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Preface

CAGD - short for Computer Aided Geometric Design — is the discipline concerned with
the computational and geometric aspects of free-form curves, surfaces and volumes as
they are used, for example in CAD/CAM, scientific visualization, or computer animation.
CAGD started in the 1960s, going back to efforts by Citroén and Rénault in France and by
Boeing and General Motors in the U.S. Emerging from unrelated parallel developments, a
coherent scientific discipline began to form in the 1970s, mainly due to the 1972 conference
at the University of Utah, organized by R. Barnhill and R. Riesenfeld. About ten years
later, the journal CAGD was founded by R. Barnhill and W. Boehm and published by
North-Holland. Since then, the field has progressed significantly, as this handbook intends
to document.

Drawing from many areas and influencing others, CAGD is inherently interdisciplinary.
The earliest influences came from mechanical engineering in the form of new and puz-
zling problems in the emerging field of CAD/CAM. Their solutions involved results from
approximation theory and differential geometry, but also from computer graphics and
new software developments. Owing to these diverse roots, positioning CAGD within the
science and engineering fields would be an ambitious endeavor. We think it is best to
recognize the multiple origins and, from them, to expect a multitude of contributions to
various scientific, engineering, mathematical, and other areas.

This handbook will thus not be able to cover every aspect of CAGD; yet it represents
our best effort to provide a comprehensive collection of knowledge that has been collected
to date. It contains the basics of curve and surface modeling (the very start of the
discipline), many computer science and engineering aspects, and finally a rich coverage of
mathematical underpinnings, ranging from geometry to approximation theory.

The intended audience for this volume are researchers from areas outside of CAGD
wishing to get a broad yet thorough exposure to the field. Researchers inside the field
will find a wealth of material to complement their expertise. Graduate students will find
a guide to new and promising research areas, leading to MS and PhD theses. And a
layperson should find enough material to simply get an appreciation of an exciting and
unfolding discipline.

Gerald Farin, Tempe, AZ
Josef Hoschek, Darmstadt, Germany
Myung-Soo Kim, Seoul, Korea
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Chapter 1

A History of Curves and Surfaces in
CAGD

Gerald Farin

This article provides a historical account of the major developments in the area of curves
and surfaces as they entered the area of CAGD — Computer Aided Geometric Design -
until the middle 1980s. We adopt the definition that CAGD deals with the construction
and representation of free-form curves, surfaces, or volumes.

1.1. INTRODUCTION

The termm CAGD was coined by R. Barnhill and R. Riesenfeld in 1974 when they organized
a conference on that topic at the University of Utah. That conference brought together
researchers from the U.S. and from Europe and may be regarded as the founding event
of the field. It resulted in the widely influential proceedings [8]. The first textbook,
“Computational Geometry for Design and Manufacture” by I. Faux and M. Pratt [63],
appeared in 1979. The journal “Computer Aided Geometric Design” was founded in 1984
by R. Barnhill and W. Boehm. Its cover is shown in Figure 1.1.

Another early conference was one held in Paris in 1971. It focussed on automotive
design and was organized by P. Bézier, then president of the Societé des Ingénieurs de
I’Automobile. The proceedings were published by the journal “Ingénieurs de I’Automobile.”

A series of workshops started in 1982 at the Mathematics Research Institute at Ober-
wolfach; these were organized by R. Barnhill, W. Boehm, and J. Hoschek. Ten years
later, a parallel development started at the Computer Science Research Institute Schloss
Dagstuhl initiated by H. Hagen. In the U.S, a conference series was organized by SIAM
(Society for Industrial and Apllied Mathematics); the first one being held 1983 at Troy,
N.Y., and organized by H. McLaughlin. In the U.K., the conference series “Mathematics
of Surfaces” was initiated by the IMA (Institute for Mathematics and Applications). A
Norwegian/French counterpart was started by L. Schumaker, T. Lyche, and P.-J. Laurent.
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Figure 1.1. The cover of the journal CAGD. It shows a drawing by P. Uccello (ca. 1430).

1.2. EARLY DEVELOPMENTS

The earliest recorded use of curves in a manufacturing environment seems to go back to
early AD Roman times, for the purpose of shipbuilding. A ship’s ribs — wooden planks
emanating from the keel — were produced based on templates which could be reused
many times. Thus a vessel’s basic geometry could be stored and did not have to be
recreated every time. These techniques were perfected by the Venetians from the 13th
to the 16th century. The form of the ribs was defined in terms of tangent continuous
circular arcs - NURBS in modern parlance. The ship hull was obtained by varying the
ribs’ shapes along the the keel, an early manifestation of today’s tensor product surface
definitions. No drawings existed to define a ship hull; these became popular in England in
the 1600s. The classical “spline,” a wooden beam which is used to draw smooth curves,
was probably invented then. The earliest available mention of a “spline” seems to be [51]
from 1752. This “shipbuilding connection,” described by H. Nowacki [103], was the earliest
use of constructive geometry to define free-form shapes, see Figure 1.2. More modern
developments linking marine and CAGD techniques may be found in [10,100,115,136].
Another key event originated in aeronautics. In 1944, R. Liming wrote a book entitled
“Analytical Geometry with Application to Aircraft” [95]. Liming worked for the NAA
(North American Aviation) during World War 1II; this company built fighter planes such
as the legendary Mustang. In his book, classical drafting methods were combined with
computational techniques for the first time. Conics were used in the aircraft as well as in
the shipbuilding industries before, essentially based on constructions going back to Pascal
and Monge. Traditionally, these constructions found their way onto the draftsman’s
drawing board in the form of blueprints which served as the basic product definition.
Liming realized that an alternative was more efficient: store a design in terms of numbers
instead of manually traced curves. Thus he translated the classical drafting constructions
into numerical algorithms. The advantage: numbers can be stored in unambiguous tables
and leave no room to individual interpretations of drawings. Liming’s work was very
influential in the 1950s when it was widely adopted by U.S. aircraft companies. Figure
1.3 shows one of Liming’s constructions. Another researcher was also involved in the
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Figure 1.2. Splines: a mechanical spline from the 1700s.

transition of aircraft drawings to computations; this was S. Coons, see [34]. Coons later
gained fame for his work at MIT.

Another early influential development for CAGD was the advent of numerical control
(NC) in the 1950s. Early computers were capable of generating numerical instructions
which drove milling machines used for the production of dies and stamps for sheet metal
parts. At MIT, the APT programming language was developed for this purpose. A
problem remained: all relevant information was stored in the form of blueprints,! and it
was not clear how to communicate that information to the computer which was driving
a milling machine. Digitizing points off the blueprints and fitting curves using familiar
techniques such as Lagrange interpolation failed early on. New blueprint-to-computer
concepts were needed. In France, de Casteljau and Bézier went far beyond that task by
enabling designers to abandon the manual blueprint process all together.

In the U.S., J. Ferguson at Boeing and S. Coons at MIT provided alternative techniques.
General Motors developed its first CAD/CAM system DAC-I (Design Augmented by
Computer). It used the fundamental curve and surface techniques developed at GM by
researchers such as C. de Boor and W. Gordon.

In the U.K., A R. Forrest began his work on curves and surfaces after being exposed to S.
Coons’ ideas. His PhD thesis (Cambridge) includes work on shape classification of cubics,
rational cubics, and generalizations of Coons patches [65]. M. Sabin worked for British
Aircraft Corporation and was instrumental in developing the CAD system “Numerical
Master Geometry.” He developed many algorithms that were later “reinvented.” This
includes work on offsets [118], geometric continuity [116], or tension splines [119]. Sabin
received his PhD from the Hungarian Academy of Sciences in 1977, a seemingly odd choice
which is explained by the close collaboration between researchers in Cambridge, U.K, and
their counterparts in Hungary, under the leadership of J. Hatvany.

All these approaches took place in the 1960s. For quite a while, they existed in isolation
until the seventies started to see a confluence of different research approaches, culminating

!Liming’s conic constructions were an exception but were not widely available outside the aircraft indus-
try.
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Figure 1.3. R. Liming: conic construction of a fighter aircraft cockpit.

in the creation of a new discipline, CAGD.

Without the advent of computers, a disciplines such as CAGD would not have emerged.
The initial main use of these computers was not so much to compute complex shapes but
simply to produce the information necessary to drive milling machines. That information
was typically output to a punch tape by a main frame computer. That tape was then
transferred to the control unit of a milling machine.

The main interest of a designer was not so much the milling machine; it was rather a
plotter which could quickly graph a designer’s concepts. Early plotters were the size of
a billiard table or larger; this was natural as drawings for most automotive parts were
produced to scale. Plotting, or drafting, was so important that almost all of CAD was
aimed at producing drawings — in fact, CAD was often considered to stand for “Computer
Aided Drafting” (or “Draughting,” in British English). Before the advent of these systems,
trivial-sounding tasks were extremely time consuming. For example, producing a new
view of a complex wireframe object from existing views would take a draftsman a week
or more; using computers, it became a matter of seconds.

A milestone in display hardware was the use of CRTs, or Cathode Ray Terminals.
These went back to oscillographs which were used for many scientific applications. CRTs
(not in use for CAD applications any more) displayed an image by “drawing” curves
on a screen. Another dimension was added to simple display technology by adding an
interactive component to it. The first interactive graphics system was invented by L.
Sutherland at MIT in 1963, see [134]. His thesis was part of the CAD project at MIT;
S. Coons was a member of his PhD committee. See Figure 1.4 for an illustration of
Sutherland’s prototype.

1.3. DE CASTELJAU AND BEZIER

In 1959, the French car company Citroén hired a young mathematician in order to resolve
some of the theoretical problems that arose from the blueprint-to-computer challenge.
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Figure 1.4. L. Sutherland’s Sketchpad system.

The mathematician was Paul de Faget de Casteljau, who had just finished his PhD. He
began to develop a system which primarily aimed at the ab initio design of curves and
surfaces instead of focusing on the reproduction of existing blueprints.

He adopted the use of Bernstein polynomials for his curve and surface definitions from
the very beginning, together with what is now known as the de Casteljau algorithm.
Figure 1.5 shows a part of his 1963 technical report [44].

The breakthrough insight was to use control polygons (courbes & pdles), a technique
that was never used before. Instead of defining a curve (or surface) through points on it,
a control polygon utilizes points near it. Instead of changing the curve (surface) directly,
one changes the control polygon, and the curve (surface) follows in a very intuitive way.
In the area of differential geometry, concepts similar to control polygons were devised as
early as 1923, see [17], but had no impact on any applications.

De Casteljau’s work was kept a secret by Citroén for a long time. The first public
mention of the algorithm (although not including a mention of the inventor) is [93].
W. Boehm was the first to give de Casteljau recognition for his work in the research
community. He found out about de Casteljau’s technical reports and coined the term ”de
Casteljau algorithm” in the late seventies.

Another place to learn about Citroén’s CAGD efforts was its competitor Rénault, also
located in Paris. There, during the early 1960s, Pierre Bézier headed the design de-
partment and also realized the need for computer representations of mechanical parts.
Bézier’s efforts were influenced by the knowledge of similar developments at Citroén, but
he proceeded in an independent manner. Bézier’s initial idea was to represent a “basic
curve” as the intersection of two elliptic cylinders, see Figure 1.6. The two cylinders were
defined inside a parallelepiped. Affine transformations of this parallelepiped would then
result in affine transformations of the curve. Later, Bézier moved to polynomial formula-
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Figure 1.5. De Casteljau’s description of his algorithm.

tions of this initial concept and also extended it to higher degrees. The result turned out
to be identical to de Casteljau’s curves, only the mathematics involved was different. A
member of Bézier’s team, D. Vernet independently developed the de Casteljau algorithm.
See also Bézier’s chapter in [59].

Bézier’s work was widely published, see [15,12-14,138], and soon came to the attention
of A.R. Forrest. He realized that Bézier curves could be expressed in terms of Bernstein
polynomials — i.e., in the form that de Casteljau had used since the late fifties! Forrest’s
article on Bézier curves [66] was very influential and helped popularize Bézier curves
considerably. The Rénault CAD/CAM system UNISURF was based entirely on Bézier
curves and surfaces. It influenced developments by the French aircraft company Dassault
who built a system called EVE. Later, that system evolved into CATIA (Computer Aided
Three-dimensional Interactive Application). Bézier also invented a method to deform
whole assemblies of surfaces by embedding them into a cube and then deforming it using
trivariate “Bézier cubes,” see [12,16] and Section 1.5.

De Casteljau retired from Citroén in 1989 and became active in publishing. In 1985,
he wrote “Formes & Péles,”[45] which introduced the concept of blossoming. *

P. Bézier died in Paris in 1999.

1.4. PARAMETRIC CURVES

Curves were employed by draftsmen for centuries; the majority of these curves were circles,
but some were “free-form.” Those are curves arising from applications such as ship hull
design to architecture. When they had to be drawn exactly, the most common tool was
a set of templates known as French curves. These are carefully designed wooden curves

2The term “blossoming” is due to L. Ramshaw who independently discovered the concept, see [110].
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Figure 1.6. Bézier’s “basic curve.”

and consist of pieces of conics and spirals. A curve is drawn in a piecewise manner by
tracing appropriate parts of a French curve.

Another mechanical tool, called a spline was also used. This was a flexible strip of wood
that was held in place and shape by metal weights, known as ducks. When drawings had
to be produced to scale, the attics (or lofts) of buildings were used to accommodate the
large size drawings — the word lofting has its origins here. A spline “tries” to bend as
little as possible, resulting in shapes which are both aesthetically pleasing and physically
optimal. The mathematical counterpart to a mechanical spline is a spline curve, one of
the most fundamental parametric curve forms.

The differential geometry of parametric curves was well understood since the late 1800s
after work by Serret/Frenet. On the other hand, research in approximation theory and
numerical analysis focused entirely on nonparametric functions. Both areas were brought
together when they became important building blocks of CAGD.

Since the middle 1950s, the US aircraft company Boeing employed software based on
Liming’s conic constructions in the design of airplane fuselages. In a different part of the
company, J. Ferguson and D. MacLaren developed a different kind of curve for the design
of wings. They had the idea to piece cubic space curves together so that they formed
composite curves which were overall twice differentiable [97,64]. These curves could easily
interpolate to a set of points. They were referred to as spline curves since they minimize
a functional similar to the physical properties of mechanical splines.

The meaning of the term “spline curve” has since undergone a subtle change. Instead
of referring to curves that minimize certain functionals, spline curves are now mostly
thought of as piecewise polynomial (or rational polynomial) curves with certain smooth-
ness properties.

Ferguson derived his spline equations using the piecewise monomial form. But he also
used the cubic Hermite form (then referred to as F-curves) which defines a cubic in terms
of two endpoints and two endpoint derivatives. S. Coons used this curve type to build
the patches which were named after him. In the UK, A.R. Forrest continued Coons’ ideas
and extended cubic Hermite curves to rational cubics, see [65].

The most fundamental parametric curve form are the Bézier curves; see Section 1.3.
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Many of the basic properties can be found in the papers by Bézier, Vernet, and Forrest
(see above). Some later results include conditions for C” joins between Bézier curves,
see Stark [131], the discovery that Bézier curves are numerically more stable than other
curve forms, see Farouki/Rajan [62], and the development of the blossoming principle,
see Ramshaw [110] and de Casteljau [46]. A symbolic technique for Bézier curves and
surfaces was developed by M. Hosaka and F. Kimura [83], although it was known to W.
Boehm in 1972.%

As an early alternative to parametric curves were explicit curve segments with individual
local coordinate systems. These curves are known as Wilson-Fowler splines [68]. A similar
curve type was employed in the TABCYL (TABulated CYLinder) routines of the APT
(Automatic Programmed Tool) language. After the advent of parametric curves, these
pilecewise explicit curves began to disappear.

Another early curve scheme are biarcs. These are piecewise circular arcs which are
pieced together to allow for tangent continuity. It is possible to fit two tangent continuous
circles to two points and two tangents. If several points and tangents are given, one
obtains a circle spline. The advantage of these curves is the fact that NC machines can
process circular arcs directly, i.e., without a conversion to a dense polygon as is needed
for standard parametric splines. A drawback of circle splines is their piecewise constant
and hence discontinuous curvature. The first developments are due to K. Bolton [23],
followed by M. Sabin [121]; a generalization to 3D was given by T. Sharrock [127].

1.5. RECTANGULAR SURFACES

Parametric surfaces were well understood after early work by Gauss and Euler. They
were immediately adopted in early CAD/CAM developments: A standard application
is tracing a surface for plotting or for driving a milling tool. Parametric surfaces are
well-suited for both tasks. The most popular of all surface methods was to become
the tensor product surface. It was first introduced by C. de Boor [39] for the case of
bicubic spline interpolation. Theoretical studies of parametric surfaces for the purpose of
interpolation and approximation go back to [33,88,87,135,122,132] but had little influence
on the development of industrial methods.

In the late 1950s, parametric surfaces were studied at several companies in Europe and
the U.S. The first published result is due to J. Ferguson at Boeing, see [64]. Ferguson used
an array of bicubic patches which interpolated to a grid of data points. While Ferguson
developed C? cubic spline curves in the same paper, his surfaces were only C'.* This was
due to the introduction of zero twists at the corner of every bicubic patch.® Ferguson’s
bicubic patches were also known as F-patches, and were also attributed to S. Coons.

Coons devised a simple formula to fit a patch between any four arbitrary boundary
curves [35], known as the bilinearly blended Coons patch. These surfaces were used in
the sixties by Ford (Coons was a consultant). A generalization, capable of interpolating
a rectangular network of curves, was devised by W. Gordon at General Motors, see [71,

3Private communication

1Clearly, he was unaware of de Boor’s paper {39] — it appeared in a journal not likely to be read by
practitioners of the time.

5This fact, often leading to unsatisfactory shapes, was not explicitly mentioned in the article and is
hidden among pseudo-code.
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72]. All these methods are sometimes labeled “transfinite interpolation,” in that they
interpolate to arbitrary boundary curves (having a “transfinite” number of points on
them).

While the basic Coons patch had no restrictions on the boundary curves other than
they have to meet at the patch corners, a common use was to restrict the boundary curves
to be parametric cubics in Hermite form. Then the use of zero corner twists led to the
above F-patch.

The basic (bilinearly blended) Coons patch does not lend itself to the construction of
composite smooth surfaces. Additions to the basic method led to the bicubically blended
Coons patch. It is the generalization of cubic Hermite curve interpolation to the transfinite
surface case and allows for the prescription of tangent data in addition to the boundary
curves. As a consequence, certain incompatible situations could arise. J. Gregory was
the first to address this problem and also to devise a “compatibly corrected” interpolant,
see [77]. When applied to cubic boundary curves and cubic derivative information, this
interpolant yields a rational patch. A “translation” of this approach into a Bézier-like
form was carried out by H. Chiyokura and F. Kimura [29,28]. It led to the Japanese
CAD/CAM system DESIGNBASE.

Rectangular surfaces are a map of a rectangular domain into 3D. As a special case, we
may map the domain to a 2D parametric surface, resulting in a distortion of the domain
rectangle. If we embed a curve in this domain rectangle, we will obtain a deformed curve.
A 3D surface may be embedded inside a 3D cube. This cube may be distorted using
trivariate polynomials, resulting in a deformed surface. Such deformations are useful if
global shape changes in a surface are wanted which would be too tedious to describe in
terms of moving control points. The first mention of these volume deformations appears to
be in J. Ferguson’s article [64], although no applications are given. Coons was also aware
of the possibility of trivariate volumes, see [35]. The first practical use is due to Bézier
who described how to use volume deformations in car design [16]. Volume deformations in
Bézier form were rediscovered by Sederberg and Parry [126], who used them in a graphics
environment.

1.6. B-SPLINE CURVES AND NURBS

B-splines (short for Basis Splines) go back to 1. Schoenberg who introduced them in 1946
[123] for the case of uniform knots. B-splines over nonuniform knots go back to a review
article by H. Curry in 1947 [38]. In 1960, C. de Boor started to work for the General
Motors Research labs and began using B-splines as a tool for geometry representation. He
later became one of the most influential proponents of B-splines in approximation theory.
The recursive evaluation of B-spline curves is due to him and is now known as the de
Boor algorithm [40].

It is based on a recursion for B-splines which was independently discovered by de Boor,
L. Mansfield, and M. Cox {37]. It was this recursion that made B-splines a truly viable tool
in CAGD. Before its discovery, B-splines were defined using a tedious divided difference
approach which was numerically very unstable. For a detailed discussion, see [42].

Spline functions are important in approximation theory, but in CAGD, parametric
spline curves are much more important. These were introduced in 1974 by R. Riesenfeld
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and W. Gordon [73] (the paper is a synopsis of Riesenfeld’s PhD thesis [112]) who realized
that de Boor’s recursive B-spline evaluation was the natural generalization of the de
Casteljau algorithm. B-spline curves include Bézier curves as a proper subset and soon
became a core technique of almost all CAD systems. A first B-spline-to-Bézier conversion
was found by W.Boehm [19]. Several algorithms were soon developed that simplified
the mathematical treatment of B-spline curves; these include Boehm’s knot insertion
algorithm [20], the Oslo algorithm by E. Cohen, T. Lyche, and R. Riesenfeld [32], and the
introduction of the blossoming principle by L. Ramshaw [110] and P. de Casteljau [45].

The generalization of B-spline curves to NURBS - Nonuniform rational B-splineS - has
become the standard curve and surface form in the CAD/CAM industry. They offer a
unified representation of spline and conic geometries: every conic as well as every spline
allows a piecewise rational polynomial representation. The origin of the term NURBS is
unclear; but the term was certainly a bad choice: it explicitly excludes the popular uniform
B-spline curves. The first systematic NURB treatment goes back to K. Versprille’s PhD
thesis [139]. Versprille was a student of S. Coons’ who started working with rational
curves in the sixties [36]. Coons’ work on rational curves also influenced A.R. Forrest,
who wrote his PhD thesis in 1968 [65].

Versprille based rational curves and surfaces in homogeneous {or projective) space. This
kind of geometry had already gained importance in the graphics community because of
the widespread use of central projections, see Riesenfeld {114].

The development at Boeing is exemplary for the emergence of NURBS. The company
realized that different departments employed different kinds of geometry software; worse,
those geometries were incompatible. The Liming-based conic software produced elliptic
arcs which could not directly be imported into the Ferguson-based spline system and
vice-versa. Thus NURBS were adopted as a standard since they would allow a unified
geometry representation.® Companies such as Boeing, SDRC, or Unigraphics (Verspille’s
first employer) soon initiated making NURBS an IGES’ standard.

A special case of NURBS is given by rational Bézier curves. Even more specialized are
conic sections, or rational quadratic Bézier curves. Their treatment goes back to Forrest’s
PhD thesis [65]. A rational generalization of the de Casteljau algorithm was fiven by G.
Farin [57] in 1983; a (dual) projective formulation was discovered by J. Hoschek [84].

1.7. TRIANGULAR PATCHES

There are (at least) two ways to describe a bivariate polynomial surface. One is as a
tensor product, using a rectangular domain. The other one is to write it in terms of
barycentric coordinates with respect to a triangular domain. Both methods are outlined
in the chapter on Bézier Techniques.

While tensor product surfaces are far more often encountered, triangular ones have been
around for a long time also. The first uses of these surfaces goes back to Finite Elements,
where they are referred to as “elements.” The simplest type is the linear element, which is

6As it turned out, this was not entirely true: some of Liming’s more complicated surface constructions
do not allow a NURB representation.

"Initial Graphics Exchange Standard, developed to facilitate geometry data exchange between different
companies.
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simply a planar triangular facet. Its use goes back to the very beginning of Ritz-Galerkin
methods. Higher order elements use C! quintic elements [92] or C* split triangle cubic
elements. The latter one, devised by Clough and Tocher as a finite element [31], gained
some popularity in the context of scattered data interpolation, see [58].

From a historical perspective, it interesting to observe that early finite element research
on triangular patches did not make use of the elegant formalism offered by the use of
barycentric coordinates or the Bernstein-Bézier form. Consequently, those papers were
fairly tedious — using barycentric coordinate techniques, many pages of proofs can be
reduced to a few lines of geometric arguments about Bézier meshes.

Triangular patches in Bernstein form (called Bézier triangles although Bézier never
made any mention of them) are due to P. de Casteljau; however, that work was never
published (see above). Since Bézier triangles use trivariate Bernstein polynomials which
did exist in approximation theory, several researchers developed concepts that were closely
related to Bézier triangles: Stancu [133], Frederickson {69], Sabin [120,121].

M. Sabin gave conditions for smooth joins between adjacent triangular patches; G.
Farin [55] gave conditions for C" joins. Early research on Bézier triangles focussed on
equilateral domain triangles; Farin [56,58] discussed the case of arbitrarily shaped domain
triangles.

Bézier triangles, first conceived by an automotive researcher, found their way into
approximation theory in the 1980’s. Spaces of piecewise polynomials over triangulations
were studied by L. Schumaker and Alfeld see [1,2].

Coons-like triangular patches were studied in the US during the 1970’s and 1980’s. See
Barnhill et ol [4], Barnhill and Gregory [7], or Nielson [102].

1.8. SUBDIVISION SURFACES

At the 1974 CAGD conference at the University of Utah, one of the presenters was the
graphics artist G. Chaikin. He presented a curve generation method that did not fit the
mold of any of the other methods of the conference. Starting from a closed 2D polygon,
and using a process of continual “chopping off corners,” he arrived at a smooth limit
curve, see [27]. At the conference, both R. Riesenfeld and M. Sabin argued that Chaikin
had invented an iterative way to generate uniform quadratic B-spline curves, see [113].

In 1987, C. de Boor discovered that “corner cutting” generalizations of Chaikin’s algo-
rithm also produce continuous curves [43]. He also pointed out that Chaikin’s algorithm
was a special case of a class of algorithms described by G. de Rham much earlier [47,48].
Similar results were discovered by J. Gregory and R. Qu in 1988 — although that work
was only published in 1996, see [78].

Chaikin’s algorithm was the starting point for the initial work on subdivision surfaces,
going back to two articles in the no. 6 volume of the journal Computer Aided Design,
1978. They were authored by D. Doo and M. Sabin [50] and E. Catmull and J. Clark
[26].

Both papers have a similar flavor. Chaikin's algorithm can be generalized to tensor
product surfaces in a straightforward way. Such surfaces have a rectilinear control mesh,
and after analyzing the tensor product algorithm, Doo and Sabin reformulated it such that
it could also be applied to control meshes of arbitrary topology. Catmull and Clark first
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generalized Chaikin’s algorithm to uniform cubic B-spline curves and its tensor product
counterpart. Then, they also reformulated it for the case of control meshes of arbitrary
topology. Both surface schemes yield smooth (G') surfaces. The Doo/Sabin surfaces have
a piecewise biquadratic flavor; the Catmull/Clark ones have a piecewise bicubic flavor.

In 1987, C. Loop generalized triangular spline surfaces to a new G' subdivision surface
type, see [96]. Its input control polygon can be any triangular mesh. Loop’s algorithm
is based on a subdivision scheme for so-called box-splines by W. Boehm [21] and H.
Prautzsch [108].

All three of the above algorithms produce C' (for Doo/Sabin and Loop) or C? (for
Catmull/Clark and Loop) surfaces if the control meshes are regular, i.e., rectilinear or
regular triangular (all triangle vertices have valence six) for Loop. Where the control
meshes do not behave like that, the surfaces will have singular points. These singular
points hampered the analysis and practical use of subdivision surfaces. A first attempt
at investigating these points was undertaken by D. Storry and A. Ball in 1986, see [3],
although there is an eigenvalue analysis of the Doo-Sabin process in the original paper [590].
Subsequently, subdivision surfaces gained more popularity, most notably in the computer
animation industry.

Early work on subdivision surfaces focussed on approzimating surfaces. In 1987, N.
Dyn, J. Gregory, and D. Levin discovered an interpolating subdivision scheme, called the
4-point curve scheme, see [54]. It was generalized to surfaces — to the so-called “butterfly
algorithm” — by the same authors in 1990, see [53].

1.9. SCIENTIFIC APPLICATIONS

Many areas of science need to model phenomena for which only a set of discrete mea-
surements is available — an example is a weather map where data are collected at a set of
weather stations, but a continuous model of temperature, pressure, etc., is desired. Since
the location of the data sites has no structure (such as being on a regular grid), the term
“scattered data” was coined. If function values are assigned to these data sites, a scattered
data interpolant is a function which assumes the given function values at the data sites.
The data sites are typically 2D, but may also be 3D.

A scattered data interpolant is a function which interpolates the given data values and
gives reasonable estimates in between. One of the first scattered data interpolants is Shep-
ard’s method, see [74,5,128]. It computes the function value at an arbitrary (evaluation)
point as a linear combination of all given function values, the coefficients being related
to the distance of the data sites to the evaluation point. The method itself is too poorly
behaved to be viable on its own, but it was used as an ingredient in other methods (see
the above references).

Another approach was taken by R. Hardy [80] in 1971, who generalized the concept of
splines to surfaces. His surfaces utilize radial basis functions which are bell-shaped funec-
tions (reminiscent of univariate B-splines) with their maxima at the data sites. Hardy’s
method was used by many practioners, but it was not known if the method would work in
all cases. A proof for this was given by C. Micchelli in 1986 at the Mathematics Research
Center in Oberwolfach, Germany.

A different generalization of splines to surfaces is the method of thin plate splines due
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to J. Duchon [52]. Thin plate splines minimize an “energy functional”, similar to the one
that spline curves minimize. While spline curves simulate the behavior of an elastic beam,
thin plate splines minimize the behavior of a thin elastic plate.

The U.K. statistician R. Sibson developed a scheme that he called nearest neighbor
interpolation. It is based on the concept of Voronoi diagrams, also known as Dirichlet
tessellations. Sibson showed that any point in the convex hull of a given set of points may
be written as a unique linear combination of its neighbors [129]. If the coeficients of this
combination are then used to blend given function values, a scattered data interpolant
arises [130]. The interpolant is only C? at the given data points, but it is C'! otherwise.
Uses for this method are in the geosciences as well as in image processing.

1.10. SHAPE

When a designer studied a curve on a full size drawing, he could visually detect shape
defects such as “flat spots”, unwanted inflections, etc. A good CAD system would then
provide methods to improve the given shape.

As the design process moved away from the drawing board and into computer screens,
this visual inspection process was not feasible any more since a full scale drawing was
out of the question. The scaled down display offered by the computer did not allow to
detect shape imperfections in a direct way. Consequently, computer methods had to be
developed that allowed easy assessment of shape.

Among the first published methods are curve hodographs, see {11]. These are the
plot of a curve’s first derivative curve. Since differentiation is a roughing process, curve
imperfections appear “magnified” in the hodograph.

Hodographs do not display the geometry of the curve alone; they depend on the
parametrization as well. A more geometric tool is the curvature plot; it plots the curvature
of a curve. Since it involves second order derivatives as well as first order ones, it is also
a more sensitive tool. An early paper on the use of curvature plots is by Nutbourne et al.
[104].

In unpublished work, curvature plots were used by H. Burchardt at General Motors.
After de Boor left the company in 1964, interpolating cubic and quintic spline curves had
become a tool of choice. Since they are C?, they are also curvature continuous. In many
cases, however, this does not guarantee pleasant shape, and so Burchardt developed a
proprietary scheme that was shape optimizing. A published version is in [24].

Shape optimization became an important element early on in the development of
CAGD. Since interpolating spline curves were known to exhibit unwanted undulations,
alternatives were studied, typically involving curvature — see [99,100,82,125].

A different approach is to take an existing curve or surface and inspect its shape: if it
is imperfect, apply a fairing procedure. Such methods typically aim at removing noise
from either data points or control polygons; early work is reported by J. Kjellander [89],
J. Hoschek [86} and Farin et ol [60].

A curve which is curvature continuous may not be twice differentiable. This fact, when
properly exploited, leads to curve generation schemes which have more degrees of freedom
than do “standard” spline curves. The extra degrees of freedom are referred to as shape
parameters and the resulting curves are called geometrically continuous or G*. Early work
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Figure 1.7. Gaussian curvature. Figure courtesy A.R. Forrest

on this subject is due to G. Geise [70]. Interpolation schemes based on G? continuity were
independently developed by J. Manning [98] and G. Nielson [101] in 1974. Later work on
the subject includes B. Barsky’s S-splines [9], W. Boehmn's y-splines [22], and H. Hagen’s
7-splines [79].

Shape does not only play a vital role in interpolation, but also in approximation. The
least squares method is the most widespread approximation scheme. It was used early
on in most industries; publications include [81,106,142]. The least squares method lends
itself to the inclusion of conditions that aim at the shape of the result, not just at the
closeness of fit. These conditions are typically the result of minimizing certain functionals
{such as minimizing “wiggles”}; an influential early example is the “smoothing spline” of
Schoenberg and Reinsch, see [124,111], and also Powell [107].

For curves, curvature is a reliable shape measure. For surfaces, several such measures
exist, including Gaussian, mean, or total curvatures. A.R. Forrest [67] was the first to
use computer graphics for the interrogation of surface shape using curvatures as texture
maps; see Fig. 1.7.

Another important shape measure for surfaces comes from the automotive industry.
It is customary to put a car prototype in a showroom where the ceiling is lined with
florescent light strips. Their reflections are carefully examined before the prototype is
accepted. Early computer simulations of this procedure are reported in [90].

1.11. INFLUENCES AND APPLICATIONS

CAGD emerged through the influence of several areas in the 1950s and 1960s, but inter-
actions with other fields of science and engineering were not limited to those years.

The first text on CAGD goes back to I. Faux and M. Pratt. Its title is “Computa-
tional Geometry for Design and Manufacture.” The meaning of the term “Computational
Geometry” has since changed; it is used to describe a discipline which is concerned with
the complexity of algorithms mostly dealing with discrete geometry. The defining text
for this area is the one by Preparata and Shamos {109]. An important area of overlap
between CAGD and Computational Geometry is that of triangulation algorithms. These
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are concerned with finding a set of triangles having a given 2D point set as vertices. The
first algorithm was published in 1971 by C. Lawson {94]. An algorithmic connection be-
tween triangulations and Voronoi diagrams was presented by Green and Sibson [76]. The
n—dimensional case was covered by D. Watson [140].

2D triangulations are an important preprocessing tool for many surface fitting opera-
tions. 3D point sets arise when physical objects are digitized. Methods to triangulate
them go back to Choi et al. [30].

Computer Graphics is an area with many CAGD interactions. Computer Graphics
needs CAGD to model objects to be displayed, and for the very same reason, CAGD
needs Computer Graphics. It was only after Sutherland’s 1963 development of interactive
graphics that one could interactively change control polygons of Bézier or B-spline objects.
Display techniques for parametric surfaces go back to H. Gouraud [75] and were later
improved by B. Phong {105] and J. Blinn [18], all at the University of Utah.

A fundamental display technique is ray tracing, due to T. Whitted [141]. It makes
extensive use of computations of the intersection between a ray and the scene to be
displayed. Hence the development of efficient intersection algorithms became important
for Graphics.

Intersection algorithms are also important in many areas of CAD/CAM, where planar
sections were the method of choice (and tradition) to display/plot objects. Algorithms for
this task were developed by many companies, and were mostly kept confidential. Some
early published work is by W. Carlson [25], T. Dokken [49] Barnhill et al [6]. The earliest
reference seems to be by M. Sabin [117].

Another important type of numerical algorithms are offset curves and surfaces — early
work includes papers by R. Farouki [61], J. Hoschek [85], R. Klass [91], W. Tiller and E.
Hanson [137], the eatliest one being a technical report by M. Sabin [118] from 1968.
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Chapter 2

Geometric Fundamentals

Wolfgang Boehm and Hartmut Prautzsch

The following recalls the facts and terminology mostly used in Geometry. It may serve
also as a first introduction to geometric tools, for more detailed and founded descriptions
see the list of references, in particular [7]. Without additional effort most of the discussed
topics can be presented in spaces of any dimension.

2.1. AFFINE FUNDAMENTALS

Many properties of computational geometry and its applications do not need the distance
of points but only the concepts of parallelism and ratio.

2.1.1. Points and vectors
In general a point in n-space is fixed by its coordinates with respect to some Cartesian
system!. Nevertheless, we start our observations with affine aspects.

Let a = [a)...a,]" and b = [B; ... ,]" denote two points, its difference v = b — a is
called a vector, and one has b = a + v. In particular the column o ={0...0) =a—a
denotes the null-vector.

Let ay,...,a; denote d + 1 points in n-space, d < n. The d vectors v; = a; — ag, i =
1,...,d, are called linearly dependent if a;vy + - - + ayvy = 0, with at least one non-
zero oy, otherwise these vectors are called linearly independent. If vy,..., v are linearly
independent, then they span a linear space V¢, and the points ay, . . ., aq are called affinely
independent and span an affine space A%, d is called their dimension.

2.1.2. Affine systems
A point ag and n linearly independent vectors v; define an affine system [ag, v, ...v,] of
the A”. In this system every point p = [ ...7,]' can be written uniquely as

P=ag+&§&vi+ -+ €, v, = ag + Ax, (2.1)

Matrix notation is preferred. To simplify the notation, a point as well as its coordinate column will be
denoted by the same bold letter. Note that this notation depends on the coordinate system.

23



24 CHAPTER 2. GEOMETRIC FUNDAMENTALS

where A = [v;...v,] and x = [£;...&,]". The & are called the affine coordinates of p
with respect to [ag, v ...Vy], ag is called the origin of the affine system.

Figure 2.1. Affine and barycentric coordinates.

To distinguish between points and vectors described by elements a of the R” one may
add a further coodinate, €, where
0 . vector,
€= if a represents a .
1 point.
This convention can help to avoid mistakes in handling with points and vectors, see also
Subsection 4.1 on homogeneous coordinates.

2.1.3. Barycentric coordinates
Let ag,...,a, denote n + 1 affinely independent points of the A" and let v; = a; — ay.
One may rewrite equation (1) as

p=&ay+&a+ -+ &an, LH=1-(&L+-+&)

The &, ..., &, are called barycentric coordinates of p with respect to the frame [ag . . . a,].
Note that £+ - -+&, = 1. Note also that any n of the &;, i # j, represent affine coordinates
of p with respect to an affine system with origin a;.

It follows immediately that a vector v = b — a has barycentric coordinates vy, ..., v,
that sum to zero, vy + --- + v, = 0. Note that the sum of the coordinates & or u;
corresponds to € above.

2.1.4. Affine subspaces and parallelism
Let points ay,...,a; € A" be given. The point
p=&as+&ar+ - +&ag, 1=86+&+ -+,

is called an affine combination of the points a;. Let d < n and let the points a; be
affinely independent. Then they span a d-dimensional subspace C A™. With barycentric
coordinates its points are written as affine combinations or with affine coordinates as

p=ap+&{vi+ -+ v, (2.2)
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where v; = a; —ag. This subspace is called a line, plane or hyperplane ifd = 1,2 orn—1,

respectively.

For any given p and given ag, vy, ..., V4 as elements of R”, the linear combination (2)
represents a system of m linear equations for the &;. It is solvable only if p lies in the
subspace.

Conversely, for varying &; the presentation (2) can be viewed as the solution of some
linear system of n—d equations for an unknown p = [ ...7,|". In particular, ifd =n—1,
this system consists of one linear equation, say

Up + P = ug + Wi+ F Ut = 0,
or with barycentric coordinates of p
ugto + {ur + ug)m + - + (Un + o) =0,

where additionally g +---+n, = 1.

Hyperplanes are called linearly independent if the rows [ug u1 .. . u,] of their coefficients
are linearly independent. Consequently, a subspace of dimension d of A™ can be obtained
as the intersection of n — d linearly independent hyperplanes. In particular, a point can
be obtained as the intersection of n hyperplanes.

Note that the points of an affine subspace solve an inhomogeneous system, while their
differences, the vectors, solve the corresponding homogeneous system.

A line p = a + Av is called parallel to a subspace B C A™ if the coordinates of its
points solve the homogeneous system corresponding to B. Moreover, two affine subspaces
A and B are parallel if all lines of A are parallel to B, or vice versa.

2.1.5. Affine maps and axonometric images

Equation (1) allows two interpretations. First, it expresses p with respect to a new affine
system [ag, vy ...v,], where x = [£;...£,]" are the new coordinates of p . For example,
the equation ug + u‘p = 0 of a hyperplane reads in the new coordinates gy + q'x = 0,
where g = ug + u'ag and gt = w4 .

Second, it represents an affine map ¢ : x — p, where x and p represent affine coordi-
nates of two points. In particular, ¢ maps the origin o = [0...0] and the unit vectors?
€ = [6;1...0;,) into ag and v;, 7 = 1,...,n , respectively. This important property
defines the map uniquely and allows a simple design and investigation of an affine map.
Note that ¢ maps the points x of the hyperplane gy + qx = 0 above into the points p of
the hyperplane vy + u'p = 0.

If the barycentric coordinate columns of points are denoted by the corresponding hollow
letters, ¢ is written as

p = Ax, where A={[op0;...0,)
Note that affine maps preserve affine combinations, i.e. one has
Pléoao + - - - + &aaa] = &oldao) + - - + Luldad],

and also preserve parallelism and the ratio of parallel distances, i.e. w = Av is mapped
into [¢pw] = A[gv].

28; ; is the so-called Kronnecker-delta, §; ; = 1 if i = j and = 0 else
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S

Figure 2.2. Affine map and new affine system.

If the v; are linearly dependent, the map is degenerated. In particular, if 4. = ... =
7, = 0 for all x, the map creates an axonometric image as used in descriptive geometry.
Simple examples are the so-called cavalier and military projections, see [7].

Figure 2.3. Cavalier and military projection.

2.1.6. Affine combinations and A-frame
Many algorithms in CAGD are based on repeated affine combinations. Consider two
points, ag and a;. The affine combination

p=(1-a)ag+aa;

represents a point on the line spanned by ag and a;, and « represents an affine scale with
a = 0 corresponding to ag and « = 1 corresponding to a;.
The term r[p; aga;] = /(1 — a) is called the ratio of p with respect to aga;.
Consider three points ag, a;, ay, and the affine combinations

by = (1 ~a)ag+oa; and by = (1 —a)a; +aay,
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both related by the same «, and the subsequent affine combination

p = (1-08)bo+ by

(1-a)(1 - Bag+{a(l - 8)+ (L — a)f)a; + afa,. (2.3)
Obviously, the resulting point p is symmetric in @ and 3. This means that a and §

can be interchanged. This symmetry property is referred to as A-frame lemma and is a
fundamental tool in de Casteljau’s work [16].

i

Figure 2.4. A-frame lemma and affine A-frame.

Let @ = 8. Then (3) reduces to
p = (1 — a)®ag + 2a(1 — a)a; + &’a,.

For fixed a the involved six points represent the so-called affine A-Frame, which is of
great importance in Bernstein-Bézier methods. For varying o the point p traces out a
parabola, defined by a; and a, with tangents that intersects in a;.

2.2. CONIC SECTIONS AND QUADRICS

The simplest figures in affine space besides lines and planes are conic sections, or more
general, quadrics. They are studied conveniently by their quadratic equations, see [7].

2.2.1. Quadrics in affine space
In an affine space a quadric Q consists of all points x satisfying a quadratic equation

Q(x,x) =x'Cx +2c'x +¢c=0,

where C = C! is a symmetric non-zero matrix.
The intersection with a subspace is a quadric again. In particular, if the subspace is a
line, one gets a pair of points. Note that these points can be real, coalescing or non-real.
A point m is called a midpoint of Q, if Q(x,x) is symmetric with respect to m. This
is the case for all solutions of

Cm+c=o.
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S8

/

Figure 2.5. Midpoint and singular point.

Note that a solution may not exist. If a midpoint s lies on Q, it satisfies
Cs+c=0, and cls+c=0,

and is called a singular point, while Q degenerates to a cone.

2.2.2. Tangents and polar planes

A line L, given by x = q + Av, where ¢ is a point of Q, intersects Q in a second point.
If both points coalesce, then L is a tangent of Q at q and satisfies

[Cq+c]'v=0.

If additionally v!C'v = 0, then L lies completely on Q, and is called a generatrix of Q.
Let v =q — x, then L is a tangent if

Q(q,x) = [Cq+c]'x +c'q+c=0.

This equation for x represents a plane, the tangent plane of Q at q.

P
‘ : S P
L

Figure 2.6. Tangent and polarity.

Replacing q by an arbitrary point p gives
Qp,x)=p'Cx+c'[x+p]+c=0.
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It represents the polar plane P of the pole p with respect to Q. It intersects Q in points
q with tangent planes through p. Note that these points q need not be real. Note also
that Q(p, x) is symmetric in p and x.

A pair of points p,x is called conjugate with respect to Q if Q(p,x) = 0. Hence
the points of Q are self-conjugate with respect to Q. A pair of directions u, v is called
conjugate with respect to Q if u!Cv = 0. Conjugate elements play an important role in
further investigations on quadrics in affine space.

Quadrics differ by the dimension of their midpoints or singularities, the dimension of
their real generatrices and in affine space by the shape of their extensions to infinity.

2.2.3. Pascal’s and Brianchon’s theorems
From the past there is a lot of knowledge on conic sections. Of particular interest are the
following two theorems on conic sectioncs in the plane:

The three pairs of opposite sides of a hexagon inscribed to a conic section
meet in three points of a line ( Pascal’s theorem).

The three connections of opposite points of a hexilateral circumscribed to a
conic section intersects in one point ( Brianchon’s theorem).

Figure 2.7. Pascal’s and Brianchon’s theorems.

As a consequence of these theorems a conic section is uniquely determined by five points
or five tangents in the plane.

Of particular interest are the theorems if pairs of consecutive points or tangents coalesce.
E.g., let ag, a; denote two points of a conic section with tangents meeting at a point a,.
Let the points

by =(1—-ca)ag+aa;, and by =pga;+(1- fB)as. (2.4)

span a third tangent. Its point of contact p is easily obtained from Brianchon’s theorem,

p = [Bbo + abi]/(a + B),

where o and S as in (4), see also [6].



30 CHAPTER 2. GEOMETRIC FUNDAMENTALS

Figure 2.8. The projective A-frame and its affine representation.

2.3. THE EUCLIDEAN SPACE

The affine space A” is a Euclidean space denoted by E” and the corresponding vector
space V" a Euclidean vector space if a dot product a - b = a’b is given.

2.3.1. Cartesian coordinates
An affine system [ag, v ... V,] of E" is called Cartesian if® v;-v; = §; ; and it is positively
oriented if det[v, ... v,] > 0.

In Cartesian coordinates the distance of two points p and q is given by the length ||v||
of the vector v=q — p,

dist(pq) = [|[v|| = V¥iv,

and the angle ¢ of two vectors u and v is given by

u'v = flulljjv]| cose.

In particular, both vectors are called orthogonal if cosp = 0, i.e. if utv = 0.

2.3.2. Gram-Schmidt orthogonalization

A Cartesian system [ag, b; ... by] of a subspace or the Euclidean space itself can easily be
constructed from an affine system [ag, v; ... vy} in E* with Gram-Schmidt’s orthogonal-
ization by alternating computation of the coefficients ), ; and p; as follows:

Set by = pyvy such that |[byf| = 1.
Set by = p{vy + Az, by) such that by is orthogonal to by and |[by] = 1.

Set by = pa(vq + Aa1by + -+ Aga1ba-1),
such that by is orthogonal to by,..., by and ||ba}| = 1.

Note that in a Cartesian system the dot product is written as u-v = u'v.

3see footnote 2
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2.3.3. Euclidean motions and orthogonal projections

If the frame [ag, v; . . . v,,] is Cartesian, then (1) represents a Cartesian coordinate transfor-
mation or a Euclidean motion. Simple examples of motions in 3-space are the translation
by v and the rotation around the 3-axis by an angle (, in matrices written as

1 0 0 cos¢ —sin¢ 0
p=v+{0 1 0ix and p=o+ | sin{¢ cos¢ 0 |x,
0 0 1 0 0 1

Figure 2.9. Translation and rotation.

respectively. In particular, let p = B;(p) x describe the rotation around the i-axis by
some angle ¢. Any motion in 3-space can be written as

p =V + B3(v)B:i(8)Bs(e) x,

where a, 3, v are the so-called Eulerian angles.
Any Euclidean motion followed by a map setting the coordinates 741, ...,7, of the
image p to zero results in an orthogonal projection onto some d-dimensional subspace .

Figure 2.10. Isometric and dimetric orthogonal projection.

It should be mentioned that orthogonal projections are more informative than sim-
ple parallel projections and much more informative then perspectivities. They are the
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only projections that map spheres to circles. Therefore orthogonal projections should be
prefered in presenting technical objects.

2.3.4. Quadrics in Euclidean space

If the vectors v; of the Cartesian system [ag, v, ... V,] are pairwise conjugate with respect

to a quadric Q, then the v; are principal axis directions of Q and C is a diagonal matrix.
One easily checks that for a conic section given by its equation a rotation by an angle

o where

tan 2a = 2c12/(c11 — €22)

turns the coordinate axes into the axis directions of Q and transforms C into diagonal
form.

Figure 2.11. Principal axis transformation.

2.4. PROJECTIVE FUNDAMENTALS

Introducing points at infinity leads to the projective space and allows a unified and most
elegant treatment of geometry?.

2.4.1. Homogeneous coordinates

Let &,...,&, be affine coordinates of a point in A™ with respect to an affine frame
[ag,vy...v,] as above. Set & = (;/Fp with some By # 0. Then the 5y,51,..., 5, are
homogeneous coordinates with respect to the given affine frame. Note that any non-zero
multiple of the homogeneous coordinate column b = [8y 8, ... 8] represents the same
point. Note also that a point p = o is undefined. It represents the so-called forbidden
point.

As before 3; = 0,7 # 0 represents the coordinate hyperplane & = 0. Further, §y = 0
represents points at infinity lying in the infinite or ideal hyperplane 83 = 0. An affine
space A" together with its ideal hyperplane forms a projective space P", the projective
extension of A™ .

The advantage of this extension is the symmetry of homogeneous coordinates. Points
at infinity are handled as points in any other plane. In particular, ideal points allow to

44All geometry is projective geometry” [ Arthur Cayley 1821-1895]
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intersect parallel lines and subspaces - at infinity. Note that any non-zero multiple of a
vector represents the same point at infinity.
Note also that Sy = 0 and fy # 0 correspond to e = 0 and € = 1 in 1.2 above.

2.4.2. Projective coordinates

Let ap, . . ., aq be linearly independent columns of homogeneous coordinates of d+1 points
in P with integrated factors such that the sum ¢ = @y + --- + g4 represents a given
further point a called the unit point. These d + 2 points determine a projective frame
[go, - - -, 0q; @] of some projective subspace S spanned by the points gy, . ..,04. Any point p
of this subspace can be represented by homogeneous projective coordinates x = [£ .. . &)
as

pp = &0 + &0y + - +&ata, pF# 0. (2.5)

T

le R =]

[a1) a;

Figure 2.12. Projective system and crossratio.

In particular, if g; = [1,a!]*, and o = [1,a']’ then a is the center [ag + ...+ ag}/d of the
a; and the &; are a multiple of the barycentric coordinates of p with respect to the affine
frame [ap . .. a4].

2.4.3. Projective maps

The representation (5), with matrices written as pp = Ax, allows two interpretations. First
it represents the point p € S by new homogeneous coordinates . Second it represents a
projective map v : x — p of S into P™.

In particular, ¢ maps the fundamental points #; = [g;...04,) Into o; , ¢ =0,...,d
and the unit point {1...1]* into a. This determines the projective map uniquely - and A
except for a common factor p.

Note that a projective map does not preserve parallelism and ratio in general, but it
preserves the cross ratio

crlzy; ob} = r[x; ab]/rly; ab].



34 CHAPTER 2. GEOMETRIC FUNDAMENTALS

In particular, if erzy; ob] = —1 then both pairs of points, zy and ¢b, lie in harmonic
position. For example, let a be an affine scale, see 1.6 , the pairs of points corresponding
to —1,+1 and 0, co lie in harmonic position.

2.4.4. The procedure of inhomogeneizing
Any homogeneous equation in projective coordinates can easily be inhomogeneized by
setting the homogeneizing coordinate to one. Any point z = [&, &ex'|' or v = [0, V] is
simply inhomogeneized to x or v, respectively.

Figure 2.13. Inhomogeneizing the point of a line.

Of particular interest is the application of this procedure to the point x of a projective
line given by

pr=Xo+ ub.

Let p =1 and let 0 = [ay, @pa’] and b = [y, fob']". Then inhomogeneizing x = &y, {ox']'
results in the affine combination

x =aa+ b, where a = Aap/& and B = pBo/&. (2.6)

Similar results one gets by inhomogeneizing the points of a projective subspace (5) of
higher dimension.

2.4.5. Repeated projective combinations
Repeated affine combinations and A-frames are often used in CAGD to compute poly-
nomial curves and surfaces and can also be applied to the homogeneous coordinates of
rational curves and surfaces. It is useful to inhomogeneize the resulting projective com-
binations by the procedure demonstrated above.

Moreover, after a first inhomogeneizing one can continue with the affine representation
of the projective A-frame presented in Subsection 2.3. For more details on this procedure
and its applications see [6].

2.4.6. Quadrics in projective space
In homogeneous or projective coordinates z the equation of a quadric Q simplifies to

Q(x2) =2 Cx =0, where C' = C,
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and the polarity is written as

Qpx) = p'Cx =0.

Note that in homogeneous coordinates the midpoint of Q is the pole of the infinite
plane. Note also that Q is a cylinder, if it has a singular point at infinity, etc.

2.4.7. Parametrizing a quadric and its equation
If a quadric Q is given by its equation Q(xx) = 0, and g represents a point of Q, i.e.,
Q(ag) =0, then

2p=Q(pp) a-2Q(pa) p

is a parametrization of Q, which is quadratic in the coordinates of p.

Setting, e.g., p = pPolo + - + Pn_1Cn-1 , Where the p; are suitably choosen, it is also
quadratic in the homogeneous (;. Note that one may use any other representation for p,
e.g., polar coordinates with the center q.

Figure 2.14. Parametrizing a quadric.

Conversely, the equation Q{zx) = 0 of a quadric in A™ or P" depends on r = (n +
1)(n + 2}/2 homogeneous coeflicients, the elements of C. Let r — 1 pairs of conjugate
points, p; and g; , be given, and let x denote some arbitrary point of Q. Then the r — 1
conditions Q(p; g;) = 0 together with Q(xz) = 0 form a homogeneous linear system for
the r unknown coefficients of C. Setting its determinant to zero results in the equation of

Q.

2.5. DUALITY

In homogeneous or projective coordinates the equation of a hyperplane simplifies to
u'x = ugbp + iy + -+ Unbn

The u; are homogeneous coordinates of the hyperplane - as the & for x. Homogeneous
coordinates can either represent a point or a hyperplane. Consequently any configuration
of points and hyperplanes has a dual configuration of hyperplanes and points, where the
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Figure 2.15. Quadrangle and dual quadrilateral.

dual of a point or hyperplane is a hyperplane or point represented by the same coordinates.
More general, the hyperplanes meeting some points by, ..., b, are dual to the points of
intersection of the hyperplanes by, ...,b, , and vice versa.

Note that the duality depends on the dimension of the space. For example, Pascal’s
and Brianchon’s configuration are dual in the plane, where points and tangents of a conic
section are dual elements.

2.6. OSCULATING CURVES AND SURFACES
An important task in CAGD is to connect curves and surfaces smoothly.

2.6.1. Curve and surface
A curve x(%) in affine space A" is called regular at ¢, if x{¢5) # o.

Figure 2.16. Contact of order two.

The curve x(¢) is said to have a contact of order r at ty with a surface given by the
equation F(x) = 0, if it is regular at t, and if F(x(¢)) and its derivatives up to order r
vanish at ¢ = t9. This means geometrically that the curve has r + 1 coalescing points
in common with the surface at ¢t = 5. Note that this definition does not depend on the
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parametrization of x(t). Note also that by its geometric meaning the contact of order r
is projectively invariant.

2.6.2. Curve and curve
A second curve y{s) given by the intersection of a number of surfaces contacts x(t) at o
with order r if x(t) contacts all these surfaces at least with order r.

If the second curve y(s) is given parametrically, then both curves have contact of order
r at to if there exists a regular reparametrization ¢t = t(s), for x(t) such that the Taylor
expansions of x(¢(s)) and y(s) agree at ty = ¢(sg) up to order r. This condition can be
expressed by the chain rule as a system of r + 1 linear equations. Therefore contact of
order r is referred to as chain rule continuity.

For example, a curve and its osculating circle at a point ¢, have contact of order 2.

2.6.3. Surface and surface :

Two surfaces have contact of order r at p if all regular curves that lie on one of them and
meet p have at least contact of order » with the other surface. This means that after a
suitable reparametrization the Taylor expansions of both surfaces at p agree up to order
7.

2.6.4. Contur lines, reflection lines and isophotes
There are some important helpful curves to check the smoothness of surfaces visually.

¢

Figure 2.17. Reflection line and isophote.

A reflection line on a surface consists of all points p whose connection with
some fixed point e, the eye, is reflected into a ray that meets a given fixed line
L.

An isophote on a surface consists of all points p whose connection with the
eye e includes a fixed angle with the surface normal at p.

Contour lines are special isophotes. They consist of all points p, where the
tangent plane meets e.



38 CHAPTER 2. GEOMETRIC FUNDAMENTALS

Figure 2.18. Contour lines.

In general, on composite surfaces contur lines, reflection lines and isophotes have a
lower order of contact than the surfaces themselves.

Note that all three kinds of curves can decay in parts. Note also that the use of infinite
elements e and L simplifies their computation.

2.7. DIFFERENTIAL FUNDAMENTALS

Arc length, curvature and torsion describe the local properties of a curve, the curvature
of so-called principal normal sections describe the local properties of surfaces. The main
tool for such investigations is a local frame.

2.7.1. Arc length and osculating plane
Let a curve in E? be given parametrically as x = x(t) and let

Qp = X(to), vV = X(to), Vo = )"((t()),

denote its point and first two derivatives at some ty. If v; # 0, its tangent at ag is given
by

p=ag+ &V
If vi A vy # 0, its osculating plane at ag is given by
P =agp +&ivi+ &ve.

The differential term ds = ||x(¢)||d¢ is called the arc element of x(t), and the integral

s(t) = [ Ix(®)ldt

its arc length, beginning at ty. The arc length represents the natural parameter of the
curve. In most cases it can only be computed approximately.
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2.7.2. Curvature and torsion

The natural parameter s is very helpful to derive general curve properties. E.g., let a(s)
and B(s) denote the angles of the tangent and the osculating plane at s with the tangent
and osculating plane at some sg, respectively, and let the prime ' denote differentiation
with respect to the arc length. Then

k=0a'(sg) and T = f'(sp)

are called the curvature and the torsion of x(t) at sp, respectively. Note that p = 1/k
represents the radius of the osculating circle.

Figure 2.19. Curvature and torsion of a rational Bézier curve.

For example, a rational curve of degree n with Bézier points b; = [5;, 5b!]* has the
span of by, by as tangent at by, and the span of by, by, b, as osculating plane at by. At
t = 0 one has

-1 b -2
n(O):————nn éoﬂ%gi and T(O)=nn gjgii,

where a, b, ¢ denote the distances of b; from byg, of b, from the tangent at by, and of by
from the osculating plane at by, respectively.

2.7.3. The Frenet frame

frame [t mb] , which depends on ¢. One has

0 -« O
t'm'b]=[tmb]|x 0 -7,
0 = 0

which is an important tool for further investigations, see [3], [5] and [9].

2.7.4. Curves on surfaces
Let a surface be given parametrically as

x = x(u, v) = x(u).
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Figure 2.20. Curve with derivatives, osculating plane and Frenet-frame.

The lines u = fized, v = fixed are called iso-lines. If the partial derivatives x, and x,
are linearly independent, the surface normal is defined by

n = [Xy A Xy]/]|%u A %]

Let u = u(t) denote some curve in the u-plane then, in general, x = x(u(t)) represents
a curve on the surface. The arc element ds of this curve is given by its square

ds®> = (EW® + 2 F v+ Go*) dt?,

where E = xix, , F = x!x, , and G = x!x, are well-known as Gaussian first fundamental
quantities. Note that ||x, A x,||2 = EG — F2.

Figure 2.21. Local frames on a surface.

2.7.5. Meusnier’s sphere and Dupin’s indicatrix
Consider all curves on a surface meeting a given point p with a given tangent t there.
One has :

The osculating circles of these curves lie on a sphere (Meusnier’s sphere).
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It follows that the radius of the osculating circle of a surface curve is given by p =
po cos 8, where & denotes the angle between the surface normal and the osculating plane
and pp is the radius of Meusnier’s sphere. The inverse ko = 1/pp 1s called the normal
curvature of the surface at p in direction of t. Hence it is sufficient to know the curvature
of one of these curves and the angle of its osculating plane with n to compute all others.

Figure 2.22. Meusnieur’s sphere and Dupin’s indicatrix.

In general, the normal curvature kg differs for different t. For all tangent directions t
at p consider the points

a=pP++pot
of the tangent plane with distance ,/pg from p. One has :
The points q lie on a conic section with center p (Euler’s theorem).

This conic section is also known as Dupin’s indicatrix. Its axis directions are called the
principal directions, and the corresponding values of k = 1/p, are called the principal
curvatures of the surface at p, mostly denoted by x; = 1/p; and Ky = 1/ps.

Note that Dupin’s indicatrix can be an ellipse, a pair of parallel lines or a hyperbola.
In case of a hyperbola it has two real asymptotic directions . The normal curvature is
zero there and pg is infinite.

If k; = K2, then Dupin’s indicatrix is a circle and p is called an umbilical or spherical
point.

2.7.6. The curvatures of a surface
Because of its geometric meaning Dupin’s indicatrix and consequently the principal cur-
vatures x; and x, at a point p do not depend on the parametric representation of the
surface.

The expressions

K=#k1ky and H=(x;+k3)/2
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are called the Gaussian curvature and the mean curvature of the surface at p, respectively.
Both give important information about the smoothness of a surface. Moreover, Gauss
has shown that K depends on E, F, and G and their derivatives only. This means
that K depends on the inner measurements on the surface only and is invariant under

deformations of the surface that do not distort the measurement of lengths on the surface.

REFERENCES

1. C. Adler. Modern Geometry. McGraw Hill, New York, 1967.

2. M. Berger. Geometry 1 & 2. Springer, Berlin, 1987.

3.  W. Boehm. Rational geometric splines. Computer Aided Geometric Design, 4:67-77,
1987.

4. W. Boehm and H. Prautzsch. Numerical Methods. A K. Peters, Wellesley, 1992.

5. W. Boehm. Differential Geometry I & II. in [11], 1993.

6. W. Boehm. An affine representation of de Casteljau’s and de Boor’s rational algo-
rithms. Computer Aided Geometric Design, 10:175-180, 1993.

7.  W.Boehm and H. Prautzsch. Geometric Concepts for Geomeiric Design. A.K. Peters,
Wellesley, 1994.

8.  W. Boehm. Circles of curvature for curves in space. Computer Aided Geometric De-
stgn, 16:633-638, 1999.

9. M.P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice Hall, Engle-
wood NJ, 1976.

10. H.S.M. Coxeter. Introduction to Geometry. John Wiley & Son, New York, 1969.

11. G. Farin. Curves and Surfaces for CAGD: a Practical Guide, 3rd Edition. Academic
Press, Boston, 1993.

12. G. Farin and D. Hansford. The Geometry Toolbox for Graphics and Modelling. AK
Peters, Natick MA, 1998.

13. G. Farin. The Essentials of CAGD. AK Peters, Natick MA, 2000.

14. D. Hilbert and S. Cohn-Vossen. Geometry and the Imagination. Chelsea Publishing
Co., New York, 1990.

15. L. Ding-yuan. Computational Geometry - Curve and Surface Modeling. Academic
Press Boston, 1992.

16. H. Prautzsch, W. Boehm, and M. Paluszny. Bézier and Spline Techniques. Springer,
Berlin/New York, to appear, 2002.

17. C. Wylie. Introduction to Projective Geometry. McGraw Hill, New York, 1970.



Chapter 3
Geometries for CAGD

Helmut Pottmann and Stefan Leopoldseder

Chapter 2 describes the fundamental geometric setting for 3D modeling and addresses
Euclidean, affine and projective geometry, as well as differential geometry. In the present
chapter, the discussions will be continued with a focus on geometric concepts which are
less widely known. These are projective differential geometric methods, sphere geome-
tries, line geometry, and non-Euclidean geometries. In all cases, we outline and illustrate
applications of the respective geometries in geometric modeling.

Special emphasis is put on a general important principle, namely the simplification
of a geometric problem by application of an appropriate geometric transformation. For
example, we show how to apply curve algorithms for computing with special surfaces such
as developable surfaces, canal surfaces and ruled surfaces. As another example, it is shown
that an appropriate geometric transformation can map an arbitrary rational surface onto
a rational surface all whose offsets are also rational.

For the use of algebraic geometry in geometric design, the reader is referred to Chap-
ter 15 on implicit surfaces. We also skip difference geometry [99], which studies discrete
counterparts to differential geometric properties and invariants and is thus useful in geo-
metric computing. This holds especially for subdivision curves and surfaces (Chapter 12)
and multiresolution techniques (Chapter 14), where discrete models of curves and surfaces
play a fundamental role.

Naturally, when describing applications, we reach into many other chapters of this
handbook. Thus, our references concerning applications are examples, and partially far
from being complete. A much more complete picture is achieved in connection with the
references in those chapters we are referring to. The addressed geometric concepts cannot
be discussed in sufficient detail within the present frame. For a careful and detailed
study of most of the material in this chapter we refer to the monograph by Pottmann and
Wallner [94], which focusses on line geometry and its applications in geometric computing.
However, it also provides the necessary classical background of related areas such as
projective geometry, differential geometry, and algebraic geometry.

43
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3.1. CURVES AND SURFACES IN PROJECTIVE GEOMETRY

Differential geometry in projective spaces requires some modifications over Euclidean
differential geometry. In n-dimensional real projective space P™, a point X is represented
by a one-dimensional subspace of R**!1. Any basis vector x = (zg, ..., T,) in this subspace
delivers the homogeneous coordinates {zg,...,Z,). The latter are just defined up to a
scalar multiple, and thus we write X = xR. A parameterization of a curve ¢ € P™ is given
in the form

c(t) = (zo(t), .. ., za()). (3.1)

By homogeneity, any function A(¢)c(t) with a real scalar-valued function A(t) # 0 repre-
sents the same curve. The transition from the parameterization c(t) to A(¢)c(¢) is called a
renormalization. Like a reparameterization, a renormalization does not change the curve
as a point set. Analogously, we have to treat parameterizations of m-dimensional surfaces
in P".

Projective differential geometry is based on properties of curves or surfaces which are
invariant under reparameterization, renormalization and projective mappings. It is a very
well studied classical subject [10] and turned out to be useful for various applications in
geometric modeling [19]. Those include geometric continuity and local approximation with
the concept of higher order contact (see {19] and Chapters 2 and 8). Other applications,
which involve duality, line and sphere geometries, are outlined in the following.

As an example of a concept of projective differential geometry, we mention osculating
spaces. The osculating space I'*(¢;) of dimension k at a curve point c(#y)R is spanned by
this point and the first k derivative points,

Fk(to) = C(to)R \Y C(to)R V...V C(k) (to)R (32)

In case that these points are not linearly dependent, one adds higher derivative points
until dimension & of the spanning set is reached. Although the derivative points change
both under reparameterization and renormalization, their span does not change, and thus
is an example of an invariant object of projective differential geometry.

3.1.1. Bézier curves and surfaces as images of normal curves and surfaces
Rational Bézier curves are fundamental for geometric modeling. It is widely known that
rational Bézier curves of degree two are conics. In fact, since polynomial Bézier curves
of degree two are just parabolae, the desire to represent all types of conics, quadrics,
and other important shapes such as tori exactly in a CAD system, has been one of the
motivations for the introduction of the full class of rational curves and surfaces into
CAGD.

The most basic algorithm for Bézier curves, de Casteljau’s algorithm, is for degree 2
equivalent to Steiner’s generation of a conic with help of two projective lines, or more
precisely, ranges of points (see [27,28,41]). However, not only quadratic Bézier curves are
deeply rooted in projective geometry. The same holds for the full class of rational Bézier
curves [18]. The corresponding concept in projective geometry is that of rational normal
curves [6]. These are rational curves ¢ of degree n which span n-dimensional projective
space. Their set of osculating hyperplanes is generated by connecting associated points
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in n projective ranges of points. For any two different points A, B on a normal curve ¢”
we may construct the so-called osculating simplex or fundamental simplex with vertices
By, ..., B, as follows: Point B; is the intersection of the osculating i-space at A with the
osculating (n — i)-space at B. In particular this implies By = A, B, = B. The tangent
at A is spanned by By and B, the osculating plane at A is spanned by By, Bi, By, and
so on. Readers familiar with Bézier curves will immediately recognize the vertices of the
osculating simplex as Bézier points of the curve segment defined by A and B. In fact,
the segment is not yet fully defined, since the normal curve ¢" is (like any straight line) a
closed curve in P*. The segment is defined, if one picks an additional curve point F on the
two segments defined by A and B. It is common to intersect the osculating hyperplane
at F' with the lines B; V B;;; and call them frame points F;, 1 = 0,...,n — 1. It can be
shown that a homogeneous parameterization ¢ ()R of ¢" has the form

n
1

c'(t) = ZB{‘(t)bi, BI'(t) == ( )ti(l — )" (3.3)

Here, b; represent the points B;, and the homogeneous coordinate vectors b; are chosen
such that b; + b;y; represents the frame point F;. The parameter interval for the chosen
segment is [0,1], in particular we have ¢*(0) = by, ¢*(1) = b,, ¢*(0.5)R = F. Also just
by intersecting osculating spaces, the so-called blossom can be defined and its properties
may be seen as special cases of results on normal curves (see Chapter 4).

A projective map in P™ is defined if we know how it acts on the points of a simplex (say
By, ..., By,) and a further point ' which is in general position with respect to the points
B;. Thus, representation (3.3) also reveals the remarkable property that any two normal
curves, in fact, even any two segments of normal curves in P™ are projectively equivalent.
This “standard” curve segment has no singularities, inflections, or other degeneracies in
the sequence of osculating spaces.

So far we have discussed normal curves, i.e., degree n curves which span P". Ra-
tional Bézier curves of degree n in lower dimensional spaces P? (d < n) are obtained
by applying projections of normal curves into P¢. This is illustrated for the cubic case
in Figure 3.1. In fact, there we have an affine special case. A cubic polynomial normal
curve ¢® (normal curve with the ideal hyperplane as an osculating hyperplane) with Bézier
points By, By, By, By is projected via a parallel projection onto the planar Bézier cubic ¢
with control points By, ..., B;. This geometric relation between planar and space cubics
can be used for a shape classification of cubics in the plane. The questions are: Given
By, By, By, where to choose By such that the curve segment has an inflection, a cusp, a
loop, and so on [105]. Since the space cubic is a normal curve, it does not have such
characteristics at all. Those are results of the projection and can easily be discussed with
help of it (see [80,82], where the shape analysis is extended to rational cubics and also to
quartics).

A projective basis for an analogous study of triangular Bézier surfaces are the so-called
Veronese manifolds [6]. As an example for the application in CAGD, W. Degen {20]
discusses the types of Bézier triangles, especially those of degree two. His characterization
of quadrics is a basis for further work on quadric patches by G. Albrecht [2].
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Figure 3.1. Planar cubic Bézier curve via projection of a cubic normal curve

3.1.2. NURBS curves and surfaces in projective geometry

As we have seen, the notion of a frame point, which goes back to G. Farin [26], is important
for a geometric input of a rational Bézier curve. The so-called weights (the homogeneizing
coordinates xp of the control points, see Chapter 5) have the disadvantage of not being
projectively invariant. There is another advantage of frame points. With help of them, we
may form a geometric control polygon of a rational Bézier or B-spline curve in projective
space as follows: On each straight line B;B;,; connecting consecutive control points take
that segment as member of the geometric control polygon, which contains the frame point
F; (see Figure 3.2).

Frame points are tied to the curve in a projectively invariant way: Assume a rational
Bézier curve c(t) with geometric control polygon By, Fy, By, Fi,...,B,. A projective
transformation 3 : xR — (A4 - x)R maps ¢(t) to a rational Bézier curve /() whose
geometric control polygon is 3(By), »#(Fy),. .., s(B,). An analogous property holds for
rational B-spline curves.

An advantage of the use of the projective control polygon is that we do not have
to confine ourselves to positive weights when formulating the most fundamental shape
property, namely the variation diminishing property. In the projective setting, it reads as
follows: A hyperplane H intersects a NURBS curve ¢(t) (not contained in H) in at most
as many points as it intersects the geometric control polygon of this curve, if no vertex
has zero weight.

Frame points (also referred to as Farin points) for rational Bézier triangles have been
introduced by G. Albrecht [1].

Projective geometry enters many algorithms for rational curves and surfaces, such as
reparameterization, degree elevation and shape modification. For those topics, the reader
is referred to Chapter 5 of this handbook and to [27,28,41,77] and the references therein.
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Figure 3.2. Rational Bézier curves with geometric control polygon.

3.1.3. Duality and dual representation

The Bézier representation of a rational curve expresses the polynomial homogeneous
parametrization ¢(¢)R in terms of the Bernstein polynomials. Then the coefficients have
the remarkable geometric meaning of control points with a variety of important and prac-
tically useful properties.

The tangent of a planar rational curve ¢(t) = c(t)R at ¢ = ¢, is computed as the line
which connects c(ty) with its first derivative point ¢'(ty) = ¢{¢o)R. It has the homogeneous
line coordinate vector Ru(t) = R(c(t) A &(t)). Thus the family of tangents has again a
polynomial parametrization, which can be expressed in the Bernstein basis. This leads to
a dual Bézier curve

U(t) = Ru(t) =R (i B{"(t)ui) : (3.4)

which can be seen as a family of lines in the (ordinary) projective plane, or as a family of
(ordinary) points of its dual plane. For the concept of projective duality, see Section 2.5
of Chapter 2.

The family of tangents of a planar rational Bézier curve is a dual Bézier curve, and
vice versa.

When speaking of a Bézier curve we often mean a curve segment. In the form we have
written the Bernstein polynomials, the curve segment is parametrized over the interval
[0,1]. For any t € [0,1}, Equation (3.4) yields a line U(t) = Ru{f). The original curve
segment is the envelope of the lines U(%), where ¢ ranges in [0, 1].

As an example of dualization, let us discuss the dual control structure of a Bézier curve
¢ (see Figure 3.3): There are the Bézier lines U; = Ru;, i = 0,...,m, and the frame lines
F;, whose line coordinate vectors are given by

fi:Ui+ui+17 Z20777”“1 (35)
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Us

Figure 3.3. Left: Dual Bézier curve. Right: Complete dual control structure and variation
diminishing property.

Frame line F; is concurrent with the Bézier lines U; and U, ;. This is dual to the collinear-
ity of a frame point with its two adjacent Bézier points.

We could also use weights instead of frame lines, just as we could have used weights
instead of frame points. Because weights are no projective invariants, it is preferrable to
use frame lines and frame points. An invariant statement of theorems is also important
for their dualization.

For a Bézier curve, the control points By and B,, are the end points of the curve
segment, and the lines By V By and B,,_; V B,, are the tangents there. Dual to this, the
end tangents of a dual Bézier curve are Uy and U,,, and their points of contact are given
by Up U, and U, N U, respectively.

We dualize the geometric control polygon: The line pencil spanned by lines U; and U,
is divided into two subsets, bounded by U; and U;;;. The one which contains the frame
line is part of the complete dual control structure (see Figure 3.3).

Dual to the variation diminishing property of a rational Bézier curve with respect to
its projective control polygon we can state the following result: If ¢ is a planar rational
Bézier curve, the number of ¢’s tangents incident with a given point P does not erceed
the number of lines of the complete dual control structure which are incident with P (if
no control line has zero weight).

This result easily implies a sufficient condition for converity of a dual Bézier curve. By
a convez curve we understand part of the boundary of a convex domain. A support line
L of a convex domain D is a line through a point of the boundary of D such that D lies
entirely on one side of L. Now the convexity condition reads: If the Bézier lines U; and
the frame lines F; of a dual Bézier curve ¢ are among the edges and support lines of a
convex domain D, and the points U; N U; ., are among D’s vertices, then c is convex and
lies completely outside D .

A planar rational curve segment, or more precisely, a rational parameterization of it,
possesses two Bézier representations: the usual, point-based form, and the dual line-based
representation. There are simple formulae for conversion between the two forms (see,
e.g., [79,83,94]). However, their behavior when used for design purposes is different. By
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Figure 3.4. Standard control structure tends to generate inflections, whereas the dual
control structure tends to introduce cusps.

using the standard representation it is difficult to design cusps but quite easy to achieve
inflections of the curve segment. In the dual representation, very special conditions on
the control structure must be met to design an inflection, but it is easy to get cusps. This
is illustrated by Figure 3.4. For many applications, cusps are not desirable and therefore
the convexity condition plays an important role. To achieve inflections, it is best to locate
them at end points of the Bézier curve segments (see {79]). Cusps and inflections are dual
to each other, but cusps are sometimes easier to detect than inflections. This has been
the motivation for J. Hoschek [39,40] to introduce duality and dual Bézier curves and
surfaces to CAGD.

The dual representation also provides an advantage in the construction of rational
curves and surfaces with rational offsets, which will be outlined below in connection with
the use of Laguerre sphere geometry.

3.1.4. Developable surfaces as dual curves

Dualizing the point set, of a curve in 3-space, we obtain a family of planes, whose envelope
is a developable surface. A developable surface is characterized by the property that it
can be mappedare isometrically into the plane. Because such surfaces can be unfolded
into a planar surface without stretching or tearing, they play an important role in various
applications, e.g., in sheet-metal and plate-metal based industries.

Dual to the tangents of a curve, a developable surface carries a one-parameter family
of lines (rulings), and thus it is a ruled surface. The rulings may pass through a fixed
finite or ideal point; this characterizes general cones or cylinder surfaces, respectively.
The rulings may also be the tangents of a space curve ¢. On such a tangent surface, the
curve c itself is singular and called curve of regression. More general developable surfaces
are composed of segments of the mentioned basic types.

It turned out that for the design of developable NURBS surfaces the use of the dual
representation has an advantage over treating them as ruled surfaces. This is so, since a
ruled surface, represented as a tensor product Bézier or B-spline surface of bidegree (1, n)
has to fulfil a very special condition in order to be developable: the tangent plane has to
be constant along any of its rulings. This results in a nonlinear system for the control
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points, whose general solution is difficult to obtain [3,52].

To construct developable Bézier or general NURBS surfaces, one applies duality in P3
to Bézier or NURBS curves, respectively. Hence, we obtain a dual control structure
consisting of control planes and frame planes, whose major properties follow by duality,
just as in the case of dual Bézier curves in the plane. Conversion of a NURBS developable
surface from the dual form to its standard representation as a tensor product surface,
interpolation and approximation algorithms (see also section 3.4.2 and Figure 3.14), the
treatment of singularities, and other topics have been studied [9,13,15,42,43,56,60,83,93,
94].

Developable surfaces with creases, e.g. models of crumpled paper, are discussed in
[4,48]. The dual representation of developable surfaces also appears in the computation
of envelopes {47,113,114]. Finally, even in certain algorithms for non-developable ruled
surfaces, the dual representation may have some advantages [44].

3.2. SPHERE GEOMETRIES

In projective geometry the basic geometric elements are points and hyperplanes with in-
cidence as their fundamental relation. Many geometric methods and properties involving
(Euclidean) spheres are represented more elegantly, though, if one uses sphere geometries,
i.e., spheres by themselves are the basic geometric elements. Classical sphere geometries
include Laguerre geometry and Mobius geometry, both of which can be embedded in a
larger concept, namely Lie geometry. For a detailed treatment of classical sphere geome-
tries we refer to [5,8,17,12,67]. One of the most recent applications of sphere geometries
can be found in biogeometric modeling [24], namely the concept of molecular skin surfaces
[23].

3.2.1. Models of Laguerre geometry
The fundamental geometric elements of Laguerre geometry in Euclidean n-space E™ are
oriented hyperplanes and oriented hyperspheres. Let H denote the set of oriented hyper-
planes H of E™ and C the set of hyperspheres C including the points of E™ as (non-
oriented) spheres with radius zero. The elements of C are called cycles. The basic relation
between oriented hyperplanes and cycles is that of oriented contact. An oriented hyper-
sphere is said to be in oriented contact with an oriented hyperplane if they touch each
other in a point and their normal vectors in this common point are oriented in the same
direction. The oriented contact of a point (nullcycle) and a hyperplane is defined as
incidence of point and hyperplane.

Laguerre geometry is the survey of properties that are invariant under the group of
so-called Laguerre transformations o = (o, o) which are defined by the two bijective
maps

ay:H—>H,0c:C—C, (3.6)

which preserve oriented contact and non-contact between cycles and oriented hyperplanes.

Analytically, a hyperplane H is determined by the equation ug + w121 + ... + upzy, =
0 with normal vector (ui,...,u,). The coefficients u; are homogeneous plane coordi-
nates (up,...,u,) of H in the projective extension P"™ of E™. Each scalar multiple
(Mg, ..., Aun), A € R\{0} describes the same hyperplane. Thus it is possible to use
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normalized homogeneous plane coordinates
H: (u()v"'?un),with u%—%——i—ui = 1,

which are appropriate for describing oriented hyperplanes. The unit vector (uy,...,u,)
determines a unit normal and the orientation of the hyperplane.
An oriented hypersphere,

C= (mly"'>mn;r)7

is determined by its midpoint m = {(m,,...,m,) and signed radius r. Positive sign of
r indicates that the normal vectors are pointing towards the outside of the hypersphere,
whereas in the case of negative sign of r they are pointing into the inside. Points of E™
are cycles characterized by r = 0.

The relation of oriented contact is given by

ug +umy + ...+ upymy +7 =0, (3.7

; P> = ((Py) I
; M Y
% Pyx
b 2oy )
¢(py) N
¢(p3)
. n

Figure 3.5. Cyclographic mapping, top and front view.

Another model of n-dimensional Euclidean Laguerre space can be constructed in n+ 1-
dimensional affine space R**!, by using the cyclographic mapping ¢ : R**! — C. It maps
points x = (my,...,m,,7) to cycles C = ((x) with midpoint m = {m,,...,m,) and
oriented radius 7. If x = (my,...,m,,0), ((x) gives the point (nullcycle) m.

A geometric interpretation of the mapping ¢ can be given as follows (see Figure 3.5 for
dimension n = 2): We assume Euclidean n-space E™ to be embedded as the hyperplane
: 2z, = 0in R**. Let T'(x) denote a hypercone of revolution with vertex x, whose
axis is parallel to the z,.;-axis and whose generators enclose the angle v = w/4 with
the z,41-axis. Such cones will be called y-cones, henceforth. Then the cycle {(x} is the
intersection of IT with I'(x), where one has to add the correct orientation according to the
sign of the n + 1-th coordinate of x.
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" Y

Figure 3.6. Cycles in oriented contact with an oriented line.

Now we focus on oriented contact of cycles and oriented hyperplanes (see Figure 3.6 for
n = 2). The (-preimage of all cycles C being in oriented contact with a fixed hyperplane
H = (uy, . . ., u,) are the points x of a hyperplane (7} (H) : up+u1z1+. . .+ UpTp+Tpsy = 0,
according to {3.7). This hyperplane is incident with H and encloses an angle of v = 7 /4
with I1. It is called a y-hyperplane. A y-hyperplane touches the y-cones I'(x) of its points
x along generators of I'(x), which will be denoted by v-lines.

We summarize: The cyclographic mapping ¢ maps points of R**! to cycles C of Eu-
clidean Laguerre n-space. Hyperplanes in R**! with inclination angle 7 /4 to Il correspond
to oriented hyperplanes H. Incidence of point and ~y-hyperplane in R**! s equivalent to
oriented contact of the corresponding cycle and oriented hyperplane.

In the cyclographic model R**! Laguerre transformations (3.6) appear as transforma-
tions of R**! which transform v-lines to v-lines. This is already sufficient to classify these
transformations as special affine maps

R 5 R x A -x+c¢, AeR\{0}, AT-E,-A=E,, (3.8)

where E,, = diag(1,...,1, —1). Formula (3.8) describes similarities in a pseudo-Euclidean
geometry (also called Minkowski geometry). Its metric is based on the scalar product

(a, b>pe = a1b1 +...+ anbn — an+1bn+1 = aT . Epe - b. (39)

Points p and q with (p, q)pe = 0 correspond to cycles {{p),((q) which are in oriented
contact.

Besides the cyclographic model of Euclidean Laguerre space, which represents cycles
by points, there are further geometric models, which give a point model for the set H of
oriented hyperplanes.

By dualizing the cyclographic model, y-hyperplanes (representing the oriented hyper-
planes of Euclidean Laguerre n-space) are mapped to points on a quadratic hypercone in
R™*1 the so-called Blaschke hypercone A. Points of the cyclographic model (representing
cycles) are mapped to hyperplanar intersections of A. The Blaschke model of Euclidean
Laguerre space thus is just the dual of the cyclographic model.
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A stereographic projection of the Blaschke cone A into a hyperplane R” yields the so-
called 4sotropic model of Euclidean Laguerre n-space. Oriented hyperplanes H € H are
represented by points in R*, cycles C € C are given as special quadrics in R*, which are
spheres with respect to an isotropic metric in R™; cf. section 3.5.3. A detailed discussion
of the Blaschke model and the isotropic model, including their analytic treatment and
applications to CAGD, can be found in [53,74,87].

3.2.2. Moébius geometry

Let E™ be real Euclidean n-space, P its point set and M the set of (non-oriented) hy-
perspheres and hyperplanes of E™. We obtain the so-called Fuclidean conformal closure
E} of E™ by extending the point set P by an arbitrary element (ideal point) co € P to
Pu = PU{oo}. As an extension of the incidence relation we define that oo lies in all
hyperplanes but in none of the hyperspheres. The elements of M are called Fuclidean
Mobius hyperspheres.

Euclidean M&bius geometry is the study of properties that are invariant under Fuclidean
Mébius transformations. A Mébius transformation is a bijective map of Py, which maps
Moébius hyperspheres to Mobius hyperspheres. A simple example is given by the inversion
X = X with respect to the sphere x2 = r? in R*. Another example is the reflection
at a hyperplane, viewed as Md&bius sphere. Any general Mdébius transformation is a
composition of inversions with respect to Mobius spheres.

Besides the standard model of Euclidean Mobius geometry, mentioned above, we obtain
the quadric model of this geometry by embedding E™ in Euclidean n + 1-space E™*! as
plane z,,; = 0. Let 0 : X\{z} — E™" be the stereographic projection of the unit
hypersphere

Tizi+. 42k, =1 (3.10)

onto E™ with projection center (or north pole) z = (0,...,0,1), see Figure 3.7.

Extending o to & with & : 2z +— oo gives the quadric model of BEuclidean Mgbius
geometry which is related to the standard model via . The point set is that of ¥ C
E™1 and the Mébius spheres are the hyperplanar intersections of ¥ since o is preserving
hyperspheres.

For the analytic treatment of Euclidean M&bius geometry, let x = (Zy,...,Z,) denote
a point in E", and x = 07(X) = (z},...,T,41) the corresponding point of ¥ C E™+%.
Let P"*! denote the projective extension of E"*!. In homogeneous coordinates we then
have xR = (o, 21,...,Tn41)R with —23 + 23 + ...+ 22, = 0 (xR € £). The inverse
stereographic projection o=t : P — X\{z} C E™! is given by

oM X) = xR = (T4 ... 4+ T, +1,25),2%9,..., 280,52+ ... + T — DR (3.11)

The homogeneous coordinates x = (xg, Z1, . . ., Znt1) are called n-spherical coordinates
of a point x € E™. These coordinates are appropriate to represent Mobius spheres as
well: Via 07! a Mobius sphere M € M corresponds to a hyperplanar intersection of &,
whose pole with respect to X shall be denoted by cR, see Figure 3.7. Its homogeneous
coordinates

c=(co,c1,- -+, Cnt1)
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Figure 3.7. Stereographic projection, top and front view.

are called the n-spherical coordinates of M. For n = 2,3 these coordinates are usually
denoted by tetracyclic and pentaspherical coordinates, respectively.

It can be easily verified that in case of ¢y = c¢p4; the Mobius sphere M represents
a hyperplane of the standard model with equation —c¢y + 127 + ... + €y1Zns1 = O.
In case of ¢y # cny1 the MoObius sphere M represents the hypersphere with midpoint
1/(co = €ny1) - (€1, .., ¢n) and radius (cf + ...+ 2, — c2)/(co — cny1)®. Let

(% ¥)M = —ZoYo+ T1y1 + ... + Tnp1¥Ynt1 = x"-Ep - y

with Epr = diag(~1,1,...,1) describe an indefinite scalar product. Then we are able
to describe points by n-spherical coordinates x with (x,x)3; = 0 and M&bius spheres by
n-spherical coordinates ¢ with {c, c)»s > 0. Incidence of a point xR and a Mdbius sphere
cR is given by (x, c)p = 0.

It is a central theorem of Euclidean Mobius geometry that in the quadric model all
Euclidean Mébius transformations are induced by linear maps P**! — P! x+— A - x
with AT - Ey - A = AEy;, where P**! again denotes the projective extension of E™t!.
These linear maps represent those projective maps of P™*! that keep X fixed (as a whole).

3.2.3. Applications of the cyclographic image of a curve in 3-space
With help of the cyclographic mapping, the points of a curve p in R® are mapped to
a family of cycles in the plane E?. The envelope of this family of cycles is called the
cyclographic image ¢(p) of the curve. Points of the envelope can be constructed with
help of the tangents of p as shown in Figure 3.8. Note that the orientation of cycles in
planar Laguerre geometry can be visualized by a counterclockwise (positive) or clockwise
(negative) orientation of the corresponding circle.

Consider a Bézier curve p in R?® all of whose control points b; are contained in the
upper half-space ITT which is defined by the equation z3 > 0. The cyclographic image
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Figure 3.8. Cyclographic image of a curve in R3.

points ((b;) are cycles with positive orientation. They determine disks D;. We can see
these disks as tolerance regions for imprecisely determined control points in the plane and
ask the following question: if the control points vary in their respective tolerance regions
D;, which part of the plane is covered by the corresponding Bézier curves? We call this
planar region the tolerance region of the Bézier curve (see Figure 3.9). It is not difficult
to show that this tolerance region is essentially bounded by the cyclographic image of
the Bézier curve b(t) with control points by, ..., b,. An example of this can be seen in
Figure 3.9. Such disk Bézier curves have been studied by Lin and Rokne [57].

Generalizations to arbitrary convex tolerance regions for the input points are discussed
in [35,85,108]. There, other problems of geometric tolerancing and error propagation in
geometric constructions are addressed as well. Various applications of Laguerre geometry
and the cyclographic mapping appear in connection with toleranced circles or spheres.

Further investigations of geometric tolerancing in the plane could make use of very
recent work by Farouki et al. [29,30]. It concerns the geometry of sets in the plane, which
can be represented in a simple way using complex numbers. Complex numbers are known
as elegant tool for certain geometric investigations, for example in planar kinematics and
Mébius geometry [102].

3.2.4. The medial axis transform in a sphere geometric approach

Let D denote a planar domain with boundary D. The (ordinary, trimmed) medial axis
¢ is the locus of centers of maximal disks that are contained in D; see Chapter 19 for a
detailed discussion on this topic.

The construction of ¢ allows a Laguerre geometric interpretation, after embedding the
plane of D into R as 1 : 23 = 0: We search for a space curve ¢ whose cyclographic
image ((c) is 9D (see Figure 3.10 and [37,87]). Let D be oriented such that its curve
normals are pointing outside. Then 0D defines a y-developable T passing through 0D,
i.e., a developable surface whose generators are y-lines. The set ¢ of all self-intersections
of [ is called the (untrimmed) medial azis transform of D. The orthogonal projection of
c onto II gives the (untrimmed or complete) medial axis €. It is the locus of (oriented)
circles that touch the boundary 9D in at least two points, but are — because of the lack
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Figure 3.9. Tolerance region of a Bézier curve with disks D; as tolerance regions for the
control points.

of trimming — not neccesarily contained in D.

The above construction of the (untrimmed) medial axis transform allows the computa-
tion via surface/surface intersection algorithms, which are discussed in Chapter 25. Those
parts of the intersection curve which belong to the trimmed medial axis can be easily de-
tected by a visibility algorithm: The interesting part of ¢ lies in the upper half space
x3 > 0 of R3. If the surface I is thought as opaque, exactly the part of ¢ which is visible
from below corresponds to the trimmed medial axis.

The medial axis transform ¢ uniquely determines the boundary of the domain D via
the cyclographic image of c. In general, D will not be rational. The most general class
of curves ¢ whose cyclographic images are rational are so-called Minkowski Pythagorean-
hodograph {(MPH) curves (see Choi et al. {16] and Moon [66]). For a more detailed
treatment see Chapters 17 and 19.

3.2.5. Canal surfaces (in Laguerre and Mdbius geometry)
A canal surface ® in Euclidean 3-space E? is defined as envelope surface of a one parameter
family of spheres S(t) = (m(t),7(t)) (see Figure 3.11).
The sphere family may be written in dependency on the real parameter ¢,
S(t) : (x - m(t))* —r(t)* = 0.

To compute the envelope, one has to form the derivative with respect to ¢, which is a
plane

S(t) : (x — m(t)) - m(t) — r(t)r(t) = 0.

For a parameter t, with m(ty)2 — 72(tg) > 0, the intersecting circle ¢(to) = S(tg) N S(to)
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Figure 3.10. Medial axis transform of domain D

is called characteristic circle. Along c(to) the sphere S{t;) is in smooth contact with the
canal surface ®.

For a Laguerre-geometric interpretation of & we allow oriented radii 7(t) of S(t). A canal
surface can be obtained as cyclographic image ((p(¢)) of the curve p(t) = (m(t),r(t)) €
R?, as described in section 3.2.1. If the tangent line p(ty) + Ap{ty) to parameter tp
encloses an angle o > 7/4 with the 3-space II : x4 = 0, the characteristic circle on the
corresponding {oriented) sphere S(tp) is real.

Besides the Laguerre geometric interpretation of a canal surface as cyclographic image
of a space curve, canal surfaces can also be seen from a Mébius geometric point of view:
A real canal surface in R® is determined by a curve cR(¢) in the quadric model P* whose
tangent lines do not intersect the Mébius quadric ¥ (a tangent line intersecting ¥ can be
shown to be equivalent to the corresponding characteristic circle not being real).

We see that from the standpoint of both Laguerre and Mo6bius geometry, canal surfaces
have a representation as curves in 4-dimensional space. Partially by using sphere geometric
methods, it could be proved that rationality of these curves implies the existence of a
rational parameterization of the corresponding canal surfaces [51,71,73,74].

Thus, these curve models are well suited for design. Approximation and interpolation
schemes for curves can be used for approximation or blending schemes with canal surfaces
[63,70,87]; see also section 3.4.1.

A very important family of canal surfaces in CAGD are the Dupin cyclides, see Chap-
ter 23. In the cyclographic model of Laguerre geometry they are represented as pseudo-
Buclidean circles in R?, i.e., conics that are planar intersections of y-hypercones. Thus,
well-known biarc interpolation schemes can be used to construct G'-canal surfaces com-
posed of smoothly joined cyclide patches [87]. Furthermore, the Bézier control points of
Dupin cyclide patches and the connection of cyclide patches along cubic or quartic curves
can be discussed based on Laguerre geometry [50,64,72].
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C(to)

Figure 3.11. Canal surface

3.2.6. Rational curves and surfaces with rational offsets

An offset c4(t) of a given planar curve c(t) lies in constant normal distance d to c.
With help of a field of unit normal vectors n(t) of c(t), the two ‘one-sided’ offsets are
ca(t) = c(t)+dn(t), where d may have a positive or negative sign. Analogously, we define
the offsets of a surface in R®. Offsets possess important applications, for example in NC
machining. For the rich literature on this topic, we refer to the survey by T. Maekawa
[59].

Given a rationally parameterized curve c(t), the unit normal vectors are in general not
rational in t, and thus the offsets of rational curves are in general not rational. However,
CAD systems require piecewise rational representations and thus offsets need to be ap-
proximated. Another possibility is to use only those rational curves or surfaces which do
have rational offsets.

Chapter 17 is exclusively devoted to polynomial and rational Pythagorean-hodograph
(PH) curves and gives an extensive overview of the literature on this topic. In the plane,
PH curves are polynomial curves whose offsets are rational curves. They can be defined as
those polynomial curves whose hodograph (2’(t),y/(t)) satisfies the Pythagorean equation
2"2(t) + y'*(t) = o?(t) for some polynomial o(t). This property motivates the name ‘PH
curve’ and is equivalent to the existence of a polynomial arc length function.

Here we will just skim the surface of the theory of rational curves with rational offsets,
also referred to as rational PH curves. In particular we will stress the close relation of
rational PH curves to certain rational developable surfaces via the cyclographic mapping
introduced in section 3.2.1.

As outlined in section 3.2.4, an oriented planar curve p C II defines a y-developable
surface I' passing through p. The planar intersections of I' with horizontal planes z3 = d,
projected orthogonally onto the plane II, give the (one-sided) offset p, to signed distance
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Figure 3.12. Connection between planar intersections of y-developables to offset curves

d (see Figure 3.12).

Keeping this property in mind, one can classify rational PH curves as planar horizontal
intersection curves of rational y-developables I". In general, I is the tangent surface of
a spatial curve c of constant slope v = w/4, i.e., all of the curve tangents are y-lines.
Obviously T is rational if and only if the curve ¢ is. Since ¢ has constant slope /4, its
third coordinate function z3(t) equals, up to an additive constant, the total arc length
of the top projection ¢/(t) = (z1(t),z2(¢),0). All the offsets of the PH curves share a
common evolute, which is the top projection ¢’ of ¢ onto II. This can be used to obtain
the following characterization: Rational PH curves are exactly the involutes of rational
curves with rational arc length function [78].

Rational y-developables are easily described in their dual form, and the same holds for
rational PH curves. Explicit representations are found in [78].

The description of rational PH curves gets even simpler when one uses the dual Bezier
control structure as described in section 3.1.3. A rational PH curve and its offsets have
control and frame lines that are related to each other and to a certain dual rational
representation of a circle segment by parallel translation. For a detailed treatment of this
property, see [78,79,100]. In [79], special rational PH curves, namely cyclographic images
of certain conics (studied first by W. Blaschke [7]), have been used to design curvature
continuous rational curves with rational offsets.

Whereas the approach to PH curves taken by Farouki and Sakkalis [31] does not have
a generalization to surfaces, the dual and Laguerre geometric approach to rational PH
curves extend to surfaces [78,74,101]. These Pythagorean-normal (PN) surfaces possess
rational offset surfaces. A remarkably simple characterization of rational curves and
surfaces with rational offsets is within the isotropic model of Laguerre geometry. There,
these curves (surfaces), viewed as envelopes of their oriented tangents (tangent planes),
appear as arbitrary rational curves or surfaces. The change between two models of Laguerre
geometry transforms an arbitrary rational curve or surface into a rational PH curve or PN
surface, respectively [72,74]. The suitability of Laguerre geometry for studying curves and
their offsets is not surprising in view of the fact that the mapping from a curve/surface
to an offset of it can be performed with a special Laguerre transformation.

Special polynomial surfaces with rational offsets have been applied to surface design
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by Juttler and Sampoli [46]. The family of PN surfaces includes the following classes of
rational surfaces: Regular quadrics [58,74], canal surfaces with rational spine curve m(t)
and rational radius function r(¢) [51,71,73,74}, and skew rational ruled surfaces [84]. Using
Laguerre and Mébius geometry, PN surfaces which generalize Dupin cyclides in the sense
that they also possess rational principal curvature lines, have been studied by Pottmann
and Wagner [92].

Quadrics, canal surfaces as well as skew ruled surfaces are enveloped by a one parameter
set of cones of revolution. Cones of revolution are the cyclographic images of lines in R*
which enclose an angle smaller than /4 to the embedded 3-space II. Using this property it
is possible to show that any rational one parameter family of cones of revolution envelopes
a PN surface [71]. M. Peternell [71] extended this result to other families of quadrics which
possess a rationally parametrizable envelope.

Offsets of surfaces are of importance in NC milling [61] when using a spherical milling
tool. As the milling tool is touching the surface the midpoint of the ball must be lo-
cated on the offset surface to a distance equaling the radius of the cutting tool. Natural
generalizations of offset surfaces occur if the milling tool — which is rotating around its
axis — is not a spherical one but a general rotational surface [61,81]. The special case
of a cylindrical milling tool (flat end mill) yields circular offset surfaces. A geometric
interpretation via Galilei sphere geometry can be found in [107].

3.3. LINE GEOMETRY

Line geometry investigates the set of lines in three-space. There is rich literature on
this classical topic of geometry including several monographs [25,36,38,68,94,112,116].
Line geometry possesses a close relation to spatial kinematics [11,45,103,106,112}, see also
Chapter 29. Line geometry enters problems in geometric computing in various ways. A
detailed account of the use of line geometry in geometric modeling and related areas is
given in a monograph by Pottmann and Wallner [94]. In the following, we briefly outline
just a few basic principles and typical applications.

3.3.1. Basics of line geometry

A straight line L in Euclidean 3-space E® can be determined by a point p € L and a
normalized direction vector 1 of L, i.e. ||| = 1. To obtain coordinates for L, one forms
the moment vector 1:= p A 1, with respect to the origin. 1is independent of the choice
of p € L. The six coordinates (1,1) with

1= (11,12,l3>, andi: (l4,l5,l6)

are called normalized Plicker coordinates of L. With normalized 1, the distance of the
origin o to the line L simply equals ||1]).

However, one may give up the normalization condition and interpret (};,...,ls)R as a
point in a 5-dimensional projective space P®. Note that 1 and 1 are orthogonal, thus

l'i:lll4+l2l5+lglﬁ =0 (312)

holds. Equation (3.12) is the so-called Plicker identity and describes a hyperquadric
M3 in P%, the Klein quadric. M is a four-dimensional manifold and each of its points
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LR = (I, DR with 1-1 = 0 describes a line L in the projective extension P* of Euclidean
3-space E®. Lines L at infinity are characterized by 1 = o.

Summarizing, the use of homogeneous Pliicker coordinates for lines in P3 and their
interpretation as points in P® results in a point model for line space, which is called Klein
model. Lines in P? correspond to points on the Klein quadric M3 C P5.

A line L may be spanned by two points xR and yR, possibly at infinity. In the following
it will turn out convenient to write x = (zo, x) with z, € R and x € R3. Note that here
x does not denote the affine coordinates of xR, but a scalar multiple of them. The
homogeneous Plicker coordinates of L are found as

L= (LI) = (zoy — yox,xAy) € R®.

Basic geometric relations with lines, like intersecting a line with a plane or connecting
a line with a point result in simple linear equations in homogeneous point, line, and plane
coordinates. These formulae can be found in each book on line geometry. As an example
we will just mention the intersection condition of two lines G = (g, g)R and H = (h, h)R,

g-h+ g -h=gihs+ gohs + gshs + gah1 + gshs + gehs = 0. (3.13)

It characterizes G, H as two conjugate points with respect to the Klein quadric M3, i.e.,
they are lying in each others polar hyperplane with respect to M3.

3.3.2. Linear complexes in kinematics and reverse engineering
A 3-parameter set of lines L = (1, )R satisfying a linear equation in Pliicker coordinates,

Cll4 + C2l5 + Cgle + C4l1 + 6512 + Cslg = 0, (314)

is called a linear line complez or linear compler C. With C = (¢, €) = (¢, ¢2, ¢3, €4, C5, Cg)
we can rewrite (3.14) as ¢-1+c-1= 0, where c- € not neccessarily equals 0, i.e., CR does
not need to describe a line.

The connection of linear complexes to kinematics is given as follows. Let us consider
a continuous helical motion, that is composed of a continuous rotation around a line A
and a continuous translation parallel to A. In an appropriate coordinate system we have

0 cost —sint 0O
x(t)=1 0 ]+ [ sint cost 0 |-x(0). (3.15)
pt 0 0 1

In an arbitrary coordinate system the (time independent) velocity vector field for such
a motion is v(x) = € -+ ¢ A x with constant vectors ¢, €, see Bottema and Roth [11].

Lines through points x normal to v(x) are normal to the trajectory of x and are called
path normals, see Figure 3.13. It is easy to show that the path normals L of a helical
motion satisfy ©-1+4 ¢ -1, thus lie in a linear complex.

If the pitch p in (3.15) equals zero, we obtain a pure rotation. The vectors c, T then
will fulfill ¢- € = 0 and determine the rotational axis A which is intersected by all of the
motion’s path normals.

Linear complexes as simple 'linear manifolds’ of lines play an important role in various
applications. Subsequently, we will address two of them.
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Figure 3.13. The path normals of a helical motion lie in a linear complex.

The first application is in reverse engineering of geometric objects (see Chapter 26),
where we consider the following problem: Given a cloud of measurement points from a
surface, decide whether this cloud can be fitted well by a helical or rotational surface, and
if so, construct such an approximating surface.

A helical surface is swept out by a curve which undergoes a continuous helical motion.
For vanishing pitch p of the motion, we obtain a rotational surface. It is easy to see that
all surface normals of a helical surface lie in the path normal complex of the generating
helical motion. Conversely, it can be shown that a surface all whose normals lie in a linear
complex must be be a helical surface, a rotational surface (p = 0) or a general cylinder
surface (limit case with p = co).

Thus, the above reconstruction problem can be solved as follows. We estimate surface
normals at the given data points. Those should lie, up to some small deviations, in a
linear complex. After defining the deviation of a line L from a linear complex C this leads
to an approximation problem in line space. It amounts to a general eigenvalue problem,
whose eigenvalues also tell us about the presence of special cases (plane, sphere, right
circular cylinder) [89,90].

Another application concerns the stability of a siz-legged parallel manipulator. There,
a moving system ¥ is linked to a fixed base system ¥, via six legs, realized as hydraulic
cylinders, which are attached to both systems via spherical joints. If these six legs (axes
of the hydraulic cylinders) lie nearly in a linear complex, the position of the platform ¥
gets instable [65,89]. Thus, the determination of instable positions amounts to fitting a
linear complex to the axes of the parallel manipulator.

3.3.3. Ruled surfaces

Ruled surfaces are generated by moving a straight line in 3-space. In the Klein model
of line space they appear as curves on the Klein quadric My [25]. The point model
may be advantageous, because for some applications it is easier to deal with curves, even
in projective 5-space, than working with ruled surfaces. Approximation and Hermite
interpolation algorithms for ruled surfaces amount to corresponding algorithms for curves
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on the quadric Mj (see Chapter 31 on quadrics, and [76,94]).

For example, Peternell et al. [76] have formulated algorithms for the approximation
of ruled surfaces by low degree algebraic ruled surfaces (ruled quadrics, cubic and quin-
tic ruled surfaces) and have presented a (' Hermite interpolation scheme resulting in
piecewise quadratic ruled surfaces.

Line geometry applied to CAD has also been considered by Ravani et al. {33,34,96,104],
where line geometric counterparts to subdivision algorithms for curves and surfaces, like
de Casteljau’s algorithm, are developed.

3.3.4. Other applications of line geometry in geometric computing
Line geometry is a basic entity in the formulation of the so-called generalized stereographic
projection o, also known as Hopf mapping. It maps points in projective 3-space P2 onto
points of the Euclidean sphere S%. The preimage of a point on S? under this mapping o is
a straight line in P3. All fibers of o form a so-called elliptic linear line congruence in P3.
It may be seen as intersection of two appropriate linear complexes, and the Klein image
of the line congruence is an oval quadric in Mj. Dietz, Hoschek, and Jiittler [22] have
shown that the mapping ¢ is well-suited to construct rational curve and surface patches
on the sphere. Applying a projective mapping, one can work on other oval quadrics as
well. It can also be used for the definition of a B-spline like intrinsic control structure
for NURBS curves on the sphere [80]. There are similar mappings for ruled quadrics
and singunlar quadrics [21], whose fibers are line congruences (intersections of two linear
complexes}. Such mappings are useful for the design of curves and surface patches on
quadrics (see also Chapter 31), and they can also be used to construct rational blending
surfaces between quadrics [109].

A generalization of the mapping o to the construction of rational curves and surface
patches on Dupin cyclides has been studied by C. Maurer [62]. '

Line geometry also appears in manufacturing, such as sculptured surface machining
[91,111] and wire cut EDM [96]. For further applications and detailed discussions, we
refer the reader to Pottmann and Wallner [94].

3.4. APPROXIMATION IN SPACES OF GEOMETRIC OBJECTS

For different geometric objects in E® there exist point models: Oriented spheres can be
represented as points in the cyclographic model, see section 3.2.1. Planes are represented
as points in dual projective space, see section 3.1.3. Lines are represented as points on a
hyperquadric M} in P®, see section 3.3.1.

Approximation schemes in the spaces of spheres, planes, lines or other geometric objects
require a point model and an appropriate distance defined for these geometric objects.
After mapping the point model to an affine space one will define an appropriate Eu-
clidean metric, which is motivated by a deviation measure between two objects. Here
we will briefly mention the deviation measures in the spaces of spheres, planes and lines,
and resulting approximation schemes for canal surfaces (section 3.4.1), developable sur-
faces (section 3.4.2) and ruled surfaces (section 3.4.3). For details, see Pottmann and
Peternell [75,88].
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3.4.1. Approximation in the space of spheres
In the cyclographic model of 3-dimensional Euclidean Laguerre geometry, oriented spheres
S are seen as points ("1(S) = (my,mg,ma, 7). The distance of twe oriented spheres
A: (ay,...,a4) and B: (by,...,bs) can be defined via the canonical Euclidean distance
of their image points in R?,
4
d(A,B)’ = (a; — ). (3.16)
1=1
A geometric interpretation of d(A, B) can be found in [88]. With help of the above metric
in R? one can use standard Bézier and B-spline techniques for curve design in R%, and one
obtains rational canal surfaces as the cyclographic images of the designed curves. Here,
the geometric continuity (Chapter 8) is preserved: a G* curve gives rise to a G* canal
surface.

3.4.2. Approximation in the space of planes

The set of planes in P® is a 3-dimensional projective space itself. The homogeneous
coordinates U = (up, u1, u2, uz) of a plane U are the coefficients of the plane’s equation ug+
w1 T+usy+uzz = 0, see section 3.1.3. If we work in Euclidean 3-space and restrict ourselves
to planes which are not parallel to the z-axis of a Cartesian system, i.e., uz # 0, we can
normalize the plane coordinates to U = (ug,u),us, —1) and obtain affine coordinates
(ug, u1,us) € A% of U. Note that one may choose an appropriate coordinate system to
avoid that planes of interest are parallel to the z-axis.

The distance of two planes A, B within some region of interest may be defined by

dr(A,B)? = /

r
which equals the squared z-differences of A and B, integrated over a fixed domain I'
of interest in the zy-plane, see Figure 3.14. The such defined dr is a positive definite
quadratic form in a; — b;, whose constant coefficients are certain integrals that can be
easily computed. Thus, dp introduces a Fuclidean metric in affine 3-space A°.

One parameter sets of planes envelop developable surfaces which correspond to curves
in A%. Again, standard Bézier and B-spline approximation techniques can be used, e.g.,
to approximate a discrete set of tangent planes with a NURBS developable surface, see
Figure 3.14. Details and the important task of controlling the singularities are discussed
in [42,93,94].

({ao = bo) + (a1 — bl)? + (a2 — by)y)*dzdy.

3.4.3. Approximation in line space
Consider two parallel planes 1y, II; in R? and the set £° of all lines which are not parallel
to them. Then intersection of any line in £° with IT,II; gives a pair xo = (I1,h),
x1 = (I3,14) of points, which may be considered as point L = (ly,ls,15,1s) in real affine
4-space R?. This mapping from £° onto R?* can be interpreted as stereographic projection
of the Klein quadric M3.

The affine image space can be equipped with the Euclidean metric

4

d(A,B)® = (a; — b:)* + (a1 — bi)(as — bs) + (a2 — b)(as — ba).

i=1
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Figure 3.14. Left: To the definition of the deviation of two planes: Right: Developable
surface approximating four planes.

It corresponds to a distance of the two lines A, B within the parallel strip bounded by
planes Iy, II; (region of interest). It is obtained by integrating the squared distances
between the lines, measured horizontally, see Figure 3.15.

The Euclidean metric d(A, B) defined above is useful for solving various approximation
problems in line space [14,94]. It has also been used to compute the approximation of
given lines L; by a ruled surface in Figure 3.15, see [88] for details.

3.5. NON-EUCLIDEAN GEOMETRIES

3.5.1. Hyperbolic geometry and geometric topology
Although we are usually designing in Euclidean space, there are various examples for
applications of non-Euclidean geometries in geometric modeling.

A remarkable application is the following. Consider the hyperbolic plane H?, a model of
which can be realized as follows. Take a circular disk with bounding circle . The points
in the open disk are the points of the hyperbolic plane. Collinear points in hyperbolic
geometry lie on circles (or straight lines) which intersect u orthogonally. Such hyperbolic
straight line segments are seen in Figure 3.16, left. Hyperbolic congruences are seen in
this special model as M&bius transformations which preserve u as a whole.

There are other models of the hyperbolic plane, which are more appropriate for com-
putations. One of these is the projective model, where points and lines appear as points
and line segments inside a circle v and congruence transformations are given by projective
maps which preserve u as a whole.

In the hyperbolic plane, there exist remarkable discrete groups G of congruences. They
possess a domain F bounded by 4g-gon (g being an integer > 2) as fundamental domain.
This means that application of the elements of the group G to F generates a tiling of the
hyperbolic plane. Figure 3.16, left, shows such a tiling for g = 2. It illustrates a slightly
more complicated fundamental domain, which is, however, equivalent to an octogon as
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Figure 3.15. Left: Distance between lines measured horizontally; Right: Ruled surface
approximating seven (dashed) lines L;.

the group in the sense that its value f(x) at a point x € H? and at all images of x under
the elements of G are the same. Then, three such functions, evaluated at the fundamental
domain F, may be seen as coordinate functions of a parametric surface in 3-space. It is
well-known that this surface is a closed orientable surface of genus g and that all closed
orientable surfaces of genus g > 2 may be obtained via hyperbolic geometry in this way
[95,115].

This hyperbolic approach to the design of closed surfaces of arbitrary genus and smooth-
ness has first been taken by Ferguson and Rockwood [32]. [110] have further investigated
this direction and shown, for example, how to design piecewise rational surfaces with
arbitrarily high geometric continuity. Although theoretically very elegant, the practical
use for complicated shapes seems to be limited. Most likely, subdivision based schemes
will be preferred for applications.

3.5.2. Elliptic geometry and kinematics

The intrinsic geometry of the n-dimensional Euclidean sphere S® C E™*!) with identifica-
tion of antipodal points, is called elliptic geometry. Three-dimensional elliptic geometry is
very closely related to spherical kinematics and has important applications in the design
and analysis of motions on the sphere and in Euclidean 3-space [69]. This relation as
well as applications in computer animation and robot motion planning are discussed in
Chapter 29.

3.5.3. Isotropic geometry and analysis of functions and images

In order to visnalize the function f : D C R? — R, defined on a region D of the Euclidean
plane E? = R?, we usually embed this plane as (21, 22)-plane into 3-space R® and consider
the graph surface T(f) := {{z1, T3, f{z1,22)) € R® : (71, x,) € D}. This natural procedure
is sometimes followed by the seemingly natural assumption to interpret R* as Euclidean
space. However, it is much more appropriate for many applications to introduce a so-
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Figure 3.16. Tesselation of the hyperbolic plane (left); a function which is invariant under
the associated discrete group is suitable for parametrizing a closed orientable surface of
genus two (right).

space. However, it is much more appropriate for many applications to introduce a so-
called isotropic metric in R®. In isotropic geometry, one investigates properties which are
invariant under the following group of affine mappings,

T = G+ T1C0Sp — Tasing,
Ty = ay+ Ty 8inp+ 35 €08 @, (3.17)
Th = az+ a4z + asTo + Ta.

Like the Euclidean motion group in R?, this group of so-called isotropic motions depends
on six real parameters ¢, ay,...,as. As seen from the first two equations in (3.17), an
isotropic motion appears as Euclidean motion in the projection onto the plane 3 = 0. A
careful study of isotropic geometry in two and three dimensions is found in the monographs
by H. Sachs [97,98].

The application to the analysis and visualization of functions defined on Euclidean
spaces is studied in [86]. For example, the standard thin plate spline functional in two
dimensions,

(P P, P
1) = [ (G2 + 250 g+ G ) s

has a purely geometric interpretation for the graph surface of f within isotropic geometry.
It is the surface integral over the sum of squares of isotropic principal curvatures s, sz,

5 = [[62 + s2yax.




68 CHAPTER 3. GEOMETRIES FOR CAGD

The use of isotropic geometry has been extended to functions defined on surfaces (Chap-
ter 9) rather than flat Euclidean spaces [86]. Currently, it is investigated by J. Koenderink
for understanding images of surfaces along the lines described in [49].

Isotropic geometry also appears in the context of Laguerre geometry, namely in the
so-called isotropic model. For example, the oriented tangent planes of a right circular
cone appear as an isotropic circle in the isotropic model. This is in general a conic,
whose projection onto z3 = 0 is a Euclidean circle. Smooth spline curves formed by such
conic segments could be called “isotropic arc splines”. Their construction is completely
analogous to arc splines in Euclidean 3-space. The transformation back to the standard
model of Laguerre geometry gives developable surfaces, which consist of smoothly joined
pieces of right circular cones [55]. Geometric computing with these cone spline surfaces
rather than general developables has a variety of advantages: The computation of bending
sequences and the planar development can be performed in an elementary way. The
degree, namely two for both the implicit and parametric representation of the segments,
is the lowest possible for generating smooth surfaces, and the offsets are of the same
type [54,56].
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Chapter 4

Bézier Techniques

Dianne Hansford

This chapter introduces the fundamentals of Bézier techniques. As a core tool of 3D
Modeling, Bézier techniques provide a geometric-based method for describing and manip-
ulating polynomial curves and surfaces.

4.1. WHY BEZIER TECHNIQUES?

Bézier techniques bring sophisticated mathematical concepts into a highly geometric and
intuitive form. From a practical standpoint, this form facilitates the creative design
process. Equally as important, Bézier techniques are an excellent choice in the context of
numerical stability of floating point operations.! For these reasons, Bézier techniques are
at the core of 3D Modeling or Computer Aided Geometric Design (CAGD).

This chapter provides a thorough review of fundamental Bézier techniques. The primary
topics being curves, rectangular surfaces, and triangular surfaces. With this knowledge,
the reader should be able to access research articles on these topics. Additionally, the
study of Bézier techniques is greatly recommended before studying piecewise schemes,
B-splines, or other advanced modeling applications.

The notation for this chapter was chosen to make this subject accessible to readers new
to 3D modeling, and also to best serve those who use this handbook as a reference. Quite
a few 3D Modeling texts (see e.g.,[43,56,91]) have adopted the blossom? notation, and
although important, this notation has a tendency to abstract the geometric concepts, and
is therefore not used here.

For in-depth information on Bézier techniques, a textbook is a good place to start.
There are many to choose from: [17,43,45,69,80,81,86,91,102]. The origins of Bézier tech-
niques may be found in the History chapter 1 of this handbook. Industrial uses of Bézier

'Surprisingly, this result from Farouki and Rajan [49] was not known until many years after Bézier
techniques had become popular. See also [28].

2The blossom approach is a very powerful tool, theoretically and practically, and it was brought to light
by de Casteljau [32] and Ramshaw [88,89]. For a tutorial, see Goldman and DeRose [36].

75
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Figure 4.1. Left: The graph of a function. Right: The function as a Bézier curve.

techniques are described by Bézier {7] at Rénault, de Casteljau [33] at Citroén, Farin [40]
at Daimler-Benz, and Hochfeld and Ahlers [65] at Volkswagen.

4.2. BEZIER CURVES

In this section, we introduce the foundations of Bézier techniques via the Bézier curve. In
particular, we present the properties and utility of Bézier curves, as well as an important
evaluation algorithm: the de Casteljau algorithm. Also, we study the building block of
Bézier techniques, the Bernstein polynomials. A thorough understanding of Bézier curves
1s a good place to start, since nearly all the principles of curves carry over to Bézier surface
techniques.

4.2.1. Parametric curves
Curve modeling is primarily concerned with parametric curves. The simple quadratic
function in the left of Figure 4.1, written as a 2D parametric curve, takes the form

x(t) = m = ng] = L _:HQ], te IR (4.1)

Each coordinate is a function of the parameter ¢, and the real line is the domain of the
curve. Only polynomial coordinate functions will be addressed here. A 3D parametric
curve is formed by simply adding a z(t)-component.

The boldface notation for points and vectors® allows for a concise form for (4.1):

x(t) = ag + art + ast?, (4.2)

where

w=[T w=[1] =[]

The a; are called the coefficients of the curve and 1,¢, 1% are the quadratic monomial basis
Sfunctions.

3See the Geometric Fundamentals Chapter 2 for an introduction to these geometric entities.
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There are many ways to represent a polynomial curve. The monomial form from above
is one representation, however, it does not provide the most geometrically intuitive inter-
pretation.® A better formulation comes with the Bernstein basis functions as the building
block for Bézier curves. Figure 4.1, right, illustrates the curve in quadratic Bézier form.
This quadratic Bézier curve takes the form

x(t) = boB2(t) + by B(t) + by B2(), (4.3)

where

el e[l e

are Bézier control points of the Bézier polygon, and
Byt)=(1-1  Bit)=26(1-1), Bj(t)=¢

are the quadratic Bernstein polynomials or basis functions. The standard procedure is to
evaluate Bézier curves for ¢ € [0, 1], although since it is a polynomial, it is defined for all
t over the reals. The reason for this will be apparent in Section 4.2.2.

A degree n Bézier curve takes the form

x(t) = ib,B?(t) teo1], (4.5)
where
BMt) = (’:) (1 — )i, (1.6)

are the degree n Bernstein polynomials, and the binomial coefficients are defined as

Figure 4.2 illustrates several Bézier curves.

4.2.2. Properties of Bézier curves

The following list of properties characterizes Bézier curves. We’ll revisit many of these
properties in Sections 4.2.3 and 4.2.4. Many of these properties are apparent in Figure
4.2.

o Endpoint interpolation: The curve passes through the polygon endpoints: x(0) = by
and x(1) = b,,.

e Symmetry: The two polygons, by,...,b, and b, ..., by, describe the same curve;
the only thing that changes is the direction of traversal of the parameter.

4See Section 4.2.8 for the geometric interpretation of the monomial coefficients.
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Figure 4.2. These Bézier curves reveal much about the relationship between the polygon
and curve.

o Affine invariance: If an affine map @ is applied to the control polygon, then the
curve is mapped by the same map. More precisely,

> @by BRt) = &) biBl (1)) (4.7)
1=0 =0

e Conver hull: A point x(¢) on the curve for ¢ € [0,1] is in the convex hull of the
control polygon. See Figure 4.3.

o Variation diminishing: If a straight line intersects a planar Bézier polygon m times,
then the line can intersect the curve at most m times. In other words, the curve
doesn’t wiggle more that the polygon. This is evident in the left most curve of
Figure 4.2.

o Linear precision: If the control points b; for ¢ = 1,...,n — 1 are evenly spaced on
the straight line between by and b, then the degree n Bézier curve is the linear
interpolant between by and b,. See Figure 4.4.

o Exztrapolation: For values of ¢ outside [0, 1}, the curve will in general not remain
within the control polygon’s convex hull. See Figure 4.5 for an illustration. Numer-
ical stability issues [49,50] and unpredictable behavior make this an undependable
tool in a practical setting.

o Special geometry: On the right of Figure 4.2, three cubic Bézier curves are illustrated;
From top to bottom we have one with two inflection points, one with a cusp, and
one with a loop and therefore self-intersects.

e Functional curves: The quadratic curve defined by (4.3) and (4.4) is a functional
curve, and thus one dimension is a linear polynomial. The linear precision property
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Figure 4.3. Convex hull property: The convex hull of the polygon is shaded. Fort € [0,1],
the point x(¢) lies in the convex hull of the Bézier polygon.

of Bézier curves dictates that a functional curve defined for ¢ € [0, 1] takes the form

<0 =3 [17] e

and an example is illustrated in the right of Figure 4.1; Also see Figure 4.4.

o Pseudo-local control: Suppose we move the 5** control point. The curve changes the
most in the vicinity of ¢t = i/n. In fact, all points on the curve move in a direction
parallel to the vector formed by the difference of the old and new control point, as
illustrated in Figure 4.6.

e Invariance under affine parameter transformations: Particularly in the context of
piecewise curves, it might be necessary to associate a parameter interval u € [a, b]
with a Bézier curve. The parameter interval does not effect the shape of the Bézier
curve. It is common practice to associate the global parameter u with the local
parameter t € [0, 1] via the simple transformation ¢t = (u — a)/(b — a).

Cubic Bézier curves are perhaps utilized more than any other degree. This is primarily
due to the fact that their shape is flexible “enough,” while at the same time somewhat
predictable because the degree is rather low.®> Complex shapes are typically modeled with
piecewise polynomials as discussed in the B-Spline Basics Chapter 6.

Other interesting properties of Bézier curves are explored in [4,11,26,34,44,55], effective
algorithms are analyzed in [50,85], and applications which take advantage of the Bézier
curve form are found in [14,23,68].

*There is a historical reason too: They are another representation of cubic Hermite curves, which have
been used for many years. See Section 4.2.8 for more on the Hermite form.
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Figure 4.4. Linear precision property: For each curve, ten points with uniformly dis-
tributed parameters are plotted over the polygon. Middle column: Bézier curves with
linear precision.

4.2.3. The de Casteljau algorithm for Bézier curves
The de Casteljau algorithm provides a means for evaluating Bézier curves, but it also
provides for greater understanding of Bézier methods as a whole. Further insight into this
important algorithm may be found in Boehm and Miiller {16].

The de Casteljau algorithm for the evaluation of a degree n Bézier curve takes the
following form.

de Casteljau Algorithm

Given: Bézier points b; for ¢ == 0, ..., n, and parameter ¢ € [0, 1].
Find: The point b} (t) on the curve.
Compute: Set b? = b; and compute the points

r=1,...,n

bi(t) = (1 - 6)b]~" +tbl { (4.8)

1=0,...,n—r.

Figure 4.7 illustrates the algorithm for a cubic at t = 1/4. Notice that this recursive
algorithm simply consists of repeated linear interpolation. Each step builds a new point
from two other points in the ratio ¢t : (1 — ¢).

A convenient schematic tool for describing the algorithm is to arrange the involved
points in a triangular diagram. For example, evaluation of a cubic curve results in the
following points.

by
by bl
by bl b2 (4.9)

b; bl b? b

An interesting point to note is that each of the intermediate points b7 (¢} in the de Casteljau
algorithm 1s actually a point on a degree r curve. In Figure 4.8, a degree five curve
illustrates this point for which bj(t) is plotted for r = 2,3,4,5.

Examining Figure 4.7, observe two special polygons:

bg, by, b3, b3 and b}, b? bl b;.
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= —

Figure 4.5. Extrapolation property: The curve is plotted for values of ¢ € [-1.0,2.3].

Each of these polygons defines the two segments of the curve corresponding to [0, ¢} and
[t,1] with respect to the original curve. Redefining a curve in this manner is called
subdivision.  In the schematic triangular diagram (4.9), the control points for these
curves are along the diagonal and the base of the triangle, or more specifically the “left”
and “right” control points are

L,=b) and ;= b?‘i.

Subdivision must not necessarily take place within [0, 1], although this is extrapolation.
The foundations of subdivision are based on the work of de Casteljau [31] and Staerk [101].
Additional information may be found in [43,57,59,60]. Schwartz [95] develops formulas
based on a shift operator technique.5

Subdivision may be repeated: Each of the two new control polygons may be subdi-
vided, and so on. The resulting sequence of control polygons will ultimately converge to
the curve. This result is explored by Cohen and Schumaker {24] and Dahmen {27]. Con-
vergence is fast, and thus repeated subdivision could be used to render a curve. See Lane
and Riesenfeld [75] and Bartels et. al. [6]. Another application of repeated subdivision
is the intersection of a 2D Bézier curve with a line. Figure 4.9 illustrates the basic idea,
which is to repeatedly subdivide at t = 1/2 and check the intersection of the control poly-
gon’s minmax box and the line. When the line intersects a minimax box whose dimension
is less than some input tolerance, then an intersection is recorded at the midpoint of the
minmax box.

In Section 4.2.5 a practical method of computing derivatives of a Bézier curve via the
de Casteljau algorithm is discussed. Generally, Bézier curves are evaluated via the de
Casteljau algorithm rather than computing the Bernstein polynomials directly.

4.2.4. Bernstein polynomials
Let us take a closer look at the Bernstein polynomials from (4.6). This study will give
insight into the appealing properties of Bézier curves. Bernstein polynomials’ relation to
Bézier curves was discovered by Forrest [54], however also see Bézier [8] and de Casteljau
[30].

A geometric approach to studying Bernstein polynomials is realized by formulating
them as functional Bézier curves. To form the j*! basis function, recall from Section 4.2.2

6This technique, first introduced for Bézier techniques by Hosaka and Kimura [67] offers a concise nota-
tion. It is used to some extent in Hoschek and Lasser [69)].
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Figure 4.6. Pseudo-local control property: Moving the middle control point causes all
points on the curve to move in the same direction. A double line indicates the change in
a particular point.

that we assign

[i/n] by =1ifi=j
b; = e
b, b, =0if i # ;.
A few sets of Bernstein basis functions are illustrated in Figure 4.10.

Let us look at some properties of the Bernstein polynomials.

e Partition of unity: For any particular value of ¢, the sum of the Bernstein polyno-
mials is one:

iB?(t) =1.

This is necessary for (4.5) to be a barycentric combination.”

e Non-negativity: Each Bernstein polynomial is non-negative within the interval {0, 1].
This property, along with the fact that they sum to one, results in the convex hull
property from Section 4.2.2.

o Symmetry: The relation BP(t) = B"_,(1 — t), follows directly from (4.6). This is
reflected in the symmetry property of Bézier curves.

e Recursion: The degree n polynomials can be generated from the degree n — 1 poly-
nomials,

By (t) = (1 — ) B}~ (t) + B (t).

See [43] for a derivation of the de Casteljau algorithm using this property.

"See the Geometric Fundamentals Chapter 2.
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Figure 4.7. The de Casteljau algorithm applied to a cubic curve for ¢t = 1/4.

o Interval end conditions:

lifi=j

B(0)=46;0 and BI(l)=4d;n, where §;; = {0 i
ifi#j

As a result, Bézier curves have the endpoint interpolation property.
o Linear precision: The special linear combination

n

S LB =1

i=0
results in the linear precision property of Bézier curves.

e Single mazimum: B?(t) has one maximum, and this maximum occurs at ¢t = i/n.
This allows Bézier curves pseudo-local control.

Goldman [58] takes an interesting look at Bernstein polynomials in relation to other
blending functions.

4.2.5. Derivatives of Bézier curves

Differentiating a parametric curve simply involves differentiating each component. The
resulting vector is the tangent vector of the curve. If we take a Bézier curve of the form
(4.5), and differentiate with respect to the parameter ¢, we obtain

i’% = X(t) = n;) Ab,BI (1), (4.10)

where Ab; = b,y1 — b; is known as a forward difference. Notice that x(t) is simply a
degree n—1 Bézier curve with control vectors (rather than points). Figure 4.11 illustrates
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Figure 4.8. The intermediate points bj(t) from the de Casteljau algorithm produce curves
of degree r when plotted for all ¢ € [0, 1].

this formulation of the first derivative, which is also called a hodograph. At the endpoints,
the derivative takes the simple form

).((0) = TZAbO and )'((].) = nAbn;l,

which implies that the tangents at the ends are parallel to the polygon legs there. More
on hodographs may be found in Bézier [8], Forrest [54], Sederberg and Wang [97]; and see
Nachman [82] for more on derivatives.

The first derivative (4.10) can be reformulated using the commutativity of the summa-
tion and difference operators, thus becoming

n—1

X(t) =nA Y bB7\(t) = nAbp (4.11)
=0

Recall from the de Casteljau algorithm and (4.9) that nAb§™! is computed in the next

to last step of the algorithm. Figure 4.12 illustrates.
The second derivative of a Bézier curve follows by differentiating (4.10) again, producing

n—2

%(t) = n(n —1) > AbBI73(t), (4.12)

1=0

where A%b; = A(Ab;) = biy2 — 2b;4; +b;. As with the first derivative, the second deriva-
tive can also be reformulated in terms of intermediate points in the de Casteljau algorithm.
Now, the points in the second-to-last column of (4.9) define the second derivative:

(1) = AZbI2(t).

At the endpoints, the second derivative has a nice geometric interpretation which is illus-
trated in Figure 4.13. Higher derivatives follow similarly.
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Figure 4.9. Finding an intersection of a cubic Bézier curve with the x—axis (gray) via
repeated subdivision.

4.2.6. Degree elevation of Bézier curves

A degree n polynomial is also one of degree n+ 1. A curve in monomial form will simply
have a zero leading coefficient. Similarly, we may write a degree n Bézier curve as one
of degree n + 1. We’ll use a quadratic curve to demonstrate the principle. The trick is
to multiply the quadratic expression by [t + (1 — t)]. Reassembling common powers of ¢
yields

1 2 2 1

This is the process of degree elevation. The trace of the curve written as a cubic is identical
to that of the original quadratic.

Generalizing this process: Degree elevation of a degree n Bézier curve with control
points b; produces a curve of degree n + 1 with control points ¢;, where

1 1
b, + (1 -
1 n+1

)bi. (4.13)

c;, =
n+1
An example is illustrated in Figure 4.14.

Repeated degree elevation results in a polygon which converges to the curve, although
Cohen and Schumaker [24] show this is not a practical method to render a Bézier curve.
Trump and Prautzsch {103] examine arbitrarily high degree elevation. This convergence
property follows from the Weierstrass approzimation theorem, and more details are given
by Farin {43]. Additionally, see Davis [29] and Korovkin [74].

A wealth of literature may be found on the reverse process: degree reduction. See
[19,37,38,43,54,25,84,105] for a variety of methods. How can we tell if a Bézier curve is
really a degree elevated curve? A degree n — 1 curve will have an n'f derivative that is
identically zero, or A"bg = 0.

4.2.7. Interrogation techniques for Bézier curves
Determining if a curve meets certain design specifications calls for methods to measure
the curve. The interrogation methods below, curvature and torsion, are the most basic
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Figure 4.10. Quadratic, cubic, quartic, and quintic Bernstein basis functions plotted as
functional Bézier curves.

measures. See the Geometric Fundamentals Chapter 2 for an introduction to these con-
cepts. The discussion that follows focuses on these measures from the point of view of
Bézier techniques.

The curvature of a curve is the most significant descriptor of its shape. Typically,
curvature is visualized by graphing it as a function of ¢, which is called a curvature plot.
An example is illustrated in Figure 4.15. For Bézier curves, curvature may be computed
without having to compute derivatives explicitly. At t = 0, the curvature of a Bézier
curve is given by

n — 1 area[bg, by, by)

k(0) =2
O = 2 b, ~ bl

(1.14)

We see that the curve has zero curvature at ¢ = 0 if the three points by, by, by are collinear.
A similar formula follows for ¢ = 1. If the curvature is desired at parameter values other
than 0 or 1, employ subdivision.

By definition, a 3D curve has nonnegative curvature. For 2D Bézier curves, signed
curvature is easily introduced by defining the area in terms of a determinant. A signed
curvature allows for identifying inflection points: These are points where the curvature
changes sign. Roulier [92] examines Bézier curves with positive curvature.

The torsion measures the 3D twisting of a curve, or in other words, the change in the
binormal vector. For Bézier curves, torsion takes on a simple form at the ends. At t =0,
we have

31— 2volume[by, by, by, bs]
T2 n area[bg, by, by)?

(0)

The primary application of curvature and torsion has been in the context of piecewise
curves, and some examples include [46,62,72,83,94].

4.2.8. Basis conversion

The Bernstein form has been shown to be numerically more stable than the monomial form
by Farouki and Rajan [49]. Additionally, Farouki [47] showed that conversion between
the monomial and Bernstein forms has the potential to be numerically unstable. A degree
n curve in monomial form (4.2) is related to a curve in Bernstein form via

7
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Ab,

Figure 4.11. Right: A quartic Bézier curve. Left: The hodograph of the quartic, scaled
by one-fourth.

fori = 0,...,n. Thus, the first monomial coefficient is a point, namely by, and the others
are the scalings of the derivative vectors.

Cubic Hermite curves are another common curve form. They are specified by two
points, py and p,, and tangent vectors my and m; at the data points. More specifically,
the Hermite form is defined as

x(t) = poHy () + my H(t) + moH3(t) + piH(t),

where the Hermite basis functions H? are defined as

B0 = By + B, HiW) =SB0,

B0 = B0+ B0, H30) = —3B30).

This relation between the Bernstein and Hermite bases implies that
po = by, my =3Aby, m; =3Ab;, p; =bs.

Liand Zhang [78] detail other basis conversions. Boehm [10,12] describes the conversion
from B-spline to Bézier; See also the B-spline Basics Chapter 6.

4.2.9. Piecewise Bézier curves
Practical applications which take advantage of the geometric nature of Bézier curves
typically depend on rather low degree curves. Complicated shapes are formed by piecing
together curves. How to do so in a smooth manner is the focus of this section. A more
rigorous examination of piecewise curves, called splines, may be found in the B-spline
Basics Chapter 6. Issues of smoothness are investigated in the Geometric Continuity
Chapter 8.

Suppose we begin with two degree n curves: b(u) with control points by, . .., b,, defined
over [ug, u1}, and c(u) with control points by, ..., be,, defined over [uy,us]. Due to the
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Figure 4.12. The first derivative of a Bézier curve is a scaling of the difference vector
(b7"' — by '), and thus is a by-product of the de Casteljau algorithm.

endpoint interpolation property of Bézier curves, we know that these two curves meet, or
are C°, at b,,.

What are the conditions on the control points for the curves to be differentiable at b,,?
The derivative of a Bézier curve defined over an arbitrary interval involves the chain rule,
for example

dbe) _dbdr _ ndb
du  dtdu Agdt’

where Ay = u; — up. Drawing from Section 4.2.5, equate this expression for both curves
at u = uy, and we find
1 1

Ab,,_; = —Ab,
Ag 'TA

to be the condition for the curves to be C'. More geometrically, this requires that the
three points b,,_1, b,, b, 1 be collinear and their spacing must be in the ratio Ag : A, as
illustrated in Figure 4.16, left.

C? constructions are also of practical importance. For the curves to be twice differ-
entiable at the junction, the two quadratic polynomials defined by b,_»,b,_1,b, and
b,,bni1, byo must describe the same global quadratic polynomial. The curves must
satisfy the C! conditions, and the additional geometric conditions are described in Figure
4.16, right. This necessitates the existence of an auxiliary point, shaded gray in the figure.
Notice that the left figure is not C?.

4.3. RECTANGULAR BEZIER PATCHES

Let us extend Bézier techniques for curves to a surface form. A parametric surface is
the result of a map of the real plane into 3-space. This plane, or domain, is defined by
a (u, v)-coordinate system. A 3D surface point corresponding to a particular (u,v) is a
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Figure 4.13. The second derivative of a degree six Bézier curve at ¢ = 0 is a scaling of the
diagonal of the parallelogram formed by the first three control points.

point:
f(u,v)

x(u,v) = fg(u,v)] . (4.15)
h(u,v)

In this chapter, the functions f, g, b will be combinations of Bernstein polynomials. The
surface x(u,v) is defined for all values of v and v, although we will primarily consider

{(u,v): 0 <u,v <1} (4.16)

As this indicates, the surface in this limited extent has a rectangular boundary. We will
refer to this as a patch.

4.3.1. Bilinear patches

To begin our discussion of rectangular Bézier patches, let’s start with the simplest form:

bilinear patches. As the name suggests, the degree is linear in each parametric direction.
A bilinear Bézier patch x(u,v) is defined by four points by g, bo1, by, b1,1, and it takes

the form

x(uo) = (B30 Biw] [por o] [Re0). (@17)

Figure 4.17, left, illustrates such a surface. The linear Bernstein polynomials, for example
in u, are simply B} (u) = (1 — u) and Bj(u) = u.

At first glance, (4.17) does not convey very much geometric information. By simply
rewriting the bilinear patch as

x(u,v) = (1 —v)co + vey (4.18)
where

Cy = (1 - u)b())() + Ubl,O and C, = (1 — U)bgyl + U'bl,17
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Figure 4.14. Degree elevation of a quartic Bézier curve. The quintic polygon is gray.

we can gather a much better feeling for the shape of the bilinear patch. Figure 4.17, right,
illustrates this construction which builds intermediate points in the u-direction, and then
builds the patch point by linear interpolation in the v-direction.

Alternatively, we could have built intermediate points in the v-direction:

do = (1 — 'U)b(),() + UbO,l and d1 = (1 — U)bl,O + ”Ubl’l,
and then the point on the patch is
x(u,v) = (1 — u)dy + ud,. (4.19)

The result (4.18) is the same as (4.19).

Another name for a bilinear patch is a hyperbolic paraboloid. It is covered by two
families of straight lines, which is apparent when considering the curves defined by (4.18)
and (4.19). These two sets of curves on the patch are called isoparametric curves. The
four isoparametric curves (lines) corresponding to the edges, (u,0),(v,1),(0,v), and (1, v),
are commonly referred to as the boundary curves of the patch.

A hyperbolic paraboloid also contains curves. For instance, consider the line u = v in
the domain. In parametric form, it may be written as u(t) = ¢, v(t) = t. This domain
diagonal is mapped to the 3D curve ¢(t) = x(,¢) on the surface. In more detail:

by by 1] 1- t}
ct)=[1-¢t ||, ’ )
®) [ ] [bl,() by, t
and after collecting terms gives a quadratic Bézier curve

1 1

4.3.2. Bézier patches

Generalizing (4.17) to higher degrees, a degree (m, n) rectangular Bézier patch takes the
form

b()’() P bO,n Bg(’l})
x(u,v) = [By'(u) ... B,’,’j(u)] : : (4.20)
brno .. bma| |BR(v)
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| max: 0.000

min: -1.915

Figure 4.15. A curvature plot of a cubic Bézier curve.

Figure 4.18 illustrates a degree (3, 3) surface. The collection of control points is referred
to as the control net. Equation (4.20) may be conveniently abbreviated as

x(u,v) = MTBN. (4.21)

We may also write a Bézier patch as

xX(u,v) = > > by ;B (u) B} (v). (4.22)

i=0 j=0

Bézier patches fall into the class of tensor product surfaces. The tensor product property
1s a very powerful conceptual tool for understanding Bézier patches. Figure 4.19 illustrates
how the shape of a Bézier patch can be thought of as a record of the shape of a template
moving and changing shape through space. Consider one value of v and the term D = BN
in (4.21). This defines a point d; on each curve defined by the control polygon b;;,7 =
0,...,n. The d; are the control points for a curve in the u-direction, namely MTD. As u
varies, this expression defines the shape of the template for one particular v. In a chapter
written by Bézier [43), this concept is discussed from a practitioner’s point of view.

4.3.3. Properties of Bézier patches
Many of the properties of Bézier patches are direct generalizations of the curve ones.

e Endpoint interpolation: The patch passes through the four corner control points,

that is
X(O, 0) = bg’o X(l, 0) = bm70
X(O, 1) = bO«,n X(17 1) = bm,n-

Also, the control net’s boundary control points are the control points of the patch
boundary curves. For example: the curve x(u,0) has the control polygon b, for
1=0,...,m.
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Figure 4.16. Bézier curve C' (left) and C? (right) conditions.

o Symmetry: We could re-index the control net so that any of the corners corresponds
to by, and evaluation would result in a patch with the same shape as the original
one.

e Affine invariance. Apply an affine map to the control net, and then evaluate the
patch. This surface will be identical to the surface created by applying the same
affine map to the original patch. See (4.7) for the analogous property for curves.

e Conver hull: For (u,v) € [0,1] x [0, 1], the patch x(u, v) is in the convex hull of the
the control net.

o Bilinear precision: A degree (m,n) patch is identical to the bilinear interpolant
to the four corner control points if the control points satisfy the following condi-
tions. The boundary curves are linearly precise, and the interior control points
are uniformly-spaced on lines connecting corresponding boundary control points on
adjacent edges

e Tensor product: Bézier patches are in the class of tensor product surfaces. This
property allows Bézier patches to be dealt with in terms of isoparametric curves,
which in turn simplifies evaluation and other operations. This also implies that the
total degree of a (m,n) patch is 2mn. The total degree is the maximum number of
intersections of the patch with a straight line.

e Functional patches: A functional Bézier patch defined over [0,1] x [0, 1] has Bézier
control points

i/m
bi,j = ]/TL
b; ;



4.3. RECTANGULAR BEZIER PATCHES 93

X{u,v)

Figure 4.17. A bilinear Bézier patch illustrated in a 3D view on the left and the construc-
tion of x(1/3,1/3) is on the right.

4.3.4. Evaluation of Bézier patches

Let us take advantage of the de Casteljau algorithm and the tensor product property
as described in Section 4.3.2 to formulate a straightforward method to evaluate a Bézier
patch, the 2-stage de Casteljau evaluation method. First, consider C = MTB in (4.21).
The elements of C take the form

¢; =Y biB*(u) (4.23)
=0

for 5 = 0,...,n. Simply evaluate each degree m Bézier curve using the de Casteljau
algorithm. The second and final evaluation step, x{u,v) = CN or

x(u,v) = ZCjB;L(U)v (4.24)

consists of evaluating a degree n Bézier curve via the de Casteljau algorithm. The roles
of u and v can be switched: First compute D = BN, and then x = MTD.

Another evaluation method, the 3-stage de Casteljau evaluation method, is quite useful
if we want the first partial derivatives of the surface. It involves only a slight modification
of the 2-stage method. Instead of computing the point on the curve in (4.23), stop the
de Casteljau algorithm at the next to last step, saving the two points which span the
tangent to the curve. As a result, we will have two “rows” of degree n curves. Next,
evaluate these two curves at v, again stopping the de Casteljau algorithm at the next-
to-last step, resulting in four points. These four points define a bilinear patch, and they
span the tangent plane at (u,v). Evaluate this as we did in Section 4.3.1. How we use
this algorithm in the calculation of derivatives is discussed in more detail in Section 4.3.5.
Other evaluation methods and comparisons between them may be found in [43,45,79].

4.3.5. Derivatives of Bézier patches
A derivative of a surface is the tangent vector of a curve on the surface. There are two
isoparametric curves through x(u,v). Let us focus on the u = constant curve, as in
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Figure 4.18. The control net and u = constant isoparametric curves of a degree (3,3)
Bézier patch are illustrated.

(4.24), and differentiate it with respect to v. The resulting tangent vector x, is called the
v-partial derivative or v—partial. More precisely, differentiating (4.22) with respect to v
results in

—

n—

X, (u,v) = aig;’i) = nz Ao’lbi,jB{"(u)B]ﬂ_l(v), (4.25)
i=0

.
1l
[

where A%'b, ; = b, ;;; — b; ;. The u-partial takes a very similar form,

m—-1 n

Xy (u,v) =m Z Z AMb, ;B! (u) B} (v), (4.26)
i=0 j=0
where Al’obi’j = bi+1,j — bi,j-
The second partials are also of practical use. For example, the second u-partial takes
the form

*x(u,v i - n
3(uz ) =m(m —1) Z Z A*"b; ;B] Z(U)Bj (v),
=0 j=0

where A%%b, ; is the second forward difference applied to the ¢ indices. In other words,
we simply take the derivative of the curve (4.26). The v-partial follows similarly, and
formulae for higher order partials may be found in any of the texts cited in Section 4.1.
More detail concerning computational efficiency may be found in Mann and DeRose [79]
and Spitzmueller [100].

The mixed partial, or twist vector, is denoted by x,,(u, v) and is obtained in either of
two ways:

0%, (u, v)

0%, (u, v)
v '

ou

Xu,u(uyv) - or xu,v(u, 1}) =
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Figure 4.19. The shape of a Bézier patch may be described in terms of a moving template.
The template for v = 1/3 is highlighted here.

Thus, by differentiating the v-partial (4.25) with respect to u,

m—1n—-1

Xy (U, V) = mn Z Z Ab'h, ;B! (u)B}l_l(v),

i=0 j=0
The mixed forward difference A'b; ; is equivalent to A®(Al%D, ), that is
AMby; = by 01 = bisiy — biji + by (4.27)

which measures the deviation of the quadrilateral defined by the four points in (4.27)
from a parallelogram, and this is illustrated in Figure 4.20. Notice that the twist at the
corners involves only the control points at the corners.

The normal is a fundamental geometric concept which is used throughout computer
graphics and CAD/CAM; See the Direct Rendering of Freeform Surfaces Chapter 30. At
a given point x{u, v) on a patch, the normal is perpendicular to the surface at x, and the
normal and x define the tangent plane. More precisely, the normal is defined by

n= SuhX (4.28)
% A o]
and thus is a unit vector. Ideas for handling a denominator that is nearly zero are given
attention in Farin [43].
Calculation of the normal requires knowledge of both the u- and v-partials. For this
reason, the 3-stage evaluation method from Section 4.3.4 is more suitable in this situation
than the 2-stage method.

4.3.6. Working with Bézier patches
Many of the operations applied to Bézier patches are direct generalizations of the tech-
niques for curves. Again, this is due to the tensor product nature of Bézier patches, which
allows for an algorithmic approach based on isoparametric curves.

Recall degree elevation for curves from Section 4.2.6; That same technique is used for an
(m,n) Bézier patch in the following manner. Raising the degree from m to m + 1 results
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Figure 4.20. The mixed forward difference vector measures the deviation of the quadrangle
from a parallelogram.

in a control net which has n + 1 “columns” of control points, each column containing
m—+ 2 control points. These latter columns are simply obtained from the original columns
by the process of degree elevation for curves.

Another curve operation from Section 4.2.3 is subdivision. Similarly, a patch may be
subdivided into two patches. The u—parameter 4 splits the domain unit square into two
rectangles as shown in Figure 4.21. The patch is split along this isoparametric curve
into two patches, together identical to the original patch. The algorithm: Perform curve
subdivision for each degree m “row” of the control net at parameter #. Since each of the
two new patches are Bézier patches, they are each defined over the domain (4.16). See
Schwartz [95] for more on this topic.

The properties of Bézier patches are utilized to benefit applications in [2,64,77,90],
convexity conditions are explored in [20], fitting and design issues are examined in [39,73,
99], and a hybrid Bézier patch is introduced in [52]. See the Geometric Fundamentals and
Direct Rendering of Freeform Surfaces Chapters 2, 30 for information on interrogation
techniques that may be applied to Bézier patches. Bézier patches can be extended to
model volumes by generalizing the domain to a cube. For more information on this topic
see [9,48,66,69,76,96].

4.3.7. C! Bézier patches

Following the discussion of piecewise curves in Section 4.2.9, here we examine the con-
ditions under which two Bézier patches are differentiable. See the Geometric Continuity
Chapter 8 for a more in-depth study.

We'll assume that the patches are the same degree (m,n) and C°, that is, they share a
common boundary curve. Additionally, define each Bézier patch over an arbitrary domain,
thus we have x(u, v) defined over [ug, u1] X [vg, v1] and y(u, v} defined over [uy, us] X [vg, v1].
In order for x and y to be C! we require

ax(uﬂ)) |u:u1: %Y(uvv) 1u:u1 .

Drawing from the control point interpretation of the partials from Section 4.3.5 and
applying the chain rule, this means that

1 . 1,0 n _ 1 . 1,0 n
'ATO ]; A bmfl,jB] (U) = Ku-l ZO A bm)jB]v (’U),

Jj=
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Figure 4.21. Subdivision of a Bézier patch at & = 0.75. The original control net and the
net for the patch over [0,0.75] x [0, 1] are illustrated.

or in words, each row of control points must be collinear and reflect the corresponding
ratio in the domain, as illustrated in Figure 4.22.

4.4. TRIANGULAR BEZIER PATCHES

Triangular Bézier patches, or short Bézier triangles, are the true generalization of Bézier
curves to a surface form.®? In practice, the tensor product Bézier patch from Section
4.3 receives more attention due to their prevalent use in industry. Most notably, tensor
product patches are an entity in data transfer formats such as IGES.

However, triangular patches have much to offer. One important offering is the ability to
model objects with arbitrary topology. Think of a sphere-like object, for example. Mod-
eling this entirely with rectangular patches would require a degenerate patch. Another
offering of triangular patches is the ease of modeling quadric surfaces. Rational patches
are necessary, however, and these are discussed in the Rational Techniques Chapter 5.
See the History Chapter 1 for more uses of triangular methods.

4.4.1. Bézier triangles introduced
Bézier triangles are constructed from a triangular domain. Thus barycentric coordinates
are fundamental to their construction by providing an elegant tool for defining points in
a plane with respect to this triangular reference frame. An in-depth study of barycentric
coordinates is provided in the Geometric Fundamentals Chapter 2; See also Boehm and
Prautzsch [17].

Since the domain of a Bézier triangle is a triangle, the conceptual picture of the control
points of the surface takes a triangular form as illustrated in Figure 4.23. Differing from
their rectangular counterparts, Bézier triangles have a single degree associated with them.

8For a discourse on this topic, see Barry and Goldman [5].
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Figure 4.22. C' Bézier patches satisfy the criteria that the three control points in each
row of along their common boundary curve are collinear, and the collinear points are
positioned in the ratio dictated by the domain.

The control point indexing is described well by a quartic example.

b004
b103 b013
b20‘2 bl 12 b022
b301 b211 b121 b031
b400 b31[) b220 b130 b040

Notice that the sum of the indices equals the degree. Often the abbreviated notation
b; for b,j; is used. There is a pattern to the notation: For example, the control points
between bygy and by each take the form b,,o. The barycentric coordinates (1,0, 0) are
associated with b4()(), (0, ]., 0) with b()40, and (0, 0, 1) with b004.

A degree n triangular Bézier patch is defined as

x(u) = Y b;B}(u) (4.29)

li|=n

where u = (u,v,w) are barycentric coordinates and |i| = n represents all (ijk) combina-
tions which sum to n. The BP(u) terms are the bivariate Bernstein polynomials

diw®, (4.30)

n

Biw) =

They are bivariate since w = 1 —u —wv. More on these in Section 4.4.4. A Bézier triangle
consists of all points x(u) with barycentric coordinates u within the domain triangle,
0 < u,v,w < 1. However, the surface is defined for u outside of the domain triangle also.

4.4.2. Properties of Bézier triangles
Many of the properties of Bézier triangles are direct generalizations of the curve ones.
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Figure 4.23. Illustrated is a cubic triangular Bézier patch with its control net.

e FEndpoint interpolation: The patch passes through the three corner control points,
that is

X(l, 0, 0) = bn,0,0 X(O, 1, 0) = bO,n,O X(O7 07 1) = b0,0,n~

Also, each control net boundary corresponds to the control polygon for the patch
boundary curves. For example: the curve x(0,v,w) has the control polygon bg ;
fork=0,...,nand j+k =n.

e Symmetry: We could re-index the control net so that any of the corners corresponds
to by, 0,0, and evaluation would result in a patch with the same shape as the original
one.

o Affine invariance: Apply an affine map to the control net, and then evaluate the
patch. This surface will be identical to the surface created by applying the same
affine map to the original patch.

o Conver hull: For 0 < u,v,w < 1, the patch is in the convex hull of the control net.

e Linear precision: The three corner points define a plane. For a degree n patch,
place the control points “uniformly” by constructing each b; ;x in this plane, and
to have barycentric coordinates (i/n, j/n, k/n). This Bézier triangle is identical to
the linear Bézier triangle through the three corner points.

o Total degree: The total degree, or the maximum number of intersections of the patch
with a straight line, of a degree n Bézier triangle is n?.

e Functional patches: A functional triangular Bézier patch defined over 0 < u,v,w < 1
has Bézier control points as follows. Construct the degree n function as z = f(z,y).
Suppose the three corner points are given. Then the other Bézier control points are
constructed to have linear precision in the z- and y-coordinates. The z-coordinate
is independent.
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Figure 4.24. The triangular de Casteljau applied to a cubic patch for u = (1/3,1/3,1/3).
The geometry of each step is differentiated by shades of gray.

4.4.3. The de Casteljau algorithm for Bézier triangles

Similar to the curve algorithm, the steps in the de Casteljau algorithm for Bézier triangles
consists of repeated linear interpolation. Before describing the algorithm in more detail,
we need to introduce the index notation ei = (100), ej = (010), and ek = (001).
Triangular de Casteljau Algorithm

Given: A degree n control net b; with |i|] = n and barycentric coordinates u.

Find: A point x(u) = b (u) on the Bézier triangle.

Compute: Set by = b;, and compute the points:

bi(u) = ubiT;eli + Ubi’;;j + wbi’;elk {T_ =1...,n and (4.31)
lij=n—r

Figure 4.24 illustrates the steps of the algorithm applied to a cubic triangular patch.

Linear interpolation is applied to the six “upright” triangles of the given control net. This

produces a quadratic control net. Linear interpolation is applied to the three “upright”

triangles, producing a linear control net. One linear interpolation step is applied, resulting

in a point on the patch. Applying (4.31) to u on a domain boundary edge, for example

u = (0,v,w), causes the triangular algorithm to take the form of the curve algorithm
(4.8).

4.4.4. Bivariate Bernstein polynomials

Buwariate Bernstein polynomials were introduced in (4.30). Let us take a closer look at
them with the purpose of gaining insight into the appealing geometric properties of Bézier
triangles.

Just as with the univariate polynomials, a geometric approach to studying the bivariate
Bernstein polynomials is achieved by formulating them as functional Bézier triangles. To
plot the i*" basis function, recall the form the control points must take from Section 4.4.2.
Giving one control point a z = 1 value, while all others have z = 0, will isolate the i*"
basis function. Three cubic Bernstein basis functions are illustrated in Figure 4.25. A
triangular diagram such as the following cubic one illustrates the correspondence between
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Figure 4.25. Three cubic bivariate Bernstein basis functions plotted with their Bézier
nets. The others follow from symmetry.

the control points and the basis functions.

w3

2 2
uw vw (4.32)
uw uvw viw

u3 U2U ’U.’U2 U3

Let us look at some properties of the Bernstein polynomials.
e Partition of unity: For any u, the sum of the polynomials is one:
Z Bn —
lil=n
This is necessary for (4.29) to be a barycentric combination.

o Non-negativity: Each polynomial is non-negative over 0 < u,v,w < 1. This prop-
erty, along with the fact that they sum to one, results in the convexr hull property,
as discussed in Section 4.4.2.

o Symmetry: The 3-fold symmetry they possess is apparent in (4.32).

o Recursion: The degree n polynomials can be generated from the degree n — 1 poly-
nomials as illustrated in the identity

BMt) = uBA(t) + B!

1—el

i—- ej(t) +w‘B1 ek( )
e Domain end conditions:
B (1,0,0) = 800y BP(0,1,0) =i om0 Br(0,0,1) =800

where

o = JLITI= 000 [liti= om0 f1iti=
B0, 0ifi+ (n,0,0) MO0 T 0if 1 # (0,m, 0) BOOM T A i £ (

This results in corner point interpolation.



102 CHAPTER 4. BEZIER TECHNIQUES

o Linear precision:

S LB =,

li=n

and similarly for v and w. This identity results in the linear precision property of
Bézier triangles.

See [20-22,61,104] for convexity analyses.

4.4.5. Derivatives of Bézier triangles
The nature of Bézier triangles calls for a more general derivative notation than was needed
for rectangular patches. Here we need a directional derivative
Dygb™(u) = d—a—b"(u) +e 0 b*(u) + f 9 b"(u) (4.33)
d T T ou v Sw ' '
which is the derivative at u in the direction d = (d, e, f). The direction d is equivalent
to the difference of two barycentric coordinates in the domain, thus d + e+ f = 0.
The partials in (4.33) are defined by differentiating the bivariate Bernstein polynomials,
for example

Qb" y=n Y byaB(u).

lil=n-1

Combining these expression, we find

Dgb™(u) =n > [dbisei + €bire + fbire] B (u). (4.34)

jij=n—1

Taking advantage of the notation from the triangular de Casteljau algorithm, we may
rewrite (4.34) as

Dgb(u) =n Y bi(d)B} ' (u). (4.35)

lij=n~-1

This may be interpreted as one step (r = 1) of the triangular de Casteljau algorithm with
respect to d, producing bi(d), and then n — 1 steps with respect to u. Due to the linear
nature of the de Casteljau algorithm, it is possible to rewrite (4.35) as

Dab(u) =n Y b (4.36)

lil=1

which should be interpreted as executing the de Casteljau algorithm on the original net
with respect to u for n— 1 steps, and then executing one step of the algorithm on the b}™!
with respect to d. This has a nice geometric interpretation: The three control points for
the final step define the tangent plane, and thus the normeal to the patch at u

The r*! directional derivative, mixed directional derivatives, and cross boundary direc-
tional derivatives are explored in detail by Farin [41,43].
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Figure 4.26. Subdivision of a Bézier triangle at @4 = (1/3,1/3,1/3). One of the three
resulting control nets is displayed in black.

4.4.6. Working with Bézier triangles

Just as for curves, subdivision of Bézier triangles is a by-product of the de Casteljau algo-
rithm. Consider a point in the domain with barycentric coordinates t1. The intermediate
points from the de Casteljau algorithm, grouped appropriately, form three sub-patches as
illustrated in Figure 4.26. More specifically, consider the patch across from by, it has
control points

r=40,....,n
b,k = by, ip = (0,74, k) (4.37)
lig] =n — .

Repeated subdivision results in control nets which converge to the surface.

When 1 is on a domain edge, for example @t = (0, v, w), then the control points from
bnoo to by, form the control polygon for the curve on the surface corresponding to the
line in the domain from (0, v, w) to (1,0,0). This is called a radial line. When 1 is outside
the domain triangle, then continuity conditions for neighboring patches are revealed. See
[13,15,51,57,69,98] for more detail and pointers to more literature.

Degree elevation for Bézier triangles allows a degree n patch to be written as a degree
n 4+ 1 patch by defining c¢; such that

D Byt () =) biBl(u). (4.38)
|

ljl=n+1 i|=n

By multiplying the right-hand side of (4.38) by (u+v+w), and gathering the appropriate
terms, the new control points are found to be

=05k

lil=n+1

1 . .
C; = n—H(lbj—ei + ij~ej + kbj'ek)’ {

Along a boundary curve, this expression reduces to that for curves. The degree elevated
control net is within the convex hull of the original net. See Farin [41] for more details.
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Figure 4.27. Two Bézier triangles are C! if adjacent triangles along the common boundary
are coplanar and form affine pairs.

Utilizing the properties of Bézier triangles to benefit applications is explored in [3,42],
triangular to rectangular patch conversion is studied in [18,70,71], and a classification of
Bézier triangle may be found in [35].

To extend triangular patches to wvolumes, the domain becomes a tetrahedron. See
[41,53,57,69,93] for more information.

4.4.7. C! Bézier triangles

The conditions under which two Bézier triangles are differentiable will draw from the
directional derivative discussion of Section 4.4.5. We’ll assume that the two patches are
the same degree and C°, that is, they share a common boundary curve.

Consider all cross-boundary directional derivatives at a point on the boundary of one
triangle, for example along u = 0. As a result, u = (0,v,1 — v) in (4.35), and the
expression becomes univariate, thus these derivatives correspond to tangents to curves
across the triangles. If all such derivates are equal for both patches, they are C'.

However, a more constructive description is needed. Examining (4.36), we observe that
the directional derivative at a boundary involves the first two rows of control points at
that boundary. The subdivision formula (4.37) reveals a geometric description of the
conditions on these control points. The second row of the Bézier triangle b is described
by

o
b1k = bojx = ubijk + vboji1k + who ki

for j + k = n — 1. This means that the triangle pairs along the boundary are coplanar
and each of the triangle pairs can be described by the same affine map — they form affine
pairs, as illustrated in Figure 4.27.
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Chapter 5

Rational Techniques

Hans J. Wolters

The following article will focus on rational parametric curves and surfaces and how they
are used in geometric modeling applications. Aside from giving an overview of the state-
of-the-art, I will emphasize the role of rational techniques in commercial CAD packages.

5.1. INTRODUCTION

Looking at the history of CAGD in industry, it can be argued that rational techniques
and representations were at the root of geometric modeling. In particular conic sections
and quadric surfaces were the initial building blocks of early CAD systems. Liming [27,28]
detailed many geometric constructions for aircraft design using conics. Later S. Coons at
Ford introduced conics into a CAD system; independently conics were used by engineers
at Boeing. The quest for compatible formats and for exchanging data among different
systems then led to the consideration of standard data formats. The need arose to find a
common representation for basic spline curves and conics. Hence the NURBS represen-
tation was developed where NURBS stands for Non-Uniform Rational B-Spline. NURBS
were first introduced in Versprille’s thesis [43]; later A. Klosterman was instrumental in
establishing NURBS as an industry wide standard by choosing them as data representa-
tion in SDRC’s modeling software I-DEAS. Today NURBS are integral part of the IGES
as well as the STEP standard.

Previous chapters already provided many of the building blocks for developing the
material in this chapter. Concepts from projective geometry have been introduced in
Chapter 2 on Geometric Fundamentals. In Chapter 4 on Bézier Techniques, Bézier curves
and surfaces have been covered in depth. We will see that many of the algorithms pre-
sented there can easily be generalized to the rational case. I will present these algorithms
briefly for the sake of completeness; the main focus will be on techniques which are spe-
cific to NURBS. Additionally, I will focus on topics related to the practical use of rational
representations.
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5.2. RATIONAL BEZIER CURVES

In Chapter 4 on Bézier Techniques, non-rational Bézier curves have been introduced. In
this section, we will generalize these curves to the rational case. Furthermore, we will
give a brief outline of standard algorithms and then place special emphasis on algorithms
which make use of the additional flexibility offered by rational curves.

5.2.1. Basic definitions

A rational Bézier curve of degree m is a parametric curve which is described by control
points, ¢; € R", n = 2,3, weights w; and the parameter . Without loss of generality we
let ¢ vary from 0 to 1. The curve has the form

Do wici BIM(t)
Z;’ZO w; B*(t)

The Bernstein Bézier basis functions are defined as

B (t) = (’?)(1 — g)igmi (5.2)

c(t) = (5.1)

Inspecting Equation (5.1) more closely reveals some simple properties: If we set all the
weights w; to 1, then by using the fact that >  BM(t) = 1, we obtain a non-rational
Bézier curve. Furthermore, by ensuring that all w; > 0, and some w; > 0, we can
guarantee that the curve does not contain any singularities. The curve c(¢) in affine space
can be viewed as the projection of a curve &(t) which lives in projective space and whose
control polygon consists of the homogeneous points [w;c; w;]. Hence, scaling all weights
w; by a common factor will not change the underlying control polygon or curve. Rational
Bézier curves inherit some properties from the nonrational counterpart:

o Affine Invariance: This is easy to see: We just have to convince ourselves that
Equation (5.1) is equivalent to an expression Y .-, o;¢; with 3" o; = 1. But this
is readily verified by observing that

Q= -—ﬁrl—“ (5.3)

Here we dropped the parameter ¢t since this reasoning is independent of t.
o Convex hull property: This property holds if w; > 0 Vi

e Endpoint interpolation: By inserting ¢ = 0 and ¢ = 1 into Equation (5.1), we can

verify that
woC W€
c(0) = == =¢o and ¢(1) = =2 =¢,
Wy Wm

e Variational Diminishing Property: The curve has no more intersections with any
plane (or line) than its control polygon has. This can be seen by considering corner
cutting algorithms. Corner cutting is equivalent to linear interpolation. Hence
each corner cutting step reduces the number of intersections. Using the fact that
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Figure 5.1. The influence of weights on the curve shape. The weight of the black control
point is being changed. Note that all the curve points of a fixed parameter lie on a straight
line containing the control point with the varying weight.

degree elevation is an instance of a corner cutting algorithm and repeated degree
elevation converges to the curve itself, we have proved the variation diminishing
property. Obviously, this property carries over directly from the non-rational case
and introducing positive weights does not supply enough additional flexibility to
violate this property.

There is one important property of a rational Bézier curve that is not shared by its non-
rational counterpart: projective invariance. The curve will stay invariant under general
projective transformations. This property can be exploited in graphics algorithms. In-
stead of applying a projective or perspective transformation to the curve points while
rendering (or sampling) the curve, one can first apply the transformation to the control
points, and then render the curve subsequently.

Weights and weight points
The weights w; can be used as additional shape parameters in the following way. Let us
increase a weight wy whereby the other weights are staying unchanged. Then the ¢y in
Equation (5.3) increases as well. This means that the control point cj is weighted more
heavily, hence the curve moves closer to the control point c,. This effect is illustrated
in Figure 5.1. Furthermore it is illustrated that for a fixed parameter to the points c(tg)
lie on a straight line for varying weight wy. An elegant proof of this can be found in
[16]. In practice, experienced stylists use the weights to fine-tune the shape of curves and
surfaces. Some software packages for example support a dial-box interface which can be
used to increase and decrease weights with fine granularity.

G. Farin introduced weights points in [13]. These are often called Farin points. The
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Figure 5.2. Manipulating the curve shape by sliding the weight point (arrow) along its
control leg

weight points q; are defined as
W;iCi + Wit1C;
q = +1Ci41 (5.4)
W; + Wiy
In Figure 5.2 we illustrate the effect of weight points on the curve. The weights are related
to the weight points by the following formula:

wiy1 = w; * ratio(¢;, q;, Ciy1),t =0,...,m—1 (5.5)

This equation shows that if we set wp = 1 without loss of generality, then the weights
are uniquely determined by the weight points. Hence, weight points can be used as shape
handles as alternative to using the weights themselves. Farin[15] discovered that rational
Bézier curves are not only contained within the convex hull formed by their control points.
They are also contained within the convex hull formed by the two end control points and
the weight points. Hence we obtain tighter bounds. This is a useful property for many
algorithms as we will see later.

5.2.2. Derivatives

The computation of the derivative of a rational Bézier curve can be performed by using
the quotient rule. For the first derivative we can perform the following manipulations
which are equivalent to rewriting the quotient rule:

Define

p(t) = w(t)e(t) (5.6)
Then we can compute
it = P2 800
Rewriting the derivatives in this way we only need to compute derivatives of polynomial
expressions. By using the Leibniz rule, this carries over to higher order derivatives:

. p(r)(t) — E::L (f)w(i)(t)c(k‘i)(t)
) w(t)

(5.7)

() (5.8)
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This formula is recursive and by using this recurrence relation together with equation
(5.6), we can compute any derivative by computing the derivative of non-rational Bézier
curves. This can be done efficiently using the de Casteljau algorithm (see Chapter 4 on
Bézier Techniques). It is easy to see that the derivative of a rational Bézier curve can
not simply be obtained by computing the derivative of a non-rational Bézier curve in 4D
homogeneous space and subsequent projection. This has implications for piecing together
such curves. If two rational Bézier curves have a common derivative in homogeneous
space then they will have a common derivative in affine space. The opposite however is
not true. We will revisit this topic in the section on geometric continuity. The first order
derivatives at the two end points of a rational Bézier curve can be computed quite easily:
by using our knowledge from the non-rational case we obtain:

. . plO)—w(0)c(0) __ mwi{c1—co)
C(O) - w(0) - wo
C(l) — ﬁ(l);}ugg)c(l) — mwm,;(;::—cm_l)

5.2.3. Fundamental algorithms

In the following we will discuss some of the most basic algorithms which are the founda-
tion for evaluating and manipulating rational Bézier curves. We start with the classical
algorithm for evaluating rational curves, the de Casteljau algorithm. For rational curves
there are two variants of the de Casteljan algorithm. Variant 1 is the straightforward
generalization of the non-rational case: The setting here is the projective space and we

treat the curve as having homogeneous control points [w;c; w;], 1 =0,...,m.

de Casteljau Algorithm I

Given: Homogeneous control points &; := [w;c; w;], 1 = 0,..., m and parameter ¢ € [0, 1].

Find: Point c(¢) on the curve in affine space.

Compute

AT Ar—1 AT—1 r= 1" M

ei(t) = (1 - t)e;™" + e i (5.9)
1=0,....m—7r

c(t) = m(eg'(2)) (5.10)

Here 7 is the projection operator. We apply « to the curve ¢(t) by applying 7 to every
control point.

The second variant of the de Casteljau algorithm consists of projecting every interme-
diate point into affine space (see Farin [13]) and is therefore more geometric:

de Casteljau Algorithm IT
Given: Homogeneous control points ¢; := [w;¢; w;}, ¢ = 0,...,m and parameter ¢ € [0,1].
Find: Point c(t) on the curve in affine space.

Compute

(5.11)

(1= tyw T tw !

r—1_r—1 r—1_r—1
(1 — tyw] e[ " + tw] jel ) r=1,...,m
1=0,...,m—r.
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w(t) = (1 — t)yw]~Ht) + tw] ) (t) (5.12)
c(t) = c'(t) (5.13)

Floater [18] points out that the derivative formulae in the previous section do not yield
any geometric insight. He rewrites the first derivatives using the intermediate weights and
points from the de Casteljau algorithm. One advantage of this formulation is the ease by
which one can derive upper bounds for the derivatives of a curve. This is important for
many divide and conquer algorithms in practice. For example, when computing curve-
curve intersections, one often needs to decide quickly how flat a given segment is.

The next important algorithm is the reparameterization algorithm. It is common to
transform rational Bézier curves into a standard representation. This means that the two
end weights wy and w,, are both 1. It is known (see [14]) that two rational Bézier curves
c and ¢ describe the same shape if their weights are related by w; = f%0;, where f is an
arbitrary scalar. Since we can scale arbitrarily, it is obvious how to achieve one weight
being equal to 1. Let us now assume that wy = 1. If we set

f= (_)% (5.14)

we have achieved that w,, = wy. Dividing by wy yields the curve in standard form. It
should be noted that changing the parameterization of the curve in this manner has prac-
tical implications. Figure 5.3 shows how the parameter spacing is changed. In practice,
one often evaluates curves in equal parameter increments just as in Figure 5.3. This indi-
cates that the parameterization has to be taken into account to avoid sampling artifacts.
In [10], a projective parameterization was introduced which allows an evenly spaced sam-
pling of a full circle. On the other hand, this also shows that an injudicious choice of
weight factors can substantially skew the parameterization of a curve.

Another useful technique is degree elevation. This is the process of raising the degree
of a m-degree curve to a larger degree n. This technique is useful in practice for building
a surface from cross sections; this process is called lofting. In order for the resulting
loft surface to interpolate the sections, all sections have to be of identical degree. One
way to achieve this is to perform degree elevation. The degree elevation algorithm for
rational curves is a straightforward generalization of the non-rational case. Its setting is
the projective space with homogeneous control points.

Degree Elevation

Given: A Bézier curve ¢(t) of degree m with homogeneous control points &; := [w;c; w;].

Find: The Bézier curve d(¢) of degree m + 1 such that d = ¢ on [0, 1].

Compute

. 1 1

dj= —e; +(1— i =0,..., 1. 5.15
m+1cll+( m+1)c ‘ me ( )

Here we set ¢c_; = ¢,,41 = 0. The interplay between degree elevation and reparameteriza-
tion has been investigated in [14]. One can first degree elevate a given curve c in standard
form to obtain a new curve ¢. Then one can reparameterize the curve ¢ and subsequently
degree-elevate this curve. Bringing the degree-elevated curve into standard form yields a
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Figure 5.3. Effect of parameterization on sampling density, f = 2 (top), f = 1 (middle),
and f = 0.5 (bottom).

curve €. The curves ¢ and ¢ describe the same curve but have different control polygons
and weights. This is a distinction from the non-rational case where the degree-elevated
representation is unique.

In the polynomial case it is easy to tell if a curve of degree m is actually of degree m—1.
One just needs to check that the m-th derivative is identically 0. This is equivalent to
check that the m-th difference of Bézier points is equal to 0. The same approach can be
taken for rational curves in projective space.

As mentioned in Chapter 4 on Bézier Techniques, one is often interested in the opposite
direction as well; that means one would like to find a curve of a lower degree which
represents the given curve of higher degree. This problem often occurs in practice, when
one needs to exchange data between different CAD systems. Some CAD systems can
handle curves and surfaces of higher degrees than other systems. It is easily seen that in
most cases there will be no exact solution. Eck [11,12] and many others gave algorithms
for degree reducing non-rational Bézier curves. There are not many algorithms for degree
reducing rational curves specifically. Assuming that we have an algorithm for non-rational
curves we can try to apply this algorithm to the homogenous coordinates. However it is
not guaranteed that the weights remain positive.

5.2.4. Conics

Conic sections can be represented exactly as a rational quadratic Bézier curve. Without
loss of generality, we can assume that the two weights wy and w; are equal to 1. This
means that a conic section ¢(t) has the representation

() = boB3(t) + wib; B2(t) + by B2(t)
0= B2(t) +w BX(t) + B3(t)

(5.16)
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with ¢ € [0, 1]. For a conic in this representation it is always true that the shoulder point
of the conic is at parameter value t = 1/2. Furthermore, the tangent at the shoulder
point, often called the shoulder tangent, is parallel to the line connecting by and bg.
Another interesting fact is that by reversing the sign of w; we obtain the complementary
conic segment &(t). It is easy to show that the three points by, c(¢) and ¢&(¢) are always
collinear. It is well known, that in affine space, there are three classes of conics: hyperbo-
las, parabolas and ellipses. It is now natural to ask if this classification can be performed
based on the above representation. Since hyperbolas have two singularities and parabolas
only one, it is also intuitively clear that the weight w; plays a crucial role, because this
is the only parameter affecting the denominator. It turns out that indeed we can classify
conics by inspecting the weight w,, or more precisely, solve the quadratic equation given
by the denominator of the complementary segment:

foL Lrw wi — 1
L2 = 2+2’UJ1

(5.17)

One sees that for w; > 1 we have two zeros and hence two singularities, yielding a
hyperbola. The case w; < 1 yields an ellipse and for w; = 1 we obtain a parabola. The
latter is obvious, since this means that the curve is a non-rational quadratic, hence it must
be a parabola. We will now look at some specific constructions. The first is a circular
segment that is a special case of an ellipse. We know that the weight w; must be greater
than 0 and smaller than 1. Due to the symmetry we also know that the control points
bo, by, and by must form an isosceles triangle. It turns out that w; = cos(a) where o is
the angle formed by the lines bgb; and bybg (see Figure 5.4). In order to obtain a full
circle, one needs to piece together several segments, for example one could piece together
3 segments each with angle o = 60 degrees. Another construction that is often used in
practice, in particular for constructing blend surfaces is the so-called p-conic (see [30]).
Here we prescribe the two endpoints by and b, as well as the end tangents hereby defining
the point b;. Additionally, the shoulder point p at ¢ = 1/2 is restricted to lie on the line
joining by and the midpoint p,, of bgbo. This means that p — p,, = p(b; — pr) where p
is the parameter sliding the point up and down the line and hence pulling the conic closer
or farther away from p;. One could say that p describes the ”fullness” of the curve. It
turns out that the corresponding weight w; can be computed as

T1
2./ToT2

where the 7; are the barycentric coordinates of p with respect to the triangle formed by
the control points. Note that this equation is always solvable if p lies inside the triangle,
but it might not be solvable otherwise. The construction described above is a special case
of the classic construction of a conic from two points and their tangents and an additional
point. More on conics in Bézier form can be found in [30].

wy =

(5.18)

5.3. RATIONAL B-SPLINE CURVES

In Chapter 6 on Spline Basics, the basic theory of splines as pioneered by Schoenberg [39]
has been developed. Just as is the case for Bézier techniques, we can generalize non-
rational B-Splines to the rational case. This defines non-uniform rational B Splines
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Figure 5.4. Construction of a circular segment in rational Bézier form.

(NURBS) which are the current industry standard. Here we will deal with rational B-
Spline curves, so we present the basic definitions first.

5.3.1. Basic definitions
A NURBS curve of degree m is given by:
control points also known as de Boor pointsd;, i =0,...,n,d; € R* k=23
weights w;, 1 =0,...,n,
knot vector T = {tg, ..., thrms1}-
We assume that the first and last knots have multiplicity m+1 each. This is industry-wide
convention and it ensures end point interpolation.
A rational NURBS curve d(t) is defined as

2izo widi VI (2)

d(r) = &z G (5.19)
> imo wiN™(t)
The normalized B-Spline basis functions are defined recursively:
m t—t m—1 ti+m+l —1 m—1 .
N t) = ——=N" ' ({t) + ————N| m2>1; i=0,...,n (5.20)
tivm — Li titme1 — i1

where
1 <t <t

N(t) = for = (5.21)
0 otherwise

The properties of these basis functions are discussed in detail in Chapter 6 on Spline
Basics. We can now proceed as in the Bézier case and define the curve as a linear
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combination of control points:

with
- o\ 5.23
T L wAT (529)
This leads immediately to the following properties:
e Affine Invariance
e Convex hull property when the weights w; are nonnegative.

e Variation diminishing property.

The degree elevation and knot insertion algorithms can again be viewed as examples of
corner-cutting algorithms and this can be used to prove the variation diminishing property
just as in the Bézier case. Furthermore, we can easily deduce that the NURBS curve as
defined above interpolates the endpoints:

d(to) do (5.24)
d(tm+n+l) = d, (5'25)

I

The effect of the weights on the curve is similar to Bézier curves. Increasing the weight
w; relative to its neighbors causes the curve to move towards the control point d;.

5.3.2. Derivatives
In order to compute derivatives of rational B-spline curves, we proceed in the same manner
as for rational Bézier curves. We define

p(t) = w(t)d(?) (5.26)
where w(t) is the 1D B-Spline weight function, and again arrive at the equation

a0 31040

Now we just need to recall how to compute derivatives of a non-rational B-Spline curve
p(t).

(5.27)

n—1
. d;iyy —d; -1

t) = E — = Nt 5.28
p(t)=m =0 brtisr = tip1 o ) ( )

Higher order derivatives can be computed by using the recurrence relation for the B-Spline
basis functions. A different approach for computing the first derivative of a NURBS
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curve has been developed by Floater [19]. Assuming that the parameter ¢ is contained in
[tr,tr+1}, and using

o = (u—u)/(Uigrpm—k — ) - (5.29)
Wi = (1= opp)Wimrp—1 + GipWik—1 (5.30)

one can show that the NURBS curve d(t) obeys:

d(t) = En: Li(t)(d; — di—y) (5.31)
with .
Li(t) = — t)z (NP ()N () — NP ()N (E))wjwy (5.32)

Floater uses this expression to derive upper bounds for the derivatives.

5.3.3. Fundamental algorithms

In Chapter 6 on Spline Basics different algorithms for evaluating B-Spline curves have
been presented. One can directly make use of the recurrence relation. Alternatively one
can use knot insertion or the Oslo algorithm to evaluate a spline. The most commonly
used algorithm is the de Boor algorithm. This algorithm can be viewed as a generalization
of the de Casteljau algorithm. Again we can give two versions, the first version using
homogeneous coordinates:

de Boor Algorithm I

Given: Homogeneous control points d; := [w;d; wy], ¢ = 0,...,n, knot vector 7 =
{to, .-, tmins1} and parameter ¢.

Find: Point d(t) on curve in affine space.

Compute I such that ¢ € [t1,4141) C [tm, tng1)-
t—ti

tignk — tic1

3 i+n— —t - -
ar(t) = nk 0 geergy 4

tign—k — b1
withk=1,...n—randi=I—-n+k+1,.... ] —r+1.

d(t) = 7(d(®) = 77, (w). (5.34)

Here we used the convention that r denotes the multiplicity of ¢ in case ¢ is an element of
the knot vector, and 0 if ¢ is not contained in the knot vector. In analogy to the Bézier
case we can define a rational version of the de Boor algorithm:

de Boor Algorithm II

Given: Homogeneous control points € := [wyd; w;], ¢ = 0,...,n, knot vector 7 =
{to,- - tmyns1} and parameter .

Find: Pomt d(t) on curve in affine space.

Compute: I such that ¢t € [t;,t7141) C [tm, tri1)-

dki(t) (5.33)

tizn_k — T B _ t—1;_ _ _
d(t) = (— b (1) kA (1)) fk (5.35)
tignk — tic1 bivn—k — ti1
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tivn-k —t _
wh= st Tl ey

t—t _
) i Wl
titn—k — tic1 Litn—k — i1

(5.36)

withk=1,...,n—randi=T—-n+k+1,...,I—r+1. As pointed out before, this version
uses convex combinations and hence is more stable. On the other hand the operations
count is increased.

Reparameterizations

It is possible to reparameterize a NURBS curve. The key observation is due to Lee
and Lucian [31]: If we apply a rational linear (Moebius) parameter transformation to a
NURBS curve, the resulting curve is again a NURBS curve with the same control polygon
but different weights and knots. More precisely: Define the linear rational map ¢ by

_at+f
olt) = 2 (537

If we apply this transformation to a NURBS curve with knot vector 7 we obtain a curve
with knot vector ( = {sq,...,s,} and s; = ¢(¢;). The new weights are given by

w; = w,-/H;-n:l(’Yti+]' + 5) (538)

Since the rational linear map has 3 variables (set o« = 1 without loss of generality), we
can now pick the unknowns in such a way that wy and @, are equal. This leads to a
NURBS curve in standard form (see [31]). Conversely, one could also try to determine
the unknowns in such a way that intermediate knots are mapped to certain target values.
However, this seems to be of limited use since in most cases one would have to solve a
least squares system and the new weights are unbounded.

5.4. GEOMETRIC CONTINUITY FOR RATIONAL CURVES

In this section we will address the topic of geometric continuity for rational curves. If we
recall how we derived the derivatives of a rational Bézier curve, it is easily seen that C*
continuity in projective space implies C! continuity in affine space but the reverse is not
true. We abbreviate continuity in projective space with HC* or HG* respectively, whereas
continuity in affine space is denoted by C* or G*. Let us start with two Bézier curves

of degree m where the first curve has a control polygon c,,...,cn,, weights wy, ..., wy
and is defined over the interval [ug, u1]. The second curve has control points ¢, ..., com
and weights W, . .., Wey, and is defined over the interval [u;, us]. Furthermore, we define

do := w1 — ug and &; := uy — uq. If we recall the results in Section 5.2.2, it turns out that
the two curves are C? continuous at u; if

Wm—1

8

Wm 41

(Cm - Cmfl) = T(cmﬁ—] - Cm)- (539)

One can also see that for G! continuity the weights do not play any role at all. In
[5] conditions for curvature and torsion continuity of rational Bézier curves have been
derived. These conditions have nice geometric interpretations: Let us define the following
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quantities:

ar = |lemi —cnll (5.40)
a. = |lemos — Cml| (5.41)
he = llemse — T4 (5.42)
he = llems - T (5.43)
dy = |lemss — O4 (5.44)
d- = llem—s — O] (5.45)

Here T, is the tangent defined by ¢, and ¢,,41, T- is the corresponding tangent defined
by ¢,, and ¢,,_,. Furthermore, O, is the osculating plane spanned by c¢,,, Cp+1, and
Cmyo, Whereas O_ is the osculating plane spanned by ¢, ¢,-1, and ¢,,—2. The two
curves are curvature continuous or G* continuous if they are C! continuous, the 5 points
Cm_2,--.,Cmy2 are coplanar, ¢,,_2 and ¢, lie on the same side of tangent T, (which is
equal to T_ in that case) and the following relationship holds:

WnWma2hy  WmWyo2h_

_ 5.46
2wl dl (5.46)

w

For a non-planar rational Bézier curve, the conditions for torsion continuity are also of
practical interest. T'wo curvature continuous rational Bézier curves are torsion continuous
at ¢, if ¢,,_3 and ¢, lie in different half spaces defined by the osculating plane O, (by
assumption O, equals O_), and the distances obey

dy N Gy Wino3Win 1 Wina2

d_ a_h_ Wy Wi 2Wimys (5.47)
In Figure 5.5 we illustrate the geometry and the quantities involved for defining curvature
and torsion continuity, including the G! condition. In [5], Boehm also presents construc-
tion algorithms for curvature continuous cubic B-Splines as well as torsion continuous
quartic B-Splines. The algorithms make use of the interplay of Bézier control points and
de Boor points. The de Boor points d; can be derived from the intersection of segments
formed by the Bézier control points.

One should note that the above conditions and constructions are valid in affine space
but they do not guarantee homogeneous continuity. For this to achieve one has to inves-
tigate continuity in projective space using homogeneous coordinates. Degen [7] derived
conditions for G" continuity using homogeneous coordinates. He showed that for two
curves to be G” continuous, there needs to exist a triangular matrix which transforms the
control points from the first curve directly into the control points for the second curve.
Furthermore, he gives a recurrence formula for G” conditions with arbitrary r.

5.5. RATIONAL CURVE APPROXIMATION AND INTERPOLATION

In practical applications, one of the most common and important tasks is to approximate
or interpolate point data. Furthermore, one often needs to approximate curves which are
given in analytical form but are not representable exactly as NURB curve. Examples of
these are intersection curves or offset curves. It is also a fact that in most commercial
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Figure 5.5. Construction of curvature and torsion continuous curves. We depict all the
control points and scalar quantities {distances) that are involved.

software packages, the weights are not used when approximating or interpolating with
NURB curves, it would be more accurate to talk about NUB curves. It remains the case
that the main justification for using true rational curves in practice is their ability to
represent conics and circles exactly. Their use is mainly limited for that purpose. The
reason why the weights are not utilized for fitting is twofold:

e 1) Treating weights and control points as unknowns immediately requires the solu-
tion of a nonlinear problem.

e 2) The desired range of values that weights should attain is rather restrictive.
Weights should be positive, be bounded away from zero and also have a reasonable
upper bound when we assume standard form. More precisely, one often prescribes
weights to be in the range f *{0.5,2.0] where f is a common factor.

Nonetheless, algorithms have been developed to use the weights for fitting. We will present
the relevant work below.

5.5.1. Rational curve interpolation

The direct approach to rational curve interpolation is to consider data points in projec-
tive space and then interpolate in homogeneous coordinates just as can be done in the
nonrational case: Given are data points p; and weights v; and corresponding parameters
t;,1=0,...,n. In 4D we compute a rational spline curve c(t) such that c(t;)T = [v;p; wi].
This problem can be solved analogously to the non-rational case. The heuristics for choos-
ing knots can also be taken from the nonrational case. The problem is however somewhat
ill-posed, since in practice we usually have only data points but not the weights. There
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is no algorithm for choosing weights; in addition, solving this problem globally can easily
produce weight functions with singularities. A different and more practical approach has
been investigated by Schneider in his Ph.D. thesis [37]. Here, the weights are treated as
additional unknowns; this allows to specify more data points. Concretely, it turns out
that if we have m + 1 data points, a curve with n + 1 de Boor points can be determined
uniquely if the relation n = 3m/4 holds. The interpolation problem is then solved using
homogeneous coordinates. One of the remaining problems is that the resulting inter-
polation curves can exhibit singularities. Even more interestingly, the parameterization
has an effect on this, there are cases where by using chord length parameterization the
curve exhibits singularities whereas by using centripetal parameterization the curve has
no singularities, however it interpolates the same data. A practical concern is that many
times curves are constructed as building blocks for surfaces. This poses severe limitations
on the parameterization. As evidenced above, the rational interpolation problem is very
sensitive to the parameterization, even more so than in the non-rational case.

For reasons outlined above the more practical interpolation methods are those which are
based on osculatory interpolation. The basic idea here is that one pieces together locally
fitted pieces with prescribed continuity. For example, let us assume we have data points
Pi, tangents q;, and curvature values k;, or alternatively curvature vectors K;,72 =0,...,n.
We parameterize the data yielding parameters t;. We can now fit say rational cubic Bézier
curve segments ¢; such that ¢;(0) = p;, ¢;(1) = p;;; and furthermore the unit tangent of
¢; at 0 and 1 equals q; and q;,; respectively. In addition, the curvature of c; at 0 equals
k; and at 1 it equals k;y. Hoellig proved in [23] that such a curve exists under certain
restrictions on the geometry induced by the data. Furthermore, he gave a method to
compute such a rational spline curve. Note that this construction is closely related to the
continuity conditions we derived earlier. It turns out that this method has approximation
order 6 which is an improvement over non-rational methods which can only achieve order
4 in the general case. Another popular approach to osculatory interpolation is to use
piecewise conic segments. This method is constrained to planar data and makes use of
the fact that 5 data points determine a conic uniquely. One approach is to fit conics
locally to five data points each and piece the segments together. In general the resulting
spline will only be C° continuous. A more useful approach is to prescribe three data
points py, p1, P2 and two end tangents qo and q;. If the middle point p; is contained
within the triangle formed by po, p2 and the intersection of the two tangents g and
d, then there is a solution. The resulting interpolating spline is convexity preserving
and G' continuous. Schaback [36] gives a method to construct these segments. It is also
possible to prescribe curvature values k¢ and k; at the endpoints of a segment together
with three data points. In general these constraints can not be satisfied, in [36] Schaback
gives conditions that ensure the existence of a unique interpolant. It turns out that these
conditions are satisfied if one samples dense enough a smooth regular curve with non-
vanishing curvature. Goodman et al. [22] presented a method for fitting planar data with
piecewise cubic rational Bézier segments. Their goal was to compute shape-preserving
interpolants: if all data points lie on one side of a given line, then the interpolant should
not cross that line. Their method proceeds by first computing a G? continuous rational
cubic spline matching two positional and two curvature constraints at the ends. If one
of the spline segments violates the line condition, the two interior weights are modified
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until the curve just touches the line. Obviously this will cause a G? discontinuity with the
neighboring segment and so the weight of the neighboring segment needs to be modified
as well.

Note that the osculating interpolation methods can also be viewed as approximation
methods, in the case that the data is sampled off a given curve that needs to be fitted by
NURBS.

5.5.2. Rational curve approximation
The classical scheme for performing approximation with rational curves is the Padé
scheme. Let us briefly go back to the functional setting. We assume that we have a
function F'(x) that has a Taylor expansion

F(z) = Z a;z" (5.48)

We are interested in a rational polynomial function R(z) that approximates F. R is of
the form

ag + a1z + agx? + ...+ apz™
R(z) = 0 1 2 n

= 5.49
by + b1z + bz + ...+ bya™ ( )

By matching degrees of freedom we can easily see that we have m + n+ 1 free coefficients
(bo can be normalized to 1) and hence the best approximation order one can hope for
is O(n + m + 1). One computes the approximant by multiplying both sides by the
denominator of R and obtains a system of equations that can be solved uniquely if the
Hankel determinant of the denominator of R is nonzero. This gives rise to many interesting
theoretical investigations. An introduction can be found in [6], other references are [1,21].
For CAGD applications, it is more useful to use multi-point approximation schemes, in
particular the two-points schemes that have been introduced in the previous section.
We can construct a parametric Padé approximant that approximates a given function
up to a certain order at two parameter values [45]. Here is the problem statement for
approximating a curve at two points up to order 2:

Given: A parametric curve F(t) = (z(¢), y(t), 2(¢)).

Find: A rational Bézier curve b(t) such that

F(t) —b(t) = O(t—1t)%) (5.50)
F(t)—b(t) = O@t-1) (5.51)

where ¢ € [t,1]. There are several strategies for solving this problem. For example
one could solve two one-point problems and blend the results, or one could solve three
one-dimensional two-point problems and subsequently multiply to make the denominators
equal. In [45] a two-points problem was solved for all three components simultaneously.
This allows to use a rational polynomial of degree 4 over 4. This is of lower degree than
was possible before ([3]). Results show that this approximation method is very effective
and that high quality C? approximations can be obtained.

A variety of different approximation schemes can be found in the literature. The most
general scheme treats control points, weights and nodes as free and solves a non-linear
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optimization problem. Obviously, it will be challenging to avoid getting stuck in a local
minimum. Other more specialized methods can be found for example in [2,44]. In [46,8]
some geometrically motivated methods are presented to approximate smooth curves by
rational Bézier curves. Finally, a somewhat different application is the fairing of curves.
Here, one is interested in smoothing a curve, most often one would like a smooth change
in curvature without spikes. In [24], a method is developed that automatically adjusts
the weights of a B-Spline curve. The goal is to produce a curve with smoother curvature
variation that is still very close in position to the original curve. Another approach for
selecting weights is given in [34].

5.6. RATIONAL BEZIER SURFACES

In this section we will introduce rational Bézier patches. In practice, one of the most
challenging problems is the composition of multiple patches. In most cases, one wants
to maintain at least G' continuity to avoid creases. It turns out that this is particularly
difficult for rational patches. Hence we will devote a special section to this subject.
Furthermore, we will see, that many algorithms for surfaces can be reduced to applying
the curve algorithms just as is commonly done for non-rational Bézier patches. However
this is not easily possible for approximation algorithms.

5.6.1. Basic definitions

I will briefly introduce rational Bézier patches along with their most important properties;
assuming the reader to be familiar with rational curves. A rational Bézier surface of degree
m,n is given by an array of control points ¢;;,i = 0,...,m,7 =0,...,n € IR?, and an
array of corresponding weights w;;. Furthermore we assume a parameterization in s and
t where without loss of generality s and ¢ vary from 0 to 1. The patch is defined as:

(5.0) = 25=0(2oi% wigCy B (5)) B7 (1)
L (C e ws B 9) By (1)

We can omit the parentheses in Equation (5.52), I included them for clarity. In the
nonrational case, the patch basis functions obey the tensor product condition:

Fy(s,t) = Gi(s)Hi(t) (5.53)

(5.52)

In the rational case the basis functions are
w;; B*(s) B2 (t)
Fij(svt) = m ZJn : TJn n
i Zj:O wi; B (S)Bj (t)

Due to the sum in the denominator a factorization is not possible. This has practical
consequences: In order to exploit the tensor product structure, we have to apply the
algorithms in projective space using 4 dimensional homogeneous coordinates. Afterwards
we have to apply the projection operator 7 to return into affine space. But one needs to
be careful since this approach is not always valid: Remember that for instance derivatives
are not correctly computed using this method. We can generalize some of the properties
for non-rational patches directly to the rational case:

(5.54)

e Affine invariance
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Figure 5.6. Weight points for rational Bézier patches: The shaded triangles need to be
coplanar.

e Corner points interpolation

o Convex hull property

Weights and weight points

By a similar reasoning to the curve case, we can deduce that increasing the value of weight
w;; relative to its neighbors causes the surface to move towards control point ¢;;. Hence,
we can use the weights again as shape parameters. It is also possible to define weight
points. We define these points in the s and in the ¢ direction:

WiiCij + Wit15Civ1j

Dii 5.55

v Wi + Witj o

@ = WiCi5 + Wij+1Ci+1 (5.56)
“ Wij + Wit

Considering the fact, that the weights in s direction and in ¢ direction overlap, it is
clear that the p;; and q;; are not independent of each other. In fact, the relationship is
rather constrained: The 4 points pi;, Pij+1, Gij and gi41; have to be coplanar, see Figure
5.6. Hence it is somewhat more awkward to provide an interface where it is possible to
modify surface shape by specifying weight points. A solution to this problem has been
proposed by Theisel [42]. There, extended Farin points are first defined in the surface
domain and then mapped into 3D. In addition, the author presents a scheme which allows
only a subset, of the Farin points to be moved in order to avoid conflicting definitions.
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5.6.2. Derivatives

Computing partial derivatives of rational Bézier patches is somewhat more complex. I
will first give the straightforward derivation and subsequently, I will describe an algorithm
by Sederberg that sacrifices the numerical stability of the Bézier basis for a more efficient
evaluation of the derivative. For the straightforward version we will proceed very similar
to the curve case. Define

v(s,t) = wis, t)p(s,t) with Z Zw,] (s)B}(t) (5.57)

i=0 j=0

Then we have for the two partial derivatives

(5.58)
ps(s, t) _ VS(S, t) _w,lz);’(:; t)p(s, t) (559)
(5.60)
pt(S,t) — Vt(sat) - wt(‘g?t)p(s’t) (561)

w(s, t)
For higher order partial derivatives, we can again apply Leibniz’ rule and obtain a formula

analogous to (5.8). We can also use the approach above to compute mixed derivatives.
The general formula is

k|l

0 _ 3] k\ (7 0 0
Wq(s,t) = w(s,t)mp(s,t) + Z <1) <l) asiatjw(s’t)ask‘iatl“ip(s’t) (5.62)

i=0,7=0
i+j#0

This expression can easily be transformed to yield the desired mixed derivative of p(s, t).
The two first order partial derivatives need to be evaluated repeatedly for rendering a
Bézier patch. More precisely, we need the normal vector of the patch and hence we
only need the tangent directions but not the derivative magnitude. Sederberg [40] has
presented a very efficient method for doing so. As a first step, he transforms the Bézier
basis into the power basis to be able to apply the Horner-like scheme which also appears
n [17):

s,t N i
e D D) BT 563)

with v = s/(1 — s) and v = t/(1 — t). For stability reasons, one should change the
parameter transformation to u = (1 — s)/s and v = (1 — )/t when either s or t are close
to 1. The new control points ¢;; are computed as

=)0

Incidentally, the formulae (5.63) and (5.64) can be used to evaluate a rational Bézier
patch, if we perform the Horner scheme in projective space and perform a subsequent
projection. More interesting is the potential for the two tangents:
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Let us assume for now that the c;; are 4D points (homogeneous coordinates). Let us
define subpatches:

p8 (s, 1) mta—1ntf-1 0,
DD Z Z (5:65)
with

» -1 -1
()

Here o and g vary from 0 to 1. Sederberg then shows that these 4 subpatches combined
yield the tangents:

ps(s,t) = K(@((1—1)p”(s,t) +tp”(s5,8)) — a((1 = )p"°(s,1) + tp' (s,1)))  (5.67)
pi(s,t) = K(m((1 —s)p”(s,t) + sp'%(s, 1)) — n((1 — s)p® (s, ) + sp''(s,1))) (5.68)

It is further shown that for a surface of degree (n,n) the evaluation algorithm is of order
O(n?). This is a substantial improvement over the straightforward evaluation.

5.6.3. Algorithms

In this section some of the most common algorithms will be presented. Let us first
present the de Casteljau algorithm for evaluating rational Bézier patches. I will assume
that we are performing the computations in projective space, hence we have control points
¢&i; = [wijcy; wy]. If we write the patch with the parenthesis as in (5.52) we can readily
see the evaluation strategy:

p(s,t) = Y (> & Bl () B (D) (5.69)

If we assume that we want to evaluate the patch at parameter (sg, tp), then the algorithm
in pseudo code is as follows:

for j=0, j <= n; j++
Compute point C;(sg) by performing the de Casteljau algorithm for curve
defined by j-th row of control points

Define new curve C(t) of degree n with control points C;(sp)

Perform de Casteljau algorithm once to evaluate C(t) at parameter tg.

It should be immediately obvious that we could have reversed the roles of ¢ and j and
obtain the same result. However, from a practical point of view there is a difference: If
the degree in s direction differs from the degree in t direction, a quick operations count
shows that it is cheaper to perform more de Casteljau algorithms for a lower degree. So it
is advantageous to perform the final de Casteljau algorithm in the direction corresponding
to the higher degree. We did not present the direct de Casteljau algorithm for patches.
Its non-rational version can be found in {17]. Since it is more complex and also requires
case distinctions, it is rarely used in practice.
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Reparameterizations

We have seen that rational Bézier curves can be reparameterized such that the end points
have weights equal to 1. Obviously, we can perform this reparameterization for either
the two s = const boundary curves or the two t = const boundary curves independently.
The result will be a patch where the four corner points have weights equal to 1. We
can consider such a patch to be in standard form. If we extract a isoparameteric curve
from a patch, say the curve corresponding to the ith row of the patch, then the resulting
rational curve will not be in standard form. However, we can simply apply the curve
reparameterization algorithm to convert this curve to standard form.

5.7. RATIONAL B-SPLINE SURFACES

This section introduces the most important entity in industrial applications, the rational
B-Spline surface or NURBS surface. This representation comprises all the surface rep-
resentations encountered previously: rational and non-rational Bézier patches as well as
non-rational B-Spline patches. For surfaces the same is true as for curves: true rational
patches are mostly used for representing entities such as cylinders, cones, spheres, tori and
surfaces of revolution exactly. However, they are only used to a very limited extent for
actual modeling purposes. An exception might be styling application where the weights
are used as fairing or sculpting parameters.

5.7.1. Basic definitions
A rational B-spline surface of degree m in s and n in ¢ is given by
control points dy;, 1 =0,...,k, j=0,...,[,d; € R
weights wy;,t =0,...,k, 7=0,...,1L
knot vectors ¢ = {so, ..., Sk4m+1), and 7= {fo, ..., tony1}-
Again we assume that the two knots vectors have start and end knots of multiplicity
m+ 1 and n + 1 respectively. The NURBS patch p(s, t) is defined as

P02 wisdiy N (1)) N ()
S (g wy NP ()N (5)

In Figure 5.7 we show a rational B-spline patch. The normalized B-Spline basis functions
are the same as encountered before. They allows us to derive some of the properties of
NURBS patches:

p(s,t) = (5.70)

e Affine Invariance
e Convex hull property for non-negative weights
e Corner point interpolation

As can be expected, increasing the value of weight w;; causes the surface to move towards
control point d;.

5.7.2. Derivatives
Computing derivatives follows the same recursive formula as for rational Bézier patches
( see (5.62)). Using that formula, the computation of derivatives can be reduced to the
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Figure 5.7. Example of a rational B-Spline patch: The top patch below has modified
weights such that the vertical fold is more pronounced.

computation of derivatives of non-rational B-Spline surfaces. For a non-rational patch q,
the following formula holds:

gt Sty B gl
asgr (s t) = Zoz;zv;" NPl (5.71)
=0 j=

The intermediate B-Spline points dg’ﬁ

algorithm; their recursive definition is

) can be obtained as by-products of the de Boor

(@) m=B+1)(m—-a+1) (a=1,8-1) jla—18-1) sla=1,8-1)  (a=1,6-1)
d;;" = Girnrt — Sira)(Gyomer — tﬁ+1)di+1,j+l —d;y =d; +d;; (5.72)

From a practical point of view, it might be advantageous to convert the rational B-Spline
representation into a rational Bézier representation via knot insertion and then compute
the derivatives of rational Bézier patches. This is true for applications that require the
evaluation of a large number of points on the patch. The overhead of knot insertion would
then be amortized by being able to use Sederberg’s method that has been presented in
Section 5.6.2. Let us take a special look at the partials at the start and end points of the
curve. If we assume multiplicity equal to the order of the surface at the ends, the first
partial derivatives can be computed as follows:

op m Wi
_ t = —— ——(dyg—d 5.73
ds (807 0) (Sm+1 _ 50) woo( 10 00) ( )
Op n Wo1
—(sq,t = ————(dy; — d 5.74
ot (30 o) (th — to) woo( 01 00) ( )
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5.7.3. Algorithms
The most fundamental task is the evaluation of rational B-Spline patches. There are
several options:

e Convert the patch to a rational Bézier patch via knot insertion and apply 'Bézier’
algorithms

o Use the recurrence relation of the B-Spline basis functions to evaluate the patch in
4D making use of the tensor-product structure

e Perform the de Boor algorithm in 4D

For completeness, we briefly sketch the evaluation procedure using the de Boor algorithm.
Assume that we are given a NURBS patch in homogeneous coordinates p(s,t) with a
(k+ 1) x (I + 1) array of control points d. Then we can repeatedly apply the de Boor
algorithm in the following fashion:

for j=0, j <= 1; j++
Compute point Cj{sg) by performing the de Boor algorithm for curve
defined by j-th row of control points

Define new curve C/(t) of degree n with control points C(sp)

Perform de Casteljau algorithm once to evaluate C(t) at parameter fg.

We can apply the Moebius transform to each knot vector ¢ and 7 independently to
change the knot spacings. However, it is in general not possible to use the Moebius
transformation for manipulating weights. For example, we can not reparameterize a patch
in such a way that all the four corner points have a weight equal to 1 since this would
require to apply two transformation in say s and hence we would produce two different
knot vectors. Hence, this situation differs from the rational Bézier setting.

5.8. GEOMETRIC CONTINUITY FOR RATIONAL PATCHES

As I have mentioned before, when dealing with geometric continuity, it is important to dis-
tinguish between continuity conditions in homogeneous setting and affine setting. Affine
C' continuity for example only means that @' — w'p (with q = wp) is continuous; it does
not imply continuity of g’ and w’. The effect is that both quantities independently may
have cusps. This can have ramifications for surface construction algorithms. For example
isoparametric lines can exhibit cusps that may cause geometry processing algorithms ap-
plied to this patch to fail. An example of this can be found in [20]. The remedy for this
situation is to construct HG! continuous patch complexes.

Necessary and sufficient conditions for tangent plane continuity of rational Bézier
patches have been developed by Liu {29] and deRose [9]. These conditions treat the
rational Bézier patches as polynomial patches in 4-space: Given two patches p;(u, u) and
Po(u, v) with a common boundary along v = 0, then the patches are G continuous if and
only if for all points along the common boundary

det’[f’lvDuf)hva)l?Duf)?] =0 (575)

The situation is illustrated in Figure 5.8.
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Figure 5.8. Two patches meeting at a common boundary. The depicted derivatives need
to be linearly dependent.

Note that this determinant is considered a 4 x 4 determinant in 4 space. In [9] some
construction algorithms using this condition are given. This condition is often generalized
to the following equation:

Dypy = aip1 + 81 Dyp1 + Dupr (5.76)

where «;(u),0:(u) and +, are rational scalar-valued polynomials in u. Analogously, one
can derive the conditions for curvature continuity: Two patches p; and p; are curvature

continuous along a common boundary v = 0 if and only if Equation {5.76) holds and in
addition

D2vpy = aaP1 + BoDyP1 + 12 Dub1 + BiD2vP1 + 28111 Doupy + vi Daup, (6.77)

Again the coefficients o 2, 81 2 and 7, 2 are rational polynomials in . They are often called
the connection functions. In [47] these conditions are refined and rational expressions for
these connection functions are computed. The tangent plane and curvature continuity
conditions are the most important conditions in practice. In some cases, it might be
necessary to require higher order continuity, for example continuity of the rate of change
of curvature (G%). Zheng et al. [48] present some general G conditions building upon
the framework presented above. The interested reader is referred to this paper. A more
in depth treatment of geometric continuity can be found in Chapter 8 on Geometric
Continuity.

5.9. INTERPOLATION AND APPROXIMATION ALGORITHMS

The interpolation problem for rational patches is often posed as the task of finding a
rational patch that interpolates data points p; given in homogeneous coordinates p; =
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[wx wy wz w]l. As pointed out before, there is no good method to determine the weights
a priori. An alternative has been proposed by Ma and Kruth [33]. They assume that
the parameters for the data points as well as the knot values are given. Then they use
the interpolation conditions to set up a system of equations containing the weights and
the control points as unknowns. This system is usually overdetermined. The system is
transformed so that a two step method can be applied. First one solves for the weights
using a singular value decomposition, then one solves for the control points. As an al-
ternative, the weights can be computed by using a constrained minimization scheme in
order to keep the weights from becoming negative or otherwise ill-behaved. A very similar
method results when applying the method by Schneider [37] presented in Section 5.5.2 to
surfaces. One just needs to order the array of data points and enumerate them as a list
of points. If we have m data points we again need to make sure to have n control points
with n = 3m/4.

Even though these methods are feasible in practice, it is more common to look at the
problem of approximating a discrete set of points or of approximating a surface given by
a different representation. The second problem arises very frequently since NURBS are
not closed under operations such as offsetting or surface-surface intersections. Schneider
and Juettler [38] presented an approximation technique for curves that can be readily
generalized to surfaces: We consider an (k+1)x ({4+1) array of data points q;;,2 = 0,.. ., k,
J =0,...1. Assume that we have a rational patch p(s,t) with knot vectors ¢ and 7 and
control points d;; and weights w;; (i =0...,m j =0,...,n). We want to compute the
rational NURBS surface that minimizes

k1
F(W.D,S,T) =3 > llay — plsi, i) (5.78)

i=0 j=0
Here W denotes the collection of weights, D denotes the set of control points, and S
and T denotes the set of parameters. Note that we leave the parameters free and itera-
tively adjust these to find a better solution. The adjustment can be performed by using
Hoschek’s parameter correction scheme [25]. We can now collect and enumerate all data
points and control points in the obvious way: I =i, + 4, %k, i, =10,...,k, 4, =0,...,1
and J =j,+51*n, 5, =0....m, 5, =0,...,n. With M =kxl—land N=mxn—1
we can transform the minimization problem into:

3
F(W,D,S,T) =Y _[|IP - &W,S,T)D'|| — min (5.79)

=0
The matrix ® is crucial. It has entries
ks k
wyN;? (85, )N (ts,)

N ks k
Y H=0 wHNhs (Sis)Nhf (tic)
Note the interplay of two-dimensional indices 4,4, 3, with I, 7., 7, with J and h, and h; with
H. k, and £, is the degree of the patch in s and . If we fix an initial parameterization

Sy and Ty as well as an initial set of weights Wy, we can now compute the control points
by applying the pseudo inverse &+ of &:

D = (W, So, To)P (5.81)

Bpy = (5.80)
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To compute or update a set of weights, we need to solve another nonlinear minimization
problem:

G(W)=>_|[P - &"0P|| — min (5.82)

=1

In order to have a sensible range of the weights, the authors apply a transformation to the
wy: Wx = €+7/2 + arctan(wy) where € > 0 is chosen arbitrarily. The entire method is an
iterative process; a) start with an initial parameterization, b) compute a set of weights by
performing a non-linear minimization, c) solve for the de Boor points using the pseudo-
inverse, and d) perform parameter correction to update the set of parameters. This loop
is performed until a desired error tolerance is reached. The reader should note that no
proof for the convergence of this method has been given here.

I presented this method here, since this constitutes one of the very few if not the only
practical algorithm for using the weights as unknowns to solve the surface approximation
problem. Another approach is the method presented in [26]. Here the parameters, the
weights as well as the control points are all treated as free variables for the solution of
a global minimization problem. Solving this system without getting stuck in the first
local minimum requires some preconditioning. Timings show that this method is very
inefficient and no geometric insight is applied.

5.10. RATIONAL SURFACE CONSTRUCTIONS

In this section I will briefly cover some of the more important surface constructions in-
volving rational patches.

5.10.1. Surfaces of revolution
A surface of revolution is typically given as

s(u,v) = (r(v)cos(u), r(v)sin(u)z(v))T (5.83)

Closer inspection reveals that each isoparametric line v = const traces out a circle with
radius r(v). Under the assumption that the generatrix g(v) = [r(v),0, 2(v)]7 can be
represented in rational form, we can construct the surface using rational Bézier patches.
For each vertex of the generatrix, we generate four circular segments in Bézier form (see
Figure 5.9).

This yields all the control points. For all midpoints of the circular segments the weights
of the generatrix are copied. The other points are assigned these weights multiplied by
v/2/2. Example of surfaces generated this way are cylinders, tori and spheres.

5.10.2. Canal and pipe surfaces

In practice it is often necessary to construct surfaces s(u,v) from a given curve c(v)
whose isoparametric curve v = const is a circle with center C{vg) and radius 7 lying in
the normal plane to c{vy). Such surfaces are called pipe surfaces and they can be viewed
as generalizations to offset curves in the plane. They can be expressed as

s(u,v) = c(v) +rn(u,v) (5.84)
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Figure 5.9. Construction of a surface of revolution using 4 patches per meridian

Here n(u,v) is the unit circle with center ¢(t) lying in the normal plane.

If we assume that the spine curve is rational, then it is clear that we need to find a
function n{u, v) with norm equal to 1 and additional constraint that < n{u, v), c'(v) >=0.
In [32] the authors prove the following: if ¢(v) = [(z(v), y(v), z2(v)]" is a rational curve
with z'(v) # 0, then the pipe surface with spine c¢(v) can be rationally parameterized if
and only if we can find two rational functions f(v) g(v) such that

2P (v) + 22 (v) — f2(E)(zP(v) + v (v) + 27 (v) = g*(v). (5.85)

The authors go on to prove that any pipe surface with rational spine curve is rational
and give a construction. Furthermore, it turns out that the result is valid for the more
general case where the radius r varies with parameter v. Such surfaces are often called
canal surfaces. Figure 5.10 depicts a canal surfaces that has been built as a collection of
piecewise quadratic rational patches.

5.11. CONCLUDING REMARKS

This chapter gave an overview of rational techniques with particular emphasis on practical
applications. Due to space limitations some topics had to be omitted entirely, I also had
to made choices on how to present the material. A very important class of surfaces
are quadric surfaces. These surfaces can be represented precisely by triangular rational
Bézier patches. The reader should consult Chapter 31 on Quadrics. In that chapter, the
author covers in depth the parametric representation of quadric surfaces using rational
Bézier patches. Note that I did not discuss triangular rational Bézier patches in this
chapter. Even though they are interesting in their own right, they are not frequently
used in practice except for representing quadrics. Unfortunately, the vast majority of
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Figure 5.10. A canal surface composed of piecewise quadratic patches. (Figure courtesy
of D. Hansford).

commercial CAD packages do not support triangular patches. The interested reader can
consult {16,4].

I chose not to follow the blossoming notation - the reader can get a first glimpse in [17]
if so inclined. The theory of blossoms is developed completely in [35]. Furthermore, I did
not cover any of the data representation standards in depth. In [16], the reader can find
the basic IGES format for NURBS curves and surfaces. NURBS are also included in the
STEP standard. The National Institute of Standards is involved in defining STEP; more
information can be found in [41].
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Chapter 6

Spline Basics

Carl de Boor

This chapter promotes, details and exploits the fact that (univariate) splines, i.e., smooth
piecewise polynomial functions, are weighted sums of B-splines.

6.1. PIECEWISE POLYNOMIALS

A piecewise polynomial of order k£ with break sequence £ (necessarily strictly in-
creasing) is, by definition, any function f that, on each of the half-open intervals [¢;. .£;11),
agrees with some polynomial of degree < k. The term ‘order’ used here is not standard
but handy.

Note that this definition makes a piecewise polynomial function right-continuous,
meaning that, for any z, f(z) = f(z+) := limye f(z + h). This choice is arbitrary,
but has become standard. Keep in mind that, at its break &;, the piecewise polynomial
function f has, in effect, two values, namely its limit from the left, f(¢;—), and its limit
from the right, f(§;+) = f(£).

The set of all piecewise polynomial functions of order k with break sequence £ is denoted
here

Meke.
6.2. B-SPLINES DEFINED

B-splines are defined in terms of a knot sequence t := (¢;), meaning that
c <ty <ty <

The jth B-spline of order 1 for the knot sequence t is the characteristic function
of the half-open interval [¢; .. ¢;41), i.e., the function given by the rule

1, ift;, <z <tiig;
Bji(z) := B; S
]1($) Jylvt(x) {0, otherwise.

141
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Note that each of these functions is piecewise constant, and that the resulting sequence
(Bj1) is a partition of unity, i.e.,

g B,(z) =1, inft; <z <supt;.
, j j
i

In particular,
t]' = t]'+1 1mphes le =0.

From these first-order B-splines, B-splines of higher order can be derived inductively
by the following B-spline recurrence.

(6.2.1) Property (i): Recurrence relation. The jth B-spline of order k > 1 for the
knot sequence t is

(6.2.2) Bjk :=Bjt = wirBje-1 4+ (1 — wjt16)Bjr1e-1,
with
T —t
(6.2.3) wik () = wike(x) = ’
k-1 — 1
|
pra I ™

Figure 6.2.4 The functions wj; and 1 — w;112 (dashed), and the linear B-spline
Bj; (solid) formed from them.

For example, the jth second-order or linear B-spline is given by
Bj2 = wpBj + (1 - wjis12)Bjs,

and so consists of two nontrivial linear pieces and is continuous, unless there is some
equality in the inequalities t; < #;, < ;0.
In order to appreciate just how remarkable the recurrence relation is, consider the
3rd-order B-spline
Bjs = wjsBj2 + (1 — wjs13)Bjs1,2

in the generic case, i.e., when t; < ;1 < tj42 < tj43. As is illustrated in Figure (6.2.5),
both summands have corners (i.e., jumps in their first derivative), but these corners appear
to be perfectly matched so that their sum is smooth.
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IF 1 | -
Figure 6.2.5 The two functions w;3B;2 and (1 — w;t1,3)B;11,2 have corners, but
their sum, B;3, does not.
6.3. SUPPORT AND POSITIVITY
Directly from (6.2.2) by induction on £,
Bjx = b;Bj1 + -+ + bjpe1Bjge—1,1,

with each b, a product of k — 1 polynomials of (exact) degree 1, hence a polynomial of
(exact) degree k — 1. This shows B,y to be a piecewise polynomial of order k, with breaks
at t]'7 ce ,t]‘+k.

=T 1 T —T ™=

t tit1 tivk-1 ik

Figure 6.3.1 The two weight functions, wjx and 1 —wjy1k, in (6.2.2) are positive
on supp(B,x) = (¢ . - tjxk)-

Further, B, is zero off the interval [t; . .tj+k]. Hence, since both wj; and 1 — w;414 are
positive on the interval (¢;..%;4), it follows, by induction on k, that B;; is positive there.

(6.3.2)Property (ii): Support and positivity. The B-spline Bjx = B, is piecewise
polynomial of order k with at most k nontrivial polynomial pieces, and breaks only at
tj,...,tj+x, vanishes outside the interval [t; ..t;4), and is positive on the interior of that
interval, that is,

(633) Bjyk(fl,') >0, t]' <z < tj+k,
while

(634) tj =tiqxg — Bjk = 0.
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17 Ik
/

,/\\

Figure 6.3.5 The four cubic polynomials whose pieces join to form a certain
cubic B-spline.

Notice that By, is completely determined by the k+1 knots ¢;, . .., ¢;1x. For this reason,
the notation
B(-ti, ... tivk) = Bige = B

i1s sometimes used. Other notations in use include

Nik = Bik and Mik = (k'/(ti+k - tz))sz
The latter is special in that
[ =1,
R
as follows from (6.11.4).
The many other properties of B-splines are derived most easily by considering not just

one B-spline but the linear span of all B-splines of a given order & for a given knot sequence
t. This brings us to splines.

6.4. SPLINE SPACES DEFINED

A spline of order k with knot sequence t is, by definition, a linear combination of
the B-splines By associated with that knot sequence. We denote by

(641) Sk,t = {Z aiBik L a; € R}

the collection of all such splines. .

It has become customary in CAGD to use the term ‘B-spline’ for what has just been
defined to be a spline. This unfortunate mistake will not be made in this chapter, particu-
larly since, once made, one has to make up another term (such as ‘B-spline basis function’
and the like) for what is called here by its original name, namely a ‘B-spline’.
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So far, the knot sequence t has been left unspecified except for the requirement that it be
nondecreasing. In any practical situation, t is necessarily a finite sequence. But, since on
any nontrivial interval {¢;. .t;4,) at most k of the By are nonzero, namely B k1, .-, Bji
(see Figure (6.4.2)), it does not really matter whether t is finite, infinite, or even bi-infinite;
the sum in (6.4.1) always makes pointwise sense, meaning that >, a;Bi(z) is well-defined
for any z, since at most k of its summands are not zero.

bkt & bt itk

Figure 6.4.2 The k B-splines whose support contains {¢; .. ¢;11); here k = 3.

However, while each Bjy is defined on the entire real line, IR, it is convenient to restrict
all claims concerning the spline space Si4 to its basic interval

I

which, by definition, is the union of all knot intervals [¢t; .. ¢;41] on which the full comple-
ment of k different B-splines from (B;;) have some support. Correspondingly, if ;¢ has
a finite right endpoint, it is very convenient to modify the earlier definition of B-splines
to make them left-continuous at that right endpoint.

At times, it will be convenient to assume that

t; < titk, all i,

which can always be achieved by removing from t its ith entry as long as ¢; = t;44. This
does not change the space S since the only kth order B-splines removed thereby are
zero anyway. In fact, another way to state this condition is:

By #£0,all i.
6.5. SPECIFIC KNOT SEQUENCES

The following two ‘extreme’ knot sequences have received special attention:

Z:=(.,-2-1,012,..), B:=(..,000111,..).

A spline associated with the knot sequence 7 is called a cardinal spline. This term
was chosen by Schoenberg [10] because of a connection to Whittaker’s Cardinal Series.
This is not to be confused with its use in earlier spline literature where it refers to a spline
that vanishes at all points in a given sequence except for one at which it takes the value
1. The latter splines, though of great interest in spline interpolation, do not interest us
here.
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Because of the uniformity of the knot sequence t = 7Z, formulz involving cardinal
B-splines are often much simpler than corresponding formule for general B-splines. To
begin with, all cardinal B-splines (of a given order) are translates of one another. With

the natural indexing ¢, := 1, all 4, for the entries of the uniform knot sequence t= ZZ, we
have

B = Nk(- — 1),
with
(651) Nk = B()k IB(IO,,]C)

The recurrence relation (6.2.2) simplifies as follows:

(6.5.2) (k — 1)Ni(t) = tNe_1(t) + (k — )Ne_1(t — 1).

Figure 6.5.3 Bernstein basis of degree 4 or order 5

The knot sequence t = IB contains just two points, namely the points 0 and 1, but each
with infinite multiplicity. The only nontrivial B-splines for this sequence are those that
have both 0 and 1 as knots, i.e., those B;; for which #; = 0 and t;,4 = 1; see Figure (6.5.3).
There seems to be no natural way to index the entries in the sequence B. Instead, it is

customary to index the corresponding B-splines by the multiplicities of their two distinct
knots. Precisely,

6.5.4 B, = B({0,...,0,1,...,1).
(6.5.4) (1) ( )
u+1 times v+1 times

With this, the recurrence relations (6.2.2) simplify as follows:

(6.5.5) B (2) = 2B 1y (z) + (1 = 2)B(u1,)(2).
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This gives the formula

ptv

)(l—m)"z” for0<z <1
7

(6.5.6) By (z) =0 (z) = <

for the one nontrivial polynomial piece of By, ,), as one verifies by induction. The formula
enables us to determine the smoothness of the B-splines in this simple case: Since By,
vanishes identically outside [0 .. 1], it has exactly v — 1 continuous derivatives at 0 and
1 — 1 continuous derivatives at 1. This amounts to v smoothness conditions at 0 and
 smoothness conditions at 1. Since the order of By, .,y is 4 + v + 1, this is a simple
illustration of the generally valid formula

6.5.7) #smoothness conditions at knot + multiplicity of knot = order.

For fixed u + v, the polynomials in (6.5.6) form the so-called Bernstein basis (for
polynomials of degree < p + v) and, correspondingly, the representation

(6.5.8) P=D 0unBuwy

utv=h

is the Bernstein-Bézier form for the polynomial p € II,. It may be simpler to use the
short term BB-form instead.

6.6. THE POLYNOMIALS IN THE SPLINE SPACE: MARSDEN’S IDEN-
TITY

Directly from the recurrence relation,
(6.6.1) Zaijk = Z (1 —wjk)aj—1 + wika;)Bje-1.
On the other hand, for the special sequence

aj :=Yjr(7) = (tig = 7) - (Ljka — 7),
one finds for B;,_, # 0, i.e., fort; < t;44_; that

(1= wjk)aj_1 +wjxa; = (- — 7)Y -1 (7).
Hence, induction on k establishes the following.

(6.6.2) B-spline property (iii): Marsden’s identity. For any 7 € IR,

(6.6.3) (=7 =D (B on I,
J

with

(6.6.4) Yir(T) = (L1 — 7) - (ko1 — 7)-
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Since 7 here is arbitrary, it follows that Si¢ contains all polynomials of degree < k.
More than that, differentiation of (6.6.3) with respect to 7 leads to the following explicit
B-spline expansion of an arbitrary p € H.;:

(6.6.5) p= Z BitAip , on Iy,

with A\ given by the rule

(6.6.6) Ainf = Z )~ lw”‘ EDYTWw(T) pew .

For the particular choice p = 1, this gives

(6.6.7) B-spline property (iv): (Positive and local) partition of unity. The
sequence (Bj;) provides a positive and local partition of unity, that is, each Bjj Is positive
on (tj..tj4x), is zero off [t; .. t;4x], and

(6.6.8) > B =1 on Iy

Further, by considering p = ¢ € II,, one obtains

(6.6.9) B-spline property (v): Knot averages. For k > 1 and any ¢ € Il,,
¢ = Zf(t;k) Bjk on Iy,
J

with t7, the Greville sites:

gy + -+ ek
k~1 ’

6.7. THE PIECEWISE POLYNOMIALS IN THE SPLINE SPACE

(6.6.10) £ = all j.

Each s € Sy is piecewise polynomial of order k, with breaks only at its knots. If £ is the
strictly increasing sequence of distinct knots, then we can write this as

Skt C Hepe.

But Sy is usually a proper subset of Il.;¢. Which subset exactly depends on the knot
multiplicities

according to the rule (6.5.7). This is usually proved by showing that Si¢ contains the
truncated power function (- — ti)'j:’ if and only if r < #t;. Here

j al, a>0;
o) =
0, a<0,



6.7. THE PIECEWISE POLYNOMIALS IN THE SPLINE SPACE 149

t;

Figure 6.7.1  The terms 1;;(¢;)B;x and their sum, (~—ti)’“‘1, for k = 3. Note that
all these terms are zero at t;. Hence, by summing only the terms
that are nonzero somewhere to the right of ¢;, one gets instead the
truncated power, (- — t;)571.

with its value at 0 determined by whatever convention is adopted with respect to right or
left continuity at a break.

Figure (6.7.1) gives an illustration of how Marsden’s Identity can be used to prove
that the truncated power function (- — ti)lfr_l is in Skt. For r > 1, one may use the
(r — 1)st derivative with respect to 7 of that identity in the same way, provided only that
B,k(t;) # 0 implies that D™ ' (8;) = 0, i.e., provided #t; > r.

Now, the truncated power function f := (- — t;)% satisfies exactly v smoothness
conditions across t; in the sense that D7~!f is continuous across t; for j = 1,...,v.
This, finally, leads to the following B-spline property.

Y

(6.7.2) B-spline property (vi): Local linear independence.For any knot sequence
t, and any interval I = [a..b] C Iy containing finitely many of the t;, the sequence

(6.7.3) B := (Bjkl; : Bjslr # 0)
is a basis for the restriction to I of the space
()
154
of all piecewise polynomials of order k with break sequence & the strictly increasing se-

quence containing a, b, as well as every t; € I, and satisfying v; == k — min(k, #{r : t, =
&;}) smoothness conditions across each such t;. In particular, B is linearly independent.

It is worthwhile to think about this the other way around. Suppose we start off with a
partition

a=:18 <& < <& <&y i=b

of the interval I := [a .. b] and wish to consider the space

(»)
ke
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of all piecewise polynomial functions of degree < k on I with breaks & that satisfy v,
smoothness conditions at &;, i.e., are v; — 1 times continuously differentiable at &;, all
i. Then a B-spline basis for this space is provided by (6.7.3), with the knot sequence t
constructed from the break sequence & in the following way: To the sequence

(674) (627"-7627537"'7637"'7é_e»"'aff)i
—_—— N———— St
k—ve terms k-v; terms k—v, terms

adjoin at the beginning & points < a and at the end k points > b. While the knots in
(6.7.4) have to be exactly as shown to achieve the specified smoothness at the specified
breaks, the 2k additional knots are quite arbitrary. They are often chosen to equal a
resp. b, and this has certain advantages (among other things that of simplicity). In any
case, the basic interval I; for the resulting spline space is [a .. 8], and, on this interval,
it coincides with the piecewise polynomial space Hg’,zyf we started out with, — keeping in
mind that we agreed earlier to make all elements of Sy be left-continuous at the right
endpoint of I ¢.

The fact that, in this way, B-splines can be used to staff a basis for any of the spaces
%), is also known as the Curry-Schoenberg theorem and has led their creator,

<k.€
Schoenberg, to call them ‘B-splines’ or ‘basic splines’.

-

XX % -]

Figure 6.7.5 The B-spline basis for H(<V3?,6 with £ = (0,1,3,4,6) and v = (L,2,2)
is, by the recipe, the quadratic B-spline sequence for the knot se-
quence t = (0,0,0,1,1,3,4,6,6,6). Note how the smoothness of
each B-spline exactly mirrors the multiplicity of each of its 4 knots.

The representation of a piecewise polynomial f as a weighted sum of B-splines is called
a B-form for f.
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Any basis ® = (¢4, ..., p,) of a linear space F' provides a unique (linear) representation
f=> ; a;p; for each f € F. The usefulness of such a representation of f € F is judged
in many ways.

(i) How robust is the representation in floating-point arithmetic with its inevitable round-
ing errors? This is a question of the condition of the basis.

(ii) How easy is it to derive from the coefficient vector « the information about f that
one is really interested in? In our particular case, this concerns evaluation, differ-
entiation, and integration, determination of zeros, etc, of a spline given in B-form.

(i) How easy is it to determine the coefficient vector from some other information about
f? In our particular case, this concerns the construction of a B-form for f by
interpolation, discrete least-squares, smoothing, and the like.

In terms of these questions, the B-spline basis for ka).g does remarkably well, as is explored
in the remaining sections.

6.8. DUAL FUNCTIONALS AND BLOSSOMS

Information about a basis is not complete without some information about its ‘inverse’,
i.e., about the map that associates an element of the space spanned by that basis with its
coordinates with respect to that basis. For the B-spline basis, this information is provided
by the following explicit formula which we already met in (6.6.6).

(6.8.1) B-spline property (vii): Dual functionals. For any f € Sy,
F=> Aief Bj,
J

with

v=1

and t;+ < 7; < tj4x—, all j. Hence

(6.8.3) Ae(D 0 Bu) = o, alli.
J

To be sure, there are many different dual functionals for B-splines available, but these
particular ones have proven quite useful in various contexts.

As a particular example, notice that, according to (6.8.2), A;xf depends only on part
of the knot sequence t, namely only on ¢;41,...,tj4x—1, and on these it depends linearly
(since ;i does). Further, for f € Ik, Ajif is independent of 7;. In other words,

Xjep = Me(tjer, - o tje—1)py P € Ty,

with the precise algebraic structure of \;, neatly captured by the following notion.
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Associated with each p € I1,, there is a unique symmetric r-affine form called its polar
form (in Algebra) or its blossom (in CAGD), denoted therefore here by

w

b,

for which
V{z € R} p(z) =p (,..., 7).

E.g., the blossom of (- —7)" € Il is s+ (51 = 7) -+ (s, — 7). If p=3_,()¢; € 11, then

Plons)i=Ya Y <H3i>/<§)'

§ o IC{l.r)#l=j i€l

We deduce from the above that

Dty ter) = Mty b)) Dy p € Mk

In particular, the jth B-spline coefficient of a kth order spline with knot sequence t is the
value at {tj11,...,t4k—1) of the blossom of every of the k polynomial pieces associated
with the intervals [t;..4;41), ¢ = 7,...,J + k — 1. This observation was made, in language
incomprehensible to the uninitiated, by de Casteljau in the sixties. It was discovered
independently and made plain (and given the nice name of ‘blossom’) by Lyle Ramshaw
in the early eighties.

6.9. GOOD CONDITION

(6.9.1) B-spline property (viii): Good condition. (B; : i = 1:n) is a relatively well
conditioned basis for Si; in the sense that there exists a positive constant Dy o, which
depends only on k and not on the particular knot sequence t, so that for all i,

(6.9.2) l0i] < Diooll D 0Bl s
i

Smallest possible values for Dy o, are

k|23 4 5 6
Do |1 3 5.5680--- 12.0886--- 22.7869---

Based on numerical calculations, it is conjectured that, in general,
Dk o ~ 2’643/2.
As of 2001, the best result concerning this conjecture is to be found in [9]: Dy o < k2F71.

6.10. CONVEX HULL

Since the B;, are nonnegative, sum to 1, yet at most k are nonzero at any particular ,
the next property is immediate.
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(6.10.1) B-spline property (ix): Convex hull. For ¢; < & < t;;1, the value of the
spline function f = Z]- a;B; at the site x is a strictly convex combination of the k
numbers i1 g, - .-, 0.

On the other hand, by {6.9.1), the B-spline coefficients cannot be too far from the nearby
function values. Precisely, if, on the interval {t;1; .. {;3x-1], the spline f = }:j a;Bji is
bounded from below by m and from above by M, then

(6.10.2) | — (M +m)/2| < Dgoo(M — m)/2.

Much more precise estimates have become available more recently. See, for example,

8]-
6.11. DIFFERENTIATION AND INTEGRATION

The striking structure of the dual functionals (6.8.2) readily provides the following formula
for the derivative of a spline.

(6.11.1) B-spline property (x): Differentiation.

(6.11.2) D(Zaijk): —1)2 A

]+k 1_t

Figure 6.11.3 A piecewise linear function (solid) and its derivative (dashed) taken
in the piecewise polynomial sense.

To be sure, the derivative of a spline f is taken here in the piecewise polynomial sense,
meaning that the derivative, D f, is the piecewise polynomial whose jth polynomial piece
is the derivative of the jth polynomial piece of f. In particular, if, e.g., t; = tj46—1 < tj4x,
then Bji(t;—) = 0 < 1 = Bj,(¢;+), i-e., By has a jump across t; and is certainly not
differentiable there. However, in this case (see (6.3.4)), B;x_1 is just the zero function
and, sticking to the useful maxim that anything times zero is 0, we won’t have to worry
about the fact that, in this case, the coefficient of B;;_ in (6.11.2) involves division by
zero since there is no need to compute it. In practical terms, this means that, in this case,
the knot sequence for D f has one less knot (sce the discussion at the end of Section 6.4).

By taking derivatives in this piecewise polynomial sense, we ensure that, for every
[ € Sk, Df € Sp_14, making (6.11.2) possible. However, this has the following, perhaps
negative, consequence: When we integrate Df, we may not recover f itself since, after
all, the integral of a piecewise continuous function is continuous.



154 CHAPTER 6. SPLINE BASICS

It follows from (6.11.1) that Z]. B;B; k41 is the antiderivative or primitive of Z]. a;Bjk
provided

(6.11.4) ﬂ-—c-i—{ Lo iltiek = t:)/k, 52 jo;
11 =

=70 =
s eiltive — ) /K, 3 < Jo,
with ¢ and jy arbitrary. However, this is strictly true only in case the knot sequence is

biinfinite. In the contrary case, it is only locally true since, in general, it requires infinitely
many B-splines to write down the integral of a spline; see Figure 6.11.5.

Figure 6.11.5 It takes infinitely many B-splines to express the integral of one
B-spline, as is illustrated here for

| Be01,2) = S B+ 15 +2,5+3)
0 >0
6.12. EVALUATION

The recurrence relations (6.2.2) lead directly to a stable algorithm for the evaluation of a
spline
s = Z a,-Bik

from its B-spline coefficients (a;).
The recurrence relations imply

S = ZaiBik = ZGEI]Bi,k—h
with
(6121) aE” = (1 - wik)ai_l + Wik Q.

Note that aElI is not a constant, but is the straight line through the points (¢;,a;_1) and

(tivk—1,¢:). In particular, a?](t) is a convex combination of a;_y and a; if t; <t < t;p_y.

After k — 1-fold iteration of this procedure, we arrive at the formula
§ = Z aEkﬁl]Bn,

which shows that
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(6.12.2) Evaluation algorithm. From given constant polynomials aEO] = a1 = j —

k+1,...,7, (which determine s := Y, a;By on [t; .. t;41)), generate polynomials ay], 7=
1,...,k — 1, by the recurrence

(6.12.3) ol = (1 —wis)al™, v wipod, G-k+re1<i<i

(3

{k-1]

Then s =a; " on[t;..t;41). Moreover, for t; <t <t;,,, the weight wix,(t) in (6.12.3)

lies between 0 and 1. Hence the computation of s(t) = ag-k Uty via (6.12.3) consists of
the repeated formation of convex combinations.
In the cardinal case (6.5.1-6.5.2), the algorithm simplifies, as follows. Now

5= ZNk(- ~i)a; = ZNk_l(- —)a/(k - 1),

with
(IEI] = (’L + k-1~ ')ai_l + ( — i)ai.
Hence
szag-k_u/(k~1)! on [j..7+1), with
(6.12.3)z

iz Gt k—r =Yl (i)l ke <i<i

In the Bernstein-Bézier case (6.5.4-6.5.5), all the nontrivial weight functions w;;_, are
the same, i.e.,

W p—r(t) =t
Thus, for
8= G Biun,
phv=h
we get
(6.12.3)p s=agg on[0..1], with

a(u,u)(t) = (1 - t)a(uﬂ,u) + ta(u’,,ﬂ), p+v=r;r=h—1,...,0.
This is de Casteljau’s algorithm for the evaluation of the BB-form.

6.13. SPLINE FUNCTIONS VS SPLINE CURVES

So far, we have only dealt with spline functions, even though CAGD is mainly concerned
with spline curves. The distinction is fundamental.

Every spline function f = ). a;Bjj gives rise to (planar) curve, namely its graph, i.e.,
the pointset

{(z, f(z)) 1z € I}

Assuming that #t; < & for all interior knots ¢;, this is indeed a curve in the mathematical
sense, i.e., the continuous image of an interval. Its natural parametrization is the spline
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curve

(6.13.1) z (x, f(2)) =) PiBilz),

with
Pj = (th, o)

its jth control point, and the equality in (6.13.1) is justified by (6.6.9).

However, spline curves are not restricted to control points of this specific form. By
choosing the control points P; in (6.13.1) in any manner whatsoever as d-vectors, we
obtain a spline curve in IR? that smoothly follows the shape outlined by its control
polygon, which is the broken line that connects these points P; in order.

Note the CAGD-standard use of the term ‘spline curve’ to denote both, a curve that can
be parametrized by a spline, and the (vector-valued) spline that provides this parametriza-
tion.

6.14. KNOT INSERTION

Wolfgang Bohm (see, e.g., [3]) was the first to point out that the evaluation algorithm
(6.12.2) can be interpreted as repeated knot insertion. This CAGD insight into B-splines
has had many wonderful repercussions.

(6.14.1) B-spline property (xi): Knot insertion. If the knot sequence t is obtained
from the knot sequence t by the insertion of just one term, = say, then, for any f € Siy,

Z]‘ CY]'B]‘JC,'; = f = Z]‘ a]‘Bj}ki‘ with
(6142) aj = (1 — ij(a:))a]-,l + C/:ij(ll)(!]‘, all 7,

and Gy := max{0, min{1,w;}}, i.e.,

0, for z < t5;
~ T —1;
(6.14.3) Wik 2= wig(r) = I forit; <z < tjpp-1;
tivk—1 — t;
1, for tj+k—1 S x.

Note the need here to make the dependence of a B-spline on its knot sequence explicit
in the notation. This property has the following pretty geometric interpretation, in terms
of the control polygon

Crif
of f € Sk,t-

(6.14.4) Proposition. Ift is obtained from t by the insertion of one additional knot,
then, for any f € Sy:, Cyif interpolates, at its breakpoints, to Cy«f (and is thereby
uniquely determined).

Figure 6.14.5 illustrates this interpretation.
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L1 @
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z -
tio® cL
ti+3

Figure 6.14.5 Insertion of x = 2 into the knot sequence t = (0,0,0,0,1,3,5,5,5,5),
with k = 4.

By repeated insertion of the point z until its multiplicity in the resulting knot sequence
t is £ — 1, we arrive at the B-form
> &Bj;
J

for f = >, a;B,;, in which there is exactly one B-spline B;; not zero at z. Since B-
splines always sum up to 1, its coefficient must be the value of f at z. This is illustrated
in Figure 6.14.6.

Figure 6.14.6  Three-fold insertion of the same knot provides a point on the graph
of a cubic spline.
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6.15. VARIATION DIMINUTION AND SHAPE PRESERVATION: SCHOEN-
BERG’S OPERATOR

The spline f = Z]. a;B;x+ can be viewed as the result of applying to its control polygon
Cy+ Schoenberg’s operator V =V, = V;,, as given by

ng = Zg(t;k)B]k
J

Schoenberg’s operator is variation-diminishing, meaning that, for any continuous
function g, Vg crosses the z-axis no more often than does g. More than that, any crossing
of Vg requires a ‘nearby’ crossing of g.

Here is a formal statement, in which f := Vg and o; := g¢(t};), and which follows
immediately from knot insertion.

(6.15.1) B-spline property (xii): Variation diminution. If f = E]. o;B; ks and
T < -+ < 7, are such that f(r,_1)f(n:) < 0, all i, then one can find indices 1 < j1 <
-+ < 3, < n so that

(6152) ajif(Ti)Bj;(Ti) >0 fOT‘ 1=1,...,m.

Further, by (6.6.9),
Vi=1¢, el

This implies that Vg crosses any particular straight line £ no more often than does g, and
with the crossing of Vg closely related to the crossings of g, including the direction of the
crossing.

Figure 6.15.3 A cubic spline, its control polygon, and various straight lines in-
tersecting them. The control polygon ezaggerates the shape of the
spline. The spline crossings are bracketed by the control polygon
crossings.
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This is illustrated in Figure 6.15.3 for V¢ a spline and g its control polygon. In partic-
ular, if ¢ is monotone, then so is Vig; if ¢ is convex, then so is Vg. It is in this sense that
Schoenberg’s operator is shape-preserving.

In effect, a spline is a smoothed version of its control polygon.

6.16. ZEROS OF A SPLINE, COUNTING MULTIPLICITY

Since a spline (function) cannot cross the z-axis more often than does its control polygon,
the number of sign changes in its coeflicient sequence is an upper bound on the number
of its zeros.

Things are a bit more subtle when one would like to include in the zero count the
multiplicity of a zero, defined as the maximal number of distinct nearby zeros in a
nearby spline (from the same spline space), and needed when considering osculatory or
Hermite interpolation by splines.

Here is one relevant result. The full story is recounted in [6].

(6.16.1) Proposition. If f = Zj o;Bjie is zero at zy < -+ < x,, while f* =
> ;|| Bjgy is not, then S~(a) > r, with S™(«) the smallest number of sign changes
in the sequence « obtainable by assigning the sign of any zero entry of o appropriately.

Figure 6.16.2 A double spline zero, and a quadruple spline zero, and correspond-
ing control polygons.

6.17. SPLINE INTERPOLATION: SCHOENBERG-WHITNEY

Spline interpolation is one ready means for constructing a spline function that satisfies
certain conditions. In spline interpolation, one seeks a spline that matches given data
values y; at given data sites x;, i = 1,...,n. If the spline interpolant is to be a spline of
order k with knot sequence t, then we can write the sought-for spline in B-form, 3 @Bk,
hence we are looking for a solution a to the linear system

(6.17.1) Y aBi(z) =w, i=1,...,n
J

This linear system has exactly one solution for every choice of data values y; exactly
when its coefficient matrix is invertible. This motivates the next result, which is a ready
consequence of Proposition 6.16.1.
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(6.17.2) Schoenberg-Whitney Theorem. Assume that all interior knots in the knot

sequence t = (t1,...,4,4x) have multiplicity < k, hence each f € Sy is continuous (on

its basic interval, Iry). Let x := (21 < --- < x,) be a strictly increasing sequence in Iy .
Then, the collocation matrix

Ax = Bulz):4,5=1,...,n)

is invertible if and only if all its diagonal entries (namely the numbers Bjz(z;)), are non-
zero, i.e., if and only if

(6173) tl S Z; S ti+k7 1= 1, cea, Ny,

with equality occurring only if the knot in question is one of the endpoints of the basic
interval, Iy .

The strict ordering of the data-site sequence x not only leads to this neat characteriza-
tion of the invertibility of the collocation matrix A,. It also ensures (see (6.4.2)) that A,
is a banded matrix with at most k& nontrivial bands. It also ensures that Ay is totally
positive, meaning that all its minors (i.e., determinants of submatrices) are nonnegative.
This somewhat esoteric property has many consequences of practical interest. One of
these is that it is numerically safe to solve the linear system (6.17.1) by Gauss elimination
without pivoting, hence in no more storage than is required to store the banded matrix
Ax to begin with.

If the knot sequence t and the order k are already chosen, then the sequence (¢} : i =
1,...,n) of Greville points is a good choice as data site sequence x; it certainly satisfies
the Schoenberg-Whitney conditions {6.17.3). It also serves as a good initial guess
in the iterative process for determining the Chebyshev-Demko sites, x*. These are
optimal sites for interpolation from S, in that the resulting map, f — Py f, is the
most stable among all possible such maps f — P.f. In consequence, Py f is a near-
best approximation to f from Sg: in that |[f — Py fl] < constgdist (f, Sk} for some
f-independent consty.

Figure 6.17.4 A spline interpolant {top) to noisy data (circled) may be unnec-
essarily wiggly. A smoothing spline (middle) or a least-squares
approximant (bottom) to such data may be preferred.
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When the data values y; are noisy, then spline interpolation may produce a highly
oscillating spline, as is illustrated in Figure (6.17.4). In such a situation, one may be
willing to forego exact matching in favor of a ‘smoother’; less wiggly, approximating
spline. There are two standard procedures to accomplish this: the smoothing spline and
least-squares spline approzimant, and Figure (6.17.4) also shows a sample of both.

6.18. SMOOTHING SPLINE

The smoothing spline is constructed as a compromise between the wish to be close to the
data and the wish for a smooth approximation. Closeness of the function f to the data
{(z;, ;) is typically measured by the sum of squares of their difference:

while roughness of f is measured by the size of some derivative of f in the mean-square
norm:

b
R() = [ om sy

with {a..b] the interval of interest. Both measures could involve some weighting function,
though this is more commonly done for E than for R.

Choosing mean-square norms for both E and F' ensures that, for any positive p, the
minimizer f = f, of the weighted sum

E(f) +pR(f)

is a spline, of order 2m and with simple knots, at the data sites, and reducing to a
polynomial of degree < m outside the interval (z; ..x,). As p — 0, this so-called
smoothing spline converges to the so-called ‘natural’ spline interpolant of order 2m to
the given data. At the other extreme, as p — oo, the smoothing spline converges to the
least-squares approximant to the data by polynomials of degree < m.

It is something of an art to choose the smoothing parameter ‘appropriately’. The most
popular choice is based on generalized cross validation; see [12].

6.19. LEAST-SQUARES SPLINE APPROXIMATION

The perhaps somewhat vague notion behind least-squares approximation is to work with
a spline with just enough degrees of freedom to fit the ‘smooth’ function underlying the
noisy data, but not enough degrees of freedom to match also the noise.

In practice, this means that one must somehow choose the order, k, and the knot
sequence t = (#1,...,ty4x), mindful that (1) the resulting basic interval Iy, equal the
interval {a .. b] of interest; and (2) that Sy contain a unique minimizer of E. The latter
is ensured exactly when some subsequence of the data sites x satisfies the Schoenberg-
Whitney conditions with respect to the chosen knot sequence t. In that case, it is usually
numerically safe to determine the B-spline coefficient vector a of the least-squares spline
approximant as the solution to the normal equations

A;(Axa = A;(ya
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with Ay, as before, the B-spline collocation matrix for the chosen order ¥ and knot
sequence t and the given data sites x.

The least-squares fit in Figure (6.17.4) is a cubic spline, with 3 equally-spaced interior
knots.

When approximating a function with widely varying behavior, it is tempting to choose
the location of these interior knots so as to further minimize the error, but the best one
can hope for is a choice that cannot be improved upon by small local variations of the
knot locations.

6.20. BACKGROUND

I have failed, except coincidentally, to supply historical comment or attribute specific
results to specific authors. Nor was there any attempt to prove the results stated, not
even in outline. For all these matters, consult the standard literature.

The relevant literature on (univariate) B-splines up to about 1975 is summarized in [4]
which also contains hints of the most exciting developments concerning B-splines since
then: knot insertion and the multivariate B-splines. Two books on splines, [5] and [11],
which have appeared since 1975, cover B-splines in the traditional way. As presentations
of splines from the CAGD point of view, the survey article [3] and the “Killer B’s” [1,87]
are particularly recommended. The revised version, [7], of [5] develops the central part
of spline theory more in the spirit of CAGD and, in particular, knot insertion. All the
results mentioned here are proved there.
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Chapter 7

Curve and Surface Constructions

Dianne Hansford and Gerald Farin

This chapter introduces algorithms for the generation of curves and surfaces. The em-
phasis is on interpolation and approximation using Bézier and B-spline techniques.

7.1. INTRODUCTION

The goal of this chapter is to outline some of the most fundamental interpolation and
approximation methods in CAGD. Wherever possible, the developments focus on Bézier
and B-spline techniques because of their intuitive geometric definitions. First of all, the
focus is on polynomial curve methods, including Lagrange (point) interpolation, point
approximation, and Hermite (point and tangent) interpolation. Next, a piecewise polyno-
mial scheme, C? cubic spline interpolation is presented. The focus then moves to surface
methods. The topics include: interpolation to boundary curve data with Coons patches,
interpolation to rectangular data with tensor product surfaces, approximation to large sets
of data, and interpolation to point and derivative data. Mirroring the curve presentation,
a piecewise polynomial surface scheme, C? bicubic spline interpolation, is discussed. The
chapter concludes with volume deformations.

For more information on these topics, a good starting point is one of the following
textbooks: [4,10,12,19,26]. The Bézier Techniques and B-spline Basics chapters 4, 6 in
this handbook provide an introduction to much of the theory used here.

7.2. POLYNOMIAL CURVE METHODS

Polynomial curve interpolation is a theoretical cornerstone of CAGD. The first topic in-
vestigated in this section is the most basic formation of this problem: point data interpo-
lation. Due to its importance, this problem is attacked from three viewpoints, and finally
its weakness are examined. Next approximation is examined as a means to overcome the
limits of interpolation. This section concludes with point and tangent data interpolation,
an important building block for piecewise polynomial schemes.

165
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Po

Figure 7.1. Point data interpolation: given n + 1 data points with parameter values, find
the interpolating degree n polynomial.

7.2.1. Point Data Interpolation

Many scientific applications deal with the problem of fitting a curve to discrete point data.
In other words, as illustrated in Figure 7.1, given n + 1 data points p; with associated
parameters t;, find a degree n polynomial curve p(t) such that

This problem is called point data interpolation.

The t; may be thought of as time increments; they indicate how much time a particle
moving along the curve curve must spend between data points. These parameters greatly
influence the fitting method, and if their values are not intrinsic to the application, they
must be carefully assigned. This topic is addressed in Section 7.3.2.

A Direct Approach

Typically, Bézier curves are the preferred representation due to their stability properties
(see Farouki and Rajan [13]). Thus the interpolating polynomial with respect to the
Bernstein basis takes the form

p(t) = Dby B}(0),

where the b; are Bézier points and the BY(t) are the Bernstein polynomials. The “direct
approach” simply means to directly apply the known relationships:

p(t()) =Po = bOBg(tO) + blB?(to) + ...+ anZ(t0)7
boBj(t1) + b1 BL(t1) + ... + by By (1),

T
=
[
°
[

boBj(t,) + b1 B (t) + ... + baBL (L),

=
=
!
T
3
I
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which are n+ 1 equations for the n+1 unknowns for each coordinate of the b;. In matrix
form:

Po Bg(to) By(te) B3(to) ... Brp(to) by
p1 B(t1) Bi(t) Bp(ti) ... Bip(t) b,
. = N : : : . [} (71)
Pn Bg(t,) Bt (t,) B3 (ta) ... Bh(tn) b,

or p = Bb. The matrix B is called the generalized Vandermonde of the interpolation
problem. One can show that the determinant of B is nonzero, and therefore a unique
solution to the interpolation problem exists. The direct approach results in two or three
(depending on the dimensionality of the data points) linear systems with the same coef-
ficient matrix, therefore it is best to construct the LU decomposition of B.

Instead of using the Bernstein basis, one could choose any basis. The monomials,
1,t,#%,...,t", have been the historical favorite (see Davis [7]); in this case, the matrix B
is simply called the Vandermonde.

Aitken’s Algorithm

If one would simply like to evaluate the interpolating polynomial at specific ¢ parameters,
then knowledge of the coefficients of the interpolant is not necessary. Such an evaluation
method is Aitken’s algorithm.

The basic idea behind this algorithm is that polynomials may be expressed as linear
combinations of lower degree polynomials.! Thus Aitken’s algorithm computes a point on
the interpolating polynomial through a sequence of repeated linear interpolations. Given
parameter values t; and the data points p? = p;, compute

r _ti+1‘_t r—1 t—-t . r=1,...,m
B0 = 2y ) + e { (S (12)
Aitken’s algorithm has the following geometric interpretation: pJ is the result of mapping
t with respect to the interval [t;,t;,,] onto the straight line segment through p]™*, p/;}.
The geometry of Aitken’s algorithm is illustrated in Figure 7.2 for a quadratic example.
The intermediate p] are computed from two points from the (r — 1)* stage, giving the
algorithm, for example for the cubic case, the following structure:

Po
1
P1 Po
1 2 (7.3)
P2 P1 Pg
ps p; P! pi.

To prove that Aitken’s algorithm (7.2) interpolates, suppose that the following two
interpolation problems have been solved.
1. pp~!is the polynomial which interpolates to the first n data points, Po, . . ., Pr_i.

n—1

2. py” interpolates to the last n data points, py,...,Da.

INote the similarities with the de Casteljau algorithm.
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P1
Poy7
Po

Po

Figure 7.2. Aitken’s algorithm: a point on an interpolating polynomial may be found
from repeated linear interpolation.

Aitken’s algorithm defines the final interpolant as
tp—t t—ty ,_

Py (t) =~ ——pp 7 (t) + — P (b). (7.4)
th — o tn — %o

Figure 7.3 illustrates this form for a cubic example. One needs to verify that (7.4) does

in fact interpolate to all given data points p;. For t = ¢, interpolation holds:

Pg(to) = 1+ pg™" (to) + 0+ Y~ (to) = po.
A similar result is derived for ¢t = t,. The initial assumption was that pg~'(t;) =
p? ' (t;) = p; for all other values of 4, thus since the weights in (7.4) sum to one identically,
Py (ti) = pi.

One can infer several properties of the interpolating polynomial from Aitken’s algo-
rithm:

e Affine invariance: this follows since Aitken’s algorithm uses only barycentric com-
binations.

e Linear precision: If all p; are uniformly distributed? on a straight line segment,
all intermediate p](¢) are identical for » > 0. Thus the straight line segment is
reproduced.

e No convez hull property: the parameter ¢ in (7.2) does not have to lie between ¢; and
ti4+r- Therefore, Aitken’s algorithm does not use convex combinations only: pj(¢) is
not guaranteed to lie within the convex hull of the p,. One should note, however,
that no smooth curve interpolation scheme exists that has the convex hull property.

e No variation diminishing property : if a straight line intersects the polygon con-
necting the data points m times, then the line can intersect the curve more than m
times. In other words, the curve wiggles more than the polygon. This follows for
the same reason there is no convex hull property.

2If the points are on a straight line, but distributed unevenly, the graph of the straight line will be
recaptured, but it will not be parametrized linearly.
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Py

Po

Figure 7.3. Polynomial interpolation: a cubic interpolating polynomial may be obtained
as a “blend” of two quadratic interpolants.

The Cardinal Form

The cardinal form of a curve or surface representation is the one in which the given data
appear explicitly. With regard to our interpolation problem, the cardinal form would take
the form

p(t) = ZpiL?(t)- (7.5)

The basis functions L7 (f) can be defined by examining the properties which they must
posses. Of course they must sum to one in order for (7.5) to be a barycentric combination.
Additionally, the L?(¢) must satisfy

LY (t;) = 0y, (7.6)

with §; ; being the Kronecker delta. In other words, the i*" Lagrange polynomial vanishes
at all knots except at the i*" one, where it assumes the value 1. From this information,
one can conclude that the Lagrange polynomials L} take the form

Hz;? (t—1t;)
D=t =)

J#i

(7.7)

Figure 7.4 illustrates one such polynomial over a particular knot sequence.
The cardinal form is primarily used for theoretical analysis. In particular, the La-
grange polynomials are useful in answering the following questions:

e Is the interpolating polynomial unique?
o What is a closed form for the interpolating polynomial?

The interpolant in (7.5) is the only representation in which the data appear explicitly.
Therefore, it is often referred to as the interpolating polynomial or the Lagrange inter-
polant even though it could be written it in another basis, as illustrated in Section 7.2.1
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&5

Figure 7.4. A Lagrange polynomial

Asking Too Much of a Polynomial

In practical curve fitting scenarios, it is likely that the number of data points exceeds
ten. As the number of points increases, the main drawback of polynomial interpolation
becomes apparent, as illustrated in Figure 7.5: polynomial interpolants may oscillate.
The left curve in that figure is the Lagrange interpolant to 21 points read off a quarter of
an ellipse. The data points were computed to a precision of six digits. Slightly changing
the input data points, namely by reducing their accuracy to four digits, produces the
right interpolant. This is a disturbing phenomenon: minuscule changes in the input
data may result in serious changes of the result. Processes with that behavior are called
ill-conditioned.

This tendency of polynomial interpolants to oscillate has been studied extensively in
numerical analysis, where it is known as the “Runge phenomenon” [27]. Sample a small
number of points and parameter values from a smooth curve for interpolation, and then
gradually increase the number of points. One would expect the interpolant to converge to
the underlying, smooth curve, however, this is not the case in general. For some sampled
curves, the interpolant diverges. This phenomenon is not due to numerical effects; it is
actually inherent in the polynomial interpolation process. An interesting observation is
that this does not contradict the Weierstrass approximation theorem.

7.2.2. Point Data Approximation
The oscillatory nature of high degree polynomial interpolation, as discussed in Section
7.2.1, prompts one to search for a better solution. Approximation of given data by a low
degree curve which passes “close” to the data points is a practical solution, as illustrated
by Figure 7.6. The added benefit of approximation is a smoothing effect: this is favorable
if an application produces data points which are noisy. The first step in building an
approximation scheme is to consider a metric to measure closeness. Also, the method
should produce a unique solution once given such a metric.

Least squares approzimation is the most widely used approximation method; it is sim-
ple to employ and it uses a familiar metric. The given information consists of m+1 data
points p; with associated parameter values ¢;. Find a degree n polynomial p such that
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Figure 7.5. Lagrange interpolation: The left and right input data only differ by the
amount of accuracy: six digits after the decimal point, left; four digits, right.

the squared distances |[p; — p(¢;)||?> are minimal. To make this more concrete, suppose
that p is a Bézier curve, thus find the b; which minmize the function

f(bo,....by) = Z lIps — Z b; B} (t:) 1.

The minimization of f may be done componentwise, thus with a slight abuse of notation,
formulate the n + 1 equations (for each component) as

9 _y,

Ob;

After differentiating, these n + 1 equations take the form

> o [pi— D b;Bp(t)|Bi(t:) =0; k=0,...,n, (7.8)
=0 7=0

and are referred to as the normal equations.
Alternatively, one may formulate the approximation problem similarly to the direct
approach from Section 7.2.1. Simply write down the given conditions!

beBy(te) + ...+ by Bl () = Po

boBy(tm) + ...+ baBy (tm) = Pm.
This may be condensed into matrix form:

Bilto) - Bulto)] Po

Bg(tm) - B:(tm) Pm
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Figure 7.6. Least squares approximation: data points are sampled from the cross section
of an airplane wing and a quintic Bézier curve is fitted to them.

or
MB =P. (7.9)

Assuming the number of data points, m + 1, is larger than the degree n of the curve,
this linear system is overdetermined. One may simply multiply both sides by MT:

MTMB = M"P. (7.10)

This is a linear system with n + 1 equations in n + 1 unknowns with a square and
symmetric coefficient matrix MTM. The B are assumed to be linearly independent,
thus the n + 1 columns of M are linearly independent, and this ensures full rank of
MTM. Notice that (7.10) is identical to (7.8), thus this solution also minimizes the L?
norm.

This direct approach for constructing an approximation allows for an additional ap-
proximation tool. It may be the case that even the least squares approximation produces
a curve that wiggles too much, as illustrated in Figure 7.7. Another defect of the solution
in this figure is the wildness of the control polygon. One benefit of the Bézier method is
that the polygon often times is a good approximation of the curve’s shape. To achieve
this, one could impose restrictions on the control polygon, for example minimize the
wiggles in the second differences:

by —2b; +by =0

b,_s —2b,_1 + b, =0,

which may be abbreviate as

SB = 0. (7.11)
Simply add these equations to the overdetermined system (7.9),

[(1 -ag)M] B [(1 -Oa)P] _ (7.12)
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Figure 7.7. Least squares approximation: a degree 13 Bézier curve fitted to the airplane
wing data set.

The factor « (restricted to [0, 1)) gives control over the influence of the added equations.
It is solved in the same way as (7.9), that is, by forming the symmetric linear system
of normal equations. The system is solvable because the coefficient matrix of (7.12) still
has n + 1 linearly independent columns, as inherited from the initial matrix M.

The airplane wing data for Figure 7.8 was created by decimating the data from Figure
7.6. A simple least squares solution (7.9) to this data would produce a polygon that
looks worse than that of Figure 7.7. However, by employing shape equations, here with
a = 0.1, results in the solution shown.

7.2.3. Point and Tangent Data Interpolation
Lagrange interpolation can wiggle unexpectedly, thus in an effort to gain more control,
one may specify tangents at the data points. Then the given information consists of
points p;, associated parameter values t;, and associated tangent vectors m;. Interpo-
lating to this data, a cubic polynomial is constructed between each p; and p;;;. This
is called cubic Hermite interpolation. Figure 7.9 illustrates the result of cubic Hermite
interpolation over several segments. Since adjacent segments share the same tangent
vector, a globally C! interpolant is the result.

Consider the two points pg, pP1, two tangent vectors my, my, and parameters to and ;.
The objective is to find a cubic polynomial curve p(t) that interpolates to these data:

p(to) = po, Do) =mgy, p(t1) =m;, p(t)=p,

where the dot denotes differentiation. The interpolant p will be written in cubic Bézier
form, and therefore it is left to determine the four Bézier points, two of them are quickly
determined:

by = po, b; = p1.
The endpoint derivatives for Bézier curves are

3 3
p(tg) = —ADb () = —
P( 0) 0, P( 1) At

A
At b27
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Figure 7.8. Least squares approximation with smoothing: a degree 13 Bézier curve fitted
to an incomplete airplane wing data set. For this example, a = 0.1.

where At =t — tg. Thus we can easily solve for b; and b,:

At At
by = po + ?mo, by =p: — ?ml-

Thus the interpolant in Bézier form takes the form
373 At 3/ At 3,7 35
p(t) = poBy(t) + (Po + ?mo)Bﬂt) +(p1 — ?ml)Bz(t) +p1B;(t) (7.13)

for the global parameter t € [tg, ;] and the local parameter ¢ = (t — #,)/(t1 — to), which
lies in [0, 1].

The cardinal form of the interpolation problem is characterized by the given data ap-
pearing ezplicitly in the equation for the interpolant. Simply rearrange (7.13):

p(t) = poH3(t) + moH; (¢) + mi Hi () + p1 Hi(t), (7.14)
where
Hg(t) = B3(d) + Bi(2),
H() = 5 B,
(7.15)

At _q,»
H3() = - ST B(O),

H3(t) = By(t) + B3 ().

The H? are called cubic Hermite polynomials and are shown in Figure 7.10. An addi-
tional requirement for the H} to be cardinal functions for the cubic Hermite interpolation
problem is the following: They must be cardinal with respect to evaluation and differ-
entiation at t = #; and t = t,, which means that each of the H} equals 1 for one of
these four operations and is zero for the remaining three. Another property to note is
that the point coefficients must sum to one if (7.14) is to be geometrically meaningful:
H3(t) + H3(t) = 1. This is of course also verified by inspection of (7.15).
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Figure 7.9. Cubic Hermite interpolation: the given point, tangent, and parameter data
together with an interpolating cubic in Bézier form.

7.3. C? CUBIC SPLINE INTERPOLATION

C? cubic spline interpolation is probably the most frequently used application of B-
splines. The problem statement is as follows:

Given: a set of data points pg,...,Px and a knot sequence 7p,...,7x and a knot mul-
tiplicity vector 3,1,1,...,1,1,3.

Find: a set of B-spline control points dy, ..., d; with L = K + 2 such that the resulting
C? piecewise cubic curve x(u) satisfies

x(r)=p; 1=0,..., K. (7.16)

Consult Figure 7.11 for an example of the numbering scheme. The triple end knots force
the curve to interpolate to the first and last data point:

dy=py and d; = px,

thus equations for dy and d; may be eliminated from the list of unknowns. Even so, the
above problem is underdetermined because the number of unknowns is K+1, whereas the
number of given data points is X — 1. Typically two end conditions are specified in order
to have a uniquely solvable problem. To begin with, consider clamped end conditions;
other end condition are presented in Section 7.3.1. A clamped end condition corresponds
to the prescription of two derivatives x(7p) and x(7x),

o), (k) = ————[dy — dy )

1 — To TK — TK-1

x(10) =

The clamped end conditions yield

N D(n) and dpy =dp — X 2TE %m0,

d1:d0+ 3
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Figure 7.10. Cubic Hermite polynomials: the four H? are shown over the interval [0, 1].

therefore equations for d; and d;.; may be eliminated from the list of unknowns also.
With end point interpolation and clamped end conditions, the first and last equation of
the linear system are

dQNS(Tl) + dgNg(Tl) =T and dL_gNg_S(TK_l) -+ dL—2N13:_2(7'K—1) =T,
with
r, =py—dN{(n) and r.=pg_—di 1N (7k1)-

Because of the local support property of cubic B-splines, each of the remaining unknowns
d,,...,d;_s is related to the data points by

pi = N} () + i1 N2 (1) + dige N2 (1) i=2,.. K — 2. (7.17)

Together, these are K — 1 equations for the KX — 1 unknown control points. In matrix
form, these equations take the form

[N3(n)  N3(m) l
Ni(rs)  Ni(r2) N3 (m2) d, Ir)s
. . 2
' = (7.18)
. ' PK-2
N} _s(tk—2) N} o(tk—2) Ni_y(tk—2) | ldi- r,
I Ni_a(tr-1) N} o(tx-1) |

Schematically, the case K = 5 looks like this:

% * ds r,
* Kk ok ds| _ |p2
* % x| |dg| ~ |ps

* *| |ds T,

The entries in this tridiagonal matrix are easily computed from the definitions of the
cubic B-splines N?. In the case of uniform knots u; = i, the interpolation conditions
(7.17) take on a particularly simple form:

6p; =d; +4d;y; +dijyn; 1=2,..., K —2. (719)
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Figure 7.11. Cubic spline interpolation: the case of clamped end conditions with six
intervals.

7.3.1. End Conditions

For C? cubic spline interpolation, the choice of end conditions is important for the shape
of the interpolant near the endpoints. Clamped end conditions, as employed in the previ-
ous section, are intended to be used in situations where the end derivatives are actually
known. But in most applications, one does not have this knowledge. Still, two extra
equations are needed in addition to the basic interpolation conditions (7.16). Below is a
list several other end condition methods.

Natural end conditions are derived from the physical analogy of a wooden beam which
is clamped at some positions. Beyond the first and last clamps, such a beam assumes
the shape of a straight line. A line is characterized by having a zero second derivative,
and hence the end conditions
i(Tg) = 0, i(TK) =0
are called “natural” end conditions. In terms of B-spline control vertices (using triple
end knots), this becomes

Ay JAY)
dy — 2d, + d, + ds =0,
0 VP AT AN T A A,
where A; = 7;.; — 7;. Rearrange this equation for the linear system and obtain

(Ao + Al)do - (ZA() + Al)dl + Aon =0. (720)

A similar condition holds at the other endpoint. Unless required by a specific application,
this end condition should be avoided as it forces the curve to behave linearly near the
endpoints.

Bessel end conditions typically yield better results than natural end conditions. They
are defined as follows: the first three data points and their parameter values determine
an interpolating quadratic curve. Its first derivative at pg is taken to be the one for the
spline curve. This results in

2 1
d, = g(apo + pa) + gpo
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where

1 2 2 A
— — = =1-a
a ZaB(pl a’pe — B°p2), « —— and f a

This value for d; is then used in the clamped end condition in the previous section. The
control point d;_; is obtained in complete analogy; it is then also used for a clamped
end condition.

Quadratic end conditions require X(7p) = X(ny). If all data points and parameter val-
ues were read off from a quadratic curve, then this condition would ensure that the
spline interpolant reproduces that quadratic. The same is true, of course, for Bessel end
conditions.

Not-a-knot end conditions work from the premise that if the first and second cubic
segment are parts of one cubic, then their third derivatives at 7; would agree. The name
is derived from the fact that the knot 7, does not act as a breakpoint between two
distinct cubic segments.

7.3.2. Defining a Knot Sequence

The spline interpolation problem almost always assumes that parameter values 7; are
given along with the data points p;. These parameters dictate the amount of time an
imaginary particle on the curve spends between p; and p;,; relative to the neighboring
curve segments. If the data points are not derived from a time dependent application,
then just how to assign parameter values is not entirely intuitive, yet their choice can
have a significant influence upon the shape of the resulting interpolant.

The easiest way to determine the 7; is simply to set 7; = i. This is called uniform or
equidistant parametrization. This method is too simplistic to cope with most practical
situations because it “ignores” the geometry of the data points by spending the same
amount of time between any two adjacent data points. Drastic changes in spacing of the
data can result in overshooting of the interpolant.

The chord length parametrization is a simple method which is a great improvement
over the uniform parametrization. The knot spacing is proportional to the distances of
the data points:

A = M’ (7.21)
Aiy1 - [|[Apin]|
where A; = ;.1 — 7;. Equation (7.21) does not uniquely define a knot sequence; rather,
it defines a whole family of parametrizations that are related to each other by affine
parameter transformations.

The centripetal parametrization [20] improves upon the chord length idea. If one sets

A [l Api ]1/2

7.22
JAVIN) ( )

APl
the resulting motion of a point on the curve will “smooth out” variations in the cen-
tripetal force acting on it.

The uniform parametrization is the only one that is invariant under affine transforma-
tions of the data points. All other methods involve length measurements, and lengths
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are not preserved under affine maps. One solution to this dilemma is the introduc-
tion of a modified length measure, as described in Nielson {24]. For more literature on
parametrizations, see [6,9,15,17,18,21,25]. There is probably no “best” parametrization,
since any method can be defeated by a suitably chosen data set.

7.3.3. The Minimum Property

In the early days of design, a smooth curve was manually drawn through a given set of
points by placing metal weights, called “ducks,” at the data points, and then passing a
thin, elastic wooden beam, a “spline,” between the ducks. The resulting curve is always
very smooth and usually aesthetically pleasing. The wooden beam assumes a position
that minimizes its bending energy. The mathematical model of the beam is a curve x(u),
and its bending energy FE is given by

E—c /0 (5(s))ds,

where x denotes the curvature of the curve, ds is the arc length of the beam, [ is the
length of the beam, and ¢ is a constant determined by the material of the beam.

The integral of the curvature of most curves is difficult to work with, therefore for
mathematical simplicity, one often approximates the above integral by a simpler one:

o / 5t (w)]? du. (7.23)

Note that E is a vector; it is obtained by performing the integration on each component
of x. The penalty for mathematical simplicity is accuracy. The curvature of a curve is
given by

_ A

wl) = TR

But it must be that ||x|| = 1 in order for ||X]] to be a good approximation to x. This
means, however, that the curve must be parametrized according to arc length. This
assumption is not very realistic for cubic splines in a design environment.

While the classical spline curve merely minimizes an approximation to (7.23), methods
have been developed that produce interpolants which minimize the true energy, see [22],
[5]. Moreton and Séquin have suggested to minimize the functional [[«'(t)]2dt instead,
see [23].

7.4. POLYNOMIAL SURFACE METHODS

To a large part, surface methods mirror curve methods. This is apparent in the tensor
product methods of this section. The Coons method presented here deviates a bit from
this idea, although the flexibility it allows in a design environment makes it an important
surface construction method.

7.4.1. Discrete Coons Patches
Coons patches belong to the class of surfacing methods which are capable of transfinite
wnterpolation. This means that the input data are curves rather than discrete points. A
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Figure 7.12. Coons patches: an example.

special case of Coons patches, which is geared toward Bézier techniques, is discussed in
this section. This construction is called a discrete Coons patch (see [11}).

Suppose four curves with a roughly rectangular structure are given, as illustrated in
the left of Figure 7.12. These curves are to be the boundary of a surface patch fit between
them, as illustrated in the right of the figure. Further, assume that all four curves, with
opposite boundary curves of the same degree, are in Bézier form. For m = n = 3, the
given data takes the following form:

by ber bz bes
by b1z
by by
b3y bs; by bss

The problem: find the control net of a Bézier surface that fits between the boundary
curves.

Figure 7.13 illustrates the construction of the Coons patch. In order to find the interior
control points b; ;, first construct a point on each of the following ruled surfaces:

1 1 j Jj
by = (1 - E)bO,j + ‘n;bm,j and b}, = (1- E)bi,o + Ebi,m
Next, construct a point on the bilinear interpolant to the four corner points:
i ;11b b 1-+
uY 1 1 0,0 0,m " m
bl,] {1 n n] |:bn,0 bm,n] [ # } -

The final control point is created as a combination of these three points:

b, = b¥; + by, — bl (7.24)
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Figure 7.13. Coons patches: the construction. Gray points, from bottom: b}, b, by ,.
Above them, solid black: by .

7.4.2. Tensor Product Interpolation

Tensor product interpolation is suitable for data which has a rectangular structure. More
precisely, the given data consist of an (m + 1) x (n + 1) array of data points x,;; 0 <
i <m, 0 <j<n,and each point has an associated parameter value (u;,v;). A tensor
product Bézier patch may be written in matrix form:

bg() s bOn BS(U)
x(u,v) = [ B(u) --- BR(u) ] : : (7.25)

bmo ¢+ bpa B2 (v)

Interpolation requires that (7.25) hold for each pair (u;,v;). This results in (n + 1) x
(m + 1) equations, which may be written concisely as

X =UBY, (7.26)
where
[ Xp0 " ' Xon
X=| : ;|
L Xmo " Xmn
[ Bi(wo) -+ Bm(uo)
U= : : )
L Bi'(um) -+ Bp(um)
[ Coo - Con
B= ,
L Cno *°° Cmn
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Bi(vo) --- Bf(va)
v=| 5
By(ve) - Bp(va)

The matrices U and V already appeared in Section 7.2.1; they are Vandermonde matri-
ces. In an interpolation context, the x;; are known and the coefficients b;; are unknown.
Theoretically they may be found by setting

B=U"'XV" (7.27)

The inverse matrices in (7.27) exist since the functions Bf* and B} are linearly indepen-
dent.

The practical method for finding the control points centers on the tensor product prop-
erty, as discussed in the chapter 4 on Bézier Techniques. Following the schematic diagram
in Figure 7.14, the key is to break the problem down into two sets of curve interpolation
problems. This is apparent by rewriting (7.26) as

X =DV, (7.28)
where

D =UB. (7.29)
Equation (7.28) should be rearranged to follow the normal linear system format, that is
XT =VvD. (7.30)

Thus, first solve (n+1) univariate degree m interpolation problems in (7.30), one for each
row of XT and D, where D contains the unknowns. This is illustrated in the middle of
the figure by the six cubic interpolants — the “rows.” Next, solve (m+1) univariate degree
n interpolation problems in (7.29), which results in B. In the figure, this corresponds
to four degree five interpolation problems, schematically represented by the middle and
right most diagram. It is important to note that the coefficient matrix is the same for
all interpolation problems in the two stages of this algorithm.

7.4.3. Approximation with Tensor Product Patches
Often times the data do not come in a rectangular structure, as expected in the tensor
product interpolation of Section 7.4.2. This is particularly true with the advent of laser
digitizers. Even if the data points have a rectangular structure, it may be nontrivial
to find parameter values such that the univariate curve problems produce reasonable
solutions. Approximation allows for a more flexible surface construction method.
Suppose the given data consists of a set of points pg, ¥ = 0,..., K. Also assume
that each data point py is associated with a corresponding pair of parameters u; =
(uk, vx). Approximate this data by a degree (m,n) Bézier patch. For “best” results, the
number of data points should well exceed the number of points needed for interpolation:
(K+1) >> (m+1)x (n+1). To aid in the construction of the approximant, the Bézier
patch will be written using a linearized notation:

bOO

x(u,v) = [BR)By(o), ., BrBw) | |- (7.31)
bmn

>
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%

Figure 7.14. Tensor product interpolation: left, the data points, middle, interpolating
all rows of data points; right, interpolating all columns from previous step.

The best approximating surface would result in each data point lying on the approxi-
mating surface. For the k—th data point py, this becomes py = x(uy) or

bg,o

>

Pe = [By (ux) By (ve), - .-, Be(we) Bp (o)) | ¢ |- (7.32)
bmn

>

Combining all K + 1 of these equations results in

Po Bi*(uo) By (vo) ... Br(uo)Br(vo)
: : bo,o
= : L (7.33)
: : bm:”
Pk Bt (uk)By(vk) ... Bp(uk)Bj(vk)
which may be abbreviated to
P = MB. (7.34)

These are K + 1 equations in (m + 1)(n + 1) unknowns. If there are many more data
points than control points, then the linear system (7.34) is overdetermined. A “good”
approximation is found by forming

MTP = MTMB. (7.35)

Notice that this approach mimics that used in Section 7.2.2, therefore this is the least
squares solution to the approximation problem. A note of caution: if the number of data
points is very large (10% or more), then the normal equations become ill-conditioned and
the least squares problem may become unstable.
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Defining Parameter Values

In a practical setting, one would not typically be given the parameter values u, =
{(ug,v). Finding good values for the uy is not always an easy problem. Three solutions
are described in this section.

If the data points can be projected into a plane then finding good parameters is not
difficult. Assume they can be projected into the (z,y)-plane for simplicity. Each py is
projected by simply dropping its z—coordinate, leaving a pair (z¢,yx). Scale the (zk, yi)
so that they fit into the desired domain, and then set u; = z; and vy = yi.

If the data can be projected onto a cylinder then finding parameters is also not diffi-
cult. For example, assume they can be projected onto the cylinder

cos(f)
x(8,2) = |sin(6)

z

When each py is projected onto the cylinder, the projected point’s (6, zx) coordinate
will correspond to the parameters of px. Of course an actual projection is not necessary.
Here, the value of € is determined by a calculation in the (z,y)-plane, and z; is directly
extracted from py. Finally, scale all (6, z;) to live within the desired domain.

For less structured data, it might be necessary to use a more sophisticated method.
First, obtain a triangulation of the data points. This scenario is realistic for data ob-
tained using a laser digitizer. Assuming that the triangulation is isomorphic to the unit
square, we can construct a triangulation in the unit square with the same connectivity
as the given one in 3D. The following method is due to Floater [14]. First, a convex
polygon is built in the (u,v) unit square with as many vertices as the 3D mesh has
boundary vertices. This polygon is somewhat arbitrary; a circle or the boundary of the
unit square are good candidates for forming it. In this way, we assign 2D parameters
to the 3D mesh boundary points. Next, consider any interior point u of the 2D mesh
with n neighbors. These neighbors are labeled u,,...,u,. For a “nice” triangulation,
the following condition should be satisfied for each interior u:

1 n
== 7.36
u n;u (7.36)

We now observe that there are as many equations (7.36) as there are (unknown) interior
points in the mesh. Some of these equations involve boundary points, others will not.
This system is always solvable.

Shape Equations

One of the points of using Bézier techniques is the benefit of a polygon that closely
resembles the shape of the underlying curve or surface. However, the solution to a least
squares problem in Section 7.4.3 may be close to the data points, yet the control net
might “behave badly,” similar to the curve case as illustrated in Figure 7.7. As with
curve approximation, a way to combat such behavior is to invoke shape equations. These
are conditions that a “good” control net would satisfy. A translational surface, which
is characterized by the fact that its twist vanishes everywhere, has a very well-behaved
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Figure 7.15. Bicubic Hermite patches: some of the data points and vectors.

polygon. In terms of the control net, this means that
AYb;;=0; i=0,...,m~-1, j=0,...,n—1

When these equations are added to the overdetermined linear system (7.34), the result
will be less faithful to the data points, but it will achieve a control net with better shape.
In practice, one would weigh the shape equations, just as was done for the curve case.

7.4.4. Bicubic Hermite Patches

Many surface schemes are generalizations of curve schemes. Bicubic Hermite patches
follow that rule, as they are a generalization of cubic Hermite interpolation from Section
7.2.3. Again, to gain more control over the interpolant, derivatives are introduced to the
given information. As illustrated in Figure 7.15, the given data for this interpolation
problem include points, partials, and mixed partials at each corner:

x(u,v0)  Xu(uo,%)  Xo(ug,v1)  x(ug,v1)
X (UO,UO) Xuw(U0, V0)  Xup{Uo, V1) Xuluo,v1)
h; ;] = " v . 7.37
[ 2’]] X (U1, U0) X1, 00) Kuwl{u1,v1) Xolug,v1) ( )
xX(u1,v0)  Xe{ur,vo) Xe(u,vi)  x{ug,v)
Note how the coefficients in the matrix are grouped into four 2 x 2 partitions, each holding
the data pertaining to one corner. Additionally, the parameter space must be given, for
instance, define the patch over up < u < u; and vo < v < vy,
Employing knowledge of the Hermite basis functions from Section 7.2.3, the interpo-
lating bicubic Hermite patch takes the following form:

x(uo) = oY by { I (739)

v <v<w
i=0 j=0 0=Y="

Keep in mind that the H? must incorporate the parameter interval, as defined in (7.15).
In order to define the bicubic Bézier representation of this patch,

xX(u,v) = Y > by;BY(s) B (t);

i=0 j=0

Ul —uo

vp<v<uyy, t=2-T
— — v1—vp

{uoSUSU1, § = ok
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the control points must be defined. First, the corner points are simple assignments:
boo = x(uo,v0), bzo = x(ur,v0), boz=x(ug,v1), baz=x(u1,v).

The boundary control points are computed using the curve algorithm from Section 7.2.3,
for example

{u1 — up) (w1 — o)
3 3

Recall from the Bézier Techniques chapter 4 that the mixed partials at the corners of a
Bézier patch take a very simple form, for example at one corner of the bicubic patch,

b1 = x(ug, vo) + Xu(tg, Vo), bag = x(ui, vo) — Xy (11, Vo).

X(Uo, Uo) = Al’lbo,m

AulAv

where Au = uy — ug and Av = vy — vy. Therefore, the middle, or twist control points are
assigned as follows

AulAv
by = 9 Xy (20, U0) + bo1 + bro — bog
AuAv
by, = ~ 9 Xuw (U1, %) + b3 — bgg + bag
AuAv
by, = — 9 Xuy(Ug, U1} +b1g — bgs + by,
AuAv

b2,2 =

Xuw(U1,v1) — bgs + boz + bao.

Thus the bicubic Bézier patch, which interpolates to Hermite data, has been completely
defined.

7.5. C? BICUBIC SPLINE INTERPOLATION

In an interpolation context, if given point data come in a rectangular structure, often
times there will be too many points to realistically use one polynomial patch, as was
done in Section 7.4.2. Higher degree patches have a tendency to oscillate. An alterna-
tive approach is to employ bicubic Hermite patches, however generation of the necessary
derivative data is not trivially done in a meaningful manner. The most popular solution
to this problem are tensor product bicubic B-spline surfaces. The principles from Section
7.4.2 apply here too.

Suppose we are given (K + 1) x (L + 1) data points x;; and two knot sequences
ug, ..., ux and vy, ...,vy. This interpolation method will employ a bicubic tensor prod-
uct B-spline surface,

x(u,v) = Y Y dy N (u)Ni(v), (7.39)

1=0 7=0

which has triple knots at each end of the two knot sequences and simple knots elsewhere.
This special requirement results in the relationships M = K +2 and N = L + 2, that is,
the final B-spline control net has two more rows and columns than the given data point
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Figure 7.16. Tensor product bicubic spline interpolation: the solution is obtained in a
two-step process.

array. The given knot sequences correspond to the unique knots in the knot sequences of
the B-spline surface. The solution to this interpolation problem constitutes finding the

Figure 7.16 illustrates the steps necessary to define the interpolating B-spline surface.
For each row of data points, prescribe two end conditions, such as Bessel tangents, and
solve the univariate B-spline interpolation problem as described in Section 7.3. Since all
interpolation problems use the same knot sequence, each problems has the same tridi-
agonal coefficient matrix, thus an LU decomposition technique should be applied. The
points marked by triangles in Figure 7.16 have thus been constructed. Now take every
column of points denoted by triangles, and perform univariate B-spline interpolation on
it, again by prescribing end conditions. The resulting control points constitute the de-
sired B-spline control net. An example is shown in Figure 7.17. An alternative approach
would be to interpolate first to the columns of data points. This would produce the same
result, however the computation count for the two processes are not identical.

7.5.1. Finding Knot Sequences

One obstacle to a good interpolant is the generation of one set of parameter values for
all isoparametric curves in the u-direction; the same holds for the v-direction. When the
data points significantly deviate from a regular grid, the problem of finding an appropriate
parametrization can be quite difficult. As discussed in Section 7.3.2, a poor choice in
parameters can cause an isoparametric curve to unnaturally wiggle, and this defect will
be reflected in the surface. One possibility for finding a reasonable parametrization is the
following. Create a good parametrization for each isoparametric curve using one of the
methods from Section 7.3.2. Average each of these parametrizations to yield one. This
approach will only produce acceptable results if all our isoparametric curves essentially
yield the same parametrization. It is not difficult to find an example for which this will
not help. Figure 7.18 illustrates from a schematic point of view, the type of distribution
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Figure 7.17. Tensor product bicubic spline interpolation: the given data, solid circles,
and the solution, using Bessel end conditions and uniform parametrizations.

of data that will cause this method to fail.
7.6. VOLUME DEFORMATIONS

Once an initial curve or surface is designed, sometimes a deformation of the shape is
called for; this would be a bending or stretching of the shape. P. Bézier [1-3] devised an
intuitive method to deform a Bézier patch which eliminated the need to tediously move
control points. His method also applicable to B-spline surfaces. A more graphics-oriented
version of this principle was presented by Sederberg and Parry 28], see also {16].

To illustrate the principle, consider the 2D case first. Let x(¢) be a planar curve (Bézier,
B-spline, rational B-spline, etc.), which is, without loss of generality, located within the
{u, v) unit square. Next, cover the square with a regular grid of points

. . 1 =0,...,m;
bi,j=[z/m,]/n]T, {]:O .

Every point (u,v) may be written as
m n

(w,0) = D > bii Bl (W)B}(v).
=0 j=0

This follows from the linear precision property of Bernstein polynomials. Now, distort
the grid of b, ; into a grid b; ;; the point (u,v) will be mapped to a point (4, 9):

(@,9) = > Y bi;B"(u)B}(v), (7.40)

i=0 j=0

which is a mapping of IE? to IE% In particular, the control vertices of the curve x(t)
will be mapped to new control vertices, which in turn determine a new curve y(t). Note
that y is only an approximation to the image of x under (7.40).> This is highlighted by

3 An exact procedure is described by T. DeRose [8].
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Figure 7.18. Finding parameter values: this 4 x 3 array of data points are distributed so
that it will be very difficult to find a good parametrization in the “horizontal” direction.

the fact that the image of x’s control polygon under (7.40) would be a collection of curve
arcs, not another piecewise linear polygon. Figure 7.19 gives an example of the use of
this global design technique. This technique may be generalized. For instance, we may
replace the Bézier distortion (7.40) by an analogous tensor product B-spline distortion.
This would reintroduce some form of local control into our design scheme.

The next level of generalization is to JE, and requires the introduction of a trivariate
Bézier patch,

> By BY (u) B} (v) By w), (7.41)

which constitutes a deformation of 3D space. Similar to the planar deformation, the
control net in (7.41) is used to deform the control net of a surface embedded in the unit
cube. Again, the use of a Bézier patch for the distortion is immaterial; trivariate B-splines,
for example could have been used too.

A practical example of volume deformations, as illustrated in Figure 7.20%, is in brain
imaging. In comparative studies, many MRI brain scans have to be compared. Different
people have differently shaped brains; in order to carry out a meaningful comparison,
they have to be aligned and then they have to be deformed for a closer match - see [30]
or [29]. While volume deformations take 3D objects to other 3D objects, it is convenient
to visualize the results by a sequence of 2D slices, as shown in Figure 7.20.
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Figure 7.20. Deformation of brain scans: the original two scans, superimposed, are shown
on the left. A series of deformations deforms the light colored brain contour to the dark
colored one.
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Chapter 8

Geometric Continuity

Jorg Peters

This chapter covers geometric continuity with emphasis on a constructive definition for
piecewise parametrized surfaces. Section 8.1 gives examples that show the need for a
notion of continuity different from matching of Taylor expansions as in the case of func-
tions. Section 8.2 defines geometric continuity for parametric curves, and for surfaces,
first along edges, then around points, and finally for a whole complex of patches which
is called a G* free-form surface spline. Here G* characterizes a relation between spe-
cific maps while C* continuity is a property of the resulting surface. The composition
constraint on reparametrizations and the vertex-enclosure constraints are highlighted.
Section 8.3 covers alternative definitions and approaches to generating free-form surface
splines, and briefly discusses geometric continuity in the context of implicit representa-
tions and of generalized subdivision. Section 8.4 explains the generic construction of G*
free-form surface splines and points to some low degree constructions. The chapter closes
with pointers to additional literature.

8.1. MOTIVATING EXAMPLES

This section points out the difference between geometric continuity for curves and surfaces
and the continuity of functions. The examples are formulated in Bézier representation
(Chapter 4 on Bézier Techniques).

Two C* function pieces join smoothly at a boundary to form a joint C* function if,
at all common points, their xth derivatives agree for k = 0,1, ..., k. Since the z, y and
z components of curves and surfaces are functions, it is tempting to declare that curve
or surface pieces join smoothly if and only if the derivatives of the component functions
agree. However, as the following four examples illustrate, this criterion is neither sufficient
nor necessary for characterizing smooth curves or smooth surfaces and therefore motivates
the definitions in Section 8.2.

The first two examples illustrate the inadequacy of the standard notion of smoothness
for functions when applied to curves. In Figure 8.1 the V of VC is parametrized by the

193
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°

Figure 8.1. Matching derivatives of the component functions and geometric (visual) con-
tinuity are not the same: the V of VC is parametrized by two parabolic arcs with equal
derivatives at the tip, but the V shape is not geometrically continuous; the C of VC is
parametrized by two parabolic arcs with unequal derivatives at their common point, but
the C shape is geometrically continuous.

two quadratic pieces, u,v € [0,1],

a(w) =[7'](1 - u)?+[§]20 - wu +[§]u”

and

a(v) = [§](1 —v)* +[§]2(1 - v)v + [}]v*.

Evidently, at the common point q;(1) = [§] = q2{0) the derivatives agree:

(Dan)(1) = [§] = (Da2)(0)-

However, even with suitably cushioned end points, the V should not be handed over
to boys or girls under the age of 1 for fear of injury from the sharp corner. Matching
derivatives clearly do not always imply smoothness. Conversely, smoothness does not
imply matching derivatives. The C of VC is parametrized by the two quadratic pieces,
u,v € [0,1],

qs(u) = [3] (1 —w)? + [§]2(1 — wu + [§]u?
and
as(v) = [§] (1 —v)* + [ ] 2(1 —v)v + [ 3] 0%

The C is visually (and geometrically) smooth at the common point q3(1) = [§] since the
two pieces have the same vertical tangent line but the derivatives do not agree:

(Das)(1) = [—04] # [—02] = (Dq4)(0).

Both examples could be made consistent with our notion of continuity for functions if we
ruled out parametrizations with zero derivative and substituted v — 2v in q4. In the case
of surfaces, the distinction between higher-order continuity of the component functions
and actual (geometric) continuity of the surface is more subtle.
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In two variables, we contrast the smoothness criteria for surfaces with the concept valid
for functions by looking at two examples involving polynomial pieces in total degree Bézier
form, i.e. de Casteljau’s triangles (Chapter 4 on Bézier Techniques). A necessary and
sufficient geometric criterion for two polynomial pieces p;,ps : B2 — R to join C' along
a common boundary, is the ‘coplanarity condition’ (Chapter 4 on Bézier Techniques),
illustrated in Figure 8.3,left; the function pieces p; and p, join C! if all subtriangles of
the control net are coplanar that share two boundary points. Since the coplanarity of the
edge-adjacent triangles of the control net is a geometric criterion it is tempting to use it
as a definition of smoothness for surfaces consisting of the 3-sided patches. However, the
criterion is neither sufficient nor necessary.

To see that coplanarity of the edge-adjacent triangles of the control net does not imply
tangent continuity of the surface consider the eight, degree 2, triangular, polynomial
patches (Figure 8.2) whose control nets are obtained by chopping off the eight corners of
a cube down to the midpoint of each edge. The edge midpoints and face centers of the
cube serve as the control points of 8 quadratic 3-sided Bézier patches. For example, the
patch in the positive octant (with thick control lines in Figure 8.2, left) has the coeflicients

0 1
HINE
1 1

Figure 8.2. (left) The 6-point control net of one degree 2 patch in Bézier form is drawn
in thick lines. The two subtriangles in the control net that include the end points of a
boundary of the patch define the derivative along that boundary. For two edge-adjacent
patches these subtriangles are mirror images and coplanar with their counterparts in the
other patch. Still the surface defined by the patches is not tangent continuous as the
creases in the surface demonstrate. {The creases are visible in the silhouette and in the
change in surface shading, right).
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Figure 8.3. (leff) Two polynomial pieces p; and p, join to form a C! function if all
subtriangles of the control net that share two boundary points (striped) are coplanar
(Farin’s C! condition). (right) Even though the middle cross-boundary subtriangle pair
(where the patch labels p and q are placed, right) are not coplanar the two Bézier patches
p(A) and g(A) join to form a tangent continuous surface.

Figure 8.2, right shows that the patches join with a sharp crease at the middle of their

common parabolic boundaries. Indeed, the normal at the midpoint [%)g} of the equatorial

2/3
boundary of the positive octant patch is [2/3J , but to match its counterpart in the lower
/3

hemisphere, by symmetry, the z-component would have to be zero. Upper and lower
hemisphere therefore do not meet with a continuous normal.

Conversely, the geometric coplanarity criterion is not necessary for a smooth join. The
two cubic pieces p,q with coefficients {c.f. Figure 8.3)

72
72
6
36 72
36 36
0 12
EE I
p Q 12
0 24 48 72
0 0 0 0
0 0 12 12
0 24 48 72
0 0 0
0 12 12
ANEANE
a [ 12 12
18 36
—18 —18
G 12
24
—24
6

have the partial derivatives Dip = D,q along and D,p, respectively D;q across the
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Figure 8.4. If the patches meet with tangent continuity, the transversal derivative D,.p
of p must be a linear combination of the versal derivative vector D,g in the direction e
along the preimage E of common boundary p(F) and the transversal derivative D,.g in
the direction e' perpendicular to e: D,1p = aD.g + 8D,.g.

common boundary:

72

Op).0) = [§]a-02+[F]20-0t+ [F] £ = (0,
(Dyp)(t,0) = [%02] (1- )%+ [208} 21— )t + [%02] £,

(Dia)(0,) = [Ho] (1= + [2R] 201 - e+ [ o]

With the help of Maple, we can check that the partial derivatives are coplanar at every
point of the boundary, i.e. det (D;p(t,0), Dop(t,0), D1q(0,t)) = 0, the zero polynomial
in t. Since the surface pieces neither form a cusp nor have vanishing derivatives along the
boundary, the normal direction varies continuously across (cf. Lemma 8.3.1, page 212).
On the other hand, for the control point differences of the middle pair of subtriangles,
labeled p and ¢ in Figure 8.3,

det({;oﬂ , [%08] , [_;szsb = 5832 £ 0.

This shows that, in contrast to a C! match between two functions, edge-adjacent subtri-
angle pairs need not each be coplanar to obtain a tangent continuous surface.

8.1.1. Differentiation and evaluation

Even though derivatives of the component functions by themselves do not yield a correct
picture of curve and surface continuity, the definition of geometric continuity relies on
derivatives. And since we work with functions in several variables, some clarification of
notation is in order.

First, it is at times clearer to denote evaluation at a point @ by f lo rather than
F(Q), evaluation on points along a curve segment E by f |z and to use the symbol o for
composition, i.e. gor = g(r). We use bold font for vector-valued functions and, somewhat
inconsistently but ink-saving, regular font for directions of differentiation e and points of
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evaluation, say @ or 0, the zero vector in R®. The notation D* for the sxth derivative in
one variable is consistent with the notation in two variables from [106]:

Definition 8.1.1 (Differentiation) The differentials D*p of a map p : R +— R® with
z-, y- and z-components pi¥l, p¥, p&l and the domain spanned by the unit vectors e; 1 ey
are defined recursively as

EH(Q + te;) — pt] D.,pl")
De'p[r} lQ — 111’(1)1 p (Q et) p (Q), Dﬂp = l:Deipiy]] , Dp c= [Delp De2p] ,
D, pt*

x . Dey Deyp Dey De

D*:= DD*"', e.g. D’p = DDp = [De;Degg DezDe:g] :

If the Jacobian Dp is of full rank 2, p is called regular. We often abbreviate D;p = D, p.
In one variable (see e.g. [17])

D*(gop) = ZZCxu(DJg)Op)( p)F - (Drp)t

7=1 K(j)

This combination of the chain rule and the product rule is called Fad di Bruno’s Law and
the bookkeeping is hidden in the index set

) . u N K!
KOsk 2 08 = b Dk =50 D ik = xh 60 = py 7 e
In two variables D*g (no subscript) is a s-linear map acting on R?** (x terms). Its
component with index (i1,%9,...,%,) € {1,2}* is D;, D;, --- D; g. The arguments of D*g
are surrounded by {-) and {a,a,...,a,b,...,b) with a € R? repeated i times and b € R?
repeated j times is abbreviated as {(a)’ ,(b)J ). We can then write the bivariate Fad di
Bruno’s Law as

Hgor) = Z Z cK(])( (D’g) o r) (Dir)kr, ... (Dfr)*=).

J=1 K(j)

For example

I

D (a.b) il a) [ Dif Dngf} [ ]

Di\Dof  Dif
= allblip?s + (alb® + aBbMy Dy D, f + PP D2f.

8.2. GEOMETRIC CONTINUITY OF PARAMETRIC CURVES AND SUR-
FACES

This section defines kth order geometric continuity, short G¥ continuity, as agreement of
derivatives after suitable reparametrization, i.e. paraphrasing [58], ‘geometric continuity
is a relaxation of parametrization, and not a relaxation of smoothness’. Section 3 will
show that G! and G? are equivalent notions to continuity of the tangent and curvature(s).
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P1 g2
g1tg2
2
p1+p2
2
21
P2

Figure 8.5. The average (bold lines) of two curves, whose pieces p; and g; join G*, can
be tangent discontinuous, i.e. its pieces do not even join G*.

8.2.1. Joining parametric curve pieces
Definition 8.2.1 (G* join) Two C* curve segments q : [a.b] = R and p : [0.c] = R
join at p(0) with geometric continuity G* via the C¥ map p: R — R, p(0) = b, if

Dk(gop) IOZDKP|0 K':07"'7k7 Dp|0>07Dp|07£0
The map p is called reparametrization. If p is a rigid transformation then p and g are

said to join parametrically C* and if p = id, the identity map, then p and g form a C*
map.

The constraint Dp |o > 0 rules out cusps and other singularities.
With the abbreviation j*p |o = [p |o, DP lo; - - -, D*p |o]F € RE+D*™ for p € R*, Féa
di Bruno’s law applied to j*p |o = j*(g o p) |o yields

B -
D b
: . D?p (Dp)
Jkp ’0 = A(Jkg) IP(O)v A= D3p o (Dp)3 |0a o= SDpD2p
L Drp ... (Dp)k_

The matrix A of derivatives of p is called G¥ connection matriz [13], [113] or B-matrix
[7] and j*p is the k-jet of p. In one variable, two regular maps p and g can both
be reparametrized so that p(pp) and q{pq) have the preferred arclength parametrization
(Chapter 2 on Geometric Fundamentals), i.e. unit increments in the parameter correspond
to unit increments in the length of the curve. Then j*(p o pp) o = j*(q o py) o-

G* splines with different connection matrices do not form a linear vector space; in
particular the average of two curves that join G* is not necessarily G* as illustrated in
Figure 8.5: if p; and q; join G* via p, at p;(0) and p, and q, join G* via py at p,(0) =
p1(0) then, in general, there does not exist a reparametrization p so that (1 — o)p, + opo
joins G¥ with (1 — o)g, + ogy at p2(0) = p;(0). That is, there does not generally exist a
connection matrix A such that

A(1 - 0)j*g: + As0iga = A((1 - 0)i*g1 + 0i*g2).
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In the example shown in Figure 8.5,

jlpl = [3 —ll]aAl = [62],j1g1 = [8—11/3] ) jlgz =j1p2 =3 1

but j'(p1 + p2)/2 = [J4] while ji(g; + g2)/2 = [3 f;g] and there does not exist a G!
0

connection matrix A = [§ J,] such that j'(p: + p2)/2 = Aj'(g) + g2)/2.

However, if we fiz a (k; + 1) X (x; + 1) connection matrix at the ith breakpoint, we
can construct a space of degree k splines with prescribed G*¢ joints and knots of order
k — k;. Such a spline space can be analyzed as the affine image of a ‘universal spline’
whose control points are in general position [113].

Conversely, any given polygon can be interpreted as the control polygon of a G* spline:
by iterated linear interpolation (corner cutting), the polygon is refined into one whose
vertices, when interpreted as Bézier coefficients, define curve pieces that join G¥, e.g. {11]
for k = 2, [38] for Frénet frame continuity ( see Section 8.3.1) and [113], [114], [115] for
the general case.

There are degree-optimal constructions for this conversion, i.e. constructions that max-
imise the smoothness of the spline for a given number of corner cuts, i.e. polynomial
degree. Via the notion of order of contact (see Section 8.3.1) smoothness is closely related
to the ability to interpolate, say the data of a previous spline segment. Following the
pioneering paper [20] where it was observed that a cubic segment can often interpolate
position, tangent and curvature at both end points (see also {64],[22]), Koch and Héllig
[61] conjectured that, under suitable assumptions, “splines of degree < n can interpolate
points on a smooth curve in R™ with order of contact k —1=n—-1+|(n—1)/(m~1)]
at every n* knot. Moreover, this geometric Hermite interpolant has the optimal approx-
imation order k 4+ 1” (see also [101}).

0]
o

8.2.2. Geometric continuity of edge-adjacent patches

We now turn to a constructive characterization of the smoothness of surfaces assembled
from standard pieces used in CAGD, such as 3- or 4-sided Bézier patches, or tensor-
product b-spline patches.

Definition 8.2.2 (Domain, reparametrization, geometry map, patch)

o A domain is a simple, closed subset A of R?, bounded by a finite number of possibly
curved edges E;. Edges are not collinear where they meet.

e Let Ey be an edge of the domain Ay and Ey an edge of the domain Ay. Denote
an open neighborhood of a set X by N(X). Thenrt : N(E) — N(E,) is a C*
reparametrization between A, and Ay if it (1) maps Ey to FEs (2) maps points
exterior to Ay to points interior of Ay, and (8) is C* continuous and invertible.

o A C* geometry map is a map g : A — R® such that D*g,x = 0,...,k is continuous
and det(Dg) # 0; g(A) C R? is called a C* patch.

Regularity of the geometry map det(Dg) # 0, rules out geometric singularities, such as
cusps or ridges, and avoids special cases — but it off-hand also rules out singular maps
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Figure 8.6. Reparametrization r : R? — R? and geometry maps p,g : R2 — R3. For
a G* join via r, the traversal derivatives D* (gor) and D%, p have to agree along the
common boundary p(F) for k = 0,..., k. The dashed lines indicate that r(E) need not
be a boundary edge of the standard domain of g.

that generate perfectly smooth surfaces ({84], [79], [15], [102]). These constructions are
shown to be smooth by a local change of variable that removes the singularity. Defining
the domain boundary to consist of a few edges is specific to CAGD usage: we could have
a fractal boundary separating two pieces of the same smooth surface.

The map g is called geometry map to emphasize that the local shape (but not the
extent) of the surface is defined by g. The image in R® of g restricted to its domain is
the patch. The reparametrization r maps outside points to inside points

to prevent the surface from folding back onto itself in a 180°-turn.

Next we join two pieces (c.f. Figure 8.6).

Definition 8.2.3 (G* join) Two C* geometry maps p and g join along p(E) with geo-
metric continuity G* via the C* reparametrization r if

D*p |g =D*(gor) |lg, k=0,...,k

If r is a rigid transformation then p and g are said to join parametrically C* and if
r = id, the identity map, then the restrictions of p and g to their abutting domains form
a C* map.

Since p, g and r are C* maps, G* continuity along p(F) with C* reparametrization r is
equivalent to just £ + 1 univariate polynomial equalities corresponding to differentiation
in the direction el perpendicular to the edge E:

Diplg=Di(gor) g, k=0,...,k
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That is, as one might expect and can check by Fad di Bruno’s law, kth order continuity
between two geometry maps depends on the Taylor expansion of r, p perpendicular to
the edge E only up to kth order. In particular to the dege F only up to kth order. In
particular, it is not necessary to know r completely.

Ezample Consider two C? geometry maps p and g, and a C? reparametrization r :
r(t,0) = (0,¢). E = {(t,0): t €[0,1]} and e* = (0, —1). An alternative parametrization
of E is {(t%,0) : t € [0,1]}. Such a definition would make the subtle point that G° and
C® can differ as well, since the reparametrization r(t,0) = (0,/t) is required to equate
the derivatives along the boundary. (If p and g are polynomials of the same least degree
then r can only be linear and p and g share the same parametrization along the edge).
We write the conditions for p and g joining G? via r along p(E) and translate them into
a commonly used, abbreviated notation where g, := Di2g = De, ., 8-

Pleoy = gorlwo

Deip o)y = Dg leo){(Dert) u,0))
= Dgg |(0 t)( elr)[l] |(t 0) + D.g l(O,t)(Delr)[Q] |(t,0)» (DeLl‘)m >0,
= g.(0,t)a(t) +g(0,0)8(t), B>0,

D2plaey = (D8 lrwo){(Deir) |0y, (DerT) lit0)) + Dg le(eoy DT |(e0)
= -+ Dog (D) g
= 8uu(0,1)0’(t) + 28w (0, 1) (1) B(2) + 80u(0, £)5°(1)

+8u(0,t)o(t) + 8,(0,8)7(¢).

In particular, for p and g defined on page 196,

we compute D, q |0y = Dp |0 - [%] . o

The example illustrates that it is convenient and shorter to give separate names,
a, 3,0, T, to the partial derivatives of r evaluated on the edge £. We can in fact specify
just the partial derivatives rather than all of r: if we group the two components of each
derivative into a vector we can define r in terms of C¥~J-vector fields along r(F) (Lemma
3.2 of [53]). Provided the derivatives are sufficiently differentiable in the direction et
perpendicular to E we thereby prescribe the Taylor expansion of r (by the Whitney-Stein
Theorem).

8.2.3. Geometric continuity at a vertex

We extend our new notion of geometric continuity to n patches meeting at a common point,
e.g. at a point of the global boundary where the patches may meet without necessarily
enclosing the point (c.f. Figure 8.7).

Definition 8.2.4 (G* enclosure) The C* geometry maps g; : A; — R, i = 1,...,n,
meet G¥ viar;;,1,1=1,...,n— 1 with corner @ € R? if

e g; and giy1 join G* viar; iy along gip1(Eipr),

* &i(Ei(0) =Q
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Figure 8.7. Patches meeting at a corner Q = g;(E;(0)) = gi(E; (1) = g;(E;(0)), j = (¢
mod n) + 1.

e the normalized tangent vectors of each g; sweep out a sector of a disk and these
tangent sectors lie in a common plane and may touch but do not overlap.

The C* geometry maps form a G* enclosure of the vertex Q if additionally g, and g, join
G* via 1, along g1(Ey).

The regularity of the C* geometry maps implies that each tangent sector is the 1 to 1
image of a corner formed by the non-collinear edges E~ and E of the domain. Moreover,
the geometry maps do not wrap around the corner more than once. The common plane
referred to above is therefore the tangent plane and, by the implicit function theorem we
can expand the geometry maps as a C* functions at .

Where a point is enclosed by three or more patches, additional constraints on r and
g arise because patches join in a cycle. If one were to start with one patch and added
one patch at a time, the last patch would have to match pairwise smoothness constraints
across two of its edges. More generally, if all patches are determined simultaneously, a cir-
cular interdependence among the smoothness constraints around the vertex results. This
circular dependence implies composition constraints on admissible r and verter enclosure
constraints, on the g;. The latter imply for example the important practical fact that it
1is not, always possible to interpolate a given network of C! curves by a smooth, regularly
parametrized tangent-plane continuous surface with one polynomial patch per mesh facet
[85]. A characterization, of when a curve network can be embedded into a curvature
continuous surface can be found in [54].
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Figure 8.8. The derivative D7*D3p; of a geometry map p; at the central vertex is rep-
resented symbolically as a e, o, or ¢ placed m units into the direction of the first edge
and n into the second. Elements of the total-degree 2-jet j> are marked e, elements of
the coordinate-degree 2-jet J? are marked e or o, elements of j* are marked e, o, or .
The higher-order derivatives H¥ appearing on the right hand side of the vertex-enclosure
constraint system are marked by diamonds o.

To discuss the details, the k-jet notation (c.f. page 199) is helpful:

Definition 8.2.5 The coordinate-degree k-jet, J¥p, is a vector of directional derivatives
DiDip, 1,5 € {0,1,...,k} sorted first with key i + j, then, within each group, with key i.
The total-degree k-jet, j*p, consists of the first () entries of the coordinate-degree k-jet.

For example, as illustrated in Figure 8.8 (see also [59], p.61, [53]),

i*» = (p,Dip, D2p, Dip, D1 D;p, D2p),
Fp (p, D1p, Dyp, D?p, Dy Dop, Dip, DiD,p, D1 Dip, DIDip).

li

The composition of k-jets, j*g |e() 0 j*r |p = j*(g or) |p, is associative and has the
identity map id as its neutral element. In k-jet notation the conditions for geometric
continuity are

i*p Ie =38 gy 0 §*r |5

Composition constraint on reparametrization maps
Assume now that the C* geometry maps g;,i = 1,...,n, meet G* via r;;;1 with corner
gz(0)7 0¢€ RZ, ie. ri,i+1(0) =0 and

jkgl Io = jk(gnorn,l) o=...=]

= jk(gl 01'1’20...01'1,,1) l

k(g2 orgzo...ory) o
0
By the implicit function theorem, since g; is regular, Dg; has a left inverse in the neigh-

borhood of 0 and that implies the Composition Constraint

jk(rm 0...0 rn,l) 10 = jkld 10,
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i.e. the Taylor expansion up to kth order of the composition of all reparametrizations
must agree with the expansion of the identity map.
Ezample For k =1 and n = 3 and with r; ;(0,t) = (¢,0) we have

riporgzory; o = 0,
DrlyzDrz’ng‘g’l ’0 = Did Ig.

With scalars A; and p;, the second equation is equivalent to the matrix product

AL [ 1) A 1) 10
pr Of |2 Of {us O 0 1
which is in turn equivalent to

pipops = —1, )\]’}Liz 1, 1=1,2,3,73= (’L mod 3)+1

In general, the G* constraints at 0 imply [}, s = (=1)". An Expansion of the nonlinear
constraints for £ = 2 is shown in Section 7.2 of [53]. o

Lemma 8.2.1 A symmetric reparametrization r;; = r that satisfies the Composition
Constraint for a given n is defined by

2
r{0)=0, Dr= [2cos(a) (1)] , a= _n7£’ Dfr =0,k > 1.

Proof The eigenvalues of Dr are the n th unit roots etV-le Therefore Dry3Drs5...Dry 5 =
(Dr)* = Did. Since, by Fda di Bruno’s law, at least one factor of the expansion of
D*{(rjporp30...0ry,)isahigher derivativeof r, D*(rj50rp30...0r,7) =0, for x >
1. ]

Vertex enclosure constraints

Another set of constraints applies to geometry maps. Since the GF constraints of two
edge-adjacent patches have support on the first k layers of derivatives counting from each
edge, the constraints across two consecutive edges of a geometry map share as variables
the derivatives D" D} with m < k and n < k at the vertex, i.e. overlap on the coordinate-
degree k-jet of the geometry map at the vertex (markers e and o in Figure 8.8).

If n is the number of patches surrounding the vertex, then there are n{k-+1)? overlapping
continuity constraints and an equal number of variables in the form of derivatives in the
corresponding coordinate degree k-jets J*p;. Can the constraints can always be enforced
by choosing J*p; appropriately? Already for k¥ = 1, the resulting 4n by 4n constraint
matrix M is not invertible if n is even but it is invertible for n odd. For £ > 1, more
complex rank-deficiences arise while the right hand side is in general not in the span
of the constraint matrix: unlike the univariate case, where we consider only the first k&
derivatives for G* joins, the G* wvertez-enclosure constraints involve derivatives of up to
order 2k!

Depending on the data and the construction scheme, some of the higher derivatives
are fixed. For example, prescribing boundary curves pins down DiDJp for all i. Even
when the goal is to just identify degrees of freedom of a free-form spline space [37],{65],
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the underlying splines must have consistent derivatives up to order 2k. There is one well-
studied exceptional case: if the corner @ is the intersection of two regular C¥ curves and
n = 4 then the constraint system becomes homogeneous, removing the linkage between
the k-jets and the higher derivatives. Since the constraint matrix is additionally rank
deficient it is possible to interpolate the curve data by low-degree, parametrically C*
surfaces [40,41]. The corresponding free-form splines are tensor-product splines in the
sense of Coons and Gordon [18,41].

When the reparametrizations are linear as in Lemma 8.2.1 then determining the matrix
rank is similar to determining the dimension of a spline space [2], however with the
additional requirement that the ‘minimal determining set’ D*D}p; be symmetric. By
contrast, the analysis of the dimension of spline spaces allows choosing one geometry
map completely and then finding extensions that respect the continuity constraints. This
misses the crucial rank deficiencies that depend on the parity of £ and n.

Vertex-enclosure constraints are weaker than compatibility constraints. For example,
the twist compatibility constraint requires that mixed derivatives are prescribed consis-
tently since D1 D,p = DoDip must hold for a polynomial finite element (see e.g. [4]).
Mixed derivatives at a vertex can be prescribed inconsistently by independently prescrib-
ing transversal derivatives along abutting edges emanating from the vertex.

Incompatibility can be accomodated by using poles or singular parametrizations (see
page 8.4,(2), 3rd and 4th item).

The main task ahead is to characterize the rank deficiencies of the n(k +1)? x n{k + 1)?
matrix M of the G* constraint system

DD} (pi-y —piory) Jo=0 forn,me{0,...,k},i=1,...,n

in the variables DT D2p; lg,n,m € {0,...,k},i=1,...,n. In terms of k-jets and HF :=
(D¥*™DYp:Yme=1,. ki=0.. k—m, the vector of higher derivatives of p;, for example, H? :=
(D¥p;, D} Dyp;, Dip;), the constraint system reads (all blank entries are zero)

I M, 1
I —M;

: : I — M,
: : I -M,
i__Ml I -

M
My O . w 10
M; =: [ B MCJ , M= * and NN, =: [Nc J
* * Mklz

As for connection matrices in the univariate case, page 199, the entries of each (k+ 1) x
(k + 1)% matrix M; and each {k + 1)? x k{k + 1)/2 matrix N; are derivatives of r;. M,;
corresponds to the (k+2)(k+1)/2 homogeneous constraints j*p;_1 = M, ;j*p; that involve
only derivatives of total degree k or less (e in Figures 8.8 and 8.9) and that can always be
enforced by choosing one of the jets, say j*p:, and extending it to the remaining patches;
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+ -

- 20
10 o+

Figure 8.9. The total-degree 1-jet, illustrated as ‘e’, represents the same linear function
for all patches. The n = 6 constraints involving the ‘11’ derivatives D{ D3}, o, in the
coordinate-degree 1-jet but not the total-degree 1-jet give rise to a 6 x 6 matrix M, that
is rank deficient by 1, i.e. of rank 5. This (vertex-enclosure) constraint can only be solved
if the right hand side, defined by the (component normal to the tangent plane of the) 20’
derivatives D2DY, o, lies in the span of the constraint matrix. If all reparametrizations
are the same, this is the case exactly when the alternating sum of the ‘20’ derivatives
is zero, i.e. if the average of the elements marked + equals the average of the elements
marked — .

that is, the total-degree k-jets represent a single polynomial expansion up to total degree
k at the vertex, a characterization that is also known as the n + 1-Tangent Theorem [81],
[56].

Each submatrix M, ; corresponds to the remaining k(k + 1)/2 constraints that involve
derivatives of total degree greater than k (the diamonds ¢ in Figure 8.8 and 8.9). By
blockwise elimination, the rank deficiency of M equals the rank deficiency of I — [[ M,
and the solvability for arbitrary right hand side depends, after removal of the homogeneous
constraints, only on the rank of I — ][ M, ;. Each submatrix M. ; decomposes further into
skew upper triangular matrices My o; of size ¢ x £ that are grouped along the diagonal.

Ezample For k = 1 we have the constraints at 0 (c.f. Figure 8.9) and ry, := D¢D8r |o

00 : D?Dgpi = D?Dgpiﬂ

01: D?Dépi = D%Dgpiﬂ

10 DiD3p; = AD;DYpiy1 + pnDYDipiyy

11: DiDip; = r[lll]D%Dng»l + r[lll]D?D%pH»l + /\DiD%PiH + quDgpm.

That is, dropping the subscript ¢ for simplicity, each matrix-block [M N] of G' constraints
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has the form
00 10 01 11 20

00 1

10 AW

01 1 0

DR T

Here N is the last column, below ‘20°. The entries mn to the left of the matrix indicate
that the row corresponds to the constraint D" D} (p;—; — (p;or;)) = 0 while the entries on
top indicate the derivatives D" D} p; that enter the constraint as variables. For example,
the column ‘20’ corresponds to the variable D?p;. The constraint rows labeled ‘00’01,
and ‘10’ correspond to the total-degree 1-jet and are solvable leaving j!p, free to determine
the tangent plane by its three variables DYDIp; lo = p1(0), Dip:(0) and Dyp,(0) with
normal n = Dyp1{0) A Dyp;(0). The (more interesting) constraint matrix M, corresponds
to the constraint row and column ‘11’. With p}! = n- D{D.p; and p?° = n - Dip;

1 —m ;' Ap}°
I —pe Py B A2p3
—Hn 1 P,l,l /\npﬁo

By the Composition Constraint on page 205, [I}_; i = (—1)". Therefore the rank of the
matrix is n — 1 if n is even and n if n is odd [111], [112], [28], {128], [84], [29]. Moreover,
if we assume symmetry, i.e. y; = —1l and \; = Afor i =1,...,n, and if n is even then the
vector v with v(z) = (—1)* spans the null space of M, and therefore the Alternating Sum
Constraint has to hold for the system to be solvable (c.f. Figure 8.9): if A # 0 then

0= Z( 1)ip2.

For k = 2, [M N] has the form

00 00 16 01 20 11 02 21 12 22 30 31 40

10 )\ ,u

o1

20 [11 [])‘2 2 2

11 [111l [1 Ap

02 1

21 el a B coapur A

12 r[‘lg r[fz] D E @ A

2 Wl e w1 Kp2Lopx
where

A=AD+1ll, Bi=puD+E+13, C:=uE, D=2, E:=2rl
G:=D2+00l + 2], H o= DE+ourl] + oA+ 2ull, 1= B2 4 2pl,

J:=2uD+2)\E, K:=2uE, L:=2\D+rll+2xu
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[M N] decomposes into the upper left 6 x 6 block M, and, from columns ‘21°, ‘12’ and
‘227’

22 p? 2 A2
M. = K » M2,1 = /J’za M2,2 = [2/\M a :’ , Ne= A
J K 12 H L 22 A

o

Remark: C, J and K above depend directly on D and E in the C? reparametrization
matrix. To define a weaker notion of continuity in the spirit of Frénet-frame continuity
for curves of Section 8.3.1 one would choose C, J and K independently.

For the remainder of the discussion we assume that all r;; are linear and equal to r, as
in Lemma 8.2.1 (see [86] for a more general analysis and [30] and [126] for a discussion of
the case k = 2 in terms of Bézier coefficients). Such equal reparametrization is the natural
choice for filling ‘n-sided holes’ (Chapter N-sided Patches), and does not force symmetry
of the patches: the tangent vectors, for example, need not span a regular n-gon (but span
the affine image of a regular n-gon). If n = 4 then rank(l — (My,)") = 0. That is, in the
tensor-product case, since N, = 0, one full coordinate-jet J¥p; can be chosen freely and
J4p,, J*ps and J5p, are determined uniquely by the continuity constraints. For general
n, the rank deficiencies of I — M2 for k = 1,2,3 are listed in the following table. The
results for larger k are sumarized in a conjecture in [86].

n k1 2 3

3 0 2 2
4 1 3 6
6 1 2 4
even > 6 11 2
odd >3 010

Since only the Taylor expansion is of interest, the vertex enclosure constraints are inde-
pendent of the particular representation of the surrounding geometry maps. In particular,
the vertex enclosure constraints apply to rational geometry maps in the same fashion as to
polynomial geometry maps unless the denominator vanishes. The four known techniques
for enforcing the vertex-enclosure constraints are listed in Section 8.4, page 218.

8.2.4. Free-form surface splines

One interpretation of the two types of maps defining the G* free-form surface spline is
that the reparametrizations r define, by gluing together domains, an abstract manifold
whose concrete immersion into R® is defined by the geometry maps, e.g. Figure 8.10.
Free-form surface splines have a bivariate control net with possibly n-sided facets and
m-valent nodes. Alternative names are G-splines [62] and geometric continuous patch
complexes [53]. Geometric continuous patch complexes differ in their characterization by
requiring additionally a connecting relation that identifies (glues together) domain edges
[53], [50], [104]. This connecting relation is needed when G* continuity is defined in terms
of the eristence of reparametrizations rather than by explicitly identifying the (first k& + 1
Taylor terms of the) reparametrization.
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Figure 8.10. A free-form spline surface.

Definition 8.2.6 A G* free-form surface spline is a collection of C* geometry maps and
reparametrizations such that

e at most one reparametrization is assoctated with any domain edge;
o if a reparametrization r; exists between the edge E of the domain A; of g; and an

edge of the domain of g; then g; and g; join with geometric continuity G* via r;;
along g;(F) and r; is C*;

e any sequence of C* geometry maps g; : A; — R®,i = 1,...,n, such that g; and
gis1 join G* wvia 1,1 along giy1(Fiyy), and g:(E:(0)) = Q, meet G* with corner
QeRe.

Free-form surface splines with different reparametrizations do not form a linear vector
space. This follows directly from the same statement for G* continuous curves. For
example, we can replace lines with planes in the example shown in Figure 8.5. However,
if all reparametrizations agree then we can form an average fr