) = 0. Finally, if hy(L) +y'(L) = 0, then hJ,(uxL) + prJ),(ux L) = 0. In
all of these cases, the eigenfunction expansion is the same, namely

f@) =Y ApTn(ur), (6.5.34)
k=1

where py, is the kth positive solution of either J,(uxL) = 0, J) (uxL) = 0, or hJ,(upL) +
e (L) = 0.
We now need a mechanism for computing A;. We begin by multiplying Equation 6.5.34
by xJ, (pmex) dr and integrate from 0 to L. This yields
L
0

o) L
;Ak/ xJn(ukx)J(,uma:)dxz/O xf () Jn(pme) do. (6.5.35)
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Table 6.5.1: Some Useful Relationships Involving Bessel Functions of Integer Order

2
Jn1(2) + T (2) = 7”Jn(z), n=123,...

Jn-1(2) = Jns1(z) =2J,(2), n=1,2,3,...; Ji(z)=—J1(2)

d
dz[z"Jn(z)} =2"Jn_1(2), n=123,...

d
dz{z”Jn(z)] = —2""Jnt1(2), n=0,1,2,3,...

2
Lnor(2) = Inia (2) = 7”1,1(2), n=123,...

In 1(2) + Iny1(2) =21L(2), n=1,2,3,...; I\(z)=T1(2)
2n
Kn—l(z) *Kn-‘rl(z) = 77K7L(z)’ n= 172737"'
Kno1(z)+ Kpt1(2) = —2K)(2), n=1,2,3,...; K{(2) = —Ki(2)

Jn(zemm) _ enmwiJn(z)

In (Zemﬂ'i) _ enmwil-n(z)

K (ze™™) = e ™MK, (2) — mm’MIn(z)
cos(n)

I,(z) = e /2 ] (ze™/?), —r < arg(z) < /2

I(2) = e"™V2 ] (ze~37/2), /2 <arg(z) <

From the general orthogonality condition, Equation 6.2.1,

L
/ T () Jn (ma) doe = 0, (6.5.36)
0

if k& # m. Equation 6.5.35 then simplifies to

L L
Am/ 2 J2 (pm) dac:/ xf(z)Jn (me) dz, (6.5.37)
0 0
or
1 L
A = —/ xf () (prx) do, (6.5.38)
Ck; 0
where

L
C’k:/ xJ? (ppx) da, (6.5.39)
0
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Table 6.5.2: Some Useful Recurrence Relations for Hankel Functions

d 1 np@ o] — onp®) _ ROy )
. [aﬁ H) (m)} =2"H,” (x), n= 1,2,...,% {HO (;c)} =—H" ()

d —n —n
e [x H,(Lp)(x)] =—z Hfﬁl(x), n=0,1,23,...

HP (x) + HP) (z) = ?H(”)(a:), n=123,...

dHT(lP)
@) - B @) =27 a2

and k replaces m in Equation 6.5.37.
The factor C depends upon the nature of the boundary conditions at x = L. In all
cases we start from Bessel’s equation

2
[T, ()] + <ui:v - T;) Jn(pr) = 0. (6.5.40)
If we multiply both sides of Equation 6.5.40 by 2z.J], (urx), the resulting equation is

(10 ) [T )] = (oI () (6.5.41)

An integration of Equation 6.5.41 from 0 to L, followed by the subsequent use of integration
by parts, results in

L

L
(it = )2 ua)ly — 20 [ 2T do = = (w7 i)
0

L
‘ (6.5.42)

Because J,,(0) = 0 for n > 0, Jo(0) = 1 and xJ},(z) = 0 at = 0, the contribution from the
lower limits vanishes. Thus,

L 1
Cr = / o J2 (upr) de = 52 [(,@L? —n?)J2(upL) + L2J;L2(ﬂkL)]. (6.5.43)
0 k

Because n
To(px) = —In(p) = pr s (i) (6.5.44)

from Equation 6.5.31, C} becomes

Cr = 3 L2 T2 1 (i L), (6.5.45)
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if J,(uxL) = 0. Otherwise, if J/ (uxL) = 0, then

272 _ 2
Cp = “’“TJﬁ(ukL). (6.5.46)
Hi
Finally,
2L2 2 h2L2
Cp= M T T2 (), (6.5.47)

2uy

if ,UkJ;L(/LkL) = 7th(HkL)

All of the preceding results must be slightly modified when n = 0 and the boundary
condition is J)(urL) = 0 or ugJi(uxL) = 0. This modification results from the additional
eigenvalue puy = 0 being present and we must add the extra term Ag to the expansion. For
this case the series reads

fla) = Ao+ ApJo(uiw), (6.5.48)
k=1

where the equation for finding Ay is

2 L
Ay = 2 / (@) da, (6.5.49)
L2 J,
and Equation 6.5.38 and Equation 6.5.46 with n = 0 give the remaining coefficients.

e Example 6.5.1

Starting with Bessel’s equation, we show that the solution to

1—2 2 2.2
an 7‘13}/ 4 <b282x2c2 4 a;zc) y=0 (6.5.50)
x x
is
y(x) = Az®J, (bx®) + BxY, (bx°), (6.5.51)
provided that bz® > 0 so that Y, (bx®) exists.
The general solution to
d’n  .dn
2 2 2
— — — =0 6.5.52
g G (€ —nt (6.5.52)
is
n = AJ,(&) + BY,(&). (6.5.53)

If we now let n = y(z)/x* and & = bz°, then

d dex d z'=¢ d
I — 6.5.54
d¢  d¢ dx bc dx’ ( )
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d2 1.2726 d2 (6—1)1’1726 d

e A A —— 6.5.55
a2 b2c? dx? b2c? dx’ ( )
d [y 1 dy a
()= =2 - 6.5.56
dx ( ) vadr  gati? ( )
and ) )
d 1d 2a d 1
4f(2):4f4£_ a_dy  a(l+a) (6.5.57)
dzx? xedr?  xotldr zot2
Substituting Equation 6.5.54 and Equation 6.5.57 into Equation 6.5.52 and simplifying
yields the desired result. a

e Example 6.5.2

Let us find?* the general solution to the nonhomogeneous differential equation

d2y 1dy 9
— 4+ - —ky=— 6.5.58
Ch Ry =50 (6.5.58)

where k is a real parameter.
The homogeneous solution is

yu (r) = Cilo(kr) + CoKo(kr). (6.5.59)

Using variation of parameters, we assume that the particular solution can be written

yp(r) = A(r)Io(kr) + B(r)Ko(kr), (6.5.60)
where (k)
/ o 0 K() k’/‘ IO k’l" Ko kr
Alr) = ‘ ~S(r) kKY(kr) / ’ kIY( kr KK, (kr) | (6.5.61)
and
/ Io k’]" IQ kT’ Ko(lﬂ“)
Bir) = ‘ kI kr - kIl kr kK (kr) | (6.5.62)
Expanding the determinants, we find
A'(r)y = S(r)Ko(kr)/ {k [Io(kr)Ky(kr) — I\ (kr)Ko(kr)]} (6.5.63)
and
B'(r) = =S(r)Io(kr)/ {k [Lo(kr)K{(kr) — I\ (kr)Ko(kr)]} . (6.5.64)
Evaluating the Wronskian?® for modified Bessel functions,
Io(2)K})(2) — I (2) Ko (2) = —1/2, (6.5.65)
A'(ry=—rS(r)Ko(kr)  and  B'(r) = rS(r)Io(kr). (6.5.66)

24 See Hassan, M. H. A., 1988: Ion distribution functions during ion cyclotron resonance heating at the
fundamental frequency. Phys. Fluids, 31, 596-599.

25 Watson, op. cit., p. 80, Formula 19.
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Integrating Equation 6.5.66,

Alr) = — /T xS(x)Ko(kx) dz, and B(r) = /T xS(x)Io(kx) d. (6.5.67)
Consequently, the general solution is the sum of the particular and homogeneous solution,

T

y(r) = CiIo(kr) + CaKo(kr) — To(kr) / " 28 (@) Ko (kx) dz + Ko(kr) / 28(2) Iy (k) da.

(6.5.68)
(]
e Example 6.5.3
Let us show that
22 J"(x) = (n* —n — 2% Jp(2) + 201 (2). (6.5.69)
From Equation 6.5.31,
J (z) = an(;r) — Ty (@), (6.5.70)
1" n n ! !
and
1 n nin n+1
TU(@) = —— Tu(z) + 2~ [—Jn(x) - Jn+1(x)] — | n(a) - Jni1(2) (6.5.72)
x z Lz
after using Equation 6.5.30 and Equation 6.5.31. Simplifying,
n?—n Jnt1(x)
J!'(z) = < pra 1> In(z) + — (6.5.73)
After multiplying Equation 6.5.73 by 22, we obtain Equation 6.5.69. a
e Example 6.5.4
Let us show that "
2% Jy(2) do = a® J3(a) — 2a* J4(a). (6.5.74)

0

We begin by integrating Equation 6.5.74 by parts. If u = 22, and dv = 23J5(x) dz,
then

/a 20 Jo(x) de = x5J3(x)|g — 2/a ztJ3(z) dz, (6.5.75)
0 0

because d[z®J3(z)]/dx = 22 J5(x) by Equation 6.5.28. Finally,

/Oa 25Jy(z) dx = a®J3(a) — 2x4J4(x)’g = a®J3(a) — 2a* Jy(a), (6.5.76)

since 2% J3(z) = d[z*J4(z)]/dz by Equation 6.5.28. O
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e Example 6.5.5

Let us expand f(z) =z, 0 <z < 1, in the series

= Api (), (6.5.77)
k=1

where py, denotes the kth zero of Ji(u). From Equation 6.5.38 and Equation 6.5.46,

2 1
A = 7/ 22 Jy (upx) da. (6.5.78)
J3 (e) Jo
However, from Equation 6.5.28,
d o 2
%[I Jo(z)] = 2 J1(2), (6.5.79)

if n = 2. Therefore, Equation 6.5.78 becomes

2% J5(z) | 2
A= = 22(@ = , (6.5.80)
a3 () g pd2(pe)
and the resulting expansion is
x—QZ Ti(pn) 0<z<l (6.5.81)
k2 (k)

Figure 6.5.5 shows the Fourier-Bessel expansion of f(z) = z in truncated form when we
only include one, two, three, and four terms. It was created using the MATLAB script

clear;
x = [0:0.01:1]; % create x points in plot
f = x; % construct function f(x)
% initialize Fourier-Bessel series
fbessel = zeros(size(x));
% read in the first four zeros of J_1(mu) =
mu(1) 3.83171; mu(2) = 7.01559;
mu (3) 10.17347; mu(4) = 13.32369;
clf ¥ clear any figures
for n = 1:4
% Fourier coefficient
factor = 2 / (mu(n) * besselj(2,mu(n)));
% compute Fourier-Bessel series
fbessel = fbessel + factor * besselj(1l,mu(n)*x);
% cre