


































Preface 

CAGD - short for Computer Aided Geometric Design - is the discipline concerned with 
the computational and geometric aspects of free-form curves, surfaces and volumes as 
they are used, for example in CAD/CAM, scientific visualization, or computer animation. 
CAGD started in the 1960s, going back to efforts by Citroen and Renault in France and by 
Boeing and General Motors in the U.S. Emerging from unrelated parallel developments, a 
coherent scientific discipline began to form in the 1970s, mainly due to the 1972 conference 
at the University of Utah, organized by R. Barnhill and R. Riesenfeld. About ten years 
later, the journal CAGD was founded by R. Barnhill and W. Boehm and published by 
North-Holland. Since then, the field has progressed significantly, as this handbook intends 
to document. 

Drawing from many areas and influencing others, CAGD is inherently interdisciplinary. 
The earliest influences came from mechanical engineering in the form of new and puz­
zling problems in the emerging field of CAD/CAM. Their solutions involved results from 
approximation theory and diflFerential geometry, but also from computer graphics and 
new software developments. Owing to these diverse roots, positioning CAGD within the 
science and engineering fields would be an ambitious endeavor. We think it is best to 
recognize the multiple origins and, from them, to expect a multitude of contributions to 
various scientific, engineering, mathematical, and other areas. 

This handbook will thus not be able to cover every aspect of CAGD; yet it represents 
our best eflPort to provide a comprehensive collection of knowledge that has been collected 
to date. It contains the basics of curve and surface modeling (the very start of the 
discipline), many computer science and engineering aspects, and finally a rich coverage of 
mathematical underpinnings, ranging from geometry to approximation theory. 

The intended audience for this volume are researchers from areas outside of CAGD 
wishing to get a broad yet thorough exposure to the field. Researchers inside the field 
will find a wealth of material to complement their expertise. Graduate students will find 
a guide to new and promising research areas, leading to MS and PhD theses. And a 
layperson should find enough material to simply get an appreciation of an exciting and 
unfolding discipline. 
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Myung-Soo Kim, Seoul, Korea 
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Chapter 1 

A History of Curves and Surfaces in 
CAGD 

Gerald Farin 

This article provides a historical account of the major developments in the area of curves 
and surfaces as they entered the area of CAGD - Computer Aided Geometric Design -
until the middle 1980s. We adopt the definition that CAGD deals with the construction 
and representation of free-form curves, surfaces, or volumes. 

1.1. I N T R O D U C T I O N 

The term CAGD was coined by R. Barnhill and R. Riesenfeld in 1974 when they organized 
a conference on that topic at the University of Utah. That conference brought together 
researchers from the U.S. and from Europe and may be regarded as the founding event 
of the field. It resulted in the widely influential proceedings [8]. The first textbook, 
"Computational Geometry for Design and Manufacture" by I. Faux and M. Pratt [63], 
appeared in 1979. The journal "Computer Aided Geometric Design" was founded in 1984 
by R. Barnhill and W. Boehm. Its cover is shown in Figure 1.1. 

Another early conference was one held in Paris in 1971. It focussed on automotive 
design and was organized by P. Bezier, then president of the Societe des Ingenieurs de 
I'Automobile. The proceedings were published by the journal "Ingenieurs de I'Automobile." 

A series of workshops started in 1982 at the Mathematics Research Institute at Ober-
wolfach; these were organized by R. Barnhill, W. Boehm, and J. Hoschek. Ten years 
later, a parallel development started at the Computer Science Research Institute Schloss 
Dagstuhl initiated by H. Hagen. In the U.S, a conference series was organized by SI AM 
(Society for Industrial and Apllied Mathematics); the first one being held 1983 at Troy, 
N.Y., and organized by H. McLaughlin. In the U.K., the conference series "Mathematics 
of Surfaces" was initiated by the IMA (Institute for Mathematics and Applications). A 
Norwegian/French counterpart was started by L. Schumaker, T. Lyche, and P.-J. Laurent. 



CHAPTER 1. A HISTORY OF CURVES AND SURFACES IN CAGD 

Figure 1.1. The cover of the journal CAGD. It shows a drawing by P. Uccello (ca. 1430). 

1.2. EARLY DEVELOPMENTS 

The earliest recorded use of curves in a manufacturing environment seems to go back to 
early AD Roman times, for the purpose of shipbuilding. A ship's ribs - wooden planks 
emanating from the keel - were produced based on templates which could be reused 
many times. Thus a vessel's basic geometry could be stored and did not have to be 
recreated every time. These techniques were perfected by the Venetians from the 13th 
to the 16th century. The form of the ribs was defined in terms of tangent continuous 
circular arcs - NURBS in modern parlance. The ship hull was obtained by varying the 
ribs' shapes along the the keel, an early manifestation of today's tensor product surface 
definitions. No drawings existed to define a ship hull; these became popular in England in 
the 1600s. The classical "spline," a wooden beam which is used to draw smooth curves, 
was probably invented then. The earliest available mention of a "spline" seems to be [51] 
from 1752. This "shipbuilding connection," described by H. Nowacki [103], was the earliest 
use of constructive geometry to define free-form shapes, see Figure 1.2. More modern 
developments linking marine and CAGD techniques may be found in [10,100,115,136]. 

Another key event originated in aeronautics. In 1944, R. Liming wrote a book entitled 
"Analytical Geometry with Application to Aircraft" [95]. Liming worked for the NAA 
(North American Aviation) during World War II; this company built fighter planes such 
as the legendary Mustang. In his book, classical drafting methods were combined with 
computational techniques for the first time. Conies were used in the aircraft as well as in 
the shipbuilding industries before, essentially based on constructions going back to Pascal 
and Monge. Traditionally, these constructions found their way onto the draftsman's 
drawing board in the form of blueprints which served as the basic product definition. 
Liming realized that an alternative was more efficient: store a design in terms of numbers 
instead of manually traced curves. Thus he translated the classical drafting constructions 
into numerical algorithms. The advantage: numbers can be stored in unambiguous tables 
and leave no room to individual interpretations of drawings. Liming's work was very 
influential in the 1950s when it was widely adopted by U.S. aircraft companies. Figure 
1.3 shows one of Liming's constructions. Another researcher was also involved in the 
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Figure 1.2. Splines: a mechanical spline from the 1700s. 

transition of aircraft drawings to computations; this was S. Coons, see [34]. Coons later 
gained fame for his work at MIT. 

Another early influential development for CAGD was the advent of numerical control 
(NC) in the 1950s. Early computers were capable of generating numerical instructions 
which drove milling machines used for the production of dies and stamps for sheet metal 
parts. At MIT, the APT programming language was developed for this purpose. A 
problem remained: all relevant information was stored in the form of blueprints,^ and it 
was not clear how to communicate that information to the computer which was driving 
a milling machine. Digitizing points off the blueprints and fitting curves using familiar 
techniques such as Lagrange interpolation failed early on. New blueprint-to-computer 
concepts were needed. In France, de Casteljau and Bezier went far beyond that task by 
enabling designers to abandon the manual blueprint process all together. 

In the U.S., J. Ferguson at Boeing and S. Coons at MIT provided alternative techniques. 
General Motors developed its first CAD/CAM system DAC-I (Design Augmented by 
Computer). It used the fundamental curve and surface techniques developed at GM by 
researchers such as C. de Boor and W. Gordon. 

In the U.K., A.R. Forrest began his work on curves and surfaces after being exposed to S. 
Coons' ideas. His PhD thesis (Cambridge) includes work on shape classification of cubics, 
rational cubics, and generalizations of Coons patches [65]. M. Sabin worked for British 
Aircraft Corporation and was instrumental in developing the CAD system "Numerical 
Master Geometry." He developed many algorithms that were later "reinvented." This 
includes work on offsets [118], geometric continuity [116], or tension splines [119]. Sabin 
received his PhD from the Hungarian Academy of Sciences in 1977, a seemingly odd choice 
which is explained by the close collaboration between researchers in Cambridge, U.K, and 
their counterparts in Hungary, under the leadership of J. Hatvany. 

All these approaches took place in the 1960s. For quite a while, they existed in isolation 
until the seventies started to see a confluence of diflferent research approaches, culminating 

^Liming's conic constructions were an exception but were not widely available outside the aircraft indus­
try. 
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Figure 1.3. R. Liming: conic construction of a fighter aircraft cockpit. 

in the creation of a new discipline, CAGD. 
Without the advent of computers, a discipUnes such as CAGD would not have emerged. 

The initial main use of these computers was not so much to compute complex shapes but 
simply to produce the information necessary to drive milling machines. That information 
was typically output to a punch tape by a main frame computer. That tape was then 
transferred to the control unit of a milling machine. 

The main interest of a designer was not so much the milling machine; it was rather a 
plotter which could quickly graph a designer's concepts. Early plotters were the size of 
a billiard table or larger; this was natural as drawings for most automotive parts were 
produced to scale. Plotting, or drafting, was so important that almost all of CAD was 
aimed at producing drawings - in fact, CAD was often considered to stand for "Computer 
Aided Drafting" (or "Draughting," in British English). Before the advent of these systems, 
trivial-sounding tasks were extremely time consuming. For example, producing a new 
view of a complex wireframe object from existing views would take a draftsman a week 
or more; using computers, it became a matter of seconds. 

A milestone in display hardware was the use of CRTs, or Cathode Ray Terminals. 
These went back to oscillographs which were used for many scientific applications. CRTs 
(not in use for CAD applications any more) displayed an image by "drawing" curves 
on a screen. Another dimension was added to simple display technology by adding an 
interactive component to it. The first interactive graphics system was invented by I. 
Sutherland at MIT in 1963, see [134]. His thesis was part of the CAD project at MIT; 
S. Coons was a member of his PhD committee. See Figure 1.4 for an illustration of 
Sutherland's prototype. 

1.3. D E C A S T E L J A U A N D BEZIER 

In 1959, the French car company Citroen hired a young mathematician in order to resolve 
some of the theoretical problems that arose from the blueprint-to-computer challenge. 
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Figure 1.4. I. Sutherland's Sketchpad system. 

The mathematician was Paul de Paget de Casteljau, who had just finished his PhD. He 
began to develop a system which primarily aimed at the ab initio design of curves and 
surfaces instead of focusing on the reproduction of existing blueprints. 

He adopted the use of Bernstein polynomials for his curve and surface definitions from 
the very beginning, together with what is now known as the de Casteljau algorithm. 
Figure 1.5 shows a part of his 1963 technical report [44]. 

The breakthrough insight was to use control polygons (courbes a poles), a technique 
that was never used before. Instead of defining a curve (or surface) through points on it, 
a control polygon utilizes points near it. Instead of changing the curve (surface) directly, 
one changes the control polygon, and the curve (surface) follows in a very intuitive way. 
In the area of differential geometry, concepts similar to control polygons were devised as 
early as 1923, see [17], but had no impact on any applications. 

De Casteljau's work was kept a secret by Citroen for a long time. The first public 
mention of the algorithm (although not including a mention of the inventor) is [93]. 
W. Boehm was the first to give de Casteljau recognition for his work in the research 
community. He found out about de Casteljau's technical reports and coined the term "de 
Casteljau algorithm" in the late seventies. 

Another place to learn about Citroen's CAGD efi'orts was its competitor Renault, also 
located in Paris. There, during the early 1960s, Pierre Bezier headed the design de­
partment and also realized the need for computer representations of mechanical parts. 
Bezier's efforts were influenced by the knowledge of similar developments at Citroen, but 
he proceeded in an independent manner. Bezier's initial idea was to represent a "basic 
curve" as the intersection of two elliptic cylinders, see Figure 1.6. The two cylinders were 
defined inside a parallelepiped. Affine transformations of this parallelepiped would then 
result in affine transformations of the curve. Later, Bezier moved to polynomial formula-
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Figure 1.5. De Casteljau's description of his algorithm. 

tions of this initial concept and also extended it to higher degrees. The result turned out 
to be identical to de Casteljau's curves, only the mathematics involved was different. A 
member of Bezier's team, D. Vernet independently developed the de Casteljau algorithm. 
See also Bezier's chapter in [59]. 

Bezier's work was widely published, see [15,12-14,138], and soon came to the attention 
of A.R. Forrest. He realized that Bezier curves could be expressed in terms of Bernstein 
polynomials - i.e., in the form that de Casteljau had used since the late fifties! Forrest's 
article on Bezier curves [66] was very influential and helped popularize Bezier curves 
considerably. The Renault CAD/CAM system UNISURF was based entirely on Bezier 
curves and surfaces. It influenced developments by the French aircraft company Dassault 
who built a system called EVE. Later, that system evolved into CATIA (Computer Aided 
Three-dimensional Interactive Application). Bezier also invented a method to deform 
whole assemblies of surfaces by embedding them into a cube and then deforming it using 
trivariate "Bezier cubes," see [12,16] and Section 1.5. 

De Casteljau retired from Citroen in 1989 and became active in publishing. In 1985, 
he wrote "Formes a Poles," [45] which introduced the concept of blossoming. ^ 

P. Bezier died in Paris in 1999. 

1.4. P A R A M E T R I C CURVES 

Curves were employed by draftsmen for centuries; the majority of these curves were circles, 
but some were "free-form." Those are curves arising from applications such as ship hull 
design to architecture. When they had to be drawn exactly, the most common tool was 
a set of templates known as French curves. These are carefully designed wooden curves 

^The term "blossoming" is due to L. Ramshaw who independently discovered the concept, see [IIOJ. 
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Figure 1.6. Bezier's "basic curve." 

and consist of pieces of conies and spirals. A curve is drawn in a piecewise manner by 
tracing appropriate parts of a French curve. 

Another mechanical tool, called a spline was also used. This was a flexible strip of wood 
that was held in place and shape by metal weights, known as ducks. When drawings had 
to be produced to scale, the attics (or lofts) of buildings were used to accommodate the 
large size drawings - the word lofting has its origins here. A spline "tries" to bend as 
little as possible, resulting in shapes which are both aesthetically pleasing and physically 
optimal. The mathematical counterpart to a mechanical spline is a spline curve, one of 
the most fundamental parametric curve forms. 

The differential geometry of parametric curves was well understood since the late 1800s 
after work by Serret/Frenet. On the other hand, research in approximation theory and 
numerical analysis focused entirely on nonparametric functions. Both areas were brought 
together when they became important building blocks of CAGD. 

Since the middle 1950s, the US aircraft company Boeing employed software based on 
Liming's conic constructions in the design of airplane fuselages. In a different part of the 
company, J. Ferguson and D. MacLaren developed a different kind of curve for the design 
of wings. They had the idea to piece cubic space curves together so that they formed 
composite curves which were overall twice differentiable [97,64]. These curves could easily 
interpolate to a set of points. They were referred to as spline curves since they minimize 
a functional similar to the physical properties of mechanical splines. 

The meaning of the term "spline curve" has since undergone a subtle change. Instead 
of referring to curves that minimize certain functionals, spline curves are now mostly 
thought of as piecewise polynomial (or rational polynomial) curves with certain smooth­
ness properties. 

Ferguson derived his spline equations using the piecewise monomial form. But he also 
used the cubic Hermite form (then referred to as F-curves) which defines a cubic in terms 
of two endpoints and two endpoint derivatives. S. Coons used this curve type to build 
the patches which were named after him. In the UK, A.R. Forrest continued Coons' ideas 
and extended cubic Hermite curves to rational cubics, see [65]. 

The most fundamental parametric curve form are the Bezier curves; see Section 1.3. 
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Many of the basic properties can be found in the papers by Bezier, Vernet, and Forrest 
(see above). Some later results include conditions for C^ joins between Bezier curves, 
see Stark [131], the discovery that Bezier curves are numerically more stable than other 
curve forms, see Farouki/Rajan [62], and the development of the blossoming principle, 
see Ramshaw [110] and de Casteljau [46]. A symbolic technique for Bezier curves and 
surfaces was developed by M. Hosaka and F. Kimura [83], although it was known to W. 
Boehm in 1972.^ 

As an early alternative to parametric curves were explicit curve segments with individual 
local coordinate systems. These curves are known as Wilson-Fowler splines [68]. A similar 
curve type was employed in the TABCYL (TABulated CYLinder) routines of the APT 
(Automatic Programmed Tool) language. After the advent of parametric curves, these 
piecewise explicit curves began to disappear. 

Another early curve scheme are biarcs. These are piecewise circular arcs which are 
pieced together to allow for tangent continuity. It is possible to fit two tangent continuous 
circles to two points and two tangents. If several points and tangents are given, one 
obtains a circle spline. The advantage of these curves is the fact that NC machines can 
process circular arcs directly, i.e., without a conversion to a dense polygon as is needed 
for standard parametric splines. A drawback of circle splines is their piecewise constant 
and hence discontinuous curvature. The first developments are due to K. Bolton [23], 
followed by M. Sabin [121]; a generalization to 3D was given by T. Sharrock [127]. 

1.5. R E C T A N G U L A R SURFACES 

Parametric surfaces were well understood after early work by Gauss and Euler. They 
were immediately adopted in early CAD/CAM developments: A standard application 
is tracing a surface for plotting or for driving a milling tool. Parametric surfaces are 
well-suited for both tasks. The most popular of all surface methods was to become 
the tensor product surface. It was first introduced by C. de Boor [39] for the case of 
bicubic spline interpolation. Theoretical studies of parametric surfaces for the purpose of 
interpolation and approximation go back to [33,88,87,135,122,132] but had little influence 
on the development of industrial methods. 

In the late 1950s, parametric surfaces were studied at several companies in Europe and 
the U.S. The first published result is due to J. Ferguson at Boeing, see [64]. Ferguson used 
an array of bicubic patches which interpolated to a grid of data points. While Ferguson 
developed C^ cubic spline curves in the same paper, his surfaces were only C^^ This was 
due to the introduction of zero twists at the corner of every bicubic patch.^ Ferguson's 
bicubic patches were also known as F-patches, and were also attributed to S. Coons. 

Coons devised a simple formula to fit a patch between any four arbitrary boundary 
curves [35], known as the bilinearly blended Coons patch. These surfaces were used in 
the sixties by Ford (Coons was a consultant). A generalization, capable of interpolating 
a rectangular network of curves, was devised by W. Gordon at General Motors, see [71, 

^Private communication 
'*Clearly, he was unaware of de Boor's paper [39] - it appeared in a journal not likely to be read by 
practitioners of the time. 
^This fact, often leading to unsatisfactory shapes, was not explicitly mentioned in the article and is 
hidden among pseudo-code. 
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72]. All these methods are sometimes labeled "transfinite interpolation," in that they 
interpolate to arbitrary boundary curves (having a "transfinite" number of points on 
them). 

While the basic Coons patch had no restrictions on the boundary curves other than 
they have to meet at the patch corners, a common use was to restrict the boundary curves 
to be parametric cubics in Hermite form. Then the use of zero corner twists led to the 
above F-patch. 

The basic (bilinearly blended) Coons patch does not lend itself to the construction of 
composite smooth surfaces. Additions to the basic method led to the bicubically blended 
Coons patch. It is the generalization of cubic Hermite curve interpolation to the transfinite 
surface case and allows for the prescription of tangent data in addition to the boundary 
curves. As a consequence, certain incompatible situations could arise. J. Gregory was 
the first to address this problem and also to devise a "compatibly corrected" interpolant, 
see [77]. When applied to cubic boundary curves and cubic derivative information, this 
interpolant yields a rational patch. A "translation" of this approach into a Bezier-like 
form was carried out by H. Chiyokura and F. Kimura [29,28]. It led to the Japanese 
CAD/CAM system DESIGNBASE. 

Rectangular surfaces are a map of a rectangular domain into 3D. As a special case, we 
may map the domain to a 2D parametric surface, resulting in a distortion of the domain 
rectangle. If we embed a curve in this domain rectangle, we will obtain a deformed curve. 
A 3D surface may be embedded inside a 3D cube. This cube may be distorted using 
trivariate polynomials, resulting in a deformed surface. Such deformations are useful if 
global shape changes in a surface are wanted which would be too tedious to describe in 
terms of moving control points. The first mention of these volume deformations appears to 
be in J. Ferguson's article [64], although no applications are given. Coons was also aware 
of the possibility of trivariate volumes, see [35]. The first practical use is due to Bezier 
who described how to use volume deformations in car design [16]. Volume deformations in 
Bezier form were rediscovered by Sederberg and Parry [126], who used them in a graphics 
environment. 

1.6. B -SPLINE CURVES A N D N U R B S 

B-splines (short for Basis Splines) go back to I. Schoenberg who introduced them in 1946 
[123] for the case of uniform knots. B-splines over nonuniform knots go back to a review 
article by H. Curry in 1947 [38]. In 1960, C. de Boor started to work for the General 
Motors Research labs and began using B-splines as a tool for geometry representation. He 
later became one of the most influential proponents of B-splines in approximation theory. 
The recursive evaluation of B-spline curves is due to him and is now known as the de 
Boor algorithm [40]. 

It is based on a recursion for B-splines which was independently discovered by de Boor, 
L. Mansfield, and M. Cox [37]. It was this recursion that made B-splines a truly viable tool 
in CAGD. Before its discovery, B-splines were defined using a tedious divided difference 
approach which was numerically very unstable. For a detailed discussion, see [42]. 

Spline functions are important in approximation theory, but in CAGD, parametric 
spline curves are much more important. These were introduced in 1974 by R. Riesenfeld 
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and W. Gordon [73] (the paper is a synopsis of Riesenfeld's PhD thesis [112]) who realized 
that de Boor's recursive B-spline evaluation was the natural generalization of the de 
Casteljau algorithm. B-spline curves include Bezier curves as a proper subset and soon 
became a core technique of almost all CAD systems. A first B-spline-to-Bezier conversion 
was found by W.Boehm [19]. Several algorithms were soon developed that simplified 
the mathematical treatment of B-spline curves; these include Boehm's knot insertion 
algorithm [20], the Oslo algorithm by E. Cohen, T. Lyche, and R. Riesenfeld [32], and the 
introduction of the blossoming principle by L. Ramshaw [110] and P. de Casteljau [45]. 

The generalization of B-spline curves to NURBS - Nonuniform rational B-splineS - has 
become the standard curve and surface form in the CAD/CAM industry. They offer a 
unified representation of spline and conic geometries: every conic as well as every spline 
allows a piecewise rational polynomial representation. The origin of the term NURBS is 
unclear; but the term was certainly a bad choice: it explicitly excludes the popular uniform 
B-spline curves. The first systematic NURB treatment goes back to K. Versprille's PhD 
thesis [139]. Versprille was a student of S. Coons' who started working with rational 
curves in the sixties [36]. Coons' work on rational curves also influenced A.R. Forrest, 
who wrote his PhD thesis in 1968 [65]. 

Versprille based rational curves and surfaces in homogeneous (or projective) space. This 
kind of geometry had already gained importance in the graphics community because of 
the widespread use of central projections, see Riesenfeld [114]. 

The development at Boeing is exemplary for the emergence of NURBS. The company 
realized that different departments employed different kinds of geometry software; worse, 
those geometries were incompatible. The Liming-based conic software produced elliptic 
arcs which could not directly be imported into the Ferguson-based spline system and 
vice-versa. Thus NURBS were adopted as a standard since they would allow a unified 
geometry representation.^ Companies such as Boeing, SDRC, or Unigraphics (Verspille's 
first employer) soon initiated making NURBS an ICES'" standard. 

A special case of NURBS is given by rational Bezier curves. Even more specialized are 
conic sections, or rational quadratic Bezier curves. Their treatment goes back to Forrest's 
PhD thesis [65]. A rational generalization of the de Casteljau algorithm was fiven by G. 
Farin [57] in 1983; a (dual) projective formulation was discovered by J. Hoschek [84]. 

1.7. T R I A N G U L A R PATCHES 

There are (at least) two ways to describe a bivariate polynomial surface. One is as a 
tensor product, using a rectangular domain. The other one is to write it in terms of 
barycentric coordinates with respect to a triangular domain. Both methods are outlined 
in the chapter on Bezier Techniques. 

While tensor product surfaces are far more often encountered, triangular ones have been 
around for a long time also. The first uses of these surfaces goes back to Finite Elements, 
where they are referred to as "elements." The simplest type is the linear element, which is 

^As it turned out, this was not entirely true: some of Liming's more complicated surface constructions 
do not allow a NURB representation. 
^Initial Graphics Exchange Standard, developed to facihtate geometry data exchange between different 
companies. 
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simply a planar triangular facet. Its use goes back to the very beginning of Ritz-Galerkin 
methods. Higher order elements use C^ quintic elements [92] or C^ split triangle cubic 
elements. The latter one, devised by Clough and Tocher as a finite element [31], gained 
some popularity in the context of scattered data interpolation, see [58]. 

From a historical perspective, it interesting to observe that early finite element research 
on triangular patches did not make use of the elegant formalism offered by the use of 
barycentric coordinates or the Bernstein-Bezier form. Consequently, those papers were 
fairly tedious - using barycentric coordinate techniques, many pages of proofs can be 
reduced to a few lines of geometric arguments about Bezier meshes. 

Triangular patches in Bernstein form (called Bezier triangles although Bezier never 
made any mention of them) are due to P. de Casteljau; however, that work was never 
published (see above). Since Bezier triangles use trivariate Bernstein polynomials which 
did exist in approximation theory, several researchers developed concepts that were closely 
related to Bezier triangles: Stancu [133], Frederickson [69], Sabin [120,121]. 

M. Sabin gave conditions for smooth joins between adjacent triangular patches; G. 
Farin [55] gave conditions for C^ joins. Early research on Bezier triangles focussed on 
equilateral domain triangles; Farin [56,58] discussed the case of arbitrarily shaped domain 
triangles. 

Bezier triangles, first conceived by an automotive researcher, found their way into 
approximation theory in the 1980's. Spaces of piecewise polynomials over triangulations 
were studied by L. Schumaker and Alfeld see [1,2]. 

Coons-like triangular patches were studied in the US during the 1970's and 1980's. See 
Barnhill et al [4], Barnhill and Gregory [7], or Nielson [102]. 

1.8. S U B D I V I S I O N SURFACES 

At the 1974 CAGD conference at the University of Utah, one of the presenters was the 
graphics artist G. Chaikin. He presented a curve generation method that did not fit the 
mold of any of the other methods of the conference. Starting from a closed 2D polygon, 
and using a process of continual "chopping off corners," he arrived at a smooth limit 
curve, see [27]. At the conference, both R. Riesenfeld and M. Sabin argued that Chaikin 
had invented an iterative way to generate uniform quadratic B-spline curves, see [113]. 

In 1987, C. de Boor discovered that "corner cutting" generalizations of Chaikin's algo­
rithm also produce continuous curves [43]. He also pointed out that Chaikin's algorithm 
was a special case of a class of algorithms described by G. de Rham much earlier [47,48]. 
Similar results were discovered by J. Gregory and R. Qu in 1988 - although that work 
was only published in 1996, see [78]. 

Chaikin's algorithm was the starting point for the initial work on subdivision surfaces, 
going back to two articles in the no. 6 volume of the journal Computer Aided Design, 
1978. They were authored by D. Doo and M. Sabin [50] and E. Catmull and J. Clark 
[26]. 

Both papers have a similar flavor. Chaikin's algorithm can be generalized to tensor 
product surfaces in a straightforward way. Such surfaces have a rectilinear control mesh, 
and after analyzing the tensor product algorithm, Doo and Sabin reformulated it such that 
it could also be applied to control meshes of arbitrary topology. Catmull and Clark first 
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generalized Chaikin's algorithm to uniform cubic B-spline curves and its tensor product 
counterpart. Then, they also reformulated it for the case of control meshes of arbitrary 
topology. Both surface schemes yield smooth (G^) surfaces. The Doo/Sabin surfaces have 
a piecewise biquadratic flavor; the Catmull/Clark ones have a piecewise bicubic flavor. 

In 1987, C. Loop generalized triangular spline surfaces to a new G^ subdivision surface 
type, see [96]. Its input control polygon can be any triangular mesh. Loop's algorithm 
is based on a subdivision scheme for so-called box-splines by W. Boehm [21] and H. 
Prautzsch [108]. 

All three of the above algorithms produce C^ (for Doo/Sabin and Loop) or C^ (for 
Catmull/Clark and Loop) surfaces if the control meshes are regular, i.e., rectilinear or 
regular triangular (all triangle vertices have valence six) for Loop. Where the control 
meshes do not behave like that, the surfaces will have singular points. These singular 
points hampered the analysis and practical use of subdivision surfaces. A first attempt 
at investigating these points was undertaken by D. Storry and A. Ball in 1986, see [3], 
although there is an eigenvalue analysis of the Doo-Sabin process in the original paper [50]. 
Subsequently, subdivision surfaces gained more popularity, most notably in the computer 
animation industry. 

Early work on subdivision surfaces focussed on approximating surfaces. In 1987, N. 
Dyn, J. Gregory, and D. Levin discovered an interpolating subdivision scheme, called the 
4-point curve scheme, see [54]. It was generalized to surfaces - to the so-called "butterfly 
algorithm" - by the same authors in 1990, see [53]. 

1.9. SCIENTIFIC A P P L I C A T I O N S 

Many areas of science need to model phenomena for which only a set of discrete mea­
surements is available - an example is a weather map where data are collected at a set of 
weather stations, but a continuous model of temperature, pressure, etc., is desired. Since 
the location of the data sites has no structure (such as being on a regular grid), the term 
"scattered data" was coined. If function values are assigned to these data sites, a scattered 
data interpolant is a function which assumes the given function values at the data sites. 
The data sites are typically 2D, but may also be 3D. 

A scattered data interpolant is a function which interpolates the given data values and 
gives reasonable estimates in between. One of the first scattered data interpolants is Shep-
ard's method, see [74,5,128]. It computes the function value at an arbitrary (evaluation) 
point as a linear combination of all given function values, the coeflftcients being related 
to the distance of the data sites to the evaluation point. The method itself is too poorly 
behaved to be viable on its own, but it was used as an ingredient in other methods (see 
the above references). 

Another approach was taken by R. Hardy [80] in 1971, who generalized the concept of 
splines to surfaces. His surfaces utilize radial basis functions which are bell-shaped func­
tions (reminiscent of univariate B-splines) with their maxima at the data sites. Hardy's 
method was used by many practioners, but it was not known if the method would work in 
all cases. A proof for this was given by C. Micchelli in 1986 at the Mathematics Research 
Center in Oberwolfach, Germany. 

A different generalization of splines to surfaces is the method of thin plate splines due 
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to J. Duchon [52]. Thin plate splines minimize an "energy functional", similar to the one 
that spline curves minimize. While spline curves simulate the behavior of an elastic beam, 
thin plate splines minimize the behavior of a thin elastic plate. 

The U.K. statistician R. Sibson developed a scheme that he called nearest neighbor 
interpolation. It is based on the concept of Voronoi diagrams, also known as Dirichlet 
tessellations. Sibson showed that any point in the convex hull of a given set of points may 
be written as a unique linear combination of its neighbors [129]. If the coefficients of this 
combination are then used to blend given function values, a scattered data interpolant 
arises [130]. The interpolant is only C^ at the given data points, but it is C^ otherwise. 
Uses for this method are in the geosciences as well as in image processing. 

1.10. S H A P E 

When a designer studied a curve on a full size drawing, he could visually detect shape 
defects such as "flat spots", unwanted inflections, etc. A good CAD system would then 
provide methods to improve the given shape. 

As the design process moved away from the drawing board and into computer screens, 
this visual inspection process was not feasible any more since a full scale drawing was 
out of the question. The scaled down display off"ered by the computer did not allow to 
detect shape imperfections in a direct way. Consequently, computer methods had to be 
developed that allowed easy assessment of shape. 

Among the first published methods are curve hodographs, see [11]. These are the 
plot of a curve's first derivative curve. Since diflPerentiation is a roughing process, curve 
imperfections appear "magnified" in the hodograph. 

Hodographs do not display the geometry of the curve alone; they depend on the 
parametrization as well. A more geometric tool is the curvature plot; it plots the curvature 
of a curve. Since it involves second order derivatives as well as first order ones, it is also 
a more sensitive tool. An early paper on the use of curvature plots is by Nutbourne et al. 
[104]. 

In unpublished work, curvature plots were used by H. Burchardt at General Motors. 
After de Boor left the company in 1964, interpolating cubic and quintic spline curves had 
become a tool of choice. Since they are C^, they are also curvature continuous. In many 
cases, however, this does not guarantee pleasant shape, and so Burchardt developed a 
proprietary scheme that was shape optimizing. A published version is in [24]. 

Shape optimization became an important element early on in the development of 
CAGD. Since interpolating spline curves were known to exhibit unwanted undulations, 
alternatives were studied, typically involving curvature - see [99,100,82,125]. 

A diflPerent approach is to take an existing curve or surface and inspect its shape: if it 
is imperfect, apply a fairing procedure. Such methods typically aim at removing noise 
from either data points or control polygons; early work is reported by J. Kjellander [89], 
J. Hoschek [86] and Farin et al [60]. 

A curve which is curvature continuous may not be twice diflPerentiable. This fact, when 
properly exploited, leads to curve generation schemes which have more degrees of freedom 
than do "standard" spline curves. The extra degrees of freedom are referred to as shape 
parameters and the resulting curves are called geometrically continuous or G^. Early work 
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Figure 1.7. Gaussian curvature. Figure courtesy A.R. Forrest 

on this subject is due to G. Geise [70]. Interpolation schemes based on G^ continuity were 
independently developed by J. Manning [98] and G. Nielson [101] in 1974. Later work on 
the subject includes B. Barsky's ^-splines [9], W. Boehm's 7-splines [22], and H. Hagen's 
r-splines [79]. 

Shape does not only play a vital role in interpolation, but also in approximation. The 
least squares method is the most widespread approximation scheme. It was used early 
on in most industries; publications include [81,106,142]. The least squares method lends 
itself to the inclusion of conditions that aim at the shape of the result, not just at the 
closeness of fit. These conditions are typically the result of minimizing certain functionals 
(such as minimizing "wiggles"); an influential early example is the "smoothing spline" of 
Schoenberg and Reinsch, see [124,111], and also Powell [107]. 

For curves, curvature is a reliable shape measure. For surfaces, several such measures 
exist, including Gaussian, mean, or total curvatures. A.R. Forrest [67] was the first to 
use computer graphics for the interrogation of surface shape using curvatures as texture 
maps; see Fig. 1.7. 

Another important shape measure for surfaces comes from the automotive industry. 
It is customary to put a car prototype in a showroom where the ceiling is lined with 
florescent light strips. Their reflections are carefully examined before the prototype is 
accepted. Early computer simulations of this procedure are reported in [90]. 

1.11. I N F L U E N C E S A N D A P P L I C A T I O N S 

CAGD emerged through the influence of several areas in the 1950s and 1960s, but inter­
actions with other fields of science and engineering were not limited to those years. 

The first text on CAGD goes back to I. Faux and M. Pratt . Its title is "Computa­
tional Geometry for Design and Manufacture." The meaning of the term "Computational 
Geometry" has since changed; it is used to describe a discipline which is concerned with 
the complexity of algorithms mostly dealing with discrete geometry. The defining text 
for this area is the one by Preparata and Shamos [109]. An important area of overlap 
between CAGD and Computational Geometry is that of triangulation algorithms. These 
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are concerned with finding a set of triangles having a given 2D point set as vertices. The 
first algorithm was published in 1971 by C. Lawson [94]. An algorithmic connection be­
tween triangulations and Voronoi diagrams was presented by Green and Sibson [76]. The 
n—dimensional case was covered by D. Watson [140]. 

2D triangulations are an important preprocessing tool for many surface fitting opera­
tions. 3D point sets arise when physical objects are digitized. Methods to triangulate 
them go back to Choi et al. [30]. 

Computer Graphics is an area with many CAGD interactions. Computer Graphics 
needs CAGD to model objects to be displayed, and for the very same reason, CAGD 
needs Computer Graphics. It was only after Sutherland's 1963 development of interactive 
graphics that one could interactively change control polygons of Bezier or B-spline objects. 
Display techniques for parametric surfaces go back to H. Gouraud [75] and were later 
improved by B. Phong [105] and J. Blinn [18], all at the University of Utah. 

A fundamental display technique is ray tracing, due to T. Whitted [141]. It makes 
extensive use of computations of the intersection between a ray and the scene to be 
displayed. Hence the development of eflftcient intersection algorithms became important 
for Graphics. 

Intersection algorithms are also important in many areas of CAD/CAM, where planar 
sections were the method of choice (and tradition) to display/plot objects. Algorithms for 
this task were developed by many companies, and were mostly kept confidential. Some 
early published work is by W. Carlson [25], T. Dokken [49] Barnhill et al [6]. The earliest 
reference seems to be by M. Sabin [117]. 

Another important type of numerical algorithms are oflPset curves and surfaces - early 
work includes papers by R. Farouki [61], J. Hoschek [85], R. Klass [91], W. Tiller and E. 
Hanson [137], the earliest one being a technical report by M. Sabin [118] from 1968. 
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Chapter 2 

Geometric Fundamentals 

Wolfgang Boehm and Hartmut Prautzsch 

The following recalls the facts and terminology mostly used in Geometry. It may serve 
also as a first introduction to geometric tools, for more detailed and founded descriptions 
see the list of references, in particular [7]. Without additional effort most of the discussed 
topics can be presented in spaces of any dimension. 

2.1. A F F I N E F U N D A M E N T A L S 

Many properties of computational geometry and its applications do not need the distance 
of points but only the concepts of parallelism and ratio. 

2.1.1. Points and vectors 
In general a point in n-space is fixed by its coordinates with respect to some Cartesian 
system^ Nevertheless, we start our observations with affine aspects. 

Let a = [QI . . . a^Y and b == [/3i... /3„]* denote two points, its difference v = b — a is 
called a vector, and one has b = a + v. In particular the column o = [0 . . . 0]* = a — a 
denotes the null-vector. 

Let a o , . . . , a^ denote d -\- 1 points in n-space, d < n. The d vectors v^ = â  — ao, z = 
1 , . . . , d, are called linearly dependent if aiVi -!-••• + Oid^d — o, with at least one non­
zero Qjj, otherwise these vectors are called linearly independent. If v i , . . . , v^ are linearly 
independent, then they span a linear space V^, and the points a o , . . . , a^ are called affinely 
independent and span an aflftne space A^, d is called their dimension. 

2.1.2. Affine systems 
A point ao and n linearly independent vectors Vj define an aflfine system [ao, V i . . . v^] of 
the A'^. In this system every point p = [rji.. .rjnY can be written uniquely as 

p = ao 4- 6 v i + • • • + CnV„ = ao + ^ x , (2.1) 

^Matrix notation is preferred. To simplify the notation, a point as well as its coordinate column will be 
denoted by the same bold letter. Note that this notation depends on the coordinate system. 
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where A = [ v i . . . v„] and x = [6 • • "̂ n]*- The ^i are called the affine coordinates of p 
with respect to [ao, V i . . . v„], ao is called the origin of the affine system. 

Figure 2.1. Affine and barycentric coordinates. 

To distinguish between points and vectors described by elements a of the IR" one may 
add a further coodinate, 6, where 

{0 . _ f vector, 

it a represents a < 
1 [ pomt. 

This convention can help to avoid mistakes in handling with points and vectors, see also 
Subsection 4.1 on homogeneous coordinates. 
2.1.3. Barycentric coordinates 
Let a o , . . . , an denote n -h 1 affinely independent points of the A^ and let Vj = â  — ao-
One may rewrite equation (1) as 

P = Coao + 6 ^ 1 + • • • + Cnan , Co = 1 - ( 6 + • • • + Cn)-

The Co, • • • 7 Cn are called barycentric coordinates of p with respect to the frame [ao . . . a^]. 
Note that CoH Ĥ n = 1- Note also that any n of the ii,i ^ j , represent affine coordinates 
of p with respect to an affine system with origin a^. 

It follows immediately that a vector v = b — a has barycentric coordinates VQ,. .. ,Vn 
that sum to zero, î o + ' ' * + ^n = 0- Note that the sum of the coordinates Ci or ^i 
corresponds to e above. 

2.1.4. Affine subspaces and parallelism 
Let points a o , . . . , a^ G A^ be given. The point 

p ^ Coao + Ciai + • • • + Cd^d, 1 == Co + 6 + • • • + Cd, 

is called an affine combination of the points a^. Let d < n and let the points â  be 
affinely independent. Then they span a (/-dimensional subspace C A". With barycentric 
coordinates its points are written as affine combinations or with affine coordinates as 

ao + CiVi + • • • + CdVd , (2.2) 
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where v^ = â  — ao- This subspace is called a line, plane or hyperplane ii d = l , 2 o r n — 1, 
respectively. 

For any given p and given ao, V i , . . . , v^ as elements of IR ,̂ the linear combination (2) 
represents a system of n linear equations for the ^i. It is solvable only if p lies in the 
subspace. 

Conversely, for varying ^i the presentation (2) can be viewed as the solution of some 
linear system of n — d equations for an unknown p = [771 . . . 77 ]̂̂  In particular, if d = n — 1, 
this system consists of one linear equation, say 

Uo H- U^P = Uo-\- UiTji H h Untln = 0 , 

or with barycentric coordinates of p 

^0^0 + (̂ 1̂ + uo)rji H 1- (^n + uo)Vn = 0, 

where additionally rjo -\- •'--}- rjn = I 
Hyperplanes are called linearly independent if the rows [UQ Ui... Un] of their coefficients 

are linearly independent. Consequently, a subspace of dimension d of A'* can be obtained 
as the intersection of n — d linearly independent hyperplanes. In particular, a point can 
be obtained as the intersection of n hyperplanes. 

Note that the points of an affine subspace solve an inhomogeneous system, while their 
differences, the vectors, solve the corresponding homogeneous system. 

A line p = a + Av is called parallel to a subspace B C A^ if the coordinates of its 
points solve the homogeneous system corresponding to B . Moreover, two affine subspaces 
A and B are parallel if all lines of A are parallel to B , or vice versa. 

2.1.5. Affine maps and axonometric images 
Equation (1) allows two interpretations. First, it expresses p with respect to a new affine 
system [ao, v i . . . V;̂ ], where x = [Ci • • • ^nY ^^^ ^^e new coordinates of p . For example, 
the equation UQ + u*p == 0 of a hyperplane reads in the new coordinates QQ + q*x = 0, 
where ô = ^o + u*ao and q^ = n^A . 

Second, it represents an affine map 0 : x -^ p , where x and p represent affine coordi­
nates of two points. In particular, 0 maps the origin o = [ 0 . . . 0] and the unit vectors^ 
^i = [^i,i • • • ^i,nY î t<^ ^0 cind v^, z = l , . . . , n , respectively. This important property 
defines the map uniquely and allows a simple design and investigation of an affine map. 
Note that (/> maps the points x of the hyperplane QQ + q^x = 0 above into the points p of 
the hyperplane UQ + u^p = 0. 

If the barycentric coordinate columns of points are denoted by the corresponding hollow 
letters, (f) is written as 

p = A^, where A = [OQ <DI . . . 0^]-

Note that affine maps preserve affine combinations, i.e. one has 

0[6ao + • • • + ^dSid] = Co[0ao] + • • • + Cdi^a^], 

and also preserve parallelism and the ratio of parallel distances, i.e. w = Av is mapped 
into [0w] = A[0v]. 

^Sij is the so-called Kronnecker-delta, Sij = I Hi = j and = 0 else 
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Q X 
P P 

Figure 2.2. Affine map and new afRne system. 

If the Vi are linearly dependent, the map is degenerated. In particular, if 77̂ .̂1 = . . . = 
77n = 0 for all x, the map creates an axonometric image as used in descriptive geometry. 
Simple examples are the so-called cavalier and military projections, see [7]. 

Figure 2.3. Cavalier and military projection. 

2.1.6. AfRne combinations and A-frame 
Many algorithms in CAGD are based on repeated affine combinations, 
points, ao and a i . The affine combination 

Consider two 

p = (1 - a)ao - h a a i 

represents a point on the line spanned by ao and ai , and a represents an affine scale with 
a = 0 corresponding to ao and a = 1 corresponding to ai . 

The term r[p; ao ai] = a / ( l — a) is called the ratio of p with respect to ao a i . 
Consider three points ao, ai , a2, and the affine combinations 

bo = (1 - a)ao -f o^ai and bi = (1 - a)ai + aa2 , 
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both related by the same a, and the subsequent afBne combination 

p = (1 - / ? )bo +/3bi 

= (1 - a)(l - /3)ao + (a ( l - /?) + (1 - a )^ )a i + a/Jaj. (2.3) 

Obviously, the resulting point p is symmetric in a and (3. This means that a and /3 
can be interchanged. This symmetry property is referred to as A-frame lemma and is a 
fundamental tool in de Casteljau's work [16]. 

Figure 2.4. A-frame lemma and affine A-frame. 

Let a = p. Then (3) reduces to 

p = (1 - a)^ao -f- 2Q;(1 - a )a i H- a^a2. 

For fixed a the involved six points represent the so-called affine A-Frame, which is of 
great importance in Bernstein-Bezier methods. For varying o; the point p traces out a 
parabola, defined by ao and a2 with tangents that intersects in ai-

2.2. CONIC S E C T I O N S A N D Q U A D R I C S 

The simplest figures in affine space besides lines and planes are conic sections, or more 
general, quadrics. They are studied conveniently by their quadratic equations, see [7]. 

2.2.1. Quadrics in affine space 
In an affine space a quadric Q consists of all points x satisfying a quadratic equation 

Q(x, x) = x*Cx -h 2c*x -h c = 0, 

where C = C^ is a. symmetric non-zero matrix. 
The intersection with a subspace is a quadric again. In particular, if the subspace is a 

line, one gets a pair of points. Note that these points can be real, coalescing or non-real. 
A point m is called a midpoint of Q, if (3(x, x) is symmetric with respect to m. This 

is the case for all solutions of 

Cm + c = o. 
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Figure 2.5. Midpoint and singular point. 

Note that a solution may not exist. If a midpoint s lies on Q, it satisfies 

C s + c = 0, and c*s H-c = 0, 

and is called a singular point, while Q degenerates to a cone. 

2.2.2. Tangents and polar planes 
A line L, given by x == q + A v, where q is a point of Q, intersects Q in a second point. 
If both points coalesce, then L is a tangent of Q at q and satisfies 

[Cq + c]V = 0. 

If additionally v*Cv = 0, then L lies completely on Q, and is called a generatrix of Q. 
Let V = q — X, then L is a tangent if 

Q(q, x) = [Cq + c]^x + c^q + c = 0. 

This equation for x represents a plane, the tangent plane of Q at q. 

Figure 2.6. Tangent and polarity. 

Replacing q by an arbitrary point p gives 

(3(p, x) =̂  p^Cx + ĉ  [x + p] + c = 0. 
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It represents the polar plane P of the pole p with respect to Q. It intersects Q in points 
q with tangent planes through p . Note that these points q need not be real. Note also 
that (5(p, x) is symmetric in p and x. 

A pair of points p , x is called conjugate with respect to Q if Q(p, x) = 0. Hence 
the points of Q are self-conjugate with respect to Q. A pair of directions u, v is called 
conjugate with respect to Q if u*Cv = 0. Conjugate elements play an important role in 
further investigations on quadrics in affine space. 

Quadrics differ by the dimension of their midpoints or singularities, the dimension of 
their real generatrices and in affine space by the shape of their extensions to infinity. 

2.2.3. Pascal's and Brianchon's theorems 
From the past there is a lot of knowledge on conic sections. Of particular interest are the 
following two theorems on conic sectioncs in the plane: 

The three pairs of opposite sides of a hexagon inscribed to a conic section 
meet in three points of a line ( PascaVs theorem). 

The three connections of opposite points of a hexilateral circumscribed to a 
conic section intersects in one point ( Brianchon's theorem). 

Figure 2.7. Pascal's and Brianchon's theorems. 

As a consequence of these theorems a conic section is uniquely determined by five points 
or five tangents in the plane. 

Of particular interest are the theorems if pairs of consecutive points or tangents coalesce. 
E.g., let ao, a2 denote two points of a conic section with tangents meeting at a point a i . 
Let the points 

bo = ( l - c ^ ) a o + a a i , and bi = / 3 a i + (1 - ^)a2. (2.4) 

span a third tangent. Its point of contact p is easily obtained from Brianchon's theorem, 

p - [ / 3 b o + a b i ] / ( a + ^ ) , 

where a and ^ as in (4), see also [6]. 
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Figure 2.8. The projective A-frame and its affine representation. 

2.3. THE EUCLIDEAN SPACE 

The affine space A" is a Euclidean space denoted by E" and the corresponding vector 
space V^ a Euclidean vector space if a dot product a • b = a^b is given. 

2.3.1. Cartesian coordinates 
An affine system [ao, Vi. . . v„] of E" is called Cartesian if̂  v̂  • Vj = Sij and it is positively 
oriented if det[vi... v„] > 0. 

In Cartesian coordinates the distance of two points p and q is given by the length ||v|| 
of the vector v = q — p, 

dist{pci) = ||v|| = Vv^ V, 

and the angle ip of two vectors u and v is given by 

U* V = | | u | | | | v | | COSif. 

In particular, both vectors are called orthogonal if cos(p = 0, i.e. if u* v = 0. 

2.3.2. Gram-Schmidt orthogonalization 
A Cartesian system [ao, b i . . . b^] of a subspace or the Euclidean space itself can easily be 
constructed from an affine system [ao, Vi . . . v^] in E" with Gram-Schmidt's orthogonal­
ization by alternating computation of the coefficients A ĵ and /x̂  as follows: 

Set bi = /iiVi such that ||bi|| = 1 . 
Set b2 = M2(v2 + A2,ibi) such that b2 is orthogonal to bi and ||b2|| == 1 . 

Set hd — [idiyd + Ad̂ ibi H V Arf,rf_ibrf_i), 
such that bd is orthogonal to b i , . . . , b^-i and ||bd|| — 1. 

Note that in a Cartesian system the dot product is written as u • v = uV. 

"̂ see footnote 2 
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2.3.3. Euclidean motions and orthogonal projections 
If the frame [ao, v i . . . v„] is Cartesian, then (1) represents a Cartesian coordinate transfor­
mation or a Euclidean motion. Simple examples of motions in 3-space are the translation 
by V and the rotation around the 3-axis by an angle C, in matrices written as 

p = v-l-
1 
0 
0 

0 
1 
0 

0 
0 
1 

and o + 
cos C — sin C 0 
sin ( cos ( 0 

0 0 1 
X , 

Figure 2.9. Translation and rotation. 

respectively. In particular, let p = Bi{ip)x describe the rotation around the 2-axis by 
some angle (f. Any motion in 3-space can be written as 

where a, P, 7 are the so-called Eulerian angles. 
Any Euclidean motion followed by a map setting the coordinates rjd-^-ii - • • I'Hn of the 

image p to zero results in an orthogonal projection onto some d-dimensional subspace . 

Figure 2.10. Isometric and dimetric orthogonal projection. 

It should be mentioned that orthogonal projections are more informative than sim­
ple parallel projections and much more informative then perspectivities. They are the 
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only projections that map spheres to circles. Therefore orthogonal projections should be 
prefered in presenting technical objects. 

2.3.4. Quadrics in Euclidean space 
If the vectors Vj of the Cartesian system [ao, V j . . . v^] are pairwise conjugate with respect 
to a quadric Q, then the Vj are principal axis directions of Q and C is a diagonal matrix. 

One easily checks that for a conic section given by its equation a rotation by an angle 
a where 

tan 2a = 2ci2/{cu - C22) 

turns the coordinate axes into the axis directions of Q and transforms C into diagonal 
form. 

Figure 2.11. Principal axis transformation. 

2.4. P R O J E C T I V E F U N D A M E N T A L S 

Introducing points at infinity leads to the projective space and allows a unified and most 
elegant treatment of geometry'*. 

2.4.1. Homogeneous coordinates 
Let Ci 5 • • • 5 Cn be aflfine coordinates of a point in A" with respect to an aflftne frame 
[ao, v i . . . v„] as above. Set ^i = A / A with some /?o / 0. Then the ^o^A? - - • ^Pn are 
homogeneous coordinates with respect to the given aflBne frame. Note that any non-zero 
multiple of the homogeneous coordinate column b = [/3o A . . . /3„]* represents the same 
point. Note also that a point p = © is undefined. It represents the so-called forbidden 
point. 

As before /3j = 0, z / 0 represents the coordinate hyperplane (^i = 0. Further, Po = ^ 
represents points at infinity lying in the infinite or ideal hyperplane PQ = 0. An afliine 
space A^ together with its ideal hyperplane forms a projective space P " , the projective 
extension of A" . 

The advantage of this extension is the symmetry of homogeneous coordinates. Points 
at infinity are handled as points in any other plane. In particular, ideal points allow to 

*"A11 geometry is projective geometry" [ Arthur Cayley 1821-1895] 
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intersect parallel lines and subspaces - at infinity. Note that any non-zero multiple of a 
vector represents the same point at infinity. 

Note also that /3o = 0 and /3o / 0 correspond to e = 0 and 6 = 1 in 1.2 above. 

2.4.2. P ro j e c t i ve c o o r d i n a t e s 
Let ©0, • • •, <0d be linearly independent columns of homogeneous coordinates of d + 1 points 
in P'^ with integrated factors such that the sum o = GQ -\- • - • + €d represents a given 
further point c called the unit point. These d + 2 points determine a projective frame 
[do, - • •, <Dd ; <D] of some projective subspace S spanned by the points CQ, • • •, <Dd- Any point p 
of this subspace can be represented by homogeneous projective coordinates ^ = [^o • • -CdY 
as 

PP = foOo + 6^1 + h $d<Dd, P 7̂  0- (2.5) 

Figure 2.12. Projective system and crossratio. 

In particular, if Oj — [1, a-]*, and o = [1, a*]* then a is the center [ao + . . . + S-dl/d of the 
a.i and the ^i are a multiple of the barycentric coordinates of p with respect to the aflfiine 
frame [ao . . . a^]. 

2 .4.3. P ro j ec t i ve m a p s 
The representation (5), with matrices written as pp — Ai?, allows two interpretations. First 
it represents the point p G S by new homogeneous coordinates x. Second it represents a 
projective map ?/; : i? ^ p of S into P " . 

In particular, '0 maps the fundamental points iî j = [̂ 0,2 • • • ^d,iY into Cj , i = 0 , . . . , d 
and the unit point [ 1 . . . 1]* into c. This determines the projective map uniquely - and A 
except for a common factor p. 

Note that a projective map does not preserve parallelism and ratio in general, but it 
preserves the cross ratio 

cr[i?y; oh] — r[x; ab]/r[y; ab] . 
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In particular, if cr[xy;cb] = — 1 then both pairs of points, i?y and o b , lie in harmonic 
position. For example, let a be an affine scale, see 1.6 , the pairs of points corresponding 
to —1, + 1 and 0, oc lie in harmonic position. 

2.4.4. The procedure of inhomogeneizing 
Any homogeneous equation in projective coordinates can easily be inhomogeneized by 
setting the homogeneizing coordinate to one. Any point i? = [(̂ o^^ox ]̂* or v = [0,v*]* is 
simply inhomogeneized to x or v, respectively. 

a3L~\- Ph 

Figure 2.13. Inhomogeneizing the point of a line. 

Of particular interest is the application of this procedure to the point iî  of a projective 
line given by 

p^ = XG -\- fih. 

Let p = 1 and let o — [ao, C^QS^-^Y and b = [/3o, Poh^Y. Then inhomogeneizing )^ — [̂ o, ̂ o^^Y 
results in the affine combination 

x = a a + y5b, where a = Aao/^o and /S = fil3o/^o. (2.6) 

Similar results one gets by inhomogeneizing the points of a projective subspace (5) of 
higher dimension. 

2.4.5. Repeated projective combinations 
Repeated affine combinations and A-frames are often used in CAGD to compute poly­
nomial curves and surfaces and can also be applied to the homogeneous coordinates of 
rational curves and surfaces. It is useful to inhomogeneize the resulting projective com­
binations by the procedure demonstrated above. 

Moreover, after a first inhomogeneizing one can continue with the affine representation 
of the projective A-frame presented in Subsection 2.3. For more details on this procedure 
and its applications see [6]. 

2.4.6. Quadrics in projective space 
In homogeneous or projective coordinates ^ the equation of a quadric Q simplifies to 

(3(i? x) = / C X = 0, where Ĉ  = C, 
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and the polarity is written as 

Note that in homogeneous coordinates the midpoint of Q is the pole of the infinite 
plane. Note also that Q is a cylinder, if it has a singular point at infinity, etc. 

2.4.7. Parametrizing a quadric and its equation 
If a quadric Q is given by its equation (3(xi^) = 0, and q represents a point of Q, i.e., 
Q(qq) = 0, then 

^p = Q{pp) q-2(3(pq) p 

is a parametrization of Q, which is quadratic in the coordinates of p . 
Setting, e.g., p = poCo + • • • + Pn-iCn-i ? where the p^ are suitably choosen, it is also 

quadratic in the homogeneous Q. Note that one may use any other representation for p, 
e.g., polar coordinates with the center q. 

Figure 2.14. Parametrizing a quadric. 

Conversely, the equation (3(xi?) == 0 of a quadric in A^ or P " depends on r = {n -\-
l )(n + 2)/2 homogeneous coefficients, the elements of C. Let r — 1 pairs of conjugate 
points, Pi and q̂  , be given, and let ^ denote some arbitrary point of Q. Then the r — 1 
conditions Qipi^i) — 0 together with Q(y^^ — 0 form a homogeneous linear system for 
the r unknown coefficients of C. Setting its determinant to zero results in the equation of 

Q. 

2.5. D U A L I T Y 

In homogeneous or projective coordinates the equation of a hyperplane simplifies to 

The Ui are homogeneous coordinates of the hyperplane - as the ^i for 2?. Homogeneous 
coordinates can either represent a point or a hyperplane. Consequently any configuration 
of points and hyperplanes has a dual configuration of hyperplanes and points, where the 
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Figure 2.15. Quadrangle and dual quadrilateral. 

dual of a point or hyperplane is a hyperplane or point represented by the same coordinates. 
More general, the hyperplanes meeting some points b i , . . . , b^ are dual to the points of 
intersection of the hyperplanes b i , . . . , b^ , and vice versa. 

Note that the duality depends on the dimension of the space. For example, Pascal's 
and Brianchon's configuration are dual in the plane, where points and tangents of a conic 
section are dual elements. 

2.6. OSCULATING CURVES AND SURFACES 

An important task in CAGD is to connect curves and surfaces smoothly. 

2.6.1. Curve and surface 
A curve x(t) in affine space A" is called regular at to if x(to) ^ o. 

Figure 2.16. Contact of order two. 

The curve x(t) is said to have a contact of order r at ô with a surface given by the 
equation F{x) = 0, if it is regular at to and if F{x{t)) and its derivatives up to order r 
vanish at t = to. This means geometrically that the curve has r + 1 coalescing points 
in common with the surface Sit t = to. Note that this definition does not depend on the 
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parametrization of x(t). Note also that by its geometric meaning the contact of order r 
is projectively invariant. 

2.6.2. Curve and curve 
A second curve y(s) given by the intersection of a number of surfaces contacts x(t) at to 
with order r if x(t) contacts all these surfaces at least with order r. 

If the second curve y(s) is given parametrically, then both curves have contact of order 
r at to if there exists a regular reparametrization t = t{s), for x(t) such that the Taylor 
expansions of x(t(s)) and y{s) agree at to = t{so) up to order r. This condition can be 
expressed by the chain rule as a system of r + 1 linear equations. Therefore contact of 
order r is referred to as chain rule continuity. 

For example, a curve and its osculating circle at a point to have contact of order 2. 

2.6.3. Surface and surface 
Two surfaces have contact of order r at p if all regular curves that lie on one of them and 
meet p have at least contact of order r with the other surface. This means that after a 
suitable reparametrization the Taylor expansions of both surfaces at p agree up to order 

2.6.4. Contur lines, reflection lines and isophotes 
There are some important helpful curves to check the smoothness of surfaces visually. 

Figure 2.17. Reflection line and isophote. 

A reflection line on a surface consists of all points p whose connection with 
some fixed point e, the eye, is reflected into a ray that meets a given fixed line 

An isophote on a surface consists of all points p whose connection with the 
eye e includes a fixed angle with the surface normal at p. 

Contour lines are special isophotes. They consist of all points p, where the 
tangent plane meets e. 
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Figure 2.18. Contour lines. 

In general, on composite surfaces contur lines, reflection lines and isophotes have a 
lower order of contact than the surfaces themselves. 

Note that all three kinds of curves can decay in parts. Note also that the use of infinite 
elements e and L simplifies their computation. 

2.7. DIFFERENTIAL FUNDAMENTALS 

Arc length, curvature and torsion describe the local properties of a curve, the curvature 
of so-called principal normal sections describe the local properties of surfaces. The main 
tool for such investigations is a local frame. 

2.7.1. Arc length and osculating plane 
Let a curve in E^ be given parametrically as x = x(^) and let 

ao = x(^o), vi = x(^o), V2 == x(^o), 

denote its point and first two derivatives at some ô- If vi ^ 0, its tangent at ao is given 

by 

p = ao + 6 v i . 

If vi A V2 / o, its osculating plane at ao is given by 

p = a o + 6 v i + 6 v 2 -

The differential term ds = ||x(^)||d^ is called the arc element of x(^), and the integral 

s{t) = J \\x{t)\\dt 

its arc length, beginning at to- The arc length represents the natural parameter of the 
curve. In most cases it can only be computed approximately. 
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2.7.2. Curvature and torsion 
The natural parameter s is very helpful to derive general curve properties. E.g., let a{s) 
and P{s) denote the angles of the tangent and the osculating plane at s with the tangent 
and osculating plane at some 5o, respectively, and let the prime ' denote differentiation 
with respect to the arc length. Then 

K = a'(so) and r = /3'{so) 

are called the curvature and the torsion of x{t) at SQ, respectively. Note that p = l /« 
represents the radius of the osculating circle. 

Figure 2.19. Curvature and torsion of a rational Bezier curve. 

For example, a rational curve of degree n with Bezier points hi = [/3i,/3jb-]* has the 
span of bo, bi as tangent at bo, and the span of bo, bi, b2 as osculating plane at bo- At 
t = 0 one has 

K{0) = — — ^ ^ - and T(0) = 
n pf o? n y^i^2 a 6 ' 

where a, 6, c denote the distances of bi from bo, of b2 from the tangent at bo, and of bs 
from the osculating plane at bo, respectively. 

2.7.3. The Frenet frame 
Schmidt's orthogonalization applied to x, x, x at x(to) results in the so-called Frenet 
frame [t m b] , which depends on t. One has 

[t'm'b'] = [tmb] 
0 -/c 0 
/̂  0 - r 
0 r 0 

which is an important tool for further investigations, see [3], [5] and [9]. 

2.7.4. Curves on surfaces 
Let a surface be given parametrically as 

X = 'K{U,V) = x(u). 
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Figure 2.20. Curve with derivatives, osculating plane and Frenet-frame. 

The lines u = fixed, v — fixed are called iso-lines. If the partial derivatives yi^ and x̂ ; 
are linearly independent, the surface normal is defined by 

n = [x̂ , Ax^]/||x^ Ax^||. 

Let u — u(t) denote some curve in the u-plane then, in general, x = x(u(t)) represents 
a curve on the surface. The arc element ds of this curve is given by its square 

ds^ = {Eu^-\-2Fuv + Gv'^)dt'^, 

where E = xĵ x^ , F = x^x ,̂ , and G — X-̂ X|; are well-known as Gaussian first fundamental 
quantities. Note that \\xu A x^lp = EG - F'^. 

Figure 2.21. Local frames on a surface. 

2.7.5. Meusnier's sphere and Dupin's indicatrix 
Consider all curves on a surface meeting a given point p with a given tangent t there. 
One has : 

The osculating circles of these curves lie on a sphere [Meusnier's sphere). 
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It follows that the radius of the osculating circle of a surface curve is given by p = 
Po cos S, where 6 denotes the angle between the surface normal and the osculating plane 
and po is the radius of Meusnier's sphere. The inverse KQ = 1/po is called the normal 
curvature of the surface at p in direction oft. Hence it is sufficient to know the curvature 
of one of these curves and the angle of its osculating plane with n to compute all others. 

Figure 2.22. Meusnieur's sphere and Dupin's indicatrix. 

In general, the normal curvature KQ differs for different t. For all tangent directions t 
at p consider the points 

q = P + \/pot 

of the tangent plane with distance y/po from p. One has : 

The points q lie on a conic section with center p {Euler's theorem). 

This conic section is also known as Dupin's indicatrix. Its axis directions are called the 
principal directions, and the corresponding values of K = 1/po are called the principal 
curvatures of the surface at p, mostly denoted by HCI = 1/pi and AC2 = l/p2. 

Note that Dupin's indicatrix can be an ellipse, a pair of parallel lines or a hyperbola. 
In case of a hyperbola it has two real asymptotic directions . The normal curvature is 
zero there and po is infinite. 

If /̂ i = «:2 , then Dupin's indicatrix is a circle and p is called an umbilical or spherical 
point. 

2.7.6. The curvatures of a surface 
Because of its geometric meaning Dupin's indicatrix and consequently the principal cur­
vatures K,i and K,2 at a point p do not depend on the parametric representation of the 
surface. 

The expressions 

K = K1K2 and H = {KI -{- K^)/! 
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are called the Gaussian curvature and the mean curvature of the surface at p , respectively. 
Both give important information about the smoothness of a surface. Moreover, Gauss 
has shown that K depends on E, F , and G and their derivatives only. This means 
that K depends on the inner measurements on the surface only and is invariant under 
deformations of the surface that do not distort the measurement of lengths on the surface. 

R E F E R E N C E S 

1. C. Adler. Modern Geometry. McGraw Hill, New York, 1967. 
2. M. Berger. Geometry 1 & 2. Springer, Berlin, 1987. 
3. W. Boehm. Rational geometric splines. Computer Aided Geometric Design, A'.^l-ll, 

1987. 
4. W. Boehm and H. Prautzsch. Numerical Methods. A.K. Peters, Wellesley, 1992. 
5. W. Boehm. Differential Geometry I & 11. in [11], 1993. 
6. W. Boehm. An affine representation of de Casteljau's and de Boor's rational algo­

rithms. Computer Aided Geometric Design, 10:175-180, 1993. 
7. W. Boehm and H. Prautzsch. Geometric Concepts for Geometric Design. A.K. Peters, 

Wellesley, 1994. 
8. W. Boehm. Circles of curvature for curves in space. Computer Aided Geometric De­

sign, 16:633-638, 1999. 
9. M.P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice Hall, Engle-

wood NJ, 1976. 
10. H.S.M. Coxeter. Introduction to Geometry. John Wiley & Son, New York, 1969. 
11. G. Farin. Curves and Surfaces for CAGD: a Practical Guide, 3rd Edition. Academic 

Press, Boston, 1993. 
12. G. Farin and D. Hansford. The Geometry Toolbox for Graphics and Modelling. AK 

Peters, Natick MA, 1998. 
13. G. Farin. The Essentials of CAGD. AK Peters, Natick MA, 2000. 
14. D. Hilbert and S. Cohn-Vossen. Geometry and the Imagination. Chelsea Publishing 

Co., New York, 1990. 
15. L. Ding-yuan. Computational Geometry - Curve and Surface Modeling. Academic 

Press Boston, 1992. 
16. H. Prautzsch, W. Boehm, and M. Paluszny. Bezier and Spline Techniques. Springer, 

Berlin/New York, to appear, 2002. 
17. C. Wylie. Introduction to Projective Geometry. McGraw Hill, New York, 1970. 



Chapter 3 

Geometries for CAGD 

Helmut Pottmann and Stefan Leopoldseder 

Chapter 2 describes the fundamental geometric setting for 3D modeling and addresses 
Euclidean, affine and projective geometry, as well as differential geometry. In the present 
chapter, the discussions will be continued with a focus on geometric concepts which are 
less widely known. These are projective differential geometric methods, sphere geome­
tries, line geometry, and non-Euclidean geometries. In all cases, we outline and illustrate 
applications of the respective geometries in geometric modeling. 

Special emphasis is put on a general important principle, namely the simplification 
of a geometric problem by application of an appropriate geometric transformation. For 
example, we show how to apply curve algorithms for computing with special surfaces such 
as developable surfaces, canal surfaces and ruled surfaces. As another example, it is shown 
that an appropriate geometric transformation can map an arbitrary rational surface onto 
a rational surface all whose offsets are also rational. 

For the use of algebraic geometry in geometric design, the reader is referred to Chap­
ter 15 on implicit surfaces. We also skip difference geometry [99], which studies discrete 
counterparts to differential geometric properties and invariants and is thus useful in geo­
metric computing. This holds especially for subdivision curves and surfaces (Chapter 12) 
and multiresolution techniques (Chapter 14), where discrete models of curves and surfaces 
play a fundamental role. 

Naturally, when describing applications, we reach into many other chapters of this 
handbook. Thus, our references concerning applications are examples, and partially far 
from being complete. A much more complete picture is achieved in connection with the 
references in those chapters we are referring to. The addressed geometric concepts cannot 
be discussed in sufficient detail within the present frame. For a careful and detailed 
study of most of the material in this chapter we refer to the monograph by Pottmann and 
Wallner [94], which focusses on line geometry and its applications in geometric computing. 
However, it also provides the necessary classical background of related areas such as 
projective geometry, differential geometry, and algebraic geometry. 

43 



44 CHAPTER 3. GEOMETRIES FOR CAGD 

3.1. CURVES AND SURFACES IN PROJECTIVE GEOMETRY 

Differential geometry in projective spaces requires some modifications over Euclidean 
differential geometry. In n-dimensional real projective space P" , a point X is represented 
by a one-dimensional subspace of R""^ .̂ Any basis vector x = (XQ, . . . , x^) in this subspace 
delivers the homogeneous coordinates (XQ, . . . ^x^). The latter are just defined up to a 
scalar multiple, and thus we write X = xR. A parameterization of a curve c G P ^ is given 
in the form 

c{t) = {Xo{t),...,Xn{t)). (3.1) 

By homogeneity, any function X{t)c{t) with a real scalar-valued function A(^) / 0 repre­
sents the same curve. The transition from the parameterization c{t) to X{t)c{t) is called a 
renormalization. Like a reparameterization, a renormalization does not change the curve 
as a point set. Analogously, we have to treat parameterizations of m-dimensional surfaces 
in P^. 

Projective differential geometry is based on properties of curves or surfaces which are 
invariant under reparameterization, renormalization and projective mappings. It is a very 
well studied classical subject [10] and turned out to be useful for various applications in 
geometric modeling [19]. Those include geometric continuity and local approximation with 
the concept of higher order contact (see [19] and Chapters 2 and 8). Other applications, 
which involve duality, line and sphere geometries, are outlined in the following. 

As an example of a concept of projective differential geometry, we mention osculating 
spaces. The osculating space r^(to) of dimension A: at a curve point c(to)R is spanned by 
this point and the first k derivative points, 

r^(to) - c(to)R V c(to)R V . . . V c^^)(^o)R- (3.2) 

In case that these points are not linearly dependent, one adds higher derivative points 
until dimension k of the spanning set is reached. Although the derivative points change 
both under reparameterization and renormalization, their span does not change, and thus 
is an example of an invariant object of projective differential geometry. 

3.1.1. Bezier curves and surfaces as images of normal curves and surfaces 
Rational Bezier curves are fundamental for geometric modeling. It is widely known that 
rational Bezier curves of degree two are conies. In fact, since polynomial Bezier curves 
of degree two are just parabolae, the desire to represent all types of conies, quadrics, 
and other important shapes such as tori exactly in a CAD system, has been one of the 
motivations for the introduction of the full class of rational curves and surfaces into 
CAGD. 

The most basic algorithm for Bezier curves, de Casteljau's algorithm, is for degree 2 
equivalent to Steiner's generation of a conic with help of two projective lines, or more 
precisely, ranges of points (see [27,28,41]). However, not only quadratic Bezier curves are 
deeply rooted in projective geometry. The same holds for the full class of rational Bezier 
curves [18]. The corresponding concept in projective geometry is that of rational normal 
curves [6]. These are rational curves c" of degree n which span n-dimensional projective 
space. Their set of osculating hyperplanes is generated by connecting associated points 
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in n projective ranges of points. For any two different points A,B on 3i normal curve c" 
we may construct the so-called osculating simplex or fundamental simplex with vertices 
BQ, ... ,Bn as follows: Point Bi is the intersection of the osculating i-space at A with the 
osculating (n — z)-space at B. In particular this implies BQ = A, B^ = B. The tangent 
at A is spanned by ^o ^nd Bi, the osculating plane at A is spanned by BQ,BI,B2, and 
so on. Readers familiar with Bezier curves will immediately recognize the vertices of the 
osculating simplex as Bezier points of the curve segment defined by A and B. In fact, 
the segment is not yet fully defined, since the normal curve c^ is (like any straight line) a 
closed curve in P " . The segment is defined, if one picks an additional curve point F on the 
two segments defined by A and B. It is common to intersect the osculating hyperplane 
at F with the lines Bi V Bi^i and call them frame points Fj, z = 0 , . . . , n — 1. It can be 
shown that a homogeneous parameterization c"(t)R of c^ has the form 

e{t) = J2B^[t)b,, BUt) ••= W^^(l - tr-\ (3.3) 

Here, b̂  represent the points Bi, and the homogeneous coordinate vectors bj are chosen 
such that hi -{- bj+i represents the frame point Fi. The parameter interval for the chosen 
segment is [0,1], in particular we have c"(0) = bo, c"(l) = b^, c"(0.5)R = F. Also just 
by intersecting osculating spaces, the so-called blossom can be defined and its properties 
may be seen as special cases of results on normal curves (see Chapter 4). 

A projective map in P^ is defined if we know how it acts on the points of a simplex (say 
BQ, ..., Bn) and a further point F which is in general position with respect to the points 
Bi. Thus, representation (3.3) also reveals the remarkable property that any two normal 
curves, in fact, even any two segments of normal curves in P^ are protectively equivalent. 
This "standard" curve segment has no singularities, inflections, or other degeneracies in 
the sequence of osculating spaces. 

So far we have discussed normal curves, i.e., degree n curves which span P^. Ra­
tional Bezier curves of degree n in lower dimensional spaces P^ {d < n) are obtained 
by applying projections of normal curves into P^. This is illustrated for the cubic case 
in Figure 3.1. In fact, there we have an affine special case. A cubic polynomial normal 
curve ĉ  (normal curve with the ideal hyperplane as an osculating hyperplane) with Bezier 
points Bo,Bi,B2, B'^ is projected via a parallel projection onto the planar Bezier cubic c 
with control points BQ, ... ,Bs. This geometric relation between planar and space cubics 
can be used for a shape classification of cubics in the plane. The questions are: Given 
Bo,Bi,B2^ where to choose Bs such that the curve segment has an inflection, a cusp, a 
loop, and so on [105]. Since the space cubic is a normal curve, it does not have such 
characteristics at all. Those are results of the projection and can easily be discussed with 
help of it (see [80,82], where the shape analysis is extended to rational cubics and also to 
quartics). 

A projective basis for an analogous study of triangular Bezier surfaces are the so-called 
Veronese manifolds [6]. As an example for the application in CAGD, W. Degen [20] 
discusses the types of Bezier triangles, especially those of degree two. His characterization 
of quadrics is a basis for further work on quadric patches by G. Albrecht [2]. 
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Bo 

Figure 3.1. Planar cubic Bezier curve via projection of a cubic normal curve 

3.1.2. N U R B S curves and surfaces in projective geometry 
As we have seen, the notion of a frame point, which goes back to G. Farin [26], is important 
for a geometric input of a rational Bezier curve. The so-called weights (the homogeneizing 
coordinates XQ of the control points, see Chapter 5) have the disadvantage of not being 
projectively invariant. There is another advantage of frame points. With help of them, we 
may form a geometric control polygon of a rational Bezier or B-spline curve in projective 
space as follows: On each straight line BiBi^i connecting consecutive control points take 
that segment as member of the geometric control polygon, which contains the frame point 
Fi (see Figure 3.2). 

Frame points are tied to the curve in a projectively invariant way: Assume a rational 
Bezier curve c(t) with geometric control polygon 5o, FQ, Bi, F i , . . . ,B^ . A projective 
transformation x : xR \-^ {A - x)M maps c(t) to a rational Bezier curve c'{t) whose 
geometric control polygon is H{BQ), >C{FQ), . . . , >c{Bn)- An analogous property holds for 
rational B-spline curves. 

An advantage of the use of the projective control polygon is that we do not have 
to confine ourselves to positive weights when formulating the most fundamental shape 
property, namely the variation diminishing property. In the projective setting, it reads as 
follows: A hyperplane H intersects a NURBS curve c{t) (not contained in H) in at most 
as many points as it intersects the geometric control polygon of this curve, if no vertex 
has zero weight. 

Frame points (also referred to as Farin points) for rational Bezier triangles have been 
introduced by G. Albrecht [1]. 

Projective geometry enters many algorithms for rational curves and surfaces, such as 
reparameterization, degree elevation and shape modification. For those topics, the reader 
is referred to Chapter 5 of this handbook and to [27,28,41,77] and the references therein. 
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Figure 3.2. Rational Bezier curves with geometric control polygon. 

3.1.3. Duality and dual representation 
The Bezier representation of a rational curve expresses the polynomial homogeneous 
parametrization c(t)R in terms of the Bernstein polynomials. Then the coefficients have 
the remarkable geometric meaning of control points with a variety of important and prac­
tically useful properties. 

The tangent of a planar rational curve c{t) = c{t)R at t = to is computed as the line 
which connects c(to) with its first derivative point c^(to) = c(to)M. It has the homogeneous 
line coordinate vector Ru(t) = R(c(t) A c(t)). Thus the family of tangents has again a 
polynomial parametrization, which can be expressed in the Bernstein basis. This leads to 
a dual Bezier curve 

U{t) = Mu(t) - R I ^ B f (t)u 
i=0 

(3.4) 

which can be seen as a family of lines in the (ordinary) projective plane, or as a family of 
(ordinary) points of its dual plane. For the concept of projective duality, see Section 2.5 
of Chapter 2. 

The family of tangents of a planar rational Bezier curve is a dual Bezier curve, and 
vice versa. 

When speaking of a Bezier curve we often mean a curve segment. In the form we have 
written the Bernstein polynomials, the curve segment is parametrized over the interval 
[0,1]. For any t G [0,1], Equation (3.4) yields a line U{i) — Ru(t) . The original curve 
segment is the envelope of the lines U{t), where t ranges in [0,1]. 

As an example of dualization, let us discuss the dual control structure of a Bezier curve 
c (see Figure 3.3): There are the Bezier lines Ui — Ru^, z = 0 , . . . , m, and the frame lines 
Fi, whose line coordinate vectors are given by 

fi = Ui + Ui+i, 2 = 0 , . . . , m - 1. (3.5) 
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Figure 3.3. Left: Dual Bezier curve. Right: Complete dual control structure and variation 
diminishing property. 

Frame line Fi is concurrent with the Bezier lines Ui and L ĵ+i. This is dual to the collinear-
ity of a frame point with its two adjacent Bezier points. 

We could also use weights instead of frame lines, just as we could have used weights 
instead of frame points. Because weights are no projective invariants, it is preferrable to 
use frame lines and frame points. An invariant statement of theorems is also important 
for their dualization. 

For a Bezier curve, the control points BQ and Bm are the end points of the curve 
segment, and the lines ^o V Bi and Bm-i V Bm are the tangents there. Dual to this, the 
end tangents of a dual Bezier curve are UQ and Um, and their points of contact are given 
by UQ n Ui and Um-i Pi Um, respectively. 

We dualize the geometric control polygon: The line pencil spanned by lines Ui and Ui+i 
is divided into two subsets, bounded by Ui and t/j+i. The one which contains the frame 
line is part of the complete dual control structure (see Figure 3.3). 

Dual to the variation diminishing property of a rational Bezier curve with respect to 
its projective control polygon we can state the following result: If c is a planar rational 
Bezier curve, the number of c 's tangents incident with a given point P does not exceed 
the number of lines of the complete dual control structure which are incident with P (if 
no control line has zero weight). 

This result easily implies a sufficient condition for convexity of a dual Bezier curve. By 
a convex curve we understand part of the boundary of a convex domain. A support line 
L of a convex domain X> is a line through a point of the boundary of V such that V lies 
entirely on one side of L. Now the convexity condition reads: / / the Bezier lines Ui and 
the frame lines Fi of a dual Bezier curve c are among the edges and support lines of a 
convex domain V, and the points Ui Pi t/j+i are among Vs vertices, then c is convex and 
lies completely outside V . 

A planar rational curve segment, or more precisely, a rational parameterization of it, 
possesses two Bezier representations: the usual, point-based form, and the dual line-based 
representation. There are simple formulae for conversion between the two forms (see, 
e.g., [79,83,94]). However, their behavior when used for design purposes is different. By 



3.1. CURVES AND SURFACES IN PROJECTIVE GEOMETRY 49 

Figure 3.4. Standard control structure tends to generate inflections, whereas the dual 
control structure tends to introduce cusps. 

using the standard representation it is difficult to design cusps but quite easy to achieve 
inflections of the curve segment. In the dual representation, very special conditions on 
the control structure must be met to design an inflection, but it is easy to get cusps. This 
is illustrated by Figure 3.4. For many applications, cusps are not desirable and therefore 
the convexity condition plays an important role. To achieve inflections, it is best to locate 
them at end points of the Bezier curve segments (see [79]). Cusps and inflections are dual 
to each other, but cusps are sometimes easier to detect than inflections. This has been 
the motivation for J. Hoschek [39,40] to introduce duality and dual Bezier curves and 
surfaces to CAGD. 

The dual representation also provides an advantage in the construction of rational 
curves and surfaces with rational off'sets, which will be outlined below in connection with 
the use of Laguerre sphere geometry. 

3.1.4. Developable surfaces as dual curves 
Dualizing the point set of a curve in 3-space, we obtain a family of planes, whose envelope 
is a developable surface. A developable surface is characterized by the property that it 
can be mappedare isometrically into the plane. Because such surfaces can be unfolded 
into a planar surface without stretching or tearing, they play an important role in various 
applications, e.g., in sheet-metal and plate-metal based industries. 

Dual to the tangents of a curve, a developable surface carries a one-parameter family 
of lines (rulings), and thus it is a ruled surface. The rulings may pass through a fixed 
finite or ideal point; this characterizes general cones or cylinder surfaces, respectively. 
The rulings may also be the tangents of a space curve c. On such a tangent surface, the 
curve c itself is singular and called curve of regression. More general developable surfaces 
are composed of segments of the mentioned basic types. 

It turned out that for the design of developable NURBS surfaces the use of the dual 
representation has an advantage over treating them as ruled surfaces. This is so, since a 
ruled surface, represented as a tensor product Bezier or B-spline surface of bidegree (1, n) 
has to fulfil a very special condition in order to be developable: the tangent plane has to 
be constant along any of its rulings. This results in a nonlinear system for the control 
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points, whose general solution is difficult to obtain [3,52]. 
To construct developable Bezier or general NURBS surfaces, one applies duality in P^ 

to Bezier or NURBS curves, respectively. Hence, we obtain a dual control structure 
consisting of control planes and frame planes, whose major properties follow by duality, 
just as in the case of dual Bezier curves in the plane. Conversion of a NURBS developable 
surface from the dual form to its standard representation as a tensor product surface, 
interpolation and approximation algorithms (see also section 3.4.2 and Figure 3.14), the 
treatment of singularities, and other topics have been studied [9,13,15,42,43,56,60,83,93, 
94]. 

Developable surfaces with creases, e.g. models of crumpled paper, are discussed in 
[4,48]. The dual representation of developable surfaces also appears in the computation 
of envelopes [47,113,114]. Finally, even in certain algorithms for non-developable ruled 
surfaces, the dual representation may have some advantages [44]. 

3.2. S P H E R E GEOMETRIES 

In projective geometry the basic geometric elements are points and hyperplanes with in­
cidence as their fundamental relation. Many geometric methods and properties involving 
(Euclidean) spheres are represented more elegantly, though, if one uses sphere geometries, 
i.e., spheres by themselves are the basic geometric elements. Classical sphere geometries 
include Laguerre geometry and Mobius geometry, both of which can be embedded in a 
larger concept, namely Lie geometry. For a detailed treatment of classical sphere geome­
tries we refer to [5,8,17,12,67]. One of the most recent applications of sphere geometries 
can be found in biogeometric modeling [24], namely the concept of molecular skin surfaces 
[23]. 

3.2.1. Models of Laguerre geometry 
The fundamental geometric elements of Laguerre geometry in Euclidean n-space E^ are 
oriented hyperplanes and oriented hyperspheres. Let 7i denote the set of oriented hyper­
planes H of E'^ and C the set of hyperspheres C including the points of £"" as (non-
oriented) spheres with radius zero. The elements of C are called cycles. The basic relation 
between oriented hyperplanes and cycles is that of oriented contact. An oriented hyper-
sphere is said to be in oriented contact with an oriented hyperplane if they touch each 
other in a point and their normal vectors in this common point are oriented in the same 
direction. The oriented contact of a point (nullcycle) and a hyperplane is defined as 
incidence of point and hyperplane. 

Laguerre geometry is the survey of properties that are invariant under the group of 
so-called Laguerre transformations a = (a'u.ac) which are defined by the two bijective 
maps 

an-.n-^n.ac-.C^C, (3.6) 

which preserve oriented contact and non-contact between cycles and oriented hyperplanes. 
Analytically, a hyperplane H is determined by the equation UQ + UiXi -h . . . + UnXn — 

0 with normal vector {ui,... ,Un). The coefficients Ui are homogeneous plane coordi­
nates {UQ, ... ,Un) of H in the projective extension P " of E^. Each scalar multiple 
{XUQ, . . . , Xun), A G M\{0} describes the same hyperplane. Thus it is possible to use 
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normalized homogeneous plane coordinates 

H = (l£o, . • . , Un), wi th lij -h . . . 4- U^ = 1, 

which are appropriate for describing oriented hyperplanes. The unit vector ( i^i , . . . ,Un) 
determines a unit normal and the orientation of the hyperplane. 

An oriented hypersphere, 

C = ( m i , . . . , m „ ; r ) , 

is determined by its midpoint m — ( m i , . . . ,m„) and signed radius r. Positive sign of 
r indicates that the normal vectors are pointing towards the outside of the hypersphere, 
whereas in the case of negative sign of r they are pointing into the inside. Points of E^ 
are cycles characterized by r = 0. 

The relation of oriented contact is given by 

Uo + UiTTli + . . . H- UnlTln + T == 0. (3.7) 
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Figure 3.5. Cyclographic mapping, top and front view. 

Another model of n-dimensional Euclidean Laguerre space can be constructed in n + 1 -
dimensional affine space 1R^+ ,̂ by using the cyclographic mapping ( : M"+^ -^ C. It maps 
points X = ( m i , . . . , m^̂ , r) to cycles C = ({x) with midpoint m = ( m i , . . . , m^) and 
oriented radius r. If x = ( m i , . . . , m„, 0), ({x) gives the point (nullcycle) m. 

A geometric interpretation of the mapping (" can be given as follows (see Figure 3.5 for 
dimension n = 2): We assume Euclidean n-space E'^ to be embedded as the hyperplane 
n : Xn+i = 0 in E"+^. Let r ( x ) denote a hypercone of revolution with vertex x, whose 
axis is parallel to the x^^+i-axis and whose generators enclose the angle 7 = 7r/4 with 
the Such cones will be called j-cones, henceforth. Then the cycle ("(x) is the 
intersection of 11 with r ( x ) , where one has to add the correct orientation according to the 
sign of the n -f 1-th coordinate of x. 
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Figure 3.6. Cycles in oriented contact with an oriented line. 

Now we focus on oriented contact of cycles and oriented hyperplanes (see Figure 3.6 for 
n = 2). The C-preimage of all cycles C being in oriented contact with a fixed hyperplane 
H = {UQ, . . . , Un) are the points x of a hyperplane C~nH) • uo-\-uiXi-\-.. .+?in^n+^n+i = 0, 
according to (3.7). This hyperplane is incident with H and encloses an angle of 7 = 7r/4 
with n . It is called a j-hyperplane. A 7-hyperplane touches the 7-cones r ( x ) of its points 
X along generators of r ( x ) , which will be denoted by 7-lines. 

We summarize: The cydographic mapping C maps points of M""̂ ^ to cycles C of Eu­
clidean Laguerre n-space. Hyperplanes in M""̂ ^ with inclination angle 7r/4 to 11 correspond 
to oriented hyperplanes H. Incidence of point and '-^-hyperplane in R "̂̂ ^ is equivalent to 
oriented contact of the corresponding cycle and oriented hyperplane. 

In the cydographic model R^"^ ,̂ Laguerre transformations (3.6) appear as transforma­
tions of R "̂̂ ^ which transform 7-lines to 7-lines. This is already sufficient to classify these 
transformations as special affine maps 

j ^ n + l ^ j^n+1 ^ X H-> A A • X -h C, A G R \ { 0 } , A ^ • Epe • A - E p e , ( 3 . 8 ) 

where Epe = d i a g ( l , . . . , 1, —1). Formula (3.8) describes similarities in a pseudo-Euclidean 
geometry (also called Minkowski geometry). Its metric is based on the scalar product 

(a, b)pe = aihi + . . . + a„6„ - a^+i^^+i = a^ • Epe • b . (3.9) 

Points p and q with (p, q)pe = 0 correspond to cycles C ( P ) 5 C ( Q ) which are in oriented 
contact. 

Besides the cydographic model of Euclidean Laguerre space, which represents cycles 
by points, there are further geometric models, which give a point model for the set H, of 
oriented hyperplanes. 

By dualizing the cydographic model, 7-hyperplanes (representing the oriented hyper­
planes of Euclidean Laguerre n-space) are mapped to points on a quadratic hypercone in 
R^"''^ the so-called Blaschke hypercone A. Points of the cydographic model (representing 
cycles) are mapped to hyperplanar intersections of A. The Blaschke model of Euclidean 
Laguerre space thus is just the dual of the cydographic model. 
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A stereographic projection of the Blaschke cone A into a hyperplane E^ yields the so-
called isotropic model of Euclidean Laguerre n-space. Oriented hyperplanes H G K are 
represented by points in E", cycles C 6 C are given as special quadrics in M^, which are 
spheres with respect to an isotropic metric in R^; cf. section 3.5.3. A detailed discussion 
of the Blaschke model and the isotropic model, including their analytic treatment and 
applications to CAGD, can be found in [53,74,87]. 

3.2.2. M o b i u s g e o m e t r y 
Let E^ be real Euclidean n-space, V its point set and A4 the set of (non-oriented) hy-
perspheres and hyperplanes of E^. We obtain the so-called Euclidean conformal closure 
EJ^ of E'^ by extending the point set V by an arbitrary element (ideal point) CXD 0 P to 
VM = P U {OO}. AS an extension of the incidence relation we define that CXD lies in all 
hyperplanes but in none of the hyperspheres. The elements of M are called Euclidean 
Mobius hyperspheres. 

Euclidean Mobius geometry is the study of properties that are invariant under Euclidean 
Mobius transformations. A Mobius transformation is a bijective map oiVui which maps 
Mobius hyperspheres to Mobius hyperspheres. A simple example is given by the inversion 
X i-> ^ x with respect to the sphere x^ = r^ in E". Another example is the reflection 
at a hyperplane, viewed as Mdbius sphere. Any general Mdbius transformation is a 
composition of inversions with respect to Mobius spheres. 

Besides the standard model of Euclidean Mobius geometry, mentioned above, we obtain 
the quadric model of this geometry by embedding E^ in Euclidean n + 1-space E^^^ as 
plane Xn-\-i = 0. Let a : S \{z} -^ E'^ be the stereographic projection of the unit 
hypersphere 

'L:x\ + ... + xl^, = \ (3.10) 

onto E'^ with projection center (or north pole) z = ( 0 , . . . , 0,1), see Figure 3.7. 
Extending cr to a with a : z (-)> CXD gives the quadric model of Euclidean Mobius 

geometry which is related to the standard model via a. The point set is that of E C 
E^^^ and the Mobius spheres are the hyperplanar intersections of E since a is preserving 
hyperspheres. 

For the analytic treatment of Euclidean Mobius geometry, let x = ( x i , . . . .x^) denote 
a point in E"^, and x = cr"^(x) = ( x i , . . . ,Xn+i) the corresponding point of E C E"^^^. 
Let P^+i denote the projective extension of E'^^^. In homogeneous coordinates we then 
have xE = (xo,Xi, . . . ,Xn+i)E with —XQ -\- X\-{-... + x'^_^^ = 0 (xM G E). The inverse 
stereographic projection a~^ : V —> E \{z} C E'^'^^ is given by 

cr"^(x) = xE = (x^ + . . . + x^ + l ,2x i ,2x2 , . . . ,2xn ,Xi + . . . + Xn - 1)E. (3.11) 

The homogeneous coordinates x = (xo,Xi, . . . ,Xn+i) are called n-spherical coordinates 
of a point x e E'^. These coordinates are appropriate to represent Mobius spheres as 
well: Via a~^ a Mobius sphere M € A^ corresponds to a hyperplanar intersection of E, 
whose pole with respect to E shall be denoted by cE, see Figure 3.7. Its homogeneous 
coordinates 

C = ( C o , C i , . . . , C „ + i ) 



54 CHAPTER 3. GEOMETRIES FOR CAGD 

Figure 3.7. Stereographic projection, top and front view. 

are called the n-spherical coordinates of M. For n — 2,3 these coordinates are usually 
denoted by tetracyclic and pentaspherical coordinates, respectively. 

It can be easily verified that in case of CQ = Cn+i the Mobius sphere M represents 
a hyperplane of the standard model with equation —CQ + CiXi + . . . + Cn+iXn^i = 0. 
In case of CQ 7̂  Cn+i the Mobius sphere M represents the hypersphere with midpoint 
l/(co - Cn+i) • ( c i , . . . , Cn) and radius (c? 4 - . . . + c^^^ - c^)/(co - Cn+i)^. Let 

(X, y)M = -^Oyo + Xiyi + . . . + Xn+lVn+l = X^ • E M ' Y 

with E M = diag(—1,1, . . . , 1) describe an indefinite scalar product. Then we are able 
to describe points by n-spherical coordinates x with (x, X)M = 0 and Mobius spheres by 
n-spherical coordinates c with (c, C)M > 0. Incidence of a point xE and a Mobius sphere 
cR is given by (x, C)M = 0-

It is a central theorem of Euclidean Mobius geometry that in the quadric model all 
Euclidean Mobius transformations are induced by linear maps P"+i -^ P " + \ x H-> A • x 
with A^ • E M • A = A E M , where P"+i again denotes the projective extension of E^'^^. 
These linear maps represent those projective maps of P^"^^ that keep E fixed (as a whole). 

3.2.3. Applications of the cyclographic image of a curve in 3-space 
With help of the cyclographic mapping, the points of a curve p in R^ are mapped to 
a family of cycles in the plane E^. The envelope of this family of cycles is called the 
cyclographic image c(p) of the curve. Points of the envelope can be constructed with 
help of the tangents of p as shown in Figure 3.8. Note that the orientation of cycles in 
planar Laguerre geometry can be visualized by a counterclockwise (positive) or clockwise 
(negative) orientation of the corresponding circle. 

Consider a Bezier curve p in M̂  all of whose control points b^ are contained in the 
upper half-space 11"̂  which is defined by the equation X3 > 0. The cyclographic image 
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Figure 3.8. Cyclographic image of a curve in 

points CO^i) ^re cycles with positive orientation. They determine disks Di. We can see 
these disks as tolerance regions for imprecisely determined control points in the plane and 
ask the following question: if the control points vary in their respective tolerance regions 
Di, which part of the plane is covered by the corresponding Bezier curves? We call this 
planar region the tolerance region of the Bezier curve (see Figure 3.9). It is not difficult 
to show that this tolerance region is essentially bounded by the cyclographic image of 
the Bezier curve h{t) with control points b o , . . . , b^. An example of this can be seen in 
Figure 3.9. Such disk Bezier curves have been studied by Lin and Rokne [57]. 

Generalizations to arbitrary convex tolerance regions for the input points are discussed 
in [35,85,108]. There, other problems of geometric tolerancing and error propagation in 
geometric constructions are addressed as well. Various applications of Laguerre geometry 
and the cyclographic mapping appear in connection with toleranced circles or spheres. 

Further investigations of geometric tolerancing in the plane could make use of very 
recent work by Farouki et al. [29,30]. It concerns the geometry of sets in the plane, which 
can be represented in a simple way using complex numbers. Complex numbers are known 
as elegant tool for certain geometric investigations, for example in planar kinematics and 
Mobius geometry [102]. 

3.2.4. The medial axis transform in a sphere geometric approach 
Let V denote a planar domain with boundary dV. The (ordinary, trimmed) medial axis 
c is the locus of centers of maximal disks that are contained in V\ see Chapter 19 for a 
detailed discussion on this topic. 

The construction of c allows a Laguerre geometric interpretation, after embedding the 
plane of V into R^ as 11 : X3 = 0: We search for a space curve c whose cyclographic 
image C(c) is dV (see Figure 3.10 and [37,87]). Let dV be oriented such that its curve 
normals are pointing outside. Then dV defines a ^-developable F passing through dV, 
i.e., a developable surface whose generators are 7-lines. The set c of all self-intersections 
of F is called the (untrimmed) medial axis transform of V. The orthogonal projection of 
c onto n gives the (untrimmed or complete) medial axis c. It is the locus of (oriented) 
circles that touch the boundary dV in at least two points, but are — because of the lack 
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Figure 3.9. Tolerance region of a Bezier curve with disks A as tolerance regions for the 
control points. 

of trimming — not neccesarily contained in V. 
The above construction of the (untrimmed) medial axis transform allows the computa­

tion via surface/surface intersection algorithms, which are discussed in Chapter 25. Those 
parts of the intersection curve which belong to the trimmed medial axis can be easily de­
tected by a visibility algorithm: The interesting part of c lies in the upper half space 
X3 > 0 of R^. If the surface F is thought as opaque, exactly the part of c which is visible 
from below corresponds to the trimmed medial axis. 

The medial axis transform c uniquely determines the boundary of the domain V via 
the cyclographic image of c. In general, dV will not be rational. The most general class 
of curves c whose cyclographic images are rational are so-called Minkowski Pythagorean-
hodograph (MPH) curves (see Choi et al. [16] and Moon [66]). For a more detailed 
treatment see Chapters 17 and 19. 

3.2.5. Canal surfaces (in Laguerre and Mobius geometry) 
A canal surface ^ in Euclidean 3-space E^ is defined as envelope surface of a one parameter 
family of spheres S{t) — (m(t) , r ( t ) ) (see Figure 3.11). 

The sphere family may be written in dependency on the real parameter t, 

S ( t ) : ( x - m ( t ) ) 2 - r ( t ) 2 = 0. 

To compute the envelope, one has to form the derivative with respect to t, which is a 
plane 

S(t) : (x - m(t)) • m(/) - r{t)r{t) = 0. 

For a parameter to with rh(to)^ — r^{to) > 0, the intersecting circle c(to) = S(to) H S(to) 
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Figure 3.10. Medial axis transform of domain V 

is called characteristic circle. Along c(to) the sphere S(to) is in smooth contact with the 
canal surface $ . 

For a Laguerre-geometric interpretation of $ we allow oriented radii r{t) of S(t). A canal 
surface can be obtained as cyclographic image C(p(^)) of the curve p(t) = ( in(t) , r( t )) G 
R^, as described in section 3.2.1. If the tangent hne p(to) + Ap(to) to parameter ô 
encloses an angle a > 7r/4 with the 3-space 11 : 3:4 = 0, the characteristic circle on the 
corresponding (oriented) sphere S(to) is real. 

Besides the Laguerre geometric interpretation of a canal surface as cyclographic image 
of a space curve, canal surfaces can also be seen from a Mobius geometric point of view: 
A real canal surface in W is determined by a curve cR(t) in the quadric model P^ whose 
tangent lines do not intersect the Mobius quadric E (a tangent line intersecting E can be 
shown to be equivalent to the corresponding characteristic circle not being real). 

We see that from the standpoint of both Laguerre and Mobius geometry, canal surfaces 
have a representation as curves in 4-dimensional space. Partially by using sphere geometric 
methods, it could be proved that rationality of these curves implies the existence of a 
rational parameterization of the corresponding canal surfaces [51,71,73,74]. 

Thus, these curve models are well suited for design. Approximation and interpolation 
schemes for curves can be used for approximation or blending schemes with canal surfaces 
[63,70,87]; see also section 3.4.1. 

A very important family of canal surfaces in CAGD are the Dupin cyclides, see Chap­
ter 23. In the cyclographic model of Laguerre geometry they are represented as pseudo-
Euclidean circles in M"̂ , i.e., conies that are planar intersections of 7-hypercones. Thus, 
well-known biarc interpolation schemes can be used to construct G^-canal surfaces com­
posed of smoothly joined cyclide patches [87]. Furthermore, the Bezier control points of 
Dupin cyclide patches and the connection of cyclide patches along cubic or quartic curves 
can be discussed based on Laguerre geometry [50,64,72]. 
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Figure 3.11. Canal surface 

3.2.6. Rational curves and surfaces with rational offsets 
An offset Cd{t) of a given planar curve c{t) lies in constant normal distance d to c. 
With help of a field of unit normal vectors n{t) of c(t), the two 'one-sided' offsets are 
Cd{t) = c{t)-\-dn{t), where d may have a positive or negative sign. Analogously, we define 
the oflPsets of a surface in 'M?. Oflfeets possess important applications, for example in NC 
machining. For the rich literature on this topic, we refer to the survey by T. Maekawa 
[59]. 

Given a rationally parameterized curve c(i), the unit normal vectors are in general not 
rational in t, and thus the offsets of rational curves are in general not rational. However, 
CAD systems require piecewise rational representations and thus offsets need to be ap­
proximated. Another possibility is to use only those rational curves or surfaces which do 
have rational offsets. 

Chapter 17 is exclusively devoted to polynomial and rational Pythagorean-hodograph 
(PH) curves and gives an extensive overview of the literature on this topic. In the plane, 
PH curves are polynomial curves whose offsets are rational curves. They can be defined as 
those polynomial curves whose hodograph {x'{t), y'{t)) satisfies the Pythagorean equation 
x'^{t) -h y''^[t) = cr^(t) for some polynomial o{t). This property motivates the name 'PH 
curve' and is equivalent to the existence of a polynomial arc length function. 

Here we will just skim the surface of the theory of rational curves with rational offsets, 
also referred to as rational PH curves. In particular we will stress the close relation of 
rational PH curves to certain rational developable surfaces via the cyclographic mapping 
introduced in section 3.2.1. 

As outlined in section 3.2.4, an oriented planar curve p C H defines a 7-developable 
surface F passing through p. The planar intersections of F with horizontal planes 0:3 — d, 
projected orthogonally onto the plane H, give the (one-sided) offset p^ to signed distance 
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Figure 3.12. Connection between planar intersections of 7-developables to offset curves 

d (see Figure 3.12). 
Keeping this property in mind, one can classify rational PH curves as planar horizontal 

intersection curves of rational 7-developables F. In general, F is the tangent surface of 
a spatial curve c of constant slope 7 = 7r/4, i.e., all of the curve tangents are 7-lines. 
Obviously F is rational if and only if the curve c is. Since c has constant slope 7r/4, its 
third coordinate function Xs{t) equals, up to an additive constant, the total arc length 
of the top projection c'{t) = (xi(t),X2(t),0). All the offsets of the PH curves share a 
common evolute, which is the top projection c' of c onto 11. This can be used to obtain 
the following characterization: Rational PH curves are exactly the involutes of rational 
curves with rational arc length function [78]. 

Rational 7-developables are easily described in their dual form, and the same holds for 
rational PH curves. Explicit representations are found in [78]. 

The description of rational PH curves gets even simpler when one uses the dual Bezier 
control structure as described in section 3.1.3. A rational PH curve and its offsets have 
control and frame lines that are related to each other and to a certain dual rational 
representation of a circle segment by parallel translation. For a detailed treatment of this 
property, see [78,79,100]. In [79], special rational PH curves, namely cyclographic images 
of certain conies (studied first by W. Blaschke [7]), have been used to design curvature 
continuous rational curves with rational offsets. 

Whereas the approach to PH curves taken by Farouki and Sakkalis [31] does not have 
a generalization to surfaces, the dual and Laguerre geometric approach to rational PH 
curves extend to surfaces [78,74,101]. These Pythagorean-normal (PN) surfaces possess 
rational offset surfaces. A remarkably simple characterization of rational curves and 
surfaces with rational offsets is within the isotropic model of Laguerre geometry. There, 
these curves (surfaces), viewed as envelopes of their oriented tangents (tangent planes), 
appear as arbitrary rational curves or surfaces. The change between two models of Laguerre 
geometry transforms an arbitrary rational curve or surface into a rational PH curve or PN 
surface, respectively [72,74]. The suitability of Laguerre geometry for studying curves and 
their offsets is not surprising in view of the fact that the mapping from a curve/surface 
to an offset of it can be performed with a special Laguerre transformation. 

Special polynomial surfaces with rational offsets have been applied to surface design 
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by Jiittler and Sampoli [46]. The family of PN surfaces includes the following classes of 
rational surfaces: Regular quadrics [58,74], canal surfaces with rational spine curve in{t) 
and rational radius function r{t) [51,71,73,74], and skew rational ruled surfaces [84]. Using 
Laguerre and Mobius geometry, PN surfaces which generalize Dupin cyclides in the sense 
that they also possess rational principal curvature lines, have been studied by Pottmann 
and Wagner [92]. 

Quadrics, canal surfaces as well as skew ruled surfaces are enveloped by a one parameter 
set of cones of revolution. Cones of revolution are the cyclographic images of lines in R^ 
which enclose an angle smaller than 7r/4 to the embedded 3-space E. Using this property it 
is possible to show that any rational one parameter family of cones of revolution envelopes 
a PN surface [71]. M. Peternell [71] extended this result to other families of quadrics which 
possess a rationally parametrizable envelope. 

Offsets of surfaces are of importance in NC milling [61] when using a spherical milling 
tool. As the milling tool is touching the surface the midpoint of the ball must be lo­
cated on the offset surface to a distance equaling the radius of the cutting tool. Natural 
generalizations of offset surfaces occur if the milling tool — which is rotating around its 
axis — is not a spherical one but a general rotational surface [61,81]. The special case 
of a cylindrical milling tool (flat end mill) yields circular offset surfaces. A geometric 
interpretation via Galilei sphere geometry can be found in [107]. 

3.3. LINE G E O M E T R Y 

Line geometry investigates the set of lines in three-space. There is rich literature on 
this classical topic of geometry including several monographs [25,36,38,68,94,112,116]. 
Line geometry possesses a close relation to spatial kinematics [11,45,103,106,112], see also 
Chapter 29. Line geometry enters problems in geometric computing in various ways. A 
detailed account of the use of line geometry in geometric modeling and related areas is 
given in a monograph by Pottmann and Wallner [94]. In the following, we briefly outline 
just a few basic principles and typical applications. 

3.3.1. Basics of line geometry 
A straight line L in Euclidean 3-space E^ can be determined by a point p G L and a 
normalized direction vector 1 of L, i.e. | |1| | == 1. To obtain coordinates for L, one forms 
the moment vector I := p A 1, with respect to the origin. I is independent of the choice 
of p G L. The six coordinates (1,1) with 

1 = {lukJs), a n d l = {kJsJe) 

are called normalized Pliicker coordinates of L. With normalized 1, the distance of the 
origin o to the line L simply equals | |1 | | . 

However, one may give up the normalization condition and interpret ( / i , . . . , IQ)R as a 
point in a 5-dimensional projective space P^. Note that 1 and 1 are orthogonal, thus 

l.\ = i^l^^y^^y^ = 0 (3.12) 

holds. Equation (3.12) is the so-called Pliicker identity and describes a hyperquadric 
M2 in P^, the Klein quadric. M | is a four-dimensional manifold and each of its points 
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LE = (1,1)1^ with 1-1 = 0 describes a line L in the projective extension P^ of Euclidean 
3-space E^. Lines L at infinity are characterized by 1 = o. 

Summarizing, the use of homogeneous Pliicker coordinates for lines in P^ and their 
interpretation as points in P^ results in a point model for line space, which is called Klein 
model. Lines in P^ correspond to points on the Klein quadric M2 C P^. 

A line L may be spanned by two points xM and yM, possibly at infinity. In the following 
it will turn out convenient to write x = (XQ, X) with XQ G R and x G R^. Note that here 
X does not denote the affine coordinates of xR, but a scalar multiple of them. The 
homogeneous Pliicker coordinates of L are found as 

L = (l,I) = ( x o y - ? / o x , x A y ) G R ^ 

Basic geometric relations with lines, like intersecting a line with a plane or connecting 
a line with a point result in simple linear equations in homogeneous point, line, and plane 
coordinates. These formulae can be found in each book on line geometry. As an example 
we will just mention the intersection condition of two lines G = (g, g)R and H = (h, ] 

g • h + g • h = gih4 -h g2h + Osh + 94hi + g-,h2 + g^h-^ = 0. (3.13) 

It characterizes G, H as two conjugate points with respect to the Klein quadric M2, i.e., 
they are lying in each others polar hyperplane with respect to M | . 

3.3.2. Linear complexes in kinematics and reverse engineering 
A 3-parameter set of lines L = (1,1)R satisfying a linear equation in Pliicker coordinates, 

cih + C2/5 + csk + C4/1 + C5I2 + CQIS = 0, (3.14) 

is called a linear line complex or linear complex C. With C = (c, c) = (ci, C2, C3, C4, C5, Ce) 
we can rewrite (3.14) as c • 1+ c • 1 = 0, where c • c not neccessarily equals 0, i.e., CR does 
not need to describe a line. 

The connection of linear complexes to kinematics is given as follows. Let us consider 
a continuous helical motion, that is composed of a continuous rotation around a line A 
and a continuous translation parallel to A. In an appropriate coordinate system we have 

x(t) = 0 + sint cost 0 •x(0). (3.15) 

\pt J \ 0 0 1 y 

In an arbitrary coordinate system the (time independent) velocity vector field for such 
a motion is v(x) = c + c A x with constant vectors c, c, see Bottema and Roth [11]. 

Lines through points x normal to v(x) are normal to the trajectory of x and are called 
path normals, see Figure 3.13. It is easy to show that the path normals L of a helical 
motion satisfy c • 1 -f c • I, thus lie in a linear complex. 

If the pitch p in (3.15) equals zero, we obtain a pure rotation. The vectors c, c then 
will fulfill c • c = 0 and determine the rotational axis A which is intersected by all of the 
motion's path normals. 

Linear complexes as simple 'linear manifolds' of lines play an important role in various 
applications. Subsequently, we will address two of them. 
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Figure 3.13. The path normals of a helical motion lie in a linear complex. 

The first application is in reverse engineering of geometric objects (see Chapter 26), 
where we consider the following problem: Given a cloud of measurement points from a 
surface, decide whether this cloud can be fitted well by a helical or rotational surface, and 
if so, construct such an approximating surface. 

A helical surface is swept out by a curve which undergoes a continuous helical motion. 
For vanishing pitch p of the motion, we obtain a rotational surface. It is easy to see that  
all surface normals of a helical surface lie in the path normal complex of the generating 
helical motion. Conversely, it can be shown that  a surface all whose normals lie in a linear 
complex must be be a helical surface, a rotational surface (p = 0) or a general cylinder 
surface (limit case with p = c~). 

Thus, the above reconstruction problem can be solved as follows. We estimate surface 
normals at the given data  points. Those should lie, up to some small deviations, in a 
linear complex. After defining the deviation of a line L from a linear complex C this leads 
to an approximation problem in line space. It amounts to a general eigenvalue problem, 
whose eigenvalues also tell us about the presence of special cases (plane, sphere, right 
circular cylinder) [89,90]. 

Another application concerns the stability of a six-legged parallel manipulator. There, 
a moving system E is linked to a fixed base system E0 via six legs, realized as hydraulic 
cylinders, which are at tached to both systems via spherical joints. If these six legs (axes 
of the hydraulic cylinders) lie nearly in a linear complex, the position of the platform E 
gets instable [65,89]. Thus, the determination of instable positions amounts to fitting a 
linear complex to the axes of the parallel manipulator.  

3 .3 .3 .  R u l e d  s u r f a c e s  
Ruled surfaces are generated by moving a straight line in 3-space. In the Klein model 
of line space they appear as curves on the Klein quadric M 4 [25]. The point model 
may be advantageous, because for some applications it is easier to deal with curves, even 
in projective 5-space, than working with ruled surfaces. Approximation and Hermite 
interpolation algorithms for ruled surfaces amount to corresponding algorithms for curves 
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on the quadric Me (see Chapter 31 on quadrics, and [76,94]). 
For example, Peternell et al. [76] have formulated algorithms for the approximation 

of ruled surfaces by low degree algebraic ruled surfaces (ruled quadrics, cubic and quin- 
tic ruled surfaces) and have presented a G 1 Hermite interpolation scheme resulting in 
piecewise quadratic ruled surfaces. 

Line geometry applied to CAD has also been considered by Ravani et al. [33,34,96,104], 
where line geometric counterparts to subdivision algorithms for curves and surfaces, like 
de Casteljau's algorithm, are developed. 

3.3.4. Other applications of  l ine g e o m e t r y  in g e o m e t r i c  computing 
Line geometry is a basic entity in the formulation of the so-called generalized stereographic 
projection ~, also known as Hopf mapping. It maps points in projective 3-space p3 onto 
points of the Euclidean sphere S 2. The preimage of a point on S 2 under this mapping a is 
a straight line in p3. All fibers of ~ form a so-called elliptic linear line congruence in pa. 
It may be seen as intersection of two appropriate linear complexes, and the Klein image 
of the line congruence is an oval quadric in M~. Dietz, Hoschek, and Jiittler [22] have 
shown that  the mapping cr is well-suited to construct rational curve and surface patches 
on the sphere. Applying a projective mapping, one can work on other oval quadrics as 
well. It can also be used for the definition of a B-spline like intrinsic control structure 
for NURBS curves on the sphere [80]. There are similar mappings for ruled quadrics 
and singular quadrics [21], whose fibers are line congruences (intersections of two linear 
complexes). Such mappings are useful for the design of curves and surface patches on 
quadrics (see also Chapter 31), and they can also be used to construct rational blending 
surfaces between quadrics [109]. 

A generalization of the mapping a to the construction of rational curves and surface 
patches on Dupin cyclides has been studied by C. Mgurer [62]. ' 

Line geometry also appears in manufacturing, such as sculptured surface machining 
[91,111] and wire cut EDM [96]. For further applications and detailed discussions, we 
refer the reader to Pot tmann and Wallner [94]. 

3.4. A P P R O X I M A T I O N  I N  S P A C E S  O F  G E O M E T R I C  O B J E C T S  

For different geometric objects in E 3 there exist point models: Oriented spheres can be 
represented as points in the cyclographic model, see section 3.2.1. Planes are represented 
as points in dual projective space, see section 3.1.3. Lines are represented as points on a 
hyperquadric M 4 in ps ,  see section 3.3.1. 

Approximation schemes in the spaces of spheres, planes, lines or other geometric objects 
require a point model and an appropriate distance defined for these geometric objects. 
After mapping the point model to an affine space one will define an appropriate Eu- 
clidean metric, which is motivated by a deviation measure between two objects. Here 
we will briefly mention the deviation measures in the spaces of spheres, planes and lines, 
and resulting approximation schemes for canal surfaces (section 3.4.1), developable sur- 
faces (section 3.4.2) and ruled surfaces (section 3.4.3). For details, see Pot tmann and 
Peternell [75,88]. 
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3.4.1. Approximation in the space of spheres 
In the cyclographic model of 3-dimensional Euclidean Laguerre geometry, oriented spheres 
S are seen as points C"^'^) — (^17^25^37^)- The distance of two oriented spheres 
A : ( a i , . . . , 04) and B : (61,. • . , 64) can be defined via the canonical Euclidean distance 
of their image points in R^, 

4 

d{A,B)^ = Y^{ai-bi)\ (3.16) 

A geometric interpretation of d(A, B) can be found in [88]. With help of the above metric 
in E^ one can use standard Bezier and B-spline techniques for curve design in R^, and one 
obtains rational canal surfaces as the cyclographic images of the designed curves. Here, 
the geometric continuity (Chapter 8) is preserved: a G^ curve gives rise to a G^ canal 
surface. 

3.4.2. Approximation in the space of planes 
The set of planes in P^ is a 3-dimensional projective space itself. The homogeneous 
coordinates U = {uo,Ui,U2, us) of a plane U are the coefficients of the plane's equation uo-\-
UiX+U2y-\-Usz = 0, see section 3.1.3. If we work in Euclidean 3-space and restrict ourselves 
to planes which are not parallel to the z-axis of a Cartesian system, i.e., 1̂3 / 0, we can 
normalize the plane coordinates to U = (1^07^17^27—!) and obtain affine coordinates 
{uo,Ui,U2) G A^ of U. Note that one may choose an appropriate coordinate system to 
avoid that planes of interest are parallel to the z-axis. 

The distance of two planes A, B within some region of interest may be defined by 

dr (A, B)^ = / ((ao - bo) + (ai - bi)x + {02 - b2)yfdxdy. 

which equals the squared z-differences of A and B, integrated over a fixed domain T 
of interest in the xy-plane, see Figure 3.14. The such defined d^ is a positive definite 
quadratic form in ai — bi, whose constant coefficients are certain integrals that can be 
easily computed. Thus, dr introduces a Euclidean metric in affine 3-space A^. 

One parameter sets of planes envelop developable surfaces which correspond to curves 
in A^. Again, standard Bezier and B-spline approximation techniques can be used, e.g., 
to approximate a discrete set of tangent planes with a NURBS developable surface, see 
Figure 3.14. Details and the important task of controlling the singularities are discussed 
in [42,93,94]. 

3.4.3. Approximation in line space 
Consider two parallel planes HQ, H I in R^ and the set C^ of all lines which are not parallel 
to them. Then intersection of any line in C^ with Ho, Hi gives a pair XQ = {I1J2), 
Xi = (̂ 37̂ 4) of points, which may be considered as point L = {h^k.hjA) in real affine 
4-space R^. This mapping from C^ onto R^ can be interpreted as stereographic projection 
of the Klein quadric M2. 

The affine image space can be equipped with the Euclidean metric 

4 

d(A, Bf = Y^i^i - ^if + («i - ^i)(^3 - ^3) + {02 - b2){a^ - 64). 
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Figure 3.14. Left: To the definition of the deviation of two planes: Right: Developable 
surface approximating four planes. 

It corresponds to a distance of the two lines A, B within the parallel strip bounded by 
planes Xlclli (region of interest). It is obtained by integrating the squared distances 
between the lines, measured horizontally, see Figure 3.15. 

The Euclidean metric (i( A, B) defined above is useful for solving various approximation 
problems in line space [14,94]. It has also been used to compute the approximation of 
given lines Lj by a ruled surface in Figure 3.15, see [88] for details. 

3.5. NON-EUCLIDEAN GEOMETRIES 

3.5.1. Hyperbolic geometry and geometric topology 
Although we are usually designing in Euclidean space, there are various examples for 
applications of non-Euclidean geometries in geometric modeling. 

A remarkable application is the following. Consider the hyperbolic plane H^, a model of 
which can be realized as follows. Take a circular disk with bounding circle u. The points 
in the open disk are the points of the hyperbolic plane. CoUinear points in hyperbolic 
geometry lie on circles (or straight lines) which intersect u orthogonally. Such hyperbolic 
straight line segments are seen in Figure 3.16, left. Hyperbolic congruences are seen in 
this special model as Mobius transformations which preserve ix as a whole. 

There are other models of the hyperbolic plane, which are more appropriate for com­
putations. One of these is the projective model, where points and lines appear as points 
and line segments inside a circle u and congruence transformations are given by projective 
maps which preserve it as a whole. 

In the hyperbolic plane, there exist remarkable discrete groups Q of congruences. They 
possess a domain Abounded by 4:g-gon {g being an integer > 2) as fundamental domain. 
This means that application of the elements of the group ^ to ^ generates a tiling of the 
hyperbolic plane. Figure 3.16, left, shows such a tiling for ^ = 2. It illustrates a slightly 
more complicated fundamental domain, which is, however, equivalent to an octogon as 
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Figure 3.15. Left: Distance between lines measured horizontally; Right: 
approximating seven (dashed) lines L .̂ 

Ruled surface 

the group in the sense that its value /(x) at a point x e H^ and at all images of x under 
the elements of G are the same. Then, three such functions, evaluated at the fundamental 
domain ^, may be seen as coordinate functions of a parametric surface in 3-space. It is 
well-known that this surface is a closed orientable surface of genus g and that all closed 
orientable surfaces of genus g > 2 may be obtained via hyperbolic geometry in this way 
[95,115]. 

This hyperbolic approach to the design of closed surfaces of arbitrary genus and smooth­
ness has first been taken by Ferguson and Rockwood [32]. [110] have further investigated 
this direction and shown, for example, how to design piece wise rational surfaces with 
arbitrarily high geometric continuity. Although theoretically very elegant, the practical 
use for complicated shapes seems to be limited. Most likely, subdivision based schemes 
will be preferred for applications. 

3.5.2. Elliptic geometry and kinematics 
The intrinsic geometry of the n-dimensional Euclidean sphere 5" C E'^'^^, with identifica­
tion of antipodal points, is called elliptic geometry. Three-dimensional elliptic geometry is 
very closely related to spherical kinematics and has important applications in the design 
and analysis of motions on the sphere and in Euclidean 3-space [69]. This relation as 
well as applications in computer animation and robot motion planning are discussed in 
Chapter 29. 

3.5.3. Isotropic geometry and analysis of functions and images 
In order to visualize the function / : P C M̂  —> M, defined on a region V of the Euclidean 
plane E"^ = R^, we usually embed this plane as (xi, X2)-plane into 3-space M̂  and consider 
the graph surface r{f) := {{xi,X2, f{xi,X2)) G M? : (a:i,X2) G V}. This natural procedure 
is sometimes followed by the seemingly natural assumption to interpret R̂  as Euclidean 
space. However, it is much more appropriate for many applications to introduce a so-
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Figure 3.16. Tesselation of the hyperbolic plane (left); a function which is invariant under 
the associated discrete group is suitable for parametrizing a closed orientable surface of 
genus two (right). 

space. However, it is much more appropriate for many applications to introduce a so-
called isotropic metric in 'M?. In isotropic geometry^ one investigates properties which are 
invariant under the following group of affine mappings, 

^1 = fti + ^1 cos (f — X2 sin (f, 

X2 = a2-\- xi sin (p-\- X2 cos (f, 

x's = as-\-a^xi-{-asX2-\-X3. 

(3.17) 

Like the Euclidean motion group in M ,̂ this group of so-called isotropic motions depends 
on six real parameters v^,ai,. . . ,05. As seen from the first two equations in (3.17), an 
isotropic motion appears as Euclidean motion in the projection onto the plane X3 = 0. A 
careful study of isotropic geometry in two and three dimensions is found in the monographs 
by H. Sachs [97,98]. 

The application to the analysis and visualization of functions defined on Euclidean 
spaces is studied in [86]. For example, the standard thin plate spline functional in two 
dimensions, 

J{f) ••-- /(€' + 2( )2 , ( ^ ) 2 
C?X, 

has a purely geometric interpretation for the graph surface of / within isotropic geometry. 
It is the surface integral over the sum of squares of isotropic principal curvatures x i , X2, 

J{f) = l{xl + 4)d^. 
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The use of isotropic geometry has been extended to functions defined on surfaces (Chap­
ter 9) rather than flat EucHdean spaces [86]. Currently, it is investigated by J. Koenderink 
for understanding images of surfaces along the lines described in [49]. 

Isotropic geometry also appears in the context of Laguerre geometry, namely in the 
so-called isotropic model. For example, the oriented tangent planes of a right circular 
cone appear as an isotropic circle in the isotropic model. This is in general a conic, 
whose projection onto xs = 0 is a Euclidean circle. Smooth spline curves formed by such 
conic segments could be called "isotropic arc splines". Their construction is completely 
analogous to arc splines in Euclidean 3-space. The transformation back to the standard 
model of Laguerre geometry gives developable surfaces, which consist of smoothly joined 
pieces of right circular cones [55]. Geometric computing with these cone spline surfaces 
rather than general developables has a variety of advantages: The computation of bending 
sequences and the planar development can be performed in an elementary way. The 
degree, namely two for both the implicit and parametric representation of the segments, 
is the lowest possible for generating smooth surfaces, and the offsets are of the same 
type [54,56]. 
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Chapter 4 

Bezier Techniques 

Dianne Hansford 

This chapter introduces the fundamentals of Bezier techniques. As a core tool of 3D 
Modeling, Bezier techniques provide a geometric-based method for describing and manip­
ulating polynomial curves and surfaces. 

4.1. W H Y BEZIER T E C H N I Q U E S ? 

Bezier techniques bring sophisticated mathematical concepts into a highly geometric and 
intuitive form. From a practical standpoint, this form facilitates the creative design 
process. Equally as important, Bezier techniques are an excellent choice in the context of 
numerical stability of floating point operations.^ For these reasons, Bezier techniques are 
at the core of 3D Modeling or Computer Aided Geometric Design (CAGD). 

This chapter provides a thorough review of fundamental Bezier techniques. The primary 
topics being curves, rectangular surfaces, and triangular surfaces. With this knowledge, 
the reader should be able to access research articles on these topics. Additionally, the 
study of Bezier techniques is greatly recommended before studying piecewise schemes, 
B-splines, or other advanced modeling applications. 

The notation for this chapter was chosen to make this subject accessible to readers new 
to 3D modeling, and also to best serve those who use this handbook as a reference. Quite 
a few 3D Modeling texts (see e.g.,[43,56,91]) have adopted the blossom^ notation, and 
although important, this notation has a tendency to abstract the geometric concepts, and 
is therefore not used here. 

For in-depth information on Bezier techniques, a textbook is a good place to start. 
There are many to choose from: [17,43,45,69,80,81,86,91,102]. The origins of Bezier tech­
niques may be found in the History chapter 1 of this handbook. Industrial uses of Bezier 

^Surprisingly, this result from Farouki and Rajan [49] was not known until many years after Bezier 
techniques had become popular. See also [28]. 
^The blossom approach is a very powerful tool, theoretically and practically, and it was brought to light 
by de Casteljau [32] and Ramshaw [88,89]. For a tutorial, see Goldman and DeRose [36]. 
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Figure 4.1. Left: The graph of a function. Right: The function as a Bezier curve. 

techniques are described by Bezier [7] at Renault, de Casteljau [33] at Citroen, Farin [40] 
at Daimler-Benz, and Hochfeld and Ahlers [65] at Volkswagen. 

4.2. BEZIER CURVES 

In this section, we introduce the foundations of Bezier techniques via the Bezier curve. In 
particular, we present the properties and utility of Bezier curves, as well as an important 
evaluation algorithm: the de Casteljau algorithm. Also, we study the building block of 
Bezier techniques, the Bernstein polynomials. A thorough understanding of Bezier curves 
is a good place to start, since nearly all the principles of curves carry over to Bezier surface 
techniques. 

4.2.1. Parametric curves 
Curve modeling is primarily concerned with parametric curves. The simple quadratic 
function in the left of Figure 4.1, written as a 2D parametric curve, takes the form 

x(<) = 
X 

y. = 
'x{t)' 

yit). 
= 

t 
i-t +1\ te R. (4.1) 

Each coordinate is a function of the parameter t, and the real line is the domain of the 
curve. Only polynomial coordinate functions will be addressed here. A 3D parametric 
curve is formed by simply adding a 2;(t)-component. 

The boldface notation for points and vectors^ allows for a concise form for (4.1): 

x(t) = ao 4 - a i t + a2t' 

where 

^ 1 • 

(4.2) 

ao a i -1 a2 = 

The a.i are called the coefficients of the curve and l , t , t^ are the quadratic monomial basis 
functions. 

^See the Geometric Fundamentals Chapter 2 for an introduction to these geometric entities. 
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There are many ways to represent a polynomial curve. The monomial form from above 
is one representation, however, it does not provide the most geometrically intuitive inter­
pretation.^ A better formulation comes with the Bernstein basis functions as the building 
block for Bezier curves. Figure 4.1, right, illustrates the curve in quadratic Bezier form. 
This quadratic Bezier curve takes the form 

x(t) = hoBlit) + h^Blit) + h2BUt), (4.3) 

where 

(4.4) bo = 
"0" 
1 , b , = 

"1" 

! 
. 2 . 

, b2 = 
"1" 
1 

are Bezier control points of the Bezier polygon^ and 

Bl{t) = ( l - t ) ^ Bl{t) = 2t (1 - t), Blit) = e 

are the quadratic Bernstein polynomials or basis functions. The standard procedure is to 
evaluate Bezier curves for t G [0,1], although since it is a polynomial, it is defined for all 
t over the reals. The reason for this will be apparent in Section 4.2.2. 

A degree n Bezier curve takes the form 

n 

x ( t ) - ^ b . B r ( < ) t e [ 0 , l ] , (4.5) 

where 

B^{t)=(^^{l-tr-H\ (4.6) 

are the degree n Bernstein polynomials, and the binomial coefficients are defined as 

n\ n\ 

i J (n — i)\i\ 

Figure 4.2 illustrates several Bezier curves. 

4.2.2. Propert ies of Bezier curves 
The following list of properties characterizes Bezier curves. We'll revisit many of these 
properties in Sections 4.2.3 and 4.2.4. Many of these properties are apparent in Figure 
4.2. 

• Endpoint interpolation: The curve passes through the polygon endpoints: x(0) = bo 
and x( l ) = hn 

• Symmetry: The two polygons, bo, . • . , b„ and b „ , . . . , bo, describe the same curve; 
the only thing that changes is the direction of traversal of the parameter. 

"̂ See Section 4.2.8 for the geometric interpretation of the monomial coefficients. 
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Figure 4.2. These Bezier curves reveal much about the relationship between the polygon 
and curve. 

Affine invariance: If an affine map $ is applied to the control polygon, then the 
curve is mapped by the same map. More precisely, 

J2^^^)Bm = HJ2^^Bnt)) (4.7) 
1=0 i=0 

• Convex hull: A point x(^) on the curve for t G [0,1] is in the convex hull of the 
control polygon. See Figure 4.3. 

• Variation diminishing: If a straight line intersects a planar Bezier polygon m times, 
then the line can intersect the curve at most m times. In other words, the curve 
doesn't wiggle more that the polygon. This is evident in the left most curve of 
Figure 4.2. 

• Linear precision: If the control points b^ for z = 1 , . . . , n — 1 are evenly spaced on 
the straight line between bo and b^, then the degree n Bezier curve is the linear 
interpolant between bo and b„. See Figure 4.4. 

• Extrapolation: For values of t outside [0,1], the curve will in general not remain 
within the control polygon's convex hull. See Figure 4.5 for an illustration. Numer­
ical stability issues [49,50] and unpredictable behavior make this an undependable 
tool in a practical setting. 

• Special geometry: On the right of Figure 4.2, three cubic Bezier curves are illustrated; 
From top to bottom we have one with two inflection points, one with a cusp, and 
one with a loop and therefore self-intersects. 

• Functional curves: The quadratic curve defined by (4.3) and (4.4) is a functional 
curve, and thus one dimension is a linear polynomial. The linear precision property 
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Figure 4.3. Convex hull property: The convex hull of the polygon is shaded. For t G [0,1], 
the point x(t) lies in the convex hull of the Bezier polygon. 

of Bezier curves dictates that a functional curve defined for t E [0,1] takes the form 

-(*) = E i/n 
h sm, 

and an example is illustrated in the right of Figure 4.1; Also see Figure 4.4. 

• Pseudo-local control: Suppose we move the i^^ control point. The curve changes the 
most in the vicinity of t = i/n. In fact, all points on the curve move in a direction 
parallel to the vector formed by the difference of the old and new control point, as 
illustrated in Figure 4.6. 

• Invariance under affine parameter transformations: Particularly in the context of 
piecewise curves, it might be necessary to associate a parameter interval u G [a, b] 
with a Bezier curve. The parameter interval does not effect the shape of the Bezier 
curve. It is common practice to associate the global parameter u with the local 
parameter t G [0,1] via the simple transformation t = (n — a)/(6 — a). 

Cubic Bezier curves are perhaps utilized more than any other degree. This is primarily 
due to the fact that their shape is flexible "enough," while at the same time somewhat 
predictable because the degree is rather low.^ Complex shapes are typically modeled with 
piecewise polynomials as discussed in the B-Spline Basics Chapter 6. 

Other interesting properties of Bezier curves are explored in [4,11,26,34,44,55], effective 
algorithms are analyzed in [50,85], and applications which take advantage of the Bezier 
curve form are found in [14,23,68]. 

^There is a historical reason too: They are another representation of cubic Hermite curves, which have 
been used for many years. See Section 4.2.8 for more on the Hermite form. 
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Figure 4.4. Linear precision property: For each curve, ten points with uniformly dis­
tributed parameters are plotted over the polygon. Middle column: Bezier curves with 
linear precision. 

4.2.3. The de Casteljau algorithm for Bezier curves 
The de Casteljau algorithm provides a means for evaluating Bezier curves, but it also 
provides for greater understanding of Bezier methods as a whole. Further insight into this 
important algorithm may be found in Boehm and Miiller [16]. 

The de Casteljau algorithm for the evaluation of a degree n Bezier curve takes the 
following form. 

de Casteljau Algorithm 

Given: Bezier points b^ for z = 0 , . . . , n, and parameter t G [0,1]. 
Find: The point bo(t) on the curve. 
Compute: Set b^ = b^ and compute the points 

bj(t) = ( i - t ) b r + i b i ; ; | ' = ^ ^ ' - - - ' " (4.8) 
I 2 = 0 , . . . ,n — r. 

Figure 4.7 illustrates the algorithm for a cubic at t = 1/4. Notice that this recursive 
algorithm simply consists of repeated linear interpolation. Each step builds a new point 
from two other points in the ratio t : (1 — t). 

A convenient schematic tool for describing the algorithm is to arrange the involved 
points in a triangular diagram. For example, evaluation of a cubic curve results in the 
following points. 

bo 
bi K 
b2 h] hi 
b3 b^ b? bg. 

(4.9) 

An interesting point to note is that each of the intermediate points b[(t) in the de Casteljau 
algorithm is actually a point on a degree r curve. In Figure 4.8, a degree five curve 
illustrates this point for which hl{t) is plotted for r = 2, 3,4, 5. 

Examining Figure 4.7, observe two special polygons: 

bo,bJ ,b^ ,b^ and bg,b?,b^,b3. 
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Figure 4.5. Extrapolation property: The curve is plotted for values of ^ G [—1.0,2.3]. 

Each of these polygons defines the two segments of the curve corresponding to [0, t] and 
[t, 1] with respect to the original curve. Redefining a curve in this manner is called 
subdivision. In the schematic triangular diagram (4.9), the control points for these 
curves are along the diagonal and the base of the triangle, or more specifically the "left" 
and "right" control points are 

1, = ^ and r , - b p . 

Subdivision must not necessarily take place within [0,1], although this is extrapolation. 
The foundations of subdivision are based on the work of de Casteljau [31] and Staerk [101]. 
Additional information may be found in [43,57,59,60]. Schwartz [95] develops formulas 
based on a shift operator technique.^ 

Subdivision may be repeated: Each of the two new control polygons may be subdi­
vided, and so on. The resulting sequence of control polygons will ultimately converge to 
the curve. This result is explored by Cohen and Schumaker [24] and Dahmen [27]. Con­
vergence is fast, and thus repeated subdivision could be used to render a curve. See Lane 
and Riesenfeld [75] and Bartels et. al. [6]. Another application of repeated subdivision 
is the intersection of a 2D Bezier curve with a line. Figure 4.9 illustrates the basic idea, 
which is to repeatedly subdivide dXt — 1/2 and check the intersection of the control poly­
gon's minmax box and the line. When the line intersects a minimax box whose dimension 
is less than some input tolerance, then an intersection is recorded at the midpoint of the 
minmax box. 

In Section 4.2.5 a practical method of computing derivatives of a Bezier curve via the 
de Casteljau algorithm is discussed. Generally, Bezier curves are evaluated via the de 
Casteljau algorithm rather than computing the Bernstein polynomials directly. 

4.2.4. Bernstein polynomials 
Let us take a closer look at the Bernstein polynomials from (4.6). This study will give 
insight into the appealing properties of Bezier curves. Bernstein polynomials' relation to 
Bezier curves was discovered by Forrest [54], however also see Bezier [8] and de Casteljau 
[30]. 

A geometric approach to studying Bernstein polynomials is realized by formulating 
them as functional Bezier curves. To form the f^ basis function, recall from Section 4.2.2 

^This technique, first introduced for Bezier techniques by Hosaka and Kimura [67] offers a concise nota­
tion. It is used to some extent in Hoschek and Lasser [69]. 
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Figure 4.6. Pseudo-local control property: Moving the middle control point causes all 
points on the curve to move in the same direction. A double line indicates the change in 
a particular point. 

that we assign 

b . = 
i/n bi = 1 Hi = j 

6 , - O i f z / j . 

A few sets of Bernstein basis functions are illustrated in Figure 4.10. 
Let us look at some properties of the Bernstein polynomials. 

• Partition of unity: For any particular value of t, the sum of the Bernstein polyno­
mials is one: 

E^."w = i-

This is necessary for (4.5) to be a barycentric combination.^ 

• Non-negativity: Each Bernstein polynomial is non-negative within the interval [0,1]. 
This property, along with the fact that they sum to one, results in the convex hull 
property from Section 4.2.2. 

• Symmetry: The relation B]^{t) = ^n-z( l ~ ^)' follows directly from (4.6). This is 
reflected in the symmetry property of Bezier curves. 

• Recursion: The degree n polynomials can be generated from the degree n— 1 poly­
nomials, 

Bnt) = {i-t)Br'{t)+tBi-,\t). 

See [43] for a derivation of the de Casteljau algorithm using this property. 

''See the Geometric Fundamentals Chapter 2. 
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Figure 4.7. The de Casteljau algorithm appHed to a cubic curve for t = 1/4. 

Interval end conditions: 

B^{0)=S^^o and B^l) = 5^,n where 6^,, 
1 i fz : 

[ O i f z / j 

As a result, Bezier curves have the endpoint interpolation property. 

• Linear precision: The special linear combination 

E>rw = * 
results in the linear precision property of Bezier curves. 

• Single maximum: B^{t) has one maximum, and this maximum occurs at ^ = i/n. 
This allows Bezier curves pseudo-local control. 

Goldman [58] takes an interesting look at Bernstein polynomials in relation to other 
blending functions. 

4.2.5. Derivatives of Bezier curves 
Differentiating a parametric curve simply involves differentiating each component. The 
resulting vector is the tangent vector of the curve. If we take a Bezier curve of the form 
(4.5), and differentiate with respect to the parameter t, we obtain 

dx(t) 

"dT = x{t) = r^J2^^^Br'{t)^ (4.10) 

where Ab^ = hi^i ~ hi is known as a forward difference. Notice that x(t) is simply a 
degree n - 1 Bezier curve with control vectors (rather than points). Figure 4.11 illustrates 
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Figure 4.8. The intermediate points hl{t) from the de Casteljau algorithm produce curves 
of degree r when plotted for all t G [0,1]. 

this formulation of the first derivative, which is also called a hodograph. At the endpoints, 
the derivative takes the simple form 

x(0) = nAbo and x( l ) = nAb^- i , 

which implies that the tangents at the ends are parallel to the polygon legs there. More 
on hodographs may be found in Bezier [8], Forrest [54], Sederberg and Wang [97]; and see 
Nachman [82] for more on derivatives. 

The first derivative (4.10) can be reformulated using the commutativity of the summa­
tion and difference operators, thus becoming 

x(t) - nAj2^iB?~Ht) ^ riAb^-^ (4.11) 

Recall from the de Casteljau algorithm and (4.9) that nAbp"^ is computed in the next 
to last step of the algorithm. Figure 4.12 illustrates. 

The second derivative of a Bezier curve follows by differentiating (4.10) again, producing 

^{t) = n{n-\)Y,^'^rBr\tl (4.12) 

where A^b^ = A(Abj) = bj+2 — 2bi-|,i -f b^. As with the first derivative, the second deriva­
tive can also be reformulated in terms of intermediate points in the de Casteljau algorithm. 
Now, the points in the second-to-last column of (4.9) define the second derivative: 

x(i) = A^br^(i). 

At the endpoints, the second derivative has a nice geometric interpretation which is illus­
trated in Figure 4.13. Higher derivatives follow similarly. 
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Figure 4.9. Finding an intersection of a cubic Bezier curve with the x—axis (gray) via 
repeated subdivision. 

4.2.6. Degree elevation of Bezier curves 
A degree n polynomial is also one of degree n + 1. A curve in monomial form will simply 
have a zero leading coefficient. Similarly, we may write a degree n Bezier curve as one 
of degree n + 1. We'll use a quadratic curve to demonstrate the principle. The trick is 
to multiply the quadratic expression by [t + (1 — t)]. Reassembling common powers of t 
yields 

x(t) = boBo^ + [ibo + ^bi]B? + [h, + h^jBl + h^Bl 

This is the process of degree elevation. The trace of the curve written as a cubic is identical 
to that of the original quadratic. 

Generalizing this process: Degree elevation of a degree n Bezier curve with control 
points bj produces a curve of degree n H-1 with control points c^, where 

Ci 
n-\-l 

b. - i + (1 
n + 1 

)b.. (4.13) 

An example is illustrated in Figure 4.14. 
Repeated degree elevation results in a polygon which converges to the curve, although 

Cohen and Schumaker [24] show this is not a practical method to render a Bezier curve. 
Trump and Prautzsch [103] examine arbitrarily high degree elevation. This convergence 
property follows from the Weierstrass approximation theorem, and more details are given 
by Farin [43]. Additionally, see Davis [29] and Korovkin [74]. 

A wealth of literature may be found on the reverse process: degree reduction. See 
[19,37,38,43,54,25,84,105] for a variety of methods. How can we tell if a Bezier curve is 
really a degree elevated curve? A degree n — 1 curve will have an n^^ derivative that is 
identically zero, or A"bo = 0. 

4.2.7. Interrogation techniques for Bezier curves 
Determining if a curve meets certain design specifications calls for methods to measure 
the curve. The interrogation methods below, curvature and torsion, are the most basic 
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Figure 4.10. Quadratic, cubic, quartic, and quintic Bernstein basis functions plotted as 
functional Bezier curves. 

measures. See the Geometric Fundamentals Chapter 2 for an introduction to these con­
cepts. The discussion that follows focuses on these measures from the point of view of 
Bezier techniques. 

The curvature of a curve is the most significant descriptor of its shape. Typically, 
curvature is visualized by graphing it as a function of t, which is called a curvature plot 
An example is illustrated in Figure 4.15. For Bezier curves, curvature may be computed 
without having to compute derivatives explicitly. At t = 0, the curvature of a Bezier 
curve is given by 

^ n - l a r e a [ b o , b : b , ] 

n | | b i -bo | | ' ^ 

We see that the curve has zero curvature at t = 0 if the three points bo, b i , b2 are collinear. 
A similar formula follows for t = 1. If the curvature is desired at parameter values other 
than 0 or 1, employ subdivision. 

By definition, a 3D curve has nonnegative curvature. For 2D Bezier curves, signed 
curvature is easily introduced by defining the area in terms of a determinant. A signed 
curvature allows for identifying inflection points: These are points where the curvature 
changes sign. Roulier [92] examines Bezier curves with positive curvature. 

The torsion measures the 3D twisting of a curve, or in other words, the change in the 
binormal vector. For Bezier curves, torsion takes on a simple form at the ends. At t = 0, 
we have 

(0) - 3 n - 2volume[bo,bi,b2,b3] 

2 n area[bo,bi,b2]^ 

The primary application of curvature and torsion has been in the context of piecewise 
curves, and some examples include [46,62,72,83,94]. 

4.2.8. Basis conversion 
The Bernstein form has been shown to be numerically more stable than the monomial form 
by Farouki and Rajan [49]. Additionally, Farouki [47] showed that conversion between 
the monomial and Bernstein forms has the potential to be numerically unstable. A degree 
n curve in monomial form (4.2) is related to a curve in Bernstein form via 

a . = ( ^ ) A ' b o 
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Figure 4.11. Right: A quartic Bezier curve. Left: The hodograph of the quartic, scaled 
by one-fourth. 

for 2 = 0 , . . . , n. Thus, the first monomial coefficient is a point, namely bo, and the others 
are the scalings of the derivative vectors. 

Cubic Hermite curves are another common curve form. They are specified by two 
points, po and p i , and tangent vectors mo and mi at the data points. More specifically, 
the Hermite form is defined as 

x(t) = PoH^t) + miHlit) -f m2Hl{t) + piHl{t), 

where the Hermite basis functions Hf are defined as 

1 
H^t) = -BUt). 

Hl[t)^-\Bl(t). 

Hl(t)^Bl{t) + Bl{t), 

H!{t)^Bl{t) + BUt), 

This relation between the Bernstein and Hermite bases implies that 

Po = bo, mo = 3Abo, m i = 3Ab2, Pi = ba. 

Li and Zhang [78] detail other basis conversions. Boehm [10,12] describes the conversion 
from B-spline to Bezier; See also the B-spline Basics Chapter 6. 

4.2.9. Piecewise Bezier curves 
Practical applications which take advantage of the geometric nature of Bezier curves 
typically depend on rather low degree curves. Complicated shapes are formed by piecing 
together curves. How to do so in a smooth manner is the focus of this section. A more 
rigorous examination of piecewise curves, called splines, may be found in the B-spline 
Basics Chapter 6. Issues of smoothness are investigated in the Geometric Continuity 
Chapter 8. 

Suppose we begin with two degree n curves: h{u) with control points b o , . . . , b^, defined 
over [iio,iii], and c{u) with control points b „ , . . . ,b2n, defined over [wi,'a2]. Due to the 
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Figure 4.12. The first derivative of a Bezier curve is a scaling of the difference vector 
(b^""^ - bo~^), and thus is a by-product of the de Casteljau algorithm. 

endpoint interpolation property of Bezier curves, we know that these two curves meet, or 
are C^, at b„. 

What are the conditions on the control points for the curves to be differentiable at b^? 
The derivative of a Bezier curve defined over an arbitrary interval involves the chain rule, 
for example 

dh{u) dh dt n dh 

du dt du Ao dt' 

where AQ = t̂ i — 'Uo- Drawing from Section 4.2.5, equate this expression for both curves 
dX u = Ui, and we find 

— A b ^ _ i = - ^ A b „ 

to be the condition for the curves to be C^. More geometrically, this requires that the 
three points b^_i, b^i, b^+i be coUinear and their spacing must be in the ratio AQ : Ai as 
illustrated in Figure 4.16, left. 

C^ constructions are also of practical importance. For the curves to be twice diflPer-
entiable at the junction, the two quadratic polynomials defined by hn-2,^n-i,^n and 
b„,b^4_i, bn+2 must describe the same global quadratic polynomial. The curves must 
satisfy the C^ conditions, and the additional geometric conditions are described in Figure 
4.16, right. This necessitates the existence of an auxiliary point, shaded gray in the figure. 
Notice that the left figure is not C^. 

4.3. R E C T A N G U L A R BEZIER PATCHES 

Let us extend Bezier techniques for curves to a surface form. A parametric surface is 
the result of a map of the real plane into 3-space. This plane, or domain, is defined by 
a {u, f )-coordinate system. A 3D surface point corresponding to a particular (u, v) is a 
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Figure 4.13. The second derivative of a degree six Bezier curve at t = 0 is a scaling of the 
diagonal of the parallelogram formed by the first three control points. 

point: 

x(w, f ) = g{u,v) 
h{u, v) 

(4.15) 

In this chapter, the functions f,g,h will be combinations of Bernstein polynomials. The 
surface x(ix, v) is defined for all values of u and v, although we will primarily consider 

{{u,v) :0<u,v < 1}. (4.16) 

As this indicates, the surface in this limited extent has a rectangular boundary. We will 
refer to this as a patch. 

4.3.1. Bilinear patches 
To begin our discussion of rectangular Bezier patches, let's start with the simplest form: 
bilinear patches. As the name suggests, the degree is linear in each parametric direction. 

A bilinear Bezier patch x(ii, v) is defined by four points bo,07bo,i, bi^o, bi^i, and it takes 
the form 

x{u,v)=[B',{u) Bl{u)] bo,i 
bi,o bi,i 
Jo,o Bliv) 

Bi(vy 
(4.17) 

Figure 4.17, left, illustrates such a surface. The linear Bernstein polynomials, for example 
in u, are simply BQ{U) = {I — U) and Bl{u) = u. 

At first glance, (4.17) does not convey very much geometric information. By simply 
rewriting the bilinear patch as 

x(w, v) = {1 — V)CQ + vci 

where 

Co = (1 - i^)bo,o + wbi,o and Ci = (1 - 'a)bo,i + uhi^i, 

(4.18) 
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Figure 4.14. Degree elevation of a quartic Bezier curve. The quintic polygon is gray. 

we can gather a much better feeling for the shape of the bilinear patch. Figure 4.17, right, 
illustrates this construction which builds intermediate points in the u-direction, and then 
builds the patch point by linear interpolation in the t'-direction. 

Alternatively, we could have built intermediate points in the ^-direction: 

do = (1 - ^)bo,o + î bo,i and di = (1 - 2;)bi,o + ^bi,i, 

and then the point on the patch is 

x(?/, v) = {1 - u)do + udi. (4.19) 

The result (4.18) is the same as (4.19). 
Another name for a bilinear patch is a hyperbolic paraboloid. It is covered by two 

families of straight lines, which is apparent when considering the curves defined by (4.18) 
and (4.19). These two sets of curves on the patch are called isoparametric curves. The 
four isoparametric curves (lines) corresponding to the edges, (w, 0),(w, 1),(0, ?;), and (1, f) , 
are commonly referred to as the boundary curves of the patch. 

A hyperbolic paraboloid also contains curves. For instance, consider the line u = v in 
the domain. In parametric form, it may be written as u{t) = t, v{t) = t. This domain 
diagonal is mapped to the 3D curve c(t) = x(t, t) on the surface. In more detail: 

rbo,o bc i l [l - ^ 
[bi,o bi,ij [ t 

and after collecting terms gives a quadratic Bezier curve 

c{t) = ho,oBl{t) + [^bo,i + ^bi,o]5?(t) + h,,iBl{t). 

4.3.2. Bezier pa tches 
Generalizing (4.17) to higher degrees, a degree {m,n) rectangular Bezier patch takes the 
form 

bo,o • • • bo,n 

c{t) =[l-t t] 

^{u,v)= te Bl^iiu)] 

B-{v) 

Blliv) 

(4.20) 
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Figure 4.15. A curvature plot of a cubic Bezier curve. 

Figure 4.18 illustrates a degree (3, 3) surface. The collection of control points is referred 
to as the control net Equation (4.20) may be conveniently abbreviated as 

yi{u,v) = M^BN. 

We may also write a Bezier patch as 

(4.21) 

i=0 j=0 

(4.22) 

Bezier patches fall into the class of tensor product surfaces. The tensor product property 
is a very powerful conceptual tool for understanding Bezier patches. Figure 4.19 illustrates 
how the shape of a Bezier patch can be thought of as a record of the shape of a template 
moving and changing shape through space. Consider one value of v and the term D = BA^ 
in (4.21). This defines a point d̂  on each curve defined by the control polygon b j j , j = 
0 , . . . , n. The d̂  are the control points for a curve in the li-direction, namely M'^D. As u 
varies, this expression defines the shape of the template for one particular t̂ . In a chapter 
written by Bezier [43], this concept is discussed from a practitioner's point of view. 

4.3.3. Properties of Bezier patches 
Many of the properties of Bezier patches are direct generalizations of the curve ones. 

• Endpoint interpolation: The patch passes through the four corner control points, 
that is 

x(0,0) = bo,o 

X(0, 1) = bo,n 

x ( l , 0 ) 

x ( l , l ) 

b^,o 

Also, the control net's boundary control points are the control points of the patch 
boundary curves. For example: the curve x(n, 0) has the control polygon b̂ ô for 
2 = 0 , . . . , m. 
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An : Ai 

Figure 4.16. Bezier curve C^ (left) and C^ (right) conditions. 

• Symmetry: We could re-index the control net so that any of the corners corresponds 
to bo,o, and evaluation would result in a patch with the same shape as the original 
one. 

• Affine invariance: Apply an affine map to the control net, and then evaluate the 
patch. This surface will be identical to the surface created by applying the same 
affine map to the original patch. See (4.7) for the analogous property for curves. 

• Convex hull: For {u, v) G [0,1] x [0,1], the patch x{u, v) is in the convex hull of the 
the control net. 

• Bilinear precision: A degree (m, n) patch is identical to the bilinear interpolant 
to the four corner control points if the control points satisfy the following condi­
tions. The boundary curves are linearly precise, and the interior control points 
are uniformly-spaced on lines connecting corresponding boundary control points on 
adjacent edges 

• Tensor product: Bezier patches are in the class of tensor product surfaces. This 
property allows Bezier patches to be dealt with in terms of isoparametric curves, 
which in turn simplifies evaluation and other operations. This also implies that the 
total degree of a (m, n) patch is 2mn. The total degree is the maximum number of 
intersections of the patch with a straight line. 

• Functional patches: A functional Bezier patch defined over [0,1] x [0,1] has Bezier 
control points 

ri/ml 

L KJ J 
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boo 

C 

f X(u.v) 

bn 

Co 

Figure 4.17. A bilinear Bezier patch illustrated in a 3D view on the left and the construc­
tion of x ( l /3 ,1 /3 ) is on the right. 

4.3.4. Evaluation of Bezier patches 
Let us take advantage of the de Casteljau algorithm and the tensor product property 
as described in Section 4.3.2 to formulate a straightforward method to evaluate a Bezier 
patch, the 2-stage de Casteljau evaluation method. First, consider C = M ^ B in (4.21). 
The elements of C take the form 

c, = y]\,Br(i 
i=0 

(4.23) 

for j = 0 , . . . , n. Simply evaluate each degree m Bezier curve using the de Casteljau 
algorithm. The second and final evaluation step, x(ii, v) = CA^ or 

x{u,v) = Yl^,B]{v), (4.24) 
j=o 

consists of evaluating a degree n Bezier curve via the de Casteljau algorithm. The roles 
of u and v can be switched: First compute D = 'BN, and then x = M ^ D . 

Another evaluation method, the 3-stage de Casteljau evaluation method, is quite useful 
if we want the first partial derivatives of the surface. It involves only a slight modification 
of the 2-stage method. Instead of computing the point on the curve in (4.23), stop the 
de Casteljau algorithm at the next to last step, saving the two points which span the 
tangent to the curve. As a result, we will have two "rows" of degree n curves. Next, 
evaluate these two curves at v, again stopping the de Casteljau algorithm at the next-
to-last step, resulting in four points. These four points define a bilinear patch, and they 
span the tangent plane at {u,v). Evaluate this as we did in Section 4.3.1. How we use 
this algorithm in the calculation of derivatives is discussed in more detail in Section 4.3.5. 
Other evaluation methods and comparisons between them may be found in [43,45,79]. 

4.3.5. Derivatives of Bezier patches 
A derivative of a surface is the tangent vector of a curve on the surface. There are two 
isoparametric curves through yL(u,v). Let us focus on the u — constant curve, as in 
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Figure 4.18. The control net and u = constant isoparametric curves of a degree (3,3) 
Bezier patch are illustrated. 

(4.24), and differentiate it with respect to v. The resulting tangent vector x^ is called the 
v-partial derivative or ?;—partial. More precisely, differentiating (4.22) with respect to v 
results in 

i=0 j=0 dv 
(4.25) 

where A^'^b^j = b^j+i — hij. The i^-partial takes a very similar form, 

i=Q j=0 

(4.26) 

where A '̂̂ b̂ ^̂ - = b^+ij — b j j . 
The second partials are also of practical use. For example, the second ^/-partial takes 

the form 

dv? 

771—2 n 

^(m - 1) X^ E d.''%i,Br\u)B^{vl 
i=0 j=0 

where A^'°b^j is the second forward difference applied to the i indices. In other words, 
we simply take the derivative of the curve (4.26). The t'-partial follows similarly, and 
formulae for higher order partials may be found in any of the texts cited in Section 4.1. 
More detail concerning computational efficiency may be found in Mann and DeRose [79] 
and Spitzmueller [100]. 

The mixed partial, or twist vector, is denoted by Xu,v{u,v) and is obtained in either of 
two ways: 

dyiu{u,v) dyiy[u,v) 
Xn.7;(w,^) = ^ or yiuJu.v)^ dv du 
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Figure 4.19. The shape of a Bezier patch may be described in terms of a moving template. 
The template for i; = 1/3 is highlighted here. 

Thus, by differentiating the I'-partial (4.25) with respect to u, 

m—ln—1 

i=0 j=0 

The mixed forward difference A^'^b^j is equivalent to A^'^(A^'°bij), that is 

^ ' ^-iJ ~ t>2+ij+i — b ^ + i j — hij+i + hi J. (4.27) 

which measures the deviation of the quadrilateral defined by the four points in (4.27) 
from a parallelogram, and this is illustrated in Figure 4.20. Notice that the twist at the 
corners involves only the control points at the corners. 

The normal is a fundamental geometric concept which is used throughout computer 
graphics and CAD/CAM; See the Direct Rendering of Freeform Surfaces Chapter 30. At 
a given point x(i/, v) on a patch, the normal is perpendicular to the surface at x, and the 
normal and x define the tangent plane. More precisely, the normal is defined by 

x^ /\ x^ 

X,, Ax„ 
(4.28) 

and thus is a unit vector. Ideas for handling a denominator that is nearly zero are given 
attention in Farin [43]. 

Calculation of the normal requires knowledge of both the u- and -u-partials. For this 
reason, the 3-stage evaluation method from Section 4.3.4 is more suitable in this situation 
than the 2-stage method. 

4.3.6. Working wi th Bezier patches 
Many of the operations applied to Bezier patches are direct generalizations of the tech­
niques for curves. Again, this is due to the tensor product nature of Bezier patches, which 
allows for an algorithmic approach based on isoparametric curves. 

Recall degree elevation for curves from Section 4.2.6; That same technique is used for an 
(m, n) Bezier patch in the following manner. Raising the degree from m to m H-1 results 
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Figure 4.20. The mixed forward difference vector measures the deviation of the quadrangle 
from a parallelogram. 

in a control net which has n + 1 "columns" of control points, each column containing 
m -f 2 control points. These latter columns are simply obtained from the original columns 
by the process of degree elevation for curves. 

Another curve operation from Section 4.2.3 is subdivision. Similarly, a patch may be 
subdivided into two patches. The w—parameter u splits the domain unit square into two 
rectangles as shown in Figure 4.21. The patch is split along this isoparametric curve 
into two patches, together identical to the original patch. The algorithm: Perform curve 
subdivision for each degree m "row" of the control net at parameter u. Since each of the 
two new patches are Bezier patches, they are each defined over the domain (4.16). See 
Schwartz [95] for more on this topic. 

The properties of Bezier patches are utilized to benefit appHcations in [2,64,77,90], 
convexity conditions are explored in [20], fitting and design issues are examined in [39,73, 
99], and a hybrid Bezier patch is introduced in [52]. See the Geometric Fundamentals and 
Direct Rendering of Freeform Surfaces Chapters 2, 30 for information on interrogation 
techniques that may be applied to Bezier patches. Bezier patches can be extended to 
model volumes by generalizing the domain to a cube. For more information on this topic 
see [9,48,66,69,76,96]. 

4.3.7. C^ Bezier patches 
Following the discussion of piecewise curves in Section 4.2.9, here we examine the con­
ditions under which two Bezier patches are differentiable. See the Geometric Continuity 
Chapter 8 for a more in-depth study. 

We'll assume that the patches are the same degree [m,n) and C^, that is, they share a 
common boundary curve. Additionally, define each Bezier patch over an arbitrary domain, 
thus we have x(ii, v) defined over [UQ, ui] x [VQ, vi] and y(w, v) defined over [ixi, 1̂ 2] x ['̂ 0, '^i]-
In order for x and y to be C^ we require 

—-yi{u,v) \u=ui= -^y[u,v) \u=.u, • 

Drawing from the control point interpretation of the partials from Section 4.3.5 and 
applying the chain rule, this means that 
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Figure 4.21. Subdivision of a Bezier patch at u — 0.75. The original control net and the 
net for the patch over [0,0.75] x [0,1] are illustrated. 

or in words, each row of control points must be coUinear and reflect the corresponding 
ratio in the domain, as illustrated in Figure 4.22. 

4.4. T R I A N G U L A R BEZIER P A T C H E S 

Triangular Bezier patches, or short Bezier triangles, are the true generalization of Bezier 
curves to a surface form.^ In practice, the tensor product Bezier patch from Section 
4.3 receives more attention due to their prevalent use in industry. Most notably, tensor 
product patches are an entity in data transfer formats such as IGES. 

However, triangular patches have much to offer. One important offering is the ability to 
model objects with arbitrary topology. Think of a sphere-like object, for example. Mod­
eling this entirely with rectangular patches would require a degenerate patch. Another 
offering of triangular patches is the ease of modeling quadric surfaces. Rational patches 
are necessary, however, and these are discussed in the Rational Techniques Chapter 5. 
See the History Chapter 1 for more uses of triangular methods. 

4.4.1. Bezier triangles introduced 
Bezier triangles are constructed from a triangular domain. Thus barycentric coordinates 
are fundamental to their construction by providing an elegant tool for defining points in 
a plane with respect to this triangular reference frame. An in-depth study of barycentric 
coordinates is provided in the Geometric Fundamentals Chapter 2; See also Boehm and 
Prautzsch [17]. 

Since the domain of a Bezier triangle is a triangle, the conceptual picture of the control 
points of the surface takes a triangular form as illustrated in Figure 4.23. Differing from 
their rectangular counterparts, Bezier triangles have a single degree associated with them. 

^For a discourse on this topic, see Barry and Goldman [5]. 
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Figure 4.22. C^ Bezier patches satisfy the criteria that the three control points in each 
row of along their common boundary curve are collinear, and the coUinear points are 
positioned in the ratio dictated by the domain. 

The control point indexing is described well by a quartic example. 

boo4 
bi03 boi3 

b202 bii2 bo22 
bsoi b2ii bi2i bo3i 

b400 bsio b220 bi3o bo40 

Notice that the sum of the indices equals the degree. Often the abbreviated notation 
bi for hijk is used. There is a pattern to the notation: For example, the control points 
between b4oo and bo4o each take the form b^o- The barycentric coordinates (1,0,0) are 
associated with b4oo, (0,1,0) with bo4o, and (0, 0,1) with boo4-

A degree n triangular Bezier patch is defined as 

x(u) = ^bii?r(u) (4.29) 

where u = {u,v,w) are barycentric coordinates and |i| = n represents all {ijk) combina­
tions which sum to n. The -B[^(u) terms are the bivariate Bernstein polynomials 

B?H iljlk 
•u'v^w''. (4.30) 

They are bivariate since w = 1 — u — v. More on these in Section 4.4.4. A Bezier triangle 
consists of all points x(u) with barycentric coordinates u within the domain triangle, 
0 < u,v,w < 1. However, the surface is defined for u outside of the domain triangle also. 

4.4.2. Propert ies of Bezier triangles 
Many of the properties of Bezier triangles are direct generalizations of the curve ones. 
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Figure 4.23. Illustrated is a cubic triangular Bezier patch with its control net. 

• Endpoint interpolation: The patch passes through the three corner control points, 
that is 

x ( l , 0 , 0 ) - b , , o , o x (0 , l ,0 ) = bo,n,o x(0 ,0 , l )=bo,o ,n . 

Also, each control net boundary corresponds to the control polygon for the patch 
boundary curves. For example: the curve x{0,v,w) has the control polygon boj,A; 
for /c = 0 , . . . , n and j -\- k — n. 

• Symmetry. We could re-index the control net so that any of the corners corresponds 
to hnfi^Q, and evaluation would result in a patch with the same shape as the original 

• Affine invariance: Apply an affine map to the control net, and then evaluate the 
patch. This surface will be identical to the surface created by applying the same 
affine map to the original patch. 

• Convex hull: For 0 < u,v,w < 1, the patch is in the convex hull of the control net. 

• Linear precision: The three corner points define a plane. For a degree n patch, 
place the control points "uniformly" by constructing each b^^^^ in this plane, and 
to have barycentric coordinates {i/n,j/n,k/n). This Bezier triangle is identical to 
the linear Bezier triangle through the three corner points. 

• Total degree: The total degree, or the maximum number of intersections of the patch 
with a straight line, of a degree n Bezier triangle is n^. 

• Functional patches: A functional triangular Bezier patch defined over ^ < u^v^w <1 
has Bezier control points as follows. Construct the degree n function as 2; = / (x , y). 
Suppose the three corner points are given. Then the other Bezier control points are 
constructed to have linear precision in the x- and y-coordinates. The 2-coordinate 
is independent. 
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Figure 4.24. The triangular de Casteljau applied to a cubic patch for u = (1/3,1/3,1/3). 
The geometry of each step is differentiated by shades of gray. 

4.4.3. The de Casteljau algorithm for Bezier triangles 
Similar to the curve algorithm, the steps in the de Casteljau algorithm for Bezier triangles 
consists of repeated linear interpolation. Before describing the algorithm in more detail, 
we need to introduce the index notation ei = (100), ej = (010), and ek — (001). 
Triangular de Casteljau Algorithm 
Given: A degree n control net bj with |i| = n and barycentric coordinates u. 
Find: A point x(u) = booo(u) ^^ ^^^ Bezier triangle. 
Compute: Set b? = bi, and compute the points: 

^{u) = v^;\+v^-l,+w^-^ t^J^-J" '""̂  (4.31) 
Figure 4.24 illustrates the steps of the algorithm applied to a cubic triangular patch. 
Linear interpolation is applied to the six "upright" triangles of the given control net. This 
produces a quadratic control net. Linear interpolation is applied to the three "upright" 
triangles, producing a linear control net. One linear interpolation step is applied, resulting 
in a point on the patch. Applying (4.31) to u on a domain boundary edge, for example 
u = {0,v,w), causes the triangular algorithm to take the form of the curve algorithm 
(4.8). 

4.4.4. Bivariate Bernstein polynomials 
Bivariate Bernstein polynomials were introduced in (4.30). Let us take a closer look at 
them with the purpose of gaining insight into the appealing geometric properties of Bezier 
triangles. 

Just as with the univariate polynomials, a geometric approach to studying the bivariate 
Bernstein polynomials is achieved by formulating them as functional Bezier triangles. To 
plot the i*̂  basis function, recall the form the control points must take from Section 4.4.2. 
Giving one control point a 2: = 1 value, while all others have 2: = 0, will isolate the î ^ 
basis function. Three cubic Bernstein basis functions are illustrated in Figure 4.25. A 
triangular diagram such as the following cubic one illustrates the correspondence between 
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Figure 4.25. Three cubic bivariate Bernstein basis functions plotted with their Bezier 
nets. The others follow from symmetry. 

(4.32) 

the control points and the basis functions. 

u^w uvw v^w 

U^ U V UV^ V^ 

Let us look at some properties of the Bernstein polynomials. 

• Partition of unity: For any u, the sum of the polynomials is one: 

^ B r ( u ) = i. 
|i|-n 

This is necessary for (4.29) to be a barycentric combination. 

• Non-negativity. Each polynomial is non-negative over ^ < u,v,w < \. This prop­
erty, along with the fact that they sum to one, results in the convex hull property^ 
as discussed in Section 4.4.2. 

• Symmetry. The 3-fold symmetry they possess is apparent in (4.32). 

• Recursion: The degree n polynomials can be generated from the degree n — 1 poly­
nomials as illustrated in the identity 

• Domain end conditions: 

5 ^ ( 1 , 0, 0 ) = (^i,(,,o,0) A " ( 0 , 1, 0 ) = (^i,(o,n,0) ^ r ( 0 , 0, 1) = (^i,(o,o,n) 

where 

^i,(n,0,0) 
1 i f i = (n,0,0) 

0 if i / (n, 0,0) 
k (0,n,0) 

1 if i = (0,n,0) 

O i f i / (0,n,0) 
^i,(0,0,n) — 

1 if i = ( 

O i f i / ( 

This results in corner point interpolation. 
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• Linear precision: 

and similarly for v and w. This identity results in the linear precision property of 
Bezier triangles. 

See [20-22,61,104] for convexity analyses. 

4.4.5. Derivatives of Bezier triangles 
The nature of Bezier triangles calls for a more general derivative notation than was needed 
for rectangular patches. Here we need a directional derivative 

Z)db"(u) = rf|^b"(u) + e |^b"(u) + / ^ b " ( u ) , (4.33) 

which is the derivative at u in the direction d = {d,e,f). The direction d is equivalent 
to the difference of two barycentric coordinates in the domain, thus d + e -\- f = 0. 

The partials in (4.33) are defined by differentiating the bivariate Bernstein polynomials, 
for example 

| i |=n- l 

Combining these expression, we find 

Ddb"(u) =n J2 Mbi+ei + ebi+ej + fh,+.^]B^-\u). (4.34) 
| i |=n- l 

Taking advantage of the notation from the triangular de Casteljau algorithm, we may 
rewrite (4.34) as 

Z^db(u) = n ^ hl{d)B^-\u). (4.35) 
| i |=n- l 

This may be interpreted as one step (r — 1) of the triangular de Casteljau algorithm with 
respect to d, producing bj(d), and then n — 1 steps with respect to u. Due to the linear 
nature of the de Casteljau algorithm, it is possible to rewrite (4.35) as 

Ddb(u) - n ^ b r n u ) ^ i H d ) , (4.36) 

liNl 

which should be interpreted as executing the de Casteljau algorithm on the original net 
with respect to u for n — 1 steps, and then executing one step of the algorithm on the b"~^ 
with respect to d. This has a nice geometric interpretation: The three control points for 
the final step define the tangent plane, and thus the normal to the patch at u. 

The r^^ directional derivative, mixed directional derivatives, and cross boundary direc­
tional derivatives are explored in detail by Farin [41,43]. 



4.4. TRIANGULAR BEZIER PATCHES 103 

Figure 4.26. Subdivision of a Bezier triangle at u 
resulting control nets is displayed in black. 

(1 /3 ,1 /3 ,1 /3) . One of the three 

4.4.6. Working with Bezier triangles 
Just as for curves, subdivision of Bezier triangles is a by-product of the de Casteljau algo­
rithm. Consider a point in the domain with barycentric coordinates u. The intermediate 
points from the de Casteljau algorithm, grouped appropriately, form three sub-patches as 
illustrated in Figure 4.26. More specifically, consider the patch across from bnoo, it has 
control points 

^r,j,t K 
r = 0 , . . . , n 

io = (0,i,A:) 

|io| =n-r. 

(4.37) 

Repeated subdivision results in control nets which converge to the surface. 
When ii is on a domain edge, for example u = {0,v,w), then the control points from 

hnoo to booo form the control polygon for the curve on the surface corresponding to the 
line in the domain from {0,v,w) to (1,0,0). This is called a radial line. When u is outside 
the domain triangle, then continuity conditions for neighboring patches are revealed. See 
[13,15,51,57,69,98] for more detail and pointers to more literature. 

Degree elevation for Bezier triangles allows a degree n patch to be written as a degree 
n -h 1 patch by defining Cj such that 

E 
|j|=n+l 

c j ^ r N X^biBr(u). (4.38) 

By multiplying the right-hand side of (4.38) by {u-\-v-\-w), and gathering the appropriate 
terms, the new control points are found to be 

1 

nH- 1 
(zbj_ei + jb j_e j + /Cbj_ek), 

= n + 1. 

Along a boundary curve, this expression reduces to that for curves. The degree elevated 
control net is within the convex hull of the original net. See Farin [41] for more details. 
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Figure 4.27. Two Bezier triangles are C^ if adjacent triangles along the common boundary 
are coplanar and form affine pairs. 

Utilizing the properties of Bezier triangles to benefit applications is explored in [3,42], 
triangular to rectangular patch conversion is studied in [18,70,71], and a classification of 
Bezier triangle may be found in [35]. 

To extend triangular patches to volumes, the domain becomes a tetrahedron. See 
[41,53,57,69,93] for more information. 

4,4.7. C^ Bezier triangles 
The conditions under which two Bezier triangles are diflFerentiable will draw from the 
directional derivative discussion of Section 4.4.5. We'll assume that the two patches are 
the same degree and C^, that is, they share a common boundary curve. 

Consider all cross-boundary directional derivatives at a point on the boundary of one 
triangle, for example along u = 0. As a result, u = (0,^,1 — v) in (4.35), and the 
expression becomes univariate, thus these derivatives correspond to tangents to curves 
across the triangles. If all such derivates are equal for both patches, they are C^. 

However, a more constructive description is needed. Examining (4.36), we observe that 
the directional derivative at a boundary involves the first two rows of control points at 
that boundary. The subdivision formula (4.37) reveals a geometric description of the 
conditions on these control points. The second row of the Bezier triangle b is described 

by 

for j -\- k = n — 1. This means that the triangle pairs along the boundary are coplanar 
and each of the triangle pairs can be described by the same afl[ine map - they form affine 
pairs, as illustrated in Figure 4.27. 
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Chapter 5 

Rational Techniques 

Hans J. Wolters 

The following article will focus on rational parametric curves and surfaces and how they 
are used in geometric modeling applications. Aside from giving an overview of the state-
of-the-art, I will emphasize the role of rational techniques in commercial CAD packages. 

5.1. I N T R O D U C T I O N 

Looking at the history of CAGD in industry, it can be argued that rational techniques 
and representations were at the root of geometric modeling. In particular conic sections 
and quadric surfaces were the initial building blocks of early CAD systems. Liming [27,28] 
detailed many geometric constructions for aircraft design using conies. Later S. Coons at 
Ford introduced conies into a CAD system; independently conies were used by engineers 
at Boeing. The quest for compatible formats and for exchanging data among different 
systems then led to the consideration of standard data formats. The need arose to find a 
common representation for basic spline curves and conies. Hence the NURBS represen­
tation was developed where NURBS stands for Non-Uniform Rational B-Spline. NURBS 
were first introduced in Versprille's thesis [43]; later A. Klosterman was instrumental in 
establishing NURBS as an industry wide standard by choosing them as data representa­
tion in SDRC's modeling software I-DEAS. Today NURBS are integral part of the ICES 
as well as the STEP standard. 

Previous chapters already provided many of the building blocks for developing the 
material in this chapter. Concepts from projective geometry have been introduced in 
Chapter 2 on Geometric Fundamentals. In Chapter 4 on Bezier Techniques^ Bezier curves 
and surfaces have been covered in depth. We will see that many of the algorithms pre­
sented there can easily be generalized to the rational case. I will present these algorithms 
briefly for the sake of completeness; the main focus will be on techniques which are spe­
cific to NURBS. Additionally, I will focus on topics related to the practical use of rational 
representations. 

I l l 
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5.2. R A T I O N A L BEZIER CURVES 

In Chapter 4 on Bezier Techniques^ non-rational Bezier curves have been introduced. In 
this section, we will generalize these curves to the rational case. Furthermore, we will 
give a brief outline of standard algorithms and then place special emphasis on algorithms 
which make use of the additional flexibility offered by rational curves. 

5.2.1. Basic definitions 
A rational Bezier curve of degree m is a parametric curve which is described by control 
points, ĉ  G M^, n = 2,3, weights Wi and the parameter t. Without loss of generality we 
let t vary from 0 to 1. The curve has the form 

The Bernstein Bezier basis functions are defined as 

B^{t)= (j^\l - tyt"^-' (5.2) 

Inspecting Equation (5.1) more closely reveals some simple properties: If we set all the 
weights Wi to 1, then by using the fact that X]ilo^I^(^) = 1̂  we obtain a non-rational 
Bezier curve. Furthermore, by ensuring that all Wi > 0, and some Wi > 0, we can 
guarantee that the curve does not contain any singularities. The curve c(t) in affine space 
can be viewed as the projection of a curve c{t) which lives in projective space and whose 
control polygon consists of the homogeneous points [wiC^ Wi\. Hence, scaling all weights 
Wi by a common factor will not change the underlying control polygon or curve. Rational 
Bezier curves inherit some properties from the nonrational counterpart: 

• Affine Invariance: This is easy to see: We just have to convince ourselves that 
Equation (5.1) is equivalent to an expression X^ilo^^^i ^^^^ Yl^o^i ~ ^' -^^^ ^^^^ 
is readily verified by observing that 

Here we dropped the parameter t since this reasoning is independent of t. 

• Convex hull property: This property holds if 1̂ ;̂  > 0 Vz 

• Endpoint interpolation: By inserting t = 0 and ^ = 1 into Equation (5.1), we can 
verify that 

c(0) = = Co and c(l) = = c^ 
Wo Wm 

• Variational Diminishing Property: The curve has no more intersections with any 
plane (or line) than its control polygon has. This can be seen by considering corner 
cutting algorithms. Corner cutting is equivalent to linear interpolation. Hence 
each corner cutting step reduces the number of intersections. Using the fact that 
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Figure 5.1. The influence of weights on the curve shape. The weight of the black control 
point is being changed. Note that all the curve points of a fixed parameter lie on a straight 
line containing the control point with the varying weight. 

degree elevation is an instance of a corner cutting algorithm and repeated degree 
elevation converges to the curve itself, we have proved the variation diminishing 
property. Obviously, this property carries over directly from the non-rational case 
and introducing positive weights does not supply enough additional flexibility to 
violate this property. 

There is one important property of a rational Bezier curve that is not shared by its non-
rational counterpart: projective invariance. The curve will stay invariant under general 
projective transformations. This property can be exploited in graphics algorithms. In­
stead of applying a projective or perspective transformation to the curve points while 
rendering (or sampling) the curve, one can first apply the transformation to the control 
points, and then render the curve subsequently. 

Weights and weight points 
The weights Wi can be used as additional shape parameters in the following way. Let us 
increase a weight Wk whereby the other weights are staying unchanged. Then the ak in 
Equation (5.3) increases as well. This means that the control point ĉ ^ is weighted more 
heavily, hence the curve moves closer to the control point c^. This eflfect is illustrated 
in Figure 5.1. Furthermore it is illustrated that for a fixed parameter to the points c(to) 
lie on a straight line for varying weight Wk. An elegant proof of this can be found in 
[16]. In practice, experienced stylists use the weights to fine-tune the shape of curves and 
surfaces. Some software packages for example support a dial-box interface which can be 
used to increase and decrease weights with fine granularity. 

G. Farin introduced weights points in [13]. These are often called Farin points. The 
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Figure 5.2. Manipulating the curve shape by sliding the weight point (arrow) along its 
control leg 

weight points q̂  are defined as 
WiCi + Wi+lC^+l 

(5.4) 

In Figure 5.2 we illustrate the effect of weight points on the curve. The weights are related 
to the weight points by the following formula: 

Wi^i = Wi^ ratio{ci, q ,̂ Ct+i), z = 0 , . . . , m — 1 (5.5) 

This equation shows that if we set WQ = 1 without loss of generality, then the weights 
are uniquely determined by the weight points. Hence, weight points can be used as shape 
handles as alternative to using the weights themselves. Farin[15] discovered that rational 
Bezier curves are not only contained within the convex hull formed by their control points. 
They are also contained within the convex hull formed by the two end control points and 
the weight points. Hence we obtain tighter bounds. This is a useful property for many 
algorithms as we will see later. 

5.2.2. Der iva t ives 
The computation of the derivative of a rational Bezier curve can be performed by using 
the quotient rule. For the first derivative we can perform the following manipulations 
which are equivalent to rewriting the quotient rule: 
Define 

p(t) ^ w{t)c{t) (5.6) 

Then we can compute 

w{t) 

Rewriting the derivatives in this way we only need to compute derivatives of polynomial 

expressions. By using the Leibniz rule, this carries over to higher order derivatives: 

w{t) 
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This formula is recursive and by using this recurrence relation together with equation 
(5.6), we can compute any derivative by computing the derivative of non-rational Bezier 
curves. This can be done efficiently using the de Casteljau algorithm (see Chapter 4 on 
Bezier Techniques). It is easy to see that the derivative of a rational Bezier curve can 
not simply be obtained by computing the derivative of a non-rational Bezier curve in 4D 
homogeneous space and subsequent projection. This has implications for piecing together 
such curves. If two rational Bezier curves have a common derivative in homogeneous 
space then they will have a common derivative in affine space. The opposite however is 
not true. We will revisit this topic in the section on geometric continuity. The first order 
derivatives at the two end points of a rational Bezier curve can be computed quite easily: 
by using our knowledge from the non-rational case we obtain: 

• /Q\ _ p(0)--iZ;(0)c(0) _ mu;i(ci-co) 
^V^^ ~ w{0) ~ wo 

^ n \ _ P(1)--U;(1)C(1) _ mWm-l{Crr 
w{l) 

5.2.3. Fundamental algorithms 
In the following we will discuss some of the most basic algorithms which are the founda­
tion for evaluating and manipulating rational Bezier curves. We start with the classical 
algorithm for evaluating rational curves, the de Casteljau algorithm. For rational curves 
there are two variants of the de Casteljau algorithm. Variant 1 is the straightforward 
generalization of the non-rational case: The setting here is the projective space and we 
treat the curve as having homogeneous control points [wiCi Wj], z = 0 , . . . , m. 

de Casteljau Algorithm I 
Given: Homogeneous control points Cj := [wiCi Wi\, i = 0,... ,m and parameter t G [0,1]. 
Find: Point c(^) on the curve in affine space. 

Compute 

c[W = ( l - t ) c r + t c - i {^ ^ " ••',__ __ (5.9) 1, 
0 , . . . , m — r. 

c{t) = 7r(c-(i)) (5.10) 

Here TT is the projection operator. We apply TT to the curve c{t) by applying TT to every 
control point. 

The second variant of the de Casteljau algorithm consists of projecting every interme­
diate point into affine space (see Farin [13]) and is therefore more geometric: 

de Casteljau Algorithm II 
Given: Homogeneous control points ĉ  := [wiCi Wi], i = 0,... ,m and parameter t G [0,1]. 
Find: Point c{t) on the curve in affine space. 

Compute 

( l - t ) < - ' c r ^ + to-/c-/ \r = l,...,m 

(l-0<-'+t<-^ \i = 0,...,m clit)='' . r \ . Li Tr^' ' - . , . . . , - (3̂ ^^^ 
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wl{t) = (1 - t)wr\t) + twl'lit) (5.12) 

c{t) = c^{t) (5.13) 

Floater [18] points out that the derivative formulae in the previous section do not yield 
any geometric insight. He rewrites the first derivatives using the intermediate weights and 
points from the de Casteljau algorithm. One advantage of this formulation is the ease by 
which one can derive upper bounds for the derivatives of a curve. This is important for 
many divide and conquer algorithms in practice. For example, when computing curve-
curve intersections, one often needs to decide quickly how flat a given segment is. 

The next important algorithm is the reparameterization algorithm. It is common to 
transform rational Bezier curves into a standard representation. This means that the two 
end weights WQ and Wm are both 1. It is known (see [14]) that two rational Bezier curves 
c and c describe the same shape if their weights are related by Wi = f^Wi^ where / is an 
arbitrary scalar. Since we can scale arbitrarily, it is obvious how to achieve one weight 
being equal to 1. Let us now assume that WQ = 1. If we set 

/ = i^)- (5.14) 

we have achieved that Wm — WQ. Dividing by WQ yields the curve in standard form. It 
should be noted that changing the parameterization of the curve in this manner has prac­
tical implications. Figure 5.3 shows how the parameter spacing is changed. In practice, 
one often evaluates curves in equal parameter increments just as in Figure 5.3. This indi­
cates that the parameterization has to be taken into account to avoid sampling artifacts. 
In [10], a projective parameterization was introduced which allows an evenly spaced sam­
pling of a full circle. On the other hand, this also shows that an injudicious choice of 
weight factors can substantially skew the parameterization of a curve. 

Another useful technique is degree elevation. This is the process of raising the degree 
of a m-degree curve to a larger degree n. This technique is useful in practice for building 
a surface from cross sections; this process is called lofting. In order for the resulting 
loft surface to interpolate the sections, all sections have to be of identical degree. One 
way to achieve this is to perform degree elevation. The degree elevation algorithm for 
rational curves is a straightforward generalization of the non-rational case. Its setting is 
the projective space with homogeneous control points. 

Degree Elevation 
Given: A Bezier curve c(t) of degree m with homogeneous control points ĉ  := [wjCi Wi]. 
Find: The Bezier curve d(t) of degree m + 1 such that d = c on [0,1]. 

Compute 

^ I i 
d^ = —rCi_i -f (1 —-)ci, z = 0 , . . . , m + 1. (5.15) 

m -h 1 m + 1 

Here we set c_i = c^_ î = 0. The interplay between degree elevation and reparameteriza­
tion has been investigated in [14]. One can first degree elevate a given curve c in standard 
form to obtain a new curve c. Then one can reparameterize the curve c and subsequently 
degree-elevate this curve. Bringing the degree-elevated curve into standard form yields a 



5.2. RATIONAL BEZIER CURVES 117 

Figure 5.3. Effect of parameterization on sampling density, / 
and / = 0.5 (bottom). 

2 (top), / = 1 (middle). 

curve c. The curves c and c describe the same curve but have different control polygons 
and weights. This is a distinction from the non-rational case where the degree-elevated 
representation is unique. 

In the polynomial case it is easy to tell if a curve of degree m is actually of degree m — 1. 
One just needs to check that the m-th derivative is identically 0. This is equivalent to 
check that the m-th difference of Bezier points is equal to 0. The same approach can be 
taken for rational curves in projective space. 

As mentioned in Chapter 4 on Bezier Techniques, one is often interested in the opposite 
direction as well; that means one would like to find a curve of a lower degree which 
represents the given curve of higher degree. This problem often occurs in practice, when 
one needs to exchange data between different CAD systems. Some CAD systems can 
handle curves and surfaces of higher degrees than other systems. It is easily seen that in 
most cases there will be no exact solution. Eck [11,12] and many others gave algorithms 
for degree reducing non-rational Bezier curves. There are not many algorithms for degree 
reducing rational curves specifically. Assuming that we have an algorithm for non-rational 
curves we can try to apply this algorithm to the homogenous coordinates. However it is 
not guaranteed that the weights remain positive. 

5.2.4. Conies 
Conic sections can be represented exactly as a rational quadratic Bezier curve. Without 
loss of generality, we can assume that the two weights WQ and Wi are equal to 1. This 
means that a conic section c(t) has the representation 

c(<) 
BUt) + w.BUt) + Blit) (5.16) 
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with t G [0,1]. For a conic in this representation it is always true that the shoulder point 
of the conic is at parameter value t = 1/2. Furthermore, the tangent at the shoulder 
point, often called the shoulder tangent, is parallel to the Hue connecting bo and b2. 
Another interesting fact is that by reversing the sign of Wi we obtain the complementary 
conic segment c(^). It is easy to show that the three points b i , c(^) and c{t) are always 
collinear. It is well known, that in affine space, there are three classes of conies: hyperbo­
las, parabolas and ellipses. It is now natural to ask if this classification can be performed 
based on the above representation. Since hyperbolas have two singularities and parabolas 
only one, it is also intuitively clear that the weight Wi plays a crucial role, because this 
is the only parameter affecting the denominator. It turns out that indeed we can classify 
conies by inspecting the weight Wi, or more precisely, solve the quadratic equation given 
by the denominator of the complementary segment: 

^''' - —2T2^;;^ ^̂ -̂ ^̂  
One sees that for w;i > 1 we have two zeros and hence two singularities, yielding a 
hyperbola. The case IL̂ I < 1 yields an ellipse and for Wi — 1 we obtain a parabola. The 
latter is obvious, since this means that the curve is a non-rational quadratic, hence it must 
be a parabola. We will now look at some specific constructions. The first is a circular 
segment that is a special case of an ellipse. We know that the weight Wi must be greater 
than 0 and smaller than 1. Due to the symmetry we also know that the control points 
bo, b i , and b2 must form an isosceles triangle. It turns out that Wi = COS(Q;) where a is 
the angle formed by the fines bobi and bob2 (see Figure 5.4). In order to obtain a full 
circle, one needs to piece together several segments, for example one could piece together 
3 segments each with angle a = 60 degrees. Another construction that is often used in 
practice, in particular for constructing blend surfaces is the so-called /9-conic (see [30]). 
Here we prescribe the two endpoints bo and b2 as well as the end tangents hereby defining 
the point b i . Additionally, the shoulder point p at t = 1/2 is restricted to lie on the line 
joining bi and the midpoint p ^ of bob2. This means that p — Pm = p(bi — Pm) where p 
is the parameter sliding the point up and down the line and hence pulling the conic closer 
or farther away from pi . One could say that p describes the "fullness" of the curve. It 
turns out that the corresponding weight Wi can be computed as 

'^1 = ^ l i — (5.18) 

where the r̂  are the barycentric coordinates of p with respect to the triangle formed by 
the control points. Note that this equation is always solvable if p lies inside the triangle, 
but it might not be solvable otherwise. The construction described above is a special case 
of the classic construction of a conic from two points and their tangents and an additional 
point. More on conies in Bezier form can be found in [30]. 

5.3. R A T I O N A L B-SPLINE CURVES 

In Chapter 6 on Spline Basics, the basic theory of splines as pioneered by Schoenberg [39] 
has been developed. Just as is the case for Bezier techniques, we can generalize non-
rational B-Splines to the rational case. This defines non-uniform rational B Splines 
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Figure 5.4. Construction of a circular segment in rational Bezier form. 

{NURBS) which are the current industry standard. Here we will deal with rational B-
Spline curves, so we present the basic definitions first. 

5 .3.1. Basic defini t ions 
A NURBS curve of degree m is given by: 
control points also known as de Boor points dj, z = 0 , . . . , n, dj G iR^, k = 2,3. 
weights Wi, z = 0 , . . . , n, 
knot vector r — { to , . . . ^tn^m^i}-
We assume that the first and last knots have multiplicity m + 1 each. This is industry-wide 
convention and it ensures end point interpolation. 

A rational NURBS curve d(t) is defined as 

A{t) 
T.t,^r^iNr{t) 

The normalized B-Spline basis functions are defined recursively: 

where 

ti 

^i+m ẑ 
Nr'{t) + ^z+m+l 

i-\-m-\-l ^i-\-l 
-N, i+l m > 1; z = 0,. 

1 for U <t < t,+i 

0 otherwise 

(5.19) 

(5.20) 

(5.21) 

The properties of these basis functions are discussed in detail in Chapter 6 on Spline 
Basics. We can now proceed as in the Bezier case and define the curve as a linear 



120 CHAPTER 5. RATIONAL TECHNIQUES 

combination of control points: 

n 

d{t) = J2aA (5.22) 
i=0 

with 

This leads immediately to the following properties: 

• Affine Invariance 

• Convex hull property when the weights w^ are nonnegative. 

• Variation diminishing property. 

The degree elevation and knot insertion algorithms can again be viewed as examples of 
corner-cutting algorithms and this can be used to prove the variation diminishing property 
just as in the Bezier case. Furthermore, we can easily deduce that the NURBS curve as 
defined above interpolates the endpoints: 

d(to) = do (5.24) 

d{tm+n+l) = dn (5.25) 

The effect of the weights on the curve is similar to Bezier curves. Increasing the weight 
Wi relative to its neighbors causes the curve to move towards the control point d^. 

5.3.2. Der iva t ives 
In order to compute derivatives of rational B-spline curves, we proceed in the same manner 
as for rational Bezier curves. We define 

p(^) = w{t)d{t) (5.26) 

where w{t) is the ID B-Spline weight function, and again arrive at the equation 

. p(t) - w{t)d{t) 

(̂*̂  = — W ) — ^ ^ ^ 
Now we just need to recall how to compute derivatives of a non-rational B-Spline curve 

Pit). 

n - l 
dt+1 - d 

p{t)=mJ2, _7. Nm'it) (5-28) 
1=0 ^"^+^+1 ~ ^^+1 

Higher order derivatives can be computed by using the recurrence relation for the B-Spline 
basis functions. A different approach for computing the first derivative of a NURBS 
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curve has been developed by Floater [19]. Assuming that the parameter t is contained in 
[t/,t/+i], and using 

(^i,k = {U- Ui)/{Ui+i^rn-k - Ui) ( 5 . 2 9 ) 

Wi,k = (1 - «z,/c)^i-l , ifc-l + «z,A;^i,fc-l ( 5 . 3 0 ) 

one can show that the NURBS curve d{t) obeys: 

n 

d(t) = X ^ L , ( t ) ( d , - d , _ i ) (5.31) 

with 
^ i—1 n 

L^{t) = - 5 ^ ^ ( i V - ( t ) i V f (t) - i V - ( t ) A r - ( t ) ) ^ , ^ , (5.32) 

Floater uses this expression to derive upper bounds for the derivatives. 

5.3.3. Fundamental algorithms 
In Chapter 6 on Spline Basics different algorithms for evaluating B-Spline curves have 
been presented. One can directly make use of the recurrence relation. Alternatively one 
can use knot insertion or the Oslo algorithm to evaluate a spline. The most commonly 
used algorithm is the de Boor algorithm. This algorithm can be viewed as a generalization 
of the de Casteljau algorithm. Again we can give two versions, the first version using 
homogeneous coordinates: 
de Boor Algorithm I 
Given: Homogeneous control points d̂  := [widi Wi], i = 0, . . . , n , knot vector r — 
{ to , . . . , tm+n-^i} and parameter t. 
Find: Point d{t) on curve in affine space. 
Compute I such that t G [tj,t/^_i) C [tm,^n+i]-

m) = / ' " " ' r / dfr/f t) + ^ '-''_-] dnt) (5.33) 

with k = 1 , . . . , n — r and 2==/ — n + ZcH- l , . . . , / — r + 1. 

d ( < ) = ^ ( d ( i ) ) = d n + i ( « ) - (5.34) 

Here we used the convention that r denotes the multiplicity of t in case t is an element of 
the knot vector, and 0 if t is not contained in the knot vector. In analogy to the Bezier 
case we can define a rational version of the de Boor algorithm: 
de Boor Algorithm II 
Given: Homogeneous control points ĉ  := [vuidi Wi], i = 0, . . . , n , knot vector r = 
{ to , . . . , tm-^n-^i} and parameter t. 
Find: Point d(t) on curve in affine space. 
Compute: I such that t G [t/,t/_^i) C [tm^in-\-i]-

m) = (/'"""r/ ^'-l^-i(^ + /~':l ^^rd^-'it))M (5.35) 
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^, = W ^ - ^ ^ ^ + / - ^ ; wr (5.36) 
^i+n — k ẑ—1 ^z+n—/c ^z —1 

with A; = 1 , . . . , n —r and i — / —n + A:4-l, . . . , / —r + 1. As pointed out before, this version 
uses convex combinations and hence is more stable. On the other hand the operations 
count is increased. 

Reparameterizations 
It is possible to reparameterize a NURBS curve. The key observation is due to Lee 
and Lucian [31]: If we apply a rational linear (Moebius) parameter transformation to a 
NURBS curve, the resulting curve is again a NURBS curve with the same control polygon 
but different weights and knots. More precisely: Define the linear rational map 0 by 

* ) - ^ ( - ) 

If we apply this transformation to a NURBS curve with knot vector r we obtain a curve 
with knot vector C — {"̂ o, • • •, s^} and Si = (t){ti). The new weights are given by 

iZ;, = ^, /n7^i(7t^+,+(5) (5.38) 

Since the rational linear map has 3 variables (set a = 1 without loss of generality), we 
can now pick the unknowns in such a way that WQ and Wn are equal. This leads to a 
NURBS curve in standard form (see [31]). Conversely, one could also try to determine 
the unknowns in such a way that intermediate knots are mapped to certain target values. 
However, this seems to be of limited use since in most cases one would have to solve a 
least squares system and the new weights are unbounded. 

5.4. G E O M E T R I C C O N T I N U I T Y FOR RATIONAL CURVES 

In this section we will address the topic of geometric continuity for rational curves. If we 
recall how we derived the derivatives of a rational Bezier curve, it is easily seen that C^ 
continuity in projective space implies C^ continuity in affine space but the reverse is not 
true. We abbreviate continuity in projective space with HC^ or HG^ respectively, whereas 
continuity in affine space is denoted by C^ or G^. Let us start with two Bezier curves 
of degree m where the first curve has a control polygon Co, . . . , c^n, weights WQ,. .., Wm 
and is defined over the interval [UQ, ui]. The second curve has control points c ^ , . . . , C2m 
and weights Wm, • • •, W2m and is defined over the interval [t^i, 1̂ 2]- Furthermore, we define 
0̂ := ui — UQ and Si :— U2 — Ui. If we recall the results in Section 5.2.2, it turns out that 

the two curves are C^ continuous at Ui if 

—7 (Cm - Cm-l) = —7 (c^+ l " C^)- (5.39) 

One can also see that for G^ continuity the weights do not play any role at all. In 
[5] conditions for curvature and torsion continuity of rational Bezier curves have been 
derived. These conditions have nice geometric interpretations: Let us define the following 
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(5.40) 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

(5.45) 

Here T^ is the tangent defined by Cm and Cy^+i, T_ is the corresponding tangent defined 
by c^ and Cm~i- Furthermore, O-f. is the osculating plane spanned by c^, c^+i, and 
Cm+2i whereas 0 _ is the osculating plane spanned by c^, c^_i , and Cm-2- The two 
curves are curvature continuous or G^ continuous if they are C^ continuous, the 5 points 
Cm-2, • • • 5 Cm+2 are coplanar, Cm-2 and 0^+2 lie on the same side of tangent T+ (which is 
equal to T_ in that case) and the following relationship holds: 

quantities: 

a+ = 

a_ = 

h^ = 

/ i _ = 

d^ -

d_ = 

| |Cm+l 

| | C m - l 

||Cm+2 

| |Cm-2 

||Cm+3 

| |Cm-3 

^m\ 

^m\ 

-T+l 

-T-\ 

- 0 + 

-o_ 

wt^.at, 

For a non-planar rational Bezier curve, the conditions for torsion continuity are also of 
practical interest. Two curvature continuous rational Bezier curves are torsion continuous 
at Crn if Cm-3 and Cm+^ lie in different half spaces defined by the osculating plane 0 + (by 
assumption 0 + equals 0_ ) , and the distances obey 

d^ a+h+Wm-3Wm-\-lWm+2 /^ .„x 

—- = — 5.47) 

In Figure 5.5 we illustrate the geometry and the quantities involved for defining curvature 
and torsion continuity, including the G^ condition. In [5], Boehm also presents construc­
tion algorithms for curvature continuous cubic B-Splines as well as torsion continuous 
quartic B-Splines. The algorithms make use of the interplay of Bezier control points and 
de Boor points. The de Boor points d̂  can be derived from the intersection of segments 
formed by the Bezier control points. 

One should note that the above conditions and constructions are valid in affine space 
but they do not guarantee homogeneous continuity. For this to achieve one has to inves­
tigate continuity in projective space using homogeneous coordinates. Degen [7] derived 
conditions for G^ continuity using homogeneous coordinates. He showed that for two 
curves to be G^ continuous, there needs to exist a triajagular matrix which transforms the 
control points from the first curve directly into the control points for the second curve. 
Furthermore, he gives a recurrence formula for G^ conditions with arbitrary r. 

5.5. R A T I O N A L C U R V E A P P R O X I M A T I O N A N D I N T E R P O L A T I O N 

In practical applications, one of the most common and important tasks is to approximate 
or interpolate point data. Furthermore, one often needs to approximate curves which are 
given in analytical form but are not representable exactly as NURB curve. Examples of 
these are intersection curves or off"set curves. It is also a fact that in most commercial 
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Figure 5.5. Construction of curvature and torsion continuous curves. We depict all the 
control points and scalar quantities (distances) that are involved. 

software packages, the weights are not used when approximating or interpolating with 
NURB curves, it would be more accurate to talk about NUB curves. It remains the case 
that the main justification for using true rational curves in practice is their ability to 
represent conies and circles exactly. Their use is mainly limited for that purpose. The 
reason why the weights are not utilized for fitting is twofold: 

• 1) Treating weights and control points as unknowns immediately requires the solu­
tion of a nonlinear problem. 

• 2) The desired range of values that weights should attain is rather restrictive. 
Weights should be positive, be bounded away from zero and also have a reasonable 
upper bound when we assume standard form. More precisely, one often prescribes 
weights to be in the range / * [0.5, 2.0] where / is a common factor. 

Nonetheless, algorithms have been developed to use the weights for fitting. We will present 
the relevant work below. 

5.5.1. Rational curve interpolation 
The direct approach to rational curve interpolation is to consider data points in projec­
tive space and then interpolate in homogeneous coordinates just as can be done in the 
nonrational case: Given are data points p^ and weights Vi and corresponding parameters 
tf, z = 0 , . . . , n. In 4D we compute a rational spline curve c(t) such that c{ti)^ = [viPi Vi]-
This problem can be solved analogously to the non-rational case. The heuristics for choos­
ing knots can also be taken from the nonrational case. The problem is however somewhat 
ill-posed, since in practice we usually have only data points but not the weights. There 
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is no algorithm for choosing weights; in addition, solving this problem globally can easily 
produce weight functions with singularities. A different and more practical approach has 
been investigated by Schneider in his Ph.D. thesis [37]. Here, the weights are treated as 
additional unknowns; this allows to specify more data points. Concretely, it turns out 
that if we have m -h 1 data points, a curve with n + 1 de Boor points can be determined 
uniquely if the relation n = 3m/4 holds. The interpolation problem is then solved using 
homogeneous coordinates. One of the remaining problems is that the resulting inter­
polation curves can exhibit singularities. Even more interestingly, the parameterization 
has an effect on this, there are cases where by using chord length parameterization the 
curve exhibits singularities whereas by using centripetal parameterization the curve has 
no singularities, however it interpolates the same data. A practical concern is that many 
times curves are constructed as building blocks for surfaces. This poses severe limitations 
on the parameterization. As evidenced above, the rational interpolation problem is very 
sensitive to the parameterization, even more so than in the non-rational case. 

For reasons outlined above the more practical interpolation methods are those which are 
based on osculatory interpolation. The basic idea here is that one pieces together locally 
fitted pieces with prescribed continuity. For example, let us assume we have data points 
Pi, tangents q ,̂ and curvature values AĈ , or alternatively curvature vectors Xj, z = 0 , . . . , n. 
We parameterize the data yielding parameters ti. We can now fit say rational cubic Bezier 
curve segments ĉ  such that €^(0) = p^, €^(1) = p^+i and furthermore the unit tangent of 
Ci at 0 and 1 equals q̂  and q^̂ -i respectively. In addition, the curvature of Q at 0 equals 
Ki and at 1 it equals Ki^i. Hoellig proved in [23] that such a curve exists under certain 
restrictions on the geometry induced by the data. Furthermore, he gave a method to 
compute such a rational spline curve. Note that this construction is closely related to the 
continuity conditions we derived earlier. It turns out that this method has approximation 
order 6 which is an improvement over non-rational methods which can only achieve order 
4 in the general case. Another popular approach to osculatory interpolation is to use 
piecewise conic segments. This method is constrained to planar data and makes use of 
the fact that 5 data points determine a conic uniquely. One approach is to fit conies 
locally to five data points each and piece the segments together. In general the resulting 
spline will only be C^ continuous. A more useful approach is to prescribe three data 
points Po,Pi,P2 and two end tangents qo and qi . If the middle point pi is contained 
within the triangle formed by po, P2 and the intersection of the two tangents qo and 
qi , then there is a solution. The resulting interpolating spline is convexity preserving 
and G^ continuous. Schaback [36] gives a method to construct these segments. It is also 
possible to prescribe curvature values ACQ and KI at the endpoints of a segment together 
with three data points. In general these constraints can not be satisfied, in [36] Schaback 
gives conditions that ensure the existence of a unique interpolant. It turns out that these 
conditions are satisfied if one samples dense enough a smooth regular curve with non-
vanishing curvature. Goodman et al. [22] presented a method for fitting planar data with 
piecewise cubic rational Bezier segments. Their goal was to compute shape-preserving 
interpolants: if all data points lie on one side of a given line, then the interpolant should 
not cross that line. Their method proceeds by first computing a G^ continuous rational 
cubic spline matching two positional and two curvature constraints at the ends. If one 
of the spline segments violates the line condition, the two interior weights are modified 
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until the curve just touches the line. Obviously this will cause a G^ discontinuity with the 
neighboring segment and so the weight of the neighboring segment needs to be modified 
as well. 

Note that the osculating interpolation methods can also be viewed as approximation 
methods, in the case that the data is sampled oflF a given curve that needs to be fitted by 
NURBS. 

5.5.2. Rational curve approximation 
The classical scheme for performing approximation with rational curves is the Pade 
scheme. Let us briefly go back to the functional setting. We assume that we have a 
function F{x) that has a Taylor expansion 

oo 

F{x) = Y,aix' (5.48) 

We are interested in a rational polynomial function R{x) that approximates F. R is of 
the form 

ao -f aix + a2X^ + . . . + a^x^ 
R{x) = ;— (5.49) 

By matching degrees of freedom we can easily see that we have m + n + 1 free coeflRcients 
(6o can be normalized to 1) and hence the best approximation order one can hope for 
is C^(n + m + 1). One computes the approximant by multiplying both sides by the 
denominator of R and obtains a system of equations that can be solved uniquely if the 
Hankel determinant of the denominator of i^ is nonzero. This gives rise to many interesting 
theoretical investigations. An introduction can be found in [6], other references are [1,21]. 
For CAGD applications, it is more useful to use multi-point approximation schemes, in 
particular the two-points schemes that have been introduced in the previous section. 
We can construct a parametric Fade approximant that approximates a given function 
up to a certain order at two parameter values [45]. Here is the problem statement for 
approximating a curve at two points up to order 2: 
Given: A parametric curve F{t) = [x{t),y{t),z(t)). 
Find: A rational Bezier curve h{t) such that 

F ( ^ ) - b ( t ) - O{t-tof) (5.50) 

F ( ^ ) - b ( t ) = 0{t-ti)^) (5.51) 

where t G [to,ti]. There are several strategies for solving this problem. For example 
one could solve two one-point problems and blend the results, or one could solve three 
one-dimensional two-point problems and subsequently multiply to make the denominators 
equal. In [45] a two-points problem was solved for all three components simultaneously. 
This allows to use a rational polynomial of degree 4 over 4. This is of lower degree than 
was possible before ([3]). Results show that this approximation method is very effective 
and that high quality C^ approximations can be obtained. 

A variety of diflPerent approximation schemes can be found in the literature. The most 
general scheme treats control points, weights and nodes as free and solves a non-linear 
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optimization problem. Obviously, it will be challenging to avoid getting stuck in a local 
minimum. Other more specialized methods can be found for example in [2,44]. In [46,8] 
some geometrically motivated methods are presented to approximate smooth curves by 
rational Bezier curves. Finally, a somewhat different application is the fairing of curves. 
Here, one is interested in smoothing a curve, most often one would like a smooth change 
in curvature without spikes. In [24], a method is developed that automatically adjusts 
the weights of a B-Spline curve. The goal is to produce a curve with smoother curvature 
variation that is still very close in position to the original curve. Another approach for 
selecting weights is given in [34]. 

5.6. R A T I O N A L BEZIER SURFACES 

In this section we will introduce rational Bezier patches. In practice, one of the most 
challenging problems is the composition of multiple patches. In most cases, one wants 
to maintain at least G^ continuity to avoid creases. It turns out that this is particularly 
difficult for rational patches. Hence we will devote a special section to this subject. 
Furthermore, we will see, that many algorithms for surfaces can be reduced to applying 
the curve algorithms just as is commonly done for non-rational Bezier patches. However 
this is not easily possible for approximation algorithms. 

5.6.1. Basic definitions 
I will briefly introduce rational Bezier patches along with their most important properties; 
assuming the reader to be familiar with rational curves. A rational Bezier surface of degree 
m, n is given by an array of control points Cij,i = 0 , . . . , m, j = 0 , . . . , n G IR , and an 
array of corresponding weights Wij. Furthermore we assume a parameterization in s and 
t where without loss of generality s and t vary from 0 to 1. The patch is defined as: 

We can omit the parentheses in Equation (5.52), I included them for clarity. In the 

nonrational case, the patch basis functions obey the tensor product condition: 

F,j{s,t)^G,{s)H,{t) (5.53) 

In the rational case the basis functions are 

^̂ •̂̂ '' ' ^ ' " EZoEU-^^JB^{s)B^{t) ^^-^^^ 

Due to the sum in the denominator a factorization is not possible. This has practical 
consequences: In order to exploit the tensor product structure, we have to apply the 
algorithms in projective space using 4 dimensional homogeneous coordinates. Afterwards 
we have to apply the projection operator TT to return into affine space. But one needs to 
be careful since this approach is not always valid: Remember that for instance derivatives 
are not correctly computed using this method. We can generalize some of the properties 
for non-rational patches directly to the rational case: 

• Affine invariance 
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Figure 5.6. Weight points for rational Bezier patches: The shaded triangles need to be 
coplanar. 

• Corner points interpolation 

• Convex hull property 

Weights and weight points 
By a similar reasoning to the curve case, we can deduce that increasing the value of weight 
Wij relative to its neighbors causes the surface to move towards control point Cij. Hence, 
we can use the weights again as shape parameters. It is also possible to define weight 
points. We define these points in the s and in the t direction: 

'^ Wij + W^^lj 

_ '^ij^ij + '^ij+lCzj+l f5 56) 
'̂  '^ij + mj+\ 

Considering the fact, that the weights in s direction and in t direction overlap, it is 
clear that the Pij and q ĵ are not independent of each other. In fact, the relationship is 
rather constrained: The 4 points p^j, Pij+i, (\^j and q^+i^ have to be coplanar, see Figure 
5.6. Hence it is somewhat more awkward to provide an interface where it is possible to 
modify surface shape by specifying weight points. A solution to this problem has been 
proposed by Theisel [42]. There, extended Farin points are first defined in the surface 
domain and then mapped into 3D. In addition, the author presents a scheme which allows 
only a subset of the Farin points to be moved in order to avoid conflicting definitions. 
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5.6.2. Der iva t ives 
Computing partial derivatives of rational Bezier patches is somewhat more complex. I 
will first give the straightforward derivation and subsequently, I will describe an algorithm 
by Sederberg that sacrifices the numerical stability of the Bezier basis for a more eflScient 
evaluation of the derivative. For the straightforward version we will proceed very similar 
to the curve case. Define 

m n 

v(s, t ) - w{s,t)p(5,t) With w{s,t)=-J2Y^Wi3BT{s)B'^{t) (5.57) 

Then we have for the two partial derivatives 

(5.58) 

W[S,t) 

(5.60) 

/ .^ Vt{s,t)-Wt{s,t)p{s,t) 
Pt(s,t) = - — (5.61) 

w(s,t) 
For higher order partial derivatives, we can again apply Leibniz' rule and obtain a formula 
analogous to (5.8). We can also use the approach above to compute mixed derivatives. 
The general formula is 

k I 

i=0,j=0 \ / \ / 

This expression can easily be transformed to yield the desired mixed derivative of p(5, ^). 
The two first order partial derivatives need to be evaluated repeatedly for rendering a 
Bezier patch. More precisely, we need the normal vector of the patch and hence we 
only need the tangent directions but not the derivative magnitude. Sederberg [40] has 
presented a very eflBcient method for doing so. As a first step, he transforms the Bezier 
basis into the power basis to be able to apply the Horner-like scheme which also appears 
in [17]: 

/ ,\ m n 

( l - 5 ) - ( l - t ) - t ^ ^ '̂ ^ ^ 

with u = s/{l — s) and v — t/{l — t). For stability reasons, one should change the 
parameter transformation to u — {1 — s)/s and v = {1 ~ t)/t when either 5 or ^ are close 
to 1. The new control points Cij are computed as 

î.= (7)(")*̂ '̂  (5-64) 

Incidentally, the formulae (5.63) and (5.64) can be used to evaluate a rational Bezier 
patch, if we perform the Horner scheme in projective space and perform a subsequent 
projection. More interesting is the potential for the two tangents: 
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Let us assume for now that the Cij are 4D points (homogeneous coordinates). Let us 
define subpatches: 

with 

^al3 f^^ — \\ {n — \ 
"^'-{^-aJKj-py-r (5.66) 

Here a and (3 vary from 0 to L Sederberg then shows that these 4 subpatches combined 
yield the tangents: 

p , ( s , t ) = K ( ^ ( ( l - t ) p ° ° ( s , t ) + t p ' ' n s , i ) ) - 7 r ( ( l - i ) p ^ ° ( s , < ) + i p " ( s , i ) ) ) (5.67) 

p , (s , i ) = K(7r ( ( l - s )p ' " ' (5 , t ) + s p ' ° ( s , i ) ) - ^ ( ( l - s ) p " ( s , < ) + sp" ( s , i ) ) ) (5.68) 

It is further shown that for a surface of degree (n, n) the evaluation algorithm is of order 
O(n^). This is a substantial improvement over the straightforward evaluation. 

5.6.3. A l g o r i t h m s 
In this section some of the most common algorithms will be presented. Let us first 
present the de Casteljau algorithm for evaluating rational Bezier patches. I will assume 
that we are performing the computations in projective space, hence we have control points 
Cij = [^ij^ij '^ij]' If we write the patch with the parenthesis as in (5.52) we can readily 
see the evaluation strategy: 

n m 

pi^'t) = E(E^y^r(s))s;(«) (5.69) 
j=0 i=0 

If we assume that we want to evaluate the patch at parameter (SQ, to), then the algorithm 
in pseudo code is as follows: 

for j=0 , j <= n; j++ 
Compute po in t CJ{SQ) by performing the de Cas te l j au a lgor i thm for curve 
def ined by j - t h row of con t ro l p o i n t s 

Define new curve C{t) of degree n with c o n t r o l p o i n t s CJ{SQ) 
Perform de Cas te l j au a lgor i thm once t o eva lua t e C{t) a t parameter to-

It should be immediately obvious that we could have reversed the roles of z and j and 
obtain the same result. However, from a practical point of view there is a diff'erence: If 
the degree in s direction diff'ers from the degree in t direction, a quick operations count 
shows that it is cheaper to perform more de Casteljau algorithms for a lower degree. So it 
is advantageous to perform the final de Casteljau algorithm in the direction corresponding 
to the higher degree. We did not present the direct de Casteljau algorithm for patches. 
Its non-rational version can be found in [17]. Since it is more complex and also requires 
case distinctions, it is rarely used in practice. 
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Reparameterizations 
We have seen that rational Bezier curves can be reparameterized such that the end points 
have weights equal to 1. Obviously, we can perform this reparameterization for either 
the two s — const boundary curves or the two t = const boundary curves independently. 
The result will be a patch where the four corner points have weights equal to 1. We 
can consider such a patch to be in standard form. If we extract a isoparameteric curve 
from a patch, say the curve corresponding to the zth row of the patch, then the resulting 
rational curve will not be in standard form. However, we can simply apply the curve 
reparameterization algorithm to convert this curve to standard form. 

5.7. RATIONAL B - S P L I N E SURFACES 

This section introduces the most important entity in industrial applications, the rational 
B-Spline surface or NURBS surface. This representation comprises all the surface rep­
resentations encountered previously: rational and non-rational Bezier patches as well as 
non-rational B-Spline patches. For surfaces the same is true as for curves: true rational 
patches are mostly used for representing entities such as cylinders, cones, spheres, tori and 
surfaces of revolution exactly. However, they are only used to a very limited extent for 
actual modeling purposes. An exception might be styling application where the weights 
are used as fairing or sculpting parameters. 

5.7.1. Basic definitions 
A rational B-spline surface of degree m in s and n in t is given by 
control points d^j, 2 = 0 , . . . , A:, j = 0 , . . . , /, dj G IR^. 
weights Wij,i = 0 , . . . , A:, j = 0 , . . . , /. 
knot vectors ( = {SQ, . . . , Sfc+m+i}, and r = { to , . . . , t/+n+i}-

Again we assume that the two knots vectors have start and end knots of multiplicity 
m + 1 and n + 1 respectively. The NURBS patch p{s,t) is defined as 

In Figure 5.7 we show a rational B-spline patch. The normalized B-Spline basis functions 
are the same as encountered before. They allows us to derive some of the properties of 
NURBS patches: 

• Affine Invariance 

• Convex hull property for non-negative weights 

• Corner point interpolation 

As can be expected, increasing the value of weight Wij causes the surface to move towards 
control point d^j. 

5.7.2. Derivatives 
Computing derivatives follows the same recursive formula as for rational Bezier patches 
( see (5.62)). Using that formula, the computation of derivatives can be reduced to the 
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Figure 5.7. Example of a rational B-Spline patch: The top patch below has modified 
weights such that the vertical fold is more pronounced. 

computation of derivatives of non-rational B-Spline surfaces. For a non-rational patch q, 
the following formula holds: 

d^sdH 
q{s,t) 

i=0 jz=0 

(5.71) 

The intermediate B-Spline points dij ) can be obtained as by-products of the de Boor 
algorithm; their recursive definition is 

dK.) ( n - ^ - h l ) ( m - Q ; - h 1 

{Si-+n+l yjytj+n + 1 

, ( a - l , ^ - l ) +di7''^-')(5.72) 

From a practical point of view, it might be advantageous to convert the rational B-Spline 
representation into a rational Bezier representation via knot insertion and then compute 
the derivatives of rational Bezier patches. This is true for applications that require the 
evaluation of a large number of points on the patch. The overhead of knot insertion would 
then be amortized by being able to use Sederberg's method that has been presented in 
Section 5.6.2. Let us take a special look at the partials at the start and end points of the 
curve. If we assume multiplicity equal to the order of the surface at the ends, the first 
partial derivatives can be computed as follows: 

dp 

ds 
dp 

'di 

w^io 

n 
- So) Woo 

^ 

(di 

(doi - doo) 

(5.73) 

(5.74) 
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5.7.3. Algorithms 
The most fundamental task is the evaluation of rational B-Spline patches. There are 
several options: 

• Convert the patch to a rational Bezier patch via knot insertion and apply 'Bezier' 
algorithms 

• Use the recurrence relation of the B-Spline basis functions to evaluate the patch in 
4D making use of the tensor-product structure 

• Perform the de Boor algorithm in 4D 

For completeness, we briefly sketch the evaluation procedure using the de Boor algorithm. 
Assume that we are given a NURBS patch in homogeneous coordinates p{s,t) with a 
(/c + 1) X (/ + 1) array of control points d. Then we can repeatedly apply the de Boor 
algorithm in the following fashion: 

for j=0 , j <= 1; j++ 
Compute po in t Cj{so) by performing the de Boor a lgor i thm for curve 
defined by j - t h row of con t ro l po in t s 

Define new curve C{t) of degree n with c o n t r o l p o i n t s CJ{SQ) 
Perform de Cas t e l j au a lgor i thm once t o eva lua t e C{t) a t parameter to. 

We can apply the Moebius transform to each knot vector ( and r independently to 
change the knot spacings. However, it is in general not possible to use the Moebius 
transformation for manipulating weights. For example, we can not reparameterize a patch 
in such a way that all the four corner points have a weight equal to 1 since this would 
require to apply two transformation in say s and hence we would produce two different 
knot vectors. Hence, this situation differs from the rational Bezier setting. 

5.8. G E O M E T R I C C O N T I N U I T Y FOR R A T I O N A L PATCHES 

As I have mentioned before, when dealing with geometric continuity, it is important to dis­
tinguish between continuity conditions in homogeneous setting and affine setting. Affine 
C^ continuity for example only means that q' — w'p (with q = wp) is continuous; it does 
not imply continuity of q' and w'. The effect is that both quantities independently may 
have cusps. This can have ramifications for surface construction algorithms. For example 
isoparametric lines can exhibit cusps that may cause geometry processing algorithms ap­
plied to this patch to fail. An example of this can be found in [20]. The remedy for this 
situation is to construct HG^ continuous patch complexes. 

Necessary and sufficient conditions for tangent plane continuity of rational Bezier 
patches have been developed by Liu [29] and deRose [9]. These conditions treat the 
rational Bezier patches as polynomial patches in 4-space: Given two patches Pi(u, u) and 
P2(ii, v) with a common boundary along v = 0, then the patches are G^ continuous if and 
only if for all points along the common boundary 

det[pi, Dupu D^Pi, DyP2] = 0 (5.75) 

The situation is illustrated in Figure 5.8. 
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Figure 5.8. Two patches meeting at a common boundary. The depicted derivatives need 
to be linearly dependent. 

Note that this determinant is considered a 4 x 4 determinant in 4 space. In [9] some 
construction algorithms using this condition are given. This condition is often generalized 
to the following equation: 

DvP2 = oiipi + piDyPi + 'jiDuPi (5.76) 

where ai{u),l3i{u) and 71 are rational scalar-valued polynomials in u. Analogously, one 
can derive the conditions for curvature continuity: Two patches pi and p2 are curvature 
continuous along a common boundary v = 0 if and only if Equation (5.76) holds and in 
addition 

Dlvp2 = a2Pi + ^2^^Pi + j2DuPi + P^Dlvpi + 2pi-fiDlupi + 7?^n^Pi (5.77) 

Again the coefficients Q;I,2, A,2 and 71̂ 2 are rational polynomials in u. They are often called 
the connection functions. In [47] these conditions are refined and rational expressions for 
these connection functions are computed. The tangent plane and curvature continuity 
conditions are the most important conditions in practice. In some cases, it might be 
necessary to require higher order continuity, for example continuity of the rate of change 
of curvature (G^). Zheng et al. [48] present some general G^ conditions building upon 
the framework presented above. The interested reader is referred to this paper. A more 
in depth treatment of geometric continuity can be found in Chapter 8 on Geometric 
Continuity. 

5.9. I N T E R P O L A T I O N A N D A P P R O X I M A T I O N A L G O R I T H M S 

The interpolation problem for rational patches is often posed as the task of finding a 
rational patch that interpolates data points p^ given in homogeneous coordinates p^ = 
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[w:x.wywzw]J. As pointed out before, there is no good method to determine the weights 
a priori. An alternative has been proposed by Ma and Kruth [33]. They assume that 
the parameters for the data points as well as the knot values are given. Then they use 
the interpolation conditions to set up a system of equations containing the weights and 
the control points as unknowns. This system is usually overdetermined. The system is 
transformed so that a two step method can be applied. First one solves for the weights 
using a singular value decomposition, then one solves for the control points. As an al­
ternative, the weights can be computed by using a constrained minimization scheme in 
order to keep the weights from becoming negative or otherwise ill-behaved. A very similar 
method results when applying the method by Schneider [37] presented in Section 5.5.2 to 
surfaces. One just needs to order the array of data points and enumerate them as a list 
of points. If we have m data points we again need to make sure to have n control points 
with n = 3m/A. 

Even though these methods are feasible in practice, it is more common to look at the 
problem of approximating a discrete set of points or of approximating a surface given by 
a different representation. The second problem arises very frequently since NURBS are 
not closed under operations such as offsetting or surface-surface intersections. Schneider 
and Juettler [38] presented an approximation technique for curves that can be readily 
generalized to surfaces: We consider an (/c+l) x (/+1) array of data points q^j, z = 0 , . . . , /c, 
j = 0 , . . . L Assume that we have a rational patch p{s,t) with knot vectors C and r and 
control points djj and weights Wij ( 2 = 0 . . . , m j = 0 , . . . , n). We want to compute the 
rational NURBS surface that minimizes 

k I 

^ ( W , D , S , T ) = ^ ^ | | q i , - p ( s „ t i ) | | (5.78) 

Here W denotes the collection of weights, D denotes the set of control points, and S 
and T denotes the set of parameters. Note that we leave the parameters free and itera-
tively adjust these to find a better solution. The adjustment can be performed by using 
Hoschek's parameter correction scheme [25]. We can now collect and enumerate all data 
points and control points in the obvious way: I = ig + it "^ k, ig = 0,... ,k, it = 0,... J 
and J ~ jg -\~ j^:¥ n, js = 0... ,m, jt =^ 0,..., n. With M = A: * / — 1 and N = m^n — I 
we can transform the minimization problem into: 

3 

J^(W, D, S, T) - ^ II |P - <I>(W, S, T)D^III —> min (5.79) 

The matrix $ is crucial. It has entries 

^IJ = ^N I I (5-80) 

Note the interplay of two-dimensional indices ig, it with / , jg.jt with J and hg and ht with 
H. kg and kt is the degree of the patch in 5 and t. If we fix an initial parameterization 
So and To as well as an initial set of weights Wo, we can now compute the control points 
by applying the pseudo inverse ^ ^ of $: 

D = $+(Wo,So ,To)P (5.81) 
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To compute or update a set of weights, we need to solve another nonlinear minimization 
problem: 

3 

^(W) = X^ IIP - ^^^P\\ —> min (5.82) 

In order to have a sensible range of the weights, the authors apply a transformation to the 
Wk'- u)k — 6 + 7r/2 H-arctan(iL'A:) where 6 > 0 is chosen arbitrarily. The entire method is an 
iterative process; a) start with an initial parameterization, b) compute a set of weights by 
performing a non-linear minimization, c) solve for the de Boor points using the pseudo-
inverse, and d) perform parameter correction to update the set of parameters. This loop 
is performed until a desired error tolerance is reached. The reader should note that no 
proof for the convergence of this method has been given here. 

I presented this method here, since this constitutes one of the very few if not the only 
practical algorithm for using the weights as unknowns to solve the surface approximation 
problem. Another approach is the method presented in [26]. Here the parameters, the 
weights as well as the control points are all treated as free variables for the solution of 
a global minimization problem. Solving this system without getting stuck in the first 
local minimum requires some preconditioning. Timings show that this method is very 
inefficient and no geometric insight is applied. 

5.10. R A T I O N A L SURFACE C O N S T R U C T I O N S 

In this section I will briefly cover some of the more important surface constructions in­
volving rational patches. 

5.10.1. Surfaces of revolution 
A surface of revolution is typically given as 

s{u,v) == {r{v)cos{u),r{v)sin{u)z{v))'^ (5.83) 

Closer inspection reveals that each isoparametric line v — const traces out a circle with 
radius r{v). Under the assumption that the generatrix g{v) = [r{v),0, z{v)]'^ can be 
represented in rational form, we can construct the surface using rational Bezier patches. 
For each vertex of the generatrix, we generate four circular segments in Bezier form (see 
Figure 5.9). 

This yields all the control points. For all midpoints of the circular segments the weights 
of the generatrix are copied. The other points are assigned these weights multiplied by 
\ /2 /2 . Example of surfaces generated this way are cylinders, tori and spheres. 

5.10.2. Canal and pipe surfaces 
In practice it is often necessary to construct surfaces s{u,v) from a given curve c{v) 
whose isoparametric curve v = const is a circle with center C{vo) and radius r lying in 
the normal plane to c(t'o). Such surfaces are called pipe surfaces and they can be viewed 
as generalizations to offset curves in the plane. They can be expressed as 

s{u,v) = c{v)-\-rn{u,v) (5.84) 
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Figure 5.9. Construction of a surface of revolution using 4 patches per meridian 

Here n{u, v) is the unit circle with center c(t) lying in the normal plane. 
If we assume that the spine curve is rational, then it is clear that we need to find a 

function n{u, v) with norm equal to 1 and additional constraint that < n{u, v), c'{v) > = 0. 
In [32] the authors prove the following: if C('L') = [{x{v),y{v), z{v)]^ is a rational curve 
with z\v) / 0, then the pipe surface with spine c{v) can be rationally parameterized if 
and only if we can find two rational functions f{v) g[v) such that 

xf'^{v) + zt'^iv) ~ f{t){xf\v) + yf^v) + zf^{v) = g^v). (5.85) 

The authors go on to prove that any pipe surface with rational spine curve is rational 
and give a construction. Furthermore, it turns out that the result is valid for the more 
general case where the radius r varies with parameter v. Such surfaces are often called 
canal surfaces. Figure 5.10 depicts a canal surfaces that has been built as a collection of 
piecewise quadratic rational patches. 

5.11. C O N C L U D I N G R E M A R K S 

This chapter gave an overview of rational techniques with particular emphasis on practical 
appUcations. Due to space limitations some topics had to be omitted entirely, I also had 
to made choices on how to present the material. A very important class of surfaces 
are quadric surfaces. These surfaces can be represented precisely by triangular rational 
Bezier patches. The reader should consult Chapter 31 on Quadrics. In that chapter, the 
author covers in depth the parametric representation of quadric surfaces using rational 
Bezier patches. Note that I did not discuss triangular rational Bezier patches in this 
chapter. Even though they are interesting in their own right, they are not frequently 
used in practice except for representing quadrics. Unfortunately, the vast majority of 
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Figure 5.10. A canal surface composed of piecewise quadratic patches. (Figure courtesy 
of D. Hansford). 

commercial CAD packages do not support triangular patches. The interested reader can 
consult [16,4]. 

I chose not to follow the blossoming notation - the reader can get a first glimpse in [17] 
if so inclined. The theory of blossoms is developed completely in [35]. Furthermore, I did 
not cover any of the data representation standards in depth. In [16], the reader can find 
the basic IGES format for NURBS curves and surfaces. NURBS are also included in the 
STEP standard. The National Institute of Standards is involved in defining STEP; more 
information can be found in [41]. 
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Chapter 6 

Spline Basics 

Carl de Boor 

This chapter promotes, details and exploits the fact that (univariate) splines, i.e., smooth 
piecewise polynomial functions, are weighted sums of B-splines. 

6.1. P I E C E W I S E P O L Y N O M I A L S 

A piecewise polynomial of order k with break sequence ^ (necessarily strictly in­
creasing) is, by definition, any function / that, on each of the half-open intervals [^j. -(,j+i), 
agrees with some polynomial of degree < k. The term 'order' used here is not standard 
but handy. 

Note that this definition makes a piecewise polynomial function right-continuous, 
meaning that, for any x, f{x) = f{x-\-) \= \iinhiof{x -\- h). This choice is arbitrary, 
but has become standard. Keep in mind that, at its break ^ j , the piecewise polynomial 
function / has, in eflPect, two values, namely its limit from the left, f{^j—)^ and its limit 

from the r igh t , / ( e j+) = / ( e , ) . 
The set of all piecewise polynomial functions of order k with break sequence ^ is denoted 

here 

6.2. B-SPLINES D E F I N E D 

B-splines are defined in terms of a knot sequence t := (tj), meaning that 

• • • • ^ t j ^ tj+i _ • • • • 

The jth B-spline of order 1 for the knot sequence t is the characteristic function 
of the half-open interval [tj .. tj+i), i.e., the function given by the rule 

B , i ( a ; ) : = B , , i , e ( x ) - ^ ^ ' ^^ h < ^ < h+i'^ -{k 0, otherwise. 

141 
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Note that each of these functions is piecewise constant, and that the resulting sequence 
(Bji) is a partit ion of unity, i.e., 

y ^ B j ( x ) = l, inf tj < X < suptj. 

In particular, 
tj = tj+\ implies B^i — 0. 

From these first-order B-splines, B-splines of higher order can be derived inductively 
by the following B-spline recurrence. 

(6.2.1) Property (i): Recurrence relation. The jth B-spline of order k > 1 for the 
knot sequence t is 

(6.2.2) Bjk := Bj^k^t := ujjkBj^k-i + (1 - ujj^i^k)^j^i^k-ii 

with 

(6.2.3) ujjk(x) := ujj^k^tix) '•= ''J 

ij+k-l — tj 

Figure 6.2.4 The functions LUJ2 and 1 — ujj+1^2 (dashed), and the linear B-spline 
Bj2 (solid) formed from them. 

For example, the jth second-order or linear B-spline is given by 

Bj2 = ^j2^jl + (1 "" ^j-fl,2)Bj+i,i, 

and so consists of two nontrivial linear pieces and is continuous, unless there is some 
equality in the inequalities tj < tj+i < tjj^2-

In order to appreciate just how remarkable the recurrence relation is, consider the 
3rd-order B-spline 

Bj3 = ^j3Bj2 + (1 ~ ^j+l,3)Bj-fi,2 

in the generic case, i.e., when tj < tj^i < tj^2 < tj+3- As is illustrated in Figure (6.2.5), 
both summands have corners (i.e., jumps in their first derivative), but these corners appear 
to be perfectly matched so that their sum is smooth. 



6.3. SUPPORT AND POSITIVITY 143 

Figure 6.2.5 The two functions UJJSBJ2 and (1 — ujj^i^s)Bj^i^2 have corners, but 
their sum, B^s, does not. 

6.3. S U P P O R T A N D P O S I T I V I T Y 

Directly from (6.2.2) by induction on k, 

Bjk = bjBji H h 6j+fc_iBj+A;-i,i, 

with each br a product of A: — 1 polynomials of (exact) degree 1, hence a polynomial of 
(exact) degree k — l. This shows B^^ to be a piecewise polynomial of order k, with breaks 
a t tj^... J *j+k-

j+k-i 

Figure 6.3.1 The two weight functions, ujjk and 1 — cĵ +î fc, in (6.2.2) are positive 
on supp(Bjfc) = {tj "tj+k)-

Further, Bjk is zero off the interval \tj .. tj^k]. Hence, since both ujjk and 1 — coj^i^k are 
positive on the interval {tj . .tj^k), it follows, by induction on k, that Bjk is positive there. 

(6 .3 .2)Property (ii): Support and positivity. The B-sphneBj^k = ^j,k,t is piecewise 
polynomial of order k with at most k nontrivial polynomial pieces, and breaks only at 
tj,..., tj+k, vanishes outside the interval [tj .. tj^k), Si^d is positive on the interior of that 
interval, that is, 

(6.3.3) 

while 

(6.3.4) 

Bj,(fc(x) > 0, tj <x < tj+k, 

3 — ^j+A; ^3k 
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Figure 6.3.5 The four cubic polynomials whose pieces join to form a certain 
cubic B-spline. 

Notice that B^^ is completely determined by the /c + 1 knots U,.. 
the notation 

B{-\ti,... ,ti^k) '•— ^i,k,t = ^ik 

is sometimes used. Other notations in use include 

Nik •= Bifc and Mn, := {k/{U^k - ^̂ ))B f̂c• 

The latter is special in that 

^ M^k = 1, 

, ti^k- For this reason, 

/ . 
as follows from (6.11.4). 

The many other properties of B-splines are derived most easily by considering not just 
one B-spline but the linear span of all B-splines of a given order k for a given knot sequence 
t. This brings us to splines. 

6.4. S P L I N E SPACES D E F I N E D 

A spline of order k with knot sequence t is, by definition, a linear combination of 
the B-splines B^^ associated with that knot sequence. We denote by 

(6.4.1) Sk,t := {y^a^B^k : a, G IR} 

the collection of all such splines. . 
It has become customary in CAGD to use the term 'B-spline' for what has just been 

defined to be a spline. This unfortunate mistake will not be made in this chapter, particu­
larly since, once made, one has to make up another term (such as 'B-spline basis function' 
and the like) for what is called here by its original name, namely a 'B-spline'. 
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So far, the knot sequence t has been left unspecified except for the requirement that it be 
nondecreasing. In any practical situation, t is necessarily a finite sequence. But, since on 
any nontrivial interval [tj. .tj^i) at most k of the Bik are nonzero, namely Bj^k+i,k, • • •, Bjk 
(see Figure (6.4.2)), it does not really matter whether t is finite, infinite, or even bi-infinite; 
the sum in (6.4.1) always makes pointwise sense, meaning that ^- aiBik{x) is well-defined 
for any x, since at most A: of its summands are not zero. 

tj-k+l 

Figure 6.4.2 The k B-splines whose support contains [tj .. t^+i); here k = 3. 

However, while each Bjk is defined on the entire real line, IR, it is convenient to restrict 
all claims concerning the spline space Sk,t to its basic interval 

which, by definition, is the union of all knot intervals [tj .. tj+i] on which the full comple­
ment of k different B-splines from (B^A;) have some support. Correspondingly, if Ik^t has 
a finite right endpoint, it is very convenient to modify the earlier definition of B-splines 
to make them left-continuous at that right endpoint. 

At times, it will be convenient to assume that 

ti < t̂ _j_fc, all z, 

which can always be achieved by removing from t its zth entry as long as ti = ti^k- This 
does not change the space Sk,t since the only A:th order B-splines removed thereby are 
zero anyway. In fact, another way to state this condition is: 

B,fc7^0,all I. 

6.5. SPECIFIC K N O T S E Q U E N C E S 

The following two 'extreme' knot sequences have received special attention: 

Z : - ( . . . , - 2 , - 1 , 0 , 1 , 2 , . . . ) , B : = ( . . . , 0 , 0 , 0 , 1 , 1 , 1 , . . . ) . 

A spline associated with the knot sequence ZZ is called a cardinal spline. This term 
was chosen by Schoenberg [10] because of a connection to Whittaker's Cardinal Series. 
This is not to be confused with its use in earlier spline literature where it refers to a spline 
that vanishes at all points in a given sequence except for one at which it takes the value 
1. The latter splines, though of great interest in spline interpolation, do not interest us 
here. 
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Because of the uniformity of the knot sequence t — 7L, formulae involving cardinal 
B-splines are often much simpler than corresponding formulae for general B-splines. To 
begin with, ai7 cardinal B-splines (of a given order) are translates of one another. With 
the natural indexing ti := z, all z, for the entries of the uniform knot sequence t = 2Z, we 
have 

Bik = Nk{'-i), 

with 

(6.5.1) N,:=Bok = B{-\0,...,k). 

The recurrence relation (6.2.2) simplifies as follows: 

(6.5.2) {k - l)Nk{t) = tNk-i{t) + {k- t)Nk-i{t - 1). 

Figure 6.5.3 Bernstein basis of degree 4 or order 5 

The knot sequence t = IB contains just two points, namely the points 0 and 1, but each 
with infinite multiplicity. The only nontrivial B-splines for this sequence are those that 
have both 0 and 1 as knots, i.e., those B̂ jt for which U — ^ and tij^}^ = 1; see Figure (6.5.3). 
There seems to be no natural way to index the entries in the sequence B . Instead, it is 
customary to index the corresponding B-splines by the multiplicities of their two distinct 
knots. Precisely, 

(6.5.4) B ( ^ , , ) : = 5 ( . | 0 ^ _ ^ , l ^ ^ ^ ) . 

/x+l times v-\-\ times 

With this, the recurrence relations (6.2.2) simplify as follows: 

(6.5.5) B(^,^)(x) = xB(^,^_i)(x) + (1 - a:)B(^_i,^)(x) 
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This gives the formula 

(6.5.6) B(^,,)(x) = b^-^'^ix) := (^ "̂  "") (1 " ^T^' for 0 < a; < 1 

for the one nontrivial polynomial piece of B(^^^), as one verifies by induction. The formula 
enables us to determine the smoothness of the B-splines in this simple case: Since B(̂ î,) 
vanishes identically outside [0 .. 1], it has exactly i/ — 1 continuous derivatives at 0 and 
/JL — I continuous derivatives at 1. This amounts to u smoothness conditions at 0 and 
/JL smoothness conditions at 1. Since the order of B(̂ îy) is /i + î  + 1, this is a simple 
illustration of the generally valid formula 

(6.5.7) #smoothness conditions at knot -h multiplicity of knot = order. 

For fixed /x + ẑ , the polynomials in (6.5.6) form the so-called Bernstein basis (for 
polynomials of degree < // + ẑ ) and, correspondingly, the representation 

(6.5.8) P = X ] a(̂ ,r.)B(̂ ,̂ ) 

is the Bernstein-Bezier form for the polynomial p e Uh. It may be simpler to use the 
short term BB-form instead. 

6.6. T H E P O L Y N O M I A L S IN T H E SPLINE SPACE: M A R S D E N ' S I D E N ­
T I T Y 

Directly from the recurrence relation, 

(6.6.1) ^ ajBjk = X ] ((^ ~ ^jk)aj-i + ujjkaj)Bj^k-i-

On the other hand, for the special sequence 

O'j •= '^jkir) := {tj-^i - r ) • • • {tj+k-i - r), 

one finds for Bj^k-i ^ 0, i.e., for tj < tj+fc_i that 

(1 - ujjk)aj-i + Ujkaj = (• - r) '0j>-i(^)-

Hence, induction on k establishes the following. 

(6.6.2) B-spline property (iii): Marsden's identity. For any T G IR, 

(6.6.3) i'-rf-' = ^^,fc(r)B,, on h,u 
3 

with 

(6.6.4) 'ipjkir) := {tj+i - r ) • • • (t^+^-i - r). 



148 CHAPTER 6. SPLINE BASICS 

Since r here is arbitrary, it follows that Sk,t contains all polynomials of degree < k. 
More than that, differentiation of (6.6.3) with respect to r leads to the following explicit 
B-spline expansion of an arbitrary p € U^k'. 

(6.6.5) P=^ ^tk>^ikP , on 4, t , 
i 

with Xik given by the rule 

(6.6.6) W:=t^^^f^^*-/(r). 

For the particular choice p = 1, this gives 

(6.6.7) B-spline property (iv): (Positive and local) partition of unity. The 
sequence (Bjk) provides a positive and local partition of unity, that is, each Bjk is positive 
on (tj .. tjj^k), is zero off [tj .. tj+k], ^nd 

(6.6.8) ^ B , , = 1 on 4, t . 

j 

Further, by considering p = i GII2, one obtains 

(6.6.9) B-spline property (v): Knot averages. For k > 1 and any i G 112; 

i = J2^{tjk)^,k on h,t, 
J 

with t*^ the Greville sites: 

(6.6.10) ,*^ :^ ^Z±L±_ :_±^Z±^ , a l l , . 

6.7. T H E P I E C E W I S E POLYNOMIALS IN T H E SPLINE SPACE 

Each s G Sk^t is piecewise polynomial of order k, with breaks only at its knots. If ̂  is the 
strictly increasing sequence of distinct knots, then we can write this as 

Sk,t ^ n<jt,^. 

But Sk^t is usually a proper subset of n<fc,^. Which subset exactly depends on the knot 
multiplicities 

i^tj := #{^ : U = tj} 

according to the rule (6.5.7). This is usually proved by showing that Sk,t contains the 
truncated power function (• — ti)^^ if and only if r < #ti. Here 

a ^ a > 0; 
0, a < 0, 
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Figure 6.7.1 The terms ipjk{U)^jk ctnd their sum, (• —tj)^~\ for A: = 3. Note that 
all these terms are zero at ti. Hence, by summing only the terms 
that are nonzero somewhere to the right of U, one gets instead the 
truncated power, (• — ti)^^. 

with its value at 0 determined by whatever convention is adopted with respect to right or 
left continuity at a break. 

Fi gure (6.7.1) gives an illustration of how Marsden's Identity can be used to prove 
that the truncated power function (• — t^)^"^ is in Sk^t- For r > 1, one may use the 
(r — l)st derivative with respect to r of that identity in the same way, provided only that 
^jkiU) 7̂  0 implies that D^^^tpjkiti) = 0, i.e., provided # t i > r. 

Now, the truncated power function / : = ( • — ti)^ satisfies exactly u smoothness 
conditions across ti in the sense that D^~^f is continuous across ti for j = l , . . . , z / . 
This, finally, leads to the following B-spline property. 

(6.7.2) B-spline property (vi): Local linear independence.For any icnot sequence 
t, and any interval I =^ [a .. b] C. /^ t containing finitely many of the ti, the sequence 

(6-7.3) ^ : = ( B , - , | , : B , , , | , / 0 ) 

is a basis for the restriction to I of the space 

n(-) 

of all piecewise polynomials of order k with break sequence ^ the strictly increasing se­
quence containing a, h, as well as every ti G / , and satisfying Ui := k — min(A:, # { r : t̂  = 
^i}) smoothness conditions across each such t^. In particular, B is linearly independent. 

It is worthwhile to think about this the other way around. Suppose we start off with a 
partition 

a =: 6 < 6 < • • • < 6 < 6+1 — b 

of the interval I := [a . .b] and wish to consider the space 
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of all piecewise polynomial functions of degree < k on I with breaks ^i that satisfy Ui 
smoothness conditions at ^ j , i.e., are z/j — 1 times continuously differentiable at ^i, all 
i. Then a B-spline basis for this space is provided by (6.7.3), with the knot sequence t 
constructed from the break sequence ^ in the following way: To the sequence 

(6.7.4) ( 6 ^ _ ^ , e 3 ^ _ ^ , . . . , 6 ^ _ ^ ) , 
k-u2 terms k-u3 terms k-u( terms 

adjoin at the beginning k points < a and at the end k points > b. While the knots in 
(6.7.4) have to be exactly as shown to achieve the specified smoothness at the specified 
breaks, the 2k additional knots are quite arbitrary. They are often chosen to equal a 
resp. &, and this has certain advantages (among other things that of simplicity). In any 
case, the basic interval I^^t for the resulting spline space is [a .. 6], and, on this interval, 
it coincides with the piecewise polynomial space H^^ ^ we started out with, - keeping in 
mind that we agreed earlier to make all elements of Sk,t be left-continuous at the right 
endpoint of Ik,t-

The fact that, in this way, B-splines can be used to staff a basis for any of the spaces 
Ti^lc is also known as the Curry-Schoenberg theorem and has led their creator, 
Schoenberg, to call them 'B-splines' or 'basic splines'. 

•4X 

Figure 6.7.5 The B-spline basis for U^^l^ with f = (0,1,3,4,6) and u = (1, 2, 2) 
is, by the recipe, the quadratic B-spline sequence for the knot se­
quence t = (0 ,0 ,0 ,1 ,1 ,3 ,4 ,6 ,6 ,6) . Note how the smoothness of 
each B-spline exactly mirrors the multiplicity of each of its 4 knots. 

The representation of a piecewise polynomial / as a weighted sum of B-splines is called 
a B-form for / . 
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Any basis ^ = ((pi , . . . , ^n) of a linear space F provides a unique (linear) representation 
/ = V . ajifj for each / G F . The usefulness of such a representation of / € F is judged 
in many ways. 

(i) How robust is the representation in floating-point arithmetic with its inevitable round­
ing errors? This is a question of the condition of the basis. 

(ii) How easy is it to derive from the coefficient vector a the information about f that 
one is really interested in? In our particular case, this concerns evaluation, differ­
entiation, and integration, determination of zeros, etc, of a spline given in B-form. 

(iii) How easy is it to determine the coefficient vector from some other information about 
f? In our particular case, this concerns the construction of a B-form for / by 
interpolation, discrete least-squares, smoothing, and the like. 

In terms of these questions, the B-spline basis for 11^^ ^ does remarkably well, as is explored 
in the remaining sections. 

6.8. D U A L F U N C T I O N A L S A N D BLOSSOMS 

Information about a basis is not complete without some information about its 'inverse', 
i.e., about the map that associates an element of the space spanned by that basis with its 
coordinates with respect to that basis. For the B-spline basis, this information is provided 
by the following explicit formula which we already met in (6.6.6). 

(6.8.1) B-spline property (vii): Dual functionals. For any f G Sk,t, 

3 

with 

(6.8.2) A../ := t ^-^Zt^'^ ^-'fir.) 

and tj-\- < Tj < tj^k~, ^ii 3- Hence 

(6.8.3) XikC^ajBjk) = OLi, alH. 
3 

To be sure, there are many different dual functionals for B-splines available, but these 
particular ones have proven quite useful in various contexts. 

As a particular example, notice that, according to (6.8.2), Xj^f depends only on part 
of the knot sequence t, namely only on t j + i , . . . , t j^.^-! , and on these it depends linearly 
(since ijjjk does). Further, for / G n<fc, Xjkf is independent of TJ. In other words, 

AjfcP = ^k{tj-\-\,.. .,tj+k-i)p^ P ^ n<fc, 

with the precise algebraic structure of Â  neatly captured by the following notion. 



152 CHAPTER 6. SPLINE BASICS 

Associated with each p e Ur, there is a unique symmetric r-affine form called its polar 
form (in Algebra) or its blossom (in CAGD), denoted therefore here by 

UJ 

for which 
V{x G IR} p{x) =p ( x , . . . , x). 

E.g., the blossom of (• - r)^ G H^ is 5 i-)- (si — r) • • • (s^ — r ) . If p = J^jiV^j ^ ^r, then 

j /c{i,...,r},#/=j iei ^-^^ 

We deduce from the above that 

p {ti,...,tk-i) = Xk{ti,...,tk-i)p, pe n<A;. 

In particular, the j t h B-spline coefficient of a kth order spline with knot sequence t is the 
value at {tj+i,... ,tjj^k-i) of the blossom of every of the k polynomial pieces associated 
with the intervals [U . .U^i), i = j , . . . ,j -\- k — 1. This observation was made, in language 
incomprehensible to the uninitiated, by de Casteljau in the sixties. It was discovered 
independently and made plain (and given the nice name of 'blossom') by Lyle Ramshaw 
in the early eighties. 

6.9. G O O D C O N D I T I O N 

(6.9.1) B-spline property (viii): Good condition. (Bi : i = l:n) is a relatively well 
conditioned basis for Sk,t in the sense that there exists a positive constant Dk^oo, which 
depends only on k and not on the particular knot sequence t, so that for all i, 

(6-9.2) \a,\ < Dk,^\\ J2 <^j'Bj\\[u^,.,,^,.,r 
3 

Smallest possible values for Dk^oo Sire 

k 

Dk,oo 

2 3 4 
1 3 5.5680 •• 

5 
• 12.0886 •• 

6 
• 22.7869-•• 

Based on numerical calculations, it is conjectured that, in general. 

As of 2001, the best result concerning this conjecture is to be found in [9]: D^^oo < k2^~'^. 

6.10. C O N V E X HULL 

Since the B̂ Â; are nonnegative, sum to 1, yet at most k are nonzero at any particular x, 
the next property is immediate. 
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(6.10.1) B-spline property (ix): Convex hull. For U < x < U^i, the value of the 
spline function f := ^ (^j^j ^^ ^he site x is a strictly convex combination of the k 
numbers a^+i-fc, • . • ,a^. 

On the other hand, by (6.9.1), the B-spline coefficients cannot be too far from the nearby 
function values. Precisely, if, on the interval [tj+i .. ti^k-i], the spline / = Ylj^j^jk is 
bounded from below by m and from above by M, then 

(6.10.2) \a^ - (M 4- m) /2 | < Dk,oo{M - m) /2 . 

Much more precise estimates have become available more recently. See, for example, 
[8]. 

6.11. D I F F E R E N T I A T I O N A N D I N T E G R A T I O N 

The striking structure of the dual functionals (6.8.2) readily provides the following formula 
for the derivative of a spline. 

(6.11.1) B-spline property (x): DifFerentiation. 

(6.11.2) D(Y,C^JB,,) ={k-l)'£ ""^ ~ ^^-; B,,,_,. 

Figure 6.11.3 A piecewise linear function (solid) and its derivative (dashed) taken 
in the piecewise polynomial sense. 

To be sure, the derivative of a spline / is taken here in the piecewise polynomial sense, 
meaning that the derivative, D / , is the piecewise polynomial whose j t h polynomial piece 
is the derivative of the jfth polynomial piece of / . In particular, if, e.g., tj — tj^k-i < tj+ki 
then Bjk{tj—) = 0 < 1 = Bjkitj-{-), i.e., Bjk has a jump across tj and is certainly not 
differentiable there. However, in this case (see (6.3.4)), Bj^k-i is just the zero function 
and, sticking to the useful maxim that anything times zero is 0, we won't have to worry 
about the fact that, in this case, the coefficient of Bj^^-i in (6.11.2) involves division by 
zero since there is no need to compute it. In practical terms, this means that, in this case, 
the knot sequence for Df has one less knot (see the discussion at the end of Section 6.4). 

By taking derivatives in this piecewise polynomial sense, we ensure that, for every 
/ E Sk,t, Df e Sk-i,ti making (6.11.2) possible. However, this has the following, perhaps 
negative, consequence: When we integrate Df, we may not recover / itself since, after 
all, the integral of a piecewise continuous function is continuous. 
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It follows from (6.11.1) that J^ • PjBj^k^i is the antiderivative or primitive of ^ • o^jBjk 
provided 

(6.11.4) :c + 
ELjo ^̂ (̂ +̂A: - U)/k, j > jo; 

with c and jo arbitrary. However, this is strictly true only in case the knot sequence is 
biinfinite. In the contrary case, it is only locally true since, in general, it requires infinitely 
many B-splines to write down the integral of a spline; see Figure 6.11.5. 

Figure 6.11.5 It takes infinitely many B-splines to express the integral of one 
B-spline, as is illustrated here for 

B(- |0, l ,2) = ^ B ( x | j , j + l , i + 2 , j + 3). 
j>0 

6.12. E V A L U A T I O N 

The recurrence relations (6.2.2) lead directly to a stable algorithm for the evaluation of a 
spline 

i 

from its B-spline coeflftcients (a^). 
The recurrence relations imply 

s = ^ttiBik = ^af^Bi^k-i^ 

with 

(6.12.1) af^ := (1 - ujik)ai_i + Uikai. 

Note that af^ is not a constant, but is the straight line through the points (ti,aj_i) and 
(tj+fc_i, tti). In particular, a\ \t) is a convex combination of ai-i and ai ifU <t< U^k-i-

After k — 1-fold iteration of this procedure, we arrive at the formula 

s = ^ a f - l B „ 

which shows that 
a f ^̂  on [U ..ti^i). 
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(6.12.2) Evaluation algorithm. From given constant polynomials a[ ^ \— ai,i — j — 
A:-hi, ... ,j, (which determine s := Yli ^^i^ik on [tj .. tj^i)), generate polynomials a[̂  , r — 
1,... ,/c — 1, by the recurrence 

(6.12.3) 4^'^ := (1 - uji,k-r)41, -h uji^k-r4\ j-k + r + l<i<j. 

Then s = a^ ~^^ on [tj.. tj^i). Moreover, for tj <t < tj^i, the weight uJi^k-r{t) in (6.12.3) 

lies between 0 and 1. Hence the computation of s{t) = â  ~ \t) via (6.12.3) consists of 
the repeated formation of convex combinations. 

In the cardinal case (6.5.1-6.5.2), the algorithm simplifies, as follows. Now 

5 =: ^ ^ f c ( - - i)ai = ^ i V , _ i ( - - i)af^/{k - 1), 

with 

Hence 

(6.12.3)2 

a}. J := (2 -f ^ _ 1 — ')ai-i -f (• — z)a .̂ 

s = af'^^/{k-l)\ on [ j . . j + l), with 

af^ := {i-\- k — r — O^-i + (' ~ '^)(H K j — k -^-r <% < j . 

In the Bernstein-Bezier case (6.5.4-6.5.5), all the nontrivial weight functions coi^k-r are 
the same, i.e., 

(^i,k-r{'t) — t. 

Thus, for 

we get 

(6.12.3)B ^ = (̂0,0) on [0 .. 1], with 

a(f,^^){t) = {l-t)a(^^+i^u)-^ta(^n,u-\-i), ix + u=^r\ r = / i - 1, . . . ,0. 

This is de Casteljau's algorithm for the evaluation of the BB-form. 

6.13. SPLINE FUNCTIONS VS SPLINE CURVES 

So far, we have only dealt with spline functions, even though CAGD is mainly concerned 
with spline curves. The distinction is fundamental. 

Every spline function / = ^ otjBjk gives rise to (planar) curve, namely its graph, i.e., 
the pointset 

{{xj{x)) : x G 4 , t } . 

Assuming that #t j < k for all interior knots tj, this is indeed a curve in the mathematical 
sense, i.e., the continuous image of an interval. Its natural parametrization is the spline 
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curve 

(6.13.1) x^{xJ(x)) = Y,P,Bjk{x), 
3 

with 

Pj := {t*k^aj) 

its j t h control point, and the equality in (6.13.1) is justified by (6.6.9). 
However, spline curves are not restricted to control points of this specific form. By 

choosing the control points Pj in (6.13.1) in any manner whatsoever as c?-vectors, we 
obtain a spline curve in IR^ that smoothly follows the shape outlined by its control 
polygon, which is the broken line that connects these points Pj in order. 

Note the CAGD-standard use of the term 'spline curve' to denote both, a curve that can 
be parametrized by a spline, and the (vector-valued) spline that provides this parametriza-
tion. 

6.14. K N O T INSERTION 

Wolfgang Bohm (see, e.g., [3]) was the first to point out that the evaluation algorithm 
(6.12.2) can be interpreted as repeated knot insertion. This CAGD insight into B-splines 
has had many wonderful repercussions. 

(6.14.1) B-spline property (xi): Knot insertion. If the knot sequence t is obtained 
from the knot sequence t by the insertion of just one term, x say, then, for any f G Sk,t, 

(6.14.2) aj = (1 - u}jk{x))aj_i + Qjk{x)aj, all j , 

and Qjk :— m.dix{0,m.in{l,ujjk}}, i.e., 

(6.14.3) Ujk :x^ < 

( 0, for X < tj] 
X — t-

^jk{x) ^ 3 — , for tj <x < tj+k-i; 
^j+k — l ^j 

[1, for tj+k-i < X. 

Note the need here to make the dependence of a B-spline on its knot sequence explicit 
in the notation. This property has the following pretty geometric interpretation, in terms 
of the control polygon 

of / G Sk,t-

(6.14.4) Proposit ion. If t is obtained from t by the insertion of one additional knot, 
then, for any f G Sk,t, C^iJ interpolates, at its breakpoints, to Ck,tf (^nd is thereby 
uniquely determined). 

Figure 6.14.5 illustrates this interpretation. 
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tj^l X t 
Q-

J+2 
-O 

^ . - 1 

tj^i Q 

t,_2 6 

Q tj 

(bt 7+3 

Figure 6.14.5 Insertion of x = 2 into the knot sequence t = (0,0,0,0,1,3,5,5,5,5), 
with k = 4. 

By repeated insertion of the point x until its multipUcity in the resulting knot sequence 
t is /c — 1, we arrive at the B-form 

j 

for / = ^ • c^jBjt, in which there is exactly one B-spline B^ ^ not zero at x. Since B-
splines always sum up to 1, its coefficient must be the value of / at x. This is illustrated 
in Figure 6.14.6. 

Figure 6.14.6 Three-fold insertion of the same knot provides a point on the graph 
of a cubic spline. 
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6.15. VARIATION DIMINUTION AND SHAPE PRESERVATION: SCHOEN-
BERG'S OPERATOR 

The spline / = ^ a^B^ jt,t can be viewed as the result of applying to its control polygon 
Cfc,t Schoenberg's operator V =^Vk = Vk^t, as given by 

j 

Schoenberg's operator is variation-diminishing, meaning that, for any continuous 
function g, Vg crosses the x-axis no more often than does g. More than that, any crossing 
of Vg requires a 'nearby' crossing of g. 

Here is a formal statement, in which / := Vg and aj := g{i]k)^ ^^^ which follows 
immediately from knot insertion. 

(6.15.1) B-spline property (xii): Variation diminution. If f = Y^jOtj^j^k^t ^nd 
Ti < •' • < Tr are such that f{Ti^i)f{Ti) < 0, all i, then one can hnd indices I < ji < 
' " < jr ^ f^ so that 

(6.15.2) ajJ{Ti)Bj,{Ti) > 0 /or z = 1, . . . , r. 

Further, by (6.6.9), 

This implies that Vg crosses any particular straight line £ no more often than does g, and 
with the crossing of Vg closely related to the crossings of ^, including the direction of the 
crossing. 

Figure 6.15.3 A cubic spline, its control polygon, and various straight lines in­
tersecting them. The control polygon exaggerates the shape of the 
spline. The spline crossings are bracketed by the control polygon 
crossings. 
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This is illustrated in Figure 6.15.3 for Vg a spline and g its control polygon. In partic­
ular, if g is monotone, then so is Vg; if g is convex, then so is Vg. It is in this sense that 
Schoenberg's operator is shape-preserving. 

In effect, a spline is a smoothed version of its control polygon. 

6.16. ZEROS OF A SPLINE, COUNTING MULTIPLICITY 

Since a spline (function) cannot cross the x-axis more often than does its control polygon, 
the number of sign changes in its coefficient sequence is an upper bound on the number 
of its zeros. 

Things are a bit more subtle when one would like to include in the zero count the 
multiplicity of a zero, defined as the maximal number of distinct nearby zeros in a 
nearby spline (from the same spline space), and needed when considering osculatory or 
Hermite interpolation by splines. 

Here is one relevant result. The full story is recounted in [6]. 

(6.16.1) Proposition. If f — Ylij^j^j^k.t is zero at Xi < ••• < Xr, while /* := 
Y^- \aj\Bj^k,t is not, then S~{a) > r, with S~{a) the smallest number of sign changes 
in the sequence a obtainable by assigning the sign of any zero entry of a appropriately 

Figure 6.16.2 A double spline zero, and a quadruple spline zero, and correspond­
ing control polygons. 

6.17. SPLINE INTERPOLATION: SCHOENBERG-WHITNEY 

Spline interpolation is one ready means for constructing a spline function that satisfies 
certain conditions. In spline interpolation, one seeks a spline that matches given data 
values yi at given data sites If the spline interpolant is to be a spline of 
order k with knot sequence t, then we can write the sought-for spline in B-form, ^ f^j^jk^ 
hence we are looking for a solution a to the linear system 

(6.17.1) ^ajBjk{xi) = yi, z = l , . . . , n . 
j 

This linear system has exactly one solution for every choice of data values yi exactly 
when its coefficient matrix is invertible. This motivates the next result, which is a ready 
consequence of Proposition 6.16.1. 
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(6.17.2) Schoenberg-Whitney Theorem. Assume that all interior knots in the knot 
sequence t = ( t i , . . . ,̂ n+fc) have multiplicity < k, hence each f G Sk,t is continuous (on 
its basic interval, Ik,t)- Let x :— {xi < • - - < Xn) be a strictly increasing sequence in Ik,t-

Then, the collocation matrix 

^ x '•= i^jkixi) : 2 , j = l , . . . , n ) 

is invertible if and only if all its diagonal entries (namely the numbers Bjk{xj)), are non­
zero, i.e., if and only if 

(6.17.3) ti S ^i S ti+k^ i — 1,... ,n, 

with equality occurring only if the knot in question is one of the endpoints of the basic 
interval, Ik^t-

The strict ordering of the data-site sequence x not only leads to this neat characteriza­
tion of the invertibility of the collocation matrix A^^. It also ensures (see (6.4.2)) that Ay^ 
is a banded matrix with at most k nontrivial bands. It also ensures that Ay^ is total ly 
positive, meaning that all its minors (i.e., determinants of submatrices) are nonnegative. 
This somewhat esoteric property has many consequences of practical interest. One of 
these is that it is numerically safe to solve the linear system (6.17.1) by Gauss elimination 
without pivoting, hence in no more storage than is required to store the banded matrix 
Ay to begin with. 

If the knot sequence t and the order k are already chosen, then the sequence (t* : i = 
1 , . . . , n) of Greville points is a good choice as data site sequence x; it certainly satisfies 
the Schoenberg-Whitney conditions (6.17.3). It also serves as a good initial guess 
in the iterative process for determining the Chebyshev-Demko sites, x*. These are 
optimal sites for interpolation from Sk^t in that the resulting map, / i-^ Py.*f, is the 
most stable among all possible such maps / i-> Pyf. In consequence, Py*f is a near-
best approximation to / from Sk^t in that | | / — Px*/|| < const^ dist (/, 5 ,̂1) for some 
/-independent const^. 

Figure 6.17.4 A spline interpolant (top) to noisy data (circled) may be unnec­
essarily wiggly. A smoothing spline (middle) or a least-squares 
approximant (bottom) to such data may be preferred. 
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When the data values yi are noisy, then spline interpolation may produce a highly 
oscillating spline, as is illustrated in Figure (6.17.4). In such a situation, one may be 
willing to forego exact matching in favor of a 'smoother', less wiggly, approximating 
spline. There are two standard procedures to accomplish this: the smoothing spline and 
least-squares spline approximant, and Figure (6.17.4) also shows a sample of both. 

6.18. S M O O T H I N G SPLINE 

The smoothing spline is constructed as a compromise between the wish to be close to the 
data and the wish for a smooth approximation. Closeness of the function / to the data 
(xj, yi) is typically measured by the sum of squares of their difference: 

E{f) := J2{y^ - f{x,)r, 
i 

while roughness of / is measured by the size of some derivative of / in the mean-square 
norm: 

R{f):= f {D"^f{t)fdt, 
J a 

with [a. .b] the interval of interest. Both measures could involve some weighting function, 
though this is more commonly done for E than for R. 

Choosing mean-square norms for both E and F ensures that, for any positive p, the 
minimizer f = fp of the weighted sum 

E{f)+pR{f) 

is a spline, of order 2m and with simple knots, at the data sites, and reducing to a 
polynomial of degree < m outside the interval (xi . . Xn)- As p -^ 0, this so-called 
smoothing spline converges to the so-called 'natural' spline interpolant of order 2m to 
the given data. At the other extreme, as p -^ cxo, the smoothing spline converges to the 
least-squares approximant to the data by polynomials of degree < m. 

It is something of an art to choose the smoothing parameter 'appropriately'. The most 
popular choice is based on generalized cross validation; see [12]. 

6.19. L E A S T - S Q U A R E S SPLINE A P P R O X I M A T I O N 

The perhaps somewhat vague notion behind least-squares approximation is to work with 
a spline with just enough degrees of freedom to fit the 'smooth' function underlying the 
noisy data, but not enough degrees of freedom to match also the noise. 

In practice, this means that one must somehow choose the order, k, and the knot 
sequence t — ( t i , . . . , ^A^^^), mindful that (1) the resulting basic interval Ik,t equal the 
interval [a . .b] of interest; and (2) that Sk,t contain a unique minimizer of E. The latter 
is ensured exactly when some subsequence of the data sites x satisfies the Schoenberg-
Whitney conditions with respect to the chosen knot sequence t. In that case, it is usually 
numerically safe to determine the B-spline coefficient vector a of the least-squares spline 
approximant as the solution to the normal equations 
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with ^x, as before, the B-spline collocation matrix for the chosen order k and knot 
sequence t and the given data sites x. 

The least-squares fit in Figure (6.17.4) is a cubic spline, with 3 equally-spaced interior 
knots. 

When approximating a function with widely varying behavior, it is tempting to choose 
the location of these interior knots so as to further minimize the error, but the best one 
can hope for is a choice that cannot be improved upon by small local variations of the 
knot locations. 

6.20. BACKGROUND 

I have failed, except coincidentally, to supply historical comment or attribute specific 
results to specific authors. Nor was there any attempt to prove the results stated, not 
even in outline. For all these matters, consult the standard literature. 

The relevant literature on (univariate) B-splines up to about 1975 is summarized in [4] 
which also contains hints of the most exciting developments concerning B-splines since 
then: knot insertion and the multivariate B-splines. Two books on splines, [5] and [11], 
which have appeared since 1975, cover B-splines in the traditional way. As presentations 
of splines from the CAGD point of view, the survey article [3] and the "Killer B's" [1,87] 
are particularly recommended. The revised version, [7], of [5] develops the central part 
of spline theory more in the spirit of CAGD and, in particular, knot insertion. All the 
results mentioned here are proved there. 
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Chapter 7 

Curve and Surface Constructions 

Dianne Hansford and Gerald Farin 

This chapter introduces algorithms for the generation of curves and surfaces. The em­
phasis is on interpolation and approximation using Bezier and B-spline techniques. 

7.1. I N T R O D U C T I O N 

The goal of this chapter is to outline some of the most fundamental interpolation and 
approximation methods in CAGD. Wherever possible, the developments focus on Bezier 
and B-spline techniques because of their intuitive geometric definitions. First of all, the 
focus is on polynomial curve methods, including Lagrange (point) interpolation, point 
approximation, and Hermite (point and tangent) interpolation. Next, a piecewise polyno­
mial scheme, C^ cubic spline interpolation is presented. The focus then moves to surface 
methods. The topics include: interpolation to boundary curve data with Coons patches, 
interpolation to rectangular data with tensor product surfaces, approximation to large sets 
of data, and interpolation to point and derivative data. Mirroring the curve presentation, 
a piecewise polynomial surface scheme, C^ bicubic spline interpolation, is discussed. The 
chapter concludes with volume deformations. 

For more information on these topics, a good starting point is one of the following 
textbooks: [4,10,12,19,26]. The Bezier Techniques and B-spline Basics chapters 4, 6 in 
this handbook provide an introduction to much of the theory used here. 

7.2. P O L Y N O M I A L C U R V E M E T H O D S 

Polynomial curve interpolation is a theoretical cornerstone of CAGD. The first topic in­
vestigated in this section is the most basic formation of this problem: point data interpo­
lation. Due to its importance, this problem is attacked from three viewpoints, and finally 
its weakness are examined. Next approximation is examined as a means to overcome the 
limits of interpolation. This section concludes with point and tangent data interpolation, 
an important building block for piecewise polynomial schemes. 

165 
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Figure 7.1. Point data interpolation: given nH-1 data points with parameter values, find 
the interpolating degree n polynomial. 

7.2.1. Point Data Interpolation 
Many scientific applications deal with the problem of fitting a curve to discrete point data. 
In other words, as illustrated in Figure 7.1, given n + 1 data points p^ with associated 
parameters U^ find a degree n polynomial curve p{t) such that 

P{ti. 0,. . , n 

This problem is called point data interpolation. 
The ti may be thought of as time increments; they indicate how much time a particle 

moving along the curve curve must spend between data points. These parameters greatly 
influence the fitting method, and if their values are not intrinsic to the application, they 
must be carefully assigned. This topic is addressed in Section 7.3.2. 

A Di rec t A p p r o a c h 
Typically, Bezier curves are the preferred representation due to their stability properties 
(see Farouki and Raj an [13]). Thus the interpolating polynomial with respect to the 
Bernstein basis takes the form 

p(i) = ^ b , . B ; ( t ) , 
j = 0 

where the b^ are Bezier points and the B?(i) are the Bernstein polynomials. The "direct 
approach" simply means to directly apply the known relationships: 

p(«o) = Po = hoB^ito) + hiB'^{to) + ... + KB:^{to), 

p(<i) = Pi = hoB^{h) + h^B'i{h) + ... + KB:^{h), 

p(«n) = Pn = boBo"(U + biBr( tn) + . . . + b„B; : (U , 
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which are n + 1 equations for the n-\-l unknowns for each coordinate of the b j . In matrix 
form: 

Po 
Pi 

Pn 

B-{to) B-{to) B-{to) . . . B-{to) 
B-{U) B-{h) B-{h) . . . B-{t,) 

B^{tn) B^iU) B^{tn) . . . B^litn) 

bo 
bi 

bn 

(7.1) 

or p = jBb. The matrix B is called the generalized Vandermonde of the interpolation 
problem. One can show that the determinant of B is nonzero, and therefore a unique 
solution to the interpolation problem exists. The direct approach results in two or three 
(depending on the dimensionality of the data points) linear systems with the same coef­
ficient matrix, therefore it is best to construct the LU decomposition of B. 

Instead of using the Bernstein basis, one could choose any basis. The monomials, 
1, ,̂ t^ , . . . , t", have been the historical favorite (see Davis [7]); in this case, the matrix B 
is simply called the Vandermonde. 

Aitken's Algori thm 
If one would simply like to evaluate the interpolating polynomial at specific t parameters, 
then knowledge of the coeflfiicients of the interpolant is not necessary. Such an evaluation 
method is Aitken's algorithm. 

The basic idea behind this algorithm is that polynomials may be expressed as linear 
combinations of lower degree polynomials.^ Thus Aitken's algorithm computes a point on 
the interpolating polynomial through a sequence of repeated linear interpolations. Given 
parameter values ti and the data points p^ = Pz, compute 

piit) = 
T^i4-r C 

U U 
vr'it) + 

t-U 
Pi+ lit); { = 1,-

0,.. 
. ,n; 
. , n -

(7.2) 

Aitken's algorithm has the following geometric interpretation: p-" is the result of mapping 
t with respect to the interval [ti,ti^r] onto the straight line segment through p[~^,p[~^^ 
The geometry of Aitken's algorithm is illustrated in Figure 7.2 for a quadratic example. 
The intermediate p^ are computed from two points from the (r — 1)̂ * stage, giving the 
algorithm, for example for the cubic case, the following structure: 

Po 

Pi Po 

P2 P 1 PO 

P3 P2 P? Po-

(7.3) 

To prove that Aitken's algorithm (7.2) interpolates, suppose that the following two 
interpolation problems have been solved. 

1. Po~^ is the polynomial which interpolates to the first n data points, Po, • • • ,Pn-i-

2. p^~^ interpolates to the last n data points, P i , . . . , Pn-

^Note the similarities with the de Casteljau algorithm. 
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Figure 7.2. Aitken's algorithm: a point on an interpolating polynomial may be found 
from repeated linear interpolation. 

Aitken's algorithm defines the final interpolant as 

PS«) = r ^ p r ^ w + l^pnt). (7.4) 
Figure 7.3 illustrates this form for a cubic example. One needs to verify that (7.4) does 
in fact interpolate to all given data points p^. For t = to interpolation holds: 

pS(to) = 1 * pr'(*o)+0 * pr\to) = po. 
A similar result is derived for t = tn- The initial assumption was that Po~^(ti) = 
Pi~^(ti) = Pi for all other values of z, thus since the weights in (7.4) sum to one identically, 

PS(^Z) = Pi-

One can infer several properties of the interpolating polynomial from Aitken's algo­
rithm: 

• Affine invariance: this follows since Aitken's algorithm uses only barycentric com­
binations. 

• Linear precision: If all p^ are uniformly distributed^ on a straight line segment, 
all intermediate p[(^) îre identical for r > 0. Thus the straight line segment is 
reproduced. 

• No convex hull property: the parameter t in (7.2) does not have to lie between ti and 
ti^r- Therefore, Aitken's algorithm does not use convex combinations only: pS(^) is 
not guaranteed to lie within the convex hull of the p^. One should note, however, 
that no smooth curve interpolation scheme exists that has the convex hull property. 

• No variation diminishing property : if a straight line intersects the polygon con­
necting the data points m times, then the line can intersect the curve more than m 
times. In other words, the curve wiggles more than the polygon. This follows for 
the same reason there is no convex hull property. 

^If the points are on a straight line, but distributed unevenly, the graph of the straight line will be 
recaptured, but it will not be parametrized linearly. 
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Figure 7.3. Polynomial interpolation: a cubic interpolating polynomial may be obtained 
as a "blend" of two quadratic interpolants. 

The Cardinal Form 
The cardinal form of a curve or surface representation is the one in which the given data 
appear explicitly. With regard to our interpolation problem, the cardinal form would take 
the form 

n 

p{t) = Y,PiL]{t)- (7.5) 
j=0 

The basis functions L'j{t) can be defined by examining the properties which they must 
posses. Of course they must sum to one in order for (7.5) to be a barycentric combination. 
Additionally, the L'j{t) must satisfy 

mj) = kj, (7-6) 

with Si J being the Kronecker delta. In other words, the z*̂  Lagrange polynomial vanishes 
at all knots except at the i^^ one, where it assumes the value 1. From this information, 
one can conclude that the Lagrange polynomials L^ take the form 

Figure 7.4 illustrates one such polynomial over a particular knot sequence. 
The cardinal form is primarily used for theoretical analysis. In particular, the La­

grange polynomials are useful in answering the following questions: 

• Is the interpolating polynomial unique? 

• What is a closed form for the interpolating polynomial? 

The interpolant in (7.5) is the only representation in which the data appear explicitly. 
Therefore, it is often referred to as the interpolating polynomial or the Lagrange inter­
polant even though it could be written it in another basis, as illustrated in Section 7.2.1 
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t L̂  (t) 

Figure 7.4. A Lagrange polynomial 

Asking Too Much of a Polynomial 
In practical curve fitting scenarios, it is likely that the number of data points exceeds 
ten. As the number of points increases, the main drawback of polynomial interpolation 
becomes apparent, as illustrated in Figure 7.5: polynomial interpolants may oscillate. 
The left curve in that figure is the Lagrange interpolant to 21 points read off a quarter of 
an ellipse. The data points were computed to a precision of six digits. Slightly changing 
the input data points, namely by reducing their accuracy to four digits, produces the 
right interpolant. This is a disturbing phenomenon: minuscule changes in the input 
data may result in serious changes of the result. Processes with that behavior are called 
ill-conditioned. 

This tendency of polynomial interpolants to oscillate has been studied extensively in 
numerical analysis, where it is known as the "Runge phenomenon" [27]. Sample a small 
number of points and parameter values from a smooth curve for interpolation, and then 
gradually increase the number of points. One would expect the interpolant to converge to 
the underlying, smooth curve, however, this is not the case in general. For some sampled 
curves, the interpolant diverges. This phenomenon is not due to numerical eff'ects; it is 
actually inherent in the polynomial interpolation process. An interesting observation is 
that this does not contradict the Weierstrass approximation theorem. 

7.2.2. Point Data Approximation 
The oscillatory nature of high degree polynomial interpolation, as discussed in Section 
7.2.1, prompts one to search for a better solution. Approximation of given data by a low 
degree curve which passes "close" to the data points is a practical solution, as illustrated 
by Figure 7.6. The added benefit of approximation is a smoothing effect: this is favorable 
if an application produces data points which are noisy. The first step in building an 
approximation scheme is to consider a metric to measure closeness. Also, the method 
should produce a unique solution once given such a metric. 

Least squares approximation is the most widely used approximation method; it is sim­
ple to employ and it uses a familiar metric. The given information consists of mH-1 data 
points Pi with associated parameter values ti. Find a degree n polynomial p such that 
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Figure 7.5. Lagrange interpolation: The left and right input data only differ by the 
amount of accuracy: six digits after the decimal point, left; four digits, right. 

the squared distances \\pi — p{ti)\\'^ are minimal. To make this more concrete, suppose 
that p is a Bezier curve, thus find the bj which minmize the function 

/(bo,...,b„) = ^ l | p , - ^ b , s ; ( t , ) 
i=0 j=0 

The minimization of / may be done componentwise, thus with a slight abuse of notation, 
formulate the n + 1 equations (for each component) as 

df_ 
= 0. 

After differentiating, these n H- 1 equations take the form 

m n 

J2 [P^ -^hjB^{t,)]BUti) = 0; A: = 0,... ,n. (7.8) 
j=0 

and are referred to as the normal equations. 
Alternatively, one may formulate the approximation problem similarly to the direct 

approach from Section 7.2.1. Simply write down the given conditions! 

hoB^{to) + ... + KB:i{to) = Po 

hoB^itm) + . . . +KB^{tm) =^ Pm-

This may be condensed into matrix form: 

BUto) ... B:{to) 

BSit 0 K'^rnJ B^itml 

bo 
Po 
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Figure 7.6. Least squares approximation: data points are sampled from the cross section 
of an airplane wing and a quintic Bezier curve is fitted to them. 

M B (7.9) 

Assuming the number of data points, m + 1, is larger than the degree n of the curve, 
this linear system is overdetermined. One may simply multiply both sides by M^: 

M^MB = M^P. (7.10) 

This is a linear system with n + 1 equations in n + 1 unknowns with a square and 
symmetric coefficient matrix M^M. The B^ are assumed to be linearly independent, 
thus the n + 1 columns of M are linearly independent, and this ensures full rank of 
M^M. Notice that (7.10) is identical to (7.8), thus this solution also minimizes the L^ 
norm. 

This direct approach for constructing an approximation allows for an additional ap­
proximation tool. It may be the case that even the least squares approximation produces 
a curve that wiggles too much, as illustrated in Figure 7.7. Another defect of the solution 
in this figure is the wildness of the control polygon. One benefit of the Bezier method is 
that the polygon often times is a good approximation of the curve's shape. To achieve 
this, one could impose restrictions on the control polygon, for example minimize the 
wiggles in the second differences: 

bo - 2bi -f b2 = 0 

b„_2 - 2bn-i + bn = 0, 

which may be abbreviate as 

SB = 0. 

Simply add these equations to the overdetermined system (7.9), 

(1 - a)M 
aS 

B = 
(1 - a)F' 

0 

(7.11) 

(7.12) 
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Figure 7.7. Least squares approximation: a degree 13 Bezier curve fitted to the airplane 
wing data set. 

The factor a (restricted to [0,1)) gives control over the influence of the added equations. 
It is solved in the same way as (7.9), that is, by forming the symmetric linear system 
of normal equations. The system is solvable because the coefficient matrix of (7.12) still 
has n -f 1 linearly independent columns, as inherited from the initial matrix M. 

The airplane wing data for Figure 7.8 was created by decimating the data from Figure 
7.6. A simple least squares solution (7.9) to this data would produce a polygon that 
looks worse than that of Figure 7.7. However, by employing shape equations, here with 
Q; = 0.1, results in the solution shown. 

7.2.3. Point and Tangent Data Interpolation 
Lagrange interpolation can wiggle unexpectedly, thus in an eflFort to gain more control, 
one may specify tangents at the data points. Then the given information consists of 
points Pi, associated parameter values U, and associated tangent vectors nij. Interpo­
lating to this data, a cubic polynomial is constructed between each p^ and Pi+i- This 
is called cubic Hermite interpolation. Figure 7.9 illustrates the result of cubic Hermite 
interpolation over several segments. Since adjacent segments share the same tangent 
vector, a globally C^ interpolant is the result. 

Consider the two points po,Pi, two tangent vectors mo, mi, and parameters to and ti. 
The objective is to find a cubic polynomial curve p(t) that interpolates to these data: 

p(^o)=Po, p(to) = mo, p(ti) = mi, p(ti) = pi, 

where the dot denotes differentiation. The interpolant p will be written in cubic Bezier 
form, and therefore it is left to determine the four Bezier points, two of them are quickly 
determined: 

bo = po, b3 = pi. 

The endpoint derivatives for Bezier curves are 

^^^°^ " A ^ ^ ^ ' ' ^^^'^ ^ ~Kt^^^' 
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Figure 7.8. Least squares approximation with smoothing: a degree 13 Bezier curve fitted 
to an incomplete airplane wing data set. For this example, a = 0.1. 

where At = ti —to. Thus we can easily solve for bi and b2: 

bi Po + ^ " ^ 0 , b2 = Pi - ^ " ^ 1 

Thus the interpolant in Bezier form takes the form 

At At 
p{t) = poB'oii) + (po + —mo)B?(£) + (pi - —m,)Bl{i) + piBl{i) (7.13) 

for the global parameter t e [to.ti] and the local parameter i = {t — to)/{ti — to), which 
lies in [0,1]. 

The cardinal form of the interpolation problem is characterized by the given data ap­
pearing explicitly in the equation for the interpolant. Simply rearrange (7.13): 

p{t) - poi^o W + moi/?(t) + miHlit) + PiHl{t), 

where 

Hiit) = B',(i) + Blit), 

H!it) = fBur), 

Hl{t) ^ BUi) + Bid). 

(7.14) 

(7.15) 

The Hf are called cubic Hermite polynomials and are shown in Figure 7.10. An addi­
tional requirement for the Hf to be cardinal functions for the cubic Hermite interpolation 
problem is the following: They must be cardinal with respect to evaluation and differ­
entiation at t = to and t = t i , which means that each of the Hf equals 1 for one of 
these four operations and is zero for the remaining three. Another property to note is 
that the point coefficients must sum to one if (7.14) is to be geometrically meaningful: 
//Q (̂ ) + ^ 3 (̂ ) = 1- This is of course also verified by inspection of (7.15). 
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Figure 7.9. Cubic Hermite interpolation: the given point, tangent, and parameter data 
together with an interpolating cubic in Bezier form. 

7.3. C^ C U B I C S P L I N E I N T E R P O L A T I O N 

C^ cubic spline interpolation is probably the most frequently used application of B-
splines. The problem statement is as follows: 
Given: a set of data points p o , . . . , PK and a knot sequence TQ, . . . , r ^ and a knot mul­
tiplicity vector 3 , 1 , 1 , . . . , 1,1,3. 
Find: a set of B-spline control points d o , . . . , d^ with L = K + 2 such that the resulting 
C^ piecewise cubic curve x(w) satisfies 

x ( r , ) = p i ; i = 0,...,K. (7.16) 

Consult Figure 7.11 for an example of the numbering scheme. The triple end knots force 
the curve to interpolate to the first and last data point: 

do = Po and dz, = Px , 

thus equations for do and d^ may be eliminated from the list of unknowns. Even so, the 
above problem is underdetermined because the number of unknowns is K + 1 , whereas the 
number of given data points is K — I. Typically two end conditions are specified in order 
to have a uniquely solvable problem. To begin with, consider damped end conditions; 
other end condition are presented in Section 7.3.1. A clamped end condition corresponds 
to the prescription of two derivatives x(ro) and x(r/^), 

3 3 
X(TO) = [di - do], X{TK) = [dL - dL-i]. 

n -To TK - TK-I 

The clamped end conditions yield 

d i = d o H —x( ro ) and d^-i = dL x(ri^), 
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Figure 7.10. Cubic Hermite polynomials: the four Hf are shown over the interval [0,1]. 

therefore equations for di and d^-i niay be eliminated from the list of unknowns also. 
With end point interpolation and clamped end conditions, the first and last equation of 
the linear system are 

d2N^{ri) + dsN^in) = r, and dL-3Nl_^{TK-i) + dL-2Nl_^{TK-i) = v^ 

with 

r̂  = pi-diA^f(ri) and r̂  = p^- i - dL-iiV|_i(TK_i). 

Because of the local support property of cubic B-splines, each of the remaining unknowns 
d2, . . . , dL_2 is related to the data points by 

p, = d,iVf (rO + d,+iiVf^i(T,) + d,+2^f^2(^^); 2 = 2 , . . . , i^ - 2. (7.17) 

Together, these are K — \ equations for the K 
form, these equations take the form 

1 unknown control points. In matrix 

Nl{T^) 

Nl_,{T„_,) Nl_,{TK-2) NU(TK-2) 

NLsiTK-l) NUiTK-l) 
*Z,-2. 

P2 

P K - 2 

(7.18) 

Schematically, the case K = 5 looks like this: 

• -k 

^ -k -k 

ic i^ k 

^ • 

•d2 ' 

d3 

d4 

ds 

"r̂ "̂  
P2 

P3 

.^e_ 

The entries in this tridiagonal matrix are easily computed from the definitions of the 
cubic B-splines Â ^̂  In the case of uniform knots Ui = z, the interpolation conditions 
(7.17) take on a particularly simple form: 

6pi = d, + 4d,+i + d,+2; z = 2 , . . . , K - 2 . (7.19) 
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TQ 'C-I X2 T3 T4 

Figure 7.11. Cubic spline interpolation: the case of clamped end conditions with six 
intervals. 

7.3.1. End Condit ions 
For C^ cubic spline interpolation, the choice of end conditions is important for the shape 
of the interpolant near the endpoints. Clamped end conditions, as employed in the previ­
ous section, are intended to be used in situations where the end derivatives are actually 
known. But in most applications, one does not have this knowledge. Still, two extra 
equations are needed in addition to the basic interpolation conditions (7.16). Below is a 
list several other end condition methods. 

Natural end conditions are derived from the physical analogy of a wooden beam which 
is clamped at some positions. Beyond the first and last clamps, such a beam assumes 
the shape of a straight line. A line is characterized by having a zero second derivative, 
and hence the end conditions 

x(ro) - 0, x ( rx ) = 0 

are called "natural" end conditions. In terms of B-spline control vertices (using triple 
end knots), this becomes 

where A^ = TJ+I — r^. Rearrange this equation for the linear system and obtain 

(Ao + Ai)do - (2Ao -f Ai)di + Aod2 = 0. (7.20) 

A similar condition holds at the other endpoint. Unless required by a specific application, 
this end condition should be avoided as it forces the curve to behave linearly near the 
endpoints. 

Bessel end conditions typically yield better results than natural end conditions. They 
are defined as follows: the first three data points and their parameter values determine 
an interpolating quadratic curve. Its first derivative at po is taken to be the one for the 
spline curve. This results in 

2 1 
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where 

a = —— ( p i - a ^ P o - ^ ^ P 2 ) , a= — and 0 = I ~ a. 
2ap T2 - To 

This value for di is then used in the clamped end condition in the previous section. The 
control point d^-i is obtained in complete analogy; it is then also used for a clamped 
end condition. 

Quadratic end conditions require x(ro) == x(r i ) . If all data points and parameter val­
ues were read off from a quadratic curve, then this condition would ensure that the 
spline interpolant reproduces that quadratic. The same is true, of course, for Bessel end 
conditions. 

Not-a-knot end conditions work from the premise that if the first and second cubic 
segment are parts of one cubic, then their third derivatives at ri would agree. The name 
is derived from the fact that the knot TI does not act as a breakpoint between two 
distinct cubic segments. 

7.3.2. Defining a Knot Sequence 
The spline interpolation problem almost always assumes that parameter values r̂  are 
given along with the data points p^. These parameters dictate the amount of time an 
imaginary particle on the curve spends between p^ and Pi^i relative to the neighboring 
curve segments. If the data points are not derived from a time dependent application, 
then just how to assign parameter values is not entirely intuitive, yet their choice can 
have a significant influence upon the shape of the resulting interpolant. 

The easiest way to determine the TJ is simply to set TI = i. This is called uniform or 
equidistant parametrization. This method is too simplistic to cope with most practical 
situations because it "ignores" the geometry of the data points by spending the same 
amount of time between any two adjacent data points. Drastic changes in spacing of the 
data can result in overshooting of the interpolant. 

The chord length parametrization is a simple method which is a great improvement 
over the uniform parametrization. The knot spacing is proportional to the distances of 
the data points: 

Ai IIApi 
Ai+i IIApHil 

(7.21) 

where A^ = TJ+I — r^. Equation (7.21) does not uniquely define a knot sequence; rather, 
it defines a whole family of parametrizations that are related to each other by affine 
parameter transformations. 

The centripetal parametrization [20] improves upon the chord length idea. If one sets 

A, r ||Ap,|| 11/2 
Ai+i L||Ap. 

' ^ r . (7.22) 

the resulting motion of a point on the curve will "smooth out" variations in the cen­
tripetal force acting on it. 

The uniform parametrization is the only one that is invariant under affine transforma­
tions of the data points. All other methods involve length measurements, and lengths 
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are not preserved under affine maps. One solution to this dilemma is the introduc­
tion of a modified length measure, as described in Nielson [24]. For more literature on 
parametrizations, see [6,9,15,17,18,21,25]. There is probably no "best" parametrization, 
since any method can be defeated by a suitably chosen data set. 

7.3.3. The Minimum Property 
In the early days of design, a smooth curve was manually drawn through a given set of 
points by placing metal weights, called "ducks," at the data points, and then passing a 
thin, elastic wooden beam, a "spline," between the ducks. The resulting curve is always 
very smooth and usually aesthetically pleasing. The wooden beam assumes a position 
that minimizes its bending energy. The mathematical model of the beam is a curve x(u), 
and its bending energy E is given by 

Jo 

where K, denotes the curvature of the curve, ds is the arc length of the beam, / is the 
length of the beam, and c is a constant determined by the material of the beam. 

The integral of the curvature of most curves is difficult to work with, therefore for 
mathematical simplicity, one often approximates the above integral by a simpler one: 

E f [x{u)fdu. (7.23) 

Note that E is a vector; it is obtained by performing the integration on each component 
of X. The penalty for mathematical simplicity is accuracy. The curvature of a curve is 
given by 

_ llxAxll 

But it must be that ||x|| ?̂  1 in order for ||x|| to be a good approximation to K,. This 
means, however, that the curve must be parametrized according to arc length. This 
assumption is not very realistic for cubic splines in a design environment. 

While the classical spline curve merely minimizes an approximation to (7.23), methods 
have been developed that produce interpolants which minimize the true energy, see [22], 
[5]. Moreton and Sequin have suggested to minimize the functional f[K'{t)]'^dt instead, 
see [23]. 

7.4. P O L Y N O M I A L S U R F A C E M E T H O D S 

To a large part, surface methods mirror curve methods. This is apparent in the tensor 
product methods of this section. The Coons method presented here deviates a bit from 
this idea, although the flexibility it allows in a design environment makes it an important 
surface construction method. 

7.4.1. Discrete Coons Patches 
Coons patches belong to the class of surfacing methods which are capable of transfinite 
interpolation. This means that the input data are curves rather than discrete points. A 



180 CHAPTER 7. CURVE AND SURFACE CONSTRUCTIONS 

Figure 7.12. Coons patches: an example. 

special case of Coons patches, which is geared toward Bezier techniques, is discussed in 
this section. This construction is called a discrete Coons patch (see [11]). 

Suppose four curves with a roughly rectangular structure are given, as illustrated in 
the left of Figure 7.12. These curves are to be the boundary of a surface patch fit between 
them, as illustrated in the right of the figure. Further, assume that all four curves, with 
opposite boundary curves of the same degree, are in Bezier form. For m = n = 3, the 
given data takes the following form: 

boo boi bo2 bo3 
bio bi3 
b20 b23 
bso bsi b32 b33 

The problem: find the control net of a Bezier surface that fits between the boundary 
curves. 

Figure 7.13 illustrates the construction of the Coons patch. In order to find the interior 
control points b^j , first construct a point on each of the following ruled surfaces: 

br," = (1 - - ) b o , , + - b ^ , , and b^^^-= (1 - ^)b,,o + ^ b , , , . 

Next, construct a point on the bilinear interpolant to the four corner points: 

bo,o bo,m 1 - ^ 
1,3 l^ n n\ 

The final control point is created as a combination of these three points: 

b,., = br,,+K,,. hj ' 
(7.24) 
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Figure 7.13. Coons patches: the construction. Gray points, from bottom: bi'2,bj'25b5'2-
Above them, solid black: bi,2-

7.4.2. Tensor Product Interpolation 
Tensor product interpolation is suitable for data which has a rectangular structure. More 
precisely, the given data consist of an (m H- 1) x (n H- 1) array of data points X^J; 0 < 
2 < m, 0 < j < n, and each point has an associated parameter value (ui.Vj). A tensor 
product Bezier patch may be written in matrix form: 

x(u,v)=[B^{u) ••• BZin) 
JQO bon 

DTr).n. 

B-iv) 

BZ{v) 

(7.25) 

Interpolation requires that (7.25) hold for each pair (ui^Vj). This results in (n -f 1) x 
(m + 1) equations, which may be written concisely as 

(7.26) X - UBV, 

where 

X = 
xoo ' • • 

XmO • • 

^On 

^mn 

u = 
B^iuo) 

B^{u„) 

Bl^M 

B^^iium) 

Coo 

B = 
COn 

CmO 
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^ BSM ••• B^ivn) 

V I 
' B^iivo) ••• B:(V„) 

The matrices U and V already appeared in Section 7.2.1; they are Vandermonde matri­
ces. In an interpolation context, the Xij are known and the coefficients hij are unknown. 
Theoretically they may be found by setting 

B = U-^XV-\ (7.27) 

The inverse matrices in (7.27) exist since the functions B^ and B^ are linearly indepen­
dent. 

The practical method for finding the control points centers on the tensor product prop­
erty, as discussed in the chapter 4 on Bezier Techniques. Following the schematic diagram 
in Figure 7.14, the key is to break the problem down into two sets of curve interpolation 
problems. This is apparent by rewriting (7.26) as 

X - DV, (7.28) 

where 

B = UB. (7.29) 

Equation (7.28) should be rearranged to follow the normal linear system format, that is 

X'^ = VB. (7.30) 

Thus, first solve (n+1) univariate degree m interpolation problems in (7.30), one for each 
row of X^ and D, where D contains the unknowns. This is illustrated in the middle of 
the figure by the six cubic interpolants - the "rows." Next, solve (m+1) univariate degree 
n interpolation problems in (7.29), which results in B . In the figure, this corresponds 
to four degree five interpolation problems, schematically represented by the middle and 
right most diagram. It is important to note that the coefficient matrix is the same for 
all interpolation problems in the two stages of this algorithm. 

7.4.3. Approximation with Tensor Product Patches 
Often times the data do not come in a rectangular structure, as expected in the tensor 
product interpolation of Section 7.4.2. This is particularly true with the advent of laser 
digitizers. Even if the data points have a rectangular structure, it may be nontrivial 
to find parameter values such that the univariate curve problems produce reasonable 
solutions. Approximation allows for a more flexible surface construction method. 

Suppose the given data consists of a set of points pjt, k = 0 , . . . , A'. Also assume 
that each data point p^ is associated with a corresponding pair of parameters û ^ = 
{uk.Vk). Approximate this data by a degree (m, n) Bezier patch. For "best" results, the 
number of data points should well exceed the number of points needed for interpolation: 
{K -\-l) » (mH-1) X (n-h 1). To aid in the construction of the approximant, the Bezier 
patch will be written using a linearized notation: 

bo,o 

x{u, v) = [B^{u)B-{v),..., B:^{U)B-{V)] (7.31) 
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Figure 7.14. Tensor product interpolation: left, the data points; middle, interpolating 
all rows of data points; right, interpolating all columns from previous step. 

The best approximating surface would result in each data point lying on the approxi­
mating surface. For the k—ih data point p^, this becomes p^ = x(ufc) or 

p , = [B^{u,)B^ivk),..., BZ{u,)B:ivk)] 
Jo,o 

(7.32) 

Combining all X + 1 of these equations results in 

fPo" 

[PK_ 

= 

- B^{uo)B-{vo) ... 

_B^{UK)B-{VK) . . . 

which may be abbreviated to 

P = . MB. 

B^[u,)B-{v,) -

B^{UK)B-{VK)_ 

bo,o 
(7.33) 

(7.34) 

These are K -\- \ equations in (m 4- l)(n + 1) unknowns. If there are many more data 
points than control points, then the linear system (7.34) is overdetermined. A "good" 
approximation is found by forming 

M^P - M'^MB. (7.35) 

Notice that this approach mimics that used in Section 7.2.2, therefore this is the least 
squares solution to the approximation problem. A note of caution: if the number of data 
points is very large (10^ or more), then the normal equations become ill-conditioned and 
the least squares problem may become unstable. 
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Defining Parameter Values 
In a practical setting, one would not typically be given the parameter values u^ = 
[uk.Vk). Finding good values for the u^ is not always an easy problem. Three solutions 
are described in this section. 

If the data points can be projected into a plane then finding good parameters is not 
difficult. Assume they can be projected into the (x,?/)-plane for simplicity. Each pjt is 
projected by simply dropping its z—coordinate, leaving a pair (xk.yk)- Scale the [xk.Vk) 
so that they fit into the desired domain, and then set Uk — Xk and Vk = Vk-

If the data can be projected onto a cylinder then finding parameters is also not diffi­
cult. For example, assume they can be projected onto the cylinder 

x(^,z) 
cos((9)' 
sin(l9) 

z 

When each p ;̂ is projected onto the cylinder, the projected point's (9k, Zk) coordinate 
will correspond to the parameters of p^. Of course an actual projection is not necessary. 
Here, the value of 0 is determined by a calculation in the (x, i/)-plane, and Zk is directly 
extracted from p^. Finally, scale all {9k, Zk) to live within the desired domain. 

For less structured data, it might be necessary to use a more sophisticated method. 
First, obtain a triangulation of the data points. This scenario is realistic for data ob­
tained using a laser digitizer. Assuming that the triangulation is isomorphic to the unit 
square, we can construct a triangulation in the unit square with the same connectivity 
as the given one in 3D. The following method is due to Floater [14]. First, a convex 
polygon is built in the {u,v) unit square with as many vertices as the 3D mesh has 
boundary vertices. This polygon is somewhat arbitrary; a circle or the boundary of the 
unit square are good candidates for forming it. In this way, we assign 2D parameters 
to the 3D mesh boundary points. Next, consider any interior point u of the 2D mesh 
with n neighbors. These neighbors are labeled Ui,...,Un. For a "nice" triangulation, 
the following condition should be satisfied for each interior u: 

u = - V u , . (7.36) 
n ^—' 

2 = 1 

We now observe that there are as many equations (7.36) as there are (unknown) interior 
points in the mesh. Some of these equations involve boundary points, others will not. 
This system is always solvable. 

Shape Equations 
One of the points of using Bezier techniques is the benefit of a polygon that closely 
resembles the shape of the underlying curve or surface. However, the solution to a least 
squares problem in Section 7.4.3 may be close to the data points, yet the control net 
might "behave badly," similar to the curve case as illustrated in Figure 7.7. As with 
curve approximation, a way to combat such behavior is to invoke shape equations. These 
are conditions that a "good" control net would satisfy. A translational surface, which 
is characterized by the fact that its twist vanishes everywhere, has a very well-behaved 
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Figure 7.15. Bicubic Hermite patches: some of the data points and vectors. 

polygon. In terms of the control net, this means that 

A^'^bi,j = 0; 2 = 0 , . . . , m - 1, j = 0 , . . . , n - 1. 

When these equations are added to the overdetermined linear system (7.34), the result 
will be less faithful to the data points, but it will achieve a control net with better shape. 
In practice, one would weigh the shape equations, just as was done for the curve case. 

7.4.4. Bicubic Hermite Patches 
Many surface schemes are generalizations of curve schemes. Bicubic Hermite patches 
follow that rule, as they are a generalization of cubic Hermite interpolation from Section 
7.2.3. Again, to gain more control over the interpolant, derivatives are introduced to the 
given information. As illustrated in Figure 7.15, the given data for this interpolation 
problem include points, partials, and mixed partials at each corner: 

x(lto,^o) ^v{Uo,Vo) Xy{Uo,Vi) X{UQ,VI) 

^u{uoyVo) ^uv{uo,vo) :>Cuv{uo,Vi) :s.u{uo,Vi) 
Xu{ui,Vo) y:uv{ui,Vo) :^uv{ui,vi) :siu{ui,vi) 
x('Ui,'Uo) :siy{ui,Vo) x^(iii,z;i) x(wi,t'i) 

Note how the coefficients in the matrix are grouped into four 2x2 partitions, each holding 
the data pertaining to one corner. Additionally, the parameter space must be given, for 
instance, define the patch over UQ < u < Ui and fo < '̂^ ̂  '^i-

Employing knowledge of the Hermite basis functions from Section 7.2.3, the interpo­
lating bicubic Hermite patch takes the following form: 

.iu,v) = ±±K^Hfiu)H^ivy, { : ; | : | : ; ' • (7.38) 

Keep in mind that the Hf must incorporate the parameter interval, as defined in (7.15). 
In order to define the bicubic Bezier representation of this patch, 

3 3 

Au,v) = ^J2^^,Bf{s)B^{t)• 
i=0 j=0 

[h^,] = (7.37) 

UQ < U < Ui, 

Vo <V < Vi, t 
ui-

VQ-I 
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the control points must be defined. First, the corner points are simple assignments: 

bo,o = x(?/o, '^o), bso = x{ui,Vo), bo,3 = x(uo, Vi), has = x(wi, ?;i). 

The boundary control points are computed using the curve algorithm from Section 7.2.3, 
for example 

bi,o = x('ao, vo) + ^ ^ x^(iZo, VQ), b2,o = A'^UVQ) ^ " x^(^i, ?;o). 

Recall from the Bezier Techniques chapter 4 that the mixed partials at the corners of a 
Bezier patch take a very simple form, for example at one corner of the bicubic patch, 

where Au = UI — UQ and A?; = -i;! — Z/Q. Therefore, the middle, or twist control points are 
assigned as follows 

AuAv , , ^ ^ ^ 
fc>i,i = —-—^uv[uo,yQ) + bo,i + bi,o - bo,o 

A^A^; r ^ V, ^ X, 
b2,i = ^—^uv{ui,Vo) + bs^i - bŝ o + b2,o 

AuAv / N , , , 
bi,2 = —^uv{uo,Vi) + bi,3 - bo,3 + bo,2 

AuAv . , ^ ^ ^ 
b2,2 = ^̂  ^uv{Ul,Vi) - bs^a + b2,3 + b3,2. 

Thus the bicubic Bezier patch, which interpolates to Hermite data, has been completely 
defined. 

7.5. C^ B I C U B I C S P L I N E I N T E R P O L A T I O N 

In an interpolation context, if given point data come in a rectangular structure, often 
times there will be too many points to realistically use one polynomial patch, as was 
done in Section 7.4.2. Higher degree patches have a tendency to oscillate. An alterna­
tive approach is to employ bicubic Hermite patches, however generation of the necessary 
derivative data is not trivially done in a meaningful manner. The most popular solution 
to this problem are tensor product bicubic B-spline surfaces. The principles from Section 
7.4.2 apply here too. 

Suppose we are given {K + I) x (L + 1) data points x / j and two knot sequences 
UQ, ... ,UK and VQ,. .. ,VL- This interpolation method will employ a bicubic tensor prod­
uct B-spline surface, 

M N 

x(«, v) = Y2Y. 'iijN!{u)Nf{v), (7.39) 
i=0 j=Q 

which has triple knots at each end of the two knot sequences and simple knots elsewhere. 
This special requirement results in the relationships M ~ K-\-2 and Â  = L + 2, that is, 
the final B-spline control net has two more rows and columns than the given data point 
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>—i>—0—>-• 

• — p — \ > — ^ - ^ 

• — i ^ — \ > — i ^ - ^ 

^—p—p—>-• 

Figure 7.16. Tensor product bicubic spline interpolation: the solution is obtained in a 
two-step process. 

array. The given knot sequences correspond to the unique knots in the knot sequences of 
the B-spline surface. The solution to this interpolation problem constitutes finding the 
dij. 

Figure 7.16 illustrates the steps necessary to define the interpolating B-spline surface. 
For each row of data points, prescribe two end conditions, such as Bessel tangents, and 
solve the univariate B-spline interpolation problem as described in Section 7.3. Since all 
interpolation problems use the same knot sequence, each problems has the same tridi-
agonal coefficient matrix, thus an LU decomposition technique should be applied. The 
points marked by triangles in Figure 7.16 have thus been constructed. Now take every 
column of points denoted by triangles, and perform univariate B-spline interpolation on 
it, again by prescribing end conditions. The resulting control points constitute the de­
sired B-spline control net. An example is shown in Figure 7.17. An alternative approach 
would be to interpolate first to the columns of data points. This would produce the same 
result, however the computation count for the two processes are not identical. 

7.5.1. Finding Knot Sequences 
One obstacle to a good interpolant is the generation of one set of parameter values for 
all isoparametric curves in the w-direction; the same holds for the ^-direction. When the 
data points significantly deviate from a regular grid, the problem of finding an appropriate 
parametrization can be quite difficult. As discussed in Section 7.3.2, a poor choice in 
parameters can cause an isoparametric curve to unnaturally wiggle, and this defect will 
be reflected in the surface. One possibility for finding a reasonable parametrization is the 
following. Create a good parametrization for each isoparametric curve using one of the 
methods from Section 7.3.2. Average each of these parametrizations to yield one. This 
approach will only produce acceptable results if all our isoparametric curves essentially 
yield the same parametrization. It is not difficult to find an example for which this will 
not help. Figure 7.18 illustrates from a schematic point of view, the type of distribution 
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Figure 7.17. Tensor product bicubic spline interpolation: the given data, solid circles, 
and the solution, using Bessel end conditions and uniform parametrizations. 

of data that will cause this method to fail. 
7.6. VOLUME DEFORMATIONS 

Once an initial curve or surface is designed, sometimes a deformation of the shape is 
called for; this would be a bending or stretching of the shape. P. Bezier [1-3] devised an 
intuitive method to deform a Bezier patch which eliminated the need to tediously move 
control points. His method also applicable to B-spline surfaces. A more graphics-oriented 
version of this principle was presented by Sederberg and Parry [28], see also [16]. 

To illustrate the principle, consider the 2D case first. Let x{t) be a planar curve (Bezier, 
B-spline, rational B-spline, etc.), which is, without loss of generality, located within the 
{u, v) unit square. Next, cover the square with a regular grid of points 

r-/ • / iT / 2 = 0 , . . . , m ; 
Kj = Wm,j/n] , | ^ . ^ o , . . . , n . 

Every point {u, v) may be written as 

m n 

This follows from the linear precision property of Bernstein polynomials. Now, distort 
the grid of hij into a grid b^^; the point {u, v) will be mapped to a point (u, v): 

i=0 j=0 

(7.40) 

which is a mapping of lE^ to lE^. In particular, the control vertices of the curve x(t) 
will be mapped to new control vertices, which in turn determine a new curve y(t). Note 
that y is only an approximation to the image of x under (7.40).^ This is highlighted by 

^An exact procedure is described by T. DeRose [8]. 
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Figure 7.18. Finding parameter values: this 4 x 3 array of data points are distributed so 
that it will be very difficult to find a good parametrization in the "horizontal" direction. 

the fact that the image of x's control polygon under (7.40) would be a collection of curve 
arcs, not another piecewise linear polygon. Figure 7.19 gives an example of the use of 
this global design technique. This technique may be generalized. For instance, we may 
replace the Bezier distortion (7.40) by an analogous tensor product B-spline distortion. 
This would reintroduce some form of local control into our design scheme. 

The next level of generalization is to lE^, and requires the introduction of a trivariate 
Bezier patch. 

m n I 

1=0 j~0 k=0 

(7.41) 

which constitutes a deformation of 3D space. Similar to the planar deformation, the 
control net in (7.41) is used to deform the control net of a surface embedded in the unit 
cube. Again, the use of a Bezier patch for the distortion is immaterial; trivariate B-splines, 
for example could have been used too. 

A practical example of volume deformations, as illustrated in Figure 7.20"*, is in brain 
imaging. In comparative studies, many MRI brain scans have to be compared. Different 
people have differently shaped brains; in order to carry out a meaningful comparison, 
they have to be aligned and then they have to be deformed for a closer match - see [30] 
or [29]. While volume deformations take 3D objects to other 3D objects, it is convenient 
to visualize the results by a sequence of 2D slices, as shown in Figure 7.20. 
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Figure 7.19. Curve deformation: a Bezier polygon is distorted into another polygon, 
resulting in a deformation of the initial curve. 
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Figure 7.20. Deformation of brain scans: the original two scans, superimposed, are shown 
on the left. A series of deformations deforms the light colored brain contour to the dark 
colored one. 
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Chapter 8 

Geometric Continuity 

Jorg Peters 

This chapter covers geometric continuity with emphasis on a constructive definition for 
piecewise parametrized surfaces. Section 8.1 gives examples that show the need for a 
notion of continuity different from matching of Taylor expansions as in the case of func­
tions. Section 8.2 defines geometric continuity for parametric curves, and for surfaces, 
first along edges, then around points, and finally for a whole complex of patches which 
is called a G^ free-form surface spline. Here G^ characterizes a relation between spe­
cific maps while C^ continuity is a property of the resulting surface. The composition 
constraint on reparametrizations and the vertex-enclosure constraints are highlighted. 
Section 8.3 covers alternative definitions and approaches to generating free-form surface 
splines, and briefly discusses geometric continuity in the context of implicit representa­
tions and of generalized subdivision. Section 8.4 explains the generic construction of G^ 
free-form surface splines and points to some low degree constructions. The chapter closes 
with pointers to additional literature. 

8.1. MOTIVATING EXAMPLES 

This section points out the difference between geometric continuity for curves and surfaces 
and the continuity of functions. The examples are formulated in Bezier representation 
(Chapter 4 on Bezier Techniques). 

Two C^ function pieces join smoothly at a boundary to form a joint C^ function if, 
at all common points, their /̂ th derivatives agree for «: = 0 , 1 , . . . , /c. Since the x, y and 
z components of curves and surfaces are functions, it is tempting to declare that curve 
or surface pieces join smoothly if and only if the derivatives of the component functions 
agree. However, as the following four examples illustrate, this criterion is neither sufficient 
nor necessary for characterizing smooth curves or smooth surfaces and therefore motivates 
the definitions in Section 8.2. 

The first two examples illustrate the inadequacy of the standard notion of smoothness 
for functions when applied to curves. In Figure 8.1 the V of VC is parametrized by the 
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Figure 8.1. Matching derivatives of the component functions and geometric (visual) con­
tinuity are not the same: the V of VC is parametrized by two parabolic arcs with equal 
derivatives at the tip, but the V shape is not georiietrically continuous; the C of VC is 
parametrized by two parabolic arcs with unequal derivatives at their common point, but 
the C shape is geometrically continuous. 

two quadratic pieces, u,v £ [0,1], 

and 

q,{v) = [0]{l-vf + [l]2{l-v)v + [\]v\ 

Evidently, at the common point qi(l) = [g] = q2(0) the derivatives agree: 

(Dqi)(l) = [8] = (/)q2)(0). 

However, even with suitably cushioned end points, the V should not be handed over 
to boys or girls under the age of 1 for fear of injury from the sharp corner. Matching 
derivatives clearly do not always imply smoothness. Conversely, smoothness does not 
imply matching derivatives. The C of VC is parametrized by the two quadratic pieces, 
u,ve [0,1], 

q3(u) = [ 3 ] ( l - ^ f + [0 ]2 ( l - ^ )^+[0 ]^2 

and 

The C is visually (and geometrically) smooth at the common point q3(l) = [Q] since the 
two pieces have the same vertical tangent line but the derivatives do not agree: 

(•Dq3)(l) = [-°4]^[-°2] = (^q4)(0). 

Both examples could be made consistent with our notion of continuity for functions if we 
ruled out parametrizations with zero derivative and substituted t? —> 2i; in q4. In the case 
of surfaces, the distinction between higher-order continuity of the component functions 
and actual (geometric) continuity of the surface is more subtle. 
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In two variables, we contrast the smoothness criteria for surfaces with the concept valid 
for functions by looking at two examples involving polynomial pieces in total degree Bezier 
form, i.e. de Casteljau's triangles (Chapter 4 on Bezier Techniques). A necessary and 
sufficient geometric criterion for two polynomial pieces pi,P2 '• to join C^ along 
a common boundary, is the 'coplanarity condition' (Chapter 4 on Bezier Techniques), 
illustrated in Figure S.3,left; the function pieces pi and p2 join C^ if all subtriangles of 
the control net are coplanar that share two boundary points. Since the coplanarity of the 
edge-adjacent triangles of the control net is a geometric criterion it is tempting to use it 
as a definition of smoothness for surfaces consisting of the 3-sided patches. However, the 
criterion is neither sufficient nor necessary. 

To see that coplanarity of the edge-adjacent triangles of the control net does not imply 
tangent continuity of the surface consider the eight, degree 2, triangular, polynomial 
patches (Figure 8.2) whose control nets are obtained by chopping off the eight corners of 
a cube down to the midpoint of each edge. The edge midpoints and face centers of the 
cube serve as the control points of 8 quadratic 3-sided Bezier patches. For example, the 
patch in the positive octant (with thick control lines in Figure 8.2, left) has the coefficients 

[?i 

[II [Jl [51 

Figure 8.2. {left) The 6-point control net of one degree 2 patch in Bezier form is drawn 
in thick lines. The two subtriangles in the control net that include the end points of a 
boundary of the patch define the derivative along that boundary. For two edge-adjacent 
patches these subtriangles are mirror images and coplanar with their counterparts in the 
other patch. Still the surface defined by the patches is not tangent continuous as the 
creases in the surface demonstrate. (The creases are visible in the silhouette and in the 
change in surface shading, right). 
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Pi P2 

Figure 8.3. (left) Two polynomial pieces pi and p2 join to form a C^ function if all 
subtriangles of the control net that share two boundary points (striped) are coplanar 
(Farin's C^ condition), (right) Even though the middle cross-boundary subtriangle pair 
(where the patch labels p and q are placed, right) are not coplanar the two Bezier patches 
p(A) and q(A) join to form a tangent continuous surface. 

boundary of the positive octant patch is 

Figure 8.2, right shows that the patches join with a sharp crease at the middle of their 

common parabolic boundaries. Indeed, the normal at the midpoint >5 of the equatorial 
~2/3l 

2/3 
[1/3] 

hemisphere, by symmetry, the ^-component would have to be zero 
hemisphere therefore do not meet with a continuous normal. 

Conversely, the geometric coplanarity criterion is not necessary for a smooth join. The 
two cubic pieces p , q with coefficients (c.f. Figure 8.3) 
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have the partial derivatives Dip = D2q along and D2P, respectively Diq across the 
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Figure 8.4. If the patches meet with tangent continuity, the transversal derivative D^^p 
of p must be a Unear combination of the versal derivative vector Deg in the direction e 
along the preimage E of common boundary p{E) and the transversal derivative D^^g in 
the direction e^ perpendicular to e: De±p — aDeg + PD^±g. 

common boundary: 

iDip){t,0) 

{D2P)it,0) 

( A q ) ( 0 , t ) 

(1 - tr + [I] 2(1 -t)t+['i]t' = {D,ci){0,t), 

( l_ i )2+[ i ]2( l - t ) i+[ | ] t^ 

With the help of Maple, we can check that the partial derivatives are coplanar at every 
point of the boundary, i.e. det (^Dip{t,0),D2p{t,0),DiCi{0,t)) — 0, the zero polynomial 
in t. Since the surface pieces neither form a cusp nor have vanishing derivatives along the 
boundary, the normal direction varies continuously across (cf. Lemma 8.3.1, page 212). 
On the other hand, for the control point differences of the middle pair of subtriangles, 
labeled p and q in Figure 8.3, 

^«*([l]'[f]'[f]) = ̂ s32/°-
This shows that, in contrast to a C^ match between two functions, edge-adjacent subtri-
angle pairs need not each be coplanar to obtain a tangent continuous surface. 

8.1.1. Differentiation and evaluation 
Even though derivatives of the component functions by themselves do not yield a correct 
picture of curve and surface continuity, the definition of geometric continuity relies on 
derivatives. And since we work with functions in several variables, some clarification of 
notation is in order. 

First, it is at times clearer to denote evaluation at a point Q by / |Q rather than 
/ ( Q ) , evaluation on points along a curve segment E hy f \E and to use the symbol o for 
composition, i.e. g o r = g(r) . We use bold font for vector-valued functions and, somewhat 
inconsistently but ink-saving, regular font for directions of differentiation e and points of 
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evaluation, say Q or 0, the zero vector in R^. The notation D^ for the Avth derivative in 
one variable is consistent with the notation in two variables from [106]: 

Definition 8.1.1 (Differentiation) The differentials D'^p of a map p : M̂  H-> R*̂  with 
X-, y- and z-components p^^\ p^y\ pW and the domain spanned by the unit vectors ei ± 62 
are defined recursively as 

a,.pt^l \o •= lim p[̂ i(Q + ^e,)-pf^HO) 
Uo 

De,P • = , Z )p := [DeipDe^p], 

D^ := DD^-\ e.g. D^p = DDp = [^-^-^ ^-^-^J . 

If the Jacobian Dp is of full rank 2, p is called regular. We often abbreviate Dip = D^-p. 

In one variable (see e.g. [17]) 

This combination of the chain rule and the product rule is called Fad di Bruno's Law and 
the bookkeeping is hidden in the index set 

K K 

^iJ) := {A:̂  > 0, z = 1 , . . . , /̂ , ^ /ĉ  = j , ^ iki = K}, CK{J) := 
i = l i=l 

A:i!(l!)^i---^J(/^!)^'^' 

In two variables D'^g (no subscript) is a /^-linear map acting on R^^^ (̂ c terms). Its 
component with index (ii, 22, . . . , i^) G {1, 2}'^ is Di^Di^ • • • Di^g. The arguments of D'^g 
are surrounded by (•) and (a, a , . . . , a, b , . . . , b) with a G R^ repeated i times and b G R^ 
repeated j times is abbreviated as ((a)^ (b)-^). We can then write the bivariate Fad di 
Bruno's Law as 

^ ^ ( g o r) = 5 ^ ^ CKU^ [{D^g) o r ) ((Dlr)^S . . . , (D^)^^) . 

For example 

D 2 / ( a , b ) = [afi] at2]] 
Djf D.D^f 

DiD^f Dlf _ b[2] 

= a t ^ W ^ ? / + (a^bt^l + at23b[i])DiD2/ + ̂ ''^h^'^^Dlf. 

8.2. G E O M E T R I C C O N T I N U I T Y OF P A R A M E T R I C CURVES A N D SUR­
FACES 

This section defines kih order geometric continuity, short G^ continuity, as agreement of 
derivatives after suitable reparametrization, i.e. paraphrasing [58], 'geometric continuity 
is a relaxation of parametrization, and not a relaxation of smoothness'. Section 3 will 
show that G^ and C^ are equivalent notions to continuity of the tangent and curvature(s). 
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Pi g2 
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Figure 8.5. The average {bold lines) of two curves, whose pieces p^ and ĝ  join G° 
be tangent discontinuous, i.e. its pieces do not even join G .̂ 

can 

8.2.1. Joining parametric curve pieces 
Definition 8.2.1 {G^ join) Two C^ curve segments q : [a..b] -^ R and p : [0..c] -> R 
join at p(0) with geometric continuity G'^ via the C^ map p :! -> I, p(0) = b, if 

D^igop) IO^Z^'^PIO /̂  = 0, Dp | o>0 ,Dp loT^O. 

The map p is called reparametrization. If p is a rigid transformation then p and g are 
said to join parametrically C^ and if p = id, the identity map, then p and g form a C^ 
map. 

The constraint Dp |o > 0 rules out cusps and other singularities. 
With the abbreviation j^p |o = [p |o, Z p̂ |o, • • •, D^p \of G R(^+I)^" for p G R^, Faa 

di Bruno's law applied to j^p |o = j'^lg o p) |o yields 

j ' p lo - A(j^g) lp(0). A = 

1 
Dp 
D'p [Dpf 
D^p a {Dpf 

{DpY 

a = 3DpD'^p. 

The matrix A of derivatives of p is called G^ connection matrix [13], [113] or /3-matrix 
[7] and j^p is the k-jet of p. In one variable, two regular maps p and q can both 
be reparametrized so that p(pp) and q(pq) have the preferred arclength parametrization 
(Chapter 2 on Geometric Fundamentals), i.e. unit increments in the parameter correspond 
to unit increments in the length of the curve. Then j^(p o pp) |o = j^(q o pq) |o. 

G^ splines with different connection matrices do not form a linear vector space; in 
particular the average of two curves that join G^ is not necessarily G^ as illustrated in 
Figure 8.5: if pi and qi join G^ via pi at Pi(0) and P2 and q2 join G^ via p2 at P2(0) = 
Pi(0) then, in general, there does not exist a reparametrization p so that (1 — cr)pi -f crp2 
joins G^ with (1 - a)gi + ag2 at P2(0) = Pi(0). That is, there does not generally exist a 
connection matrix A such that 

M^ - ^)J^gl + ^2Crĵ g2 = ^((1 - ^ ) f gl + aj^g2). 
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In the example shown in Figure 8.5, 

[03] J^gi = [0 -1/3J 7 J 82 = J P2 ̂  Lo iJ Ĵ Pl = [8 il] ,^1 = [J^] J^gl = [S -1V3] , Ĵ g2 = j^P2 - ^''^ 

but j^(pi + p2)/2 = [g J] while j^(gi + g2)/2 = [^i/l] ^^^ ^^ere does not exist a G^ 

connection matrix A= [0 Dp] such that j^(p i + P2)/2 = Aj^{gi + g2)/2. 
However, if we fix a {KJ + 1) X (ACJ + 1) connection matrix at the zth breakpoint, we 

can construct a space of degree k splines with prescribed C^' joints and knots of order 
k — Ki. Such a spline space can be analyzed as the affine image of a 'universal spline' 
whose control points are in general position [113]. 

Conversely, any given polygon can be interpreted as the control polygon of a G^ spline: 
by iterated linear interpolation (corner cutting), the polygon is refined into one whose 
vertices, when interpreted as Bezier coefficients, define curve pieces that join G^, e.g. [11] 
for k — 2, [38] for Frenet frame continuity ( see Section 8.3.1) and [113], [114], [115] for 
the general case. 

There are degree-optimal constructions for this conversion, i.e. constructions that max­
imise the smoothness of the spline for a given number of corner cuts, i.e. polynomial 
degree. Via the notion of order of contact (see Section 8.3.1) smoothness is closely related 
to the ability to interpolate, say the data of a previous spline segment. Following the 
pioneering paper [20] where it was observed that a cubic segment can often interpolate 
position, tangent and curvature at both end points (see also [64],[22]), Koch and Hollig 
[61] conjectured that, under suitable assumptions, "splines of degree < n can interpolate 
points on a smooth curve in W^ with order of contact k — \ = n — 1 + [(n — l ) / (m— 1)J 
at every v}^ knot. Moreover, this geometric Hermite interpolant has the optimal approx­
imation order k -h 1" (see also [101]). 

8.2.2. Geometric continuity of edge-adjacent patches 
We now turn to a constructive characterization of the smoothness of surfaces assembled 
from standard pieces used in CAGD, such as 3- or 4-sided Bezier patches, or tensor-
product b-spline patches. 

Definition 8.2.2 (Domain, reparametrization, geometry map, patch) 

• A domain is a simple, closed subset A ofR^, bounded by a finite number of possibly 
curved edges Ej. Edges are not collinear where they meet. 

• Let El be an edge of the domain Ai and E2 an edge of the domain A2. Denote 
an open neighborhood of a set X by M{X). Then r : M[Ei) -^ Af{E2) is a C^ 
reparametrization between Ai and A2 if it (1) maps Ei to E2 (2) maps points 
exterior to Ai to points interior of A2, and (3) is C^ continuous and invertible. 

• A C^ geometry map is a map g : A —> R^ such that D'^g, AC = 0 , . . . , A: 25 continuous 
and det(L>g) / 0; g(A) C M̂  is called a C^ patch. 

Regularity of the geometry map det(Dg) 7̂  0, rules out geometric singularities, such as 
cusps or ridges, and avoids special cases - but it off-hand also rules out singular maps 
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Figure 8.6. Reparametrization r : R̂  ^ M̂  and geometry maps p, g : E^ -> M .̂ For 
a G^ join via r, the traversal derivatives D^j_(gor) and i^^xP have to agree along the 
common boundary p{E) fov K, = 0,... ,k. The dashed lines indicate that T{E) need not 
be a boundary edge of the standard domain of g. 

that generate perfectly smooth surfaces ([84], [79], [15], [102]). These constructions are 
shown to be smooth by a local change of variable that removes the singularity. Defining 
the domain boundary to consist of a few edges is specific to CAGD usage: we could have 
a fractal boundary separating two pieces of the same smooth surface. 

The map g is called geometry map to emphasize that the local shape (but not the 
extent) of the surface is defined by g. The image in R̂  of g restricted to its domain is 
the patch. The reparametrization r maps outside points to inside points 

to prevent the surface from folding back onto itself in a 180°-turn. 
Next we join two pieces (c.f. Figure 8.6). 

Definition 8.2.3 (G^ join) Two C^ geometry maps p and g join along p{E) with geo­
metric continuity G^ via the C^ reparametrization r if 

D^p\E = D^{goT) U, ^ = 0,...,k. 

If r is a rigid transformation then p and g are said to join parametrically C^ and if 
r = id, the identity map, then the restrictions of p and g to their abutting domains form 
a C^ map. 

Since p, g and r are C^ maps, G^ continuity along p{E) with C^ reparametrization r is 
equivalent to just k -\-1 univariate polynomial equalities corresponding to diflPerentiation 
in the direction e-*- perpendicular to the edge E: 

^ : x p U = Z):x(gor)U, K = 0,...,k. 
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That is, as one might expect and can check by Faa di Bruno's law, A;th order continuity 
between two geometry maps depends on the Taylor expansion of r, p perpendicular to 
the edge E only up to kth order. In particular to the dege E only up to A;th order. In 
particular, it is not necessary to know r completely. 

Example Consider two C^ geometry maps p and g, and a C^ reparametrization r : 
r(t, 0) = (0,^). E = {(t, 0) : t G [0,1]} and e-̂  = (0, —1). An alternative parametrization 
of E is {{t'^,0) : t e [0,1]}. Such a definition would make the subtle point that G^ and 
C^ can differ as well, since the reparametrization r(^, 0) = (0, \/t) is required to equate 
the derivatives along the boundary. (If p and g are polynomials of the same least degree 
then r can only be linear and p and g share the same parametrization along the edge). 
We write the conditions for p and g joining G^ via r along p{E) and translate them into 
a commonly used, abbreviated notation where ĝ ^̂  :== Dug — D^^^^^g. 

P 1(̂ ,0) = g o r |(t,o), 

^ e - L P |(i,0) = ^ g | r ( t ,0) ( (^e-Lr) |(t,0)) 

= ^ e , g |(o,t)(^e^r)W 1(̂ 0) + D,,g 1(0,0(^e^r)t2^ 1̂^̂^̂^ [D.^xf^ > 0, 

- g , (0 , t )a( t ) + g,(0, t )^( t ) , ^ > 0 , 

Dl^P |(t,0) = ( ^ ' g | r ( t , 0 ) ) ( ( ^ e ^ r ) |(,,o), ( ^ e ^ r ) |(,,o)) + Dg | r ( t , 0 ) ^ e ^ r |(,,o) 

= ... + D2g\iodDl^f^\m 
= guu{0, t)a^t) + 2g,,(0, t)a{t)p{t) + g,,(0, t)P^{t) 

+gn(0,^)a(t) + g,(0,^)r(t) . 

In particular, for p and q defined on page 196, 

we compute De,q |(t,o) = Dp |(t,o) • [̂  ^ J . < 

The example illustrates that it is convenient and shorter to give separate names, 
a, y5, (7, r , to the partial derivatives of r evaluated on the edge E. We can in fact specify 
just the partial derivatives rather than all of r: if we group the two components of each 
derivative into a vector we can define r in terms of C^~-^-vector fields along r{E) (Lemma 
3.2 of [53]). Provided the derivatives are sufl&ciently diflFerentiable in the direction e-^ 
perpendicular to E we thereby prescribe the Taylor expansion of r (by the Whitney-Stein 
Theorem). 

8.2.3. Geometric continuity at a vertex 
We extend our new notion of geometric continuity to n patches meeting at a common point, 
e.g. at a point of the global boundary where the patches may meet without necessarily 
enclosing the point (c.f. Figure 8.7). 

Definition 8.2.4 {G^ enclosure) The C^ geometry maps ĝ  : Aj —>• R^,z = l , . . . , n , 
meet G^ via r^^^+i, z = 1 , . . . , n - 1 with corner Q G M̂  if 

• gi and gj+i join G^ via r̂ ^̂ +i along gi+i(E,+i), 

• g.(S,(0)) = Q, 
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Figure 8.7. Patches meeting at a corner Q 
mod n) + 1. 

g.(£,(0)) = gi(E-{l) - g,(£j(0)), J = [x 

• the normalized tangent vectors of each gi sweep out a sector of a disk and these 
tangent sectors lie in a common plane and may touch but do not overlap. 

The C^ geometry maps form a G^ enclosure of the vertex Q if additionally gn and gi join 
G^ via T^^i along gi{Ei). 

The regularity of the C^ geometry maps implies that each tangent sector is the 1 to 1 
image of a corner formed by the non-collinear edges E~ and E of the domain. Moreover, 
the geometry maps do not wrap around the corner more than once. The common plane 
referred to above is therefore the tangent plane and, by the implicit function theorem we 
can expand the geometry maps as a C^ functions at Q. 

Where a point is enclosed by three or more patches, additional constraints on r and 
g arise because patches join in a cycle. If one were to start with one patch and added 
one patch at a time, the last patch would have to match pairwise smoothness constraints 
across two of its edges. More generally, if all patches are determined simultaneously, a cir­
cular interdependence among the smoothness constraints around the vertex results. This 
circular dependence implies composition constraints on admissible r and vertex enclosure 
constraints, on the g .̂ The latter imply for example the important practical fact that it 
is not always possible to interpolate a given network of C^ curves by a smooth, regularly 
parametrized tangent-plane continuous surface with one polynomial patch per mesh facet 
[85]. A characterization, of when a curve network can be embedded into a curvature 
continuous surface can be found in [54]. 
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Figure 8.8. The derivative D^D2Pi of a geometry map p^ at the central vertex is rep­
resented symbolically as a •, o, or o placed m units into the direction of the first edge 
and n into the second. Elements of the total-degree 2-jet p are marked •, elements of 
the coordinate-degree 2-jet J^ are marked • or o, elements of j ^ are marked •, o, or o. 
The higher-order derivatives H^ appearing on the right hand side of the vertex-enclosure 
constraint system are marked by diamonds o. 

To discuss the details, the /c-jet notation (c.f. page 199) is helpful: 

Definition 8.2.5 The coordinate-degree A:-jet, J^p, is a vector of directional derivatives 
DIDIP, i^j G {0 ,1 , . . . , A:} sorted first with key i -\- j , then, within each group, with key i. 
The total-degree k-^et, j'^P; consists of the first (2) entries of the coordinate-degree k-jet. 

For example, as illustrated in Figure 8.8 (see also [59], p.61, [53]), 

f p : - (p,Ap,I^2P,^?P,Ai^2P,Z)^p), 
J2p := {P,DIP,D2P,DIP,D,D2P,DIP,DID2P,D,DIP,DIDIP). 

The composition of k-jets, i^g |r(£) o j^r \E '•= j^(g o r) l̂ ;, is associative and has the 
identity map id as its neutral element. In A:-jet notation the conditions for geometric 
continuity are 

J^P U = f g |r(E)OJ^r \E. 

Composition constraint on reparametrization maps 
Assume now that the C^ geometry maps gj,2 = 1, . . . ,n, meet G^ via Ti^i^i with corner 
g,(0), 0 G R^ i.e. ri,i+i(0) = 0 and 

j ^ g l lo = j ^ ( g n O r n , l ) |o = . . . = j ^ ( g 2 0 r 2 , 3 0 . - . o r n , l ) lo 

= j^(giori,2 0...orn,i) lo 

By the implicit function theorem, since gi is regular, Dgi has a left inverse in the neigh­
borhood of 0 and that implies the Composition Constraint 

f (ri,2 0...orn,i) | o = f i d |o, 
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i.e. the Taylor expansion up to kth order of the composition of all reparametrizations 
must agree with the expansion of the identity map. 

Example For k = 1 and n = 3 and with rij{0, t) — (i, 0) we have 

ri,2or2,3 or3,i |o = 0, 

Dxx;iDv2^zDv'^^x |o = L) id |o. 

With scalars Aj and /x ,̂ the second equation is equivalent to the matrix product 

"Ai 1' 
Ml 0 

"A2 1' 
M2 0 

As 1' 
Ms 0 

= 
1 0" 
0 1 

which is in turn equivalent to 

/̂ iM2/̂ 3 = - 1 , \j[ii^\, 2 = l , 2 , 3 , j = (z mod3) + l. 

In general, the G^ constraints at 0 imply H^Li Mi — (~1)"- -^^ Expansion of the nonlinear 
constraints for A: = 2 is shown in Section 7.2 of [53]. o 

Lemma 8.2.1 A symmetric reparametrization TIJ = r that satisfies the Composition 
Constraint for a given n is defined by 

r(0) = 0, Dr= [''!.'î ^^ J] , a = —, D''r = 0,K>l. 

Proof The eigenvalues of D r are the n th unit roots e'^^^~^^. Therefore DTI^2DT2,3 . •. Dr^^^i -
(DT)^ = Did. Since, by Faa di Bruno's law, at least one factor of the expansion of 
D'^{TI^2 O r2,3 o . . . o Fn î) is a higher derivative of r, D'^{ri^2 o 1*2,3 o . . . o rn,i) = 0, for K, > 
1. txi 

Vertex enclosure constraints 
Another set of constraints applies to geometry maps. Since the G^ constraints of two 
edge-adjacent patches have support on the first k layers of derivatives counting from each 
edge, the constraints across two consecutive edges of a geometry map share as variables 
the derivatives D^D2 with m < k and n < A: at the vertex, i.e. overlap on the coordinate-
degree /c-jet of the geometry map at the vertex (markers • and o in Figure 8.8). 

If n is the number of patches surrounding the vertex, then there are n(A:-M)^ overlapping 
continuity constraints and an equal number of variables in the form of derivatives in the 
corresponding coordinate degree A;-jets J^p^. Can the constraints can always be enforced 
by choosing J^p^ appropriately? Already for /c = 1, the resulting 4n by 4n constraint 
matrix M is not invertible if n is even but it is invertible for n odd. For A: > 1, more 
complex rank-deficiences arise while the right hand side is in general not in the span 
of the constraint matrix: unlike the univariate case, where we consider only the first k 
derivatives for G^ joins, the G^ vertex-enclosure constraints involve derivatives of up to 
order 2k\ 

Depending on the data and the construction scheme, some of the higher derivatives 
are fixed. For example, prescribing boundary curves pins down D\D2P for all i. Even 
when the goal is to just identify degrees of freedom of a free-form spline space [37],[65], 
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the underlying splines must have consistent derivatives up to order 2k. There is one well-
studied exceptional case: if the corner Q is the intersection of two regular C^ curves and 
n = 4 then the constraint system becomes homogeneous, removing the linkage between 
the A;-jets and the higher derivatives. Since the constraint matrix is additionally rank 
deficient it is possible to interpolate the curve data by low-degree, parametrically C^ 
surfaces [40,41]. The corresponding free-form splines are tensor-product splines in the 
sense of Coons and Gordon [18,41]. 

When the reparametrizations are linear as in Lemma 8.2.1 then determining the matrix 
rank is similar to determining the dimension of a spline space [2], however with the 
additional requirement that the 'minimal determining set' D^D2Pi be symmetric. By 
contrast, the analysis of the dimension of spline spaces allows choosing one geometry 
map completely and then finding extensions that respect the continuity constraints. This 
misses the crucial rank deficiencies that depend on the parity of k and n. 

Vertex-enclosure constraints are weaker than compatibility constraints. For example, 
the twist compatibility constraint requires that mixed derivatives are prescribed consis­
tently since D1D2P — -D2^iP niust hold for a polynomial finite element (see e.g. [4]). 
Mixed derivatives at a vertex can be prescribed inconsistently by independently prescrib­
ing transversal derivatives along abutting edges emanating from the vertex. 

Incompatibility can be accomodated by using poles or singular parametrizations (see 
page 8.4,(2), 3rd and 4th item). 

The main task ahead is to characterize the rank deficiencies of the Ji{k -h 1)^ x n(A; -h 1)^ 
matrix M of the G^ constraint system 

D7'D^(p,_i - Pz o r^) |o = 0 forn, m G { 0 , . . . , A:}, z = 1 , . . . , n 

in the variables D^D2Pi \o,n,Tn E { 0 , . . . , /c}, 2 = 1 , . . . , n. In terms of A:-jets and iff := 
{D^'^'^D2Pi)m=i,...,k,i=o,...,k-m, the vcctor of higher derivatives of pj, for example, Hf := 
{Dfpi, DlD2Pi, Djpi), the constraint system reads (all blank entries are zero) 

M j ' P z N,H^ M 

-Ml 

-M2 
I -M3 

/ -MA 

/ 

M, 
Mt, 0 

Mc,^ 

Ml k,k,i 

* MkA. 

and Ni 
0 

As for connection matrices in the univariate case, page 199, the entries of each {k -\-1)^ x 
(A; + 1)^ matrix Mi and each (/c + 1)^ x /c(A: + l ) / 2 matrix Â^ are derivatives of r^. Mt^i 
corresponds to the (A:4-2)(A; + l ) /2 /lomo^eneows constraints j^Pi_i = Mt^ij^Pi that involve 
only derivatives of total degree k or less (• in Figures 8.8 and 8.9) and that can always be 
enforced by choosing one of the jets, say j ^ p i , and extending it to the remaining patches; 
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Figure 8.9. The total-degree 1-jet, illustrated as '• ' , represents the same linear function 
for all patches. The n = 6 constraints involving the '11' derivatives DlDl, o, in the 
coordinate-degree 1-jet but not the total-degree 1-jet give rise to a 6 x 6 matrix Mc that 
is rank deficient by 1, i.e. of rank 5. This (vertex-enclosure) constraint can only be solved 
if the right hand side, defined by the (component normal to the tangent plane of the) '20' 
derivatives DID2, o, lies in the span of the constraint matrix. If all reparametrizations 
are the same, this is the case exactly when the alternating sum of the '20' derivatives 
is zero, i.e. if the average of the elements marked -h equals the average of the elements 
marked — . 

that is, the total-degree /;:-jets represent a single polynomial expansion up to total degree 
k at the vertex, a characterization that is also known as the n -h 1-Tangent Theorem [81], 
[56]. 

Each submatrix Mc,i corresponds to the remaining k{k + l)/2 constraints that involve 
derivatives of total degree greater than k (the diamonds o in Figure 8.8 and 8.9). By 
blockwise elimination, the rank deficiency of A4 equals the rank deficiency of / — ]1[ M^ 
and the solvability for arbitrary right hand side depends, after removal of the homogeneous 
constraints, only on the rank of / — J^ ^c,i- Each submatrix Mc^i decomposes further into 
skew upper triangular matrices Mk/,i of size i x i that are grouped along the diagonal. 

Example For k = 1 we have the constraints at 0 (c.f. Figure 8.9) and Tat '•= D^D2r |o 

00 

01 

10 

11 

DlD'^Pi = ADJD2V+1 + M^?^2P^+l 

That is, dropping the subscript i for simplicity, each matrix-block [MN] of G^ constraints 
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has the form 

00 
10 
01 
11 

00 10 01 11 20 
1 

A 
1 

J'] 
0 

^ 1 1 H' A 

Here Â  is the last column, below '20'. The entries mn to the left of the matrix indicate 
that the row corresponds to the constraint D^D2{Pi~i — (PiOTj)) = 0 while the entries on 
top indicate the derivatives DJ^D^Pi that enter the constraint as variables. For example, 
the column '20' corresponds to the variable Dfpi. The constraint rows labeled '00','01', 
and '10' correspond to the total-degree 1-jet and are solvable leaving j^pi free to determine 
the tangent plane by its three variables D^D2pi |o = PilO), ^iPi(O) and Z^2Pi(0) with 
normal n = DiPi(O) AJ92Pi(0). The (more interesting) constraint matrix Mc corresponds 
to the constraint row and column '11'. With p ^ = n • DlD^pi and pf° = n • Djpi 

1 -M2 

- / ^ n 

p}^ 
p^^ 

Pî  

Aipf 
A2pf 

^nPn 
20 

By the Composition Constraint on page 205, YYi=i M̂  — ("l)"^- Therefore the rank of the 
matrix is n - 1 if n is even and n if n is odd [111], [112], [28], [128], [84], [29]. Moreover, 
if we assume symmetry, i.e. /ij = — 1 and Â  = A for z = 1, . . . , n, and if n is even then the 
vector V with v(2) = (—1)* spans the null space of Mc and therefore the Alternating Sum 
Constraint has to hold for the system to be solvable (c.f. Figure 8.9): if A 7̂  0 then 

0 ^ ( -
i=l 

l)^pf 

For A; =:: 2, [MN] has the form 

00 10 01 20 11 02 21 12 22 30 31 40 
00 1 

A ij. 

rfy rf̂ J A2 2A;x /x^ 

10 
01 
20 

11 

02 

21 

12 

22 

M l M l 

*^21 ^21 
_[1] -[2] 
•^12 "^12 
^[1] r t2] 
^^22 ^ 2 2 

where 

A:=XD + r! 

C 2A^ //2 A2 

/x A 

/ J K //2 L 2A/i A2 

[1] 
20 5 B i ^ / i D + A^ + r l , C -=^iE,D:=^2r[l E 2rf'5 ^ ^ ^ 1 1 ' 

a •= D72 + 2Ari2J + 24\J W. Ji] H := DE + 2/irf/J + 2ArfJ + 2r|l, / : = ^ V 2 + 2/ir | , 

J := 2IJLD + 2A^, K := 2/iE, L := 2AL> + v'^l + 2A/i 
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[MN] decomposes into the upper left 6 x 6 block Mt and, from columns '21 ' , '12' and 
'22', 

Mr. 
J K 11^ 

M2,i = M^ M2,2 = 
2A/i 11^' 

Nr = 

A2 

A 
L 2A/X A2 

Remark: C, J and K above depend directly on D and £" in the C^ reparametrization 
matrix. To define a weaker notion of continuity in the spirit of Frenet-frame continuity 
for curves of Section 8.3.1 one would choose C, J and K independently. 

For the remainder of the discussion we assume that all rij are linear and equal to r, as 
in Lemma 8.2.1 (see [86] for a more general analysis and [30] and [126] for a discussion of 
the case k — 2m terms of Bezier coefficients). Such equal reparametrization is the natural 
choice for filling 'n-sided holes' (Chapter N-sided Patches), and does not force symmetry 
of the patches: the tangent vectors, for example, need not span a regular n-gon (but span 
the affine image of a regular n-gon). If n = 4 then rank(/ - (M^^^)") = 0. That is, in the 
tensor-product case, since Nc = 0, one full coordinate-jet J^pi can be chosen freely and 
J^P2, J^Ps and J^p4 are determined uniquely by the continuity constraints. For general 
n, the rank deficiencies of / — M^ for k = 1,2,3 are listed in the following table. The 
results for larger k are sumarized in a conjecture in [86]. 

n /c 1 2 3 

3 
4 
6 

even > 6 
odd > 3 

0 
1 
1 
1 
0 

2 
3 
2 
1 
1 

2 
6 
4 
2 
0 

Since only the Taylor expansion is of interest, the vertex enclosure constraints are inde­
pendent of the particular representation of the surrounding geometry maps. In particular, 
the vertex enclosure constraints apply to rational geometry maps in the same fashion as to 
polynomial geometry maps unless the denominator vanishes. The four known techniques 
for enforcing the vertex-enclosure constraints are listed in Section 8.4, page 218. 

8.2.4. Free-form surface splines 
One interpretation of the two types of maps defining the G^ free-form surface spline is 
that the reparametrizations r define, by gluing together domains, an abstract manifold 
whose concrete immersion into W is defined by the geometry maps, e.g. Figure 8.10. 
Free-form surface splines have a bivariate control net with possibly n-sided facets and 
m-valent nodes. Alternative names are G-splines [62] and geometric continuous patch 
complexes [53]. Geometric continuous patch complexes differ in their characterization by 
requiring additionally a connecting relation that identifies (glues together) domain edges 
[53], [50], [104]. This connecting relation is needed when G^ continuity is defined in terms 
of the existence of reparametrizations rather than by explicitly identifying the (first A: -f-1 
Taylor terms of the) reparametrization. 
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Figure 8.10. A free-form spline surface. 

Definition 8.2.6 A G^ free-form surface spline is a collection of C^ geometry maps and 
reparametrizations such that 

• at most one reparametrization is associated with any domain edge; 

• if a reparametrization Tij exists between the edge E of the domain Ai of gj and an 
edge of the domain of gj then gj and gj join with geometric continuity G^ via Tij 
along gi{E) and Tij is C^; 

• any sequence of C^ geometry maps ĝ  : Â  i—)• R^,2 = l , . . . ,n , such that gj and 
gi+i join G^ via Ti^i^i along gi+i(E'i+i), and gi(£Ji(0)) = Q, meet G^ with corner 

Free-form surface splines with different reparametrizations do not form a linear vector 
space. This follows directly from the same statement for G^ continuous curves. For 
example, we can replace lines with planes in the example shown in Figure 8.5. However, 
if all reparametrizations agree then we can form an average free-form surface spline and 
the average inherits the continuity by linearity of differentiation. Section 8.4 outlines 
constructions. 

8.3. EQUIVALENT AND ALTERNATIVE DEFINITIONS 

8.3.1. Matching intrinsic curve properties 
In [13], Boehm argues that there are (only) two types of geometric continuity: contact 
of order /c, a notion equivalent to G^ continuity, and, secondly, continuity of geometric 
invariants (but not necessarily of their derivatives). 

Two abutting curve segments have contact of order k if they are the respective limit 
of two curve sequences whose corresponding elements intersect in A: + 1 points and these 
points coalesce in the limit. In particular, for a space curve x : M —> M̂  with Frenet frame 
(Chapter 2 on Geometric Fundamentals) spanned by the tangent vector t, the normal 
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Figure 8.11. In the neighborhood of Q, a G^ free-form surface spline with reparametriza-
tions r = r^or can be viewed as a manifold with chart consisting of pieces q̂  = r̂ " -̂ °gr̂  

vector m and the binormal b and ' denoting the derivative with respect to arc length 

X" = t' = KUl, 

x!" = t' ' = -K^t + t^'m + /crb 

K = vol2[x',x''], 

contact of order 2 implies that x ' = t and x" are continuous and therefore that tangent, 
normal and curvature are continuous. Contact of order 3 implies continuity of x', x' ' 
and x''' and therefore continuity of Frenet frame, curvature and torsion. Moreover, the 
derivative of the curvature must be continuous tying the entry labeled a in the connection 
matrix displayed on page 199 in Section 8.2.1 to quantities already listed in the matrix. 
Similarly, contact of order k in M? requires K, G C^~^ and r G C^~^ and therefore further 
dependencies among the entries [42]. 

By contrast, continuity of the A:th geometric invariant, also called kth order Frenet 
frame continuity [31], [38], and abbreviated F^, does not require that the a-entry (or, 
more generally, any subdiagonal entry) depend on other entries in the connection matrix. 
Frenet frame continuity requires that the frame of the two curve pieces agrees and only 
makes sense in E^, for d > k. Boehm [13] shows that while geometric continuity is 
projectively invariant, Frenet frame continuity is not. For surfaces, an analogous notion 
of continuity in terms of fewer restrictions on the connection matrix entries, is pointed 
out on page 209. 
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8.3.2. C^ manifolds 
Differential geometry has a well-established notion of continuity for a point set: to verify 
kth order continuity, we must find, for every point Q in the point set, an invertible C'^ 
map (chart) that maps an open surface-neighborhood of Q into an open set in R^. If two 
surface-neighborhoods, with charts qi and q2 respectively, overlap then q2oq7^ : R^ —)> M̂  
must be a C^ function. This notion of continuity is not constructive: while it defines when 
a point set can be given the structure of a C^ manifold, say a C^ surface, it neither provides 
tools to build a C^ surface nor a mechanism suitable for verification by computer. 

However, geometric continuity and the continuity of manifolds are closely related: every 
point in the union of the patches of a G^ free-form surface spline admits local parametriza-
tion by C^ charts if the surface does not self-intersect: the union is an immersed C^ surface 
with piecewise C^ boundary. We face two types of obstacles in establishing this fact. First, 
the geometry maps should not have geometric singularities on their respective domains 
since these would prevent invertibility of the charts, and the spline should not self-intersect 
so that we can map a neighborhood of the point in M? to the plane in a 1-1 fashion. Es­
tablishing regularity and non-self-intersection requires potentially expensive intersection 
testing (Chapter 25 on Intersection Problems). The second apparent obstacle is that the 
patches that make up the surface are dosed sets that join without overlap. Therefore the 
geometry maps cannot directly be used as charts. However, as illustrated in Figure 8.11, 
we can think of the charts as piecewise maps composed of n maps q̂  = r~^ o ĝ "̂  that 
map open neighborhoods in W (grey oval) to open neighborhoods in W (grey disk). The 
constructions [50,78,19] explicitly start by constructing the union of neighborhoods and 
connecting charts and then compose these with (rational) spline basis functions. 

8.3.3. Tangent and normal continuity 
A number of alternative characterizations exist to test a given G^ free-form spline complex 
for tangent continuity or to derive G^ free-form splines. The criteria consist of an equality 
constraint establishing coplanarity of the first partial derivatives at each point of the 
common boundary of two patches (c.f. Figure 8.4), and an inequality constraint on the 
reparametrization that prevents a 180°-flip of the normal for the regular geometry maps. 
In the following lemma, e is the direction along the preimage E of the common boundary 
p{E) and, as is appropriate for least degree polynomial representations (see page 202), p 
and g have the same parametrization along p ( ^ ) . 

Lemma 8.3.1 (Tangent continuity) Letp andg be regular parametrizations andp \E 
g l̂ ;. The maps X, ji and v are univariate scalar-valued functions and 

c 

n 

n 

t 

= DeP \E = Deg U, 

= CAL>e±g 1̂ ; 

= -CADgXp 1̂ ;, 

= n A c 

are functions restricted to an edge E mapping into W. The following characterizations 
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of G^ continuity are equivalent. 

(le) De±p = Qipt H- ^pC, jDgXg = agt + P^c 

(2e) Ac = M^e-Lg \E + i^^e-LP U, 

(3e) det [c, D^±g \E, D^±p \E] = T^' D^±p \E = 0, 
n n 

and apQjg < 0, 

and IIP > 0, 

and n • n > 0, 

ilz) 
(2») 

(3z) 

(4e) 

With Dr IE = [^^], (2) is the definition of a G^ join in Definition 8.2.3. Figure 8.4 
illustrates the geometric meaning of (2). 

Proo/Regularity implies n(^) ^ 0 for all t on E. 
(1) = > (2): Adding the two equalities (le) after multiplication with u = —a^ and 
fi = ap respectively (2e) holds in the form apDe±g — agD^±p = (o^p^g — ag/^p)c. 
(2) = > (3): The inner product of both sides of (2e) with n yields (3e). The cross product 
A of (2e) with c followed by the inner product • with /in yields 0 = M^||n|p — /iz/n • h. 
Then (2i) implies (3i). 
(3) =^ (4): From (3e) we have n ± De±p and, by definition, n ± c. By regularity 
n / | | n | | = =bn/||n|| and (3i) decides the sign. 
(4) =^ (1): Regularity and (4) imply (le) that the partial derivatives D^xp and D^i-g 
can be expressed in the same (orthogonal) coordinate system-spanned by t and c. The 
cross product of each equality with c yields —n = apC A t and n = cVgC A t and by sign 
comparison (li). Dxi 

Formulation (4), comparison of normals, can be turned into a practical tool for quantify­
ing tangent discontinuity. While (1), (2) and (3) are unique only up to scaling, and there­
fore 'e-discontinuity' measured as 6 > ||apt+/?pC—DgjipH or € > WfiD^xg+vD^xp, —AZ êgll 
or 6 > |n- De±p\ is not well-defined, the angle between the two normals is scale-invariant. 

The symmetric characterization (1) asserts the existence of a Taylor expansion along 
the boundary that is matched by g and p . This has been used for constructions [16], 
[83], [105]. The direct equivalence of (1) and (2) for polynomials is proven in [23] and [55] 
generalizes this Taylor-expansion approach to kih order. 

If p and g are rational maps, i.e. quotients of polynomials, the continuity conditions 
can be discussed in terms of polynomials in homogeneous coordinates keeping in mind that 
we may scale freely by a scalar-valued function a{u^v): D'^p \E = jD'^(crgor) 1̂ ;, K, = 
0,...,k[127]. 

If p and g are polynomials then, up to a common factor, so are the scalar functions, 
A, (J. and z/ in (1). In fact, after removal of common factors, the degree of the functions 
is bounded by the degree of p and g. This comes in handy when looking for possible 
reparametrizations r between two geometry maps. 

Lemma 8.3.2 / / p and g are polynomials, then, up to a common factor, X, fi and v in 
(1) are polynomials of degree no larger than respectively 

degree{De-Lg) + degree{De±p)^ degree{Deg) + degree{D^i.p) and 

degree{Deg) + degree{D^±g). 
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s 
Figure 8.12. A global periodic parametrization. 

Proof Due to regularity of g along the boundary, the pre-image of the boundary is 

covered by overlapping intervals U such that for each U there are two components ,̂ j G 

{x, y, z} with det M^j ^ 0, Mij := ^^^^ n̂ ^̂ L?] ' Ŝ"̂^ the j t h component of g. Therefore 

we can apply Cramer's rule to 

M,, .i=4»;;S 
and obtain 

["/J' det Mij 

] ' 

] 

T h e degree of A, // and z/ is bounded by t h e degrees of t he de t e rminan t s since the co mmo n 

factor u/ de t Mij can be e l iminated in t h e cons t ra in ts . Since de t M^j vanishes a t mos t a t 

isolated poin ts , t he degree bound can be ex tended from U t o t he whole interval . cxi 

T h e charac ter iza t ions of geometr ic cont inui ty in t e rms of geometr ic invariants ( tangents , 

curva tures) are character iza t ions of cont inui ty by covariant derivatives [53]. 

L e m m a 8 . 3 . 3 Two C^ geometry maps p and g jo in wi th geometr ic cont inui ty G^ via 

the C^ reparametrization r along p{E) if there exist normal vector fields Up and ng o / p 

and g respectively such that 

D^Iir. = D''n, g |r(E), K = 0,... ,k — 1. 

In particular, Dn represents the shape operator [68], principal curvatures and directions 
[120], [58] or the Dupin indicatrix [67]. [58] shows in particular equivalence of G^ continu­
ity with curvature continuity based on sharing surface normal, principal curvatures and 
principle curvature directions in R^. 

8.3.4. Global and regional reparametrization 
Often we can view a free-form surface as a function over a domain with the same topolog­
ical genus, e.g. an isosurface of the electric field surronding the earth may be computed as 
a function over a sphere [1]. More generally, we can assemble an object of the appropriate 
topological genus by identifying edges of a planar domain and then define a standard 
spline space over the planar domain, mapping into M? with additional periodic boundary 
conditions and creating 'orbifolds' [35], [123]. This approach circumvents the need for 
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Figure 8.13. Regional parametrization: an n-sided cap g is Hermite-extended via i/(p, go 
r) to match a given spline complex p. 

relating many individual domains via reparametrizations, since there is only one global 
domain (modulo periodicity). Basis functions with local support in the domain yield local 
control. For practical use one has to consider three points. First, the genus of the object 
has to be fixed before the detailed design process can begin - so one cannot smoothly 
attach an additional handle later on. Second, the spline functions have to be placed with 
a density that anticipates for example, an ornate protrusion of the surface where more 
detail control is required. Third, the 'hairy ball theorem', the hair on a tennis ball cannot 
be smoothly combed down without leaving a bald spot or making a parting^ implies that the 
global mapping from subsets of the plane to, say, the sphere has a singularity. The the­
orem, a consequence of the Borsuk-Ulam theorem, states more formally "If f \ S'^ -^ S'^ 
is a continuous map from the sphere to itself then there exists a point where x and f{x) 
are not orthogonal as vectors in M "̂ and in particular, with x a point on the sphere 5^ 
and f{x) a corresponding unit tangent, "the tangent field on a sphere in E? has to have 
a singularity". The singularity is nicely illustrated in [57]. 

Prautzsch [99], and co-workers [76],[100], and Reif [102], [104] developed the idea of 
filling n-sided holes by building a regional parametrization r for a neighborhood of a point 
Q where n patches meet (see Figure 8.13). The regional parametrization stands in contrast 
to the local reparametrizations along an edge used to define free-form surface splines, and 
the global parametrization discussed earlier. The regional parametrization is composed 
with a single map g, for example a quadratic polynomial. This approach considerably 
simplifies reasoning about the resulting surfaces. By separating issues of geometric shape 
from valence and local topology, verification of smoothness of the resulting surfaces at Q 
(which could be a major effort of symbolic computing) reduces to showing that r is smooth 
since smoothness is preserved under composition with an (infinitely smooth) polynomial 
geometry map. Reparametrization gives g o r the structure of a collection of standard 
(tensor-product or total-degree) patches that can then be connected to a surrounding 
ring of spline patches p via Hermite interpolation / / (p, g o r) of degree (degree of g times 
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Figure 8.14. Gauss curvature at a higher-order saddle point: the central point must have 
zero curvature. 

degree of r ) . By fixing the degree d of the polynomial beforehand, independent of the 
smoothness k to be achieved, and choosing the C^ parametrization in the domain to be of 
bidegree (A; + 1 ) , the regional schemes were the first to claim a construction of C^ surfaces 
of a degree linear in k, namely of degree d{k + 1). In particular, Prautzsch and Reif 
proposed to choose polynomials of degree d = 2 which yields C^ free-form constructions 
of degree bi-6. 

Fixing the degree of g comes at a cost. While quadratics come in a large number 
of shapes [93] they are not able to model, for example, higher-order saddle points. A 
higher-order saddle point is a point on a C^ surface with three or more extremal curva­
ture directions; hence it has zero curvature as illustrated in Figure 8.14. Since quadratics 
that have a point of zero curvature must be linear this yields flat patches rather than 
a flat point. For the particular example of a 3-fold saddle point, we could address this 
shortcoming by increasing the degree of the polynomial to three and the overall degree 
to bi-9 [104]. But this does not address the underlying problem, namely the mismatch 
between n patches meeting at Q and the fixed number of coeflScients of any single poly­
nomial of fixed degree d. In [89] it was therefore suggested to replace g by a (total-degree 
cubic) spline. This yields at least n degrees of freedom. 

Figure 8.15. (left) Zero set of x^ + /̂̂  = 0 and (right) tangent sectors of two possibly 
smooth patches whose relative position does not allow the reduction to smoothness of a 
curve by cutting with a transversal plane (dashed line). 



8.3. EQUIVALENT AND ALTERNATIVE DEFINITIONS 217 

8.3.5. Implicit representation 
Under suitable monotonicity and regularity constraints the zero set of a trivariate poly­
nomials in BB-form over a unit simplex defines a single-sheeted, singly connected piece of 
surface that we can also call a patch (Chapter 15 on Algebraic Methods). If p, g : R^ -^R 
are two trivariate polynomials in BB-form that join C^ as functions at a common point 
£• € M̂  or across a common curve E eR^ then generically (see caveat below) the corre­
sponding patches join with contact of order k at E: E is the limit of A: H- 1 intersection 
points (curves) Ej of functions pj and QJ converging respectively Ej \-^ E, Pj \-^ p and 
Qj y-^ q. Just as in the parametric case, we have to make sure that the trivariate polynomi­
als are regular at E, as the following example demonstrates: Let p{x, y, z) = x^+y^, x < 0, 
q{x, y, z) — x^ -\-y^.,x > 0. Both p and q are polynomial pieces, have single-sheeted, singly 
connected zero sets and join C^ for any k\ but the zero set is not smooth at the intersection 
(see Figure 8.15 left for a cross-section.) 

Since we are only concerned with the zero set of the polynomial, we do not actually need 
that the polynomials join smoothly but can scale the joining pieces by scalar functions a 
and h ([125], [124], [72]): 

Definition 8.3.1 Two trivariate polynomials p and q join with G^ continuity at Q if 

i'{p-a)\Q=f{q-b)\Q, a ( Q ) ^ 0 , 6 ( Q ) ^ 0 . 

Two trivariate polynomials p and q join with G^ continuity along an irreducible curve 
E = {q = 0)n{h = 0) if 

i'p = i'iaq + bh'^'), a{E) / 0, b{E) ^ 0. 

One could intersect E with a transversal plane to obtain curves meeting in a point and 
avoid a separate definition for continuity along E (The analogous technique for parametric 
surfaces is called Linkage Curve Theorem [81], [56].) This approach, however, runs into 
technical problems, since implicit patches have corners and there may be just one point 
of intersection with a transversal plane. Similarly, the trivariate /c-jet }^p cannot just be 
replaced by a /c-jet along a line [36] since the domains may lie in the same half space and 
thus there is no plane that intersects both restricted domains in more than the common 
point (see Figure 8.15, right.) 

8.3.6. Generalized subdivision 
Near n-valent mesh nodes, uniform generalized subdivision surfaces consist of an infinite 
sequence of ever smaller, concentric rings that are internally parametrically C^. The 
rings also join one another parametrically C^. Yet, by the Borsuk-Ulam theorem (Section 
8.3.4) there cannot be a parametrically C^ mapping from the plane to objects of arbitrary 
genus without a singularity. In a sense the (effect of the) necessary reparametrization is 
therefore concentrated near the limit points of n-valent mesh nodes. Correspondingly, 
the analysis of smoothness of generalized subdivision surfaces has focused on the limits 
of the n-valent mesh nodes (see e.g. [3] [94], [95]). At present it appears that uniform 
generalized subdivision cannot generate curvature continuous surfaces unless the control 
net is in special position. 
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Figure 8.16. Generic 'Tannenbaum' layout of Bezier coefficients along a boundary (hori­
zontal line) between two patches that transition from a 4-valent point (left) to an n-valent 
point (right). 

8.4. C O N S T R U C T I O N S 

An algorithm for constructing C^ surfaces subject to data, such as a control net or a 
prescribed network of curves, is a specification of the C^ reparametrizations r up to kth 
order and of the geometry maps g (see also n-sided hole filling (Chapter N-sided Patches)). 

The generic approach of stitching together individual spline patches (after possibly 
manipulation or refinement of the control structure) consists of 

• choosing a consistent reparametrization r at the n-valent points and deriving a 
reparametrization for two edge-ajacent patches as a Hermite interpolant to the 
reparametrizations at the end points of the edge; 

• solving the vertex-enclosure problem at each point and deriving the geometry maps 
of abbutting patches as a Hermite interpolant to the Taylor expansions at the ver­
tices. 

The generic construction is as follows. 
(1) If no patches join at one boundary endpoint, corresponding to s = 0,t = 0, and ni 
patches join the other with s = l,t = 0 then a Hermite interpolant (in s) to the linear 
symmetric reparametrization of Lemma 8.2.1 at the endpoints, up to kth. order is given 
by 

h(s) = a{s) cos — 
no 

27r 
is) cos -

ni 
r(t ,5) = (5-h2t/i(s), - t ) , 

where a{s) and P{s) are C^ functions such that a{s),/3{s) > 0, 

a(0) = /3(1) = 1, a ( l ) = /3(0) = 0, D^'aii) = D^^{i) - 0, z G {0,1}, /̂  > 1. 

The interpolant is constructed so that the Taylor expansions of the reparametrization at 
either endpoint do not interfere, i.e. D2T{i) = 0 for z G {0,1}, /̂  > 1 [47]. For the special, 
tensor-product transition case of ni = 4, we obtain the 'Tannenbaum' layout of Bezier 
coefficients shown in Figure 8.16. 
(2) The vertex-enclosure problem (for example for G \ n even) can be solved by one the 
following four techniques [84]: 

1. Choosing H^ (e.g. the curve mesh) in the span of the constraint matrix M] 
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2. Splitting patches whose boundaries are prescribed into two or more pieces so that 
the boundary curves of the split patches can be freely chosen in the span of the 
constraint matrix (e.g. [32], [33], [96]); 

3. Using rational patches to introduce second-order poles at the vertices (e.g. [43], [16] 

[54]); 

4. Using a non-regular parametrization [84], [79], [102]. 

Thus, if we are not concerned about the degree, it is straightforward to create G^ free-
form surface splines for any k. The focus over the past decade has been to reduce the 
degree of the surface representation, and to obtain better surface shapes (Chapter on 
Surface Fairing). For example, while the degree of curvature continuous surfaces prior 
to [99] and [102] was at least bi-9 (100 coefficients per patch) [131], [52] newest results 
achieve curvature continuity with at most 24 coefficients per patch [90]. 

Some special techniques, in particular for tangent continuity (c.f. Lemma 8.3.1), are as 
follows. 

• Given the common boundary with derivative c = Dgp 1̂ ; = D^g |^, [16], [83], 
[23] use a symmetric construction, picking t as minimal Hermite interpolant to the 
transversal derivative data at the endpoints and 

De±p = ap t + ^pC, De±g = ttgt + ^gC 

with t A c / 0 and ap / 0 7̂  ag, cf. Lemma 8.3.1. 

• As illustrated in Figure 8.5 the average of two G^ joined curves or surfaces is gener­
ally not G^. But if all transversal derivatives of a patch along a boundary E{t) are 
collinear with a vector v, i.e. 

De^P \E = P{t)^ and D^^q 1̂ ; = q{t)v 

for scalar functions p and q with q/p < 0 then n = A/̂ /||A/"|| where N{t) := DeP |E Av 
is a normal common to both patches along the boundary [103]. 

Sabin [109] and [82] use formulation (2) of Lemma 8.3.1, n A D p = 0, to deter­
mine versal and transversal derivatives of p , for given n - thereby isolating the 
construction of a patch from its neighbor. 

[73] and [83] list a number of choices for reparametrizations for particular construc­
tions. 
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8.4.1. Free-form surface splines of low degree 
Goodman [37] introduced G^ splines of degree bi-2 for special control meshes that consist 
of quadrilateral facets and vertices of valence 3 or 4. The prototype meshes, that can be 
modified by quadrilateral refinement, the cube mesh and the dual of the cube with lopped 
oflf corners, are sphere-like shapes that, when symmetric, are curvature continuous (see 
[92]). Splitting each original quadrilateral facet 1 to 4, [103] derives a bi-2 G^ free-form 
surface spline. Splitting each quadrilateral facet into four triangles, [88] obtains a G^ 
construction of total degree 3 that also satisfies the local convex hull property, i.e. the 
surface points are guaranteed to be an average of the local control mesh. All constructions 
with quadratic boundary curve, however, suffer from a slight shape defect when they are 
to model a higher-order saddle point : due to the Alternating Sum Constraint on page 
8.2.3 the quadratic boundary curves must lie on a straight line. If the construction 
is additionally based on tensor-product patches then the shape defect is very noticable 
[49,91] at higher-order saddle points. 

The G^ free-form spline constructions of Prautzsch [99] and Reif [102] are of degree 
2(A: +1) if flat regions at higher-order saddle points are acceptable - and of degree d{k-\-l) 
if modeling of the local geometry requires a polynomial of degree d. [49] shows that a 
G^ degree bi-5 construction is possible; as stated the construction has a shape defect due 
to the quadratic boundary curve. At least algebraically, we can now model C^ free-form 
surfaces of unrestricted patch layout from patches of maximal degree (o? -h 2,3), d > 0 
with the flexibility of degree d, C^ splines at extraordinary points [90]. This approach 
generalizes to C^ surfaces of piecewise bidegree k -\- 1,2k -\- d — 2. 

8.5. A D D I T I O N A L L I T E R A T U R E 

Every paper on smooth surfacing defines some, possibly specialized, notion of geometric 
continuity. Some of the early characterizations can be found in [10] [9],[8] [24] [28] [32] 
[34] [70] [73] [75] [80] [108,107] [110], [111], [112], [118], [116], [117], [46], , [85], [96], [121], 
[119] [120] [130] [120] [129] and characterizations for curves in [6], [7], [51],[21], [31]. 

A number of publications specifically aim at clarifying the notion of geometric con­
tinuity. Kahmann discusses curvature and the chain rule [67], DeRose [24] reconciles 
continuity after reparametrization with the smoothness of manifolds (see also [26], [27]). 
Liu [74]characterizes C^ constraints in the form (1) of Lemma 8.3.1. Particularly well-
illustrated is Boehm's treatment of geometric and 'visual' continuity [11], [12] [14], [13]. 
Herron [58] shows directly the equivalence of first and second order geometric continuity 
with tangent and curvature continuity of surfaces. Further characterizations can be found 
in [63], [98,97],[23], [55], [25], [126], [122]. 

Hahn's treatment of geometric continuity [53] (see also [42]) served as a blueprint 
for Section 8.2 but diflfers in that he defines a G^ join in terms of the existence of a 
reparametrization, rather than making the reparametrization part of the definition. 

Warren's thesis [125] looks at geometric continuity of implicit representations and [36] 
is a tour de force of conversions of notions of geometric continuity between two patches. 

I am indebted to Tamas Hermann for closely reading the article and making numerous 
suggestions. Kestas Karicauskas introduced me to the term 'Tannenbaum' configuration 
(Christmas tree configuration). 
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Chapter 9 

Splines on Surfaces 

Marian Neamtu 

This chapter addresses the area of spline theory concerned with the construction of func­
tions defined on manifolds in three-dimensional Euclidean space. For the most part, the 
mathematical aspects of this discipline are in their infancy and therefore the presentation 
will have an exploratory character. 

9.1. I N T R O D U C T I O N 

Thus far in this book we have mostly encountered spline curves and surfaces whose pa­
rameter domains are subsets of the real line or the Euclidean plane. In particular, in 
several chapters of this book we became accustomed to the idea that a spline surface is 
the graph of a bivariate real-valued function or, alternatively, a parametric surface, which 
is the image of a planar domain under a vector function, or a collection of such functions. 
The parametric or free-form surfaces that are typically considered in the CAGD literature 
are composite surfaces consisting of a collection of individual surface patches of the form 
fi{Si), where 

fi:Si^M\ z - l , . . . , 7 V , (9.1) 

is a three-component vector function whose domain Ŝ  is a "simple" planar region, such 
as the standard triangle or the unit square. 

The functions fi are usually chosen to be polynomials of a fixed "low" degree, e.g., Bezier 
triangles or tensor products of univariate Bernstein polynomials, or rational functions. 
Moreover, the patches fi{Si) "fit together" so that they form a globally continuous, or 
even smooth, surface (see Figure 9.1). We refer the reader to Chapters 5, 7, and 8, for a 
discussion on constructing smooth free-form surfaces with polynomial and rational surface 
patches. 

The popularity of polynomial and rational composite surfaces in the CAGD community 
can be explained by the fact that they can be used to represent, in a robust way, a great 
variety of shapes and surfaces of arbitrary topological genus. However, in spite of the 
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Figure 9.1. Composite parametric surface. 

high flexibility and other attractive properties of such surfaces (see Chapters 4, 5, and 
8), in many situations of practical interest it is desirable to extend the above concept of 
a spline surface a step farther. Namely, it makes sense, at least in principle, to consider 
the more general case in which the domains Ŝ  in (9.1) are non-planar and hence are 
themselves surfaces. In particular, consider the problem of constructing scalar or vector-
valued functions 

f:S^]R' (^ = 1,2,. . .) , (9.2) 

whose domain S is a general surface in M^. There are a host of situations in applied 
sciences where such functions are likely to be useful. Let us briefly mention a few appli­
cations. The reader will undoubtedly be able to come up with many other examples on 
his/her own. 

• Scalar Fields. The function / can describe a scalar field associated with the sur­
face S. For example, S could be the surface of a combustion engine part and / 
could be the temperature as a function of location on the surface. Or, S could be 
the surface of the earth and / one of the following quantities measured at various 
locations on S: altitude above the sea level, temperature, intensity of the magnetic 
field, etc. Another example: given values of / measured on S, such as discrete 
pressures on an aircraft wing, an objective might be to determine the pressure at 
arbitrary locations on the wing. Yet another application, of interest in CAGD, is 
when / stands for a scalar field that reflects an aspect of the visual quality of S, 
such as the Gaussian curvature. 

• Vector Fields. A rich source of examples of vector fields defined on surfaces is fluid 
dynamics. Here the objective is to model/reconstruct velocity fields and other flow 
quantities that are governed by the Navier-Stokes equations. In particular, in mete­
orology and global atmospheric modeling, the fluid flow on the surface of the earth 
is described in terms of the horizontal velocity vector field (with longitudinal and 
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latitudinal components), together with atmospheric pressure [15,34,79]. Another 
example comes from the so-called moving boundary problems in partial differential 
equations, in which the surface S varies with time and represents a moving interface 
between solid and liquid phases of a given material substance, ice and water, say. 
Typically, the vector field associated with S has several components, for example 
the normal vectors to the surface S, its mean curvature, and the velocity of the 
moving boundary [45]. 

• Surface Design/Reconstruction. Some surfaces are often closely related to a given 
"reference" surface S or are even directly determined by this surface. For example, 
any scalar field / on S can be thought of or visualized as a surface in its own right, 
e.g., the surface 

S ' :={s + / (s )ns ,sGS}, (9.3) 

where ng is the unit surface normal at the point s. This is the reason why surfaces 
of this type are also sometimes referred to as "surfaces on surfaces" [11]. For ex­
ample, S' could represent the true surface of the earth, with S being the reference 
sphere/ellipsoid and / the height above sea level. Or, S' could be an offset surface 
to S, i.e., a surface whose distance to S is a fixed value (in which case the func­
tion / in (9.3) is identically equal to this value). In each of these cases it may be 
advantageous to use S as a natural parametric domain for S'. 

"Surfaces on surfaces" can also be viewed as surfaces in a higher-dimensional space. 
This is because the set 

S'' := {(s, /(s)), s € S} C iR' X iR^ (9.4) 

can be thought of as a two-dimensional manifold imbedded in M^'^^. In particular, if / 
is a scalar function, then S'' is a two-dimensional surface in four-dimensional Euclidean 
space. 

The first step in most surface reconstruction, modeling, and/or data-fitting problems, 
aimed at recovering an unknown function / from a set of data or at solving a partial 
diflferential equation, is to restrict the class of functions that are used. These restricted 
classes usually consist of "simple" functions that are suitable for numerical manipulation 
and at the same time can approximate well other (more general) functions. Thus, we 
typically work with spline-like or finite-element type functions, which have "piecewise 
character", i.e., they belong to a linear space with locally finite dimension. In the context 
of this chapter, / will be "composed" of functions fi ' Si ^ M^ {k = 1,2,...), where 
the Si's are in general non-planar surfaces tessellating the domain S i.e., S = US^. 

At this point, the reader may wonder, and rightly so, whether considering general sur­
faces Si, instead of planar ones, is indeed a genuine and worthy generalization of the 
setting (9.1). This is a legitimate point since, strictly speaking, the general problem (9.2) 
can in fact be reduced to the simpler case of planar parametric domains. For example, if 
/ is scalar {k = 1) and if we interpret /(S) as the surface S' in (9.3), then one can use 
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Figure 9.2. Cam mechanism with a flat face follower. 

standard parametric polynomial spline techniques to represent/reconstruct / . Alterna­
tively, it is possible to interpret / in the framework (9.4), in which case one could employ 
(4D) parametric polynomial splines to reconstruct S" and thereby also / , being the fourth 
component of S'̂  (as was done e.g., in [4]). Lastly, in many situations of practical interest, 
such as in the case of a sphere, the surface S can be mapped onto a planar region, which 
again allows us to think of functions defined on S as functions whose domain is planar. 
However, we shall see that in many instances it is beneficial to approach a given recon­
struction problem in the mind-set of (9.2) and not (9.1). Before we address this point in 
more detail, it will be instructive to look at some concrete examples. 

Example 1. Although in this chapter we are primarily interested in splines on surfaces, 
the following example, concerning the modeling of planar curves, will help motivate several 
important points. In particular, below we describe some interesting facts that arise in the 
context of designing cam profiles in mechanical engineering. 

Cams are used in many kinds of mechanical devices. Their basic purpose is to convert 
rotary motion into linear motion that has a particular displacement as a function of time. 
Let us restrict ourselves here to cam mechanisms with the so-called flat face follower. 
The usual way to design a cam profile in this case is to construct the so-called support 
function / , which describes the displacement of the follower (i.e., the vertical distance 
of the follower from the center of the cam) as a function of the rotation angle 0, see 
Figure 9.2. Thus, the support function is a scalar function whose domain S is the unit 
circle, parametrized by the polar angle 0, that is / : S ^ iR, S := {(cos^,sin^), ^ G 
[0, 27r)}. The associated profile curve of the cam can be thought of as a parametric curve, 
i.e., a vector function C / : S —)• M^, whose image is given by 

Cf^{{xie),yi0)),e€[0,2ir]}, 
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Figure 9.3. Offset curves to a cam profile obtained using trigonometric splines. 

where the Cartesian coordinates satisfy [56] 

x{e) = f{e) cos(^) - f{e) sin(^), y{9) = f{e) sin(^) + f'iO) cos(^). 

The objective of cam design is to obtain appropriate support functions / that meet a 
prescribed set of requirements. Typically, / must take on specific values at given discrete 
angles and prescribed dwells {i.e., intervals with constant displacement), and should result 
in a cam that is consistent with the desired behavior of vertical velocity, acceleration, and 
the so-called jerk. 

In principle, to represent / , we could use a piecewise polynomial function that is periodic 
with period 27r, is sufficiently smooth, and has enough flexibility {i.e., enough knots) to 
satisfy the various mentioned conditions. However, this would lead to a very complicated 
representation for the actual cam shape. This is apparent from the above formula for C / , 
which is a mixture of polynomial splines and trigonometric functions. In particular, 
these cam profiles typically do not possess piecewise rational parametrizations as are 
employed by CAD systems and accepted by CNC milling machines. Conversely, if one 
desires a (piecewise) polynomial or rational representation for C / , then the form of the 
displacement function / is generally far from simple, hence not appropriate for design and 
optimization purposes. 

The mentioned shortcoming of polynomial splines has triggered a search for splines that 
are better suited to describe functions on the circle. Indeed, in [56] it has been shown 
that trigonometric splines {i.e., functions consisting of pieces of trigonometric functions, 
see [69]) are an ideal tool for cam design. In fact, the formula for C / alone suggests that 
trigonometric functions play a natural role in representing functions on the circle. 
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In the context of cam design, trigonometric splines are an attractive alternative to 
polynomial splines. Namely, representing the support function / as a trigonometric spline 
leads to a piecewise rational profile curve C / . Moreover, it turns out that these curves 
have the remarkable property that their offsets are also piecewise rational [55]. This means 
that the corresponding cam profiles, as well as the cutter paths for CNC machining, both 
possess a standard NURBS representation. 

The lesson to be learned from this example is that even though polynomial splines can be 
used to represent functions on the circle, it is more "natural" and advantageous to employ 
a function space that "matches" the circle, i.e., one that is derived from trigonometric 
polynomials. • 

The next example shows that the type of space we use may not be just a question of 
convenience. In some cases it may also be a matter of necessity. 

E x a m p l e 2. Let us now consider the more diflftcult problem of constructing smooth 
functions on the sphere S in M^. The most obvious approach is to map the sphere onto 
the plane, using spherical coordinates, then employing classical bivariate tensor-product 
splines. To state the problem more precisely, suppose that S is mapped onto the longitude-
latitude rectangle 

n •= {((9, 0) I 0 < 6> < 27r, -7r/2 < (f> < IT/2] 

and that / : f̂  -> JR is a given function. We can view / as a function on S, provided that 
it is periodic, that is 

/(O, (/>) = /(27r, 0), - ^ / 2 <ct>< 7r/2, (9.5) 

and constant at the poles i.e., 

f{e,-iT/2) = fs^ /(^,7r/2) = / ^ , 0 < ^ < 2 7 r , (9.6) 

where fs and JN are the values of / at the south and north poles, respectively. 
To represent/approximate spherical functions, it is natural to consider the space of 

tensor-product polynomial splines, i.e., the space of functions of the form 

M N 

where 6^ and ^j are univariate B-splines associated with a knot partition of the 6- and 
(/)-axes, respectively. While functions of this form can be made arbitrarily smooth (on Q) 
by choosing the degree of the spline sufficiently high, this will not automatically guarantee 
that / is smooth as a function on S, even if it satisfies both (9.5) and (9.6). In fact, it 
was shown in [17,35] (see also [74]) that to obtain a smooth {C^ or higher) function, the 
following set of equations must hold for the partial derivatives fe and /^i 

7^(0 ,0) -^(2^ , ( />) , - V 2 < ( / > < 7 r / 2 , 

and 

f^{e, -7r/2) = As cose-i-Bs sin6>, f^{0,7r/2) = AN COS 9+ BN sine, 0 < 6> < 27r, 
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where As, Bs^ A^, and B^ are constants. These equations express the condition that / is 
C^-continuous along the prime meridian ^ == 0 and also at the poles, which is equivalent 
to continuity of the tangent plane of / on S. 

It can be seen that, unless the function / is flat at the poles, i.e., unless As = Bs = 
AN = BN = 0, no tensor-product spline of the form (9.7) can be smooth at the poles. 
This follows from the fact that the right-hand sides of the last two of the above equalities 
involve trigonometric polynomials. Thus, no matter how high the degree or fine the knot 
partition of the longitude-latitude axes, piecewise polynomials are inherently incompatible 
with the sphere, at least in the above-described setting. 

Consequently, to obtain globally smooth spherical functions, we must abandon the 
idea of using the classical B-splines. Like in our previous example, it is a good idea to 
utilize trigonometric splines. More precisely, it was shown in [71] that by replacing the B-
splines Bj in (9.7) with their trigonometric counterparts, it is indeed possible to construct 
smooth spherical functions of the form (9.7). • 

The above two examples have demonstrated that the straightforward approach to rep­
resenting functions on S is not necessarily optimal. Even if S is simple enough that it can 
be mapped onto an interval or a planar region, it may still be useful to "custom-design" 
a spline space that is compatible with the given surface. As we have seen, in general this 
will lead to function spaces that are non-polynomial in nature. 

A sceptical reader might still argue that there is always the possibility to use stan­
dard parametric surface patches, which are piecewise polynomial, to reconstruct / . For 
instance, in Example 2 we could use parametric surface patches to model the surface S' 
in (9.3) and then obtain the corresponding scalar function as / ( s ) = (S'(s) — s) • ng, s G S. 
While this is true in principle, there are several diflftculties associated with this approach. 
First, using parametric surfaces requires working with vector-valued functions, as op­
posed to the simpler scalar functions. Second, constructing smooth composite parametric 
surfaces is a highly non-trivial task since the smoothness conditions between adjoining 
surface patches are more difficult to impose than in the scalar case. Third, the construc­
tion of the parametric surface must guarantee that S' is star-like, i.e., such that every 
half-line emanating from the origin intersects S' only once, for otherwise / would not be 
well defined. Lastly, once S' has been constructed, to recover / ( s ) for a given point s 
on the sphere, it is necessary to compute the value S'(s). This is a diflScult task since it 
requires solving a set of algebraic equations. 

The basic question that arises in the context of (9.2) is how to construct spline spaces 
of functions on S that resemble the usual spaces of piecewise polynomials in the plane (if 
this is indeed possible). Another important question is whether the well-established data 
fitting and modeling techniques for functions in the plane can be extended to the general 
setting of arbitrary surfaces. The hope is that many of the usual methods would carry 
over to this general situation without too much extra effort. 

To address these questions, we will primarily focus our attention in Section 9.2 on the 
issue of constructing spline spaces on S. Alternative approaches to this problem will be 
listed in Section 9.3. 
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R' 

Figure 9.4. Triangulation of a surface S. 

9.2. S C A L A R SPLINES O N S M O O T H SURFACES 

Having looked at examples of splines on specific manifolds, let us now consider the case 
of general surfaces. We will first define the context of our setting. In this section the 
surface S will be C°°-smooth in the usual sense of differential geometry. This is because 
our main interest will be in smooth splines on S, which would be an awkward requirement 
if S itself were not sufficiently smooth. Of course, for all practical purposes the infinite 
differentiability condition can be relaxed to match the order of smoothness of / . Also, we 
will restrict ourselves here to the case of scalar-valued functions / (i.e., k = 1 in (9.2)). 

Splines are usually obtained by dividing up the domain of their definition, S in our 
case, into disjoint subsets. The most familiar means of partitioning a given domain is 
to triangulate it. If the domain is planar, the resulting spline space is the well-known 
space of piecewise polynomials on triangulations. While there exist a great variety of 
bivariate splines, corresponding to many types of grids and polygonal partitions, piecewise 
polynomials on planar triangulations are the most universal since all other types can be 
viewed and represented as splines on triangulations. Therefore, to address the problem 
on general surfaces S, we will also assume that the sought-for spline space will correspond 
to a triangulation of S. 

As usual, a triangulation of S is a collection A of geodesic triangles on S, whose interiors 
are disjoint and such that the union of all triangles in A is S, i.e., S = UreA^- Here, 
a geodesic triangle T is a closed subset of S, homeomorphic to a planar triangle, whose 
boundary consists of three geodesic segments on S connecting a triple of points in T, 
called the vertices of T. These three geodesies are the edges of T. The vertices of T will 
be denoted by V{T) and the edges by E{T). The edges will be indexed by V{T) such 
that ev e E{T) will denote the edge of T opposite to v G V{T). 

Perhaps the most popular way of representing splines on triangulations is by means of 
the Bernstein-Bezier formalism. Bernstein-Bezier techniques are extremely useful tools 
for constructing piecewise polynomial surfaces over triangulated planar domains. As is 
demonstrated in many chapters of the book (see Chapter 4), they play an important role 
in CAGD, data fitting, computer vision, and elsewhere (see [22,39]). To define analogs of 
Bernstein-Bezier techniques associated with S, we need to find finite-dimensional spaces of 
functions that play the role of ordinary polynomials in the plane. This in turn leads us to 
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the question of defining an appropriate counterpart of the space of linear functions, since 
then higher-degree "polynomials" will be obtained as products of the "linear" functions. 
To be able to express such generalized polynomials in a Bernstein-Bezier-like form, in every 
triangle T G A, we also need to find analogs of the well-known barycentric coordinates. 
Such generalized coordinates will be denoted as 

bl-.T-^R, v € y ( r ) , T G A. 

This reduces the problem of an appropriate definition of "piecewise polynomials" on A 
to finding a reasonable way to define the functions b^. To answer this query, let us list 
some of the main properties associated with the classical Bernstein-Bezier formalism: 

(1) Non-negativity and partition of unity of Bernstein polynomials associated with any 
given triangle; 

(2) The convex hull property; 

(3) Reproduction of algebraic polynomials; 

(4) Affine invariance i.e., Bezier coeflScients will not change after transforming the Eu­
clidean plane by an affine transformation; 

(5) The possibility of obtaining arbitrarily smooth piecewise polynomials on any trian-
gulation; 

(6) Smoothness between adjacent Bezier triangles can be expressed in terms of local 
Bezier coefficients, corresponding to these triangles. 

While this may seem somewhat surprising, in the context of splines on general surfaces 
the most fundamental of the above items turn out to be properties (5) and (6). That is, 
spline spaces on general surfaces should be such that they can be used to build functions 
that are arbitrarily globally smooth (provided the degree is sufficiently high) and yet 
these spaces should be flexible enough so that it is possible to construct local methods 
of reconstruction. Another important property of the classical piecewise polynomials, 
that should be maintained in the general case, is that they are generated in a simple 
way from linear functions on each triangle. In our setting, the analog of the space of 
linear functions will be the three-dimensional space £-^, which is the linear span of the 
barycentric coordinates, i.e., C7 := span{6^, v G V{T)}. 

It is not difficult to see that the spaces C^ cannot be quite arbitrary. In particular, the 
barycentric coordinates should interpolate at the vertices, and in fact 

6^(v) = l and 6^(ev) = 0, YeV{T). (9.8) 

This implies that C^ restricted to any of the three edges of T is two dimensional, rather 
than three dimensional. In addition, a requirement for global continuity (C^) of a spline 
function in the "linear" spline space 

S^\A):={f:S^R,f\T€C^,TeA}, 
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is that the spaces C^\e and C^'le, corresponding to any pair of neighboring triangles T 
and T', sharing a common edge e = THT', should be identical, i.e., 

C^\e = C^'\e- (9.9) 

Otherwise it would be impossible to join two neighboring triangular patches in this (or 
any induced higher-degree) spline space continuously, let alone smoothly. 

Assuming that all spaces £ ^ , T G A, satisfy (9.8) and (9.9), we can define the space of 
continuous splines of degree n on S as 

5 ° ( A ) : = { / G C ° ( S ) , / | T € ^ J , T € A } , 

where P j is the space of "polynomials" of degree n on T G A, defined as 

V^:={f=Y.cjB:'^,cj€R}, 
\i\=n 

and where J5f' are the "Bernstein polynomials" or B-polynomials 

B?'^{s):=^ " • . . , . n (^v(s))-, S G T , 

for every multi-index i = (^v)veF(T) with |z| := YlveviT)'^^ ~ ^- Note that the B-
polynomials reduce to the ordinary (algebraic) polynomials if b^ are the usual barycentric 
coordinates associated with a planar triangle T. Also note that 

\i\=n 

and that the B-polynomials are linearly independent (hence form a basis for P j ) , as a 
consequence of (9.8). 

Do conditions (9.8) and (9.9) guarantee that the spaces 5^(A), n > 1, will automatically 
contain nontrivial smooth functions, C^ say? It should not come as a surprise that the 
answer is negative. This can be seen in the planar case S = M^ if we choose a set 
of non-standard functions b^. Intuitively, the reason for this is that conditions (9.8) 
and (9.9) do not enforce compatibility of derivatives of these functions across the edges 
of the triangulation. 

Example 3. In Example 2, the sphere S was parametrized using the spherical coor­
dinates. An alternative is to parametrize S by the standard octahedron with vertices 
Vi = (0,0,1),V2 = (1,0,0),V3 = (0,1,0),V4 = (-1,0,0) ,V5 = (0 , - l ,0 ) ,V6 = ( 0 , 0 , - 1 ) 
(or by any polyhedron inscribed in S). The vertices of the octahedron give rise to a 
triangulation A of the sphere, consisting of eight spherical triangles. Consider two adja­
cent triangles in A, say T and T', determined by their vertices V{T) = {vi,V3,V2} and 
V{T') = {vi,V3,V4}, respectively. Let us now define the functions ^^^^v' for the two 
triangles as the usual barycentric coordinates associated with the planar triangles with 
vertices V{T) and V{T'). One can check that this leads to 

x + y^z' ^ ^ ^ ^ ~ x + ?/ + z ' ^^^ ^ x + y + z' ^ v . ( s ) - - - f — , ^^3(s) = — t T T ' ^v.(s) = 



9.2. SCALAR SPLINES ON SMOOTH SURFACES 239 

where s = (x, y,z) e T and 

tl'(s) = , C(s) = ^ , bl'(s) = — , 
^'^ ^ -x + y + z' ""^^ ^ -x + y-\-z' ^'^ ^ -x + y + z' 

where s = (x, y, z) G T'. The reader is invited to verify that (9.8) and (9.9) are satisfied in 
this case. However, given a function / G P ^ , it may be impossible to find an / ' € V2 such 
that the two functions join smoothly (C^) across the common edge V1V3 (for example, 
t a k e / = (fo^J2) , 

The following proposition gives a necessary condition for a smooth join between neigh­
boring triangles [54]. 

Proposit ion 1. Let T,T' G A be two adjacent triangles on S such that T U T' is 
homeomorphic to a disk in iR^. Let b^ G C'^{T),v G V{T), and b^' G C^iT), v G V{r). 
Suppose that for every n and every / G V^ there exists an f G V^ such that / and 
/ ' join with C^~^ continuity along the common edge T Pi T'. Then each b^,v G T, can 
be extended as a C°° function on T U T' which, when restricted to T', belongs to JCP^ . 
Equivalently, there exists a three-dimensional space C of C°° functions on T U T' such 
that C\T = C^ and C\T' = C^' • 

A consequence of this result is that the choice of the functions 6^ is greatly restricted. In 
particular, the proposition says that all barycentric coordinates b^ corresponding to any 
given triangle T, can be smoothly extended across edges of T to neighboring triangles 
and hence all spaces C^ must locally belong to a single three-dimensional space of "linear 
functions" C. The following example shows that such a space C might not contain globally 
continuous functions, i.e., for some surfaces one may be able to define C only locally. 

Example 4. Let S be the circular cylinder parametrized by 

(sin 0, cos (j),z) ^ ]R^, (f) e R,z e R, 

and let 

C :— span{l, (f), z}. 

Hence, the point on S whose parameters are {(f), z) is assigned the value a-\-b(j) + cz, where 
a, 6, c are real coefficients. Note that £ is not defined globally since there is no globally 
continuous function in it. However, on every "strip" 

{ ( 0 , ^ ) , ( ^ G ( a , / ? ) , z G i R } , 

where /d — a <27r, the space C is well defined and generated by C°° functions. 
If A is a geodesic triangulation of S consisting of "small" triangles {i.e., triangles for 

which the values of 0 are in an interval of length not exceeding TT), then it is not difficult 
to see that for every such triangle T, dim(i2^|e) = 2, e G E{T), where C^ := C\T-
This follows from the observation that every / G £ vanishes along geodesies. Namely, if 
/ ( 0 , z) = a + 60 + cz, where 6 7̂  0, then /((/>, z) = 0 along the curve 

{(sin((a + cz)/6), cos((a + cz)/b), z),z G R], 
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Figure 9.5. Triangulation of a cylinder. 

which is a helix, hence a geodesic. Otherwise, if 6 = 0, 2: is a constant, which also 
corresponds to a geodesic on S. 

The above discussion shows that for every sufficiently small geodesic triangle T G A, 
one can define cylindrical barycentric coordinates. It turns out that many properties of 
these coordinates are similar to the properties of their planar counterparts. In particular, 
the cylindrical barycentric coordinates make it possible to define a spline space, which can 
be used to construct smooth splines on S. Figure 9.5 shows an example of a cylindrical tri­
angulation A and Figure 9.6 shows a C^ smooth spline in the space S^{A), corresponding 
to this triangulation. • 

Example 4 raises the question whether a space £, or a collection of spaces C^ satisfying 
the conditions implied by Proposition 1, always exists on any S and, if so, how can 
one find such spaces. A simple approach to constructing C is to take advantage of our 
knowledge of S, i.e., the implicit assumption here that we can evaluate S at any point. In 
particular, we can define C as the span of the three functions x(s), y{s), z{s), the Cartesian 
coordinates of s i.e., s = (x(s), y(s), 2:(s)), s G S. This works well in the important special 
case of a sphere in ]R^. 

Example 5. The problem of constructing spherical analogs of Bezier triangles has an 
interesting history. It has received ample attention in the spline literature for the obvious 
reason that splines on a sphere have many potential applications in geosciences, including 
meteorology, geophysics, and geodesy. Researchers had been searching for many years 
for appropriate spherical analogs of Bezier methods, but were hampered by the difficulty 
of defining spherical barycentric coordinates. For example, several candidates for such 
coordinates have been introduced in [13,14,41], but they lacked many key properties 
of the planar coordinates. As it turned out, the mentioned attempts were destined to 
be unsuccessful for the simple reason that they all insisted on the partition of unity 
property, which is well known for the classical barycentric coordinates. Namely, it was 
shown in [14] that spherical barycentric coordinates that sum to one and satisfy a list of 
other reasonable assumptions, do not exist. This negative result provided an explanation 
why the various earlier generalizations were unsuccessful in building smooth splines on 
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Figure 9.6. A C^ smooth quintic spline on the cylinder. 

spherical triangulations. 
A breakthrough in this development came when the authors of [1] realized, by study­

ing identities of spherical trigonometry, that there is in fact a natural way of defining 
barycentric coordinates for spherical triangles. Let T be a spherical triangle with ver­
tices Vi,V2,V3 G S. Thus the edges of T are the three shortest geodesies connecting the 
vertices. One can define the spherical barycentric coordinates of a point s G T as 

J. sin Si • 1 o o 
^vi(s) — . / . . — 7 , ^ = 1,2,3, 

sm{Si + ji) 

where 6i is the geodesic distance (measured along the great circle passing through s and 
Vj) of Uj and s, and 7̂  is the geodesic distance of s and v^ (see Figure 9.7). 

Despite the inevitable fact that the above coordinates do not add up to one, it has 
been shown in [1] that they resemble the standard barycentric coordinates in many re­
spects. First, the barycentric coordinates are infinitely smooth functions on T and they 
satisfy (9.8). The space £^, the span of the three coordinates, reduces to dimension 
two along the edges of T and in fact along every great circle intersecting T. More pre­
cisely, the restriction of C^ to any such great circle can be shown to be the linear span 
of {sin a, cos a } , where a is the arclength distance measured along this circle. Another 
important consequence of the above definition is that the spaces C^ and C^', associated 
with neighboring triangles T and T', satisfy (9.9). Furthermore, the properties of C^ 
are consistent with those specified in Proposition 1. In particular, this space can be ex­
tended to a three-dimensional space C of infinitely differentiable functions over all of S. 
Conversely, for any triangle T the space C^ is just the restriction of C to T. 

The space C has many interesting properties that indicate that spherical barycentric 
coordinates, as defined here, are unique. More precisely, C is the only three-dimensional 
space of functions on the sphere S that is rotationally invariant and such that its dimension 
is reduced along great circles. Moreover, C can be easily described using the idea suggested 
earlier. Namely, £ is precisely the span of the Cartesian coordinates x(s), 7/(s), z{s), viewed 
as functions on S. This is equivalent to saying that C is the space of spherical harmonics 



242 CHAPTER 9. SPLINES ON SURFACES 

Figure 9.7. Definition of spherical barycentric coordinates. 

of degree one [49]. 
The intimate connection between spherical harmonics and spherical barycentric coordi­

nates is not unexpected. In retrospect, it seems quite obvious that these functions should 
have been considered early on as the most natural candidates for "linear functions" on 
the sphere. As a matter of fact, such functions, along with the corresponding barycen­
tric coordinates defined above, had been considered some 150 years before the paper [1] 
appeared. The authors of that paper found out only later that their idea of defining 
barycentric coordinates was not new after all, since the same definition had already been 
given by Mobius [47]. 

Spherical barycentric coordinates give rise to Bernstein-Bezier-type methods, with im­
mediate applications to a variety of problems on the sphere. Indeed, because of the close 
analogy with standard Bernstein-Bezier techniques, virtually all of the classical methods 
for piecewise polynomials on planar triangulations can be carried over to the spherical 
setting, and indeed to any setting where barycentric coordinates are available. A detailed 
treatment of some of these methods has been given in [2,3]. The spherical Bernstein-
Bezier methods are also of interest in the design of surfaces, especially star-like surfaces, 
even though some of the geometric properties of planar Bezier methods are missing on 
the sphere, such as the convex hull property. 

Typical scattered data interpolation/approximation methods on the sphere start with 
a triangulation of the sphere, for example the so-called Delaunay triangulation. We refer 
the reader to [69], for a survey on triangulations, and also to [11,39], for a discussion 
of triangulation methods on general surfaces. Methods for triangulating scattered data 
points on the sphere are discussed in [41,58,66]. Figures 9.9 and 9.10 show wire plots of 
smooth C^ quadratic and cubic spherical splines, respectively, corresponding to (a part 
of) the triangulation in Figure 9.8. Details about various data-fitting methods that lead 
to such spherical splines are discussed in [3]. • 

Besides the sphere, the suggestion to use Cartesian coordinates to define the space C 
makes sense, as long as the triangulation A of S consists of triangles whose edges reduce 
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Figure 9.8. A triangulation of the sphere. 

the dimension of C. This is equivalent to the condition that the edges of A are planar 
and in the same plane with the origin (0,0,0). This is acceptable for certain surfaces (for 
example, for star-like surfaces [3]), but is more restrictive in cases in which the assumption 
of coplanarity would result in severely distorted triangles (relative to the geodesic ones). 

To cope with this difficulty, a possibility is to make a coordinate transformation to 
minimize the distortion of the triangles, e.g., one could shift the origin of the Cartesian 
system. More generally, one could in principle take "any" three-dimensional space H of 
smooth functions in M^ and define C as the restriction of ?/ to S. In the spherical case, 
this would lead to £ — li\s, where H := span{x,|/, z}. In the planar case S = IR^, we 
can think of £ as 7/|s, where 7i := span{l,x,?/}. In this way one can also interpret the 
construction of £ for the cylinder. In particular, we can take for any fixed a e M, 

( [ X cos a — y sin a \ 
ti := span < arctan —: ] iZ,l 

I \xsina -\- ycosaj 

in which case £ is the restriction of H to the strip 

{(0, z), a - 7r/2 < 0 < Q; + 7r/2, z e M}. 

On the other hand, it is not clear how to choose 7i for a general surface S so as to obtain 
"least distorted" triangulations. 

Above, we have seen two examples of non-planar surfaces for which it is possible to 
construct meaningful analogs of spline spaces. The characteristic property shared by 
both types of splines, as well as by the classical bivariate splines on planar triangulations, 
is that they can be generated by a three-dimensional space £ of "linear functions" on S. 
This space is such that 

• Functions in £ vanish along geodesies on S i.e., for every nontrivial f ^ C, the set 
C := {s € S , / ( s ) = 0} is a geodesic. Conversely, for every geodesic C on S, there 
exists a nonzero function / G £ vanishing on C. 
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Figure 9.9. A C^ smooth quadratic spherical spline. 

• £ is invariant under isometric transformations of S. Thus, if / : S —)• S is an 
isometry {e.g., a rotation, if S is the sphere), then / o / € £ for all / G £. 

It is clear that these two properties imply that C is quite special and that for a given 
surface S one cannot expect to have more than one such space. In fact, in the three 
mentioned cases, C is uniquely determined by the above two properties. It is an intriguing 
open question whether there always exists a space satisfying at least the first property. 
This in turn is closely related to the central issue of this section of whether one can find 
analogs of spline spaces on general surfaces. Using the well-known Beltrami's Theorem 
about the existence of local geodesic mappings [18], it can be shown that C can be found 
for surfaces of constant (Gaussian) curvature [54]. However, it is not known if one can go 
beyond such surfaces. 

It should be said that, for all practical purposes, we need not require that £ strictly 
satisfy the mentioned conditions. The lack of a theoretical proof of the existence of C 
should not prevent us from being able to establish useful spline spaces on S. For example, 
for a given fixed geodesic triangulation A, one could use a space C which has a reduced 
dimension along all of its edges, but which does not necessarily have the property that 
all functions in C vanish along geodesies. Such space £ will still allow the construction 
of barycentric coordinates for all triangles of A, hence also the construction of a spline 
space corresponding to A. 

Another possibility is to relax the assumption that the triangles in A are strictly 
geodesic. In fact, parametric surfaces S composed of triangular Bezier patches are al­
ready equipped with a natural triangulation A in which every triangle corresponds to a 
Bezier patch. Such a triangulation is in general not geodesic. In this situation there is 
a particularly simple way to choose the barycentric functions b^. Recall that Example 3 
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Figure 9.10. A C^ smooth cubic spherical sphne. 

gives reasons why it is in general not a good idea to use the standard barycentric coor­
dinates corresponding to the triangular facets of the piecewise linear interpolant to the 
vertices of A. This is because this will in general not permit us to design smooth splines 
over S. However, it turns out that this approach will work if S is a composite surface 
consisting of triangular polynomial patches. Namely, the fact that neighboring triangular 
patches are joined smoothly guarantees that the ordinary planar barycentric coordinates 
corresponding to these triangles are compatible, in the sense of Proposition 1. Thus in any 
given triangle these coordinates can be extended to the neighboring triangles as smooth 
functions (where the degree of smoothness will depend on the smoothness of S). 

We have seen that the success or failure of constructing spline spaces on general surfaces 
hinges upon the existence of barycentric coordinates. It is also clear from our examples, 
that even for simple surfaces such constructions may be far from trivial. Still, the dis­
cussed framework of splines on surfaces offers many benefits, compared to other existing 
reconstruction methods. The main argument supporting this claim is that the Bernstein-
Bezier formalism for splines on surfaces is the same for all surfaces. That is, it is essentially 
irrelevant whether we work on the sphere, in the plane, or on any other surface. As a 
consequence, we can use the same algorithms for splines on all surfaces, as long as we 
use a correct procedure to compute the barycentric coordinates (which do depend on the 
type of the surface). 

E x a m p l e 6. To illustrate the above point, suppose that T,T' € A are two adjacent 
triangles on S, with vertices V{T) = {vi,V3,V2} and V{T') — {vi,V3,V4}. Let / and f 
be two "polynomials" of degree n of the form 

\i\=n \i\=n 

where cj,c[ e IR are given Bezier coefficients. Then / and f join continuously along 
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the edge V1V3 if 

and they join with C^ continuity if and only if 

Ci3,l = C^ + l,̂ 3,0^Vl(v4) + C^,i3+l,0^V3(v4) + Ĉ ,̂ 3,1̂ V2 K ) , H + ^ =- 71 - 1, 

where we used the abbreviations ij := ivj,j = 1,2,3. Moreover, the values ^v (^4) ^^e 
obtained by first extending b^. as smooth functions to T U T', and then evaluating them 
at V4. This extension is possible as long as the barycentric coordinates are compatible in 
the sense of Proposition 1. • 

The above conditions for a smooth join between two generalized Bezier triangles can be 
immediately seen to be formally identical to the corresponding conditions in the planar 
setting. This explains why we have not addressed in this section the actual reconstruction 
problem {e.g., interpolation or approximation) using splines on surfaces. The reason is 
that the same methods known in the plane can be transformed almost automatically to 
any surface. Various extensions of such planar methods to the sphere are discussed in [3] 
and it is indeed clear from that paper that, except for a few details, the planar methods 
carry over to the spherical setting, and indeed to the setting of any smooth surface S. 

9.3. A L T E R N A T I V E M E T H O D S FOR F U N C T I O N S ON SURFACES 

In this chapter our focus was mainly on discussing splines on surfaces, i.e., analogs of 
piecewise polynomials on planar triangulations. However, this should not leave the reader 
with the impression that there are not other methods that have been used successfully 
in data-fitting and reconstruction problems on surfaces. Therefore, in this section we 
will give a brief description of other available methods and provide references for further 
study. This is also a good place to mention other surveys that have been written on the 
topic of splines on surfaces, such as Chapter 9.7 in [39] and [8]. 

9.3.1. Discrete surfaces 
Having discussed the idealized problem in which S was a smooth surface, it should be 
mentioned that in some applications surfaces come as discrete collections of points. For 
example, S and / could be sampled at a set of discrete points ŝ  G JR^, where the ŝ  
could represent the triple (latitude, longitude, altitude), determining a physical location 
on the surface of the earth and fi could be the air pressure at Sj. Before we can find an 
approximation to / using the setting described in the previous section, we first need a 
preprocessing step for reconstructing the surface S. We refer the reader to Chapter 26 in 
this book and also to [7,11,39,46,75], for an overview of and references on several methods 
for surface reconstruction from scattered data points in IR^. 

9.3.2. Radial basis functions 
An increasingly popular class of methods for interpolation and approximation of scattered 
data are those based on radial basis functions (RBF), i.e., functions that are radially sym­
metric. The reason why such methods are often preferred to other techniques is that these 
methods are meshless. This means that to interpolate a set of functional data associated 
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with scattered points on a surface it is not necessary to create a triangulation, or any 
other type of mesh that connects the given data sites, prior to the actual reconstruction 
phase. 

Perhaps the first types of radial basis functions used in the context of interpolation 
of functions on surfaces were the Hardy multiquadrics, introduced for application in geo­
physics in [36-38] (see also [8,21,26,62]). The advantage of using radial basis functions 
over other methods in the setting of functions on surfaces is that a given function is ap­
proximated and/or interpolated by a linear combination of translates of a single RBF, 
which gives a very simple representation of the resulting reconstruction. 

Many papers have been written on the use of RBFs in the spherical setting, see [23,24, 
62,72], and also the survey [25]. Recently, RBFs on the sphere have been employed not 
only in the context of interpolation but also the context of solving differential equations 
on the sphere [48]. There are also several papers on Lagrange and Hermite interpolation 
on general Riemannian manifolds [19,20,50], which are of interest for functions on surfaces 
of arbitrary topology. 

Methods based on RBFs generally suffer from poor conditioning of the linear systems 
that arise in interpolating large sets of data. However, lately there has been considerable 
progress on compactly supported RBFs (see [25]), which have the potential to reduce this 
shortcoming of RBFs. 

9.3.3. Variational methods 
A well-established approach to constructing bivariate functions interpolating scattered 
data in the plane is to use the so-called variational methods, which are based on minimiz­
ing an "energy functional" subject to given interpolation conditions. Strictly speaking, 
variational methods belong to the previous subsection since the kernels associated with 
such extremal problems are also radially symmetric. The methods have been frequently 
used in geosciences, see [29-31,33,76-78]. Another popular method, often applied in me­
teorology, is the classical spectral method. This method uses spherical harmonics of high 
degrees to approximate functions defined on the sphere [44]. 

9.3.4. Distance-weighting methods 
This class of methods, sometimes also called Shephard-type methods, uses a weighted 
combination of function values that are being interpolated on the surface S, to reconstruct 
an unknown function from discrete data. The weights are chosen so as to decrease the 
influence of a particular data point on the surface as we move away from this point. In 
this way points that are far from a given region on the surface will have little or no effect 
on the reconstructed function in that region. For details on how to choose the weight 
functions, we refer the reader to [11,12] and Chapter 9.7 of [39]. 

9.3.5. Transfinite methods 
Many techniques for defining functions on triangulated (or otherwise partitioned) surfaces 
are based on the idea of transfinite interpolation. This method starts with the construc­
tion of a network of smooth functions defined on the edges of the partition and then uses 
transfinite triangular interpolants to interpolate the network of curves by a smooth func­
tion on the domain surface S. The papers [11,10,40,41,58,66,67] describe a construction 
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of such transfinite triangular interpolants for the sphere, whereas [61] can be applied to 
arbitrary surfaces that are at least C^ differentiable. 

9.3.6. Implicit methods 
In [5-7], implicit Bernstein-Bezier patches (also called A-patches) are used to simultane­
ously reconstruct the surface S (given as a set of unorganized points) and the unknown 
function / , whose values at these points are given. An advantage of this method is that 
it does not require any assumption on the convexity and/or differentiability of S and that 
it can handle oriented manifolds of unrestricted topological types. On the other hand, 
the drawback of using implicit surface patches is that they require essentially trivariate 
Bernstein-Bezier techniques, which are harder to deal with than bivariate ones. 

9.3.7. Other types of splines 
Besides splines on triangulations of a surface S, various other types of splines can be 
constructed. For example, the papers [52,60] give a construction of spherical simplex 
splines. A recent introduction on simplex splines is [53]. The paper [42] uses spherical 
splines on triangulations to define hybrid cubic Bezier patches, which are analogs of the 
classical rational Bezier patches. The author is not aware of similar methods for other 
types of surfaces (except planar). 

9.3.8. Multiresolution methods 
This overview would be incomplete if we did not mention the possibility of using sub­
division or wavelet-type methods in connection with the reconstruction of functions on 
surfaces. Subdivision methods are a powerful means of constructing surfaces and hence 
one would expect that they might also lend themselves to problems in the area of "surfaces 
on surfaces". There is no question that wavelet and subdivision techniques are becoming 
increasingly popular in many application areas, ranging from signal and image processing 
to CAGD and computer animation. That said, there do not seem to exist many methods 
based on subdivision and/or wavelets designed specifically to deal with the problem of 
functions on surfaces. Notable exceptions are the various existing constructions of wavelets 
on the sphere (see [16,32,33,43,51,68]) and the paper [73], where wavelets are constructed 
on general surfaces. 

9.3.9. Visualization of surfaces on surfaces 
Although visualization is not addressed in this chapter, it is important to stress that a 
good visualization of the reconstructed/modeled surfaces and functions is essential in the 
context of functions on surfaces since, as we have pointed out earlier, these surfaces can 
be viewed as being imbedded in a higher-dimensional space. Therefore, an appropriate 
technique to display the results of the reconstruction can significantly enhance our under­
standing of the behavior of the reconstructed functions and surfaces. While visualizing a 
surface in the four-dimensional space is very difficult, there are ways to display them by 
a judicious use of interactive color computer graphics. The topic of visualization of such 
surfaces is discussed at length in many publications, including [4,9,28,57,59,63-65]. 
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Chapter 10 

Box Splines 

Hartmut Prautzsch and Wolfgang Boehm 

This chapter provides a brief introduction to box and half-box splines with particular 
focus on triangular splines and surface design. A particular example of box splines are 
the B-splines with equidistant knots. In general, box splines consist of regularly arranged 
polynomial pieces and they have a useful geometric interpretation. Namely they can be 
viewed as density functions of the shadows of higher dimensional boxes and half-boxes. Of 
particular interest for Geometric Design are box spline surfaces that consist of triangular 
polynomial pieces. These box spline surfaces have planar domains, but it is quite simple 
to construct arbitrary two-dimensional surfaces, i.e., manifolds, with these box splines. 

10.1. BOX SPLINES 

A very comprehensive treatment of box splines and their general theory is given in the 
book by de Boor, Hollig and Riemenschneider [10] who also give valuable information on 
many references. 

10.1.1. Inductive definition 
An 5-variate box spline JB(X|VI . . . v^) is determined by some k directions v̂  in R*. For 
simplicity, we will assume that k > s and that v i , . . . , v^ are linearly independent. Under 
these assumptions the box splines J5«(x) := 5 ( x | v i . . . v«), K = 5 -h 1 , . . . , /c, are defined 
by successive convolutions [6,21,22,35], 

l /det[vi . . .v,] if xG[vi . . .v ,][0, l )* 
else 

Jo 
X — tv^)dt, K> s 

This is illustrated in Figure 10.1 for 5 = 2 and [vi . . . V4] = 

shows translates of some box splines that are tensor product box splines. 

Figure 10.2 

255 
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constant 

quadratic 

Figure 10.1. Bivariate box splines over the triangular grid. 

These box splines are normalized such that 

which can easily be verified for k = s and further by induction over k. Namely 

dt = l . / ^ / Bk-i{x~tVk)dtdx= / / ^Bk-i{x-tVk)dxdt= / ( 

10.1.2. Geometric definition 
A box spline Bk{x) = B{x\vi... v̂ fc) can also be constructed geometrically as illustrated 
in Figure 10.3 for A; = 4 and s = 2. 

Let TT be the orthogonal projection 

7r:[ti...hf^[h...tsf , 

and let 

be a parallelepiped such that Vj = TTÛ  . 

Then, Bk{x.) represents the density of the "shadow'' of Pk, ^-^^ 

Bk{^) 
1 

volk^k 

where 

/3k{x)=7r~'xnPk 

voik-sPk[y^) (10.1) 
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Figure 10.2. Translates of tensor product box splines. 

For A: = 3 and s = 2, the corresponding geometric construction is illustrated in Fig­
ure 10.4. It is due to [6], while the idea of polyhedral shadows can be traced back to [36] 
and [37]. 

We prove this characterization of box splines by induction: For k = s, Equation (10.1) 
is obvious, and, for greater values of k, we observe that 

A ( X ) = U [Pk-l{^) + SUk) . 
56[0,1) 

Hence, if h measures the distance between Pk-i and UA; 4- Pk along the A:th unit vector in 
R^, then it follows that 

VO1A;_SA(X) = / hvo\k-s-i{l3k-i{^-s^rk))ds , 
Jo 

which corresponds, up to a constant factor, to the inductive definition of box splines. 
Consequently, volk-sPki^) is a multiple of the box spline Bk{x), and, since 

/ ^ voU_5A(x)c?x = voUA and / ^Bk{-x.)dx=l , 

Equation (10.1) follows. 
The parallelepiped Pk is an affine image of the unit cube, which, sometimes, is also 

called a box. The projection n can be composed with this affine map. In this way, any 
box spline can also be constructed as the shadow of a box under a certain affine map. 
Hence, the name box spline, which is first used in [9]. 

10.1.3. Further definitions of B o x splines 
From the geometric definition it follows that a box spline is characterizable as the solution 
of the functional equation 

/ 5 ( x | v i . . . v , ) / ( x ) c ? x = / / ( [ v i . . . v , ] t ) d t 
^ R ' J[o,i)k 
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Figure 10.3. Box splines are "shadows" of boxes. 

for all continuous test functions / ( x ) . 
Another possibility to define a box spline is the following recursion 

1 ^ 
B ( x | v i . . . v , ) - - _ ^ ( c , 5 ( x | v i . . . v ; . . . v , ) 

r = l 

+ ( l - a , ) 5 ( x - v , | v i . . . v ; . . . Vfc)) , 

where x = Xlr=i ^r^r- This recursion is due to de Boor and Hollig [8]. A geometric proof 
can be found in [4] and numerical and algorithmic aspects are discussed in [2,13,7,25]. 

10.1.4. Basic properties of Box splines 
From the geometric construction of box splines it follows that ^ ( x ) := B ( x | v i . . . Vĵ ) 

• does not depend on the ordering of the directions \i, 

• is posit ive over the convex set [ v i . . . Vfc][0,1)^; 

• has the support suppB{x) = [ v i . . . Vjfc][0,1] ,̂ 

• is symmetric with respect to the center of its support. 

Further, let ^ ( x ) be the shadow of a box /? as in (10.1). The (s - l)-dimensional faces 
of P projected into R* form a tesselation of the support. It is illustrated in Figure 10.5 
for 

" 1 1 1 1 0 
[ v i . . . v^] 

1 1 1 0 
- 1 0 1 1 

and [ v i . . . Vk\ 0 0 1 1 1 



10.1. BOX SPLINES 259 

Figure 10.4. The geometric construction of a piecewise linear box spline over a triangular grid. 

• The box spline B{x) is polynomial of degree < k — s over each tile of this partition. 

For a proof, we observe that the extreme points of the convex sets 7r~x Pi ^ lie in 5-
dimensional faces of /3. Hence, an extreme point is of the form [x*e*]*, where e G R^~^ 
depends linearly on x over the projection of the corresponding 5-dimensional face. The 
volume of 7r~xn/? can be expressed as a linear combination of determinants ofk — sxk — s 
matrices whose columns represent differences of extreme points e. Hence, the volume is 
a polynomial of degree < A: — s in x over each tile of the tesselation above. 

10.1.5. Derivatives 
From the inductive or geometric definition it follows that the restricted box spline B{y) :— 
B{x-i-yVr) is piecewise constant in yifvr 0 s p a n j v i , . . . , v * , . . . , v^:}. If v^ G span{v i , . . . , 
v*,. . . ,Vfc}, then B{y) is continuous since it can be obtained by a convolution from 
B*{y) = B{^ + yVr\^i...v;...Vk), 

B{y) = f B*{y-t)dt= r B*{t)dt 
Jo Jy-l 

-f 
J -c 

B*{t)-B*{t-l)dt . 
) 

Further, the directional derivative with respect to Vr is given by 

Z)v.B(x) = B'{y)\y^o = B*(x) - B'{x - v , ) . 

(10.2) 

(10.3) 
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Vfc 

V2 Vi V2 

Figure 10.5. The supports of a quadratic and a cubic box spline over the criss cross and the 
regular triangular grid. 

I f V i , . . , V ^ , . . . J Vfc span R^ for r = 1 , . . . , 5, then B{x) is continuous and its direc­
tional derivatives can be written as linear combinations of translates of the box splines 
B ( x | v i . . . V*. . . v^;). Applying this argument repeatedly we see that 

• B{K) is r times continuously differentiable if all subsets of {vi . . . v^} obtained by 
deleting r -h 1 vectors Vj span IV. 

Remark: Another and inductive proof of the polynomial properties of B{K) is based 
on (10.3). Namely, if B*{x) is a polynomial of degree < A: - s - 1 over each tile of the 
partition above, then B*{K — v^) has the same property. Consequently, -B(x) is piecewise 
polynomial of degree k — s in each direction v^ over the partition above and hence in x. 

Remark: The piecewise quadratic C^ box spline whose support is shown on the left 
side of Figure 10.5 is called a Zwart-Powell element. Because of its symmetry, it is 
even quadratic and not piecewise quadratic over the inner square. 

10.2. B O X S P L I N E SURFACES 

10.2.1. Translates of Box splines 
In the sequel we assume that the directions vi,...,Vjfc are in Z* and, as before, that 
V i , . . . , V5 span R^. 

Obviously, the translates B ( x - j | v i . . . V5), j 6 [ v i . . . v^jZ^, of the piecewise constant 
box spline sum to 

7 := l / | d e t [v i . . .V5 (10.4) 

Since Z^ can be decomposed into, say m, sets i-h [ v i . . . VsjZ^, see Figure 10.6, it follows 
that 

^B{x-i\vi...Vs) = m-f . 

IGZ^ 
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Figure 10.6. Decomposition of Tf into translates of coarser grids. 

Further, since /^ vri'^dt — m^, we get by A: — s and again 5 successive convolutions 

7717 = ^ 5 ( x - i | v i . . . V f c ) 

= ^ 5 ( x - i | e i . . . e , v i . . . V i f c ) , 

ieZ^ 

where ê  is the zth unit vector. Since the last sum is identically one due to (10.4), where 
v i , . . . , Vfc are replaced by ei . . . 65, we have shown that the (integer) shifts of any box 
spline i5(x) := 5 ( x | v i . . . v̂ ;) form a partit ion of unity. 

Consequently, any box spline surface 

s(x) = Y. ^i^(^ - i) 

is an affine combination of its control points Ci and this surface represenation is affinely 
invariant meaning that under any affine map the control point images control the surface 
image. 

Since the box splines are non-negative, s(x) is even a convex combination of its control 
points and lies in their convex hull. 

Further, we see that 5 ( x — i | v i . . . v^), i G Z^ is linearly dependent if | de t [v i . . . v^jl / 1. 
Since the ordering of the v^ does not matter, this sequence is linearly dependent [9] also if 
there is any independent subsequence v^^, . . . , v̂ ^ with |det[vjj . . . v^JI / 1 . The converse 
is also true, see [16,19,23,24]. Together we have the following. 

5 ( x — i | v i . . . Vfc),i G Z*, is linearly independent over each open subset of IV 
if and only «/ [vi . . . v^] is unimodular, 

which means that the determinant of any regular submatrix [v̂ ^ • • v^J is 1 or - 1 . 
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10.2.2. Derivatives and polynomial properties 
If the directions v i , . . . ,Vk_i span R^, then we can compute the directional derivative 
Dv^s of s with respect to Vĵ . Using the derivative formula (10.3) in 10.1.5 we obtain 

Dv,s(x) = Yl Vv ,C iB(x - i | v i . . . v ,_ i ) , (10.5) 

where \^Ci := Ci — Ci_v, see [9]. Further, if for all j = 1 , . . . ,/c the k — 1 directions 
v i , . . . , V*. . . Vfc span TV, then 5 ( x ) is continuous as shown in 10.1.5 and the span of its 
shifts contains all linear polynomials as we show in the sequel. In particular, if 

mi : = i + - ( v i + --- + VA:) 

denotes the center of supp5(x — i), then 

Y^ miB(x - i) - X . (10.6) 

Namely, because of symmetry, this equation holds for x = o, and for all j = 1 , . . . , s 
we have [30] 

i : ) v , ^ m i B ( x - i ) = Vj 

Since the box spline representation is affinely invariant, we obtain for any linear poly­
nomial /(x) 

/(x) = ^ / ( m i ) 5 ( x - i ) . 

This property is referred to as the linear precision of the box spline representation. 
More generally, let the directions V i , . . . , v^ G Z^ span R*, and assume that the asso­

ciated box spline B{K) := ^ ( x | v i . . . v^ ) is r times continuously differentiable. Then it 
follows, for example by induction over k that the map c(x) \-^ ^ c( i )5(x — i) is a regular 
linear map on the space of all polynomials of degree < r + 1. See [9] for further results. 

10.2.3. Convexity 
Let e i , . . . , e5 denote the unit directions and let e = ei -h ... + Cs. Further, let 

s(x) == yZ C i^(x—i |e i . . . e i . . . e g . . . 656. . . e) 

be a box spline surface with these directions. The piecewise linear box spline surface 

c(x) = Y C i 5 ( x - i | e i . . . e,e) 

is said to be the control net of the surface s(x). 
If the control net c(x) is a scalar valued and convex, then the surface s(x) is also a convex 

function, see [20,31]. Furthermore, any control net of s(x) obtained under subdvision as 
described next is convex [31]. 
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10.2.4. Subdivision 
Any box 13= [ u i . . .UA;][0, 1)^ in R^ can be partitioned into 2^ translates of the scaled 
box /3 = /3/2 spanned by the half directions u^ = Uj/2, see Figure 10.7. Based on 
this observation Prautzsch [28] concluded in 1993 that the non-normalized "shadow" 
M^(x) = volfc_s(7r~x D l3) of P under the projection n : [ti .. .tkY ^-^ [ti .. .tsY can be 
written as a linear combination of translates of the scaled box spline MQ{X) = 2*~^M^(2x). 
Consequently, if the projections v^ = TTUJ lie in Z*, then any box spline surface 

ieZ" 

with B{x) = 5 ( x | v i . . . Vjt) has also a "finer" representation 

s(x) = ^ c ^ B ( 2 x - i ) . 

ieZ^ 

Figure 10.7. Subdividing a box spline by subdividing its box. 

The new control points c? can be computed iteratively from the initial control points 
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e V 

Q\ by the recursion 

d»(i) := { ° if i/2 

d^(i) := (d^-^(i) + d ' - ^ ( i - v , ) ) / 2 , r = \...k, 

c? := 2M*(i) . 

For a proof we follow the ideas in [28] and subdivide each box 

&r-\ = [Ul • • • Ur-1 Ur . . . U/i][0, 1)* 

into fir and Ur + /3r- The associated shadows satisfy 

M^._,(x) = M^^yi) + M^,(x - V,) , (10.7) 

where v^ = Vr/2. Dividing this equation by vol /Jr-i = 2 vol/?r, gives 

B,_i(x) = (B,(x) + B , ( x - v , ) ) /2 , (10.8) 

where Br{:x.) := B ( x | v i . . . Vj-Vr+i • • • v^). 
Using this identity repeatedly and the relation 5 ( x | v i . . . Vjt) = 2 ^ 5 ( 2 x | v i . . . v^) gives 

s(x) = ^ c J B o ( x - i ) 

= ^ d ' ' ( i ) B , ( x - i / 2 ) , r = 0 , l . . . A : , 

ieT 

= ^ c ? B o ( 2 x - i ) , 

ieZ" 

which concludes the proof. 
For quadratic univariate box splines with equdistant knots this algorithm bears the 

name of Chaikin [11] although it had been discussed already by de Rham [34]. Lane 
and Riesenfeld [26] generalized Chaikin's algorithm to univariate box splines of arbitrary 
degree with equidistant knots and in [3], which prepublishes results of [28] a mask is intro­
duced to describe the subdivision algorithm above for three direction box splines. Later 
Loop [27] used Boehm's mask to build a subdivision algorithm for arbitrary triangular 
nets. 

Remark: If [vi...V5]Z^ = Z^, then 2^di = C|j/2| and every point c? is a convex 

combination of the initial points c]. Moreover, the c? lie in the convex hull of the cj also 

if [vl...v,]z^ = z^ 
10.2.5. General subdivision 
It is straightforward to generalize the subdivision algorithm to obtain for any m eJS the 
finer representation 

s(x) = Yl C B ( m x - i) , 
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d"(i) := ^ ;, ^ if i/m f I 

where the "points" cj" = mM (i) can be computed successively by 

°(i) := { : . 

In this and in an even more general form this algorithm can be found in [12] and [17,18], 
where it is derived algebraically. 

The subdivision algorithm can be used a second time to compute control points of s(x) 
over any finer grid Z^ /[mn). Since the partition of a box /? into translates of the scaled 
box /3/{mn) is unique, we get as a result the same points Cj"" that can be computed 
directly from the initial control points Cj by one application of the subdivision algorithm. 

Similarly we see that the points Cj" do not depend on the ordering of the directions 
V i , . . . , Vjt, i.e., the ordering of the averaging steps. 

Remark: The geometric derivation of the subdivision algorithm above shows that any 
new control point c]" only depends on the control points cJ, where suppB(mx—j) C 
supp5(x—i). Their number is bounded by some h not depending on m and j . Hence, we 
have 

llcfll < / i s u p | | c J | | . (10.9) 

10.2.6. Convergence under subdivision 
Repeated subdivision by the algorithm 10.2.5 gives the control points of the finer repre­
sentation 

s(x) = ^ c]^B{mx - i) , where ^ ( x ) = B ( x | v i . . . v^) , 

of any surface s(x) over all scaled grids Z^/m, TTZ 6 N. A major value of this procedure is 
that under some reasonable conditions on y = [ v i . . . v;̂ ] the points Cĵ  converge towards 
s(x), see [26,28,29,15,14]. 

Let h be as in (10.9) and M = sup{||Vv^Cj ||, where i G Z* and v i , . . . , v * , . . . , v ;̂ span 
R*. Then the following holds. 

U [vi . . . VA;]Z^ = V, then ||cr" - s(x) | | < hM/m for all i, 
where B{m:x. — i) > 0. 

In this generality this result is due to de Boor et al. [10] who also show quadratic 
convergence under the conditions [ v i . . . v * . . .Vk]Z^~^ = Z^ and ^ ( x | v i . . . v^) is differ-
entiable. 

On the other hand, if [ v i . . . vjt]Z^ ^ Z^, then convergence cannot be proved as we show 
for s{x) = B(x) . 

Namely, if there is some grid point i G Z^, which does not lie in [ v i . . . Vfc]Z ,̂ then all grid 
points j G J :== i + [ v i . . . Vs]Z^ do also not lie in [ v i . . . Vjt]Z^. Since J^j^j -^(^ - J) > O7 
see (10.4) in 10.2.1, there is for every x G R* some j G J such that B{x - j) > 0. 
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Subdividing the single box spline ^ ( x ) by the algorithm in 10.2.5 gives control points 
cj" such that 

B{x) = J2 cTB{mx - i) . 

The geometric derivation of the algorithm in 10.2.4 shows that Cj" ^ 0 if and only if 

ie[vi...v,]z^. 
Thus if [ v i . . . VA;]Z^ ^ Z* or J 7«̂  0, there is for every x G R^ some zero control point 

Cj" = 0 with jB(mx — j) > 0. For all x, where B{x) > 0, these control points do not 
converge to B(x) as m tends to infinity. 

10.2.7. Bezier r e p r e s e n t a t i o n 
Often it is useful or neccessary to have the Bezier representation of a box spline surface. 
In this section we describe how to compute the Bezier points of a box spline surface over 
a regular triangular grid, see also [35,1,28,5]. 

Figure 10.8. Bernstein polynomials are shadows of simplices. 

Let ei ,e2,e3 be the unit directions [1 0]*, [0 l ] ^ —[1 1]* and let v i , . . .,Vjfc G {ei,e2,e3}. 
Further, let bn(i), i G Z^, be the Bezier points of the box spline surface 

Sn(x) = ^ Ci5(x - i |e ie2Vi. . . v„) 

ieZ 
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such that s„(x) restricted to some grid triangle with vertices a, a H- ei , a — e^ and /i = 2 
or 3 has the Bezier representation 

Sn(x) = ^ b n ( n a + zei + je^)^^-—TxV 
i\j\k\ 

''W^ 

where z + j + A: = n and x = -i/a + t'(a -h ei) + w;(a - e^). 

Recall that integration means summation of the Bezier points. Consequently, since 

Sn(x) =̂  / Sn-l{yi-tWn)dt , 

we can compute the Bezier points b„(i) recursively from the copies 

an(nj + v„ - re^ - se^) := bn_i((n - l ) j - re^ - se^) , 

where //, î  G 1,2,3 and e^H-Cj, = —v„ and r, 5 = 0, ...,n —1 and j G Z^, by the summation 

1 n - l 

b„(i) := -y]a(i-z/v^) 

as is illustrated schematically in Figure 10.9 for n = 3. 

bn- l 

Figure 10.9. Computing Bezier points recursively. 

If vi = 63, then bi(i) = Ci, which terminates the recursion. 

Note that the Bezier net b^ can be computed faster if the summation is replaced by 

b„(i) := bn(i - v„) + [an(i) - a„(i - nVn)]/n . 

The summation step can also be described by a convoulution of a^ with the mask 

^n(i) = { 1/n for i = 0 , - v „ , . . . , - ( n - l ) v „ 

0 otherwise 
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defined on Z^. This means 

where 

(an * an){i) = Yl ^niiWii - i) • 

10.2.8. Bezier representation of symmetric Box splines 
Of particular interest are the symmetric box splines, where e ie2Vi . . . v^ =: 616263 . . . 616263. 
For these box splines there is a symmetric version of the algorithm above. Combining 
three successive integrations leads to the recursion 

bn = Cnhn-3 * an , 

where the mask a^ represents a degree elevated Bezier net of the symmetric piecewise 
linear box spline, 

a(i) = ^(i /n |eie2e3) , 

and where Cnhn-3 is a copy with additionally zeroes of the Bezier net b^-s as illustrated 
in Figure 10.10 for n — 5. 

->n-3 s/ C^b„_3 \ /' \ / 
— 0 - 0 - 0 - 0 0 - 0 

o' 1̂ 1 1 1 1' "o 
an 0' 1 2 2 2 2' 1 'o 

o' 1 2 3 3 3' 2 1 o 
\ o' 1 2 3 '4 4' 3 2 1 o / 

- o - 1 - 2 - 3 - 4 -5 ' - 4 - 3 - 2 - 1 - o -
/ 'o 1 2 3 4' '4 3 2 1 o' \ 

'o 1 2 3' 3 3 2 1 o' 
o 1 2 2 2 2 1 o' 

ô  1' 1 1 1 \ o 
•— V- 0 - 0 - 0 - 0 - V 
/ \ / \ 

Figure 10.10. Symmetric recursion for the Bezier points. 

Formally, Cn is defined by 

Cnhn-sini - (r + l )e i - (s + l)e^) 
_ J o for r or s = — 1 

[ hn-3{{n — 3)i + rei — se^) for r, 5 = 0 , . . . , n — 3 

for i e Z^ 
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The computation of the Bezier points can be organized in different ways. In the sequel 
we present the geometrically nice one due to [1]. 

Let p be the Bezier net of the box spline B(x|eie2Vi . . . v^) and let 7 = Cn/3. Then 

bn(j) = ^ Ci/?(k - i) * a (k) 

k i 

1 i 

= ^ C i a ( l - i ) * / 3 ( l ) 
i 

The net ^ j Cia(l — i) is the Bezier net bi after raising the degree from 1 to n. It is a 
refinement of the control net. Together with the mask ^(1) it is shown in Figure 10.11 
for n = A. 

Figure 10.11. Computing the Bezier points of a quartic box spline surface. 

10.2.9. Generalized Box spline surfaces 
A bivariate box spline surface has a planar domain. However, with the symmetric box 
splines 

Bk{-x.) = B(x|eie2e3 .^. eie2e3) 

it is possible to build smooth arbitrarily free-form surfaces with non-planar domains. The 
support of the box splines Bk{x) consists of k rings of triangles as shown in Figure 10.12 
for k = 2,3. This implies that any triangular patch of a box spline surface 

s ( x ) = ^ C i 5 , ( x ) 

IGZ 
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is controlled by k rings of control points as illustrated schematically in Figure 10.13 for 
A: = 2,3. 

Figure 10.12. Support of the box sphnes B2 (left) and B3 (right). 

Figure 10.13. Net primitives of order 2 (left) and 3 (right). 

We will call the net controlling one triangular patch a minimal net or a B-primitive 
of order k. 

A generalized box spline surface of degree 3A: — 2 or order k is given by an arbitrary 
control net and consists of all triangular patches controlled by a B-primitive of order k 
that is part of the entire control net. 

An interior vertex of the triangular control net is called regular if it has valence 6 
and otherwise it is called irregular. If the irregular vertices of a triangular net are 
surrounded by sufficiently many regular vertices, then the generalized box spline surface 
has an m-sided hole for any irregular vertex with valence m as illustrated schematically 
in Figure 10.14 for A: = 2 and m = 4 with a generalized box spline surface consisting of 2 
rings of triangular patches around a four sided hole. Such a hole can be filled smoothly 
by A: — 1 rings of triangles. 
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Figure 10.14. Schematic view of a hole of a generahzed box spline surface of order 2. 

The larger k, the larger the holes are schematically. A remedy for this is to let A: —2 rings 
of control points around an irregular control point coalesce as illustrated schematically in 
Figure 10.15 for k ~ 3 and m = 4. When looking for the net primitives in the overall 
control net, we interpret these multiple control points in different ways as part of a regular 
triangular net that is collapsed into this one point so as to obtain as many net primitives 
as possible. Thus, the schematic size of the holes depends only on m and is the same for 
all A:. 

Figure 10.15. Control net of a generalized box spline surface of order 3 with multiple irregular 
vertex. 

These holes can be filled with m triangular patches of degree 2k with G^-joints, see 
[38,32,33]. Figure 10.16 shows an example of a generalized box spline surface of order 
k = 2. The control net is seen left, the generalized box spline surface in the middle and 
on the right the holes are filled with octic polynomials so as to obtain an overall curvature 
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continous surface. 

Figure 10.16. A generalized box spline surface of order 2 (middle) with control net (left) and 
C^-fillings (right), (courtesy of Georg Umlauf) 

10.3. H A L F - B O X SPLINES 

10.3.1. Inductive definition 
Half-box splines are defined over the triangular grid spanned by ei = [1 0]^e2 = [0 1]* 
and es = —[1 l ] ^ We give the inductive definition due to Sabin [35] and its geometric 
interpretation due to [28]. 

Splitting the unit square along its diagonal in direction e gives the two triangles 

A := {x|0 <x <y <1} and V := {x|0 < y < x < 1} . 

They support the piecewise constant half-box splines 

G A 

r 1 if X 
\ 0 else 

G V 

and 

ffv(x|) 

As with box spline we obtain half-box splines of higher order by successive convolutions, 

^A(x|vi . . .Vfc) := / HA{^-tYkWi...Vk-i)dt 
Jo 

and 

/ /v (x |v i . . .Vi t ) := / H^{x-tVk\vi...Vk-i)dt , 
Jo 

where A: > 1. Hence, we assume that the directions are the unit directions, 

vi, . . . ,Vfc G {ei ,e2,e} . 
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Note that the definitions of the two piecewise constant half-box splines H^{x\) and 
H^{x\) are not completely symmetric. Consequently, any two half-box splines H^{X\YI . . . V^ 
and i7v(x|vi . . . Vfc) sum to the box spline jB(x|eie2Vi.. . v^) even for A: = 0. The 
two piecewise cubic C^-half-box splines //A(x|eie2e) and H^{x\eie2e) are shown in Fig­
ure 10.17. 

Figure 10.17. The two piecewise cubic C^-half-box splines. 

10.3.2. Basic properties 
As for box splines, one can derive the following properties of half-box splines. Because of 
symmetry reasons, it suffices to list these properties for H{x) := H/:^{x\vi... v^). 

A half-box spline is normalized such that 

/ , 
^ H{x)dx = 1/2 . 

n 
Any k independent directions U i , . . . ,UA; ^ R^ define a half-box 'd :— {^Uia^ | 0 < 

ai < 0.2 and 0̂ 2 . . . â ; ^ [0,1]}. The density of the shadow of this half-box represents 
a half-box spline. If TT denotes the projection from R'^ onto R^ mapping U i , . . . , u ;̂ onto 
V i , . . . , V f c , t hen 

H(yi\vx. • • Vfc) = 2 vol ^^Q^fe-2(^~^^ ^ ^) 

as illustrated in Figure 10.18. 
From this geometric construction, it follows that i / (x) 

• does not depend on the ordering 0 /V3 , . . . , v^, 

• is posit ive over the convex set A 4- [V3... Vfc][0,1]^"^ ; 

• has the support closure{A) -h [ v s . . . Vfc][0, l]^~^ . 
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Figure 10.18. Geometric coonstruction of a half-box spline. 

10.3.3. Derivatives and polynomial structure 
The following further properties of half-box splines follow most easily from their inductive 
definition. The half-box spline H{K) 

• has the directional derivative 

D v . i / ( X ) - / / (X|V3 . . . v ; . . . Vfc) - i f ( X - V , | V 3 . . . V; . . . V,) (10.10) 

with respect ^o v^, r > 3, 

• is r times continuously difFerentiable if all subsets of { v i , . . . , vjt} obtained by 
deleting r + 1 vectors v^ span H^, 

• 25 polynomial of total degree < k — 2 over all triangles i + A and i + V, i G Z . 

For example, the half-box splines H^{x\ei .^. eie2 .^. e2e3 A. e^) are 2k - 1 times 
continuously differentiable and are of polynomial degree < 3k. 
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10.4. HALF-BOX SPLINE SURFACES 

10.4.1. Translates of Half-Box splines 
Any pair of half-box splines 

H^{x) := i7(x|e3Vi...Vfc) , 

Hy{x) := H{x\esVi...Vk) 

sums to the box spline B(x|eie3Vi... Vjt). Hence, the translates H^{x — i) and H^{x -
i), i e T?, form a partition of unity . 

Consequently, any half-box spline surface 

X) = ^ ( C f i/A(x - i) + Cyi/v(x - i)) s(x) = ^ 

is an affine combination of its control points cf and c^ and this representation is 
aJHinely invariant meaning that under any affine map the images of the control points 
control the image of s(x). 

Since the half-box splines are non-negative, s(x) is even a convex combination of its 
control points and lies in their convex hull. 

If we connect control points cf̂  and cj^ whose associated triangles i + A and j + V have 
a common edge, then we obtain a hexagonal net, the control net of s. An example is 
illustrated in Figure 10.19. 

Figure 10.19. A hexagonal control net. 
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10.4.2. Derivatives and polynomial properties 
The directional derivative of s with respect to v^ can be computed by the derivative 
formula (10.10) and it is 

Z?v.s(x) = ^ (Vv,cf i / ^ ( x | v i . . . v ; . . . V,) + V v , c y / / v ( x | v , . . . v^ . . . v , ) ) , 

where VvCi = Ci - Ci_v . 
If H^ (x) is continuous or equivalently, if there are two independent directions among 

V i , . . . , v;t, then all directional derivatives of the sum of all shifts, Y^ H/s^{x — i), are zero. 
Therefore this sum is a constant function. Because of symmetry reasons and since the 
shifts of both half-box splines if A and H^ form a partition of unity, we get 

^ W ^ ( x - i ) = ^ / / v ( x - i ) = l / 2 . (10.11) 

Z2 . ry2 

In particular, this implies that the shifts of H/^ and i /y are linearly dependent . 
Further, if the box spline B{x) — 5 ( x | e i e 2 V i . . . v^) = H^{x) H- H^{x.) is continuous, 

we recall from (10.6) in 10.2.2 that 

J2 mi(/ /A(x - i) + i /v (x - i)) = X , 

ieZ 

where mi is the center of supp5(x — i). If H^ is continuous, we can use (10.11) and get 
for any v G R^ 

J2 ii^i + V ) F A ( X - i) -h (mi - v ) i / v ( x - i)) = X . 

ieZ 

For example, if v = (ei — e2)/6, then the points m ^ := mi + v and m ^ := nii — v form 
a regular hexagonal grid as illustrated in Figure 10.20. 

Since the half-box spline representation is affinely invariant, we obtain for any linear 
polynomial /(x) 

/(x) = ^ ( i ( m f ) / / A ( X - i) + Z(my)^v(x - i)) . 

ieZ 

This property is referred to as the linear precision of the half-box spline representa­
tion. 

10.4.3. Subdivision 
Any half-box spline surface 

s ( x ) = ; ^ ( c f H A ( x - i ) + c y i / v ( x - i ) ) 

ieZ 

has also a "finer" representation 

s(x) = ^ ( d f / / A ( m x - i) + dyH^(mx - i)) 

ieZ 
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Figure 10.20. The hexagonal grid of the "centers" nij^ and m ^ 

for any m eJS. 
As for box splines one can derive a subdivision algorithm for the computation of the 

new control points d^(i) = ci° (i) from the control points c^, where D and o G {A, V} . 
This algorithm, which is due to [28], is given by the recursion 

- m—1 

d°(i) := - ; ^ d U ( i - ^ v , ) , r = 3,...,k 
f=0 

d°2(i) := c? 

for i , j G T} and suppif° (mx — i|) C suppif° (x — j | ) . 
One can also combine the recursion steps. For example, for m = 2 and for the symmetric 

cubic half-box splines, where V3 . . . v^ = 616263, the d5 (i) can be computed from the c? by 
the masks shown in Figure 10.21 and from the d2(i) by the mask shown in Figure 10.22. 

1 1 

1 1 

Figure 10.21. The masks to subdivide cubic C^-half-box spline surfaces. 

As with box splines, the control points d° (i) converge to the half-box spline surface s 
with order 0 ( l / m ^ ) . 
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Figure 10.22. The mask for three averaging steps. 

10.4.4. Bezier representation 
One can compute the Bezier points of a half-box spline surface by the same recursion 
as for box spline surfaces [35,1,28]. The only difference is that the recursion terminates 
differently. For example if, e.g., V1V2V3 = eie2e3, then 

ba = Q;3 * Csbo , 

where 

CsboU) -
0 

if j = 3i + ei - es 
if j := 3i -h e2 - es . 
otherwise 

This means that the Bezier points b3(i) of a piecewise cubic C^-half-box spline can be 
computed from the hexagonal control net c with the masks shown in Figure 10.23. 

2 J 

z y A^__.A 

Figure 10.23. The masks for the Bezier points of the cubic half-box splines. 

10.4.5. Generalized Half-Box spline surfaces 
As with box splines it is possible to build arbitrary free form surfaces with the half-box 
splines 

iJ^(x) := /fA(x|eie2e3 .^. eie2e3) and i / y W •= ^v(x |e ie2e3 .^. eie2e3) , 
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see [38,33]. The support of a half-box spline ^^(x) consists of k rings of triangles around 
a triangle as shown in Figure 10.24 for /c = 1,2. This implies that any triangular patch 
of a half-box spline surface 

s(x) = ^(cf / / i (x) + cyH^(x)) 

is controlled by k rings of control points around a single control point as illustrated 
schematically in Figure 10.25 for /c = 1,2. 

Figure 10.24. Support of the half-box splines iJj^ (left) and H^ (right). 

Figure 10.25. H-primitives of order 2 (left) and 3 (right). 

We will call the net controlling one triangular patch a minimal net or a H-primitive 
of order k. Note that the H-primitives of order k are dual to the B-primitives of order k+l. 
This means that the triangles and interior vertices of the dual B-primitive correspond to 
the vertices and hexagonal meshes of the H-primitive. 
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A generalized half-box spline surface of order k is given by an arbitrary control 
net with isolated non-hexagonal meshes and consists of all triangular patches controlled 
by a H-primitive of order k that is part of the entire control net. 

For any generalized half-box spline surface S// of order k there is a generalized box spline 
surface s^ of order /c -h 1 whose control net is dual to the control net of the generalized 
half-box spline surface. Hence, SH and s^ have the same number of triangular patches 
and these have the same topological adjacencies. 

In particular, this is true for nets with multiple control points. Consequently, ii k — 1 
rings of control points around an m-sided mesh coalesce, then the corresponding half-box 
spline surface has a hole whose boundary is given by m triangular patches. 

Figure 10.26 shows a generalized half-box spline surface (middle) of order k = 1 with 
its control net (left) and with a G^-filling (right). 

Figure 10.26. A generalized half box spline surface with smooth filling (left), control net 
(middle) and Bezier net (right), (courtesy of Mark us Florenz and Georg Umlauf) 
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Chapter 11 

Finite Element Approximation with 
Splines 

Klaus HoUig 

We describe in this chapter finite element methods with uniform B-splines. These tech­
niques do not require any grid generation and yield highly accurate approximations with 
relatively few parameters. They are particularly well suited in combination with spline-
based geometric modeling systems. 

11.1. I N T R O D U C T I O N 

The finite element method has become the most widely accepted general purpose tech­
nique for a broad range of applications in continuum mechanics, fluid dynamics, field 
theory and other areas in engineering and mathematical physics (cf., e.g., [33,31,13]). 
While the label "finite element method" was first used by Clough [14], the key ideas date 
back much further. Ritz [39] described how to solve variational problems with finite di­
mensional approximations, an approach already employed by Rayleigh [38]. Following an 
observation of Bubnow [11], Galerkin [23] approximated diflFerential equations for bound­
ary value problems directly, without resorting to the variational formulation. Courant [16] 
was the first to use piecewise linear hat-functions, the standard "finite element" in his 
discussion of the St. Vernant torsion problem. The systematic use of variational approx­
imations in engineering applications began much later with the work of Turner, Clough, 
Martin and Topp [49], and Argyris [2,3]. While these are perhaps the most well-known 
foundations of finite element analysis, there are many other contributions, and we refer 
to [35] for a survey of the extensive literature. 

The basic principle of finite element methods can be illustrated for the Poisson equation 
on a bounded domain with homogeneous Dirichlet boundary conditions, 

-Au = f inDcW^, u = OondD. (11.1) 

A weak solution of this model problem can be characterized as the minimum of the 

283 
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functional 

- / grad i; grad 2; - fv, v e V, (11-2) 
^ JD JD 

or, equivalently, by the equations 

/ gradugvadv = / fv, Vt'G V, (11-3) 
JD JD 

where V — HQ{D) is the Sobolev space of functions which vanish on the boundary and 
have square integrable first derivatives. Both characterizations suggest the following nat­
ural discretization. We replace HQ{D) by finite dimensional spaces Vh (finite element 
subspaces), which contain close approximations to u as their dimension increases. This 
leads to special cases of the methods of Ritz and Galerkin, respectively. Obviously, both 
methods are very general and apply, with appropriate modifications, to virtually any 
elliptic boundary value problem. 

Since the early beginnings in the sixties, numerous variants of the finite element method 
have been developed and become well established [12,50]. Most techniques use a mesh of 
the simulation domain (partition into tetrahedra, hexahedra, etc.) to construct the ap­
proximating subspaces. For complicated domains, the generation of such meshes requires 
often the major portion of the computing time and implementing good algorithms is a 
challenging task [29,36]. Moreover, on unstructured meshes, higher order approximations 
lead to huge systems. Therefore, considerable eflForts have been made to develop meshless 
methods, to a large extent building upon Babuska's classical ideas [4,5] (cf., e.g., the sur­
veys [6,7]). In particular for complicated domains, such techniques can be more efficient 
than standard approximations. 

We describe in this chapter meshless methods, which use weighted finite element sub-
spaces. For example, a solution of (11.1) is approximated by 

u ^ wp, p G 5, 

where li; is a fixed positive function, which vanishes on dD, and iS is a suitable linear 
space. Such weighted approximations were already suggested by Kantorovich [32]. They 
have become particularly successful in connection with Rvachev's i?-functions method (cf. 
the survey [40] for an overview), which automatizes the construction of weight functions. 
The use of B-splines as basis for S suggests itself and was considered, e.g., in [46,41]. With 
appropriate modifications [26], the resulting finite element subspaces possess all the stan­
dard approximation properties. Numerical solutions can be computed very efficiently, in 
particular with the aid of software for manipulating B-splines [9] and tools from geometric 
modeling [17,18,30]. 

We use the following notational conventions. Dependencies on parameters are not 
always indicated, if they are clear from the context. For example, b^ = b^f^ denotes the 
tensor product B-spline defined in Subsection 11.2.1. Moreover, we write f ^ g/ii f < eg 
with a constant c, which does not depend on the grid width h, indices, or arguments of 
functions. The symbols y and x are defined analogously. Finally, || {{ denotes the 2-norm 
for vectors and matrices and 

!Hk.-( z b>^-MfA"'. 0-••'(£)"--ilk 
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the norm on the Sobolev spaces H^{D) [1]. We assume throughout that the boundary dD 
is piecewise smooth and has the cone property, i.e., there are no cusp-hke singularities. 

11.2. SPLINES O N U N I F O R M G R I D S 

Uniform splines, discussed in this section, are spanned by scaled translates of a single 
B-spline (cf. Chapter 6 by C. de Boor ). Algorithms are particularly efficient and elegant, 
and there are a number of beautiful theoretical results originating from the classical work 
of Schoenberg [43] (cf. also [10] and Chapter 10 by H. Prautzsch and W. Bohm). 

Unlike for univariate splines, general knot sequences do not permit local refinement in 
several variables. Hence, from a practical point of view, there is not a very significant 
advantage over uniform knots. Adaptive refinement is possible in both cases with the aid 
of hierarchical bases and wavelet constructions. 

11.2.1. Uniform B-splines 
Uniform B-splines are special cases of the general B-splines Bk^n.u described in Chapter 6 
by C. de Boor, and correspond to the uniform knot sequence t = . . . , —/i, 0, /i, — They 
are scaled translates of the standard cardinal B-spline, which can be constructed with a 
particularly simple averaging process. 

Definition 11.2.1 The standard uniform B-spline of order n > \ is defined by the re­
cursion 

6"(a;) := f 6"-\ 
Jx-l 

starting with the characteristic function b^ of the unit interval [0,1). 

With the first averaging step, we obtain the piecewise linear hat-function 6 ,̂ which 
equals 1 at x = 1 and vanishes outside (0,2). One more average yields the piecewise 
quadratic B-spline b^ with support (0,3). In general, b^ is a positive piecewise polynomial 
of degree < n, which is (n — 2)-times continuously differentiable at the integers and 
vanishes outside (0,n). 

Forming products of uniform B-splines, we obtain multivariate B-splines on tensor 
product grids. 

Definition 11.2.2 A normalized uniform m-variate B-spline of order n, grid width h, 
and shift /c = (A:i,..., km) € Z"^ is defined by 

m 

hl^{x) := h-^l^^h^{xjh - K), X = {xu . . . , x „ ) e W". 

As is illustrated in Figure 11.1, the B-spline bk is a scaled and translated normalized 
univariate B-spline in each coordinate direction. In particular, bk has support 

kh+{nQ,)h, a:=::(0,ir, 
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Figure 11.1. The cubic B-spline b^ and a corresponding bivariate B-spline ^In/i-

and is a polynomial of coordinate degree < n on each grid cell Q = Ih -\- Q^h. The 
normalizing factor /i"'"/^ ensures that the B-splines are uniformly bounded with respect 
to the L2-norm, i.e., 

/ \bk 

More generally, \\bk\\i x h~^ for £ < n. This normalization is particularly convenient for 
finite element applications, so that we prefer it to the standard choice of simple scaling 
in this context. 

11.2.2. Splines on bounded domains 
Splines are linear combinations of B-splines. The following more precise definition will be 
used for constructing finite element subspaces in the next section. 

Definition 11.2.3 The splines S{D) consist of the linear combinations 

^Ckbk{x), 
keK 

where the sum is taken over all relevant shifts k, i.e., all k, for which b^ has some support 
in D. 

Definition 11.2.3 is illustrated in Figure 11.2 for quadratic splines (n = 3), where we 
have marked the lower left corners kh, k £ K, of the supports of the relevant B-splines. 
Apparently, depending on the shape of the domain D, the set of relevant shifts k may 
be complicated to describe explicitly. Therefore, in the implementation of algorithms, we 
will always allocate storage for an m-dimensional array of coefficients and simply mark 
the positions corresponding to the relevant shifts keK. This is much more efficient than 
storing precise lists. 

It is important to note that the B-spline basis for S{D) is not uniformly stable with 
respect to the grid width h. This is due to the outer B-splines 

bj, j e J 
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Figure 11.2. Relevant B-splines 6 ,̂ spanning S{D), and classification into inner B-splines 
bi and outer B-splines bj. 

(marked with red dots in Figure 11.2), for which no grid cell in their support is completely 
contained in D. The distinction between outer and inner B-splines 

bi, i € K\J 

(marked with green dots in the Figure), which have at least one grid cell in D, will be 
essential for stabilizing the basis (cf. Subsection 11.3.2). 

Splines have the local approximation power of polynomials, as stated in the following 
basic error estimate [44]. 

Theorem 11.2.1 For any u G H^{D) there exists an approximation Uh € S[D) with 

\\U - Uh\\i,D ^ h^'^Wk^D 

for i < k < n. 

The approximation u^ can be constructed by various methods, for example with stan­
dard quasi-interpolation techniques. 

11.2.3. Hierarchical bases 
To resolve small geometric details or rapid changes in solutions, local grid refinement 
is essential. There are numerous techniques, in particular in connection with wavelets 



288 CHAPTER 11. FINITE ELEMENT APPROXIMATION WITH SPLINES 

(cf. Chapter 14 by L. Kobbelt). As an example, we describe an elementary strategy for 
hierarchical subdivision of B-splines. This technique is very easy to implement and well 
suited for spline-based finite element approximations. 

The hierarchical B-spline basis corresponds to a nested sequence of domains D^, which 
specifies where the grid should be refined. The following natural selection of the basis 
functions, based on the standard subdivision schemes for splines [8,15], was proposed in 
[34]. 

Definition 11.2.4 The hierarchical spline space 5 (P) , corresponding to the domains 

D : D = Do D Di D D2 D " • D Di = ^, 

is spanned by the B-splines 

hk,h., k e K^, K •= 2-''/i, 0<iy <i 

where Kj, denotes the shifts k, for which D Pi supph^^hu ^^ ^ nonempty subset of D^, but 
is not contained in D1/+1. 

This definition can be interpreted in the following way. We select a subset of the 
relevant B-splines for D with grid width h and replace it by B-splines of grid width h/2 
via subdivision. From the B-splines on the finer grid, again, a subset is selected and 
refined. This process is repeated according to the sequence of domains D^. 

It is easily checked that the B-splines, spanning 5'(P), are linearly independent. If 

XI Xl ^̂ ''̂  ̂ k^A^) = 0 \/xeD, 
v<i k^Ku 

we can show inductively, for u — 0 , 1 , . . . , that the coefficients Ck^u are zero. First, we 
restrict x to the open set Do,i := DQ\DI. By Definition 11.2.4, all B-splines with grid 
width hu, ẑ  > 0, vanish on this set. On the other hand, for each B-spline bk,ho^ k e KQ, 
there exists a point x G Do,i, where this B-spline is nonzero. Hence, by the local linear 
independence of the B-splines corresponding to one grid, all coefficients Cfc,o must be zero. 
Now, we repeat the argument, restricting x successively to the sets J^i,2, ^2,3, — 

The hierarchical spline space S{B) contains for each domain Dj, all B-splines 6 ,̂/î , for 
which the portion of their support in D is completely contained in Di,. Either such a B-
spline belongs to the hierarchical basis, or, if Dnsuppbk,hu ^ ^i^+i? î  can be represented 
as a linear combination of B-splines with smaller grid width via subdivision. Hence, as 
is to be expected, the local approximation power of 5(D) corresponds to the level of 
refinement. 

Figure 11.3 illustrates Definition 11.2.4 for bilinear splines with 3 grids. The subdomains 
D2 C Di C Do = D are displayed with different gray levels, and the lower left corners of 
the supports 

/c/i^ + (0, 2f/z^ 

of the B-splines in the basis are marked according to their level. For example, a blue/green 
dot corresponds to two B-splines with grid-widths ho and hi — ho/2, respectively. 
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Figure 11.3. Bilinear hierarchical B-spline basis. 

11.3. FINITE E L E M E N T B A S E S 

In this section, we describe several types of weighted finite element subspaces, as proposed, 
e.g., in [40,46,26]. The essential difTerence, compared to standard mesh-based subspaces, 
is the treatment of boundary conditions. These are incorporated via weight functions, so 
that no mesh generation is required. As a result, we obtain finite elements on uniform 
grids, which share all the computational advantages of B-spline representations. 

11.3.1. Mesh-based elements 
Most of the standard finite element bases are constructed using a mesh of the domain. 
Figure 11.4 gives examples of triangular meshes in two and three dimensions, constructed 
with the ART-algorithm of A. Fuchs [20,21]. This method uses a physically motivated 
optimization strategy to achieve an almost regular mesh structure, i.e., almost all interior 
vertices have the same number of neighbors. 

Generating finite element meshes is often the bottleneck in finite element simulations. 
Especially for three-dimensional problems, the construction of meshes with good geomet­
ric properties is a highly nontrivial task. Among the many algorithms, which have been 
developed, one can distinguish between three major approaches: advancing front tech­
niques, domain decomposition and Delaunay triangulations. All methods have their pros 
and cons and, which one to choose, depends very much on the particular application. 

The construction of finite element bases with respect to a given mesh is straightforward, 
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§^^^ 

Figure 11.4. Triangular and tetrahedral finite element meshes. 

at least if no continuous derivatives are required. Figure 11.5 lists some commonly used 
elements for triangular meshes. They are described in terms of the parameters which 
define the finite element approximation on a single triangle. For example, the standard 
linear element (degree 1) is determined by the 3 values at the vertices (dimension 3), indi­
cated by dots. The corresponding piecewise linear approximations are continuous, hence 
belong to H^. Higher order elements can be defined by specifying more interpolation 
points, which are arranged in a regular triangular array. The quadratic case is shown in 
the Figure. To construct elements which join continuously differentiable across edges is 
more difficult. A classical example of a i/^-element is Argyris' triangle. It has degree 5 
(dimension 21) and is determined by specifying values, first, and second derivatives at the 
corners (marked with dots, small, and large circles) and normal derivatives at the mid­
points of the edges (marked with orthogonal bars). An alternative is the Clough-Tocher 
macro-element, which achieves i7^-smoothness with degree 3 by splitting the triangle at 
the centroid. 

Figure 11.5 shows only a very small selection of the available possibilities. We refer to 
[12,50] for other examples and for quadrilateral and trivariate elements. No attempt is 
made here to analyze mesh-based elements in more detail. The brief description was in­
cluded merely for comparison purposes. As is apparent from the bivariate examples given 
in the Figure, higher order or smooth elements require many parameters. In contrast, ele­
ments constructed with B-splines, as discussed in the next subsection, yield smooth highly 
accurate approximations with relatively few parameters. Moreover, no mesh generation 
is necessary, so that computing times are significantly reduced. 

11.3.2. WEB-basis 
At first sight, the use of B-splines as finite element basis functions seems not feasible, 
because the uniform grid does not conform to the boundary. However, this difficulty is 
easily overcome. To satisfy essential homogeneous boundary conditions, we multiply with 
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linear element 

d e g - 1 , eH\ 
dim = 3. 

quadratic element 

d e g - 2 , eH\ 
dim = 6. 

Argyris 

deg = 5, G H\ 
dim = 21. 

Clough-Tocher 

deg = 3, G H^ 
dim = 12. 

Figure 11.5. Some bivariate triangular finite elements. 

a positive weight function w^ which vanishes on dD, i.e., we approximate with the space 

S'w : = wS = spdLUj^^j^wbk, 

spanned by weighted relevant B-splines. For example, for a smooth domain, we may use 
a weight function, which is equivalent to the distance to the boundary, i.e. 

w{x) X dist{x,dD). (11.4) 

There are a number of other possibilities, in particular for domains, which can be described 
in terms of simple primitives (lines, planes, circles, cylinders, etc.). A systematic approach 
will be discussed in the next subsection. 

As we already remarked in Subsection 11.2.2, the B-spline basis is not uniformly stable 
when restricted to D. This may lead, e.g., to excessively large condition numbers of 
finite element systems. A well conditioned basis can be constructed with the aid of the 
classification of the relevant B-splines bk for the domain D into inner and outer B-splines 
(cf. Figure 11.2). To stabilize the basis, the outer B-splines bj, for which, by definition, 
no mesh cell of their support is contained in D, are attached to the inner B-splines 6̂ . 
This has to be done in such a way, that polynomial precision, which guarantees full 
approximation order, is preserved. Hence, let us consider the B-spline representation 

P(^) = ^Qik)h{^)^ ^ ^ ^ (11.5) 
keK 

of a polynomial p of order n on D. As is well-known, g is a polynomial of the same order 
as p (cf., e.g., [10] for a proof in a more general context). Therefore, we can compute any 
coefficient q{j), j G J, from n^ coefficients q{i), corresponding to an array of shifts 

I{j):=e + {l,...,nrcl, (l^iU)) 
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closest to j . To compute q{j), we interpolate the values q(i) at the shifts in I{j) and 
evaluate the interpolant at j . Hence, if 

.̂. =n n 
denotes the value at j of the Lagrange polynomial associated with i € I{j), we have 

Inserting the expression for q{j) into (11.5) and interchanging sums gives 

PW = X ] 9 W 
iei 

X e D, 

where J{i) C J is the set of all shifts j , for which i G I{j). This identity suggests to define 
the term in square brackets as the proper extension of the inner B-spline bi. Of course, we 
have to multiply by the weight function w and choose an appropriate normalization. These 
considerations led to the following definition [26] (cf. also http://www.web-spline.de). 

Definition 11.3.1 The weighted extended B-splines (web-splines) 

Bi:= 
w{xi) ^i-^ ZZ ^̂ ''•?'̂ -?' 

jeJ{i) 

, i e l , 

with Xi the center of an interior grid cell Qi C D in the support of bi form a basis for the 
web-space S^e-

Not all finite element simulations require subspaces that conform to boundary condi­
tions. If no weight function is used, we denote the span of the extended B-splines by S^. 
Formally, this corresponds to the case ly = 1 in Definition 11.3.1. 

Figure 11.6 illustrates the construction of the web-basis for quadratic splines (n = 3). 
On the left-hand side, the values of the coefficients e^j with i G I[j) are given for an outer 
B-spline bj. They are associated with the lower left corners of the supports of the inner 
B-splines bi. The zeros in the first and second column indicate that this outer B-spline is 
actually involved only in 3 web-splines Bi. This is because ji = ii for the right column 
of the shifts i G / ( j ) , causing the Lagrange polynomials associated with the other shifts 
in I{j) to vanish at j . On the right-hand side, the support of a web-spline Bi is shown 
together with the coefficients e^j of the adjoined outer B-splines bj, j G J{i). The point 
Xi is marked by a cross. 
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Figure 11.6. Coefficients e^j, i G I{j) (left) and support of a web-spline Bi with coefficients 
Cij, j e J{i) (right). 

11.3.3. R-functions 
Many simple domains admit ad-hoc definitions of weight functions w. For example, for 
an annulus with radii 1 and 2, we may set 

w = /o / i , fo{x) = Xi + ^2 - 4, fi{x) = \ - x \ - x l . 

However, multiplying functions of implicit equations for boundary curves is not always 
possible. If we define 

W[x) = fi{x)XiX2 

for the domain on the right of Figure 11.7, all functions in the finite element space ^w 
vanish on the coordinate axes. This imposes an undesirable constraint on the approx­
imations. Fortunately, there exists a systematic approach, based on Rvachev's concept 
of i?-functions (cf., e.g., [40,45]). We describe below a special case of this fairly general 
theory, which is adequate for illustration purposes. 

Definition 11.3.2 A function r : R^ -> R 25 an R-function, if its sign depends only on 
the sign of its arguments. 

i^-functions are closely related to Boolean functions. In fact, for any Boolean set 
operation o there exist associated i?-functions ro, which define the corresponding operation 
on weight functions. In other words, if w^ is a weight function for a set D^,, then 

{wiOj^W2){x) \=ro[wi[x),W2{x)) 

is a weight function for Dio D2. A popular choice of associated i?-functions is shown in 
the following table. 
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Figure 11.7. Domain description with i?-functions. 

set operation 

DinD2 

D1UD2 

D^ 

corresponding i?-function 

rn{x) = Xi + 0:2 - y/xl + xl 

r^{x) = Xi+ X2-\- y/xf + xl 

rc{x) = -X 

Returning to the discussion of the domain 

D - Di n (D2 U Da), D^ := {xeR^ : U{x) > 0} 

with f2{x) = Xl and fsix) = X2, we can define 

w{x) = (/i HR (/2 U;̂  fs)){x) - rn(/i(x),ru(/2(3:),/3(:r))), 

as is illustrated in Figure 11.7. The function /i is depicted on the left, ru(/2(:r), fsix)) in 
the middle, and finally w on the right of the Figure. 

The explicit form of the weight function can be complicated. However, for computa­
tions this is irrelevant. Evaluation and differentiation is performed using the algorithmic 
definition with the aid of automatic differentiation [37,24]. The procedure is similar to 
algorithms in constructive solid geometry. 

For general domains, described, e.g., by NURBS-representations [30,19], numerical tech­
niques have to be used. A straightforward construction of a weight function is illustrated 
in Figure 11.8. The distance function is used near the boundary, where it is free of sin­
gularities, and blended smoothly with a plateau inside the domain. More precisely, we 
define 

w{x) = 1- {mhx{S - dist(x, dD), 0)/6y, (11.6) 

where 6 controls the size of the plateau and 7 the smoothness. The plateau facilitates the 
use of precomputed values when assembling finite element matrices. However, it should 
not be chosen too large in order to keep the derivatives of the weight function small. 

As is apparent from the above examples, there is a great deal of flexibility in the 
construction of weight functions. In particular, spline approximations and numerical 
techniques can be effectively combined with the /^-functions method. 
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Figure 11.8. Smoothed distance function: w{x) x dist{x,dD). 

11.3.4. Stability 
With appropriate normalization, the norm of a finite element approximation is equivalent 
to the corresponding norm of the coefficients of the basis functions. This important 
stability property is also valid for the web-spaces 5we under mild assumptions on the 
weight function. For example, we may require that w is smooth and 

||gradw;(y)|| ^ w{x)/dist{x,dD), \\x - y\\ :< dist{x,dD). (11.7) 

Essentially, this condition implies that the norm of the gradient vanishes with one order 
less at the boundary than the weight function. It is valid for powers of the weight function 
(11.6) and also for products of such weight functions, constructed from distance functions 
to different boundary segments. Of course, (11.7) also holds for the trivial weight function 
w = 1 formally corresponding to the spaces 5e. 

Stability can be proven with the aid of dual functions Â , which are biorthogonal to the 
B-splines bi and uniformly bounded. 

/ ^A = 5t,i, \\Xth ^ 1- (11.8) 

There is a great deal of flexibility in the construction of such dual functions. In particular, 
we may require that the support of Â  is contained in the subcell 

Qj:-a:, + [-V4,V4r 

of the grid cell Qi C supp beHD. 
We claim that (11.8) remains valid if we replace bi by the web-splines Bi and Â  by the 

weighted dual functions 

. . . w{xi). 
w(x) 
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The biorthogonality follows easily since none of the outer B-splines bj has support on any 
of the grid cells Qi C D. By Definition 11.3.1, this implies 

wix] 

w{xi) 

and therefore 

For the uniform boundedness we observe that 

W[X) W{X) 

so that IIA ÎIo :< ||A^||o. The first inequality follows from the assumption (11.7), noting 
that for any point y on the line segment between Xi and x 

| | x ^ - x | | :<h^ dist{x,dD) 

since x lies in a subcell of the grid cell Qi C D. 
Similarly, we can show that /i^||5i||^ ^ 1 for £ = 0 ,1 . In view of the local support of 

the web-splines and the dual functions, this implies the following stability result. 

Theorem 11.3.1 For any linear combination u^ — Yli^i'^i^i of web-splines with coeffi­
cient vector U, 

h\Kh < \\U\\ X | |M,||O. 

We emphasize that this Theorem is in general false for the spaces S and S^, spanned 
by B-splines and weighted B-splines, respectively. For these spaces, the instability of the 
basis may lead to excessively large condition numbers of Galerkin systems and very slow 
convergence rates for iterative methods. 

11.4. A P P R O X I M A T I O N OF B O U N D A R Y V A L U E P R O B L E M S 

Using weighted spline spaces, elliptic boundary value problems can be approximated in a 
familiar fashion [12]. We illustrate this by considering several typical model problems. In 
particular, the treatment of different types of boundary conditions is discussed since this 
affects the construction of the finite element subspaces. Finally, we state a basic error 
estimate and sketch the implementation of spline-based finite element techniques. 

11.4.1. Essential boundary conditions 
Essential boundary conditions have to be incorporated in the finite element subspaces 
since they are not automatically satisfied by solutions of appropriate variational prob­
lems. As a model problem, we consider the Poisson equation with homogeneous Dirichlet 
boundary conditions (11.1), mentioned in the introduction. We can construct approxi­
mations 

Uh := ^u^Bi, 
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choosing either one of the spaces Sy,{D), S^e{D), or the weighted hierarchical spline space 
5w(ID)) as finite element subspace Vh. Both the minimization of the functional (11.2) and 
the equations (11.3) with V replaced by Vh lead to the finite element equations 

GU = F, ge,^ -L grad^^grad^i, fi 

for the vector U of coefficients m. 

-L fBe (11.9) 

1e+2 1e+3 1e+4 1e+5 

Figure 11.9. Displacement (magnified) of a membrane with constant load and error of 
piecewise linear and web-spline approximations of order n = 2 , . . . , 6. 

Figure 11.9 shows on the left the solution of (11.1) with / = 1 on a circular domain with 
3 holes, representing, e.g., the displacement of a membrane with constant load. Numerical 
approximations were computed with the web-spaces S^e and, for comparison, also with 
hat-functions on a triangulation of the domain. For orders 2,3,4, 5,6 (markers * , • , A, 
• , * , respectively), the diagram on the right shows the L2-error versus the number of 
basis functions. Compared to hat-functions (^ marker), web-splines yield highly accurate 
solutions. For example, with 496 web-splines of order 4 the relative error in the L2-norm 
11̂  - '^/illo/lkllo is 9.1705e-05 (in the H^-noYm 7.8161e-04) whereas 17602 standard finite 
elements are needed to achieve a relative L2-error of 5.1614e-04. 

The Galerkin matrix G^e for the space 5we can be computed with simple row and 
column operations from the larger matrix Gw for S^. More precisely, G^e = PG^^P^ with 
Pi,j = i^ij + ^i,j)/'^{^i)^ ^s is apparent from Definition 11.3.1. The transformation P, 
corresponding to the stabilization of the weighted B-spline basis, substantially reduces 
the condition number of the Galerkin system. In the example in Figure 11.9, 

condoo(G'w) = 2.3884e+12, condoo(G'we) = 226.24 

for h = 0.35 and bilinear splines (n = 2). The size of the system is reduced from 496 
to 351 variables. For smaller grid width and splines of higher order, the difference is 
even more dramatic. For example, for h = 0.0875 and n = 5, the condition estimate 
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of M A T L A B [25] yields condoo(G^w) = 9.3315e+61, while the condition of the reduced 
system is 3.0532eH-10. This shows that the parameter reduction by the transformation P 
significantly improves the stability of the Galerkin system, thus permitting more accurate 
solutions and better convergence rates of iterative solvers. 

Of course, Galerkin's method applies to equations with variable coefficients as well. It is 
sufficient to assume that the boundary value problem can be described by the variational 
equations 

a{u,v) = {f,v), yveV = H',{D), (11.10) 

where a and (/, •) are continuous bilinear and linear forms on HQ{D) and a is elliptic, i.e. 

a{u,u) y \\u\\l 

(cf. [12] for several examples). The Lax-Milgram Lemma implies existence and uniqueness 
of weak solutions in this very general setting. Again, the finite element approximation 
Uh G Vh is obtained by replacing V by Vh in (11.10). 

Problems with prescribed boundary data, u = g on dD, can be treated as well. They 
are reduced to the homogeneous case via the substitution u =: v -\- g, where g is an 
extension of g to all of D. In effect, we seek an approximation for u from the affine space 
9 + Vn. 

11.4.2. Natural boundary conditions 
As a typical problem, we consider the Laplace equation with Neumann boundary condi­
tions, 

Ou 
A i z - O i n Z ) , — = gondD, ( H H ) 

assuming that the compatibility condition f^^ g = 0 is satisfied. The weak formulation 
of (11.11) is 

/ gididugTSLdv — I gv, ^v G H^{D). 
J D JdD 

Since no boundary conditions are imposed on the test functions v, the finite element 
formulation is much simpler than for problems with essential boundary conditions. No 
weight function is required, and we can work with the spline spaces S or SQ. 

As an example. Figure 11.10 illustrates the computation of incompressible flow through 
a channel with three obstacles. In this case, u is the potential and —grad^ the velocity. 
On the right of the Figure, we visualize ||grad?i|| for constant flow rate at the in- and 
outlet of the channel ( |^ = ±vo on the vertical boundaries). The finite element solution 
Uh was calculated with extended B-splines of order 4 {uh G 5e). As for essential boundary 
conditions, the results are much superior to mesh-based approximations. For 9709 basis 
functions the relative Z/2-error is 2.2499e-08, which is by a factor 35290 smaller than for 
an approximation with 9835 hat-functions and a triangulation with mesh width 1/16. 
Moreover, as shown on the left of Figure 11.10, to construct the basis for ^e, only very 
few B-splines have to be extended. For most of the inner shifts (marked with blue dots) 
the web-splines Bi coincide with the standard B-splines bj. 
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Figure 11.10. Incompressible flow, modeled with extended B-splines. 

The more general Neumann problem, 

du 
—div (a grad u) -\- bu = f in D, — = g on dD, 

with a{x),b{x) > 0, can be approximated in a completely analogous fashion. The varia­
tional form is 

- / a grad u grad u + bu^ — fu — gu 
2 JD JD JdD 

—> mm. 

and we can use any of the spaces S{D), Se{D), or 5(D) to compute finite element ap­
proximations. 

11.4.3. Mixed and higher order boundary conditions 

As an example of a mixed problem, we consider the system of linear elasticity 

—/JLAU — (A 4- /x)graddivii = f in D 

with the boundary conditions 

u = Oonr cdD, a{u)^ = g on dD\T, 

where F has positive (m — l)-dimensional measure. This system determines the displace­
ment {ui{x), U2{x), Us{x)) of a three-dimensional elastic body, fixed at F, under a volume 
force with density / and a force applied to dD\T with density g. The constants A and 
IJL are the Lame coefficients, the matrix a is the stress tensor, and ^ denotes the outward 
boundary normal. Without going into details, minimizing the potential energy over 

{ueH\Df: uix) = 0,xeT} 

yields a natural variational formulation. Hence, if wr is a weight function equivalent to 
the distance to F, each of the spaces 
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Figure 11.11. B-spline grid for computing the deformation of an elastic structure, fixed 
at a planar surface. 

can be used to construct finite element approximations. An example is shown in Figure 
11.11, where an elastic structure is attached to a planar surface T = {x : xi = 0}. Here, 
the obvious choice wr{x) = Xi yields very simple weighted finite element subspaces. 

Higher order boundary conditions arise, e.g., in the biharmonic problem. 

A \ . / in L>, u =^ go, •^- = Qi on dD. 
on 

(11.12) 

For homogeneous boundary conditions (^o = 9\ = 0), (1112) describes the equilibrium 
position of a clamped plate under the action of a transverse force. In this case, finite 
elements should vanish to second order at the boundary. Hence, we choose a weight func­
tion, which, for smooth boundaries, is equivalent to the square of the distance function. 
For example, if D is the unit disc, 

w = wl, wi{x) = - ( 1 - x l - xl). 

We can also use the weight function to construct affine finite element subspaces, which 
satisfy the inhomogeneous boundary conditions. If w = w^ and dwi/dn = — 1 on the 
boundary, as in the above example, then 

V = go- wi{gi + grad w;i grad^o), 

where ip denotes an extension of i/̂  to D, satisfies the boundary conditions. Hence, each 
of the affine spaces 

V + S^{D), V + 5we(I)), V + 5w(P) 

provides admissible approximations. 
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11.4.4. E r r o r e s t i m a t e s 
For most elliptic boundary value problems, the order of convergence of finite element 
approximations is determined by the order of the basis functions. Essentially, this is also 
true for all spline spaces described in Section 11.3. For the norm associated with the 
variational formulation, the arguments are particularly simple and familiar from classical 
finite element analysis [48,12]. As an illustration, we consider the Dirichlet problem for 
Poisson's equation, discussed in Subsection 11.4.1. The generalization to the abstract 
variational problem (11.10) is straightforward. 

Theorem 11.4.1 If Uh is a finite element approximation to a solution u of (11.1) from 
a linear subspace Vh C HQ{D), then 

\\u-Uh\\i ^ inf | |w-^ / , | | i . 
Vh^Vh 

This estimate is a direct consequence of the variational formulation. By (11.9), Uh = 
Y^^ UiBi satisfies 

/ gid.duhgid.dvh = fvh, yvh e Vh. 

Combining this with (11.3) yields / grad {u—Uh) grad z; = 0 for all v G Vh- Hence, choosing 
V :=Uh- Vh, 

/ grad {u - Uh) grad {u - Uh) = / grad {u - Uh) grad [u - Vh), 

where the left-hand side is ^ \\u — i^/i||f by Friedrich's inequality, and the right-hand side 
is < \(a — Uh\\\[U — t'/illi. Dividing by ||?i — if/i||i, the Theorem follows. 

Theorem 11.4.1 implies convergence of the finite element approximations from S^^ and 
therefore also from the larger space S^. Moreover, with the aid of the canonical projector 

PhU:^Y.{\ ̂ A^^^ (11.13) 

associated with the dual functions for the web-basis, we can derive the following standard 
error bound [26,27]. 

Theorem 11.4.2 If the weight function w satisfies (11.7) and the solution u as well as 
u/w are smooth, then 

\\u-UHh=0{h--') 

for finite element approximations Uh from Syj^. 

As shown in Figure 11.12 the numerical results for the model problem (11.1) live up 
to the theoretical predictions. For the example considered in Figure 11.9 the i/^-error is 
plotted versus the number of web-splines on the left-hand side. The right-hand side shows 
the ratio between consecutive logarithmic errors in order to make the rate of convergence 
apparent. As is to be expected, the use of higher order approximations pays off. 
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Figure 11.12. H^-ervoT of web-approximations of order < 6 and rate of convergence. 

11.4.5. Implementat ion 

A typical finite element simulation with splines consists of the following major steps: 

• construction of the basis; 

• assembly of the finite element system; 

• iterative solution. 

Each of these components will now be described in turn. For simplicity, we consider 
only the spaces S{D), Sy,{D), and S^e{D), which do not involve adaptive refinement. 

Construction of the basis. The domain is enclosed in a bounding box and covered by 
a regular grid. Then the grid cells are classified into interior, boundary, and exterior 
cells (cf. Figure 11.2). This minimal information is sufficient to determine all parameters 
for constructing the various bases. Among all B-splines b^ with support overlapping the 
bounding box, we mark the inner B-splines bi and the outer B-splines 6j, checking whether 
their support contains at least one interior grid cell Qi or merely boundary cells. The 
union of these B-splines, bk, k ^ K — I \J J, forms a basis for S. 

To construct the web-basis Bi for ^e, we first determine for each j £ J the closest 
array I{j) among the inner shifts i. Then we associate with each i the set J{i) and the 
coefficients e^j. Since e^j, i G / ( j ) , only depend on the relative position of the array I{j) 
with respect to the outer shift j , and I{j) is usually close to j , tabulated values can be 
used in most cases. 

For the spaces Sy, and 5we, we have to specify the weight function. If permitted by 
the description of D, the /^-functions method can be used, and the weight function w 
is specified explicitly via an algorithmic expression. In general, w has to be constructed 
with the aid of distance functions and must be evaluated numerically. 

Assembly of the finite element system. For the entries of the finite element matrices we 
have to compute integrals over grid cells with integrands that involve values and deriva­
tives of the weight function, B-splines, and functions occurring in the formulation of the 
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boundary value problem. Good results are usually obtained with tensor product GauB 
formulas. For interior grid cells, the integration is straightforward. However, boundary 
grid cells have to be divided into subcells, which can be mapped smoothly to standard 
domains. Integrating directly would result in a loss of accuracy due to the non-smooth 
boundary of the intersections Q n D. While the subdivision in two dimensions just re­
quires cuts by straight lines (cf., e.g., [42]), in three dimensions a number of different 
possibilities have to be considered; Figure 11.13 shows a few typical examples. To facili­
tate the visualization of the subdivision, arrows indicate the transformation to standard 
integration areas. 

/-l̂ -̂---

Figure 11.13. Subdivision of boundary cells. 

The integrands can be evaluated efficiently. The most complicated part is computing 
derivatives of the weight function at the GauB points. If w is defined via i^-functions, 
automatic differentiation can be used in conjunction with the algorithmic definition [24, 
47]. The numerical evaluation of w involves Newton's method. However, only very few 
iterations are necessary since for neighboring points good start values exist. Moreover, for 
weight functions with plateau, the additional computational effort is required only near 
the boundary. 

Iterative Solution. The finite element systems can be solved with any of the standard 
iterative schemes. For example, as is illustrated in Figure 11.14, conjugate gradients, 
preconditioned with SSOR, give very good results. For the Dirichlet problem, considered 
in Figure 11.9, we have plotted on the left-hand side the number of iterations versus the 
dimension of the spline space 5we- The diagram on the right-hand side shows the total 
computing time in seconds, measured on a Pentium 11/400 MHz class personal computer. 
There is only a fairly moderate growth in the required computational work. Systems with 
more than 600,000 unknowns could be handled without any stability problems. 

The spline approximations on uniform grids are also ideally suited for multigrid tech­
niques. Subdivision algorithms [8,15] and the standard projector (11.13) provide natural 
grid transfer operators. For the standard multigrid w-cycle optimal grid independent con­
vergence rates can be established [28]. Hence, the solution time remains proportional to 
the dimension of the spline spaces. Such techniques are particularly important for large 
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Figure 11.14. Convergence of cg-iterations and total computing time in seconds. 

scale three-dimensional applications. 

11.5. S U M M A R Y 

Weighted spline approximations provide a natural link from geometric modeling to finite 
element simulation. They do not require any grid generation, thereby eliminating an 
often time-consuming preprocessing step. Moreover, software for manipulating B-splines 
can be used to assemble Galerkin matrices and to visualize numerical results. Unlike for 
mesh-based methods, there are no limitations on the smoothness of the basis. Therefore, 
highly accurate approximations are possible with relatively few parameters. 

An important feature of weighted finite elements is the simplicity of the geometry 
description. For domains defined in terms of implicit equations, the associated weight 
functions can be constructed with the R-functions method. This technique is applicable 
to many engineering problems, in particular those involving constructive solid geometry 
models. Efficient algorithms are also available for general NURBS-domains, where weight 
functions have to be constructed numerically. Hence, the methods combine well with 
standard boundary representations in CAD-systems. 
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Chapter 12 

Subdivision Surfaces 

Malcolm Sabin 

This chapter deals with the technology of subdivision surfaces, how they can be defined 
and how schemes are analysed for desirable properties, thus allowing tuning of the details 
of the scheme for optimum behaviour. 

12.1. S U B D I V I S I O N SURFACE D E F I N I T I O N S 

The basic idea is that an initial 2-manifold network of vertices, edges and facets (often 
now referred to as the control polyhedron, even though the facets need not be planar, or 
sometimes as the mesh) can be refined by computing new vertices and joining them up to 
form a new polyhedron. This operation can be repeated indefinitely, and as the process 
continues, if the refinement construction is suitable, the polyhedron converges towards a 
limit surface. The local nature of the process means that the polyhedron need not be 
limited to rectangularity, and surfaces of any topological genus can be defined. 

Alternative approaches include the definition of n-sided patches, possibly by use of toric 
variety theory, and the assembly of polynomial patches meeting n at a vertex. The latter 
is described in Chapter 8 of this handbook. 

However, the development of the subdivision approach into a practical tool, capable 
of succeeding NURBS as the surface description method of choice throughout animation 
and engineering design is receiving enormous academic attention. This chapter cannot 
hope to describe all that is going on. The reader is also directed to the course notes [39] 
which support the tutorials given on this subject at the SIGGRAPH conferences in recent 
years. 

12.2. I N T R O D U C T I O N - S U B D I V I S I O N CURVES 

12.2.1. The Chaikin construction 
Although significant analysis had been carried out earlier by de Rham[9], the first subdi­
vision construction noticed by the CAGD community was that proposed by Chaikin[6] as 

309 
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an ad hoc way of constructing a smooth curve, given a sequence of points. 
Suppose that the sequence of points is 

• • • ^i-li ^ 7 3^+1 J ^i+2 • • • • 

Each span from this sequence then has two new points constructed on it, at (3aiH-aj+i)/4 
and at (a^ + 3aLi^i)/4, and these new points are reconnected in the obvious way to form 
a new sequence. If we regard the sequence as defining a polygon, the new polygon is 
essentially the old one with the corners cut off, and if this is done often enough the 
polygon becomes a smooth curve. 

Figure 12.1. Chaikin subdivision 

This material was presented at the first major conference on CAGD[3], but unfortu­
nately did not appear in the conference proceedings. However, at the conference both 
Riesenfeld[28] and Forrest[16] were stimulated to investigate the mathematical nature of 
these curves, and discovered that the limit curve was an equal interval quadratic B-spline. 

12.2.2. Higher degree splines 
This observation immediately led to the generalisation that every equal interval B-spline 
has its own subdivision construction. Adding knots to create a new denser knot vector 
from the old one can be done on a binary basis (one new knot in each old knot interval), 
or ternary or higher. 

Each span of an equal interval rv' degree B-spline has a constant n derivative, 
numerically equal to the rr^ divided difference of the control polygon. Suppose that each 
old span is divided by knot insertion into p equal pieces. After the knot insertion those 
new pieces will all have the same n^" derivative as the original span and thus the same 
divided differences. We can deduce from this that their n^^ differences will be 1/p'^ of 
those of the original span. 

We can recover the new polygon from these differences by a process of summation, 
the exact inverse of differencing. In particular, if we apply the processes of differencing 
n times, repeating each of the differences p times and dividing by p^, and then anti-
differencing n times, to cardinal data, we generate the coefficients appearing in the tem­
plates. 

We take as example here the equal interval cubic B-spline with a binary subdivision. 
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Differencing 

0 1 0 
0 1 - 1 0 

0 1 - 2 1 0 
0 1 - 3 3 - 1 0 

Repetition and Anti-differencing 

0 1 1 - 3 - 3 3 3 - 1 - 1 0 
0 1 2 - 1 - 4 - 1 2 1 ^ /R 

0 1 3 2 - 2 - 3 - 1 0 / 
0 1 4 6 4 1 0 

If we take translates of the final row, and assemble them into columns in a matrix, we 
get the matrix by which the column vector of old points must be multiplied to give the 
column vector of new ones. These columns are called the mask of the scheme. The rows of 
this matrix are called the templates or stencils of the scheme. They give the coefficients, 
in this case [1,6, l ] /8 and [4,4]/8, by which the old points must be multiplied to give the 
new points in the new sequence 

0 
1 
4 
6 
4 
1 
0 

0 
1 
4 
6 
4 
1 
0 

0 
1 
4 
6 
4 
1 
0 

0 
1 
4 
6 
4 
1 

0 
1 
4 
6 

We tabulate in Table 12.1 the coefficients for the first few degrees 

Degree 
2 
3 
4 
5 

Table 12.1 
B-spline subdivision coefficients 

Binary Ternary 
[3,l],[l,3]/4 [3,6,0],[l,7,l],[0,6,3]/9 

[4,4],[l,6,l]/8 [l,16,10],[4,19,4],[10,16,l]/27 
[5,10,1],[1,10,5]/16 [1,30,45,5],[15,51,15],[5,45,30,1]/81 

[6,20,6],[l,15,15,l]/32 [6,90,126,21],[1,50,141,50,1],[21,126,90,6]/243 

We note that the higher the degree the more terms need to be included in computing 
the new points. 
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The generalisation of the de Casteljau[8] construction gives another way of considering 
high degree schemes. The knot insertion process can be thought of as a sequence of stages, 
each stage creating a polygon with just one extra vertex, where every new or repositioned 
vertex is a weighted mean of just two precursor vertices. This has the important advantage 
that high-degree schemes may be thought of in terms, not just of one big template, but 
of a set of smoothing steps involving just a few terms at a time. 

12.2.3. The 4-point interpolatory scheme 
Dyn, Levin and Gregory[14] produced a new idea, that new points could be added into 
the existing sequence. Because the original points remain as members of all subsequent 
sequences, they become members of the limit curve, which therefore interpolates them. 

The coefficients for the template for the new midpoint in each span in their 4-point 
scheme become [—1,9,9, —1]/16. 

Whereas the schemes derived from the B-splines have piecewise polynomial limit curves, 
with well defined continuity levels between adjacent pieces, it can easily be shown that 
this 4-point scheme, and indeed all CI interpolating schemes with fixed support cannot 
have polynomial pieces. Consider the curve resulting from a polygon which has abscissae, 
Xi = i at the integers and ordinates yi zero except at x = 0 {cardinal data). 

This curve must have regions of negative y, since the limit curve must cross the x-axis 
at Xi ^ 0. However, the curve is also self similar at different scales, because it can be 
expressed as the sum of copies of itself scaled in x by the arity of the scheme and in y by 
the coefficients of the refinement. Each such copy has images of the negative regions, and 
the iterated refinement process makes it clear that these must cluster towards the ends 
of the support. In the limit there are an infinite number of such changes of sign in the 
finite support of the limit function, and no piecewise polynomial has an infinite number 
of roots. 

Further, the continuity level just fails to reach C2 because the 2nd derivative is just 
undefined. This can be seen by inventing a composite operator, which applies the 4-point 
scheme and then rescales the polygon by a factor of 2 in x and Amy. This composite 
operator gradually increases the second difference without bound as we keep applying it. 
This behaviour is now understood in terms of Jordan blocks in the eigenfactorisation of 
the subdivision operator, as will be explained below. 

The points constructed in this construction lie on the Lagrange polynomial through 
four successive points of the polygon. Deslauriers and Dubuc[15] approached subdivision 
from a fractal background, and carried out a systematic analysis of such schemes. 

12.3. BOX-SPLINES 

The simplest generalisation of B-splines to surfaces is via tensor product constructions, 
where bivariate basis functions are formed from products of univariate functions. It is 
straightforward to see, from the commuting of subdivision in the two directions, that we 
can describe such surfaces in subdivision terms by just taking the tensor product of the 
refinement operators. 

A rather broader generality is by considering the box-splines, described in Chapter 10. 
Because a box (the outer product of a set of intervals) can always be subdivided into 
smaller boxes by subdividing those intervals, we can always express a box-spline basis 
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function over a coarse grid in terms of the sum of basis functions over a nested finer grid. 

12.4. GENERALIZATIONS TO ARBITRARY TOPOLOGY 

Once such a bivariate scheme has been set up, its derivation can be forgotten. It be­
comes a way of making a new, refined polyhedron from a coarser one, and this leads to 
a generalisation of profound importance. We can leave the rigid rectangularity of tensor 
product systems behind, and create schemes which define smooth surfaces from polyhe-
dra with arbitrary connectivity. The first two of these were the Doo-Sabin[ll][12] and 
Cat mull-Clark [4] schemes, but many more have been derived since then. 

12.5. SOME SPECIFIC SCHEMES 

12.5.1. The Doo-Sabin quadratic scheme 
The biquadratic B-spline gives a scheme in which a new vertex is created for each old 
corner of each old facet, as a linear combination of the old corners of that facet. New 
facets are created linking these new vertices 'inside' the old facets, across the old edges 
and across the old vertices. The four coefficients of the old vertices in a new one are just 
the tensor products of the [1, 3], [3, l]/4 quadratic templates from table 12.1, [1,3,9,3]/16 
taken in cyclic order around the old facet. 

Figure 12.2. Topologies of the (a) Doo-Sabin and (b) Catmull-Clark schemes. 

To generalise this we need only define how new vertices are constructed in old facets of 
other than four sides. In [12] the coeflScients 

4n ' -̂  
3-h2cos(27r(z-j)/n) 

4n ^ i 
are supplied. These lead to a surface which is CI everywhere and which has well behaved 
curvatures. Being only a quadratic scheme it cannot give C2, but all curvatures are 
bounded to values sensible in the context of the polyhedron itself. 



314 CHAPTER 12. SUBDIVISION SURFACES 

12.5.2. The Cat mull-Clark cubic scheme 
The bicubic B-spline gives a scheme in which a new vertex is created at the centroid of 
each old facet (the tensor product of the two [4,4]/8 templates), another is created close 
to the midpoint of each old edge, a particular weighted mean of the vertices of the two 
adjacent facets, and another is created close to each old vertex, a particular weighted 
mean of the vertices of the adjacent old facets. 

If we look at this as a sequence of smoothings, as suggested at the end of section 12.2.2 
above, this can be re-expressed as taking the mean of the vertices of an old facet to give 
the centroids of the old facets; then we imagine joining the old vertices to the new ones to 
give a square mesh rotated 45 degrees from the original; then we repeat the taking of the 
means to give the new 'edge-vertices'; and finally the old vertices are smoothed to new 
positions which are linear combinations of the adjacent new ones. The effect on facets is 
that each old (four-sided) facet is divided into four new ones. 

The Catmull-Clark surface[4] generalises this by carrying out the same three steps. The 
first two are just means, which are well-defined however many sides the facet has, and the 
third merely requires the choice of appropriate weights to use when there are other than 
four edges meeting at a vertex. The net result is that each old n-cornered face is divided 
into n new four-sided faces. 

In [4] two possible weighting schemes for giving new 'vertex-vert ices' are given. Both 
give CI surfaces. Neither gives C2. Indeed, in both cases curvatures near old n-valent 
vertices become unbounded rather sharply as refinement proceeds when n ^ 4. This 
problem was addressed by Ball and Storry [35] who found vertex weights for the final 
stage ameliorating the problem, and by Sabin [31] who defined weights depending on 
valency for all three stages which lead to bounded curvature, though not C2 continuity, 
for all values of valency. 

12.5.3. The Loop triangular mesh scheme 
Loop[20] applied the box-spline subdivision approach to the 3-direction quartic C2 box-
spline. It is defined over any polyhedron with triangular faces. It is at first sight rather 
similar to Catmull-Clark, without its first stage. A new vertex is computed near the 
midpoint of each old edge, a linear combination (derived from the box-spline) of the old 
vertices at the ends of the edge and the old vertices across the adjacent triangles. New 
vertices are also computed near the old vertices, being a linear combination of the old 
vertex itself and the mean of the new vertices around it. The new facets divide each old 
facet into four pieces. 

12.5.4. The Butterfly interpolatory scheme 
Another scheme based on a triangular mesh is the Butterfly, an interpolating scheme from 
Dyn and Levin[13]. 

It has the same topology as Loop's scheme, with each triangular facet being divided 
into four subfacets, but now the original vertices are retained. The new ones, near the 
midpoints of the original edges, are defined as a linear combination of the ends of the 
edge, the two vertices across the two adjacent triangles and the four vertices across the 
triangles adjacent to them. 
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Figure 12.3. Topology of the Loop scheme. 

In figure 12.4 the new vertex x near the midpoint of de is given by 

d + e b + g a + c + f - h h 

" " " ^ " ^ " 8 16 

12.6. ANALYSIS OF C O N T I N U I T Y AT T H E S I N G U L A R I T I E S 

The main mathematical challenge in understanding the nature of these generalised sur­
faces has been seen as determining the behaviour around certain singular points. 

This analysis goes as follows:-

12.6.1. Support 
Within any scheme, there are a finite number of points at level i + 1 which are altered 
in position by moving a single vertex v at level i. Let the furthest of these from v be 
distance d away. Then the largest step at the next level will be kd with A: < 1, and the 
furthest influence any vertex can have is c^J^jlo^"^ which is equal to d/{l — k). For any 
particular scheme we can apply sharper arguments in which k and d depend on direction, 
to determine a boundary outside which a particular vertex has no effect. 

12.6.2. Regular regions 
First we observe that every scheme has a natural regular topology, which is preserved 
under subdivision. Typically after one step, or at most two, either every vertex has 
the same valency or every face has the same number of sides. Further, the number of 
entities with other than the standard number does not alter as a result of subdivision. For 
example, in Catmull-Clark, after one iteration every face is four-sided, and the number 
of non-4-valent vertices is invariant. Each n-valent vertex is derived either from another 
at the previous step, or from an n-sided face. 

As subdivision proceeds, the surface between such points gets divided into finer facets, 
all meeting regularly, and after relatively few steps, the singularities become isolated in 
the sense that moving one of them (in the refined mesh) will not influence the shape of 
the surface near another. 
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Figure 12.4. Butterfly subdivision 

For the spline-based systems, if we look at the regular regions, we realise that we know 
the exact form of the limit surface, because it consists of pieces each influenced by a 
finite number of control points, and if those control points are all regularly connected, the 
limit surface of the subdivision must itself be the spline surface. Its level of continuity is 
thereby well-defined. 

For systems which are not spline-based we cannot make this deduction straight away, 
but in fact there is an analogous statement that we can make after applying the irregular-
point analysis to our regular points. 

12.6.3. Neighbourhoods of singularities 
Once the singularities are isolated, we can look at the immediate vicinity of the singularity 
as having at least topological rotational symmetry. The configuration is regular, with a 
single irregularity at the centre. After one step, the configuration is exactly similar, and 
we can label the vertices with a common numbering system before and after. 

If Co is the column vector of those points in (or on the edge of) whose domain of 
influence the singularity lies, and Ci is the column of corresponding points after one 
subdivision step, we can express all the linear combinations involved in deriving the 
positions of Ci as a matrix equation 

Ci = M. Co 

The main tool to explore the behaviour in the neighbourhood of the singularity is 
eigenanalysis, which is relevant because, if we can factorise the subdivision matrix M 
into pre-eigenvectors R, a diagonal eigenvalue matrix L and post-eigenvectors S so that 
M = RLS, the eff'ect of a very large number of refinements will be M^ = RL^S, which 
will clearly be dominated by the largest eigenvalues, with their eigenvectors telling us 
what happens at a very small scale. 

There are two numbering sequences which give rise to particular structures for M which 
give qualitative insight into the behaviour. The first is a sequence which starts at the 
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singularity itself and then works out in rings. This gives M a block lower triangular 
structure with only a finite number of blocks on the diagonal. 

The only non-zero eigenvalues of M are then the eigenvalues of the diagonal blocks, and 
as soon as we raise M to any power greater than 1, we see that all terms to the right of the 
rightmost diagonal non-zero become zero. The right eigenvectors therefore have a limited 
number of terms, and we can carry out most of the eigenanalysis with only that number 
of elements in each of the vectors. This is another way of determining the support. We 
can remove from consideration any original vertices which have zero columns in M^. For 
example, 

M^ 

^ 0 0 0 
B C 0 0 
D E 0 0 
F G H 0 

A^ 
BA + CB 
DA + EB 

FA + GB + HD 

0 0 0 
C^ 0 0 
EC 0 0 

GC + HE 0 0 

The other numbering system to use is one which works around the centre, working out 
in each sector. M then has a block circulant structure (see Davis[7] for tutorial material), 
with each block itself being block lower triangular, with a finite number of sub-blocks on 
the diagonal. If there is a vertex, rather than a facet at the singularity, there needs to be 
a technical fix of replacing that vertex by a set of identical vertices there, one per sector. 
This does not affect the logic of the process. 

The blocks structure itself does not depend on the valency of the singularity. This 
enables us to treat the eigenanalysis of the subdivision matrix in a way which leaves 
the valency as an algebraic variable. Because of the strong connection between circulant 
matrices and finite Fourier analysis, it also enables us to split the system into the different 
rotational 'frequencies', which are present in the system, solving each independently, 
enabling us to carry out algebraic eigenanalysis for high valencies. 

If we imagine that the process of subdivision is actually carried out in three stages, 
the first stage is to multiply the column Co by the right eigenvectors. The appropriate 
scaling for the eigenvectors is that the sum of their elements should equal either 1 or 0. 
Each eigenvector summing to one multiplies the points in Co as a weighted mean, giving 
a point: each eigenvector summing to zero multiplies the points in Co as a zero-sum 
linear combination, giving a displacement vector invariant under translation of the entire 
configuration. These products of the right eigenvectors with Co thus give an abstraction 
of Co into a set of triggers. 

The triggers are then multiplied by the eigenvalues themselves, those corresponding to 
larger eigenvalues being made relatively larger thereby, and the scaled triggers are then 
multiplied by the left eigenvectors, so that each trigger has a characteristic effect on the 
configuration Ci and on all subsequent configurations. 

12.6.4. Limit point 
It turns out that because every new vertex is given by a weighted mean of old vertices, the 
rows of M all sum to unity, and this in turn means that there is a single unit eigenvalue. 
For the spline-based systems, all the weights are positive and less than unity, from which 
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we can deduce that all other eigenvalues have absolute value less than 1. In fact this also 
holds for other systems so far explored. 

The corresponding left eigenvector consists of a column of Is, meaning that the entire 
configuration converges to a single point, the limit position of the singularity itself. The 
right eigenvector is the only one which sums to 1, and it gives the coefficients of a linear 
combination which determines this position in terms of the original vertices. 

This eigencomponent always comes from the zero frequency component. 

12.6.5. Natural configuration and characteristic map 
If we use as the origin exactly this point, then there is no contribution to this component 
because the trigger is zero, and the behaviour becomes dominated by the next eigenvalues. 
In well-behaved schemes we find two equal eigenvalues A, with distinct eigenvectors, both 
arising from the unit frequency component. All other eigenvalues are strictly smaller in 
absolute value. In [34] Storry observed that if we take as our x and y coordinate axes the 
trigger vectors obtained by multiplying the actual configuration by the right eigenvectors, 
and multiply all coordinates after every step by the reciprocal of the eigenvalue, the 
configuration converges towards planar (the tangent plane), with all the control points 
converging to what he called the Natural Configuration. 

Reif [27] went further and, using the fact that in the outer parts of the natural configu­
ration we have regular regions which can be parametrised, he identified the Characteristic 
Map which determines how the parameters in the regular regions map to position in the 
tangent plane. He observed that it is possible to set up schemes in which the character­
istic map is not 1:1, giving sharp creases in the limit surface. He and Peters [21] gave 
as an example a modified version of Doo-Sabin with extremely perturbed weights which 
actually showed this effect. 

12.6.6. Curvatures 
Using the natural configuration x- and y-axes, and a z-axis perpendicular to them, the 
^^-coordinates of all the control points shrink as fast as the next eigenvalue with an eigen­
vector outside the eigenspace of those that determine the natural configuration. 

In well-behaved schemes, after 1, A and A, there come three eigenvalues of equal value 
/i, one from the zero-frequency component and two from the 2-frequency component, and 
all remaining eigenvalues are strictly smaller. 

By looking at estimators of curvature we see that if /x > Â , those estimators are 
multiplied at every step by ///A^ and therefore diverge, giving infinite curvatures in the 
limit. If /i < Â  they converge to zero, giving 'flat-spots' in the limit. Only if /i = Â  can 
the curvature at the singularity be well-behaved. 

Even this, however, is not enough, because we can take the ideas of the natural con­
figuration and characteristic map a stage further. The eigenvectors corresponding to A 
give the x- and ^-coordinates of limiting configurations. If we take the z-coordinates from 
one of the /j, eigenvectors, we find one of three second order natural configurations, to 
which correspond second order characteristic maps, shapes which span the space of pos­
sible immediate neighbourhoods of the singularity. For well defined curvature over this 
neighbourhood, each of those three shapes must be a paraboloid. In fact the 0-frequency 
shape is an elliptic paraboloid z = x"^ -i- y ,̂ and the two 2-frequency shapes are hyperbolic 
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paraboloids, z = x'^ — y"^ and z = 2xy. 
The regular parts of the natural configuration imply well-defined surface pieces, and 

for true C2 they must all lie exactly in a single quadric for each of the /i-components. If 
11 — }? and the eigenvectors do not satisfy this condition, the curvatures at the singularity 
are not precisely defined, although they can be bounded. 

12.6.7. Tuning subdivisions for better behaviour 
So far we do not know a straightforward subdivision scheme which satisfies all these 
conditions at singularities, although some methods have been contrived for overriding the 
local curvature behaviour. 

One of these approaches, pioneered by Prautzsch in [23,24] is to take an initial scheme 
and eigenfactorise it. The eigenvectors are retained, but the eigenvalues are replaced by 
more desirable ones, thus giving a new subdivision. This has the problem that we no 
longer guarantee that all the weights are positive, and that the templates for subdivision 
are not necessarily quite so local as in the starting point. In fact Prautzsch and Umlauf 
are content in their modifications of the Catmull-Clark (in [25]) and Loop and Butterfly 
(in [26]) schemes, with achieving continuity by accepting flat spots. Clearly, in order to 
achieve well-defined curvatures it may be necessary also to modify the eigenvectors. 

Another approach, usable when the regular regions have a known limit surface and 
good behaviour, is to assume that the weights are dependent on the valency n only. 
The eigenanalysis is carried through for generic valency with these weights Wi associated 
with the n-valent vertex as algebraic variables, thus turning the conditions /i = Â  into 
equations in wi and the valency itself, which can be solved for the wi as functions of n. 
There is no guarantee that the weights will be positive, but this becomes fairly apparent 
quite quickly. It is also necessary to check that the characteristic map remains 1:1, and 
to test whether the second order characteristic map is actually quadratic. This method 
was used in deriving the scheme reported in [31], which fails the second test by a small 
amount. The locality of the templates is maintained by definition. 

12.6.8. Jordan blocks 
Some subdivision matrices do not have a neat eigenfactorisation. The diagonalisation 
process leads to an irreducible block diagonal structure. When this happens we get 
two equal eigenvalues with coincident eigenvectors. When this geometric degeneracy 
occurs among the ^ eigencomponents, it leads to the local curvature estimators diverging 
logarithmically. This behaviour occurs in the 4-pt interpolating curve scheme of [14]. 

It is possible for an even milder form of this behaviour to occur when there are close 
eigenvalues with close eigenvectors. At the original scale of the configuration the cur­
vatures look reasonable, but at this scale the apparent curvatures stem from two large 
almost equal terms. As refinement proceeds, one of these terms gradually decays, leaving 
the other contributing a very large, though bounded, curvature. This behaviour occurs 
in a C2 ternary variant of the scheme of [14]. This variant has // = Â  and all other 
eigenvalues strictly less than /x, but one of these others is almost as large as ii. 
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12.6.9. Discontinuities of curvature 
In order to find a discontinuity of curvature at the singularity we need again to have 
multiple /i eigenvalues, but with distinct eigenvectors. The extra /i components will 
typically come from higher frequency parts of the circulant system. This behaviour occurs 
in the Doo-Sabin scheme. 

12.6.10. Higher derivatives 
When we do achieve well-defined C2 behaviour at singularities, the analysis of higher 
derivatives (which will presumably be even more challenging) will take a clearly visible 
path. We will either subtract the 2nd degree shape from the actual configuration, or 
limit ourselves to configurations which have zero curvature. The next eigenvalues will be 
four equal values z/, two from the 1-frequency component and two from the 3-frequency 
component, u will need to equal Â  and the corresponding characteristic maps will need to 
lie exactly in z = some cubic function of{x,y). The pattern obviously extends to higher 
derivatives still, but will probably not be seen as important for some years. 

12.6.11. Precision set 
The precision set is the set of surfaces S for which the final surface lies in S if all the 
control points lie in S. We can deduce this if, for an initial configuration in S the next 
configuration also lies in S. For the spline-based systems the precision set is only the set 
of planes. 

For interpolating schemes with finite support, the conditions for well-defined curvatures 
demands that the precision set should include paraboloids. 

For spline-based systems there is an analogous demand, identified by Adi Levin[5], that 
if the initial control point x- and y-coordinates are spaced as in the characteristic map, 
and the z-coordinates lie in a quadratic function of x and y, then the same property 
should hold after one iteration, and the quadratic after should have the same quadratic 
terms as before. 

12.7. FIRST S T E P ARTIFACTS 

A new issue, becoming visible as subdivision surfaces start to be used for commercial work 
in commercial systems, is that the original topology of the polyhedron shows through, in 
the form of ripples whose spatial frequency is that of the original vertices. By Shannon's 
sampling theorem [33] only components of spatial frequency up to half the vertex frequency 
are justified by the data, and so these ripples are definitely artifacts. 

They are called first-step artifacts because it is the first subdivision step which makes 
them explicit. 

Tools for analysing these are not yet well-developed, but we can see that spatial Fourier 
analysis will be one of the important ones. This already confirms that for most schemes 
the first step does 8 or 16 times as much damage as the second, and so fixes will probably 
take the form of modifying the coefficients for the first iteration or possibly the first two, 
in ways which depend on the actual geometry, and are designed to minimise the artifacts. 
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12.8. CURRENT RESEARCH DIRECTIONS 

As well as the problem of analysis of artifacts, there are a few new directions in which 
active research is ongoing. 

12.8.1. Square root of 3 scheme 
This scheme was devised by Kobbelt in [19] and has also been looked at independently 
by Guskov[17]. 

The regular mesh is triangular and the refinement step places a new vertex at the 
centroid of each triangle. Each such vertex is joined to its neighbours across the original 
edges and also to new vertices near the original vertices, but smoothed by taking a linear 
combination of the original vertex and its new neighbours. The topology of refinement is 
shown in figure 12.5(a). 

The rotation of the mesh in each step gives rise to complex eigenvalues, but if we 
compose the numbering schemes of two steps the rotation can be cancelled out and we 
can work in terms of real eigenvalues again. In the circulant view, complex eigenvalues 
correspond to phase shifts in the Fourier analysis. Twisting the numbering scheme one 
way in the first step and the other way in the second means that we are composing a 
scheme with its complex conjugate, giving real eigenvalues for the combination. 

A topologically regular grid has quadratic precision and a 02 limit surface. However, 
the support region has a fractal boundary and normally there is no closed form limit 
surface even piecewise. The scheme is not generated by any box-spline. 

There is an interpolating equivalent, in which the new vertices near the centres of the 
original facets are given by a linear combination of the three vertices of the facet and the 
three far vertices of the adjacent triangles. In [17] Guskov investigates both this and the 
more general case where each vertex-vertex also depends on the original vertex and all its 
neighbours. 

The claimed advantage of such schemes is that they provide for smoother gradation of 
density if part of the polyhedron is refined and other parts are not. 

12.8.2. Subdivision over semiregular lattices 
Some of the box-splines give schemes over semiregular lattices. For example, the 4-
direction quadratic box spline described by Sabin in [30] and independently by Peters 
and Reif in [22]. This turns out to have a really simple construction: create a new vertex 
at the midpoint of each old edge; join these new vertices by a new face in each old face 
and a new face across each old vertex. The resulting topology is shown in figure 5(b). 

However, another scheme by Velho[36] deliberately uses semi-regularity in the same 
hunt for less abrupt density transitions, and designs its coefficients towards those ends. 
Figure 12.6(b) shows how easy this approach makes the regional variation of subdivision 
level. 

12.8.3. Dual schemes and contact elements 
The term dual is sometimes used to denote a scheme like Doo-Sabin or those generated by 
the other even degree tensor product splines. This is dual in the topological graph-theory 
sense. However, it is not clear how the square root of 3 and semiregular schemes fit into 
this classification. 
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Figure 12.5. Topologies of the (a) y/3 and (b) 'simplest' schemes. 

There are also dual schemes in the algebraic geometric sense, where instead of new 
vertices being generated from linear combinations of old ones, with limit points and tan­
gent planes being derived from the eigenanalysis, new planes are generated from linear 
combinations of old ones, and new planes and tangent points are derived from the eigen­
analysis. The first of these was described by Wartenburg [37], who showed that the dual 
of the Doo-Sabin scheme gave an interpolating scheme for convex data. 

It is also possible that schemes in which initial contact elements (the combination of a 
point and its tangent neighbourhood) are combined to give new ones may give a better 
trade-off between degree and size of template than current schemes. 

12.8.4. Unequal intervals 
In the use of standard 'rectangular' B-spline surfaces, the ability to make short-wavelength 
changes in a long surface without affecting the surface in the large is very valuable. In 
the subdivision surface context something similar is offered by the ability to modify the 
vertices at a late stage in the subdivision. This is called multi-resolution editing and is 
described in chapter 14. However, this does not have quite the flexibility and ease of 
control offered by knot insertion in the unequal interval B-spline context. 

There have been a number of attempts to enhance the subdivision process in this direc­
tion. deRose[10] focussed on the ability to make certain edges within the refined surface 
relatively sharp, following the ideas of [18] which allows specific edges to be turned into 
sharp creases. Sederberg et al. [32] described a more general technique for associating 
'knot intervals' with the edges of the mesh and for propagating these to successive re­
finements. There are still problems in the detail of this last technique, notably in the 
behaviour round singularities of high valency [29], but I expect to see variants emerge 
which tune the propagation to solve this problem. 
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Figure 12.6. Topology of 4-8 semiregular subdivision 

12.8.5. Artifact analysis 
Artifacts are clearly the result of aliasing effects, but we cannot get rid of them by the 
usual graphics techniques of super-sampling, because the data on the coarse grid is all 
that we have. 

In general some kinds of bivariate Fourier analysis will be applicable. 
However, there appear to be three cases through which we can approach the analysis 

of artifacts in subdivision surfaces. The first we can call longitudinal artifacts, which is 
essentially the univariate artifact problem: data points equally spaced around a circle give 
a limit curve with maxima and minima of curvature. This can be addressed by looking 
at the result of subdividing extruded data on a regular grid, where all the values on any 
one of the generators have the same value. 

We can also address lateral artifacts the same way, but looking to see whether the result 
of subdivision is still extruded data. There are schemes (mostly interpolating square root 
schemes) where the curvature across the dinosaur's back can cause ripples along it. 

The third case will undoubtedly take most work, either in finding an elegant widely 
applicable analysis technique or else in working through a large number of particular cases. 
This is the rotational artifact problem, where ripples appear around an extraordinary point 
of high valency. The essential problem is that because artifacts are mainly caused at the 
first iteration, we cannot assume that the extraordinary points are isolated. 

12.9. C O N C L U S I O N S 

Recursive refinement may not be the only technology addressing the need to provide 
automatic maintenance of continuity over surfaces of arbitrary topology - alternatives are 
to define n-sided patches suitable for incorporation in B-spline-like networks or to arrange 
the joins of conventional patches other than four at each vertex - but it currently appears 
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to be the contender in which most interest is being taken. 
It also provides fascinating mathematical problems in the analysis of continuity at sin­

gularities and in the devising of new schemes giving a better trade-off between continuity, 
artifacts and template size. 
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Chapter 13 

Interrogation of Subdivision Surfaces 

Malcolm Sabin 

This chapter deals with how surfaces may be interrogated by the subdivision paradigm, 
in which anything too complicated to deal with simply is divided into sub-problems, and 
the same approach applied to the subproblems. 

13.1. S U B D I V I S I O N SURFACE I N T E R R O G A T I O N S 

Interrogation is the process of determining from a surface various properties which are 
required for analysis of various aspects of the product which the surface helps to describe, 
and for creating data to assist in the manufacturing process. The survey paper [13] covers 
a range of computational approaches. 

Display is the first example which comes to mind, being useful both for aesthetic analysis 
and for marketing. Simple images can be generated by faceting the surface and sending the 
facets to a Z-buffer display: highly realistic renderings need ray-casting, the calculation 
of the points where rays from the eye first meet the surface. 

Sharper graphical analysis has as examples the use of images colour modulated to show 
the variation of curvatures, or of nests of cross-sections (contours) which skilled loftsmen 
can use to assess the quality of a surface. 

For analysis of strength and stiffness of the product we require to be able to generate 
appropriate grids across the surface, varying in local density with the expected spatial 
frequencies of the displacement under load, and being able to find nearest points on the 
surface to given points (estimated by the mesh generation process) is a key tool. 

For manufacture, cross-sections again give the shapes of templates or of internal struc­
tural members, and intersections of surfaces are required to determine trimming of skin 
panels. Offset surfaces are traditionally required for the determination of tool-centre paths 
for numerically controlled machining, although the recent trend in NC software towards 
the use of dense triangulations as the master for tool-path determination may reduce the 
need for that a little. 

Such requirements typically take much more CPU than the first setting up of a surface, 
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and so it is important that they be efficiently implemented. In the solid modelling context, 
it is also important that they be robust in their operation. 

The literature is remarkably sparse in describing these issues, with a few tens of papers 
while there are hundreds dealing with surface descriptions and thousands dealing with 
the mathematics of splines. 

In Geisow's seminal work[7] (more accessibly available in a summary by Prat t and 
Geisow[ll]), various approaches to interrogation were described in some detail, the front-
runner at the time being Newton iteration[17], used directly for nilvariate interrogations 
such as nearest-point, and embedded in a marching procedure for determining univariate 
interrogations such as cross-sections and intersections. If a piece of surface were known 
to have only one open piece of intersection across it, the process of approximation by 
successive halving of the intersection curve was also robust. 

A little later, Sederberg[14] compared different techniques for finding intersection points 
of 2D curves. At that time subdivision came out poorly: robust, but relatively slow. 

There are reasons to believe that this judgement needs to be reconsidered. The com­
puters on which we now base CAD/CAM systems are much faster than those available 
then, and, more significantly, the amounts of real memory are orders of magnitude larger. 
We are now approaching the era of the Gigabyte PC, compared with the tens of Kilobytes 
which were available when other methods were developed. 

We can now aflPord the memory to subdivide a surface when it is loaded, so that the 
subsequent interrogations become much cheaper. There are quantitative arguments, based 
on the relative speed of disc access and processor arithmetic, which can determine the 
level of detail which should be retained on disk and other arguments can determine the 
optimum level of detail to be precomputed and retained in memory. 

13.2. HISTORICAL B A C K G R O U N D 

One of the first ways in which subdivision impinged on the CAGD community was through 
graphics. The hidden surface problem spawned a large number of different approaches 
during the early 1970s, and one of the novelties then was the idea of Warnock[19], whose 
algorithm was essentially 'if the picture is simple, draw it; if not, use this same approach 
for a quarter at a time.'. This was an image space algorithm and the subdivision concept 
was soon applied in object space algorithms and then in parameter space algorithms for 
surfaces.[18,?] This was stimulated by the development of knot insertion algorithms, 
notably the Oslo algorithm [6] and the Boehm algorithm [2]. 

The motivation for these was based on two observations:-

1. That for any piecewise polynomial curve, typically represented by the combination 
of B-spline basis functions with point-valued coefficients, knots can be inserted at 
places where there are no actual discontinuities of derivative, and that if enough 
knots are inserted at the same place, the original curve falls into two pieces, each 
represented by its own subset of control points. 

2. That such a curve always lies inside the convex hull of its control points. 

If we wish to determine such things as the intersection points of curves, or the inter­
sections of curves or surfaces with planes or with each other, these two properties give an 
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elegant recursive approach. 
As a simple example, if we wish to calculate the points of intersection of a curve with 

a plane, we have a recursive algorithm exactly echoing the Warnock structure 

'If the curve is simple get the intersection directly; if not, apply this same 
algorithm to two halves of it, taking the union of any points which are found 
in the halves' 

There is one addition, which makes it much more efficient than just dividing the curve 
into a large number of simple pieces ab initio and considering them one at a time. If, at 
each level, we test whether the convex hull crosses the plane, we can discover whether the 
curve lies entirely on one side of the plane, in which case there is no intersection, and no 
further subdivision need take place. 

Such an algorithm promises both efficiency and robustness. 
Algorithms in this style are capable of supporting the wide range of interrogations which 

are necessary in industrial use of surfaces represented on the computer; they give the very 
high levels of robustness which are essential if the surface handling is embedded inside a 
solid modelling context, and with the dramatic growth of real memories in the last decade 
or two are potentially the fastest available approach. 

There is, however, a significant amount of sophistication which can and must be added 
to the basic idea in order to turn it into a widely applicable tool, and this chapter deals 
with that detailed technology by taking the simple approach and exploring how it needs 
to be tuned. 

13.3. THE CONVEX HULL PROPERTY 

The key factor in efficient use of subdivision in, for example, surface-surface intersections 
is the culling of subproblems which cannot contribute to the solution. This, carried out 
during the subdivision, is what avoids the cost of comparing everything with everything 
else for a lot of small surface pieces. 

The property which, for Bezier and B-spline surfaces, supports this test, is that each 
piece of curve or surface is known to lie within the convex hull of its control points. If 
two convex hulls do not overlap, then those two pieces of surface cannot intersect. 

13.3.1. Other hulls 
Unfortunately, the convex hull even of a discrete set of points is not a trivial thing to rep­
resent or compute, and checking whether two such hulls intersect is moderately complex. 

Bounding boxes 
Most practical implementations of these ideas have therefore used a much simpler con­
struct, the bounding box, which is trivial to represent and construct. Checking whether 
two boxes overlap is also trivial. 

This simplicity is paid for by the fact that it is easy for two bounding boxes to overlap 
while the corresponding convex hulls do not. In such circumstances the test gives a false 
positive and the outer algorithm will think that it needs to subdivide when in fact it does 
not. The tree of subdivision gets bushier and time is wasted on exploring paths which do 
not contribute to the result. 
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The theorem which is being used impHcitly here is that every point in the convex 
hull is also in the bounding box. This is simply proved by observing that every point 
in the intersection of two solids is also in each of those solids. The convex hull is the 
intersection of all supporting half-planes, while the bounding box is the intersection of 
the six supporting axially-oriented halfplanes. Intersecting with the other half-planes can 
only remove points of the bounding box, never add any. 

Quantised hulls 
That theorem leads to an observation that maybe something of the simplicity of the 
bounding box could be combined with the relative tightness of the convex hull by taking 
a larger set of fixed support directions. 

Figure 13.1. (a) convex hull, (b) bounding box, (c) 8-quantised hull of control points 

Figure 13.1 shows the areas of the convex hull, the bounding box and the quantised 
hull with eight support directions for a typical Bezier curve. Note that in the particular 
geometry of figure 1(c) two of the eight support halfspaces do not actually trim the 
quantized hull. The probability of a positive 'yes, it may intersect' is in some sense 
proportional to the area, and it may be seen that the quantised hull removes some of the 
bounding box's excess of area over the convex hull. 

The representation of a quantised hull can just be an array H of support distances, one 
for each (oriented) direction. The construction algorithm for the quantised hull using n 
directions, v^, z = 1 . . . n of a set of p points V — {pj, j = 1.. .p} becomes 

For each direction: Vj 
Do h := —oo 

For each point p^ 
Do h := max(h,Vi.pj) 
Od 
H[i] := h 

Od 

The loops in this algorithm may be interchanged for higher performance if the points 
in V are scattered in memory. The directions v^ do not need to be unit vectors, and they 
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may be implicit, so that if they are regularly oriented (for example, the axial directions 
and the directions of cube face and solid diagonals) the inner products can be replaced 
by appropriate sums of the axial components. 

Checking for overlap requires that we have the support directions occurring in oppositely 
oriented pairs. Suppose that the direction oppositely oriented to v^ is v-, and the support 
distances for two sets are held in H and H. The overlap check then becomes 

olap := true 
For each direction i while olap 
Do If H[i\ + H[i] < 0 

Then olap := false 
Fi 

Od 

Another algorithm important for high performance is that we can compute the quan­
tised hull, HC, of the union of two quantised hulls, HA and HB, by just taking maxima 
of support distances. 

For each support direction 
Do HC[i] = mdix{HA[i\,HB[{\) 
Od 

The bounding box is just a quantised hull with six support directions. Such experimen­
tal evidence as I have suggests that the tightness gained by adding more directions does 
not actually improve the overall performance of interrogations. The cost of comparing 
additional directions appears to outweigh the saving from fewer false positives, unless the 
cost of carrying out unnecessary subdivisions is very high. That experimental evidence is 
not particularly broadly based, and further experiment would be very valuable. 

13.3.2. Hulls of non-posit ive bases 
Although the convex hull enclosure property was initially seen as a major advantage of 
the Bezier and B-spline bases, Goldman and deRose [8] pointed out that all is not lost if 
the basis has local support. 

Consider the condition number L = maxt Yli 10 (̂̂ )1 of î basis (j)^[t) for which ^ ^ (/)j(t) = 
1. For positive bases this is equal to 1, while if some basis functions are somewhere negative 
it will exceed 1. We can determine a hull in which the curve itself lies by just expanding 
the hull of the control points by an offset ratio of (L — 1) in each support direction. 

13.3.3. Normal hulls 
The hull of a pointset is a convex solid containing all the points in the set. It is also 
useful to have available some information relating to first derivatives, the tangent vector 
in the case of a curve, the normal vector in the case of a surface. Because we do not 
use parametric values when thinking of surfaces as subdivision surfaces, the most useful 
vectors are unit vectors. Although these lie on a (unit) sphere, often called the Gauss 
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Sphere, there is nothing preventing us from putting a box or other hull around them. 
Such a box is called a Normal Hull (or Tangent Hull), and allows us to make deductions 
based on local surface or curve orientation. 

In principle, higher derivative information could also be captured into Hull form. For 
example, a Binormal Hull could bound binormal vectors, scaled by the local curvature, 
of a piece of curve. However, I have not seen such constructs in the literature. 

13.3.4. Offset subdivision surfaces 
Many enquiries need to address surfaces offset from some primary surface. The three 
main examples are 

1. sections through the inside of a skin when the primary definition is of the outside. 

2. machining paths computed as sections through the tool-centre surface offset by the 
cutter radii of a typical toroidal milling cutter. 

3. intersection of two offset surfaces to determine the centre-line of a rolling-ball blend. 

Such interrogations are not outside the domain of subdivision interrogations. A piece 
of offset surface can determine its hulls by reference to the primary definition. The trivial 
theorem here is that if a primary surface lies inside a hull H, the oflfset surface lies inside 
a version expanded by the appropriate offset distance in all directions. 

However, this does not lead to efficient interrogations. As described in [12], it is neces­
sary for the offset surface also to take the normals, either directly or through the normal 
hull, into account, and expand only by those parts of the offset form which are actually 
invoked by the normals in the piece of parent surface. 

13.4. A N A P I FOR SUBDIVISION SURFACES 

Just as the interrogation of parametric surfaces is facilitated by the identification of a 
small set of procedures which support a wide variety of interrogations, and which can be 
implemented relatively easily for any new surface formulation, we also need a programming 
interface for subdivision surfaces. 

It is convenient to describe these in terms of methods for surface objects, though the 
actual implementation is not forced into the object-oriented paradigm. 

The initial methods which a subdivision surface (or piece of surface), 5 , needs to support 
are:-

1. simple: Surface -^ Boolean 

2. approx: Surface|simple(.)=True -> Polygon 

3. hull: Surface —> Convex Pointset 

4. normal hull: Surface —> Convex Vectorset 

5. pieces: Surface -^ Set of surfaces 

Note that the pieces of a large surface do not need to hold copies of all their parent's 
data. These methods can be implemented using indirection into that data. 

Curves have exactly analogous methods. 
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13.5. E X A M P L E I N T E R R O G A T I O N S 

In this section we take a sequence of interrogations, showing how each can be implemented 
in terms of the API, initially as described above, but enhanced when we encounter the 
need. 

13.5.1. Z-bufFer imaging 
The problem is to divide the surface into polygons which are small where the surface is 
complex and large where it is almost flat. Those polygons are then sent to a Z-buff'er 
display device using the procedure polygondraw(polygon). 

The description here is in recursive terms 

5 . Draw 
If 5.simple 
Then polygondraw(*S'.approx) 
Else For each Si in 5.pieces 

Do Si.DvdiW 
Od 

Fi 

If we do not require the ability to use the representation stored in the display device to 
support dynamic rotation, or if the surface is part of the boundary of a solid (so that it 
cannot be seen from the inside), we can reduce the number of polygons sent to the display 
and also reduce the amount of subdivision by using the normal hull. If there is no ray 
from any part of the Hull in any of the directions in the Normal Hull which can meet the 
eye, that part of the surface need not be considered any further. 

This is not a high-quality approach, since sending polygons of different resolution next 
to each other may result in glitches, where fragments of background are visible through 
the triangular holes between those polygons. 

It is, however, extremely simple to implement, provided that a language is being used 
which supports the recursive calls. 

13.5.2. Raycast 
Here we seek the first point on a ray in which the ray penetrates the surface. We discover 
that recursion is not the best way to implement this function. Far better is to use a priority 
queue, maintained explicitly in the code. It then becomes possible to ignore completely 
those pieces of surface whose nearest point is further than the best intersection point 
already found, thus resulting in more effective culling of the tree. 

The principle is that we are effectively doing a tree-search for a solution which is in 
some sense 'best'. Using recursion in the language forces a depth-first search, whereas 
heuristic search, well-described in chapter 3 of Nilsson[10] can limit the search to a small 
fraction of the tree. 

We set up a pair of planes, more or less perpendicular, which intersect in the line, and 
also identify a direction along the ray. Each surface piece can be bounded (using its hull) 
with respect to that direction. If it lies behind the eyepoint it should be ignored. If it lies 
further than the nearest solution point found so far, it can also be ignored. 
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With this in mind we choose as prioritising criterion between pieces of surface the one 
whose nearest point in the ray direction is nearest. If that piece of surface is actually cut 
by the ray, it will have most effect on eliminating other pieces early later. 

S'.Raycut()-> Point 
put S on priority queue 
set best so far to oo 
set up ray planes and ray direction 
Until queue is empty 
Do take piece ^i from queue 

If S'l.hull is entirely behind the eye 
Then skip it 
Elseif S'l-hull is entirely further than best so far 
Then skip it 
Elseif S'l.hull does not intersect either plane 
Then skip it 
Elseif 5i.simple 
Then P := cutpolygon(S'i.approx) 

If P closer than best so far 
Then update best so far 
Fi 

Else For each piece 5*2 of 5i.pieces 
Do add 5*2 to priority queue 
Od 

Fi 
Od 

In fact it may be best to carry out the check for a piece being behind the eye before 
the piece is added to the queue, since this keeps the number of pieces on the queue to a 
minimum, which may reduce the cost of queue-maintenance. The comparison with best-
so-far, however, must be carried out as the piece is taken off the queue, since best-so-far 
may have improved since it was added. The test could be carried out, of course, both 
when the piece is added and when it is taken off the queue. 

This use of a priority queue is relevant whenever we are seeking the best of a number 
of candidates all of which would normally be found by the tree search. In fact it can be 
generally applied, as if the priority criterion is recentness of addition the queue becomes 
a stack, with very little overhead. 

The optimum hull is a quantised hull with four directions, being the normals to the 
two planes which intersect in the ray. If all the rays are parallel it may be worth setting 
up hulls specially for this purpose. However, if that much pre-processing is being done, it 
would probably be better to be considering a scan-line organisation to exploit the spatial 
coherence in the data. 
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13.5.3. P lane section 
The plane section routine is probably the most heavily exercised of all interrogations apart 
from the rendering of the shape. 

The main issue here is that the output is a univariate point set, which requires a finite 
representation. There is much potential debate here, and so it will be assumed that the 
curve will be represented as the sequence of short straight line segments in which the 
plane intersects the flat approximations to parts of the surface. We need to be a little 
careful, since the intersection can have many loops, and so a simple array will not be 
adequate. During the computation there may be many open pieces of curve which get 
linked together subsequently. 

Without going into details, a doubly linked list of pieces, each holding the coordinates of 
both ends, indexed appropriately to give fast access to unpaired ends during the matching 
process, is an adequate basis which can be optimised to suit the programming context. 

When a new piece of curve is determined it needs to be linked with any neighbours which 
have already been computed. It is vitally important that this should happen during the 
unwinding of the recursion, since otherwise there is a large sorting to do. 

The matching needs to be based on what pieces of surface were being cut to give the 
matched curve segments 

5.Planecut(Plane:F)-)^ Curve 
set output curve C empty 
put S on priority queue 
Until queue is empty 
Do take piece Si from queue 

If S'l.hull does not intersect plane 
Then skip it 
Elseif 5'i.simple 
Then Ci :— polygonsect(S'i.approx,F) 

If Ci exists 
Then merge Ci into output C 
Fi 

Else For each piece 5*2 of 5i.pieces 
Do add ^2 to priority queue 
Od 

Fi 
Od 

Which way to split ? 
An interesting issue which comes alive in this context is the question of which way to 
split a parametric surface, since a given piece can be split in either the t^-direction or 
the t'-direction. The simple heuristic here is to split whichever direction is longer in the 
direction of the normal to the plane, since this will have most effect on minimising the hulls 
of the pieces. However, there is a counter-argument that suggests that the split should be 
to cut the direction which is contributing most to the non-simplicity of the piece, since 
this has most effect on helping to terminate the recursion. Yet another argument says 
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that just cutting the longest direction is good from most points of view, and if the pieces 
are being retained in memory in case of future usefulness (as will be suggested below) 
this is a reasonable compromise. However, experimental evidence on this topic would be 
valuable. 

Switching to other methods 
It was mentioned above that there are other methods which can be applied robustly if we 
know that the piece of surface has only one piece of cross-section and that piece is open. 
In particular, we can set up an approximation to the piece of curve, and progressively 
refine it using parametric access to the surface. 

In order to exploit this we need to be able to use a simplicity criterion which is based 
on the normal hull. This was pointed out by Sederberg et al. in [15,?]. If the normal 
hull does not contain the origin, there is a direction D along which all normals have a 
positive dot product. This implies that there is another direction D A Np along which 
all oriented tangents to the plane section have a positive dot product. If the tangent to 
a curve always has a positive component in some direction it cannot form a closed loop. 
It can consist of a number of open pieces, but we can find these by scanning round the 
boundary of the piece of surface. 

13.5.4. Surface-surface intersection 
The intersection of two surfaces is the virility symbol of CAGD systems. First described 
in the literature by Barnhill et al [1], though commercial systems had their own methods 
operational somewhat earlier, there have been many methods propounded. 

The subdivision algorithm for this has a new feature, not present in the interrogations 
described above. This is that what goes on to the stack or priority list is not a piece of 
curve or surface, but a sub-problem. We can, in fact, take this as the general case, since 
in the previous cases the subproblem is characterised by the piece of curve or surface and 
the data which is common to all the subproblems. 

Surfcut(SurfaceIASI, 52)—> Curve 
set output curve C empty 
put [Si, ^2] on priority queue 
Until queue is empty 
Do take problem [Si, S2] from queue 

If S'l.hull does not intersect 52.hull 
Then skip it 
Else If S'l-simple 

Then Ci := specialcase(5i.approx,52) 
If Ci exists 
Then merge Ci into output C 
Fi 

Elseif 52.simple 
Then Ci := specialcase(5i,S'2.approx) 

If Ci exists 
Then merge Ci into output C 
Fi 
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Fi 
Else choose which surface to split 

If S'l to split 
Then For each piece Su of ^i.pieces 

Do add [5H,S '2] to priority queue 
Od 

Else For each piece 821 of 52.pieces 
Do add [S'l, 821] to priority queue 
Od 

Fi 
Fi 

Fi 
Od 

Note that in order always to generate pieces of curve with compatible orientations, the 
sequence of Si and 5*2 is always maintained in the subproblems. 

Which surface to split ? 
The strategy here appears to be clear, that the larger of S'l and S2 should be the prime 
candidate, since if the hull of Si is entirely contained in S2 splitting it will give two 
overlapping subproblems and a bushy tree. However, there is also the argument that the 
piece nearer simplicity should be split, so that the special case code, which intersects a 
surface piece with an approximation, can be entered sooner. Again, we need quantitative 
experimental evidence, which does not appear to be in the current literature. 

Co-simplicity 
Just as the plane section code has the option of leaving the subdivision paradigm early 
as soon as a condition on the normal hull is met, there is the possibility of terminating 
the recursion early here also. The condition is very similar, that the oriented tangents to 
a curve piece should have a positive dot product with some fixed direction. However, the 
oriented tangents are now the cross products of two normals, each of which lies somewhere 
in its own normal hull. 

The hull of such vectors can in principle be evaluated in the case of B-spline surfaces, 
from the property that since the derivative of a B-spline is a B-spline, and the product 
of two B-splines is a B-spline, each normal is a B-spline and the cross-product of the two 
normals is a B-spline, so that we can make a hull by taking the hull of its control points. 

However, this is not really practical, because the product B-splines are almost always 
strongly degenerate, typically being more-or-less multiBezier representations. 

It is probably far better to make a hull of a cross-product from the hulls of the two 
vectors. This is slightly sloppier, but a great deal simpler, since the input hulls will have 
fewer points to deal with. 

13.5.5. Si lhouette 
The silhouette is a curve containing points where the ray from an eye point is perpendicular 
to the local normal. It is included here in order to exemplify the normal hull being used 
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within the main test, not just in the test for simphcity. 
Here the check that a subproblem cannot contribute to the solution is that the dot 

product of any ray from the eye point to a point in the position hull with any normal in 
the normal hull has a constant sign. Again, the sensible way to compute this is by taking 
the hull of the dot product of two hulls rather than by setting it up algebraically. 

13.6. P E R F O R M A N C E ISSUES 

We have seen in the above how certain additions to the basic API can make interrogations 
more efficient. 

• decide which to split 

A good heuristic when either of two objects might be split is to split whichever has 
the hull of larger dimension. 

• decide which way to split 

Again, splitting the direction of larger dimension will normally be a good choice. 

• decide where to split 

In chapter 7 of Bowyer and Woodwark's book [3] on solid modelling, spatial subdi­
vision is used as a technique for interrogations, and it is pointed out that a good 
choice of split point is that which tries to get all of the result into one half, while 
making that half as small as possible. 

• split to Bezier edge conditions 

Figure 13.2. (a) cubic B-spline bounding box (b) cubic Bezier bounding box 

A problem with B-spline control polygons is that a particular piece of curve or sur­
face is defined to lie within the hull of a set of control points which span well outside 
the part of the curve or surface defined. Once the piece of surface is small enough 
to fall between the original knot lines of the surface, it is therefore better to use 
the Bezier representation rather than the B-spline. Figure 13.2 shows dramatically 
how much larger the Bspline box can be for the same piece of curve. At coarser 
subdivisions it is more expensive but tighter to split a B-spline surface into pieces 
by inserting enough knots to give the pieces Bezier end-conditions. 
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• keep pieces in case they are needed again 

Particularly when relatively expensive subdivision (Bezier endconditions, normal 
hulls) are being used, the availability of large real memories suggests that, since often 
interrogations are made in large batches, it may be useful to retain the subdivided 
data and its hulls, so that a subsequent interrogation may bypass the recomputation. 

To take full advantage of this would involve marking the pages in which this data 
is held, so that the operating system could avoid writing them to disc if the page is 
swapped out, leaving a mark, so that if the data is required again it can be recom­
puted. (Recomputation will typically be faster than writing it out and rereading 
it, and using a smaller swap-file may speed the time taken for the disc heads to 
find the right track.) Unfortunately operating systems do not normally permit their 
application programs such control over the use of real memory. 

• update the hulls of parents when a split takes place. 

Figure 13.3. (a) convex hull, (b) bounding box, (c) 8-quantised hull updated 

This concept is due to Cameron[4], who identified it in the context of solid modelling 
for robotics, calling it S-hounds. Figure 13.3 shows how in each case: convex hull, 
bounding box and quantised hull, the updating significantly reduces the area, and 
therefore the chance of a false positive. In fact in the limit the result is the true hull 
of the curve itself, rather than of its control points. 

• reassemble pieces of result on the way out 

If the pieces of a univariate curve result are not processed as soon as possible, a 
large sorting task may be required later. The best strategy is to label the ends of 
each sequence of line segments with the split which created the edge on which they 
lie, and then index these sequences from those splits. That way there is very little 
hunting to do in order to find the mate for a given end. Keeping all line segments 
oriented, so that it is only necessary to find a matching end for a given start or vice 
versa also reduces the number of comparisons which are necessary to make a given 
match. This issue is described in some detail in Nasri [9] ppl90-196. Care in this 
area also covers the issue that two consecutive segments may be found with slightly 
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different end-points because the surfaces being cut may be subdivided to different 
extents. The output coordinates can always be from the finer refinement. 

• use an explicit priority queue instead of an implicit stack 

This is primarily for situations such as nearest point or ray-casting, where we want a 
particular solution among many that could exist. However, it can also help to reduce 
the reassembly costs if it is used to steer the solution into geometric coherence. For 
example, if the parts of an iso-x cross section are generated in sequence of increasing 
y, connections of low-y pieces will tend to be made earlier, before the high-y pieces 
are added to the result, thus speeding (slightly) the reassembly process. 

• use normal hulls to switch to other methods 

If further experiment shows that marching or homotopy methods really are faster 
than continuing the refinement, normal hulls provide the capability to make the 
decisions as to when to switch. 

With all these ideas in mind, we can see that a sensible approach is to pre-process the 
data with a sensible subdivision sequence for each surface. It is certainly faster to do a 
certain amount of preprocessing and generate the hull data from the bottom up than to 
determine every hull by reference to the original data, and the S-bounding then happens 
automatically without complicating the substantive interrogations. 

The higher level hulls then become essentially a multiresolution index for finding the 
relevant lower level pieces. 

The creation of a fine-level model with its hulls from a coarse model is almost certainly 
faster than reading the fine data in from backing store. (But doing this probably precludes 
the use of variational refinement.) Alternatively we can view the subdivision on the fly 
as lazy evaluation. 

13.7. C O N C L U S I O N S 

The subdivision paradigm carefully implemented can form the basis for extremely robust 
and fast code for a wide range of interrogations. 

For peak performance there are a number of trade-offs which are not as yet well-
documented in the literature, and one hopes that experimental studies will be regarded 
as worth-while by researchers in the near future. 
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Chapter 14 

Multiresolution Techniques 

Leif P. Kobbelt 

The term multiresolution techniques refers to a class of algorithms that decompose a given 
geometry into its global shape and detail information on different levels of resolution. The 
representation of an object on several levels of detail which are defined relative to each 
other gives rise to a number of applications that exploit the hierarchical nature of the 
representation. In this Chapter we explain the theoretical background of the multiresolu­
tion transform and show how the basic concepts can be generalized to arbitrary freeform 
surfaces. 

14.1. I N T R O D U C T I O N 

One standard approach to facilitate the handling of large amounts of data is to intro­
duce hierarchical structures. Hierarchies usually provide fast access to relevant parts of a 
dataset which increases the efficiency of any algorithm processing the data. In the context 
of geometric datasets, hierarchical representations provide, besides spatial decomposition, 
access to different resolutions of the underlying curve or surface. Depending on the specific 
application, the term resolution refers to a certain level of complexity or to the amount 
of geometric detail (cf. Fig. 14.1). 

If the underlying surface representation is based on splines (cf. Chapter 6) or subdivi­
sion surfaces (cf. Chapter 12) then the topological level of detail characterizes the degree 
of refinement of the control mesh while the geometric level of detail rates the size of 
the smallest features and dents on the corresponding continuous surface. If the surface 
representation is based on polygonal meshes the distinction is more obvious since (topo-
logically) refined meshes can be very smooth (low geometric detail) or highly detailed. 

Multiresolution techniques exploit the additional information that becomes available 
through a level-of-detail (LoD) representation either by choosing an appropriate resolu­
tion for given quality (complexity) requirements or by considering the difference between 
two levels of detail as a separate geometric frequency band which contains the detail 
information that is added or removed when switching between hierarchy levels. 

343 
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Figure 14.1. For geometric models we distinguish two different types of hierarchies. Topo­
logical hierarchies provide different levels of complexity (left) while geometric hierarchies 
provide different levels of geometric detail information. For spline representations, the 
link between both hierarchies is established by the basis functions (blending functions) 
which are associated with the control vertices. For pure polygonal mesh representations 
there is no canonical way to derive smooth meshes from coarse ones. 

In this chapter we will first explain the general theoretic set-up for multiresolution rep­
resentations for curves and surfaces. Based on this formal description we will then discuss 
specific algorithms and their applications. We will start with the classical representation 
of a freeform object as a vector-weighted superposition of scalar valued basis functions. 
Later we generalize this concept to non-nested hierarchies where explicit basis functions 
are no longer available. 

14.2. MULTIRESOLUTION REPRESENTATIONS FOR CURVES 

We will introduce the notion of multiresolution analysis and wavelets where we focus on 
those aspects which are most relevant for geometric modeling applications. For a more 
detailed exposition we refer to standard books, e.g., [1,4,27,28] 

As shown in Chapter 6, a standard representation for freeform curves is based on the 
uniform B-splines 

f = ^ Ci(j){'-i). 

The concept of subdivision curves (Chapter 12) has its origin in the observation that the 
basis function d) satifies a two-scale-relation 

Z^ a^ 0(2 • (14.1) 

which implies the inclusion V = span{(/!>(- — i)} C V = span{(/>(2 • —z)}. Consequently we 
can find a refined representation 

c'^H^--i) 

where the new coefficients cj are computed by the subdivision rules 

:̂ = E h-2j Cj. (14.2) 
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For B-splines and more general subdivision basis functions we usually have only a finite 
number of coefficients a^ / 0. Hence the sum (14.2) only computes a linear combination 
of a constant number of coefficients Cj which leads to very efficient subdivision algorithms. 

Equation (14.2) defines an identity map from the coarse space V to the fine space V 
(with "twice" as many basis functions). Obviously this map is not surjective since V 
contains functions f which are not in V. Instead of using the basis {0(2 - —i)} for V, we 
try to extend the basis {(/>(• — i)} by additional basis functions {'0(- ~ i)} such that 

V = span{(/)(2 • -i)} = span{(/>(- - i)} 0 span{V^(- - i)} = V ®W. 

Once we have such a basis function tp, every function f G V can be rewritten as 

f = ^ c ^ 0 ( 2 - - z ) = ^ c , 0 ( - - z ) + ^ d , ^ ( . - » ) 
i i i 

which can be considered as the reconstruction of the function T from a coarse scale 
approximation (defined by the c )̂ and the detail information (defined by the d^). 

Since the basis functions ip{-—i) also lie in the space V, there exists a linear combination 
which satisfies 

^ = ^ A 0 ( 2 - - i ) 
i 

and as a consequence we obtain the complete reconstruction rule 

^i = X^^^-2jC^- + ^ A - 2 j c i j - . (14.3) 
J 3 

In the context of multiresolution transforms, the function (j) is usually called the scaling 
function and -0 is called the wavelet. Both functions are typically designed such that V 
captures the low frequency component of V and W captures the high frequency parts. 
Depending on the application, additional properties of (j) and ^̂  might be required. 

The minimum requirement for this reconstruction to be useful is that for a given function 
r we have to be able to efficiently compute well-defined values [cj, dj] from the coefficients 
[c'J. This inverse reconstruction operation is called the decomposition. For arbitrary basis 
functions 0 and ip the decomposition requires to solve the linear system defined by (14.3) 
which is computationally much more expensive than the reconstruction itself. Hence, 
one tries to balance the computation costs and looks for specific pairs of basis functions 
[(/)(• — i),il^{' — i)] that lead to faster and more efi'ective decomposition operators. 

For example, if we can find another set of functions [0(- — i)^ip{- — i)] for which the 
following conditions hold 

<,^( - - j ) ,0( . - j )> = <t/<(--z),tA(--j)>= I J ^J^ . (14.4) 

and 

< ( ^ ( - - 2 ) , 7 / ; ( - - j ) > - < ^ ( - - 2 ) , ^ ( - - i ) > - 0 \fi,j (14.5) 

then the coefficients c^ and d^ can easily be computed by 

Cfc = < f, 0(- -k)> and d^ = < f, V̂ (- - k) > . 
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This setting is called the bi-orthogonal wavelet setting since the conditions (14.4) and 
(14.5) indicate that the two bases [(/>(• —z),'0(- — z)] and [(̂ (• —2),'0(- —z)] are bi-orthogonal 
(or dual) to each other. 

The reformulation of the decomposition operation in terms of inner products is not 
necessarily more efficient than solving the linear system directly. However, if we choose 
special basis functions, the situation simplifies significantly since we do not have to eval­
uate the inner products by integration. 

Assume that there exists a two-scale-relation for the dual basis functions as well 

3 

and 

^ = 5 ^ / i , 0 ( 2 . - j ) . 
j 

then, based on these relations, the inner products reduce to simple linear combinations 
of control coefficients, e.g., 

<rj{^-k)> = < ^ c : ( / > ( 2 . - z ) , ^ A , ( ^ ( 2 - - 2 A : - j ) > 

' i 

= Y. < ^i < <̂ (2 • -^), <̂ (2 • -2k - j) > 
i,3 

and hence 

c^ = ^Xj-2kc'j (14.6) 
j 

and 

^k = ^Mj-2A:C;- (14.7) 
j 

respectively. If the dual two-scale-relations have only finitely many non-vanishing coeffi­
cients then the decomposition has the same computational complexity as the reconstruc­
tion. As we will see in the next section there is a simple technique to construct such pairs 
of dual refinable basis functions. 

Besides the mere applicability of the decomposition, we usually require additional prop­
erties of the transform. The obvious requirement is that the coarse approximation f of f 
should be as close as possible. Here, the optimal solution can be obtained if we find basis 
functions ip{- — i) which are orthogonal to the basis functions (/̂ (- - i) since in this case 
the approximation error becomes minimal in the least squares sense. This setting, where 
y — y 0 V^ is an orthogonal decomposition, is called semi-orthogonal wavelet setting. 

From the theoretical point of view, the optimal representation for a function f or f 
would be with respect to an orthonormal basis, i.e., not only are the (/>(• — i) orthogonal 
to the '0(- — i) but in addition the integer shifts of the basis functions themselves are 
orthogonal to each other. If this is the case then the dual basis [(p, i/j] is identical to the 
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primal one and the magnitude of the coefficients d̂  is proportional to their impact on the 
shape. 

Requiring the set [(/>(• — z), '0(- — z)] to be an orthonormal basis is a very strong condition 
which eliminates most of the degrees of freedom [4]. Additional properties such as smooth­
ness (differentiability), symmetry, and local support of the basis functions (/>(• — i) cannot 
be satisfied simultaneously anymore. Hence, in many applications, the semi-orthogonal 
setting is preferred and the additional degrees of freedom are used to obtain smooth basis 
functions with local support. 

However in practice, it often turns out that even the semi-orthogonal setting is quite 
difficult to establish. Therefore, an even weaker condition is imposed on the basis functions 
(/){' — i) and 'il;{- ~i). The motivation for this weaker condition is that the space V usually 
contains some low degree polynomials up to order n, i.e. 

VA: = 0 , l , . . . n 3p^,k (O^ = ^ Pi,k(t>{'- i), 
i 

to guarantee a certain approximation power. Instead of requiring that the basis function 
ip{' — i) be orthogonal to all functions from V we can restrict ourselves to requiring that 
the basis functions IIJ{- — i) be at least orthogonal to these low degree polynomials 

/

oo 

x''^l^ix - i) dx = 0 Mi VA; = 0 , l , . . . , n 
-oo 

This property is called vanishing moments. For the basis functions tp{- — i) to deserve the 
name "wavelets" we typically have to guarantee at least one vanishing moment {= average 
function value is zero). 

14.3. LIFTING 

Lifting [29-31] is a simple technique to construct a set of operators that perform a mul-
tiresolution decomposition and reconstruction. The underlying basis functions and their 
duals correspond to the bi-orthogonal setting and the lifting technique can be used to 
increase, e.g., the number of vanishing moments of the wavelets. 

The starting point for the construction is an arbitrary refinable scaling function (f) 
whose integer shifts (j){- — i) span a coarse space V. For simplicity we assume that cj) is 
interpolatory, i.e., 0(0) = 1 and (/)(z) = 0 for all integers i ^ 0. 

The squeezed basis functions (/)(2 • —i) span the refined space V and we have V C V 
due to the two-scale-relation (14.1). 

Suppose we are given a function 

f = ^ c ; 0 ( 2 . - * ) 
i 

in the refined space V. The simplest way to decompose f into a coarser approximation 

f = ^ Ci(p{'-l) 

i 

plus detail information 

f ' - f = ^ d , 7 / ; ( - - i ) 
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is to apply subsampling to the sequence of coefficients, i.e., 

Ci := 4 . (14.8) 

Applying the subdivision operator (14.2) corresponding to the basis function 0 we obtain 
predicted values 

P2i+i — 7 ^ Oi2i+l-

on the refined scale which in general differ from the original values C2j^i. Hence the detail 
coefficients d̂  can be defined as the prediction error 

di := 4z+ i -P2z+i = 4 i+i - X I ^2z+i-2j c'2j- (14.9) 
j 

Equations (14.8) and (14.9) define the decomposition operator for a multiresolution anal­
ysis. The corresponding reconstruction operator is given by 

C2, = c^ and €2,4.1 = di + X o;2z+i-2j Cj (14.10) 
j 

which shows that we implicitly set the detail function ip to 0(2 • — 1). 
The construction so far has all the formal properties that we required. We have a pair of 

basis functions [(/>, ip] based on which we derive efficient decomposition and reconstruction 
operators. The dual basis functions never appear explicitly although the coefficients of 
their two-scale-relations show up in the decomposition rules. 

As we mentioned earlier, we would like to have additional properties such as vanish­
ing moments of the wavelet ip since this guarantees better approximation quality of the 
original function and consequently smaller detail coefficients. 

In the lifting scheme these additional vanishing moments can be obtained by modifying 
the initial choice for the function tp. For this we add a linear combination of scaling 
functions (/>(• — z), i.e. 

j 

where we choose the jj such that ^p* has vanishing moments. Obviously 7o = 7i = — | 
and all other jj = 0 yield at least one vanishing moment and even two vanishing moments 
if the function (p is symmetric. More non-zero coefficients 7^ can give additional vanishing 
moments. 

The reason for using the (/>(• — 2) to enhance the wavelet is that it enables a very simple 
implementation of the multiresolution transform. For the modified wavelet ip* we get a 
new decomposition operator 

^^ ^ ^2i 

^i ^ ^2i^l ~ Y^j ^2i-{-l-2j ^'23 
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and the corresponding reconstruction operator is obtained by simply inverting the order 
of the update steps and changing the signs 

Ci ^ Ĉ  + J2j 'y^-j d^ 

Obviously both operators have the same computation cost. Moreover, since the coarse 
scale coefficients ĉ  and the detail coefficients d̂  are used for mutual updating we can 
overwrite the old values in each line of the implementation. Hence the whole computation 
can be done "in place" without using additional memory [31]. 

The original lifting scheme as proposed by Sweldens [29,30] is much more general than 
the construction presented here. In fact, every uniform wavelet transform can be factorized 
into a number of lifting steps [5]. Moreover, lifting can be applied even in non-uniform 
settings where the spaces V and V are no longer spanned by uniformly spaced shifts of 
the same basis functions. For more details on the lifting scheme and its usage in different 
practical applications cf. [31]. 

14.4. G E O M E T R I C S E T T I N G 

So far we considered the functional setting, i.e., the geometry was given as the graph of 
a scalar valued function defined over the real line (or plane). In a more general setup, we 
have to use parametric representations where the geometry is given by a vector valued 
function which maps some planar or non-planar parameter domain into 3-space, i.e., each 
of the coordinates is defined by a separate scalar valued function. As a consequence, 
control coefficients and detail coefficients are also vector valued. 

If we are considering decomposition and reconstruction only then the processing of 
vector valued functions is done by simply applying the same operators simultaneously to 
all three coordinate functions. However, if the decomposition is used for multiresolution 
modeling, i.e., if the position of the control points is changed then a "more geometric" 
definition of the detail information is necessary. 

A typical multiresolution modeling step consists of three stages. First the original 
geometry is decomposed into global (low frequency) shape and detail information. Then 
the global shape is modified and finally the detail information is added back by the 
reconstruction operator. If the detail information is vector valued then the reconstruction 
will often lead to counter intuitive results since the rotation of the global shape's tangent 
is neglected (cf. Fig. 14.2). 

In order to avoid this eff"ect, Forsey and Bartels [9,10] introduced the notion of local 
frame representation of the detail coefficients: Instead of storing the detail vectors dj 
with respect to some global reference frame F , one rather stores d̂  = F~^(F(dj)) with 
individual frames F^ which depend on the local surface geometry of the low frequency 
geometry. For example, a local frame that consists of the normal vector and the tangent(s) 
automatically stays aligned to the underlying curve or surface. 

After the modification, the low frequency geometry has changed and hence we find new 
local frames Fj . The detail coefficients which are used for the reconstruction are then 
F^(d-) which guarantees intuitive detail preservation (cf. Fig. 14.2). 
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v"v 

Figure 14.2. If the detail vectors are defined with respect to a global coordinate frame 
then the reconstruction after a deformation of the global shape (gray line) does lead to 
artifacts (center). A more intuitive detail preservation is achieved, if the detail is defined 
with respect to local frames that stay aligned to the global shape. 

14.5. MULTIRESOLUTION R E P R E S E N T A T I O N S FOR SURFACES 

The formal description of the multiresolution decomposition and reconstruction so far 
heavily relies on the regular structure of the control polygon or control mesh. In a reg­
ular mesh, all vertices can be labeled by a unique pair of indices, Q J , and the bivariate 
subdivision operator computes the new control vertices by 

k,l 

which combines four diflFerent averaging rules according to the parity of i and j . The 
corresponding super- and subsampling operations that are based on the parity of the 
global indices can only work if the topological neighborhood of each vertex is identical. 
It is well-known that this requires each inner vertex of a triangle mesh to have exactly 
six neighbors (or each inner vertex of a quad mesh to have exactly four neighbors). This 
restriction is too strong for practical modeling applications since the class of possible 
shapes only contains surfaces which are homeomorphic to (a part of) a torus. 

In order to apply multiresolution techniques to more general classes of freeform sur­
faces we have to extend the concepts of Section 14.2 to irregular meshes and non-planar 
parameter domains, e.g., a closed genus zero surface can be represented as a regular map 
from the unit sphere into 3-space while there is no regular map from any planar domain. 

The standard procedure for finding operators with multiresolution functionality on sur­
faces with arbitrary topology is to first generalize the sub- and supersampling operations 
and then define decomposition and reconstruction operators that have properties simi­
lar to the original transformations on regular meshes. Ideally the generalized operators 
coincide with the original ones on regular meshes. 

14.5.1. Coarse-to-fine hierarchies 
Based on a generalized two-scale-relation, subdivision schemes provide the means to re­
construct a smooth surface from a coarse control mesh with arbitrary topology. The idea 
is to extend the knot-insertion operation for splines to irregular control meshes. Starting 
with the initial control mesh MQ consisting of the control vertices c ? , . . . , c°.Q ,̂ we com­
pute refined control meshes Mm with control vertices c j ^ , . . . , c^. ^ on the mth refinement 
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level. The geometric location of each new control vertex c^"^^ is computed by weighted 
averaging of nearby vertices c^ from the unrefined mesh (cf. Chapter 12). For triangle 
meshes we usually have two different types of averaging rules. One for the new vertices 

•' ^r(m+i) ^^^ ^^^ ^^^ updating the old vertices c^"^^ • ' ^n{m)-^ 7 i ( m ) + l ' -

The subdivision operator can serve as the reconstruction operator in a multiresolution 
representation of a freeform surface. When applying the subdivision operator to a given 
control mesh M-m, we obtain predicted locations for the control vertices c^^^ on the next 
level. Detail coefficients d^ act like translation vectors which move the vertices back to 
their original location, i.e., in the reconstruction they undo the prediction error [34]. For 
the non-functional, geometric setting those displacement vectors have to be encoded with 
respect to a local coordinate frame (cf. Section 14.4). 

The multiresolution representation of a surface by subdivision plus displacement on 
every refinement level mimics most of the important properties that we saw in the previous 
sections. The displacement vectors d̂ ^ are local detail coefficients where the length of 
the vector indicates the significance of the detail and the refinement level on which the 
displacement is applied indicates the frequency band to which it belongs (cf. Fig. 14.3). 

Figure 14.3. The effect of a detail coefficient d^ depends on the associated refinement 
level. The region of the surface that is affected by one detail coefficient corresponds to 
the support of the basis function associated with the displaced control vertex. Since the 
support of the basis functions decreases with each refinement step, we obtain a proper 
decomposition of the geometric shape into different frequency bands. 

So far we only considered the reconstruction operator which consists of subdivision 
plus displacement. For a complete multiresolution functionality we also have to construct 
a compatible decomposition operator that inverts the reconstruction. The easiest way 
to obtain such an operator is to apply subsampling to the original mesh Mm+i then 
apply the subdivision scheme to obtain a mesh M'^j^i which is a smoothed version of the 
original. The detail vectors are found by computing the shift of the vertices caused by 
this procedure. 

Notice that in this case the number of detail coefficients equals the number, n{m + 1), 
of vertices in the fine mesh. This is quite different from the classical wavelet setting where 
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the number of detail coefficients, n{m + 1) - n{m), equals the number of vertices that 
are newly introduced by the reconstruction operator. In principle this does not affect the 
space and frequency localization properties of the decomposition but it introduces some 
redundancy since multiple detail coefficients are assigned to the same vertex on different 
refinement levels. This redundancy can be avoided if we use interpolatory subdivision 
(cf. Chapter 12). 

A limitation of the subdivision based multiresolution representation is that it cannot be 
applied to arbitrary meshes. Because the decomposition is constructed for a prescribed 
type of reconstruction operator, the subsampling only applies to the special output of that 
operator. The specific connectivity of the meshes Mm which are generated by the appli­
cation of a uniform refinement operator is called semi-regular or subdivision connectivity. 
Semi-regular meshes consist of patches with regular mesh structure and extraordinary 
vertices (with valence / 6) only occur at the corners of these patches (cf. Fig. 14.4). 
Meshes to which we want to apply the "inverse subdivision" subsampling have to have 
this special connectivity. 

Figure 14.4. Although the base mesh Mo can be chosen arbitrarily in the coarse-to-fine 
setting, the refined resolutions Mm must have subdivision connectivity. This is due to 
the uniform refinement of the reconstruction operator. The "inverse subdivision" cannot 
be applied to arbitrary meshes. 

We call this type of hierarchy coarse-to-fine hierarchy since the structure of the meshes 
is determined by the coarsest level Mo (which can be arbitrary). All finer meshes Mm 
are generated by iterative refinement and the decomposition operator only undoes this 
refinement. If a surface is given by an unstructured triangle mesh which does not have a 
semi-regular connectivity, remeshing techniques [8,19,21] have to be applied which resam-
ple the original surface to generate a semi-regular mesh that approximates the original 
geometry. 

The mere displacement of individual control vertices after the refinement corresponds 
to the initial choice of the wavelet basis function in (14.10). Since the lifting scheme 
is not restricted to the uniform setting, we can apply it to improve the generalized re­
construction operator in a similar fashion. This leads to more involved reconstruction 
operators where a detail coefficient associated with one control vertex also affects the 
position of neighboring control vertices on the same level. Schroder and Sweldens use 
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this technique to design multiresolution decompositions for genus zero surfaces (param­
eterized over the unit sphere) [26]. Applying the hfting scheme also leads to improved 
decompositions with non-interpolatory basis functions but does not introduce redundant 
detail coefficients since the factorization of the transform can be computed in-place. 

Another technique to improve the approximation behavior of the decomposition oper­
ator is presented in [23]. The construction starts with the nested sequence of spaces Vm 
which are spanned by the subdivision basis functions 0^ on the mth level (each func­
tion 0^ is associated with the corresponding control vertex c^). On the mth level, 
the basis ^^T,. . . , (/>J[(̂ ) is extended to a basis of Vm-^i by including the pre-wavelets 

[C(m)+P • • - C(m+i)] '•= [ C ( m H i ' ' ' ' ' C(m-fi)l- ^^^^^ ^^^ prc-wavclcts are related to con­
trol vertices from the {m-\- l)st refinement level, they are associated with the edges of the 
mesh Mm-

These pre-wavelets are then modified to make them orthogonal to the space Vm since this 
guarantees that the decomposition operator finds the best low frequency approximation 
in the least squares sense {semi-orthogonal setting). The orthogonalization is achieved by 
subtracting the least squares approximation af̂  of the function tpf^ from the space Vm, 
i.e.. 

It turns out that the least squares approximant a^^ happens to be globally supported in 
general which means that all Sij are non-vanishing. Since this diminishes the efficiency 
of the decomposition and reconstruction operator, one tries to find a locally supported 
approximation of f̂** that is "as orthogonal as possible" to the space Vm- For this one 
prescribes a support Q^ that is centered around the edge of Mm where the vertex ĉ "̂̂ ^ 
is going to be inserted. Then one finds the least squares approximation of ipY^ by using 
only those basis functions 07* whose support lies within the interior of Q^. By increasing 
the size of Q^ the resulting basis converges to the semi-orthogonal setting. 

14.5.2. Fine-to-coarse hierarchies 
The first attempt to generalize the concept of multiresolution representations to freeform 
surfaces worked from coarse to fine, i.e., we started with the reconstruction operator 
and the decomposition operator was derived by inverting the reconstruction. The second 
approach works the opposite way: We start with a decomposition operator building the 
hierarchy from fine to coarse and then derive the matching reconstruction operator. 

The advantage of the fine-to-coarse approach is that it can be applied to arbitrary 
meshes, no special connectivity is required. The disadvantage is that we no longer have a 
simple representation of the surface geometry by a superposition of smooth basis functions 
(as they emerge from subdivision schemes) since the different hierarchy levels are non­
nested and hence a proper two-scale-relation cannot be defined. 

Given an arbitrary triangle mesh with vertices c^^,. . . , c^(^^\, we reduce its complexity 
by applying mesh decimation algorithms, e.g. [2,11,14,17,22,25]. Such algorithms remove 
vertices from the mesh according to some application specific criterion. A typical example 
for incremental decimation is edge collapsing where one vertex is removed at a time by 
shifting it into its neighbor's position and eliminating degenerate triangles (cf. Fig. 14.5). 
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Figure 14.5. The edge collapse operation reduces the mesh complexity by one vertex 
and two triangles. Its inverse, the vertex split, can easily be performed if the local 
neighborhood relations are stored. 

This operation reduces the mesh complexity by one vertex and two triangles and can be 
considered as a basic subsampling step. If we use edge collapsing to remove an independent 
set of vertices c^(rn-i)+i^ • • • ^^r^(m)^ •̂̂ •' ^ ^^^ ^^ vertices which are not connected by an 
edge then we achieve a global subsampling which does not require any regularity of the 
mesh connectivity (cf. Fig. 14.6). 

Figure 14.6. Removing an independent set of vertices (hollow dots) from the mesh Mm 
has the effect of global subsampling but without requiring a regular structure of the mesh 
connectivity. 

The original position of the removed vertices c^ ( m - l ) + l ' • n{m) represents the detail 
information that is separated from the global shape by the decomposition operation. 
There are various ways to encode those positions relative to local frames which are aligned 
to the remaining geometry [20]. The decomposition does not produce redundancy since 
the number of geometric coefficients (one chunk per vertex) remains constant. 
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Hoppe [14] first observed that the edge collapsing can easily be inverted by vertex 
split operations. For this we only have to store little extra information about the local 
connectivity. Hence we immediately find a reconstruction operator which undoes the 
decomposition. Hoppe used this technique for the progressive transmission of complex 
meshes by first sending the decimated base mesh to the receiver and then sending a 
sequence of vertex splits which allow the client to run the mesh decimation backwards 
until the original model is recovered. 

Figure 14.7. A sequence of meshes generated by a mesh decimation algorithm. We can 
go from left to right by performing edge collapses and we can go from right to left by 
splitting vertices {progressive meshes). 

In the context of multiresolution techniques the combination of mesh decimation and 
progressive refinement yields the necessary pair of basic operators to switch between levels 
A4m in a multiresolution representation for arbitrary meshes (cf. Fig. 14.7). However, so 
far we cannot access the smooth low frequency part of the geometry because we cannot 
refine the mesh without adding back the detail coefficients. For the full multiresolution 
functionality we have to be able to refine the mesh while suppressing the detail information 
since otherwise a geometric modification on a coarse scale will not lead to a smooth global 
deformation of the surface (cf. Fig. 14.8) [18]. 

In the coarse-to-fine setting of the last section the reconstruction without detail is 
achieved by simply applying the plain subdivision operator without displacement. In the 
fine to coarse setting, however, we no longer have such smooth basis functions associated 
with the vertices. As a consequence we have to find a more general prediction scheme 
that computes the expected position of the new vertices when they are introduced by the 
supersampling. 

The most promissing approaches to generate smooth geometry with unstructured trian­
gle meshes are curvature flow techniques [6,12,32] and constrained optimization [16,18,24]. 
Both approaches lead to similar filter algorithms where every vertex of the mesh is shifted 
to a new position that is computed by a weighted average of its neighbors. The specific 
weights for these filters are derived from a discrete approximation of some continuous 



356 CHAPTER 14. MULTIRESOLUTION TECHNIQUES 

Figure 14.8. A deformation of the global shape is not only characterized by a large support 
(topologically coarse) but also by its smoothness (low geometric frequency). The object 
on the left is globally deformed by using a (non-smooth) piecewise linear function in the 
center and a smooth function on the right. 

curvature measure and depend on the local connectivity and edge lengths [7]. 
Based on these techniques we can define the reconstruction operator as follows: 

insert a subsequence of previously removed vertices cj;[/^_j (m-l)+l ' n{n 

Re-
by vertex splits 

in reverse order. Determine the predicted position of the new vertices by applying a filter 
operation. Move the vertices to their final position by adding the detail vectors d̂ * 

Omitting the last step leads to topologically refined meshes without high frequency 
detail (cf. Fig. 14.9). If the smoothing filter is applied to the position of the coarse-scale 
vertices c^^, . . . , cj^. _̂ N as well, we can improve the quality of the low frequency geometry 
but we have to store redundant detail coeflficients. 

Figure 14.9. Starting with the original mesh Mm on the left, we apply mesh decimation 
to build up a fine-to-coarse hierarchy. The coarsest level MQ is shown in the center. 
When re-inserting the vertices, we can suppress the detail information by computing new 
(predicted) vertex positions with some smoothing filter. The resulting mesh M'^ on the 
right has the same connectivity as the original mesh Mm but the geometry does not 
contain any high frequency details. 
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14.6. A P P L I C A T I O N S 

Multiresolution representations of geometric models decompose the overall shape into 
detail information from different scales or frequency bands. These representations are 
hierarchical in the sense that besides the "horizontal" ordering of the geometric coefficients 
according to the surface topology (or mesh connectivity) we obtain a "vertical" ordering 
of the coefficients according to significance or feature size. This vertical ordering is very 
intuitive since it enables to directly access the shape of an object on various levels of 
detail. 

There are plenty of applications where the augmented structure of hierarchical represen­
tations is used to increase the performance by allowing algorithms to focus the processing 
resources on the significant part of the geometry or by adapting the amount of detail 
information to the required accuracy. Typical examples for this type of applications are 
data compression and progressive transmission. 

Another class of applications does not rate the detail coefficients according to their 
significance but tries to exploit the semantic information that emerges from the decom­
position. Defining the detail information relative to the global shape is what designers 
usually do when assembling complex CAD objects. The rationale behind this is that local 
features are (semantically and physically) attached to the main body of an object and if 
the main body's shape is altered then the local features should follow accordingly. The 
decomposition operator in a multiresolution scheme automatically recovers this type of 
hierarchical structure from the final shape. While the decomposition cannot identify the 
functional parts in a CAD model, it can at least distinguish between different feature 
sizes. Various metaphors for multiresolution editing can be implemented based on this 
structure. 

14.6.1. Multiresolution editing 
The general procedure for multiresolution editing is a three step process. First the de­
composition operator is applied to separate detail information and global shape. Then 
the global shape is modified and finally the detail information is added back by the recon­
struction operator. The detail reconstruction will be intuitive if the vector valued detail 
coefficients are encoded with respect to local frames (cf. Section 14.4). 

For coarse to fine hierarchies, the multiresolution editing is quite simple since we have 
well-defined subdivision basis functions associated with each control vertex on each re­
finement level. Early works by Forsey and Bartels [9,10] already used these technique for 
hierarchical spline surfaces and Zorin et al. [34] generalized it to subdivision surfaces. 

An interesting difference between the two approaches is that for hierarchical splines the 
control vertices on the different hierarchy levels are considered completely independent 
while Zorin et al. propagate modifications on the fine levels down to the coarser ones. 
The goal of this propagation is to keep the detail coefficients on each level as small as 
possible. Although this makes the reconstruction operator numerically more stable, the 
strict separation of the detail levels is not preserved. 

In [12] Guskov et al. propose a technique for multiresolution decomposition of arbitrary 
meshes. The decomposition is based on a mesh decimation technique and the reconstruc­
tion operator uses a sophisticated smoothing filter for the prediction, i.e., each vertex split 
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during the reconstruction is followed by applying a low-pass filter to a local vicinity. The 
resulting multiresolution representation is highly redundant since for each vertex split one 
has to store detail coefficients for all neighboring vertices that are affected by the local 
smoothing. 

One drawback of the above mentioned approaches is that the basis functions which are 
associated with the mesh vertices are fixed and their definition cannot be adapted to a 
specific design goal. Therefore in [18] a multiresolution metaphor is presented that builds 
up the hierarchy on demand. The designer can choose the location and the support of a 
modification and a fine to coarse hierarchy is then built by applying mesh decimation to 
the region of the mesh that is covered by the support. Because the resulting decompo­
sition is custom made for one specific editing operation, one does not have to explicitly 
use the intermediate hierarchy levels but one can restrict to a two-level decomposition 
(cf. Fig. 14.10). 

Figure 14.10. A flexible metaphor for multiresolution edits. On the left, the original 
mesh is shown. The black line defines the region of the mesh which is subject to the 
modification. The white line defines the handle geometry which can be moved by the 
designer. Both boundaries can have an arbitrary shape and hence they can, e.g., be 
aligned to geometric features in the mesh. The boundary and the handle impose C^ 
and C^ boundary conditions to the mesh and the smooth version of the original mesh 
is found by applying discrete fairing while observing these boundary constraints. The 
center left shows the result of the curvature minimization (the boundary and the handle 
are interpolated). The geometric diff"erence between the two left meshes is stored as detail 
information with respect to loacal frames. Now the designer can move the handle polygon 
and this changes the boundary constraints for the curvature minimization. Hence the 
discrete fairing generates a modified smooth mesh (center right). Adding the previously 
stored detail information yields the final result on the right. Since we can apply fast 
multi-level smoothing when solving the optimization problem, the modified mesh can be 
updated with several frames per second during the modeling operation. Notice that all 
four meshes have the same connectivity. 

14.6.2. G e o m e t r y compress ion 
Techniques for lossy compression of geometry data often exploit the fact that multires­
olution decompositions imply an ordering of the detail coefficients according to their 
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significance. If we want to obtain a prescribed compression ratio we can simply remove 
a certain percentage of the detail coefficients starting with the least significant ones. If 
we want to stay within a prescribed approximation tolerance, we can remove the least 
significant detail coefficients as long as we do not violate that tolerance. 

Sophisticated multiresolution representations improve the eflfectiveness of such algo­
rithms. If we choose the right basis functions (p and tp then the approximation quality 
of the low frequency component increases and hence the prediction error {= detail coef­
ficients) during the reconstruction becomes smaller. This is the reason why one usually 
aims at the (approximate) semi-orthogonal setting. 

In [23] Lounsbery et al. constructed piecewise linear wavelet functions such that they 
are, for a given support, as orthogonal as possible to the space of subdivision basis func­
tions. Based on the lifting scheme, Schroder and Sweldens constructed wavelets with 
vanishing moments for various subdivision schemes and compared their approximation 
properties [26]. 

Guskov et al. [13] and Khodakhowski et al. [15] additionally exploit the geometric 
coherence of a meshed surface by storing the detail coefficients as scalar valued normal 
displacements instead of vector valued local frame displacements. They achieve this by 
resampling the orignal geometry such that the tangential component of the displacement 
vectors vanishes. 

All the above multiresolution compression schemes are based on coarse to fine hier­
archies. The reason for this is that the availability of subdivision basis functions and 
their corresponding wavelets allows to adapt the theoretical concepts from the regular 
functional setting. 

In [3] Cohen-Or et al. propose a compression scheme which is based on a fine to coarse 
hierarchy. Their technique combines ideas from lossless non-hierarchical mesh compression 
with progressive reconstruction of fine to coarse hierarchies. In every subsampling step 
they remove an independent set of vertices and retriangulate the resulting holes by triangle 
strips. In order to keep the detail vectors as small as possible they use a linear prediction 
scheme that is similar to the low pass filter operations mentioned in Section 14.5.2. 

Taubin describes a progressive compression scheme in [33]. Here the fine to coarse 
hierarchy is generated by rather complex "forest splits" which are a generalization of the 
vertex split operation. The scheme is optimized for connectivity compression. 
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Chapter 15 

Algebraic Methods for Computer 
Aided Geometric Design 

Thomas W. Sederberg and Jianmin Zheng 

The concepts and methods of algebra and algebraic geometry have found significant appli­
cations in many disciplines. This chapter presents a collection of gleanings from algebra 
or algebraic geometry that hold practical value for the field of computer aided geometric 
design. We focus on the insights, algorithm enhancements and practical capabilities that 
algebraic methods have contributed to CAGD. Specifically, we examine resultants and 
Grobner basis, and discuss their applications in implicitization, inversion, parametriza-
tion and intersection algorithms. Other topics of CAGD research work using algebraic 
methods are also outlined. 

15.1. I N T R O D U C T I O N 

CAGD draws from several branches of mathematics and computer science, such as ap­
proximation theory, differential geometry, and numerical analysis. This chapter reviews 
some of the tools of algebra and algebraic geometry that have been brought to bear on 
problems in CAGD [11,17,27,28,33,37,45]. 

Most of the free-form curves and surfaces used in CAGD are given by parametric 
equations. Planar rational curves in CAGD are typically defined as 

a(t) b(t) 

where a(t), b(t), and c{t) are polynomials in the Bernstein basis for rational Bezier curves 
or in the B-spline basis for NURBS. Algebraic methods most commonly use polynomials 
in the power basis: a{t) = ao 4- ai^ -h • • • + a^^^, etc. Polynomials can be converted from 
Bernstein basis to power basis, although some algebraic methods such as resultants can 
be formulated using the Bernstein basis directly [26]. 

363 
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Parametric surfaces in CAGD are defined 
a(sA) Hs,t) c(s,t) 

d{s,t)' ^ d{s,t)' d{s,t) ^ ^ 

where a{s,t), b{s,t), c{s,t) and d{s,t) are polynomials. 
Surfaces and plane curves can also be defined using implicit equations. One contribution 

that algebraic methods make to CAGD is in solving the problem of implicitization and 
inversion of parametric curves and surfaces. For any parametric curve given by (15.1), 
an implicit equation f{x,y) — 0 (where f{x,y) is a polynomial) exists that describes 
exactly the same curve. Likewise, for any parametric surface given by (15.2), there exists 
an implicit equation f(x,y,z) = 0 that describes exactly the same surface. The process 
of finding the implicit equation of a parametric curve or surface is called implicitization. 
Implicitization is of value in CAGD because the problem of determining whether a given 
point lies on a curve or surface is addressed much more easily using the implicit form than 
the parametric form. Curve implicitization is discussed in Section 15.4. 

An inversion formula for a parametric curve (15.1) is of the form t — ^7^4 where g and 
h are polynomials. If the parametrization of a curve is a generally one-to-one map between 
parameter values and points on the curve, the inversion formula returns the parameter 
value t corresponding to a point (x, y) that lies on the curve. Inversion is discussed also 
in Section 15.4. 

The process of finding the rational parametric equations of implicitly defined algebraic 
curves and surfaces is called parametrization. Some methods for parametrizing plane 
algebraic curves are shown in Section 15.5. 

Algebraic methods also can facilitate the design of algorithms for computing inter­
sections between curves and surfaces. The curve intersection problem is surveyed in 
Section 15.6. 

The problems of implicitization, parametrization and intersection for surfaces are dis­
cussed in Section 15.7. Some other important applications of algebraic methods to CAGD 
are listed in Section 15.8. 

Many of the algebraic methods reviewed in this chapter come from classical analytic 
geometry [31,32,46,48]. The twentieth century witnessed a marked shift from the construc­
tive approach to non-constructive [5]. Section 15.2 gives a brief overview of polynomial 
ideals, varieties and Grobner bases, and Section 15.3 introduces three popular resultant 
formulations. 

15.2. POLYNOMIALS, IDEALS, A N D VARIETIES 

This section first introduces the notation and terminology which will be used later, and 
then presents the fundamental concepts of ideals and varieties and suggests some ways 
how these topics fit into CAGD. An excellent treatment of ideals and varieties and their 
application to CAGD can be found in [17]. 

15.2.1. Notat ion and terminology 
In general, a polynomial in n variables X i , . . . , x „ is defined 

r 
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Each summand c^xl^''xl^'' • • • x^'' is called a term, x^^^'x^^' '' "^n"' is a monomial, and Q 
is the coefficient of the monomial. By convention, any given monomial occurs in at most 
one term in a polynomial. 

k[xi,...,Xn] signifies the set of all polynomials in the variables xi,... ,Xn whose coeffi­
cients belong to a field k. For example, R[x, y] is the set of all polynomials 

Y^c^x'^'^y''- (15.4) 

where Ci e R and ei^i,e2,i G {0 ,1 ,2 , . . . } . Thus, " / G R[x,y,zY means that / is a 
polynomial whose variables are x, y and z and whose coefficients are real numbers. All 
polynomials in this chapter have coefficients that are real numbers. 

It is often useful to list the terms of a polynomial in decreasing order, beginning with 
the leading term. This is done using a term order — a way to compare any two distinct 
terms of a polynomial and declare which is "greater". 

For linear polynomials, term order amounts to merely declaring an order on the vari­
ables. For example, the terms of the polynomial 

2x-{-3y - \z 

are in proper order if we declare x > y > z. If we declare y > z > x, the proper 
order would be 3?/ — 42; + 2x. For non-linear polynomials, we begin by declaring an 
order on the variables, and then we must also choose one of several schemes that decide 
how the exponents in a polynomial influence term order. One such scheme is called 
lexicographical order (nicknamed lex), defined as follows. If the variables of a polynomial 
are ordered Xi > X2 > • •. > Xn, then given two distinct terms T^ = Cixl^'^xl^'' - • • x^'' and 

-L j — GoXi Xn ' ' ' Xfi , JL j^ ^ J. j l i 

1- el^^ > eij, or if 

2. ei,i = cij and 624 > 62j, or, in general, if 

3. Ck^i = ekj for /c = 1 , . . . , m - 1 and em,i > emj-

For example, the polynomial 

Sx'^y'^z H- Axy^z'^ + bx^z + 6y'^ + 7xz^ + 8 

using lex with x > y > z would be written 5x^z + 3x'^y'^z + ixy^z'^ + 7xz^ -f- 6y^ + 8 and 
its leading term is bx^z. Using lex with z > x > y it would be written 7z^x -h iz'^xy^ + 
bzx^ + 3zx'^y'^ + 6?/̂  -h 8 and the leading term would be Iz^x. Or using lex with y > z > x 
it would be written Ay^z'^x + Sy'^zx'^ 4- 6y^ H- Iz^x + 5zx^ -\- 8 and the leading term would 
be Ay^z'^x. 

Another choice for term order is the degree lexicographical order (abbreviated deglex). 
If the variables are ordered Xi > X2 > . . . > x^, then using deglex, Ti > Tj if 

1- ei,, + e2,z H- . . . + en,z > ei,̂ - + e2,j + . . . + e^j , or 

2. ei^i -h e2,i + . . . + Cn^i = eij -h e2j + . . . + e^j and T̂  > Tj with respect to lex. 
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Using deglex with x > y > z, the terms of 'dx^y'^z + ^xy^z'^ + 5x^2 -f 6|/^ + Ixz"^ + 8 would 
be ordered Axy^z'^ + Zx'^y'^z + 5x^2; + 7x2:̂  + 6y^ + 8. 

As observed in the lex and deglex examples, term orders ignore the coefficient of a term, 
so a term order might more properly be called a monomial order. 

Other term orders can also be defined, such as degree reverse lexicographical order. 
The precise requirements for any term order are discussed in reference [6], page 18. 

The n-dimensional real affine space is denoted R^ and is the set of n-tuples: 

R" = { ( a i , . . . , a ^ ) : a i , . . . , a n e i^} (15.5) 

15.2.2. Ideals and varieties 
The polynomial ideal generated by / i , . . . , /s G k[xi, ...,Xn], denoted (/i,. . . , /s) , is defined 

ifu-'-Js) = {Plfl + ••• +Psfs -Pi ^ k[xu...,Xn]}. 

The polynomials / i , . . . , /s are called the generators of this ideal. 
Consider a set of polynomials / i , /2, • • • , /s G k[xi,..., x^]. Let (ai,..., a^) be a point in 

k^ satisfying /^(ai,... , a^) = 0, i = 1,..., 5. The set of all such points (ai, . . . , a^) is called 
the variety defined by / i , . . . , /5 , and is denoted by V{fi^ ...^ fs): 

V{fi,..., / . ) = {(ai,.. . , an) € fc'"|/,(ai, ...,a„) = 0, i = 0 , . . . , s} . (15.6) 

A variety defined by a single polynomial—called a hypersurface—is the most familiar 
instance of a variety. A hypersurface in R^ is a planar curve defined using an implicit 
equation, and a hypersurface in R^ is what is normally called an implicit surface in CAGD. 
For example, V{x'^+y'^—l) is a circle defined in terms of the implicit equation x'^+y'^—1 = 0 
and V{2x + 4y — z -\- 1) is the plane whose implicit equation is 2x -\- Ay — z -\-1 = 0. 

A variety V{fi,..., fg) defined by more than one polynomial (5 > 1) is the intersection 
of the varieties V{fi)... V{fs)-

15.2.3. Grobner bases 
It can be very useful to devise alternative generators for an ideal. Necessary and sufficient 
conditions for ( / i , . . . , /n) = {gu '••,9m) are / i , . . . , /„ G {^1,.. .,gm] and 

9i-> • • •, 9m G 
{ / l , . . . , / n } . 

A Grobner basis of an ideal / is a set of polynomials {^1,. . . , gt} such that the leading 
term of any polynomial in / is divisible by the leading term of at least one of the polyno­
mials gi,... ,gt. This, of course, requires that a term order be fixed for determining the 
leading terms: diflferent term orders produce different Grobner bases. Several excellent 
books have been written on Grobner bases that do not presuppose that the reader has 
advanced training in mathematics [6,10,17] 

A Grobner basis is a particularly attractive set of generators for an ideal, as illustrated 
by two familiar examples. If {/ i , . . . , fg} are polynomials in one variable, the Grobner 
basis of ( / i , . . . , fn) consists of a single polynomial: the greatest common divisor (GCD) 
of / i , . . . , Z .̂ If {/i , . . . , /s} are linear polynomials in several variables, the Grobner basis 
is an uppertriangular form of a set of linear equations. The Grobner basis of these special 
cases provides significant computational advantage and greater insight, and the same is 
true of the Grobner basis of a more general ideal. 
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Grobner bases are the fruit of Bruno Buchberger's Ph.D. thesis [12], and are named 
in honor of his thesis advisor. Buchberger devised an algorithm for computing Grobner 
bases [13,17,18]. Also, commercial software packages such as Maple and Mathematica 
include capabilities for computing Grobner bases. 

15.3. R E S U L T A N T S 

Given a set of polynomials { / i , . . - , / s } , a resultant is a polynomial expression in the 
coefficients o f / i , . . . , /s such that the vanishing of the resultant is a necessary and sufficient 
condition for F ( / i , . . . , /s) to be non-empty [16]. Thus, a resultant determines whether 
or not ^ ( / i , . - - , / s ) is empty without explicitly computing the variety. Grobner basis 
methods can also be used for this task. However, resultants are usually more efficient 
than Grobner bases in practical applications. 

Resultants play an important role in elimination theory—a systematic approach for 
finding polynomials in an ideal that do not contain as many variables as generic elements 
of the ideal. Various formulations for resultants were extensively studied in the late 19th 
century and the early 20th century [31,48]. The main idea is to identify a (possibly large) 
set of n linearly independent polynomials that generate the ideal and that contain n terms. 
Then each term can be used as an unknown and the theory of linear system of equations 
can be applied. In practice, the resultants for two univariate polynomials and for three 
bivariate polynomials are of most interest. 

15.3.1. Sylvester's resultant 
Consider the two polynomials 

( f{t) = ant"" + a n - i ^ - ^ + • • • + ait + ao, a^ / 0 

g{t) - 6^ t - + 6^_it" -h6it + 6o, bmy^O 

Using Sylvester's dialytic method, we multiply f{t) by t^ \ t m—1 j.m—2 , t , 1 and g{t) by 
,t, 1, arriving at m H- n polynomials, which can be arranged in matrix form: 

<^n- l 

ai 

h 

do 
ai 

dn 

bo 
hi 

ao 

^0 

V(<) 

tf{t) 
fit) 

"-'git) 

tg{t) 

9{t) 

The determinant of the coefficient matrix is known as Sylvester's resultant for f[t) and 
g{t). The ideal generated by these m-\-n polynomials is just the ideal {f{t),g{t)). Thus 
they have the same variety. When there exists one value of t in the variety, Sylvester's 
resultant must vanish. 

Sylvester's resultant can also be derived using a method invented by Euler. Euler 
introduced two polynomials h{t) of degree m — 1 and k{t) of degree n — 1 with coefficients 

dn 

bm 

dn-l 

dn 

bm-l 

bm 

Oo 

bo . 

j.m+n—1 

j.m+n—2 

t 
1 
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undetermined. Letting h{t)f{t) — k{t)g{t) = 0 leads to m + n linear equations with m -h n 
unknowns which are the coefficients of h{t) and k{t). The determinant of the coefficient 
matrix of these m -\- n linear equations is exactly Sylvester's resultant. Obviously the 
determinant vanishes if and only if there exist nonzero polynomials h{t) of degree not 
greater than m — l and k{t) of degree not greater than n — 1 such that h{t)f{t) = k{t)g{t) 
holds. This is equivalent to the existence of the common roots of polynomials f{t) and 
g{t). Therefore Euler's method shows that R{f,g) = 0 is not only the necessary but also 
sufficient condition for f{t) and g{t) to have common roots. 

15.3.2. Bezout's resultant 
Another popular resultant formulation for two univariate polynomials is Bezout's resul­
tant. A nice derivation of Bezout's resultant is due to Cayley. Without loss of generality, 
we assume the degree of the polynomial g{t) is less than the degree of / ( t ) , i.e., m < n. 
Construct a symmetric function 

8{t,s) fit) f{s) 
9{t) 9{s) 

/{s-t) 
f{t)g{s) - f{s)g{t) 

s - t 

Some algebraic manipulation shows that S{t, s) is a degree n — 1 polynomial in 5 whose 
coefficients are polynomials of t: 

S{t,s) = f{t){g{t)-g{s))/{t-s)-g{t){f(t)-f{s))/{t-s) 
m—l / m n \ n—1 / n \ 

= E (fit) E kf-'-'-g{t) E M'-'^-Ms'^- E im E «.*'-*-'U*. 
A;=0 \ i=k+l i=k+l / k-m \ i=k^l J 

The variety of the ideal generated by these n polynomials is the same as V{{f{t),g{t))). 
Write these polynomials in matrix form: 

/ E kt' 
i=l 

9 Z) «i^' 
i=l 

i=m 

-9 E a.f-"'-! 

-90^n 

with the entry Q. 

Coo 

Cn-1,0 

Co,n-l 

Cn—1,71 —1 

(15.7) 

Yl {(^k^h — CLhh) and the convention that bm+i ' • = bn 0. 
fc<min(ij) 

k-\-h=i+j+l 
This coefficient matrix is called Bezout's matrix. If V[{f,g)) is non-empty, the determi­
nant of Bezout's matrix must vanish. The converse is also true when n — m, the proof 
of which can be found in [22,26]. The determinant is therefore a resultant for / and g, 
known as Bezout's resultant. In general, Bezout's resultant has dimension n x n while 
Sylvester's resultant has dimension (n + m) x {n + m). 

When n > m, Bezout's determinant has an extraneous factor of a^~^. This extrane­
ous factor can be removed by modifying Bezout's resultant as follows [19]: The first m 
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polynomials are the same as in (15.7); and the remaining n — m polynomials are obtained 
from f~^g{t)^ i = m,...,n. Thus Cij = bi^j^rn for z > m,0 < j < n — 1. Look at the 
example of / ( t ) = a2t^ 4- ait + a^ and g{t) = bit -f 6o- The original Bezout's determinant 
is 

ao6i - ai6o -0260 
- 0 2 6 0 —^2^1 

= a2 
ao6i - ai^o -^2^0 

-60 -61 

and the variant of Bezout's resultant is 
a^bi - aibo -a2bo 

bo bi 

15.3.3. Dixon's resultant 
Cayley's formulation can be extended to the case of three bivariate polynomials. Consider 
three polynomials: 

i=0 j=Q 1=0 j=Q i=0 j=0 

Dixon observed that the expression 

6{s,t,a,l3) = 
f{s,t) g{s,t) h{s,t) 
f{s,p) g{s,P) h{s,l3) 
fiaj) g{a,(3) h{a,p) 

/{s-a){t-P) 

is actually a polynomial of degree 2n — l , m — l , n — 1 and 2m — 1 in 5, t, a, P respectively. 
Thus it can be written as 6{s,t,a,P) — ^ijkidijkisH^a^P^ where dijki are expressions in 
^ij, Uij a n d Cij. 

For any (5, t) € V{{f, g, h)), S{s, t, a, /S) vanishes no matter what a and /3 are. Thus the 
coefficients of each a^p^ must vanish at these (5, t) pairs. This gives 2mn polynomials, 
each of which has 2mn terms in s and t since s has degree 2n — 1 and t is degree m — 1. 
The determinant of the coefficient matrix from these polynomials serves as a resultant for 
f,g and h, called Dixon's resultant [23]. 

Consider the example: 

C f{t) = a2is'^t-i-aiist-^ aoit-\-a2os'^-\-aios + aoo 

g{t) = b2isH + ^iis^ 4- bolt + 620^^ + ^lo^ + 600 

y hit) — C2iS^t + CiiS^ + Coit + C2o5^ + C ioS- f Coo 
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Dixon's method gives 

^(5,^,0;,;^) = [ l ,a , /3 , a/: 

(00,01,10) (00,01,20) (00,21,10) (00,21,20) 
+ (00,11,10) +(00,11,20) 

(00,01,11) (00,01,21) (01,21,10) (01,21,20) 
+(01,11,10) +(01,11,20) 

(00,01,20) (10,01,20) (00,21,20) (10,21,20) 
+ (00,11,20) +(10,11,20) 

(00,01,21) (00,11,21) 
+ (10,01,21) 

(01,21,20) 
+ (10,11,21) 

(11,21,20) 

where (zj, kj.pq) stands for the 3 x 3 determinant {ij, kj.pq) — 

15.4. C U R V E IMPLICITIZATION A N D I N V E R S I O N 

^ij ^kl Ojpq 

hj bkl bpg 

^ij Cj^i Cpq 

The algebraic tools of Grobner bases and resultants empower us to solve several prob­
lems of interest to CAGD. This section looks at several examples of implicitization and 

mversion. 
It is known from classical algebraic geometry that any degree n polynomial or rational 

parametric curve can be represented exactly using a degree n algebraic equation. For 
example, a circle can be expressed using the parametric equation 

= ( l - f 2 ) / ( i 2 + l ) , y = 2t/{f + l) (15.8) 

or using the implicit equation x'^ + y'^ — l = 0. In the following we discuss three approaches 
for the conversion from the parametric equation to the implicit equation. 

15.4.1. Resultant-based method 
We have presented the resultant tool for determining whether two polynomials have a 
common root. We now apply that tool to converting the parametric equation of a curve 
given by (15.1) into an implicit equation of the form / (x , y) — 0. 

We proceed by forming two auxiliary polynomials: 

g[x, t) = c{t)x - a(t), h{y, t) = c{t)y - b{t) 

View g{x,t) as a polynomial in t whose coefficients are linear in x, and view h{y,t) as a 
polynomial in t whose coefficients are linear in y. If we compute the resultant of g{x^t) 
and h{y^t)^ we do not arrive at a numerical value, but rather a polynomial in x and y 
which we call f{x,y). Note that g{x,t) = h{y,t) = 0 only for values of x,y and t which 
satisfy the relationships x = a{t)/c{t),y = b{t)/c{t). Clearly, for these values of x,y and 
t, the resultant f{x,y) must vanish. Conversely, any {x,y) pair for which f{x,y) = 0, 
causes the resultant of g and h to be zero. But, if the resultant is zero, then we know 
that there exists a value of t for which g{x, t) = h{y, t) — 0. In other words, all (x, y) for 
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which f{x,y) — 0 lie on the parametric curve and therefore f{x,y) == 0 is the impUcit 
equation of that curve. 

As discussed, the resultant is the determinant of a matrix of coefficients for a set of 
polynomials. Inversion—computing the parameter t for a point (x, y) known to lie on 
the curve—can be performed by solving such a set of polynomial equations using Gauss 
elimination or Cramer's rule. 

We illustrate with the circle parametrized by (15.8). We have 

g= {x-^ l)t^ + (x - 1), h = yt^ - 2t-\-y 

Using Sylvester's resultant, we obtain a 4 x 4 determinant 

x-\-l 0 x - l 0 
0 x + 1 0 x - l 
y -2 y 0 
0 y -2 y 

Bezout's resultant provides a 2 x 2 determinant 

-2x + 2 ~2y 

f{x,y) = 4{x^-hy^-l). 

f{x,y) -4{x' + y'-l) 
-2y 2x + 2 

We could obtain an inversion equation by solving the equations: 

= 0, 
-2x + 2 -2y 

-2y 2x + 2 

from which t = y/{x + 1) or t = (1 — x)/y. 
Two remarks should be made. First, if a(t),6(t) and c{t) in (15.1) are not relatively 

prime, the common factor should be removed before the resultant method is applied. 
Otherwise, the resultant will be identically zero, containing no information about the 
curve, since p and q have always common solutions for arbitrary (x, y) pair. Second, if 
the degrees of p{xjt),q{y,t) with respect to t are not the same, the variant of Bezout's 
resultant is used. 

15.4.2. Grobner basis technique 
In order to use Grobner basis method for implicitizing a rational parametric curve defined 
by (15.1) with GCD{a{t),b{t),c{t)) = 1 (otherwise, the common factor can be removed), 
we define the ideal 

/ = (c(t) X - a(t), c{t) y - b{t)) C R[x, y, t\. (15.9) 

If f{x,y) = 0 is the imphcit equation of (15.1), then / G / Pi R[x,y]. To guarantee 
/ appears in the Grobner basis, we order the variables t > x > y, and then construct 
the Grobner basis with the lexicographic ordering for the ideal / . The lexicographic 
ordering results in a Grobner basis that has a triangular structure. Thus the Grobner 
basis obtained will contain the curve's implicit form—an element which does not involve 
t, and an inversion—an element which is linear in t. 

In the example of the circle (15.8), / = ((1 + t^)x - (1 - t^), (1 + f)y - 2t). Using the 
computer algebra system MAPLE, we obtain the Grobner basis / — {-y + x + tx ,x -
1 + yt,y'^ + x^ — 1). Therefore the polynomial ^^ -h x^ — 1 gives the implicit equation 
x^ + ?/̂  — 1 = 0. The two other polynomials - y + x + tx and x — 1 + ?/t are linear in t 
and thus provide the inversion t = y/{l H- x) or t = (1 — x)/y. 
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t=O 

t:O.5 

Figure 15.1. Parametric Curve and Moving Lines 

15.4.3. M o v i n g  curve t echn ique  
A recent development in impliciting a planar rational parametric curve is the "moving 
curve" method [19,42,44]. A moving curve is defined as 

c( .<  ..~, .~,; t) := ~ L(x, y,'wW 
i = 0  

where L(x, y, w) is a homogeneous polynomial of degree d. Thus C(z,  9, w; t) = 0 is a 
family of algebraic curves, with one curve corresponding to each t. In particular, when 
d = 1, C(z ,y ,w;  t) = 0 is a family of implicitly defined lines. Therefore we call it a 
movin 9 line of degree m. Likewise, C(z,  2, w; t) = 0 is cMled a moving conic of degree rn 
when d = 2. A moving curve C(z, ~, w; t) = 0 is said to follow a planar rational curve 
(15.1) if C(a(t) ,b(t) ,c(t); t) is  identically zero, that  is, if for all values of t, the point 
(a(t)/c(t), b(t)/c(t)) lies on the moving curve C(z, ~/, w; t) = 0. For example, each row of 
Bezout's matrix or Sylvester's matrix corresponds to a moving line ibllowing the curve. 
Figure 15.1 illustrates a parametric curve and a few moving lines. 

The moving curve technique identifies rn + 1 independent moving curves that follow a 
given rational curve. A square matrix can then be formed from the coefficients of these 
moving curves with respect to t and the determinant  of the matrix gives the desired 
implicit equation. In general, such a collection of moving curves can be found by solving 
a set of linear equations [4.3]. For example, a degree n - 1 moving line 

7Z--I 

c(~,, :~, w; t) : ~ ( A , ~ :  + ~ + <,w)t  i : 0 (15.10) 
i=O 

follows a rational curve (15.1) if 

7Z" 1 

y ' ( a ~ ( t )  + B{v(t) + < e ( t ) ) #  _= 0 
Z = 0  
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which (:an be  expressed as 2n l inear  equat ions  with 3n unknowns 

a0 b0 Co 0 - • - 0 0 0 
Ao 

a~ b~ cl ao - . -  0 0 0 
Bo 

~1.2 b2 c2 aq 0 0 0 Co 

a,, bn c,~ a~,_l 0 0 0 " = 0 .  (15.11) 

0 0 0 an 0 0 0 : 

/~n-  1 
0 0 0 0 a~-l  b._l c~-1 C,~-i 
0 0 0 0 an b~ c',~ " 

where a.,, b~, c~ are the  coefficients of the  polynomials  a(t), b(t), c(t). Thus solving the 
equat ions  for A:, Bz, Ci yields n l inearly independent  moving  lines of degree n - 1 t ha t  

follows the curve. 
Rec, ently the problem of finding an appropr ia te  set of moving  lines was i l lumina ted  by 

the descr ipt ion of  the /*-bas is  [19]. A p-basis  for a degree-rt p lanar  ra t ional  curve consists 
of two moving  lines p(z ,  y; t) and q(z,  y; t), of d e g r e e / ;  and n - # respectively,  which form 
an ideal basis for all moving  lines tha t  follow tile curve. An efficient m e t h o d  of comput ing  

the /*-bas is  is given in [52]. Once  t h e / , - b a s i s  of a curve is known, the  problem of finding 
m. + 1 l inearly independent  moving  curves is great ly simplified. For example,  consider the  

degree four curve: 

t 4 + 2t 3 + t 2 + t + 1 -- t  3 d- t 2 + 2t 

• <'; = --t, 4 -- 2t ~ -- 2 ' 9 -- _ t  4 _ 2t 2 _ 2 

This  curve has a p-basis  of 

p =  ( x + y + l ) t  2 + t + v ,  q =  ( x + l ) t  2 + 2 t + 2 : r + y + l .  

Thus four moving  lines of degree 3 are p, t p, q, t q. Moreover,  two moving  conics of degree 
1 can be ob ta ined  by taking Bezout ' s  resul tant  of p and q. Each row in Bezout ' s  m a t r i x  

corresponds to a moving  conic. Therefore  tile implici t  equa t ion  can be expressed as a 
2 x 2 de t e rminan t  whose e lements  are quadra t i c  in z and y. In general,  for a degree 
)z ra t ional  curve, using a var iant  of Bezout ' s  resul tant  on the /,-basis, we can write  the  
implic i t  equa t ion  of' the  ra t ional  curve as the de te rminan t  of an (n - #) x (n - / * )  ma t r ix  
with p rows whose e lements  are quadra t i c  in z and y, and the  remain ing  n - 2# rows 
with e lements  l inear in z and ~, while convent ional  impl ic i t iza t ion  me thods  generate  the  

de t e rminan t  of an n x n ma t r ix  [22,34]• 

15.5.  C U R V E  P A R A M E T R I Z A T I O N  

15.5 .1 .  P l a n a r  a lgebra ic  curves  
hnpl ic i t i za t ion  shows tha t  a degree n, pa ramet r i c  curve can be represented using a degree 
r~, impl ic i t  equat ion .  Any implici t  equa t ion  tha t  can be obta ined  by impl ic i t iz ing a para- 

metr ic  curve is said to he rational (in o ther  words, a ra t ional  curve is any curve which can 
be pa ramet r i zed  using ra t ional  funct ions) .  All algebraic quadra t i c  curves have rat ional  
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quadratic parametrizations, whereas algebraic curves of degree greater than two are not 
generally rational. 

A degree n algebraic curve is defined by a degree n polynomial f[x,y), which has 
(n + l ) (n + 2)/2 terms. For example, a degree two algebraic curve has six terms: aix^ -h 
a2xy^-a^'lp'-[-a^x-\-a^y-{-a^ = 0. However, any one coefficient can be specified by scaling all 
of the other coefficients. (For example, the coefficient of x^ in the quadratic example can 
be set to 1 by dividing all the coefficients by ai). Thus, there is an (nH- l ) (n + 2)/2 — 1 = 
n(n 4- 3)/2 dimensional family of degree n algebraic curves. Geometrically, this means a 
degree n algebraic curve can be forced to interpolate n(n + 3)/2 points in general position. 

The parametric equation of a rational degree n curve has 3(n +1) coefficients. However, 
any one of these can be specified by scaling all of the other coefficients. Also, three 
other coefficients can be specified by changing the parametrization by a rational linear 
transformation s = ^^, and consequently there is a 3n — 1 dimensional family of degree 
n rational curves. 

15.5.2. Genus and rationality 
The condition under which an implicit algebraic curve can be parametrized using rational 
polynomials is that its genus must be zero [49]. Basically, the genus of a curve is given by 
the formula g — (̂ ~^K^~ )̂ _ ^ where g is the genus, n is the degree, and d is the number 
of double points. There are some subtleties involved in this equation if the singularities 
are not simple double points, but we will not concern ourselves with them. 

A double point on a curve is a point for which f{x,y) = fx{x,y) = fy{x,y) = 0 where 
the subscripts x and y denote partial differentiations, and for a point of multiplicity /c, all 
partials up to order k — 1 vanish. Geometrically, a double point means that any straight 
line through it intersects the curve at least twice at this point. 

We see immediately that all curves of degree one and two have genus zero and thus can 
be parametrized using rational polynomials. A degree three algebraic curve is rational 
only if it has a double point. 

An irreducible curve is one whose implicit equation f{x,y) — 0 cannot be factored. 
Rational curves (that can be parametrized using a single parametric equation) are irre­
ducible, and an irreducible curve of degree n can have at most (n — l)(n — 2)/2 double 
points. Thus, a rational curve has the most double points possible for a curve of its degree. 

15.5.3. Parametrizing curves 
One way to parametrize a degree two algebraic curve is to transform the conic into the 
standard form which has already a parametrization, and then to transform the standard 
parametrization back. The standard equations of conies are: ^j + fj = 1 for an ellipse, 
^ — I J = 1 for a hyperbola, and y^ — 2px for a parabola. They can be parametrized as 
(cij^ibj^), {dj^.b^^), and ( | - , t ) , respectively. Therefore the main step is to find a 
nonsingular affine coordinate transformation. This can be carried out as follows. 

Suppose the conic equation is Ax"^ + 2Bxy -h Cy'^ + 2Dx + 2Ey -\- F = 0. First we 
convert the equation into the form 

Ax^ + Cf + 2Dx + 2Ey + F = 0. (15.12) 

If ^ = 0, it is done. If A = C = 0 and 5 / 0 , then set x = x + y and y — x - y. 
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Otherwise, if ^ / 0, 5 / 0, then 

M^ + ^y? + {C- ^)y^ + 2Dx -^2Ey + F = 0. 

Thus we only need to set x = x + ^ ^ and y = y. A similar transformation can be derived 
if C / 0 and B / 0. 

Second, if one of A and C in (15.12) is zero, the curve is a parabola. Assume that 
i / 0 and C = 0. Then A{x + ^f = -2Ey - F + ^ . Thus setting 

D , F-D^jA 
X — X ^ -^, y — y -\ ^ 

A ^ ^ 2E 

arrives at the standard parabola equation. A similar process deals with the case of ^ = 

0 , C / 0 . If both of A and C a r e nonzero, we have A fx + f ) +C (y + §) = ^-\-^-F. 

Therefore we can take a translation of x' = x + ^ and y' — y -\- ̂  to make the curve 
equation in the standard form. Composing the transformations in the above two steps 
gives the required coordinate transformation. 

Another method to parametrize a conic is to establish a one-one correspondence between 
points on the curve and a family of lines through a point on the curve, which is called 
a pencil-of-lines. This pencil-of-lines method is most easily illustrated by translating the 
curve so that it passes through the origin, such as does the curve 

x^ - 2x + 4y^ = 0 

which is an ellipse centered at (1,0). We next make the substitution y = tx and solve for 
X as a function of t: x^(l + 4t^) — 2x = 0. Then 

2 2t 
y = tx = 1 + 4t2' ^ 1 + 4̂ 2 

Notice that y = tx is a family of lines through the origin. The variable line y — tx 
intersects the curve once at the origin, and at exactly one other point (because of Bezout's 
theorem: two algebraic curves of degree m and n intersect at either mn points or else 
they have common components [49]). Thus, we have established a one-one correspondence 
between points on the curve and values t which correspond to lines containing that point 
and the origin. The ellipse parametrized in this manner is shown in Figure 15.2. 

To parametrize a genus zero cubic curve, one must first find its double point, which is 
done by solving h{x, y) ~ hx{x, y) = hy{x, y) = 0. Once the location of the double point is 
determined, one can translate the curve so that the double point lies on the origin. Then 
the same trick in the pencil-of-lines approach for conies can be played with this cubic 
curve since the curve now has an equation involving terms of degree two and three only. 

Consider this example of the cubic curve 

f{x,y) = -21-^i6x-13x^ + x^ -\-25y-23xy-^3x^y-9y^ + 3xy^-\-y^ = 0 

for which 

/^(x, ?/) = 46 - 26 X -h 3 x^ - 23 ?; -h 6 X 2/ -F 3 2/̂  



376 CHAPTER 15. ALGEBRAIC METHODS FOR CAGD 

t = y / x = l 
t = y / x = l / 3 

(0 ,0 ) 
t = y / x = 0 

' (2,0) 

t : = y / x = - l / 2 

Figure 15.2. Parametrizing an Ellipse 

and 

fy{x,y) = 25-23x + 3x'^ -lSy + 6xy-\-3y^ 

We compute the x coordinates of the intersections of fx = 0 and fy = Ohy taking the 
resultant of fx and fy with respect to y: 

Resultant(/^, /y,y) = 174 - 159 x + 36x^ 

whose roots are x = 2 and x = If- Likewise the y coordinates of the intersections of 
fx = 0 and fy = 0 are found by taking the resultant of /^ and fy with respect to x: 

Resultant (/a,, fy,x) = 297 - 207 y -f 36 y'^ 

whose roots are y = 3 and y = ^- ^From these clues, we find that the only values of 
{x,y) which satisfy f{x,y) = fx{x,y) = fy{x,y) = 0 are {x,y) = (2,3). This is therefore 
the double point. 

The double point can also be found by computing the Grobner basis of (/, fx, fy) using 
lex ordering with x > y, the Grobner basis is {x — 2,y — 3}. 

This curve can be parametrized by translating the implicit curve so that the double 
point lies at the origin. This is done by making the substitution x = x + 2 , y = y + 3, 
yielding 

2 x'^ + x^ + 7 X y -{- 3 x'^ y + 6f + 3 X f + f = 0 

Parametrization is then performed using the method discussed earlier in this section, 

6̂ 2 + 7t + 2 _ _ 6̂ 2 + 7f + 2t 

" ^ " " ^ 3 + 3̂ 2 + 3^ + 1' ^~ ~ t3 + 3t2 + 3t + l 

and the parametrized curve is translated back so that the doubled point is again at (2, 3) 
(see Figure 15.3): 

6V + 7^ + 2 

' t3 + 3̂ 2 _̂  3^ + 1 
+ 2 = 

2t^ t 

t3 + 3t2 + 3t + 1' 
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4 

f = y / x = n 

t ^ y / x ^ O . B - ^ ^ 

t^y/x^o.e-^ 

t r r y / x = 0 . 9 

t ^ y / x ^ l . 2 ' ' ' ^ 

i \ w 

^ ^ ^ ^ ^ ^ ( 2 , 3 ) 

^ ^ ^ ^ ^ ^ 

Figure 15.3. Parametrizing a Cubic Curve 

V 
U^ + It^ + 2t 

"t3 + 3t2 + 3t + l + 3: 
-3^3 + 2̂ 2 + 7t + 3 

t^ + 3̂ 2 _̂  3^ + 1 

For a general algebraic curve, the parametrization problem involves two steps: deter­
mine whether it admits a rational parametric representation, and find one if so. The 
algorithms, in general, are not as simple as for conies or cubics. References [1-4,47] 
provide various computational techniques for parametrizing algebraic curves. 

15.6. I N T E R S E C T I O N C O M P U T A T I O N S 

We now consider how to compute the points at which two curves intersect. Intersection 
algorithms for two Bezier curves are commonly are based on subdivision, or using some 
numerical algorithms such as a multivariate Newton method. The former takes advantage 
of the properties of Bezier or B-spline representations and focuses on the intersection 
points within the specified intervals. The latter method is not robust: it is difficult or 
impossible to assure that all intersection points have been found. 

Algebraic methods provide a systematic way for computing intersections. As noted 
in Section 15.2, a variety V( / i , • • •, /s) defined by more than one polynomial (5 > 1) is 
the intersection of the varieties V ( / i ) , . . . , y ( / s ) . Therefore, intersection computation is 
equivalent to determining a variety. Using either resultants or Grobner bases, this finally 
reduces to the problem of finding the roots of a polynomial on one variable. 

15.6.1. Parametric curve and implicit curve 
Given one curve defined by the parametric equation (x, y) — {x{t),y{t)) and a second curve 
defined by the implicit equation f{x,y) = 0, we replace all occurrences of x and y in the 
implicit equation by x{t) and y{t), respectively. These substitutions create a polynomial 
f{x{t),y{t)) = g[t) whose roots are the parameter values of the intersection points. The 
(x, y) coordinates of these intersection points can be easily obtained by substituting the 
parametric values into the equation of the parametric curve. 
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( 5 / 3 , 4 / 3 ) 

Figure 15.4. Circle and Hyperbola 

15.6.2. Implicit curve and implicit curve 
For two algebraic curves f\[x,y) — 0 and f2{oc,y) = 0, the problem of computing the 
intersection amounts to computing the variety V{fi, f2)-

One direct method for computing the variety V{fi,f2) is to take the resultant of / i 
and /2 with respect to x or y. The x-resultant is computed by treating / i and /2 as 
polynomials in x whose coefficients are polynomials in y. The x-resultant eliminates x 
and produces a polynomial in y whose roots are the y coordinates of the intersection 
points. 

We illustrate with a circle 6x^ + 6?/̂  — 2x — 15^ — 4 = 0 and a hyperbola 
^2 _ ^2 _ 2 — 0 (see Figure 15.4). 

The x-resultant of these two implicit equations is 144^^ — 360y^ + 269y^ — 60y 
whose roots are y = 0^ y =z 4/3^ y = 3/4^ and y = 5/12. These are the ^/-coordinates of 
the points of intersection of the two curves. 

We can use the y-resultant to find the x-coordinates of the points of intersection. The 
y-resultant is 144x^ - 48x^ — 461x^ + 40x + 325 which has roots x = 1, x = 5/3, 
X = - 5 / 4 , and x = -13 /12 . 

We now know the x and y components of the points of intersection, but we don't know 
which X goes with which y\ One way to determine that is simply to evaluate each curve 
equation with every x and every y to see which (x, y) pairs satisfy both curve equations 
simultaneously. A more clever way is to use Euclid's algorithm which computes the GOD 
of two polynomials. In fact, Euclid's algorithm spares us the trouble of computing both 
the x-resultant and the ^/-resultant. 

Suppose we had only computed the ^/-resultant and we wanted to find the ^/-coordinate 
of the point of intersection whose x-coordinate is 5/3. That is to say, we want to 
find a point (§,?/) which satisfies both curve equations. We substitute x = 5/3 into 
the circle equation to get 16/6 — y^ = 0 and into the hyperbola equation to get 
6y^ — 15i/ + 28/3 = 0. We now simply want to find a value of y which satisfies both of 
these equations. Euclid's algorithm tells us that the GCD of these two is 3?/ — 4 = 0, 
and thus one point of intersection is ( | , | ) -

Grobner bases also provide a systematic computational method with the assurance 
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that all intersection points have been found. The general strategy is based on the simple 
observation that V'(/i, . . . , / , ) = V{{fu • • •, fs))- Consequently, if / i , . . . , /^ and gi,...,gt 
are generators of the same ideal, then 

V{h,...Js) = V(gu...,gt). 

Consider the previous example of a circle F(6x^ -t- 6y^ — 2x — Iby — 4) and a 
hyperbola V{x'^ — y^ — 1) . It can be verified that 

(6x2 _̂  Qy2 _ 2x - I5y - 4, x^ - y^ - 1) = 

{-12x^ + 2x + 15y-\-10, 144x^ - 48x^ - 461^2 + 40x + 325) (the Grobner basis) 

Since any point of intersection must be zeros of all generators of the ideal, the only possible 
x-coordinates for the intersection points must be roots of 144x^ — 48x^ — A6lx'^ ^ 40x-\-
325 = 0 (the roots are | , 1, — jf, and — | ) . The corresponding y coordinates can then be 
solved using -Ux'^ + 2x + 15y + 10 = 0. 

15.6.3. Parametric curve and parametric curve 
If we begin with two parametric curves, we can first implicitize one of them, and then use 
the substitution method to compute the intersection points. We illustrate this process by 
intersecting the curve 

, , , 1 + 5^ 25 

i - 5 2 ' i - , 

with the curve 

/ 2 7 t 2 - 2 3 9 t - 1 1 6 9̂ 2 + 9 6 ^ - 3 3 

^ ^ ' ^ ^ ~ V 6t2 4-81t + 165 '6t2 + 81t + 165 

(see Figure 15.5). The two curves intersect four times, which is the most that two 
quadratic curves can intersect. We implicitize the first curve and get the implicit equation 
^2 _^2 _ 2 _ Q Substituting the parametric equation of the second curve into this implicit 
equation and clearing the denominator, we arrive at the intersection equation: 

18t^ - 459t^ + 991^2 + 1031t - 437 = 0. 

We now compute the roots of this degree four polynomial, which are 23,1/3,19/6 and 
— 1. These are the parametric values on the second curve for the intersection points. 
From the parametric equation of the second curve, the corresponding (x, y) coordinates 
can be easily found: (5/3, 4/3), ( -1 ,0 ) , ( - 5 / 4 , 3/4), (5/3, - 4 / 3 ) . The parametric values 
on the first curve for the intersection points can be found from the inversion formulas 
s = y/{l — x) and s = — (1 + x)/y. They are —2, 0,1/3 and 2, respectively. 

Tests indicate that this implicitization-based intersection algorithm is several times 
faster than subdivision methods for quadratic and cubic curves, but subdivision methods 
are faster for curves of degree five and greater [38]. 
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Figure 15.5. Intersections of Two Parametric Curves 

Grobner bases and resultants can also be used for finding the intersections between two 
parametric curves. The intersections of the curves {x,y) = {ai{s)/ci{s),bi{s)/ci{s)) and 
{x,y) = {a2(t)/c2{t),b2{t)/c2{t)) satisfy 

ai{s) _ a2{t) bi{s) _ 62(t) 

ci{s) C2(t)' ci(s) C2{t)' 

This prompts us to compute the variety V{ai{s)c2{t) — a2{t)ci{s),bi{s)c2{t) — ^2(^)^1(5)) 
in the (s, t)-space. The methods discussed in Section 15.6.2 can then be employed. For 
the previous example, the Grobner basis using lexicographic ordering with ^ > 5 is 

(144^2 + 1944t - 4389s^ - 64485^ + 321695^ + 110725^ - 277805 - 664, 
48s - 6t + 6sH + 2 + 14s2 - 695^ - 165^ + 21s^ - 4 s + 125^ -f 55^ - 155^ - s^ + 3s^). 

Solving the third polynomial in the Grobner basis gives six roots: 0 , 1 , 2 , 1 / 3 , - 2 , - 1 . 
Note that the solutions of 1 and —1 are actually the roots of the denominator 1 — s^ of 
the first curve, and thus should be discarded. We then substitute the rest four roots into 
the second polynomial in the Grobner basis and solve for the corresponding values of t. 
These values of s and t are the parametric values of the intersection points on the first 
and second parametric curves. 

15.7. SURFACES 

This section briefly overviews some applications of algebraic methods to surfaces. A 
rational parametric surface is usually defined by (15.2). We denote the maximum of the 
total degrees of the polynomials a{s,t), 6(s,t), c{s,t) and d{s,t) by n and call it the 
parametric degree. The implicit equation of an algebraic surface is given by / (x , y, z) = 0 
where f{x,y,z) is a polynomial in x,y,z, and its maximum degree is denoted by m, 
called the implicit degree. Like curves, it is always possible to find an implicit equation 
of a parametric surface, but parametric equations can generally be found only for a very 
select class of implicit surfaces. Algorithms for implicitization and inversion also exist for 
surfaces [15,30], but the process for surfaces is much more complicated than the curve 
case. For example, a degree n plane parametric curve has an implicit equation that is 
also degree n. For surfaces, however, the implicit degree m can be as high as n^ if the 
parametric degree is n. 
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15.7.1. Implicit degree of a rational parametric surface 
The implicit degree can be thought of as the number of times that the surface is intersected 
by a generic straight line [15,48]. Define a generic straight line as the intersection of two 
distinct planes in general position aix -\- a2y + a^z -{• a^ = 0 and 6ix + 2̂2/ + h^ -h 64 = 0. 
The planes intersect the parametric surface (15.2) in curves 

aia(s, t) + a2b{s, t) + asc{s, t) + 04(^(5, t) = 0 (15.13) 

and 

bia{s, t) + h2h{s, t) -h hc[s, t) + 640 (̂5, t) = 0 (15.14) 

These curves are each degree n in 5, t. By Bezout's theorem, these two curves intersect 
in v? points, which must also be the number of times that the straight line common to 
the two planes intersects the surface. Thus, the degree of the surface, and of its implicit 
equation, is n^. 

It seems curious that there are gaps in the sequence of the implicit degrees of parametric 
surfaces: 1,4,9,... . Are there no parametric surfaces whose implicit degree is 3 or 5 for 
example, or under what conditions will the degree decrease? 

It may happen that there are values 55 and /^ satisfying a{si)^ ti,) = 6(55,4) = 0(55, ̂ 5) = 
d{st,h) = 0. These parameter pairs {s^.h) are referred to as base points. If a base 
point exists, the intersection curve of any plane with the surface will contain the base 
point. Thus, the above two curves will intersect at the base point and at n^ — 1 other 
points. However, since the base point does not map to a unique point on the surface 
{x — y = z = 0/0 is undefined), this does not represent a point at which the straight line 
intersects the surface, and the degree of the surface is therefore n^ — 1. Each additional 
simple base point diminishes the degree of the surface by one. Base points at infinity 
occur when all plane sections have a common asymptotic direction. 

To understand the influence of more complicated base points on the implicit degree, 
consider the linear system of all curves given by (15.13), where each curve in the linear 
system is the intersection of the surface with the plane aix + a2y + a^z + 04 = 0. A base 
point is any point in common with all members of the linear system. If two general curves 
in the linear system are tangent at a base point, they intersect twice at the base point and 
the degree of the surface becomes n? — 2. If two general curves in the linear system have 
a double point in common, they intersect four times at that base point and the degree 
becomes n^ — 4. Thus, a general degree formula is n^ — p where p is the total number 
of times that two general curves in the linear system intersect at base points. This also 
assumes that the surface has a one-to-one parametrization. 

If the surface (15.2) is a tensor product surface—one of the most popular representations 
for surfaces in CAGD—the parametrization is a bi-degree {ns.rit) parametrization in s 
and t. That means, Ug and rit are the highest degrees of the parametric equations with 
respect to s and t. In this case, the total parametric degree is n = ris + rit. But there 
exist two base points at infinity, corresponding to 5 = 00, t = 00, counted at least nj and 
n^ times respectively [14]. Thus the implicit degree of a bi-degree {ns.rit) parametrized 
rational surface is at most (n^ + n^)^ — n^ — n^ = ^ngrit. For example, a bicubic surface 
is usually of implicit degree 18. 
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15.7.2. Surface intersection curves 
Surface/surface intersection (i.e., finding the intersection curve of two surfaces) is an 
important geometric operation in CAGD. The usual approach is to compute an approxi­
mation for the intersection curve. Algebraic geometry provides important information on 
the nature of intersections of parametric surfaces. For example, the degree of the inter­
section curve is easy to determine using Bezout's theorem which states that two surfaces 
of degree m and n respectively intersect in a curve of degree mn. Therefore if two sur­
faces have implicit degree rii and 712, the intersection curve has a degree nin2 (unless the 
surfaces have common components). Thus, two bicubic patches generally intersect in a 
curve of degree 324. 

15.7.3. Implicitization 
Resultants can be used to implicitize a rational parametric surface. Dixon's resultant is 
a good choice, because it works on three polynomials in two variables. Given a rational 
parametric surface (15.2), construct three auxiliary polynomials: 

p{x, s, t) = d{s, t)x — a(s, t), 
q{y,s,t) = d{s,t)y-b{s,t), 
h{z, 5, t) = d{s, t)z — c(5, t) 

Note that p{x,s,t) — q{y,s,t) = h{z,s,t) = 0 only for values of x,y,z and s,t which 
satisfy (15.2). View p{x,s,t), q{y,s,t) and h{z,s,t) as polynomials in s and t whose 
coefficients are linear in x, in y and in z, respectively. Then applying Dixon's resultant 
to these polynomials to eliminate s and t, we obtain a polynomial in x, y and z which we 
denote / (x , y, z). Thus / ( x , y,z) — ̂  defines the implicit equation of the rational surface. 
In addition, by Cramer's rule, taking the ratio of the determinants of the submatrices 
from the Dixon's matrix corresponding to the terms sH^ and s^~^P, or the terms sH^ and 
sH^~^ yields the inversion equations of 5 = sH^/s^~^P and t — sH^/sH^~^. Unfortunately, 
if the surface has finite basepoints, the resultant is identically zero and the algorithm fails. 

The implicitization of rational parametric surfaces can also be accomplished by com­
puting the elimination ideal. The Rational Implicitization Theorem [17] states that if 
J — {dx — a,dy — b,dz — c,l — dw), then V{J D R[x, y, z]) is the smallest variety in R^ 
containing the parametric surface. The polynomial 1 — dw is introduced to assure that 
the method will work even if base points are present. Otherwise, base points would cause 
J n R[x,y,z] = {0}. In practical computation, we construct the Grobner basis with the 
lexigraphic ordering for the ideal J with s>t>x>y>z. The Grobner basis will 
contain a polynomial in x, y, z. This is the implicit equation. If the parametrization of 
the surface is a one-to-one map, two polynomials linear in t and s are also contained in 
the Grobner basis. They can produce the inversion maps. 

Notwithstanding the robustness and elegance of the Grobner basis solution to sur­
face implicitization, it is not very computationally efficient. Recently, a promising new 
method, called the moving surface method, has been proposed for implicitizing rational 
surfaces [43]. Like resultants, the implicit equation is expressed as the determinant of a 
matrix. 
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We define a moving surface as 

a 

g{x, y, z, s, t) = ^ /^(x, y, z)y^{s, t) = 0 
i=l 

where the equations fi{x,y,z) — 0,i — 1,..., a define a collection of implicit surfaces and 
where the 7^(5, t),z = 1, ...,cr are a collection of polynomials in s and t. We require the 
ji(s, t) to be linearly independent and to be relatively prime. A moving surface is said to 
"follow" a rational parametric surface (15.2) if 

fajs^t) b{s,t) c{s,t) , \ ^ 

^\d{s,t)'d{s,t)'d{s,t)''' J ~ 

If we can find a set of a moving surfaces 

a 

gj{x,y,z,s,t) = ^fJ^{x,y,z)J^{s,t) = 0, j = l , . . . ,a 
1=1 

each of which follows a given rational surface, then 

fu{oc,y,z) ••• fia{x,y,z) 

f{x,y,z) = 

fai{x,y,z) ••• f^^{x,y,z) 

- 0 

gives the implicit equation — as long as the degree of f{x,y, z) is equal to the degree of 
the implicit equation of the rational surfaces. 

In comparison, Grobner basis method theoretically provides an elegent solution to im-
plicitization of parametric surfaces, but involves a huge computation which limits its use 
in practice. The method of resultants is eflficient, but fails when base points occur. Mul­
tivariate resultants can also be used for implicitization [15]. The moving surface method 
actually simplifies in the presence of base points. Furthermore, the method of moving 
surfaces provides a very compact representation for the implicit equation of a surface. 
For example, a bicubic patch can, in general, be written as a 9 x 9 determinant whose 
elements are all degree two in x,y,z. By contrast, Dixon's resultant produces an 18 x 18 
determinant. However, further study is needed on the moving surface method. 

In summary, the operation of surface implicitization has not yet gained widespread 
use in practice, partly because the degree explosion that one encounters when moving 
from the parametric to the implicit form counteracts most algorithmic advantages that 
the implicit form might have over the parametric, and also because the computational 
complexity is very large, especially in the event of base points. 

15.7.4. Parametrizaion 
For an algebraic surface of arbitrary degree, Castelnuovo gave a necessary and sufficient 
condition for the existence of the rational parametrization [51]. Unfortunately, this crite­
rion does not provide a constructive approach to parametrization. A systematic method 
for parametrizing a general rational algebraic surface is under investigation. Recently, var­
ious computational algorithms for parametrizing certain lower degree algebraic surfaces 
have been developed. 
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All degree two surfaces are rational. We can parametrize a quadric surface much like 
we did for conies. For example, we can use a pencil-of-lines approach by first translating 
the surface so that it touches the origin. Then define a line through the origin as the 
intersection of two pencils of planes: y = sx and z = tx, say, and intersect the surface 
with that line. We demonstrate the procedure with a sphere x"^ -^ y'^ -\- z'^ — 2z — 0. 
Substituting y = sx and z = tx, we obtain x^(l + s^ + t^) — 2tx = 0. This gives the 
X coordinates of the two points where the line intersects the sphere. Discarding the 
intersection at the origin gives the parametrization 

2t 2st 2t^ 
y l + s 2 + t 2 ' ^ 1 + 52.^^2' l + s2 + t2 

Most cubic surfaces are also rational. The only exception is the ruled cubic generated by 
a non-rational cubic curve. The cubic surface has a fascinating geometry. For example, the 
general cubic surface contains 27 straight lines, and those lines can be used in determining 
a parametrization for the surface. A detailed discussion can be found in [9,39,41]. 

15.8. O T H E R ISSUES 

The algebraic approaches to implicitization, parametrization and inversion illustrate how 
algebraic concepts and methods, such as resultants and Grobner bases, help us analyze and 
solve some common problems in CAGD. Space limitations have prohibited the inclusion 
of several additional related topics, such as the following: 

• A curve or a surface is said to be properly parametrized if to each point on the 
curve, except for possibly a finite number of points, there corresponds only one 
parameter value. It is natural to ask whether any improperly parametrized curve or 
surface can be reparamtrized to become properly parametrized. For a rational curve, 
a classical theorem due to Liiroth guarantees the existence of a reparametrization 
[49]. However, for a rational surface, it depends on the base field where the surface is 
defined. Grobner basis methods can be used for detecting and correcting improper 
parametrization [24]. 

• Geometric continuity was originally introduced as a smoothness measure for para­
metric curves and surfaces. This concept is also meaningful for implicit curves 
and surfaces. The geometric continuity conditions for implicit surfaces is studied 
in [25]. This consideration is important when using algebraic surfaces in geometric 
modeling. One application is to construct blending algebraic surfaces with a spec­
ified continuity [50]. Algebraic surfaces have been shown to have advantages over 
parametric surfaces when performing the blending operation. 

• The fact that the most popular free-form surface patches - bicubic patches - are ac­
tually algebraic degree 18 has tempted some researchers to investigate the possibility 
of using lower degree algebraic surfaces for modeling purposes. Surfaces in algebraic 
geometry are usually global in nature while surfaces in CAGD are usually finitely 
defined (i.e., patches). The main reasons that parametric surface patches have been 
so popular in CAGD are that they can be pieced together with any desired degree of 
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continuity, and that there exist many elegant, intuitively meaningful techniques for 
controlling their shape. Therefore, to make algebraic surfaces useful in CAGD, the 
Bernstein-Bezier techniques have been adapted in defining algebraic surfaces [36]. 
Meaningful and efficient methods, such as interpolation, least-squares approxima­
tion and interactive modification, have been developed to model complicated shapes 
using piecewise implicit algebraic surfaces [7,8,20,21]. 

• Algebraic tools such as resultants and discriminants can help compute the intersec­
tion points between a ray and a surface (useful for performing ray tracing), and can 
help compute the silhouette points or curves in a scene. Some techniques based on 
algebraic methods have been developed to accurately render surfaces using computer 
graphics, such as ray-tracing [29,35] or in scan-line algorithms [40]. 

• The methods in algebraic geometry assume the procedure is carried out using exact 
(integer or rational number) arithmetic. Nevertheless, commercial computer sys­
tems dealing with CAGD use floating point arithmetic. This fact heavily hinders 
applying algebraic geometry methods to the practical problems of CAGD. There­
fore computational theories and techniques of algebraic geometry in floating point 
arithmetic are of high interest. Some strategies for using algebraic methods in a 
floating point environment are discussed in [45]. 

Interest in algebraic techniques for the CAGD is growing, and it is evident that algebraic 
geometry is a valuable resource for computer aided geometric design. 
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Chapter 16 

Scattered Data Interpolation: Radial 
Basis and Other Methods 

Suresh K. Lodha and Richard Franke 

This chapter presents some techniques for solving scattered data interpolation for func­
tional data. The focus here is to present some practical techniques for solving these prob­
lems using radial basis functions and some other local methods. Many of these techniques 
using radial basis functions have been developed only in last few years. Furthermore, al­
though many of these techniques can be extended to higher dimensions, here we concern 
ourselves mostly with two and three dimensions. For a more comprehensive survey ond 
literature on scattered data interpolation, we refer the reader to our earlier work [28]. 

16 .1 . I N T R O D U C T I O N 

Scattered data interpolation and approximation problems arise in a variety of applications 
including meteorology, hydrology, oceanography, computer graphics, computer-aided ge­
ometric design, and scientific visualization. There exist several variants of the basic prob­
lem. The basic problem, referred to as the functional scattered data problem is to find a 
surface that interpolates or approximates a finite set of points in a A:—dimensional space 
i?^. Sometimes the scattered data obtained is noisy (for example when collected using a 
3D depth range finder) and approximation is desirable. Sometimes the data obtained is 
fairly accurate (sampled from a given model or an object) and interpolation is desired. In 
other variations, the data is specified on a sphere or on a surface (such as an aeroplane 
wing). While all these problems are undoubtedly very interesting, in this work, we focus 
on the functional scattered data interpolation problem in two or three dimensions. 

Solutions to the scattered data interpolation or approximation problem are equally 
varied. Typically, the researcher makes a-priori choice regarding the type of solutions. 
Popular choices include polynomial or rational parametric representations, algebraic or 
implicit representations, subdivision methods, radial basis methods, Shepard's techniques 
and a combination of some of these approaches. Although the choice of the type of solution 

389 
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regular rectilinear structured unstructured scattered 

Figure 16.1. Different types of grids: regular, rectilinear, structured (each interior data 
point is connected to exactly four neighbors), unstructured (no restriction on the number 
of neighbors), scattered (no underlying grid) 

sometimes may be guided by the application domain and the previous methodologies 
prevalent in the discipline, the distribution of the data points often play an important 
role in dictating the type of solutions pursued. One of the most important criteria is 
whether the scattered data is prescribed with an underlying grid or not. When data is 
uniformly distributed such as in the case of rectilinear or the structured grid (see Figure 
16.1), one can employ special types of methods (such as bilinear or trilinear interpolation 
or more generally non-uniform rational B-splines (NURBS)) that may not be available 
for truly scattered data. Of course, one can always triangulate scattered data using 
Delaunay triangulation, for example, and employ methods that take advantages of the 
underlying triangular grid in two dimensions and tetrahedral grid in three dimensions. 
This approach has often been used in constructing polynomial or rational parametric and 
algebraic solutions. In cases where the underlying mesh consists of a mixture of triangles, 
quadrilaterals, and higher order polygons (or polytopes in higher dimensions), subdivision 
methods have been applied. Radial basis methods, in contrast, do not assume or need 
any underlying grid. 

Although all of the techniques mentioned above are useful in diverse applications, we 
have chosen to concentrate on radial basis methods and some local methods in this work. 
Our choice is guided by the fact that this handbook covers rational parametric solutions 
and subdivision methods in other chapters. Besides, some exciting recent developments in 
radial basis methods have made these techniques much more practical for very large data 
sets that was not possible only a few years ago. Also, we chose to focus on techniques that 
are likely to be useful in practical applications that often arise without any underlying 
grids. 

16.2. R A D I A L I N T E R P O L A T I O N 

We begin by presenting a brief introduction to the radial basis functions. A function (l){rk), 
where r^ = y^{x — XkY + (?/ — VkY is referred to as a radial function^ because it depends 
only upon the Euclidean distance between the points {x,y) and [xk.yk). The points 
[xk^Vk) are referred to as centers or knots. In particular, the function (j)[rk) is radially 
symmetric around the center (xk^Vk)- The solution to the scattered data interpolation 
problem is obtained by considering a linear combination of the translates of a suitably 
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chosen radial basis function. Sometimes a polynomial term is added to the solution, when 
(/)fc is conditionally positive definite (defined later in this section), or in order to achieve 
polynomial precision. More formally, the solution to the interpolation problem is sought 
in the following form: 

Â  M 

F{x,y) = Y,AkHrk) + Y.BMx,y), (16.1) 
A ; = l 1 = 1 

where qi{x,y)J — l , - - - , M is any basis for the space Pm of bivariate polynomials of 
degree less than m, and therefore M = ^ ^ • Notice that m = 0,1,2 corresponds to 
the case when no polynomial, constant function or a hnear polynomial is added to the 
interpolant respectively. In order to satisfy the interpolation conditions, one poses the 
following system of N linear equations in Â  unknowns A^, k = 1,- • - ,N, when m = 0: 

TV 

^ A 0 ( r ^ f c ) = / z , ^ - l - - - , ^ , (16.2) 

where rik — \J{xi — XkY + {Vi — yk^ is the Euclidean distance between the points (x^, y )̂ 
and {xk, Vk)- When m 7̂  0, a slightly modified system of Â  + M linear equations m N-\-M 
unknowns Ak,k = 1,- • • ,N and 5/ , / = 1, • • • , M is formulated as follows: 

Y^Ak(t){rik) + ^Biqi{x^,yi) = / i , z = 1, • • • , Â , 
A ; = l 1 = 1 

N 

J2^kqi{xk,yk) = 0,/ = l , - - - , M . (16.3) 
k=l 

In addition, throughout this section we shall assume the following mild geometric condi­
tion on the location of scattered data points: 

p{x,y) ePm.p{x^,y,) = 0 , 2 = 1,--- , 7 V - ^ p = 0. (16.4) 

Notice that this geometric condition is vacuous for m = 0,1. For m = 2, this condition 
states that all the scattered data points do not lie on a straight line. Assuming that a 
solution to the system of equations (16.2) or (16.3) exist, the radial basis interpolant is 
then given by Equation (16.1). 

Figure 16.2 presents some examples of radial basis functions with global support, that 
is, these functions never vanish on any interval. In these examples, /z is a parameter. For 
good choices of this parameter, we refer the reader to [33]. The property of global support 
poses one of the major practical difficulties in computing and evaluating these radial basis 
functions. One of the main focuses of this chapter is to present recent developments that 
address these diflSculties and suggest methods of overcoming them. In another approach, 
radial basis functions with compact support were introduced by several researchers includ­
ing Schaback, Wu and Wendland [38,35,36,41,37], and applied to scattered data problems 
by Floater, Iske and others [17,24,18,26]. However, radial basis functions with compact 
support seem to exhibit inferior convergence properties in comparison to radial basis 
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Hardy's multiquadrics 
Thin plate splines 

Inverse multiquadrics 

linear distance function 
cubic distance function 

Gaussian radial basis functions 
Shifted thin plate splines 

Hrk) = Vrl^h^ 
H^k) = rl\ogrk 
rh(r,) — 1 
^^'' ~ ̂ AF^ 

4>{rk) = Tk 
4>{rk) = rl 

Hrk) = e-'^'^'i 
Hrk) = {rl + h')\og{rl + h')'2 

Figure 16.2. Some radial basis functions with global support 

functions with global support [13]. Even in the case of radial basis functions with global 
support, radial basis functions that grow with distances such as multiquadrics and thin 
plate splines seem to provide superior solutions in many practical applications in com­
parison to those that decay with distances such as inverse multiquadrics and Gaussian 
radial basis functions. Therefore, in this work, we focus mostly on multiquadrics and thin 
plate splines. Surprising though it may seem, these radial basis functions, although not 
absolute or square integrable, yield very good convergence. The main question, of course, 
is how to compute and evaluate interpolants using these radial basis functions. Before 
we turn to this question, we briefly describe some existence and uniqueness properties of 
these interpolants. 

16.2.1. Existence and uniqueness 
To describe the existence of radial basis interpolants, we begin with a few definitions. 
Given a radial function (l){rk) and Â  scattered data points, consider the N x N square 
symmetric matrix A = (a^j), where aij = (t){Tij). The radial function 0(rfc) is said to be 
positive definite i^v^Av > 0 for all v e R^. The radial function (^{rk) is said to be strictly 
positive definite if in addition, v^Av > 0 whenever v ^ 0. If a radial basis function is 
strictly positive definite, then the matrix A is invertible. This is exactly what is needed 
in order to solve the system of linear equations (16.2) and guarantee the existence of an 
interpolant. 

However, as mentioned before, for some radial basis functions such as thin plate splines, 
the matrix A is not always invertible and addition of at least a linear polynomial term 
to the interpolant is required. To describe these existence results in somewhat greater 
generality, the notion of conditionally positive definiteness is introduced. Let Pm denote 
the space of polynomials of degree less than m. Consider the collection V of vectors 

V = (^vi,- " , VN) in R^ that satisfy J2iLi ^iQi^i) = 0 for any q e Pm- The radial function 
(f){r) is said to be conditionally positive definite (cpd) of order m ifi" v^Av > 0 for all 
V eV. The radial function (/)(r) is said to be conditionally strictly positive definite (cspd) 
of order m if in addition, v^Av > 0 whenever v y^ 0. It can be proved with a little effort 
that the the system of equations 16.3 is uniquely solvable if the radial basis function is 
conditionally strictly positive definite of order m and the scattered data points satisfy the 
geometric condition (16.4). 
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Micchelli provided the following characterization for conditionally positive definite func­
tions and derived the following important result: 
Theorem: A function f{t) is conditionally positive definite of order m. in R^ for d > 1, 
if and only if {-iy^f{y/i) > 0, t > 0, j > m. If in addition ^f{Vi) i^ constant, then 
f{t) is conditionally strictly positive definite of order m. 

It is now easy to verify that multiquadrics (m > 1), inverse multiquadrics (m > 0), 
thin plate splines (m > 2), linear distance function (m > 1), cubic power of the distance 
function (m > 2), shifted thin plate splines (m > 2), and Gaussians (m > 0) are cspd of 
order m up to a constant multiple, that is, either these functions or their negatives are cspd 
of order m. Some of these results derived from the theorem above can be strengthened 
further. In particular, the scattered data interpolation problem is solvable with m = 0 
and f{t) cspd of order 1, whenever f{t) < 0 for t > 0. This result guarantees the 
solvability of interpolation problem for multiquadrics without any addition of a constant 
or a polynomial term. Since so many choices of m are available, what is an appropriate m 
to choose while using these interpolants? We refer the reader to our previous survey [28] 
where we have addressed this question along with a number of other issues such as the 
choice of parameters. We also refer the reader to several articles by Buhmann [13,12,11] 
on radial basis functions. Here, it will suffice to say that in practice, multiquadrics and 
inverse multiquadrics are implemented without any polynomial term at all or at most with 
addition of a constant, while the thin plate splines require and are usually implemented 
with addition of a linear polynomial term. 

16.2.2. Computat ion of the interpolant 
The computational cost of direct methods for solving the scattered data interpolation 
problem using radial basis functions with global support is 0{N^), and the storage re­
quirements are 0{N'^). This is prohibitively expensive even with the fastest workstations 
currently available. This difficulty has restricted the use of radial basis functions to at 
most a few thousand centers till recently. However, recent developments may allow fitting 
data sets up to 5 million data points in 2 dimensions and up to 250,000 points in three 
dimensions in less than 10 seconds. 

There are several approaches that are being actively investigated to compute these in­
terpolants. Here, we present two methods - domain decomposition methods and GMRES 
(Generalized Minimum Residual) iteration methods [27]. Of these two methods, currently 
domain decomposition methods are most promising in terms of computing with very large 
data sets. GMRES iteration methods are less complex to implement and can deal with 
moderately sized data. Finally, multipole approaches are discussed for evaluating the 
radial interpolants. We now discuss each of these methods in somewhat greater detail. 

Lagrangian and domain decomposit ion approach 
Domain decomposition technique was proposed by Beatson and Powell and further devel­
oped by Beatson, Goodsell and Powell for thin plate splines in two dimensions [10,5]. A 
proof of convergence for thin plate splines and in fact, for conditionally positive definite 
radially symmetric functions including multiquadrics, inverse multiquadrics, and Gaus­
sians, for two and higher dimensions was presented by Paul and Powell [16]. Further 
improvements in the domain decomposition method and numerical results are presented 
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by Beatson, Light and Billings [7]. 
The domain decomposition method divides the main problem into several small to 

medium size problems on smaller domains. Lagrange functions are employed on the small 
and medium size problems. These solutions are then combined to generate an initial 
approximation to the main problem. An iterative refinement of the initial approximation 
is performed by computing and improving the residuals. 

We now explain each of these steps in somewhat greater detail. A decision is made 
to divide the main problem into problems of smaller size q, say 30 or 50. A uniformly 
distributed subset S of the scattered data point of roughly the same size is extracted on 
which the interpolation problem is uniquely solvable. The remaining points are ordered 
based on proximity. An initial seed point is chosen to start the ordering, q closest points 
are then added to this cluster. If there is a tie, it can be broken randomly. One can use 
alternative methods of structuring decomposing the domain. For example, Beatson, Light, 
and Billings [7] have used balanced nD-tree to subdivide space into rectangular boxes to 
guide the decomposition of the space. As we will soon see, Lagrangian interpolations will 
be performed on clusters of size q. 

Now, there are roughly — problems of size q. Let C denote the set of points belonging 
to one of these smaller subproblems or clusters. On these smaller subproblems, local 
Lagrange interpolation functions of the following form are used: 

Lagrange functions satisfy the following property: they are exactly 1 at one of the data 
points and 0 at the remaining q — I points, that is, Li{xj) = 6ij for i,j G C. This yields 
a system of linear equations. This computation is performed for each of the subproblems 
once and the results Â^ are stored for each subproblem. This step is an 0{N) process. 

The next step is to combine the solutions to these Lagrangian subproblems to generate 
an initial approximation to the main problem. The initial guess so{x) starts with zero. 
For each point in the ordered set (that is for all points except for the points in the subset 
S), the successive approximant is built as follows: 

s{x) -> s{x) + c^{x)Li{x), 

where, 

C^{x) = —'^{f{Xj)-s{Xj)). 

Please note that the Ci{x) is the residual at each point. It can be established that the 
Xii is positive so that the division above does not pose any problems. The main work, 
therefore, in this algorithm is the computation of the residuals. In the final step of this 
sweep of the algorithm, the solution a{x) to the interpolation problem with centers at S 
with a{i) — f{i) — s(i) for z G 5*, is added to complete the first initial approximation to the 
main problem. Let si{x) denote the end result after the the first sweep of the algorithm. 

Now, an iterative refinement is performed where the entire sweep of the algorithm takes 
place starting with the initial approximation Si{x). It is remarkable that not only that 
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this algorithm converges, it turns out that there is an increase in accuracy of one digit 
per sweep of the algorithm, that is, each sweep reduces the maximum error at each data 
point by a factor of ten, which indicates very fast convergence. 

There are several algorithmic and implementation level details that can be incorpo­
rated to make this algorithm efficient. For details, we refer the reader to [7]. Numerical 
results with thin plate splines in two and three dimensions indicate that one can obtain 
approximately O(A^logA^) complexity with this algorithm. This allows computation of 
the interpolant with up to 5 million data points in two dimensions, and up to 250,000 
points in three dimensions. 

G M R E S iteration 
GMRES (Generalized Minimal Residual) algorithm for solving nonsymmetric linear sys­
tems was introduced by Saad and Schultz [34]. Implementation of this method using 
Householder transformations has been discussed by Walker [40]. Beatson, Cherrie and 
Mouat [4] applied GMRES iteration technique to solve the scattered data interpolation 
problem using radial basis functions. GMRES iterative methods reduce the computa­
tional cost of constructing the interpolant to 0{N) storage and 0{N log N) operations. 
The implementation of this method is simpler than the domain decomposition method. 
Numerical results have been reported using the GMRES method with 10,000 points in 
two dimensions for thin plate splines and multiquadrics with satisfactory results [4]. 

As in the domain decomposition method, the GMRES method begins by solving Â  
smaller subsystems of linear equations. Three different strategies have been proposed for 
constructing these smaller subproblems. These strategies are based on (i) purely local 
centers, (ii) local centers and special points, and (iii) decay elements. In the purely local 
centers approach, Lagrange interpolation functions are constructed for the closest points 
as in the case of domain decomposition method described before. In the local centers and 
special points approach, some special points uniformly distributed and far away from the 
local points are added to construct the Lagrange functions in the hope that this will force 
the deviation of the Lagrange functions to be small near these far away regions. In the 
decay element approach, the objective is to construct approximate Lagrange functions in 
the neighborhood of the point and decay rapidly as the distance increases. This is achieved 
by solving the constrained least squares problem Li{xj) = Sij subject to Lj{x) — 0{\x\~^) 
as \x\ —)• oo. This decay condition is actually equivalent to a homogeneous system of 
linear constraints. However, decay elements cannot be used exclusively as a basis since 
they do not span the whole space. Therefore, some non-decay elements are used as well. 
For some suitable tolerance /i (say, 0.5), the decay element Lij is used if and only if 
^i^c \-^ii^j) ~ ^ij\ < M- Most points in the interior satisfy this criterion. If this condition 
is not satisfied, then the second method of local centers and special points is used to build 
the interpolant. 

The GMRES method differs from the domain decomposition method in how the results 
of the smaller problems are combined to create an approximate solution to the main 
problem. Let Lj be the local interpolant associated with the point Xj as described in the 
previous paragraph. Now, we consider the system of linear equations: 
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where ip^j — ipjixi). This system of linear equations is then solved by the standard 
GMRES technique. 

16.2.3. Evaluation 
Multipole methods use analytic expansions of the underlying radial functions for large 
argument, referred to as far-field expansions or Laurent series expansions. The salient 
ideas for this approach were used by Greengard and Rokhlin [23] to solve numerical 
integral equations and were applied to the scattered data interpolation problem using 
radial basis functions by Beatson and Newsam [8]. 

The overall idea for the evaluation of the interpolant is to break down the evaluation 
into two parts - contributions from the near terms and contributions from the far term. 
In order to define what is near and what is far, the data is structured hierarchically, for 
example, using quadtrees. Contributions from the near terms are computed exactly and 
explicitly. The main challenge is to compute the contributions from the far terms. Con­
tribution from a far term can be approximated well away from the origin by a truncated 
Laurent series expansion because radial basis functions are analytic at the origin, even 
when made multivariate through composition with Euclidean norms. However, summing 
up contributions from each far term using Laurent series expansion is still very costly. The 
key idea is to form clusters of far terms and combine the Laurent series expansions of each 
of these clusters into a single Taylor series expansion at the desired point of computation. 
This method reduces the computation cost to 0(1) for each approximate evaluation of 
the radial interpolant. The accuracy of the computation can be prescribed by the user 
and can be matched by using appropriate truncation of the series expansions. 

Several improvements and extensions of the above algorithm have been proposed in the 
last decade [6,9,3]. In particular, the algorithm described above requires much mathe­
matical analysis of appropriate series expansions and corresponding translator operators 
for every new radial basis function. Recently, Beatson, Newsam, and Chacko have intro­
duced moment-based methods for evaluating radial basis functions that still take 0(1) 
operations for each single evaluation of the interpolant but in addition, require much sim­
pler implementation to accommodate additional radial basis functions. This is achieved 
by replacing the far field expansions using Laurent series expansions with computations 
involving moments of the data. 

We now describe each of the steps mentioned above in somewhat greater detail. We 
first describe the four steps needed to set up the computation. Then we describe the two 
steps required for the evaluation. In the first step of the set up, the space is subdivided 
in a hierarchical manner. The space can be enclosed within a given square or a volume. 
One can then use uniform quadtree subdivisions or adaptive subdivisions depending upon 
the distribution of the data set. Each subdivided region is referred to as a cell or a panel. 
Typically, the subdivision is carried down to log Â  levels. The centers are associated with 
the cells that they lie in. Two cells are considered near iff they are adjacent to each 
other. In the next step, far points are to be grouped together. To this purpose, one can 
define the notion of a distance between two cells based on the hierarchical subdivision of 
the space using the number of edges in the tree to be traversed to get from one cell to 
another. Then all the cells that are equidistant from the given cell are grouped together. 
In the third step, in the original algorithm, Laurent series expansion is computed for each 
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point and translation is used so that these expansions can be reused for other centers. 
Then these computations are done for each cell starting from the most refined levels or 
the bottom of the tree and traverse upwards towards coarsers levels forming analogous 
expressions by combining the computations at the refined levels. In the moment-based 
algorithms, the moments of the coefficients (used in the solution to the scattered data 
interpolation problem) around the cell centers are computed from the most-refined levels 
to the coarser levels of the tree by traversing the tree as before. In the fourth step of the 
original algorithm, the hierarchical tree is traversed downwards starting from the root and 
for each cell, Taylor expansion is computed by combining the Laurent series expansions of 
the whole far field. In the moment-based algorithms, the tree is also traversed downwards 
as above, however, polynomial approximations are now formed by combining moments 
and certain approximations to the radial basis functions. 

In the evaluation phase, first we identify the leaf node cell (at the bottom of the tree) 
containing the point where the evaluation is needed. In the second step, the contribution 
by the near points is computed exactly and precisely. To this we add the contribution by 
the far points, which is computed by error-driven truncation of the Taylor series expansion 
of the far fields associated with this cell in the original algorithm or by appropriate 
evaluation of the polynomial approximations in the moment-based algorithm. 

In the moment-based algorithms, real Fast Fourier Transforms (FFTs) are used to com­
pute the required moments. Then the shifted moments corresponding to shifted centers 
can be computed as convolutions of moments. Computations needed in the approxima­
tions of the radial basis functions in the moment-based methods can be greatly reduced 
by symmetry considerations. Details and some numerical results involving 32000 points 
in 2D can be found in [3]. 

16.2.4. Applications 
Radial basis functions have been applied in a wide variety of disciplines including bathymetry 
(ocean depth measurement), topography (altitude measurements), hydrology (rainfall in­
terpolation), surveying, mapping, geophysics, and geology [25]. More recent applications 
include image warping [42,1], medical imaging [14], and 3D object representations and 
reconstructions [15]. 

Here we discuss some of these applications briefly. In the image warping application by 
Arad et al. [1], radial basis functions are used to approximate warping of 2D facial expres­
sions. Some key features of the face are identified by a user as pixels or points, referred 
to as anchor points, on an image. The authors have developed a system for identifying 
important facial features on eyes and mouth using a technique called generalized symme­
try. In the image warping application, an added advantage is that the anchor points need 
not be specified very accurately. When facial expressions undergo change, new locations 
of these anchor points are also determined using the feature finding algorithm. This sets 
up a mapping from R^ to R^ for anchor points. The objective is to find realistic mapping 
for the whole image. This problem can be decomposed into two independent scattered 
data interpolation problem from R'^ to R. It is well known that if there are only 3 anchor 
points, one can find an aflSne mapping from one image to another. In practice, the authors 
claim that a small number of anchor points yield fairly good results. In examples using 
the warping of images of Mona Lisa and Ronald Reagan, the authors have used from 6 
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to 14 anchor points. Thin plate spKnes and Gaussian radial basis functions are used to 
solve the image warping problem. Thin plate splines have the property that they mini­
mize the bending energy and therefore seem to be appropriate in warping applications. 
Gaussian radial basis functions can be used to provide a locahty condition by judiciously 
choosing the scalar a that affects the region of influence around the anchor points. In a 
variation to the interpolation problem, least squares minimization of the sum of the Eu­
clidean distances between the anchor points is also considered. This variation introduces 
a scalar factor A that determines whether the solutions will be a radial solution (when 
A = 0) or will be an affine mapping minimizing the least squares distance (when A = oo) 
or somewhere in between. Several results using different values of a and A are shown to 
establish the effectiveness of this approach. 

In [14], Carr et al. have used radial basis functions to design cranial implants for the 
repair of defects, usually holes, in the skull. When a defect is large (> 25 sq. cm. ), 
implants are fabricated presurgically. Prefabrication requires an accurate model of the 
defect area to ensure that a good fit is achieved. Depth maps of the skull's surface 
obtained from X-ray CT data using ray-tracing techniques have been used to construct 
models of cranial defects. The depth map is a mapping from a subset of R^ to R. Due 
to the presence of defects, the data sets will have holes in the domain. These holes need 
to be filled. Use of radial basis functions is appealing because no regular underlying grid 
is available. In this application, a combination of linear radial basis functions and thin 
plate splines are used. Several examples and results using 300 to 700 points are discussed. 
Solutions obtained by radial basis functions are compared with the original skull (by 
artificially introducing holes or defects in the data). Examples for repairing large defects 
(150 sq. cm. ) in convex regions as well as repairing holes close to the orbital margin and 
other regions of high curvature are also presented. 

In the third application, radial basis functions have been used to warp aerial pho­
tographs to orthomaps using thin plate splines [42]. Orthomaps, which typically have a 
pixel resolution of 1 meter on the ground, are produced by a complex and costly process 
involving acquisition of aerial photographs and ground control data, aerial triangulation, 
and sophisticated processing of raw images in association with a digital elevation model. 
However, orthomaps undergo change due to changing characteristics of the region both 
due to natural (seasonal, wildfires) and man-made changes (new roads, buildings etc.) . 
To update an orthomap, new aerial photographs are taken that need to be registered or 
warped onto the orthomap because geometric distortions arise in the photographs as a 
result of the finite height of the aerial camera and the relief of the terrain being imaged. In 
this application, six image pairs were used for the British Columbia region. This applica­
tion is very similar to the first one discussed above except that in this case approximately 
200 to 300 feature points were selected either manually or using an automated or semi-
automated procedure. In this application, aerial photographs were accurate to within 
10m on the ground and to within 5m in altitude. Using cross-correlational analysis, the 
authors concluded that the warped features were corrected with great effectiveness being 
accurate 50% of the time to within 1.5m, and 90% of the time to within 5m. 
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16.3. O T H E R LOCAL M E T H O D S 

Local methods are attractive for very large data sets because the interpolation or approx­
imation at any point can be achieved by considering only a local subset of the data. For 
data sets of up to at least a few hundred points, global methods such as thin plate splines 
and multiquadrics are easily applied. Computational experience seems to indicate that 
for many problems, using very few local points (perhaps fewer than 50 to 100 points) 
yields surfaces for which the local variations are over-emphasized. This results in what 
might be described as a somewhat "lumpy" surface, so current recommendation is to take 
care not to let the surface definition be too locally defined. 

Many local methods can be characterized as weighted sums of local approximations, 
Lfc(x,y), where the weights, Wk{x,y) form a partition of unity. Interpolation properties 

N 

of the local approximations are preserved in the function F{x,y) — ^ Wk{x,y)Lk{x,y), 
k=\ 

provided that each Ljt(x, y) takes on the value fj at each {xj.yj) for which Wk{xj,yj) ^ 0. 
In order for the overall method to be local, it is necessary that the weight functions be 
local, that is, nonzero over a limited region, or at a limited number of the data points. 

We briefly review Shepard methods. These arise from the simple interpolation for-
N N 

mula due to Shepard [39] of the form F{x,y) = ^ d^ky)/ ^ rf^^ky) ^^^^^ dl{x,y) = 

{x — XkY + {y — ykY is the square of the distance from (x, y) to (x^, yk) and // is a param­
eter, often taken to be 2. This is a global method due to the global weighting functions 
for the data values. It has well-known shortcomings, such as flat spots at all data points. 
Many of the shortcomings are overcome by what is called the local quadratic Shepard 
method, a version of which is available as a Fortran program in the TOMS series, Al­
gorithm 660 [31]. A trivariate version is available as Algorithm 661 [32]. We view the 
method as a weighted sum of local approximations, where for Shepard's method, the 
local approximation Lk{x,y) is fk, and the weight function Wk{x,y) is then clear. We 
now replace the weight function with another that has compact support and the local 
approximation with a quadratic function that interpolates the value fk at (xk^yk)- The 
choice for the weight function used by Renka was suggested by Franke and Little [2] and 
is of the form Wk{x,y) — n^TTl^^W^' where n+ = 0 if u < 0 and n+ = n if n > 0. 
This weight function behaves essentially like dk{x^y) for {x^y) points near {xk,yk), while 
becoming zero at distance Rk. The local approximation Lk{x,y) is a quadratic function 
taking on the value fk at the point {xk,yk) with the other coeflficients being determined 
by a weighted least squares approximation using the data values at a given number of 
data points near to (xk.yk)- The weights for the approximation have the same form as 
the weight function Wk{x, y) above, but using a different value for the radius at which the 
weight function becomes zero. Methods such as this can be used easily, with reasonable 
results. The primary disadvantage for large data sets is that a considerable amount of 
preprocessing is needed to determine closest points and calculate the local approxima­
tions. On the other hand, if approximations are only required in some localized area, the 
preprocessing may not be burdensome. 

Another version of the weighted local approximation was given by Franke [19]. In 
this algorithm the search for nearby points and computation of local approximations is 
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enhanced in several ways. The plane is subdivided into a finite rectangular grid, with 
the goal that each subrectangle contains approximately a specified number of points. The 
success of this depends on the locations of the data points, and the points may necessarily 
be poorly apportioned in particular cases. The weight functions are taken to be Hermite 
bicubic functions with value one and slope zero at the intersection of a vertical and 
horizontal grid line, and value zero and slope zero at the exterior boundary of the four 
adjacent subrectangles. This set of functions over the grid points forms a partition of unity. 
To ensure interpolation it is necessary that the local interpolation function, Wk{x, y) take 
on the specified value at each of the data points within the four subrectangles adjacent 
to the corresponding grid point. This approximation is taken to be a thin plate spline, 
with some accomodation necessary for fewer than the required number of points (that is, 
three not on a line) within the four subrectangles. While the original paper suggested a 
fairly small number of points for each set of four subrectangles, later experience indicates 
the number should be as large as several hundred. The use of rectangular regions greatly 
simplifies the problem of finding the nonzero terms in the summation since this reduces to 
a pair of one-dimensional searches to find the subrectangle in which the evaluation point 
lies. Again, the amount of preprocessing required is substantial. As with the quadratic 
Shepard method, this can be reduced a great amount if the approximation is to be carried 
out only in a localized area. 

Approximations of the above type can be implemented where the local approximation 
is determined by least squares, for example. Interpolation will not be maintained, but 
that may not be an important consideration. One candidate for local approximation 
in this case is a local least squares multiquadric function. Such functions have been 
studied by Franke and coauthors [21,22,20] and the method appears to be useful using 
only a small number of knots (centers for the multiquadric basis functions). However, the 
preprocessing required is greater per local approximation, but this would be oflFset by a 
smaller number of local approximations being required. Further, when many evaluations 
require that it be done rapidly, substantial preprocessing may be acceptable. 

Finally, we discuss triangle based methods for solution of the scattered data interpola­
tion problem. The general method we discuss is sometimes described as a finite element 
method since the approximation is basically a piecewise function defined over a trian-
gulation. We assume that a smooth (continuous first derivatives) interpolation function 
is to be constructed. For large data sets, the overhead involved in the construction of 
the triangulation and storage of sufficient information about it may be excessive. This 
may be overcome in at least two ways. First, we consider methods that use the data 
points as the vertices of the Delaunay triangulation, and which estimate gradients at the 
data points from a local subset of the data. Because the Delaunay triangulation is local 
(made clear by the circle property of the triangulation), it is necessary to process only 
a subset of the data in the same locality as the evaluation points. Thus the problem 
can be handled by processing overlapping subsets of the data (some care must be taken 
to ensure the overlap is suflftcient to obtain the same results as for the global problem). 
Algorithms for performing the triangulation are quite efficient both in terms of time and 
required computational resources [30]. Once the triangulation is completed (whether only 
a local part of it, or the global one), the gradients at the vertices need to be estimated. 
This can be done in a variety of ways, the most successful seeming to be those that fit 
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a polynomial approximation to local data points in ways very similar to that described 
above for the quadratic Shepard method, except here the approximations are only used 
to obtain gradient estimates. Alternatively, the subset selection method for gradient ap­
proximation may be based on the neighbors in the triangulation, and perhaps neighbors 
of neighbors. This has a certain cohesiveness and also has the advantage of ease of finding 
the neighbors through the triangulation. On the debit side, points relatively far away 
could then involved, although generally only near the boundary of the convex hull of the 
data points. 

When the number of data points is excessive, it may be desirable to choose the vertices 
of the triangulation as a subset of the data points, or to use as vertices other points 
not directly related to the data points. A procedure for elimination of vertices from a 
piecewise polynomial approximation of a function was given by Le Mehaute and LaChance 
[29]. The algorithm eliminates unneeded vertices by calculating a measure of significance 
for each vertex point, and eliminating those with low significance, subject to maintaining 
accuracy to within a specified tolerance. The amount of computation for a significant 
reduction in the number of vertices may be large, but again, may be worthwhile in certain 
circumstances. 

16.4. C O N C L U S I O N S 

Although scattered data interpolation and approximation is a very old problem, new 
research and recent developments particularly in the area of radial basis functions and 
subdivision techniques have infused fresh energy into this area. In this work, we have 
presented a high level view of some of the recent developments that carry great promise 
for solving practical problems using radial basis functions. This research is still in a 
state of flux, and many algorithmic and implementation level details need to be stabilized 
to carve out interpolation and approximation algorithms that can be used by a wider 
audience. Furthermore, great theoretical advances in radial basis functions have remained 
inaccessible to the majority of practitioners due to highly sophisticated mathematical 
presentation of these recent developments. We believe that radial basis function methods 
are richly deserving of practical implementations for large data sets. We hope that this 
work provides some pointers to practitioners that will encourage such endeavors. 
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Chapter 17 

Pythagorean-Hodograph Curves 

Rida T. Farouki 

17.1. P R E A M B L E 

With the advent of a new millenium, it seems appropriate to begin with a brief historical 
perspective on a topic that entails a remarkable confluence of ideas spanning nearly 4000 
years of geometry and algebra. Figure 17.1 shows cuneiform tablet No. 322 in the Plimpton 
Collection of the Rare Book & Manuscript Library, Columbia University. This compilation 
of sexagecimal numbers, composed in the Old Babylonian Period {^ 1900 to 1600 BC), 
was discovered in the 1920s and subsequently deciphered by Neugebauer and Sachs [54] in 
1945. Far from being a mere financial or commercial record, the tablet reveals profound 
knowledge [8] of the fundamental characterization 

a = tẑ  - i;̂  , b = 2uv , c = u^ -{-v^ (17.1) 

for integer solutions to the "Pythagorean" equation, a^ + 6̂  = c^. After a thousand years, 
Mesopotamian supremacy in algebra was superceded by the ascent of Greek geometry — 
Pythagoras of Samos (~ 560-480 BC) is credited with the first proof that this equation 
governs the sides of all right triangles, and is thus fundamental in distance measurement. 
Unfortunately, geometry fell into a prolonged stagnation after the Greeks, until Descartes' 
La geometrie of 1637 proposed a propitious marriage of geometry and algebra through the 
use of coordinates. Although this opened the fascinating realm of higher-order curves to 
mathematical scrutiny, the first steps were hesitant: Descartes blundered by categorically 
rejecting the idea of "rectification" (i.e., arc-length measurement) of curves. 

The calculus of Leibniz and Newton resolved the existential, but not the computational, 
aspects of arc length measurement. Applying the Pythagorean theorem to an infinitesimal 
curve segment allows us to express the length of a (sufficiently smooth) parametric curve 
r(t) = {x{t),y{t)) as the integral 

s{t) = j yjx'\u) + y'\u)&u, (17.2) 

405 
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Figure 17.1. Plimpton 322, the cuneiform Pythagorean triples tablet from Mesopotamia. 

but this does not, in general, admit closed-form evaluation for "simple" (rational) curves. 
Ideally the curve parameter is the arc length, s{t) = t, an assumption that helps elucidate 
the intrinsic geometry of curves. It is a matter of some subtlety, however, that this ideal 
is unattainable by any rational curve other than a straight line [31]. 

Although we must relinquish the hope of rational arc-length parameterization, we can 
nevertheless ensure exact mensurability of the arc-length function (17.2) by incorporating 
a special algebraic structure in the curves r{t) — (x(t), y{t)) under consideration, based on 
the recognition that Pythagorean triples of polynomials admit the same characterization 
(17.1) as triples of integers [46]. Thus, by constructing curves with hodograph (derivative) 
components x'{t), y'{t) that are elements of Pythagorean triples, we ensure reduction of the 
integral (17.2) to a polynomial in t. This is the key concept motivating the introduction 
[30] of the Pythagorean-hodograph (PH) curves, which offer many additional advantages 
(rational offsets, superior shape properties, real-time interpolators, etc.) described below. 

Apart from these practical advantages, the investigation of PH curves is of considerable 
intellectual appeal for the wealth of mathematical ideas it entails, including the geometry 
of complex numbers, inaugurated by Wessel, Argand, and Gauss; Hamilton's quaternions 
and the geometrical algebras of Clifford; medial axis transforms and the Minkowski metric 
of special relativity; projective geometry and dual representations; the cyclographic map 
and Laguerre geometry; and connections with classical geometrical optics. 

17.2. POLYNOMIAL P H CURVES 

The distinguishing feature of a polynomial PH curve r(t) is that the components of its 
hodograph r'[t) satisfy a Pythagorean condition, i.e., the sum of their squares is equal to 
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the square of a polynomial a{t). The satisfaction of this condition entails rather different 
approaches in the context of planar and spatial curves, as described below. 

17.2.1. Planar P H curves 

The hodograph r '(t) = {x'(t), y'(t)) of a planar PH curve must satisfy 

x"it)+y'\t) = a'{t), (17.3) 

where a{t) is a polynomial. Satisfying this condition is equivalent [30] to the requirement 
that, in terms of polynomials u{t), v{t), h{t), the hodograph has the form 

x'{t) = [u\t)-v\t)]h{t), y\t) = 2u{t)v{t)h{t), (17.4) 

and hence G[t) = [u^it) + v'^{t) ] h{t). Taking h{t) — 1 and gcd(n, v) — \ gives a 'primitive 
Pythagorean hodograph, defining a regular PH curve (i.e., gcd(a:',y') = 1) of odd degree. 

A direct consequence of (17.3) is that, for PH curves, the cumulative arc-length function 
(17.2) is just a polynomial (rather than an irreducible integral). Moreover, the offset curves 
at each distance d from r(t) — defined [23] by 

Tdit) = r(t) + dn{t), (17.5) 

where n(t) is the unit normal to r(t) — admit exact rational representations, eliminating 
the need for approximation schemes that can be inaccurate, data intensive, or lacking in 
robustness — see [10,59] and references therein. The exact arc length and offset properties 
of PH curves are extremely useful in the context of CNC machining (see §17.4 below). 

Taking constants for u{t), v{t), h(t) reveals the trivial fact that straight lines are PH 
curves. The first non-trivial examples are cubics, defined by choosing h{t) — 1 and linear 
polynomials w(t), v{t) in (17.4). PH cubics can be characterized geometrically in terms of 
their Bezier control points p o , . . . , Ps- Namely, if Lk — |pfc — PA;-I | are the lengths of the 
control-polygon legs, and ^i, 62 are the angles at the interior points p i , P2, the conditions 

L2 = y/L^i and (9i - 62 (17.6) 

are sufficient and necessary for a PH cubic [30]. On closer scrutiny, the elegant simplicity 
of this characterization reveals a deeper truth: modulo rigid motions, scalings, and linear 
reparameterizations, PH cubics are all segments of a unique curve, Tschirnhausen's cubic. 
Since it cannot inflect, this curve is of limited value in design applications [25]. 

For shape flexibility similar to that of "ordinary" cubics, we must appeal to PH quintics, 
defined by taking h{t) = 1 and quadratic polynomials u{t), v{t) in (17.4). The PH quintics 
can inflect and can interpolate arbitrary first-order Hermite data; they can also be used to 
construct C^ splines interpolating a sequence of points (see §17.3). However, their control 
polygons do not admit simple geometrical characterizations [12], analogous to (17.6). 

To ensure numerical stability [27,28] we always specify polynomials in Bernstein-Bezier 
form on [0,1 ]. Choosing h{t) = 1 and degree-m polynomials u{t) and v{t) with Bernstein 
coefficients UQ, ... ,Um and VQ,. .. ,Vm in (17.4) defines a PH curve r(t) of degree n = 2 m + l , 
whose parametric speed a{t) = |r '(t) | is a polynomial of degree n — 1, specified [11] by 
the Bernstein coeflftcients 

min(m,A;) /m\ / ^ \ 

ak = Y2 \^-^\ (^j^fc-j + ^j'^k-j), /c = 0, . . . , n - l . 
ji=max(0,/c—m) \ k J 
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Integrating (j{t)^ we obtain the arc-length function as a polynomial s{t) of degree n with 
Bernstein coefficients 

^ k-l 

So = 0 and s^ = — > a , , A: = 1 

Note that s(^) is monotone-increasing, since it is the integral of a non-negative polynomial 
cr(t). Thus, although s{t) does not possess a closed-form inverse [15], the parameter value 
t* corresponding to any given arc length s^ can be computed to machine precision, as the 
unique real root of the equation s{t^) = s^, by means of a few Newton-Raphson iterations. 
This property is especially useful in the formulation of real-time CNC interpolators; see 
§17.4 below. The total arc length 5 for t G [0,1 ] is simply s„ = (CTQ 4- • • • + cFn-i)/n. 

To represent the offsets (17.5) as rational curves, we introduce homogeneous coordinates 
[W,X,Y) and write the control points of the PH curve r(^) as P^ = {l,Xk,yk) for A: = 
0 , . . . , n. With APfc = Vk+i - Pfc = (0, Axfc, Ay^,) and 

A P ^ X Z = (0,A?/A:,-AXfc), 

where Ax^ = x^+i — x^, Ay ;̂ = Vk+i — Vk^ and z is a unit vector orthogonal to the 
plane, the offset Yd{t) is described by polynomials W[i),X{t), Y{t) of degree 2n — 1, with 
Bernstein coefficients O^ = {Wk,Xk,Yk) given [11] by 

min(n —1,A;) (''^—^\ ( '"^ \ 

'^k= Y. p n - u i'^j'Pk-j + d n A P , X z ) , fc = 0 , . . . , 2 n - l . 
j=max(0,A;-n) \ k ) 

As the offset distance d is increased, the control points oiT(i{t) move uniformly along fixed 
lines, but their "weights" Wk remain constant; see Figure 17.2. Although the offsets to 
PH curves are of higher degree, this is not problematic if we adhere to the numerically 
stable Bernstein form in their construction (note also that we may regard the offset as 
the sum of a polynomial curve of degree n and a rational curve of degree n — 1). In §17.5 
we shall see that the rational PH curves entail no increase of degree in their offsets. 

17.2.2. Complex representation 

By identifying points [x,y) in the plane with complex numbers x + iy, any plane curve 
r(t) = {x{t),y{t)) can be regarded [80] as a complex-valued function x{t) -\-iy{t) of a real 
parameter t. For planar PH curves, this perspective proves to be extremely useful [12] — 
since, if w(t) = u{t) + 'iv{t) is any complex polynomial with gcd{u,v) = 1, its image 

w^(t) = u^{t) - v'^{t) + i2u{t)v{t) 

under the conformal map z -^ z^ is a polynomial whose real and imaginary parts are 
elements of a primitive Pythagorean triple of the form (17.4), with h{t) = 1. Hence, in 
the complex representation, the (regular) PH curves are those curves whose hodographs 
are simply the squares of complex polynomials: r'{t) = w^(t). 

The complex representation shows that the form x'{t) = u^{t)—v'^{t), y'[t) — 2u{t)v(i) is 
invariant with respect to rotations about the origin. The rotated hodograph can be written 
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Figure 17.2. Left: interior and exterior offsets to a PH quintic, as rational Bezier curves of 
degree nine. Right: as the offset distance d is increased, the control points for successive 
offsets move uniformly along straight lines, and their weights remain constant. 

asf ' ( t ) = x'{t)-\-iff{t) =exp{ie)r'{t) =w'^{t), with w(t) = u{t)-\-iv{t) == exp(i|l9) w(t) , 
and hence we deduce that x'{t) = u^{t) — v'^{t), y'{t) = 2u{t)v{t) where 

u{t) = cos l9u{t) - sin l9v{t), v{t) = sin l9u{t) + cos|6>i;(t). 

The complex form plays a key role in simplifying the construction and shape analysis 
of planar PH curves [3,12,13,19,20,24]. Suppose, for example, that 

k=0 ^ ^ 

is a PH quintic in Bezier form, obtained by integrating the hodograph (17.4) with h{t) = 1 
and quadratics with Bernstein coefficients UQ.UI, U2 and VQ, i^i, ^2 for u{t) and v{t). In real 
arithmetic, we obtain the rather cumbersome expressions 

(xuVi) = {xo.yo) + -{ul-vl,2uoVo), 
0 

(^2,?/2) = (^l,2/l) + -{UOUI-VQVUUOVI+UIVO), 
0 
2 1 

(^3,?/3) = (^2,1/2) + ~{ul-vl,2UiVi) + — (^0^2 -^0^2,t^O'^2H-^2^o), 
15 15 

(X4,y4) = (X3,y3) + -{UiU2 ~ ViV2,UiV2 + U2V1) , 
5 

(^5,2/5) = (2:4,2/4) + - ( ^ 2 - ^2. 21^2^2), 
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for the control points^ p^ = {oCk^Vk)- Writing p^; = x^ -\-iyk and Wj = Ui-\-[Vi, on the 
other hand, yields the compact characterization 

Pi = Po + ^ Wo , 

P2 = P i + 7 WQWI 
5 

P3 = P2 + 

1 
5 
1 

2wJ + W0W2 

15 
1 

P4 = P3 + 7W1W2, 
5 

P5 = P4 + ^ W ^ (17.7) 

By means of the complex form, one can easily see [12] that the set of (regular) PH curves 
and the set of "ordinary" (regular) polynomial curves are of the same cardinality. Familiar 
algorithms for the construction or modification of polynomial curves always admit analogs 
in terms of PH curves — although the latter are inherently non-linear, use of the complex 
form can greatly simplify their formulation and implementation. 

17.2.3. P H space curves 

By analogy with (17.3), a PH space curve r{t) = {x{t),y{t), z{t)) satisfies 

x'\t) + y'^{t) + z'\t) = a^t), (17.8) 

for some polynomial a{t). Such curves were introduced in [32], using the form 

x'{t) = [u\t)-v\t)-w^t)]h{t), 

y\t) = 2u[t)v{t)h[t), 

z\t) = 2u{t)w{t)h{t), (17.9) 

and hence a{t) = h{t) [v?[t) + v'^{t)-{-w'^{t) ]. This is not, however, an entirely satisfactory 
spatial extension of the hodograph (17.4). Whereas the latter form is both sufficient and 
necessary for a plane PH curve, the form (17.9) is only sufficient for a PH space curve. 
The failure of (17.9) to describe all PH space curves is apparent in the fact that this form 
is not invariant with respect to a re-labelling of the axes (the invariance of (17.4) can be 
seen by replacing (w, v) by {u, v), where we define \/2u = u-\- v and \/2v — u — v). 

Subsequently, a sufficient-and-necessary characterization of polynomial solutions to 
(17.8) was given in terms of polynomials u{t), v{t), p{t), q{t) by Dietz et al. [9]: 

x\t) = u'{t)^v\t)-p\t)-q'{t), 

y\t) - 2u{t)p{t) + 2v{t)q[t), 

z'{t) = 2u{t)q{i) - 2v[t)p{t), (17.10) 

and thus G{t) = v?{t)+v'^{t)+p^{t)^-q^{t). Moreover, this defines a regular PH space curve 
with gQ,d{x',y', z') — 1 whenever u{t), v{t), p{t), q{t) have no common factor, whereas for 
(17.9) with h{t) = 1, the condition gcd{u,v,w) = 1 does not guarantee a regular curve. 

^Note here that po is an arbitrary integration constant. 
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As with planar PH cubics, the twisted PH cubics can be characterized by geometrical 
constraints on their Bezier control polygons. In fact, the spatial PH cubics are all segments 
of (non-circular) helices [32] — i.e., their tangents maintain a constant angle with a given 
axis, and they exhibit a constant ratio of curvature to torsion. 

The arc length s{t) for PH space curves is obtained by a trivial extension of the methods 
given above for plane PH curves. The spatial analog of an offset curve is the canal surface 
with a given space curve as its spine (i.e., the envelope of a one-parameter family of fixed-
radius spheres, centered on the spine curve). Since PH space curves admit orthonormal 
frames^ (t, 61,62) dependent rationally on t, where t is the tangent and ei, 62 span the 
normal plane, the canal surfaces with PH spine curves are rational [32]. Lii and Pottmann 
showed that the canal surfaces associated with any rational (not just PH) spine curves are, 
in fact, rational [49] — but their rational forms are more difficult to construct [57]. Jiittler 
[40,43] describes applications of PH space curves to the modelling of swept surfaces. 

An algebraic model for the spatial PH curves, analogous to the complex representation 
(see §17.2.2) of planar PH curves, was formulated in terms of quaternions^ by Choi et al. 
[7]. Let l , i , j , k be elements of the quaternion basis, satisfying î  = j ^ = k^ = — 1 and 

i j == - j i = k , j k = - k j = i , k i = - i k = j . 

Then, in terms of the quaternion-valued polynomial 

A{t) = u{t) + v{t)i + p( t ) j -h q{t)k, (17.11) 

the hodograph (17.10) can be expressed in quaternion form as 

r\t) = A{t)iA*{t) = [u\t) + v^{t)-p^{t)-q\t)]i 

+ [2u{t)q{t) + 2v{t)p{t)]j + [2v{t)q{t)-2u{t)p{t)]k, (17.12) 

A*{t) — u{t) — v{t) i — p{t)i — q(t) k being the conjugate of A{t). The choice of the basis 
element i between A{t) and A*{t) has no special significance; choosing j or k instead leads 
to permutations of x', y', z' and u, v, p, q. We also note that there is a one-parameter family 
of quaternion polynomials that yield exactly the same spatial Pythagorean hodograph [17]: 
for any real ^, we can post-multiply (17.11) by cosf + s in^i without altering (17.12). 

The quaternion representation (17.12) is useful in establishing a key property of the 
form (17.10), namely, its invariance — unlike (17.9) — with respect to spatial rotations 
[17]. Suppose r'(t) = {x'{t), y'(t), z'(t)) is rotated by angle 0 about the unit axis vector 
n = [nx.ny.riz) to yield f'(t) = [x'{t), y'[t], z'{t)). We wish to express the components of 
the latter in the form (17.10), in terms of four new polynomials £t(t), v{t)^ p{t), q{t). Now 
since the rotation of r'{t) into f'(^) has [65] the quaternion description 

r'{t) = Ur{t)U\ 

^In general, ei and e-j do not coincide with the principal normal n and binormal z — for a discussion of 
curves with rational Frenet frames, see Wagner and Ravani [77]. 
^Ueda [76] has also expressed PH space curves in terms of (a special class of) quaternions, but he employs 
the special hodograph form (17.9) rather than the sufficient-and-necessary form (17.10). 



412 CHAPTER 17. PYTHAGOREAN-HODOGRAPH CURVES 

where U — cos ^0 + sin ^0{nx i + n^ j + n^ k) is a unit quaternion satisfying UU* = 1, the 
new polynomials can be obtained [17] through the linear transformation 

u{t) 

m 
Pit) 

m 

cos 7:9 —n^sin^^ —n„sin^^ —n^sin^^ 

cos ^6 —riz sin \0 riy sin \6 

n-ySm^t/ n ^ s i n l ^ cos | ^ —n^sinl^ 1/ 
ty . 

Uz sin ]:9 —riy sin }:0 2- -y — 2 - n ^ s m ^ ^ 

17.3. C O N S T R U C T I O N A L G O R I T H M S 

cos ^9 

u{t) 

v{t) 

Pit) 
(17.13) 

Since PH curves are defined by hodographs that depend on the squares and products of 
polynomials u(t), v{t), etc., the determination of coefficients for these polynomials so as to 
match given discrete geometrical data (points, tangents, etc.) typically incurs non-linear 
problems with a multiplicity of solutions. 

17.3.1. P H quintic Hermite interpolants 

The first-order Hermite interpolation problem is concerned with constructing a smooth 
curve, r(^) for i € [0,1 ], with given end points and derivatives: r(0) — po, r'(0) — do and 
r ( l ) = p i , r ' ( l ) == di- As is well known, there is a unique solution among the "ordinary" 
cubics; to obtain sufficient degrees of freedom within the PH curves, we must appeal to the 
quintics [24]. It is convenient to use the complex representation, and assume'* that Po = 0 
and pi = 1 (note that bold characters denote points, vectors, and complex variables). 

To define a PH quintic, we choose a hodograph that is the square of a complex quadratic 
polynomial w(t) expressed in Bernstein form. 

Y'(t) = [ W o ( l - ^ ) ' + W i 2 ( l - t ) t + W2t2]^ (17.14) 

With the integration constant r(0) — po, the coefficients Wo,Wi,W2 are determined by 
the Hermite interpolation conditions 

r'(0) = do, r ' ( l ) = d i , 
Jo 

(t) dt = Pi - Po = 1, 

which yield the system of quadratic equations 

Wn W^ = di , 

^ 2w? + V̂ 2Wo 2 
W Q + WoWi H h W1W2 + W2 = 5. 

o 

(17.15) 

(17.16) 

This has a simple formal solution: equations (17.15) furnish two complex values for each 
of Wo, W2 and substituting them into (17.16) allows the latter to be solved as a quadratic 
equation in Wi. Although there are 8 solutions, they define only 4 distinct PH quintics: 
if Wo, W2,wi is a solution, so is —WQ, —W2, —Wi, and it yields exactly the same curve. 

"^This "standard form" for the Hermite data helps simplify the analysis 
arbitrary Hermite data to and from it. 

it is a trivial matter to map 



17.3. CONSTRUCTION ALGORITHMS 413 

Empirically, one "good" interpolant is observed among the four distinct solutions — 
the others typically exhibit undesired loops or extreme curvature variations. The good 
interpolant may be identified as the one that minimizes a global measure of shape, such 
as the absolute rotation index or elastic bending energy (see Figure 17.3): 

7^a iO' {t)\\r'{t)\dt^ j\\t)\v' 
Jo 

{t)\dt. (17.17) 

The complex form facilitates exact evaluation of these quantities [13,24]. For this purpose, 
it is convenient to re-write the hodograph (17.14) as 

T'{t) - k ( t - a ) 2 ( ^ - b ) ^ 

in terms of which the curvature can be expressed as 

K{t) = 
lm{t{ty{t)) _ 2 ^ 1 ^ '-\-a\t-h\' 

\r'{tW |k| | ( t - a ) ( t - b ) | 4 
(17.18) 

where a = Im(a) and /3 = Im(b). The locations of a and b in the complex plane relative 
to the interval [0,1 ] play a key role in determining the shape of PH quintics [24]. 

E = 30.0 Rabs = 0.960 E = 35.2 Rabs=1040 E = 709.2 Rabs = 1-612 

Figure 17.3. The four distinct PH quintic Hermite interpolants to the data po = 0, pi = 1 
and do = 0.24-fi 0.60, di = 0.38 + 10.52, together with values for the bending energy and 
absolute rotation index (17.17). The derivatives are shortened by a factor of 5 for clarity. 

An alternative approach to selecting the good solution employs a qualitative criterion 
— "absence of anti-parallel tangents" — based on comparing the PH quintic and ordinary 
cubic interpolants [52]: one can show that, for "reasonable" Hermite data do, di satisfying 

Re(di) > 0 and | d , | < 3 . (17.19) 

the "good" solution can be directly constructed by making a specific choice of signs in the 
solution. The conditions (17.19) ensure that the derivatives have positive components in 
the direction of the displacement pi — po, and their magnitudes are commensurate with 
the distance |pi — Po| = 1 (as would be expected in most practical applications). 
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17.3.2. Shape properties of P H quintics 

A remarkable (empirical) feature of the "good" PH quintic Hermite interpolants is that 
they are generally of fairer shape — i.e., they exhibit more even curvature profiles — than 
the corresponding "ordinary" cubics, as is evident from the examples shown in Figure 17.4. 
This is true not only for individual Hermite segments, but also C^ splines that interpolate 
a sequence of Â  points (see Figure 17.5). The superior curvature behavior of PH curves 
is advantageous not only in free-from design applications, but also in path planning for 
mobile robots — where physical limitations of the steering mechanism incur constraints on 
the allowed path curvature [5]. The curvature (17.18) of a PH quintic is a rational function 
of the curve parameter, with positive denominator: expressing it in Bernstein form yields 
an algorithm to compute rapidly-convergent bounds on the curvature of PH curves using 
only rational arithmetic on their coefficients [52]. Note also that the availability of closed-
form expressions for the total arc length S and the elastic bending energy 8 in (17.17) 
opens up the possibihty of quantitative "shape optimization" for PH curves [13]. 

Figure 17.4. Comparison of the "good" PH quintic (solid) and ordinary cubic (dashed) 
Hermite interpolants to various end derivatives do and di (shortened by a factor of 5). 

17.3.3. C^ P H quintic splines 

Apart from individual Hermite interpolants to end-point data, the ability to smoothly 
interpolate a sequence of points p o , . . . , PAT is a common design requirement. As is well-
known, C^ cubic splines satisfy this need and incur only the solution of a tridiagonal 
linear system. An analogous construction is also possible [3] for C^ PH quintic splines — 
the defining equations still have "bandwidth" 3, but are complex and quadratic, and thus 
computationally more challenging. As compensation for the greater computational cost, 
however, we shall see that the PH quintic splines provide much "smoother" loci (with 
more even curvature distributions) than their ordinary cubic counterparts. 

The construction of a C^ PH quintic spline, interpolating a sequence of A -f 1 points^ 

^It is understood here that the points are specified in complex form, p^ = Xk -\-'iyk-
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P o , . . . , PTV and satisfying specified end conditions, entails solving a system of N quadratic 
equations in N complex unknowns Z i , . . . , z^v. We begin by writing the hodograph of the 
A:-th PH quintic span rk{t) of the spline curve, between PA;-I and PA;, in the form 

4 W - [ ^ ( z , _ i + Z f c ) ( l - 0 ' + Z f c 2 ( l - t ) t + i ( z , + z , + i ) ^ ' ] ' (17.20) 

which ensures that successive spans satisfy the continuity conditions r]^(l) = rĵ _,.i(0) and 
rj!(l) = rj!_^i(0). Assigning the integration constant rfc(O) 
also requiring that r^(l) = pk then gives the equation 

ffc(zi,...,Z7v) = 3z^_i + 27z^ H- 3z^+i + z^-iz^+i 

+ 13 (zfc-i + Zfc+i)zA; - 60Apfc = 0, 

Pit-i to this hodograph and 

(17.21) 

where Ap^ = Pk — Pk-i- Such an equation holds for each span k = 1,... ,N of the spline 
curve, but the first and last equations, f i ( z i , . . . , z^) = 0 and f7v(zi,. . . , z^) = 0, must be 
modified to embody the prescribed end conditions. The modifications appropriate to (a) 
given end-derivatives do, d^ at the points po, PAT; (b) cubic (Tschirnhausen) end spans; 
and (c) periodic end conditions, are described in [3]. 

PH spline 

Figure 17.5. Comparison of C^ PH quintic and "ordinary" C^ cubic splines interpolating 
a sequence of points with uniform knots and periodic end conditions — the PH quintic 
spline yields a much "smoother" curve, as indicated by the curvature profiles on the right. 

The system (17.21) is "tridiagonal" in the sense that each equation contains only three 
consecutive unknowns. Its non-linear nature, however, makes it more challenging to solve 
than the linear tridiagonal system for "ordinary" cubic splines. In general, there are 2^"^^ 
distinct solutions,^ among which one "good" PH spline may be identified (see Figure 17.5). 

^Here k e {-1,0,+1} depends on the adopted end conditions. 
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For Â  < 10, the homotopy method [4,53] is a practical means to compute all solutions of 
this system — using a predictor-corrector method we track [3] the solutions to 

hfc(Zi , . . . ,Zyv,A) = (1 - A)gA; (Z i , . . . ,Z^ ) + AfA;(Zi,...,Z7v) = 0 

from the known solutions of a "simple" initial system, gfc(zi, . . . , z^v) = 0 at A = 0, 
to the solutions of the desired system, ffc(zi,... ,Zjv) = 0 at A = 1. Since the system 
(17.21) is typically well-conditioned, the homotopy method often yields convergence to 
machine precision. However, the cost of computing all 2̂ "*"̂  solutions is prohibitive for 
Â  > 10. As an alternative, a method to compute only the "good" solution is described 
in [19], based on estimating an initial approximation to the solution (by comparison 
with the ordinary cubic spline), and invoking the Kantorovich conditions for guaranteed 
convergence [45,55,70] of the multivariate Newton-Raphson method applied to the system 
(17.21). The Kantorovich test is facilitated by the fact that, in the oc-norm, the Jacobian 
matrix with elements 

M^̂  - 1 ^ for 1<A:,/<A^ 
azi 

satisfies [19] the global Lipschitz condition 

| |M(x i , . . . ,XA^) -M(y i , . . . , yAr ) | | oo < 120 || ( x i , . . . ,XAr) - ( y i , . . . 5 YN) ||OO • 

Reference [19] also presents a generalization of the system (17.21) to PH quintic splines 
with non-uniform (rather than integer) knots to,... .t^ for the points Po, • • •,PAA-

17.3.4. Spatial P H quintic Hermite interpolants 

The above constructions were concerned with planar PH curves. For PH space curves, a 
Hermite interpolation algorithm based on the form (17.9) was presented in [32]. However, 
this form is not rotation invariant — if we interpolate rotated Hermite data, the result is 
different from that obtained by interpolating first and then rotating the interpolant. 

To obtain rotation-invariant interpolants, we must use the form (17.10) — specifically, 
we employ the representation (17.12) with the quadratic polynomial 

A{t) = Ao{l - tf + Ai2{\ - t)t + A2t^ 

Ar — Ur + Vr i+Pr j + ^r k for r = 0 ,1 , 2 being quaternion coefficients, to be determined by 
matching the Hermite data po, do and pi , di (interpreted as "pure vector" quaternions). 
The interpolation conditions r'(0) = do, r ' ( l ) = di , and JQ r'{t) dt = pi - po thus yield 
[18] the system of equations 

A i ^ ; = do, A i ^ ; = d i , (17.22) 

( 3 A + 4^1 + 3 A ) i ( 3 A + 4^1 + 3 A ) * 

= 1 2 0 ( p i - p o ) - 15(do + di) + 5{AoiA;-^A2iAl) (17.23) 

for Ao, Ai, A2- This system may be solved by noting that the equation ^ i ^ * = d, where 
d is a given pure vector quaternion, admits the one-parameter family of solutions 

A = y^ i ( l + A ) | d | ( - s m ^ + c o s ^ i - f ^ ^-^ J + Y:^ M (^^-2^) 
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where (A, /i, v) are the direction cosines of d, and ^ is a free variable. By solving (17.22) 
for ^ 0 , v4.2 we can substitute for them on the right-hand side of (17.23), which is a pure 
vector quaternion. Equation (17.23) can then be solved for 3^0 + 4^1 + 3̂ 4.2 using (17.24). 

Although the solution incurs three indeterminate angular variables ^o, ^i, ^2 (associated 
with Ao, Ai, A2) it can be shown [18] that the interpolants depend only on the differences 
of these angles. Thus we may, without loss of generality, assume that ^1 = 0 and optimize 
certain shape properties of the interpolant with respect to the remaining free parameters 
^0, O2 (see [18] for further details). Once ^0 ,^1 , -^2 are known, the Bezier control points 
of the interpolant are given, in quaternion form p^ = x^ i -f- ^r j + ^r k, by 

Pi =^ Po + -^AQIAQ, 
0 

P2 = Pi + —{AoiAl-^AiiAD, 

P3 = P2 + —{AoiA*2 + iAiiAl + A2iAQ), 

P4 = P3 + —{AiiAl + A2iAl), 

P5 = P4 + 7 ^ 2 i ^ ; . (17.25) 

5 
17.3.5. Geometric Hermite interpolants 

Jiittler [42,43] has proposed an alternate approach to the construction of polynomial 
PH curves, based upon geometric rather than parametric Hermite interpolation — i.e., 
intrinsic geometrical properties (tangent directions, curvatures, etc.) are specified in lieu 
of parametric derivatives. A scheme for interpolating G^ spatial data (points and tangent 
directions) by PH space cubics is described in [43], while interpolation of G^ planar data 
(points, tangent directions, and curvatures) by plane PH curves of degree 7 is treated in 
[42]. The methods are well-suited to approximating given (non-PH) curves, from which 
tangents, curvatures, etc., can be computed. Conditions for (and rates of) convergence 
to the given curve, as the sampling interval diminishes, are also addressed. 

17.3.6. Further constructions 

Many other constructions, suited to specific applications, have been discussed by various 
authors. Walton and Meek consider the imposition of a curvature-monotonicity constraint 
on PH curves [78,79]; see also [14]. PH curves of degree 9 have been employed as second-
order Hermite interpolants in the design of smooth cam profiles [20]. Sabin [66] describes 
a "B-spline approach" to constructing smooth piecewise PH cubic curves. Least-squares 
fitting of PH curves to point data has also been investigated [29], as a means of making 
G code part programs accessible to real-time PH curve CNC interpolators (see §17.4). 
Finally, several special PH curve contructions have been explored by Ueda [72-75]. 

17.4. R E A L - T I M E C N C I N T E R P O L A T O R S 

Certain properties of polynomial PH curves are especially advantageous in the context 
of computer-numerical-control (CNC) machining. For a CNC machine to cut a specified 
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curve^ r(f) , the tool center must follow the offset path (17.5) where d is the tool radius. 
As previously noted, PH curves (unlike general polynomial curves) have rational offsets, 
that are amenable to exact representation in CAD systems. 

The ability to formulate exact real-time interpolators, for constant or variable feedrates, 
is another fundamental advantage [34] of PH curves. To produce a desired motion, a CNC 
machine drives several independent axes in a coordinated manner. The controller employs 
digital descriptions of space and time — the sampling interval (~ 0.001 sec) is defined by 
a "clock" running within the algorithm, while the basic length unit or spatial resolution 
(~ 10 microns) is determined by position encoders on each axis. 

The controller compares the actual machine position (measured by the encoders) with 
the intended position (computed from specified paths and feedrates by the interpolator) in 
each sampling interval At — the error is used to generate control signals for the machine 
drives, ensuring that the desired paths and feedrates are accurately realized. The timed 
sequence of curve points computed by the interpolator are called reference points; they 
correspond to a discrete sampling ^k — ̂ {kAt) of the solution to the differential equation 

a ^ = l / , (17.26) 

where a{^) — |r'(OI denotes the parametric speed and V — ds /dt is the feedrate (which 
may be either a constant, or dependent upon physical variables such as elapsed time t, 
arc length s along the path, or the local path curvature K). 

For general polynomial curves, equation (17.26) does not admit closed-form integration, 
even when V — constant. Hence, it is common practice to use piecewise-linear/circular 
"G code" approximations to curved tool paths. Apart from its data-intensive nature, this 
approach can severely impede the ability of the machine to achieve and maintain high 
speeds [71]. Alternately, one may retain the analytic representation of a curved path, and 
use a Taylor series expansion 

G G^ \ G^ ) I 

(where primes denote derivatives with respect to f, and cr, r', r", F , y , etc., are evaluated^ 
at Cfc-i) to approximate the reference points. Ordinarily, only the linear term is retained, 
and no attempt is made to account for the accumulation of truncation errors. Moreover, as 
noted in [35], this method has often been compromised in the context of variable feedrates 
by erroneous derivations of the appropriate Taylor coefficients. 

PH curves circumvent these problems in a simple and elegant manner — their algebraic 
structure permits closed-form integration of (17.26) yielding an equation of the form 

F{ik) = c ,_i , (17.28) 

where F is a monotone (usually polynomial) function, and c^ is a constant that is updated 
at each step. The monotonicity of F allows /̂̂  to be computed to machine precision by 
just a few Newton-Raphson iterations, starting from <^A;-I-

'̂ We use ^ as the curve parameter here, since the variable t will be used to denote time. 
^A varying feedrate V should be specified as a function of a physically meaningful variable (e.g., time t, 
arc length s, or curvature K) rather than the curve parameter ^. Accordingly, the quantity V — dF/d^ 
in (17.27) must be cast in terms of derivatives with respect to such a variable — see [35] for details. 
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Complete details on PH curve interpolators can be found in [34] for feedrates that are 
constant or simple functions of the arc length s or curvature /̂ ; in [21] for feedrates that 
maintain a constant material removal rate at fixed depth of cut along a curved path; and 
in [71] for any time-dependent feedrate function that has an elementary indefinite integral 
(the latter are especially useful in achieving smooth feed accelerations and decelerations). 

Dramatic improvements in feedrate performance have been observed [71] on replacing 
G code interpolators by PH curve interpolators, primarily due to the "block look-ahead" 
problem associated with G codes. Further practical aspects concerning the use of PH curve 
interpolators include: conventions for specifying PH curve part programs [22]; control of 
cutting forces by feedrate variation [21]; path planning for contour machining of surfaces 
[36]; and the determination of feedrates and feed accelerations, compatible with the known 
torque and power capacity of the machine drives [37]. 

17.5. RATIONAL C U R V E S W I T H R A T I O N A L OFFSETS 

Although rational offsets are a key attribute of the polynomial PH curves, these curves are 
not the only "simple" curves that possess rational oflFsets. Lii [47,48] has shown that by 
suitable (improper) re-parameterizations, certain polynomial curves — whose hodographs 
are not Pythagorean — also admit rational offsets. Moreover, it seems natural to extend 
the domain of enquiry and ask: what is the complete set of rational curves whose offsets 
are rational? The theory of rational PH curves, as developed by Pottmann [61] and Fiorot 
and Gensane [38], addresses this problem conclusively. We can only skim the surface of 
this elegant theory — the reader should consult the references for complete details. 

17.5.1. Rational P H curves 

A basic difference is apparent upon turning our attention from polynomial to rational PH 
curves. Whereas the former can be constructed by integrating any polynomial hodograph 
that satisfies the Pythagorean condition (17.3), this fact does not extend to rational PH 
curves — a rational hodograph satisfying (17.3) does not necessarily define a rational PH 
curve, since transcendental terms may arise upon integrating rational functions. Thus, a 
different approach to the construction of rational PH curves is advantageous. 

A rational curve r(t) = {x{t),y{t)) can be specified by homogeneous point coordinates 
W{t),X{t),Y{t) such that x{t) = X{t)/W{t), y{t) = Y{t)/W{t). Alternately, we can use 
homogeneous line coordinates K{t), L{t), M{t) such that the curve tangent at each point 
t is described by 

K{t) -h L{t)x + M{t)y = 0. (17.29) 

As shown by Pottmann [61], the latter approach is preferable in the theory of rational PH 
curves. Such curves have rational unit normals n(t) — {nx{t), ny[t)) expressed in terms of 
polynomials u{t), v{t) with gcd{u,v) = 1 by 

Now the tangent line can also be written in the form 

nAt)x + ny(t)y = fit), (17.30) 
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where f{t) specifies the (signed) distance of the tangent line from the origin: this function 
must be rational, since {x,y) = {x{t),y{t)) evidently satisfies equation (17.30). Now we 
may, without loss of generality, set [ w^(t) + v^{t) ] f{t) = —p{t)/q{t), where p{t) and q{t) 
are polynomials with gcd{p,q) = 1. Comparing (17.29) and (17.30), we see that rational 
PH curves are defined by line coordinates of the form 

K{t) : L{t) : M(t) = p{t) : [u^{t) - v\t)]q{t) : 2u{t)v{t)q{t). (17.31) 

Writing /i — max(deg(ifc),deg(i;)) and v — max(deg(p),deg(9)), this defines a rational PH 
curve of class^ m — 2ii-\- p. The corresponding point coordinates can be derived [61] as 

W[t) = 2[u\t)^v\t)][u[t)v'{i)-u\t)v{t)]q\t), 

X{t) = 2[u\t)v{t)^u{t)v'{t)]p{t)q{t) - 2u{t)v{t)[p'{t)q{t)-p{t)q\t)], 

Y{t) = [u'{t)-v'{t)][p'{t)q{t)-p{t)q'{t)] - 2[u{t)u'{t) - v{t)v\t)]p{t)q{t), (17.32) 

from which we deduce that the rational PH curve is of order n = 4/i + 2z/ — 2. 
Clearly, the line representation (17.31) is much simpler than the point representation 

(17.32). Thus, algorithms for the design or construction of rational PH curves, analogous 
to those described in §17.3 for polynomial PH curves, rely exclusively on the rational dual 
Bezier form [1,60,62,68,69], introduced by Hoschek [39]. The offsets to rational PH curves 
are easily constructed by noting that their tangent lines are parallel to those of the original 
curve at corresponding points. Writing f{t) + d on the right in (17.30) amounts to simply 
displacing the tangent parallel to itself by distance d. Hence, by the definition of p{t) and 
q{t), the offset at distance d from a rational PH curve is obtained by replacing p{t) with 
p{t) - d[u'^{t) + v'^{t)]q{t) in (17.31) or (17.32). This has the remarkable consequence 
that the off'sets to a rational PH curve all have the same degree as that curve; recall that 
the offsets to a (regular) degree-n polynomial PH curve are of degree 2n — 1. 

The arc-length function (17.2) is another important difference between the polynomial 
and rational PH curves. For polynomial PH curves, s{t) is always a polynomial. However, 
for rational PH curves, s{t) is not always a rational function: although the parametric 
speed is rational, transcendental terms may arise in its integral. Pottmann [61] has shown 
that any rational PH curve for which s{t) is rational must be the evolute^^ of a rational 
PH curve and its family of offsets. Conversely, rational PH curves can be characterized 
as the involutes to rational curves with rational arc-length functions s{t). 

An elegant exposition of the theory of rational PH curves in the context of Laguerre 
geometry was subsequently developed by Peternell and Pottmann [58,63] — this reveals 
interesting connections between rational PH curves and the caustics and anticaustics of 
geometrical optics [16], as emphasized in the theory of rational PH curves developed [38] 
by Fiorot and Gensane. Unlike the polynomial PH curves, rational PH curves also admit 
a natural generalization to rational surfaces with rational offsets [61], although practical 
design schemes for such surfaces are not easy to formulate — see, however, [41,44,56,69]. 

^The class (the degree of the line representation) indicates the number of curve tangents incident with 
any point in the plane, and the order (the degree of the point representation) indicates the number of 
curve points incident with any hne in the plane [64]. 
^°The evolute of a given curve is the locus of its centers of curvature (or, equivalently, the envelope of its 
normals). A locus whose evolute is a given curve is called an involute of that curve — there is an infinite 
family of involutes, which are all offsets of each other. 
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For a detailed reconciliation of the properties of polynomial and rational PH curves, and 
a comparison of their relative advantages, see [26]. 

17.5.2. Improper parameterizations 

For PH curves, the parameterization (17.5) of the offset is induced by that of the original 
curve r{t). It is conceivable, however, that polynomial curves exist whose offsets are not 
rational in the original curve parameter, but become rational under a re-parameterization. 
This circumstance was completely characterized by Lii, who showed [47,48] that, in the 
complex representation, it corresponds to complex polynomial hodographs of the form 

r'(^) - (k ^ + 1) w\t) h{t), (17.33) 

where h{t) is a real polynomial, w{t) = u{t) 4- iv{t) is a complex polynomial, and k is a 
complex constant. Clearly, expression (17.33) subsumes the polynomial PH curves as the 
special case k = 0. The simplest examples with k ŷ  0 are those with w(^) = 1 and h{t) 
either a constant or linear polynomial; they define a parabola and cuspidal cubic. These 
curves admit rational re-parameterizations that correspond to double tracings: once in the 
"forward" direction, and once in "reverse." In terms of these improper parameterizations 
the two-sided offset curve, at distance ±d, is found to admit a rational parameterization 
of degree 6 for the parabola and 8 for the cuspidal cubic; see [33,47,48]. 

A subset of the curves with hodographs of the form (17.33) are algebraically rectifiable 
[67] — i.e., the arc length is given by the square root of a polynomial in the curve 
parameter. Writing f{t) = | k^ + Ip, the condition for algebraic rectifiability of the curve 
defined by (17.33) is that 

h{t)[u'it) + v'{t)] = Sf'it)g{t) + 2f(t)9'{t) 

must hold [48,67] for some polynomial g{t) — the cuspidal cubic, for example, satisfies 
this condition, but the parabola does not. 

17.6. MINKOWSKI P H CURVES 

Thus far, we have defined PH curves in terms of the Euclidean metric in two and three 
dimensions. In some application contexts, it is also advantageous to consider curves that 
exhibit the PH property under certain special, non-Euclidean metrics. 

17.6.1. Minkowski metric of special relativity 

The Minkowski metric of special relativity characterizes the distance between points in 
a "pseudo-Euclidean" space-time, spanned by one temporal and n spatial dimensions. 
With n = 2, for example, the distance d between the two points or "events" (xi,?/i,ti) 
and {X2,y2,t2) is given by 

d^ = {X2 - x,f + (2/2 - ViY - c^{t2 - t,f , (17.34) 

where c is the speed of light. Events are said to have spaceAike, h'me-like, or light-Wk^ 
separation, according to whether d^ > 0, d̂  < 0, or d^ — 0. It is convenient to employ 
time and distance units in which c — \'. the Minkowski metric (17.34) then diff'ers from 



422 CHAPTER 17. PYTHAGOREAN-HODOGRAPH CURVES 

the usual metric (f = (x2 — Xi)'^ -\- (2/2 — l/i)^ + (̂ 2 — zi^ of Euclidean space (x, y, z) only 
in the subtraction, rather than the addition, of the last term: we say that the Euclidean 
and Minkowksi metric have signatures (+ + +) and (+ H—), respectively. 

Moon [50,51] showed that Pythagorean hodographs in the Minkowski metric are very 
useful in recovering the boundary of a planar domain V from its medial axis transform 
(MAT). The medial axis is the locus of centers of maximal disks, touching the boundary 
dV in at least two points, that can be inscribed within the domain V. If c(t) = {x{t), y{t)) 
is a parameterization of the medial axis, we may superpose a radius function r{t) on it, 
specifying the size of maximal disks centered on c(t): the MAT is the three-dimensional 
locus {x{t),y{t),r{t)). Introducing the unit vector 

_ ( -r'{t)x'{t) T my'jt), -r'(t)y'(t) ± i{t)x'{t)) 

where £{t) = \/x''^{t) + y''^{t) - r''^{t) is the parametric speed of the MAT in the Minkowski 
metric, the envelope of the one-parameter family of circles described by {x{t),y{t),r{t)) 
has the parameterization [50]: 

e(t) = c(t) + r{t) m ( t ) . 

Clearly, e(t) is not a rational locus, unless we ensure that the MAT hodograph satisfies 
the (Minkowski) Pythagorean condition 

x'\t) + y'\t) - r'\t) = a^{t) (17.35) 

for some polynomial a{t). Moon has shown that a MAT hodograph of the form 

x\t) = u'{t)-v'{t)-p'{t)+q'{t), 

y'[t) = 2u{t)p{t) - 2v{t)q{t), 

r'{t) - 2u{t)q{t) - 2v{t)p{t), (17.36) 

and hence a{t) — v?(t) — f^(t) -^V^(t) — q^{t), is a sufficient and necessary condition [51] 
for the satisfaction of equation (17.35). Thus, MATs with hodographs of the form (17.36) 
are called Minkowski Pythagorean-hodograph (MPH) curves}^ 

Note that, apart from signs, the hodographs (17.10) and (17.36) for PH space curves and 
MPH medial axis transforms have essentially the same structure — the sign differences 
ensure satisfaction of the Pythagorean conditions (17.8) and (17.35) under Euclidean and 
Minkowski metrics; see also [7]. The reconstruction of a rational domain boundary (and 
of rational offsets to the boundary) from an MPH MAT is discussed in [6]. 

17.6.2. Minkowski metric defined by convex indicatrix 

A generalization of the PH property to a different non-Euclidean metric, also associated 
with the mathematician/physicist Hermann Minkowski, was introduced by Ait Haddou 
et al. in [2]. They consider the geometry of the Minkowski plane whose metric is defined 

^Ut is universally agreed, even in Europe, that the speed a of an MPH curve should always be specified 
in miles-per-hour (never kilometers-per-hour). 
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by choosing as "unit circle" a strictly-convex, centrally-symmetric locus U. In terms of 
this indicatnx, the distance between points x and y is given by 

where x' — y' is the diameter ofU parallel to x —y, and || • || is the usual Euclidean metric. 

Ait Haddou et al. give characterizations of curves whose Z^-offsets under the metric (17.37) 

are rational: they call such curves Minkowski isoperimetric-hodograph curves. 

17.7. C L O S U R E 

By virtue of their special algebraic structure, Pythagorean-hodograph curves provide 
exact solutions to a number of basic geometrical problems in computer-aided design and 
manufacturing. Apart from the issues of accuracy and data volume, the primary attraction 
of such exact solutions lies in the enhanced robustness of their software embodiment. 

Since its inception [30] about a decade ago, the Pythagorean hodograph concept and 
its various extensions and generalizations have been remarkably fertile fields for further 
research and practical applications. We have only been able to sketch a bare outline of all 
these developments, and it seems fitting to conclude by citing the "grand unified theory" 
of PH curves developed by Choi et al. [7], which employs the Clifltord algebra perspective 
to gain insight into the algebraic structures — such as (17.4), (17.10), and (17.36) — 
incurred by the PH condition in various spaces of practical interest. 
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Chapter 18 

Voronoi Diagrams 

Kokichi Sugihara 

This chapter surveys the Voronoi diagram and related topics. First, the most primitive 
version of the Voronoi diagram is defined, and its basic properties together with the al­
gorithms for constructing it are summarized. Next possible applications of the Voronoi 
diagram are presented, where special emphasis is placed on offsetting and interpolations. 
Finally the Voronoi diagram is generalized in various directions; they include generaliza­
tion of the metric and the generalization of the generators. 

18.1. O R D I N A R Y V O R O N O I D I A G R A M 

The topic in this chapter is a partition of a space into territories, which is called a 'Voronoi 
diagram'. This concept is so natural that it was rediscovered in many areas of science 
independently. Actually it has many names including a 'Voronoi diagram', 'Dirichlet 
domain', 'Thiessen polygons', 'plesiohedra', 'fundamental areas', and 'domain of action'. 
Refer to Okabe et al. (2000) for the history of this concept. In this chapter we use the 
most familiar name 'Voronoi diagram'. 

Suppose that we are given a set 5 = {Pi, P2, • • •, Pn} of n points in the d-dimensional 
space R'^. For each pi, the region R{S;pi) defined by 

R{S; PO = {p e R^ I UP - p,|| < ||p - p,||, for j / i} (is.i) 

is called the Voronoi region of p ,̂ where ||p — q|| represents the Euclidean distance 
between the two points p and q. That is, the region R{S] pi) consists of the points that 
are closer to pj than to any other point in S. (Georges Voronoi was a mathematician who 
studied this geometric structure [32].) 

The d-dimensional space R^ is partitioned into the n regions i ? (5 ;p i ) , i ? (5 ; P 2 ) , . . . , 
R{S; Pn) and their boundaries. This partition is called the Voronoi diagram of 5 , and 
is denoted by VD(5). The points in 5* are called the generating points for VD(5'). 

Figure 18.1 represents the Voronoi diagram in R^, where the small filled circles represent 
the points in 5 , and the solid lines represent the boundaries of the Voronoi regions. As 
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430 CHAPTER 18. VORONOI DIAGRAMS 

shown in this figure, the boundary of two Voronoi regions is a part of a line that is the 
perpendicular bisector of the associated two points. This boundary is called the Voronoi 
edge. The point where three or more Voronoi edges meet is called the Voronoi point. 

Figure 18.1. A Voronoi diagram in R^. 

In the general c?-dimensional space R^, the boundary of two Voronoi regions is part of 
the {d — l)-dimensional hyperplane that is the perpendicular bisector of the associated 
two generating points. 

The Voronoi region R{S] pj) can be written as 

R{S; P O = f | { p G R" I UP - p , | | < UP - p , | | } ; (18.2) 

that is, R{S:,Pi) is the intersection of the halfspaces bounded by the hyperplanes ||p — 
Pill — UP ~ PjW- Hence, the Voronoi region is a convex polyhedron. 

For a set S of points in R"̂ , the smallest convex region containing S is called the 
convex hull of 5 , and is denoted by CH(5). The convex hull CH(S') is a bounded 
convex polyhedron; some elements of S are on the boundary of CH(5) and the others 
are in its interior. The Voronoi region R{S] Pi) is unbounded if and only if p^ is on the 
boundary of CH(5). 

As shown in Figure 18.1(a), each Voronoi point in R^ is usually incident to three 
Voronoi regions. However, as shown in Figure 18.2, if four or more generating points are 
on a common circle and no other generating points are in the interior of the circle, there 
arises a Voronoi point that is incident to four or more Voronoi regions. This situation is 
called degeneracy, and S or VD(5) is said to be degenerate. 

In a general (i-dimensional Voronoi diagram, a Voronoi point is usually incident to d-\-l 
Voronoi regions. However, degeneracy occurs when d + 2 or more generating points are on 
a common hypersphere and no other generating points are in the interior. In this case, the 
Voronoi regions of those cospherical generating points are incident to a common Voronoi 
point. 
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Figure 18.2. A Voronoi diagram for degenerate input. 

18.2. D E L A U N A Y D I A G R A M 

Given the Voronoi diagram ¥0(5*) in R^, we connect two points p^ and p^ in 5' by a 
line segment if and only if R{S; Pi) and R{S; Pj) have a common Voronoi edge; in Figure 
18.1(b), the solid lines represent line segments constructed in this way, where the original 
Voronoi diagram is represented by broken lines. Those line segments are called Delaunay 
edges. Thus we obtain another diagram, which partitions the convex hull CH(5) into 
convex polygons, called Delaunay polygons, and their boundaries. This partitioning is 
called the Delaunay diagram of 5 , and is denoted by DD(5'). (Boris Delaunay was a 
mathematician who studied this geometric structure [7].) 

If S is not degenerate, then all the Delaunay polygons are triangles, as shown in Figure 
18.1(b). In this case, the Delaunay diagram is called the Delaunay triangulation. If 
S is degenerate, on the other hand, then the Delaunay polygons are not necessarily tri­
angles. However, we can subdivide the nontriangular polygons into triangles by inserting 
additional diagonal line segments. The resulting partition of CH(S') into triangles is also 
called the Delaunay triangulation for S. 

There is a one-to-one correspondence between the Voronoi points and the Delaunay 
polygons. Actually a Delaunay polygon is the convex hull of the generating points whose 
Voronoi regions are incident to the associated Voronoi point. There is further one-to-one 
correspondence between the Voronoi edges and the Delaunay edges; the corresponding 
edges are perpendicular to each other. 

The correspondence between Voronoi points and the Delaunay polygons can be ex­
tended to an arbitrary dimensionality. Suppose that a Voronoi diagram VD(S') is given 
in R^. For each Voronoi point, the convex hull of the generating points whose Voronoi 
regions are incident to the Voronoi point is called the Delaunay polyhedron corresponding 
to the Voronoi point. The Delaunay polyhedra corresponding to all the Voronoi points 
partition CH(5). This partitioning is called the Delaunay diagram of S. 

A Delaunay polyhedron has the property that all the vertices are on a common hyper-
sphere, and there is no other generator in the interior of the common hypersphere. 

If S is not degenerate, then the Delaunay polyhedron is the convex hull of d-\- 1 gen-
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erators, and hence it is a d-dimensional simplex. In this case, the Delaunay diagram is 
called the Delaunay triangulation; in particular, the Delaunay triangulation in R^ is also 
called the Delaunay tetrahedralization. 

18.3. B A S I C PROPERTIES OF T H E V O R O N O I A N D D E L A U N A Y DIA­
G R A M S 

Let us concentrate on the two-dimensional Voronoi and Delaunay diagrams. Let n denote 
the number of generating points: n = \S\. Let e denote the number of Voronoi edges 
and V denote the number of Voronoi points. Furthermore, let c denote the number of the 
generating points that are on the boundary of CH(5). 

Note that, in the Delaunay diagram terminology, e denotes the number of Delaunay 
edges, and v denotes the number of Delaunay polygons. Since a Delaunay polygon has at 
least three edges, we get 

c - f 3 v < 2 e . (18.3) 

On the other hand, from Euler's formula we get 

n-e + v^l = 2. (18.4) 

^From (18.3) and (18.4), we obtain 

e < 3 n - c - 3 , (18.5) 

V < 2n-c-2. (18.6) 

Hence e = 0 (n ) and v — 0 (n ) . Therefore, the complexity (i.e., the total number of 
geometric elements) of the Voronoi diagram is linear in the number of the generating 
points. That is, the complexity of the Voronoi diagram is 0 ( n ) . This means that memory 
requirement for a Voronoi diagram in R^ is linear in n. Because of this property, the 
Voronoi diagram in R^ is particularly useful as a basic data structure for designing many 
geometric algorithms. 

In general, the complexity of the d-dimensional Voronoi/Delaunay diagram is 0{n\^^^^'^f'^^ ] 
where [x\ denotes the smallest integer greater than or equal to x. 

One of the most important properties of the Delaunay triangulation in R^ is that it gives 
an optimal triangulation, in the sense that the smallest angle among all the triangles is the 
largest. Consider four nondegenerate generating points forming a convex quadrilateral, as 
shown in Figure 18.3. There are two possible diagonals which will create a triangulation, 
one of which gives the Delaunay triangulation of the four points. In Figure 18.3, the 
solid diagonal gives the Delaunay triangulation while the dotted diagonal gives the other 
triangulation. Let angle a in the figure be the smallest among the six angles of two 
triangles in the Delaunay triangulation. Then the triangle containing this angle has the 
circumcircle that does not contain the other generating point. Therefore, angle 6, which 
is an angle of the other triangulation, is smaller than a. Thus, the Delaunay triangulation 
of four generating points has a larger smallest angle than the other triangulation. This 
property holds in the general Delaunay triangulation in the following sense. 

The collection T of triangles with vertices in S is called a triangulation spanning S if (i) 
the union of all the triangles coincides with the convex hull CH(5), (ii) the intersection of 
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Figure 18.3. Two possible diagonals of a convex quadrilateral. 

any two triangles is empty, or a point or a line segment, and (iii) when any two triangles 
share a common line segment, this line segment coincides with an edge of either triangle. 
Let 9{T) = (Pi,62, - •• ,0k) be the list of the angles of all the triangles in T, arranged in 
increasing order: that is, Oi is the smallest, 62 is the second smallest, and so on. Let 
0{T') = (^i, 2̂5 • * • J îk) be the list of angles defined similarly for another triangulation T' 
spanning S. We say that 9{T) is lexicographically smaller than 0{T'), if there is m 
{1 <m < k) such that Oi = 6>;, 6>2 = 6̂ 2, • • • , Om-i = 0'^_^ and Om < 0'^. Then the next 
property holds, which is called the equi-angularity property [27]. 

P r o p e r t y 3.1 (Equ i - angu la r i t y ) . Among all the triangulations spanning 5 in R^ , 
the Delaunay triangulation gives the lexicographically largest list 0[T) of angles. 

Because of this property, the Delaunay triangulation avoids triangles with small angles 
as much as possible. This property is useful for many applications such as interpolation 
based on the triangulation and finite-element mesh generation for the solution of partial 
differential equations [5,14]. 

The equi-angularity property is peculiar to the two dimensional case. It does not hold 
in three or higher-dimensional space. Because of this fact, the Delaunay triangulation in 
an arbitrary dimension is not straightforward to use as in two-dimensional space. 

Detailed discussion of the properties of the Voronoi and Delaunay diagrams can be 
found in [3,9,13,22]. 

18.4. A L G O R I T H M S 

For a given set S of generating points, constructing the Voronoi diagram and the Delaunay 
diagram are equivalent, because each diagram can easily be obtained from the other. Here 
we will concentrate on the algorithm for constructing the Delaunay diagram. 

Many algorithms have been proposed for this purpose. They include the divide-and-
conquer method [23], the plane sweep method [12], the incremental method [21], and the 
lift-up method [6,11]. The lift-up method is most general in the sense it can be applied 
to any dimension. 

Suppose that the set S of generating points in R^ is not degenerate. Then, three 
generating points P i ,P j , PA; form a Delaunay triangle if and only if the circle passing 
through the three points has no point from S in its interior. Let p = (x, y) be a general 
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point, and let us define F 

^ ( P n P j , P A : , P ) = 

1 X^ 

1 Xj 

1 Xk 
1 X 

( P 2 , P J , P A : , P ) by 

Vi Xt'^-^Vi'^ 1 

y x'^ + y'^ \ 

(18.7) 

The equation F{pi, Pj , p^, p) ==0 represents a circle because its quadratic term is c{x^-\-y'^) 
for some constant c. Moreover, this circle passes through pi ,Pj and p^, because if we 
substitute these points to p , the associated matrix contains two identical rows and hence 
the determinant vanishes. Therefore, the sign of -F(Pi,Pj,PA:,p) changes according to 
whether p is inside this circle or not. 

Suppose that the plane R^ is assigned a counterclockwise coordinate system, and 
PiiPj^Pk are on the common circle in counterclockwise order. Then, they form a De-
launay triangulation if and only if 

^(Pi,Pj,Pifc,Pz) 

X j 

Xj 

Xk 

Xl 

Vi 

Vj 

Vk 

yi 

Xr'^ + 2/ẑ  

x / + y/ 
Xk^ + yk'^ 

xi- + yi-

> 0 (18.8) 

holds for all other generating points p/. 
For each 2 = 1, 2 , . . . , n, let p^* be the point in R^ defined by 

Pi* == {xi.yi.Xi- ^yi'), (18.9) 

as shown in Figure 18.4. That is, p^* is the point obtained by lifting the point p^ up to the 
surface of revolution of the parabola z = x^ + y^. Then, the inequality (18.8) implies that 
the point p/* is above the plane passing through P i * , p / and p^*. Hence, the Delaunay 
triangulation for S is obtained if the lower part of the three-dimensional convex hull for 
the lifted points pi*, p2* , . . . , Pn* is projected on to the a;?/-plane orthogonally. Thus, the 
construction of the two-dimensional Delaunay triangulation is reduced to the construction 
of the convex hull in a space with dimensionality increased by one. 

The three-dimensional convex hull of n points can be constructed in O(nlogn) time 
by the divide-and-conquer algorithm [24]. Consequently, the two-dimensional Delaunay 
diagram, and thus the two-dimensional Voronoi diagram, can be constructed in O(nlogn) 
time. 

The same scheme is valid for any dimensionality. In other words, for a set 5 = 
{pi ,P2 , . • • ,Pn} of generating points in R^, we define the set S* = {pi*,P2*, • • • ,Pn*} 
in such a way that the point pi* is obtained by lifting pj up on to the surface of rev­
olution of a parabola x^^^x — Xx' -h X2̂  + • • • H- x^^. Then, the orthographic projection 
of the [d -f l)-dimensional convex hull of the set {pi*, P2*, • • •, Pn*} gives the Delaunay 
triangulation. The d-dimensional convex hull [d > 3) is obtained in 0(n^-^^^^ /̂̂ -l) time 
[9]. Therefore, the d-dimensional Delaunay and Voronoi diagrams for n points can be 
constructed in 0(n'-(^'^^^/^-') time. 

For practical implementation robustness is also important: if we ignore robustness, 
the resulting algorithms fail because of inconsistency caused by numerical errors. Many 
robust algorithms have been proposed: they include topology-oriented methods [30,31], 
exact arithmetic methods [18] and symbolic perturbation [10,34]. 
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Figure 18.4. Lifting the generating points up to the surface of revolution of a parabola. 

18.5. A P P L I C A T I O N S 

18.5.1. Site retrieval 
Suppose that a person is injured by a traffic accident, and that he needs medical care. 
Which ambulance should go to help him? This problem can be solved efficiently by the 
Voronoi diagram. 

Let S be the set of points at which ambulances are located. We construct the Voronoi 
diagram VD(5) beforehand, and store it. Then we can retrieve the nearest ambulance 
just by finding the Voronoi region containing the locus of the traffic accident. 

Similarly, if we construct another Voronoi diagram whose generating points are the sites 
of hospitals, then we can find the nearest hospital by identifying the Voronoi region which 
contains the locus of the accident. 

Given a Voronoi diagram and a point, finding the Voronoi region containing the point 
is a typical point location problem. This problem can be solved by the "slab method" in 
O(logn) time if we modify the Voronoi diagram into a slab data structure [24]. 

Thus, nearest-site retrieval among n sites can be done in O(logn) time if we construct 
the Voronoi diagram for the sites, and appropriately preprocess the data structure of the 
Voronoi diagram [21,30]. This is a basic technique in geographic information retrieval 
systems. 

18.5.2. Medial axis 
Let v4 be a two-dimensional bounded region. Suppose that we want to extract a concise 
description of the rough shape of A. A typical way is to replace ^ by a collection of lines, 
just as we might describe an animal by its skeleton. Such a collection of line segments is 
called the medial axis, which is defined in the following way. 

As shown in Figure 18.5(a), let C be a circle touching the boundary of A at two or 
more points. If C moves continuously, keeping in touch with the boundary of A at two 
or more points, then the center of C traces along (generally curved) lines. The collection 
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of such lines in A is called the medial axis of A. Refer to the chapter 19 on 'Medial Axis 
Transform' by Choi and Han. 

(a) 

Figure 18.5. Extraction of the medial axis using the Voronoi diagram. 

The Voronoi diagram can be used to extract the medial axis. For a given region A, 
let 5 be a finite set of points densely sampled on the boundary of A. We construct the 
Voronoi diagram of Ŝ, as shown in Figure 18.5(b) Voronoi edges are the set of points that 
are closest to at least two points in S. Hence, they are candidate elements for the medial 
axis. From them we select those Voronoi edges that are in A and are also boundaries of 
Voronoi regions whose generating points are not near to each other along the boundary 
of A. The medial axis in Figure 18.5(a) was obtained by this method. 

For a three-dimensional region A, the medial surface is similarly defined. The medial 
surface is the set of points that are the centers of spheres (of various radii) touching 
three or more points on the boundary of A. The three-dimensional Voronoi diagram can 
be used for the extraction of the medial surface. 

The medial axis and the medial surface have many applications; refer to the chapter 19 
on the Medial Axis Transform by Choi and Han. 

18.5.3. Offset curves and surfaces 
Let A be a bounded region in R^. For positive real h, the offset curve with offset h is 
the set of points whose distance from A is h. Similarly, for a bounded region yl in R ,̂ 
the offset surface with oflPset h is the set of points whose distance from A is h. 

The offset curves and surfaces are useful, for example, in finding the path of the center 
of a ball cutter in NC machining [15]. Also refer to the chapter 22 on 'NC Machining' by 
Choi et al. 

The Voronoi diagram can be used to generate offset curves and surfaces. Let A be a 
region in R^. We first locate sufficiently many sample points on the boundary of A. Let 
S denote the set of those sample points. We next construct the Voronoi diagram VD(5). 
Then, for each sample point p^ G 5, we draw a circular arc centered at p^, with radius h 
in the region R{S] Pi) — A. A collection of these circular arcs gives an approximation of 
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the curve offset from A by distance h. As the density of the sample points is raised, this 
approximation converges to the true offset curve. 

The same idea can be applied to the construction of the offset surface of a three-
dimensional region A. For this purpose, we choose a set S of sufficiently many sample 
points on the boundary of A, and construct the three-dimensional Voronoi diagram. For 
each sample point p^ G 5, we generate a spherical surface element centered at p^ with 
radius h in R{S] Pi) — A. The collection of these spherical surface elements constitutes 
the approximation of the offset surface which is a distance h from A. 

As shown in the next section, the Voronoi diagram can be generalized by replacing the 
generating points with other geometric elements such as line segments and surface patches. 
Using such generalized Voronoi diagrams, we can construct offset curves and surfaces more 
exactly, because we can treat the boundary shape exactly instead of choosing sample 
points. 

18.5.4. Interpolation 
Let S = {pi, P2, • • •, Pn} be a set of n points, called data sites, in the plane. Suppose 
that at each site p^ the height Zi is given. We want to construct a 'reasonable' surface 
^{l>)i P ^ CH(5), defined within the convex hull of S, such that the surface realizes the 
given heights at the data sites, i.e., z{pi) = 2:̂  for z = 1,2, . . . ,n . This is the problem of 
interpolation for irregularly located data sites. The function z{p) is called an interpolant, 
and for each point p G CH(5), the value of z{p) is called the interpolated height at 
the target point p. 

The interpolation problem is not well defined, because the meaning of the 'reasonable' is 
not unique; it depends on the context. Many interpolation methods have been proposed; 
one class of interpolation methods is based on the Voronoi and Delaunay diagrams. 

Piecewise-linear interpolation 
A naive approach is piecewise-linear interpolation based on the triangulation spanning 
the set S of data sites. That is, we triangulate the convex hull of S with the vertices at 
the data sites, and the triangles are lifted into the third dimension in such a way that 
the vertices realize the heights given at the data sites. Thus, we get the piecewise-linear 
continuous surface composed of triangles. 

There are many possible triangulations. Among them the Delaunay triangulation is 
preferable because of its equi-angularity property. Since the surface is produced as a 
collection of triangles, the interpolated height z(p) at the target point p is determined 
by the heights at the three closest sites. If this triangle is long and thin, the height z{p) 
is determined by data that are far from the target point p . On the other hand, if the 
triangle is fat and nearly equilateral, the height is determined by the data at relatively 
close sites. 

Since the Delaunay triangulation maximizes the smallest angle, Delaunay triangles can 
be expected to give a good interpolant as long as we restrict ourselves to piecewise-linear 
interpolants. 

The advantage of the Delaunay triangulation can also be understood in terms of the 
following property. Suppose that the height data are sampled at a finite number of sites 
from the surface of revolution of a hyperbola z = x^ -\- y^, which is convex downward. 
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Then, as we saw in the lift-up method, a Delaunay triangulation of the sites is the only 
triangulation that gives a piecewise-linear interpolant that is convex downward. Hence, 
the Delaunay triangulation is most suitable for the interpolation. 

Laplace's interpolation 
Let S' be a set of data sites and p be the target point in the interior of CH(5'). In the 
Voronoi diagram ¥ 0 ( 5 0 {p}), the Voronoi region of p is bounded. Let N{p) denote the 
set of data sites whose Voronoi regions share common boundary edges with the Voronoi 
region of p . For p^ G iV(p), let /(p, p^) denote the length of the Voronoi edge shared by 
the Voronoi regions of p and p^. We define 

5 ' ( P , P ^ ) - / ^ ^ ^ , P^eN{p), (18.10) 
U P - P i l l 

and normalize it by 

5^(p,P.) = - - 4 % ^ ^ ^ , P^e^(p), (18.11) 
^ s' (p.Pj) 

PjeN{p) 

so that 

E ^ ( P ' P ^ ) = 1 (18.12) 
Pz€iV(p) 

holds. Then we can prove the equality [16] 

P - ^ ?(P,P^)P^. (18.13) 
PiGiV(p) 

This equality implies that p is represented by the affine combination of the neighboring 
generating points with coefficients s^(p,pj). 

Hence, it is natural to consider the interpolant defined by 

z{p)= Yl ^ ^ ^ ( P ' P O - (18-14) 
PiGN(p) 

Actually this definition gives a C^ interpolant, which is called Laplace's interpolant [16]. 
The coefl[icients 5°(p,pj)'s are called the Laplace coordinates of p. 

Sibson's interpolation 
As before, let S be the set of data sites and p be the target point. As shown by broken 
lines in Figure 18.6, the Voronoi region R{S U {p};p) of p is partitioned into subregions 
according to the nearest data site in S. Let 5^(p,Pi) be the area of the subregion of 
R{S U {p}; p) that is nearer to p^ than to any other site in S, and let us normalize it by 

? ( P , P O = J^^^\^'^ . P^^N{p), (18.15) 
2 ^ s (p^Pj) 

P,eiV(p) 
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so that 

Yl 5l(p,Pi) = l 
PzeN(p) 

holds. Sibson [28] proved the equality 

PieN{p) 

On the basis of this equality, he proposed the interpolant defined by 

PzGiV(p) 

(18.16) 

(18.17) 

(18.18) 

which is C^ except at the data site [28]. This is called the Sibson's interpolant, and 
" ^ H P ' P O ^^^ called Sibson coordinates. 

Figure 18.6. Subdivision of a Voronoi region according to the second-nearest generator. 

Higher-continuity interpolation 
The Laplace coordinates 5^(p, p^) give a C^ interpolant and the Sibson coordinates 5^(p, p^) 
give a C^ interpolant. These two kinds of coordinates have close relations; the latter can 
be obtained by an integration of the former, as shown below, and this relation may be 
generalized so that higher-continuity interpolants are obtained. 

As we will see in the next section, we can generalize the Voronoi diagram by replacing 
the Euclidean distance with the metric Q;L(X, p^) = \\x — p^ where r̂  is the weight 
assigned to data site p^. Partition of the space into regions according to the nearest site 
rule is called the power diagram [2] or the Laguerre Voronoi diagram [17], and is denoted 
by VDL(*S'). The power diagram is similar to the ordinary Voronoi diagram in that every 
edge is part of a straight line. 
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Let us assign the same nonnegative weight r to all the data sites and the weight 0 to 
the target point. Let lh{p, Pi] T) denote the length of the edge shared by the regions of p 
and Pi in the power diagram V D L ( 5 U {p}), with the convention that / L I P ^ P Z ; ^ ) = 0 if 
the two regions do not share an edge. We define 

^° (P 'P -^ ) = l i ! r ^ ' P^€ iV(p) . (18.19) 
IIP Pi\\ 

Moreover, let 

/ N - min | | p - P z | | . (18.20) 
Pteiv(p) 

Then, we can obtain the relation [16] 

5'(p,Pz) = /N / s%p,pi,r)dr. (18.21) 

In this sense, the Sibson coordinates are obtained by the integration of the Laplace coor­
dinates. 

We can generalize this last relation. Let us define 

s^{p,Pi;r) = l^ I s^-^(p,pi;f)df for A; = l , 2 , . - - , (18.22) 
Jo 

and 

5'(p,Pz) = 5^(p,Pi;r*), / ^ - 1 , 2 , . . - (18.23) 

where r* is the smallest weight r that makes the region of the target point p empty in 
the power diagram V D L ( S ' U {p}). 

Then, for A; = 1, 5^(p, pj) defined in this way coincides with the area s^(p,pi) of the 
subregion defined previously. Furthermore, normalizing s^{p,pi) by 

i ^ ( p , p . ) = J^^^f'^ , P^eN{p), (18.24) 
2^ s'{p,Pj) 

we get a similar equality: 

P - ^ ^ ( p , p , ) p , . (18.25) 
PreN{p) 

Hence, we obtain interpolants 

z{p)= Y, ? ( p , P z > z , for / : - l , 2 , . . . , (18.26) 
PreN{p) 

which can be shown to be C^ continuous except at the data sites. 
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18.6. E X T E N S I O N S 

18.6.1. Voronoi diagrams for general distances 
The Voronoi diagram is the partition of a space according to the nearest-site rule, using 
the usual definition of Euclidean distance. If we replace Euclidean distance with other 
distances, we can define a variety of different diagrams, which are called generalized 
Voronoi diagrams. Here we present a framework for this type of generalization [19] and, 
in succeeding subsections, we will give individual generalizations. 

Let S = {pi,P25 • • • ^Pn} be the set of generating points and let p be an arbitrary 
point. We denote by /i(p, Pi) a real number called a generalized distance (or 'distance' 
for short) from p to p^. Here, we use the term 'distance' in a broad sense; it need not 
satisfy the distance axiom or even be nonnegative. We understand that /i(p,Pi) implies 
the closeness of p to p^; the smaller is the value, the closer is p to p^. 

We define 

Rh{S^,p^) = f l {p G R^ I /i(p,p.) < / i (p ,P , )} , (18.27) 
Pjes 

and call it the Voronoi region of p^ with respect to the distance h. The space R^ is 
partitioned into i?/j(5;pi), i?/x(5;p2), • • • ,Rh{S]i^n) and their boundaries; this partition 
is called the Voronoi diagram of S with respect to the distance h. 

18.6.2. Addit ively weighted Voronoi diagram 
Suppose that the real number wi, called a weight, is assigned to p^, i = 1,2,--- ,n. 
Consider the distance defined by 

K{P,P^) = \\P-P^\\-W^. (18.28) 

The Voronoi diagram with respect to this distance is called the additively weighted 
Voronoi diagram [1]. An example of this diagram is shown in Figure 18.7, where 
the weights are positive and are represented by the radii of the circles centered at the 
generating points. As a weight becomes larger, the associated generating point acquires 
a larger Voronoi region. 

The distance /ia(P5 Pi) can be interpreted as the Euclidean distance from p to the circle 
centered at pi with radius Wi. Hence, this Voronoi diagram can also be considered as the 
partition of the plane according to the nearest-neighbor rule applied to the given circles 
using Euclidean distance. 

The loci that are on equal distance from two circles form a hyperbolic curve. Therefore, 
the Voronoi edges of the additively weighted Voronoi diagram are parts of hyperbolic 
curves. 

18.6.3. Multipl icatively weighted Voronoi diagram 
Given generating points p^, with positive weight Wi, we define a multiplicatively weighted 
distance by 

hm{p,P^) = —\\p-p^\\. (18.29) 
Wi 
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Figure 18.7. An additively weighted Voronoi diagram. 

The Voronoi diagram with respect to this distance is called the multiplicatively weighted 
Voronoi diagram [4]. An example of this diagram is shown in Figure 18.8. As the weight 
Wi becomes larger, the associated generating point p^ acquires a larger region; to attain 
this property, we must actually multiply l/wi instead of Wi in the definition of distance. 

Figure 18.8. A multiplicatively weighted Voronoi diagram. 

The loci at which the ratio of the Euclidean distances to two points p^ and Pj is constant 
form a circle, called Apollonius circle. Hence, the Voronoi edges of the multiplicatively 
weighted Voronoi diagram are circular arcs. 

18.6.4. Power diagram 
Given generating points p^, with weight Wi, we define a power distance (also called the 
Laguerre distance) by 

<^L(P,Pi) Pill -W^ (18.30) 
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The Voronoi diagram with respect to this distance is called the power diagram [2] or 
the Laguerre Voronoi diagram [17]. An example of this diagram is shown in Figure 
18.9. 

Figure 18.9. A power diagram. 

A remarkable property of this diagram is that the Voronoi edges are straight lines, and 
they are perpendicular to the line segments connecting the associated generating points. 
In this sense, this diagram is similar to the ordinary Voronoi diagram. 

If Wi is nonnegative, the Laguerre distance o?L(p,Pi) can be interpreted as the square 
of the length of the line segment starting at p and tangent to the circle centered at p^ 
with radius y/wi. Hence, the circle centered at p^ with radius y/wi is said to be the circle 
associated with p^. 

If the two circles associated with p^ and p^ have points of intersection, the Voronoi edge 
separating these two regions is on the line passing through the two points of intersection. 
This property is useful for computing the area and the boundary length of the union of 
circles in the following way. 

Suppose that we are given n circles ci centered at p^ with radius y/wi, 2 = 1, 2, • • • , n. 
We construct the power diagram for p^ with weight Wi, i — 1,2,--- ,n . Let Ai be the 
intersection of ĉ  and the associated Voronoi region. Then, the union of all the circles is 
the disjoint union of all the intersections A^, z = 1, 2, • • • , n. Hence, the area of the union 
is the sum of the areas of Ai, and the length of the boundary of the union is the sum of 
the lengths of the circular arcs on the boundaries of the inersections Ai. 

A similar property holds for the power diagram in R^. Hence, the three-dimensional 
power diagram is useful to compute the volume and the boundary area of a union of 
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spheres. 

18.6.5. Voronoi diagram based on Lp distance 
Let p = (xi,X2, • • • ,Xd) and q = (2/1,2/2, • • • .Vd) be two points in R^. The Lp distance 
between p and q is defined by 

hp{p^q) = {\xi- yi\P + \X2 - y^Y + • • • + |xd - VdYY''- (18.31) 

Z/2 is the Euclidean distance. Li corresponds to the length of the shortest path from p 
to q along horizontal and vertical streets just like the roads in Manhattan area in New 
York; this distance is also called the Manhattan distance. 

We can define LQO distance by 

^oo(p,q) = m a x { | x i - y i | , | x 2 - 2 / 2 | , - - - ,\xd-yd\}' (18.32) 

Loo can be considered the limit of Lp distance with p —>> oc. An example of LQO dis­
tance is the time required for the quill of an NC machine to move from p to q using 
two independent motors, one for the horizontal direction and the other for the vertical 
direction. 

The Voronoi diagram with respect to this distance is called the Voronoi diagram with 
an Lp metric [20]. An example of this diagram for p = CXD is shown in Figure 18.10(a). 
In this diagram, the Voronoi edges usually consist of horizontal lines, vertical lines and 
lines running in the 7r/4 or 37r/4 direction. However, this diagram may have unusual 
edges. For example, as shown by the shaded area in Figure 18.10(b), if two generating 
points are vertically aligned, the set of points on equal distance from the two generating 
points forms a region with positive area. Similar unusual edges can happen when two 
generating points are on a common line slanted 45 degrees in the Voronoi diagram with 
the Li metric. 

18.6.6. Voronoi diagram based on elliptic distance 
Given two points p = (xi,X2), q = (2/1,2/2) in the plane, we define 

^e(p,q) = \/a[xi - yiY + 2h{xi - yi){x2 - 2/2) + c(x2 - 2/2)̂ , (18.33) 

where a,h,c are reals that satisfy ac > h^. Suppose that p is fixed. Then, for positive 
constant 5, the point q that satisfies de(p,q) = s traces an ellipse. Hence de(p,q) is 
called an elliptic distance. The Voronoi diagram with respect to this distance is called 
the el l iptic-distance Voronoi diagram. 

Figure 18.11(a) shows an example of the elliptic-distance Voronoi diagram, where the 
ellipse represents the locus of points that have the same elliptic distance from a fixed 
point. 

The elliptic-distance Voronoi diagram is closely related to the Euclidean-distance Voronoi 
diagram. Indeed, we can construct the elliptic-distance Voronoi diagram by transforming 
the plane using an aflBne transformation in such a way that the associated ellipse is trans­
formed to a circle, as shown in Figure 18.11(b); next we construct the Euclidean-distance 
Voronoi diagram; and finally we inversely transform the resulting diagram back to the 
original plane. 
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Figure 18.10. An LQO metric Voronoi diagram. 

18.6.7. Obstacle-avoidance Voronoi diagram 
Let jBi, ^2 , • • • ,Bk be mutually disjoint regions in R^, and let B = Bi U B2 U - • • U Bk. 
We call Bi,B2," iBk obstacles. Let Pi , P2, • • • , Pn be generating points that are not 
included in any obstacles. For any point p G R^ — B, we define c?o(p, Pi) as the length of 
the shortest path from p^ to p that does not pass through the interior of the obstacles. 

The Voronoi diagram with respect to this distance is called the obstacle-avoidance 
Voronoi diagram. The obstacle-avoidance distance represents realistic distance for 
travel in a city, if we assign obstacles to the areas where we cannot enter such as lakes, 
rivers and buildings. Hence the obstacle-avoidance Voronoi diagram is a practical tool in 
the analysis of some geographic problems. 

O 

(a) (b) 

Figure 18.11. An elliptic-distance Voronoi diagram and the associated Euclidean-distance 
Voronoi diagram. 



446 CHAPTER 18. VORON 01 DIAGRAMS 

18.6.8. Voronoi diagram in a river 
Suppose that water flows from left to right (i.e., in the positive x direction) at a con­
stant speed u. Let Pi,P2, • • • ^Pn represent small islands between which ferry-boats ply. 
Suppose that every boat runs at a constant speed v. For any point p in R^, we define 
^r(P5 Pi) as the smallest time required for the boat at Pf to reach p . 

The Voronoi diagram with respect to this distance is called the Voronoi diagram in a 
river. It is known that the topological structure of the Voronoi diagram in a river is the 
same as the topological structure of the Euclidean-distance Voronoi diagram \iu <v [29]. 

18.6.9. Crystal Voronoi diagram 
Suppose that crystals grow from points Pi , P2, • • • , Pn at diff'erent speeds until they touch 
other crystals. Then, we obtain a partition of the space into crystals. This partition is 
called the crystal Voronoi diagram [25]. 

The crystal Voronoi diagram is similar to the multiplicatively weighted Voronoi dia­
gram, but it is not the same. Figure 18.12 shows the crystal Voronoi diagram for two 
points, where one crystal grows twice as fast as the other crystal. The part of the bound­
ary of the two crystals that is visible from both of the generating points is the same as 
part of the boundary of the multiplicatively weighted Voronoi diagram where the weights 
are the growth rates. However, the other part of the boundary is diflPerent from that of 
the multiplicatively weighted Voronoi diagram, because in the crystal Voronoi diagram 
the distance is measured as the length of the shortest path, avoiding other crystal areas. 

To construct this diagram, we need to simulate the growth of the crystals; one promising 
approach is to use the fast marching method [26]. An example of the crystal Voronoi 
diagram for more than two crystals, generated by this method, is shown in Figure 18.13, 
where (a) and (b) show the intermediate stages of crystal growth, and (c) shows the final 
shapes of the crystals. 

- . (2) 

Figure 18.12. A crystal Voronoi diagram for two points. 

18.6.10. Voronoi diagram for lines and polygons 
Let us replace generating points with a set 5 = {li.h,'" ^^n] of ^ mutually disjoint 
line segments in R^. For any point in R^, we define d{pji) as the Euclidean distance 
from p to the nearest point in k. The nearest-neighbor rule with respect to this distance 
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0 

0 
%o 

(a) t = 3 0 (b) t = 1 0 0 (c) Crystal Voronoi diagram. 

Figure 18.13. A crystal Voronoi diagram. 

partitions of the plane into regions corresponding to the line segments h.hr'' An- This 
partition is called the Voronoi diagram for line segments [8]. 

The Voronoi diagram for n line segments can be constructed in O(nlogn) time by the 
plane sweep method [33]. An example of this Voronoi diagram is shown in Figure 18.14. 
A similar Voronoi diagram can be defined for the set of line segments forming a polygon. 
Those Voronoi edges inside the polygon give the medial axis of the polygon. 

Figure 18.14. A Voronoi diagram for line segments. 
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18.6.11. Voronoi diagram for general figures 
Line segments can be extended to general figures. Let S = {/i, /2, • •' ^ fn} be a set of 
mutually disjoint figures in R^. We define d{p, fi) as the Euclidean distance from p to 
the nearest point in / j . The Voronoi diagram with respect to this distance is called the 
Voronoi diagram for general figures. An example of this diagram is shown in Figure 18.15. 

Figure 18.15. A Voronoi diagram for general figures. 

If the figures in S represent empty regions in a map such as parks and school grounds. 
Then, the associated Voronoi diagrams might tell us to which empty regions we should 
go when a big earthquake takes place. 

18.7. CONCLUSION 

We have surveyed the basic properties and algorithms of the Voronoi diagrams, and their 
applications and generalizations. Here special emphasis was placed on geometric design in 
the sense that the section on applications treats design-related topics such as interpolation, 
offset and medial axes. 

The concept of the Voronoi diagram is related to a wide variety of areas from the analysis 
of natural forms to the analysis of social and geographic systems. For the extensive survey 
of the Vornoi diagrams, refer to Aurenhammer [3], Fortune [13] and Okabe et al. [22]. 

REFERENCES 

1. P. F. Ash and E. D. Bolker. Generalized Dirichlet tessellations. Geometricae Dedicata, 
20:209-243, 1986. 

2. F. Aurenhammer. Improved algorithms for dishes and balls using power diagram. 
Journal of Algorithms, 9:151-161, 1987. 



18.7. CONCLUSION 449 

3. F. Aurenhammer. Voronoi diagrams — A survey of a fundamental geometric data 
structure. ACM Computing Surveys, 23:345-405, 1991. 

4. F. Aurenhammer and H. Edelsbrunner. An optimal algorithm for constructing the 
weighted Voronoi diagram in the plane. Pattern Recognition, 17:251-257, 1984. 

5. M. Bern and D. Eppstein. Mesh generation and optimal triangulation. In F. K. Hwang 
and D.-Z. Du, editors, Computing in Euclidean Geometry, World Scientific, Singa­
pore, 1992. 

6. K. Q. Brown. Voronoi diagrams from convex hulls. Information Processing Letters, 
9:223-228, 1979. 

7. B. Delaunay. Sur la sphere. Bulletin of the Academy of Sciences of the U.S.S.R. 
Classe des Sciences Mathematiques et Naturelles, Series 7, 6:793-800, 1934. 

8. R. L. Drysdale and D.-T. Lee. Generalized Voronoi diagram in the plane. Proceedings 
of the 16th Annual Allerton Conference on Communication, Control and Computing, 
pages 833-842, 1978. 

9. H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin, 
1987. 

10. H. Edelsbrunner and E. P. Miicke. Simulation of simplicity—A technique to cope 
with degenerate cases in geometric algorithms. Proceedings of the 4th Annual ACM 
Symposium on Computational Geometry, pages 118-133, Urbana-Champaign, June 
1988. 

11. H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements. Discrete and 
Computational Geometry, 1:25-44, 1986. 

12. S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153-174, 
1987. 

13. S. Fortune. Voronoi diagrams and Delaunay triangulations. In D.-Z. Du and 
F. K. Hwang, editors. Computing in Euclidean Geometry, World Scientific Publishing, 
pages 193-233, Singapore, 1992. 

14. P.-L. George. Delaunay Triangulation and Meshing. Hermes, Paris, 1998. 
15. M. Held. On the Computational Geometry of Pocket Machining. Lecture Notes in 

Computer Science 500, Springer-Verlag, Berlin, 1991. 
16. H. Hiyoshi and K. Sugihara. Voronoi-based interpolation with higher continuity. Pro­

ceedings of the 16th Annual ACM Conference on Computational Geometry, pages 
242-250, Hong Kong, June 2000. 

17. H. Imai, M. Iri and K. Murota. Voronoi diagram in the Laguerre geometry and its 
applications. SI AM Journal of Computing, 14:93-105, 1985. 

18. M. Karasick, D. Lieber and R. Nackman. Eflftcient Delaunay triangulation using ra­
tional arithmetic. ACM Transactions on Graphics, 10:71-91, 1991. 

19. R. Klein. Concrete and Abstract Voronoi Diagrams. Lecture Notes in Computer Sci­
ences, no. 400, Springer-Verlag, Berlin, 1989. 

20. D.-T. Lee. Two-dimensional Voronoi diagrams in the Lp-metric. Journal of the ACM, 
27:604-618, 1980. 

21. T. Ohya, M. Iri and K. Murota. Improvements of the incremental method for the 
Voronoi diagram with computational comparisons of various algorithms. Journal of 
the Operations Research Society of Japan, 27:306-336, 1984. 

22. A. Okabe, B. Boots, K. Sugihara and S. N. Chiu. Spatial Tessellations — Concepts 



450 CHAPTER 18. VORONOI DIAGRAMS 

and Applications of Voronoi Diagrams, Second Edition, John Wiley and Sons, Chich­
ester, 2000. 

23. F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in two and three 
dimensions. Communications of the ACM, 20(2):87-93, 1977. 

24. F. P. Preparata and M. I. Shamos. Computational Geometry — An Introduction. 
Springer-Verlag, New York, 1985. 

25. B. F. Schaudt and R. L. Drysdale. Multiplicatively weighted crystal growth Voronoi 
diagram. Proceedings of the Second Canadian Conference in Computational Geome­
try, pages 214-223, North Conway, 1991. 

26. J.A. Sethian. Fast marching methods. SIAM Review, 41(2):199-235, 1999. 
27. R. Sibson. Locally equiangular triangulations. The Computer Journal, 21:243-245, 

1978. 
28. R. Sibson. A vector identity for the Dirichlet tessellation. Mathematical Proceedings 

of the Cambridge Philosophical Society, 87:151-155, 1980. 
29. K. Sugihara. Voronoi diagrams in a river. International Journal of Computational 

Geometry and Applications, 2:29-48, 1992. 
30. K. Sugihara and M. Iri. Construction of the Voronoi diagram for 'one million' gener­

ators in single-precision arithmetic. Proceedings of IEEE, 80:1471-1484, 1992. 
31. K. Sugihara and M. Iri. A robust topology-oriented incremental algorithm for Voronoi 

diagrams. International Journal of Computational Geometry and Applications, 4:179-
228, 1994. 

32. G. Voronoi. Nouvelles applications des parametres continus a la theorie des formes 
quadratiques, deuxieme memoire, recherches sur les parallelloedres primitifs. Journal 
fiir die Reine und Angewandte Mathematik, 134:198-287, 1908. 

33. C.-K. Yap. An O(nlogn) algorithm for the Voronoi diagram of a set of simple curve 
segments. Discrete and Combinatorial Geometry, 2:365-393, 1987. 

34. C.-K. Yap. A geometric consistency theorem for a symbolic perturbation scheme. 
Proceedings of the J^th Annual ACM Symposium on Computational Geometry, pages 
134-142, Urbana-Champaign, June 1988. 



Chapter 19 

The Medial Axis Transform 

Hyeong In Choi and Chang Yong Han 

The medial axis transform is a one-dimensional graph extracted from a planar shape. It 
has been a prime area of study, not only in computer-aided geometric design, but also 
in such diverse areas as computer graphics, computer vision, pattern recognition, image 
processing, NC tool path planning, mesh generation and font design. We review many 
research results concerning its basic mathematical properties and various algorithms for 
its accurate and efficient computation. 

19.1. I N T R O D U C T I O N 

The medial axis of a planar shape is the locus of the centers of a set of disks that maximally 
fit into the shape; and the medial axis transform is the medial axis together with the 
corresponding radius values. Points on the medial axis, i.e., the centers of such disks, are 
called the medial axis points of the shape, and medial axis transform points are similarly 
defined. There are many other definitions of the medial axis. Some define it as the closure 
of the collection of points in the shape that have the same minimum distance to the shape 
boundary at least two distinct boundary points. Others define the medial axis as the set 
of quench points of fire lines, imagining that the shape is covered by grass and is set on 
fire all around the boundary simultaneously. (The flame propagation speed is assumed to 
be constant everywhere.) In this case each radius value of the quench point corresponds 
to the time required for the fire to get to it. All these definitions are essentially equivalent 
and we choose the one that is mathematically cleanest to handle. The concept of medial 
axis dates as far back as to the time of Dirichlet [17] and Voronoi [48]. What they studied 
is now called the Dirichlet tessellation or the Voronoi diagram. It is constructed as follows: 
given discrete points P i , . . . , Pn scattered over a plane, their Voronoi diagram is the locus 
of points of equal distance to at least two of the given points. The Voronoi diagram 
partitions the plane into mutually disjoint regions Vi,... ,Vn such that points of Vi are 
closer to p^ than any other p^ for z / /c. The concept of the Voronoi diagram can mesh 
well with the concept of the medial axis. In particular, given discrete points P i , . . . ,Pn 
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Figure 19.1. The medial axis transform as a graph in R^. 

in the plane, their Voronoi diagram is the medial axis of the region R^ — { p i , . . . , p„} . 
It remains possible to define the Voronoi diagram even when a point set is replaced 

by some more complex geometric objects. In the case where the boundary of an object 
is composed of lines and circular arcs, there has been a wealth of results since Persson 
in the late 1970s used the Voronoi diagram to compute the tool path for NC machining. 
Although the medial axis and the Voronoi diagram of a shape are very similar and have 
many common parts, they are never the same concept, because the Voronoi diagram 
depends how the boundary is segmented while the medial axis doesn't. (The medial axis 
or the Voronoi diagram does not include the other completely either.) Refer to Sugihara's 
chapter 18 of this book for more information on the Voronoi diagram. 

The modern incarnation of the medial axis (transform) is generally attributed to Blum [6]. 
In the 1960s, he felt that the geometry of the past two millennia was irrelevant to the 
study of amorphous shapes arising in the biological or medical sciences, since it had been 
developed in close relation to physical sciences. In Blum's attempted theory of shape he 
introduced the medial axis transform as one of the shape attributes. He wanted to use 
the medial axis transform—which is stable, to a certain degree, under deformation—to 
classify various shapes. The medial axis transform was, to him, a new kind of geometry 
between topology and congruent geometry (i.e., Euclidean or projective geometry). He 
found that he was able to approach some problems of psychology and physiology using 
the medial axis transform. 

The medial axis transform has been widely used in many different contexts: for example, 
it proved to be an indispensable tool in the mesh generation for the finite-element method 
in numerical analysis, NC tool path generation for pocket milling, and font generation for 
Korean or Chinese characters, to name only a few applications. It is, however, not clear 
how much of Blum's original expectations were fulfilled. But, certainly, the medial axis 
found an important use in compactly representing the information of a shape in vision 
and pattern recognition, especially for bitmap images. (The image processing community 
calls the medial axis a skeleton.) 

In this chapter, we primarily concentrate on the medial axis transform of shapes with 
well defined mathematical boundaries i.e. lines or smooth curves. Section 19.2 summarizes 
the basic mathematical facts that may serve as a solid foundation upon which future work 
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can be based. In Section 19.3, we give a few well established algorithms. We conclude 
this chapter with some remarks in Section 19.4. 

19.2. M A T H E M A T I C A L T H E O R Y OF T H E M E D I A L AXIS T R A N S F O R M 

When the medial axis was first studied, little attention was paid to its mathematical 
properties, and it was more or less taken for granted that the medial axis (transform) of 
a reasonably nice shape is a nice one-dimensional object, usually a finite graph embedded 
in the plane. Researchers concentrate on finding various algorithms for computing the 
medial axis. However, providing careful proof of the 'nice' of the medial axis is not at all 
trivial. Of course, there has been some work along these lines. But the most significant 
results, as far as we know, are due to Hoffmann and Chiang [27] and Choi et al. [13]. 

In [27], Hoffmann and Chiang studied some of the mathematical properties of the medial 
axis transform. To get mathematically meaningful properties, they restricted the category 
of shapes under consideration—in particular they imposed a 'smoothness' requirement 
on the boundary curves. To this end, they defined three kinds of compact domains 
whose boundary is a simple closed curve 2>2" with bounded curvature variation and twice 
differentiable, Vi: differentiable and almost twice differentiable, and VQ: almost twice 
differentiable. Their results can be summarized as follows: (1) the medial axis transform 
uniquely exists for each domain, (2) the medial axis transform is divisible, (3) the medial 
axis transform is connected and has a tree graph structure, and (4) the original domain 
can be recovered from its medial axis transform. They also mentioned the medial axis 
transform of multiply connected domains and non-manifold domains. 

On the other hand, Choi et al. [13] obtained more definitive and comprehensive results 
on the medial axis transform of multiply-connected domains. To this end, they required 
the boundary of the domain to consist of real analytic curves, which condition guarantee 
the finiteness of various important geometric objects. However, this condition can be 
easily recast in the language of Hoffmann and Chiang, as condition V2. 

In this section, we summarize some mathematical results about the medial axis trans­
form in a planar domain. For more details, see Choi et al. [13] in which mathematically 
rigorous proofs are given. We also follow the notation and the terminology in this previous 
paper; but for the convenience of the reader, we provide some prerequisites here. 

19.2.1. Assumptions on the domain 
A domain Q is always assumed to satisfy the standing assumption [13] which we is given 
below. In fact, this assumption turns out to be the optimal one in the sense that: 

(1) The medial axis and the medial axis transform of Q are geometric graphs, if H 
satisfies our assumptions. We can construct examples of domains whose medial axes 
and medial axis transforms are not geometric graphs if some of the assumptions are 
violated. 

(2) The class of the domains satisfying our assumptions includes almost all practical 
situations. 

Standing assumption 
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We will assume that the domain Q is a non-circular domain which satisfies the fol­
lowing two conditions. 

(1) Q is the closure of a connected bounded open domain in R^ bounded by a finite 
number of mutually disjoint simple closed curves. (By 'simple closed curve' we 
mean an embedding of the unit circle in M^.) 

(2) Each simple closed curve in dQ consists of a finite number of pieces of real analytic 

We exclude the circular domain (i.e., the disk ) since the disk poses an exception to 
many of our results, although everything is known about its medial axis transform. We 
take Q to be closed since this simplifies many of the details. The simple closed curve 
bounding the unbounded region of M̂  \ f̂  is called the outer boundary (curve), and the 
others are called the inner boundary (curves). The number of inner boundary curves in 
dft is called the genus of fi. A domain has an inner boundary curve if and only if it is 
not simply connected (i.e., multiply connected). This situation is typically described as 
'Q having a hole (holes), or homology.' 

Of all the conditions in this standing assumption, the real analyticity condition is 
the most important, and needs some explanation. We say that a simple closed curve 
7 : [a, b] —> R^ (7(«) = 7(^)) consists of a finite number of pieces of real analytic curves, if 
there are numbers a = to < - • - < tn = b, such that 7[t,_i,ti] is a real analytic curve for each 
2 = 1, • • • , n. In fact, one needs a slightly more restrictive condition on real analyticity in 
the sense that 7 has to be real analytically extended to an open neighborhood of [a, 6]. 
This real analyticity assumption is not so restrictive as one might think, since all curves in 
practical use are rational, and hence real analytic. One thing to be careful about is that the 
curvature does not go to infinity at the end point. Provided that this condition is met, the 
curve can be real analytically extended to an open neighborhood. This real analyticity 
condition is needed in order to make sure that there are only finitely many important 
objects like bifurcation points. This condition can be phrased in terms of curvature 
fluctuation, as Hoffmann and Chiang have done [27]; but this kind of curvature non-
fluctuation condition is automatically met for the curves that are real analytic in our sense. 
Furthermore, as mentioned above, we can easily construct some pathological examples 
without the real analyticity condition. The following examples (from [13]) illustrate this 
fact. 

Example 1 Let Q be the domain whose boundary consists of two C°° curves a and p, 
where a is an arc portion of the unit circle {(" G C : |C| = 1} ^^^ P is a curve represented 
by 

m = {l + e-'"\m'\)e^\ 

for sufficiently small \6\, and a and fi are joined in such a way to form a closed C°° curve, 
as shown in Figure 19.2. 

Then it is easy to see that the point p is in the medial axis of Q and that there are 
infinitely many segments in the medial axis of Q emanating from p . (Such point p is an 
00-prong point in the language of Definition 3 below.) 
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Medial axis 

Figure 19.2. A medial axis having an oo-prong points. 

Example 2 Let Q be the domain whose boundary consists of two C°° curves 7 and 6, 
where 7 is a portion of the boundary of a stadium like shape and 6 is a curve represented 
by 

5{t)^{t,e-'f'\m^\), 

for sufficiently small \t\, and 7 and 5 are joined in such a way to form a closed C°° curve, 
as shown in Figure 19.3. 

Then it is easy to see that the medial axis of Q has infinitely many bifurcation points. 

19.2.2. Medial axis transform 
Now we define the medial axis and the medial axis transform. 

Let Br{v) denote the closed disk of radius r centered at p. We define the set V[Q) by 

That is, V(Q) is the set of all disks contained in Q. 
The core of a domain Q is the set of all maximal disks in Q, that is, 

CORE(Q) - {Br{p) e V{^) I B,(q) e V{n) and 5,(p) C B,(q) implies J5,(p) = 5,(q)}. 

A disk Br{p) in CORE(Q) is called a maximal disk, and in this case dBr{p) is called 
a maximal circle or contact circle. 

Definition 1 (Medial axis and medial axis transform) 
The medial axis of a domain Q is the set of all centers of disks in CORE{Q). That is, 

MA{n) = {p G Q I ^r(p) G CORE{Q)]. 

The medial axis transform of a domain Q is the set of all ordered pairs of centers and 
radii of disks in CORE{Q). That is, 

MAT[Q) = {(p,r) G ^ X E|B,(p) G CORE[^)]. 
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Medial axis 

Figure 19.3. A medial axis having infinitely many bifurcation points. 

Remark 1 In this case, we allow r = 0 and consider Br{p) as {p}. Such cases occur 
exactly at the sharp corners of dQ. 

A boundary point is a corner (point) if the unit tangent vector field is discontinuous at 
that point. It is called a sharp corner if the interior angle is strictly less than TT, and a 
dull corner if the interior angle is strictly greater than TT. 

For a medial axis point p , B{p) denotes the disk Br{p) in CORE(r^) with center p . 

Definition 2 Let B{p) be a disk in CORE(Q). Then we define the contact set o / p (or 
of B{p), or of dB{p)), denoted by C{p), as 

c(p) = dB{p) n on. 

A point in C(p) is called a contact point ofp (or of B{p), or of dB{p)). A connected 
component of C(p) is called a contact component of p (or of B{p), or of dB{p)). A 
contact component is called an isolated contact point if it is a point, and a contact arc if 
it is an arc containing its two end points. Finally, dB{p) is called a contact circle. 

We note that a contact component is either an isolated contact point or a contact arc. 
Now we can characterize the medial axis points by the number of their contact compo­

nents. 

Definition 3 A point p in MA{^), which is not a sharp corner point, is called an n-
prong point (n > I), if C{p) has n contact components. We classify sharp corner points 
as 1-prong points [14]- An n-prong point p for n > 3 is called a bifurcation point. A 
I-prong point p is also called a terminal point. 
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Figure 19.4. A contact arc and contact point. 

Let (p , r ) be in MAT{Q). We call Br{p) a bifurcation disk z /p is a bifurcation point. 
In this case, dBr{p) is called a bifurcation circle. A disk B{p) G CORE{Q) is called an 
osculating disk at q G dO., if dB{p) is an inscribed circle which osculates dQ at q. 

In fact, around an n-prong point p (n > 1), the medial axis MA(Q) has exactly n 
'prongs' emanating from p . As we will see in Section 19.2.4, this is a consequence of the 
graph structure of the medial axis (transform). 

It is a fact that a terminal (i.e., 1-prong) point which is not a sharp corner is the 
center of an inscribed osculating circle, where an inscribed osculating circle of Q is a circle 
contained in Q which osculates dQ at some point of dQ. Also, it can be easily be shown 
geometrically that the curvature of 9Q takes a local maximum at an osculating point of 
an inscribed osculating circle. See Theorem 3.1 in [13] for a proof. 

19.2.3. Finiteness results 
From the real analyticity of the boundary of the domains in our class, we can derive some 
finiteness results about the medial axis (transform). First we require some definitions. 

Definition 4 A 2-prong point p in MA{Q) is a generic 2-prong (point); if the following 
conditions are satisfied. 

(1) The two contact components ofp are isolated contact points (denoted by qi and c\2)-

(2) Ifqi (i = I, 2) is not a dull corner, then dQ near q̂  is real analytic, and p is within 
the focal locus of a small piece of dCt near q .̂ 

(3) If qi (i = I, 2) is a dull corner, then q^p is in a purely interior direction of q^. 

See [13] for the definition of 'being within the focal locus.' Now we state the finiteness 
result. 

Theorem 1 Each of the following is finite in MA{Q). 



458 CHAPTER 19. THE MEDIAL AXIS TRANSFORM 

(1) The number of contact components of a point 

(2) The number of 1-prongs. 

(3) The number of bifurcation points. 

(4) The number of 2-prongs which are not generic. 

19.2.4. Graph structure of medial axis transform 
It has previously [13] been shown that the medial axis (transform) is path-connected. 
Furthermore, the medial axis (transform) of a domain has all the topological information 
of the original domain in the sense that: 

Theorem 2 MA{Q) is a strong deformation retract of Q, and in particular, MA{^) 
and MAT{Q) are homotopic to Q. 

The main result [13] is that MA(Q) and MAT(n) have the structure of the geometric 
graph. We call a set in M^(or in R^) a geometric graph, if it is topologically a usually 
connected graph with a finite number of vertices and edges, where a vertex is a point in 
M^(or in M )̂ and an edge is a real analytic curve with a finite length, whose limits of 
tangents at the end points exist. 

Theorem 3 (Graph structure of raiedial axis (transform)) 
MA{Q.) (MAT{Q)) is a finite geometric graph. 

In fact, M A ( ^ ) and MAT(fi) are isomorphic as graphs, and besides the above theorem, 
we can obtain the following correspondence between the vertex degree of a point in MA(r^) 
(MAT(Q)) and the geometric property of that point. Let (p, r) be a point in MAT(r2). 

(1) If p is in an edge of MA(fi) , then p is a generic 2-prong, and thus MA(Q) is real 
analytic at p {resp., (p , r ) ) . 

(2) If p is a vertex of degree 1 in MA(r^), then p is either a sharp corner or the center 
of an inscribed osculating circle with one contact component. 

(3) If p is a vertex of degree 3 or higher in MA(Q) , then p is a bifurcation point. 

(4) If p is a vertex of degree 2 in MA(Q), then p is a 2-prong which is not generic. 

The same results hold for (p , r ) and MAT(fi). 

19.2.5. Domain decomposit ion lemma 
In this section, we introduce our fundamental tool called the domain decomposition lemma 
which allows us to decompose a given domain into smaller and simpler subdomains so that 
the medial axis transform of the original domain is preserved as the union of the medial 
axis transforms of the subdomains. Using this domain decomposition lemma the medial 
axis transform is 'localized' so that, no matter how complicated the original domain is, its 
medial axis transform can be built out of simple building blocks which are easy to handle. 
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This technique makes it easy to analyze the mathematical properties of the medial axis 
transform. Moreover, since each building block is trivial to handle, the algorithm for 
finding the medial axis transform essentially boils down to bookkeeping for the domain 
decomposition procedure, which was greatly exploited by Choi et al. [14]. See Figure 19.5 
for an illustration of the basic idea of domain decomposition. 

Figure 19.5. The basic idea of domain decomposition. 

Theorem 4 (Domain decomposit ion lemma.) 
For any fixed medial axis point p G MA{Q), let B{p)(= Br{p)) be the corresponding 

maximal disk, i.e., B{p) G CORE[Q). Suppose ^ i , • • • ,An are the connected components 
offt\B{p). Denote Q̂  = Ai U B{p) fori = l,-" ,n . Then 

n 

MA{n) = [JMA{n^) 
i=l 

and 
n 

MAT{n) = \jMAT{n^). 
i=l 

Moreover, we have 

MAi^i) n MA{Qj) = {p} 

and 

MAT{n,) n MATiQj) = { (p ,r)} , 

for every distinct i and j . 

This lemma has been proved elsewhere [13]. The following definition describes the 
simplest building blocks out of which the entire MAT can be built. 

Definition 5 (Fundamental domain) 
A domain Q is a fundamental domain, if MA{Q) has no bifurcation points. 



460 CHAPTER 19. TEE MEDIAL AXIS TRANSFORM 

19.3. A L G O R I T H M S 

19.3.1. Piecewise linear and circular arc boundary 
The first efficient algorithm for the computation of the medial axis was developed by 
Preparata [33]. However, it is restricted to convex domains with simple polygonal bound­
aries. Preparata's algorithm for computing the medial axis of a convex polygon G may 
be described in two steps. 

• (Reduction step) A sequence of convex polygons G = Gn, Gn-i, ...,6^4,6^3 are gen­
erated: each polygon Gi of the sequence is obtained from its predecessor Gi+i by 
an edge removal/vertex addition process. The criterion to determine which edge of 
the (z -I- l)-sided polygon G^+l must be removed to yield the z-sided polygon Gi is 
given elsewhere [33]. Clearly, completion of the edge removal process always results 
in a triangle G3, whose medial axis may be trivially computed. 

• (Construction step) The medial axes of the polygons G 4 , . . . , G^ are incrementally 
'updated' from the medial axes of their predecessors by an edge addition/vertex 
removal process. The same edge that was removed from the polygon Gi^i during 
the edge removal process is now included in the polygon Gi. 

The algorithm to update the medial axis of Gi^i from the medial axis of Gi during the 
edge addition/vertex removal process is presented in detail elsewhere [33]. Applying it 
iteratively, the medial axis of the original polygon Gn = G is computed. The running 
time of the algorithm has been shown to be 0 ( n l o g n ) . A slightly modified algorithm, 
with a running time of O(n^), has also been suggested [33] for computing the medial axes 
of non-convex polygons. 

In 1982, Lee presented [29] an 0 ( n logn) algorithm for computing the medial axis of 
a planar shape represented by an n-edged simple (non-convex) polygon. Prior to this 
work, Kirkpatrick had presented [28] an asymptotically optimal O(nlogn) algorithm for 
finding continuous skeletons of a set of disjoint objects. In fact Lee's algorithm in [29] 
performed the computation of the Voronoi diagram of a simple polygon. Since one can 
obtain the medial axis of a simple polygon from its Voronoi diagram by removing the 
edges of the Voronoi diagram that connect to the reflex vertices (which is the dull corner 
in our language), computing the medial axis from the Voronoi diagram does not increase 
the time-complexity of the algorithm. 

Basically, Lee's approach was a divide and conquer. Let G be a simple polygon with 
vertices g i , . . . , ^n and let ê  denote the line segment Qi.qi^i. For each maximally contigu­
ous sequence of reflex vertices QJ,. .. ,qk,he defined a chain of the edges of G as a sequence 
of elements ej_i, g ,̂ Cj.qi^i..., qk-\, ek-\,qk, ^k- His idea is to divide G into two lists G\ 
and G2 and thus recursively to construct the Voronoi diagrams VD(Gi) and YD{G2), 
and then to merge both Voronoi diagrams to form the Voronoi diagram of G. Since the 
merging process takes 0{n) time, the overall running time is 0 ( n logn). In implementing 
this algorithm, he actually partitioned G into several chains C\,... ,Ch- The reason for 
this was that the Voronoi diagram of a chain could be computed in time proportional to 
the number of elements in the chain. This result has been a basis of numerous algorithms 
dealing with polygonal boundary. 
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Lee's algorithm [29] cannot compute Voronoi diagrams of multiply-connected polygo­
nal domains. Two algorithms have been independently developed by Held [26] and by 
Srinivasan and Nackman [45] for this purpose. While Held's algorithm is capable of han­
dling multiply-connected domains bounded by piecewise linear and circular segments, the 
algorithm developed by Srinivasan and Nackman can only accommodate polygons with 
a finite number of interior polygonal holes. Both of these methods are extensions of 
Lee's algorithm, and they employ a similar divide-and-conquer strategy, which may be 
summarized as follows: 

(1) Compute the interior Voronoi diagram of the outer boundary, neglecting the pres­
ence of the inner boundaries. This may be accomplished by Lee's algorithm. 

(2) Sort the inner boundaries into a decreasing order determined by the y-coordinate 
of the topmost vertex of each inner boundary. 

(3) For each of the inner boundaries (in sorted order): 

(a) Compute the exterior Voronoi diagram of the inner boundary, neglecting the 
presence of all the outer boundaries. 

(b) Compute the 'merge' curve between the Voronoi diagram of the inner boundary 
and the merged Voronoi diagram computed thus far. 

(c) Discard edges of the 'old' Voronoi diagrams that do not belong to the 'new' 
Voronoi diagram. 

The merge curve in Step 3b is basically the contiguous set of edges of the new Voronoi 
diagram which did not exist in the old one. We also note that an extension of Lee's 
algorithm is necessary to execute Step 3a, since the 'exterior' Voronoi diagram of the 
inner boundaries needs to be computed. 

19.3.2. Domains with free-form boundaries 
Chou [15] was the first to develop an algorithm for computing the Voronoi diagram of 
a curvilinear domain. In his approach terminal points of the Voronoi diagram are first 
located at the convex, i.e., sharp, corners and the centers of the interior osculating circles 
of the boundary curve. The edges of the Voronoi diagram are then traced as a sequence of 
bisector points for the appropriate boundary segments; the terminal points of the Voronoi 
diagram are chosen as the starting points of this tracing scheme. The algorithm may also 
be extended to compute the Voronoi diagram of the region exterior to the boundary. 

Farouki et al. [18-21] and Ramamurthy et al. [35-38] also made a great contributions 
to the development of both theory and algorithms for computing Voronoi diagrams and 
medial axes of planar domains with curvilinear (polynomial or rational) boundaries. Their 
studies can roughly be separated in two parts: the study of curve/curve bisectors and the 
study of general Voronoi diagram and medial axis algorithms. 

Since the edges of Voronoi diagrams and medial axes are point/curve or curve/curve 
bisectors, algorithms for computing these bisector forms must be invoked by any con­
struction algorithm. While an algorithm for computing generic point/curve bisectors (for 
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a fixed point and a rational curve) was already available in literature, until then there 
existed no algorithm for computing the bisectors of pairs of rational curve segments. 

Hence, the first important contribution of Farouki et al. and Ramamurthy et al. was 
the development of an algorithm for computing curve/curve bisectors. The important 
features of this algorithm are: (i) the bisectors of curved segments are directly computed 
without approximating the input curves; (ii) bisector segments having exact (rational) 
parameterizations are explicitly captured and represented in that form; (iii) bisector seg­
ments requiring approximation are guaranteed to have their geometric error (deviation 
from the exact curve) less than any prescribed tolerance; and (iv) tangent discontinuities 
of bisector loci are explicitly identified and included in their representation. 

It has also been observed that certain degenerate bisector forms routinely arising in 
Voronoi diagram and medial axis constructions of planar domains cannot be accommo­
dated by generic bisector algorithms. These include: (i) the bisector of a point and a 
curve in the case when the point lies on the curve; (ii) the bisector of a curve with itself 
(i.e., its self-bisector) and (iii) the bisector of two curves having a common endpoint. 
Owing to the complex nature of these degenerate bisector forms, substantial theoretical 
advances over the generic-case bisector algorithms have been necessary. 

Farouki et al. and Ramamurthy et al. also developed theory and algorithms for comput­
ing Voronoi diagrams and medial axes of planar domains with curvilinear boundaries. As 
part of these theoretical developments, the precise relationship and difi'erences between 
Voronoi diagrams and medial axes was also fully explored. To construct topologically 
faithful Voronoi diagrams and medial axes, methods to compute the exact coordinates 
of the bifurcation or branch points of Voronoi diagrams and medial axes are required. 
Toward this end, a thorough classification of the diff'erent types of bifurcation points that 
may be present in the Voronoi diagrams and medial axes of planar domains was given [19-
21,35-38], and the numerical schemes required to compute the exact coordinates of the 
bifurcations of each type was discussed. 

19.3.3. Global decomposit ion algorithm 
Most algorithms for finding the medial axis are local, in the sense that they first attempt 
to find the curve/curve bisectors and then try to join them together where they meet. 
This is a common thread in all of the algorithms described above. 

In this subsection, we now describe the algorithm developed by Choi et al. [14]. For the 
lack of a suitable name, let us call it the global decomposition algorithm. Its overriding 
philosophy is quite different from the algorithms described above. First of all, it is global 
in nature: the main forte of this algorithm is its use of the domain decomposition lemma 
to decompose the original domain, no matter how complicated it is, so that it eventually 
becomes a collection of simple subdomains, called fundamental domains. If the original 
domain is subdivided for enough, then each fundamental domain becomes very simple, 
meaning that its medial axis transform is free of bifurcation points, and hence it is a 
real analytic curve. For this kind of fundamental domain, many curve/curve bisector 
algorithms are suitable for accurate computation of the medial axis (transform). For 
free-form curves, the algorithm proposed by Farouki et al. [18-21] seems to be the best. 

The crux of the global decomposition algorithm is a procedure that successively decom­
poses the subdomains and keeps track of its data, using an appropriate data structure and 
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operations on it. One important benefit of this algorithm is that computation is localized 
to each subdomain: whatever happens in each subdomain does not affect other subdo-
mains. This increases the stability of the algorithm. Since the medial axis transform of a 
domain with a free-from boundary is not a rational object, it is impossible to express it 
analytically. So one must try to obtain a good approximate medial axis transform. This 
is achieved by successively inserting circles so that the insertion of each circle becomes a 
domain decomposition step whose basic procedure is summarized as follows: 

• Killing homology effectively makes the domain simply connected for the purpose of 
the algorithm. 

• Divide the original domain into smaller and simpler domains and organize the data 
in such a way that the data structure makes transparent the existence of necessary 
bifurcation circles, inscribed osculating circles, etc., each of which requires a special 
algorithm. 

• Compute an approximate medial axis transform by employing suitable curve/curve 
bisector algorithms. 

• Using the above approximate medial axis transform data, run the recovery proce­
dures for the medial axis transform and the boundary for each subdomains. If the 
error is within tolerance, the subdomain is left alone. Otherwise, decompose further 
the subdomain where the error is the greatest. 

• Domain decomposition and recovery procedures are guaranteed to stop at finite 
steps because of various finiteness theorems. 

The finiteness results in Theorem 1 guarantees that this algorithm eventually terminates 
in finite steps in the sense that the domain is decomposed into fundamental domains each 
of which satisfies the error bound criterion. In the above, the killing homology procedure 
is a device to treat a multiply-connected domain as if it were simply-connected. More 
detail is given by Choi et al. [14]. 

We now briefly describe the data structure. The basic scheme is that each maximal 
circle is denoted by a vertex or a node of a graph, and the edges of the graph are formed 
according to the usual adjacency rule. The diagram on the left in Figure 19.6 denotes a 
subdomain, possibly a fundamental domain, and the diagram on the right represents part 
of the graph where the two nodes correspond to the two circles and the edge connecting 
them signifies the subdomain bounded by these two circles. Figure 19.7 represents a 
similar situation. The difference here is that the osculating circle (labelled '2') represents 
a terminal node, i.e., the vertex of degree 1 in the graph. 

Figure 19.8 shows a quite different picture. In this example, the node marked ' V does 
not correspond to any circle in the domain. However, by a topological argument, the 
domain bounded by the three circles 1,2, and 3 must contain a bifurcation point (circle). 
The problem here is that, although the existence of a bifurcation point is guaranteed, it 
has not yet been found. Our algorithm is designed to detect the existence of such implied 
bifurcation points, and in Figure 19.8 it is marked V to signify that it is a virtual node. 
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Figure 19.9 represents a similar situation except that in this case the virtual node has to 
be a terminal node. 

The overall performance of the algorithm is illustrated in Figures 19.10 to 19.17. Fig- 
ure 19.10 shows a given domain, and Figure 19.11 shows the stage reached by algorithm 
after several circles have been inserted. Its corresponding graph is given in Figure 19.12. 
In Figure 19.13, several more circles are inserted, and Figure 19.14 shows the recovered 
domain drawn on top of the original domain. In this illustration, domain recovery is sim- 
ply performed by using the quadratic curves obtained from the contact data of the circles. 
Figure 19.15 shows a case where yet more circles have been added, and Figure 19.16 shows 
the recovered domain drawn on top of the original domain; in this case the domains look 
identical. Figure 19.17 shows the medial axis computed this way. 

The global decomposition algorithm has been used in practical applications for many 
years, and we have found it to perform very robustly. 

19.4. C O N C L U D I N G  R E M A R K S  

We conclude this chapter by commenting on some important developments not mentioned 
above. 

One important area not very well understood is the medial axis transform of a general 
three-dimensional domain. It is in general very difficult to understand and is perhaps 
prohibitively expensive to describe so that no one was able to come up with a complete and 
mathematically rigorous treatment. But there are some progress: Sherbrooke et al. [42,43] 
developed an algorithm for general three-dimensional polyhedral solids of arbitrary genus 
without cavities, with non-convex vertices and edges. Their algorithm is based on a 
classification scheme which relates different pieces of the medial axis to one another even 
in the presence of degenerate medial axis points. Wolter [51] showed that the 'cut locus' 
concept offers a common framework lucidly unifying, regardless of dimension, different 
concepts such as Voronoi diagrams, medial axes and equidistantial point sets. 

Since its inception in the 1960s in the biological sciences, the medial axis transform 
has been quite useful in compactly representing the information of shapes ranging from 
crude bitmap images to general Riemannian manifolds. A salient topic in this regards 
is the 'inverse' problem of the medial axis transform, i.e., the boundary regeneration 
of the shape from its medial axis transform. Vermeer [47] provided the details for the 
conversion of the medial axis transform of a set of two- and three-dimensional objects 
to a boundary representation. She demonstrated certain smoothness properties of the 
medial axis transform and showed the relationship between the tangent to the medial 
axis transform at a point and the boundary points related to that medial axis point. 
Amenta et al. [2,3] introduced the 'power crust' algorithm to construct piecewise-linear 
approximations to both the object surface and the medial axis transform given an input 
point sample from the object surface. Their algorithm first uses the sample points to 
approximate the medial axis transform, and then apply an inverse transform to it to 
produce a piecewise-linear surface approximation: 

There is a volume of literature on many other aspects of the medial axis transform. For 
example, there are a lot of works in the application of the medial axis transform to the 
mesh generation in the finite element method in numerical analysis. Another example is 
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the so-called skeleton of the bitmap image which is essentially the same as the medial axis 
transform in the context of bitmap image [23]. 
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Edge connecting node 1 and 2 

Figure 19.6. A subdomain and its data structure. 
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Figure 19.7. A terminal node 
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standing , 69:156-169, 1998. 
40. D.J. Sheehy, C.G. Armstrong, and D.J. Robinson. Shape description by medial 

surface construction. IEEE Transactions on Visualization and Computer Graphics, 
2(l):62-72, 1996. 

41. E.G. Sherbrooke. 3-D Shape Interrogation by Medial Axis Transform. PhD thesis, 
MIT, 1995. 

42. E.G. Sherbrooke, N.M. Patrikalakis, and E. Brisson. Gomputation of medial axis 
transform of 3-D polyhedra. In Proceedings of the Third A CM Solid Modeling Con­
ference, pages 187-199, May 1995. 

43. E.G. Sherbrooke, N.M. Patrikalakis, and E. Brisson. An algorithm for the medial 
axis transform of 3D polyhedral solids. IEEE Transactions on Visualization and 
Computer Graphics, 2:44-61, 1996. 

44. E.G. Sherbrooke, N.M. Patrikalakis, and F.E. Wolter. Differential and topological 
properties of medial axis transforms. Graph. Models and Image Proc, 58:574-592, 
1996. 

45. V. Srinivasan and L.R. Nackman. Voronoi diagram for multiply-connected polygonal 
domains I: Algorithm. IBM J. Res. Develop., 31:361-372, 1987. 

46. T.K.H. Tam and G.G. Armstrong. 2D finite element mesh generation by medial axis 
subdivision. Adv. Engin. Software , 13:313-324, 1991. 

Figure 19.17. The domain of Figure 19.11 and its medial axis. 



19A. CONCLUDING REMARKS 471 

47. P.J. Vermeer. Medial Axis Transform to Boundary Representation Conversion. PhD 
thesis, Purdue University, 1994. 

48. G.M. Voronoi. Nouvelles applications des parametres continus a la theorie des formes 
quadratiques. J. Reine Angew. Math., 134:198-287, 1908. 

49. F.E. Wolter. Distance function and cut loci on a complete Riemannian manifold. 
Arch. Math., 32:92-96, 1979. 

50. F.E. Wolter. Cut Locus in Bordered and Unbordered Riemannian Manifolds. PhD 
thesis. Tech. Univ. of Berlin, 1985. 

51. F.E. Wolter. Cut locus and meidal axis in global shape interrogation and repre­
sentation. MIT Ocean Engineering Design Laboratory Memorandum 92-2, January 
1992. 

52. C.-K. Yap. An 0{n logn) algorithm for the Voronoi diagram of a set of simple curve 
segments. Discrete Comp. Geom., 2:365-393, 1987. 

Supported in part by the Research Institute of Mathematics, Seoul National University. 



Chapter 20 

Solid Modeling 

Vadim Shapiro 

Solid modeling is a consistent set of principles for mathematical and computer modeling 
of three-dimensional solids. The collection evolved over the last thirty years, and is now 
mature enough to be termed a discipline. Its major themes are theoretical foundations, 
geometric and topological representations, algorithms, systems, and applications. 

Solid modeling is distinguished from other areas in geometric modeling and computing 
by its emphasis on informational completeness, physical fidelity, and universality. This ar­
ticle revisits the main ideas and foundations of solid modeling in engineering, summarizes 
recent progress and bottlenecks, and speculates on possible future directions. 

20.1. INTRODUCTION 

20.1.1. A premise of informational completeness 
The notion of solid modeling, as practiced today,^ was developed in the early to mid-
1970's, in response to a very specific need for informational completeness in mechanical 
geometric modeling systems. This important notion has been promoted largely through 
the work at the University of Rochester [127] and remains central to understanding the na­
ture, the power and the limitations of solid modeling. The concept may appear academic 
and redundant in the context of any one particular geometric application or algorithm, 
because it simply implies that the computed results should always be correct. But solid 
modeling was conceived as a universal technology for developing engineering languages 
and systems that must guarantee and maintain their integrity in the following precise 
sense. 

• Any constructed representation should be valid in the sense that it should corre-

^ It is possible to trace the origins and techniques of soHd modeling to the early beginning of computerized 
geometry systems in 50's and 60's [87]; there are also interesting connections to the well documented 
evolution of engineering drawings and descriptive geometry [12], and even to the earlier methods of 
synthetic geometry employed by Greeks and Egyptians more than two thousand years ago. 

473 
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spond to some real physical object; 

• Any constructed representation should represent unambiguously the corresponding 
physical object; 

• The representation should support (at least in principle) any and all geometric 
queries that may be asked of the corresponding physical object. 

Informational completeness is often expressed as the last of these requirements because 
in fact it is assumed to imply the first two. Implicit in the above requirements is recogni­
tion that the same physical object may be represented in more than one way, and any two 
such valid representations must be consistent. The difficulties arise because all require­
ments are stated in terms of 'physical objects' that cannot be used for objective tests or 
unambiguous comparisons. To be clear, a human operator may indeed be able to ren­
der an ambiguous and subjective judgement of whether a computer program performs as 
desired, but no computer program can check if given computer representations are infor-
mationally complete until the notion of physical object is defined in terms of computable 
mathematical properties and independently of any particular computer representation. 
Without such definitions, there can be no guarantees, no automation, no standards, and 
no solid modeling. 

Similar reasoning led Requicha and Voelcker to propose a modeling paradigm in Fig­
ure 20.1 that shaped the field of solid modeling as we know it today [80,86]. The real 
world artifacts and the associated processes are abstracted by postulated mathematical 
models. The space of mathematical models and operations serves as the definition for the 
corresponding data type (class) that can be represented on a computer (in more than one 
way) by a representation 'scheme'. Formally, a representation scheme can be defined as a 
mapping from a computer structure to a well-defined mathematical object [80]. Finally, 
representation schemes and accompanying algorithms are organized into systems and soft­
ware applications that emulate the behavior of the real world artifacts and processes. 

20.1.2. Outline 
Following the modeling paradigm in Figure 20.1, it is common to survey the field of solid 
modeling in terms of developments related to mathematical models, representations and 
representation conversions, algorithms, systems, and applications. This paper adopts a 
similar approach. However, solid modeling is now a mature field with hundreds of relevant 
papers published every year in each of the above categories; many of these developments 
are covered in other chapters of this volume or other recent surveys. Accordingly, this 
chapter focuses on those aspects of solid modeling that distinguish it from other areas 
in geometric computing - specifically, on informational completeness, physical fidelity, 
and universality of representations and algorithms. As pointed out in [96], graphics, 
visualization, video, imaging, and many other scientific and consumer applications use and 
rely on solid modeling, but until now they have not driven the development of this field, 
perhaps because they do not appear to be critically dependent on its key characteristics. 
The concluding section provides a brief summary and speculates on the future of solid 
modeling. 

Readers who are interested in a more traditional exposition to solid modeling techniques 
will do well by reading the landmark paper by Requicha [80], the earlier surveys of solid 
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Figure 20 .1 . Modeling paradigm from [80] updated to reflect current understanding of concepts, 
mathematical modeling;, and computer representations in solid modeling; 

modeling [28,35,73,82,87,88,93,95,96] and the Proceedings of the ACM Symposia on Solid 
Modeling and Applications [1]. Several monographs treat important subtopics in solid 
modeling [33,54] at various levels of detail, but the field has developed rapidly and no 
comprehensive up-to-date text on solid modeling is available as of this writing. 

20.2. M A T H E M A T I C A L MODELS 

20.2.1. First postulates 
Early efforts in solid modeling focused on replacing engineering drawings with geometri­
cally unambiguous computer models capable of supporting a variety of automated engi­
neering tasks, including geometric design (shaping) and visualization of mechanical com­
ponents and assemblies, computation of their integral (mass, volume, surface) properties, 
simulations of mechanisms and numerically controlled machining processes, and interfer­
ence detection. These developments are described in several often cited articles [87,88,127] 
and culminated in the Requicha's paper [80] postulating the desired properties of solid 
objects. All manufactured mechanical components have jiniie size] they should also have 
well-behaved boundaries that can be displayed and manipulated on a computer; the initial 
focus was on the rigid parts made of homogeneous isotropic material that could be added 
or removed. These postulated properties can be translated into properties of subsets of 
the three-dimensional Euclidean space E^. 

To have a finite size, the subsets must be bounded, and rigidity is readily formulated in 
terms of congruence under rotations and translations.^ The requirement of well-behaved 

^It should be clear from the other chapters of this handbook that more general transformations in the four-
dimensional projective spaces offer great computational advantages for representation and visualization 



476 CHAPTER 20. SOLID MODELING 

boundary is usually interpreted to mean that the set's boundary can be described by a 
finite collection of piecewise smooth patches, or equivalently can be finitely triangulated. 
In addition, the collection of the sets should be closed under several set operations: mate­
rial addition and removal roughly correspond to the set union and difference operations, 
while interference between two such sets can be modeled by a set intersection. The 
class of semi-analytic sets satisfies all these requirements and is defined to include all 
those sets that can be represented by finite Boolean combinations of inequalities of the 
form fi{x, y, z) > 0, where fi is an analytic function (in the sense of admitting the Taylor 
series expansion about any point in space). By definition, semi-analytic sets are closed 
under the Boolean set operations and include the subclass of semi-algebraic sets, as well 
as all sets represented by polynomial and rational equalities and inequalities. Closure, 
projection, and connected components of a semi-analytic set are all semi-analytic, and 
bounded semi-analytic sets are finitely triangulable [31,52,79]. 

But not all bounded semi-analytic subsets of Euclidean space correspond to the intuitive 
notion of "solid". Semi-analytic sets may be open, closed, or neither; they may also be 
heterogeneous in dimension. A proper solid should be homogeneous in dimension and 
should contain its boundary. This notion of solidity can be characterized in more than one 
way mathematically. The two common approaches to defining solidity rely respectively 
on the point-set topology and the (combinatorial) algebraic topology. Both are important 
because they give rise to complementary models and computer representations: the point-
set model defines the local test for solidity, while the combinatorial model specifies how 
solids can be built up from simple pieces (cells). 

20.2.2. Continuum point set model of solidity 
For any subset X of the three-dimensional Euclidean space E^, the points of E^ can be 
classified according to their neighborhoods^ with respect to X: a full ball neighborhood 
indicates that the point belongs to the interior of X] points with partial neighborhoods 
belong to the boundary of X. For X to be considered solid, it should contain only 
interior points and all those boundary points that have some interior points nearby; all 
other points with eroded lower-dimensional neighborhoods indicate the lack of solidity. 
See example in Figure 20.2. 

Formally, set X is called closed regular"^ if 

X = closure{interior{X)) (20.1) 

Based on this definition, introduced and studied in [79,84,122], we can now check the 
neighborhoods of individual points in the set X to see if they pass the neighborhood 
test. If all points pass, X is indeed solid; otherwise the set is not solid, but we can 
regularize (and therefore solidify) any set X by taking the closure of its interior, as shown 
in Figure 20.2. Obviously, regularization can both add points to and/or remove points 
from the otherwise non-regular set. 

of curves and surfaces in three-dimensional Euclidean space. 
^In this context, the neighborhood of a point p in set X is an open ball of sufficiently small radius, 
centered at p, intersected with X. 
'^The dual definition of solidity using open regular sets was advocated in [5] to allow overlap of boundaries 
for assembly modeling, but it did not catch on. 
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Figure 20.2. Closed regular sets capture the continuum notion of solidity in terms of neigh­
borhoods of individual points in the set. Solids are not closed under non-regularized set 
opertions, but closed regular sets form a Boolean algebra with regularized set operations. 

But now we appear to have a problem: Figure 20.2 shows that the intersection of two 
closed regular sets need not be regular, and the set difference of two closed regular sets is 
usually not even closed. The problem is solved by requiring that the results of the usual set 
operations are followed by the additional step of regularization. These new regularized set 
operations are denoted by Pi*, U*, and - * respectively; they indeed guarantee the solidity 
of the results, even if the outcome may sometimes be counter-intuitive. For example, 
the regularized intersection of two solids with overlapping boundaries is empty by this 
definition, as long as their interiors do not intersect. There may seem to be little reason 
to expect that these new operations should possess any algebraic properties related to the 
usual non-regularized set operations, but they do: closed regular sets form a new Boolean 
algebra under the regularized set operations fl*, U*, and —* [43,57,84]. ^ 

Closed regular semi-analytic and bounded sets are called r-sets following Requicha [79, 
80]. The same formalism conveniently applies to planar shapes and surface patches (two-
dimensional solids), solid lines and curve segments (solid curve), and so on - by simply 
changing the dimension and/or type of the reference universal set, which in turn modifies 
what we mean by a neighborhood or a ball. 

20.2.3. Combinatorial model of solidity 
Another way to characterize the set as solid is combinatorially, i.e. as composed of many 
solid but simple pieces (not necessarily of the same dimension), usually called cells. As 
subsets of Euclidean space, all cells are required to be orientable, with one of two ori­
entations corresponding to an arbitrarily chosen sense of direction. Theoretically, the 

^Note that the commonly used term "Boolean operations" is ambiguous in the larger context of geometric 
modeling because it is used to refer to either standard, or regularized, or both types of set operations. 
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particular choice of cells is not very important, because a solid is characterized by the 
mere existence of a non-unique decomposition into primitive solid cells.^ For example, all 
semi-analytic sets can be decomposed into very coarse disjoint manifold subsets of various 
dimensions as shown in Figure 20.3; the resulting submanifolds are called strata and the 
corresponding decomposition a stratification [131]. Alternatively, any semi-analytic set 
may be triangulated, i.e., decomposed into a collection of curved triangles (points, curve 
segments, triangular surface patches, and tetrahedral elements) [52]; triangles often play 
the role of the simplest common denominator cells in the sense that all other cells may 
be further triangulated. 

Stratification of solid's boundary 
into 0-, 1 -, and 2-dimensional 
manifold strata 

Whitney regular stratification of the 
two-dimensional set defined by 

x' - zy' = 0 

Stratification of the plane into strata 
that ore sign-invariant with respect 
to the three primitives 

Figure 20.3. A minimal Whitney regular stratification of a set into connected manifold 
strata satisfies the frontier condition: the boundary of every stratum is a union of other 
strata. 

Because a combinatorial model is defined in a cell-by-cell fashion, all geometric com­
putations are reduced to presumably simpler computations on individual cells. The cells 
are usually chosen to be disjoint (for open cells) or to have disjoint interiors (for closed 
cells) and properly joined together into a cell complex so that they can also provide fi­
nite 'spatial addresses' for points in an otherwise innumerable continuum.^ Formally, the 
proper joining of cells amounts to satisfying the frontier condition which requires that 
the (relative) boundary of every cell is a finite union of other cells in the complex. In­
tuitively, this means that all points in any stratum are alike: their neighbourhoods are 
homeomorphic to each other and they all meet the same other strata. This combinatorial 
model of solidity is usually summarized by saying that, in addition to being semi-analytic 
bounded subsets of Euclidean space, solids are homogeneously n-dimensional topological 
polyhedra [3,4,79,80]. 

^One should not confuse this theoretical issue with practical representational and algorithmic considera­
tion in representing solids on a computer using cellular structures which we consider in section 20.3.2. 
^The notions of open, closed, closure, interior, etc. are all relative to the larger set; in our context, usually 
a curve, a surface, a volume, or a /c-manifold. 
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Arguably the most important property of a topological polyhedron is its combinatorial 
boundary which is itself a lower dimensional polyhedron and can be obtained by a pure al­
gebraic computation using the concept of chains. Given a cell complex K, Sip-dimensional 
chain, or simply p-chain, is a formal (i.e., cell-by-cell) sum 

ai(7i + a2cr2 -h . . . + anCr ,̂ (20.2) 

where â  are ]>-dimensional cells of K and â  are integer coefficients. Two p-chains on a cell 
complex can be added together by collecting and adding the coefficients on the same cells. 
The collection of all p-chains on K form a group, and using chains we can replace incidence, 
adjacency, and orientation computations with a simple algebra. In particular. Figure 20.4 
illustrates how the oriented boundary d operation can be defined algebraically in terms 
of elementary chains using only three coefficients from the set { — 1,0 ,+!} [3,32,62]. 

^T^^pr "W^) 

Boundary operation on k-chain transfers the coefficients 
fronn every l<-cell to all incident (I<-1 )-cells with +/- sign 
depending on relative orientation. Addition cancels the 
interior l<-cells, and yields the (k-1 )-boundary Repeating the 
operation produces a (k-2)-chain with oil 0-coefficients. 

Boundary of a three-dinnensionai solid nnust be a 2-chain 
whose boundary is 0, i.e. a 2-cycle. It does not have to 
be 2-nnanifold, but every 1 -cell (edge) is shared by an 
even nunnber of 2-cells (faces). 

Figure 20.4. Combinatorial model of solidity allows algebraic definition of topological 
properties in terms of k-dimensional chains with coefficients 0 ,1 , -1 . 

Starting with a 3-dimensional solid represented by a 3-chain, the boundary operation 
d produces an oriented 2-chain (and the corresponding 2-dimensional cell complex) that 
defines the 2-dimensional boundary of the original solid. If we apply the boundary oper­
ation again to the 2-chain, we obtain a 1-chain with all zero coefficients. In other words, 
the fundamental property of d is that 

d{d{X)) = 0 (20.3) 

and guarantees that the boundary set is one or more "closed surfaces" sometimes also 
called "shells." Formally, such a set whose boundary is a zero chain is called a 2-cycle [32, 
80]. 

For historical reasons [8,16], a more restrictive model of solidity has often been adapted 
where topological polyhedra are restricted to the orientable three-dimensional manifolds 
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with boundary.^ With this restriction, the combinatorial boundary, defined as above, 
is not only a 2-cycle, but also a 2-manifold. This manifold model of solidity claims two 
theoretical advantages: (1) it rules out non-manifold sets that are sometimes deemed non-
physical, and (2) the connected manifold boundaries are completely classified in terms of 
their Euler characteristics (see section 20.4.1). As we explain below, manifold models are 
also easier to represent on a computer. But unfortunately, this restriction to manifold 
solids violates one of the important postulated properties - that solids be closed under 
the regularized set union and intersection. (The union of two manifold sets touching at a 
point is a non-manifold set.) On the other hand, it is important to recognize that every 
2-cycle is indeed a union of 2-manifolds. 

20.2.4. Generalizations 
More general computer representations of mechanical artifacts often include unbounded 
and trimmed curves and surfaces (used for aesthetic, reference, manufacturing, and other 
purposes), which are combined with traditional solid models (to represent cracks, or ma­
terial heterogeneity, to simulate surface forming, and so on). This in turn means that 
the paradigm in Figure 20.1 needs to be expanded to include more general mathematical 
models, both continuum and combinatorial. The generalizations are relatively straight­
forward in principle, because they essentially amount to relaxing some of the original 
constraints. General continuum models correspond to closed semi-analytic subsets of E^, 
while the general combinatorial model is readily seen as an arbitrary collection of cells 
from some dimensionally heterogeneous cell complex [64,129]. 

Thus there appear to be two competing mathematical theories of solid modeling: point-
set continuum and algebraic topological combinatorial. Fortunately, the two theories are 
entirely consistent, and we can use the two mathematical models interchangeably [79], 
relying on either continuum or combinatorial properties whenever needed. The key fact: 
every closed semi-analytic set is a topological polyhedron that can be represented by some 
finite cell complex. The class of closed regular subsets of E^ coincides precisely with that 
of homogeneously d-dimensional polyhedra, and furthermore, it can be shown that every 
2-cycle in E^ bounds some unique solid. We know immediately that every solid may 
be represented unambiguously by its boundary, and that the boundary has a combina­
torial structure of a 2-d homogeneous polyhedron whose points all have homogeneously 
2-dimensional neighborhoods. 

20.3. C O M P U T E R R E P R E S E N T A T I O N S 

There are several ways to group various computer representation schemes, including Re-
quicha's widely accepted description of six 'pure' representation schemes [80], but as more 
new and hybrid representation schemes are being proposed, their complete classification 
appears impractical. This survey takes a slightly different view that there are really only 
two fundamental ways to represent a point set, closely related to the two mathematical 
models of solidity identified above. 

^In a fc-manifold with boundary, every point has a neighborhood that is homeomorphic to either a k-
dimensional open ball (if the point is an interior point), or a A;-dimensional half-ball (if the point lies on 
the boundary. 
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• Implicit (and constructive) representations give rules for testing which points belong 
to the set and which are not; such representations are naturally supported by the 
point set continuum model of solidity; and 

• Enumerative (and combinatorial) representations specify the rules for generating 
points in the set (and no other points); such representations are closer in spirit to 
the combinatorial view of solidity. 

This classification of representation methods is probably the coarsest possible, but recall 
that any informationally complete representation should in principle support any and 
all geometric queries. Thus, one (even if inefficient) way to test if a point belongs to 
the set or not is to see whether the point is among the points being generated by some 
enumerative representation; and a perfectly valid way to generate points in the set is 
to test all candidate points against some implicit representation to determine whether 
they belong to the set or not. Such views are not as extreme as they may appear at 
a first glance, and in fact all representations are 'misused' in similar fashion to support 
applications for which they were not originally designed. In our higher-level view of 
representation schemes, the representation rules (implicit or enumerative) are essentially 
computable implementations of semi-analytic functions.^ 

20.3.1. Implicit and constructive 
A very general method for defining a set of points X is to specify a predicate A that can 
be evaluated on any point p of space: 

X = {p\A{p) = true} (20.4) 

In other words, X is defined implicitly to consist of all those points that satisfy the 
condition specified by the predicate A. The simplest form of the predicate is the condition 
on the sign of some real-value function / (p ) , resulting in the familiar representations of 
sets by equalities and inequalities [65,91]. For example, if / = ax-\-by + cz + d, conditions 
f{p) = 0, f{p) > 0, and f{p) < 0 represent respectively a plane, a closed linear halfspace, 
and an open linear halfspace respectively. 

More complex functions can be employed to define progressively more complex geo­
metric shapes, giving rise to the whole discipline of implicit modeling [11]. A natural 
approach for semi-analytic sets is to define more complex predicates constructively using 
logical combinations of simple "primitives", which is equivalent to using the standard 
set operations (n, U, —) on the sets defined by primitive predicates. (See examples in 
Figure 20.5.) Furthermore, the theory of /^-functions [103,99] (see also the Chapter on 
Finite Element Approximation with Splines by Klaus Hollig) allows conversion of such 
representations into a single function inequality for any closed semi-analytic set. 

Representation by point classification 
Given an arbitrary point, there are at least two distinct methods for deciding its mem­
bership in the represented set. One could replace the constructive representation with 

^In this sense, the two representation methods correspond to the two common methods for describing 
functions: implicitly and parametrically, the latter being essentially the continuous form of enumeration. 



482 CHAPTER 20. SOLID MODELING 

a single inequality predicate whose truth is determined by testing the sign of some real-
valued function at the given point. This approach leads to increasingly complex arithmetic 
computations for what is essentially a logical computation, and therefore appears to be 
a poor computational strategy except when such functions are constructed directly. A 
more attractive alternative is to represent the constructive geometric representation on 
a computer using the usual tree data structure, with the primitive predicates (defining 
the primitive halfspaces) stored in the leaves of tree and the logical (set) operations are 
stored at the interior nodes. Then, the algorithm for point membership query on this 
data structure can be implemented naturally by proceeding recursively down the tree and 
"inverting" every set construction {op) in terms of the corresponding logical operation 
(0): 

p e (XopY) =^{peX)e{peY) (20.5) 

Such algorithms are appealing because they require only arithmetic computations (at 
the leaves of the tree) and logical operations (at the internal nodes); the corresponding 
Boolean structure facilitates various speed-up techniques for pruning, localizing, restruc­
turing, and parallelizing the computations [97,120]. 

U>i + <jJ2-\- ytJJi + W2 ^ ^ 

^ 

CSG Representation 

wi = 1 - (x + 2)"'' - (y - 2)2 > 0 

. = :-(|r-(|)'%« 
Constructively defined innplicit representation of the 
union of two sets can be defined by ttie logical "or" 
operation or a single arithmetic expression. 

Intermediate resutis 

Point membership classification against CSG requires 
representation and computation of neighborhoods; 

Q points that classify "on" with respect to A and B may or 
D may not classify as "on" with respect to A op* B 

Figure 20.5. Constructive representations and Constructive Solid Geometry. 

Constructive solid geometry 
Using such constructive representations for solid modeling requires several extensions, 
as dictated by the mathematical properties postulated for solids in section 20.2. Rigid 
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body motions of the constructively defined sets are represented by the usual method 
of coordinate transformations that can also be stored as an intermediate node in the 
constructive tree; point membership test against a set transformed by motion M is also 
inverted in a straightforward fashion: 

p G M[X] => M'^IP] e X (20.6) 

Recall that semi-analytic sets are closed under the standard set operations but do not 
guarantee solidity; to implement the algebra of closed regular sets, the constructive rep­
resentations are modified in two ways: (1) every primitive set is required to be closed 
regular; and (2) only regularized set operations are allowed. The latter may appear to 
be a relatively minor matter of replacing every set operation {op) by the corresponding 
regularized op*. But in fact, this dramatically changes the computational properties of the 
constructive representations: point membership queries against the regularized construc­
tions require substantially more work than is implied by Equation (20.5). Specifically, 
combining results of two classifications with respect to sets A and B requires not only 
the logical information, but also representing and combining the neighborhoods of p with 
respect to A, B, and Aop*B [119,122] (see the example in Figure 20.5.) 

The constructive representation scheme relying on closed regular primitives, rigid body 
motions, and the regularized set operations is called Constructive Solid Geometry or 
CSG [85]. By design, the use of CSG is limited by availability of solid primitives and 
by the necessity to represent and maintain the neighborhood information for points on 
primitives and their combinations. The latter task is particularly non-trivial for points 
with non-manifold neighborhoods and/or lying on high-degree tangent surfaces. Complete 
solutions have been worked out for solids bounded by planar and second degree surfaces, 
with only limited results available for more complex solids. The attractive properties of 
CSG include conciseness, guaranteed validity (by definition), computationally convenient 
Boolean algebraic properties, and natural control of the solid's shape in terms of high-
level parameters defining the solid primitives and their positions and orientations. The 
relatively simple data structures and the elegant recursive algorithms further contributed 
to the popularity of CSG in academia and early commercial systems. 

Other constructive representations 
In principle, many other constructions may be added to the lexicon of implicit represen­
tations, notably offsetting [94], blending [133] , convolutions [10], and other skeletal-based 
representations, Minkowski operations [25,61], and sweeping [37,115]. Such constructions 
have numerous applications in mechanical design, analysis, and planning tasks; they also 
fiourished in computer graphics [113] where computational time and guarantee of cor­
rectness are often deemed less important than the visually pleasing results. But while 
such formal definitions are sometimes straightforward, they do not always guarantee the 
solidity of the result and do not always support a clear point membership query - which 
came to be regarded as a formal test for any unambiguous representation. The most pop­
ular of these constructions is the sweep representation shown in Figure 20.6 (considered a 
distinct representation scheme in [80]), defined for a given set X and continuous motion 
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M{t) by the infinite union operation: 

sweep{X,M)= [j X^ 
geM(t) 

(20.7) 

where X^ denotes set X positioned at the configuration q. In other words, sweep{X, M) is 
the set of all points swept (or occupied) by X at some time during the motion. Sweeps are 
relatively well understood [2] and are useful for variety of representational tasks: comput­
ing space occupied by a moving object, material removed by a moving cutter, extrusion 
of a planar cross-section along one-dimensional path, and so on. The point membership 
test for sweep follows naturally from the studies of the dual infinite intersection operation 
and also inverts the construction: p € sweep(S, M) if and only if the inverted trajectory 
of the point sweep{p, M~^) intersects the original solid S [39] (see Figure 20.6). 

Boundary of sweep 
Trajectory of motion 
Inverted trajectory 

Sweep of a planar (two-dlnnensional solid) 
cross-section according to helical motion 
generates a three-dimensional solid. 

Point P belongs to sweep (S, M) if and only if 
the trajectory of P under inverted motion M^ 
intersects the solid S in its starting position. 

Figure 20.6. Sweep(S,M) is a constructive representation for a set of points occupied by 
S under motion M; a point membership procedure inverts the construction. 

By definition, the constructive approach can be utilized for representing any and all 
semi-analytic sets, relying only on a finite set of analytic primitives and set operations. 
The operations of closure and connected component preserve semi-analyticity and may 
also be used effectively [105]. Particular representation schemes have been proposed to 
include extension of the classical CSG representations using topological operations in [83] 
and constructive representations for n-dimensional semi-analytic sets [13]. 

All constructive approaches are limited by their ability to compute and manage topolog­
ical neighborhood information of the points in the represented sets. A related significant 
drawback of CSG and all other implicit representations is the lack of explicit represen­
tation and parameterization of the solid's interior and particularly its boundary.^^ This 
leads to several practical complications, including computational difficulties in generating 
ordered points for the purpose of display and/or engineering analysis. Without the ex­
plicit representation, spatial locations of points in the solid or its portions are not known 

^^Observe that explicit representation of the boundary also implies explicit representation of the neigh­

borhood information for all points of the solid. 
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a priori. In other words, the represented subsets are not spatially addressable, and there­
fore cannot be referenced persistently, for instance for attaching labels and engineering 
attribute information. Comparison of implicitly-represented solids is also problematic: 
the same solid admits infinitely many constructive representations, and even deciding if 
the represented set is empty may require non-trivial computations [120]. 

20.3.2. Enumerative and combinatorial 
Representation by enumeration 
A seemingly more direct way to define which points belong to the solid and which do 
not is to enumerate the points by an explicit parametric rule. Thus, a planar curve is 
commonly defined by a mapping [0,1] -^ E^. For every value of t G [0,1], the points on 
the curve are defined by the pair of functions x{t),y{t). Generating points in the defined 
curve segment is a matter of marching along the unit interval in small increments and 
evaluating the coordinate functions for every value of t. Testing if a given point belongs 
to the curve segment requires a more complex numerical procedure but is clearly well-
defined and computable task. Similarly, one can define parametric surface patches and 
tri-variate solids by mappings from the unit square or cube into E^. Many chapters in this 
handbook deal with non-trivial issues related to representation of such parametric curves 
and surfaces for complex shapes. As the next best thing, we can represent a complex 
solid by enumerating not individual points but simple solid chunks or cells ̂  relying on the 
combinatorial properties of solids as topological polyhedra. This approach leads to per­
sistent and spatially addressable data structures that support development of cell-by-cell 
traversal algorithms and can be controlled locally and incrementally, which is particularly 
convenient for point generations and local modifications. The point membership query 
reduces to a search procedure aimed to determine which of the represented cells (if any) 
contains the given point. The main drawbacks of the combinatorial data structures have 
to do with their size and apparent lack of means to create, validate, and manipulate such 
structures directly. 

Broadly, all combinatorial representations can be classified according to (1) the choice 
of the cells; and (2) restrictions on how the cells must fit together. What makes a good 
cell? The common requirements include dimensional homogeneity, connectedness, bound-
edness, and semi-analyticity. Cells may be relatively open or closed (depending on how 
they fit together to form a closed set); they may or may not be required to be smooth or 
simply-connected; but their representation must support one or both of the two funda­
mental computations: point testing or point generation. In other words, the cells should 
be simple enough to be unambiguously representable: either implicitly or enumeratively, 
or preferably both. Depending on the type of cells, solids may be assembled from cells in 
at least one of two distinct ways described below: as groupings or as cell complexes. 

Groupings 
Groupings^^ of solid cells of the same geometric type and dimension is probably the 
simplest way to represent the set. Example of groupings include: collections of three-

^^We prefer the term k-grouping (for fc-dimensional grouping) introduced recently by [24] in favor or 
'spatial enumerations,' or 'sampled' representations, because we do not wish to imply an approximation 
or to specify the source of the represented data. 
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dimensional cubes (called voxels) [111], ray-files of ray segments (finite size rectangular 
columns) [26], union of overlapping spherical balls, and files of two-dimensional polygons 
that are commonly used in computer graphics. The common principle underlying all 
groupings is that they are assembled from closed cells representing small chunks of space. 
The points in the interior of a cell are characterized by the constant neighborhood: all 
points have the same type of neighborhood with respect to E^, and the cells are chosen 
simple enough to admit both implicit and parametric representations. Because all cells 
are of the same geometric type and dimension, groupings support development of sim­
ple and brute-force algorithms. For example, the point membership query reduces to a 
point-cell test that is repeated for every cell. Depending on their particular geometric 
type, groupings may be organized into more compact and efficient computational struc­
tures (trees, hierarchical graphs, etc.) supporting efficient queries, processed by parallel 
algorithms and specialized hardware. One of the most popular representations in this 
category is called octree: a hierarchical method for representing a grouping of orthogonal 
three-dimensional boxes (usually cubes), where each box intersecting the boundary of the 
solid is subdivided into eight smaller boxes, and so on until the desired level of resolu­
tion is reached[58,18]. A grouping of convex cells defined implicitly by intersecting linear 
halfspaces may be more efficiently represented by a binary space partition (BSP) tree; 
each BSP node corresponds to a particular sequence of halfspaces and thus to a convex 
subregion of space [118]. 

By construction, groupings are guaranteed to be valid solids, but only some solids -
those with geometry representable by the unions of cells in the grouping - can be rep­
resented exactly. Other solids can be approximated, for example, by a multi-resolution 
grouping, or groupings are often enhanced with additional geometric representations spec­
ifying precisely what geometry is being approximated [18,60]. Creating groupings may 
be expensive and operating on them may be difficult; restrictions on groupings (for ex­
ample, shape of cells or orientation) may imply that* the represented solids are not closed 
under common transformations. Even the usual operations of rigid body motions or set 
operations may require substantial processing and reconstruction. 

Another serious drawback of groupings has to do with lack of explicit representation for 
the incidence or adjacency between the cells in the grouping: no conditions are usually 
imposed on the neighborhoods of points with respect to neighboring cells. While the 
corresponding topological polyhedron can be computed in principle, it may not be a 
grouping itself, which implies the need for additional data structures and algorithms. For 
example, it is not immediately clear how to define, compute, and represent the (well-
defined but lower-dimensional) boundary of a solid represented by a c/-grouping. Last but 
not least, because groupings are inherently homogeneous combinatorial structures, they 
are not suitable for representing mixed-dimensional point sets. 

Cell complexes 
The key difi'erence between a grouping and a cell complex is that the latter requires 
neighborhoods for points in a cell to be constant not only with respect to E^, but also 
with respect to the other cells. In other words, a cell complex is a representation of a 
stratification of a solid. Cell complex representations implement the combinatorial model 
of solidity directly, requiring that every solid is a topological polyhedron and may therefore 



20.3. COMPUTER REPRESENTATIONS 487 

be decomposed into a finite cell complex assembled from solid cells of different dimension. 
This effectively turns all geometric and topological queries on a given solid into simple 
algebraic (syntactic) computations. A number of data structures have been proposed for 
representing general (heterogeneous) cell complexes [30,64,129]. Further generalizations 
appear to be taking place, both in geometry and topology of the sets representable by solid 
modeling systems. A cellular representation of n-dimensional manifolds and sets has been 
proposed by [17,48], and a functional programming language whose semantics is defined 
by operations on n-dimensional polyhedral cell complexes has recently emerged [70]. 

Any such representation must contain enough information to determine the geometry 
of every cell and the incidence between the cells - and therein lies the main problem 
difficulty with all such representations: geometric and incidence information are not in­
dependent. In principle, defining geometry of every cell in the cell complex is sufficient to 
also represent the incidence information through geometric tests. But in practice, geomet­
ric tests are imprecise, searching for adjacent cells is inefficient, and specifying geometry 
of adjacent cells independently is redundant and wasteful since incidence constrains the 
corresponding geometries to 'match'. Specifically, but without loss of generality, let us 
assume that every cell a is a subset of a larger set that must include at least the closure of 
a and is called the carrier^'^ of a; then by the definition of cell complex: (1) every /c-cell 
belongs to the intersection of the carriers of all incident (A:H-l)-cells (cofaces); and (2) the 
carrier of every A;-cell is an interpolation of all incident {k — 1) cells (faces). Therefore, 
the incidence relations themselves are a convenient method for defining the geometry of 
the incident carriers. The two conditions apply simultaneously and independently, even 
though only one of them suffices to define the complex mathematically. For example, 
in a simplicial complex, only coordinates of the 0-simplices (points) are represented geo­
metrically; carriers of higher-dimensional simplices are defined as interpolations (usually 
linear): edges interpolate points, triangles interpolate edges, and so on. By contrast, 
geometry of many solid cells is defined by set operations, for example curves of intersec­
tion between second degree surfaces are commonly found in many mechanical parts. In 
such situations it may be more convenient to define the carriers of the 2-cells (surfaces) 
and to define the carriers of the 1-cells (edges) implicitly as subsets of the correspond­
ing intersection curves. Thus, it should be clear that many cellular representations 
may be devised that would differ in the choice of which geometric carriers are specified 
explicitly and which are implied by the incidence relations between adjacent cells [132]. 
This determines in part which incidence information can be determined in constant time 
and which requires searching. Representing all incidence relationships in a cell complex 
substantially increases the size of the resulting data structure and is therefore deemed 
impractical. 

The main advantage of the cell complexes over groupings is that they represent exactly 
and explicitly all topological information about the solid, including its interior, bound­
ary, dimensional skeletons, and connectivity. No additional numerical computations are 
required to answer such topological queries, and all solids may be represented exactly -
at least in principle. On the other hand, the graph representation of the incidence be­
tween the various cells and the high degree of geometric redundancy turns cell complex 

^^In other words, carrier is a generic dimension-independent term for possibly unbounded curve, surface, 
volume, etc. 
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Geometric carrier of every celi in a cell complex iriterpoiates 
oil incident lower dimensional cells, and every cell lies in the 
intersection of all carriers of the incident higher-dimensional 
cells. Shown above are carriers for a partial cell complex 
representing the boundary of the solid in Figure 3. 

e 
left face J^. 

^^ right face % o 

Winged-edge data structure represents incidence and 
local orientation of cells in a manifold boundary 
representation in terms of edge records. Each record 
points to ordered lists of two vertices, two faces, and two 
edges on each of the faces. Vertices and faces are 
represented by loops of edges. Geometric carriers can 
be associated with each cell, or implied by the 
interpolation and/or intersection conditions. 

Figure 20.7. Geometric compatibility (intersection, interpolation) conditions and inci­
dence information in cellular representations are not independent and must be maintained 
at all times. 

representations into inherently serial linear size structures and complicates development 
of efficient algorithms. Maintaining the validity of cellular representations is a non-trivial 
task requiring a guarantee that all redundant information remains consistent at all times: 
all represented geometric carriers must satisfy all intersection and interpolation condi­
tions, while the cells themselves must remain disjoint as required by the definition of the 
cell complex [101]. 

20.3.3. Boundary representation: a compromise 
Historically, boundary representation was one of the first computer representations to be 
used for description of polyhedral three-dimensional objects [8,15], but both its strengths 
and weaknesses as a representation scheme can be appreciated better when examined in 
terms of properties of implicit and combinatorial representations. Recall that every solid 
X has the well-defined boundary dX, and the boundary of every three-dimensional solid 
in E^ uniquely determines it.^^ We can use this fact to represent the solid implicitly by its 
boundary, without enumerating points in the solid's interior. In other words, we represent 
the solid X by the predicate: 

X = {p\p e set bounded by dX} (20.8) 

and rely on the Jordan-Brouwer theorem (a generalization of the planar Jordan curve 
theorem) guaranteeing that dX separates the Euclidean space E^ into exactly two sub-

^^This statement is not as trivial as it may appear: the boundary of a semi-infinite set or the boundary 
of a curved face (for example lying on a sphere or a torus) in general does not uniquely determine the 
set it bounds, because there is usually another set with the same boundary. 
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sets, one of which is the bounded interior of X and the other is unbounded exterior space. 
Before we can declare this apparently implicit representation of solids a bona fide rep­
resentation scheme, we need to give a computable point membership query on such a 
representation of X . 

Suppose we have some representation for dX and we know that the represented set is 
the boundary of some unique solid X. If we pick two arbitrary points: point a in the 
interior of X and point b outside of X, then any path connecting a and b must intersect 
the boundary dX an odd number of times. Suppose we pick the point b to be always 
outside the solid X , then we can test if point a is inside or outside the solid by simply 
counting the number of times the path from a to 6 intersects dX: odd means a is in X, 
even means out By far the easiest way to implement this is to choose any linear path 
from a to the point b at infinity, which reduces the point membership test to intersecting 
a linear ray with the set dX. 

But how do we represent dX? The answer is: any way we like, as long as we can 
guarantee that it is indeed an unambiguous representation of some solid's boundary and 
that the intersection with an arbitrary line segment can be computed. One could choose 
to represent the boundary dX using any of the implicit, constructive, parametric, or 
combinatorial methods we already described above. Most of the methods and various 
combinations have been tried, but the main challenge for any boundary representation 
is to assure that the represented set is indeed a boundary of a valid solid. The validity 
conditions follow clearly from the combinatorial model of solidity, making the combina­
torial representation a natural choice. Specifically, since the boundary of every solid is a 
2-cycle in E^, it must: (1) be a valid cell complex (disjoint cells satisfying the frontier); 
(2) be homogeneously two-dimensional (every lower-dimensional cell is in the closure of 
some 2-dimensional cell); (3) have every edge shared incident on an even number of faces; 
(4) be orientable, which means that the material side can be defined on every face in a 
globally consistent manner. 

Furthermore, every such structure is guaranteed to represent a boundary of some valid 
solid.^^ Many cellular representations have been proposed for boundary representations, 
but the oldest and the most popular representations enforced the above conditions only 
for manifold solids whose boundary points have neighborhoods homeomorphic to two-
dimensional disks. In such boundary representations, every edge is shared by exactly two 
faces, as typified by the popular winged-edge data structure [8] illustrated in Figure 20.7. 
The incidence information in a winged-edge boundary representation consists of linked 
lists of edge records, with each record using eight pointers (pointing to two vertices, 
two faces, and four other edges) to enforce locally the orientability and manifoldness 
conditions. In this scheme, vertex and face records are defined by the ordered lists of 
the incident edges. Geometric carriers may be associated with any of the cells in the 
data structure parametrically or constructively, in a manner that satisfies all implied 
interpolation and intersection conditions, but the global non-interference conditions on 
cells are not enforced automatically and must be checked. A variety of other, similar in 
spirit, manifold boundary representations have been proposed in efforts to optimize the 
space, ease of manipulation, or handling of specific geometric carriers [23,29,132]. 

"̂̂ In fact, every 2-cycle in E^ is orientable, but explicit representation of orientation allows to check for 
this condition locally and to extend applicability of boundary representations to more general sets. 
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Boundary representations for non-manifold solids can be designed directly as repre­
sentations of 2-cycles in Euclidean space or by treating the boundary of a non-manifold 
solid as a union of manifold shells.^^ Both approaches also apply to boundary repre­
sentations of arbitrary heterogeneous cell complexes, that can be viewed as a union of 
boundary-represented manifolds of various dimensions [30,46,64,129,134]. 

As cellular structures, boundary representations have a number of attractive properties. 
Because the boundary of a solid is unique, it is possible to invoke additional conditions 
(e.g., smoothness, connectedness, sign-invariance, orientation, and so on) in order to de­
fine and construct the unique canonical decomposition of the boundary [112]. Due to the 
dimensional reduction, boundary representations can be much smaller than most three-
dimensional cellular representations of the same solid. Boundary representations also 
inherit the disadvantages of the cellular structures mentioned above, and in particular 
they are non-trivial to construct and maintain. Regularized set operations and other 
constructions that guarantee solidity can be implemented directly on boundary repre­
sentations, but this approach requires support for non-manifold boundary representations 
because manifold boundary representations are not closed under such operations. Another 
alternative is to devise a set of direct operations on boundary representations that must 
preserve the validity of boundary representations at all times. Both approaches have been 
employed and we will briefly discuss them below in section 20.4. 

20.3.4. Unification of representation schemes 
Based on the assumed mathematical properties, we know that all of the above represen­
tation schemes are different methods for capturing complete geometric information about 
the same class of objects: semi-analytic subsets of Euclidean space. Therefore, it must be 
possible to convert such representations into each other, as may be required for different 
applications. This in turn suggests that all representation schemes are simply different 
ways to organize the same geometric and topological data. What is this data? 

All representation schemes are organized in terms of a finite number of operations on 
a given set of primitives. The primitives are halfspaces in constructive representations, 
geometric carriers in cellular structures, and geometry of the cells in groupings. In all 
cases, the primitives are defined by analytic equalities and inequalities. The operations 
on primitives either produce new primitives (via interpolation, motion, deformation, etc.) 
or produce semi-analytic sets using set operations (n, U, —), closure k, and selecting 
a connected component. All other operations and queries are simply compositions of 
these basic operations. In other words, a fixed finite set of primitives H gives rise to 
a representational space M{H, O) consisting of the transitive closure of the primitives 
under the selected operations O [78]. It turns out that this representational space is finite 
(because only finitely many semi-analytic sets may be constructed using a finite set of 
primitives) and can be completely characterized by a particular stratification of space 
determined by the primitives in H [104,105]. 

Given a finite collection of primitives, H, consider the stratification of the whole Eu­
clidean space E^ such that every every stratum is a maximal connected A:-manifold that 

^^Strictly speaking, the resulting structure is not a proper cell complex, because it contains topologically 
distinct but geometrically coincident cells. 
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is also sign-invariant^^ with respect to all primitives in H. Such a stratification exists for 
every collection of semi-analytic primitives, is unique, and is sometimes called Whitney 
regular. It has a reasonable low-degree polynomial size, and its strata satisfy the frontier 
conditions. Figure 20.3 shows some examples. The practical significance of this strat­
ification lies in the fact that every representation (constructive and/or combinatorial) 
in the modeling space M{H, O) is essentially an optimized union of some strata. For 
example, boundary representations consists of merged 0-, 1-, and 2-dimensional strata 
(vertices, edges, and faces respectively), CSG representations are regularized Boolean 
representations of unions of three-dimensional strata, and so on. Thus, the Whitney reg­
ular sign-invariant stratification of space serves as the lowest common denominator for 
all representation schemes and allows systematic development of algorithms and queries. 
See [104] for additional details. 

20.4. A L G O R I T H M S 

20.4.1. Fundamental computat ions 
The unified view of solid representations allows to identify a small set of 'fundamental' 
operations: primitive selection, stratification, point generation, point membership classi­
fication, set comparison, and ordering. These operations are fundamental in the sense 
that most other algorithms can be defined through their composition. As with our clas­
sification of mathematical models, these operations are not entirely independent: for 
example, point membership may require stratification, and almost all operations require 
some form of comparison. Specific representation schemes are often optimized for several 
(but rarely all) of these fundamental operations. In practice, all fundamental operations 
except ordering can be implemented only approximately; see section 20.6.3 on standards 
and section 20.7.1 on unsolved problems for discussion of the ensuing difficulties. 

Selection of geometric primitives 
Before attempting any solid modeling computations, we must make sure that the set 
of known primitives and/or carriers is sufficient to represent the result of computation. 
Oversimplifying, the results of geometric computations are made up from portions of the 
candidate sets. In some cases, this is a trivial step: it is clear that in order to compute the 
intersection of a line with a solid's boundary, we must have a representation of the line 
and representations of the surfaces bounding the solid. It may be less obvious (but true) 
that the boundary representation of a solid may be constructed from boundaries of the 
corresponding CSG primitives. But in many other situations, the candidate primitives are 
not obvious, must be determined as part of the computation, and are usually not unique. 
For example, it is well known that carriers found in a typical boundary representation 
are insufficient for the CSG representation of the same solid [109], and it is far from 
obvious which geometric primitives are needed to describe the boundary of a blend or a 
sweep [128]. 

^In other words, every primitive function in H has the same sign on all points of the stratum. 
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Stratification 
Perhaps the most difficult of solid modeling computations is the process of identifying 
all cells in the Whitney regular sign-invariant stratification for a given set of primitives. 
The theoretical stratification process decomposes any semi-analytic set into a collection 
of connected smooth A:-submanifolds by recursively extracting /[:-dimensional solid por­
tions of the given set [64,130,131] (see Figure 20.3). But consider the simplest case of 
two primitives hi and hj. There are at most nine non-empty sign-invariant sets corre­
sponding to the pairwise intersections of the sets defined by the signs of each primitive. 
Recall that intersection is also required for computing and representing the geometric 
carriers of lower-dimensional cells in a cell complex where only the geometry of the higher-
dimensional cells is specified directly. In particular, boundary representations routinely 
require computation of the intersection curves between incident faces. Point classification 
against a boundary representation requires computing intersections of bounding surfaces 
with a line, and one of the most popular methods for visualizing implicit sets relies on 
ray-casting (intersecting the set with a grid of parallel lines). Furthermore, such intersec­
tion sets may be also disconnected, heterogeneous in dimension, or contain singularities 
and self-intersections. Thus, at the very least, stratification requires computing connected 
smooth submanifolds of the intersecting primitives satisfying the frontier condition, and it 
is not surprising that one of the chapters in this handbook (see the chapter on intersection 
problems by N. Patrikalakis and T. Maekawa) is devoted to the study of the intersection 
problems. While in theory any semi-analytic set may be stratified exactly, it appears that 
general and practical algorithms almost always resort to numerical methods. 

Point membership classification ( P M C ) 
We already discussed point membership queries in the context of individual representa­
tions schemes (constructive, combinatorial, and boundary). A more general PMC operates 
on an arbitrary point p and a representation of a set 5 , and returns m, on, or out de­
pending on whether p is respectively in the interior, boundary, or outside of the solid 
S [119]. Since solidity, interior, and boundary are all topological concepts defined relative 
to some universal set X (for example E^, surface, curve), it should not come as a surprise 
that PMC of a point p usually requires computing the neighborhood of p relative to X. 
Neighborhoods of smooth and regular points on dS are adequately represented by the 
tangent (or normal) information at p. Other points may require non-trivial analysis and 
computations depending on the representation of S. 

Point generation 
Point generation is required to produce a single representative point from a set which may 
or may not have some special properties (such as center of mass), or to generate many 
such samples throughout the represented set with some (regular or irregular) intervals. 
Point generation is straightforward for sets represented parametrically or enumeratively, 
but may be difficult for other representations. For combinatorial representation, point 
generation is performed cell-by-cell serially or hierarchically, depending on how the cells 
are organized. For implicitly defined sets, points may be generated by sampling (and 
classifying usng PMC) with desired resolution; for constructive representations, points 
may be generated for each of the primitives and then filtered using PMC test as described 
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above. 

Comparison 
Comparison of two points represented by their coordinates is relatively straightforward. 
But if the numbers are not exactly the same - and they rarely are - one must compute 
the distance between the two points using some appropriately defined metric. The most 
common type of distance is the usual Euclidean distance, but other metrics, such Lp and 
Hausdorif, are often useful and necessary. Comparing sets of points is a substantially 
more difficult ta,sk that depends on how the sets are represented, and what kind of metric 
is used. Notice that distance computation is a perfectly valid method for answering PMC 
queries, and comparison is usually required in order to decide whether two sets are incident 
on each other. Because neither implicit nor parametric representations for a set of points 
are unique in general, set comparison usually requires point generation, classification, 
and point comparison. Comparisons of different combinatorial representations may be 
formulated in terms of comparisons of individual cells. Finally, comparison of two solids 
may require development of metrics that take into account not only geometric distance, 
but also their topological form [14]. 

Ordering 
A process of combining the results of the primitive computations into the representation 
of the result is difficult to describe generically, because the ordering process itself depends 
on the way the representation is organized. For constructive representations, ordering 
produces a tree of constructions; ordering of groupings produces either serial or hierarchi­
cal structures; and ordering of cell complexes involves creating and maintaining incidence 
and adjacency information. 

A particularly elegant approach to ordering 2-manifold boundary representations takes 
advantage of the familiar Euler characteristic x which is defined as an alternating sum: 

X = V-E + F, (20.9) 

where V, E, and F are the numbers of vertices, edges, and faces respectively in the 
boundary representation. If boundary representation is known to be a connected man­
ifold with every k-ceW homeomorphic to a A;-dimensional disk, then an even number x 
provides complete classification of all such surfaces up to a homeomorphism. For a fixed 
X, equation (20.9) can be viewed as a two-dimensional linear subspace of the three di­
mensional space defined by coordinates V, E, and F ; valid operations on the boundary 
representation may change the numbers of vertices, edges, and faces, but all resulting 
boundary representations must be confined to the same plane. Such valid operations 
are termed Euler operators (because they preserve the Euler characteristics) and can be 
viewed as vectors in the two dimensional linear subspace [54]. Because a two-dimensional 
linear space can be spanned by two linear independent vectors, only two (independent 
but not unique) Euler operators are required to build a boundary representation for any 
polyhedron homeomorphic to the sphere. 

This counting principle can be extended to more complex boundary representations 
with more general cells and multiple connected components (shells) [16]. For example, 
simple counting arguments show that x = i^ + 2(5 - n) where R is the number of interior 
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face rings (counted by internal loops on the faces), S is the number of connected shells, 
and n is the genus. EHminating Euler characteristic, x^ from equation (20.9), we obtain 
a linear constraint 

V -E-^F-R-2{S-n) = 0, (20.10) 

representing a five-dimensional hyperplane in the six-dimensional space and implying that 
at least five distinct Euler operators are necessary and sufficient to span the space of all 
such cell complexes. Euler operators conveniently enforce the required combinatorial 
conditions on such cell complexes,^'' but they are not unique, and other approaches to 
constructing and maintaining ordering are possible [29]. 

20.4.2. Enabling algorithms 
All other geometric queries and algorithms in solid modeling may be constructed using 
sequences of the above fundamental computations. It would be impractical to describe 
here all algorithms important in solid modeling, but it is instructive to consider how some 
of the more common and critical computations can be cast in terms of the fundamental 
operations. Specifically, we focus on those algorithms that can be broadly classified as 
representation conversions because they tend to re-represent the solid in a manner that 
makes desired computations simpler; these algorithms shaped the solid modeling technol­
ogy, enabled specific applications, and defined the architecture of the commercial systems. 
The following description is optimized for clarity; efficient algorithms involve essentially 
the same steps but are structured to take advantage of locality, proximity, coherence, sym­
metry, and hierarchy, as well as specific assumptions and known properties of particular 
geometric representations. 

Ray casting 
Ray-casting and ray-tracing are popular techniques for rendering solids and their bound­
aries [98], for representing a solid as a grouping of line segments, for performing PMC 
against a boundary representation of a solid, as well as for performing other types of 
analysis [26]. Such algorithms require computing the intersection of a given (possibly 
unbounded) line segment with a representation of the solid. For all representations, the 
ray-casting algorithm reduces to computing the intersection of the unbounded candidate 
line with each of the geometric primitives (leaves of a CSG tree or carriers of the highest 
dimensional cells) yielding an unsorted list of points along the line. Those points that 
classify in or out the solid are discarded, as well as those points that classify out with 
respect to the line segment. The remaining points are on the solid and bound one or 
more linear segments - the result of the intersection. These points are sorted along the 
line in order to induce in/out classification for the segments of the fine they bound. The 
result must be regularized in the topology of the line (because we only want solid line seg­
ments), which may require constructing one dimensional neighborhoods of points and/or 
additional PMC tests. Ray casting is particularly popular with the CSG representations 
due to the elegant divide-and-conquer algorithm (similar to the merge sort) that merges 
ordered lists of intersection points for every interior node of the tree [119]. 

^^Note Euler operators do not guarantee the validity of the results unless additional geometric conditions 
are satisfied as well. 
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Sampling and polygonization 
Many of the application algorithms require sampling and/or approximating the repre­
sented solid. These include rendering, path generation (for motion planning or machin­
ing), computation of integral properties, and finite element meshing. Broadly, all such 
algorithms produce a A;-dimensional grouping or a simplified cell complex from a given 
solid's representation. 

To generate points (0-dimensional grouping) on the solid's boundary, one generates 
the points on the boundaries of candidate primitives (geometric carriers in boundary 
representation or boundary of primitives in the CSG tree), and classifies these candidate 
points against the given representation of the solid. Similar processes may be used for 
generating points in the interior of the solid, except that the candidate points must be 
generated throughout the three-dimensional space, for example on the regularly-spaced 
grid throughout the space containing the solid. Ray-casting (see above) can be used to 
generate 1-dimensional groupings. 

Two-dimensional groupings are usually made up from triangles and polygons con­
structed from points generated on the solid's boundary. The construction may require 
that the vertices of every edge and/or polygons must have the same classification with 
respect to solid's faces or edges, if such information is available. The constructed edges 
and polygons may be further ordered into a valid cell complex satisfying the usual com­
binatorial conditions. 

Popular three-dimensional sampling include octrees and tetrahedralization. Octrees are 
constructed by recursively classifying orthogonal boxes with respect to the solid as m, out, 
and those intersecting the boundary of the solid. The latter are subdivided further until 
the desired level of resolution is reached. The box/solid classification is in turn reduced 
to classifying the vertices of the box, intersecting edges or faces of the box with the solid's 
boundary, and ordering of the result. The octree cells may be further subdivided into 
tetrahedra; tetrahedra may be also constructed directly from a 0-dimensional grouping of 
points sampled or generated in the interior of the solid, for example using the Delaunay 
constraint [102]. 

Set membership classification 
This is a more general computation that subsumes PMC, ray-casting, cell sampling, and 
many other computations in the following sense [119]. Given representations of two sets: 
X is a candidate set, 5 is a reference set; both are solids but do not have to be of the 
same dimension. The SMC procedure M(X, S) partitions the candidate set with respect 
to the reference set 

M ( X , 5 ) = < XinS, XonS, XoutS > (20.11) 

into the three solid portions of X. In this context, solidity is defined with respect to 
X. When X is a single point, SMC reduces to PMC described under the fundamental 
computations; when X is a curve segment and 5 is a solid, SMC is the curved ray 
casting procedure outlined above. More generally, SMC subsumes many other geometric 
computations in solid modeling. For example, when both X and S are solids, XinS is 
their regularized intersection; when 5 is a two-dimensional face and X is a curve lying in 
the same surface, XinS is the portion of the curve contained in the region bounded by the 
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face; and so on. SMC could be considered itself as one of the fundamental computations, 
except that it is not implemented directly but must be reduced to some sequence of the 
other fundamental computations, as illustrated by the examples above. 

Boundary evaluation and merging 
The queen of all representation conversion procedures - both in complexity and its im­
portance in solid modeling - is the so called boundary evaluation procedure that pro­
duces a valid boundary representation of a solid given its constructive representation [89]. 
For CSG representations, the procedure conceptually is straightforward. If the solid 
S is represented by a sequence of regularized set operations on collection of primitives 
{/ii, / i 2 , . . . , /in}, then it is not difficult to show that 

dS C {dhi U a/i2 U . . . U dhn) (20.12) 

In other words, the boundary representation of the same solid may be stitched together 
from the boundary pieces of the CSG primitives. Which pieces? Those pieces that 
classify on with respect to the given CSG representation; they are also called faces in 
the boundary representation [112]. In generic terms, the boundary evaluation reduces to 
performing SMC{dhi,S) for every primitive, and representing the union of the result. 
This in turn requires partitioning dhi into the candidate pieces that may (or may not) 
lie on the solid's boundary. For efficiency, we want the pieces to be as big as possible, 
but they need to be small enough so that we do not miss any portion of dS. It can be 
shown that a sufficient (but not necessary) partition is obtained by intersecting dhi with 
the boundaries of all other primitives in the given CSG representation. Each portion of 
dhi bounded (or trimmed) by the intersection curves becomes a potential candidate face, 
and a single PMC test for any point in the interior of the candidate face is sufficient 
to determine if the face belongs to the boundary representation or not. Each face that 
passes the on test must be represented in the resulting boundary representation, typically 
(but not necessarily) by its boundary which consists of the segments (i.e., connected 1-
dimensional manifold strata) of the intersection curves, called edges. A sufficient set of 
candidate edges is obtained by intersecting each intersection curve with all other surfaces, 
but only those with points classifying on with respect to the face belong to the boundary 
representation. 

Thus, a typical boundary evaluation algorithm involves computing intersection curves 
between the primitive surfaces, computing intersection between the curves and the sur­
faces, generating points in the tentative curves and faces, followed by PMC testing these 
points with respect to solids and faces, and ordering the passing edges and faces into a 
valid cell complex. Consider now a very special case when there are only two solids hi 
and /i2 - both given by their boundary representations - and combined using either regu-
lalized union U* or regularized intersection n* operation. Following the steps in the above 
procedure, we would have to compute intersection between the two sets dhi r]dh2, which 
involves trimming the faces and edges in the two boundary representations against each 
other, and merge the resulting pieces into a new boundary representation. This special 
but important case of boundary evaluation is often called boundary merging. 

The conceptual structure of the CSG-to-boundary evaluation procedure provides a 
recipe for all other types of boundary evaluations. For example, suppose one wants 
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to perform boundary evaluation for a constructive representation containing the sweep 
operation defined by (20.7). The general procedure involves exactly the same steps as 
before: generate a sufficient set of candidate surfaces, trim the surfaces against each other 
to produce a set of candidate faces and edges, generate a point in each candidate cell, 
perform PMC against the sweep representation, and order the results into a cell complex. 
It is intuitive and can be shown formally that 

d{sweep{S, M)) c sweep{dS, M) , (20.13) 

which means that the candidate surfaces must be obtained by sweeping the edges and faces 
in the boundary of the given solid. This could be challenging for general boundary rep­
resentations and motions, and various approximations for such sweep surfaces have been 
proposed using sampling and polygonization techniques. Boundary evaluation for other 
constructive representations requires similar sequences of fundamental computations.^^ 
Practical implementations are usually optimized to generate the smallest possible num­
ber of candidate faces and edges, never repeat the same computations, and employ coarse 
spatial tests to localize computations whenever possible. 

Other representation conversions 
It can be shown that all other computations in this category can be designed systematically 
using sequences of the same fundamental steps [105]. For example, CSG representations 
may be computed from a given boundary representation roughly as follows: select the suf­
ficient set of primitives; intersect all primitives to produce the usual stratification of the 
whole space; generate at least one point in every sign-invariant three-dimensional compo­
nent in the stratification; classify the generated points (and therefore the corresponding 
components) against the given boundary representation; the regularized union of the 
components classifying in correspond to the disjunctive canonical 'sum-of-products' CSG 
representation which can be further optimized using Boolean optimization techniques. 
The last step relies on repeated point membership tests and comparison. The most dif­
ficult step in this procedure is the selection of a sufficient set of primitives, which has 
been solved for restricted but common types of boundary representations. More details 
on boundary to CSG conversion may be found in [108,109]. 

Other representation maintenance utilities - from comparing and optimizing construc­
tive representations and approximating solids by groupings, to computing wireframes, 
silhouettes, and meshes - all may be systematically designed following similar procedures 
composed from the same fundamental computations [105]. 

20.5. A P P L I C A T I O N S 

An inexhaustible variety of applications may be developed with the help of fundamental 
computations and enabling algorithms. Below we briefly survey those popular engineering 
applications that helped to shape solid modeling as we know it today. 

^^This assumes that a construction is properly defined and supports an unambiguous point membership 
test; unfortunately, such definitions may not always be available even for very common constructions, 
such as blending 
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20.5.1 . Geometric design 
Historically, the activity of geometric design is largely devoid of physical analysis, but 
seeks efficient methods for creating, modifying, visualizing, and annotating geometric 
representations of solid shapes. By definition, constructive representations are well suited 
to constructing and modifying the models using high-level engineering parameters: dis­
tances, angles, radii, coordinate systems, etc - all can be encoded as parameters of the 
constructions. The resulting solid shape (although implicit) may be controlled by modify­
ing these parameters. At the same time, constructive representations provide no explicit 
information about the boundaries, which makes them difficult to visualize, modify locally, 
or annotate. By contrast, combinatorial representations, and boundary representation in 
particular, are ideal for visualization and annotation tasks that require direct access and 
traversal of a solid's boundary. But because combinatorial representations are difficult to 
construct and manipulate directly, they appear to be ill-suited for design activities. 

To facilitate subsequent editing of solid models (a critical issue, since the vast majority 
of designs are in fact modifications of earlier designs), both constructive and combina­
torial representations are often supplemented by constraints, expressed as equations and 
inequalities on the parameters in the constructive representations and/or on the coordi­
nates of the carriers on the combinatorial representations [49,92,114]. Typical constraints 
include tangency, incidence, perpendicularity, distances, angles, and so on. More recent 
approaches apply such constraints directly on the cells in a stratification underlying the 
constructive parametric model [9]. To effect a desired modification, the user typically 
changes the values of constraints and/or some parameters; these changes are reflected in 
the updated systems of equations that are solved for the new values of all other parame­
ters and coordinates, leading to a new instance of the solid model [66]. See the chapter on 
parametric modeling by Christoph Hoffmann and Robert Joan-Arinyo for more details. 

20.5.2. Analysis and simulation 
Most of the solid modeling computations in this category may be abstracted by single-
valued functions of one or more solids (and possibly other variables) and have recognizably 
correct answers. Some of the more popular applications include rendering, computation 
of integral properties [47], assembly modeling, interference detection, simulation of mech­
anisms, and NC (numerical control) machining simulation. 

Rendering and computation of mass properties are in fact quite similar in the sense 
that both require some form of finite enumeration of the points in - or rather the cells in 
a grouping associated with - the solid's interior or its boundary. In the case of integral 
property computations (which include volume, surface, inertial properties, and other in­
tegrals of functions defined over the solid's interior or boundary), the contribution of each 
individual cell is added to the result. In the case of rendering, the contribution of every 
cell is displayed on the screen. Two main principles used for such computations are sam­
pling and dimensional reduction. Dimensional reduction relies on the generalized Stokes 
theorem to reformulate the computation over solid S in terms of another computation 
over the boundary dS [53]. Thus, the volume integral over S may be computed directly 
or reformulated as a surface integral over dS, and the integrals over individual faces may 
sometimes be reformulated in terms of the path integrals over the edges bounding the 
face. Similarly, rendering may be performed by visualizing solid cells drawn on the screen 
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in the depth-first order, boundary cells using the surface normal information, or by draw­
ing the edges and silhouette curves generated from the boundary representation. Sooner 
or later, the computation reduces to evaluating some function over a relatively simple 
constituent cell: a line or curve segment, a triangle, a polygon, a tetrahedron, a cube, etc. 
Evaluation of polynomial functions over linear polyhedral cells may be performed exactly 
(within the machine precision) [51], but for more general functions and/or cells evaluation 
is performed only approximately based on the function's values at carefully chosen (e.g. 
Gauss) points in the cell. 

Assembly is a collection of solids that are positioned and oriented by some some rigid 
motions in space, subject to mating and non-interference conditions [45]. At the very 
least, the mating conditions identify pairs of contacting surfaces and thus require explicit 
boundary information. Non-interference between two solids A and B requires that their 
regularized intersection An*Bis empty (the solids interiors are disjoint); empty non-
regularized set intersection AnB implies that there is no contact between the boundaries 
dA and dB. Non-interference conditions may be defined and computed with any unam­
biguous representation, but recall that deciding 'emptiness' of constructive representation 
is a non-trivial matter. 

A moving solid is easily represented by applying the rigid motion to the coordinate 
system in which the solid is designed. A mechanism with two solids A and B is an 
assembly where A moves relative to (the coordinate system of) B. Thus the static mating 
and non-interference conditions must be enforced at all times, resulting in more complex 
dynamic conditions. Dynamic non-interference between two moving solids A and B may 
be formulated as a static non-interference between stationary B and sweep{A, M), where 
M is the motion of A relative to B. The dual operation of unsweep(A, M) can be 
used to formulate and compute queries about largest/smallest non-interfering objects [39]. 
The continuous motion may be also simulated discretely by evaluating the static solid 
configuration in small time increments. See [50] for a recent survey. Maintaining proper 
assembly conditions at all time steps may require substantial computing resources. 

The simple pairs of solids may be chained together into graph structures to model mech­
anism linkages, such as robot arms. The mechanism motion is instantiated by combining 
the individual relative motions according to the graph by a procedure called forward kine­
matics, which involves multiplication of the matrices representing the individual relative 
motions. The inverse kinematics algorithms require solving the systems of non-linear 
equations to determine the individual relative motions, given the motion of some point 
or coordinate system on the mechanism. Mechanism modeling may be viewed as a natu­
ral extension of the constructive representation that allows using continuous motions (as 
opposed to instances of motions used to position a solid in space) [121]. 

Simulating numerically controlled (NC) machining is an application similar to mecha­
nism modeling: solid cutter A is moving relative to solid stock B which is fixed in some 
solid fixture C. Motion of the cutter A is determined by the NC program, and the pur­
pose of the simulation is to determine whether the moving cutter A removes the desired 
amount of material from B without interference with the fixture C. The material removal 
operation is modeled by the regularized difference operation: at every time step, the ma­
terial removed by the solid cutter A is subtracted from the stock B. A more accurate 
approximation of the NC machining process requires computing sweep{A, M), estimating 
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volume removal rates, and other integral properties. See [59] for discussion of these and 
related issues. 

20.5.3. Dynamic analysis and lumped-parameter systems 
Simulation of a rigid body motion under the externally applied forces and moments re­
quires computation of a solid's mass properties (mass, moments of inertia, center of mass), 
solving for the acceleration of the solid at that time instant, and integrating it through 
time to modify the solid's velocity. This in effect approximates the solution of the ordinary 
differential equation of solid's motion. Repeating this computation at small discrete time 
intervals produces realistic simulation of motion. A more sophisticated simulation applies 
the same procedure to the system of rigid bodies interconnected at joints, solving the 
constrained system of ordinary differential equations [22]. In this case, the physical ob­
ject under consideration is better represented combinatorially as a graph of solids, whose 
links specify the types of the motions allowed at the joints, and no interference is allowed 
between the individual solids at any time during motion. The latter task requires dy­
namically tracking the distances and identifying the collisions between all moving solids, 
which can be handled, albeit at a high computational cost, by the standard solid modeling 
methods [50]. However, the contact geometry of joints in such a mechanism structure is 
usually assumed; computing it would require full power of solid modeling discussed above 
plus adequate models of contact and friction mechanics [7]. 

The next logical step is to enhance the simulation model with a proper model of impact 
mechanics, and predict the motion after an impact takes place. In addition to the need 
to identify precisely the time and type of all possible contacts, it is apparent that the 
contacting solids usually constitute a non-manifold geometric model, and can be also 
considered as a mechanism with a "contact" joint at the time of impact. Commercial 
implementations of such simulations are already available, but they are all limited by the 
lack of good models of impact mechanics - that must include mechanical deformations 
and/or experimentally-determined coefficients of restitution. 

A one-dimensional graph structure of interacting solids can be employed with more 
general systems of ordinary differential equations arising in other branches of physics. 
Such graph structures have been known for a long time [71] and are now used by com­
mercial software systems. The graphs are composed from nodes that represent 'lumped'^^ 
constitutive properties, such as masses, inertia, dampers, resistances, inductances, spring 
constants, and so on, plus a finite number of transducers that convert and couple differ­
ent physical models in a single structure. In this context, spatial information serves three 
purposes: computation of the lumped properties associated with each solid, visualizing 
the response of the system in terms of the solids, and managing the spatial incidence and 
adjacency of the lumped elements based on interaction between the solids. 

20.5.4. Planning and generation 
In contrast to analysis and simulation applications, planning and generation tasks do not 
typically have a unique answer but must produce one or more acceptable solutions from 

^'Integrated' may be a more proper way to described 'lumped' [107]. 
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some usually large spaces of feasible answers.^^ An application in this category is usually 
constructed as a heuristic search procedure based on repeated querying of known solid 
models - typically using the fundamental operations described in section 20.4.1. 

Motion planning requires finding a collision-free path for a moving object with respect to 
one or more solids [44]. In addition to the numerous popular robot motion planning tasks, 
other applications in this category include generation of tool paths for NC machining and 
automatic inspection plans by coordinate measurement machines. Feature recognition is a 
process of matching the portions of a represented shape to previously known parameterized 
forms, shapes, or processes, e.g., for the purpose of constructing a manufacturing process 
plan or identifying parts for inspection purposes [40]. The vast majority of such features 
appear to be defined by relationships between portions of a solid's boundary: faces, 
edges, special points, incidence, convexity, symmetry, specific sizes, and so on. Another 
important example of an application in this category is mesh generation, which is a 
process of constructing a cell complex representation for a given solid (called a mesh), 
satisfying specific requirements on the size, shape, number, and topology of cells. These 
requirements are defined by some analysis application that seeks to approximate the 
answer to a boundary-value problem using a particular type of spatial discretization of 
the domain (finite element, finite diff'erences, hexahedral, simplicial, etc.) All meshing 
procedures require generating points in the solid's interior and boundary and ordering 
them to form a complex that has the same topology as, and conforms geometrically (as 
closely as possible) to the solid's boundary [68]. 

It has been clear from the outset that the guaranteed validity of solid models also holds 
a great promise for automatic design of engineering artifacts [125]. The constructive repre­
sentations appear to be particularly well suited for the task, if a way can be found to relate 
the construction parameters to the desired design and/or functional characteristics. The 
constructive representation may then be viewed as a procedural definition - a computer 
program that implements the design algorithm and outputs a valid solid-represented de­
sign. Indeed a number of languages and grammars for generating such solid-represented 
designs have been proposed, but all faced challenges because evaluation of the gener­
ated solids required not only explicit geometric and combinatorial information, but also 
physical and functional information that is normally not present in a geometric modeling 
system [107]. 

20.5.5. Manufacturing 
Effective application of solid modeling techniques is possible for many traditional manu­
facturing processes that are idealized as unit processes [63] with well-characterized input 
and output geometry. Simulation, planning, and verification of unit processes, particu­
larly machining and assembly, were some of the main catalysts for the development of 
solid modeling [86]. More recently, the range of supported applications has been greatly 
expanded to include sheet metal manufacturing, injection molding, stamping, pipe rout­
ing, and so on. Such applications are supported within the solid modeling framework 
through specialized user interfaces that force designers to create models in terms of a 

•̂̂ The two types of problems are not entirely independent of course; since many of the analysis and 
simulation computations are approximate, the 'correct' answers are not unique, and in fact may depend 
on the more difficult planning and generation tasks. 
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limited application-specific lexicon. For example, machined parts would be designed in 
terms of pockets, holes, and other machining features; sheet metal parts would be de­
signed by sequences of bending and stamping operations; draft angles are automatically 
added to injection-molded parts; and so on. Usually, such operations are translated into 
application-specific constructive representations that are then evaluated into combinato­
rial (usually boundary) representations. In addition, heuristic knowledge-based systems 
are emerging that are capable of identifying common geometric features that may (or may 
not) be supported by a particular manufacturing process. 

Beyond traditional manufacturing, if every solid can be approximately represented on 
a computer by a grouping of some /c-dimensional cells, why not manufacture it by a 
computer-controlled process that will grow the solid by depositing the individual A:-cells? 
This basic idea underlies a host of new manufacturing techniques that are often referred 
to as layered-manufacturing (because they build the solid layer by layer), solid imaging 
or printing (because they employ deposition processes that are reminiscent of the paper 
printing methods), or solid free-form fabrication (because the cell-by-cell deposition pro­
cess removes many of the manufacturability constraints on the solid's shape [55]. For a 
layered process to work correctly, it must work with valid solid representations accepted 
from different sources. A defacto standard representation for this purpose is called STL: a 
boundary representation constructed as a collection (a 2-grouping) of triangular oriented 
2-cells. The main virtue of this representation is its simplicity; but as with most group­
ings, STL representation is only approximate, lacks information on incidence between the 
cells, is sensitive to round-off and precision errors, and as such, is quite unreliable. 

The ability to rapidly manufacture solids of arbitrary shape without specialized tooling 
naturally leads to an attractive idea of object copying. This involves sampling points on 
an existing object and constructing its solid representation (a process often called reverse 
engineering), followed by a layered reproduction process [124].^^ Detailed discussion of 
reverse engineering can be found in the chapter by Martin of this handbook. Briefly, re­
verse engineering is a process of constructing a solid's representation from an unorganized 
cloud of points that are sampled on the boundary of an existing physical object with 
some accuracy. In terms of fundamental solid modeling operations, the process involves 
comparing and ordering the points into strata of dimensions 0 (points), 1 (edges), and 
2(faces) whose union represents the boundary of the object being reconstructed. 

20.6. S Y S T E M S 

20.6.1. Classical systems 
We saw that each constructive and combinatorial approach to solid modeling offers spe­
cific practical advantages when it comes to implementing particular engineering applica­
tions. Theoretically, the two approaches are equivalent, because both are informationally 
complete with respect to the postulated mathematical models, and therefore are capable 
of supporting all of the fundamental and enabling computations discussed above. But 
the constructive representations are parameterized, concise, and robust representations 
that come with a built-in point-membership test and are a natural choice for creating. 

^̂  A more general notion of reverse engineering should include to reproducing the functionality, as well as 
the shape, of the artifacts. 
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editing, and programming solid models; they are a poor choice for applications requir­
ing point generation, boundary traversal, and persistent spatial addressing. In contrast, 
the combinatorial representations provide explicit, persistent, and spatially addressable 
enumeration of the solid's boundary (and possibly interior) that is perfectly suited for 
applications requiring point generation and sampling; they also appear to have a greater 
geometric coverage, but combinatorial representations are verbose, more sensitive to errors 
and inconsistencies, and are difficult to create and manipulate directly. 

The early solid modeling systems were designed around single carefully chosen repre­
sentation schemes, usually either the CSG or the boundary representation, but by the 
mid-1980's virtually all single representation systems were enhanced and extended with 
auxiliary representation and features, making them in fact hybrid dual-representation 
systems [87,88]. The emerging architecture for such a dual-representation solid modeling 
systems is shown in Figure 20.8(a). The constructive representation facilitates model cre­
ation and editing, often in terms of application specific constructions that reflect individual 
user's concepts and mentality, while the associated combinatorial representation supports 
other applications requiring generation, traversal, and spatial referencing. Computations 
may be performed against either representation. The combinatorial representation usu­
ally takes the form of a boundary representation, an approximate polygonal model, or an 
octree that is produced automatically from the constructive representation. Note that the 
representation conversion is one way: always from the constructive representation to the 
combinatorial one - partly because the inverse conversion problem is more difficult, but 
mostly because the conversion process does not usually capture the constructive seman­
tics of particular applications. This implies that the combinatorial representations should 
not be allowed to be edited or modified directly, because this could lead to inconsistency 
between the two representations. 

20.6.2. Parametric interaction 
But by the late 80's, parametric modeling acquired one new and decisively critical ingre­
dient: the constructions and constraints were applied interactively and incrementally by 
making direct references to the previously constructed cellular representation of geome­
try [21,110]. The resulting construction method was strongly reminiscent of the datum-
based dimensioning system used by engineers, and the resulting graphical user interface 
resonated well with designers whose primary job was to produce engineering drawings 
fast and without mistakes. 

The new parametric solid modeling systems have a complex multi-layered architecture 
(shown schematically in Figure 20.8(b)) that combines constructive and combinatorial 
representations with constraint-solving and heuristic algorithms [35,110]. As in the earlier 
systems, direct modifications of cells in the boundary representation is not allowed in 
this architecture, because this may lead to a loss of consistency with the corresponding 
construction; however, evaluation of every parametric edit does modify the cells in the 
boundary representation thereby afi"ecting all future constructions that refer to this cell. 
Recall also that all combinatorial representations (including the boundary representations) 
support persistent spatial addressing, which means that every cell in the representation 
has a unique name that identifies the set of points associated with this cell. By contrast, 
the constructive representations define sets of points that may be indistinguishable from 
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Examples of inputs: 
Reals, vectors, integers, algebraic expressions, CSG 

mil 

Rendering, analysis, and other downstreann applications 

(A) Classical open-loop dual-representation 
systenns allowed either constructive updates or 
direct boundary modifications, but not botti 

Examples of inputs: 
Reals, vectors, integers, algebraic expressions, CSG, 
Points, curves, surfaces, compleie b-reps 

mil 

Subsequent 
Constructions 

B-rep 
structures 
lly archived 

Grouping 
Usually 

Not archived 

Rendering, analysis, and other downstream applications 

(B) Modern systenns use nnore general inputs and 
parametric constructions that refer to previously 
constructed geometry, but cannot guarantee the result 

Figure 20.8. The architecture of the classical dual-representation solid modeling systems 
is defined and limited by the representation conversion technology; the architecture of the 
new parametric systems is shown side-by-side. 

each other, as is the case with the connected components of a disconnected set defined by 
intersection of simpler sets.^^ When a solid modeling construction refers to a particular 
cell in the boundary representation (for example, a new hole is positioned with respect 
to an existing reference face), it assumes that the cell is persistent. But the cell itself 
was evaluated from an earlier construction, and may have a different name should the 
boundary model be regenerated at a different time with modified parameters or conditions. 
If the name of the reference cell changes, all future constructions change their semantics, 
resulting in a drastically different and unpredictable behavior(see example in Figure 20.9). 
The problem of assigning unique names to the cells in the boundary representation as they 
are generated from a parametric definition came to be known as persistent naming. It has 
been characterized formally and solved under certain conditions in [76]; several heuristic 
approaches have also been proposed [19,41], but no general solution is known at this 
time. Thus, it should come as no surprise that the architecture of parametric modeling 
system as illustrated in Figure 20.8(b) allows for the failed operation feedback loop. The 
parametric solid modeling systems do produce solid models, but not all constructions have 
well-defined semantics or are guaranteed to succeed, and however solid the results may 
be, they are often not predictable or repeatable. 

But let us suppose for a moment that we completely solve the two difficult problems of 
persistent naming and of the representation conversion. Would that eliminate the appar-

^^The underlying mathematical problem is much more difficult that it may appear: ordering connected 
components of an implicitly semi-analytic set without computing its boundary or combinatorics is as 
difficult as enumerating the multiple roots for a system of equations before it is solved[105]. 
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ent difficulties in the parametric modeling? Hardly. Consider the solid model generated 
in response to the parametric change shown in Figure 20.6.2. Is the solid produced by 
the system correct? Maybe or maybe not, depending on your definition of correctness. 
In retrospect, it should not be surprising that parametric modeling does not guarantee 
the properties of the results beyond solidity. The classical mathematical models assumed 
in the scenario of Figure 20.1 correspond to instances, and do not reflect the parametric 
nature of the modeling systems. 

Original solid constructed using 
the shown position parameters 

Different commercial systems 
often produce inconsistent and 
incorrect parametric updates 
shown below 

Correctness of this parametric update depends on a definition of parametric family 
and transformations. In this case, the transformation of the boundary representation is 
one-to-one, but the relative orientation between the adjacent cells is not preserved. 

Figure 20.9. In the absence of standard mathematical models, parametric solid modeling 
systems often produce incorrect or inconsistent results. 

20.6.3. Standards and interfaces 
Different users and applications often rely on different systems and representation schemes. 
The common approaches to the critical problem of data exchange and transfer include na­
tive translation, neutral standard file format, and standardized programming interfaces. 
The most general and ubiquitous approach is the neutral format because it does not 
require knowing a priori which systems are involved and does not lead to proliferation 
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of special-purpose translators. Such formats were designed for the common CSG and 
boundary representations in early 80's and were later adopted as part of the international 
standards for product data description [67]. Work is currently underway to extend such 
formats for representation of parametric representations by including specification of com­
mon parametric constraints and constructions. This should allow systems to exchange 
representation of a nominal solid and the syntax for an associated parametric family, but 
cannot guarantee that this family is valid or is the same in all systems (see discussion 
above) [74]. 

Most commercial solid modeling systems provide an application programming interface 
(API) that allows to access and compute with models in a given system. Standardizing 
on such an API is another way to alleviate the problem of data exchange. A number of 
limited proposals for such standard APIs have been made recently as surveyed in [74]. 
Since the stratification of a solid model into cells provides a common theoretical framework 
for unifying all representations, it also provides a basis for designing a representation-free 
API that is both formal and general. The initial effort towards that goal is described in 
[6]. 

All existing approaches to data exchange and standardization are further undermined 
by the accuracy and robustness problems in solid modeling. Recall that the fundamental 
operations, in particular stratification and point membership classification, cannot be 
computed exactly and must be approximated in all systems. Diflferent systems make 
widely varying and often incompatible assumptions about accuracy and precision of these 
and other approximations, at times making data exchange and standardization diflScult 
or even impossible. 

20.7. CONCLUSIONS 

20.7.1. Unsolved problems and promising directions 
Continuing improvements in computer representations, algorithms, and general comput­
ing technology have led to mature industrial strength implementation of the modeling 
scenario shown in Figure 20.1. It is safe to predict that the improving data structures 
for increasingly complex geometric shapes, relatively eflBcient and tested algorithms for 
fundamental and enabling computations taking advantage of the latest techniques in hard­
ware, and the increasing computing power will result in further evolutionary progress in 
specialized situations and the ever-growing array of engineering and consumer applica­
tions. But these advances alone are not likely to solve the major outstanding problems in 
solid modeling, because they require substantial revision of the fundamental premises and 
the assumed mathematical models. A number of such issues and promising directions are 
discussed below in a logical order that does not necessarily correspond to their importance 
or priority. 

Robustness of geometric modeling computations and systems has remained a chal­
lenge, despite numerous advances in accuracy and consistency (see [27] for a sample of 
recent work). The fundamental issue is that the theory of geometric and solid modeling 
is based on the classical model of exact geometry, but engineering data and computations 
are almost always approximate. Strictly speaking, this means that no theorem of exact 
geometry can be assumed to hold in the approximate model, and it must be proved again 
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in the presence of errors. It is not enough to compute the results very accurately and con­
sider all special cases, because introduction of any errors may lead to inconsistent results 
and contradictions. An ultimate solution of the robustness problem requires recognizing 
the imprecise nature of the mathematical models and reformulation of the key concepts 
and computations. For example, what is the meaning of the approximate stratification 
(or intersection) of imprecise primitives and how is it related to the approximate point 
membership test? 

Persistent naming of cells in a combinatorial representation in terms of the primi­
tives and operations in the corresponding constructive representation is required in order 
to support regeneration, editing, and exchange of parametric models. Mathematically, 
the problem reduces to the difficult problem of indexing the connected components of 
an implicitly represented set. The most promising approach is to devise a new class 
of constructive representations, where every such component is named persistently by 
construction, for example using interactive datums and references. 

Parametric families of solids is a widely accepted, but poorly understood, notion. 
Informally, since we are dealing with families of physical objects, it is reasonable to expect 
that small changes in the values of parameters of a given solid should result in another 
solid that is similar or is "near" the original solid. This should in principle eliminate the 
jumps, sudden changes, and other unpredictable behaviors observable in current systems. 
Formally, this assumption corresponds to the notion of continuity of the mapping from 
the parameter space into the space of subsets of E^ and/or their representations [76]. And 
therein lies the major difficulty of parametric modeling: for a given representation scheme, 
there is more than one way to define the notion of continuity, and furthermore, different 
solid representations schemes imply different parametric families. Specifically, there are 
several distinct methods for defining continuous parametric families based on a bound­
ary representation [76], and they vary widely in their computational properties.^^ As 
expected, CSG and boundary representations of the same solid normally imply very dif­
ferent families [110] that may be related using tools from category theory [75]. Since most 
parametric systems rely simultaneously on the constructive and the boundary represen­
tations, generating and classifying solids in the combined family, as well as maintaining 
consistency between the distinct parametric families has emerged as a major technical 
challenge [34,77] that must be met if there is any hope for computer interpretation of 
parametric models, such as those required in shape optimization or for standardization of 
parametric definitions. 

Tolerancing and metrology includes issues of accuracy, variability, measurement, 
and reconstruction, that are important in all manufacturing applications. One of the pil­
lars of modern mass manufacturing, the doctrine of interchangeability of mechanical parts 
in an assembly, calls for precise geometric specification of when a part may replace another 
part in an assembly without affecting the functionality [36]. This suggests strongly that 
proper models for mechanical parts must include the notion of mechanical variation or 
tolerance and the procedure for deciding when two such parts are interchangeable. A 

^^The main technical task is that of deciding whether or not two boundary representations belong to the 
same continuous family requires constructing expHcit maps that may be difficult or impossible with the 
existing data structures, because they were designed to model solid instances and do not always properly 
record changes in orientation and dimension [76]. 
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simple minded approach to mechanical tolerancing is to endow some or all parameters 
of solid's representation with variations in ±e range. While it is easy to implement, this 
approach suffers from several severe limitations, including restriction to perfect-form and 
ambiguous semantics. A geometric dimensioning and tolerancing (GD&T) approach that 
is more consistent with modern mechanical engineering practices is based on the notions 
of datums and tolerance zones and gives the basis for various national and international 
standards. Several researchers proposed mathematical extensions of solid modeling theory 
to accommodate GD&T [14,81], it is now clear that the formal semantics of the national 
standards are not completely defined. Despite massive efforts to mathematize the stan­
dards [116], it will be some time before a standard approach to computational modeling 
of tolerances can be defined [126], because this may require fundamentally reformulating 
the notions of variational control [117]. In the absence of a common mathematical stan­
dard, tolerances are being treated syntactically as attributes that are attached as labels 
to solid's features and surfaces. Nominal solid models can be used to plan sampling of 
the points on the surface of the corresponding actual parts, and numerous commercial 
packages will numerically fit the sampled data to curves and surfaces (typically using 
proprietary algorithms), but no such fitting algorithms are standard today. 

Interoperability refers to the ability of solid modeling systems to exchange and com­
pute on the models constructed by other systems or applications[90]. It plays the role of 
virtual interchangeability for computer models of mechanical parts. As such, full interop­
erability subsumes the issues of standardization, representation conversions, robustness, 
and well-defined semantics for parametric models and tolerances. Furthermore, it is clear 
that the very notion of interoperability depends on the application and the type of queries. 
Two solid models may be considered equivalent for the purpose of space packaging stud­
ies and point membership testing, but may not be interchangeable when it comes to 
performing engineering analysis, parametric studies, or manufacturing process planning. 
Systematic formulation and solution of such problems is a critical and fruitful area of 
research. 

Physical field modeling is a natural generalization of solid modeling aimed at mod­
eling spatially and temporally distributed physical properties. In a nutshell, the problem 
amounts to developing methods for representing, constructing, and manipulating discrete 
and continuous variations of physical quantities defined over a given geometric domain, 
subject to the postulated physical laws. For example, classical solid models presume mate­
rial homogeneity, but new modeling techniques are needed to support design, analysis, and 
manufacturing of objects with materials that vary heterogeneously and anisotropically, 
resulting in products with superior structural properties, compliant mechanisms, and em­
bedded sensors [72]. Similarly, engineering analysis requires representing and computing 
assumed physical properties (displacement, energy, temperature, stress, flux, etc.) over 
the solid's interior and boundary. The predominant approach to such problems requires 
conforming approximation of a given solid by a particular type of spatial discretization 
that supports numerical computations for the problem at hand. Finite-element and finite-
difference meshing have emerged as a major research area and a substantial bottleneck 
to advances in engineering analysis [68]. From a practical point of view, such representa­
tion conversions are computationally intensive and numerically sensitive procedures that 
are difficult to automate; proliferation of different and often incompatible techniques fur-



20.7. CONCLUSIONS 509 

ther undermines the standardization, robustness, integration, and interoperability efforts 
described above. 

More fundamentally, modeling of physical fields should generalize and subsume contin­
uum and combinatorial solid modeling, as well as constructive and combinatorial repre­
sentations. A suitable continuum generalization of an r-set is based on the concept of a 
fiber bundle [42,135] with the solid model playing the role of the base space and the fiber 
space corresponding to the field defined over the solid. The corresponding generalization 
of the combinatorial model may be defined using algebraic topological cochains over finite 
cell complexes [69,123]. Just as the notions of boundary and cycles are needed to define 
valid boundary representations, the dual notions of coboundary and cocycles formally 
capture the combinatorial physical balance laws that must be satisfied by all valid field 
models (see Figure 20.10). It is reasonable to expect that the two models of the field prob­
lems - the continuum using fiber bundles and the combinatorial using cochains, provide 
different characterizations of the field that will lead to computationally complementary 
representations. For example, the fiber bundle model naturally leads to new methods 
for field description and analysis that are are not limited by the traditional mesh-based 
methods and difficulties [100,106,135], while the cochain models of physical distributions 
have been instrumental in developing new geometric languages for describing physical 
phenomena [20] and improved numerical techniques that preserve the indicated physical 
laws [56]. 

Coboundary operation on k-cochain transfers the 
coefficients from every i<-cell to oil incident (i<+1 )-cells with 
+/- sign depending on relative orientation. Addition of 
coefficients yields the total quantities that enter the (k+1) 
cells through their boundary Repeating the coboundary 
operation produces a (k+2)-chain with all 0-coefficients. 

A k-cochain associates a coefficient with every k-cell to 
represent a distribution of a physical quantity over a cell 
complex - in this cose, a 2-cochain for a vector quantity 
distributed over the boundary of the solid. The cochain is a 
cocycle if its coboundary is 0, corresponding to the model 
of physical equilibrium with respect to the physical quantity. 

Figure 20.10. Cochains, coboundaries, and cocycles as combinatorial models for physical 
fields. Compare to Figure 20.4. 

App l i ca t ions a n d s y s t e m s will continue to get faster, more robust, and sophisticated, 
but the breakthroughs in solid modeling technology require solving many of the above 
problems and introducing new mathematical models and paradigms. Thus, application 
of solid modeling to engineering problems involving complex physics, deformation, and 
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phase changes (for example, those arising in etching, micromachining, compression mold­
ing, metal casting, and so on) requires either complete geometric characterization of the 
controlled transformations, or merging solid and physical field modeling techniques. By 
contrast, the current trend towards function- and criterion-driven design requires rethink­
ing the role of geometric models in synthesis of mechanical artifacts, which over centuries 
has been reduced to catalogue search and posteriori numerical analysis. Each engineer­
ing function usually influences only some of the design shape, while the same geometry 
usually serves multiple functions [38]. Somewhat paradoxically these observations suggest 
that synthesis tools may be more effective with partial geometric information at different 
stages; this in turn demands updating the classical notions of informational completeness, 
validity, and membership classification in solid modeling to include more general physical 
and process characteristics. 

20.7.2. Summary 
Solid modeling was conceived as a universal informationally complete geometric language 
for describing physical artifacts in support of industrial automation. It has had a dramatic 
effect on those areas where the classical notions are sufficient. The evolutionary progress 
in solid modeling during the last decade led to dramatic improvements in speed, reliability, 
domain coverage, and widespread use of commercial solid modeling systems. 

At the same time, solid modeling grew and expanded to the point where it is no longer 
adequately supported by the original theoretical foundations. Many emerging applica­
tions cannot guarantee the correctness of results, because they are often based on heuristic 
and/or idealized geometric analysis of the physical problems. Since the guarantee is not 
always possible or is too expensive to compute, heuristic and sometimes wrong answers 
seem to be tolerated, as long as they can be generated quickly and checked by a human 
user or another system for correctness and then used for the downstream applications, 
such as producing annotated engineering drawings, manufacturing process planning, or 
engineering analysis. Validity and guarantee appear to have been replaced by an effec­
tive and iterative paradigm that demands speed and interactivity, while supporting and 
encouraging incremental improvements in the solid modeling technology. 

Taking a longer term view of the field, further progress in solid modeling requires devel­
opment of new mathematical models to support computer representations of increasingly 
complex physical artifacts. A pragmatic approach is to assume that such models may 
be application dependent. In particular, design, analysis and manufacture of engineering 
systems is driven by manufacturing processes, physical criteria, variability and incomplete 
information. This suggests that the corresponding notion of the "informational complete­
ness" of such solid models must be modified to recognize that these and other attributes 
are at least as important as the associated nominal geometry. 
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Chapter 21 

Parametric Modeling 

Christoph M. Hoffmann and Robert Joan-Arinyo 

Parametric solid modeling is a key technology to define and manipulate solid models 
through high-level, parameterized steps. These steps can be modified by users and in­
stantiated to specific parameter values and constraint configurations. More than that, the 
design paradigm supported allows the shape designer to define entire families of shapes, 
not just specific instances. We review the core techniques of parametric modeling, de­
scribe new trends, and sketch a number of open problems that must be resolved to take 
full advantage of the potential of parametric modeling. 

21.1. I N T R O D U C T I O N 

A parametric solid can be defined as a solid whose actual shape is a function of a given 
set of parameters and constraints upon them. The objective of parametric solid modeling, 
hereafter also referred to as parametrics, is to represent, manipulate, and reason in a 
computer about the three-dimensional shape of parameterized solid objects. 

Prior to the development of parametrics, designers of solid models created a particular 
shape. Once created, editing and altering the shape was not specifically supported. To 
accomplish that, the designer had to import the shape and modify it by additional design 
steps. In contrast, parametric design focuses on the steps creating a shape and param­
eterizes them. This allows the designer to define an entire class of shapes that later on 
can be simply instantiated. The added flexibility can be exploited in many ways, and 
constitutes an important advance in solid modeling and its applications in, e.g., product 
design. 

This overview of parametric solid models covers the two main components, constraints 
in Section 21.4 and in features in Section 21.5. While constraints comprise a well-defined 
set of tools and techniques, features are a more loosely-knit vocabulary. Feature semantics 
evolves with applications that seek to conceptualize, in a high-level vocabulary, major 
design steps and components. The multiplicity of application requirements and agendas 
makes features a less precisely cast subject that continues to be debated. 
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We also explore trends we perceive in parametric modeling. Those trends bifurcate 
into issues especially of interest to academics and issues of immediate interest to industry. 
There is overlap, of course, and we will work out key aspects in Section 21.6. Naturally, 
the trends throw up open problems, to be described more fully in Section 21.7. 

21.2. P A R A M E T R I C MODELS 

The foundations of solid modeling were laid by the pioneering work of Requicha and 
Voelcker in the late 1970s for constructive solid geometry (CSG), in which solid shapes 
are composed from instantiated primitives using set-theoretic operations. Their careful 
investigation of the topological and geometric foundations of the representation of rigid 
solids applies to rigid solid models in general, including the boundary representation 
models that arose around the same time from the work by Braid and Eastman. A survey 
of the state of the art in 1982 is found in [61]. 

The framework that originates with the CSG work captures models that have a geo­
metric and a topological structure. The geometric structure relates to the actual shape 
of the solid surface, and the topology to adjacency and connectedness of the solid interior 
and its boundary surface. Such models can be characterized as semi-algebraic point sets, 
and we refer to them as specific solid models. 

In contrast, a parametric solid model is more than a specific solid because it includes 
a metastructure from which specific solid models can be derived as instances. Thus, it is 
more appropriate to think of a parametric solid as a class of specific solid models, and so 
very different representational schemes have been proposed for them. See for example [60]. 
The representational proposals divide into procedural representations and mathematical 
ones. In procedural representations a specific solid shape is constructed by elaborating 
a sequence of construction steps. In mathematical representations an attempt is made 
to characterize variational classes of solids by postulating properties such as, e.g., that 
all members of the class have the same topological genus. To add to the diversity, note 
that the procedural representations may include nonprocedural substeps. For instance, a 
cross section to be extruded may be defined by a set of geometric constraints, with more 
than one solution, and the selection of a particular solution may depend on the constraint 
solver employed. 

The procedural approach is unsatisfactory to some because it does not explicitly char­
acterize a class of solids that can be derived from a common procedural representation. 
However, the mathematical approach is unsatisfactory as well to some because it has dif­
ficulty capturing properties accepted in practice. Those properties are based on a veiled 
intuition grounded in application requirements or in the particulars of an evaluation mech­
anism. At this point in time, there is no satisfactory definition of the term variational 
class of solids that has broad acceptance. The field thus moves through territory whose 
foundations are not fully understood, propelled by technological advances that arise from 
needs of applications. In view of this incomplete state of knowledge, we oflfer the following 
working definition for parametric models: 

A parametric solid model is an information structure that permits deriving spe­
cific solid models, in the sense of Requicha and Voelcker, using a deterministic 
algorithm. Moreover, the specific shape derived depends on parameters that 



21.3. VARIANT MODELING 521 

are explicit in the information structure and must be valuated for obtaining a 
specific solid shape. 

Our commitment to the procedural school, apparent in this definition, reflects the 
current state of technology and practice. Note also that we understand a parametric solid 
model to comprise all specific solid shapes that are derivable from the representation. 
Some authors have called this a variational family, [70]. 

The bulk of tools incorporated into parametric models and their evaluation are geomet­
ric constraints and feature operations. Variant modeling is a precursor to this concept 
and has closer ties to specifics of the model representation or creation. We explain those 
concepts in separate sections. In addition, operations such as deformations of solid shapes 
have been considered, but are found predominantly in experimental solid modeling sys­
tems. We do not discuss them further. 

21.3. V A R I A N T M O D E L I N G 

If the objective is to shift from an instance design to a generic one, a simple technique is 
to prepare a variant design. Using the representation as a symbolic system, parameters 
can be identified and valuated in different ways to generate variant designs. For exam­
ple, consider the CSC expression BLO(iy, H, D) that evaluates to a block, in standard 
position, of width W, height H and depth D. Understanding the quantities W, H, and 
D as parameters, we can instantiate many blocks. This paradigm can be broadened by 
parameterizing complex expressions built from parametric solid primitives and embedding 
the expressions into a programming language that permits computing parameter values 
procedurally. Clearly, we can parameterize the transformation expressions that place the 
primitives in relation to each other, form conditional branches that may or may not eval­
uate component shapes based on specific parameter valuations, and abstract a design by 
encapsulating dependent parameters and exposing independent ones. We call this design 
approach, first demonstrated by the PADL-2 system, [8], variant design. 

A slightly different variant design approach [45], implemented by Joan-Arinyo at the 
Universitat Politecnica de Catalunya in 1993, derives parameters from a symbolic abstrac­
tion of design gestures. Ultimately, a program is derived that generates design instances 
based on pre-defined parameters observed from a visual design gesture. For example, in 
ducting and pipe design, we may work with a repertoire of standard shapes, to be param­
eterized in a predefined way and placed sequentially in a way the user defines. Here, the 
design system can derive the design structure from the user interface gestures and create 
the variant design. 

The variant methodology is especially well suited for applications that deal with those 
product families that are composed of standard basic shapes with simple parameterization. 
Moreover, the variation in net shape should be small. See for example [77]. Variant 
designs survive in libraries of standard parts. For example, there are libraries of fasteners, 
brackets, and so on, that are essentially derived from a few variant designs and indexed 
by a catalogue. Some limitations of variant design are explained in, e.g., [54]. 

Recent developments aim to improve the methodology by providing full support for 
retrieval of an existing design specification for the purpose of adapting it to design a new 
but similar product, [3,23,55,57] 
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21.4. C O N S T R A I N T - B A S E D M O D E L I N G 

Variant design depends on a fixed script that has been defined manually. Although the 
script could be very complex, as in the case of embedding a design language into a general 
programming language, design as programming is less desirable than giving the designer 
visual tools and deriving from a visual design process a flexible and intuitive parametric 
design. With the arrival of the geometric constraint solving the technology was at hand 
to do that. Finally, it was possible to prepare a rough sketch and, by adding specific 
dimensional and relational constraints, transform it into a precise drawing. Coupled with 
operations such as extrusions and cuts, it became possible to create designs intuitively 
and with ease. Furthermore, by valuating the dimensional constraints difl"erently, variants 
could be obtained automatically by means of a general purpose constraint solver. 

21.4 .1 . C o n s t r a i n t s 
A constraint specifies a relation on or between entities in a model that must be maintained. 
The following classes of constraints arise naturally: 

• Geometric relationships such as concentricity, perpendicularity, etc., as well as met­
ric dimensional constraints such as distance or angle. 

• Equational constraints that express relations between dimensional parameters and/or 
technological variables such as torque. 

• Semantic constraints that define validity conditions on a shape. 

• Topological relations between entities in a model, such as incidence or connectivity. 

To date, constraint systems of varying competence deal with some or all of these types of 
constraints. We distinguish between variational and parametric constraint problems. 

A parametric geometric constraint problem is one in which a sequence of steps 
can be identified or derived that solves the problem. In each step, a single 
geometric element is placed in relation to elements already placed. 

In contrast, a i'aha^z'ona/geometric constraint problem includes steps in which 
several geometric entities must be placed simultaneously in relation to each 
other. 

For planar geometric constraint problems competent and efficient solvers are readily avail­
able. For spatial constraint problems the technology is not nearly as to mature, likely 
owing to a greater intrinsic difficulty of spatial problems. This difi"erence is manifest in 
design systems available today. 

21.4.2. Mode l ing v^ith cons t r a in t s 
When defining a model initially, sketches are prepared and annotated with constraints. 
Sketching can be done with a mouse or more specialized devices. Constraining the sketch 
often is through menu dialogues. The sketches are then converted into precise shapes, 
by solving the constraints. Finally, the solid shape is defined from the sketches, using 
operations such cuts or protrusions generated from revolving or extruding cross sections. 
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Most systems allow interleaving sketching and constraining. Figure 21.1 left shows the 
sketch of a constraint problem input to the constraint solver. Here the arc should be 
tangent to the adjacent segments, and the two other segments should be perpendicular. 
Output of the constraint solver is shown on Figure 21.1 right. 

v ^ 

Figure 21.1. Sketch of a constraint problem and a solution generated by the solver. 

When a sketch is solved, the underlying constraint solver expects in some cases a well-
constrained problem, that is, one in which no additional constraints can be added without 
creating redundancies. Overconstrained sketches are usually rejected. In the case of 
underconstrained sketches the system will infer additional constraints that, when added, 
make the problem well-constrained. 

When an already defined model is edited, the user changes some parameters or con­
straint values in the simplest case. The system constructs the new instance automatically 
solving for the changed values. More complex editing may change the parametric model 
itself, adding or deleting features, or changing the definition of some of them. 

21.4.3. Solving geometric and equational constraints 
Some constraint problems permit a sequential solution, in which the geometric elements 
are placed one-by-one, in accordance with the constraints. Such problems correspond 
to triangular, nonlinear equation systems. For planar cross section definitions, only a 
few modelers restrict to sequential problems. Most systems allow variational constraint 
problems in 2D, and therefore free the designer from the burden of having to understand 
whether the constraint schema is a constructive, sequential one. Note that sequential 
problems may also entail multiple solutions. For instance, assume that we are given two 
fixed circles and seek a common tangent of them. Then we would have to select one of 
up to four possible tangents. 

A variational constraint problem is equivalent to a nonlinear system of equations. More­
over, a mathematically well-constrained problem will have more than one solution in 
general. There are general algorithms to convert a nontriangular system of nonlinear 
equations into a triangular system, [12]. Therefore, the distinction between parametric 
and variational constraint solving is artificial in theory. However, triangularization of 
systems of nonlinear equations is not tractable even for problems with a relatively small 
number of variables and equations. 



524 CHAPTER 21. PARAMETRIC MODELING 

Ideally, differentiating between the possible solutions and selecting the appropriate one 
would be accomplished by adding other, nongeometric constraints. Unfortunately, to-
date no convincing approach to this problem has been discovered, and solvers rely on 
proprietary, sometimes rather complicated heuristics to select a solution that hopefully 
matches the intent of the designer. Simple "metaconstraints" can be entertained that 
might assist solution selection. For example, when designing a cross section, we might 
require that the bounding contour is not self-intersecting. Unfortunately, such simple 
rules cannot be efficiently implemented; [25]. 

Owing to the difficulty of variational constraint solving in three-space, spatial constraint 
problems are typically sequential. This imposes limitations on the designer that manifest 
themselves very clearly when designing mechanical assemblies. 

Many approaches to solve geometric constraint problems have been reported in the 
literature. They can be categorized roughly as equational, constructive and degree of 
freedom analysis. We give a brief sketch of these techniques. For a thorough review see, 
e.g., reference [25]. 

Equational methods 
An equational solver translates the geometric constraint problem into a system of algebraic 
equations which are then solved using a collection of techniques. 

The numerical approach 
A numerical solver applies iterative techniques to solve the equation system. Such solvers 
can be quite general, and many constraint solvers switch to numerical methods as an 
alternative to another method. However, most numerical methods have trouble handling 
overconstrained and underconstrained problems. Only overconstrained problems which 
consistently define an object may be solved using this techniques. 

Early systems such as those reported in [5,73] used relaxation methods to solve the 
system of equations. Relaxation methods work by perturbing the values assigned to 
variables in such a way that the total error is minimized. The main problem is that 
convergence is slow. 

A widely used numerical technique is the Newton-Raphson iterative method. Its main 
drawback is that the iteration requires a good initial value. If, as is usual, the initial 
values are taken from a rough sketch defined by the user, the sketch must almost satisfy 
all the constraints. Nonlinear systems have an exponential number of solutions and the 
Newton-Raphson iteration will find only the solution closest to the initial guess. Since the 
approach is unable to find alternative solutions, it is inappropriate when the initial sketch 
leads the solver to a solution which does not fit the users needs. Solvers in [30,31,53,56] 
are based on Newton iteration. 

Hel-Or et ai, [28], report on a paradigm called relaxed parametric design, to guide 
the solver in the selection of a solution amongst a set of candidates, which satisfy all 
the constraints. The designer may provide soft constraints weighted by a user-defined 
certainty. Soft constraints are represented by a measurement and a tolerance and do not 
have to be satisfied exactly. A probabilistic constraint schema is used and an estimate of 
the model is computed using the Kalman filter technique developed in control theory. 

Kin et al, [46], solve geometric constraint problems using an extended Boltzmann ma-
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chine, an artificial neural network. An energy function associated with the constraint 
network is defined to include terms of higher order than quadratic with respect to the 
binary states of the units that constitute the network. The extended Boltzman machine 
minimizes the polynomial energy function. 

Recently developed methods in numerical continuation known as homotopy methods, 
are able to compute all solutions to polynomial systems [22,50,75]. The solution of a 
system of nonlinear equations by numerical continuation is motivated by the idea that 
small changes in the parameters of the system usually produce small changes in the 
solutions. 

The symbolic approach 
The symbolic approach translates the system of equations into another set of polynomials 
with the same roots. The resulting system is solved with symbolic algebraic methods, such 
as Buchberger's Grobner Bases, [11], or the Wu-Ritt method, [16]. Both methods can solve 
general nonlinear systems of algebraic equations, but they require exponential running 
times. The transformed system is triangular, so the problem of simultaneously solving 
n polynomials with n variables is reduced to repeated univariate polynomial solving. 
The approach finds in principle all solutions. Solvers in references [10] and [47], use 
Buchberger's algorithm. 

Propagation methods 
The method generates an undirected graph whose nodes are the variables and constants 
in the system of equations and whose edges represent equations relating these variables 
and constants. The propagation method attempts to direct the graph edges so that every 
equation can be solved incrementally. The technique thus tries to discover a sequential 
strategy for solving the constraint system. 

Various propagation techniques have been reported in the literature, [24,65,51], but 
none of them guarantees a solution when one exists, and most fail when a cyclic depen­
dence is found. Propagation is sometimes used in conjunction with a numerical technique. 
For example, in [5,73], when the propagation of degrees of freedom fails, a relaxation 
method is used. For a review of these methods, see [52]. 

Constructive methods 
Constraint solvers based on a constructive approach take advantage of the fact that many 
geometric constraint problems can be seen as engineering drawings which are usually 
solvable by ruler, compass and protractor. The two main approaches commonly classified 
as constructive are the rule-based and the graph-based approach. 

Rule-based approach 
In a rule-based approach, constraints are expressed by predicates, and geometric construc­
tion operations by functional expressions. These constructive solvers compute a symbolic 
solution of the constraint problem using a rewriting system to find a sequence of geometric 
operations that build the object which satisfies all the constraints. If the constraints con­
sistently describe the position and orientation of the object, then the constraint problem 
can be solved. 
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The earliest rule-constructive solvers did not consider the problem of nonunique solu­
tions, [1,72]. However, later approaches, [6,9,43,71,74,78], compute all possible solutions 
when constraint problems are well-defined. 

Hoffmann and Joan-Arinyo, in [33], combine a rule-constructive solver with an equa-
tional solver based on graphs. When no more constructive rules apply, a bigraph is used 
to analyze the structure of the system of equations. Using matching theory techniques, a 
set of equations is isolated and solved in a general purpose equational solver. Joan-Arinyo 
and Soto generalized this approach in [44]. 

Graph-based approach 
Graph-constructive solvers derive a sequence of construction steps using graph analysis 
techniques. DCM, a commercial constraint solver described in [58], uses this method: a 
graph is broken up into a set of subgraphs such that an algebraic solution for each class 
of the resulting subgraphs exists. Then, the subgraphs are positioned applying rigid body 
transformations to all geometric elements that belong to the subgraph. 

Fudos and Hoffmann in [26] report on a graph-constructive approach to solve systems 
of geometric constraints capable of efficiently handling well-constrained, overconstrained, 
and underconstrained configurations. 

Although this approach is faster and more methodical than the rule-constructive ap­
proach, the graph analysis algorithm needs to be modified when new types of constraints 
have to be considered. 

21.4.4. Degrees of freedom analysis 
In this approach, the notion of degrees of freedom is associated to primitive geometric 
objects and constraints. Any geometric object (point, line, circle, etc.) has a number 
of degrees of freedom in its embedding space. Constraints (coincidence, distance, angle, 
etc.) reduce the degrees of freedom of an object. 

Kramer, [48], solves geometric constraint problems by symbolically reasoning about 
the geometric entities themselves using a technique called degrees of freedom analysis. 
In this approach, the configuration variables of a geometric object are defined as the 
minimum number of real-valued parameters required to specify the object in space unam­
biguously. The configuration variables parameterize an object's translational, rotational 
and dimensional degrees of freedom with one variable required for each degree of freedom. 
A constraint solver for three dimensional constraints is described in [48], in which con­
straints on rigid bodies are satisfied incrementally by a sequence of rigid-body motions. 
A plan of measurements and actions is devised to satisfy each constraint incrementally, 
thus monotonically decreasing the system's remaining degrees of freedom. This plan is 
used to solve, in a maximally decoupled form, the equations resulting from an algebraic 
representation of the problem. Kramer's solver is restricted to kinematic loops of length 
4. For more complex interdependence his solver has to resort to numerical methods. 

Using a graph-based technique, Hsu derives a plan of evaluation by examining and 
updating the degrees of freedom and dependencies between objects, [41]. First the method 
generates a connected subgraph and a dependency graph. Then the dependency graph is 
solved by a hybrid solver which generates the solution in the form of direct constructions 
and iterative constructions. 
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A flow-based method for decomposing the graph of a geometric constraint problem is 
described by Hoff'mann et al. in [38]. The method fully generalizes the degree-of-freedom 
approach. The method iterates to obtain a decomposition of the system of equations 
underlying the constraint graph, into small subsystems. 

21.5. F E A T U R E - B A S E D M O D E L I N G 

Features have become an integral part of parametric modeling. Features provide a higher 
level vocabulary for specifying operations to create shapes by providing parametrized 
geometry, attributes and geometric constraints. Moreover, parameters, attributes and 
constraints can be encapsulated. 

In a good design, features capture explicit engineering attributes and relationships for 
product definition and provide essential information for various design tasks and perfor­
mance analyses. In manufacturing, features can be linked to manufacturing knowledge, 
thereby facilitating manufacturing and process planning. Features also provide a frame­
work for organizing design and manufacturing information in a data repository for reuse 
in new product design, [68]. 

21.5.1. Features and the feature model 
Features have been defined in a number of diff"erent ways in the literature. A good 
definition that captures the current trends in features development is due to Shah, [66], 
who defines a feature as a generic shape with which engineers associate certain properties 
or attributes and knowledge useful in reasoning about a product. 

In order to be useful, a feature should embody at least three diflPerent concepts: Generic 
shape, behavior, and engineering significance, [68]. The generic shape is parametrically 
defined as a boundary representation, a CSG tree or another geometric representation, 
including procedural representations. 

Behavior and engineering significance are defined by means of attributes and domain-
specific rules. Attributes can be classified into several groups. Geometric attributes 
refer to the feature's shape and examples are dimension attributes, default and feasible 
values for parameters, tolerances, location parameters and so on. Technological attributes 
give information useful to downstream applications, such as material properties, heat 
treatments, tool and fixture information, etc. Some attributes can take the form of rules 
to define the behavior of the feature. The rules state what conditions should or must 
be imposed on a feature within a given process in order to perform a particular activity. 
Attachment validation and symbolic or skeletal representation derivations are examples 
of such rules. 

A feature model is a data structure that represents a part or an assembly in terms of its 
constituent features. Feature models are created by organizing the constituent features in 
a suitable structure that expresses the required relationships between the various features. 

There is a continuing debate on what a precise definition of feature should be. In part, 
the debate is fueled by conflicting part and assembly conceptualizations arising from 
diff'erent categories of design, analysis, and manufacture. For example, the burner casing 
of a jet engine may have a set of features relevant to thermal analysis, yet a diflPerent 
set of features may be relevant to structural analysis. A third set of features may be 
important to the casting process by which the casing is manufactured, and a fourth set 
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of features may be important to analyzing tolerances in the context of the assembly with 
other engine parts. These different categories can be considered views, and each view of 
the product will focus on its particular set of features. 

This divergence of feature sets, on the same product, would be less onerous were it 
not that the design process of the geometric shape forces the designer to distinguish 
a particular set of features for the purpose of geometry creation. This set of design 
features often is not useful to the manufacturing engineer or the performance analyst. 
Owing to limited technology, switching between different feature sets during product 
design and manufacture is difficult or not supported by many CAD systems, leading to 
privileged views and continuing interest in developing techniques to switch effectively 
between different views without losing the flexibility of parametric design. 

21.5.2. A brief feature taxonomy 
We distinguish between geometric features and nongeometric features. Geometric features 
are closely related to the geometry of a model and can be further differentiated into 

• Form features: portions of nominal geometry defining a feature's shape. 

• Tolerance features: Deviation from nominal definitions of shape, size or location. 

• Assembly features: Grouping of various features to define assembly relations such 
as mating conditions, position and orientation, kinematic relations, etc. 

Viewed from an application perspective, geometric features can also be classified into 
design features, manufacturing features, process planning features, etc. 

Nongeometric features are generally related to technological information. Examples of 
this type of features are: 

• Functional features: Sets of features related to a specific function like design intent, 
parameters related to function and performance, etc. 

• Material features: Material composition, treatment, surface finish, etc. 

21.5.3. Feature model construction 
Three basic techniques for constructing parametric feature models have been identified, 
[66,68]: Interactive feature definition, automatic feature recognition and design by fea­
tures. 

Interactive feature definition 
In the interactive feature definition technique the user interacts with a model that has 
already been defined, possibly using another design methodology. Interactively, the user 
selects on this displayed model entities to be grouped into a feature. A feature so defined 
can then be annotated with attributes such as surface finish and tolerances. In some 
cases, the feature can be parameterized by defining parameters and constraints on the 
entities. 

Groupings and annotations are easily implemented. Moreover, the entire model need 
not be featurized, only those features need to be defined that are of particular use in the 
application the user has in mind. Feature validation is usually the task of the user. 
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If many features have to be defined, this process is error-prone and tedious. Moreover, 
the persistence of annotation is usually not guaranteed, although technology exists to 
make persistent annotations of parametric models. The definitional task can be assisted by 
feature recognition coupled with a feature library that contains generic feature definitions 
and can propose completions of a partially defined feature. 

A more complicated issue arises when the original model does not have any parametric 
information and the user adds parameters to the features defined on the model. Re-
evaluation of the model with changed parameter values is needed in this case, and there 
are commercial modelers that can accomplish this task within certain limits. The problem 
increases in diflSculty if the original model is parametric, and we wish to preserve the origi­
nal parameterization structure in addition to editing the model from user-defined features 
and their parameters. This problem is technically related to reconciling different views 
when editing, and requiring that different views can edit from within their perspective. 

Automatic feature recognition 
In automatic feature recognition, a previously defined geometric model is processed al-
gorithmically to detect features defined in terms of rules or subgraphs or other kind of 
generic feature knowledge. This approach has received considerable attention in the liter­
ature. However, several research challenges still need to be addressed and solved in order 
to ground the approach in a robust and solid framework. See [2] for a review of automatic 
feature recognition systems. 

A major difficulty common to all known approaches to automated feature recognition 
is the recognition of intersecting features. When several features intersect, their topology 
can change dramatically. Since most of the proposed feature recognition techniques seek 
to identify among the model's edges and faces groups that exhibit a specific topological 
and geometric character, the fragmentation entailed by intersecting features can foil the 
recognition algorithm. Moreover, it can lead to interpretation ambiguities that must 
be resolved by adopting certain heuristics. Work has been reported that attempts to 
recognize features not only individually but also feature interrelations like containment 
and intersection; see, e.g., [63]. Unfortunately, the computational complexity explodes 
even for very simple objects. 

Most of the existing feature recognizers work in batch mode. They accept as input 
a completed design and produce as output a feature model. For the reasons explained 
before, the feature model built represents one of several possible interpretations. Even a 
small change in the initial model can force feature recognizers to discard the previous work 
and start an expensive geometric reasoning process from scratch. Since batch operation 
is undesirable in interactive environments, some efforts have been devoted to incremental 
feature recognition, [27]. 

Another drawback arises from the fact that automated feature recognition techniques 
process final functional forms. Therefore, it is not adequate for certain types of down­
stream applications. For example, in process planning in the automotive industry, the 
intermediate geometry must also be identified, [29]. Since intermediate shapes, sometimes 
also called in-process shapes, cannot reliably be reconstructed from the final net shape, 
important information has been lost that reduces the applicability of automated feature 
recognition. 
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Design by features 
Design by features is the most widely used technique in feature-based modeling. Here 
the model is built directly by the user by instancing generic feature definitions, which 
are used as templates, and locating them in space or attaching them on existing features. 
The features can be instantiated from a library of either standard generic features or from 
application-oriented, user-defined features, [64]. 

Feature-based systems usually provide standard generic feature libraries as collections of 
predefined features such as slots, pockets, and holes, and operations for defining sketched 
features where geometry is created by sweeping a planar cross section or lofting between 
two or more planar cross sections. Standard operations provided by systems allow the 
user to create complex shape designs that could not be built using standard features only 

A plausible design process of a pocket with a bridge across the bottom is illustrated in 
Figure 21.2. The designer first creates a pocket of maximum depth, and then adds the 
rib as a protrusion with fillets at the edges. 

Figure 21.2. Design sequence: make a cut, then add a protrusion. 

The design by features technique provides a set of operations to edit the model. Broadly 
speaking, these operations are: Inserting or deleting an entire feature, changing feature 
attributes, modifying dimension values that define the feature or place it in the model, 
changing the set of constraints associated with the feature, and changing the feature shape 
definition. Procedural steps common to these editing operations are given in [13]. 

21.5.4. Feature representation 
The shape of a feature may be expressed in terms of construction steps that produce 
the geometry corresponding to the feature or in terms of an enumeration of geometric 
and topological entities and relations along with dimension parameters, [35]. The first 
approach is a procedural approach while the second is a declarative approach. 

Procedural representation 
In the procedural approach, generic features are predefined in terms of a collection of 
procedures which may include methods for managing a feature as a whole, like instanc­
ing, copying and deleting a feature, and methods for specific operations on a given feature 
like generating the geometry, deriving values for parameters, and validating feature opera-
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tions. The procedures may be encoded in either a general or special-purpose programming 
language. 

In procedural feature representation, feature definitions are explicitly expressed in terms 
of a computation. So, a feature is always instantiated from a given function with a given 
set of parameters whose values the user sets. If the given parameter values are changed, 
the entire procedure must be run again to compute the new instance. 

Declarative representation 
The declarative approach, features and their properties are first described in a declara-
tively; i.e, the definition declares what the feature is rather than how it is built. Then, a 
general algorithm constructs the actual detailed feature model. One of the main tools of 
the declarative approach is the use of constraints to define the particulars of features. 

In [37], the authors proposed the Erep declarative framework that achieves a clean sep­
aration between definition and construction. In this framework, geometry and properties 
are represented in a neutral form while the actual construction is performed by algorithms 
committed to a clear, underlying semantics. The framework naturally provides tools for 
representing constraints and attributes of features. 

In declarative feature representation, constraints play a central role because they pro­
vide a natural way to describe spatial relations between geometric entities within a feature 
and between features. Furthermore, constraints provide a mechanism to define relation­
ships between geometric and technological parameters. Therefore, all the constraint solv­
ing machinery can be applied eflfectively. 

21.5.5. Features and constraints 
Increasingly, solid modeling systems use both features and constraints in the design in­
terface. Typically, feature-based design systems deploy a design paradigm in which the 
designer may use a set of predefined features and operations for defining sketched features. 
The geometry of sketched features is created by sweeping a planar cross section or lofting 
between two or more planar cross sections. 

Cross sections are defined as sketches with declarative constraints. A variational con­
straint solver instantiates the cross section based on the sketch and the constraints, and 
places it with respect to the geometry constructed so far from prior features. Parameters 
and constraints then define the sweep extent. 

21.6. T R E N D S 

Trends in parametric solid modeling are fostered mainly by two different requirements: 
integration with product data management and downstream applications, and support 
for concurrent distributed design environments. 

To fulfill these requirements, solid modeling should provide an efficient and direct com­
munication between engineering processes which, in turn, requires advanced modeling 
tools and methods to provide users with facilities to capture geometry suflSciently en­
riched with engineering semantics. These requirements aflPect parametrics, and therefore 
features and constraints, in a number of ways. 
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21.6.1. Feature libraries 
Devising a universal set of features would improve the interoperability between different 
applications in an integrated environment. But seeking to devise such a set of features 
would lead to an unmanageable number of features. For this reason, research has begun 
to investigate generic mechanisms to give the user the option of building custom feature 
libraries that might satisfy specific application needs. This approach has been advocated 
in the following work. 

Shah et al. reported on the ASU shell in [69], a testbed for rapid prototyping of feature 
based applications. The library of generic features is organized in the form of a list of 
properties. Each feature has a feature type identifier, a name, a list of generic, compatible 
features, and a solid representation. A CSG tree provide the solid representation for form 
features. Recent developments of the test-bed are reported in [67]. 

Laakko and Mantyla, [49], describe an extension of the programming language Common 
Lisp to represent features procedurally. The feature models are organized as a structure 
of Lisp frames. Such frames model two different types of features: features classes which 
are templates that store generic information, and feature instances that store specific 
information belonging to individual features. Feature classes are organized by a taxonomy 
and use the inheritance mechanism of Common Lisp. A feature model is a list of feature 
instances. 

De Kraker et al. in [19] and Dohmen et al. in [21] report on the specification of 
a feature language developed at Delft University of Technology. Features are specified 
using predefined types in the object-oriented, imperative programming language LOOKS. 
Therefore, the feature library is a library of LOOKS procedures and defining a new feature 
means to write new code for it. 

Hoffmann and Joan-Arinyo in [37] proposed the Erep framework for expressing form 
features and constraints. The representation of a part design is a generative feature 
description. It is textual and neutral, in the sense that it is not committed to a particular 
core solid modeling system. In [35], the Erep was extended with a procedural mechanism 
for generating and deploying user-defined features through standard graphic operations 
provided by the underlying modeling system. 

21.6.2. Mult iple viev^s 
In an integrated, concurrent and distributed design environment, the data in the product 
model is contributed by different applications. Eeach application has its own view of 
the data. For example, from a machining point of view, the feature structure shown in 
Figure 21.3 is one of many possible interpretation for the design view in Figure 21.2. 
Therefore, a persistent association between data contributed by each application must be 
establish and maintained. Creating and maintaining such a persistent association is a key 
problem. 

It is natural to argue that in concurrent engineering, a modification required by a specific 
application should be made in the view of that application. Moreover, all modifications 
introduced in one view should be propagated automatically to all other views. Some work 
based on this assumption has approached the problem in a setting far too general. In 
the absence of specifics, such work has not proposed credible mechanisms to address the 
view consistency problem. The work by Bronsvoort et al. is a notable proposal in that 
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Figure 21.3. Machining view sequence: make a shallow pocket, then deepen the pockets 
to the left and right of the bridge. 

respect, [7,18,19,21]. The work addresses formally the problem of different form feature 
views editing a common net shape. Briefly, the net shape is modeled by a cell complex 
where the cells are subdivided as necessary such that every feature of an application view 
is composed of entire cells. That property permits to edit shape mechanically from any 
feature view and achieves consistency across all views. 

A different approach is developed by Hoffmann and Joan-Arinyo in [34,36]. The ap­
proach is based on the concept of the master model, an object-oriented repository that 
provides essential mechanisms for maintaining the integrity and consistency of the de­
posited information structures. The clients of the master model are the modeling system 
and domain-specific applications. An analysis of the needs of different views allows a 
simpler solution of consistent edits that uses persistent information associations. 

21.6.3. Semantic features 
The concept of semantic feature was developed in response to the need of capturing 
engineering information that connect form with functional intent. Such features also 
support integration with downstream applications. Semantic features provide tools for 
using features consistently. 

Procedural semantics for attaching features to a model in generative constrained-based 
modeling systems have been defined by Chen and Hoffmann in [15]. The work considers 
generated features that are based on a planar profile swept into a three dimensional shape. 
This work was extended in [14] where a set of techniques needed for editing generative 
feature-based models is discussed, including persistent naming techniques. Persistent 
naming is needed to re-evaluate edited features. 

Effectively maintaining the validity of a feature, attached to a model, entails developing 
mechanisms to detect invalid situations, mechanisms to properly report improper feature 
use, and mechanisms to provide the user with good choices to recover validity. In the work 
reported in [4,17,20] and [21], the validity of a feature is specified as a set of geometric, 
topological and functional constraints. Whenever a modeling operation is completed, 
a validity check is performed. If a violation of some validity criterion is detected, the 
operation branches into a reaction loop where a validity recovery process is triggered. A 
valid state is achieved again, either by reestablishing the previous valid state or through 
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a dialog with the user. 

21.6.4. Persistent naming 
As mentioned before, applications of solid modeling in manufacturing and other applica­
tion arenas seek to enrich the semantic content of a shape model. Geometric constraints 
and parameters can be considered semantic information pertaining to shape, sometimes 
in an implicit form. Other information, such as annotations or feature definitions relevant 
to different views, is needed as well. When a parametric model is edited, it is crucial to 
preserve and re-attach semantic information. The technology to do this has been called 
persistent naming. 

The problem of persistent naming arises as follows. Consider a particular shape instance 
on which we annotate a selected face with some material property information. This is 
done easily for the instance data structure, usually a boundary representation. However, 
the parametric model itself need not have any faces, so it is not clear how to record 
the information such that it persists under a change of parameters or constraints. More 
than that, different model instances of the same parametric model may have zero, one, 
or several faces that might correspond to the original annotated face. This problem has 
been considered in [14,32,70] and [59], and several approaches have been proposed in the 
literature. 

Ultimately, a solution to the persistent naming problem is a semantic interpretation of 
the instantiation of a parametric model. There remain basic questions on what constitutes 
a good semantics that may never be resolved by the community. Therefore, the persistent 
naming solutions proposed in the literature can be considered to be specific proposals for 
such a semantics. Because of this larger context, work on persistent naming should be 
considered evolutionary. 

We postulate that a successful semantics for parametric shape design has to allow 
construction algorithms that exhibit two key properties: 

1. The parametric instantiation algorithm has to be continuous. 

2. The parametric instantiation algorithm has to be persistent. 

Continuity requires that a geometric configuration, derived by instantiating for a set of 
parameter values {pi, ...^Pk) should change by a small amount when altering the values of 
the parameters by a small amount. Persistence means that after changing the parameter 
values and reinstantiating the configuration, a return to the original parameter values 
should result in the original configuration being recovered. Clearly, those are minimal 
requirements any user of would expect from parametric design. 

Geometric software is often hard-pressed to make good on continuity which is easily 
violated when the configuration passes a degenerate configuration. Such degenerate con­
figurations are not easily recognized because parameter changes are typically discrete. 
Cinderella [62] is an example of geometry software whose design pays particular attention 
to achieving continuity. Cinderella allows sequential constructions of geometric configura­
tions of points, lines and conic sections. The user can then drag elements and the system 
updates the configuration in a continuous way. It accomplishes continuity by tracking 
solutions through complex configurations. Since the paths for changing the configuration 



21.7. OPEN PROBLEMS 535 

avoid singularities by randomization, but do not remember the chosen paths, Cinderella 
does not exhibit persistence. 

Many constraint solvers exhibit persistence without continuity, including the solvers 
we have designed. Here, persistence is accomplished by finding coordinate-independent 
characterizations of constraint solutions so that a solution can be designated by a short 
certificate that is derived from the initial or the current configuration. 

21.7. O P E N P R O B L E M S 

Parametric design has achieved great accomplishments. However, to take full advantage 
of its potential, a number of open problems need to be solved. We outline some of the 
key problems. 

21.7.1. Constraint solving 
Two-dimensional constraint solving has been studied extensively, and although there is no 
single best technique, successful approaches have been developed that are both efficient 
and sufficiently general. Geometric constraint solving in three dimensions has been much 
less explored, except for the purely numerical techniques, whose drawbacks have been 
discussed in Section 21.4. 

The problem in three dimensions grows in difficulty, not only because the number of 
variables is larger, but also due to the fact that some of the results valid in two dimensions 
do not extend to three dimensions. Some recent developments in placing points, lines 
and spheres with fixed radius in three dimensional space with reasonable computational 
cost and reliability are reported by Hoffmann and Vermeer, [39,40] and by Durand [22]. 
Currently, active research seeks better techniques. A general problem decomposition 
algorithm has been given in [38]. 

21.7.2. Features 
A key obstacle is the lack of techniques to support multiple views effectively. Mapping 
algorithms are needed that can connect different feature schemata with each other and 
allow designers to edit in different views. This would greatly expand the flexibility of 
parametric design, and permit designers to increase the semantic content of parametric 
models. 

21.7.3. Semantics of parametric design 
Advantages of parametrics lie in the ability of the system to allow easy subsequent edits of 
the design by changing input parameters that were initially specified when the design was 
created. To date, all such changes are described in terms of the procedures that actually 
perform the change. For simple objects, those procedures provide highly productive tools. 

When the ranges of parameter values widen or the complexity of the designed objects 
increases, today's algorithms no longer guarantee that the parametric models are valid 
and unambiguous, and the results of modeling operations are not always predictable. 

As an example, consider the solid shown in Figure 21.4 left. It was constructed as 
follows: First, a rectangle was drawn and extruded into a block. On the front face of the 
block, a circle was drawn as a profile of a slot across the top of the block. Then the left 
edge of the slot was visually identified for rounding. The result is shown in Figure 21.4 
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left. This design is now edited by altering the position of the circular slot profile. The 
correct result is show in Figure 21.4 middle, but some systems may construct instead the 
shape in Figure 21.4 right, clearly an error. 

Figure 21.4. A block with a slot and a round on an edge. 

The problem is how to describe in the generic design the edge to be rounded. An 
abstract definition of shape change under constraint changes would be needed, as a step 
towards a rigorous semantic definition of generic design and constraint-based editing. 

21.7.4. Assembly-centric design 
Shape design has traditionally been conceptualized as part-centric design, and CAD sys­
tems are very good at designing detailed shapes of individual parts. However, in many 
applications the interactions of the parts create the primary view of a mechanism, and 
engineering design often begins from this vantage point. In part-centric design, the fo­
cus of the design activity is on the geometry creation, typically of the net shape, and 
annotations of the shape with features relevant to various views. 

To create an assembly-centric parametric design process, it is minimally required to 
interrelate the parameters and constraints of the various parts of the mechanism to each 
other. As with views, this raises the question of updating all parts of an assembly when 
changing a parameter of a single component part. Here, design methodology might guide 
how to conceptualize key parameters and their functional relevance. Assembly-centric 
design would find immediate application in areas such as tolerancing and process planning, 
and in the functional design of abstract mechanisms. 

Assembly-centric design would span two levels. On the basic level, parts are interrelated 
to each other in the assembly, and design parameters would be correlated between parts 
or derived from assembly-level parameters in an algorithmic way. 

A more advanced conceptualization of assembly design would give the designer the 
capability to differentiate subassemblies and re-use them as parametric elements of the 
overall design. For instance, we might consider the sensor assembly of an automobile cool­
ing system such a subassembly. Depending on dashboard configurations, this subassembly 
could be connected to different electric leads, in one combination only lighting up a light 
indicating operating range temperature and a warning light if the temperature is too high. 
In another combination the leads from the subassembly could drive a temperature gauge 
in the dashboard; e.g., [42,76]. 
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Finally, specific assembly-level parameters could result in the instantiation of differently 
configured subassemblies that would be responsive to different functional characteristics 
and ranges. 
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Chapter 22 

Sculptured Surface NC Machining 

Byoung K. Choi, Bo H. Kim, and Robert B. Jerard 

Many products are designed with sculptured surfaces to enhance their aesthetic appeal; it 
is an important factor in customer satisfaction, especially in the automotive and consumer-
electronics industries. Other products have sculptured shapes to meet functional require­
ments, such as: 

• Aerodynamic: airfoils (jet engines), impellers (compressors), marine propellers, etc. 
• Optical: lamp reflectors (automobiles), shadow masks (TV monitors), radar dishes, 

etc. 
• Medical: parts for anatomical reproduction. 
• Structural: structural frames (aircraft), sporting goods, etc. 
• Manufacturing: parting surfaces (molding dies), die faces (stamping dies), etc. 

While these aesthetic and functional surfaces are created using CAGD (computer-aided 
geometric design) techniques, it is the role of SSM (sculptured surface machining) to re­
alize them in physical form. As an ever-increasing variety of products are being designed 
with sculptured surfaces, efficient machining of these surfaces is becoming increasingly im­
portant in many areas of manufacturing including the automobile, consumer-electronics, 
aerospace, ship-building, die-making, sporting-equipment and toy-making industries. For 
many companies, sculptured surface machining has become a strategic technology. 

22.1. I N T R O D U C T I O N 

22.1.1. Overview of the sculptured surface machining process 
Examples of various sculptured surface machining (SSM) processes are provided in a num­
ber of articles: airfoil machining in Mason [15], impeller machining in Takeuchi et al. [22], 
marine propeller machining in Choi et al. [6], die and mold machining in Altan et al. [1] 
and Fallbohmer et al. [12], medical parts machining in Duncan and Mair [10], etc. How­
ever, the lack of a unified framework for describing SSM processes makes it difficult to 
compare one approach to another. 
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The first step in providing such a framework is a set of basic definitions as follows: 

• U M O (unit machining operation): a basic unit of an SSM operation carried out 
by a single cutting tool, which has a distinguishable pattern with a well-defined 
machining boundary. 

• Machining stage: a group of UMOs employed to achieve a certain operational 
goal, such as roughing, finishing, clean-up, etc. 

• SSM process: a set of machining stages employed in making a sculptured part. 

It should be noted that the actual definitions of UMOs and machining stages may vary 
between diflFerent applications, but they provide a framework for representing an SSM 
process. 

The purpose of an SSM process is to produce a sculptured part by applying a series 
of metal-removal processes to a workpiece. The term workpiece is used to denote the 
current state of the object at any given stage of the SSM process. 

Most engineering disciplines are concerned with modeling. A modeling process involves 
abstraction and generalization, and the resulting model should serve as a general frame­
work as well as a useful tool for investigating or solving the problem at hand. SSM process 
models are classified into sequential models and hierarchical models. 

SSM process 

Raw stock Finished part 

1^ 
Roughing 

stage 
Semi-finish 

stage w 
Finish 
stage 

Clean-up 
stage 

— • Form-EDM 
stage | 

UMOi 

Preform-surface c 
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UMO process plans 

Postform-surface 

Figure 22.1. Hierarchical model of an SSM process. 

In the abstract, an SSM process may be viewed as a sequence of material removal 
functions (MRF). In the most simplistic view, the SSM process can be regarded as 
a 'sculpting process' in which a ball-endmill cutter will form the machined-surface by 
a series of 'touches', just as a sculptor forms his massif by the classical process called 
'pointing' (Duncan and Mair [10]). Taking this view, the entire surface is treated as 
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a single sculptured surface, and all the SSM operations are treated as a single material 
removal function called SCULPT. Of course, this model is too simple to be useful in metal 
cutting. 

A natural extension of the sculptural model is to decompose the SCULPT operation into 
a number of specialized operations. If individual UMOs are used as transform functions, 
we will have a 'UMO model'. If machining stages are used, a 'machining-stage model' may 
be obtained. Based on the observation that each machining stage consists of a sequence 
of UMOs, one may obtain a model of the SSM process, as shown in Figure 22.1, in which 
it is modeled as a sequence of machining stages, and each machining stage is decomposed 
into a sequence of UMOs. 

22.1.2. Information processing issues 
The SSM problem is to generate: 1) a sequence of UMOs for machining the sculptured 
part, 2) a sequence of NC code blocks for each UMO, and 3) cutting conditions for each 
NC code block. We need a separate information processing stage for each of these three 
steps. Given below are the three information processing stages along with their functional 
requirements: 

1. The feature-based processing stage generates UMOs with a minimum P /M (NC 
programming / NC machining) ratio. 

2. The geometric processing stage obtains NC blocks with the minimum cutter-
failure rate and the minimum cutter-gouge rate. 

3. The technological processing stage obtains cutting conditions by which maxi­
mum cutting efficiency and minimum cutting-failure rate are achieved. 

Feature-based information processing 
Generating an SSM process (i.e. a sequence of UMOs) from input data requires a high-level 
decision-making function, which in turn requires feature-based information processing. A 
list of machining features is extracted from the geometric definition of the design surface, 
and then these are converted into a sequence of UMOs (unit machining operations). The 
first process is called feature extraction, and the second is called computer-automated 
process planning (CAPP). 

The main issues at this stage are 1) how to define and extract the machining features 
and 2) how to define and obtain the UMOs. In SSM, these two areas, feature extraction 
and CAPP, have not yet been fully investigated. 

Geometric information processing 
Geometric information processing involves the generation and verification of NC data. As 
shown in Figure 22.2, the generation function consists of tool path planning and cutter 
location data computations, while the verification function involves cutting simulation and 
gouge detection. To describe the geometric information processing stage, the following 
terms are now introduced: a CC-path is a series of cutter-contact (CC) points where the 
cutter is tangent to the surface being machined; and a CL-path is defined as the locus of 
cutter-location (CL) points, typically at the center or tip of the tool. Brief descriptions 
of those operations are now given: 

1. Tool path planning: for a UMO, CC-paths are obtained from the design surface. 
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2. CL-data computation: CC-paths are converted to CL-paths. 
3. Cutting simulation: the workpiece is 'virtually machined'. 
4. Gouge detection: the simulated machined surface is compared against the design 

surface. 

The cutting simulation operation also involves computing metal-removal volumes (MRV) 
and checking for collisions. 

Design 
surface 

UMO 

1 
• Tool-path planning 

(topology, precision) 

^ Gouge/uncut 
dete ction 

Workpieces 

Machines 

i 
2 CL-data 

computation 
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1 
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3 Cutting 
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CL-data 

Error report 
T T 

MRV-file Collisions 

Figure 22.2. Geometric information processing. 

The key issue at this stage is how to generate dependable NC data to minimize both 
the cutter failure rate and cutter gouge rates, while also achieving tool path economy 
(i.e. minimizing the effective length of the total cutter path). Another issue is how to 
automate the tool path generation process by using generative NC (GNC), in order to 
minimize the P /M ratio. 

Technological information processing 
Technological information processing is mainly concerned with cutting conditions, but 
it also involves selecting cutting tools and choosing milling strategy options etc. Once 
the tool path pattern has been determined, during the geometric information processing 
stage, cutting efficiency is dependent on the spindle speed and feedrate for each NC block. 
Ideally, the feedrate would be adaptively varied according to the changes in metal removal 
volume. In general, the machining process conditions are affected by non-geometric factors 
such as: 

1. Tolerance requirements. 
2. Surface-finish requirements. 
3. Properties of the workpiece material such as hardness, strength, ductility, etc. 
4. Cutting tool material (HSS, WC, CBN, . . . ) , type, shape, etc. 
5. Machine tool characteristics. 
6. Milling strategy options (e.g. down-milling or up-milling, reverse-cutting or plunge-

cutting, etc.) 



22.2. UNIT MACHINING OPERATIONS 547 

The difficulty of teclinological information processing lies in the fact that there are so 
many variables to consider, because modern SSM operations have become so complicated. 
Thus, it is essential to have a cutting-condition DBMS (database management system) 
that is constantly updated, based on feedback from the shop floor. 

22.2. U N I T M A C H I N I N G O P E R A T I O N S 

This section presents tool path topology, milling strategy options, and a comprehensive 
list of UMOs for 3-axis machining. Commonly used cutter types for SSM operations are 
the ball-endmill, flat-endmill, and round-endmill. 

" Area-contour 

(2) BC-parallel 

a) serial-pattern topology 

Contour curve 

(2) CPO (area, pocket) 

b) radial-pattern topology 

(3) CPO (shoullder) 

\\\\\\\\\" 111 

(1) Strip-parallel (2) Strip-normal 

c) strip-pattern topology 

BC (boundary curve) 

\ ^ 

(2) Z-parallel 

d) contour-pattern topology 

Figure 22.3. Tool path topology. 
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22.2 .1 . Tool path topology and milling-strategy options 
Sculptured surface machining is a 'point' milling process in which a sequence of CC-points 
is traced by milling cutters. When a region is machined by the point milling method, the 
process is often called regional milling, and the pattern of 'tracing' or scanning is called 
the tool path topology (Marshall and Griffiths [14]). The traced region could be an area, 
a strip of fillets or a 'wall'. There are four types of tool path topology pattern, as 
summarized below (where BC stands for boundary-curves and CPO stands for contour-
parallel offset): 

• Serial-pattern: xy-parallel, BC-parallel and BC-normal (Figure 22.3-a). 
• Radial-pattern: spiral and CPO (Figure 22.3-b). 
• Strip-pattern: strip-parallel and strip-normal (Figure 22.3-c). 
• Contour-pattern: helical, 2:-constant, and BC-parallel (Figure 22.3-d). 

Both the serial and radial types may be used for machining an area, and the contour 
type is appropriate for cutting a vertical or slanting wall. The spiral and helical topologies 
(Figure 3-b-l and Figure 3-d-l) are widely used in high-speed machining. It should 
be noted that the so-called isoparametric tool path is a special case of the BC-parallel 
topology, which also includes the so-called isocurvature tool path proposed by Jensen and 
Anderson [13] and Suresh and Yang [21]. 

When planning for regional milling, it is also necessary to consider milling strategy 
options (Schulz and Hock [19]) and parameters related to the SSM-process such as: 

• Milling mode: up-milling or down-milling. 
• Vertical moves: upward or downward milling. 
• Effective cutting edge: acceptable range of inclination angle (a) etc. 
• Tool path linking: zigzag, one-way, etc. 

22.2.2. Ball-endmill U M O s 
The ball-endmill is by far the most popular cutting tool for sculptured surface machining. 
As shown in Figure 22.4, there are seven types of ball-endmill UMOs widely found in 
sculptured surface machining. Listed below are these ball-endmill UMOs together with 
their tool path topologies. (There are a large number of possible combinations of tool 
path topologies, but only the most common ones are considered here): 

1. Area-cut: serial-pattern or radial-pattern topologies (Figure 22.4-a: xy-parallel). 
2. Fillet-cut: strip-pattern topologies (Figure 22.4-b: strip-parallel). 
3. Pencil-cut (Figure 22.4-c). 
4. Contour-cut: contour-pattern topologies (Figure 22.4-d: helical). 
5. Pocketing (hollow only): radial-pattern topologies (Figure 22.4-e). 
6. Shouldering: radial-pattern or xy-parallel topologies (Figure 22.4-f). 
7. Plane-step roughing (or plane-stepping): x^y-parallel topologies (Figure 22.4-g). 

The area-cut UMO is mainly used in generating a smooth surface by tracing the surface 
area. If a large ball-endmill is used during finish-machining, strips of uncut region may 
appear along the sharp concave fillets. These uncut regions in the concave fillets can be 
cleaned up by the fillet-cut UMO using a smaller ball-endmill. Since the radius of the 
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concave fillet is smaller than the radius of the ball-endmill, the ball-endmill will make 
multiple-point contact with the part surface. The trajectory of the center of the ball-
endmill in this case is called a 'pencil curve', and the progress of the ball-endmill along 
the pencil-curve is called a pencil-cut UMO. 

As shown in Figure 22.4-d, a 'core-wall' surface can be effectively machined by employ­
ing the contour-cut UMO. The remaining three UMOs in Figure 22.4 are for roughing 
operations: pocketing, shouldering and plane-stepping. They are based on the concept of 
cutt ing layers in which the volumes to be removed are sliced into layers by a number 
of (equally spaced) horizontal cutting planes. The thickness of the cutting-layer is often 
called the 'plane step', and so this type of roughing method is often called the plane-step 
method. Especially in pocketing, if the cavity-volume to be removed already has a cavity, 
as shown in Figure 22.4-e, the process is called hollow pocketing; if the cavity is to be 
machined from a solid stock, it is called (solid) pocketing. 

a) area-cut (xy-parallel) b) fillet-cut (strip-parallel) c) pencil-cut d) contour-cut (helical) 

e) pocketing (hollow) f) shouldering g) plane-step roughing 

Figure 22.4. Ball-endmill UMOs. 

22.2.3. Flat-endmill U M O s 
There are seven types of 3-axis flat-endmill UMOs widely used in sculptured surface 
machining. They are listed below, together with their tool path topologies (but note that 
only the most common topologies are considered): 

1. Fillet-cut (upward only): strip-normal topology (Figure 22.5-a). 
2. Area-cut (downward only): BC-normal topology (Figure 22.5-b). 
3. Slotting. 
4. 2D-contouring. 
5. Pocketing: radial-pattern topologies. 
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6. Shouldering: radial-pattern or xy-parallel topology. 
7. Plane-stepping (upward only): xy-parallel topology. 

With 3-axis NC machine tools, flat-endmills are rarely used for finish-machining, except 
in the two cases shown in Figure 22.5: that is, the 'strip-normal topology' shown in 
Figure 22.5-a and the 'BC (boundary contour)-normal topology' shown in Figure 22.5-b. 
The former is often used in finish-machining of injection molding dies, and the latter 
is mainly employed in clean-up machining. The two 'simple' UMOs, slotting and 2D-
contouring, are used in the roughing stage as well as in the form-cutting stage (i.e. the 
form-EDM stage for concave sharp edges). The other three roughing UMOs—pocketing, 
shouldering and plane-stepping—are defined in almost the same way as their ball-endmill 
counterparts. 

form-cutting 

slotting 

- Fillet-strip / / / 1 1 ' BC (boundary-curves) 

downward. 

a) fillet-cut (strip-normal) b) area-cut (BC-normanI) c) slotting and form-cutting 

Figure 22.5. Flat-endmill UMOs. 

22.3. INTERFERENCE HANDLING 

Even with the most robust algorithms, there are many opportunities for making errors 
when generating the tool paths for sculptured surface machining (SSM). The kinds of 
errors considered in this section are: 

1. Gouging of the part in excess of the in-tolerance value U. 
2. Collision between a non-cutting cutter element (e.g. the cutter holder) and the 

workpiece. 

The purpose of this section is to understand the nature of cutter interference in SSM, 
which is essential for preventing, detecting, and correcting errors. In this section, com­
monly found types of cutter interference are categorized as: 

1. CL-point interference: gouging occurs at a CL-point. 
2. CL-line interference: gouging occurs on a CL-line. 
3. Collision: collision occurs during cutting motion. 
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22.3.1 . CL-point interference 
Figure 22.6-a shows a typical CL-point interference; this type is known as a concave-
gouge, which can occur at a CL-point located in a concave region when a cutter contacting 
a CC-point invades other portions of the part surface. When a smooth surface is machined 
with a ball-endmill, a sufficient condition for concave-gouging is given by 

>!//>, (22.1) 

where p is the ball-endmill radius and kn is the maximum normal curvature. Even though 
some methods for preventing concave-gouging have been proposed in the literature (Choi 
and Jun [4]), it is not easy to detect (and correct) this type of gouging from a given tool 
path. Moreover, 'correction' of the concave-gouge would lead to a CL-point uncut as 
depicted in Figure 22.6-b. 

CC-point 

(a) 

Figure 22.6. A concave gouge and an uncut. 

22.3.2. CL-line interference 
Even if there is no interference at each CL-point, a convex-gouge may occur during the 
movement of the tool along a CL-line, as shown in Figure 22.7-a. A convex-gouge may 
occur only at a CL-line (and a concave-gouge may occur only at a CL-point). Figure 22.7-a 
shows a typical convex-gouge associated with a ball-endmill. The 'thickness' of the convex-
gouge (7i) is defined as the distance from the CC-point (r^) to the machined surface, and 
it is expressed (Choi and Jun [4]) as: 

72 p(l—sinofj), for i = l , 2 . (22.2) 

where p is the cutter radius, ai — ZriPiP2 and 0̂ 2 = ^PiP2r2 (see Figure 22.7-a). 
In the extreme, the convex-gouge shown in Figure 22.7-a becomes the sharp-edge gouge 

shown in Figure 22.7-b. In both cases (Figures 22.7-a and 22.7-b), the thickness of the 
convex-gouge could be unacceptably high for a large value of a^. The actual size of the 
convex-gouge is roughly equal to the sum of the gouge thickness 7 given by (22.2) and 
the in-tolerance TJ. 
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A simple way to correct (or remove) the convex gouge at p^ is to insert additional 
CL-points at q̂  (for i = 1,2), located (Choi and Jun [4]) at: 

q, = p , + p • (n, - c / (n, • c)) • ( l / ( l - (n, • cfY^^ - l ) , for i - 1,2, (22.3) 

where n^ is the unit normal vector at r̂  and c = (r2 — ri ) / | r2 — r i | . Now the CL-path at 
the convex region is changed to the sequence 

-^ Pi ^ qi -> q2 ^ P2 -> 

This correction is effective on both the convex-gouge of Figure 22.7-a and the sharp-edge 
gouge of Figure 22.7-b. 

(b) 

Figure 22.7. Convex gouging and sharp-edge gouging. 

22.3.3. Collisions 
A cutting tool is supposed to interact with the workpiece only through its 'cutter-part' 
(or cutting-edge), and if its non-cutting portion makes contact with the workpiece, there 
is a collision. In fact, there may be three types of collision: 1) holder-collisions, as shown 
in Figure 22.8-a, 2) shank-collisions as in Figure 22.8-b, and 3) dead-center collisions, as 
shown in Figure 22.8-c. 

22.4. TOOL PATH G E N E R A T I O N M E T H O D S A N D C O N S E Q U E N T GE­
O M E T R I C ISSUES 

22.4.1. The conventional approach and the C-space approach 
The conventional approach 
In CC-based TPG (tool path generation) methods, tool paths are generated by sampling 
a sequence of CC-points from the part surface, and then each CC-point is converted to a 
CL-point. Here, the part surface is used as a path-generation surface on which tool paths 
are generated. These are often called conventional TPG-methods. 

There are three types of path planning domain in which tool path patterns are planned: 
the parameter domain, the guide-plane and the drive-surface. Thus, depending on the 
type of path-planning domain, CC-based TPG-methods can be grouped into the three 
cases shown in Figure 22.9: 
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(a) Holder collision (b) Shank collision (c) Dead-center collision 

Figure 22.8. Collisions (holder and shank). 

The isoparametric method: CC-paths are planned on the parameter domain of the 
part surface and then they are mapped on to the part surface (Figure 22.9-a). 
The Cartesian method: tool paths are planned on a guide-plane and then tool 
positions are projected on to the part surface (Figure 22.9-b). 
The APT (Automatically Programmed Tool) method: tool paths are defined by 
intersecting the part surface with a series of drive-surfaces (Figure 22.9-c). 

Part-surface Guide-plane 

Drive-surface 

i_ 

(a) Isoparametric tool-path 

Part-surface 

(b) Cartesian tool-path (c) APT-type tool-path 

Figure 22.9. CC-based tool path generation methods. 

The isoparametric method is the simplest TPG-method, but it may not be suitable for 
machining a compound surface consisting of a collection of surface patches. Moreover, 
this method is susceptible to concave gouging. Thus, the alternative Cartesian method is 
widely employed in modern CAD/CAM systems. The APT method has been employed 
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in the APT system. In all these three cases, however, the CL-data computation is carried 
out in the following three phases: 

1. Mapping: computation of a CL-point for a given 'domain-point'. 
2. Marching: finding the next domain-point from the current point on the path. 
3. Side-stepping: finding the initial domain-point on the next path. 

The C-space approach 
The C-space (configuration space) idea has been widely used in spatial planning for robot 
manipulators [16] and may also be applied to NC tool path planning by treating the 
cutter assembly as the moving object and the workpiece and fixtures as the obstacles. The 
configuration of a 3-axis NC machine (i.e. its cutter) is the 3D position vector denoting 
a CL-point, and its C-space is given by the NC-volume VNC within reach of the cutter. 
In tool path planning, however, there are two types of safe C-space: 'free-travel' C-space 
and 'machining' C-space. 

Cutting tool I 
^ VF OP Preform-surface 

r̂n^k r ...1 L 

Design-
surface 

Figure 22.10. Construction of C-space for 3-axis machining. 

Now we will consider two CL-surfaces (SD and Sp), one from the design-surface and the 
other from the preform-surface, as depicted in Figure 22.10: 

• SD : CL-surface for the design-surface. 
• Sp : CL-surface for the preform-surface (or raw-stock). 

Then, as shown in Figure 22.10, the two CL-surfaces would divide the entire C-space V^c 
into the following three disjoint C-space volumes: 

• Vp : the 'free-travel' C-space volume (the region above Sp). 
• VM '• the 'machining' C-space volume (the region between Sp and SD and including 

both surfaces). 
• VG : the 'gouging' C-space volume (the region below SD). 
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The geometric entities Sp, So, Vp, VM, VG are called C-space elements. 
As will be discussed shortly, these C-space elements contain all the geometric informa­

tion needed for generating tool paths. In summary, the C-space approach to tool path 
generation may be formalized as follows: 

1. Compute Sp: CL-surface of the preform-surface. 
2. Compute SD: CL-surface of the design-surface (with an uncut-allowance). 
3. Compute Vp, V M , V G : volume-type C-space elements: 
4. Generate tool paths from the C-space elements. 

Compared with conventional methods, the key feature of the C-space approach is that 
all the decisions, including global ones such as feature extraction and adaptive feed control, 
can be based solely on the C-space representation. 

22.4.2. Geometric issues in conventional approach 
The geometric information processing of SSM may be classified into a tool path generation 
(TPG) step and an interference handling step in which geometric issues are identified; this 
is the case both in the conventional approach and in the C-space approach. Table 22.1 
summarizes the geometric aspects of the conventional approach, while the six key geo­
metric procedures in the TPG step are listed below: 

• A sliding cutter trajectory between the part surface and a horizontal plane is traced 
to generate a BP (boundary pocket)-curve or a z-constant contour curve. How­
ever, many researchers are still struggling to design and implement a robust tracing 
algorithm (see Figure 22.11-a). 

• A 2D PS (point sequence)-curve offsetting algorithm is used to generate a series of 
contour-parallel oflPset (CPO) curves especially in pocket machining. A more detailed 
description of this issue is presented in Section 22.5.2. 

• PS-curves defined during tool path planning are projected on to the part surface to 
generate CPO-paths or direction-parallel CC-paths. Vertical and horizontal projec­
tion are usually sensitive in near-vertical and near-plane regions of the part surface 
respectively. Depending on the shape of the part surface, we should select an ap­
propriate projection method, such as the normal projection. 

• Sliding cutter trajectories in concave regions are traced to detect pencil-curves on 
the part surface. The trajectory of the center of the ball-endmill in this case is the 
pencil-curve (see Figure 22.11-b). 

• Sliding cutter two-point contact curve pairs are traced to extract clean-up machining 
regions. The sliding cutter in this case is the smallest used in finish machining (see 
Figure 22.11-b). 

• PS-curve fairing is used in refining pencil-curves and correcting CL-paths to improve 
the quality of the machined surface. 

The following four key geometric issues are also identified in the interference handling 
step: 

• Principal curvature calculations and Boolean operations between the cutter and the 
workpiece are used to detect concave-gouging (CL-point gouging) in SSM. 
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Figure 22.11. Sliding cutter trajectory. 

• Boolean operations between the volume swept by the cutter and the workpiece are 
used to detect convex-gouging (CL-path gouging). 

• Boolean operations between the volume swept by the tool assembly and the workpiece 
are used to check for collisions. 

In these cases, effective performance of the Boolean operations requires a unified scheme 
for representing the cutter and the workpiece. There is no general algorithm to prevent 
the erosion of sharp edges in the conventional approach, so a special algorithm has to be 
designed and implemented for each case. 

Table 22.1 
Geometric issues in the conventional approach 

Information 
Processing Key Geometric Operations Required Functions 

Sliding cutter trajectory tracing between 
the part surface and a horizontal plane 

BP-curve generation 
Z-constant contour path generation 

2D PS-curve offsetting Generation of CPO-paths 
PS-curve projection Direction-parallel path generation 

Tool 
Path 

Generation 

Sliding cutter trajectory tracing in 
concave regions 

Pencil-curve tracing 

PS-curve fairing Pencil-curve refinement 
CL-path smoothing and correction 

Sliding cutter two-point contact curve 
pair tracing 

Clean-up region detection 

Surface trimming Clean-up path generation 
Surface principal curvature calculation Concave-gouge avoidance 
Cutter/workpiece Boolean operation Concave-gouge avoidance 

Interference Cutter swept volume/workpiece 
Handling Boolean operation 

Tool assembly swept volume/workpiece 
Boolean operation 

Convex-gouge avoidance 
Sharp-edge erosion prevention 
Collision avoidance 
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22.4.3. Geometr ic issues in the C-space approach 
In the C-space approach, six geometric issues may be identified in the TPG step and two 
more become apparent in the interference handling step. PS-curve handling algorithms, 
discussed in the conventional approach, can also be applied to the C-space approach. The 
six key geometric issues in the TPG step can be summarized as follows. 

• The concept of the Minkowski sum is used to construct the inverse tool offset surface, 
the CL-surface. A unified scheme for consistent representation the part surface and 
the CL-surface is required to construct the CL-surface effectively. In Section 22.5.1 
an algorithm for constructing the CL-surface is described. The 2;-map model is used 
as a representation scheme for the CL-surface. 

• A z-constant contour curve including a BP-curve are computed by intersecting the 
CL-surface and a horizontal plane. The z-constant contour curve becomes a path 
segment in the C-space approach. 

• As in the case of the conventional approach, 2D PS-curve offsetting, PS-curve pro­
jection, and PS-curve fairing are employed to handle PS-curves (in the generation of 
CPO-paths, direction-parallel tool path generation, and in pencil-curve refinement). 

• Since pencil-curves are represented as sharp-edges in the CL-surface, we use the 
algorithm for tracing sharp-edge curves to detect pencil-curves and clean-up regions 
in the C-space approach. 

Table 22.2 
Geometric issues in the C-space approach 
Information 
Processing Key Geometric Operations Required Functions 

Minkowski sum CL-surface construction 
Intersection between CL-surface and 
a horizontal plane 

BP-curve generation 
Z-constant contour curve generation 

Tool 
Path 

Generation 

2D PS-curve offsetting Generation of CPO-paths 
PS-curve projection Direction-parallel path generation 
Sharp-edge curve tracing Pencil-curve tracing 

Clean-up region detection 

Interference 
Handling 

PS-curve fairing 

Height Boolean 
Non-circular offsetting 

Pencil-curve refinement 
CL-path smoothing and correction 
Collision detection 
Sharp-edge erosion prevention 

The C-space of the tool assembly is constructed from the part surface using the concept 
of the Minkowski sum. Collisions between the part surface and the tool assembly are easily 
detected using height Boolean operations, because the tool assembly is represented as a 
line segment in its C-space. To prevent sharp-edge erosion in the C-space approach, we 
must use a special method, such as a non-circular offsetting of the sharp edges. (If a 
cutter moves along a circular offset tool path which crosses a convex sharp edge, the 
cutter contacts only one point on the convex sharp edge. In that case, the convex sharp 
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edge should be eroded because of the interpolation characteristics of CNC controllers and 
spindle vibration.) Table 22.2 summarizes key geometric issues in the C-space approach. 

22.5. GEOMETRIC ALGORITHMS 

22.5.1. CL-surface construction 
The merit of the C-space approach can only be realized through a reliable and efficient im­
plementation scheme. To construct the CL-surface, we first of all select its representation, 
considering the following factors: 

• The CL-surface (SD) can be represented in a nonparametric form: z — /(x,y). 
• SD can be constructed by computing its inverse tool-offset (ITO) surface. 
• For chip-load leveling, it is necessary to trace the sharp edges of SD- (An abrupt 

jump in chip load may result in cutter breakage) 
• For cutting-load smoothing, it is necessary to compute normal curvatures of SD-
• For tool path planning, it is necessary to extract machining features from SD-

-• For tool path generation, it is necessary to intersect SD with planes. 

The CL-surface may be represented as a triangulated facet model (Choi et al. [3] and 
Sheng and Hirsch [20]) or as a Z-map model. It turns out that the above requirements 
are quite effectively covered by the Z-map model. A Z-map, also known as a G-bufFer 
(Saito and Takahashi [18]), is nothing but a 2D-array of z-values of the surface sampled at 
points on a regular grid. The x,y coordinates of the Z-map element z\^,j\ ^re computed 

x\%\ -= x[0] + 7x • 2 and /̂[j] = 7/[0] + 7?/' h (22.4) 

where (3:[0],2/[0]) is the grid-point at the bottom-left corner of the Z-map domain, and ^^ 
and 7y denote the grid intervals. 

Patch-offset 

Figure 22.12. Patch-offsets and edge-offsets in a CL-surface. 

This section presents a method for obtaining the Z-map model of a CL-surface called 
the CL Z-map. The method for constructing a CL Z-map from a CAD model having 
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a number of trimmed parametric surface patches is called the offset-surface digitizing 
method. Throughout the rest of this section, the term 'master Z-map' will be used to 
denote the Z-map model of the part surface to be produced or its preform-surface. The 
generation of a master Z-map from a CAD model is called Z-map sampling or virtual 
digitizing, which may be carried out by using the 2D Jacobian inversion algorithm 
(Choi [5]). 

Once the Z-map structure is obtained, the CL-surface of the CAD model has to be 
'digitized' again at each grid-point of the Z-map model. Since the 2D Jacobian inversion 
algorithm would become unstable for a CL-surface, we use the 'offset-surface digitizing 
method' in constructing a CL Z-map (Choi and Jerard [9]). 

Figure 22.12 shows a two-dimensional cross-sectional view of a CAD model and its CL-
surface. The CAD model consists of four trimmed parametric surface patches Si together 
with five edges, A, B, C, D and E. Note that A and E are boundary edges, B is a smooth 
common edge, C is a convex edge and D is a concave edge. Also depicted in the figure are 
patch-offsets and edge-offsets: one patch-offset surface for each surface patch and an edge-
offset surface for each convex-edge and boundary-edge. (Smooth-edges and concave-edges 
are simply neglected.) 

As depicted in Figure 22.12, the CL-surface is a compound surface consisting of patch-
offset surfaces and edge-offset surfaces. Thus, in the offset-surface digitizing method, 
the CL Z-map is constructed by digitizing the individual offset surfaces. (If more than 
one z-value is sampled for a given grid-point, the highest is selected.) Each patch-offset 
surface is digitized by performing Z-map sampling on its triangulated facet-model, while 
edge-offset surfaces are digitized by simulating the cutting of an 'inverse tool', as depicted 
in Figure 22.13. Thus, the overall procedure for constructing the CL EZ-map (extended 
Z-map) may be expressed as follows: 

Input: a CAD model consisting of parametric surface patches, together with the cutter 
geometry. 

Step I. Construct a master Z-map model using the 2D Jacobian algorithm. 
Step 2. Construct a triangulated facet model for each of the patch-offset surfaces. 
Step 3. Digitize each individual offset triangle in the triangulated facet-models. 
Step 4- Find all the convex and boundary edges. 
Step 5. Perform 'inverse tool' cutting simulation along each of the edges found in Step 4. 

Figure 22.14-a shows a parametric surface patch whose offset surface is to be digitized. 
First, the surface patch is discretized and triangulated as, depicted in Figure 22.14-b, and 
then the vertices of each triangle are offset along their 'offset vectors' to obtain an offset 
triangle as shown in Figure 22.14-c. For a ball-endmill of radius p, the offset vector may 
be given by p • n, where n is the unit normal vector. Finally, as shown in Figure 22.14-d, 
each offset triangle is digitized. 

A number of surface-discretization algorithms are available in the literature (see 
Austin et al. [2]). One of the key issues in discretization is the choice of an appropriate 
resolution, the step-length A between two adjacent vertices, while keeping the discretiza­
tion error e within the input tolerance r . A simple method is to approximate the curve 
joining the two vertices with a circular arc of radius pk, so that the step length A is given 
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ITO(inverse-tool offset)-surface 

Part-surface 

(a) ball endmill 

ITO-surface 

(b) flat endmill 

Figure 22.13. Cutting by a simulated 'inverse tool' 

by 

(22.5) 

However, as shown in Figure 22.15, the offset surface discretization error, s°, is difTerent 
from the base surface discretization error, ^, although they are related to each other as 
follows: 

ipk±Pc) 
5 

Pk 
(22.6) 

where pc is the radius of the (ball-endmill) cutter. (The ± becomes + for a convex 
region and — for a concave region.) Since s^ < r , from the results of (22.5) and (22.6), 
the triangulation step-lengths A for the convex case (Figure 22.15-a) and concave case 
(Figure 22.15-b) are expressed as follows: 

Ac 
2 \ l / 2 

< 2' [2- Pk- Tconv - (^conv)^) and 

'^concave S ^ ' \^ ' Pk ' ^conc v^concj j 
2 \ l / 2 

(22.7) 

(22.8) 

(a) 

^ 

^ 

Y / / 

(b) (c) (d) 

Figure 22.14. Virtual digitizing by means of offset-surface triangulation. 
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with 

Tconv = r • pk/{pk + Pc) and 

Tconc = r ' Pk/{pk - Pc) for pk > Po 

where pk is the radius of the normal curvature in the direction of the 'next' vertex and pc 
is the (effective) radius of the cutter (in the same direction). 

Offset 

surface 

(a) Convex case (b) Concave case 

Figure 22.15. Triangulation step-lengths and discretization errors. 

It should be noted that the inequalities (22.7) and (22.8) are undefined in 'narrow 
concave regions' where the radius of normal curvature is less than or equal to the cutter 
radius. (Such regions are simply excluded from digitizing.) 

The above procedure for determining step-length may easily be implemented for a ball-
endmill. However, the procedure would be quite involved for a round-endmill because: 

1. The effective cutter radius pc is not easily computed, and 
2. Inequality (22.6) is no longer valid in horizontal regions where the normal vector n 

of the surface is vertical. (The horizontal regions may be digitized by simulating 
inverse cutting.) 

22.5.2. 2D PS-curve offsetting 
The 2D-curve offsetting problem (Tiller and Hansen [23]) has been regarded as one of the 
key issues in generating tool paths for 2D pocketing. In general a 2D curve may be 1) in 
parametric form, for instance a NURBS-curve, 2) a curve consisting of lines and arcs, or 
3) a curve defined by a sequence of points (PS-curve). 

The parametric-curve offsetting problem was formulated mainly in terms of self-intersectior 
while the main reason for offsetting a line/arc-curve was to obtain a non-self-intersecting 
oflFset curve. Line/arc-curve offset methods may further be classified into the curve-based 
approach and the area-based approach. The area-based methods make use of related 
concepts such as the bisector and Voronoi algorithms, which provide more stable means 
to obtain an offset curve. The subject of offsetting a PS-curve has received less attention, 
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perhaps because it can be approximated by a line/arc-curve. However it still remains a 
hot issue in developing commercial SSM software. 

This section describes a robust pairwise offset algorithm that obtains the valid offset 
curves of an input boundary PS-curve. Initially, the PS-curve is given as a closed sequence 
of 2D points, where each point is regarded as a vertex. In a preprocessing step, collinear 
vertices may be removed from the initial PS-curve. This is not essential for the algorithm 
but it may help speed up subsequent processes. After that, the PS-curve is converted 
into a counter-clockwise linked-list of segments, during which a list of pointers (to the 
PS-curve) for the convex vertices is also constructed. The PS-curve offsetting algorithm 
is described as follows (Choi [5]): 

2D PS-curve offsetting 

Input: PS-curve, offset direction, offset distance (p). 
Step 1. Remove all local interfering ranges (LIR): 

While (there remains a convex vertex in the PS-curve) do { 
1. Get the parameter value tc of a convex vertex; 
2. Set f = tc and b = tc] 
3. Perform pairwise interference detection (/, 6); 
4. Remove the LIR = [b, f] from the PS-curve; 

}; 
Step 2. Construct a raw offset curve from the remaining segments in the PS-curve. 
Step 3. Find all self-intersections of the raw offset curve using a sweep-line algorithm. 
Step 4- Remove all global interfering ranges (GIR): 

GIR - <!>; 
While ('unmarked' self-intersections remain in the raw offset curve) do { 

1. Select an unmarked self-intersection point P = (Z^, bg) and mark it; 
2. Set f = fs and b = bg] 
3. Perform pairwise interference detection (/, ^); 
4. Mark the self-intersection point Q = (/, 6); 
5. GIR = G I R u [ / „ / ] u [ 6 , 6 , ] | ; 

} 
Remove GIR from the raw offset-curve; 

Step 5. Construct valid offset curves from the remaining segments of the offset curve. 

Step 1 of the algorithm will be explained with the LIR of the PS-curve that is shown 
in Figure 22.16. As depicted in Figure 22.16-a, the convex vertex shown as tc = 0 is 
selected as a local seed point in Step 1-1. In Step 1-3, the pairwise-interference-detection 
(PID: / , b) function is called with f = b = 0, which will return the parameter values 
(^f = f^ = 3.5, b = be = 23.2) at the contact-points of the common tangential circle. In 
Step 1-4, the LIRi = [23.2, 3.5] is deleted from the PS-curve, as depicted in Figure 22.16-b. 
In the next iteration of the While loop, another convex vertex at tc = 20 is selected, in 
Step 1-1; and then, in Step 1-3, the PID function is called with / = 6 = 20 and the 
parameter values {f = fe = 4.2 and b = be = 15.1) for a new LIR are returned. Next, in 
Step 1-4, the new interference range, LIR2 = [15.1, 4.2], is deleted (see Figure 22.16-c). 
During a further iteration of the While loop, another interference range, LIR3 =[9.7, 4.3], 
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is detected and deleted (see Figure 22.16-d). In the example shown in Figure 22.16, one 
may observe that a segment is visited only once, even though it may belong to more than 
one LIR (since LIRi C LIR2 C LIR3). 

A comment on the choice of local seed points in Step 1 may be in order. For the 
PS-curve of Figure 22.17, the convex vertices shown as t = 0, 20,15 (hollow points) were 
selected 'at random' as local seed points (Step 1-1 of the algorithm). In theory, the 
performance of Step 1 can be improved by employing an 'optimal' strategy for selecting 
a local seed point. In practice, however, defining such a strategy is not easy, and finding 
a better seed point imposes an additional computational burden. 

Since all the segments belonging to local interference ranges have been deleted from the 
PS-curve during Step 1, it now contains only five linear segments and one reflex segment 
(Figure 22.17-b). In Step 2 of the algorithm, a raw off'set curve of the resulting PS-curve 
is constructed (Figure 22.17-c). In Step 3 of the algorithm, self-intersection points of the 
raw offset curve are computed (Figure 22.17-d). 

f-seg gQQ^ 

be = 15.1 

fe = 4.2 

LIR3..--' 

(d) 

Figure 22.16. Detection and deletion of local interference ranges. 

Now we describe in detail the operations performed in Step 4 of the algorithm. In 
Step 4-1, a self-intersection point P (Figure 22.17-d) is selected and tracing directions are 
assigned by setting fs = 4.5 and bg — 8.2. Since the self-intersection point P of the raw 
offset curve is the center point of a tangential circle of the PS-curve, the tracing directions 
are assigned in such a way that the tangential circle 'gouges' the PS-curve. Now, using the 
selected point P(/5 = 4.5,65 = 8.2) as a global seed point, the PID (/, h) function is called 
with / = 4.5 and h = 8.2, in Step 4-3. The PID function will then return the parameter 
values at another self-intersection point Q ( / = 4.7,6 = 6.8). The two self-intersection 
points P and Q are 'marked' in Steps 4-1 and 4-4, respectively. In Step 4-5, the global 
interference range, GIR = [4.5, 4.7] U [6.8, 8.2], that was detected in Step 4-3 is collected. 
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The collected GIRs are deleted after the While loop (i.e. in Step 4-6) because otherwise 
small portions of some GIRs might be traced more than once. 

22.5.3. Area scan algorithm 
This section describes an area scan algorithm mainly used in direction-parallel area 
milling. The algorithm handles multiply-connected areas and is not restricted to spe­
cific types of contour elements such as line segments or circular arcs (Park and Choi [17]). 
For the sake of simplicity, however, we assume that the area curves are PS-curves consist­
ing of a large number of points. In practice, area curves are usually given as PS-curves 
obtained from surface-surface intersections (i.e. the intersection between the CL-surface 
and a plane) or feature curves extracted from the CL-surface. We divide the algorithm 
into two modules: 1) finding the optimal inclination and 2) calculating and storing tool 
path elements. 

(a) given PS-curve (Input) 
(b) Local interference removal 

( use convex vertices as interfering seeds) 

(c) raw offset (d) Self-intersection detecion 
(sweep line algorithm for polygonal chain intersections) 

(e) Global interference removal 
( use self-intersections as interfering seeds ) 

(f) Valid offset curves (Output) 

Figure 22.17. A raw offset curve and the deletion of the global interference range. 

Optimal inclination 
In actual machining, the inclination of milling may be decided by the user, based on 
technological requirements such as the feature (slope) of the part surface or constraints 
imposed by the machining configuration (NC-machine, jigs and fixtures). Otherwise the 
tool path planning system should be able to find an optimal inclination that satisfies three 
objectives: 1) minimizing the number of tool retractions, 2) minimizing the number of tool 
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path elements and 3) maximizing the average length of tool path elements. Figure 22.18 
shows that the inclination is related to three objectives. 

Note that the number of tool retractions may not be decided by the inclination alone, 
because it is also influenced by the tool path linking method. In order to incur the mini­
mum number of tool retractions, some researchers have suggested algorithms that perform 
two-step optimizations: global optimization (selecting optimal inclination) and local op­
timization (tool path linking method). But for the other two objectives, minimizing the 
number of tool path elements and maximizing the average length of tool path elements, 
there is no available prior research, to the best of our knowledge. We do not explicitly 
consider the average length of tool path elements, because the minimum number of tool 
path elements will in any case maximize their average length. 

(a) 90° Inclination: 
Zero tool retractions 

(b)0° Inclination: 
Two tool retractions 

Figure 22.18. Inclination of milling and its objectives. 

Before giving a formal description of the proposed module, we first introduce some 
basic terminology. A vertex is called reflex if the internal angle between its incident 
segments is greater than TT, and convex otherwise (Figure 22.19). Given some inclination, 
a reflex vertex z/ is called a scan-reflex vertex if there is a neighborhood S Sit i/ such 
that the boundary of the inside area is on one side of the line parallel to the inclination 
and passing though u (Figure 22.19). A sequence of consecutive reflex vertices is called 
a reflex profile if its tangent range is smaller than n (Figure 22.20-a), otherwise it is 
divided into several reflex profiles (Figure 22.20-b). Note that a reflex profile has at most 
one scan-reflex vertex with respect to an arbitrary inclination. The length of a reflex 
profile is defined as the sum of the lengths of all its segments. 

To fulfil the objectives listed above, an inclination should be chosen by considering not 
only the geometric shape of the area but also the tool path interval. Some researchers 
have suggested algorithms that select an inclination which minimizes the number of local 
extrema (scan-reflex vertices), but without considering the tool path interval. As a result 
these algorithms may not properly deal with the local (small) features of the boundary 
curves and thus fail to minimize the number of tool path elements. 

The proposed module has to find the inclination that minimizes the number of scan-
reflex vertices after removing reflex profiles with a length smaller than the tool path 
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0° inclination 

@ : reflex vertex 
O : convex vertex 
scan-reflex vertex: P10, P13, PI 5 

Figure 22.19. Elements in an area curve. 

interval, and also local (small) features. The algorithm is described as follows: 

Step 1. Identify all the reflex vertices on the area curve, and construct a reflex profile 
set by grouping consecutive reflex vertices. 

Step 2. Remove reflex profiles with a length smaller than the tool path interval from the 
reflex profile set. (Local features are removed from the reflex profile set.) 

Step 3. Compute tangent ranges of the reflex profiles in the set and sort them (Fig­
ure 22.21-b). 

Step 4- Find an angular range belonging to the smallest number of tangent ranges 
(Figure 22.21-c). 

Step 5. Pick the central inclination inside the selected angular range. 

Note that the angular range found in Step 4 contains the minimum number of scan-reflex 
vertices because a reflex profile gives at most one scan-reflex vertex when the inclination 
belongs to the tangent range 

Calculating and storing tool path elements 
This module has two objectives: one is to find tool path elements eflftciently and the other 
is to store them in a suitable data structure for tool path linking. For the former purpose, 
we use the plane sweep, paradigm and the concept of a monotone chain. A graph-like 
structure, the tool path element net (TPE-net) is suggested to achieve the latter goal. 

A chain C is monotone with respect to a line L if C has at most one intersection point 
with each line L^ perpendicular to L (Figure 22.22-a). The line L is called the monotone 
direction and the line L^ becomes a sweep line. 

Without loss of generality, we may assume that the x-axis (0^) is the inclination found 
in the previous module: i.e. the reference lines (or tool path elements) are horizontal. 
Firstly, we decompose area curves into monotone chains with respect to the ?/-axis. After 
decomposition, the tool path elements are calculated by sweeping a horizontal line across 
the monotone chains from top to bottom. During sweeping we maintain a monotone chain 
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rfiachining area 

tangent range > n 

machining area -^0^ Split 

tangent range < n 

(a) (b) 

Figure 22.20. Reflex profiles. 

list (MCL) which is crossed by a reference line, and the list is ordered by the x-values 
at their intersection. Note that the number of monotone chains is not changed unless 
the sweep passes over a scan-reflex vertex. At an event corresponding to a scan-reflex 
vertex z/, a pair of monotone chains is inserted into the MCL if v has a local maximum 
?/-value, or deleted from the MCL if u is locally minimal (Figure 22.23). Then at each 
reference line, the tool path elements can easily be obtained by checking intersections 
between the reference line and the monotone chains in the MCL. 

A tool path element Eij is intuitively represented using the 'TPE-node' (tool path ele­
ment node) (Figure 22.24-b). We suggest a graph-like structure to denote the connectivity 
relationships among TPE-nodes called a TPE-net (tool path element net) consisting of 
TPE-nodes and arcs (Figure 22.24-c). Note that to achieve the fifth requirement 'move­
ment along boundary curves', every arc in the TPE-net should contain geometric informa­
tion about the corresponding segment of the boundary curve. Owing to the intuitiveness 
of the TPE-net, we can easily construct and handle it in the next module, tool path 
linking. 

22.5.4. Point-sequence curve fairing 
This section describes a fairing algorithm for a PS-curve such as a pencil curve consisting of 
pencil-points. In this case, the 3D coordinates TJ = [xj.yj, Zj) of points can be decomposed 
into 'domain' coordinates Pj = [xj.yj] and 'height' coordinates q^ = [sj.Zj), where Sj is 
the cumulative length of the PS-curve given by 

3 

Sj = X I IPZ - Pz-i| for J - 1, 2 , . . . with 50 = 0. (22.9) 

PS-curve fairing is performed using a systematic fairing scheme based on diff'erence oper­
ators. Our strategy is to apply the point-data fairing operations separately to the domain 
coordinates (pj) and the height coordinates (qj). 
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machfl 

AR-1 

(a) Area curve 

AR-1 

(b) Sorted tangent ranges (c) Angular ranges 

Figure 22.21. Finding an angular range belonging to the smallest number of tangent 
ranges. 

For a 3D point sequence r^, the nth difference is defined as 

D] = D ; - / - D]-'^ with D^^ = Tj. (22.10) 

Then, by setting Equation (22.10) to zero for n = 2, the 'ideal' position r^ for the input 
point Tj can be computed from the 2nd-difFerence fairing equation given by 

r, = '^^'p-\ (22.11) 

Similarly, by setting Equation (22.10) to zero for n = 4, the ideal position TJ can be 
computed from the 4th-difFerence fairing equation given by 

(22.12) 
2 6 ^ ^ 

The physical meaning of the above fairing equations is shown in Figure 22.25: 2nd-
difference fairing straightens the curve, while 4th-difference fairing leads to a curve with 

(a) monotone chain w.r.t. line L (b) not a monotone chain w.r.t line L 

Figure 22.22. A general chain and a monotone chain. 
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Oo inclination 

sweep direction 

MCL: m c l , mc3, mc4, mc2 

MCL: m c l , mc5, mc6, mc2 

: scan-reflex vertex 

Figure 22.23. Maintaining the MCL (monotone chain list). 

hnear change in curvature (if the point spacing is uniform). In the literature, a quantity 
similar to the sum of squares of the right-hand side terms in Equation (22.12) is often 
used as a global smoothness measure of a digitized curve (Eck and Jaspert [11]). For local 
straightening, we use the 2nd-difference fairing equation (22.11), while the 4th-difference 
fairing equation (22.12) is employed for global smoothing. 

In practice, the input point sequence may have uneven spacing. Thus, the above fairing 
expressions have to be normalized with respect to their chord lengths. For this purpose, 
we will define the following quantities: 

d-2 = | r j _ 2 - r j - i | , c?_i = \rj_i-rj\, d+i == | r ^ + i - r j | , and d+2 = |r^+2 - rj+i|.(22.13) 

Then, from Equations (22.11) and (22.12), the following 'normalized' fairing equations 
may be obtained: 

ci_ 

and 

do 
( f j - i 

/ 2 : 

r,-2) + 
do 

( r ,+ i - r^+2) / 6 

(22.14) 

(22.15) 
^d_2 a+2 

where do — (d_i +( i+i) /2 . Note that Equations (22.14) and (22.15) become equivalent to 
Equations (22.11) and (22.12) when we have (i_2 = d_i = dj^\ — d^2-

In actual fairing, the 'faired' position TJ is usually determined by taking a linear com­
bination of the ideal position f̂  and the input point r^, as follows: 

f, + ^ • subject to |fj - r^l < r, (22.16) 

where <l> G [0,1] is a damping factor and r is a fairing tolerance. The blending 
operation (22.16) is often called a 'damping correction'. In practice, a damping factor of 
0.4 to 0.6 is commonly used. 



570 CHAPTER 22. SCULPTURED SURFACE NC MACHINING 

E,, 

Jf* % 
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(a) Tool-path elements (E ij) (c) TPE-Net (tool-path element net) 

Left port < > Right port 

(b) TPE-Node (tool-path element node) 

Figure 22.24. The TPE-net and a TPE-node. 

Domain-coordinates fairing 
To fair the domain-coordinate points {pj}, the ideal position p^ can be obtained by 
applying the normalized fairing equations in (22.14) and (22.15). Thus, we have: 

(22.17) 

and 

Pj = ni+ [ -r^{Pj-i - Pj-2) + ^ ( P j + 1 - Pj+2) ) /6 , (22.18) 

where do = ((i_i + c/-|.i)/2 and {d^} are defined as follows: 

d-2 = \Pj-2 - P j - i | , d_i = \pj_i - Pjl, d+i = |p^+i - pj\ and (i+2 == |Pj+2 - Pj+i| 

(a) 2nd-clifference = 0 

rK2 

(b) 4th-difference = 0 

Figure 22.25. The physical meaning of difference fairing. 
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The 2nd-difFerence fairing equation (22.17) is used for local straightening of the domain 
coordinates of the pencil-points, and the 4th-difFerence fairing (22.18) is used for global 
smoothing. In Equations (22.17) and (22.18), the damping-correction operation (22.16) 
is applied to the ideal position p^ and the input-point Pj in order to obtain a corrected 
position p^'. That yields: 

Pj =Pj + ^d'{Pj-Pj) subject to \Pj-Pj\<rd, (22.19) 

where ^d and r^ are the damping factor and fairing tolerance for the domain fairing. 

Height-coordinates fairing 
A unique feature of the process of fairing the height coordinates is that 1) only height 
values {zj} in {qj = (sj^Zj)} are allowed to move and 2) the domain chord-lengths {sj} 
are used in normalizing the fairing expressions. We define the following quantities: 

d_2 = |sj_2 - s^_i|, d_i = |sj_i -Sj\, d+i = \sj+i - Sj\ and d^2 = |sj+2 - Sj+i|. 

Then, from Equations (22.14) and (22.15), we obtain the normalized fairing expressions 
for {qj = (sj.Zj)} given below: 

^ z , + i + ^ Z j ^ /2 = m (22.20) 

and 

[•—{^i-i - ^J-2) + ^ ( ^ , + 1 - ^^+2)) / 6 , (22.21) 

where do = (d_i + d^i)/2. 

The 'faired' position Zj is obtained from the following correction operation: 

Zj = Zj + ^h • {zj — Zj) subject to \zj - Zj\ < Th, (22.22) 

where ^h is the damping factor and Th is the fairing tolerance for the height-fairing. 

Overall fairing procedure 
Based on the results presented so far, the overall PS-curve fairing procedure may be 
summarized as follows: 

Step 1. Local 'saw-tooth pattern' straightening of {pj} by employing Equations (22.17) 
and (22.19). 

Step 2. Global smoothing of {p^} using Equations (22.18) and (22.19). 
Step 3. Local 'saw-tooth pattern' straightening of {zj] utilizing Equations (22.20) 

and (22.22). 
Step 4- Global smoothing of {zj} using Equations (22.21) and (22.22). 

At each step, the correction operation from Equation (22.19) or (22.22) is applied 
repeatedly. In each iteration, only the data points that have a 'local maximum' deviation 
are corrected, and the iteration is terminated when no significant improvement is observed. 
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For this purpose, we define the deviation Uj of a data point (from the ideal position) to 
be 

-. = '^-"^-' , or ., ^ J h ^ , (22.23) 

Then, in a local straightening, the j - t h data point may be corrected only when Uj > 
max(z/^_i, Uj+i) is satisfied. In a global smoothing, the j'-th data point is corrected when 
we have Uj > max(^'j_2, z^j_i, z ĵ+i, ̂ '̂ +2)-

22.5.5. Collision detection algorithms 
In the C-space approach described in Section 22.4.1.2, 'rapid-move' collisions can be 
avoided by preventing rapid-moves (GOO NC code blocks) from entering the machining 
C-space volume VM- This is equivalent to confining the rapid moves to the space above 
the preform CL-surface Sp. 

The C-space method allows a straightforward mechanism for preventing collisions dur­
ing cutting moves (GOl or G02/03 NC code blocks) as well. As shown in Figure 22.26-a, an 
endmill assembly consists of four elements: cutting-edge, dead-center, shank and holder. 
Cutting actions take place only at the cutting edge. The dead-center is the center region 
of the base of the endmill, which has no cutting capability. If a non-cutting element 
is in contact with the workpiece during a machining operation, a 'cutting-move' colli­
sion occurs. Thus, there are three types of cutting-move collision: dead-center collision, 
shank-collision and holder-collision. 

It should be observed that a dead-center collision can only occur during downward 
milling, while a shank collision may occur during upward milling. On the other hand, a 
holder collision can occur in both downward and upward milling. Now, as depicted in 
Figure 22.26-b, we define an 'inverse' tool (IT) for each element of the endmill-assembly: 
a cutting-edge IT, a dead-center IT, a shank IT and a holder IT. Note that we use the 
same reference point C in all the inverse tools. The next step is to generate ITO (inverse 
tool offset) surfaces as follows: 

1. The cutting-edge ITO surface is the design CL-surface (So) for the cutting-edge IT. 
2. The dead-center ITO surface is the preform CL-surface (Sp) for the dead-center IT. 
3. The shank ITO surface is the preform CL-surface (Sp) for the shank IT. 
4. The holder ITO surface is the preform CL-surface (Sp) for the holder IT. 

Then a necessary condition for a holder collision is that "there exists a region where 
the holder ITO surface is higher than the cutting-edge ITO surface", as indicated in 
Figure 22.26-c. Similarly, a necessary condition for a shank collision (dead-center collision) 
may be expressed as "there exists a region where the shank ITO surface (dead-center ITO 
surface) is higher than the cutting-edge ITO surface when the endmill is moving upward 
(downward)". 

The C-space-based collision-detection procedure introduced in this section is not limited 
to roughing. It is applicable to any type of 3-axis NC machining. 

22.6. C O N C L U S I O N 

Sculptured surface machining (SSM) is a means to realize sculptured surfaces created by 
engineering designers and often becomes a vital part of other non-machining processes. 
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Figure 22.26. Collision detection. 

such as sheet-metal stamping and plastic injection molding. CAGD people should know 
about the SSM process because 1) geometric problems of SSM are closely related to CAGD 
and 2) the seamless connection of product design and the SSM process is a key factor in 
improving product quality while reducing development time. 

This chapter has introduced the SSM (sculptured surface machining) process, including 
the UMO (unit machining operation) and identified the geometric issues that occurr in 
the information processing stages of SSM, which are as follows: 1) interference handling, 
2) CL-surface construction for the C-space approach, 3) 2D PS(point sequence)-curve off­
setting, 4) area scan algorithms, 5) PS-curve fairing and 6) collision detection algorithms. 
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Chapter 23 

Cyclides 

Wendelin Degen 

23.1. I N T R O D U C T I O N 

Cyclides were detected and first studied by Ch. Dupin (1784-1873) in [22] and are since 
called "Dupin cyclides". At that time differential geometry was in a very early stage: Only 
some investigations of L. Euler (1707-1783) and the fundamental work of G. Monge (1746-
1818) "L'Application de I'analyse a la geometric" proceeded but the famous treatise of 
C.F. Gauss (1777-1855) "Disquisitiones generales circa superficies curvas" appeared only 
a few years later. 

In parallel, after projective geometry was founded by Poncelet (1788-1867), research 
on algebraic curves and surfaces had a first blossom. Dupin cyclides belong to both of 
these areas: In differential geometry, they can be defined as surfaces having constant 
main curvatures along the corresponding curvature lines. This property has been widely 
generalized into the differential geometry of manifolds in higher dimensional spaces up to 
present (see [13] for instance). 

On the other hand, they are algebraic surfaces of fourth or third order ^ being simul­
taneously enveloped by two families of spheres. This latter property is characteristic and 
serves often as an alternative definition. As algebraic surfaces they can be represented 
by a single polynomial equation of degree up to four; but they proved, in addition, to be 
rational, thus they can be parametrized by quadratic functions of u and v. These two 
kinds of representations that can be converted into each other confers the Dupin cyclides 
many advantages, in particular with respect to applications. 

It was soon realized that Dupin cyclides of fourth order have the isotropic circle at 
infinity as its double curve. This gave rise to extensive investigations on algebraic surfaces. 
Kummer [29] and Casey [11] found interesting generalizations of Dupin cyclides, ^ however 

^In addition, there are some cases of second order cyclides (the natural quadrics) that can be considered 
as "trivial Cyclides" 
^ Those of Casey are called "generaHzed cyclides" 

575 
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these topics must be renounced in the present chapter (see the excellent treatise of Jessop 
[25] for details). 

But there is another intermediate class of surfaces, found by Degen [15-17], they are 
defined to be the envelope of two families of general quadrics such that each of these 
quadrics is tangent to the surface along a conic, with the additional property that these 
conies build up a conjugate net on the surface (what holds also for Dupin cyclides). These 
surfaces, now called "supercyclides" (originally "double Blutel surfaces") will be treated 
in Section 23.3. 

Dupin cyclides were recovered for CAGD purposes about 1988; they extended the 
class of surfaces so far used in geometric modeling (essentially the natural quadrics) 
considerably. In particular, the virtues of cyclides were realized when serving as blending 
surfaces. Still much more flexibility is attained by using supercyclides. The long list of 
papers that since appeared show the importance of cyclides and supercyclides in CAGD. 

23.2. T H E G E O M E T R Y OF D U P I N CYCLIDES 

23.2 .1 . Dupin cyclides in classical differential geometry 
As usual in local differential geometry, one starts with a regular surface patch in parameter 
representation (f) . . . x : / i x/2 —)> IR^. where the curvature lines are used as iso-parameter 
lines. (This is possible if the patch has no umbilics; see [10] for basic information on 
classical diflPerential geometry). They will be denoted by Ci(i'o) = {x(ix, VQ) \ u e h} and 
^2(1^0) =" {x(^05 '̂ ) I '̂  ^ ^2}- We further assume differentiability (at least x G C^[/i x/2]) 
and regularity x̂ ^ A x ;̂ / 0 throughout. 

Let n : Ii X I2 -^ ]R^ be the normal vector field ( n = x̂ ^ A x^ / ||xu A Xi;||), then the 
formulas of Rodrigues and the defining property of the Dupin cyclides are expressed by ^ 

x^ = - r i n ^ , x^ = - r 2 n ^ , r i^ = 0, r2^ = 0. (23.1) 

This implies that the curvature centers 

p = x- | -r2n, q = x + r in . (23.2) 

depend only on one parameter, thus describing two curves P. . . p : / i —> IR^, Q... q : 
I2 -^ IR^. Furthermore we consider the curvature spheres Si{u) (82(1')) having p(u) (q{v) ) 
as mid point and r2{u) ( respectively ri{v)) as radius ^ and conclude that they also de­
pend only on one parameter. Obviously, the curvature spheres Si(i') and 82(1^) touch 
each other at the surface point x{u, v)] but by n ~ p — q both are tangent also to ^ at 
that point. Thus both families of curvature spheres envelope the cyclide; if one of them 
moves through its family and another one of the other family is kept fixed, the points of 
contact generate the corresponding curvature line. But since the characteristics (defined 
as lim/i_^o{8(i^o) H S(?io + h)}) of a one parameter family of spheres are circles, so are the 
curvature lines of a Dupin cyclide. Furthermore, as [p{u),p'{u)] is the rotational axis of 

^We wrote here these formulas in an inverse manner using the main curvature radii ri = l/z^i instead the 
curvatures /ti (z = 1,2) itself, assuming that these quantities do not vanish anywhere. Thus the trivial 
cyclides, the right circular cones and cyhnders, as well as the sphere itself, are excluded in the sequel. 
'^The curvature spheres are thought to be oriented; a negative radius means that the normal vector points 
into the interior. 
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the enveloping cone 02(^^0) its apex a(ixo) does not depend on v and thus all the planes of 
Ci(t^) {v € / i ) contain the tangent ai := [ai(u),a\u)]. Since these planes do not depend 
on w, this line ai is fixed in space. Hence these planes belong to a pencil with axis ai. As 
the analogous properties hold also for the other family, we can summarize: 

Theorem 1 (a) The focal surfaces of the normals of a Dupin cyclide ^ degenerate into 
two curves P and Q . (h) The curvature spheres of a Dupin cyclide consist of two one 
parameter families Si and S\. (c) Each curvature sphere envelopes the cyclide along a 
curvature line (more precisely S2(t'o) <̂5 tangent to $ along the curvature line Q\{VQ) and, 
analogously, SI(UQ) is so along C>2{UQ)). (d) All the curvature lines are circles. ^ Their 
planes belong to two pencils (more precisely: the planes of Gi{vo) belong to the pencil 
with axis ai, those of 02(^0) belong that one with axis a2. (e) The apexes 3.[u) of the 
circumscribed cones along C2(w) lie on the axis a\ and those of the other family, h{u) , 
lie on a2. (f) The mid point curves P and Q are planar curves whose planes E and 
F contain the axes ai and 02 respectively. 

The last property (f) is implied by the fact that the tangent [p(?i), p'(w)] meets the axis 
ai and analogously for the other family. — Finally, simple geometric reasoning leads to 

Theorem 2 (a) The mid point curves P and Q of the two families of enveloping spheres 
are conies lying in two planes E and F which are orthogonal to each other and symmetry 
planes of the cyclide. (b) both axes ai and 02 are orthogonal to the intersection line 
1 := E U F . (c) One of the curves P or Q , say Q , may degenerate into a straight line; 
then Q must coincide with 02 and a\ is in E at infinity. 

Furthermore, from (23.2) one can take 

Au.v) = ^^^^^^^^^^^ ( H M P H - r2{u)ci{v)). (23.3) 

Thus the surface is determined once the curves P and Q as well as the radius functions 
ri and r2 are known. 

As the radius functions can be replaced by fi[v) — ri{v) + c and f2{u) = r2[u) + c 
(while the normals are maintained) one gets: 

Theorem 3 The offset surfaces of a Dupin cyclide are again Dupin cyclides; they share 
the same normals with the original cyclide and have the radius functions with an arbitrary 
constant c added ''. 

It remains to determine the exact possibilities of the different kinds of conies that can be 
combined to a pair of curves P and Q for a Dupin cyclide. This will be done in the next 
section. 

^A regular patch with non-vanishing main curvatures and without umbilics (i.e. r̂  7̂  0, (i = 1, 2) ri / r2) 
is assumed. 
^Later on, when a Dupin cyclide will be considered globally, we will allow spheres to have radius r = 0 
(leading to a singular point) or to have radius r = 00 (then being a plane). In the latter case, the 
curvature line degenerates into a straight line. 
'^However, new singularities occur when fi or f2 has a zero. 
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(a) (b) 

Figure 23.1. (a) A generating sphere of a general Dupin cyclide intersected with the first 
symmetry plane; and (b) same as (a) but in the second symmetry plane. 

23.2.2. The three main types of Dupin cyclides and their parameter represen­
tations 

Theorem 4 There are the following three types of regular Dupin cyclides 

I Tori: V is a circle, the surface is rotationally symmetric, Q degenerates into a line 
being simultaneously the second axis a2 and the axis of rotation. The first axis ai is 
in the plane E at infinity. 

II General Dupin cyclides: P is an ellipse in E and Q is a hyperbola in F , orthogonal 
to E . These conies share their vertices and foci but with reversed roles. All these 
points lie on 1 = E H F . The axes ai and a2 lie in E , F respectively and are 
orthogonal to 1 . 

Ill Parabolic Dupin cyclides: P and Q are both parabolas having 1 as their common 
axis. They also share their vertex and focus in reversed roles. 

Proof: The exceptional case of a torus is already contained in Theorem 3. In all the 
other cases, P and Q are true real conies. Since E and F are symmetry planes, the 
vertices lie on 1 . In the plane E there are the intersection circles Di(it) = Si{u) U E 
of the first family of spheres 5i , having their mid points at p(u). From the other family 
^2 there is at least one profile circle D2(fo) having its mid point at (one of) the vertex 
q(t'o) on 1 . Thus, all the circles Di(n) touch D2(fo) at x{u,Vo). Furthermore, the 
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Figure 23.2. The two enveloping spheres at a point of a Dupin cyclide and the mid point 
curves in the symmetry planes. 

tangents to P at p{u) and to D2(t;o) at x{u,vo) C E must intersect on the point a(w) 
of tti. 

These conditions can be exploited with methods of elementary geometry in all the 
three cases when P is an ellipse, a hyperbola or a parabola. The crucial conclusion is the 
following: Using a rational parametrization in any case, setting a{u) = {d,a{u),0) in a 
suitable coordinate system with 1 as x-axis, E as x-y-plane and F as x-z-plane one gets 
for a a rational function. This implies that u{u) :=\\ p{u) — q(fo) || must be rational too. 
The radicand of UJ{U) turns out to be a biquadratic function and so it must be a complete 
square. The calculations with coordinates yield in any case that q(t'o) is a focal point of 

Elaborating this idea yields for Q a hyperbola when P is an ellipse, an ellipse when 
P is a hyperbola and a parabola when P is a parabola. Since in the first two cases 
only the two curves P and Q are permuted, there remain, besides the tori, only the two 
further cases of the theorem. D 

The parameter representations of the Dupin cyclides are obtained by (23.3). We use 
rational parameters for P and Q in all cases (They can, if wanted, easily be converted 
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into trigonometric forms by setting cos{(l)) = ~2 and sm[(j)) = j ^ ^ and likewise iox v.) 
Then the radius functions are obtained by the method described above. One obtains the 
following results: 
Case I. Tori: 
Mid point curves: 

P ( « ) = ^ ( ^ ^ ' T T ; ; 2 ' 0 ) ' q(^) = ^ ( 0 ' 0 , ^ ^ ) . (23.4) 

Radius functions: 

r2 = r = const, ri{v) = r - R- -. (23.5) 
1 — v^ 

Parameter representation of the cyclide: 

Depending on the ratio of R and r, there are three subcases of tori: 

\. r > R'. All the spheres Si(i^) intersect the second axis a2 in a pair real, different 
points where the radius function ri has zeros and the cyclide has singular points 
(like the apex of a cone); it is called a "spindle cyclide". 

2. r ~ R: The axis a\ is is tangent to all the spheres Si (it) of <5i. The surface has a 
singularity (a sharp double spike) at the point of contact and is called "limit torus". 

Z. r < R\ The spheres Si(u) don't intersect. The surface has no singularities and is 
ring-shaped. 

Case II. General Dupin cyclides 
Mid point curves: 

with p — a^ — h^ saying that q(fo) is a focal point ^ of P . 
Radius functions: 

\ — V? \ -\- rP' 
r2{u) = c- ———f, ri{v) = c-- -a. (23.8) 

1 -\- w^ 1 — v^ 

Parameter representation of the cyclide: 

{il+v')fG{u)-il-u')aF{v), ~2buF{v), 2bvG{u)) 

(1 - v^)G{u) - (1 + u'')F(v) 

G{u) = (l+u^)c-(l-u^)f, F{v)=^{l-v^)c-{l + v^)a. (23.10) 

^We keep the denotation / for the abscissa of the focal point though usually denoted by e (the "eccen­
tricity" of the ellipse). 
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Abscissae of the axes: 

a c c f 
ai : X = —-, z = 0; a2 : x = — , y = 0. (23.11) 

/ 0, 

From these formulas one can take that there are three subcases for each of the positions 
of the axes with respect to P and Q respectively. However, since both axes depend on 
the same parameter c there are only the following five subcases: 

1. c < f: The axis ai intersects P in a pair of real, different points where the radius 
function r2 has zeros and the cyclide has singular points (like the apex of a cone); 
it is called a "spindle cyclide". 

2. c — f: The axis ai is is tangent to P at the point (a, 0,0) and so are all the spheres 
of «Si. The surface has a singularity (a sharp double spike) at that point. 

3. f < c < a: Both axes don't intersect P or Q . The surface has no singularities and 
is ring-shaped. The second axis a2 passes through the hole while the first one lies 
outside the surface. 

4. c = a: The axis a2 is is tangent to Q at the point (/, 0, 0) and so are all the spheres 
of <S2. The surface has a singularity (a sharp double spike) at that point. 

5. c > a: The axis a2 intersects Q in a pair of real, different points where the radius 
function ri has zeros and the cyclide has singular points (like the apex of a cone); 
it is called a "horn cyclide". 

Case III. Parabolic Dupin cyclides 
Mid point curves: 

piu) = {u^ - 1/2, 2u, 0) / , q(^) = (1/2 - ^;^ 0, 2v) f (23.12) 

(where the mid point between the vertex and focus serves as origin). 
Radius functions: 

r2{u) = c^{u^ + 1/2)/, ri{v) = c - {v^ + 1/2)f. (23.13) 

with an arbitrary constant c. One can assume c > 0 since otherwise the two parabolas 
can be permuted. 
Abscissae of the axes: 

ai : X = - / - c, z = 0; a2 : x = + / + c, y = 0. (23.14) 

Parameter representation of the cyclide: 

. , _ {f{u^ - v^) - c{u' + v^- 1), u{{2v^ + 1 ) / - 2c), v{f{2u^ + 1) + 2c)) 
^^u^yj - 1-^u^ + v^ • 

One derives from this representation: 

(23.15) 

Theorem 5 Parabolic Dupin cyclides contain both their axes as degenerated curvature 
lines Ci(oo) and C2(oo) respectively. 
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Figure 23.3. Horn cyclide. 

This is an essential diflFerence to both the other main classes: In general, a certain plane 
of a curvature circle intersects the cyclide of class I or II yet in another curvature circle 
(of the same family) in accordance with the fact that it is an algebraic surface of fourth 
order (see Section 23.2.3). But if the cyclide is parabolic, then the intersection of a plane 
from the pencils through the axes, the intersection consists of the axis itself and the 
corresponding curvature circle in accordance with the fact that parabolic cyclides are of 
the third order. 

For parabolic cyclides there are also three subcases: 

1. 0 < c < / / 2 : The cyclide is everywhere regular and has a hole between the two 
axes. 

2. c = / / 2 : The cyclide has a singularity on the second axis at the point ( / / 2 , 0, 0) (= 
E n 02) which is a sharp double spike. 

3. c > / / 2 : The cyclide has two singularities on 02 (at a2 fl Q). 

23.2.3. Implicit equations 
By eliminating the parameters in the representations (23.6), (23.9), (23.15), one gets the 
following implicit representations of the corresponding cyclides. 
Case I. Tori: 
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^i ... {x^ + y^-^z^ + R^- r^ - AR^x^ + y^) = 0. (23.16) 

So the tori are algebraic surfaces of fourth order. The terms of fourth order being 
{x"^ + y^ + z'^y confirms that the isotropic circle at infinity is the double curve of ^ / . 
Case II. General Dupin cyclides 
The implicit equation of general Dupin cyclides is: 

$ „ . . . {x' + y^ + z^ + a ' - f - c^ - 4(ax - cff - 4y'{a' - f). (23.17) 

So the general Dupin cyclides are, like the tori, algebraic surfaces of fourth order. The 
terms of fourth order are the same as for tori; this confirms that the isotropic circle at 
infinity is the double curve also for the general Dupin cyclides. 

One can see that this equation carries over to (23.16) for / = 0 and with R = a, r — c. 
So a torus can be considered as a limit case of a general Dupin cyclide (the abscissa of ai 
tends to oo and that of a2 to 0 in accordance with Theorem 4, I). 
Case III. Parabolic Dupin cyclides 

For parabolic Dupin cyclides parameter elimination yields 

$ „ ; . . . (x + c)(a;2 + 2/2 + z^) + [y-^ _ z^)f _ (/2 + ^)^ + {p - c^)c. (23.18) 

So the parabolic Dupin cyclides are algebraic surfaces of third order and the intersection 
with the plane at infinity splits into the isotropic circle and the straight line x = 0. 

One realizes that the two axes ai... x = —c — f, z = 0 and a2 . . . x = —c + / , y = 0 
are contained in $ / / / . So the planes of the two pencils with those axes intersect the 
surface in that axis and one of the generating circles Ci(i;) respectively C2{u) . 

23.3. S U P E R C Y C L I D E S 

23.3.1. Curves and surfaces in the projective space 
In this Section we use projective geometry throughout. This has many advantages in 
theory as well as in applications: There is no need to distinguish between intersecting and 
parallel lines and planes, or between cones and cylinders and all rational parametrizations 
can be converted into polynomial ones simply by a renormalization. (For basic information 
see [8], Ch. V ). In particular, points are represented by vectors p G H^ \ {(0, 0, 0, 0)} 
that can arbitrarily renormalized by p = p p with p G IR\ {0}. 

Curves and surfaces are represented by vector-valued diflFerentiable functions x : D ^ 
IR"* where D is an real interval for curves and an open, connected domain of IR^ for 
surfaces. In both cases, the representation can be renormalized (without changing the 
geometric object) by an arbitrary real-valued diff"erentiable function p : D ^ IR \ {0}. 

23.3.2. Basic properties of supercyclides 
Now we turn to supercyclides. However we must renounce all the theoretical results 
leading to the properties and the representation we will describe in the sequel (see [15] -
[17] and [5] for the details). Furthermore, there is a slight diflference between the notions 
of a "double Blutel surface" and a "supercyclide". However, in order to allow a unified 
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treatment, we exclude supercyclides with intersecting axes (see Theorem 6) but include 
those of third order (as in the case of Dupin cyclides); nevertheless we maintain the term 
"supercyclide" for shortness. 

Furthermore we emphasize that Dupin cyclides are special supercyclides with additional 
properties coming from the Euclidean structure of the space. So supercyclides share many 
properties with Dupin cyclides and it turned out that, indeed, most of them are complex 
projective transforms of Dupin cyclides [5]. 

The theory leads to the final result that the supercyclides (in the sense described above) 
have a common parameter representation of the following type 

(̂  . . . x(i/, v) = p{u) + q{v) (23.19) 

where p{u) and q(i') are defined by 

A{u)a + B{u)h C{v)c + D{v)d 

p(")-=—W)—' ^^^"—W)—• ^̂ °̂̂  
Furthermore, a, b are base points for the first axis Oi and c, d are base points for the 
second axis 02 (all the four vectors together build a basis of IR^ since the axes are assumed 
to be skew). In addition, it is assumed that A,B,F {C.D^G) are linearly independent 
quadratic functions of u (respectively oi v). 

Surfaces with a representation of the form (23.19) are called projective translation sur­
face (see [20], compare with (23.3)). Furthermore, renormalizing with F yields 

x(ix, v) := F{u)x{u, v) = A{u)a + B{u)h + F{u)q{v). (23.21) 

and a similar equation is obtained by renormalizing with G{v). This shows: 

Theorem 6 (a) The iso-parameter lines Ci(i;o) : v = VQ and C2(wo) : v = VQ are non-
degenerated conies, (b) The planes Ei(t'o) of Ci{vo) contain the first axis ai (so belonging 
to a pencil), (c) The planes £2(1^0) of C2{uo) contain the second axis 02 (so belonging to 
a pencil). 

More precisely, one obtains 

Ei(i;o) = a A b A q(^o), ^2{uo) == c A d A p{uo). (23.22) 

Since the parameter A = D{v)/C(y) controls the position of Ei(t ') within the pencil 
(or the point (\{v) on the second axis 02), we conclude: Every plane EA of the pencil 
through ai intersects the surface in a pair of conies Ci ( f i ) , Ci('i;2) where i^i, V2 are the 
roots of the equation XC{v) — D[v) = 0 (possibly being complex or coincident). This 
property suggests that the surface has order four. 

However the two quadratic functions may have a common root: Then the corresponding 
linear factor cancels at the quotient for A, so the mapping v \-^ X — D{v)/C{v) is fractal 
linear, hence bijective from IR onto itself^ ; furthermore, observing (23.19), one realizes 
that in this case all the conies C2{u) pass through the intersection point p{u) of E2(w) 
with the first axis ai, i.e. this line is completely contained in the surface. 

Of course, the same considerations can be applied to the second family of conies and 
their planes. So one has to distinguish between the following three classes of supercyclides: 

^lR = IRU{cx)} denotes the closed set of reals 
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I General supercylides: 
None of the pairs A, B and C, D of quadratic functions has a common root. 

II Semi-parabolic supercylides: 
C, D have a common root, but not A,B. 

Ill Parabolic supercylides: 
Both of the pairs A, B and C, D of quadratic functions have a common root. 

The semi-parabolic supercyclides have almost been neglected in the literature (only 
mentioned in [16] and [42]). So we do not draw the reader's attention to that case in the 
sequel. A second reason for this is that all the Dupin cyclides are contained in the Classes 
I and III, but not in Class II. (The tori and the general Dupin cyclides in Class I; the 
parabolic Dupin cyclides in Class III.) 

The following result is reported without proof: 

Theorem 7 Supercyclides of the Classes I, II are algebraic surfaces of the fourth order, 
those of the Class III are of third order. 

Besides the possession of two families of conies, the supercyclides (of all the three 
classes) have the dual property: They are enveloped by two families of quadratic cones 
C*{v) {v G ffl) and C2{u) {u G IR) in such a way that the tangents to the conies Ci(i;) 
{v varying) along the points of a fixed conic C2(wo) coincide with the generators of the 
cone 02(1^0)- (This means that the tangent planes of the surface, taken along the conic 
02(1*0)5 envelope the cone 02(1*0)•) The same property holds for the permuted families 
of conies and cones. 

This can easily be seen by differentiating (23.19) with respect to u say: 

x{u, v)u = ^ ^ ^ - ^(^)*a + B{uyh (23.23) 
du 

with A* = A'F-AF', B^ — B' F~BF' (note that these functions are also quadratic). 
So the point on the right hand side of (23.23) does not depend on v and represents the 
apex of O2(ii)o- So one realizes that the apexes of the enveloping cones 02(1*) and C\{v) 
lie on the first and second axis respectively. (Thus the axes are self-dual, since the apex 
of a cone corresponds to the plane of a conic by duality.) 

Equation (23.19) contains even more information: Looking into one fixed plane, say 
Ei(i'o), one can see therein three objects: 1) the conic Oi(i;o), 2) the first axis ai and 3) 
the intersection point q(i'o) of Ei(i'o) with 02- Since their coefficients do not depend on v 
all these configurations are protectively equivalent to each other and the same is true for 
the other planes £2(1*0). More precisely, for any pair of planes ^\{v\) and Ei(i;2), these 
configurations can even be projected onto each other from a third point on the second 
axis: One takes from (23.19) x(i*,i;2) = p(^)-hq(i'2) = X('U,I ' I)H-Z with z = (q(i '2)-q(^i) 
and this proves the assertion, z being the projection center. 

The different positions of these objects to each other lead to the further classification of 
supercyclides. In particular, the first (second) axis a\ ( 02) can intersect the conic Oi(i;o) 
( C2(ixo)) in two diflFerent real points leading to two simple singular points on that axis or 
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Figure 23.4. A supercyclide with its Bezier control net and axes. 

it can be tangent to it leading to a higher singularity, a sharp double spine. (Note that 
in both cases these intersection points do not depend on VQ {UQ resp.)). 

Omitting the further details (to be found in [16]), we mention only, that the polarity 
of q(i;o) ^nd ai has the geometric meaning that the cyclide is a projective canal surface 
(see [9]) and if this holds for both families then it is a quadric. On the other hand, 
supercyclides of Class I have the following normal form (23.19), (23.20) : 

(23.24) 

Furthermore, one of the coefficients (JQ, a2 (TQ, T2 resp.) can be normalized to one if it does 
not vanish. So there remain two invariants (to be interpreted as cross ratios) KI = aoa2 
and /̂ 2 = T0T2 determining the supercyclide: 

Theorem 8 A supercyclide of Class I can be transformed into the normal form (23.24) 
and is determined by the two projective invariants /^i,/€2 up to a projetivity of space. 

A{u) = 1, B{u) = u^, 
C\v) = 1, D{v) = v^, 

F{u) = 2u ~\- ao + a2U^, 
G{v) = 2v-\r To -\-T2V'^. 

23.4. CYCLIDES IN C A G D 

23.4.1. Bezier representation of cyclides 
As being rational biquadratic surfaces, cyclides can be represented in Bezier form and 
thus integrated into CAD systems. In Section 23.2, we used the basis functions To{u) — 
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1 + w ,̂ Ti{u) = 1 — u^, T2{u) = 2u which are linearly independent. So they can be 
converted into the Bernstein basis functions Bo{u), Bi{u), B2{u) by the matrix 

A 

Applying this to (23.9) for instance immediately yields the Bezier form in homogeneous 
coordinates. The component XQ of x(t^, v) is the denominator of the usual Euclidean 
vector and the coefficients at the Bernstein polynomials are its weights. This can be done 
by any computer algebra system. 

However this would be a very special patch on that Dupin cyclide. To attain the whole 
flexibility, i.e. an arbitrary patch on it, one has to perform a parameter transformation 

_ au + h _ ev + f /OQ o^x 
u = —-, v = —-, (23.25) 

cu-\- a gv -\- h 
first, so that the desired boundary curves belong to parameter values u = ^ and u = \ 
and similarly with v. 

A second method consists of constructing the cyclide directly by starting with its bound­
ary curves (circular arcs in the case of Dupin cyclides) and then observing its general 
geometric properties derived in the previous sections. When doing this, there arise two 
questions: a) What are the conditions on the control points and weights of a second order 
rational Bezier curve to be a circular arc? - b) What is a complete set of conditions 
characterizing a (Dupin) cyclide? 

As to question a), given the Bezier representation x(^) = X]̂ =o Bi{t)ujidii / Yl,i=Q Bi[t)uJi 
one defines p = (l/2)(ao + a2), a = (1/2) || a2 - ao ||, Vi = (a2 - ao) /a and V2 so 
that vi,V2 are a ON basis, then the conditions for a circular arc are 

ai = p + ^v i , {a^ + I3'^)UJI = O?UQUJ2. (23.26) 

The second question is more complicated. In the case of a Dupin cyclide. It can be split 
into two steps: Take first the conditions being sufficient for a supercyclide (since any Dupin 
cyclide is a special supercyclide) and then add the conditions which characterize the Dupin 
cyclides among the supercyclides. As to the first step, these conditions were given in [17]; 
they can be derived by the same method described above, but now applied to (23.19): 
Expanding the polynomials A,B,C,... into the Bernstein basis, say A{u) = X^^^o (^iBi{u) 
etc. one obtains by inserting this into (23.19) 

b̂ ,fc = {a^a + pih)Tk + a^ijkC -h Skd) (23.27) 

{cFi.Tk being the coefficients of F and G respectively). The resulting representation in 
homogeneous coordinates can be converted into a Euclidean one as before. 

The following result [21], which is quoted without proof gives the answer to the second 
step: 

Theorem 9 A supercyclide of Class I is a Dupin cyclide if at least three conies of each 
family are circles lying in three different planes. 
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23.4.2. Using cyclides as blendings 
Blending is the most useful application of cyclides to CAGD and geometric modeling; 
many papers are devoted to that topic ( [2], [3], [4], [7], [23], [26], [39], [44], [45] ) and 
various generalizations have been found ([17], [18], [20], [33], [43]) in the past. 

Usually, blending is done along prescribed curves on the surfaces to be blended; however, 
also "free blendings" where only the surfaces and some regions on it (where the transition 
curve is desired to lie in) are given, were discussed. 

Because of the very extensive work on blending, only the principal methods can be 
quoted here, leaving the details for further reading in the literature. In this subsection, we 
deal with Dupin cyclides only, referring to the next subsection for the case of supercyclides. 

The "one-sided" blending consists of a G^-continuous transition from a surface ^ to 
a Dupin cyclide ^ along one of its curvature circles C. (We assume without further 
mentioning that both surfaces lie on different sides of the plane A of C and omit additional 
technical "side conditions", e.g. that there is no other collision of those parts of the 
surfaces, which are of further interest.) 

Since all Dupin cyclides have a right circular cone C* or cylinder as envelope of the 
tangent planes around any curvature circle ^̂  C, the blending is done once both surfaces 
have C and C* in common. Furthermore, the theory on cyclides implies that tangent 
cylinders instead of tangent cones can only occur when the cyclide is either a torus or 
when the circle C has extremal radius. Thus the one-sided blending consists only of the 
following two steps: 

• Find a plane A intersecting $ in a circle C so that the tangent planes of $ around 
C envelop a right circular cone or cylinder C*. 

• Take a Dupin cyclide passing through C and having C* as tangent cone around C. 

This explains (in particular the first step), why blendings with Dupin cyclides are mostly 
constructed with natural quadrics, rotational quadrics, canal and pipe surfaces. 

Obviously, the cyclide ^ always exists and is by far not unique; due to Theorem 4, the 
only conditions are as follows 

• The axis b of C* is contained in one of the symmetry planes E or F 

• The apex of C* lies on the axis of that symmetry plane (ai for E and a2 for F ). 

The plane A contains the other axis (a2 for E and ai for F ). • 

• In the case of a cylinder the radii of the other circles of the same family as C must 
either be constant (^ then being a torus) or extremal at C. 

Next we consider two-sided blendings: Then there are given a pair of objects C i , C i 
and C2,C2 of the same kind as before. Usually one wants to span a part of a cyclide 
between these two geometric objects so that the circles belong to the same family ^^ The 

^^Degenerated Dupin cyclides and a blending along one of the axes of a parabolic cyclide are excluded 
here. 
^^The other case that these circles belong to different families seems not to have been considered so far. 
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problem of existence becomes less trivial. However the theoretical results dealt with in 
Section 23.2 are able to solve it also in this case. 

First, one concludes from the one-sided conditions that the two axes 6i and 62 of C^ and 
C2 must be coplanar and not identical, hence E , respectively F , is uniquely determined. 

In the second step, one looks for the possibilities to blend a pair of different cones 
C*, C2 with coplanar axes 61, 62 in E , say, by a Dupin cyclide (neglecting the positions 
of the circles C i , C2 at the moment). This problem is solved by a theorem of Sabin ^̂  

Theorem 10 Two right circular cones or cylinders with different axes in the same plane 
can be blended by a Dupin cyclide if and only if they have a common inscribed sphere. ^^ 

The theorem does not say anything about the position of the circles Ci and C2. On 
the other hand it is to be seen that one parameter remains free when the previous two 
steps are done. So one of them, say Ci can be prescribed (for instance by choosing its 
mid point on the axis 61 of C^); then the position of C2 is determined. This is a third 
condition to be imposed on the "geometric data" Ci.Cl and C2,C2 for the existence of 
a blending cyclide. Then, in general, it does exist and is unique. 

This theorem could be easily proved by methods of Lie geometry (see Section 23.5); 
however these are beyond the scope of this volume. An other way to recognize its validity 
is to use Theorem 3 on offsets of cyclides: Since the common inscribed sphere S has its 
midpoint at the intersection of the two axes, one can replace C* and C2 by their inner 
offsets C j , C2 at a distance d equal to the radius r of S; then C^, C2 have their apexes in 
common and so they can always be blended by a Dupin cyclide ^^. Now going back to 
the outer offsets of C^, C^ and ^^ yields the desired cyclide ^ . 

The proof of this last assertion as well as the many details and special cases must be 
omitted for brevity. Only a few remarks should be added in this context: 

Remark 1 A parabolic Dupin cyclide occurs if and only if the two cones or cylinders 
C^ and C2 have a common ruling. This follows from Theorem 5 since the axes ai and 
a2 of a parabolic cyclide (lie on it and) are degenerated curvature circles. So each family 
contains exactly one of it and any circular cone of the other family contains that line as 
a ruling. 

Remark 2 For a general Dupin cyclide the tangent cones of the two extremal longi­
tudinal curvature circles degenerate into planes (more precisely: into a pencil of lines in 
that plane having the intersection point with 02 as its center). So a plane can also be 
blended with a cone or a cylinder by a Dupin cyclide; or even two different planes can 
blended with each other ^̂  . 

Remiark 3 The more general problem of constructing a free blending between surfaces 
is, in general, not solvable with Dupin cyclides. It would be desirable to have a class of 
surfaces that can blend say two intersecting quadrics of general shapes and positions ^̂  . 
But the intersection of two quadrics is a spatial curve of fourth order (even if it has two 

^^Sabin communicated it to Pratt, who included the result into his paper [38]. The proof was originally 
given only for cones; later on it was completed by Shene [44] also for the cases of cylinders. 
^^The case of zero radius, i.e. cones with common apexes is included 
^"^Theorems 3.1 and 3.2 of [2] seem to contradict to this assertion; but that is only caused by the author's 
more restrictive definition of a blending. 
^^One of those blending problems arises from the so-called "Cranfild object" 
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Figure 23.5. Construction of a cyclide blending between a cylinder and a cone using 
Sabin's theorem. 

Figure 23.6. Cyclide blending between a cylinder and a cone (result of construction). 
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separate closed branches) which splits into two conies only in special cases. Nevertheless, 
there are examples where blendings with Dupin cyclides are possible; they can be found 
in [2] and [7] 

23.4.3. Blending with supercyclides 
Supercyclides have much more free parameters to meet blending requirements or specific 
desires on its shape. The junction curve can be an arbitrary (non degenerated) conic (or 
a part of it) assuming that it should be an iso-parameter line as before. Since any super-
cyclide possesses a tangent cone (or cylinder) along any non-degenerated iso-parameter 
conic, the surface to be blended with it must have that tangent conic too. Thus, in CAGD 
applications, blending is mostly done along the intersection of a quadric with a plane. 

So the question arises whether two arbitrary quadrics Qi and Q2 with given intersection 
planes E i and E2 can be blended with a supercylide along the intersection conies C i 
and C2 (which should become two iso-parameter lines of the same family on the super-
cyclide). This configuration would completely determine the two axes of the supercylide: 
ai = E l n E2 and a2 as the line joining the two apexes of the tangent cones C^ and C2 
of Qi and Q2 respectively (see Section 23.3.2). Thus one obtains — as a first condition 
for the existence of a blending supercyclide — that the axes must be skew ^̂  . The second 
condition — also by the results of Section 23.3.2 — is more restrictive: There must exist 
a central projection with center z on 02 mapping C i onto C2 . 

If both conditions are satisfied, then a blending supercyclide exists and can easily be 
constructed as follows: One has to represent the two conies in Bezier form, say, so that 

y2{u) = yi{u) + z (23.28) 

holds (central projection with homogeneous coordinates!). Then one chooses a plane 
E through 02 containing two conic arcs of the second family. Since all of those join 
corresponding points of C i and C2 , one selects one such pair, say yi(0) and y2(0), 
in E and constructs that conic arc C joining it. Since the two cones C j and C2 
have their apexes on 02, the two generators passing through yi(0) and y2(0) respectively 
intersect at a point q and must be the tangents at the endpoints of C . Thus the three 
control points are known and it remains to choose a suitable weight arbitrarily. So, one 
gets 

C . . . x(i;) = 5o(^)yi(0) 4- Bi{v)q + ^2(^)y2(0). (23.29) 

Now taking yi{u) and y2{u) with variable parameter values v and replacing also q 
by the corresponding points q{v) where the other generators of C j and C2 intersect 
(note that the intersection of these cones splits into a conic, described by q{v), and a 
pair of straight lines), one obtains the representation of the kind (23.19) for the desired 
supercyclide. 

Similar constructions can be designed when other entities are given. For instance, a 
pipe surface with an elliptic cross section has to join at one or at both sides another 
surface smoothly . Again, only the conies C i and C2 as well as the tangent cones C^ 

^^This condition is not essential because supercyclides with intersecting axes do exist; they were excluded 
here only for practical reasons (see [17], [42]). 
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. o 

Figure 23.7. The blending construction in the symmetry plane. 

and C i are needed from the two surfaces at the ends. We assume that the whole figure 
should be symmetric with respect to a plane E and the geometric data do so; furthermore 
a certain shape of the blending surface is wanted. Then one can perform the construction 
first in that symmetry plane (which plays the same role as E in the example above). 
But now one has two conic arcs and the control points are already determined by the 
data. However, also in this case, there must be a central projection with center z on a2 
mapping the one onto the other; this center is actually the intersection point of the axis 
02 with E , because all plays in this plane (of course the lines ê  = Ejf iE (z = 1, 2) must 
intersect at z since the planes E i and E2 intersect in 02). However these conditions 
are not yet sufl[icient: One has to observe that a central projection in a plane has always 
a straight line consisting only of fixed points and that the representation of Eq. (23.19) 
implies that the first axis ai coincides with it. The following figure shows the details, 
where the nozzle of a tea pot is designed. 

The tea pot in Figure 23.8 is a rotational ellipsoid. At the front side a skew plane cuts 
out the bottom of the nozzle, thus having an elliptic cross section. The other end of the 
nozzle is designed to meet practical as well as aesthetic requirements. 

If the construction in the symmetry plane is done, symmetry in space is really attained 
by taking the second axis orthogonal to that plane; if, additionally, the point z and the 
vector V (as a point at infinity on 02) are chosen as base points for a2 then a trigonometric 
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Figure 23.8. Blending of a rotational ellipsoid with a supercyclide. 

representation with 

C(0) = a + pcos{^), D{(t)) = X sin[(t)), G{(t)) - 7 + ^^05(0), (23.30) 

is more favorable than that of (23.20) for a closed conic. (Note that sin{(j)) occurs only 
in the coefficient of v .) The coefficients a , . . . A are calculated to obtain the proper 
extensions of the nozzle. 

23.5. A P P E N D I X : S T U D Y I N G D U P I N CYCLIDES W I T H LIE G E O M E ­
T R Y 

Some of the previous investigations may seem a little bit strange because one can not 
recognize a unifying principle behind them. Indeed, such a principle exists and is called 
"Lie geometry" [13] (already mentioned in Chapter 3 of this book). 

The basic idea of Lie geometry is to map the set of all "Lie cycles" C onto a hyperquadric 
Q lying in the real projective space P^(IR) 

A : £ ^ Q C P^(IR) (23.1) 

and to study configurations in the Euclidean space by looking at their properties in this 
"model space" of the Lie geometry. 

Definition 1 The set C of Lie cycles is the union of the following sets: 

1. The set S of oriented spheres in E^ , 

2. the set U of oriented planes, 
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3. the set of points of E^ (also denoted by E^ ) , 

4- completed by one single point at infinity oo. 

Thus: 

C = SUUUE^\j{oo}. 

The orientation of the spheres is positive, if the normal unit vectors point into the 
interior; then the radius is assigned a positive value. Otherwise the normal vectors point 
outwards and the radius is assigned a negative value. Similarly, a certain plane in E^ splits 
into two different Lie cycles according to the direction of their unit normal vectors. 

The mapping (1) is defined separately for each of the different kinds of Lie cycles: For 
an oriented sphere 5'a,r (a being the mid point and r the signed radius according to the 
orientation) the mapping A is given by '̂̂  

A(5a,.) = (1, a , (̂11 a |p - r ^ ) , r)IR. (23.2) 

This definition has to be suitably extended to points and planes: For points simply by 
setting r = 0 and for planes by passing to the limit r -^ oo; thus the image of the plane 
E... < x , n > — p = 0 (with n as oriented normal unit vector) is obtained as 

A{E) = (0, n, p, 1)1R. (23.3) 

Finally, one defines A(oo) = N = (0,0,0,0,1,0)IR. This point is called "the north pole" 
as in Moebius geometry (see Chapter 3, Section 3.2.2). The north pole is assumed to 
be different from all other geometric objects, to be incident with any plane but with no 
sphere. Now one can verify 

Theorem 11 For all S ^ C the images A(S) lie on the quadric Q with the equation 

Q-- e? + el + e | -26?4-? | = 0 (23.4) 

and the mapping (23.1) is bijective. Furthermore, let U := T^Q be the tangent hyperplane 
to Q at the point N with the equation 

U . . . fo = 0 (23.5) 

then the set U of oriented planes is mapped onto U \ {A^}. Similarly, let M be the 
hyperplane 

M . . . ^5 = 0 (23.6) 

thenA{V) = M \ { A ^ } . 

Note that M is not tangent to Q and that, by (4), (5), (6), N is the only common point 
of U, M and Q . The pole of M will be denoted by P for use later on. 

^^The right hand side of the following equation is a class of proportional vectors of IR , indexed by 0 ... 5; 
the three coordinates of a have to be put at the places 1 ... 3. 
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Definition 2 The subgroup L of projectivities o/P^(IR) leaving Q (as a whole) invariant 
is called the group of Lie transformations (or that of Lie motions/ Geometric properties 
remaining invariant under Lie transformations are called Lie invariant. 

The study of Lie invariant properties of figures is called the "Lie geometry" (in the sense 
of F. Klein's "Erlanger Programm"). By definition, the quadric Q itself is Lie invariant. 
It is often called "the absolute quadric of Lie geometry". 

Note that points and planes are not Lie invariantl They can be transformed into any 
other kind of Lie cycles; only the whole set C of Lie cycles is Lie invariant. Thus the 
geometric objects U, M , N, P defined above are not Lie invariant but they carry over 
the Euclidean structure of E^ into the model space. So, if one wants to obtain a Lie 
invariant property of some configuration ^ C E^ , one has to consider nothing else than 
the relations of A(^ ) with respect to Q; if, in contrast, one wants to recover a Euclidean 
property, one has to observe the position of A(^ ) with respect to U, M, N, P. These 
principles will be exploited in the sequel for the Dupin cyclides. 

The Lie geometry can be considered as an extension of the Moebius geometry (with one 
more dimension): The hyperplane M together with the intersection quadric Q' := Q f l M 
is indeed a model space of Moebius geometry, because Q' has signature (4,1) and the 
restriction of the mapping A to the points of E^ is given by 

n-.E'^Q', fi(p=(l,p, 1(11 p IP), 0)11 (23,7) 

with 

Q'--- e? + e l + C 3 - 2 ^ 0 ^ 4 - 0 , ^5 = 0 (23.8) 

(set r = 0 in (23.2)). This is just the Moebius mapping if E^ is completed by one point 
00 which is mapped to the north pole (0,0, 0,0,1,0)IR in M. In this way the Moebius 
geometry is imbedded into the Lie geometry. In particular, one can choose any 3-space 
A, different from the tangent space U Pi M at Â  to Q' (for instance A . . . ^4 = 0), and 
project Q' from the north pole Â  onto A (stereographic projection). By this procedure, 
the Euclidean space E^ is embedded into A \ U , where the Euclidean structure is conserved 
( A n U plays the role of the "plane at infinity" and A n U f l Q that of the absolute isotropic 
circle. (See also Chapter 3, Section 3.2.2) 

We mention here without going into the details, that the Laguerre geometry can also 
be imbedded into the Lie geometry in a similar manner. Thus the Lie geometry contains 
both and one can show that it is in some sense "the smallest geometry" comprising both 
the Moebius and the Laguerre geometries. Clearly, Lie geoemtry can also defined (in 
an analogous manner) for any dimension n > 2; but for the present purpose we confine 
ourselves to the case n = 3. 

Now we come back to the Lie geometry itself and deal with one of its most fruitful 
notions which is called the "equi-oriented contact of two Lie cycles" and defined as follows: 

Definition 3 Two Lie cycles Li and L2 have an equi-oriented contact if and only if one 
of the following conditions is satisfied: 

1. \jx,\j2 £ Syjti (two oriented spheres or planes) and they are tangent to each other 
with both normal vectors pointing into the same direction at the point of contact, 
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2. Li £ SUU and L2 G E^ (one oriented sphere or plane and a point of E^ ) and the 
point L2 is incident with the sphere or plane L i , 

3. \j\ £ U and L2 = 00 (an oriented plane and the point at infinity have always an 
equi-oriented contact) 

4. Li ,L2 G E^ U {00} and Li = L2 (two points - finite or at infinity - have only an 
equi-oriented contact if they are coincident). 

Now one can prove the following essential property of this notion: 

Theorem 12 4̂ pair of Lie cycles Li and L2 has an equi-oriented contact if and only if 
their Lie images A(Li) and A(L2) are conjugate (polar) to each other with respect to Q. 

Proof: We give the proof only for the case Li,L2 G 5 U E^. Then we have by (2) 
A(5,) = (1, a , i ( | | a f -r\), ri)]R and A(52) = (1, b , i ( | | b Ĥ  - r | ) , nW. On the 
other hand, the polarity condition is by (23.4) 

6 m + 6^2 + 6^3 - ?o m - 6^0 - 6^5 ^ 0. (23.9) 

Inserting the above coordinates of A(Li), and A(L2) yields 

< a, b > -(II a f -rl) - (|| b |p -rl) - l^r^ = 0. 

This is equivalent to || a —b |p= (ri — r2)^ showing that Li,L2 have indeed an equi-
oriented contact. D 

Observing that any pair of different conjugate points on a quadric (in any projective 
space) span a line being completely contained in that quadric and vice versa, one recognizes 
at once: 

Theorem 13 Any line 1 being completely contained in Q is either the image of a pencil 
of spheres which are tangent to a plane at a certain point (including these two Lie cycles 
itself) or the image of a family of parallel planes (with same orientation) completed by 
the point oo. The latter case occurs exactly z/ 1 G U and this implies in addition Â  G 1. 

Now we turn to the Lie-geometric interpretation of surfaces. At any point x{u, v) of a 
surface one has just such a pencil of tangent spheres that is mapped onto a line l(i^, v) 
contained in Q. So one has — as the Lie image of a surface ^ — a line congruence K 
(what means a two-parametric family of straight lines) in the model space. We express 
this fact simply as /C = A(J^). But line congruences have, in general, two focal surfaces, 
generated by the two focal points F\{u,v), F2{u,v) on each line \{u,v). 

With a few lines of calculation (for instance using curvature lines as iso-parameter lines 
on the surface) one can easily prove: 

Theorem 14 The focal points Fi on each line \{u,v) of the image A(J^) of a surface 
T are the Lie images of the two curvature spheres Si{u,v) at that point of the surface 
(i = l ,2 ) . 
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In particular, for a Dupin cyclide, we know from Section 23.2, Theorem 1, that these 
curvature spheres spHt into two one parameter families Si := {Si{u)\u G / i } and S2 '.= 
{82(1')|t' € I2} and that, in addition, any sphere of the one family touches any sphere 
of the other at the corresponding surface point K{U,V). This is an equi-oriented contact 
if the radius functions are properly signed (see Section 23.2.2). Thus the focal surfaces 
Ti := {Fi{u,v) I {u,v) G / i X I2} degenerate into two curves quite as those of the 
normals in the original Euclidean space. However, in the model space, Fi{u) must be 
conjugate to F2{v) because of the equi-oriented contact (Theorem 12). Thus the whole 
linear subspaces Ei and E2 spanned by those curves J^i and T2 respectively are polar 
to each other with respect to Q. As !Fi can not be a line (otherwise Si would be a 
pencil of spheres) one concludes dim{Ei) > 2 (z = 1,2). On the other hand, since Q 
is a non-degenerated quadric in P^(IR) one has dim{E\) + dim{E2) = 4 and this implies 
dim{Ei) = 2, {i = 1,2). As the curves Ti are contained in Ei Pi Q, they must be conies 
and we can state: 

Theorem 15 The two focal curves T\ and T2 of the Lie image of a Dupin cyclide are 
a pair of real non-degenerated conies in two mutually polar planes Ei and E2, i.e. Ti = 
Eid Q and Ei n E2 = 0. Furthermore these focal curves are the Lie images of the two 
families of enveloping spheres: A{Si) = Ti, (i — 1,2). 

The inverse of this theorem is also true. However one has to include the following three 
degenerate cases into the notion of a "Dupin cyclide" (which were excluded in Section 23.2 
by the assumption to be a regular surface): 

1. A right circular cone or cylinder with the enveloping planes as S\ and the inscribed 
spheres as ^2 

2. The family of all spheres passing through a single circle with r / 0 (including the 
plane of it) as S\ and the points of this circle as <S2. 

3. A pencil of planes as Si and the points of the axis as ^2 

Then one has: 

Theorem 16 (a) Any pair of mutually polar planes each of which intersects the absolute 
quadric Q in a real non-degenerated conic is the Lie image of a Dupin cyclide (in the 
sense of the previous theorem). 
(b) Each Dupin cyclide is Lie equivalent to any other. 
(c) The Dupin cyclide is one of the degenerate cases listed above if and only if Ei C U or 
E2 CM or both. 

To prove this, one firstly observes that any configuration ^1 ,^2 of two conies with 
the property (a) is projectively equivalent to any other, since the absolute quadric Q — 
having the signature (4, 2) — can be transformed into the normal form 

Vl - 2r7o7?2 + ^4 - 2r?3r/5 = 0 (23.10) 

from which we take that Ei defined by 773 = 0, 774 = 0, 775 = 0 and E2 defined by 
^0 = 0, 771 = 0, 772 = 0 is indeed such a configuration Ti,T2\ thus, there is only one Lie 
type of it. 
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The degenerate cases are characterized by the fact that either one of the families of 
enveloping spheres consists only of planes (Case 1) or the other only of points (Case 2) 
or both together (Case 3). This proves (c) since planes are mapped into points of U and 
points of E^ are mapped into points of M. D 

As mentioned earlier, the different cases of Euclidean preimages of T\,T2 are distin­
guished by the different positions the hyperplanes U and M can have with respect to 
that configuration ^1,^2- For brevity we exclude the degenerate cases from our further 
investigations. 

First we deal with the position of ^1 , ^2 with respect to U. This hyperplane intersects 
the plane Ei in a line Ij. Observing that U is a tangent hyperplane of Q and that Q 
has signature (4,2), one can find (projective geometry of hyperquadrics) that there are 
exactly the following two cases: 

(A) One of the lines Ij, (z = (1,2) intersects the corresponding conic Ti = EiO Q in 8i 
pair of conjugate complex points and the other line Ij intersects !Fj = £ j n Q in a 
pair of real, diff"erent points 

(B) \i is tangent to the conic Ti for both indices 2 = 1,2. 

Let, in Case (A), T2 be the conic with two real intersection points Ki, K2 with U. The 
north pole N can not lie on I2 (hence in E2) since otherwise Ei, being polar to E2, would 
be contained in U. This would lead to a degenerate cyclide what we had excluded. 

But there is the possibility that the line I2 meets the line joining Â  and the pole P of 
M (since N is in M, P hes in U by main theorem of polar theory). 

Thus the Case (A) splits into two subcases 

(I) The line Ki K2 meets the line NP (or equivalently: the four points KiK2,N and 
P are contained in a subplane of U). 

(II) Ki, K2, N and P span a 3-space. 

The Case (B) will be maintained and denoted by (III) in the sequel. Thus we get three 
main classes of non degenerated Dupin cyclides as in Section 23.2.2. 

Now we will state that these classes coincide with those of Section 23.2.2. As we know, 
the two families of enveloping spheres are mapped by A onto a pair of mutually polar 
conies T\,T2' In the Cases (A), (I) and (II), T2 intersects U in the pair of real points 
Ki,K2. The preimages of them in E^ are two planes Ai and A2 which are tangent to all 
the spheres of *Si. Let Ki — (0, n^, p^, 1)IR (see (23.2) ), then the condition (I) that PN 
meets Ki K2 implies that ni and n2 are linearly dependent. So Ai and A2 are parallel 
to each other. Hence the cyclide must be rotational symmetric and consequently it is, 
indeed, a torus (in the sense of Section 23.2.2). In the other Case (A), (II), all the spheres 
of Si are "squeezed" between two intersecting planes, what can not happen for parabolic 
Dupin cyclides. So the two Cases (II) and (III) correspond to those of Section 23.2.2. D 

The further classification into certain subclasses of (I), (II) and (III) described in Sec­
tion 23.2.2 can be obtained by observing the positions of Ti and T2 with respect to the 
hyperplane M. Since, for regular Dupin cyclides, the planes Ei and E2 are not contained 
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in M (see Theorem 16 (c) ), one has also the three possibilities of conjugate complex 
or coincident or real (different) intersection points of !Fi with M. Denoting these three 
possibilities with the symbols C, T and R respectively, then from the nine combinations 
of them (for Ei and E2 independently) there remain only the five cases (CC), (CT), (CR), 
(TC), (RC) because of the following reason: If there would be a real intersection point Ri 
of Ei for both the indices then the line joining them (observe that Ei and E2 are skew, 
hence Ri ^ R2) would completely lie on the intersection quadric Q' := Q fl M since Ei 
is polar to E2. But this is an oval quadric (see (23.8)) having no lines at all. 

Comparing these subcases for instance with those of Section 23.2.2, Case (II), one easily 
realizes that they correspond to the subcase numbers 3, 4, 5, 2, and 1 respectively. In a 
similar way, the subcases of (I) and (III) can be identified with the remaining possibilities 
of intersections of Ei and E2 with M. 

So the Lie geometry leads to a complete classification of the Dupin cyclides looking only 
at the position of Ti and J^2 with respect to the hyperplanes U and M in the model space. 
Thus Lie geometry is a mean for better understanding the nature of Dupin cyclides. 
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Chapter 24 

Geometry Processing 

Thomas A. Grandine 

24.1. I N T R O D U C T I O N 

One of the fundamental capabilities required in geometric design is the ability to ana­
lyze candidate designs, both geometrically and physically. The latter involves estimating 
physical characteristics of a design in terms of structural strength, flow of fluids in and 
around the design, optical and electromagnetic properties, thermal characteristics, and so 
on. Balancing the desired and required physical and performance characteristics of any 
proposed geometric design is the essence of engineering. Although physical modeling of 
design geometry is beyond the scope of this book, it is touched on in more detail in the 
chapters on Shape Optimization, Finite Element Approximation with Splines, and An 
Industrial Look at CAGD. 

This chapter will deal instead with the topic of geometric analysis. This type of anal­
ysis ignores dynamics and physics and focusses instead on those quantities which can be 
derived solely from given geometry. Examples of geometric analysis include determination 
of extreme points of the geometry, intersections of geometrical components, and metric 
information such as position, length, area, or volume. Such analysis is often called "ge­
ometry processing" in the literature because the collection of techniques required form 
the bridge between the geometric input and the computed output. 

Most geometry processing can be accomplished through some combination of evaluation 
of functions, contouring, rootfinding, and numerical integration. Two of these topics 
are covered in some detail in other chapters of the book and won't be repeated here. 
Evaluation of functions is discussed in detail in the chapters on Bezier Techniques, Spline 
Basics, and Subdivision Surfaces. Contouring is needed for performing surface intersection 
and projection, and it can be found in Chapter 25 on Intersection problems. The two 
remaining topics, rootfinding and numerical integration, will be covered here, along with 
a discussion of how both can be used to create more sophisticated geometry processing 
techniques. 

603 
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24.2. R O O T F I N D I N G 

Suppose one is given a mapping / : [0,1] —> JR. The rootfinding problem is that of 
identifying a value or values u such that f{u) = 0. Much has appeared in the literature 
about this problem, as well as the more general problem of solving nonlinear systems of 
equations, see [7], and little of that material will be repeated here. Instead, this section 
will focus on special techniques that can be used to solve this equation in the special case 
where the function / is a spline, while the second part will deal with the more general 
problem of systems of spline equations. 

One of the great difficulties with rootfinding from the geometry processing point of 
view is that the problem usually needs to be solved, often repeatedly, in the context of a 
much larger analysis that is being carried out. For example, given m points in space and 
a collection of n curves, the problem of identifying the closest point on any curve to each 
of the points requires, at least on the face of it, all solutions to mn different rootfinding 
problems to be found. The inability to solve even a single one of these problems places 
the reliability of the entire analysis in doubt. 

Moreover, a global solution to each of the problems is required for this and other 
problems. What this means is that all of the values u which satisfy f{u) = 0 must be 
identified. Doing this reliably means that global knowledge of the function / is required 
in some form, e.g. bounds on function values and derivatives over arbitrary pieces of the 
function domain. Without this global knowledge, only local methods (i.e. methods which 
depend on the values of / and its derivatives at points) can be used, and such methods are 
inherently unreliable for solving the global problem. In particular, it's worth noting that 
geometry systems based solely on black box geometry, i.e. strict parametric evaluator 
systems in which the geometry processing facilities of the system have knowledge of the 
geometry only in terms of local information, are necessarily unreliable in terms of their 
geometry processing capability. 

Although many function spaces have the property that global knowledge of a function 
can be deduced from its representation, this section will focus on rootfinding under the 
assumption the function / is a spline function represented as a linear combination of 
B-splines. This assumption is reasonable because spline functions are widely used for 
geometric design, and their representation makes it possible to construct sharp bounds 
on both function values and derivatives over arbitrary intervals. 

One of the simplest methods which can take advantage of such bounds is the interval 
Newton method proposed by Hansen [6], with special customization for splines described 
in [4]. Each iteration of this nonlinear procedure starts with an interval [an,&n] in which 
zeroes of some function / are sought. The Newton-like step of the nonlinear procedure is 
to compute 

fjXn) 

/'(K,M)' < + i > & U = ^ n - 7 7 7 7 r - ^ > (24.1) 

where Xn is the midpoint of the interval [ambn], and /'([a„,6n]) is an interval which 
bounds the value of the derivative of/ over the interval [a„, bn]- The right hand side of this 
equation should be carried out using interval arithmetic. Hansen proves that all zeroes of / 
which are in the interval [a^,6n] must necessarily also lie within the interval [a^+i,^n+i]-
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Thus, the final step of the iteration is to consider only those solutions which lie in both 
intervals, i.e. construct a new interval [an+i,6n+i] satisfying 

^n+l5 t^n+lj [a„,6„]nK+„6;+i] . (24.2) 

The interval computation on the right hand side of (24.1) is straightforward. The numer­
ator of the fraction is the scalar / (x„ ) , while the denominator is the interval f'{[an,bn\), 
i.e. the interval obtained by evaluating / ' over all of the points in the interval [a^, 6n]- The 
result should be the interval obtained by dividing the numerator by each of the possible 
values of the denominator. If the denominator interval does not contain zero, this result is 
straightforward. If it does contain zero, then the numerator is divided by numbers which 
are both positive and negative and arbitrarily small. In this case, the resulting interval 
is actually the union of two intervals which stretch to infinity in both the positive and 
negative directions. 

The size of the interval f'{[an, bn]) plays a crucial role in the convergence rate of this 
algorithm. If the derivative of / is not bounded sharply, then the interval [̂ ^4.1,̂ -̂1-J will 
be larger than necessary, and so will [a^+i, 6n+i]. On the other hand, if the bounds on the 
derivative of / are sharp, then the subsequent intervals in (24.1) will be smaller. 

If / is a spline function, its derivative can be determined by differencing its B-spline co­
efficients, i.e. B-spline coefficients for a spline g can be determined by computing weighted 
differences of the B-spline coefficients for / such that g is the derivative of / everywhere. 
Moreover, bounds on g over any given interval can be determined by knot insertion at the 
endpoints of the interval, making use of the well-known convex hull property of B-splines, 
i.e. the observation that the value of a spline at any point in an interval is a convex 
combination of the values of the B-spline coefficients whose corresponding B-splines are 
non-zero over that interval. See the chapter 6 on Spline Basics for more details on this 
technique. 

As an example, consider the problem of computing all of the zeroes of the cubic 
spline / defined by the knots {0,0,0 ,0 ,0 .5 ,1 ,1 ,1 ,1} and whose coefficients are given 
by {1,-2,—3,—1,2} over the interval [0,1]. This spline is shown in Figure 24.1. The 
picture suggests that the equation f[x) = 0 has two roots. 

Consider the interval Newton method on the problem of solving f{x) = 0. The deriva­
tive of the function / is the quadratic spline with knots {0,0,0,0.5,1,1,1} and B-spline 
coefficients { — 18, —3,6,18}. Initially, set [ao, 60] = [0,1] and consider the right hand side 
of (24.1). The midpoint is XQ = 0.5, and / (XQ) = —2.25. Looking at g, it's easy to see 
that over the interval [0,1], the derivative of / lies in [—18,18]. Thus, the fractional part 
of the right hand side of (24.1) must lie inside [-00, -0.125] U [0.125, 00]. Thus, 

[a[,b[] = [-00,0.375] U [0.625, 00], 

and [ai,6i], calculated by intersection of intervals, has the two pieces 

[aubi] = [0,0.375] U [0.625,1]. 

At this point, the second of these intervals can be stored off to the side for later 
processing, and attention turned to the first piece. Here Xi = 0.1875, and f{xi) = 
— 1.412598. By inserting three knots into the B-spline representation for g at 0.375, it's 
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m 

Figure 24.1. A function with two zeroes 

revealed that f'{x) G [-18, -1.40625] for all x e [0,0.375]. Carrying out the computation 
for the right hand side of (24.1) again reveals that 

[4,62] = [-0.817014,0.109022], 

so 

[02,62] = [0,0.109022]. 

Performing one more iteration reveals that [03,63] = [0.060382,0.0633485], and two more 
after that reveal [05, 65] = [0.06172202,0.06172202], isolating one of the roots of the func­
tion to within seven decimal places. 

Returning to the second part of [ai,6i] which had been put aside, this can now be 
revisited. Assigning [ae, 65] = [0.625,1] and carrying out another iteration of (24.1) shrinks 
the interval to 

[07,67]- [0.845676,0.954051]. 

As before, another iteration reveals that [og, 63] = [0.861997,0.872864], and two more after 
that result in [aio,6io] = [0.8664224,0.8664224], isolating the other root of the function 
to within seven decimal places. Thus, the interval Newton method has revealed that the 
spline function depicted in Figure 24.1 does indeed have two zeroes in the interval [0,1], 
and they occur at 0.06172202 and 0.8664224. 

From the point of view of geometry processing reliability, the fact that the interval 
Newton method is mathematically guaranteed to locate all of the places at which / is 
zero puts those capabilities on sound mathematical ground. In particular, it is possible to 
make global analytical statements of fact about nonlinear geometry without qualification 
or assumption, something which is impossible when purely local search methods are used. 

Of course, many applications require the solution of a system of nonlinear equations. 
For example, suppose one wishes to identify the closest point on a surface to a given point. 
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If the point is given by P and the surface mapping is given by S : [0,1]^ -^ M^, then the 
point on the surface S closest to P can be found by identifying all the points {u, v) G [0,1]^ 
for which \\S{u, v)—P\\ is locally minimized, and choosing the global minimum from among 
those candidates. A somewhat larger list of candidates can be constructed by finding all 
of the critical points of the distance, i.e. all solutions of the nonlinear system 

Su{u,v)-{S{u,v)-P) = 0 
Sy{u,v)'{S{u,v)-P) = 0 

The set of solutions to this system will necessarily include all of the local minimizers 
for \\S{u,v) — P\\ in the interior of [0,1]^, so the global minimizer can be identified as a 
member of this set, too. 

Thus, the crucial subproblem is to identify all of the zeroes of a nonlinear system of 
equations. As before, this is a global problem for which global information will have to be 
used. For the purposes of this chapter and section, this will be accomplished once again 
by requiring that the nonlinear system of equations be described by tensor product spline 
functions. Specifically, given an m-dimensional domain X = [ai, 6i] x [a2, 62] x . . . x [a^, bm] 
and a set of m tensor product spline maps fi : X -^ Mfor i = 1,..., m, the goal is to find 
all X G X such that fi{x) = 0 for i = 1,...,m. 

As it turns out, the interval Newton method can be generalized to systems of equations, 
with equation (24.1) replaced by 

K-,1 =^n- J{Xn)-'F{^n), (24.3) 

where J{Xn) is the matrix of intervals whose entry in row i and column j is the interval 
which bounds the partial derivative of fi with respect to its j t h variable. Similarly, Xn 
is the point located at the center of the box Xn, and F{xn) is the vector whose zth 
component is fi(xn)-

This turns out to be only one of several interval Newton methods for systems. In its 
many variations, the matrix J(X„) can take many forms, with some of the intervals re­
placed by scalars in some cases [6], usually resulting in faster convergence rates. However, 
these advantages depend crucially on knowing the algebraic form of the nonlinear system. 
Thus, systems involving "black box" functions cannot take advantage of any of these 
improvements. 

As before, knowledge that the system of equations is a tensor product spline system 
of equations can be exploited. The interval Newton method accomplishes this by taking 
advantage of the fact that derivative values can be bounded accurately over arbitrary 
portions of the subdomains of the functions. Another method, the projected polyhedron 
(PP) method of Sherbrooke and Patrikalakis [8], accomplishes the same feat by taking 
advantage of the relationship B-spline coeflBcients have with the functions they represent. 

Consider the B-spline representation of the tensor product spline function fi in the 
nonlinear system above. This is given by 

ni 712 rim 

fi{xuX2, -..Xm) = X ^ X ^ - X ] ^ W 2 . . . J m ^ l j i ( ^ l ) ^ 2 j 2 ( ^ 2 ) - . . 5 m j ^ ( ^ m ) - ( 2 4 . 4 ) 

j l = lJ2 = l jm = l 

In this formula, Bkj,^ is the jkth. B-spline in the kth independent variable. 



608 CHAPTER 24. GEOMETRY PROCESSING 

This B-spline representation can be used to construct two new functions of the A:th 
independent variable alone which bound fi. Consider 

CikiXk) = Yl ftj.^A:,j,(Xfc) (24.5) 
jk=l 

where 

3l, — ,3k-l,Jk-\-l,---Jm 

Consider also 

rik 

giH^k) = Yl ^^n^^^Jki^k) (24.6) 
jk=i 

where 

^ijk ~ . . niax ^ijiJ2--jm-
Jl,---,Jk-l,Jk + l,---,3m 

Recall from Chapter 6 on Spline Basics that B-splines form a partition of unity and are 
non-negatively valued everywhere. These facts make clear that 

eik{xk) < fi{xuX2,...,Xm) < 9ik{xk) (24.7) 

for all Xk regardless of the values of the other independent variables. 
The principal idea behind the PP algorithm is the observation that, because of the in­

equalities (24.7), the nonlinear system cannot have a solution if there exist values oixk for 
which Cik and gik have the same sign, for fi is bounded away from zero there. Since (24.7) 
must hold not only for each / j , but also for each k, a systematic procedure, based on those 
inequalities, for pruning away from X those regions in which solutions cannot be found 
can be constructed. 

In practice, identifying the actual zeroes of the univariate spline functions Cik and gik 
is not performed. Instead, the convex hulls of the so-called "control polygons" for those 
two functions are calculated, and the zeroes of these are calculated to determine the 
subinterval of [ajt, hk] in which all the zeroes of fi must lie. This computation is much less 
expensive than finding the zeroes of eik and gik, though its interval reduction estimates 
are more conservative. 

Here is the entire algorithm: 

0 Initialize k — {). 

1 Construct an initial box of search X = [ai, 6i] x [a2, 62] x ... x [arm ^m]-

2 Scale and shift the box so that it becomes [0,1]"^. Keep track of the scaling and 
shifting relationship to the initial box. The purpose of this operation is to improve 
the accuracy of the knot insertions which follow. 

3 Increment k. If A: is greater than m, then set /c = 1. 
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4 For i = l,...,m, calculate the B-spline coefficients of Cik and gik- Form "control 
polygons" for these functions by using knot averages as abscissae and B-spline values 
as ordinates. Calculate the convex hull of the control polygons and determine which 
portion of the x-axis passes through it. Call that portion [aj^, bik\- Finally, calculate 

Wk^ K] = [̂ ifĉ  hk] n [a2k, b2k] n ... n [amk, bmk]' 

If b'}^ — CL'k> 0'̂ ) split the interval [a'̂ ,&It] i^^^ ^^^ pieces, retain the first piece, and 
place the second aside for further processing. 

5 Form 
X' = [0,l]x. . . x [ < , 6 y x . . . x [ 0 , l ] . 

6 Using all of the scalings and shiftings from [2], determine if X' is sufficiently small 
to have isolated a root. If so, report that result. Otherwise, set X = X', replace 
the fi with splines defined over the new X, using either simple knot insertion or the 
Oslo algorithm, and return to [2]. 

An example will clarify how this algorithm works. Suppose one has been given tensor 
product spline functions / and g of two variables. Suppose that they are both defined 
over [1,2] x [1,3], and that both are quadratic. Suppose that / has a single knot in the 
second independent variable, which can be labeled y, dX y — 2, and suppose that g has 
a single knot in the first variable, which can be labeled x, dX x = 1.5. Suppose that the 
matrix of B-spline coefficients for / is given by 

/ I 1 i \ 
- 1 2 - 1 
- 1 2 - 1 

Vl 1 1 / 

and that the matrix B-spline coefficients for g is given by 

In these matrices, the rows correspond to x, and the columns correspond to y. Thus, the 
upper left hand corner of each matrix contains the B-spline coefficient which is the value 
of the functions / and g at the point (1,1), while the lower right hand corner contains 
the B-spline coefficient which is the value of / and g at the point (2,3). 

The initial search box for the algorithm is X = [1,2] x [1,3]. This is shifted and 
rescaled so that it becomes [0,1]^. None of the B-spline coefficients need to be changed. 
Now calculate the B-spline coefficients of en and gu. This is accomplished by taking 
the minimum and maximum in each column of the matrix of B-spline coefficients for / . 
Thus, eii has B-spline coefficients {-1,1, —1}, while gu has B-spline coefficients {1, 2,1}. 
The knot averages provide abscissae of {0,0.5,1}, so the convex hull of the "control 
polygons" is shown in Figure 24.2. 
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/W 

I i I 1 1 1 1 1 1 1 1 1 

0 1 

Figure 24.2. The convex hull of the "control polygon" for / 

In this figure, note that the x-axis is shown by a dashed line, and the range of this line 
that is contained inside the convex hull is the range in which all of the zeroes of / are 
known to lie. 

In this particular case, not much useful information is gleaned. The discovery that all 
of the zeroes of / occur when x G [0,1] (which we really know to be the interval [1,2]) 
is not very helpful. The next step is to repeat the process for 621 and p2i- The B-spline 
coefficients for these functions are obtained by taking the minimum and maximum in 
each column of the matrix of B-spline coefficients for g. Thus, 621 has B-spline coefficients 
{ — 1, —2, —1, —1}, while P21 has B-spline coefficients {2,1,2,2}. The knot averages again 
provide abscissae for the "control polygons," and these are given by {0,0.25,0.75,1}, and 
their convex hull is shown in Figure 24.3. 

As before, this isn't very interesting. Refinement of the interval on the first variable 
revealed 

[a;,6;] = [o,i]n[o,i] = [o,i]. 
Since the reduction in interval size is not sufficiently small, the interval needs to be split. 
Place [0.5,1] aside for further processing, and consider 

[a;,6;] = [0,0.5]. 

Over this subdomain, the B-spline coefficients for / and g can be calculated again. They 
are given by 

/ I 1 i \ 
-1 0.5 0.5 
-1 0.5 0.5 

VI 1 1 / 

and 
-1 
0 
2 

- 2 
0 
1 

-1 .5 
0 

1.5 
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9{^) 0 4^ 
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0 1 

Figure 24.3. The convex hull of the "control polygon" for g 

Note that the number of B-spline coefficients for g changed because the interior knot in x 
for that function is no longer present. 

At this point, the y variable can be processed. Before doing so, the intervals again 
need to be rescaled so that the B-spline coefficients just identified are assumed to define a 
function over [0,1]^. By recalling the first scaling, however, one can note that the domain 
at this point is really [1,1.5] x [1,3]. 

As before, the B-spline coefficients of e^ and gu are now calculated. These are gener­
ated by taking the minimum and maximum of the rows of the two matrices of B-spline 
coefficients for / and g. Thus, the B-spline coefficients for e^ are given by { 1 , - 1 , - 1 , 1 } , 
with knot averages {0,0.25,0.75,1} to get the abscissae of the "control polygon," while 
the B-spline coefficients for gi2 are given by {1,0.5,0.5,1}. The convex hull is shown 
in Figure 24.4, and for the first time in the problem, a non-trivial reduced interval now 
appears. 

The portion of the interval that is contained inside the polygon is [0.125,0.875], i.e. / 
can have no zeroes in either the first or last eighth of the interval. Now consider g, for 
which the B-spline coefficients of 622 and 2̂2 are needed. These are given by {—2,0,1} 
and { — 1, 0, 2}, respectively. After generating the convex hulls and intersecting, it is found 
that g cannot have any zeroes outside [0.3333333,0.6666667]. Thus, 

[4,62] = [0.125,0.875] n [0.3333333,0.6666667] = [0.3333333,0.6666667]. 

Once again, the B-spline coefficients for / and g are recalculated over this new subdo-
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f{y) 0 

I 1 1 1 1 1 1 1 1 1 1 

0 1 

Figure 24.4. The convex hull of the "control polygon" for / (again) 

and 
-0.2222222 -0.7777778 -0.5> 
0.2222222 -0.2222222 0 
0.7777778 0.2222222 0.5 ) 

main, and they are found to be 

/-0.7777778 0.5555556 0.5555556\ 
- 1 0.5 0.5 
- 1 0.5 0.5 

V-0.7777778 0.5555556 0.5555556/ 

The algorithm continues processing. These B-spline coefficients are taken to be the 
definition of a pair of functions defined over [0,1]^, but which in reality is [1,1.5] x 
[1.666667,2.333333]. The next pass through will again focus on the x variable. For the 
functions at this stage, the B-spline coefficients of en and ^n are given by { — 1,0.5,0.5} 
and {—0.7777778,0.5555556,0.5555556}. Similarly, the B-spline coefficients for 621 and ^21 
are given by {-0.2222222,-0.7777778-0.5} and {0.7777778,0.2222222,0.5}. Generating 
"control polygons", convex hulls, and subintervals reveals 

[a[,b[] = [0.2916667,0.6666667] 0 [0,1] = [0.2916667,0.6666667]. 

The B-spline coefficients for / and g are now calculated over this subdomain, and they 
are found to be 

/-0.1134259 0.2407407 0.4074074^ 
-0.2526042 0.1458333 0.3333333 
-0.2526042 0.1458333 0.3333333 

\-0.1134259 0.2407407 0.4074074/ 

/-0.4754051 -0.5925926 -0.5925926\ 
and 0.0196759 -0.0740741 -0.0740741 , 

\ 0.5245949 0.40740741 0.40740741 / 

while the region is known to be [1.145833,1.333333] x [1.666667,2.333333]. 
Subsequent iterations refine this box, as shown in Table 24.1. In practice, the compu­

tations would be carried out to additional precision, and additional iterations would be 
required in order to isolate the root. 
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Table 24.1 
Search boxes for the PP algorithm example 

Iteration 

y 
X 

y 
X 

y 
X 

y 
X 

New Box 

[1.145833,1.333333] x [1.983603,2.061728] 
[1.204370,1.226667] x [1.983603,2.061728] 
[1.204370,1.226667] x [2.022270,2.032882] 
[1.210938,1.211367] x [2.022270,2.032882] 
[1.210938,1.211367] x [2.025611,2.025822] 
[1.211132,1.211136] X [2.025611,2.025822] 
[1.211132,1.211136] X [2.025706,2.025708] 
[1.211134,1.211134] X [2.025707,2.025707] 

After this root has been identified, attention is returned to the other search box which 
was created back in the first iteration, when an interval was split in two. Additional 
refinement of this search box reveals that a second solution to this nonlinear system can 
be found at (1.794495,1.858724). 

In this example, the search box was split exactly once, and a unique solution to the 
nonlinear system was eventually found in each box. In many practical cases, the search 
box needs to be split many times, with no solution found in many of these boxes. The 
algorithm recognizes this situation during the computation of the interval [a]̂ ,̂ Jt] when 
the intersection of all the intervals which form it is determined to be the empty set. 

The PP algorithm has been a key component of the topology resolution scheme used 
in a surface intersection algorithm developed at Boeing ([5]), and it has formed one of 
the main computational workhorses of the U.S. Navy's DT_NURBS geometry library [2]. 
Undoubtedly, it will be an important algorithm for many years to come. 

24.3. INTEGRATION 

In addition to rootfinding, many geometric analyses require integration over curves and 
surfaces as a key component of the analysis. Such computations include length of curves, 
area of surfaces, center of gravity and moment of inertia of volumes, mass of variable 
density media, etc. Numerical integration is a well-studied and well-established discipline 
about which volumes have been written. This section will focus on some of the issues 
that arise when these methods are applied to problems in geometric modeling. 

As an example, consider the problem of computing the length of a curve. Consider 
the parametric spline curve given by knots {0,0,0,0,1,1,1,1}, with B-spline coeflftcients 
for the X component {0,0.3,0.7,1} and B-spline coeflftcients for the y component equal 
to {0,1,1,0}. Because the knot sequence has no internal knots, this spline is made up of 
a single polynomial piece, and its curve is depicted in Figure 24.5. 

The length of this curve is given by 

/ y/x'{uy-{-y'{uydu, 
Jo 
the integral of the parametric speed of the curve over the entire curve. In this case. 
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y{u) 

x{u) 

Figure 24.5. A simple curve with unknown length 

both x' and y' are quadratic polynomials, so the integral is the square root of a quartic 
polynomial. This integral cannot be evaluated analytically by any practical method, so 
its value will have to be estimated numerically. A simple numerical method for evaluating 
an integral is given by Simpson's rule 

/ ' 
J a 

f{u)du ^{b-a)[ -f{a 
1 4 ^ , a + 6, + lm 

Usually, this does not provide a sufficiently accurate estimate of the value of the integral. 
In these cases, the integral can be chopped up into smaller pieces, and Simpson's rule 
can be applied to each piece. The estimated values of the integrals over each of the small 
pieces can then be summed to get a more accurate estimate of the value of the integral. 
To see the effect of doing this, consider the results in Table 24.2. 

The first column of this table shows the number of equally spaced pieces that the arc 
length integral has been cut into. The second column is the estimate of the value of the 
total integral when all of the pieces are summed. The third column is the absolute value 
of the difference between the estimated integral value and the actual value. The fourth 
column is the calculated estimate of the order of convergence of the method, about which 
more needs to be said. 

Recall that published quadrature formulas all come with error estimates. In the case 
of Simpson's rule, the estimate is given by [1] 

Es = -
r{0{h/2nb-

180 

where h is the width of the subpieces of the integrals, and ^ is some (unknown) point in 
the interval [a, 6]. The important observation is that reducing the value of /i by a factor 
of two should result in an approximate reduction in the error of the integral by a factor 
of 16, a natural consequence of the exponent of the h/2 term in the error expression. 
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Table 24.2 
Estimates of curve length using Simpson's rule 

Pieces 

1 
2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 

Integral Value 

1.7440306508910550 
1.9035081766468929 
1.8938597297032531 
1.8934767880912242 
1.8934762249053652 

1.8934762887314800 
1.8934762927462818 
1.8934762929975435 
1.8934762930132514 
1.8934762930142324 

1.8934762930142981 

Error 

1.4944564 x 10"^ 
1.0031884 X 10-2 

3.8343669 x 10"^ 
4.9507693 x 10"^ 
6.8108929 X 10"^ 
4.2828143 x 10"^ 
2.6801250 X 10-^^ 
1.6750823 X lO^^i 
1.0429435 X lO'^^ 

6.1950445 X lO'^^ 
3.7747583 x 10"^^ 

Order 

3.8969564 

4.7094603 

9.5971199 
2.8617369 
3.9912129 
3.9981869 
3.9999964 
4.0054991 
4.0734026 
4.0366585 

The exponent in such error estimates is called the order of the method, because it, more 
than any other part of the estimate, controls the rate at which the quadrature formula 
will converge. The fourth column in Table 24.2 was computed as follows: Observe that 
the error is expected to be approximately ch^ for some unknown constant c. Take the 
estimated error in row k and divide it by the estimated error in row k — 1. This number 
should be approximately 2"^, since the stepsize has been reduced by a factor of two from 
row to row. By taking logarithms, the value of p can be estimated as 

P' 
logefc-i -logefc 

log 2 

This analysis shows, in the case of the arclength of the curve shown in Figure 24.5, that 
the expected rate of convergence for Simpson's rule is actually observed in practice once h 
enters the asymptotic range for the error estimate. Thus, a good adaptive quadrature 
routine will be able to make useful estimates about the accuracy of the results by making 
use of this information. Required input accuracies can actually be achieved in practice 
because the theory does a good job of predicting the actual rate of convergence. 

However, much can go wrong. Instead of the curve shown in Figure 24.5, consider 
the curve depicted in Figure 24.6. Like the first curve, this is a smooth, curvature-
continuous curve, with no obvious geometric or algebraic singularities. Like the first, the 
curve is a parametric cubic. Unlike the first, it is made up of two polynomial pieces, 
and its knot sequence is given by {0,0,0 ,0 ,0 .47,1,1 ,1 ,1}, with B-spline coefficients for 
the X component {0,0.3,0.5,0.7,1} and B-spline coefficients for the y component equal 
to {0 ,1 ,1 ,1 ,0} . 

Applying the same procedure as before, the length of this curve can be estimated using 
Simpson's rule. That leads to the results shown in Table 24.3. This table shows very 
different results from those shown in Figure 24.5. To begin with, the error in the value of 
the integral for Simpson's rule with 1024 subintervals is larger by a factor of nearly 3000. 
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y{u) 

x{u) 

Figure 24.6. Another curve with unknown length 

This is much larger than anything that can be accounted for by intermediate values of 
the fourth derivative of the integrand. Moreover, the estimated order of the method, the 
fourth column, is all over the place. It's very difficult to observe the predicted fourth 
order convergence of the method in the calculated integral estimates. 

As with so many things in everyday life, the problem is that insufficient attention was 
paid to the fine print in the contract we signed with Simpson's rule before we started 
using it. In the derivation of the error estimate is an underlying assumption about the 
differentiability of the integrand. In particular, the actual formula depends on continuous 
fourth derivatives, while the order of the method depends on having continuous third 
derivatives. For the curve shown in Figure 24.6, the integrand for arc length has a jump 
discontinuity in the second derivative at parameter value u = 0.47. Thus, an important 
assumption on which the Simpson's rule error estimate is based has been violated, and 
the estimate itself cannot be proven or believed. 

However, the results are very different when Simpson's rule is applied to the same curve 
a little differently. Table 24.4 contains the results for the length of the curve shown in 
Figure 24.6 again, but this time, the curve integral has been split into two pieces at its 
interior knot. Half of the Simpson's rule intervals are allocated to the first piece, while 
the other half of the intervals are allocated to the second piece. When the integral is 
broken at the discontinuity in second derivative, now the expected convergence rate can 
be observed in the results. Moreover, the actual error is lower for most of the entries in 
the table. In some cases, the error is as much as three orders of magnitude smaller for an 
equivalent number of function evaluations. 

This example points out the importance of matching the differentiability of integrand 
to its assumed differentiability. The assumed differentiability of the quadrature formulas 
is often considerably higher than one might suppose, especially for Gauss quadrature 
formulas. For example, a seemingly innocent k point Gauss quadrature formula has an 
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Table 24.3 
More estimates of curve length using Simpson's rule 

Pieces 

1 
2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 

2048 

Integral 

2.4981326614856338 
2.3078041360542949 
2.3241119097377538 
2.3271127744132456 
2.3270757930144499 
2.3270764768619507 
2.3270764749041462 
2.3270764711423424 
2.3270764690880932 

2.3270764682490546 
2.3270764683520975 
2.3270764683402407 

Error 

1.7105619 X 10-1 
1.9272332 x 10"^ 

2.9645586 x 10"^ 
3.6306072 x 10"^ 
6.7532670 x 10"'̂  
8.5208045 x 10"^ 
6.5629999 x 10"^ 
2.8011962 X 10-^ 

7.4694695 x lO'^^ 
9.2091668 X 10-^^ 
1.0951240 X 10-11 

9.0549790 x lO'^^ 

Order 

3.1498673 
2.7006420 
6.3514627 
5.7484815 
6.3084521 
3.7663424 
1.2283124 

1.9069653 
3.0198632 
3.0719764 

3.5962391 

Table 24.4 
Still more estimates of curve length using Simpson's rule 

Pieces 

2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 

Integral 

2.3103231743670891 
2.3236486484941294 
2.3271117033668585 
2.3270763957527074 
2.3270764651729792 
2.3270764681427023 
2.3270764683287486 
2.3270764683403833 

2.3270764683411107 
2.3270764683411551 

Error 

1.6753294 x lO'^ 
3.4278198 x 10"^ 
3.5235026 x 10"^ 
7.2588439 x 10"^ 
3.1681671 X 10-9 
1.9844393 x lO'^^ 

1.2397638 x lO'^ 
7.6294526 x 10"!^ 
3.5527137 x 10"!^ 
8.8817842 x 10-^^ 

Order 

2.2890816 
6.6041372 
8.9230548 
4.5180195 
3.9968451 
4.0005942 

4.0223420 
4.4245862 

2.0000000 
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error estimate that assumes that the integrand is 2A: + 2 times differentiable. Since most 
geometric modeling appHcations based on splines do not offer this much differentiability, 
some care must be taken when applying quadrature formulas. 

As in the case of rootfinding, a weakness of parametric evaluator systems is exposed. 
Since the location of the derivative discontinuities is hidden from the geometric analysis 
routines in such systems, those systems are not able to align the quadrature formulas with 
the derivative discontintuities so that the error estimates of the quadrature formulas can 
be used reliably. Either very low order methods must be used, leading to inefficiencies 
because of the large number of function evaluations required, or the accuracy of the final 
result cannot be assured with any certainty. 

Taking advantage of known derivative discontinuities is not always easy. Consider the 
problem of the determining the length of a curve which lies on a surface. Suppose that 
the surface is a tensor product spline surface, and that the description of the curve on 
it is given by a curve in parameter space for the surface. In other words, the surface 
is given by a mapping F : [0,1]^ -> 7R ,̂ while the curve on the surface is given by a 
mapping G : [0,1] -> [0,1]^. Then the composite mapping FoG describes a curve on the 
surface whose length can be calculated. Suppose that the two components of G are given 
by u and v. Then the integral which describes the length of the curve is 

/ \\Fuu'{t)^F,v'{t)\\2dt 
Jo 

The integrand will have derivative discontinuities whenever the curve G crosses one of the 
knots for F as well as whenever G itself has a discontinuity. 

As an example, consider the situation shown in Figure 24.7. Here, parameter space for 
a surface with four interior knots in the u direction and three knots in the v direction 
is shown. A curve through parameter space is shown, together with a collection of • 
and a single o. The o represents a location on the curve in which the curve itself has 
a derivative discontinuity. Each • represents a location at which the curve crosses one 
of the knot lines of the surface. Dependable schemes for calculating the length of that 
curve on the surface will break the curve at each • or o so that the integrand is infinitely 
differentiable everywhere else. In this way, several smaller integrals are calculated, each 
of which comes with a reliable error estimate. When those values are summed, the result 
is an estimate of the value of the desired integral whose quality is known. 

Of course, determining the locations of the • is not easy. In particular, the two com­
ponents u and V must each be set to each of the internal knot values, and the resulting 
nonlinear equation solved for all of its roots, each of which will determine the location of 
one •. As discussed in the previous section, and as typical for much of geometry process­
ing, the failure to find even a single root destroys the integrity of the computation. In 
this case, such failure means that the estimated error of the value of the curve length for 
the curve on the surface will not be valid. The estimated value of the integral may still 
be acceptable, but it's not possible to assert such a thing with any authority. 

24.4. C O M P U T I N G M A S S P R O P E R T I E S 

This section describes how to compute mass properties of a boundary-represented (B-Rep) 
solid. The basic capability required in order to compute these properties is the ability to 
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Figure 24.7. Location of derivative discontinuities for a curve on a surface 

integrate a polynomial over the solid. A good method for accomplishing that is based on 
two applications of the divergence theorem. 

Recall the divergence theorem: 

/„ V - / = /" f-n. 
Jdn 

(24.8) 

In words, this theorem says that the integral of the divergence of a vector valued function / 
over a region is equal to the integral over the boundary of the region of the inner product 
of / with the outward pointing unit normal to the region. 

In the first application of this theorem in what follows, Q will be treated as a solid 
defined in terms of the surfaces which bound it. For example, a cube would be defined in 
terms of the six rectangles which form its faces. Each face, in turn, can be defined using 
a parametric surface map S : [0,1]^ —> M^ whose outward pointing unit normal can be 
computed as 

N{u,v) 
Su{u,v) X Sy{u,v) 

\\Su{u,v) X Sy{u,v)\ 
(24.9) 

with a a constant with value either —1 or 1 to settle orientation. In usual modeling 
situations, not all of the surface mapping will be used to describe a face of the solid. Such 
surfaces in which only a portion of the image of the surface mapping is used to define the 
boundary of a solid is called a trimmed surface. For example, the circular faces which 
form the ends of a bounded cylinder can be described by surface mappings which map the 
rectangular parameter space into a rectangular face properly positioned in space. Only a 
circular subset of that rectangle is required to bound the cylinder. A convenient means 
of specifying this subset is to keep track of that portion of parameter space which is its 
preimage. Interestingly, this preimage is itself a solid of one dimension lower than the one 
we started with which can be defined in terms of its boundary, in this case the curves in 
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parameter space which bound it. Each of these boundary curves can be defined using a 
parametric curve map c : [0,1] —)• [0,1]^. The two components of this map are typically 
labeled to correspond to parameter space for the surface, so 

c{t) = 
u(t) 
v{t) 

(24.10) 

If the curve map is oriented so that the active region lies to the left of the curve as it is 
followed, then the outward pointing unit normal to the active parametric region of the 
surface is given by 

n{t) 

v'{t) 
-u'{t) 

\wm (24.11) 

To describe an entire boundary of a solid, many boundary surfaces and boundary curves 
are usually needed. In what follows, assume that the number of boundary surfaces is given 
by Us, and that the number of boundary curves for the zth boundary surface is given by n^. 
The zth boundary surface map can be referred to as Si, and the j t h boundary curve of 
that map can be referred to as [uij.Vij). The normals to those maps can be similarly 
indexed. Lastly, assume that the entire solid is denoted by f̂ , and that the union of the 
parametric preimages of all the pieces which make up its boundary are together denoted 

Computing mass properties of solids requires an ability to integrate polynomials over 
the solid. Thus, the crucial integral is 

/ x^'y^z^ (24.12) 

for non-negative integers a, /?, and 7. Consider the vector valued function / defined by 

f{x,y,z) = 

3(a + l) 
^a^^+1^7 

HP + l) 
x'^y^z 7+1 

(24.13) 

V 3(7 + 1)/ 

The divergence of this function is the integrand in (24.12), so the divergence theorem can 
be applied to get 

y2 / -X^{u,v)''yi{u,v)'^Z^{u,Vy 

N^{u,v)\\S^u{u,v) X S^y{u,v) 

Xi{u,v) yi{u,v) Zi{u,v] 

a - h l ' p + l ' 7 + 1 

(24.14) 

The scale factor at the end arises because of the parametrization of the boundary. This 
scale factor represents the measure of surface area with respect to the parametrization 
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of the boundary surface. Formally define a new function gi to be the integrand of this 
integral, so that the integral (24.14) is just 

E / 9^. (24.15) 

where 

9iyu,v) = -Xi{u,v)''yi{u,vyzi{u,vy rr'-^TT' TT" '^i^iuiu^V X Siy(u,v). 
3 \ Q ; H - l p 4 - l 7 H - l / 

(24.16) 
Now consider a new function hi which is defined to be the integral of g^ with respect to 
its first variable, i.e. 

h^{u,v)= f g^{T,v)dT. (24.17) 
Juo 

Thus, gi is the derivative of hi with respect to its first variable, so the divergence theorem 
can be applied once again over the regions which are the parametric domains of each 
of the surfaces Si to get integrals around the boundary of each of them, i.e. along the 
curves (uij.Vij). This transforms (24.15) into 

E E / / 9^{T.V^J{tM^{t)dTdt. (24.18) 

This sum will produce the desired value of (24.12). 
Equipped with an ability to evaluate (24.12), mass properties for any B-rep solid can be 
computed. The easiest mass property to compute is the volume, which is given by 

v{n) = [ I- (24.19) 
Jn 

The mass is just the product of this volume times the density of the solid: 

m(Q) =p{Q)v{Q). (24.20) 

Computing the center of mass is nearly as easy. The three coordinates of the center of 
mass are given by 

x(Q) Jn^ 
v{n) 
Jn y(n) = ^ (24.21) 

^ ( ^ ) % ( Q ) -

Now consider the moment of inertia about an axis w through the origin. If r is the 
distance of any point x — (xi,X2, X3) from this axis, then the inertia can be computed as 

/ r^ — X ' X — {x ' wY 
Jn Jn 

= w-Jw, (24.22) 
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where J is the 3 x 3 matrix whose entries are given by 

(24.23) 
Jn 

In this expression, 8ij is the usual Kroneker delta. The matrix J is called the inertia 
tensor, and its entries can be computed by evaluating the integrals 

M^j = / XiXj. (24.24) 
Jn 

Given the inertia tensor J, it is possible to compute the moment of inertia I{w,p) about 
any point p and any rotational axis w by making use of the parallel axis theorem [3], 
which states 

I{w,p) = W'Jw + v{n){p - 2x{n)) '{p- {p- w)w). (24.25) 
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Chapter 25 

Intersection Problems 

Nicholas M. Patrikalakis and Takashi Maekawa 

25.1. I N T R O D U C T I O N 

Intersections are fundamental in computational geometry, geometric modeling and design, 
analysis and manufacturing applications [4,33,67]. Examples of intersection problems 
include: (1) Contouring of surfaces through intersection with a series of parallel planes 
or coaxial cylinders for visualization. (2) Numerical control machining (milling) involving 
intersection of offset surfaces with a series of parallel planes, to create machining paths 
for ball (spherical) cutters. (3) Representation of complex geometries in the Boundary 
Representation (B-rep) scheme using a process called boundary evaluation, in which the 
Boundary Representation is created by evaluating a Constructive Solid Geometry (CSG) 
model of the object. During this process, intersections of the surfaces of primitives must 
be found during Boolean operations (union, intersection, difference) between primitives. 

All above operations involve intersections of surfaces to surfaces. In order to solve gen­
eral surface to surface (S/S) intersection problems, the following five auxiliary intersection 
problems need to be considered: point/point (P /P) , point/curve (P/C) , point/surface 
(P/S), curve/curve (C/C), curve/surface (C/S). All above six types of intersection prob­
lems are also useful in shape interrogation, robotics, collision avoidance, manufacturing 
simulation, scientific visualization, etc. When the geometric elements involved in inter­
sections are nonlinear (curved), intersection problems typically reduce to solving systems 
of nonlinear equations, which may be either polynomial or more general functions. 

Solution of nonlinear systems is a complex topic of numerical analysis and there are 
specialized textbooks on the topic [16,66]. However, geometric modeling applications 
pose severe robustness, accuracy, automation, and efficiency requirements on solvers of 
nonlinear systems. Therefore, geometric modeling researchers have developed specialized 
solvers to address these requirements explicitly using geometric formulations. 

When studying intersection problems, the type of curves and surfaces that we consider 
can be classified into two types: (1) Rational polynomial parametric (RPP), (2) Implicit 
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algebraic (lA). Non-Uniform Rational B-Spline (NURBS) curves and surfaces can be 
subdivided into RPP curves and surfaces, and analyzed in a similar manner. Procedural 
curves and surfaces defined by means of an evaluation method without explicit use of 
the specific analytic properties of the defining formula are not treated here. Procedural 
curves and surfaces include offsets, evolutes, blends and generalized cylinders. A detailed 
treatment of intersection problems including procedural curves and surfaces can be found 
in a recent textbook [68]. In this handbook we only deal with S/S intersection problems 
and the auxiliary C/S problems involving RPP and lA geometries. P /P , P /C , P /S , C/C 
intersection problems are analyzed in [68] in some detail. 

This chapter is organized as follows: In Section 25.2 we classify the intersection problems 
by dimension, type of geometric specification, and the number system used. Section 
25.3 overviews solution methods for systems of nonlinear polynomial equations. Section 
25.4 treats curve/surface intersection problems followed by surface/surface intersection 
problems in Section 25.5. Section 25.6 concludes this chapter and summarizes some 
current and future research directions. 

25.2. CLASSIFICATION OF I N T E R S E C T I O N P R O B L E M S 

The fundamental issue in intersection problems is the efficient discovery and description 
of all features of the solution with high precision commensurate with the tasks required 
from the underlying geometric modeler [67]. Reliability of intersection algorithms is a 
basic prerequisite for their effective use in any geometric modeling system and is closely 
associated with the way features of the solution such as constrictions (near singular or 
singular situations), small loops and partial surface overlap are handled. The solutions 
resulting from most present techniques, implemented in practical systems, are further 
complicated by imprecisions introduced by numerical errors present in finite precision 
computations. Intersection problems can be classified according to the dimension of the 
problems, the type of geometric equations involved in defining the various geometric 
elements, the number system in which the input is expressed, and the number system 
used in algorithm implementation. Such intersection problem classification is addressed 
in the next three subsections. 

25.2.1. Classification by dimension 
Using the abbreviation in Section 25.1, intersection problems can be classified in three 
subcategories, where one intersecting entity is a point or curve or surface as: (1) P /P , 
P/C, P /S , (2) C/C, C/S, (3) S/S. 

25.2.2. Classification by type of geometric specification 
In this subsection, we classify the various types of geometric specification of points, curves 
and surfaces that we will use in formulating various intersection problems: 

1. Points 
Explicit: FQ = {xo,yo, ZQ)'^, where superscript T denotes transpose of a vector. 
Implicit algebraic: Intersection of three implicit surfaces, or equivalently / ( r ) 
p(r) = h{r) = 0 where / , g, h are polynomial functions and r = (x, y, z)^. 
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2. Curves 
Parametric: (Rational) (piecewise) polynomial: Bezier, rational Bezier, B-spline, 
NURBS, T = T{t), 0<t<l. 
Implicit algebraic: A 2-D planar curve is given by z = 0, f{x,y) = 0, while 3-D 
space curve is given by intersection of two implicit surfaces / ( r ) = ^(r) = 0 where 
/ and g are polynomial functions. 

3. Surfaces 
Parametric: (Rational) (piecewise) polynomial: Bezier, rational Bezier, B-spline, 
NURBS, r = r{u,v), 0<u,v<l. 
Implicit algebraic: / ( r ) = 0 where / is a polynomial function. 

25.2.3. Classification by number sys tem 
In our discussion of intersection problems, we will refer to various classes of numbers: 

1. Rational numbers, m/n , n / 0, where m,n are integers. 
2. Floating point (FP) numbers in a computer (which are a subset of rational numbers) 
3. Algebraic numbers (roots of polynomials with integer coefficients). 
4. Real numbers, e.g. transcendental numbers such as e, TT, trigonometric, etc. 
5. Interval numbers, [a, 6], where a, 6 are real numbers. 
6. Rounded interval numbers, [c,d], where c,d are FP numbers. 

Issues relating to floating point and interval numbers aflFecting the robustness of intersec­
tion algorithms are addressed in [1,20,35,34,88] in the context of nonlinear solvers. 

25.3. O V E R V I E W OF N O N L I N E A R SOLVERS 

Curves and surfaces in CAD/CAM systems are usually represented by piecewise poly­
nomial equations of various types. Therefore the governing equations for intersection 
problems reduce to solving systems of nonlinear polynomial equations. 

25.3.1. Brief review of local and global methods 
One of the most popular local methods in solving nonlinear equation systems is the 
Newton-type method. Newton-type methods are based on local linearization and con­
ceptually they are very simple. They are designed to compute roots based on initial 
approximations. Advantages of the Newton's method are its quadratic convergence and 
its easiness for implementation. Disadvantages are that for each root a good initial ap­
proximation is required, otherwise the method may diverge. Also the method cannot by 
itself provide full assurance that all roots have been found. 

Global solution methods are designed to compute all roots in some area of interest. In 
recent computational algebraic geometry related research, three classes of methods for the 
computation of solutions of nonlinear polynomial systems can be distinguished [68]: (1) 
algebraic and hybrid techniques, (2) homotopy (continuation) methods, (3) subdivision 
methods. We will briefly review these three types of techniques. 
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Algebraic and hybrid techniques 
Algebraic techniques for solving a nonlinear polynomial system are based on elimination 
theory. This theory deals with the problem of eliminating one or more variables from a 
system of polynomial equations, thus reducing the given problem to a problem of higher 
degree but in fewer variables. There are basically two fundamental approaches in elimi­
nation theory: (1) Resultants, and (2) Grobner bases (see Chapter 15 of this handbook 
[85] for more details). Both of the above operate ideally in a symbolic algebra environ­
ment, and the coefficients of the polynomials involved are either rational or real algebraic 
numbers. There are several algorithms for solving nonlinear polynomial systems using 
the above approaches. All the algorithms are based on some fundamental algorithm that 
"finds" all the roots, real and complex, of a univariate polynomial. The word "finds" 
means, either the algorithm isolates the roots using intervals and rectangles, or encodes 
them as algebraic numbers, for further manipulation. Let f{x) be a polynomial with inte­
ger coefficients of degree m, d be a bound for the size of the coefficients of / (x ) , and L{d) 
be the number of binary digits of d. Then, the (worst) running times of real root finding 
algorithms are functions of m, L{d) and are given in [14]. On the other hand, bisection 
methods for finding all roots of / , real and complex with similar running times, can be 
found in [78,97]. As it can be seen from the computing times found in [14,78,97], there 
is an enormous coefficient growth of all the quantities involved along the way (requiring 
significant computer memory). The latter is one of the most serious problems that all the 
algorithms using these techniques suffer from. 

Resultant type algorithms: A resultant is a function of the coefficients of a given 
system of polynomials and when it is zero it provides an algebraic criterion for determining 
when this polynomial system has a solution. Resultants can be classified as classical, 
like the Sylvester, Bezout, Macaulay and u resultants, and non-classical like the sparse 
resultants. A good introduction to resultants and applications can be found in [17,71,90, 
91] and Chapter 15 of this handbook [85]. 

Algorithms based on resultant computation have been presented in [9,10,36,57,92]. 
They work well on systems with a small number of solutions M. However, on systems 
with large M, these algorithms suffer from efficiency problems. The main reason for that 
is that finding roots of high degree univariate polynomials can be a very slow procedure, 
as discussed above, due to the use of exact arithmetic. 

Grobner bases-type algorithms: The theory of Gr5bner bases was developed by 
Buchberger [7]. Grobner bases are very special and useful bases (generator sets) for a 
special class of subsets of polynomial rings in / variables, called polynomial ideals. They 
are named after Grobner who was Buchberger's thesis advisor. Grobner bases can be 
thought of as a generalization of Euclid's algorithm for computing the greatest common 
divisor of two polynomials and of the Gauss triangularization algorithm for linear systems. 

The usefulness of Grobner basis for solving nonlinear polynomial systems comes from 
the fact that, whenever the system has a finite number of solutions, Grobner basis provides 
an equivalent system of triangular form. Algorithms using Grobner bases use the above 
fact, and appear in [8,22,43,47,99]. Using Grobner bases, polynomial systems are con­
verted to polynomial triangular systems, which can be solved by backward substitution, 
much in the manner of the Gauss triangularization algorithm for linear systems. 

If the system has a finite number of solutions in the affine plane, as well as in the 
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projective plane, then a Grobner basis can be computed in 0{rin}) time, where m is 
the highest degree among the polynomials and / is the number of variables. In case, 
however, that the system is not zero-dimensional at infinity, the time becomes 0{7in} ). 
These bounds do not take into account the coefficient growth. Grobner basis algorithms 
work well on systems with few roots. This is one reason they have been considered 
seriously as a practical equation-solving tool. But when their complexity is measured as a 
function of the number of solutions, their performance is poor. As reported in [58], these 
algorithms frequently exhaust memory and computer resources even for low number of 
equations n and variables / (e.g. n,l < 5 ) and moderate degrees m. To overcome 
this difficulty, algorithms that combine resultant and linear algebra techniques are more 
promising concerning efficiency [2,58,59,65]. These algorithms are generally hybrid d^nd are 
based on algebraic and numerical analysis methods. In particular, this approach based on 
resultants transforms the problem into a sequence of eigenvalue problems. This method 
has found extensive application in various types of intersection problems [42]. 

Homotopy (continuation) methods 
Homotopy methods [23,44,104] are mathematically elegant, but unfortunately, investiga­
tion of such methods indicates that they tend to be numerically ill-conditioned. If we 
try to get around this problem by implementing the algorithm in rational arithmetic, we 
end up with enormous memory requirements because we have to solve large systems of 
complex initial value problems (IVP). Interval methods can be applied to the solution of 
these IVPs but they can be slow in practice [58]. 

Subdivision methods 
Subdivision methods [46,64,74,88] are generally efficient (in finding simple intersections) 
and stable. Therefore, they are the most frequently used methods in practice. As we will 
see, they can be combined with interval methods to numerically guarantee that certain 
subdomains do not contain solutions. Interval Newton methods [6,24,28,29,37,62] are a 
promising class of subdivision methods. However, the subdivision methods are not as 
general as algebraic methods, since they are only capable of isolating zero-dimensional 
solutions. Furthermore, although the chances, that all roots have been found, increase 
as the resolution tolerance is lowered, there is no certainty that each root has been ex­
tracted/isolated. Subdivision methods typically do not provide a guarantee as to how 
many roots there may be in the remaining subdomains. However, if these subdomains are 
very small, the existence of a (single) root within these subdomains is a typical assump­
tion. Lastly, subdivision techniques provide no explicit information about root multiplic­
ities without additional computation. Despite these drawbacks, subdivision methods are 
very useful in practice and are further described below. 

25.3.2. I P P algorithm 
In this section we introduce an iterative global root-finding algorithm for n-dimensional 
nonlinear polynomial equation systems, which belongs to the subdivision class of methods, 
called Projected Polyhedron (PP) algorithm developed by Sherbrooke and Patrikalakis 
[88]. It is easy to visualize and simple in that it only requires two straightforward algo­
rithms in order to implement it: one for subdividing multivariate polynomials in Bernstein 
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form, and one for finding the convex hull of a two-dimensional set of points. This algo­
rithm is an extension and generalization of earlier adaptive subdivision algorithms: for 
n = 1 used in finding the real roots and extrema of a polynomial within an interval by 
Lane and Riesenfeld [46], and for n = 2 used in intersecting rays with trimmed rational 
polynomial surface patches by Nishita et al. [64], a method known as Bezier clipping. 
The P P algorithm has found many applications in shape interrogation problems and its 
convergence and complexity properties are developed in [88]. 

Suppose we are given a set of n nonlinear polynomials / i , /2, • • •, /n, each of which is 
a function of Xi,X2,.. . ,a;/. Let ml denote the degree in xi of polynomial /jt, so that 
the multi-index M^^^ = {m[ ,m2 % . . . ,mj )̂ describes all the degree information of fk-
Furthermore, suppose we are given an /-dimensional rectangular subset of R^ 

B = [ai, 6i] X [as, 62] x . . . x [a/, bi]. (25.1) 

A priori knowledge of B is one of the main features of geometric modeling and shape 
interrogation problems. We wish to find all points x = (xi, X2, . . . , x/) G 5 such that 

/ i (x ) = /2(x) = . . . = /„(x) = 0. (25.2) 

By making the affine parameter transformation [18] Xi = ai -\- Ui{bi — ai) for each i 
between 1 and I inclusive, we simplify the problem to one of determining all u G [0,1]^ 
such that 

/ i ( u ) = /2(u) = . . . = / „ ( u ) = 0 . (25.3) 

Since all of the fk are polynomial in each of the / independent parameters, a simple change 
of basis [18] allows us to express them in the multivariate Bernstein basis, which has better 
numerical stability under perturbation of its coefficients than the power basis [20], and in 
addition permits transformation of an algebraic problem to a geometric problem. In other 
words, for each fk there exists an /-dimensional array of real coefficients w\J^ ^^ such that 
for each /;: G { 1 , . . . , n} 

(fc) (k) _ ( fc) 

Mn) = E E • • • E ^nL,\,m^^MB,,,^^^M • • • B,,„(H(«0. (25.4) 
zi=0i2=0 ii=0 

The notation in (25.4) may be simplified by letting / = (^1,^2, • • • ,^/), M^^^ = {m[ .m^ , . . . , 

m] ') and writing (25.4) in the equivalent form 

A(u) = ^7i ; f )5 , ,M(^)(u) . (25.5) 

Provided that conversion of the problem to the Bernstein basis is exact or sufficiently 
accurate, the use of the Bernstein basis in conjunction with subdivision is known to be 
numerically stable [20]. The conversion process itself may be numerically ill-conditioned 
[21]; therefore, we recommend that the problem be formulated in the Bernstein basis from 
the very beginning and exactly, if possible. If necessary, polynomials may be converted 
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from the multivariate power basis to the multivariate Bernstein basis using the following 
formula 

Z^ • • • Z^ /mi\/m2\ (mi\^jij2...ji ' \^O.KJJ 

where cf^^^ ^ and c^.. .? ^^^ ^^^ coefficients of polynomials in Bernstein and power bases, 
respectively. 

We now restate the problem as the intersection of the graphs of the fk (each of which 
is a hypersurface in R̂ "*"̂ ) and the hyperplane ui^i = 0 of R'"^^ This idea is designed to 
impart geometrical significance to the coefficients of the polynomials and to the solution 
process. Let us build a graph f̂  for each fk: 

ik[vL) = {ui,U2,---, ui, fk{u)) = (u, /A;(U)) . (25.7) 

Clearly, (25.3) is satisfied by the point u if and only if 

fi(u) = f2(u) - . . . = fn(u) = (u,0) . (25.8) 

Using the linear precision property of the Bernstein basis [18], we obtain an equivalent 
expression for each of the Uj in (25.7): 

Substituting (25.9) into (25.7) gives a more useful representation for the f̂ : 

f,(u)-5]vf)5,,M(^)(u), (25.10) 

where 

The v^ ' are called the control points of f̂ . Using the parametric hypersurfaces f̂  instead 
of the real-valued fk permits use of the powerful convex-hull property of the multivariate 
Bernstein basis. 

We assume we are given n nonlinear polynomial equations with / variables in the power 
basis, where n > I, and a box B — [ai,6i] x [02,^2] x . . . x [a/, 6/], in which we need to 
determine the roots of the given system. In this case we first scale the box by performing 
an appropriate affine parameter transformation described above to the functions fk, so 
that the box becomes [0,1]^ Next we express the transformed nonlinear polynomial 
equations in the multivariate Bernstein basis using (25.6). Now we summarize the PP 
algorithm. 
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1. Using the convex hull property, find a sub-box of [0,1]^ which contains all the roots. 
The essential idea behind the box generation scheme in this algorithm is to trans­
form a complicated / -f 1-dimensional problem into a series of / two-dimensional 
problems. Suppose R̂ "̂ ^ can be coordinatized with the Ui,U2, •. •, w/+i axes; we can 
then employ these steps: 

(a) Project the v^ ^ of all of the f̂  into / different coordinate planes; specifically, 
the (wi,i//+i)-plane, the (1̂ 2, w/+i)-plane, and so on, up to the {ui.ui^i) plane. 

(b) In each one of these planes, 

i. Construct n two-dimensional convex hulls. The first is the convex hull of 
the projected control points of fi, the second is from £2 and so on. 

ii. Intersect each convex hull with the horizontal axis (that is, ui^i = 0). 
Because the polygon is convex, the intersection may be either a closed 
interval (which may degenerate to a point) or empty. If it is empty, then 
no root of the system exists within the given search box. 

iii. Intersect the intervals with one another. Again, if the result is empty, no 
root exists within the given search box. 

(c) Construct an /-dimensional box by taking the Cartesian product of each one of 
these intervals in order. In other words, the Ui side of the box is the interval 
resulting from the intersection in the {ui,ui^i)-p\a,ne, and so forth. 

2. Using the scaling relationship between our current box and the initial box of search, 
see if the new sub-box represents a sufficiently small box in R^ If it does not, then 
go to step 3. If it does, then check the convex hulls of the hypersurface in the new 
box. If the convex hulls cross each variable axis, conclude that there is a root or 
at least an approximate root in the new box, and put the new box into a root list. 
Otherwise the new box is discarded. 

3. If any dimension of this sub-box is not much smaller than 1 unit in length (i.e., the 
box has not decreased much in size along one or more sides), split the box evenly 
along each dimension which is causing trouble (not reducing in size). Continue on 
to the next iteration with several independent sub-problems. 

4. If none of the boxes is left, then the root-finding process is over. Otherwise, perform 
an appropriate affine parameter transformation to the functions fk, so that the box 
becomes [0,1]^ and go back to step 1 for each new box. This transformation can 
be performed with the multivariate de Casteljau subdivision algorithm which is an 
extension of similar algorithms for 1 and 2 dimensions given in [18]. However, keep 
track of the scaling relationship between this box and the initial box of search. 

If we assume that each equation in (25.2) is of degree m in each variable and the 
system is n-dimensional, then the total asymptotic time per step is of 0{nlrin}^^). The 
number of steps depends primarily on the accuracy required [88]. The PP algorithm 
achieves quadratic convergence in one dimension, while for higher dimensions, it exhibits 
at best linear convergence [88]. Once roots have been isolated via the PP algorithm, local 
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quadratically convergent Newton-type algorithms can be used to compute the roots to 
high precision more efficiently. An extension of the algorithm described above for a set 
of simultaneous piecewise polynomial nonlinear equations expressed in terms of tensor 
product B-splines can be found in Chapter 24 of this handbook [25]. A novel feature of 
this extension is the normalization of the equations in the range [-1,1] and normalization of 
the knot vector in each subdomain in the range [0,1] at each iteration step of the process to 
capitalize on the higher density of floating point numbers in this range, thereby improving 
numerical robustness of the algorithm. 

Geometric modeling systems for curved objects typically operate in floating point arith­
metic (FPA). Arithmetic operations, especially division, in FPA lead to significant numeri­
cal errors. Division operation can be avoided by four-dimensional homogeneous processing 
proposed by Yamaguchi [63,102]. CAD systems frequently fail as a result of the limited 
precision that is inherent to the internal representation of floating point numbers [31]. 
To remedy such problems interval arithmetic research in geometric modeling has become 
quite active. An interval is a set of real numbers defined below [62]: 

[a, 6] = { x | a < x < b}. (25.12) 

If floating point arithmetic is used to evaluate these interval numbers there is no guar­
antee that the roundings of the bounds are performed conservatively.^ Rounded interval 
arithmetic (RIA) [1,55] ensures that the computed end points always contain the exact 
interval as follows: 

[a, b] + [c, d] = [{a + c) - se, (6 -f- c?) + Cu] , 

[a, b] - [c, d] - [(a ~d)~ Si, (6 - c) + ^ J , (25.13) 

[a, b] • [c, d] — [min(a-c, a-d, b-c, b- d) — ££, max(a-c, a-d, b-c, b-d) -\- £u] , 

[a, b] / [c, d] = [min(a/c, a/d, b/c, b/d) — st, max(a/c, a/d, b/c, b/d) -h Su] , 

where ê  and 6̂  are the units-in-last-place denoted by ulpi and ulpu for each separate 
floating point number resulting from the floating point operations giving the lower- and 
upper bounds in (25.13). When performing standard operations for interval numbers 
using RIA, the lower bound is extended to include its previous consecutive floating-point 
number, which is smaller than the lower bound by ulpi. Similarly, the upper bound is 
extended by ulpu to include its next consecutive number. Thus, the width of the result is 
enlarged by ulpi -h ulpu and the result will be reliable in subsequent operations. 

Maekawa and Patrikalakis [55] extended the PP algorithm to operate in rounded interval 
arithmetic in order to find all the roots of a polynomial system robustly, which we refer 
to as Interval Projected Polyhedron (IPP) algorithm. Rounded interval arithmetic can 
be implemented eflPectively in object-oriented languages such as C-h-f [1]. Other than 
overloading the arithmetic operations from FP to interval, we need to pay attention in 
intersecting each convex hull with the horizontal axis. The computed parametric values 
result in interval numbers uiow = [ua.Ub] and Uup ~ [uc,Ud\. We simply replace them by 
uiow — [^a, '̂ a] and Uwp — [lid, u^ to keep the parameter as real numbers or in other words 
degenerate interval numbers. 

^This statement is true only for the default IEEE-754 rounding mode of round towards nearest. The 
subject of hardware rounding modes is discussed in [1,68]. 
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Errors are first introduced during the formulation of the governing equations for inter­
section problems. Formulation of the governing nonlinear polynomial equation systems 
in multivariate Bernstein form for shape interrogation usually involves arithmetic opera­
tions in Bernstein form [21,72] starting from the given input Bezier curve or surface. To 
eliminate or control such errors, we suggest [55]: 

• 

• 

Use of rational arithmetic (RA) or rounded interval arithmetic (RIA), if the con­
trol points of the given curve or surface are FP numbers to maintain a pristine or 
guaranteed precision statement of the problem, respectively. 

Use of RIA if the control points of the given curve or surface are real numbers 
to avoid any numerical contamination by standard FP arithmetic. This happens, 
for example, when the curve or surface is rotated, so that the control points may 
involve transcendental numbers (e.g. e, TT, values of trigonometric function, radicals 
of rational numbers, etc.), which cannot be processed by RA. In this case RIA can 
be used to maintain a guaranteed precision statement of the problem. 

• Conversion of the coefficients of the nonlinear equations in Bernstein form into in­
tervals with FP number boundaries, if rational arithmetic is used in the formulation. 

25.4. C U R V E / S U R F A C E I N T E R S E C T I O N 

Curve to surface intersections are very useful as auxiliary problems in solving surface to 
surface intersections. When the curve is a straight line, the curve/surface intersection is 
also useful in ray tracing for visualization, and in point classification in solid modeling. In 
Sections 25.4.1 to 25.4.4 several of the most frequent curve to surface intersection problems 
namely, RPP/IA, RPP/RPP , lA/IA, l A / R P P are analyzed. The remaining cases are not 
discussed, but the reader should be able to address them via the methods of this section 
(see also [6S]). We will start with RPP curve to IA surface intersection (RPP/IA), which 
is quite representative of the complexities of intersection problems. 

25.4.1. R P P curve /I A surface intersection 
This intersection problem is defined as: 

""̂ ^̂  \W{t)'W{t)'W{t)) 

where X{t), F ( t ) , Z{t), W{t) are polynomials of degree n. Let us consider an implicit 
algebraic surface of total degree m 

m m—i m—i—j 

fix, y,z)^J2JlYl ^m^'y'^' = 0 • (25-15) 
i=zO j = 0 fc=0 

We substitute x = wft)' ^ ~ mt) ^^^ ^ ~ w(t) ^^^^ ^^^ implicit equation and multiply 
by ly^( t ) leading to 

m m—i m—i—j 

^(^) = E E E (H,kX'{t)Y\t)Z''{t)W"'-'-^-'{t) = 0 , (25.16) 
1=0 j=0 k=0 
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of degree < mn in t. Therefore the problem of intersection is equivalent to finding the 
real roots of F{t) in 0 < t < 1. The most usual form of F{t) is the power basis. The 
coefficients can be evaluated symbolically by substitution and collection of terms. This 
can be readily done in a standard symbolic manipulation program such as MATHEMATICA 
[100], M A P L E [11] etc. Such programs are oriented to processing rational numbers exactly. 

An alternate basis for the representation of F{t) = 0 is the Bernstein basis, which leads 
to better stability for its real roots under perturbations of its coefficients than the power 
form [20]. Here the conversion is done exactly using rational arithmetic (given that the 
conversion itself is not in general numerically well-conditioned [21]). By the use of linear 
precision property 

t - V B^,mn{t), (25.17) 
2=0 

we can construct a graph which is a degree mn Bezier curve 

m = (t, F{t)f = Y.[T] ^^'--W • (25.18) 

Now we can apply the IPP algorithm introduced in Section 25.3 which converts the 
problem of finding roots of polynomials into a problem of finding the intersection of the 
Bezier curve with the parameter axis. 

25.4.2. R P P c u r v e / R P P surface intersection 
The intersection problem between a rational polynomial parametric curve and a rational 
polynomial parametric surface is defined as: 

" ^ "'^'^ ^ [\Wy w^^ry WTw j ' 0 < ̂  < 1' (25-19) 

'̂  ' ^ \W2{u,vyw2{u,vyw2{u,v)J ' - ' -
The equation consists of three nonlinear equations Ti{t) — T2{U,V) in three unknowns t, 
u, V, which can be converted to a nonlinear polynomial system and solved via the IPP 
algorithm. A preprocessing step of checking bounding boxes for absence of intersection 
is helpful. Implicitization [83] of T2{U,V) in rational arithmetic, when possible, (which 
is recommended for low degree surfaces) reduces this problem to the RPP/ IA curve to 
surface intersection problem described in Section 25.4.1. 

25.4.3. l A curve / IA surface intersection 
Implicit algebraic curve and implicit algebraic surface intersection problem is defined as: 

/ ( r ) ^ g ( r ) = h{v\ = 0 . (25.20) 

curve surface 

The formulation comprises three nonlinear polynomial equations in three unknowns, the 
components of r. Possible solution approaches include elimination methods [83], Newton's 
and minimization methods with objective function F ( r ) = P -^ 9^ + h^, and the IPP 
algorithm. 
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25.4.4. l A c u r v e / R P P surface intersection 
The implicit algebraic curve and rational polynomial parametric surface intersection is 
defined as: 

/ ( r ) = , ( r ) = O n r = r ( u , . ) = f ^ i ^ , ^ ^ , - | ^ V , 0 < « , . < l . (25.21) 
•^^^ ^^^ ^ ^ \W{u,v) W{u,v) W{u,v)J ' - ' - V ^ 

By substituting r = r{u,v) into / ( r ) = 0 and ^(r) = 0 we obtain two algebraic curves 
F{u,v) = 0 and G{u,v) = 0. This formulation reduces to lA/IA curve intersection 
problem which can be solved by the IPP algorithm (see also [68] for more detail). A 
discussion of algebraic curve properties is given in Section 25.5.1. 

25.5. S U R F A C E / S U R F A C E I N T E R S E C T I O N S 

The solution of a surface/surface intersection problem may be empty, or include a curve 
(possibly made of several branches), a surface patch, or a point. In Sections 25.5.1 to 25.5.3 
several of the most frequent surface to surface intersection problems, namely RPP/IA, 
RPP /RPP , and lA/IA are analyzed (see also [68] for a more complete discussion). Con­
ceptually, RPP/ IA surface intersection is the simplest of the above cases and may serve 
to illustrate the general difficulties of surface to surface intersection problems. 

25.5.1. R P P / I A surface intersection 
We start with a rational polynomial parametric surface to implicit algebraic surface in­
tersection problem defined as: 

/X(u,v) Y(u,v) Z(u,v)\ , , , , , 

This leads to four algebraic equations in five unknowns r — {x,y,z),u,v. For the usual 
low degree surfaces / ( r ) and low degree patches r{u,v), we can substitute r{u,v) into 
/ ( r ) = 0 to obtain an implicit algebraic curve in u, v [41,42,69,74]. Examples of low order 
implicit algebraic surfaces in practical use are planes (degree 1), the natural quadrics 
(cylinder, sphere, cone) (degree 2), and torii (degree 4). In fact in a survey of mechanical 
parts (mechanical elements), over 90% of all surfaces involved are of these types [27,81,93]. 
It is also well known that these low order implicit algebraic surfaces have a low degree 
rational polynomial parametric representation, which can be obtained effectively using 
exact arithmetic methods (whenever possible) so that when two such low order implicit 
algebraic surfaces are intersected, the methods of this section may be also used. 

Formulation 
Now let us denote the implicit algebraic surface / (x , y, z) = 0 of total degree m by 

m m-i m-i-j 

fix,y,z) = J2Y^J2 Ci.kx'y^z' . (25.23) 

By substituting x — ^, 2 / = ^ , ^ ~ W' where X,Y,Z and W are all of degree p in 
u and qmv, into (25.23) and multiplying by W^ leads to an algebraic curve 

m m—i m—i—j 

F{u,v) = Y.mi c,jkX\u,v)Y^{u,v)Z''{u,v)W"'"-^''{u,v) = 0 , (25.24) 
i=Q j=0 k=0 
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of degree M — mp and N = mq in u,v, respectively. Consequently, the problem of 
intersection reduces to the problem of tracing F{u, v) = 0 without omitting any special 
features of the curve, e.g. small loops, singularities, and accurately computing all its 
branches. This is a fundamental problem in algebraic geometry [96] and much work 
has been done to understand its solution [79]. In the context of algebraic geometry the 
coefficients of F{u, v) =^ 0 are integers. In the context of CAD, the coefficients of F = 0, 
and r = r{u, v) are FP numbers. Therefore, if the above substitution is performed in FP 
arithmetic the coefficients of F{u,v) = 0 involve error, which may considerably modify 
the problem being solved. To avoid such error, rational arithmetic should be used for 
robustness (whenever possible) as discussed in Section 25.3. 

border points 

u turning point 

F=Fv=0 

Figure 25.1. Parameter space o{r{u,v) and resulting algebraic curve F{u,v) — 0. 

The algebraic curve 

M N 

F ( W , « ) = ^ ^ C , ^ M V = 0 , (25.25) 

can be reformulated in terms of Bernstein polynomials 

M N 

F{u,v) = J2Ylcf^B,^M{u)B,^N[v) - 0 , (25.26) 

where (w, v) e [0,1]^ In fact the power basis form of F{u, v) = 0 need not be computed 
at all, if polynomial arithmetic for Bernstein polynomials [21] is used. 

The advantage of the Bernstein form is its numerical stability and convex hull property. 
If cfj > 0 01 cfj <0 for all z, j , there is no solution and the two surfaces do not intersect. 
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More precisely, the entire algebraic surface / ( r ) = 0 does not intersect the surface patch 
r = T{U,V) for {u,v) G [0,1]^. Obviously, when all c^ = 0 the two surfaces coincide in 
their entirety. A somewhat complex algebraic curve F{u,v) = 0 is shown in Figure 25.1 
involving various branches (from border to border), internal loops, and singularities. 

Tracing method 
Given a point on every branch of an algebraic curve, the curve can be traced using 
differential curve properties. We now consider the intersection curve which lies on the 
surface represented by the parametric form r{t) = r{u{t),v{t)). Differentiating (25.26) 
with respect to t yields 

Full + FyV = 0 , (25.27) 

where u, v are considered as functions of a parameter t. The solution to the differential 
equation is given by 

u = (Fy{u,v), v = -^Fu{u,v), (25.28) 

where ^ is an arbitrary nonzero factor. For example, ^ can be chosen to provide arc 
length parametrization using the first fundamental form of the surface as a normalization 
condition 

e - d= , ^ , (25.29) 
^EF^ - 2FFuF, + GF^ 

where E, F and G are first fundamental form coefficients of the parametric surface fol­
lowing standard differential geometry terminology. Note that F in Equation (25.29) has 
no relation with function F that appears in Sections 25.4 and 25.5. Equations (25.28) 
form a system of two first order nonlinear differential equations which can be solved by 
the Runge-Kutta or other methods with adaptive step size [15]. For a tracing method to 
work properly, we must provide all the starting points of all branches in advance. Step 
size selection is complex and too large a step size may lead to straying or looping. Tracing 
through singularities (F^ + F^ — 0) is also problematic. 

Characteristic points 
Starting points for tracing algebraic curves are identified by looking for characteristic 
points defined below: 

1. Border points: The intersections of F{u, f) = 0 with all four boundary edges of the 
parameter space [0,1]^, e.g. F(0, i;) = 0, ^ <v <\. 

2. Turning points'. The ti-turning points are the points where the tangent of F(ix, v) = ^ 
is parallel to the u = {) axis, which satisfies the simultaneous equations F = Fy — ̂  
(with F ,̂ / 0). On the other hand the 'i;-turning points are the points where the 
tangent of F{u, v) — ^ \s parallel the ?; = 0 axis, which satisfies the simultaneous 
equations F = Fu — ^ (with Fy / 0). Both types of turning points are shown in 
Fig. 25.1. If F has a degree of (M, N) in {u, v), then the degrees of Fu and Fy will 
be (M — 1, A )̂ and (M, Â  — 1), respectively. It can be shown that the total number 
of roots of two simultaneous polynomial equations in two variables whose degree are 
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(rn,n) and (p, g), respectively, is mq + np [19]. Therefore the number of w-turning 
points and t;-turning points can be at most 2MN — M and 2MN — N, respectively. 

3. Singular points: The points on the curve which satisfy the following three simul­
taneous equations F = Fu = Fy = 0 are called singular points. Noting that 
/(x, y, z) = 0, and F{u, v) = W^{u, v)f{x, y, z) = 0, we deduce 

F„ = mW-^WJ + W- (1^1^ + §^|^ + 1^1^) = W-Vf . r„ , (25.30) 
\ OX ou oy ou oz ou J 

and hence at singular points V / • r^ = V / • r^ = 0. This means that V / || r̂ ^ x r^ or 
that the normals of two surfaces are parallel and since F{u,v) = 0 at these points 
the two surfaces intersect tangentially. If F has a degree of {M,N) in {u,v), the 
degrees of Fu and Fy will be (M — 1,A )̂ and {M,N — 1), respectively, thus the 
number of singular points can be at most 2MN — M — N -\-l [19]. However, singular 
points require little additional computation, since they are merely common roots of 
the li-turning points and t'-turning points. 

Table 25.1 
Number of turning and singular points in various cases. 

Si 

plane 
plane 

quadric 
quadric 
torus 
torus 

biquadratic 
bicubic 
bicubic 

S2 

biquadratic 
bicubic 

biquadratic 
bicubic 

biquadratic 
bicubic 

biquadratic 
biquadratic 

bicubic 

algebraic curve 
F{u,v) degree 

M,N 
2,2 
3 ,3 
4 ,4 
6,6 
8, 8 

12, 12 
16, 16 
36,36 
54, 54 

max number 
U-turning pts 
2MN-M 

6 
15 
28 
66 
120 
276 
496 
2556 
5778 

max number 
v-turning pts 

2MN-N 
6 
15 
28 
66 
120 
276 
496 
2556 
5778 

max number 
singular points 

2MN - M - iV + 1 
5 
13 
25 
61 
113 
265 
481 
2521 
5725 

From the above discussions we can get upper bounds for the maximum number of u-, 
t'-turning points and singular points [68] as listed in Table 25.1. These bounds refer to the 
maximum possible number of solutions {u, v) in the entire complex plane. Biquadratic 
and bicubic surfaces in the first colum of Table 25.1 are degree 8 and 18 implicit algebraic 
surfaces. It turns out that the number of such points in the real square [0,1]^ is much 
smaller, but can still be quite large. Consequently methods which focus only on the real 
solutions in [0,1]^ are advantageous, such as the IPP algorithm described in Section 25.3. 
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Analysis of singular points 
Let us construct a parametric equation of a straight line L through a point {UQ, VQ) on the 
algebraic curve F{u, v) — 0 

u = uo + at, v = vo-\-f3t, (25.31) 

where a and p are constants and t is the parameter [80,96]. We find its intersections 
between L and the algebraic curve F(u,v) = 0 by determining the roots of F{UQ + 
at, VQ + pt) = 0. Taylor expansion of the left hand side gives 

{aFu + pF,)t + ]^{a^Fuu + 2 a ^ F , , + P^F,,)t' + • • • = 0 , (25.32) 

where partial derivatives of F are evaluated at {UQ,VQ) and F{UQ,VQ) — O'ls used. 
When Fu and Fy are not both zero {Fl + F^ > 0) at {UQ, VQ), (25.32) has a single root 

^ = 0 and every line through (UQ^VQ) has a single intersection with the algebraic curve at 
{UQ, VQ) except for one case where aFu + l3Fy = 0 for certain values of a and p. In such 
cases (25.32) has a double root t = 0, provided at least one of the second order partial 
derivatives is not zero {F^^ + F^^ + F^^ > 0), and L is tangent to the curve at (UQ^VQ). 

When (UQ^VQ) is a singular point {FU{UQ,VO) = Fy{uo,vo) = F{UQ,VO) = 0), and at least 
one of Fuu, Fuv, Fyy is not zero {F^^ + F^^ + F^^ > 0), then t = 0 is a double root and has 
at least two intersections at {UQ, VQ) except for the values of a and P which satisfy 

a^Fuu + 2a/3Fuv + p^Fyy = 0 . (25.33) 

In such cases, t = 0 is a triple root, provided at least one of the third order partial 
derivatives is not zero {F^^^ + F^^^ + F^^^ + F^^^ > 0). We can solve the quadratic 
equation (25.33) for f or ^ which leads to the following three possibilities: (1) Two real 
distinct roots: These values correspond to two distinct tangent directions at the singular 
point, which implies the algebraic curve has a self-intersection. (2) One real double root: 
This value corresponds to one tangent direction at the singular point, which implies a 
cusp. (3) Two complex roots: No real tangents at the singular point implies an isolated 
point. 

Computing starting points for all branches 
Starting points for tracing algebraic curves could be border points, turning points and 
singular points. Border points involve solution of a univariate polynomial equation, e.g. 
for border along w = 0, using (25.26) 

N 

F(0, v) = J2 ^ojBjAy) = 0 • (25.34) 

Turning and singular point computation involve the first order partial derivatives: 

M - l Â  

Fu{u,v) = M ^ ^ ( c f ^ . i _ ^ - c . ^ ) B , , M - i ( « ) S „ ; v ( v ) , (25.35) 

M N-l 

F,{u,v) = i V ^ ^ ( c 5 + i - c . ^ ) i ? , , M ( M ) % ; . - i ( ^ ) . (25.36) 
i=0 j=0 
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Consequently, computing turning points {F = Fu = 0 and F = F ;̂ = 0) is equivalent to 
solving a system of two nonlinear polynomial equations in two variables, and computing 
singularities F — F^ = Fy — 0 is equivalent to solving an overconstrained system of three 
nonlinear polynomial equations in two variables. Solution of these nonlinear polynomial 
systems is addressed in Section 25.3. 

25.5.2. R P P / R P P surface intersection 
Rational polynomial parametric surface to rational polynomial parametric surface inter­
section is defined as: 

' = ' ^ ( " ' ' ) = ( , W ^ ( ^ ' ^ y ^ ( ^ ' i y ^ , 0 < a , t < l , (25.37) 

fX2{u,v) Y2{u,v) Z2{u,v)Y 

\W2{U,V) W2{U,V) W2{U,V)J 

Formulation can be provided by setting ri{a,t) = T2{U,V) which leads to three nonlinear 
polynomial equations for four unknowns a,t,u,v. It is an underconstrained system with 
3 equations and 4 unknowns. This system can be solved by the IPP algorithm of Section 
25.3. However, as the solutions are typically not isolated points but curves, such approach 
is inefficient when small tolerances are used. Another method involves implicitization of 
ri((7, t) to the form / ( r ) = 0 and substitution of r = T2{U, V) into / to reduce the problem 
to RPP/ IA case for a low degree surface [42]. Heo et al. [30] developed an intersection 
algorithm for two ruled surfaces which performs more efficiently than those for general 
parametric surfaces. 

There are three major techniques for solving R P R / R P P surface intersections. A review 
as of 1993 can be found in [67] and a more up-to-date and detailed treatment in [68]. 

Lattice methods 
Lattice method reduces the dimensionality of surface intersections by computing intersec­
tions of a number of isoparametric curves of one surface with the other surface followed by 
connection of the resulting discrete intersection points to form different solution branches 
[75]. For intersections of parametric patches, the method reduces to the solution of a 
large number of independent systems of nonlinear equations. The reduction of problem 
dimensionality in lattice methods involves an initial choice of grid resolution, which, in 
turn, may lead the method to miss important features of the solution, such as small loops 
and isolated points which reflect near tangency or tangency of intersecting surfaces, and 
to provide incorrect connectivity. Appropriate methods for the solution of the resulting 
nonlinear equations in the present context are identified in Section 25.3. 

Subdivision methods 
Subdivision methods in their most basic form, involve recursive decomposition of the prob­
lem into simpler similar problems until a level of simplicity is reached, which allows simple 
direct solution, (e.g. plane/plane intersection). This is followed by a connection phase 
of the individual solutions to form the complete solution. Initially conceived in the con­
text of intersections of polynomial parametric surfaces [45], they can be extended to the 
computation of RPP/ IA and lA/IA surface intersections [69]. A simple subdivision al-
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gorithm employs uniform subdivision which leads to a uniform quadtree data structure 
[33]. Subdivision techniques do not require starting points as marching methods, an im­
portant advantage. General non-uniform subdivision [13] allows selective refinement of 
the solution providing the basis for an adaptive intersection technique. A disadvantage 
of subdivision techniques used in the evaluation of the entire intersection set is that, 
in actual implementations with finite subdivision steps, correct connectivity of solution 
branches in the vicinity of singular or near-singular points is difficult to guarantee, small 
loops may be missed (in methods with polyhedral surface approximations) or extraneous 
loops may be present in the approximation of the solution. Furthermore, if subdivision 
methods are used for high precision evaluation of the entire intersection set, they lead 
to data proliferation and are consequently slow, and, therefore, unattractive. There are 
many applications in CAD/CAM, that require high accuracy, for which pure subdivision 
methods are impractical. However, adaptive subdivision methods coupled with efficient 
local techniques to get high accuracy, offer an attractive approach for the computation 
of characteristic points. These points can then be used in initiating efficient marching 
methods for tracing intersection curves. 

As can be seen from the above review, common problems of intersection methods include 
the difficulty in handling singularities, surface overlap and efficiently identifying closely 
spaced features and small loops. These algorithmic difficulties are further compounded 
by numerical error present in finite precision computations. 

Marching methods 
Marching methods involve generation of sequences of points of an intersection curve branch 
by stepping from a given point on the required curve in a direction prescribed by the local 
differential geometry [3,5,40,101], similar to tracing a planar algebraic curve F[u^v) = 0 
in Section 25.5.1. However, such methods are by themselves incomplete in that they 
require starting points for every branch of the solution. In order to identify all connected 
components of the intersection curve, a set of characteristic points on the intersection 
curve can be defined. As seen in Section 25.5.1, such a set may include border, turning 
and singular points of the intersection and provides at least one point on any connected 
intersection segment and identifies all singularities. For R P P / R P P surface intersections 
a more convenient set of such points sufficient to discover all connected components of 
the intersection, includes border and collinear normal points between the two surfaces. 
Collinear normal points provide points inside all intersection loops and all singular points 
[34]. 

Border points are points of the intersection at which at least one of the parametric 
variables a, t, u, v takes a value equal to the border of the a-t or u-v parametric domain. 
To compute border points, a piece wise rational polynomial curve to piecewise rational 
polynomial surface intersection capability is required, e.g., r i (0 , t ) = T2{U,V), which we 
discussed in Section 25.4.2. 

Sederberg et al. [84] first recognized the importance of collinear normal points in 
detecting the existence of closed intersection loops in intersection problems of two distinct 
parametric surface patches. These are points on the two parametric surfaces at which the 
normal vectors are collinear. Collinear normal points are a subset of parallel normal points 
first used by [89] in surface intersection loop detection methods. 
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To simplify the notation, we replace ri{a,t) by p{a,t) and T2{U,V) by q{u,v). Then 
the collinear normal points satisfy the following equations [34]: 

{Pa X Pt) • q .̂ = 0, (p^ X pt) • q^ = 0, (p - q) • Pa -^ 0, (p - q) • Pt = 0 . (25.38) 

Equations (25.38) form a system of four nonlinear polynomial equations that can be solved 
using the methods of Section 25.3 (see also [34] for more details on interval methods 
coupled with subdivision to solve the system (25.38)). Now we split the patches in (at 
least) one parametric direction at these collinear normal points. Consequently, starting 
points are only border points on the boundaries of all subdomains created. Grandine 
and Klein [26] follow a systematic approach for topology resolution of B-spline surface 
intersections. In this process, they determine the structure of the intersection curves 
including closed loops prior to numerical tracing (following a marching method based on 
numerical integration of a differential algebraic system of equations). Topology resolution 
in this context relies on an extension of the PP algorithm (see Section 25.3.2) to the B-
spline case implemented in floating point (with normalization of the equations in the range 
[—1,1] and normalization of the knot vector in each subdomain in the range [0,1] at each 
iteration step of the process to capitalize on the higher density of floating point numbers 
in this range, thereby improving numerical robustness of the algorithm). An alternate way 
to detect closed intersection loops is to use topological methods [12,40,49,51,52,60,95,94]. 
Also bounding pyramids [39,86] can be used effectively to assure the nonexistence of closed 
surface to surface intersection loops. These earlier methods need to be implemented in 
exact or RIA for robustness. 

In order to trace the intersection curve, starting points must be located prior to tracing. 
An intersection curve branch can be traced if its pre-image starts from the parametric 
domain boundary in either parameter domain [4]. The marching direction coincides with 
the tangential direction of the intersection curve c(s) which is perpendicular to the normal 
vectors of both surfaces. Therefore, the marching direction can be obtained as follows: 

^^ \P{a,t)xQ{u,v)\' ^ ^ 

where the normalization forces c{s) to be arc length parametrized and 

P(cr, t) = p^x Pt, Q{u, v) = quXCiv , (25.40) 

are the normal vectors of p and q, respectively. When the two surfaces intersect tangen-
tially, we cannot use Equation (25.39) since the denominator vanishes. In such cases we 
must find the marching direction in an alternate way [103]. 

The intersection curve can also be viewed as a curve on the two intersecting surfaces. 
A curve a — (j[s), t = t{s) in the crt-plane defines a curve r = c(s) = p{a{s),t{s)) on a 
parametric surface p(a, t), as well as a curve u — u{s) v = v{s) in the ut'-plane defines 
a curve r = c{s) = ci{u{s),v{s)) on a parametric surface q{u,v). We can derive the first 
derivative of the intersection curve as a curve on the parametric surface using the chain 
rule: 

c'{s) = py + ptt\ c'{s) = quu' + qyv' . (25.41) 
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Since we know the unit tangent vector of the intersection curve from Equation (25.39), 
we can find a' and t' as well as u' and v' by taking the dot product on both sides of the 
first equation of (25.41) with p^ and pt and the second equation with q̂ ^ and qy, which 
leads to two linear systems [34]. The solutions are immediately obtained as 

, ^ det(c^pt ,P(a ,^)) _ det{p^,c\P{a,t)) 

P ( a , t ) - P ( a , ^ ) ' ' - P ( a , t ) . P ( a , t ) ' ^'^'^'^ 

, ^ det{c',qy,Cl{u,v)) , ^ det(q^,c^ Q(^,?;)) l^o^ 4QA 

"" Q{u,v)-Q{u,v) ' "" Qt{u,v)-Qt{u,v) ' ^ ^ ^ 

where det denotes the determinant (see also [26]). 
The points of the intersection curves are computed successively by integrating the initial 

value problem for a system of nonlinear ordinary differential equations (25.42) and (25.43) 
using standard numerical techniques [15]. 

25.5.3. l A / I A surface intersection 
Implicit algebraic surface to implicit algebraic surface intersection is defined as follows: 

/ ( r ) = 0 n ^(r) = 0 , (25.44) 

where / , g are polynomial functions. Here we have two equations in three unknowns r. 
Bajaj et al. [3] developed a marching method for lA/IA surface intersection (as well as 
for parametric surfaces). 

A method for low order f.gisto eliminate one variable (e.g. z) to find projection of 
intersection curves on the plane of other two variables (e.g. x, y), then trace the algebraic 
curve and use the inversion algorithm to find z. Intersections of low degree implicit 
algebraic surfaces are of special interest in the boundary evaluation of the Constructive 
Solid Geometry models. A more complete analysis of the special intersections of two 
quadric surfaces can be found in [48,61,82,87,98]. 

25.6. CONCLUSION 

Some important outstanding issues in the area of intersection problems are summarized 
below. While solving nonlinear polynomial systems, as a preliminary step in comput­
ing characteristic points of surface intersections, it is frequently necessary to deal with 
solution sets that are not zero-dimensional (e.g. the solution sets are one-dimensional, 
two-dimensional etc.). Most of the methods experience serious numerical and efficiency 
diflficulties in those cases. Methods to deal effectively with these problems need to be 
developed, including methods to identify and, if possible, parameterize these higher-
dimensional solution sets. 

Extension of current intersection methods applied on rational B-spline surfaces, to 
more general and complex surfaces requires further study. Such surfaces include offset, 
generalized cylinder (pipe or canal surfaces in particular), blending, and medial surfaces 
and surfaces arising from the solution of partial differential equations or via recursion 
techniques (subdivision surfaces, see Chapter 12 of this handbook [76]). Intersections of 
such surfaces with the basic low order algebraic and rational B-spline surfaces, commonly 
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used in CAD need to be explored. However, a basic element of a solution of many 
of these problems is the auxiliary variable method described in [32,54,68], where the 
problem is reduced to a higher dimension nonlinear polynomial system. In some cases, 
recent research has indicated that some special instances of these general surfaces can 
be exactly expressed as rational polynomial surfaces [50,53,56,73] of higher degree and 
therefore these problems are reducible at least in principle to the problems addressed in 
this paper. Further research is needed to implement this idea in a practical setting and 
examine the relative efficiency of competing approaches. 

Investigating the effects of floating point arithmetic on the implementation of inter­
section algorithms has been an important area for basic research during the last decade. 
Ways to enhance the precision of intersection computation, to monitor numerical error 
contamination and alternate means of performing arithmetic, not relying on imprecise 
floating point computation alone, have been explored in some detail. Researchers in 
surface intersection problems during the last decade have already obtained a good under­
standing of robustness problems when employing floating point arithmetic and of methods 
to mitigate these problems based on normalization of the system [26] and rounded inter­
val arithmetic [34]. However, these methods are not a panacea since they cannot resolve 
effectively non-zero-dimensional solution sets of nonlinear systems or achieve very high 
precision in reasonable computation times. A related active problem area has been the 
rectification of solid models expressed in the boundary representation form, which at­
tempts to resolve intersection inconsistencies in such models and create topologically and 
geometrically consistent models [70]. 

As a result of these deficiencies, recent research tends to focus on exact methods in­
volving rational arithmetic [38,77,79]. Much research remains to be done in bringing such 
methods to the CAD practice, generalizing the arithmetic to go beyond rational and al­
gebraic numbers (eg. involving transcendental numbers of trigonometric form), and to 
explore more efficient alternatives that are generally applicable in low and high degree 
problems alike. Finally, a general and comprehensive comparison and mapping of the 
efficiency properties of all available methods for solving nonlinear systems robustly would 
be valuable as a guide for future research. 
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Chapter 26 

Reverse Engineering 

Tamas Varady and Ralph Martin 

Reverse engineering, as described in this Chapter, is the process of converting dense 3D 
point data captured from the surface of an object into a boundary representation CAD 
model. 

26.1. I N T R O D U C T I O N 

There are many applications of reverse engineering. It is often necessary to reproduce a 
part for which no original drawings or machining data are available. We may wish to re-
engineer an existing part, by modifying it to construct an improved product. In aesthetic 
design and industrial styling, real-scale wood or clay models are still essential tools for 
evaluating 3D objects; nevertheless a CAD model is eventually needed. Generating custom 
smooth surfaces for prosthesis fitting is another example. 

Note that the aim of reverse engineering is not simply to copy 3D objects, nor simply to 
obtain a triangular mesh for visualization purposes. Instead, we want models of captured 
objects which can be analyzed and modified. This requires each boundary surface to be 
suitably represented within the CAD model. 

Different approaches to reverse engineering are necessary according to the type of object 
being scanned. The approaches given here are not appropriate for complex natural or 
artistic objects—we are only concerned with engineering shapes. These may be classified 
as conventional engineering objects or as free-form objects. The former typically have 
many surfaces of simple geometric form (planes, natural quadrics, tori) which meet in 
sharp edges or smooth blends. The latter have few surfaces of high geometric complexity, 
mostly meeting with G^ or higher continuity. This classification is clearly artificial, but 
clarifies different approaches in the exposition which follows. 

The aim of this Chapter is to summarise a representative set of algorithms which 
explain how reverse engineering can be carried out. These draw strongly on our own 
personal experience. Various interrelated steps are needed, relying on ideas from many 
areas of geometric modelling, some of which are adequately covered in other Chapters of 
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TRIANGULATION/DECIMATION 
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BEAUTIFICATION 

Figure 26. L Steps in reverse engineering 

this handbook. We cannot give full details of the algorithms, but try to present the key 
concepts, and show where further information can be obtained. 

26.2. T H E B A S I C P H A S E S OF R E V E R S E E N G I N E E R I N G 

This Section summarises the steps necessary to go from a scanned object to a final CAD 
model, as outlined in the flowchart in Figure 26.1. As noted, different approaches are 
needed for diflPerent types of object—the left track in the chart shows the steps for free-
form objects, while the right track is for conventional objects. This chart is an idealisation 
of the process, which in practice may not be linear as shown, and may require iteration 
as well. 

The first step is to capture dense 3D point data with a suitable device. Such data from 
several viewpoints then needs to be merged into a single data file in the same coordinate 
system. 

The next step is to determine the nearest neighbours of each point, and link all points 
into a triangular surface mesh. This gives both the local topology of the point set, and 
the global topology of the skin of the object. These are needed in many further steps, 
particularly for efl&ciency reasons. For example, estimates of surface normal direction are 
computed from the points in a neighbourhood of a given point. Also, surfaces are fitted 
to contiguous regions of points in the triangulation. 

Because the point cloud may contain a huge number of points, it is necessary to re­
duce the data to manageable proportions by removing redundant points in a decimation 
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process, either before triangulation, or after, or both. This process should not alter the 
global topology, or significantly change the local geometry. 

One of the most crucial elements of reverse engineering is segmentation [38,74], i.e. mark­
ing out connected regions within the whole point cloud which form pre-images of single 
faces (or possibly multiple faces) of the B-rep model. Different methods are needed for 
free-form and conventional engineering objects. Automatic segmentation is possible in 
the latter case because of the limited number of surface types, because of translational 
and rotational symmetry, and because the surfaces are often delimited by sharp edges or 
small-radius blends. However, user assistance seems to be needed for free-form objects, 
because the faces have higher geometric complexity, and because it is not trivial to decide 
where one face ends and another starts. 

Note that while image processing applications often use edge detection for segmentation, 
such an approach is not suitable for reverse engineering, because (i) data captured in the 
vicinity of sharp edges is particularly unreliable for at least some sensing devices, and (ii) 
boundaries between regions may be smooth edges. During segmentation, points in the 
vicinity of edges are temporarily discarded, leaving well-defined regions of points providing 
a firm basis for surface fitting. The discarded points are used later for finding blends and 
other connecting features between primary surfaces. 

For each region of points, a single surface is fitted within a given tolerance. Thus, 
each segmented portion of the object's boundary is now represented by a continuous 
mathematical expression. Quite diflFerent fitting methods are needed for free-form faces 
and simple analytical faces. Further methods can also fit extrusions and surfaces of 
revolution. 

Once the primary surfaces have been determined, subsequent surface fitting phases 
are also required. For free-form objects, various connecting feature surfaces are generated 
which are dependent on the primary surfaces, usually meeting them with tangential conti­
nuity. For conventional objects, we may wish to recognise and impose constraints between 
surfaces: for example, perpendicularity, coaxiality, and so on. For both classes of object, 
some form of constrained surface fitting is used: in the former case, for a single surface, 
in the latter case, for multiple surfaces. Blend reconstruction can also be considered to 
be a special case of constrained fitting. 

Having obtained the individual surfaces, the geometry of the edges and vertices bound­
ing each face must also be found, together with details of adjacency relationships. This 
information is necessary to construct a boundary representation data structure. 

Due to gaps and noise in the point cloud data, and numerical errors in algorithms, the 
resulting B-rep model is unlikely to show all the regularities expected by an engineer. 
A beautification step may be used to improve the model, by first detecting, and then 
imposing, symmetries and other constraints on the model. This may be done both during 
the constrained fitting step mentioned earlier, and by a post-process which adjusts the 
parameters of the geometric elements found. 

26.3. DATA C A P T U R E 

In this section we give a brief summary of how point data may be captured from an 
object which we wish to reverse engineer, and how point data from multiple views may 
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be merged to form a single point cloud. 

26.3.1. Laser scanners 
For data capture, typically laser scanners are used, which produce measured 3D points 
with high density (10^-10^ data points) and reasonable accuracy (10-100 //m). Some—of 
higher accuracy—are based on gantry or NC-machine-like arrangements, while others use 
similar technology to robot arms, with joint sensors. Other devices such as coordinate-
measuring machines, which produce few measured points, are not really suitable for auto­
matic reverse engineering. Typically, objects to be scanned must be prepared by coating 
them with a matt paint, but even so, the data may contain outliers, particularly near 
silhouette curves and concave edges. In single views, missing data may occur due to oc­
clusion; this may hold for merged point clouds too if insufficient views are used. The data 
is usually a series of points along successive scanlines, but occlusion may cause steps and 
gaps along a given scanline. Thus, unlike 2D image data, 3D point data even in a single 
view may be unevenly distributed and is typically not organised in any regular structure. 

26.3.2. Multiple view registration 
A single view represents only a part of an object. To obtain a complete model, points 
from different views need to be merged. This is less important for arm-based scanners, 
which have the flexibilty to capture data from a wide envelope of viewpoints in a sin­
gle coordinate system, although even they cannot see the whole object in one setup. 
Determining appropriate transformations to put the different data sets into a common 
coordinate system is called registration [7,20]. 

Straightforward approaches to registration are to use (i) calibrating balls attached to 
the object, whose positions can readily be found in each data set—but they hide part of 
the object, and (ii) high-precision rotary tables, directly giving the registration—but in 
this case the bottom face and other downward pointing faces are not visible. 

Automatic registration is often based on iterative closest point methods, which match 
closest points in several overlapping datasets. Such methods are slow, and require reason­
able initial estimates of the registration. Some progress has been made towards overcom­
ing these difficulties [51] using a hierarchical method based on computing characteristic 
curves in the point data and then special points on those curves. Registration is first done 
using the special points, then refined using the curves, and finally made accurate using 
the whole point set. This approach is even effective for obtaining an initial registration. 
Iterative reciprocal closest point methods [62] are more robust when there is relatively 
little overlap between the data sets. 

26.4. T R I A N G U L A T I O N A N D D E C I M A T I O N 

Triangulation aims to connect the measured data points into a structure which gives 
their adjacency relationships, and the correct global topology for the final model. A 
triangulation algorithm for reverse engineering must take into account the following. Data 
points are subject to noise, the point density is often uneven (because of merged views), 
and outliers may occur. The data is typically an unorganized point cloud, possibly with 
open boundaries, holes or multiple components. The triangulation formed should be one 
or more 2-manifolds. The method should be computationally efficient and robust. 
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Decimation aims to replace the collection of triangles with a much smaller set which 
is still suitable for downstream algorithms. In reverse engineering applications, vertices 
of deleted triangles are typically not discarded, but assigned to a remaining triangle for 
later use when the full data is required. Decimation is a large topic in its own right [35], 
and will not be discussed further here. 

26.4.1. Triangulation overview 
Many algorithms are based on the Delaunay tesselation [2,12,77] of the sample point set, or 
an a-shape of the points [24]. The a-shape is a subset of the 3-, 2-, 1-, and 0-dimensional 
simplices for which those elements lying on a sphere of radius less than a contains no 
points in its interior. In favourable cases, a value for a can be globally chosen so that 
the only triangles retained are those forming the external surface of the object. This is 
rarely possible in practice, and building a triangulation from an ce-shape is difficult [32]. 
Improvements using local o;-values have been suggested [3,8,25]. 

An early triangulation method is due to Hoppe [39]. A piecewise linear function is 
created estimating the signed distance from the boundary of the object, and the zero-set 
of this function is extracted by a marching cubes algorithm. This works for surfaces of 
arbitrary topology or with an open boundary. However, it is computationally expensive. 

26.4.2. Kos's method 
Kos's algorithm [49] attempts to avoid the limitations of the above approaches. The basic 
principle is to merge local triangulations, leading to a consistent global triangular mesh. 
The algorithm has three phases. Preprocessing organises the data points and estimates 
certain local quantities. The main phase builds a consistent triangulation. Finally, a 
postprocessing step optimises the triangulation by smoothing it. 

Preprocessing consist of the following steps: (i) all sample points are put into an octree­
like structure for speed, (ii) any coincident points are detected and removed, (iii) a se­
lective neighbourhood graph is computed around each point, (iv) triangles adjacent to 
any boundary are flagged, (v) estimates of surface normal are computed at each point by 
locally fitting a quadric surface. 

The main phase of the algorithm uses the idea of a generalised, curved Voronoi diagram 
of the sample points on the surface. It constructs a local Delaunay triangulation around 
each sample point A; these triangles are candidates to become elements of the final trian­
gulation. This is done by building a list Bi,... ,BnOf neighbours of A such that the points 
Bi are ordered counter-clockwise, and that for any point C in the angle sector BiABi^i, 
the points A and C should not be connectable in the quadrilateral ABiCBi^i. Given 
a quadrilateral ABCD, we define A and C to be connectable if, using angles projected 
onto a local tangent plane, ZABC -\-ZCDA < ZBCD-\-ZDAB] otherwise, B and D are 
connectable. 

To generate points Bi, the algorithm works by inserting and deleting points dynamically 
into a list, initially empty. A queue stores candidate points, initially containing ^ ' s 
neighbours in the neighbourhood graph. At each step we take the point C closest to A 
from the queue. If C lies in the (projected) angle sector BiABi^i, we test whether A and 
C are connectable in quadrilateral ABiCBi^i. If not, we discard the point C, otherwise 
we insert C into the list between Bi and A + i . After inserting C, some points may need 
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Figure 26.2. Triangulated point clouds from a conventional and a free-form object 

to be deleted: Bj must be deleted if the points A and Bj are not connect able in the 
quadrilaterals ABj_iBjC or ACBjBj^i. If C is inserted into the list, its neighbours are 
inserted into the queue if not already present. This iteration is repeated until the queue 
becomes empty. 

After building the point list, we take all the triangles ABiBi^i which contain A, and 
the point A awards a vote for these triangles. 

In most cases the set of candidate triangles does not form a manifold structure, and 
so a consistent triangle set must be selected. Each triangle is given a priority based on 
(i) the number of votes it has obtained, and (ii) an error computed from the difference 
between the estimated normals at the vertices and the normal of the triangle. Then, using 
the priority order, each triangle is considered for insertion into the final triangulation: it 
is added provided that the triangle mesh remains manifold and oriented, and the triangle 
does not overlap any previously added triangle. 

After adding topologically consistent triangles, some polyhedral holes may remain to be 
filled. This is done by triangulating the hole into triangles of good shape using a heuristic 
method. 

The postprocessing phase is now used to optimise the triangulation, based on an edge 
swapping method which keeps the original vertices. We iterate until there is no remaining 
edge swap which decreases the sum of triangle normal errors described above. 

The results of triangulating point clouds captured from a conventional engineering 
object and a free-form object are shown in Figure 26.2. (In both cases the triangulations 
have been greatly decimated for clarity of illustration in this book.) 

26.5. R E C O N S T R U C T I N G FREE-FORM OBJECTS 

26.5.1. Segmentation strategies 
We assume that the triangulated data represents a composite free-form object, which is 
decomposable into meaningful surface portions, each formed by one or more patches of 
an original CAD design, for example. The composite surface is internally smooth and is 
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bounded by edge loops. The external edges may be partly or entirely the boundaries of 
the patch structure; they may also be trimming curves cutting across the structure, such 
as might have arisen from intersection, Boolean operations or blending in a CAD system. 

The most widely used parametric surfaces, such as Bezier and NURBS surfaces, map 
a rectangular parametric domain into three dimensions, resulting in a surface patch with 
four boundary curves. However, the majority of complex free-form shapes cannot be 
adequately represented by a single surface of this type. 

We wish to reconstruct the object according to its original design. The key issue here is 
how to identify point regions within the triangulated mesh which can then be individually 
approximated by free-form surfaces. Four different approaches have been identified for 
reverse engineering free-form shapes [74], using: 

• a global approximating surface (i.e. without segmentation) 

• a segmentation based on the triangulation 

• a segmentation based on a user defined curve network 

• functional decomposition 

In the first two approaches, surfaces are created without user interaction, and no at­
tempt is made to recognize the underlying design structure. This is likely to consequen­
tially result in a generated surface with poor overall quality, and which will not be suitable 
for demanding applications such as car body design. The first approach fits a single four-
sided surface to the whole dataset, and at the same time, tries to accurately reproduce 
small details. These two requirements conflict, and although attempts have been made to 
reconcile them using special scalar weighting functions [19] or a hierarchical approach [31], 
only partial success has been achieved. The control point structure produced is a grid 
which cannot match arbitrarily oriented features in the source data. 

The second approach can help to resolve this problem, since it can produce a more 
general control point structure, better adapted to the details of the object. It works by 
performing a drastic decimation of the triangulation, and uses this to produce quadri­
laterals which are then covered by smooth patches [23,33]. However, in practice, such 
segmentation methods rarely divide the object into surface patches which are the ones 
expected or desired by an engineering user. 

The third and fourth approaches rely on user assistance, and practial experience shows 
that much higher quality surfaces can be obtained in this way. In the curve network 
approach, the user draws an explicit segmentation over the triangulation, using his ex­
perience and understanding of the design to guide placement of polylines on the surface. 
Smooth curves are fitted to these polylines; these form boundaries of surfaces which are 
subsequently fitted. The curve network method has several deficiencies. First of all, it is 
very hard to determine suitable positions for smooth edges, for example the trimlines of 
a blend. Minor mistakes in edge positions will lead to the inclusion of points which logi­
cally belong to an adjacent surface patch, and consequent problems during surface fitting. 
Another problem is that the user may have to create artificial boundaries between regions 
to satisfy topological requirements for patching, even though the regions may naturally 
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Q9 Q 

Figure 26.3. Functional decomposition and reconstructed surfaces 

belong together. In such a case, global fairing of what logically should be a single region 
cannot readily be performed. 

While curve network segmentation is probably the most widely applied approach in 
current industrial practice, functional decomposition methods are attracting attention 
because they overcome most of the difficulties mentioned above. They assume that the 
user has in mind an abstract model of the object, with a hierarchy of primary surfaces, 
and dependent features which are smooth transitions between the primary surface. Each 
primary surface is normally fitted by a four-sided patch, which may be extended, trimmed, 
or intersected as necessary. 

Instead of drawing an explicit curve network over the point cloud, a set of curves 
is chosen whose sole purpose is to delimit regions of the triangulation, each of which 
definitely belongs to one primary surface. A usually rectangular primary surface, of 
greater extent than the region it contains, is fitted to the data points of the region. The 
position of the boundary of the rectangular surface is determined algorithmically, starting 
from a framework given by the user which decides the u and v parametric directions, and 
an initial parametrisation. A given primary surface may be based on a region with holes, 
or even several disjoint regions. 

We illustrate the above concept in the left of Figure 26.3, which shows part of a car body 
panel. The primary surface P2 has a rectangular frame defined by the loop Qi-Q^-Qn-
Q12-Q75 and is fitted to data from the region defined by the loop Qi-Q^-QiQ-Qii-Qn-Qi-
Primary surface Pi is based on the region Q1-Q2-Q3-QQ-Q1' However, within Pi is a 
feature element Fi . Data points belonging Fi must be excluded when fitting Pi. Such 
an excluded region is called an ignore area for Pi. This approach allows the required 
smooth surface over region Pi to be reconstructed with high quality; the feature with 
its complex detail is added subsequently. Once the surface representations for Pi and P2 
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have been created, it is now possible to reconstruct a free-form step feature F2, which is 
clearly dependent on Pi and P2. (We have ignored other primary surfaces and dependent 
features which are also present in this object.) The right hand side of Figure 26.3 shows 
a curvature map of the trimmed patches together with the control nets of the primary 
surfaces and dependent features. Although only a limited region was used to fit Pi, a 
complete rectangular patch has been reconstructed and is available, should the user wish 
to move the position of the dependent features, for example. This is a major advantage 
of functional decomposition. 

26.5.2. Fitt ing free-form surfaces 
As noted above, we wish to fit a parametric surface to each segmented primary region, 
based on a frame which extends beyond the region. NURBS surfaces are most commonly 
used [44]. Assuming that for each data point p^ there is an associated point on the 
surface defined by the parameter pair {ui,Vi) and a scalar weight CJJ, surface fitting can 
be formulated as finding the surface which minimises the following weighted least-squares 
expression: 

^isq(S) = ^ a ; f | | S ( u , , i ; , ) - p , | | ' . 
i 

If we fix the knot vectors, the parameter values, and the weights, this system can be solved 
for the unknown quantities: the control points of the surface S{u,v). However, there 
are various problems. Firstly, appropriate parameter values Ui,Vi and weights uJi must 
be chosen. Secondly, there is nothing in this approach to guarantee that the resulting 
shape will be smooth (fair). Thirdly, inadequate choice of the number of knots, or their 
values, will lead to a surface which poorly approximates the orginal data. Note that the 
requirements of smoothness and accuracy are inherently opposed. 

Two basic approaches are taken to solving this problem [22,26,31,34,36,41,47,68]. The 
first utilises an iterative process: the region is initially approximated by a surface to within 
a certain precision, and then the surface is gradually smoothed by Si, fairing procedure. The 
second variational approach minimises a hybrid functional which simultaneously enforces 
good approximation and smoothness. 

Several of these issues are now discussed further below. 

Parametrisation 
We now consider how to choose the parameter values at each data point. There are two 
distinct sub-problems: (i) a reasonably good initial parametrisation must be found, and 
(ii) as the surface fit is iteratively improved, we have to optimise not only the surface, but 
also the parameter values of each data point. Such parameter correction is particularly 
important for surface fitting to tight tolerances. 

To find an initial parametrisation for irregularly distributed data points, usually a 
simple surface, a base surface, is created, which approximately follows the global shape of 
the point cloud and is determined from it. This might be a plane, a cylinder, or a bilinearly 
blended Coons patch [36]. For example. Ma [58] uses interactively defined section curves 
together with the four boundary curves to obtain a base surface. Initial parameter values 
are then computed by projecting data points onto the base surface. Such procedures may 
fail if the data points cannot be projected in an unambiguous way. 
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Other methods for finding an initial parametrisation use the 3D triangulation of the 
point cloud to find a topologically equivalent 2D triangulation. The vertex positions in 
2D give the desired parameter values. These methods differ in how they perform the 
mapping from 3D to 2D. Harmonic parametrisations minimise the squared distances of 
the edge lengths [22], while Floater [29] gives a shape preserving approach locating the 
new vertices of the interior triangles using barycentric mappings. Greiner [31] projects the 
boundary points onto a best fit plane and minimises the energy of springs associated with 
internal edges of the triangulation; this approach was improved in [40]. Such approaches, 
however, are slow for large numbers of data points, and somewhat limited if the point 
cloud contains concavities and holes. 

In summary, there is no safe, universal method for obtaining a good initial para­
metrisation. However, the following approach works well in many cases. After obtaining 
some initial parametrisation, we incrementally generate a suitable B-spline reference sur­
face as a base surface, and use its parametrisation. Note that positional accuracy is not 
an issue at this stage. We start with a simple surface with a few control points (a Bezier 
patch), and gradually increase the smoothness or the number of control points until (i) the 
control net of the base surface is reasonably fair and even, without cross-overs, while (ii) 
the orthogonal projection of the triangles onto the reference surface keeps their original 
orientation [79]. 

The standard method for parameter correction is as follows. For each data point, the 
closest surface point is found, using Newton-Raphson steps [36,42], and its parameter 
values are taken as the new parameter values for the data point. If the initial parametri­
sation and the current approximating surface are reasonably good, a few iterations are 
suflScient to obtain the corrected parameter values, but if these conditions do not hold, 
reparametrisation can actually make things worse. 

A diflPerent approach is to take the parameter values of the data points as unknown 
variables of the least-squares minimisation in addition to the control points of the surface, 
this results in a nonlinear problem. This does not seem to be an eflficient or stable 
approach. 

Smoothness terms 
Besides minimising the squared distances between the data points and the surface to ob­
tain an accurate fit, various smoothness functionals must be added to improve the quality 
of the shape. These may minimise the spanned surface area, the overall curvature, or vari­
ation of the curvature. In most cases, these quantities are—for simplicity—approximated 
using quadratic functionals of the parametric derivatives, in order to preserve linearity 
of the system of equations [18]. Another useful quadratic smoothness term is based on 
diflPerence vectors between adjacent control points, which minimises the 'tension' of the 
control net [18]. Many such functionals are derived by simplifying physical energy terms, 
such as the thin plate energy [34,69]. 

In [30] Greiner introduced so-called data dependent Junctionals^ which give better ap­
proximation than the simplified functionals. To compute the new functional he estimates 
differential quantities from a reference surface and the minimisation remains linear. The 
process works iteratively and the reference surface is always the approximating surface 
from the previous iteration. 
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To illustrate the idea of smoothing functionals, we give here a very commonly used one: 

i^smooth(S) = J J ( S L + 2 S L + Si) dudv. 

This is put together with the least-squares term, to obtain the composite functional 

^composite(S) = i^lsq(S) + A Fsniooth(S) . 

A crucial issue in surface fitting, which is poorly discussed in the literature, is to find an 
appropriate value for the smoothness weighting factor A, which determines the relative 
importance of closeness of fit and smoothness of the final surface. A bad choice of A may 
result in over-smoothing, in which case the data points will not be properly approximated, 
or under-smoothing, whereupon the surface will not be fair. A method for adaptively 
setting A is given by WeiB [79]. 

A different problem also affecting smoothness is the following. When fitting a surface to 
a region containing large internal areas with few underlying data points, the least-squares 
system becomes almost singular. Control points corresponding to such areas are weakly 
defined by the data points, and large changes in their position will result in relatively 
small modification of the least-squares residual. These control points have very small 
coefficients in the linear system, so the determination of their positions is not stable. 
They may end up extremely far from the data points, causing serious problems in the 
final surface shape. Again, WeiB presents a solution to this problem [79]. 

Knot determination 
An important subproblem in surface fitting is to determine appropriate knot vectors; this 
choice affects both the surface quality (more knots give greater freedom of shape) and the 
efficiency of fitting (more knots increase computation time). 

A general approach is to add more knots iteratively as needed while the surface does 
not meet the required tolerance. Two main options exist for computing new knot vectors: 
either inserting new knots while keeping the existing ones, or inserting new knots and 
modifying the existing ones. We prefer the first option. 

Standard knot insertion algorithms choose to insert a knot into the interval where 
the largest deviation between the data and the fitted surface occurs, measured either 
absolutely or in terms of average de vat ion over the interval. Typically a single knot is 
inserted in the middle of the selected interval. For one-dimensional problems this works 
well, but for B-spline surfaces it is often unclear whether it is better to subdivide in the 
u- or i;-direction. 

Dierkx [17] suggests a trial and error algorithm, which inserts a candidate knot in the 
ti-direction and another in v^ and accepts the one which produces the smaller residual. 
Unfortunately, this approach is slow as it must solve the composite system twice to insert 
a single knot. 

We prefer an alternative approach, where more than one knot is inserted at a time. 
Suitable intervals for new knots are chosen according to the fitting errors and the shape 
of the current fitted surface. Optimal placement of the new knots within the intervals is 
also determined. 

Our knot insertion strategy uses information about the derivatives of the normal devia­
tion function, which measures distance in the normal direction between the current fitted 
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Figure 26.4. Bezier surface fitted to a half cylinder and normal deviations 

surface, and the ideal surface through the data points. As an example, see Figure 26.4, 
where data points from a half cylinder have been approximated using a bicubic Bezier 
patch; the parameter directions are axial and circumferential. Since the surface is not 
within the desired tolerance, new knots must be introduced. The normal deviation func­
tion is shown on the right; we can see that its partial derivative in the axial direction is 
close to zero. This means that the parameter lines along the axial direction already follow 
the shape of the data points quite well, and are at about the same distance from the data 
points. In the circumferential direction, the situation is different. The normal deviation 
varies by a large amount along each parameter line: these parameter lines do not approx­
imate the shape well. This indicates that the knot vector for the circumferential direction 
should be refined; new knots in the axial direction would not lead to significantly smaller 
residuals. Full details of this procedure can be found in [79]. 

26.5.3. Fitt ing feature surfaces 
After the primary surfaces have been fitted, derived features dependent on the primary 
surfaces such as free-form blends, smooth steps, slots, ribs, and pockets are added to the 
model where necessary. These generally meet the adjacent primary surfaces with tan­
gential continuity. Much better results can be obtained if features are treated separately 
than if global surfaces are fitted across the whole data set. Figure 26.5 shows an example 
of the poor curvature distributions obtained from global fitting in contrast to functional 
decomposition with feature fitting. 

In general, there are many types of feature one could wish to fit. WeiB [78] considers 
fitting of a particular set of features characterised by a varying swept planar profile curve. 
Traditional surface fitting techniques can be extended to handle constraints in addition 
to the data points; for example, we may also wish to interpolate a discrete set of normal 
vectors [19,36]. Constraining a row of control points to lie in the same plane is useful for 
producing approximating feature surfaces of the above type. This can be done in such 
a way that the equations to be solved remain linear, with a special banded structure. 
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Figure 26.5. Global fitting and feature fitting between primary surfaces 

Having determined a suitable set of profile curves, further optimisation is done to locate 
the best positions of the trimlines on the primary surfaces [78]. 

26.6. R E C O N S T R U C T I N G C O N V E N T I O N A L E N G I N E E R I N G OBJECTS 

This section discusses the reconstruction of conventional engineering objects, bounded by 
simple surfaces. Throughout this section, we illustrate the procedure using a well-known 
object suggested as a benchmark by Hoschek [43]—see Figure 26.2. From a functional 
point of view, this part is the union of three components. LEFT has rotational symmetry, 
MIDDLE is a truncated cone, and RIGHT is bounded by two planar faces and a cone, as 
well as a sequence of extruded side faces. All intersection edges are blended by constant 
radius rolling-ball blends. Clearly, applying free-form techniques to this case would not 
adequately reflect this underlying structure. 

26.6.1. Segmentat ion 
The first stage is to segment the triangulated point cloud into regions belonging to disjoint 
subsets which are internally smooth and to which one (or more) simple analytic surfaces 
can locally be fitted. 

Overview 
In general, segmentation is a difficult problem [74]. A standard technique is to analyse the 
signs of estimated mean and Gaussian curvatures [1,9,16]. Alternatively, iterative region 
growing techniques may be applied [10,56,67]. Each region is constructed by starting at a 
seed point in the triangulation, and adding contiguous points which are consistent with the 
hypothesis that all points belong to a surface of the same type with the same parameter 
values. While it is possible to apply the region growing paradigm to segment conventional 
engineering objects [59], we prefer another solution called direct segmentation [4,75], which 
is an efficient, non-iterative approach. 

Direct segmentat ion 
The structure of the boundary of an object is determined by its primary surfaces. Here we 
assume that each pair of adjacent primary surfaces meets in a sharp edge, a smooth edge, 
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Figure 26.6. Planarity filtering Figure 26.7. Segmented object 

or a small-radius blend. The first stage of direct segmentation separates the triangulation 
into disjoint regions bounded by sharp edges and small blends by removing triangles 
at such boundaries. Each such region can be classified either as simple, i.e. it can be 
approximated by a single analytic surface, or as multiple. Regions of the latter type must 
be further subdivided using smooth internal edges. 

This first stage is carried out using surface normal estimates and a planarity value 
at each point. Planarity can be determined by least-square plane fitting through the 
point and its neighbours [75]. The normalised fitting errors within a smooth region will 
be small, while for highly curved areas (at a sharp edge or small-radius blend) will be 
greater. Results of using this approach on the benchmark object are shown in Figure 26.6. 
Other methods also exist for identifying highly curved areas, based on angular variation 
of normals [45], or curvature estimates. 

Having found each region, a set of increasingly complex tests is performed to decide 
whether it is a simple or multiple region. Such a sequence works well because simpler 
surfaces (i) occur more frequently in mechanical engineering, and (ii) can be detected in 
a more reliable and eflScient manner. Surface detection is carried out by attempting to 
fit a surface of the chosen type (see Section 26.6.2), and checking if the residual errors 
are suflftciently small. In detail, we attempt to fit surfaces in the following order: plane, 
sphere, linear extrusion (subcases in order: cylinder, straight line / circular arc profile, 
free-form profile), cone, surface of revolution (subcases: torus, straight line / circular arc 
profile, free-form profile). Any remaining regions must contain multiple primary surfaces 
joined by smooth edges, and are handled in a second stage. 

In cases where extrusions or surfaces of revolution with straight line / circular arc 
profiles are detected, further segmentation must be done based on the 2D profile curve, 
as will be explained in Section 26.6.3. Results of this process for the benchmark object 
are shown in Figure 26.7. 

The second stage of direct segmentation decomposes multiple regions. Curvature esti­
mates are unreliable for noisy data, so we prefer to apply dimensionality filtering. The 
normal vectors of each multiple region are mapped onto the Gaussian sphere. Normals of 
a planar subregion are mapped into a point cluster; those of a linear extrusion or conical 
region onto a circular arc. By classifying the normal vector distributions on the Gaussian 
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sphere as 0- or 1-dimensional, planar and extrusion surface subregions can be separated 
and detected [75]. Dimensionality of a set of normals is estimated by choosing an appro­
priate radius p on the Gaussian sphere, and computing the logarithm of the ratio of the 
number of normals within a radius 2p to those within a radius p. 

The above steps identify any planar or linear extrusion subregions (as well as cones) 
within this multiple region. The only problem left is to check whether one or more surfaces 
of revolution remain. We compute candidate rotational axes using an approach suggested 
by Lukacs [57], and cluster them to select the correct solutions. 

We conclude by noting that while our idealised category of conventional engineering 
object includes only simple surfaces (and blends), in reality, such objects may also con­
tain one or more free-form surfaces. Any regions which have not been decomposed by 
direct segmentation can be inferred to belong to free-form surfaces, and the techniques of 
Section 26.5 can be applied. 

26.6.2. Fitt ing analytic surfaces 
Overview 
We now consider how to fit analytic surfaces to segmented point data. For a general 
overview of fitting surfaces, see [13]. We assume that a set of points lies close to a 
particular member of a family of surfaces parametrised by a vector of parameters s. Let 
c?(s. Pi) be the "true" distance of the point p^ from that surface. A surface going through 
all points is that member of the family for which the simultaneous system of equations 
c/(s, Pi) = 0 is satisfied. Since the number of points is much greater than the number of 
parameters in s, this system of equations is overdetermined. Furthermore, the data are 
noisy, so we must apply least-squares minimisation to the sum 2 ( i ( s , p^)^. We use the 
term geometric fitting when the true (geometric) distance is used. 

Additional non-linear constraints of the form c(s) = 0 may be needed. For example, if 
the family comprises the quadric surfaces, we may wish to restrict the surface being fitted 
to a cylinder [28]. Lagrangian multipliers may be used, leading to a difficult non-linear 
generalized eigenvalue problem. In some cases, the constraints may be used to reduce the 
problem to an unconstrained optimization problem in a lower dimensional space. 

Points p lying exactly on a member of the family of surfaces satisfy an implicit equation 
/ ( s , p) = 0. For a fixed s, the functions / and d have the same solution set in space, but 
they usually behave quite differently for points which do not lie on the surface. Thus, if 
instead of ^ c/̂ , one minimizes ^ p, referred to as algebraic fitting, quite different results 
are usually obtained. When c is quadratic and / is linear in terms of the parameters, 
linear generalised eigenvalue techniques work [27]; if / is non-linear, Taubin's generalized 
eigenvector fit may be used [72]. However, Rosin [66] shows that choosing / carelessly 
can lead to severely biassed estimates for s. 

To avoid the bias of algebraic fitting, and to overcome the complexity inherent in 
geometric fitting, various alternative approaches are useful. The first approximates the 
true distance using a faithful representation, generally giving a simpler and more robust 
non-linear problem. The second sequential least-squares approach finds a solution by 
using a series of linear steps to find first some, then other, surface parameters. Finally, 
by separating the point data terms from the surface parameter terms in a modification 
to the faithful representation, it is possible to obtain a solution more efficiently, if less 
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accurately. The efficiency of the last approach makes it particularly useful in constrained 
fitting, as discussed in Section 26.6.4. 

Faithful representation 
We say that an approximation to the true distance function d{pi,s) is faithful if, firstly, 
the function is zero where the true distance is zero, and secondly, at these points, its 
first derivatives with respect to the surface parameters are the same as those for the true 
distance function. 

Faithful distance functions can be obtained in various ways. A fairly general method 
approximates square roots in d(pj,s): suppose the distance function is of the form 
d{Pii s) — ^/g — h. We approximate d by 

7 9-h' ,^cP 

Under very general assumptions this function is faithful to the Euclidean distance. 
The corresponding quantity to be minimised for surface fitting is now 

^ i P - « ) - Z . 4/.2(p.,s) 

As an example, consider cylinder fitting. Let the closest point of the cylinder to the 
origin be ^n, let the direction of the axis of the cylinder be a, and let its radius be 1/k. 
Let p be an arbitrary point in space. Its distance from the cylinder is 

d(p,s) -= ( P - ( ^ + - ) n ) A a J = Y^|p-(^+^)fiP-(p-(^+J)n,a)^-^. 

The corresponding faithful approximation found using the above approach is: 

k k 
(i(p,s) = - ( I P P - 2^(p,ii) - (p ,a) ' + Q^) + ^ - (p,n) = - | p A ap - (p,n), 

where p = p — ^n. Note that this is linear in the curvature k if all other parameters are 
fixed, giving a separable non-linear least squares problem (see e.g. [11]). Furthermore, this 
distance approximation is well-behaved: in the limit that /c ^ 0, we see that d -^ ^—(p, n) 
and so the problem reduces to least-squares plane fitting. 

By using trigonometric functions to parameterise li and a, we can avoid having to 
separately enforce the constraints |n| == |a| = 1 and (n, a) = 0. 

Further details of faithful representations for cylinder fitting, as well as for spheres, 
cones and tori, may be found in Lukacs [57]. 

Sequential least-squares methods 
Assuming that we have normal vector estimates at each point, simple linear least-squares 
methods exist (see Section 26.6.3) for determining the translational direction for linear 
extrusions, and the axis for surfaces of revolution. 

Thus, the parameters of a cylinder can be found by first estimating its translational 
direction, and then projecting the data points onto a plane perpendicular to this direc­
tion. Pratt 's formulation [64] is used to fit the best circle through the projected points. 
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giving the radius of the cylinder via a simple eigenvalue problem. For cones, first the 
apex position is estimated by finding that point which minimises the sum of the squared 
distances from the normal planes at each data point. Next, the apex angle and axis are 
found simultaneously by fitting a plane on the Gaussian sphere to the ruling directions. 
For a torus, first the rotational axis is determined, and then all data points are rotated 
into a single plane containing the axis, whereupon circle fitting gives the major and minor 
radii. 

While these non-iterative methods do not provide the same solution as correctly min­
imising the sum of squares of the true distances, the diflPerences are found in practice to 
be small. If necessary, these solutions can be refined by using them as initial estimates 
for the non-linear methods given here. 

26.6.3. Fitt ing extruded and rotational surfaces 
Algorithm 
Linear extrusions and surfaces of revolution are two special categories of surface whose 
recovery is important for conventional engineering objects. We use a three-step process 
due to Benko [6]. Firstly, the direction of extrusion or the axis of revolution is determined, 
as appropriate. Secondly, all of the data points are put into a single plane, either by linear 
projection into a plane perpendicular to the extrusion direction, or by rotation into a plane 
containing the axis of revolution. Finally, a planar profile curve is fitted to the 2D points 
with the aid of a so-called guiding polygon. This profile curve may be composed of a 
series of tangentially continuous straight line segments and circular arcs, or it may be a 
free-form curve. In the former case, the guiding polygon helps to determine a preliminary 
segmentation of the 2D points [6], while in the latter case, it provides a parametrisation 
needed for curve fitting. 

Determining the extrusion direction 
The normal vectors n^ to a linear extrusion surface are perpendicular to the direction 
of extrusion. Thus, we seek the unit vector d which minimises 5^(ni,d)^, i.e. the sum 
of squares of the cosines of angular deviations from 7r/2. (Using cosines rather than the 
angular deviations themselves makes the problem linear.) This is a well-known three 
dimensional eigenvalue problem. 

Determining the axis of revolution 
The normals to a surface of revolution intersect the axis of revolution (in a projective 
sense, i.e. the lines may also be parallel to the axis). As an error measure for least squares 
minimisation, we would ideally like to use the distance of these two lines, but this has 
two problems: (i) a normal parallel to the axis does not have zero error, and (ii) for a 
given angular deviation in normal, a greater error will result for the normal through a 
point further from the axis than a point nearer the axis. An alterntive error measure 
would be to use the angle between the normal, and the plane containing the axis and the 
corresponding data point. This eliminates the first problem, but produces the opposite 
of the second problem, giving higher weighting to errors in position of points nearer the 
axis. We use a solution suggested by Pottmann and Randrup [63], and define the error 
to be the product of the distance and the sine of the angle between the normal line, and 
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the plane of the axis and the data point. 
Lines are represented using Pliicker coordinates . A line through a point p^ in the 

direction dj is represented by a sextuple (dj,dj A p^). The latter term, denoted by d^, is 
independent of the choice of p^. In this form, the axis may be denoted by (da, da). 

Using this formalism, the error function is linear in the coordinates of the unknown 
axis. We minimise 

^ [ ( d i , d a ) + (di,da 

for (da, da) under the constraints ||da|| = 1, (da, cia) = 0. At first we ignore the second 
constraint, and solve the remaining system via a generalised eigenvalue problem. If greater 
accuracy is required, the full system is solved iteratively using this solution as an initial 
value. Generally only 3 or 4 iterations are needed. 

Guiding polygons 
Due to inaccuracies in estimating the extrusion direction, or the axis of revolution, the 
2D points of the profile may form a 'thick' curve. Ordering the points, a necessary step 
for most curve fitting methods, is tricky in such a case. One possible solution to this 
problem is to thin the points [53]. Instead, we prefer to generate a guiding polygon from 
the original 3D triangulation. This is a coarse approximation of the profile curve which 
makes it possible to order the 2D points. 

In principle, the guiding polygon is constructed by intersecting the triangulation with 
a plane orthogonal to the extrusion direction, or containing the axis of revolution respec­
tively. 

In practice, unfortunately it may not be possible to find a suitable plane which contains 
the entire profile. Thus, the guiding polygon must be constructed stepwise. We first find 
an initial segment of the polygon by intersecting an arbitrary triangle with a suitable plane 
through its barycentre. Then we extend the guiding polygon stepwise by considering the 
neighbours of the triangles already processed, then their neighbours in turn, and so on. 
Each new triangle provides one vertex which has not already been considered. This is 
rotated (or projected, as appropriate) into the profile plane. A suitable test is performed 
to determine whether this point overlaps the existing guiding polygon, or should be used 
to extend it. 

If the distance between the two endpoints of the guiding polygon becomes smaller than 
the average distance between adjacent vertices, we stop the building process, as a closed 
profile curve has been found. 

26.6.4. Constrained fitting for multiple curves and surfaces 
Overview 
A variety of approaches have been utilised for solving geometric constraint problems; see 
also Chapter 21. These may be broadly summarised as (i) analytical solvers, which rely 
on numerical methods [52], or symbolic algebra (ii) graph-theoretical based methods [37], 
and (iii) rule-based methods [46]; for an extensive survey see [21]. A general framework 
is provided by Triggs [73]. More specific work on simultaneous multiple fitting of surfaces 
under constraints has been given by the Edinburgh group [80-82,65]. However, none of 
this work adequately addresses all the specific needs of constrained surface fitting for 
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reverse engineering, when the constraints may be inconsistent, and huge amounts of data 
may be present, as we will now discuss. 

Assumptions 
We suppose that we wish to simultaneously fit multiple geometric entities each of known 
type (for example, a set of surfaces, or elements of a profile curve) to an already segmented 
set of data points. Furthermore, various constraints link the parameters of the geometric 
entities. See [5,60] for relevant constraint types, which include tangential continuity, con­
centricity, and perpendicularity. Fitting is done simultaneously rather than sequentially 
to avoid accumulation of errors. 

Because they have been determined automatically, some constraints may be mutually 
incompatible. However, each constraint is prioritised: the goal is to satisfy as many con­
straints as possible which do not conflict with already satisfied higher priority constraints. 
The priority comes from the type of constraint, how well it is initially numerically satis­
fied, and so on. Contrast this with the usual case in geometric modelling [14], where, in 
principle, the correct number of constraints is given. 

Note that the number of data points is large, and that constrained fitting methods are 
iterative. For efficiency reasons, it is important to keep the amount of computation per 
iteration to a minimum. 

Auxiliary elements 
To help set up the problem, auxiliary geometric elements are used. For example, suppose 
a set of planes must be concurrent through a common point. We could prescribe that all 
subsets of four planes each have a common point. Instead, the common point through 
which all planes must pass is defined as a new auxiliary object. Such auxiliary objects 
help to reduce the size of the constraint problem. They also often form part of the required 
output geometry needed for model building later. A list of useful auxiliary elements is 
given by Benko [5]. 

Problem statement 
The n parameter values to be found, describing both primary and auxiliary objects, are 
collected into a vector s. The function F , which depends on the parameters s, and on the 
distances of the data points from the objects, is to be minimized: 

i 3 

Here {gi\ is the zth surface (or curve, as appropriate) defined by parameters in s, p^j is 
the j t h point assigned to the zth surface, and d{pij,gi) is the distance of point Pij from 
surface gi. ai is an optional weighting in the sum. 

Linking the parameter values of the primary and auxiliary objects are k constraint 
equations {cfc}; Ci is the highest priority constraint. These can be written in the form 
c(s) = 0. 

We wish to find those parameter values which minimise F subject to c = 0, or at 
least, the best consistent subset of the constraint equations: we find a minimum for F by 
sequentially attempting to satisfy the constraints in priority order, so that any constraint 
consistent with those previously satisfied is also imposed. 
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M e t h o d 
Here we outline our solution method described in detail in [5]. Initially, an unconstrained 
fit is made to each primary geometric entity to give the starting point for iteratively 
solving the constrained fitting problem. Estimates for auxiliary objects are determined 
from the corresponding primary objects. 

The two problems: c(s) = 0, and F(s) is minimal, are solved simultaneously by itera­
tion. At each iteration step we use a linear approximation for c, and a quadratic one for 
F , to compute an update d to be added to the current parameter vector SQ. Taylor series 
expansions are used to compute d: 

c(so + d) ^ c(so) + c'(so)d, F(so + d) ^ F(so) + F'(so)d + ^d^F' ' (so)d 

Using these expansions, the problem to be solved may be written in the following form: 

Cd = 0, d^Ad to be minimised, 

where d = (c/ i , . . . , d^, 1)^, C and A is formed by concatenation: C = [c'(so)|c(so)], while 

/"(So) 

f'{s,f 
/'(So) 

0 

To compute d, we first reduce d to a lower dimensional vector d* of independent vari­
ables (the constrained variables are expressed in terms of unconstrained ones): d = Md*. 
M is a matrix chosen so that CM = 0 (see later). Using this, we now have an uncon­
strained minimisation problem: minimise d*^^*d*, where A* — M^AM. The solution 
for d*, and thus d, is found by straightforward Newton iteration. 

M is found by working through the rows of C from top to bottom using a process 
similar to Gaussian elimination. Suppose firstly that all constraints are independent of 
the previous ones, and consistent; we explain later what happens if not. Starting with 
the first row, we choose the variable di whose coefficient has the largest absolute value 
(for stability reasons) and express the corresponding variable in terms of the others. We 
may use this to eliminate di by writing d = Midi , where Mi is a unit matrix except for 
row I, which takes the form 

''* ^ Q ' ' " ' Ci ' Ci ' * " ' Ci ^' 

di is of one dimension less than d, and is given by di = (c?i,..., d/_i, d /+i , . . . , dŷ , 1). We 

now construct CMi, and consider row 2 of (CMi) in the analogous equation (CMi)di = 0 

to eliminate another variable, and so on. 
In practice, the constraint equations may not be independent. If all the entries in a 

given row m are zero, then the constraint equation follows from the previous ones, and 
elimination cannot be performed. If the constant term in a given row m is not zero 
but all the others are, then the constraint contradicts the previous ones, and so this 
constraint equation is discarded. In either case, we proceed to the next row without 
further processing. 

A minor complication is that a single geometric constraint may require more than one 
constraint equation. We must remove all constraint equations involved when a geometric 
constraint is found to be inconsistent and back-up the computation to the row after the 
highest row which was discarded. 
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Efficient representation 
The function being minimised is a weighted sum of squared distances between points and 
geometric objects. Derivatives of the error function must be evaluated during each itera­
tion. For efficiency, we wish to evaluate as much as possible in a once-only preprocessing 
step before iteration commences. This may be achieved by using suitable object and con­
straint representations combined with appropriate approximations to distance functions. 

Our objective is to write the approximate signed distance between an object (described 
by parameter vector s) and a point p in the form 

d(p,s) = S{s)^P{p)^P{pfS{s), 

where S and P are vector valued functions. If we do this, the function to be minimised 
(for a single object) is 

F(s) = '£dip,s)' = S{sr ( ^ P ( p ) P ( p r ) 5(s) . 

Using such a separable form, we need to compute the matrix Mp = ^P{p)P{p)^ only 
once, as it depends only on the data points, and not on the parameters of the object. 

The first and second derivatives of F(s) are then F' = 23^M^S', F" = 2{S'^M^S' + 
S^MpS"). These may still be time consuming to compute, so we attempt to find descrip­
tions where S is simple. If S is just a row vector of parameters, i.e. 5(s) = (si, ^2, 53, . . . ) , 
rather than a vector containing more complicated functions of the parameters, then the 
derivative formulae are simple, and take the form F'{s) = 2MpS, F"{s) = 2Mp. In fact, 
one may always choose a new representation s = S{s) in this way, but it may contain 
more variables, linked by potentially complicated constraints. 

We illustrate these ideas with the concrete example of fitting points to a circle. The 
distance between a point p and a circle with centre o and radius r is ||p — o|| — r. 
Because this function contains a square root, it is not in separable form. However, if we 
use instead the faithful approximation ((p — o)^ — r^) /2r = (p^ — 2(p, o) + o^ — r^) /2r , 
and now choose 5(s) = S{o,r) = ( l / 2 r , - o ^ / r , - o ^ / r , (o^ - r^ ) /2 r ) , P (p ) = (p^,Px,Pi/, 1), 
we now do have a separable form. 

We may do better if we change the circle parameters to 5(s) = (AC, o'^,Oy,A); the extra 
variable is linked by the equations o' = —2ACO and A = (o^ — r^)/2r, giving o'^ — AnA = 1. 
Computing derivatives is now simpler: no divisions are required. This representation also 
has the advantage that it is still valid when the circle degenerates to a straight line. 

A detailed list of object representations, constraint equations, and efficient approximate 
distance functions is given by Benko in [5] for all the simple analytic surfaces we consider 
in this Chapter. He also formulates appropriate equations for a wide variety of common 
engineering constraints, which makes it possible to solve the constrained fitting problem 
in practice. 

A simple example taken from the benchmark object is shown in Figure 26.8, which 
shows the profile curve of the LEFT part of the object. Note that tangential continuity 
constraints have been enforced on the straight line segments and circular arcs involved. 
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Figure 26.8. Reconstructed rotational profile 

26.6.5. Reconstructing blend surfaces 
Problem statement 
We now describe how blending surfaces may be recovered and incorporated into solid 
models. We assume that the primary surfaces adjacent to each blend have already been 
reconstructed, and meet in an edge. We assume that each blend is a fixed-radius rolling-
ball blend.Our approach is to determine its radius, and then call upon a solid modelling 
kernel to construct an appropriate blend surface for incorporation into the B-rep model. 

Data points belonging to blending surfaces are identified during segmentation: they are 
the points not belonging to any primary surface. We discard points in the neighbour­
hood of vertices, leaving a separate point set for each edge blend. We do not explicitly 
reconstruct vertex blends, since for small blends these are represented by only a few data 
points. Vertex blends instead are constructed by the solid modeller as by-products auto­
matically connecting edge blends. Setback vertex blends provide a reasonable transition 
surface in the case of arbitrary edge blend configurations [76]. 

Approaches 
Various approaches for estimating blend radii are thoroughly analysed in [48]. In sum­
mary, these may be divided into methods which work for general types of blend, and 
methods which work for particular types of blend surface. In the former category are: (i) 
averaging discrete estimates of principal curvature at each blend point, (ii) the iterative 
spine method, and (iii) the maximum ball method, while in the latter category are: (iv) 
direct surface fitting when the blend is a simple analytic surface, and (v) fitting cross-
section circles when the blend is a swept profile, with or without tangency constraints to 
the adjacent primary surfaces. We describe approach (iii) further below, as it is generally 
the best method. 

A different approach uses medial-axis-transforms [15] (see Chapter 19). The medial 
surface of the object is constructed from the triangulation of the point cloud, and each 
Delaunay tetrahedron is classified according to its type. This allows medial edges to 
be constructed, each of which correspond to the centre line of a blended pair of faces. 
The average circumspherical radius of the associated tetrahedra approximates the blend 
radius. 
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Figure 26.9. The maximum ball for point pj 

The maximum ball method 
This method works by computing an estimate for the blend radius at each measured point 
of the blend. For each such point p^, we attempt to reconstruct the position of the rolling 
ball which generates the point p^. This is the largest sphere which contains pj and is 
tangent to both primary surfaces. We average the radii of these largest spheres (or take 
the median value) to give an estimate of the blend radius. 

We denote the centre of the current ball by Cj. It must satisfy the following two 
conditions (see Figure 26.9). The distances tii(Cj), c?2(ci) to the two primary surfaces and 
|cj — Pi I must all be equal to R, the radius of the ball. The vectors Vi(ci), V2(ci) from 
Cj to the corresponding points on the primary surfaces, and Cj — pj must be in the same 
plane. Note that there are two centre points with these properties. As well as the one we 
seek, the other is the centre of the smallest sphere which contains pj and is tangent to 
the two primary surfaces. 

This method has been generalised to reproduce varying radius rolling ball blends [50]. 

26.6.6. Building solid models 
In order to build the final B-rep model, we have to join together the fitted surfaces at 
explicit edges and vertices. For regions with tangentially adjacent surfaces, suitable edges 
and vertices have been computed by the constrained fitting process. In other cases, they 
must now be found by intersection of adjacent surfaces. Further details of our approach, 
and examples, can be found in [4]. 

Fattening 
Model building starts by creating a region adjacency data structure, which gives the topol­
ogy of the final B-rep model. During segmentation, triangles not classified as belonging 
to a particular region were ignored. Now, during fattening, we classify these triangles 
to remove the gaps between the disjoint regions—these are extended outwards until all 
triangles belong to some region. 

In each pass, unclassified triangles are considered which have at least one common edge 
with the classified triangles. Such triangles, if within a distance tolerance, are allocated to 
the nearest region owning a classified neighbour. If no further triangles can be added which 
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satisfy the tolerance criterion, triangles are added based only on adjacency information. 
In each pass, all regions are simultaneously grown in a reasonably even manner. 

After fattening, each edge of the triangulation shared by two adjacent regions forms 
a polyline, which topologically represents an edge in the final model. Vertices of the 
triangulation shared by at least three regions, at the ends of the polylines, correspond to 
vertices in the final model. Connected sets of triangles which logically all belong to the 
same region correspond to faces. 

Edges and vertices 
Sharp edge curves are computed by calling a surface-surface intersection routine of the 
modelling kernel. For efficiency reasons, and to avoid ambiguities, we compute a bound­
ing box for each edge, based on the related approximating polyline. We always leave 
processing of very short and silhouette edges (see below) to as late as possible as they are 
ill-defined. 

Vertices where three surfaces meet are well-determined and are computed by curve-
surface intersection; care must be taken if one of the edges meets the opposite face with 
tangential continuity. Silhouette vertices are computed only approximately, constrained 
by the underlying edge curve. 

If constraints were not enforced during surface fitting, vertices with more than three 
edges need special care: the intersection geometry may produce a topology which is 
inconsistent with the topology deduced by the fattening procedure. We must update the 
topology accordingly. Careful ordering of the intersections helps to establish the correct 
topology. 

For incomplete models, i.e. whose surface does not form a closed shell, we must termi­
nate the model using silhouette edges at the edge of the triangulation. Edge loops of the 
corresponding faces are completed by constructing approximate edges from the border 
polylines of the triangulation. A piecewise linear approximation to the polyline (with 
larger linear pieces) is determined and projected onto the underlying surface, giving a se­
quence of small edges lying on this face. If the face involved is a plane, a better result may 
be obtained by constructing a composite curve made up of straight and circular segments 
using the same methods as for smooth profile curve reconstruction. 

Stitching 
We now create the complete topological structure by stitching together the faces, edges 
and vertices. This is straightforward, since the previous phases assure the consistency of 
the geometrical and topological entities, and is performed by algorithms of the underlying 
solid modelling kernel. Blends are then added as appropriate. The final model produced 
for the benchmark object before blending is shown in Figure 26.10; after blending in 
Figure 26.11. 

Alternative method 
A completely different approach may also be taken to combine the data from different 
views into a single B-rep model. Point clouds from different views are not merged, and a 
prismatic B-rep model is formed from each view, reproducing the faces visible in that view. 
Such prismatic models can then in principle be unioned together. However, to avoid many 
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Figure 26.10. Test object without blends Figure 26.11. Test object with blends 

small facets and edges, the individual models must be carefully beautified and features 
matched before combination. This approach has the advantage that it always produces 
closed volumes (assuming each prism has a limiting back face). 

26.6.7. Beautifying solid models 
Beautification is performed by firstly automatically identifying the constraints required 
and secondly, imposing them. Enforcing constraints between geometric elements can 
either be done at the surface fitting stage, or as a post-process after model building. The 
rationale for doing it as a post-process is that an explicit topological and geometric data 
structure now exist; also the original data points can now be discarded, so much less data 
has to be processed. In some sense, discarding the original data does not matter: we 
may often be able to hypothesise correct parameter values for geometric entities from the 
approximate ones present in the model. For example, an angle of 88° should probably 
be 90°. Even if draft angles are present, it is not obvious whether we should recover the 
actual model including the draft angles, or the ideal model before draft angles were added! 

Finding constraints 
We may classify constraints into three broad categories. The most local constraints are 
ones aff'ecting a single geometric entity (e.g. the radius of a cylinder should be an integer 
constant), or pairs of geometric enitities (e.g. coaxiality of two cylinders). At the other 
end of the scale, the whole geometric object may possess a symmetry, e.g. a plane of 
mirror symmetry. In between these extremes are patterns of repeated features, such as a 
ring of circular through-holes of equal radii. An analysis of a range of engineering shapes 
has been carried out to determine which constraints and symmetries are of common 
occurence in typical conventional engineering components [60]. An efficient algorithm 
has been developed to detect symmetries [61,71] in a solid model of such an object, 
by analysing a suitable set of sample points taken from its boundary. This algorithm 
has the advantage of not explicitly requiring an input tolerance to work to, but decides 
on suitable tolerance levels as it operates. Another algorithm [54,55] has been developed 
which finds constraints on geometric elements and groups of geometric elements, including 
repeated patterns of simple features. However, in general, feature recognition is a vast 
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subject—see Chapter 21, and finding constraints between arbitrary features which are 
only approximately represented is a tricky problem. 

Imposing constraints 
Imposing constraints is a much more difficult problem than identifying them, particularly 
when the constriants may be inconsistent. This is still a topic of current research. Im­
posing symmetry on a complete object seems to be an easier problem, if only because it 
does not involve any inconsistent constraints. 

When beautifying a model, it is generally not sufficient to modify parameters of geo­
metric enitites one at a time. Vertices at each end of any very short edge should also be 
merged, for example. The question then arises as to whether any consistent configuration 
of new geometry exists which satisfies the requirements, and also how to construct if it 
does. Related work on resolvable representations [70] goes some way to answering this 
question, but only for polyhedra of genus zero. 

26.7. C O N C L U S I O N 

Reverse engineering is a vast subject, and we have only been able to present a conceptual 
overview of many of the topics in this chapter, together with a little more detail in some 
places to give insight into a few problems of particular significance. Interested readers 
will certainly need to consult the cited literature. 

Many advances in the subject have been made in the last few years, although at present 
there are two clearly separate tracks for free-form and conventional engineering objects. 

The research state of the art is that boundary representation models of moderately com­
plex conventional eningeering objects can be constructed automatically, and high-quality 
surfaces representing free-form objects can also be recovered with user-guided functional 
decomposition. However, careful setting of various system parameters is necessary to 
obtain satisfactory results. 

Many of the algorithms described here will enable more powerful commercial systems to 
be developed over the next few years, but some algorithms need to be made more robust 
and general, and other areas are still the subject of research. 
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Chapter 27 

Vector and Tensor Field 
Visualization 

Gerik Scheuermann and Hans Hagen 

27.1. I N T R O D U C T I O N 

"Visualization transforms data into images that efficiently and accurately represent in­
formation about the data" [49, p.83]. This definition describes the visualization task as a 
transformation process like the one in Figure 27.1. 

It is obvious on one side that one needs knowledge about the data and its underlying 
context to do the job. On the other side, it is necessary to use the whole repertoire of 
image generation to be efficient and accurate as the definition demands. In this chap­
ter, we understand visualization as transformation of digital, numerical data into digital 
images by using computer graphics. This kind of visualization has been formed into a 
scientific discipline by a report of McCormick and DeFanti [34]. If you are looking for an 
example of classical visualization techniques, Merzkirch [35] provides an excellent survey 
on experimental flow visualization. The data in our applications stems from natural scien­
tists or engineers doing measurements during experiments, observing natural or technical 
phanomena or simulating experiments by numerical calculations. The information about 
the data serves three main purposes [45], namely 

• to get an impression of the experiment or simulation; 

• to inspire the development of new and better theories; 

• to verify a new theory or model. 

All three perposes are directed towards the natural scientist or engineer, so visualization 
is an inherent interdisciplinary endeavour from the perspective of a computer scientist. In 
the natural and engineering sciences, three types of numerical variables make up nearly 
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Figure 27.1. Visualization transforms data into images. Here, tensor data together with 
geometry is transformed into a computer generated image. 

all numerical data: scalars, vectors, and tensors. Typical examples for scalar variables are 
temperature, pressure, density, and electrical charge. Vector variables are velocity, vor-
ticity, magnetic field, electric field, force, and any kind of scalar gradient like temperature 
gradient. Tensor variables describe for example stress, strain or rate of deformation (in 
fluids). There are a lot of good visualization concepts for scalar data like colorimng, height 
fields, conturing, and volume visualization, but we like to concentrate in this chapter on 
vector and tensor data. A practical description of all kinds of visualization algorithms 
can be found in [49]. 

27.2. VISUALIZATION P R O C E S S 

The transformation of data into images is a process with three steps, usually described 
as a visualization pipeline. A typical model is given by the three intermediate steps in 
Figure 27.2. The data generation phase stands outside the visualization process. It 

Figure 27.2. The visualization pipeline. 
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means the creation of numerical data by simulation, measurements during experiments or 
observation of natural phanomena. The data enrichment and enhancement phase 
modifies the data to reduce its amount or improve the information content. Domain 
transformations, interpolation, sampling, and noise filtering are typical operations in this 
phase. The visualization mapping section is the heart of the whole transformation. 
The application data is mapped to visual primitives and attributes. This chapter will give 
an overview of successful techniques for vector and tensor data. The rendering phase 
does the usual computer graphics operation of creating an image on the screen from the 
graphics primitives and attributes combined with a camera model, lighting operations, 
anti-aliasing filtering, and hidden surface removal. Finally, the display phase shows the 
image on the screen or prints it on paper. 

27.3. DATA SET T Y P E S A N D I N T E R P O L A T I O N M E T H O D S 

The data sets in visualization consist usually of two parts. The first part contains the 
grid and the second part data values associated with the grid. In our case the data values 
will always be vectors or tensors. The types of the data sets are not determined by the 
visualization process, but by the data generation process. This is an important issue 
for every visualization that takes places, especially since the data is usually discrete and 
an interpolation has to take place for all but the simple point-based direct visualization 
methods. 

In numerical simulations, two types of algorithms still produce most of the data, finite 
difference and finite element methods. Both create a set of points, vertices, and associate 
the data in most cases with these points. Besides this, a grid consisting of a large number 
of cells is created. Each cell contains a small number of vertices. The cells do not intersect 
except at their boundaries and all cells fill the domain of the simulation. Finite difference 
methods prefer regular grids like cartesian and rectilinear grids, sometimes deformed into 
so-called structured grids by a mapping from a cartesian computational domain into the 
physical domain where the simulation is defined. Figure 27.3 gives a typical example. 
Finite element methods are more flexible, since they allow different kinds of cells in one 

Figure 27.3. A typical structured grid used for a CFD simulation. 



686 CHAPTER 27. VECTOR AND TENSOR FIELD VISUALIZATION 

simulation and are able to fill complex geometries with cells. Typical cell types are given 
in Figure 27.3. A grid is called unstructured, if the cell neighbors are not given implicit 

Figure 27.4. Linear two-dimensional and three-dimensional finite elements. There are 
also non-linear elements with additional points at edges, faces and in the center. 

by the indexing of the cells as it is possible for example for cartesian grids. There is a 
large variety of interpolation functions available, most often coupled with the cell types. 
Surveys on this topic are found in introductionary texts on finite element methods [3,37]. 
Grid types in numerical simulations can be a lot more complicated by overlapping grids, 
several grid blocks with diff'erent grid types and multilevel techniques. A nice survey about 
grid types is given by [21]. Data sets from measurements or experiments are often regular 
since they are the result of image-generating processes like computer tomography (CT). 
If they come from other sources, scattered data is a typical type. Before a visualization 
can take place, one has to do scattered data interpolation. A description of this research 
area can be found in the chapter on Scattered Data Techniques in this handbook. 

27.4. D I R E C T M A P P I N G S TO G E O M E T R I C PRIMITIVES 

The easiest way to create a visualization with the computer is to map the data values 
to geometric primitives. These primitives are collected into a scene that is presented by 
standard computer graphics techniques. If you are not familiar with computer graphics, 
you may consult a computer graphics textbook [17]. These direct visualization methods 
can be distinguished by the domain of information that each primitive represents. We will 
discuss point-based, line-based, surface-based, and volume-based methods in this section. 

27.4.1. Point-based methods 
Vectors and tensors are mathematical constructions with a strong physical background, so 
many elementary techniques show this heritage. The easiest techniques are hedgehogs. At 
one or more positions, usually where the discrete data is given, one shows a single graphical 
primitive representing the vector or tensor. For vectors, arrows are the common choice 
as in the left image of Figure 27.4.1. For symmetric tensors, tripods of the orthogonal 
eigenvectors give one typical way as can be depicted from the right image in Figure 27.4.1. 
Since the length of the three line segments can only indicate the absolute value of the 
eigenvectors, color is used to indicate the sign of the eigenvalues. Here, red indicates 
positive eigenvalues and green stands for negative eigenvalues. In case of only positive 
eigenvalues, ellipsoids are another typical choice. Glyphs give only information about 
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Figure 27.5. Left Image: Arrows or short line segments are a vary old technique to show 
vector data at a single point. Right Image: Tripods consisting of the three eigenvectors 
can be used to show tensor data at one position. 

the data at a point. It is possible to include also gradient information. The local flow 
probe [13] gives a nice example by including the local streamline with curvature, torsion, 
divergence, and curl in the presentation of the vector data. 

27.4.2. Line-based methods 
This second kind of methods has an one-dimensional spatial domain. For vector fields, 
they are all based on integral curves. Let 

V.R^DD -^ R^ (d = 2or3) 
X 1-̂  v{x) 

(27.1) 

be a d-dimensional, steady vector field over a domain D as in section 3. An integral 
curve of v through a £ D, 

c: RD {a,/3) -^ D, 11-> c(t), a < 0 < 

fulfils the two conditions 

(27.2) 

c(0) = a (27.3) 

(27.4) 

The calculation is typically based on a numerical method for ordinary initial value prob­
lems, like Euler method, Midpoint-Rule, Runge-Kutta-Fehlberg methods or Predictor-
Corrector methods [46], sometimes with adaptive stepsize control to maintain given error 
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Figure 27.6. Integral curves are a simple, but effective line-type technique to show vector 
data. 

bounds. Therefore, one calculates points on the curve which can be connected by line 
segments or small tube elements which leads to pictures like Figure 27.4.2. If one wants 
to include neighboring information in three-dimensional vector fields, one can compute 
a second close streamline to form a ribbon [6]. This can be improved by calculating the 
curvature of the streamline [61], since the two streamlines of the ribbon may diverge. The 
stream polygon [50] provides another concept for including information about a three-
dimensional vector field along an integral curve. By rotating and shearing the polygon, 
one can visualize rotation and rate of deformation, for example in fluid flows. Very nice 
visualizations of integral curves can be generated by using an illumination model for 
curves. This has been demonstrated by Zockler, Stalling and Hege [64]. Nielson and Jung 
[38] give an overview over efficient techniques for the computation of integral curves over 
tetrahedral meshes that allow an exact solution of the problem if linear interpolation is 
used. The formulation in barycentric coordinates simplifles the calculations in this case. 

In the tensor fleld case, Dickinson [16] introduced the concept of a tensor line which 
corresponds to the integral curves of vector fields. Let 

T'.R^Z)D-^R^xR^ x ^ \ : *•. : I (27.5) 

be a symmetric tensor field over the domain D. At each position x E D, there are in 
general d real eigenvalues Ai > . . . > Â  and d orthogonal eigenvectors e i , . . . ,6^ with 
T{x)ei — XiCi. This defines d eigenvector fields 

Ei.D ^ R^, (27.6) 

X l -^ Cj . 

A tensor line of the z-th eigenvector field of T through 6 G D is a curve d \ (7, (̂ ) -^ D^ 
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11-^ d{t), J < 0 < 6 with the following two conditions: 

d{0) = b 
dd 

dt 
{t)Aei{d{t)) = 0 , 

(27.7) 

(27.8) 

i.e. the tangent of d is at every position parallel to the i-th eigenvector. Since this 
definition is far less known than than the integral curves above, Figure 27.4.2 illustrates 
this idea in two dimensions. Besides steady data, there is also unsteady data. Usually, 

Figure 27.7. Tensor lines indicate the direction of maximum, medium or minimum forces, 
stress or strain. In this example, the tensor lines follow the maximum rate of strain. 

one will be given data at discrete timesteps with fixed or moving positions as mentioned 
in section 27.3. From experimental flow visualization techniques, one has copied four 
diff'erent line-type methods [28,29]. Let 

v:Dx [ro, r^] -^ R^, (x, r ) H^ V{X, T) (27.9) 

be an unsteady vector field. A pathline of v through a G D at f G [rcr^j] is a curve 
V- ['̂ 0, ^n] —> R^^ T -̂)• P{T) with the conditions 

p{f) = a (27.10) 

^ ( r ) = V{P{T),T). (27.11) 

A pathline models the movement of a particle in the field (for example a positively charged 
particle in an electrical field). For velocity fields in fluid flows, one uses also timelines and 
streaklines. 
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A timeline is created by starting a line of colored dye particles in a windtunnel at one 
moment and tracing it by photographs. Mathematically, a timeline at time f of v defined 
by a curve c: RD I ^ R^ a^t timestep TQ is a curve 

t:I^R^, a^Pcia),to{r) (27.12) 

where 

Pc{a),to :[ro,Tn]^R'^ (27.13) 

is a pathline of v through c{a) at times TQ. 
A streakline arises by inducing continously dye into a fluid flow from a fixed position. 

More formal, a streakline of v through a point a G D is a curve 

s : [ro, Tn] --^R\ r ^ Pa^rn) (27.14) 

where 

P a , r : [ r o , r , ] - ^ i ? ^ (27.15) 

is a pathline of v through a at time r . Besides these two special cases for fiuid dynamics, 
one uses also instantaneous integral curves in unsteady vector field visualization, i.e. 
integral curves of the vector fields 

Vr'-D ^ R^,x^ v{x, r ) , (27.16) 

especially r = TQ, . . . , r^. Interestingly, there has not been much research on the line-type 
time-dependent methods for tensor fields. 

27.4.3. Surface and volume-based methods 
Besides point-based and line-based methods, several people have also tried surface and 
volume-based approaches. Computational Fluid Dynamics (CFD) is again a dominant 
application area. From there, the idea of a stream surface has been taken by Hultquist 
[26]. Let V : R^ -^ R^, X \-^ v{x) be a steady vector field. A stream surface S oiv defined 
by a curve c \ [a, P] ^ R^, a ^^ c{a) is a map 

S : [a, 13] X (7, (̂ ) ^ i?^ j<0<S (27.17) 

(cr,r) h-> S{a,T) (27.18) 

with 

S{a,0) = c{a) (27.19) 

^ia,T) = v(S{a,T)). (27.20) 

In other words, a stream surface consists of all integral curves of v defined by the points 
on a continuous curve. Hultquist's algorithm traces several integral curves from points on 
the defining curve and interpolates between them by triangles. If two neighboring integral 
curves become closer than a threshhold, he stops one of the traces. If two neighboring 
integral curves diverge, he introduces an additional trace to keep the triangles (and the 
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error) small. Van Wijk [60] has published a different algorithm based on local implicit 
surface pieces. There is less experience with surface techniques for tensor fields so far. 

There are only a few volume-based visualization techniques for vector fields and tensor 
fields. We mention tridimensional line integral convolution (3D LIC) in the section about 
texture-based methods. Some people have applied sucessful scalar data methods like 
volume rendering on vector fields. An early example based on filters and textures has 
been presented by Crawfis and Max [9]. It uses textures to create the impression of a 
large number of moving short line segments (arrows, splats) in the volume. It can also be 
seen as a texture-based technique. Several people have looked at using volume graphics 
approaches to vector fields, usually using derived scalars like components, magnitude or 
rotation magnitude, see Crawfis et al. for a nice example [10]. There are also successful 
attempts to use a large number of particles moving in a vector field creating virtual smoke 
[33,24]. 

27.5. A T T R I B U T E M A P P I N G S 

Besides the mapping to geometric primitives, one can also use attributes of computer 
graphics primitives to visualize the data. Color is probably the oldest attribute, but it 
is not easy to use for vector or tensor data, if one wants to show the whole data and 
not only a derived scalar like magnitude or component. Other attributes offer better 
possibilities. Texture is a well-known standard computer graphics method to show fine 
details without geometric modeling of the detail information. Essentially, it is the mapping 
of a picture on geometry, typically polygons. It was first developed by Catmull [8]. The 
maximal information content of textures with respect to the screen resolution make them 
attractive for visualization purposes. Spot noise by van Wijk [59] is an early example. 
The basic underlying idea is that a large number of particles leads to textures because the 
individual particles can not be distinguished. For the visualization of vector fields, small, 
randomly placed ellipsoids are used with eccentricity proportional to the magnitude and 
the longer axis aligned with the vector direction. Spot noise influenced the most popular 
texture based visualization algorithm, line integral convolution (LIC), invented by Cabral 
and Leedom [7]. LIC starts with a white noise texture of grey values and smears the 
grey values along the integral curves. This enhances the color correspondence in the 
direction of the vector field and leads to nice vector field visualizations, see Figure 27.5. 
The smearing effect is created by convoluting the pixel values along the integral curves. 
Stalling and Hege [53] have given a very fast and efficient implementation which is often 
used in applications. A comparison of LIC and sport noise has been published by de 
Leeuw and van Liere [11]. Due to its success for steady fields on rectilinear grids, many 
people have tried to extend LIC to other data set types. Forssell and Cohen discuss 
curvilinear surfaces [18], Battke et al. arbitrary surfaces [5]. Several people have worked 
on animation of textures and dye (color) advection to apply LIC to unsteady vector fields. 
Shen, Johnson, Ma [51] use color to animate the texture. The convolution filter can also be 
used, as is demonstrated by the unsteady flow line integral convolution (UFLIC) algorithm 
by Shen and Kao [52]. The application of LIC to three-dimensional vector fields has been 
tried by several authors, but due to the complexity of three-dimensional textures, this is 
a difficult endeavour. One needs a lot of hints for the eyes and research into perception 
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Figure 27.8. Line integral convolution allows the description of fine details. In some of 
the corners where no movement is present in the fluid, one can still see the original white 
noise. 

is necessary to find good tricks to do this. Interrante et al. have done research in this 
direction [27]. 

27.6. S T R U C T U R E A N D F E A T U R E B A S E D M A P P I N G S 

Visualization creates meaningful images to the user to understand his data. Since the 
whole data is in digital form, it makes sense to use the computer to look for structure 
elements and specific features, once a precise definition is given. For vector and tensor 
fields, topology provides a clearly defined mathematical framework with high application 
relevance. Topology extraction and visualization is therefore a good way to concentrate 
information about the data or enhance the presentation to the scientist or engineer working 
with the data. We review the history and state of the art in the first two subsections. For 
many interesting aspects of data sets, there are mathematical formulations, often many 
with partly contradicting content. These formulations can be taken as basis for feature 
extraction algorithms. The results of these algorithms are visualized. Examples are given 
in the last subsection. 

27.6.1. Vector field topology 
Integral curves of steady, Lipschitz-continuous vector fields as introduced in section 27.4.2 
exist through every point and are unique. This follows from the well-known Picard-
Lindelof theorem of ordinary differential equations. Therefore, the whole domain is filled 
with curves, so one can analyze the topological behavior of all these curves. The general 
idea of topological methods is to group all curves together that can be continuously 
deformed into each other. Such curves all called homotop in topology. The first step is 
to identify all potential start and end points (sets) of integral curves. More formally, let 
Ca : R ^ D he 8in integral curve through a e D oi a, vector field v : R^ D D ^ R^. The 
Q!-limit set of Ca is the set 

A = {pe D\3{Tn)Z, CR.Tn^ -(X), lim Ca{rn) ^ p} , (27.21) 
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and the cj-limit set of Ca is 

n = {pe D\\3{Tn)^^o CR,Tn-^ OC, lim Ca{Tn) -^ p} . (27.22) 

{D denotes the closure of the domain D.) The most popular case for ^ or Q is a critical 
point {p} with v{p) = 0. Points of the domain boundary dD can also act as a- or 
cj-limit set. Further possibilities are closed integral curves, tori and so-called strange 
attractors/repellors that do not fit into the other categories. These results belong to the 
theory of dynamical systems. An excellent comic-style introduction is given by Abraham 
and Shaw [1], more formal texts are also available [25,20]. 

If all potential a- and cj-limit sets are found , the boundaries of the regions consisting 
of homotop curves are calculated. These curves in two dimensions resp. surfaces in three 
dimensions are called separatrices. Details on their computation can be found in the 
articles cited below. For two-dimensional vector fields, Helman and Hesselink did pioneer 
work in this area [22,23]. They treated exclusively critical points. Nielson et al. give 
a nice description including the use of barycentric coordinates [40]. A clear treatment 
of the boundary can be found in an article by Scheuermann et al. [48]. Figure 27.6.1 
illustrates the difference between the two approaches. The detection and analysis of 
closed integral curves has been finished by Wischgoll and Scheuermann just recently [62]. 
An example is presented in Figure 27.6.1. Since strange attractors and repellors do not 

Figure 27.9. The inclusion of the boundary is necessary in this academic example to find 
the classes of homotop integral curves. 

appear in generic planar vector fields as a result of a famous theorem of Peixoto [44], the 
planar topology visualization is now complete for vector fields. In three dimensions, one 
has dealt with critical points alone without defining the separating surfaces that replace 
the separating curves from the two dimensional case [19]. Another aspect of topology 
visualization is the simplification of the topological structure. Especially in turbulent 
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Figure 27.10. There may be closed integral curves in a data set. They play a role similar 
to critical points in vector field topology. As can be seen here, closed integral curves may 
be inside each other. 

velocity vector fields, the number of critical points and separatrices is so high that a 
depiction of the field is diflScult. Nielson et al. [39] used wavelet transforms of the vector 
field to reduce its structural complexity. This work has been extended to a nice treatment 
of wavelets over curvilinear grids [41] which opened the way for the use of multiresolution 
visualization techniques for this important class of data sets. De Leeuw and van Liere 
[12] simplified the topological graph consisting of critical points and separating points at 
the boundary as vertices and separatrices as edges using topology based rules without 
changing the underlying vector field. Tricoche, Scheuermann and Hagen [55] simplified 
the vector field topology by merging critical points into higher order critical points, see 
Figure 27.6.1. Lodha et al. [32] maintain the topology as long as possible while reducing 
the information content of the remaining vector field. Vector Field Topology can also 
be used to compare different fiows. One needs a measure for the similarity of different 
topologies. Lavin, Batra and Hesselink have used the earth mover's distance to compare 
the critical points in the field [30,4]. 

27.6.2. Tensor field topology 
The success of the vector field topology visualization led Delmarcelle and Hesselink [14] to 
analyze the structure of symmetric second-order tensor fields. The basic idea is exactly the 
same as for vector fields, one looks for homotop integral curves — in this case tensor lines. 
The role of the critical points is now filled by the so-called degenerate points. At these 
points, the tensor field has two equal eigenvalues, so there is no unique tangent given by 
the eigenvectors and one can not define a tensor line through these points. Separatrices 
can be defined again, but due to the difference between tangents and vectors (vectors 
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Figure 27.11. The topology of turbulent vector fields can be rather complicated. It is 
possible to scale the topology to allow a simpler depiction of large scale structures. 

define an orientation), one gets different patterns, see Figure 27.6.2. 
Lavin, Batra and Hesselink [31] extended some of these ideas to three dimensions, but 

as in the vector case, there is still no complete algorithm for tridimensional topology 
visualization of symmetric tensor fields. Tricoche, Scheuermann and Hagen [56] show the 
simplification of tensor field structure based on the fusion of degenerate points of higher 
order. 

27.6.3. Feature detect ion algorithms 
"A feature is defined as anything contained in a data set that might be of interest for 
interpretation" [47, p. 15]. This vague definition comes from the broad variation of 
application areas and the different measurement and simulation methods. The main point 
is that a feature must be local with respect to the data set domain, so that algorithms 
always try to find the domain feature. An excellent overview in the area of fiuid flows is 
given by Roth in his recent Ph.D. thesis [47]. Delmarcelle and Hesselink [15] distinguish 
features by the dimension of the feature domain. This leads to point, line, surface and 
volume features. The critical and degenerate points from subsections 27.6.1 and 27.6.2 
are typical examples for point features. Again, fluid flow applications dominate this 
research area up to now. Vortex cores [42,2,54,36] are typical line features describing the 
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Figure 27.12. The topology of tensor fields shows different patterns than vector field 
topology because the eigenvectors do not define an orientation. The image shows a tensor 
field topology of the rate of deformation tensor in a swirling jet simulation. 

"center" of a vortex in three dimensions. Shock fronts [43] are surface features where 
a physical property like pressure is not continous. It is often found by looking for high 
absolute values of the gradient. Volume features are often defined as all points with all 
points above or below a threshhold of a scalar function. This scalar function may be 
derived from a vector field like the absolute value of the vorticity vector field [63]. A 
general, application-independent approach based on these ideas to feature extraction and 
visualization has been shown by Post and Silver, together with several coworkers. It is 
mainly directed towards scalar fields, but it marks a way for further research for feature 
extraction in vector and tensor fields [57,58]. 
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Chapter 28 

Splines over Triangulations 

Frank Zeilfelder and Hans-Peter Seidel 

28.1. INTRODUCTION 

In the past 35 years, many research papers have been written on bivariate, respectively 
multivariate splines. This work has been motivated in many cases by the aim to develop 
powerful tools for fields of application, such as scattered data fitting, the construction 
and reconstruction of surfaces and the numerical solution of boundary-value problems. 

A natural generalization of the classical univariate spline spaces (cf. [16,87,112]) which 
has been widely considered in the literature is defined w.r.t. triangulations (i.e. a finite 
set of closed triangles in IR̂  such that the intersection of any two triangles is empty, a 
common edge or a common vertex). For given integers r, q, 0 < r < q, the space of 
bivariate splines of degree q and the smoothness r with respect to A is defined by 

5;(A) = {s € C^(fi) : sir € n „ T 6 A}, 

where 

n^ = span{x^y^ : i, j > 0, i -h j < q} 

is the space of bivariate polynomials of total degree q. Many research papers on bivariate 
splines deal with certain subspaces of 5J(A), the so-called super splines . Suppose that 
Pi, z = 1 , . . . , y , are integers satisfying r < pi < q, z = 1 , . . . , F, and let ^ = (pi , . . . , pv), 
where V is the number of vertices of A. The space of bivariate super splines with respect 
to A is defined by 

Sf{A) = {s€ SUA) : 5 € C'ivi), i = l,...,V}. 

In contrast to the case of univariate splines, even standard problems such as determining 
the dimension and the approximation order of bivariate splines and constructing explicit 
interpolation schemes for these spaces are diflScult to solve. In particular, these spaces 
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are very complex when the degree q approaches the smoothness r, which is one of the 
fundamental phenomena in bivariate spline theory . 

The aim of this survey is to summarize results on splines over triangulations. We 
organize the paper as follows. 

In Section 28.2, we survey results on Bernstein-Bezier techniques, which are important 
for CAGD applications. In the context of bivariate splines these techniques provide a 
useful tool for analysing the structure of these spaces. Section 28.3 deals with the dimen­
sion of bivariate spline spaces. In contrast to the univariate case, the dimension of these 
spaces is not known, in general: the most general results are lower and upper bounds. 
In Section 28.4 and 28.5, we discuss interpolation by bivariate spline spaces <S, where 
S can be the space S^{A) as well as a super spline space 5J'^(A). A set {zi,...,Zd} 
in Q, where d = dim «S, is called a Lagrange interpolation set for S if for each function 
/ G C(Q), a unique spline s £ S exists such that s{zi) = f{zi), z = 1, . . . , c/. If also partial 
derivatives of a sufficiently differentiable function / are involved and the total number of 
Hermite conditions is d, then we speak of a Hermite interpolation set for S. In Section 
28.4, we discuss classical finite elements and their modern generalizations, the so-called 
macro element methods , which lead to Hermite interpolation by super splines. Hermite-
and Lagrange interpolation methods for bivariate spline spaces S^{A) are summarized in 
Section 28.5. Most of these methods have been developed recently, in particular local 
Lagrange interpolation methods for C^ spline spaces . A different method for analysing 
splines over triangulations is based on so-called multivariate B-splines . This approach is 
described in Section 28.6. 

28.2. BERNSTEIN-BEZIER TECHNIQUES 

In this section, we describe Bernstein-Bezier techniques. These methods are important for 
applications in CAGD (cf. [13,55,66]). In the context of bivariate splines, these techniques 
appear to play a fundamental role for mainly two reasons. First, since the Bernstein-Bezier 
representation of the polynomial pieces is used in many research papers to analyse the 
structure of the spline space. And second, these techniques allow an efficient and stable 
computation of bivariate splines. 

Let T — [to,ti,t2] be a triangle with vertices to,ti,t2 in IR .̂ Given a point u G IR̂  
there exist unique scalars Ao(u), Ai(u), A2(u) such that 

u = ^ A i ( u ) t i and ^ A i ( u ) = l. 
1=0 i=0 

The coefficients A = (Ao,Ai,A2) are called barycentric coordinates . Given T, the Bern­
stein polynomials B^'^ G Uq of degree q w.r.t. T are defined as 

The unique representation 

p(u) = ^ Bl''(u)6„, u € IR^ (28.1) 
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of a polynomial p E Ug is then called the Bernstein-Bezier representation of p and b^ G 
IR are called the Bernstein-Bezier coefRcients of p. The value p{u) can be computed 
recursively by applying the so-called de Casteljau algorithm, which reads as follows: 

\a\=:q-l 

where b^{u) = ba, \a\ = q, and 

2 

bl(u) = J2 Kivi)b'-lMh / = 1 , . . . , 9, |a| = g - Z . (28.2) 

The Bernstein-Bezier representation of the polynomial pieces of a spline from S'J(A) can 
be used to translate C^ smoothness (across common egdes) into useful conditions (cf. 
[17,24,53]). Let To = [to,ti,t2] and Ti = [ti,t2,t3] be triangles with common edge 
[ti,t2] and 5 be a function that is given in the piecewise polynomial Bernstein-Bezier 
representation: 

S|T,(U) = Y^ 5j"^(u)6,>, u G Ti, z = 0,1 , 
\a\=q 

where 6̂ ,̂  ^ IR- Then, s e 5J({To,Ti}) holds if and only if: 

&l,̂ +pe3 = J2 ^?''(t3)^>0,a-f^, P = (A, ^2, 0), |^| = ^ - p, p = 0, . . . , r. (28.3) 
\a\=p 

These conditions can be checked by running the Casteljau algorithm for the polynomials 

P,{U) = Y 5?'^(u)6o,a+^ 
\a\=p 

at u = ts- If 0? is a unit vector in direction of the edge D = [to,ti], then the partial 
derivative ^ of the Bernstein polynomials B^'^, \a\ = q, w.r.t. T = [to,ti,t2] is given 
by 

^ ^ ^ ^ - T^Jm E Brid)B-J-\-)^ u G IR^ 

Analogously, if di are unit vectors in direction of the edge Di ~ [tct^+i], / = 0,1, then 
the following formula holds for u G IR :̂ 

Hence, the partial derivative ^* ^ j of a polynomial p in the representation (28.1) fulfills 
C / U Q Cfd 2 

for u G IR :̂ 

^ = (.-.-.),||l||.||z>.|, E E E 5j"(do)S- .^(dOBr-7(u)6„ , (28.4) 
\a\=q\0\=i\'y\=j 



704 CHAPTER 28. SPLINES OVER TRIANGULATIONS 

which can also be computed by applying the de Casteljau algorithm. Moreover, evaluating 
(28.4) at u == to yields 

d'+Jp{to) ^ q\{-iy+J 
d4dd{ ~ {q-i-jy.\\Do\nDi\\jZ^Z^{l){i)i ^y ^^q-u-n,u,^ 

This formula expresses the connection of partial derivatives at the vertices and the 
Bernstein-Bezier coefficients and therefore plays an important role for constructing in­
terpolation sets for bivariate splines (cf. [17,27,93,130]). For further results on Bernstein-
Bezier techniques and multivariate polynomials, we refer the reader to [12,17,18,24,37,53-
55]. 

We finally note that polynomial surfaces were also studied with the help of a classical 
tool, the polar form [22,106,119]. Given a polynomial F G 11 ,̂ the corresponding multiaffin 
polar form is defined as the unique symmetric multiaffine map / : (IR )̂̂  \-^ IR satisfying 
/ ( u . . . u) = F{u). Given F G 11̂  in its monomial form 

F(u) = J2 "'.̂ ^V^ 
i-\-j<q 

where u = (x, y), the corresponding polar form is given as 

/ ( U i . . . U,) = ^ ^"^a^^^a, Yl n ,€S ,X ,n ,^s^y , , 
\a\=q Si,S2C{i,...,q}, S inS2=0, 

|5 i l=Qi , |S2l=a2 

where Uj = (xj, y j , z = 1 , . . . , g. We remark that among other things, polar forms provide 
an expression for the Bezier points 

they provide a closed form solution for the de Casteljau recurrence (28.2) 

b'a(^) = /(ctrt^^u'), 
and they make it easy to phrase the above smoothness conditions (28.3). 

28.3. DIMENSION OF SPLINE SPACES 

In 1973, the following question was posed [128]: what is the dimension of 5J(A)? Clearly, 
results on the dimension of spline spaces play an important role for the whole theory. But 
in contrast to the case of univariate splines, investigations on the dimension of bivariate 
splines yield to complex mathematical problems. In principle, the only exception is the 
case r = 0, i.e. continuous spline spaces , where the dimension can be easily found 
(cf. [113]). For r > 1, this problem becomes highly non-trivial, and has not been yet 
completely solved. In this section, we summarize the results concerning this subject which 
were given for arbitrary triangulations and for classes of triangulations . For doing this, 
following [7], we set: V/ = number of interior vertices of A, VB = number of boundary 
vertices of A, E/ = number of interior edges of A, N = number of triangles of A. 
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Given an arbitrary triangulation A, the most general results concerning the dimension 
of bivariate splines are lower and upper bounds. In 1979, the following lower bound [113] 
was given: 

dzm 5;(A) > C f ) + Cl+i)^ ; , - iCf) - C f ))K, + f ^ a , . (28.5) 

Here, the ai are integers depending on q, r, and the number of edges with different slopes 
attached to the z-th interior vertex of A. 

Clearly, the dimension of a spline space is determined if an upper bound can be given 
that coincides with the lower bound (28.5). In order to establish such an upper bound n, it 
follows from a standard linear algebra argument that it suffices to construct suitable linear 
functionals Â , i = l , . . . , n , with the property: if Aj(s) = 0, 5 G 'S'J(A), i = l , . . . , n , 
then 5 = 0. Upper bounds [114] of the following type were developed: 

d^m SUA) < C f ) + ri^')Ej - ( ( ' f ) - Cf ) )F , + f ^ a . 

where di are integers depending on ^, r, and the ordering of the interior vertices (see 
also [107]). Bounds of the above type also hold for spline spaces with respect to more 
general partitions than triangulations, the so-called rectilinear partitions [79,114], and 
such bounds were also given for super spline spaces and for spline spaces in more than 
two variables [2]. 

However, it is known that the upper bounds do not coincide with the lower bound 
(28.5), in general. In fact, there are cases where the dimension of a bivariate spline space 
is larger than the lower bound (28.5). This was first observed [86] by considering the 
space SI{AMS)^ where AMS is the triangulation as in Figure 28.1. The dimension of this 
spline space is equal to 7 if AMS fulfills certain symmetry properties [127], and otherwise, 
SHAMS) coincides with 02- Thus, this example shows that the dimension can depend 
on geometrical properties of the whole triangulation. In general, such dependencies can 
appear if the degree q is nearby the smoothness r (see [23,51]). 

Figure 28.1: Morgan-Scott example: the dimension of S^iAMs) depends on the geometry of 
AMS-

We proceed by describing cases where the dimension of 5J(A) is known for arbitrary 
triangulations A. 

In 1975, the dimension of 5^(A), g' > 5, was determined [85] by constructing a nodai 
basis which is based on Hermite interpolation by these spaces. The following formula 
holds for an arbitrary triangulation A: 

dim Sl(A) = {'^f)N - {2q + l)Ej + 3Vi ^ a, q > 5, (28.6) 
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where a denotes the number of singular vertices, i.e. interior vertices of A that have only 
two edges with different slopes attached to it. For C^-spline spaces, ai = 1 in (28.5) holds 
if the corresponding vertex is singular, and in all other cases Gi = 0. Therefore, it follows 
from Euler's formulas 

EJ = 3VI + VB-3, N = 2VJ + VB-2 , 

that (28.6) coincides with the lower bound (28.5). This result was extended [3] to spline 
spaces 5J(A), q > 4r-\-l,hy coupling the investigations [115] on splines defined on a star 
(i.e. a set of triangles having one common vertex) with the methods developed in [6,7]. 
In these research papers the concept of minimal determining sets was introduced: given 
a set T> of linear functionals defined on <S C 5°(A), a set A^ C X> is called a minimal 
determining set for <S provided that setting Xs for all A € AI uniquely determines s G <S. 
In order to construct such minimal determining sets for spline spaces, the Bernstein-Bezier 
techniques described in Section 28.2 turned out to be useful, since the Bernstein-Bezier 
coefficients of the polynomial pieces of a bivariate spline can be understood as linear 
functionals. In this approach one takes advantage of the fact that this type of linear 
functionals is directly connected to the smoothness conditions of the space via (28.3). 

In 1991, the dimension of 5J(A), q > 3r -\- 2, was determined [65] for arbitrary tri-
angulations A. This result was generalized [67] to super spline spaces of degree at least 
3r -h 2 (see also [27]). Again, in these cases the dimension of the (super) spline space 
coincides with the corresponding lower bound. These results are achieved by using local 
arguments, i.e. vertices, edges and triangles were considered separately. In particular, 
it was shown that in these cases a basis of star-supported splines exists. On the other 
hand, it is known that such a basis does not generally exist if ^ < 3r 4- 2 and r > 1 (cf. 
[5]). A result [20] which is connected with this fact was given earlier, where it is shown 
that in this case the spline spaces are defective in the sense that they do not give optimal 
approximation order (see Section 28.4), in general. Otherwise, i.e. in the case ^ > 3r + 2, 
optimal approximation order was shown in several papers by using different methods and 
by analysing different aspects (cf. [19,31,48,74]). 

But the problem of finding an explicit formula for the dimension of 5J(A), q < 3r -\-
2, r > 1, w.r.t. arbitrary triangulations A remains open. The only exception known 
from the literature is the space 54(A). In 1987, it was shown [7] by using arguments from 
graph theory which are not purely local that the following formula holds for any A: 

dim.Sl{A) = 6V + a-3. 

Again, this number coincides with the lower bound (28.5). 

Figure 28.2: A degenerate edge e attached to the vertex vi. 
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One case of particular interest in spline theory is the case of cubic C^ splines, since it 
can be seen from the lower bound (28.5) that its dimension must always be larger than 
the number of vertices of A. This is in contrast to the case 5](A) , where the lower bound 
(28.5) equals VeH-aH-S. The literature shows that the structure of the space »S'3(A) is very 
complex. In fact, at the time of writing of this survey it is still unknown if the dimension 
of 5'3(A) is always equal to the lower bound 3VB + 2V/ + a -f 1, which has been widely 
conjectured. By using a homological approach [11] it was shown that this conjecture holds 
generically. In addition, the above conjecture holds for general classes of triangulations. 
In connection with an interpolation method it was proved [47] that the dimension of 5*3 (A) 
equals the lower bound (28.5), when A is contained in the natural class of nested polygon 
triangulations (see Section 28.5 ). Moreover, a numerical algorithm for determining the 
dimension of 53 (A) was discussed in [60]. 

Figure 28.3: The uniform type triangulations A \ i — 1,2. 

We proceed by describing results on the dimension of spline spaces w.r.t. general classes 
of triangulations. 

The dimension of Sl^^i{/S), r > 2, was determined [4] for the general class of non-
degenerate triangulations A, i.e. triangulations that do not contain degenerate edges (see 
Figure 28.2). 

Figure 28.4: A crosscut partition. 

Moreover, results on the dimension for uniform type triangulations exist in the liter­
ature. These are A^ and A^ triangulations, i.e. triangulations as in Figure 28.3. The 
dimension of such type of spline spaces, and more generally for so-called crosscut par­
titions (see Figure 28.4), was determined for arbitrary q and r [28,29] (see also [114], 



708 CHAPTER 28. SPLINES OVER TRIANGULATIONS 

and for so-called quasi crosscut partitions [80]). For these spline spaces a basis consist­
ing of the polynomials , truncated power functions and so-called cone splines exists. If 
such triangulations become non-uniform, i.e. the length of the edges of the underlying 
quadrangulation are allowed to be different, then the dimension is known in the cases 
r - 1, q>2, (for A^) and r G {1, 2}, q > r-\-1, (for A^). 

In the next two sections, we describe interpolation methods for bivariate (super) splines. 
We finally remark that the dimension of the spline spaces considered there is always 
determined. 

28.4. F I N I T E E L E M E N T A N D M A C R O E L E M E N T M E T H O D S 

In this section, we describe classical finite element methods and its modern extensions, the 
so-called macro element methods. These are Hermite interpolation methods for bivariate 
splines, which for low degree splines are based on a suitable splitting procedure applied 
to every triangle or quadrilateral. 

We begin with the classical finite elements (cf. [99]). In 1968, a method [8] wa^ 
developed which is based on choosing a suitable spline space such that interpolation by 
bivariate polynomials on every triangle of an arbitrary triangulation A automatically leads 
to Hermite interpolation by C^ splines. In this method, the super spline space 55'^^ (A), 
where 61 = ( 2 , . . . , 2) is used and every polynomial piece in U^ is determined separately 
by interpolating function value, first and second-order derivatives at the vertices, and the 
cross boundary derivative at the midpoint of each edge (see Figure 28.5). This approach 
was generalized [132,133] to Hermite interpolation by the super spline spaces 5^'^'' (A), q > 
4r-h 1, r > 1, where 9r = ( 2 r , . . . , 2r) (see also [81]). A link between this classical method 
and modern Bernstein-Bezier techniques was given in [116] (for the special case S^' ^(A), 
see also [130]). 

Figure 28.5: The classical finite elements of Argyis, Fried-Scharpf, Clough-Tocher, Fraijs de 
Veubecke and Sander, and Powell-Sabin (from the left to the right): the Bernstein-Bezier coeffi­
cients determined by the interpolation conditions at the vertices are symbolized by black circles, 
the coefficients determined by the cross boundary derivatives are symbolized by grey circles, 
and the remaining coefficients determined by the differentiability properties are symbolized by 
white circles. 

In order to keep computational costs small, it is desirable in general, however, to use 
low degree splines in relation to the smoothness. The following classical methods have 
been developed for this purpose. The idea of these approaches is to modify the given 
partition, which can be a triangulation or a convex quadrangulation. In contrast to the 
finite element method described above, more than one polynomial piece is needed for each 
triangle or quadrilateral such that the method is local. These classical approaches lead 
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to Hermite interpolation by cubic and quadratic C^ splines. 
In 1966, a Hermite interpolation set for 5] ( A C T ) was constructed [34] (see also [32,33, 

52]) where A C T is a triangulation obtained from an arbitrary triangulation A by splitting 
each triangle T G A into three subtriangles, the so-called Clough-Tocher split. This 
Hermite interpolation set consists of function and gradient value at the vertices of A and 
the cross boundary derivative at the midpoints of all edges of A (see Figure 28.5). 

Another classical scheme [57,111] for cubic C^ splines works for triangulated convex 
quadrangulations (see also [72]). Such triangulations are obtained from a set of convex 
quadrilaterals by adding both diagonals to every quadrilateral. The corresponding Her­
mite interpolation set consists of function and gradient value at the vertices and the cross 
boundary derivative at the midpoints of all edges of the underlying convex quadrangula-
tion (see Figure 28.5). 

In 1977, quadratic C^ splines were considered [105] that interpolate function and gradi­
ent value at all vertices of an arbitrary triangulation A (see Figure 28.5). The splines were 
defined w.r.t. the so-called Powell-Sabin triangulation Ap^, which is obtained by splitting 
every triangle T G A into six subtriangles. Here, the splitting points are chosen such that 
each interior edge of A leads to a singular vertex of Aps (see Section 28.3). For fur­
ther results on the Powell-Sabin element and a modification of it, we refer to [40,63,110]. 
A multiresolution analysis based on quadratic Hermite interpolation using Powell-Sabin 
splits has recently been constructed in [36]. 

Figure 28.6: The macro elements of Lai-Schumaker (from the left to the right Sj' ( A C T ) , SJ' (A), 
55' (Aps))'- the Bernstein-Bezier coefficients determined by the interpolation conditions at the 
vertices are symbolized by black circles, respectively by a grey box, the coefficients that can be 
determined by cross boundary derivatives across the edges are symbolized by grey circles, and 
the remaining coefficients determined by the differentiability properties are symbolized by white 
circles. 

We proceed by describing modern extensions of the above classical methods to spline 
spaces of higher smoothness, the so-called macro element methods. These methods were 
developed by using Bernstein-Bezier techniques. In contrast to the above classical ele­
ments and the methods described in the next section, these extensions lead to interpolation 
by super spline subspaces. 

We start with the generalizations of the Clough-Tocher element. In 1994, Hermite 
interpolation sets were constructed [69] for certain super spline spaces 5 J ; ^ ( A C T ) , where 
r is odd and 5 J ^ ^ I ( A C T ) , where r is even. These sets consist of function value and 
derivatives up to a certain order at the vertices and suitable derivatives at interior points 
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of each edge of the given triangulation A. Later, this method was improved [76] by 
reducing the number of degrees of freedom. The corresponding Hermite interpolation sets 
for such splines contain, in addition, the function values and derivatives up to a certain 
order at the splitting points. An example of this construction is given in Figure 28.6. 

A generalization of Fraeijs de Veubecke's and Sander's method for splines on triangu­
lated convex quadrangulations was also developed [70]. The following cases were consid­
ered: 5J; (A) if r is odd, 5j;.^i(A) if r is even. Here, the components of ^ concerning the 
vertices of the underlying quadrangulation are ^ ^ if r is odd and y if r is even. The 
corresponding Hermite interpolation method is to interpolate function value and deriva­
tives up to order r H- [|] at the vertices and suitable derivatives at interior points of each 
edge of the underlying quadrangulation. For such type of triangulations A a quasi inter­
polation method for the space S^!^ (A), r > 1, was developed [75]. Earlier, the particular 
case Sg' (A), where pi G {2,3} was investigated [73]. In this case, the quadrilaterals of 
the underlying quadrangulation do not need to be convex and the super spline property 
appears only at certain interior vertices. Recently, macro elements for the above type 
of spline spaces were constructed [78] with the aim of removing certain degrees of free­
dom at the intersection points of the diagonals. This is done by assuming an additional 
supersmoothness at these points. An example of this construction is given in Figure 28.6. 

Now, we discuss generalizations of the Powell-Sabin element. In 1996, the triangulation 
Ap5 was considered [71]. This triangulation is obtained by applying the Powell-Sabin 
split to each triangle of a A^ triangulation (see Section 28.3) . There it is shown that the 
function value and the derivatives up to order r + [|] at all vertices of A^ build a Hermite 
interpolation set for the super spline space ^2^ (Ap^) if r is odd, 5*2̂ 4-1 (Ap^) if r is even, 
where 0 — (^ + [I], • • •, ^ + [§])• Later, Hermite interpolation sets were constructed [77] 
for lower degree super spline spaces with respect to Ap5. These sets contain, in addition, 
the function values and derivatives of a certain order at the splitting points. An example 
of this construction is given in Figure 28.6. 

We finally remark that it was shown that the constructions [75-78] yield to so-called 
stable, local bases, which implies that the associated spline space S has optimal approxi­
mation order, i.e., for each sufficiently differentiable / , 

dist{f,S) < Kh^^\ 

where h is the maximal diameter of the triangles and i^ is a constant depending on no 
other geometrical properties than the smallest angle in the corresponding triangulation. 
Such bases have also been constructed for (super) spline spaces of degree ^ > 3r -h 2 on 
arbitrary triangulations (cf. [31,45,74]). In this case, a Hermite interpolation operator of 
a super spline subspace that yields optimal approximation order, where the corresponding 
fundamental splines have minimal support was constructed in [48]. 

28.5. I N T E R P O L A T I O N B Y SPLINE SPACES 

Considering the results discussed in the previous sections, the natural problem of con­
structing interpolation sets for the spline space S'J(A) appears. In particular, since the 
Hermite interpolation methods described above cannot be transformed into Lagrange in­
terpolation on the whole triangulation straightforwardly, the question arises: how can 
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Lagrange interpolation sets for spline spaces be constructed? We note that concerning 
the construction and reconstruction of surfaces, it is sometimes desirable that only func­
tion values are involved and no (cross boundary) derivatives have to be estimated. For 
example, in many practical applications a surface is described by a linear spline on a fine 
triangulation (i.e. with many triangles), and an interpolating spline on a coarse subtri-
angulation can then be constructed by taking the Lagrange data directly from the linear 
spline. 

Since interpolation by splines is strongly connected with the problem of determining 
the dimension, the literature shows that it is a complex problem to construct explicit 
interpolation schemes for *S'J(A), and in particular for Lagrange interpolation. Indeed, 
there are cases where not even one single Lagrange interpolation set is known. However, as 
described below, many efficient interpolation methods were developed for splines of certain 
degree q and smoothness r w.r.t. certain classes of triangulations. Moreover, we mention 
that in contrast to the case of univariate splines, Schoenberg-Whitney type conditions do 
not characterize interpolation by bivariate splines : the natural multivariate analogue of 
such conditions [42,49] characterizes almost interpolation, but not interpolation (see also 
[124]). 

In this section, we summarize results on Hermite- and Lagrange interpolation by spline 
spaces. 

First, it is obvious that a Lagrange interpolation set for 5^(A), g' > 1, is obtained by 
the union of all points ^ t o + —ti + —12, ao + <̂ i + <̂2 = q, where T — [to,ti , t2] is a 
triangle in A with vertices to, t i , t2. In particular, the set of vertices of A is a Lagrange 
interpolation set for 5'i(A). An algorithm [30] for constructing more general Lagrange 
interpolation sets for Si{A) was given in 1986, and recently, a characterization [50] of 
Lagrange interpolation sets for S'i(A) was found. For r > 1 the interpolation problem 
becomes more complex. In this case, explicit interpolation schemes were given in the 
literature for certain classes of triangulations respectively for splines of certain degree q 
and smoothness r. In the following we describe these methods. 

* - • flL • 

JKLI lie 

TW— •Jy^^ • 

^—•^r • — 

Figure 28.7: Example for the interpolation method of Niirnberger-Riefiinger: the Lagrange 
interpolation points for S^A^) and 6*3 (A^) are symbolized by grey circles. 

Many research papers (see for instance [10,25,68,109,123,125,126]) that appeared be­
tween 1981 and 1994 investigated the problem of constructing interpolation sets for cubic 
and quadratic C^ splines w.r.t. uniform type triangulations (see Figure 28.3). Then, 
in the beginning 90ies, a general method [89,90] for constructing Lagrange and Hermite 
interpolation sets for ^^(A^), 1,2, was developed. The basic idea of this method 
is to construct line segments in ^ and to place points on these lines which satisfy the 
interlacing condition of Schoenberg-Whitney for certain univariate spline spaces such 
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that the principle of degree reduction can be applied. Figure 28.7 shows examples of 
Lagrange interpolation sets constructed by this method. Hermite interpolation sets for 
5J(A*), 2 = 1, 2, are obtained by using these Lagrange interpolation sets and by "taking 
limits", which means, roughly speaking, that the points are shifted to the vertices. An 
extension of this method to crosscut partitions was given in [1] (see also [98]). Results on 
the approximation order of this method can be found in [46,88,91]. 

We proceed by describing interpolation methods for classes more general than A\ i = 
1,2. These classes are triangulations constructed from given points, arbitrary triangula-
tions and general classes of triangulations. 

We start with methods [93], where triangulations are constructed which are suitable 
for Lagrange and Hermite interpolation by ^^(A), ^ > 2r -h 1, r = 1,2. These methods 
are based on an inductive principle: by starting with one triangle, in each step a set of 
triangles building a suitable polyhedron is added to the subtriangulation constructed so 
far. The vertices of these triangles are locally chosen scattered points . The construction 
of the triangulation is such that the corresponding splines can be extended in each step. 
Lagrange and Hermite interpolation sets were constructed simultanously, and again, Her­
mite interpolation sets are obtained by "taking limits". The corresponding interpolating 
splines can be computed step by step by using Bernstein-Bezier techniques , where in 
each step only small linear systems of equations have to be solved. Examples of Lagrange 
interpolation points inside a polyhedron are given in Figure 28.8. Numerical tests with 
large numbers of interpolation conditions showed that this interpolation method yields 
good approximations for 5^(A), g' > 4, and ^^(A), q > 7. In order to obtain good 
approximations in the remaining cases (for non-uniform triangulations A) variants based 
on applying the Clough-Tocher split (see Section 28.4) to some of the triangles were pro­
posed. This general method can be applied to certain classes of given triangulations A, 
in particular the class of triangulated quadrangulations [92]. Moreover, for quadratic C^ 
splines a general class of triangulations A Q was given, where Lagrange interpolation at 
the (non-singular) vertices together with three additional points in the starting triangle 
is always possible. 

Figure 28.8: Example for the Lagrange interpolation points inside a polyhedron: from the 
left to the right: ^ ^ A ) , 5](A), 5|(A), 5 |(A). 

We now describe interpolation methods for splines on arbitrary and general classes of 
triangulations. 

Hermite interpolation sets for 5^(A), ^ > 5, where A is an arbitrary triangulation, were 
constructed in [43,85] (see Section 28.3). Later, a different method [44] was developed 
for constructing explicit Hermite and Lagrange interpolation sets in these cases. This 
approach can also be applied to 5] (A), where A has to be slightly modified if exceptional 
constellations of triangles occur. Earlier, a Hermite interpolation scheme for S'KA) was 
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defined [59] in the special case when A is an odd degree triangulation, i.e. every interior 
vertex has odd degree. Moreover, quasi-interpolation by 5] (A) was considered [26]. There 
it is shown that optimal approximation order can be achieved by quasi-interpolation, if 
certain edges are swapped. The case 53(A) is more complex since not even the dimension 
of these spaces is known for arbitrary triangulations A (see Section 28.3 ). In 1987, a 
global approach [60] for constructing Lagrange interpolation sets involving function values 
at all vertices of a given triangulation A was proposed. This method requires to solve a 
large linear system of equations, where it is not guaranteed that this system is solvable. 
A method to construct Lagrange and Hermite interpolation for S'3(A) was given in [47]. 
In these investigations, A is contained in the general class of so-called nested polygon 
triangulations, i.e. triangulations consisting of nested closed simple polygons whose ver­
tices are connected by line segments. This construction of interpolation sets for 53(A) is 
inductive by passing through the points of the nested polygons in clockwise order: in each 
step, a point of a nested polygon and all triangles with this vertex having a common edge 
with the subtriangulation considered so far are added. Then the interpolation points are 
chosen locally on these triangles, where the number of interpolation points is different if 
so-called semi-singular vertices exist or not. Numerical examples with a large number of 
interpolation conditions showed that in order to obtain good approximations, it is desir­
able to subdivide some of the triangles of A. The method of constructing interpolation 
points also works for these modified triangulations. 

Recently, the problem of local Lagrange interpolation for C^ splines was investigated 
[94,97]. In this context local means that the fundamental Lagrange splines Sj determined 
by Si{zj) = Si J, j = 1 , . . . , d, have local support. (Here, Sij denotes Kronecker's symbol.) 
We note that the classical Hermite interpolation methods described in Section 28.4 cannot 
be transformed straigthforwardly into a local Lagrange interpolation scheme on a given 
triangulation. 

Figure 28.9: Local Lagrange interpolation by cubic C^ splines: the triangles to be splitted 
result from the coloring of a given triangulation A. The Lagrange interpolation points are 
symbolized by grey circles. 

In [94] (see also [95]) an algorithm was developed for constructing local Lagrange in­
terpolation sets for C^ splines of degree > 3. This algorithm mainly consists of two 
algorithmic steps and is based on an appropriate coloring of the triangles with two colors. 
Given an arbitrary triangulation A, in the first step, Lagrange interpolation points are 
chosen on the edges of A such that the interpolating spline is uniquely determined (only) 
on the edges. In the second step of this algorithm, the triangles are colored black and 
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white (by a fast algorithm) such that at most two neighboring triangles have the same 
color (see Figure 28.9). Then, the white triangles are subdivided by a Clough-Tocher 
split, and in the interior of the black triangles, additional Lagrange interpolation points 
are chosen. Finally, the Lagrange interpolating spline is uniquely determined on the whole 
triangulation. Figure 28.9 shows an example of such an interpolation set for the case of 
cubic C^ splines. 

Since recently, the construction of local Lagrange interpolation schemes by cubic C^ 
splines on quadrangulations of convex quadrilaterals [97] is under investigation. For a spe­
cial class of triangulated quadrangulations such schemes have been given in [96] (see Figure 
28.10). We remark that these interpolation methods yield to optimal approximation or­
der and the corresponding Lagrange interpolating splines can be computed efficiently by 
using Bernstein-Bezier techniques since the algorithmical complexity of these methods is 
linear in the number of triangles. Numerical tests given in [94-96] with upto 10^ Lagrange 
interpolation points demonstrate the efficiency of these methods. 

Figure 28.10: Local Lagrange interpolation by cubic C^ splines on classes of triangulated 
quadrangulations: the Lagrange interpolation points are symbolized by grey circles. 

28.6. T R I A N G U L A R B-SPLINES 

The results of Section 28.4 and 28.5 show that there are many cases where the spline 
space Sg{A) provides powerful tools for applications. On the other hand, the structure 
of these spaces is very complex, in general. In particular, the discussion of Section 28.3 
shows that determining the dimension is difficult for arbitrary triangulations. Therefore, 
it is a complex task to construct suitable basis functions for these spaces, in general. 

In this section, we describe a different approach, which was developed with the aim 
to construct smooth piecewise polynomial basis functions for splines over arbitrary trian­
gulations. This approach is based on a geometrical way to construct smooth piecewise 
polynomial functions M : IR^ H^ IR by projecting a polyhedron P C IR" onto IR^ and 
by defining M(u) as the (n — 2)-dimensional volume of the fibre 7r~^(u). This definition 
generalizes the geometric definition of univariate B-splines and hence the resulting func­
tions are called multivariate B-splines. Depending on wether P is just any polyhedron, a 
box, or a simplex, the resulting multivariate B-splines are also called polyhedral, box, or 
simplex splines. 

If the given triangulation A happens to be of uniform type (see Figure 28.3, for in­
stance), then box splines are the natural choice. Box splines are a natural generalization 
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of uniform B-splines and have a very rich structure. In particular, they have a stable 
recurrence and can be generated by subdivision [21]. In the CAGD context, box splines 
have been first considered in [108]. Computational aspects and algorithms for converting 
to piecewise Bernstein-Bezier representation (28.1) through the use of masks have been 
given in [14]. Surface fitting with box splines was discussed in [35]. The first book which 
was completely devoted to box splines is [21]. 

If an arbitrary triangulation A is given, then in this approach simplex splines have to be 
used. Simplex splines can be defined recursively as follows: Given the knots t o , . . . , tq+2 ^ 
IR^ one can show [82,83] that the recursion 

M^to,t^,h) = ^^^^ 
1+2 

M(u | to , . . . , t /+2) = ^ A i M ( u | t o , . . . , t i _ i , t j 4 . i , . . . , t / + 2 ) , / = 1 , . . . , 9 , 

with u = J^^ Xi{u.)ti, and ^ ^ Aj(u) = 1 is well-defined and yields a simplex spline M of 
degree q that is C^~^ continuous if the knots are in general position. (Here, d( to , t i , t2 ) 
stands for the area of the triangle T = [to,ti,t2] multiplied by two.) Further details on 
simplex splines can be found, e.g., in [15,38,61,84,122]. 

The next problem is to construct a spline space from these functions. While for box 
splines one can consider the space spanned by translates, this problem is diflficult for 
simplex splines: given an arbitrary triangulation A, exactly what simplex splines should 
be considered? 

Solutions to this problem were given first in [39,64], and later in [41,121]. These con­
structions start with a triangulation A, where for every vertex t̂  of A a cloud of points 
ti,0) • • • ,U,q is assigned. Then a rule of selecting (^^^) subsets of g + 3 knots from the 
three clouds associated with a triangle is given. Each such subset yields a simplex spline 
of degree q which is generally C^~^. The linear span Eg of of all these degree q simplex 
splines is then the spline space of interest. Note that both schemes produce splines over 
a refined partition of A. 

The two schemes differ in the knot selection rule, in the ease of use, and in the class of 
surfaces that they are able to represent. The first scheme [39,64] contains the polynomial 
space, i.e. Ug C Hg, but the representation of arbitrary piecewise polynomials remained 
unsolved. This defect was overcome by the scheme [41,121]. The knot selection rule of 
this scheme is based on the use of polar forms [117,120] (see Section 28.2), and for a given 
triangle T = [to,ti ,t2] selects the simplex splines 

Mj-«(u) = M ( u | K ) , |a | = q, 

with 

Va — { to ,0 , • • • ? to,Qo5^1,0, • • • , t i ^Qj , t2,07 • • • 5^2,02/ • 

Furthermore, the new scheme not only allows the representation of the polynomials, but 
also allows the representation of piecewise polynomials, i.e. S^~^{A) C Eg. Moreover, up 
to normalization, the coefficients in the resulting representation 

F{n)= ^ A e n c 
T G A , a 



716 CHAPTER 28. SPLINES OVER TRIANGULATIONS 

of a piecewise polynomial F as a linear combination of simplex splines are given as 

^a — / r ( t o ,0 • • • to,Qo-ltl,0 • • • t i , a i - l t2 ,0 • • • t2,a2-l) 

by evaluating the polar form fr (see Section 28.2) of the restriction FT of F to the 
triangle T = [to,ti,t2] on a suitable sequence of knots [118]. Note that this formula 
captures completely the analog formula for the de Boor points in the B-spline expansion 
of a univariate spline, and also the formula for the Bernstein-Bezier points in the expansion 
of a polynomial surface in the representation (28.1). 

Practical aspects of implementing the simplex spline scheme [41,121] have been dis­
cussed [9,129]. A first implementation on triangular B-splines has been described in 
[56,62]. Efficient evaluation routines for triangular B-splines have been given in [100] 
for the quadratic case, and in [58] for arbitrary degree q. Here, efficiency is obtained 
by reusing partial results. Algorithms for surface fitting and modeling with triangular B-
splines have been discussed in [102-104]. Finally extensions of the approach to a spherical 
setting have been presented in [101]. 
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Chapter 29 

Kinematics and Animation 

Bert Jiittler and Michael G. Wagner 

This chapter demonstrates that the techniques of Computer Aided Geometric Design can 
be generalized to Kinematics, Computer Animation, and Robotics. Our approach relies on 
spatial rational spline motions which can be seen as the kinematical analogue of rational 
spline curves. The potential applications include keyframe interpolation in Computer 
Graphics, motion planning in Robotics, and sweep surface modelling in Geometric Design. 

29.1. I N T R O D U C T I O N 

The idea to use the powerful tools of Computer Aided Geometric Design in spatial kine­
matics originated in Computer Graphics, where rigid body motions are needed for visual­
izing moving objects in Computer Animation (keyframe interpolation), and for generating 
smooth camera motions, e.g., in Virtual Reality. Initially, the Bezier technique was gener­
alized to the unit quaternion sphere via 'slerping' (see Section 29.4.1), following ideas by 
Shoemake and others [34,37,46]. This technique generates unit quaternion curves which 
can be identified with spherical motions, thus representing the rotational part of a rigid 
body motion. Although this and similar generalizations seem to work well, and are ap­
parently still in use in Computer Graphics [14], it was soon realized that these spherical 
generalizations of the standard algorithms lead to major difficulties, such as the absence 
of a subdivision property, non-linear interpolation conditions, the difficult parametric 
representation of the resulting point trajectories, and problems with the construction of 
C^ (acceleration continuous) motions, see Section 29.4.2 for more. 

Independently, a similar approach was developed by Ge and Ravani in Robotics, for 
designing robot motions via Bezier type curves in dual quaternion space [10]. Unlike the 
slerp techniques, this approach produces motions with rational point trajectories, the so-
called rational motions. In kinematical geometry, these motions had been studied since 
the end of the 19th century [5,43,52]. 

Another source of the theory of rational motions can be identified in the discussion 
of sweeping (kinematical) surfaces. Sweeping is a very intuitive technique for generating 
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free-form surfaces, by moving a (rigid or possibly evolving) profile curve through space, 
see Figure 12 of Bezier's preface to [8]. One of the first publications on rational sweeping 
surfaces is due to Roschel [32,44]. 

Computational techniques for rational spline motions have been further explored in 
the simultaneous Ph.D. theses of the two authors [20,47]. These motions have now been 
developed into a useful tool for geometric motion design and for applications in Robotics, 
Computer Graphics, and Geometric Modelling. Some of the results have been gathered 
in this chapter, which is organized as follows. The next two sections summarize funda­
mentals from spatial kinematics and on quaternions. Section 4 is devoted to the various 
non-rational techniques for motion design, using curves on the unit quaternion sphere. 
After introducing spherical rational motions (Section 5), we give an outline of available al­
gorithms for spatial rational motions, along with a brief discussion of several applications. 
Finally we conclude this chapter and suggest some directions for further research. 

29.2. T H E KINEMATICAL M A P P I N G 

This section collects some facts about the description of rigid body motions by homoge­
neous 4 x 4 matrices. We use Euler parameters to represent rotation matrices, leading 
directly to the kinematical mapping of spherical kinematics. 

29.2.1. Coordinates 
In the sequel we describe the points p in 3-space with the help of homogeneous coordinates 
P = {Po,Pi,P2,P3V G M̂  \ {(0,0,0,0)^}. If the 0-th component satisfies po / 0, we may 
obtain the corresponding Cartesian coordinates p = (pi,P2,P3)^ ^ ^^ of the very point 
p from Pi = Pi/po, where i = 1,2,3. The homogeneous coordinate vectors p and Ap 
describe the same point for any constant factor A ^ 0. Consequently, the set of points 
in 3-space, which is projectively closed by adding points at infinity, is identified with the 
set of all one-dimensional subspaces in E^. 

The coordinate po of p is commonly referred to as the homogenizing coordinate or the 
weight of p . Points with PQ — 0 correspond to points at infinity; they can be identified 
with the oo^ equivalence classes of parallel lines. For further information on homogeneous 
coordinates see Chapter 2. 

29.2.2. Motions of a rigid body 
Let us consider two coordinate systems in three dimensional Euclidean space, the fixed 
coordinate system E^ ("world coordinates") and the momn^coordinate system E^. Points 
can be described in either coordinate system. We denote the fixed coordinates of a point 
by p or p , and the moving coordinates by p or p , respectively. In order to convert moving 
coordinates into fixed coordinates we have to apply the coordinate transformation that 
maps E^ onto E^. Using homogeneous coordinates, this coordinate transformation can 
be represented by a 4 x 4 matrix of the form 

M 

mp^o 

^ 1 , 0 

^ 2 , 0 

. ^ 3 , 0 

0 
^ 1 , 1 

m2,i 

^ 3 , 1 

0 
7 n i , 2 

7712,2 

^ 3 , 2 

0 
^ 1 , 3 

^ 2 , 3 

7713,3 

with 77io,o / 0, (29.1) 
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K^W 

such that p I—>• p = M p . The homogeneous resp. Cartesian coordinate vectors 

v = M( l ,0 ,0 ,0 )^ - (mo,o ,mi ,o ,m2,o ,m3,or resp. ^^ (^H^^II^^H^y (29.2) 
^ 0 , 0 ^ 0 , 0 ?7io,o 

describe the position of the origin in E^ with respect to the fixed coordinate system E^. 
The 3 x 3 matrix R, 

R 
^ 0 , 0 

m i , i m i , 2 m i , 3 

7712,1 ^ 2 , 2 ^ 2 , 3 

^ 3 , 1 ^ 3 , 2 ?^3,3 

(29.3) 

describes the orientation of the moving coordinate system E^. It is a special orthogonal 
matrix.. That is, it satisfies the orthogonality condition RR^ = I where / denotes the 
3 x 3 identity matrix, and det{R) = 1. 

If the matrix M = M{t) depends on the time t, where t varies in some interval [̂ 0, ^i], 
then we speak of a rigid body motion, cf. Figure 29.1, left. For any point p e E^ of the 
moving system E^ we obtain its trajectory from 

E^ X [to,ti] -^ E^ : (p , t ) ^ p{t) = M{t)P 

where M{t) is of the form (29.1) with time-dependent components mij{t). 

(29.4) 

"world 
coordinates'' 

K =̂̂0 

Figure 29.1. Spatial motion of a rigid body (left) and associated spherical motion (right). 

Obviously, the trajectory of the origin in homogeneous and Cartesian coordinates is 
given by v{t) and v(t) , see (29.2). 

One may also describe the motion directly in Cartesian coordinates, which leads to 

E^ X [to,ti] -^ E^ : (p, t ) ^ Y.{t)-\-R{t)p (29.5) 
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where v(t) are the Cartesian coordinates of the trajectory of the origin (29.2). 
The associated rotational (or spherical) part of the motion is described by the special 

orthogonal matrix R = R{t), see (29.3). If the trajectory of the origin is replaced with 
the null vector, v(t) = (0,0,0)^, then the trajectory p(^) of any point p lies on a sphere 
of radius | |p| | , centered at the origin. Consequently, the rotational part R{t) of M{t) 
describes an intrinsic motion of the unit sphere, see Figure 29.1, right. It will be called 
the associated spherical motion of the rigid body motion M{t). In the figure, it is visualized 
by several positions of a moving triangle on the unit sphere. 

29.2.3. Euler parameters 
When designing motions we encounter the problem that the rotational part R{t) of M{t) 
has to satisfy the orthogonality conditions. Consequently it is not possible to simply 
prescribe the functions mij{t) since the resulting motion would in general not preserve 
the rigidity of the object; it would not be Euclidean. In order to resolve this problem, 
we will describe £ by a set of independent parameters. There exist a number of different 
approaches. A well-known set of parameters is based on a classical result of Euler: any 
special orthogonal 3 x 3 matrix R can be written as 

R 
(llWi-ql-Ql 2(^192-^0^3) 2{qiq3-\-qoq2) 
2(9192+^0^3) QI-QI-^QI-QI 2(9293-go9i) 

2(9193-90^2) 2(9293+9o9i) ql-ql-ql+ql 

(29.6) 

where the qi satisfy 

9o+9? + 92+93 = l- (29.7) 

The 4 parameters Q^ — (90,91592,93) are called the (normalized) "Euler parameters". 
They should not be confused with Eulerian angles, which are also often used in spatial 
kinematics! Note that "antipodal" Euler parameters ±Q^ are correspond to the same 
rotation matrix R. If we further denote 

9o = cos — and | 92 | = sin — r (29.8) 

with a unit vector f, we may give a simple geometric interpretation of these parameters; 
the spherical displacement described by JJ is a rotation with angle ^ about the axis 
spanned by r, cf. Figure 29.2. 

Given a rigid body motion M — M{t), there are various ways to compute its normalized 
Euler parameters. By comparing (29.1) and (29.6) we obtain the relations 

9o 9i • 92 : 93 = ^0,0 + ^1,1 + ^2,2 + ^3,3 •• ^3,2 - ^2,3 • ^1,3 - ^3,1 : ^2,1 - ^1,2 

= m3,2 - m2,3 : rno,o + ^1,1 - ^2,2 - ^3,3 : m2,i + mi,2 : mi,3 + 7713,1 .^g g\ 

= mi,3 - m3,i : 7712,1 + ^1,2 - ?^o,o - ?^i,i + ^2,2 - ^3,3 ' ^3,2 + ^2,3 

= 77l2,l - 77li,2 : 77li,3 + 77l3,i : 77X3,2 + 77l2,3 : ̂ 0 , 0 " 77li,i - 77l2,2 + 77X3,3, 

see [51]. At least one of these equations gives a result different from 0 : 0 : 0 : 0 . which 
may then be used, along with (29.7), to determine the normalized Euler parameters. 
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axis, spanned by f 
point 

curve 

itipodal point 

antipodal curve 

Figure 29.2. The geometric meaning of 
the Euler parameters. 0: angle of rota­
tion, f: unit direction vector of the axis. 

Figure 29.3. The kinematical mapping iden­
tifies a spherical motion with a pair of an­
tipodal curves on the 4D unit sphere. 

29.2.4. The kinematical mapping 
Examining equations (29.6) and (29.9) we notice that there is a birational transformation 
which maps each rotation matrix onto two antipodal vectors ±Q^ = ±(^0,^1,92,93) of 
normalized Euler parameters, and vice versa. This transformation is called the kinematical 
mapping of spherical kinematics. 

If we identify Q° with a point in a four dimensional image space, the kinematical 
mapping defines a correspondence between the 3D rotations and the pairs of antipodal 
points on the 4D unit sphere S^ C M .̂ Furthermore, we may identify a spherical motion 
with a set of two antipodal curves on the unit sphere S^. This property is schematically 
illustrated in Figure 29.3. If no ambiguity is to be expected, then both the mapping from 
the set of 3D rotations to the unit sphere with identified antipodal points, and its inverse, 
will be referred to as the the kinematical mapping. 

29.3. Q U A T E R N I O N S 

Quaternions are a powerful tool to describe 3D rotations in spherical kinematics. In the 
following we will introduce the basic concepts of quaternion calculus and explain their 
relationship with the kinematical mapping. 

29.3.1. Fundamentals 
For any quadruple of real numbers 90, ••, 93, we call the pair 

Q = [9o,q] = [ 9o , (91,92,93)^J 

real part vector part 

(29.10) 

of the scalar 90 and the vector q = (91,92,93)^ a quaternion. The quaternion Q = [90, —q] 
is called the conjugate quaternion of Q. Let us further define two operations that act on 
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the set of all quaternions H, 

Q-^n = [qo, q] H- [ro, r] = [qo-\-rQ, q + f ], 

Q*n = [ ^ o , q ] * h , r l = [ ^ 0 ^ 0 - q - r , gpr + rpq + q x r ]. (29.11) 

real part vector part 

With these operations, the set of quaternions HI forms a skew field (Hamilton, 1840). 
Quaternions with 

Q*Q=[ql + ql + ql + ql (0,0, 0)] = [1, (0, 0, 0)] (29.12) 

are called unit quaternions^ they are marked with Q^. (Compare with the definition of 
normalized Euler parameters, (29.7).) Quaternions with vanishing scalar part [0,p] will 
be identified with vectors in W. We may express the usual scalar and cross product of 
two vectors q, r in terms of the quaternion multiplication 

[q • f, (0, 0, 0)] = - i ([0, q] * [0, î  + [0, f] * [0, q]), 
[ 0 , q x i ^ = i ( [ 0 , q ] * [ 0 , f ] - [ 0 , r ] * [ 0 , q ] ) . ^ ' ^ 

Now we consider the quaternion product 

p ->= p^ =: Qo ^ [0̂  ^] * Q\ (29.14) 

where Q° is a unit quaternion, resulting in a vector-type quaternion [0,p'] ~ p ' . In fact, 
this product can be shown to satisfy the condition 

e * [0, p] * Q - - Q * [0, p] * e , (29.15) 

hence X — —X, which characterizes the vector-type quaternions. With the help of the 
relationships (29.13) it can easily be shown that the mapping p -̂̂  p ' preserves both 
products between any two vectors p and f. Hence, the mapping (29.14) can equivalently 
be described as 

p - > p ' - f / p , (29.16) 

where [/ is a special orthogonal matrix, depending on the four components of the quater­
nion Q^. A short calculation indeed confirms that the matrix U is the special orthogonal 
matrix with the normalized Euler parameters Q^, see (29.6). Moreover, the composition 
of rotations U, = Hi ' IL2 corresponds to the multiplication of quaternions Q^ = Q^ * Qj. 

29.3.2. Homogeneous quaternions and the kinematical mapping 
We now rewrite equation (29.14) in order to allow the use of non-normalized quaternions, 
by switching to a homogeneous representation. Firstly we note that (29.14) is equivalent 
to 

[l,p]->[l,p'] = Q^*[l,p]*Q° 
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In addition, we identify the homogeneous coordinates of a point p with the quaternion 
[Poi (Pi7^2,^3)]- This leads us to the homogeneous quaternion representation of a rotation 
(or spherical displacement), 

p i - ^ p = Q * p * Q , (29.17) 

where p and p are the homogeneous coordinates of a point with respect to fixed and 
moving coordinate system, respectively, and Q is a quaternion. The associated unit 
quaternions ±Q^ = l|2||~^ 2? where | |Q|| = v Q * Q, consist of the Euler parameters 
according to (29.8). 

Similar to the homogeneous coordinates of a point p , the quaternion Q in (29.17) can 
be considered a homogeneous representation of the rotation. Again, as in the point case, 
linearly dependent quaternions describe the same rotation. However, the normalization 
(29.12) defines a diflferent underlying geometric structure than in the point case, where 
normalized coordinates were characterized by po "= 1- In the quaternion space, the geo­
metric structure is that of a 3-dimensional elliptic space , see Chapter 3, [2]. The unit 
quaternion sphere S^ C E^ with identified pairs of antipodal points is the standard model 
of this geometry. For our applications, it is more appropriate to use homogeneous coordi­
nates for points in 3-dimensional elliptic (i.e. quaternion) space. These coordinates will 
be called homogeneous quaternion coordinates of rotations. 

29.3.3. Summary: homogeneous quaternion coordinates for 3D rotations 
The kinematical mapping maps a point Q ^ [0, (0,0,0)] in 3-dimensional elliptic space, 
described by homogeneous quaternion coordinates, to the special orthogonal matrix 

u(Q) = 

where 

1 

^o(S) 
f/(Q), 

^ ( 2 ) = {Ui,j)t,j = h2,3 

QO+QI-QI-QI 2(91^2-^0^3) 2(gig3-hgo92) 

2(9192+90^3) QO-QI+QI-QI 2(9293-^0^1) 

2(9i93-go<72) 2(9293+^0^1) 9 o - 9 i - 9 2 + ^ 3 

(29.18) 

(29.19) 

and 1̂0 (2 ) = Qo-^Qi~^Q2~^Q3- Any point in elliptic 3-space Q corresponds uniquely to a 
rotation (or spherical displacement) L[. Every curve in homogeneous quaternion coordi­
nates Q{t) can be identified with an intrinsic spherical motion f/(t). This kinematical 
mapping is birational. For more information on quaternions, kinematic mappings and 
their application we refer the reader to [2,3,9,31,51]. 

29.4. M O T I O N D E S I G N U S I N G C U R V E S ON S^ 

As we have seen in the previous sections, spherical motions are equivalent with curves in 
elliptic 3-space. The standard model of elliptic 3-space is the unit quaternion sphere S^ 
in E"* with identified pairs of antipodal points. This section discusses some methods that 
have been proposed in the literature for designing spherical motions with the help of 
curves on S^. 
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29.4 .1 . Slerping 
The algorithm of de Casteljau is based on iterated linear interpolation, see Section 4.2.3 
of Chapter 4. Though conceptually simple, it gives a very effective tool for curve design 
that is numerically stable and easy to implement. As a simple approach to curve design 
on S^ one may translate de Casteljau's algorithm into the geometry of a sphere, in order 
to produce spherical Bezier-type curves. This is achieved by replacing the line segment 
connecting two points in Euclidean space with the great circular arc (the geodesic) between 
two points on a sphere. 

More precisely, consider two points BQ and Bi on the unit quaternion sphere S^. We 
define the point Bl{t) = s\eTp{Bo,Bi,t) such that BQ{t) lies on the great circular arc 
passing through BQ and Bi and the angles between the coordinate vectors of BQ, BI and 
BQ{t) satisfy 

Z{Bo,Bl{t)) : Z{Bl{t),B,) = t : {1-t). (29.20) 

As t varies from 0 to 1, the point BQ{t) traces a great circular arc from BQ to Bi. Based 
on this spherical linear interpolation ('slerp') we are now able to define a spherical version 
of de Casteljau's algorithm as illustrated in Figure 29.4. 

original control polygon 

control polygon ; 
of left segment [0,t] of right segment [t, 1 ] 

Figure 29.4. Spherical de Casteljau algo­
rithm. Based on a spherical control polygon 
BQ, ..,Bn, repeated spherical linear interpola­
tion results in a spherical curve. 

Figure 29.5. Subdivision and tangent 
property of Bezier curves, cf. Chapter 
4. Both properties are not valid for the 
spherical de Casteljau algorithm. 

This technique is commonly referred to as 'slerping'. It has been introduced by Shoe-
make in [46] and has since then been subject of much research, mainly in Computer 
Graphics, e.g. [34,37]. 

As a first problem, the point BQ{t) is not unique. While this problem can easily be 
resolved, for example, by restricting BQ to the shorter arc connecting BQ with Bi, there 
are more involved problems that are caused by the subtle differences between elliptic and 
Euclidean geometry. 
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29.4.2. Problems of slerping 
Two fundamental properties of de Casteljau's algorithm are the subdivision property, and 
- closely related to it - the fact that the points obtained in last step of the algorithm 
span the tangent of the resulting Bezier curve. See Sections 4.2.3 and 4.2.5 of Chapter 4 
for details. Unfortunately, both properties are lost by the spherical version of the algo­
rithm. The lack of these fundamental properties has serious consequences, as none of the 
algorithms derived from the subdivision property can be transferred onto the sphere. In 
particular, C^ joints are difficult to construct, as the standard Bezier-based construction 
(leading directly to B-splines, see [16, Section 4.1.2]) is closely related to extrapolation 
of a curve via de Casteljau's algorithm, cf. [34]. Moreover, it is not possible to use the 
efficient subdivision-based rendering methods for Bezier curves in the spherical situation. 

In addition to these missing fundamental properties, it is very complicated to analyze 
the curves (and the resulting spherical motions) which result from slerping. Even for rel­
atively low degrees, the parametric representations are rather involved, and it is therefore 
difficult to apply standard tools from analysis and differential geometry. 

Finally, the interpolation problem for slerp Bezier curves leads to a non-linear system of 
equations; only approximate solutions can be found. This is clearly a serious disadvantage, 
as interpolation is one of the basic techniques for curve design. 

29.4.3. Other approaches 
Alternative algorithms for constructing smooth unit quaternion splines have been pro­
posed by various authors, see [1,26-28,42] and elsewhere. For instance, these algorithms 
are based on the cumulative form of a Bezier or B-spline curve, or on blending techniques 
for spherical curves. In a more general setting, Park and Ravani [36] have studied Bezier 
curves on Riemannian manifolds. 

As an alternative to generalizing the de Casteljau algorithm it is also possible to gen­
eralize the associated subdivision schemes to the spherical case. This idea has stimulated 
research on non-linear corner cutting algorithms on Riemannian manifolds. For instance, 
in the case of cubic Bezier curves (which corresponds to the Lane-Riesenfeld algorithm), 
a thorough analysis has been given by Noakes [35], showing that the limit curve is dif-
ferentiable, and its derivative Lipschitz. Note that non-linear corner cutting, although 
conceptually simple, requires rather involved mathematical tools, both for generating and 
for analyzing motion trajectories. 

A detailed study of computational techniques for motion design can be found in the 
survey article by Roschel [45], providing many further references. 

29.4.4. Mot ion design - desired features 
We conclude this section by listing a few features which should be provided by algorithms 
for motion design. 

• The evaluation scheme should be simple and efficient, preferably without involving 
non-rational functions. Motion design algorithms should be easy to implement, robust 
and numerically stable. The resulting motion splines should at least exhibit symmetry 
and subdivision properties. 

• Motion trajectories should have a simple representation which follows a generally ac­
cepted standard in Computer Aided Design. If possible, trajectories should be repre-
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sented as NURBS curves. 

• Conditions for interpolation of given data (positions, velocities etc.) and for smooth 
joints should be easily to formulate and computationally efficient (preferably linear 
conditions). 

• Motion design algorithms (e.g. via interpolation techniques) should be invariant with 
respect to the choice of the fixed coordinate system (world coordinates), and with 
respect to the choice of the orientation of the moving coordinate system. That is, co­
ordinate transformations and interpolation algorithms should commute. An additional 
invariance with respect to the choice of the origin of the moving coordinate system is 
not really useful, as the origin will mostly have a special meaning in applications, such 
as the center of gravity or the 'tool center point' (TCP). 

None of the approaches we have examined so far satisfies all of these properties. In 
particular we note that point trajectories generated by slerping algorithms are non-rational 
and therefore do not comply with the industrial NURBS standard (see Chapter 5). In 
the remainder of this chapter we present an approach based on the kinematical mapping 
which produces motions generating point trajectories in NURBS form. 

29 .5 . S P H E R I C A L R A T I O N A L M O T I O N S 

The kinematical mapping (29.18) can be used in order to apply the Bezier and B-spline 
techniques to spherical motions, following the ideas in [10,38]. For instance, consider a 
rational Bezier curve of degree n in elliptic 3-space, 

n 

Q(t) = J2B^{t)B,, te[OM (29.21) 

with the Bernstein polynomials Bi{t) — (")f (1 — ^)"~^ Its control polygon consists of the 
control points Bi = [bi^o, (6 ,̂1,6î 2, ̂ 1,3)^] ^ ^ ^nd the Farin points 

^ , , , + i = ^ , - f 5 , + i , (29.22) 

see Figure 29.6, left. We use homogeneous coordinates to represent these points. Conse­
quently, the Farin points (also called weight or frame points) are located on the edges of 
the control polygon; they represent the weight ratio of neighbouring control points. For 
further information the reader should consult, e.g., [7,11], and Chapter 5. The combina­
tion of control and Farin points provides a projectively invariant description of a rational 
Bezier or B-spline curve. It is also invariant in the sense of elliptic geometry, as elliptic 
transformations are special cases of projective mappings. 

Now we apply the kinematical mapping, both to the rational Bezier curve (29.21) and 
to its control and Farin points. Firstly, consider the image of the linear Bezier curve, 

Q(i)(^) = {l-t)8o-\-tBu te [0,1]. (29.23) 

It turns out to be a rotation of the unit sphere with a constant axis. More precisely, the 
components of the rotation matrix H^^^t) = U_{Q^^^t)) are quadratic rational functions, 
cf. (29.18). The trajectory of any point p of the moving system is simply a circular arc, 
which is described as as a rational quadratic curve 
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Next we consider the image of a rational Bezier curve (29.21) of degree n, see Figure 29.6. 
It is a spherical rational motion of degree 2n, as the components of C/(t) = U.{Q{t)) are 
rational functions of degree 2n. The trajectory of any point p of the moving system is 
the rational curve L[(t) p of degree 2n, As an example, Fig. 29.6 shows a cubic rational 
Bezier curve and its image under the kinematical mapping. 

control 
'/ positions 

elliptic ^ « _ _ ^ _ ^ _ ^ 
3-space , . . , 

^ kinematical mapping 

. ^ ^ , group 
SO(3) 

Figure 29.6. The image of a rational Bezier curve in elliptic 3-space under the kinematical 
mapping is a spherical rational motion of degree 2n. Applying the mapping to the Bezier 
control polygon gives a control structure for spherical rational motions. 

More generally, the kinematical mapping could be applied to a rational B-spline curve of 
degree d in elliptic 3-space, resulting from (29.21) by replacing the Bernstein polynomials 
Bi{t) with B-splines defined over a suitable knot sequence. This produces a spherical 
rational spline motion lL{Q{t)) of degree 2d. The computation of the B-spline form 
involves the evaluation of products of B-splines, see [33]. If the preimage curve has single 
interior knots, then both the preimage curve and the spherical rational spline motion are 
C^-i. Hence, the inner knots of the spline functions UQ{Q{t)) and U{Q{t)) have at least 
multiplicity d-\-l. Computational techniques for rational spline motions in B-spline form, 
including a formula for their Bezier segments, have been discussed in [23]. 

By applying the kinematical mapping to the control and Farin points of the rational 
Bezier (or B-spline) curve we obtain an intrinsic control structure for spherical rational 
(spline) motions. This control structure has been introduced by Pottmann [38]. It is 
obtained by applying the kinematical mapping to the control and Farin points of the 
rational curve, leading to control positions and Farin positions. The edges of the control 
polygon are mapped to rotations of the unit sphere, joining two neighbouring control 
positions and the corresponding Farin position. In fact, the edges can be seen as as linear 
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rational Bezier curves BQ{t)Bi^i + Bl{t)Bi {i — 1 , . . . ,n) ; the Farin point is associated 
with the parameter value t — ^. 

The intrinsic control structure is suitable for interactive motion design. An example is 
shown in Figure 29.7. The two spherical rational Bezier motions are obtained from the 
motion of Figure 29.6 by changing the first control position U_{Bi) (left) and by modifying 
the weight of the second control position U_{B2) (right), leading to modified Farin points 
JFi 2 and ^2,3-

modified weight 
(modified Farin positions) 

modified 
control position 

U{B2) 

U{T,,2) 

U{B,) 

Figure 29.7. Interactive motion design using the intrinsic control structure of a spherical 
rational motion. Modification of a control position (left) and of a weight (right), compare 
with Figure 29.6. 

A similar technique can be used to generate an intrinsic control structure for spher­
ical rational curves, using the so-called generalized stereographic projection (see [6,38], 
cf. Chapter 31. In fact, the generalized stereographic projection can be derived by re­
stricting the kinematical mapping (29.18) to the trajectory of a single point. 

In principle, the properties of the Bezier and B-spline control points (convex hull prop­
erty etc.) can be transferred to the intrinsic control structure of a spherical rational 
motion, with the help of the kinematical mapping. However, it is difficult to give a useful 
geometric interpretation, as the image of a volume in elliptic space is somewhat difl^icult 
to visualize on the sphere. 

Consider a spherical rational motion R{t) — ^r4^i?(t) of degree m. That is, the denom­
inator ro{t) and the 9 components of R{t) are polynomials of maximum degree m, and 
the matrices R{t) are special orthogonal matrices for all t. Then, the trajectory R{t)p 
of any point p is a spherical rational curve of degree m, on the sphere (centered at the 
origin) with radius | |p| | . Clearly, by applying the kinematical mapping to a rational curve 
of degree n we obtain a spherical rational motion R{t) of degree m = 2n. Conversely, one 
may ask whether any motion can be constructed that way. 
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Proposit ion [19]. If the denominator ro{t) and the 9 components of R(t) do not share 
polynomial factors, i.e. 

gcd{ro(t), ri ,i(t), ri,2(t), ri,3(t), r2,i(t), r2,2W, r2,3(t), r3,i(t), r3,2W, r3,3(t)} = 1 (29.24) 

holds in the polynomial ring R[t], then m is even, and the spherical rational motion 
R{t) = :p^R{t) can be generated by applying the kinematical mapping U_{.) to a rational 
curve Q{t) of degree m/2. 

The proof consists of two parts. Firstly it is shown that any spherical rational motion 
corresponds to a rational curve in elliptic 3-space, as it has rational Euler parameters Q{t). 
This can be concluded from (29.9), expressing the Euler parameters as rational functions 
of the matrix components. Secondly, it can be shown that any common factor of the 
matrix components is a common factor of the corresponding Euler parameters. This 
observation leads to the degree bound of the proposition. For the details of the proof the 
reader is referred to [19] or [41, Chapter 8]. 

Summing up, spherical rational motions can be generated by applying the kinemat­
ical mapping to rational curves in elliptic 3~space. According to the proposition, this 
construction produces motions having the minimum possible degree. In addition, the 
Bezier resp. B-spline control structure of rational spline curves can be translated to the 
kinematical setting. 

29.6. SPATIAL R A T I O N A L M O T I O N S 

The results on spherical rational spline motions can be extended to spatial ones, by com­
bining them with rational trajectories of the origin. This section discusses the construction 
and classification of rational spline motions, and the use of control polygons and control 
structures. 

29.6.1. Construction 
Recall from Section 29.2.2 that the motion of a rigid body is described by a time-dependent 
transformation p i-)- p(t) = M{t) p of the form (29.1), mapping any point p of the moving 
system to a point on its trajectory p{t). We use homogeneous coordinates to represent 
both the points and the transformation. 

If the components of the matrix M{t) are rational (spline) functions of degree m, then 
the corresponding rigid body motion is called a rational (spline) motion of degree n. 
All trajectories are rational (spline) curves of degree m, see Figure 29.8 for an example. 
Consequently, as the trajectories can be described as NURBS curves, rational motions 
comply with industrial CAD standards. 

Consider a transformation matrix of the form 

M{t) = 

vl{t) Uo{t) 

V2{t) 

0 0 0 

<{t) U(t) 
(29.25) 

The associated spherical motion U_{t) = [l/wo(^)] U{t) has been constructed by applying 
the kinematical mapping (29.18) to a rational spline curve Q{t) of degree k in elliptic 
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control 
point(s) 

Figure 29.8. Example - a rational motion of degree 6. The motion is visualized by the 
moving unit cube. In addition, the trajectory of a point, along with its rational Bezier 
control polygon consisting of control points bj and Farin points fî ^+i is shown. 

3~space; the piecewise polynomials VQ{t) of degree p and Vi{t),V2{t),Vs{t) of degree q are 
arbitrary. Then, the motion (29.25) describes a spatial rational spline motion of degree 
m = max(^,p + 2k). 

The origin of the moving space generates the trajectory 

M{t) (1 ,0,0,0)^ = {v;{t)uo{t),Vi{t),V2{t),vs{t)y (29.26) 

Given a spherical rational spline motion, the spatial rational spline motion (29.25) may 
combine any trajectory p{t) — {po{t),pi{t),p2{t),P3{t))~^ of the origin with it, by choosing 
VQ{t) — po{t) and Vi{t) = Uo{t)pi{t), i = 1,2,3. Generally, by combining a spherical 
rational spline motion of degree n = 2k with a degree q rational spline curve one obtains 
a spatial rational spline motion of degree m = 2k-\-q. In applications, however, the degree 
should often be kept as small as possible. This can be achieved by choosing trajectories 
v(t) whose denominator vo{t) = VQ{t)uo{t) equals the denominator UQ of the associated 
spherical rational spline motion, i.e., by choosing UQ = 1. 

Similar to the previous section, it is a natural question to ask whether any spatial 
rational (Bezier) motion can be generated with the help of formula (29.25). 

Theorem [19]. Any spatial rational motion of degree m is obtained from (29.25) by 
applying the kinematical mapping to a rational (Bezier) curve Q{t) of degree k in elliptic 
3~space, where the degree k satisfies 0 < k < [m/2\, leading to the associated spherical 
rational motion U_{Q{t)) = [l/uo{Q{t))] U{Q{t)) of degree 2k, and choosing polynomials 
fJ(t) of degree m — 2k, and Vi{t),V2{t), Vs{t) of degree m. 

This result follows immediately from the previous proposition. Consequently, there are 
[m/2j -f 1 different classes of rational motions of degree m, corresponding to the degree 
2k of the associated spherical rational motion. 
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29.6.2. Special cases 
Rational motions of degree m < 4 have thoroughly been studied in the theory of space 
kinematics. The simplest non-trivial example, given by quadratic rational motions with 
A; = 1, can be traced back to Darboux [3,5]. In the general situation, these motions 
are obtained by composing a planar elliptic motion with a harmonic oscillation. The 
elliptic motion is a special trochoidal motion: a small circle (radius r) rolls within a in 
big circle (radius R), where r : R = 1 : 2, see Figure 29.9. All trajectories are ellipses, 
except for the points on the rim of the small circle, which trace diameters of the big 
circle. This motion is extended into 3-space, where it becomes the rolling of two circular 
cylinders. By adding a synchronized harmonic oscillation in the direction of the cylinders' 
axes we obtain a Darboux motion, see again Figure 29.9. As the elliptic motion and the 
harmonic oscillation have equal frequencies, all trajectories are still ellipses. Darboux 
motions can be shown to be the most general truly spatial motions which generate planar 
point trajectories for all points of the moving system. 

V 
elliptic motion 

Figure 29.9. Elliptic motion (left) and Darboux motion (right). 

More recently, a thorough geometric analysis of rational motions of degree 3 and 4 has 
been given by Wunderlich and Roschel [43,52]. 

29.6.3. AfRne control structure 
Consider again a spatial rational spline motion of degree n. It is described by a transfor­
mation matrix M(t) , see (29.1) and (29.25), whose components are piecewise polynomial 
functions (splines) of degree n. Consequently, one may represent the transformation ma­
trix in B-spline form (or even in Bezier form, in the case of a spatial rational motion), 

(29.27) M(t) - ^ C, ^ , ( t ) , tG[a ,6 ] , 

with 4 x 4 control matrices Ci and B-splines Bi{t), defined with over a suitable associated 
knot sequence. Similar to the transformation matrices M(t) , the coefficient matrices 
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^i ^ {c%)j,k=o,...,4 satisfy 

ct = c^ol-^c^ol = 0. z = 0 , . . . , iV. (29.28) 

The orthogonality condition (29.3), however, is generally not satisfied (except for con­
trol matrices describing positions, e.g., at the boundaries - if the boundary knots have 
sufficient multiplicity). 

Any point p of the moving system traces a rational B-spline curve, 

N 

1=0 

with control points Q p and weights po CQQ (Z = 0 , . . . , A/"). Alternatively, one may again 
use Farin points to specify the weight ratios, (C^-i -f- Ci)p {i — 1 , . . . , A) . 

Consider a moving object O, which is described as a bounded set of points in the 
moving system. Collecting the control and Farin points of the trajectories we obtain the 
control positions Ci O and Farin positions (Ci_i + Ci) O. Generally, the transformations 
d and {Ci-\ H- Ci) do not preserve the rigidity (i.e., distances and angles) of the object, 
as the orthogonality condition (29.3) is not satisfied. The control and Farin positions are 
affine images of the moving object, as the matrices describe affine mappings (preserving 
ratios and parallelism), due to (29.28). The combination of control and Farin positions is 
called the affine control structure, see [23,47]. 

An example is shown in Figure 29.10a, b. The spatial rational motion (degree 6) of the 
moving unit cube (a) has been generated by composing the spherical rational motion of 
Figure 29.6 with a suitable trajectory of the origin (a rational Bezier curve of degree 6). 
We chose t'J = 1 î ^ (29.25), hence the resulting spatial motion has still degree 6. The 
affine control and Farin positions (b) are obtained by collecting the control and Farin 
points of the trajectories generated by the points of the moving unit cube. 

The affine control structure is not suitable for designing the spherical part of the spatial 
rational motion. In particular, any change of the shape of the affine control positions, 
and/or of the associated weights (Farin positions) may entail a violation of the orthogo­
nality condition (29.3). The spherical part should be designed with the intrinsic control 
structure of spherical rational motions. The affine control structure can be used for design­
ing the translational part of the motion, as it is possible to apply arbitrary translations to 
the affine control positions. This is demonstrated in Figure 29.10c,d, where a translation 
has been applied to the second control position. 

The affine control structure can be used for efficiently generating a bounding volume 
for the moving object. This fact has potential application to collision detection and 
avoidance; it can also be used for approximate computation of envelopes. If the weights 
are positive, then any intermediate position of the moving object is contained within the 
convex hull of the affine control positions. If I;Q = 1 has been chosen (which will mostly 
be the case in applications), then the denominator of the spatial rational spline motion 
is a sum of four squares, see (29.19). Consequently, the weights will mostly be positive; 
they can always made non-negative by splitting the rational spline motion into suitable 
smaller segments. 
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rational 
motion 

(a) (b) (c) 

modified affme 
control position 

(d) 

Figure 29.10. Two spatial rational motions (a,c) of degree 6 of a moving unit cube, 
and their affine control structure (b,d), consisting of control positions (solid) and Farin 
positions (wireframe). For both motions, the associated spherical motion is that of Fig­
ure 29.6. 

As an example, we demonstrate the convex hull property of a planar rational motion, 
see Figure 29.11. Any planar rational spline motion of the Xij:2-plane can be obtained 
from (29.25) by applying the kinematical mapping to preimage curves Q{t) in elliptic 
3-space with qi{t) = q2{t) = 0, and choosing V3{t) = 0. For a more detailed geometric 
discussion of planar rational motions the reader should consult [48]. As observed there, 
the associated affine control structure consists of equiform images of the moving object. 

A planar rational motion, along with its (equiform) control and Farin positions is shown 
in Figure 29.11a. The resulting convex hull gives a bound on the motion of the object. 
This result can be made more accurate by splitting the motion into smaller segments and 
generating the convex hull of the resulting control structures, see Figure 29.11b. 

The same idea can be applied to spatial rational spline motions. However, the compu­
tation of the convex hull in 3D becomes more expensive, and alternative techniques (such 
as bounding boxes) will be preferred. 

29.6.4. Some properties 
Spatial rational spline motions provide various desirable features, making them a useful 
tool in applications. 

• The standard rational Bezier and B-spline techniques for CAGD can be applied, pro­
viding simple and efficient algorithms for evaluating these motions. Spatial rational 
spline motions generate point trajectories which can easily be represented in B-spline 
form, complying with industrial CAD standards. They can be equipped with control 
structures which are suitable for interactive motion design and for generating convex 
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Figure 29.11. Computing the convex hull of a planar rational motion. The motion and 
its control structure (a), and the convex hulls obtained after splitting the curve into four 
segments (b). 

hulls of moving objects. 

• Spatial rational spline motions have a subdivision property, as any subsegment can 
again be described in rational spline form. Consequently, standard CAGD techniques 
like hierarchical editing can be used. Moreover, it is possible to generate rational spline 
motions with arbitrarily high order of differentiability. This was not the case for 'slerp' 
Bezier spline motions [34]. 

• The class of rational spline motions is invariant with respect to the choice of the 
coordinate system in both the fixed and the moving system. Moreover, efficient in­
terpolation techniques, generalizing the standard interpolation algorithms for spline 
curves, can easily be derived, see next section for details. They produce results which 
are independent of the choice of the fixed coordinate system, and of the choice of the 
orientation of the moving system [23]. 
The results of the interpolation algorithm described in the next section depend on 
the choice of the origin of the moving system. This dependency is often desired in 
applications, as the origin may have a special geometric meaning (e.g., the center of 
gravity, tool center point). However, even this dependency can be avoided, using the 
more sophisticated techniques of [21]. 

In addition, it is possible to represent trajectories of moving planes in rational spline 
form, and to introduce a dual control structure [24,47]. This leads to explicit formulas 
for envelopes of moving planes [23,47] and, more generally, for envelopes of moving ra­
tional developable surfaces (including quadratic cylinders and cones) see [24,47,53]. As 
an application one may compute the envelope of moving polyhedra, without numerical 
approximation. 

With the help of a kinematical mapping for spatial displacements, a slightly diff'erent 
approach to the design of spatial rational motions has been developed by Ge and Ra-
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vani [10]. It is based on the use of dual quaternions (numbers from the ring H -h eEI, 
where ê  = 0), see [3]). Following this approach, the motion is described by a sequence of 
control positions with associated dual weights. One obtains an intrinsic control structure 
for spatial rational motions, whose "legs" are special Darboux motions (Darboux motions 
with constant axis; the two cylinders degenerate into a fixed line). The control structure 
is suitable for interactive motion design. However, this approach is closer to line trajec­
tories (i.e., ruled surfaces) than to point trajectories; consequently, it is more difficult to 
control the trajectory of a specific point, such as the origin of the moving space. Also, the 
influence of the dual weights is sometimes not very intuitive, and the control structure 
does not provide a convex hull property. By restricting that approach to spherical control 
positions one arrives again at the intrinsic control structure for spherical rational motions, 
see Section 29.5. 

29.6.5. Interpolation schemes and applications 
Interpolation and approximation of given point data are fundamental techniques for gen­
erating curves and surfaces in Computer Aided Geometric Design. This section demon­
strates that the standard interpolation schemes can be generalized to the kinematical 
setting, with the help of spatial rational motions. 

Let a sequence of positions (PoSj)j=î ...,7v of a moving object be given. Each position 
is described by a coordinate transformation of the form (29.1) between fixed and moving 
system. We assume that the origin of the moving coordinate system has a special meaning, 
such as the center of gravity, tool center point (TCP), etc. The data are to be interpolated 
with a spatial rational spline motion, see Figure 29.12. 

Pos, 

Figure 29.12. Interpolation of 5 given positions of the unit cube with a spatial rational 
rigid body motion. By browsing through this chapter, you will see an animation of the 
associated spherical motion in the upper right corners of the odd pages. 

In the sequel we give a brief summary of a the interpolation procedure. For further 
details the reader should consult, e.g., [23]. 

1. Preprocessing. As the initial step of the interpolation procedure, the given data is 
converted into quaternion form. More precisely, each of the given positions is described 
by the Cartesian coordinates w^ of the origins, and by the normalized Euler parameters 
(unit quaternions) IZ^ which are associated with the corresponding rotation matrices. 
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From (29.7) and (29.9) we obtain two solutions, corresponding to a pair of antipodal 
points on the unit quaternion sphere §^ C M̂  (H). We pick one of those points (i.e., 
the sign of the normalized Euler parameters) such that neighbouring points 1Z^,IZ^_^^ 
on S^ belong to one hemisphere, that is the inner product of the corresponding vectors 

( ^ ^ T^li) = 2 ( ^ ^ ^ '+1 + ^^+1 *n)>0 (29.30) 

should be non-negative. 
Secondly, we need to associate parameter values ti with the given positions. Similar to 
the methods for parameterizing point data (see [16, Section 4.4.1]), these parameters 
can be estimated from the distances between the given positions. In addition to 
the distance of the origins, the difference of the orientations should be taken into 
account. For instance, by generalizing the chordal parameterization, one may choose 
the differences U+i — t̂  proportional to 

||Wi+i - wJI +cc;arccos(7^^7^^^l) (29.31) 

with some weight a; > 0 controlling the influence of the spherical part. Several other 
possibilities are listed in [21]. 

Interpolation of the spherical part. As the next step, we compute the preimage 
curve Q{t) of the kinematical mapping from the interpolation conditions QiU) = IZ^. 
This curve is a rational spline curve of degree d in elliptic 3-space, cf. (29.21). Knots 
and degree are chosen such that the number of degrees of freedom equals the number 
of unknowns, where additionally the Schoenberg-Whitney conditions (see Chapter 6) 
are to be satisfied. For example, one may choose a cubic spline curve with not-a-knot 
type boundary conditions, producing the knot vector 

( t i , . . . , t i ^ , ^ 3 , ^ 4 , . . . , tN-2jtN: • • • 7 JN) (29.32) 

4-fold knot single knots 4-fold knot 

The control quaternions Bi of the preimage curve can be found by solving the resulting 
banded system of linear equations, see Chapter 6. 
Now we generate the spherical part of the interpolating motion by applying the kine­
matical mapping of spherical kinematics to the preimage spline curve. This results in 
a spherical rational motion of degree 2d, described by the spline functions Uo{t) and 
U{t), see (29.25). 

Translational part. For the sake of simplicity we may choose VQ{t) = 1. In order 
to interpolate the translational parts of the given positions, we have to find spline 
functions Vi{t), V2{t), vs{t) satisfying the interpolation conditions Y.{U) — w^, where 

v(t) - ( v^(t)lu^[t), V2{t)/uo{t), v^{t)/uo{t) f (29.33) 

is the trajectory of the origin. It seems to be a natural choice to choose spline func­
tions t'i(t), V2{t), v^{t) of degree 2d whose knots are those of the spline functions uo{t) 
and U{t). This choice, however, leads to an underdetermined system of linear equa­
tions, as the translational part of the motion has far more degrees of freedom than 
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the spherical one. Consequently, additional constraints are needed to pick a unique 
solution. These may be not-a-knot type conditions at inner knots, enforcing higher 
order of differentiability for the trajectory of the origin. Alternatively, one may use 
the additional degrees of freedom for minimizing quadratic 'energy' functionals, such 
as 

f" \\v{t)fdt ^Min. (29.34) 
Jto 

See Section 26.5.2 for further information on this technique. In either case, the re­
sulting interpolating spline motion of degree 2d is found by solving a system of linear 
equations. 

Various algorithms for interpolation with spline curves can be generalized to the kinemat-
ical setting, simply by applying them to the preimage curve of the kinematical mapping, 
and combining the result with a suitable trajectory of the origin. For instance, a kinemat­
ical version of cubic Hermite splines has been implemented as part of a commercial robot 
controller [15]. This leads to rational spline motions whose spherical part has degree 6. 
Cubic Hermite splines provide some features which are essential in this application, such as 
real-time capability and certain shape-preserving properties. Compared with traditional 
techniques, the use of spline curves leads to a substantial reduction of the data volume, 
and to enhanced programming of robot motions, in particular for the manufacturing of 
free-form shapes. 

Further computational techniques for rational spline motions include the optimization 
('fairing') of motion segments, to generate spherical motions that minimize (e.g.) the 
integral of the squared angular acceleration (which can be seen as the analogue of cubic 
spline curves). Moreover an algorithm for spline motion fitting has been used to recon­
struct the motion of the human knee joint from measurement data. See [20,23,25] for 
additional information. 

Although the above interpolation scheme for rational spline motions has many desir­
able features, it is not fully satisfying from the theoretical point of view, as it lacks 
what was called 'invariance with respect to parameterization' or parameter invariance by 
Roschel [12,45]. If we sample data (positions with associated parameters ti) from a ratio­
nal spline motion and apply the interpolation procedure, including the preprocessing step, 
then it will generally not reproduce the original motion, even if the same spline spaces 
are used. This is due to the fact that the normalization (29.7) is only valid at the original 
interpolation nodes, and not everywhere. In order to guarantee the reproduction property 
one would need to use rational curves on the unit quaternion sphere S^ G M .̂ Such curves 
can be generated with the help of stereographic projection, but then the results depend 
on the choice of the coordinates, as it is the case for the method described in [18]. 

In the case of the sphere in 3-space, the generalized stereographic projection can be 
shown to give results which are independent of the chosen system of coordinates, see Chap­
ter 31, [6]. Unfortunately, similar results for spheres in higher dimensions are currently not 
available. Recently, Gfrerrer [12] has developed a new algorithm for interpolation with ra­
tional curves on hyperspheres of arbitrary dimension, producing coordinate-independent 
results. However, the degree of the resulting spherical motion is about twice as high as the 
one which would result from the earlier algorithm, and it may happen that no solutions 
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exist. Furthermore, the generalization of Gfrerrer's method to rational spline curves is 
still an open problem. 

29.6.6. Rational frames and sweeping surfaces 
The kinematical version of Hermite interpolation with cubic C^ splines has also been 
used to generate highly accurate rational approximation of rotation minimizing frames, 
using spatial rational spHne motions of degree 6 [24]. In geometric modeling, the rotation 
minimizing frame has been introduced by Klok as an alternative to the Frenet frame of a 
space curve [13,30] . It is useful for sweep surface modeling, as it provides a robust and 
intuitive way of moving a profile curve along a given 'spine' curve, see [50] for examples. 

As an alternative to the approximation of frames, one may also study spatial curves 
which have an associated rational frame. A spatial rational motion is called a rational 
frame (see Figure 29.13) of a given space curve, if the origin of the moving system travels 
along that curve, and if additionally the tangent vector of the curve is always parallel to 
the (say) xi-axis of the moving system. 

spatial PH curve and associated rational frame 

sweeping surface, generated by moving parabolic arc 

Figure 29.13. Rational frame of a PH curve of degree 7 and a rational sweeping surface. 

Note that these frames are closely related to Pythagorean hodograph (PH) space curves , 
see Section 15.2.3 of Chapter 17. In fact, the parametric representation of a polynomial 
PH curve in 3-space can be generated by integrating the hodograph 

Ut) = U{Q{t)) (1,0,0)^ = {ql^ql-ql-ql 2(^192+^0^3), 2{q,qs-qoq2)V^ (29-35) 

cf. (29.19) and Eq.(lO) of Chapter 17, where Q{t) is an arbitrary preimage curve in elliptic 
3-space. For instance, the rational frame in Figure 29.13 has been generated from the 
spherical motion shown in Figure 29.6. The resulting curves are automatically equipped 
with rational frames, which can be obtained by combining the trajectory of the origin 
with the spherical rational motion U_{t), see (29.18). Recently, even more sophisticated 
classes of rational space curves have been studied, providing a rational Frenet frame or a 
rational rotation-minimizing frame, see [39,40,49]. 
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Spatial rational motions can be used to generate sweeping surfaces. These surfaces 
are generated by moving a fixed profile curve through 3-space, see [8, Preface (written 
by P. Bezier), Fig 12] for an illustration. Rational sweeping surfaces have been studied 
in [44,22]. The class of sweeping surfaces can be generalized by allowing simultaneous 
changes of the moving profile curve. This leads to 'generalized cylinders', which have 
been shown to be a useful tool for the interactive modelling of free-form shapes. Again, 
the underlying rigid body motion can eflftciently be described in rational (B-) spline form, 
see [4]. 

29.7. CLOSURE 

Based on rational spline techniques and the kinematical mapping, we have shown that 
computational methods for spatial rigid body motions can be obtained by generalizing 
the powerful techniques of Computer Aided Geometric Design. We conclude this chapter 
by listing a few possible topics for further research. 

• Generating optimal motions. An interesting problem for applications in robotics and 
NC machining is the efficient generation of energetically or time-optimal motions, 
taking the robot geometry into account, and their use for robot control. This may help 
to reduce cycle times in manufacturing, and to increase the lifetime of the machinery. 
Recently, aflftne spline motions with piecewise polynomial point trajectories have been 
used to approximate energetically optimal motions [17]. A related problem is the 
optimal generation of paths for NC milling, cf. [29]. 

• Advanced CAD/CAM interfaces. Currently, the sophisticated geometry models of 
CAD are mostly converted to piecewise linear or circular descriptions of tool paths 
for Numerically Controlled (NC) machining. Here, due to the advancing processor 
speed, it is now possible to use more advanced geometric models. First attempts in 
this direction include the use of Pythagorean hodograph curves in NC milling (see 
Chapter 17), and spline interpolation for robot motion planning [15]. 

• Simulation of machining. This is related to a third challenging problem. Advanced 
methods for computer-aided simulation of manufacturing processes (e.g. milling) may 
help to optimize these processes, and to check the quality of the results. For instance, 
it would be interesting to be able to generate an accurate representation of the surface 
produced by the cutter of a milling machine, in order to check the quality of the results. 

As a promising direction for further research, the advanced techniques for describing in 
Computer Aided Geometric Design should now be applied to problems from other areas, 
such as computer-aided manufacturing and numerical simulation in scientific computing. 
We are convinced that spatial rational spline motions are well suited for this forthcoming 
task. 
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Chapter 30 

Direct Rendering of Freeform 
Surfaces 

Gershon Elber 

Freeform geometry has been employed in computer graphics for more than three decades. 
Traditionally, the rendering of freeform surfaces has been preceded by a stage in which 
a piecewise linear polygonal approximation is derived from the original surfaces, leaving 
polygons to participate in the actual rendering process. 

This chapter considers some recent results on the direct rendering of freeform geometry: 
in other words, the rendering of freeform curves and surfaces without resorting to piecewise 
linear approximations. 

30.1. INTRODUCTION 

Surface rendering is traditionally conducted with the aid of a piecewise linear approxima­
tion. Usually, curves are sampled and displayed as polylines and surfaces are approximated 
by polygons. Rendering of the resulting piecewise linear data is expected to be numer­
ically more stable and is supported by contemporary hardware: finding the intersection 
between a light ray and a polygon is relatively straightforward. In contrast, computing 
the intersection between a ray and a polynomial surface is difficult, because it amounts 
to root finding. With the exception of trivial cases, roots must be found numerically. At 
the same time, the robustness of the rendering algorithm must be guaranteed. A failure 
of one computation in a million is unacceptable as even one wrong-colored pixel in the 
picture may be noticeable. The human visual system is surprisingly sensitive and is able 
to detect such minor defects and hence demands this extreme level of robustness. 

Rendering techniques may be classified into several basic computational approaches. 
The simplest approach is to scan-convert the polygonal data set into a Z-buffer [15]. Each 
polygon, in the discrete image space, is converted into the set of pixels that approximately 
covers it. Then, the depth of each pixel is compared against the depth of the corresponding 
pixel already in the Z-buffer, and only the one at the front is kept. This approach is quite 

749 
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simple and is nowadays implemented in hardware, even with PC-based systems. 
Ray-tracing [16] is another common rendering method. Here, a (primary) ray is traced 

back from the eye, through a pixel in in the image plane, and towards the scene. If 
the ray hits nothing, a background color is assigned to that pixel. Otherwise, let us 
assume the ray hits an object O. If O is reflective, a reflected ray is emitted from the 
intersection point on the surface of O. If O is translucent, then a refracted ray is emitted 
into O, following Snell's law [15]. The final color of the pixel corresponding to the primary 
ray results from the accumulated contributions of the diff'erent surface properties of (9, 
including reflectivity, translucency, (9's own color, the illumination, the surface normal of 
O at that point, and so on. 

Another rendering scheme, known as the Radiosity method [15], attempts to evaluate 
the exchange of light energy among all the surfaces in the scene. In this technique, the 
scene is subdivided into small diff'erential area elements and a large set of linear equations 
is set up to express the exchange of light energy between every pair of elements. An 
approximate solution to this large set of linear equations is typically found using iterative 
methods, starting from the objects in the scene that represent the light sources. 

All the above rendering methods, as well as many of their derivatives, have already been 
very successful in the context of polygonal geometry. But the topic of this chapter is their 
adaptation for the direct rendering of freeform geometry. We seek to eliminate the need 
for a piecewise linear approximation to feed the rendering pipeline, opening the way for 
the renderer to process the original freeform geometry. By doing so, we expect to gain in 
three diff'erent ways. Firstly, direct rendering of freeform surfaces is likely to be much more 
precise, because any piecewise linear representation is merely an approximation. Secondly, 
a single freeform surface, that can be expressed using a few dozen coeflficients, has typically 
to be approximated using thousands of polygons in order to achieve reasonable accuracy. 
The direct use of freeform geometry potentially eliminates this explosion in the amount 
of data. Thirdly, and not least, the graphics community employs intensity (Gouraud) and 
normal (Phong) interpolation schemes [15] to compensate for the fact that piecewise linear 
approximations are C^-discontinuous. The elimination of the intermediate or auxiliary 
piecewise linear approximation would also remove the necessity for these interpolation 
schemes. As a result we would expect better and more accurate shading effects due to 
the precise normal at each pixel. 

It is worth noting at this point that, while the Gouraud and Phong interpolation 
schemes are effective at hiding the illumination artifacts that result from C^ discon­
tinuities at the interior of the rendered polygonal object, C^ discontinuities along the 
silhouette edges of the object are much more difficult to conceal. Attempts to increase 
the resolution of the piecewise linear approximation along the silhouette areas are feasible 
and can improve the visual appearance of the C^ discontinuities but cannot disguise them 
completely [17]. 

There are a couple of good reasons for the use of polygons to render freeform surfaces. 
First, the polygons that approximate a surface are primitive entities that are simple and 
can be dealt with efficiently. Secondly, these polygons comprise a coverage of the original 
surface; if we paint all the polygons we are sure that the entire surface area has been 
visited and properly drawn. 

Generalizing this second observation, we now define the concept of a valid coverage. 
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Definition 1 A set of primitives C is called a valid coverage, with a tolerance S, for a 
surface S if for any point p on S (on C), there is a point q in one of the primitives in C 
(in S), such that ||p — ^||2 < ^; where \\ • II2 denotes Euclidean distance. 

The primitives could be polygons, lines, curves, or even a dense cloud of points. Further­
more Definition 1 can be extended by using a non-Euclidean distance metric, for instance 
one that takes into account the curvature of the surface S or its Gaussian map. 

A further consideration that complements the coverage requirement in Definition 1 is 
the optimality constraint. We seek a coverage that is optimal under certain criteria. For 
example, if we were still working with polygons, we would like to use as few as possible. 

This chapter aims to present several different solutions to the problem of direct render­
ing of freeform geometry. In Section 30.2, we consider the direct scan-conversion of curves 
and, in Section 30.3, we introduce the coverage and rendering of freeform surfaces using 
primitive elements based on isoparametric curves. In Section 30.4, we consider methods 
that directly emulate the ray-tracing process for freeform geometry. Some extensions, 
such as isometric texture mapping and line-art renderings, are presented in Section 30.5. 
Finally, we draw some conclusions in Section 30.6. 

30.2. S C A N - C O N V E R S I O N OF CURVES 

We will start by considering freeform polynomial or rational curves. In this work, we 
will restrict ourselves to cubic curves: lower-order curves can clearly be raised to cubics 
and higher-order curves, which are quite rare in practice, can always be approximated by 
piecewise cubics [10]. 

Let C{t), t G [0,1], be a cubic curve. We seek to find all the pixels covered by C{t) 
in the image plane. Traditionally, C{t) is approximated as a polyline, and each of the 
resulting line segments in the polyline are scan-converted; but will now seek to eliminate 
the use of the piecewise linear auxiliary representation. 

In Section 30.2.1, we consider the forward differencing method, which can generate 
points on the curve iteratively and very efficiently, and these points can be mapped on to 
pixels in the image plane. However, the regular forward differencing method has a major 
limitation that makes it difficult to use for scan-conversion. Prescribing a constant step 
size in the parametric domain may lead to variable steps in Euclidean space. Polynomial 
and rational functions are almost never curves of constant speed. In other words, ||C"(t)|| 
is not usually constant. Thus, a step smaller than the distance between adjacent pixels 
at one end of the curve might expand into to a step much larger than a pixel at the other 
end of the curve. The step size must therefore be adjusted. In Section 30.2.2, we consider 
one possible way of doing this. 

30.2.1. Forvi^ard differencing 
Consider the following basis for cubic polynomials: 

Bo{t) = l, B,{t) = t, B,{t) = ^-^^, B3(i) = ^ ( L L M : : ^ . (30.1) 

A cubic curve C{t) may be represented in this basis as C{t) = aBo{t) + bBi{t) + cB2{t) + 
dBs{t). The value of the curve at t = 0 is a. A forward step, t —> t + 1, in C(t), could 
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be expressed as D{t) 
(see [27]) equal to: 

1 1 0 0 " 
O l i o 
0 0 1 1 
0 0 0 1 

a 
b 
c 

. d . 

: aBo{t) -h bBi{t)-\-cB2{t) + dBs{t) = C{t + 1) with the coefficients 

(30.2) 

Using the basis defined in Equation (30.1), we can advance along the curve with steps 
of unit size in the parametric domain simply by re-evaluating the four coefficients at every 
step. Thus, each step necessitates three summations (which could even be evaluated in 
parallel) resulting an a very efficient traversal of the freeform curve. 

To make sure that each every pixel covered by C{t) is indeed visited, the forward 
steps should be made small enough that they are at most one pixel apart in the image 
space. However, as already stated, a constant step size in the parameter domain does 
not guarantee a constant distance in the Euclidean space. We must provide an additional 
adaptive mechanism to decrease or increase the sizes of the steps. We consider this 
extension in Section 30.2.2. 

30.2.2. Adaptive forward differencing 
The basis (30.1) defined in the previous section is commonly known as Adaptive Forward 
Differencing [27] or AFD. Using the AFD basis, we can change the length of a forward 
step by changing the parameter t into t /2 , or alternatively into 2t. To halve the step size, 
D{t) = C{t/2), we use the coefficients: 
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(30.3) 

and to double the step size, D{t) = C{2t), we use: 

1 0 0 0 " 
0 2 1 0 
0 0 4 4 
0 0 0 8 

a 
b 
c 

- ^ . 

(30.4) 

Scan-converting a curve is now reduced to a series of forward steps (Equation (30.2)) 
which remain the same length for as long as each step yields a distance between half a 
pixel and a pixel. If a step comes out longer than a pixel, then the halving operator is 
applied (Equation (30.3)). Alternatively, if the step size shrinks below half a pixel, then 
the step size is doubled (Equation (30.4)). 

AFD has a fixed initialization cost for each isoparametric curve. Moreover, a forward 
step is extremely efficient computationally as it amounts to only n summations, where n is 
the degree of the function (i.e. three for a cubic). Because the halving and doubling steps 
occur quite infrequently, the cost of the two types of speed changing steps is amortized over 
many pixels. Note that the summations and binary shifts (multiplications and divisions 
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Figure 30.1. Redundancy may occur when surfaces are scan-converted using complete 
isoparametric curves (a). Adaptive extraction of partial isoparametric curves can produce 
better result (b). 

by powers of two) corresponding to the x, y, and z coordinates in Equations (30.2)-(30.4) 
can be evaluated in parallel; and they usually will be, as integer arithmetic hardware is 
necessary for the efficient implementation of AFD. 

Higher-order and rational polynomials can be also represented using the AFD basis 
(Equation (30.1)) if required, although rationals will require an additional division by the 
denominator to complete the evaluation. In all cases, care must be taken in designing the 
algorithm to ensure the stability and accuracy of the points generated. These details are 
among many aspects of AFD that have already been discussed in the literature [6,18,27]. 

30.3. SURFACE COVERAGE AND RENDERING USING CURVES 

We have now explored the direct scan-conversion of curves. To extend the approach 
to surfaces, we must reduce the surface rendering problem to one of rendering a set of 
curves. In other words, we derive a coverage based on curves as primitives. These curves 
can subsequently be scan-converted, and shaded corresponding to the surface normal, 
thus yielding a complete rendering of the freeform surface. 

Consider the parametric surface S{u,v). One can try to place isoparametric curves at 
equally spaced parametric intervals, Ui = iau, for some small positive real value au, so as 
to generate adjacent isoparametric curves that are everywhere closer than 6 in Euclidean 
space (see Figure 30.1 (a)), thus constructing a valid coverage C of the surface S. Such an 
approach has been employed [18] in the direct rendering of freeform surfaces; the resulting 
curves are subsequently scan-converted using AFD. 

To proceed in this manner, it is necessary to derive the proper parametric step, GU, SO 
that the two adjacent isoparametric curves will be sufficiently close in Euclidean space. In 
one approach [27], the isoparametric curves are adaptively spaced using bounds that are 
derived from the distance function d{v) = fiu + Su^v) — f{u,v). Squared distance cP{t) 
is represented in the Bezier basis, and its bounds are estimated from its convex hull. A 
similar technique [18,25] uses the mean-value theorem. A bound on the Euclidean distance 
resulting from a small step h in the parametric space of a Bezier curve is computed as 
\\C{u-\-h) — C{u)\\ <nh max\\Pi+i — Pi\\, where n is the degree ofC{u), and {Pi} are its 
control points. Complete isoparametric curves, that span the entire parametric domain 
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of the surface, can then be extracted and scan-converted [27,25]. 
Using a framework based on complete isoparametric curves, there is no upper bound 

on the number of times that a single pixel is actually revisited and redrawn. Recall 
Definition 1 and consider the surface region between two adjacent isoparametric curves 
in C, with tolerance S. Because C is a valid coverage of 5, the two adjacent isoparametric 
curves should be within distance 26. This upper bound of 26 may be reached at one 
point (or more) along these two curves while they are arbitrarily close to each other 
elsewhere. Redundancy, which amounts to visiting the same pixels more than once while 
scan-converting the curves, is bound to occur. Figure 30.1 (a) shows an extreme case of 
redundancy resulting from the need to introduce complete isoparametric curves into the 
surface coverage. 

One way to reduce the amount of pixel redundancy in this direct rendering procedure 
has been introduced by Rappoport [24]. A surface S will be subdivided if the amount 
of redundancy in S is greater than some acceptable level. The subdivision criterion is 
based on the range of partial derivatives in the cross direction dS/dv over the patch. As 
division proceeds and the sub-patches generated become smaller, the range of derivatives 
across any one patch can also be expected to decrease. If there are significant deviations 
in the magnitudes of the cross derivatives on the original surface, the whole process may 
require a large number of subdivisions. 

We now present a different approach, following Elber and Cohen [12], that visits and 
paints all the pixels covered by a surface S, avoiding division but providing a bound 
on the amount of pixel redundancy in the resulting coverage. Figure 30.1 (b) shows an 
example of this approach, which adaptively extracts partial isoparametric curve segments 
and covers the entire surface in an almost optimal way. 

Assume that S is in the viewing space. Then the x and y surface coordinates are 
aligned with the image plane coordinates i^ and iy (that and iy — y)^ and S 
is the surface after it has been mapped on to the image plane, possibly with a perspec­
tive transformation. We are now also ready to introduce a complementary optimality 
constraint: 

Definition 2 A valid coverage of a surface S based on isoparametric curves is considered 
optimal if the accumulated cost of pixel drawing is minimal over all valid coverages. 

A cost function of pixel drawing should take into account the cost of initialization for 
drawing a curve, amortized over the length of the curve, plus the actual cost of drawing 
each pixel times the length of the curve in pixels. 

Even if one could compute the required spacing in the parametric domain for a valid 
coverage of a given surface in a given scene, the extraction of all isoparametric curves in 
that spacing might be suboptimal, as can be seen from the middle part of the surface 
in Figure 30.2 (a). Because dS/dv is not constant across the parametric domain of 
the surface, local dynamic adaptation of the parameter spacing is required, as seen in 
Figure 30.2 (b), so as to bring the coverage closer to optimal. 

Using isoparametric curves as the coverage for a surface, we define adjacency between 
two isoparametric curves: 

Definition 3 Two isoparametric curves of a surface S{u,v), Ci{u) = S{u,vi), u G 
[ui,7if] and C2{u) = S{u,V2), u G [^,1^2]; '̂ 1 < V2, from a given set C of isoparamet-
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(b) 

Figure 30.2. Complete isoparametric curves do not provide an optimal valid coverage for 
this biquadratic B-spline surface (a). Adaptive extraction of isoparametric curves that 
allows partial curve segments produces a better result and the coverage remains valid (b). 

ric curves forming a valid coverage for S, are considered adjacent if, along their common 
domain U — \a\^u^^ fl [1*2,̂ 2̂]̂  there is no other isoparametric curve from C between Vi 
and V2-

Now consider two adjacent curves, Ci{u) and C2{u). We seek to discover whether the 
surface region between the two curves, S{u,v), u £ U, vi < v < V2, satisfies the valid 
coverage constraint within tolerance S. The notion of 'walking the dog' is discussed in [1], 
and named the Frechet metric. The idea is to find the shortest leash that will allow a dog 
to walk along one curve while its owner walks along the other. If, for Ci{u) and C2(w), the 
leash is shorter than 25, the region between Ci[u) and C2{u) is covered, with Ci{u) and 
C2{u) serving as the valid coverage. Unfortunately, the Frechet distance between the two 
curves is extremely diflRcult to compute, making its use infeasible in real-time rendering, 
as such evaluations are required many times for each surface in the scene. 

Hence, we employ a much more efficient computational alternative, which bounds the 
Frechet distance from above; we denote this alternative the iso-distance: 

Definition 4 Given two isoparametric curves, Ci{u) — S(u,V\) and C2{u) ~ S[u,V2), 
their iso-distance function ^i2{u) is defined as Ai2(it) = ||C'i(n) — C2(i^)||2-

Clearly, the iso-distance between two curves bounds the Frechet distance from above. 
However, one can find extreme cases where the iso-distance will be arbitrarily large com­
pared to the Frechet distance between the two curves. In Section 30.5.1, we will discuss 
how to deal with such cases. 

In generating a rendered image, it is often sufficient to compute the iso-distance using 
only the x and y coordinate functions of the surface, since our concern is a coverage of 
the surface in the image plane. For example, consider a planar surface orthogonal to 
the image plane. This planar surface should be rendered as a line in the image plane: a 
consideration of iso-distance between isoparametric curves in the planar surface in x and 
y would indeed yield this result. 

Nevertheless, ignoring the z-coordinate in the iso-distance computation may yield a 
wrong result when the surface is self-occluding or contains silhouette edges when seen 
from the viewing direction. Hence, for proper rendering using xy iso-distance, the surface 
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S should have no silhouette edges, or it must first be split along silhouette edges. Splitting 
should be conducted once, as a preprocess, creating a set of trimmed surfaces, each of 
which is free from interior silhouette edges. 

In Section 30.3.1, we present the adaptive isoparametric curves (AIC) algorithm. In 
Section 30.3.2, we present some examples and discuss the corresponding rendering con­
siderations. 

30.3.1. Coverage based on adaptive isoparametric curves 
Recall that Ci{u) = S{u,vi), u G [wfjitf], and C2[u) = S{u,V2), u G [7/25 l̂? '̂ 1 ^ '̂ 2, are 
two adjacent isoparametric curves on a surface S. Further, let Ai2('^) = ||C'i(̂ x) —C2(î )||2. 
While /^uiu) is not rational, due to the square root, Ai2(u) is rational. Compare the iso-
distance square function, A^2(̂ )̂, with 6^, where 6"^ is the square of the desired tolerance 
of the coverage (see Definition 1). Several possibilities can occur (note that, for the sake 
of simplicity, we examine the distances with respect to S whereas 26 might suffice): 

1. Ai2(ti) < ^ ,̂ V̂ x. Here, Ci{u) and C2{u) serve as a valid coverage for the region of 
the surface between the two curves, for vi < v < V2. 

2. A^2(^) > ^̂ 7 ^^- Here, Ci{u) and C2{u) cannot be a valid coverage for the region 
of the surface between the two curves, for ^̂ i < !» < t'2- In other words, we must 
introduce at least one additional, intermediate, curve between Ci{u) and C2{u) in 
order for this set of curves to serve as a valid coverage of the surface region between 
the two curves, for Vi < v < V2. 

3. A^2(ii) = (̂ ,̂ for 7i = tij, i = 1, • • • , n. In other words, the iso-distance function has 
n locations along the u domain where it is equal to the prescribed tolerance, 6. All 
locations along u where A 2̂('î ) < ^̂  have a valid coverage, using only Ci{u) and 
C2{u), as in Case 1 above. In contrast, for the domain along u for which Af2(̂ i) > ^ ,̂ 
it is necessary to introduce at least one more intermediate curve between Ci {u) and 
C2{u), as in Case 2 above. 

These three cases can be reformulated as a recursive procedure that starts with the two 
extreme boundary curves of the surface and considers them as two adjacent curves. Then, 
by examining the equation for the square of the iso-distance between the two curves, one 
of the three different cases can be identified, leading to two further curves which are dealt 
with recursively. Algorithm 1 encapsulates the entire process. Line (1) handles the case 
of two adjacent isoparametric curves that can serve as a valid coverage for the surface 
region between them. Line (2) considers the case where an intermediate curve must be 
introduced throughout the shared u domain of the two curves. Finally, in line (3), the 
final possibility is taken care of, where Ai2(^) intersects the 6"^ line; this case further 
recurses into either Case (1) or Case (2). 

There is one other problem. Consider a closed surface, 5, where the first and last 
isoparametric curves, Ci{u) and C2{u), of S are identical. In that case, Algorithm 1 
would terminate immediately on S. One can always enforce a single subdivision at the 
top level of the recursion. However, even if the surface is not closed, two different regions 
might be close to each other, which would raise a similar difficulty. While a complete 
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solution is lacking, in most practical cases 6 is far smaller than the surface size and it is 
highly unlikely that such a failure would occur. 

In Figure 30.3, four steps of Algorithm 1 are presented, which demonstrate how these 
near-optimal coverages are constructed, using segments of isoparametric curves. Clearly, 
complete optimality cannot be claimed, if only because the iso-distance function is not 
true distance. 

30.3.2. Rendering using adaptive isoparametric curves 
Before we can scan-convert the isoparametric curves corresponding to the surface, one 
must be able to evaluate the normal of the surface at each point of each curve in the 
coverage. Toward this end, we evaluate the unnormalized surface normal field of 5 , 

/ X dS dS , , ^ , , 

where A denotes the cross product. 
For a bicubic polynomial surface 5 , the surface normal n{u, v) is a biquintic vector 

field. For every curve Ci{u) G C that we extract from 5, we also extract the normal field 
curve fii{u) from n{u, v). The quintic normal field nt{u) is then scan-converted along with 
the Euclidean curve Ci{u), generating a precise yet unnormalized normal for every pixel. 
Normalizing the normal field necessitates the evaluation of a square root, which is quite 
expensive but could be tightly approximated using a lookup table. 

Figure 30.4 shows a simple surface rendered using the AIC coverage. Figure 30.4 (a) 
shows a rendering in which the iso-distance between two adjacent isoparametric curves is 
several pixels, while Figure 30.4 (b) shows a similar rendering with a sub-pixel tolerance 
6. 

Figure 30.5 (a) shows the Utah teapot scan-converted using traditional polygon ren­
dering methods and Figure 30.5 (b) shows the result based on adaptive isoparametric 
curves. The highlights that result from the use of the AIC method are superior due to the 
precise normals that are assigned to each and every pixel. Moreover, using the AlC-based 
coverage the silhouette curves are clearly smoother. Of course, one could alleviate the 
artifacts in the highlights and along the silhouette areas in the polygon-based picture in 
Figure 30.5 (a) by increasing the resolution of the approximation; but then the number 
of polygons generated could quite easily become very large. The image in Figure 30.5 (a) 
has a moderate resolution, but even so 7000 polygons were needed to generate it. 

Parametric texture mapping, where the u and v parameters of the surface serve as 
coordinates into the texture image space, is commonly used in rendering freeform surfaces. 
By scan-converting isoparametric curves, indexing into the texture image is simplified 
because one of the surface parameters is fixed, and we are marching along a vertical or 
a horizontal line of pixels in the texture image. Figure 30.6 (a) shows an example of the 
Utah teapot with a variety of textures mapped on to it. The body is covered with a 
parametric texture mapping of the same image applied recursively. The spout, handle, 
and lid all employ volumetric texture mapping [21,22] in different patterns: camouflage, 
wood, and 'virtual planet', respectively. 

It is considered difficult to approximate and convert a trimmed surface into polygons for 
display and rendering purposes [26,28]. On the other hand, rendering a trimmed surface 
as a set of isoparametric curves is appealing since the representation of each curve remains 
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Algorithm 1 

Input: 
S{U, V), Ue [Umin, Umax] > V ^ [Vmin, Vmax] - i n p u t S U r f aCG ; 

S: maximum distcince (tolerance) between isoparametric curves; 

Output: 
C: the s e t of i ; -constant i soparamet r i c curve segments of S{u,v)y 

adjacent wi th in 6, cover ing 5 ; 

Algorithm: 
adapIsoCrvsC S, S ) 
begin 

Ci{u)y C2{u) 4= i soparamet r ic curves of 5 in w d i r e c t i o n a t Vmim '^mao 
r e t u r n 

{ C^iu) } U 
adapIsoCrvsAuxC S, 6, Vmin, Vmax, Ci{u), C2{u) ) U 
{ C^iu) }; 

end 
end 

a d a p I s o C r V s A u x C 5 , J , Vmin, Vmax> Ci{u), C2{u) ) 

begin 
[wi,ii^] 4= u domain of Ci{u); 
[1*2,1̂ 2] ^ u domain of C2{u); 
l^ — (umimUmax) ^ [ î 7'̂ i] ^ [i/|, u | ] , common domain of C\{u) and C2{u)\ 
^i2(^) ^ squared i s o - d i s t a n c e between C\{u) and C2{u), u e U; 
Z ^ r o o t s of {Al^{u) - S'^); 
i f Z empty then 

i f Aj^iu) < (^^ yueU then 
(1) r e t u r n {} ; 

e l s e 

^mid ^ [ymin i~ '^max)/^'* 

C'i2('^) ^ i soparamet r i c curve of S a t Vmidy u^U\ 
r e t u r n 

(2) a d a p I s o C r v s A u x ( 5 , 8, Vminy Vmid> Ci{u), Cuiu) ) U 
{ Cu{u) } U 
a d a p I s o C r V S A u x C 5 ' , 6, Vmidy Vmax > Ci2{u), C2{u) ) ; 

end 
e l s e 

(3) Subdivide Ci{u), C2{u) a t a l l u'e Z i n to {C{(ii), Q( i / )} p a i r s ; 
r e t u r n IJ- a d a p I s o C r v s A u x ( 5 , 6, Vmin> Vmaxy Cl{u) ^ ^ ( l i ) ) ; 

end 
end 
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Figure 30.3. A bicubic surface covered using adaptive isoparametric curves (Algorithm 1) 
with different values of the tolerance S. 

exact after clipping to the domain of the trimmed surface. Because every one of these 
isoparametric curves is either a vertical or a horizontal line in the parametric domain, 
clipping itself is relatively straightforward. Figure 30.6 (b) shows another rendering of 
the Utah teapot, this time with holes formed using trimming curves. 

30.4. R A Y - T R A C I N G 

Methods to ray-trace freeform geometry directly by the numerical evaluation of roots or 
zero-sets are already known. The demand for extreme robustness and stability (for exam­
ple, the failure of one pixel in a million would be unacceptable) puts severe restrictions 
on the possible methods one can use. Some approaches support only special classes of 
surfaces such as surfaces of revolution, extrusion surfaces and sweep surfaces, or combina­
tions of these. In one such development [4], sweep surfaces are rendered directly, utilizing 
the generating curves of the sweep surface as the basis for the coverage. 

Here, we will examine two approaches that support or emulate direct ray-tracing meth­
ods for freeform geometry. In Section 30.4.1, we will consider a method that is known as 
Bezier clipping, which is a robust yet efficient numerical method to derive Ray-Surface 
Intersections (RSI). In Section 30.4.2, we examine an extension to the AlC-based coverage 
that supports ray-tracing and is called Ruled Tracing. 

30.4.1. Bezier clipping 
In general, finding the roots of polynomial functions of arbitrary degree is a difficult 
problem. However, where polynomials represent geometry, the Bezier form may yield 
some benefits. It should be noted that a B-spline surface can easily be converted to a 
piecewise Bezier form and hence the method presented here will be equally valid in the 
domain of B-spline surfaces. 
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(a) (b) 

Figure 30.4. In (a), a simple surface is rendered using the AlC-based coverage with a 
tolerance S that is several pixels wide. In (b), the same surface is rendered using the 
AlC-based coverage but with a sub-pixel tolerance S. 

Consider the parametric Bezier curve C{t) = {x{t),y{t)) of degree d. We seek the 
intersection points of C{t) with the line L : Ax + By + C = 0 (see Figure 30.7 (a)). 
Substituting C{t) into L, we are left with an implicit equation in one variable whose 
zero-set corresponds to the desired intersection points, f{t) = Ax{t) + By{t) + C = 0. 
Clearly, f{t) is a scalar Bezier function of the same degree as C(t), 

d 

f{t) = Y,CiB,,d{t), 
2 = 0 

where Bi^d{t) are Bezier basis functions of degree d. Since the function is scalar, one could 

replace the coefficients Q by ( Q , ^ ) , in the xy-plane, because Ylt=Q ^^i,d(^) — -̂ Let us 

denote the Bezier curve with coefficients Pi — ( Q , ^) as /o(0-

The curve /o(^) is contained in the convex hull C7i{fo) formed by its control points, 
{Pi}. Moreover, the zeros of f{u) correspond to the intersection points of /o(t) with the 
X-axis. Consider the first control point, PQ of fo{t) (see Figure 30.7 (b)). If PQ is below 
the X-axis, as seen in Figure 30.7 (b), then the curve fo{t) is guaranteed to be below 
the X-axis, as long as C7i{fo) is also below the x-axis. Similar arguments hold if PQ is 
above the x-axis. Moreover, the same line of reasoning holds for the last control point, 
Pd- Hence, one can clip fo{t) from t = 0 up to ti (see Figure 30.7 (c)), where Cli{fo) 
intersects the x-axis for the first time, and from t = 1 back down to ^2, where C'H{fo) 
intersects the x-axis for the last time, creating fi{t). The clipped curve / i ( t ) contains 
exactly the same zeros as /o(^)- This numerical process can be allowed to iterate until 
the zero-set solution is located with sufficient precision. 

The extension of this Bezier clipping process to surfaces requires several intermediate 
representations, although it follows the general direction of the approach we have taken 
for curves. Consider the tensor product Bezier surface: 

S{u,v) = Y^Y^P^JBi^du{u)BJ^dA'^)• 
i 3 

The ray intersecting 5(u, v) is defined as the intersection of two orthogonal planes, AkX-\-
Bky + CkZ -\- Dk — ^, k = 1,2. Nishita et al. [20] employ the scan plane and the plane 
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(a) (b) 

Figure 30.5. In (a), the Utah teapot is rendered using a traditional polygonal approxima­
tion, with over 7000 polygons. In (b), the same Utah teapot is rendered using AIC. Note 
the superior highlights that result, as well as the smoother silhouette edges. 

containing the ray and the y-axis are for primary rays. Substitute the control points 
Pij = {xij,yij,Zij) of S{u,v) into the planes, and let d'^j = AkXij + BkVij + CkZij + Dk-
Assuming AI + Bl -^ C^ = 1, d^j equals the distance from Pij to the kth plane. We now 
define a new planar surface as: 

Surface clipping will be conducted over D{u^v), which is merely an orthographic projec­
tion of S{u, v) along the ray, if S{u, v) is a polynomial surface. Even if S{u, v) is rational, 
D{u, v) remains a polynomial. 

The solution of D{u, v) = 0 corresponding to the intersection between the ray and the 
original surface S{u, v) is obtained by performing Bezier clipping steps over D{u, v) with 
respect to some line in the plane. Nishita et al. [20] give more details and also discuss 
efficiency and timing considerations. They describe how trimmed surfaces are supported 
by the manipulation of Bezier trimming curves. Computations of the inclusion/exclusion 
decisions in both the untrimmed and trimmed domains of the surface are also derived 
through Bezier clipping. These authors discuss efficiency and timing considerations. 

30.4.2. Ruled tracing 
At the core of every ray-tracing technique is the need to compute the intersection between 
a ray R and some surface 5 , the Ray-Surface Intersection (RSI) problem. 

Primary rays are rays from the viewer or the eye through each pixel into the scene; 
they are typically evaluated in scan-line order, exploiting Z-buffer coherence to solve the 
RSI problem efficiently. Now consider the problem of casting rays from the points found 
in primary RSI towards the light sources in the scene, in order to detect regions that are 
in shadow. 

Suppose we have in our scene a horizontal triangular polygon, T , at depth z — 1, 
positioned above a horizontal rectangular polygon V at depth z = 0 (see Figure 30.8 (a)). 
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(a) (b) 

Figure 30.6. In (a), several textures are applied to the Utah teapot. A parametric texture 
mapping is applied to the body of the pot, with a repeating texture pattern. The spout, 
handle and cap have all received different volumetric texture patterns. In (b), a set 
of trimmed surfaces, representing a teapot with holes, are rendered. Both images were 
created with the aid of an AlC-based coverage of the freeform surfaces. 

We seek the domain ofV in the current scan-line, Ly^^ which is hidden from light source 
C due to T and hence is in shadow. Let Lp — {p \ p e V n Ly^} be the domain of V that 
affects the current scan-line. Traditionally, the domain in shadow along Lp is resolved by 
emitting one ray per pixel toward C. 

However, one can approach this shadow detection problem differently. Consider the 
ruled surface R^ that passes through both the light source and the intersecting edge L-p 
(see Figure 30.8 (b)): 

R'{u, v) = vC + {l- v)L-p{u), 0 < i; < 1. 

We now compute the intersection of R^[u,v) with the polygon T. If R^{u,v)(^T is 
empty, then clearly T casts no shadows on V along the current scan-line Ly^. Alterna­
tively, if R^[UQ,VQ) G R^{U,V){^T^ then R^{UQ,^) is hidden from the light source and 
hence it is in shadow. Moreover, R^{UQ,()) = L'P{UQ) and so we have a direct hit on the 
portion of Lp{u) that is in shadow. 

R^{u,v) is a ruled surface, by its construction. In fact, because one of the boundary 
curves of R^{u,v) vanishes to a point at £ , R^{u,v) is a developable [8] (and planar) 
surface. The domain spanned in the w-direction of the set of R^{u, v)nT corresponds to 
the domain U that is in shadow, or alternatively illuminated, on V for the whole of the 
current scan-line, Ly^. 

In the next section, we take this coherence-based optimization a step further. The 
objects in the scene are no longer polygons but are now freeform surfaces, and the surface-
polygon intersection problem becomes a surface-surface intersection (SSI) problem. In 
other words, we are about to cast numerous RSI problems into much fewer SSI problems, 
expressed in the freeform surface domain. 
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Figure 30.7. In (a), a cubic parametric Bezier curve is to be intersected with line L. The 
substitution of C{t) into L is shown in (b) as an explicit function /o(^)- Clipping the 
convex hull domain of fo{t) to be between ti and 2̂ results in fi{t), which is shown in (c). 

Figure 30.8. In (a), the shadowed regions of V due to T are sought. These regions are 
then separated from the illuminated domains along the current scan-line, Ly^. In (b), a 
ruled surface R^{u,v) is constructed between C and Lp, so that R^{u,v) Pi T represents 
the portion of U that is in shadow. 
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Ruled tracing of freeform surfaces 
The AIC elements C that cover a freeform surface S do not have to be scan-line oriented 
univariate functions or even straight lines. Scan-line oriented rendering requires the in­
tersection of a plane and the surface S{u,v), so as to deal with the primary rays traced 
back to the eye. Using the AIC coverage, we can entirely eliminate the plane-surface 
intersections that are needed for conventional scan-line oriented rendering. 

The intersection of a plane and a freeform surface S{u, v) is not in general an isopara­
metric curve. Scan-line oriented rendering incrementally constructs a valid coverage for 
S{u,v) in the image plane, which guarantees that all pixels in the image plane covered 
by S{u, v) will be visited. Although scan-line oriented ray-tracing can benefit from ruled 
tracing, it is possible to eliminate all computation of plane-surface intersections for the 
primary rays that pass through the eye. 

Assume that our scene consists of a set of surfaces «S, and recall the AIC coverage C of 
a freeform surface S. Let C^ be a set of isoparametric curves of S^{u, v) G «S, that forms 
a valid coverage for S^{u,v), and let Cj{u) = S^(u,Vi) € C^. Consider a light source C 
and define the ruled surface between C and curve Cj{u) as: 

Rt^{u,v) = Ci{y) + v{C-CJM), 
= {l-v)Ci{u)^vC, 0 < i ; < l . (30.6) 

Clearly, from its construction, Rf{u,v) is a generalized cone, or more precisely a devel­
opable surface. One of the boundary curves of Rf{u,v) vanishes to a point, at C The 
following observation is fundamental: 

Let Cj{u) C S^u^v). A point Cj{uo) is hidden from C and hence is in 
shadow if and only if 35^(r, t) G S such that Rf{uo,v) fl S^{r,t) ^ 0, for 
some 0 < V < 1. 

If j = /c, we are testing for a self-occluding surface. Because the domain of v is 
open, Cf{u) itself is excluded from this intersection test. That observation allows one to 
pose a large set of regular RSI problems, millions in a typical image, in term of much 
fewer developable-surface-surface intersection (DSSI) problems. A solution to the DSSI 
of R^{u, v) against all the surfaces in S yields all the RSI solutions necessary to determine 
the domain of Cj{u) that is in shadow. Hence, one can form a coverage of isoparametric 
curves C^ for the surface S^{u,v). Then, for each isoparametric curve Cj{u) G C-̂ , we 
resolve its shadow domain by constructing a complete ruled surface from C^{u) to the 
light source £ . Continuing in this way, we solve the DSSI against all surfaces in the scene. 

So far we have shown how to delineate the shadow regions from the illuminated ones. 
Let V{u) be the unit-size viewing direction toward C/(w) and let nj(iz) = n^{u,Vi) be the 
unit-size surface normal along Cj{u) = S^{u,Vi). Let the unnormalized surface normal 

be denoted by n'(u) = ^ ^ ^ A ^ ^ ^ 1 , with nl{u) = - S j ^ . Then the reflection 

direction, f, can be computed as: 

= 2^ ' ' - - ' ' , ' • '/ ''- ' -V(u). 30.7 

\muw 
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Thus, the specular reflection off" the univariate domain of CJ{u) is formulated as: 

R-J{u, v) = Ci{u) + vriiu), v>0. (30.8) 

R\^{u,v) is a ruled surface. Consider the (piecewise) polynomial or rational freeform 
surface S^{u,v). Assuming V(u) is (piecewise) rational, then rf(t^) and hence R\^{u,v) 
can be represented as (piecewise) rationals. This holds in at least one degenerate ca^e 
where V(u) is a constant unit vector; namely, the case in which the viewing direction is 
fixed, which holds for primary rays and for rays originating from light sources at infinity. 
However, closer inspection of Equation (30.7) reveals that V{u) need not be unit size to 
generate a rational vector field in the reflection direction (see Elber et al. [13] for more 
details). Once constructed, R\^{u,v) is compared against all the surfaces in <S, and a 
ruled-surface-surface intersection (RSSI) is computed between each pair. The colors of 
the reflections can be determined from these intersections. 

Algorithm 2 summarizes the ruled tracing approach that we have now explained. The 
algorithm includes computation of the shadowing developable surfaces with respect to the 
light sources, as well that of the reflecting ruled surfaces, as discussed above. In Line (1) 
of Algorithm 2, the computation arrives at a single sequence of pixel colors along Cj{u). 
The term Uf represents the domain of Cj{u) that is in shadow, and Ul expresses the 
coloring contribution of the reflections along Cj{u), as R\^[u,v) is intersected against S, 
based on the colors of the surfaces hit by the reflected ruled surface. In Line (1), the 
reflectance information and the detected shadows are combined with the original surface 
properties of Si{u, v) to derive the displayed colors along the entire domain of Cj{u). The 
next section discusses our implementation and presents some examples, drawing from 
Algorithm 2. 

Examples 
Given a 'black box' that is able to resolve SSI (surface-surface intersection) queries, the 
AIC algorithm could be extended to support the emulation of ray-tracing by means of 
ruled tracing. See Elber et al. [13] for some discussion on specially optimized RSSI (ruled 
SSI) and DSSI (developable SSI) intersection algorithms. 

Figure 30.9 shows a computer model of an F16 aircraft, rendered with self-shadowing 
using ruled tracing. Figure 30.10 shows a king chess piece that was rendered using ruled 
tracing, with diff'erent tolerances in the AIC algorithm. 

30.5. EXTENSIONS 

The ability to cover a freeform surface using simple primitives has a range of applications 
and extensions, of which we will consider several here. In Section 30.5.1, we will examine 
the ability to optimize the layout of parametric textures on freeform surfaces which are 
in general non-isometric. In Section 30.5.2, we will apply the AIC coverage to the NC 
machining of freeform surfaces. Finally, in Section 30.5.3, we present line-art rendering 
techniques of freeform surfaces with the aid of AIC. 

30.5.1. Isometric texture mapping 
The regular mapping of texture on to parametric surfaces as part of eflScient scan-
conversion using a set of isoparametric curves is known to be feasible [5,12,27]. Un-
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Algorithm 2 

Input: 
Ck'- l i g h t sources l o c a t i o n / d i r e c t i o n . 
S: s e t of su r faces de f in ing the scene . 

Output: 
Rendered image. 

Algorithm: 
RuledTraceC S ) 
begin 

for each S^{u,v) G 5 do 
C^ 4= Valid coverage of S^{u,v) us ing AIC (Algorithm 1) 
for each CJ{u) e C^ do 

Rf(u, v) <= {I- v)CJ{u) + vCk. 0 < i; < 1; 
Uf^ <=^ Rf^{u,v)'s ti-domain t h a t i n t e r s e c t s S; 
RV{u,v) <= CJ{u)-}-vri{u), v>0; 
Ul^ <^ incoming and r e f l e c t e d i l l umina t i on from S\ 

(1) Sccin-convert Cl{u) us ing U^^ and Ul^\ 
endfor 

endfor 
end 

fortunately, due to the fact that parametric surfaces are rarely isometric, the texture is 
warped as it is mapped on to the freeform geometry. Attempts to alleviate and control 
these texture distortions have been made [2,3,19] using geodesic curves and relaxation 
techniques [3,19] to flatten the surface approximately, or by limiting the viewing direc­
tions [2]. In Section 30.5.1, we explore the use of the AIC coverage in the search for a less 
distorted texture mapping. 

Texture mapping using AIC 
We are interested in the ability to exploit the iso-distance (Definition 4) to produce a 
minimally distorted texture mapping. While it is clear that the texture will always be 
distorted for non-developable surfaces, we seek to minimize these distortions. 

By accumulating the arc-length of a scan-converted curve as it is traversed, it is possible 
to know the true distance of any point along the isoparametric curve. Further, the scan-
conversion process deals serially with the isoparametric curves in the AIC. Hence, with 
the aid of Algorithm 1 and the computed iso-distances Ai2(^^) we can also accumulate the 
distance across isoparametric curves. 

Measurements of the arc-length of C{u) during the scan-conversion process should be 
quite accurate. Even so, the (squared) distance represented by A^2(^) will yield the wrong 
results if the vectors Ci{u) — C2[u) are not orthogonal to ^^^^ ~ ^^du (̂ ^^ Figure 30.11). 

Let us denote the angle between vectors Ci{u) - C2{u) and ^ ^ ^ by 9. Then (Ci(w) -
C2{u)) sin{0) is a first-order approximation to the true distance between adjacent isopara-
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Figure 30.9. A computer model of an F16 aircraft is rendered using ruled tracing, including 
the effects of (self-)shadowing. Shadows from the right wing and the right elevator are 
cast on to the fuselage. 

metric curves. As the distance between the two adjacent curves converges to zero, the 
approximation converges to the true distance. Moreover, sin^(^) can be represented in 
the following rational form: 

sin2(i9) = l-cos((9)2 

= 1 -
(Ci{u)-C2{u) dCiju) 

du 

{C,{u) - C2(u),C,{u) - C2{u)) ( ^ , ^ ) 

Then, instead of using ^\2{u), we can employ the more accurate 

(30.9) 

With these modifications, we can now get a good estimate of distances along, as well as 
across, isoparametric curves. Nevertheless, it should be noted that nothing is measured 
nor guaranteed anywhere other than in the tangent plane T^ of the freeform surface. 
In other words, we are only considering and preserving the ( ^ , | f ) term of the first 
fundamental form and distance in a direction that is orthogonal to | | in Tp. Clearly, 
the preservation of these distances does not yield an isometric mapping—as one would 
indeed expect with general parametric surfaces. Fortunately, in many instances, the 
parameterization of the surface is well-behaved and the proposed mapping scheme does 
indeed alleviate the distortions in the resulting texture. 
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Figure 30.10. A king from a chess set is casting shadows on to the floor. Four different 
renderings at four different AIC tolerances are presented. 

Figure 30.11. The iso-distance as imposed by A^iu) could yield wrong results when the 
vectors Ci{u) - C2{u) are not orthogonal to ^ ^ ^ ^ ^ . 
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(c) (d) 

Figure 30.12. A simple planar surface, parametrically texture mapped with red/green 
checker squares. In (a), traditional texture mapping is exploited using the AlC-based cov­
erage. In (b), the accumulation of arc-length along and across the isoparametric curves 
is employed. The picture (c) is similar to (a) but with the improved Af2(^) (Equa­
tion (30.9)), and (d) shows the same rendering as (c) but with a larger AIC tolerance. 

Distances along and across isoparametric curves are measured and accumulated from 
one or more prescribed corners of the parametric domain of the freeform surface. While 
the algorithm can select these corners at random, the final result will change when different 
corners are used. Hence, the user is given the ability to prescribe the corner or corners 
from which distances are accumulated. Section 30.5.1 demonstrates the effectiveness of 
this approach using some examples. 

Results using AIC texture 
Starting with a simple planar yet non-rectangular surface, Figure 30.12 results from the 
standard texture mapping method as well as from our proposed scheme, with and without 
the correction of A^2(^A), in Equation (30.9). 

Finally, in Figure 30.13, a model of an F16 aircraft is rendered using the AIC coverage 
and almost-isometric mapping. The entire aircraft, except the wings, is rendered using a 
camouflage-based volumetric texture. In Figure 30.13 (a), checker squares are paramet­
rically mapped on to the wings in the traditional way. In Figure 30.13 (b) the wings of 
the same F16 are parametrically texture mapped using the distance-preserving scheme 
presented in this section, yielding an almost isometric texture. Figure 30.13 (c) shows a 
different texture pattern for the wings. 
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Figure 30.13. A model of an F16 aircraft, with wings that are parametrically texture 
mapped with a regular pattern. In (a) we see the traditional result that directly follows 
the (non-isometric) surface parameterization. In (b), almost-isometric texture mapping 
is employed; and (c) presents a different texture pattern. 

More on this almost-isometric texture mapping can be found elsewhere [7]. 

30.5.2. Machining using adaptive isoparametric curves 
Being able to compute the coverage of a surface is a development that holds the key to 
other problems that require all locations on a surface to be visited to within some pre­
scribed tolerance. An immediate application is Numerically Controlled (NC) machining, 
in which an AIC coverage can be used to determine a tool path. 

Figure 30.14 shows two examples of freeform shapes that were NC machined using a 
tool path based on an AIC coverage. 

30.5.3. Line-art rendering 
Recall the tolerance term S in Definition 1. So far S has been assumed to be constant. We 
will now examine the option of making S a function. The shading S{u, v) of a surface can 
be related to its illumination S{u,v),\/u,v. In particular, S can now become a function 
of the viewing direction and the surface normal, as well as of the position and orientation 
of the light sources. In pursuit of this goal, we will employ a simple shading model that 
incorporates both diffuse and specular lighting components [15]. In Section 30.5.3, we lay 
down the necessary background and modifications that are necessary to support S{u,v), 
and in Section 30.5.3 we present some examples. 
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Figure 30.14. Freefrom geometry that was NC machined using a tool path that was 
derived from a surface coverage based on the AIC algorithm. 

Background and modifications towards line-art rendering 
In previous work on line-art rendering [29], the Phong lighting model has been employed. 
We will also use the Phong lighting model in the generation of non-photorealistic line 
illustrations, this time using the AIC approach. We seek a modification to the surface 
coverage of Definition 1 so that S can be employed as a simple shader. Let Ci denote the 
unit vector of the zth light source and let V denote the unit viewing direction. Given a 
surface S{u,v), let fi{u,v) be the unit normal field of S{u,v). Then 

6{u, v) = a {Ci, n{u, v)). (30.10) 

where a is a handle controlling the intensity. The term 6{u,v) in Equation (30.10) pre­
scribes a simple shader with only a diflFuse lighting term. Adding a specular term yields 

6{u, v) = a (£, n{u, v)) + /? (V, f{u, v)y (30.11) 

where a and /3 are handles controlling the different lighting components, and f{u, v) is 
the direction of light from its source and reflected off" S{u, v), expresssed as: 

r{u, v) = 2 {n{u, v), Ci) n{u, v) — Ci, 

(see Equation (30.7)) and c is the power of the specular term. See Foley et al. [15] for 
more details. 

While neither shading model (Equations (30.10) and (30.11)) is (piecewise) rational due 
to the square-root normalization factors in the unit normal and reflection fields, 5'^{u,v) 
is rational. Because we are actually using S'^{u, v) in our algorithm (see Algorithm 1), the 
use of the squared function 5'^{u,v) imposes no real difficulty. 

Unfortunately, results from Algorithm 1 are likely to appear synthetic and artificial 
due to its binary subdivision nature (see Figure 30.15 (a)). Nevertheless, there exists a 
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Figure 30.15. The direct adaption of Algorithm 1 to line-art rendering yields results that 
look synthetic and artificial (a). By adding some random noise to the 6 function, these 
artifacts can be removed (b). 

simple remedy. One can introduce white noise into the shader, denoted as S{u,v), before 
solving for the roots of Al2{u) — 6'^{u, v). This masks the pattern introduced by the binary 
subdivision: compare Figure 30.15 (a) with Figure 30.15 (b). 

In order to present the results of Algorithm 1 convincingly, it is necessary to eliminate 
the invisible portion of the coverage. This can be done simply by using a standard Z-
buffer to render the freeform surface model so that a complete depth map of the rendered 
scene is created, using either traditional polygons or the valid AIC coverage rendering that 
is described in Section 30.3.1. Then, the line-art coverage is translated a small distance 
along the z-direction toward the viewer and its visibility is verified against the depth map, 
isolating and extracting only the visible portion. This visible portion of the coverage is 
then approximated using piecewise cubic Bezier curves, which can be represented in the 
Postscript page description language [23] for printing. 

In the next section, we go on to demonstrate some other possibilities of applying the 
line-art rendering technique to scenes of freeform models. 

More examples of line-art rendering 
So far we have employed a shader that takes into account both diffuse and specular light­
ing. We now explore two other possibilities. Consider a shader that enhances silhouette 

s{u,v) = {i-fi,{u,v)y, 
where n^ is the z-component of the unit normal field of surface S{u, v), and c serves as a 
decay factor as we move away from the silhouettes. See Figure 30.16 (a) for an example. 

Yet another possibility is to make the shader respond to the intensity of illumination. 
The intensity of light decays with the square of the distance from its source; in Fig­
ure 30.16 (b), more isoparametric curves are drawn as we get closer to the light, which 
actually makes the surface look darker! 
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Figure 30.16. The shader can be made to to affect S{u,v) directly. In (a), this technique 
is used to enhance silhouette areas, whereas in (b) it is the distance from the light source 
(above and to the right) that affects S{u,v). 

Further work has been done on the use of AIC for line-art rendering [11]. In addition, 
attempts have been made to produce drawings of this sort in real time [14]. 

30.6. CONCLUSION 

This chapter has presented several recent results in the direct scan-conversion and ray-
tracing of freeform geometry. The ability to cover freeform surfaces optimally and effi­
ciently using primitives which are simple to render, possibly in hardware, has been the 
key consideration. 

In Section 30.5.1, we introduced Af2('?̂ ) with the aim of improving texture mapping 
capabilities. It can also be used to give a better AIC coverage, at the expense of more 
elaborate computations. 

The adaptation of the Radiosity rendering scheme to the use of covering curves is more 
difficult. Isoparametric curves have no area and it is difficult to consider light energy 
exchange among zero-area elements. While the curves represent a finite surface area with 
width of the order of S, direct application of the radiosity method to freeform surfaces 
remains a topic for research. 

In recent years, there has been considerable interest in methods to process and render 
multivariate functions and surfaces directly. Trivariate functions are extensively exploited 
in medical visualizations and multivariate functions and surfaces are widely used in sci­
entific visualization. This area of research is also expected to grow in the next few years. 

The use of polygons to approximate freeform geometry has many benefits. Nonetheless, 
this approximation is also deficient in many ways. Recent interest in algorithms for 
directly handling freeform geometry suggests that the disadvantages of using polygonal 
approximations become ever more evident, in spite of their extreme simplicity. We will 
see whether direct surface rendering can challenge their lead. 
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Chapter 31 

Modeling and Processing with 
Quadric Surfaces 

Wenping Wang 

Quadric surfaces, or quadrics, are surfaces defined by algebraic equations of degree two. 
We will discuss mainly quadrics in 3D space, though quadrics in higher dimensions are 
also of certain interest to CAGD. In this chapter the following topics concerning quadrics 
will be discussed. 

1. Definition and Classifications 

2. Parametric Representation 

3. Fitting, Blending, and OflFsetting 

4. Intersection and Interference 

31.1. D E F I N I T I O N A N D CLASSIFICATIONS 

In this section we will define quadrics and discuss their classifications under diflFerent 
groups of transformations, i.e., Euclidean, affine, and projective transformations [41]. 

31.1.1 . Definition 
A quadric is defined by a homogeneous quadratic equation F{x,y,z,w) = 0, where 
(x, y, z, w) are the homogeneous coordinates of a point in 3D space, with the corresponding 
affine coordinates {x/w,y/w,z/w) for a finite point, i.e., w ^ 0. The matrix representa­
tion of a quadric surface is given by 

F{x,y,z,w) = X^MX^O, 

where X = {x,y, z, w)^ is the column vector of coordinates and M is a 4 x 4 real symmetric 
matrix. 

777 
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The geometric degeneracy of a quadric is determined by the rank of M. If the rank of 
M is 4, then the quadric is called nondegenerate or proper. If the rank of M is less than 4, 
then the quadric is called singular. When the rank of M is 3, the quadric is singular but 
irreducible, and is therefore called properly degenerate. The properly degenerate quadrics 
are cones and cylinders. When the rank of M is 1 or 2, the quadric degenerates to a pair 
of planes. The case of rank(M) = 0 is trivial and will not be considered. Since only real 
points on a quadric surface are of interest in practical applications, we assume, without 
loss of generality, that the entries of M are real numbers and that M is indefinite, i.e., 
there exist real points XQ and Xi such that X^MXQ > 0 and X'fMXi < 0. Note that 
this assumption excludes those quadrics that are not real surfaces. 

31.1.2. Euclidean classification 
A Euclidean transformation is represented by 

Osx3 H X' = 
0 1 X, 

where O is a 3 x 3 orthogonal matrix with det(O) = 1, and 5 is a 3D translation vector. 
A Euclidean transformation X' = UX transforms a quadric X^MX = 0 to a quadric 
X'^(U~^MU~^)X' = 0. Under Euclidean transformations an irreducible quadric can be 
converted to one of the following nine canonical forms. 
Nondegenerate quadrics'. 

f̂  + f̂  + f^-^^ = 0 (rank(M) = 4, ellipsoid) 

2̂ + 5 2 - ^ 2 — '^^ = 0 (rank(M) — 4, one sheet hyperboloid) 

f̂  + p - - f j + w;̂  = 0 (rank(M) = 4, two sheet hyperboloid) 

^ + ^ — 21/; = 0 (rank(M) = 4, elliptic paraboloid) 

^ — '^ — zw = 0 (rank(M) == 4, hyperbolic paraboloid) 

The first three of the above are called central quadrics. 
Properly degenerate quadrics: 

2i + ^ - ^2 ^ 0, (rank(M) = 3, cone) 

^ -\-^ -w'^ = 0 (rank(M) = 3, elliptic cylinder) 

^ — ̂  — w'^ = 0 (rank(M) — 3, hyperbolic cylinder) 

ax^ — yw = 0 (rank(M) = 3, parabolic cylinder) 

Reducing a quadric surface to one of the above canonical forms by a Euclidean trans­
formation is useful in analyzing quadrics, since this means that only one routine is needed 
to process each of the canonical forms and it is therefore not necessary to cope with an 
arbitrary quadratic form. 

The fact that any quadric can be converted by a Euclidean transformation to one 
of these simple forms implies the existence of a local orthogonal coordinate system in 
which that form is assumed. In the case of a central quadric the coordinate axes of this 
coordinate system are the principal axes of the quadric. Denote 

\ m c \ 
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In this case the vectors of the three axes of a central quadric X^MX = 0 are the eigenvec­
tors of Msxs, and the center of the quadric is given by —M~^m, in Cartesian coordinates. 
Reducing a quadric surface in E^ to a canonical form is closely related to the orthogonal 
reduction of a quadratic form to a diagonal form. The reader is referred to [29] for a dis­
cussion of the reduction procedure, as well as a general discussion about the classification 
of quadrics under different transformation groups. 

31.1.3. Affine classification 
An affine transformation is represented by 

X' ^3x3 B 
0 1 

X, 

where v4 is a 3 x 3 nonsingular matrix and ^ is a 3D translation vector. Under affine 
transformations an irreducible quadric can be converted into one of the following nine 
canonical forms. Since more general transformations are allowed in affine space than in 
Euclidean space, the coefficients in the following affine canonical forms are less arbitrary 
than those in the Euclidean canonical forms. 

Nondegenerate quadrics: 

x^ + y^ -^ z^ -w'^ ^^ (rank(M) = 4, elUpsoid) 

x^ -\-y^ - z^ — w'^ = ^ (rank(M) = 4, one sheet hyperboloid) 

x^ -\-y^ — z^ + w'^ — ̂  (rank(M) = 4, two sheet hyperboloid) 

3;2 _|_ ̂ 2 _ ^ ^ _ Q (rank(M) = 4, elliptic paraboloid) 

x'^ — y^ — zw =^ {) (rank(M) = 4, hyperbolic paraboloid) 

Properly degenerate quadrics: 

x^ -{- y^ - z^ =: 0 (rank(M) = 3, cone) 

x^ -h 1/̂  — w;̂  == 0 (rank(M) = 3, elliptic cylinder) 

x^ — y"^ — w'^ = 0 (rank(M) = 3, hyperbolic cyhnder) 

x"^ — yw = 0 (rank(M) = 3, parabolic cylinder) 

Note that the principal axes of a central quadric are not, in general, mapped to the 
principal axes of the transformed quadric under an affine transformation. However, the 
center of a central quadric is mapped to the center of the transformed quadric by an affine 
transformation. 

31.1.4. Project ive classification 
A real projective transformation in 3D is given by X' = AX, where A is any real 4 x 4 
nonsingular matrix. A quadric is mapped to a quadric under a projective transformation 
and the rank of the coefficient matrix is not changed. Any irreducible quadric can be 
transformed projectively to one of the following three canonical forms: 

2 -h y^ + z^ - ii;2 = 0 

^ + y^ - 2^ - tt;^ = 0 

x'^ + y'^ - z'^ = 0 

(rank(M) 

(rank(M) 

(rank(M) 

= 4, 
= 4, 

- 3 , 

oval quadric) 

doubly ruled quadric) 

cone) 
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Figure 31.1. A stereographic projection on a sphere. 

Other commonly used canonical forms for the doubly ruled quadric and the cone under 
projective transformations are the hyperbolic paraboloid xy — zw = 0 and the cylinder 
x^ -\- y'^ — w'^ = 0, respectively. 

Any of the affine canonical forms of quadrics can be obtained from one of the above 
three projective canonical forms by appropriately specifying an ideal plane for an affine re­
alization of projective space. The affine views of quadrics in projective space are discussed 
in [11]. 

31.2. P A R A M E T R I C R E P R E S E N T A T I O N 

For reasons of computational efficiency, rational or polynomial representations of curves 
and surfaces are preferred in CAGD because of their simple analytical properties. So 
one reason why quadrics are widely used in CAGD is that all quadrics have rational 
parameterizations of degree two. In this section we shall discuss the rational quadratic 
parameterization of a whole quadric surface and of a surface patch on a quadric. 

31.2.1. Global rational parameterization 
A simple way to derive a rational quadratic parameterization of a quadric is to use a 
stereographic projection of the quadric to establish a birational mapping between points 
on a plane and points on the quadric [41,43]. See Figure 31.1. Let XQ be a point on 
quadric S : X^AX = 0. Let B^X = 0 be a plane not passing through XQ. When 5 is a 
cone or cylinder, XQ is assumed not to be the singular point of S. We will consider the 
projection that maps points on S through XQ to points on plane B^X — 0. 

Let T = (x, y, z, vjf be a variable point on plane Bj^X — 0, and let (r, 5, t) be a 
projective coordinate system on Bj^X = 0. Then there is a 4 x 3 matrix M such that 
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T = M{r, s, iY, and T or (r, 5, t) is called a parameter point Let P T I ^ , '̂ ) = '^-^o + '^T 
be the line determined by XQ and T. By Bezout's theorem, there are two points of 
intersection between S and line PT{U,V) unless PT{U,V) is contained in 5 , and one of 
these two intersections is XQ. The exception occurs for the generators of 5 at XQ, i.e., the 
straight lines on S that pass through XQ. Point XQ is called the center of projection for 
the projection induced by the hue PT{U,V) from plane BjX = 0 to quadric X^AX = 0. 
Substituting PT{U, V) for X in X ^ ^ X = 0, the parameter pair corresponding to the other 
intersection is found to he u : v = T^AT : {-2X^AT). Hence, the other intersection is 

P{r,s,t) = {T^AT)Xo-2{X^AT)T 

= [(r, 5, t)M'^AM{r, s, tf]Xo - 2[X^AM{r, s, tf]M{r, 5, t)^. 

This is a faithful rational quadratic parameterization of 5; a faithful parameterization is 
one that establishes a one-to-one correspondence between all points on the parametric 
plane and all points on the surface, with the usual exception of points on a finite number 
of curves on the surface. 

Using the above procedure we obtain the following rational quadratic parameterization 
of the unit sphere 5^ : x'^ -\-y"^ -\- z"^ - w'^ = 0, 

x = 2rt, y^2st, z = r"^-\-s^ - i^, w = r'^-^ s^-\-1^, 

with the center of projection at the north pole XQ — (0,0,1,1) and projection plane 
2: = 0. Here the homogeneous parameters (r, 5, t) are identified with the homogeneous 
coordinates (x, y, w) in plane z = 0. (See Figure 31.1.) This is the standard stereographic 
projection of 5^, which is circle-preserving. 

A parametric rational quadratic surface is, in general, a quartic algebraic surface, but 
degenerates to a quadric in special cases [11]. A rational quadratic surface whose alge­
braic degree is higher than two is called a Steiner surface [37]. Steiner surfaces behave 
quite differently from rational quadratic curves, which are always conies. It is known 
from algebraic geometry [7] that the algebraic degree of a surface with a faithful rational 
quadratic parameterization is 4 — p, where p is the number of base points] a base point of 
a rational surface P(r , 5, t) = (x(r, x, t),y{r, 5, t), z{r, s, t), w{r, 5, t)) is a parameter point 
(?"05 0̂7 ^0) / (0,0, 0) such that F(ro, SQ, to) = (0,0,0, 0). It follows that a faithful rational 
quadratic parameterization of a quadric has two base points. These two base points are 
distinct if and only if the quadric is nondegenerate [43]. 

The following properties of rational quadratic parameterizations of a quadric are proved 
elsewhere [43]. Two parameterizations derived using the above procedure with the same 
center of projection, but possibly with diff'erent projection planes, are related by a ratio­
nal linear reparameterization; however, two parameterizations derived with two different 
centers of projection are related by a rational quadratic reparameterization, which is a 2D 
Cremona transformation [38]; a Cremona transformation is a birational transformation 
from plane to plane. 

Any faithful rational parameterization of a quadric can be obtained using a stereo-
graphic projection; but not all rational quadratic parameterizations are faithful. The 
following is an example of an unfaithful parameterization of the cone x^ + y"^ — z'^ = 0: 

X = 2rs, y = r^ — s"^, z = r"^ -\- s"^, w = t^. 
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It is unfaithful because, clearly, (r, s, t) and (r, 5, —t) yield the same point on the cone. 
Unfaithful parameterizations can exist only for cones and cylinders and has no base points, 
and any rational quadratic parameterization of a non-degenerate quadric is faithful. 

31.2.2. Generalized stereographic projection 
The stereographic projection defined on a quadric surface that we just introduced has 
some drawbacks for modeling and analyzing rational curves and surface patches on the 
quadric. Taking the unit sphere 5^ for example, suppose that the center of projection is 
at the north pole N = (0,0,1,1) and the plane of projection is 2; = 0. Then a quadratic 
curve C on 5^, i.e., a circle in this case, is mapped by the inverse of the stereographic 
projection into a circle on the projection plane z = 0 when C does not pass through A ;̂ 
however, C is mapped to a line on plane 2; = 0 if C passes through A .̂ The fact that 
the degree of the inverse image of a circle on 5^ depends on the relationship between the 
circle and the center of projection is inconvenient and caused by the dependence of the 
definition of stereographic projection on the center of projection, or more fundamentally, 
by the existence of the bases points of the stereographic projection. This problem can be 
summarized more generally as follows: since the stereographic projection of a quadric is 
a quadratic mapping, the image of a degree m rational curve on the projection plane is a 
rational curve of degree at most 2m on 5^ under the stereographic projection; however, 
one cannot, in general, assert that any rational curve of degree 2m on 5*̂  is the image of 
a rational curve of degree m under the stereographic projection. 

To overcome this problem, the generalized stereographic projection has been introduced 
by Dietz, Hoschek, and Jiittler [9]. The generalized stereographic projection is a one-to-
one correspondence between points on a quadric and a two-parameter family of lines in E^, 
i.e., a line in E^ is mapped to a point on a quadric, vice versa. Furthermore, this family of 
lines fills up the entire space E^, so the generalized stereographic projection also induces 
a one-to-many mapping between points on 5^ and points in E^. The main advantage 
of the generalized stereographic projection is that its definition no longer depends on 
the choice of a particular center of projection; hence, the relationship between a rational 
curve/surface on a quadric and its inverse image can be stated in a unified manner in the 
general case. For example, any degree 2m rational curve on S^ is the image of a degree 
m rational curve in E^ under the generalized stereographic projection; hence, any circle 
on 5^ is the image of a line in E^ under the generalized stereographic projection. This 
property facilitates the study of rational curves on quadrics [9]. 

We first introduce the definition of the generalized stereographic projection for a general 
quadric in E^. Since an irreducible quadric is projectively equivalent to either the oval 
quadric x"^ -\- y'^ ~\- z'^ — w'^ — 0, or the doubly ruled quadric xy — wz = 0, or the cylinder 
x"^ + y"^ — w'^ = 0, we just need to consider these three canonical cases. To make the 
notation consistent with that of [9], we will use homogeneous coordinates (po,Pi,P2,P3) to 
denote a parameter point p in E^, the domain of a generalized stereographic projection. 
The aflfiine coordinates of a finite point p = {Po,Pi,P2,P3) is given by (^1/^0,^2/^0,^3/^0)5 
where po / 0. 
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Figure 31.2. The projecting lines of the generalized stereographic projection. 

The generalized stereographic projection of sphere x'^ + y'^ -\- z"^ — w"^ 

X = 2poPi - 2p2P3, 

y = 2pips + 2poP2, 

z 

0 is 

PI + PI PI PI^ 
w = PI + PI + PI-^-PI 

The generalized stereographic projection of the hyperbolic paraboloid is 

X = PiP2: y = P0P2, z = P1P3, w = PQPS. 

The generalized stereographic projection of the cylinder is 

X = 2popi, y = PI-P\, Z = arbitrary, w = pl+ p\. 

Below we will only discuss the properties of the generalized stereographic projection 
for a sphere; the reader is referred to [9] for a more detailed discussion on the other 
cases. All the points on 5^ are images of a two-parameter family of lines in E^, called 
projecting lines, under the generalized stereographic projection. These lines are shown 
in Figure 31.2. Specifically, let p = (^0,^1,^2,^3) be an inverse image point of a point 
P on 5^, and denote p-^ = (—;?3,p2, —Pi,Po)- Then the projecting line that contains all 
inverse image points of P is given by Ap H- /ip"^. Now define the hyperbolic projection by 
the mapping E^ ^ E"^: 

h{p) = (Po + PI PoPi - P2P3, PiPs + P0P2, 0). 

It can be verified that the hyperbolic projection maps all points on a projecting line to 
the same point on plane p3 = 0. Then the generalized stereographic projection of S^ is 
the composition of the hyperbolic projection and the ordinary stereographic projection 
centered at the north pole of S'^. Thus, all point on a projecting line are mapped to the 
same point on 5^. 
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The key results about the generalized stereographic projection on sphere 5^ are the 
following [9,10]: under the generalized stereographic projection, 

1. a degree 2m rational curve on S^ is the image of a degree m rational curve in E^] 

2. a degree (2m, 2n) rational tensor-product surface on 5^ is the image of a degree 
{m,n) rational tensor-product surface in E^; 

3. a degree 2n rational surface on 5^ is the image of a degree n rational surface in E^. 

Similar properties also hold for the generalized stereographic projections for other quadrics. 
These properties of the generalized stereographic projection play a key role in constructing 
a rational curve interpolating given data points on a quadric and computing a bi-quadratic 
rational Bezier surface patch interpolating four given conic boundaries on a quadric [10]. 

31.2.3. Surface patches on quadrics 
Using the stereographic projection described in the last section, a triangular patch on a 
quadric with boundary curves that are conic sections can be represented as a rational 
quartic surface patch [11,18]. To obtain this form, we start by using the inverse of a 
stereographic map to project the patch to a triangular region with conic boundaries on 
the parameter plane. Such a region can in turn be parameterized over a triangular domain 
with straight line boundaries. The combination of these two steps, each being a mapping 
of degree two, yields a rational quartic parameterization of the triangular patch on the 
quadric. 

A natural question to ask is: what are the conditions for a triangular patch with conic 
boundaries on a quadric to be a triangular rational quadratic Bezier surface? If the 
quadric is nondegenerate, the conditions can be stated neatly [9,21]: a triangular patch 
on a nondegenerate quadric has a triangular rational quadratic Bezier representation if 
and only if the boundary curves of the patch are conic segments or line segments and 
there exists a point P on the quadric but outside the triangular patch such that three 
planes each containing one of the three boundary curves are concurrent at P . This works 
because the point P can be used as the center of a stereographic projection to project the 
triangular patch into a triangle on the projection plane. Lli shows [24] that any triangular 
patch with conic boundaries on a cone or cylinder is a triangular rational quadratic Bezier 
surface, which is not necessarily faithful globally. 

Rational tensor-product surface patches on quadrics have been studied in [10] using 
the generalized stereographic projection. Here we will only mention a particular result 
concerning bi-quadratic patches on a sphere; one may consult [10] for a more general 
discussion. Given four circular arcs forming the closed boundary of a four-sided region on 
5^, let P j be the four consecutive corner points of the region, z = 1,2,3,4. See Figure 31.3. 
Each point P^ is an intersection of the two circles that contain the two boundary segments 
meeting at P^; let Q^ denote the intersection of the two circles that is other than P^. It is 
shown in [10] that there exists a bi-quadratic rational Bezier surface on S'^ interpolating 
the given boundary if and only if P i , P3, Q2, and Q4 are on the same circle {i.e., these 
points are coplanar) and the pair P i , P3 and the pair Q2, Q4 are not interleaved on that 
circle. 
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Figure 31.3. A rational bi-quadratic patch on a sphere. 

Further studies on the construction of surface patches on quadrics can be found in 
the Hterature [4,10,14,35]. Given three homogeneous variables (r, 5,t), the Veronese sur­
face is the 2D surface [r'^,s'^,t^,rs,st,st) embedded in P^, the five-dimensional projec­
tive space [16]. By treating a rational quadratic surface in P^ as a projection of the 
Veronese surface from P^, Albrecht [1] devises a procedure to determine whether a ra­
tional quadratic surface is a quadric surface. Determining if a faithful rational quadratic 
surface is a quadric can also be carried out by generating the implicit equation of the 
surface via elimination theory and then examining the degree of the implicit equation. 

31.3. FITTING, B L E N D I N G , A N D O F F S E T T I N G 

In this section we discuss the properties of quadrics concerning the following applications 
in geometric modeling: fitting, blending, and off"setting. By fitting we mean arranging a 
collection of surface patches with a certain degree of geometric continuity to pass through 
an array of data points in 3D space. Blending refers to the smooth joining of quadric 
surfaces by some other simple surfaces, such as part of a cyclide or a low-degree algebraic 
surface. The low algebraic degree of quadrics makes them valuable for modeling the 
boundary of 3D objects because it is then relatively easy to check whether a given point 
lies inside such an object or to perform fast ray-tracing rendering of quadrics. We will 
also examine some results about the self-intersection and rationality of offset surfaces to 
quadrics. 

31.3.1. Fitt ing 
The application of quadric surfaces to data fitting originated in the use of quadratic func­
tions to fit data points sampled from a bivariate function [33]. Suppose that a bivariate 
function f{x,y) is sampled at a collection of points (xi,yi), and the function values and 
gradients {f{xi,yi),\jf{xi,yi)) are extracted and associated with (xi^yi). Suppose also 
that there is a triangulation of the data points {xi,yi). Powell and Sabin [33] study the 
problem of using quadratic functions to interpolate the data points over each triangle to 
give a smooth approximation of f{x,y) across the entire domain. Since the graph of a 
quadratic function is either a paraboloid or a parabolic cylinder, this problem is a special 
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Figure 31.4. Subdivision of a triangle into six smaller triangles. 

case of surface modeling with quadric patches. 
Each quadratic function has six free parameters, but the data points at the vertices of 

a triangle impose nine constraints; therefore it is, in general, impossible to use a single 
quadratic function to interpolate over a triangle. A method is presented in [33] that 
uses a C^ piecewise quadratic function over each triangle which is subdivided into six 
smaller triangles by connecting each vertex and a point on each side of the triangle to an 
interior point (see Figure 31.4). Six quadratic functions over the six sub-triangles can be 
constructed to form a piecewise C^ function over the triangle and this produces a global 
C^ approximation of the function f{x,y) over a triangulation of the data points {xi.yi). 

Subsequent schemes using triangular quadric patches for scattered data interpolation 
in 3D space adopt a similar approach using more than one triangular quadric patch to 
cover each triangle domain, to overcome the insufficient degrees of freedom of a single 
quadric surface. A collection of triangular quadric patches joined with G^ continuity over 
a properly subdivided triangular domain is called a macro patch. The problem of using 
triangular quadric patches to fit 3D data, while also matching specified normal vectors 
at the data points, was first solved by Dahmen [8], and later independently, by Guo 
[15], both using an algebraic approach. Their conclusion is that, given a triangle with 
positions and normal vectors specified at the three vertices, one can construct a macro 
patch consisting of six quadric triangles to interpolate the given data. However, when this 
scheme is used over a triangulated polyhedral surface formed by scattered data points in 
3D space, additional quadric triangles are needed to join macro-patches over adjacent 
triangles with G^ continuity. A geometric description of this scheme has recently been 
provided by Bangert and Prautzsch [3]. 

31.3.2. Blending 
The problem of blending quadric surfaces is that of finding a surface, called a blend, which 
joins diflferent quadric surfaces, called primary surfaces, with a certain degree of continuity. 
Let an algebraic surface be the zero-set, denoted »S'(/), of a polynomial f{x,y,z). Let 
S{f, h) denote the intersection curve between a primary surface S{f) and a clipping suvidiCe 
S{h). 

Given two quadric primary surfaces S{fi) and 5'(/2), and two clipping surfaces S{hi) 
and S'(/i2), two curves 5( / i , / i i ) and S'(/2,/i2) can be defined on 5 ( / i ) and S'(/2), respec­
tively. The problem of blending S{fi) and S'(/2) then becomes that of finding a surface 
S{g) which is tangential to or has higher-order contact with S{fi) and S{f2) along the 
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Figure 31.5. A G^ blend for three cylinders by a piecewise quartic surface (Image courtesy 
of Falai Chen). 

curves S{fi,hi) and S'(/2,/i2), respectively. 
Hoffmann and Hopcroft [17] present a method for surface blending using potential 

functions. Given two primary surfaces S{fi) and 5(/2), consider two families of surfaces 
S{fi — s) and 5(/2 — t), with parameters s G [0,5] and t G [0,t\. Let hi — f2 — i and 
h2 — fi — s. Then a blend surface of S{fi) and S{f2) can be defined by the algebraic 
surface swept out by the space curve S{f\ — s, f2 — t), where s and t satisfy some equation 
F{s,t)—{), and the curve F{s,t) = 0 is tangential to the 5-axis at (5,0) and the i-axis at 
(0, i) in the s-t domain to ensure tangency between the blend surface and the primary 
surfaces. It is recommended [17] that F{s,t) = 0 should be a conic, such as an ellipse, to 
yield a low-degree blend surface. In this case the blend surface has degree four if S{fi) 
and S{f2) are quadrics. 

Warren [46] studies the blending of general algebraic surfaces using the ideal theory of 
polynomials, and shows that the surface S{g) that is tangential to S{f) along the curve 
S{f,h) has a special form, i.e., g G I{f,h?), the ideal generated by / and h^. Using this 
result, Warren obtains quartic blending surfaces for two quadrics, and surfaces of degree 
six for three-way blending of three quadrics. 

Wu and Zhou [48] report a method that produces a degree n + 1 surface for n-way 
blending of n quadrics, under the condition that the n clipping surfaces are planes that 
intersect the n primary surfaces in n conies that are contained in a common quadric. C. 
Chen, F. Chen, and Y. Feng [6] propose a method that uses low degree piecewise algebraic 
surfaces to blend multiple quadrics. See Figure 31.5 for three cylinders joined by a G'^ 
blend that is a piecewise quartic surface produced by their method. 

There are also other approaches to blending quadrics. Shene [40] uses cyclidal surfaces 
to blend cones. Wallner and Pottmann [42] use rational surfaces to blend general quadrics. 
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31.3.3. Offsetting 
An offset surface, or offset in short, of a given surface S is the set of points that have 
a constant distance d to surface S; surface S is also called the progenitor surface. For a 
point q on the offset surface, the corresponding point p on the progenitor surface that 
gives rise to q is called the foot point of q. The offset surface is used in NC machining 
where a given surface S is milled by a spherical-end cutter of radius d with its center 
following a path on the offset surface of distance d to surface 5. Other applications of 
offsetting are discussed in [34]. 

The offset surfaces of general surfaces have been extensively studied; see [31], for ex­
ample. Here we will only discuss some results concerning the offsets of quadric surfaces 
in the following two aspects: 1) the self-intersection of an offset surface to a quadric; and 
2) the rational parameterization of an offset surface to a quadric. 

The following discussions concerning offsets will take place in E^, the three-dimensional 
Euclidean space. We assume that a progenitor surface under consideration is regular and 
at least twice differentiable; these assumptions are clearly satisfied by nondegenerate 
quadrics, cylinders, and cones, except at the apex of a cone. By convention, one side 
of a surface S is assumed to be outside and the other side to be inside, and we assume 
that the normal vector n at a point p of 5 always points outside. An offset surface 
of distance d to progenitor surface S lies outside of 5 if d > 0, and inside if c? < 0. 
A principal curvature at point p of surface S is assumed to be positive if its center 
of curvature lies on the opposite side of surface S as pointed to by normal vector n; 
otherwise, the principal curvature is negative. Let kj^in and /Cmax be the minimum and 
maximum principal curvatures, respectively, at point p of surface S. When d > 0 and 
^min < 0, the offset surface of distance d has self-intersection due to the local concavity of 
the surface if d > —l/kj^m] when d < 0 and /cmax > 0, the offset surface of distance d has 
self-intersection if d < — l/Zcmax- We will not discuss here the self-intersection of an offset 
surface due to the global geometry of the progenitor surface, but refer the reader to the 
more general treatment in [2]. 

The computation of offset surfaces of natural quadrics, including spheres, circular cones 
and cylinders, is given in detail by Farouki [12]. The self-intersection problem of an offset 
surface to a general quadric is studied by Maekawa in two companion papers [25,26]. 
The first paper [25] considers the offsets to special quadrics that can be represented by 
the graph of a quadratic bi-variate function z = f{x,y)\ these quadrics are the elliptic 
paraboloid, parabolic cylinder, and hyperbolic paraboloid, which are all the irreducible 
quadrics tangential to the plane at infinity. It is shown that the self-intersection curve 
of an offset to such a special quadric is always a segment of a parabola, and this curve 
degenerates to a straight line in the case of the self-intersecting offset of a parabolic 
cylinder. When self-intersection occurs, let us call by foot-point curve the curve consisting 
of the foot points corresponding to the points of the self-intersecting curve on the offset 
surface; then, in this case, the foot-point curve is the intersection between the progenitor 
surface and an elliptic cylinder when the progenitor surface is a paraboloid, and the 
projection of the foot-point curve on the z = 0 plane is an ellipse. The foot-point curve 
consists of two lines for a self-intersecting offset surface to a parabolic cylinder. Since a 
surface S can be approximated to the third order by a quadratic paraboloid or a parabolic 
cylinder in a neighborhood of a regular point of 5 , the above results, together with a 
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surface curvature analysis, lead to an effective method for detecting the self-intersection, 
especially small loops, of an offset surface to a general surface, as well as a means to 
compute an accurate initial point on a self-intersection curve [25]. 

In the second paper [26] Maekawa studies the self-intersection problem of the offset to 
a general quadric surface and obtains the following results. The intersection curve of a 
self-intersecting offset surface to a quadric is, in general, a conic; for example, it is an 
ellipse for an ellipsoid, an ellipse or hyperbola for a hyperboloid or a cone, depending on 
the sign of offset distance d, and comprises straight lines for a cylinder. Furthermore, 
when the progenitor surface 5 is a non-degenerate quadric or a cone, the foot-point curve 
corresponding to the self-intersection curve on the offset is the intersection curve of S 
with an ellipsoid concentric with S; when the progenitor surface 5 is a cylinder, the foot-
point curve corresponding to the self-intersection curve comprises two straight lines that 
are the intersection between S and an elliptic cylinder. These results are highly useful 
in understanding and computing the self-intersection of an offset surface to a general 
quadric. 

Next we consider the problem of representing the offset surface to a quadric as a rational 
surface. Although it is known that any offset surface to a quadric is an algebraic surface, 
the problem of determining whether such an offset surface is a rational surface has been 
studied only recently. Lii shows [22] that the offsets to paraboloids and one-sheet hyper-
boloids are rational, by exploiting the fact that a cubic algebraic surface, except for a cubic 
cone or cubic cylinder, is a rational surface. Using the same idea, Lii further shows [24] 
that the offsets to ellipsoids and two-sheet hyperboloids are also rational. It is proven 
by Pottmann, Lii, and Ravani [32] that the offset to a rational non-developable ruled 
surface is rational; hence, it also follows from this result that the offsets to a hyperbolic 
paraboloid and one-sheet hyperboloid are rational. 

Although, according to the above results, the offset surface to a non-degenerate quadric 
is rational, the offset to a properly degenerate quadric, i.e., a cylinder or a cone, is, in 
general, not rational; the exceptions are parabolic cylinders, circular cones, and circular 
cylinders, since offset surfaces to these quadrics are easily seen to be rational. These 
results follow from that the planar offset curve to a hyperbola or an ellipse, except for a 
circle, is not rational, and that the planar offset curve to a parabola is rational [22,23]. 

31.4. I N T E R S E C T I O N A N D I N T E R F E R E N C E 

31.4.1. Computat ion of intersection curves 
Computing the intersection of two quadrics requires deriving an expression for their inter­
section curve and determining the topological structure of it. Algorithms for intersecting 
quadric surfaces can be classified into those taking a geometric approach and those taking 
an algebraic approach. The geometric approach is numerically more stable but is gener­
ally limited to natural quadrics [27,28,39]. Below we will confine ourselves to reviewing 
some algebraic methods developed for general quadrics. 

We will refer to the intersection curve of two quadric surfaces as a QSIC. A QSIC is 
a space curve of degree four. When it is nonsingular, a QSIC can have zero, one, or two 
disjoint connected components in 3D real projective space, and such a curve does not 
have a rational parameterization. A nonsingular QSIC is always irreducible. A singular 
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Figure 31.6. Two cones intersecting in a space cubic curve and a line. 

QSIC can be reducible or irreducible. A singular but irreducible QSIC has exactly one 
singular point, which is a cusp, an acnode, or a crunode, and such a QSIC is a rational 
quartic curve. A reducible QSIC consists of two or more curves of lower degrees that sum 
to four; for example, in Figure 31.6 two cones intersect in a space cubic curve and a line. 

Using the Segre characteristic, Bromwich gives a complete classification of degenerate 
QSICs in complex projective space, in terms of singularity and reducibility [5,41]; for two 
quadrics So : X^AX = 0 and Si : X^BX — 0, the Segre characteristic is defined by the 
invariant factors of the quadratic form X^{XA + iiB)X. However, these results need to 
be interpreted in real projective space in order to be useful to CAGD application. 

Levin [19,20] proposes the following algebraic method for computing a QSIC. Let 
So : X^AX = 0 and Si : X^BX = 0 be two distinct quadrics. Levin observes that 
there always exists a ruled quadric in the pencil X'^{XA + iiB)X = 0; So and Si are 
first transformed to simpler forms simultaneously by an affine transformation to facili­
tate selecting the rule quadric. This ruled quadric, called a parameterization surface, is 
parameterized by 

S{u, v) = R{u) + vT{u), 

where R{u) is the base curve of the ruling and T{u) is the direction vector of the generating 
line passing through R{u). Substituting S{u,v) into either So or Si, one can solve for v 
in terms of u to obtain a parameterization of the QSIC of So and Si of the form 

Q{u) = R{u) ± y/d{u)f{u), (31.1) 

where d{u) is a quartic polynomial, and R{u) and T{u) are some vector functions. Only 
those values of u for which d{u) > 0 give rise to real points on the QSIC. 

Levin's method is useful for tracing and rendering a QSIC, but does not provide infor­
mation about the singularity and the structure of the QSIC. In some cases the param­
eterization computed with Levin's method may not be appropriate; for instance, when 
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a QSIC is singular or reducible, the method still generates a parameterization involving 
a square root, although the QSIC has a rational parameterization in this case. Levin's 
method was later refined and implemented by Sarraga [36] and also revised and extended 
by Wilf and Manor [47]. 

Similar to Bromwich's work [5], but by studying the eigenvalues and the generalized 
eigenspaces of the system AB — A/, Ocken, Schwartz, and Sharir show [30] that two 
quadrics X^AX = 0 and X^BX = 0 can be converted simultaneously by a projective 
transformation into two canonical forms whose intersection curve can be determined rather 
easily. The merit of this approach is that a projective transformation is used to convert 
the pair of input quadrics into forms that are simpler than what are obtained by Levin's 
method using an affine transformation. However, the link between the algebraic structure 
of the eigenspaces and the type of singularity or reducibility of the intersection curve is 
not discussed fully in [30]. Furthermore, the procedures presented there for classifying 
and computing the intersection curve are not thoroughly analyzed; for instance, the case 
of two quadrics intersecting in a line and a space cubic curve is not accounted for, and 
an intersecting curve having two singular points is listed in one of the generic cases and 
parameterized using a square-root function, although such a curve is reducible and thus 
comprises a collection of rational curves. These defects come as no surprise since the 
authors of [30] seem to be unaware of the classical results by Bromwich based on the 
Segre characteristic and their results on quadrics in 3D real projective space do not reach 
the same level of depth as attained by Bromwich [5]. However, it is envisioned that, with 
a thorough analysis and combining Bromwich's results, the ideas of Ocken, Schwartz, and 
Sharir can be further pursued to yield a reliable and complete algorithm for computing 
QSICs for practical applications. 

Farouki, Neff and O'Connor [13] present an alternative algebraic method that uses 
rational arithmetic to analyze degenerate QSICs. The degeneracy of a QSIC is detected 
by testing whether the discriminant of the characteristic equation det{XA + iJ,B) — 0 
is zero; the discriminant in this case is the resultant of /(A) = det(A^ + ^iB) and its 
derivative / '(A). When the QSIC is found to be degenerate, a quartic projection cone 
is derived. The reducibility of the QSIC is then determined by factorizing the quartic 
projection cone. 

Wilf and Manor [47] extend Levin's method to classify a general QSIC as well as to find 
its expression. To classify a QSIC, the roots of the characteristic equation are obtained 
numerically, and then the Segre characteristic is computed to guide the parameterization 
of the QSIC, utilizing Levin's method. However, this method cannot compute the number 
of disjoint connected components of a nonsingular QSIC in real projective space, since 
this information is not provided by the Segre characteristic. 

By exploring a birational mapping between a QSIC and a planar cubic curve under 
stereographic projection with an appropriately chosen center of projection, Wang, Joe, 
and Goldman [44] develop a method for classifying and computing the QSIC of two 
general quadrics, through a topological analysis and parameterization of the planar cubic 
curve. This method produces complete structural information of a QSIC, including the 
reducibility, the type of singularity, and the number of disjoint connected components of 
a QSIC in 3D real projective space. 
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Figure 31.7. Two separate ellipsoids and their characteristic polynomial. 

31.4.2. Detect ing interference 
Interference analysis is about detecting whether two quadrics interfere or intersect with 
each other. Such problems can be solved by resorting to a general method for computing 
the intersection curve of two quadrics; however, in interference analysis one is primarily 
interested in detecting the existence of real intersection points, and thus an expression for 
the intersection curve is not required. Therefore more efficient methods can be devised 
for interference analysis. 

In light of this, an algebraic condition for the separation of two ellipsoids is proved 
in [45]. Given two ellipsoids X^AX = 0 and X^BX = 0, with A and B normalized so 
that their first 3 x 3 minors are positive, it is shown [45] that the characteristic equation 
det{XA-\-B) = 0 has at least two real negative roots, and that the ellipsoids are separated 
by a plane if and only if their characteristic equation has two distinct real positive roots 
(see Figure 31.7). Furthermore, the ellipsoids touch each other externally if and only 
if the characteristic equation has a real positive double root. One advantage of this 
characterization is that only the signs of the roots matter, rather than their exact values. 

This approach to interference analysis is related to the Segre characteristic for classifying 
a degenerate intersection of two quadrics in complex projective space. More research is 
expected to obtain conditions for discriminating other configurations of two ellipsoids, 
such as intersection and containment, as well as to perform interference analysis for other 
quadric surfaces. 
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homogeneous, 123 
homogeneous coordinates, 213 
implicit representation, 217 
interpolation 

network of curves, 203 
meet with, 202 
normal, 212 
normal angle, 213 
of curvature, 318 
of higher derivatives, 320 
parametric, 199 
parametrically C ^ 201, 217 
patch, 200, 217 
projective space, 122 
regularity, 194 
reparametrization, 199, 200 
subdivision, 217 
tangent, 122, 194, 212 

degree bound, 214 
determinant criterion, 197 
plane, 203 
sector, 203 

tangent plane, 133 
torsion, 122 
universal spline, 200 
visual, 193 

continuity conditions, 415 
continuous 

spline spaces, 704 
contour line, 37 
control mesh, 309 
control net, 91, 195 
control plane, 50 
control point, 156 

homogeneous, 115, 121 
control polygon, 156 

geometric, 46 
control polyhedron, 309 
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control structure 
affine, 737 
dual, 48, 50, 740 
intrinsic, 733, 734, 740 

controller, 418 
conventional object, 656, 663 
convex hull, 152, 430, 753, 760 
convex hull property, 112, 120, 128, 131, 

168, 329, 738 
box spline surfaces, 261 
Bezier curve, 78 
Bezier patch, 92 
Bezier triangle, 99 

convexity 
for box splines, 262 

Coons 
surface, 659 

Coons patch, 180 
Coons, S., 3, 4, 7-10 
coordinate transformation, 724 
coordinates 

Cartesian, 724 
homogeneous, 724, 728 
homogeneous quaternion, 729 
measuring machine, 654 
of rotations, 729 
Pliicker, 60, 668 

coordinates, affine, 24 
coordinates, barycentric, 24 
coordinates, homogeneous, 32, 35 
coordinates, new affine, 25 
coordinates, new Cartesian, 31 
coordinates, projective, 33 
coplanarity condition, 195 
core, 455 
corner cutting algorithm, 120 
corner point interpolation, 128, 131 
Courant, 283 
C^ smoothness, 703 
Cramer's rule, 370, 382 
Cremona transformation, 781 
cross boundary 

derivative, 708 
cross ratio, 33 
cross-section, 335 

cross-sectioning, 327 
crosscut 

partition, 707 
crosscut partitions, 711 
crunode, 790 
crystal Voronoi diagram, 446 
CSC (Constructive Solid Geometry), 482 
cubic C^ splines, 706, 713 
cubic Hermite polynomial, 174 
cubic spline, 415 
cubic surface, 383 
Curry-Schoenberg Theorem, 150 
curvature, 14, 86, 179 

plot, 86 
signed, 86 
surface, 663 

curvature center, 576 
curvature continuous interpolant, 125 
curvature lines, 576 
curvature of a curve, 39 
curvature radius, 576 
curvature sphere, 576 
curvature, normal, 41 
curvature, principal, 41 
curve, 155 

B-spline 
rational, 733 

Bezier, 76, 729 
rational, 732 
spherical, 729 

Bezier 
dual, 47 
rational, 44 

coefficient, 76 
degree elevation, 85 
disk Bezier, 55 
domain, 76 
evaluation, 80 
fitting, 668 
free-form, 667 
Hermite, 79 
interrogation, 85 
Minkowski Pythagorean-hodograph, 56 
monomial, 76 
normal 
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rational, 44 
NURBS, 46 

spherical, 63 
off'set, 58 
on surface, 90 
parametric, 76 
Pythagorean-hodograph, 58, 744 
quadratic 

shape defect, 220 
quaternion, 729 
rational 

spherical, 734, 743 
rational Pythagorean-hodograph, 58 
rational spline, 735 
render, 81 
subdivision, 81 
thick, 668 

curve network segmentation, 657 
curve-plane intersection, 329 
curves and surfaces, osculating, 36 
curves and surfaces, polynomial, 34 
curves and surfaces, rational, 34 
cusp, 78, 790 
cuspidal cubic, 421 
cycle, 50 
cyclide 

Dupin, 57 
generalized, 575 

cyclographic mapping, 51 
cylinder, 35, 131, 136, 184, 664, 665 

fitting, 666 

DAC-I, 3 
data 

rectangular structure, 181 
data capture, 652, 653 
data site, 437 
de Boor, 285 
de Boor algorithm, 121, 133 
de Boor point, 119, 715 
de Boor, C , 3, 9, 11 
de Casteljau, 152 

recurrence, 704 
de Casteljau algorithm, 80, 115, 167, 630, 

703, 729 

Bezier patch, 93 
Bezier triangle, 100 
Bezier patch, 93 
spherical, 729 

de Casteljau's Algorithm, 155 
de Casteljau, P., 10 
de Rham, G., 11, 309 
decimation, 652, 654, 657 
deformation, 188 
degeneracy, 430 
degenerate, 430 

edge, 706 
degree vs order, 141 
degree elevation, 85 

Bezier patch, 95 
Bezier triangle, 103 
repeated, 85 

degree lexicographical order, 365 
degree-optimal constructions, 200 
Delaunay, 431 

diagram, 431 
edge, 431 
polygon, 431 
tetrahedron, 672 
triangulation, 431, 655 

density 
of a shadow, 256 

derivative 
of half-box splines, 273, 274 
Bezier curve, 83 
Bezier patch, 93 
Bezier triangle, 102 
directional, 102 
of box spline surfaces, 262 
partial, 94 

derivative of a spline, 153 
DeRose, T., 188 
design 

automatic, 501, 510 
constraints, 498 
geometric, 498 
interactive, 739 
parametric, 498, 504 

DESIGNBASE, 9 
determining set, 206 
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developable surface, 49, 762 
developable-surface-surface intersection, 764 
diameter, 710 
differential geometry 

projective, 43 
diffuse lighting, 770 
dimension, 704 
dimension of an affine space, 23 
dimensional reduction, 498 
dimensionality filtering, 664 
direct ray-tracing, 759 
direct scan-conversion, 751 
direct segmentation, 663 
directional derivative, 102 
Dirichlet tessellation, 13 
discrete Coons patch, 180 
display, 333 

ray casting, 327, 333 
Z-buffer, 327, 333 

distance 
of planes, 64 

distance function, 665, 669, 671 
approximation, 666 

distance of points, 30 
division by zero, 153 
Dixon's 

resultant, 369, 382 
Dokken, T., 15 
domain 

Bezier curve, 76 
Bezier patch, 88 
Bezier triangle, 97 
periodic, 214 

domain decomposition lemma, 458 
Doo, D., 11 
Doo-Sabin subdivision, 313 
dot product, 30 
double Blutel surface, 576, 583 
double point, 374 
double tracing, 421 
draft angle, 675 
dual control structure, 48, 50 
dual function, 295 
dual functional, 151 
dual representation, 47 

dual subdivision, 321 
duality, 36, 47 
Duchon, J., 12 
dull corner, 456 
Dupin cyclide, 57, 575 

Bezier representation, 587 
blendiftg, 588 
fourth order, 582 
general, 578 
mid point curve, 577 
parabolic, 578 
parameter representation, 579 
radius function, 577 
ring cyclide, 580 
spindle cyclide, 580 
symmetry plane, 577 

Dupin's indicatrix, 41 
Dyn, N , 12 

edge 
detection, 653 
swapping, 656 

edge swap, 712 
efficient representation, 671 
eigenspace, 791 
elasticity, 299 
elimination theory, 367 
ellipse, 118 
elliptic geometry, 729 
elliptic-distance Voronoi diagram, 445 
end condition, 415 

Bessel, 177, 178 
clamped, 175 
natural, 177 
Not-a-knot, 178 

endpoint interpolation, 77, 119 
engineer, 683 
envelopes, 740 

approximate computation of, 738 
enveloping sphere, 577 
equi-angularity, 433 
error estimate, 301 
Euclid's algorithm, 378 
Euclidean metric, 421 
Euclidean motion, 31 
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Euclidean space, 30 
Euler 

characteristic, 480, 493 
operators, 493 

Euler parameter, 726, 728 
Euler's formulas, 705 
Euler's method, 368 
Euler's theorem, 41 
Eulerian angles, 31 
evaluation 

Bezier curve, 80 
Bezier patch, 93 
Bezier triangle, 100 

evaluation algorithm, 155 
evaluation of a spline, 154 
evolute, 420 
experiment, 683 
extraordinary points, 316 

limit position, 317 
extrapolation, 78, 81 
extrusion, 653, 664, 666, 667 
extrusion surfaces, 759 

fairing, 658, 659 
faithful parameterization, 781 
faithful representation, 665 
Farin point, 113, 128 

extended, 128 
Farin, G., 10, 11 
Farouki, R., 15 
fattening, 673 
Faux, L, 14 
feature, 519 

automatic recognition, 528 
classes, 532 
custom libraries, 532 
dependent, 658 
detection, 675 
fitting, 662 
geometric attributes, 527 
geometric features, 528 
instances, 532 
interactive definition, 528 
model, 527 
multiple views, 532 

nongeometric features, 528 
recognition, 675 
surface, 653, 662 
technological attributes, 527 

feature recognition, 501 
feedrate, 418 
Ferguson, J., 3, 7-9 
fiber bundles, 509 
field modeling, 508 
fillet surface centre paths, 332 
filtering 

dimensionality, 664 
planarity, 664 

fine 
triangulation, 710 

finite element, 702, 708 
approximation, 301 
matrix assembly, 302 
mesh, 290 
standard, 283, 297 
triangular, 291 
web-spline, 292 
weighted, 284, 289 

fitting, 785 
algebraic, 665 
circle, 666, 667, 671 
cone, 666, 667 
constrained, 662, 668 
curve, 667, 668 
cylinder, 666 
feature, 662 
free-form, 659 
geometric, 665 
global, 662 
sphere, 666 
surface, 653, 665 
torus, 666, 667 

floating point arithmetic, 385, 631 
floating point number, 625 
forbidden point, 32 
Forrest, A.R., 3, 6, 7, 10 
forward difference, 83, 94, 95, 751 
frame 

Frenet, 744 
rational, 744 
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rotation-minimizing, 744 
frame line, 47 
frame point, 45 
Frechet metric, 755 
free-form 

blend, 662 
curve, 667 
fitting, 659 
object, 656 
surface, 665 

Frenet frame, 39, 200, 210, 411 
frontier condition, 478 
functional, 705 

Bezier patch, 92 
Bezier triangle, 99 
data dependent, 660 
smoothing, 659, 660 

functional curve, 78 
functional decomposition, 657, 658, 662 
fundamental 

splines, 710 
fundamental domain, 459 
fundamental Lagrange splines, 713 
fundamental points, 33 
fundamental quantities, Gaussian, 40 
fundamental simplex, 45 

G code, 418 
Galerkin, 283 
Gauss elimination, 370 
Gaussian curvature, 14, 42 
Gaussian fundamental quantities, 40 
Gaussian sphere, 664, 667 
GCD, 366, 378 
Geise, G., 13 
general supercyclide, 585 
generality of topology, 309 
generalized cross validation, 161 
generalized cyclide, 575 
generalized distance, 441 
generalized stereographic projection, 782 
generating point, 429 
generator, 366, 378 
generatrix, 136 
generatrix of a quadric, 28 

generic 2-prong, 457 
generically, 706 
genus, 66, 374 
geometric 

construction of box splines, 257 
fitting, 665 

geometric constraint problem 
parametric, 522 
variational, 522 

geometric constraint solving, 522 
geometric continuity, 384 
geometric degeneracy, 319 
geometric graph, 453 
geometric Hermite interpolation, 417 
geometric tolerancing, 55 
geometrical optics, 420 
geometry 

elliptic, 66, 729 
Galilei sphere, 60 
isotropic, 67 
Laguerre, 50 
Lie, 50 
line, 43, 60 
Minkowski, 52 
Mobius, 50 
non-Euclidean, 43 
pseudo-Euclidean, 52 
sphere, 43, 50 

Gordon, W., 3, 8 
Gouraud shading, 750 
Gouraud, H., 15 
Grobner 

basis, 366, 370, 371, 377, 382 
Grobner bases, 626 
gradient value, 708 
Gram-Schmidt's orthogonalization, 30 
graph of a function, 155 
graph surface, 66 
graph theory, 706 
graphics 

computer, 683 
greatest common divisor, 366 
Gregory, J , 9, 11, 12 
Greville sites, 148 
grid 
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structured, 685 
unstructured, 686 

groupings 
groupings 

A;-dimensional, 485 
properties, 486 

guiding polygon, 667, 668 

Hagen, H., 1, 14 
half-box spline 

Bezier representation, 277 
geometric definition, 273 
linear dependency, 276 
partition of unity, 275 
properties, 273 
derivatives, 273, 274 
diflferentiability, 274 
inductive definition, 272 
linear precision, 276 
subdivision, 277 

half-box spline surface, 275 
generalized, 278 
derivatives, 275 
minimal, 279 

hardware-based rendering, 773 
harmonic parametrization, 660 
harmonic position, 34 
hat-function, 283, 297, 298 
Hatvany, J., 3 
helical motion, 61 
helix, 411 
Hermite 

conditions, 702 
interpolation, 702, 705, 708 
interpolation operator, 710 

Hermite interpolation, 173, 412 
Hermite polynomial, 79, 87 
heuristic tree search, 333 
hierarchical basis, 288 
hierarchical patch, 657 
hodograph, 84, 406, 415, 421 
homogeneous coordinates, 32, 35, 408, 587, 

777 
continuity, 213 

homological approach, 706 

homotopy method, 416 
Hopf mapping, 63 
Horner scheme, 129 
Hosaka, M., 8 
Hoschek, J., 1, 10, 13, 15 
hyperbola, 118 
hyperbolic paraboloid, 90 
hyperbolic plane, 65 
hyperbolic projection, 783 
hyperplane, 25, 35 

oriented, 50 
hypersphere 

oriented, 50 
hypersurface, 366 

ideal, 378 
basis, 373 

ideal plane, 32 
IGES, 97, 138 
ignore area, 658 
image plane, 755 
immersed C^ surface, 212 
implementation, 716 
implicit 

surface, 665 
implicit degree, 380 
implicit form, 760 
implicitization, 364, 370 
improper parameterization, 384, 421 
incompressible flow, 299 
indicatrix, 423 
infinite points, 32 
infinite plane, 32 
inflection point, 78, 86 
informational completeness, 473 
inhomogeneizing, the procedure of, 34 
integration, 302 
interference, see quadric 
interior 

edges, 704 
vertices, 704 

interlacing condition, 711 
interoperability, 508 
interpolant, 437 
interpolated height, 437 
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interpolating refinement, 312 
interpolating subdivision, 312 
interpolation, 741 

C^ bicubic spline, 186 
C^ cubic spline, 175 
Aitken's algorithm, 167 
bicubic Hermite patches, 185 
bivariate splines, 711 
cardinal form, 174 
cubic Hermite, 173 
end conditions, 177 
end point, 119 
of keyframes, 723 
point data, 166 
tensor product, 181 
with motions, 741 

interpolation algorithm, 740 
interpolation method, 707 
interpolation schemes, 701 
interpolation sets, 710 
interrogation, 327 

analysis, 327 
cross-sectioning, 327 
display, 327, 333 

intersection, 364, 376, 789 
algorithm, 377 
curve to surface, 632 
curve-plane, 329 
lattice method, 639 
line and curve, 81 
marching method, 640 
plane-surface, 335 
subdivision method, 639 
surface to surface, 634 
surface-surface, 336 
tracing method, 636 

intersection curve, 789 
irreducible, 789 
nonsingular, 789 
QSIC, 789 
reducible, 789 
singular, 789 

interval arithmetic, 631 
interval number, 625 

Interval Projected Polyhedron (IPP) al­
gorithm, 631 

invariance 
coordinate, 740 
parameter , 743 

inverse of the B-spline basis, 151 
inversion, 53, 364, 370 
involute, 420 
irreducible curve, 374 
irregular vertices, 270 
iso-distance, 755 
isolines, 40 
isometric mapping, 769 
isometry, 765 
isoparameter lines, 576 
isoparametric curve, 90, 93, 96 
isoparametric distance, 755 
isophote, 37 
iterative closest point, 654 
iterative refinement, 309 
iterative solution, 303 

Jacobian matrix, 416 

k-cycle, as a boundary, 479 
Kantorovich, 284 
Kantorovich conditions, 416 
keyframe interpolation, 723 
Kimura, F., 8, 9 
kinematics, 723 

spatial, 60 
spherical, ̂ % 

Kjellander, J., 13 
Klein quadric, 60 
knee joint, 743 
knot, 119 

choice, 659 
insertion, 661 

knot averages, 148 
knot insertion, 156, 310, 328 
knot multiplicity, 148, 150 
knot multiplicity vs smoothness, 147 
knot selection rule, 715 
knot sequence, 141, 187 
knot vector, 119, 131 
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Loo distance, 444 
Lagrange 

data, 710 
interpolation, 702, 710 
interpolation points, 713 
interpolation sets, 710 

Lagrange interpolation points, 712 
Lagrange polynomials, 169 
Lagrangian multiplier, 665 
Laguerre, 442 

distance, 442 
Voronoi diagram, 443 

Laguerre geometry, 50, 420 
Blaschke model, 52 
cyclographic model, 52 
isotropic model, 53 

Laguerre transformation, 50 
Laplace equation, 298 
laser scanner, 654 
Laurent, P.-J., 1 
Lawson, C , 14 
Lax-Milgram Lemma, 298 
leading term, 365 
least squares approximation, 170 
least-squares 

separable, 666 
sequential, 665, 666 

least-squares approximation, 161 
left-continuous, 145 
length of a vector, 30 
Levin's method, 790, 791 
Levin, D., 12 
lexicographic ordering, 365, 371 
lexicographically smaller, 433 
Lie cycle, 593 
Lie geometry, 50, 593 
Liming, R., 2 
line complex 

linear, 61 
line coordinates, 419 
line geometry, 43, 60 
line integral convolution, 691 
line segments, 711 
line-art, 765 
linear 

functionals, 706 
spline, 710 

linear complex, 61 
linear dependence, 23 
linear independence, 149 
Unear interpolation, 80, 90, 167 
linear precision, 78, 83, 168 

box spline representations, 262 
half-box spline representations, 276 
Bezier triangle, 99 
bivariate Bernstein polynomial, 102 

linear precision property, 629 
linear space, 23 
Linkage Curve Theorem, 217 
Lipschitz condition, 416 
local 

Lagrange interpolation, 713 
local frame, 38 
local Lagrange 

interpolation, 702 
local linear independence, 149 
local support, 713 
lofting, 7 
logarithmic divergence, 319 
Loop subdivision, 314 
Loop, C , 12 
lower and upper bounds, 704 
lower bound, 704 
Lp distance, 444 
Liiroth, 384 
Lyche, T., 1, 10 

MacLaren, D., 7 
macro element, 708 
macro element methods, 702 
manifold, 212 

definition, 479 
solid, 480 
Veronese, 45 

Manning, J, 13 
map 

affine, 78, 92, 99 
Maple, 367 
mapping 

affine, 738 
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barycentric, 660 
cyclographic, 51 
equiform, 739 
kinematical, 724, 727, 728, 740 

marching cubes algorithm, 655 
Marsden's Identity, 147, 149 
mask, 310 

Bezier points of box splines, 267, 269 
mass properties, 498 
master model, 533 
Mathematica, 367 
matrix 

orthogonal, 725 
special orthogonal, 725 
Vandermonde, 167 

maximum ball, 672, 673 
mean curvature, 14, 42 
medial axis, 55, 435, 451 

transform, 55 
medial axis transform, 422, 451, 672 
medial surface, 436 
membrane, 297 
merging 

point clouds, 654 
meridian, 136 
mesh 

tetrahedral, 290 
triangular, 290 

mesh generation, 327 
meshing, 501, 509 
metric 

isotropic, 67 
Meusnier's sphere, 40 
midpoint of a quadric, 27 
minimal 

support, 710 
minimal control net 

box spline surface, 270 
half-box spline surface, 279 

minimal determining sets, 706 
minimum property, 179 
Minkowski isoperimetric-hodograph curve, 

423 
Minkowski metric, 421 
Minkowski plane, 422 

Minkowski Pythagorean-hodograph curve, 
422 

mixed partial, 94 
Mobius geometry, 50 
Mobius hyperspheres, 53 
model 

B-rep, 673 
incomplete, 674 
prismatic, 674 
reconstruction, 673 

modeling, 716 
assembly, 499 
continuity, 507 
deformations, 510 
heterogeneous materials, 508 
lumped-parameter systems, 500 
mechanisms, 499 
motion, 499 
NC machining, 500 
physical fields, 508 
solid, 473 
tolerances, 507 
unit processes, 501 

Moebius transformation, 122, 133 
monomial, 365 
monomial basis function, 76 
monomial form, 704 
monomials, 76, 85, 86 

Vandermonde matrix, 167 
Morgan-Scott example, 705 
motion 

camera, 723 
Darboux, 737, 740 
elliptic, 737 
helical, 61 
of a rigid body, 724 
of the human knee joint, 743 
rational, 723 

planar, 738 
spatial, 735 
spherical, 732 

robot, 723, 743 
rotational, 726 
spatial, 724 
spherical, 726, 729 
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motion fairing, 743 
motion fitting, 743 
motion planning, 501 
moving 

conic, 371 
curve, 371 
line, 371 

moving surface method, 382 
MRI, 189 
multi-point approximation scheme, 126 
multiaffine map, 704 
multigrid, 303 
multiple control points, 271 
multiplicatively weighted Voronoi diagram, 

442 
multiplicity of a spline zero, 159 
multiresolution analysis, 709 
multiresolution index, 340 
multivariate 

B-splines, 702, 714 
polynomials, 704 
splines, 701 

multivariate functions, 773 

n-sided patches, 309 
natural configuration, 318 

second order, 318 
natural end condition, 177 
natural quadric, 651 
NC machining, 327, 745, 765 
neighborhood 

constant, 478, 486 
of a cell, 486 
of a point, 476 

neighbourhood graph, 655 
nested polygon 

triangulations, 707, 713 
Neumann problem, 299 
Newton method, 377 
Newton-Raphson method, 416 
Nielson, G., 11, 13, 179 
nodal 

basis, 705 
non-degenerate 

triangulations, 707 

non-uniform knots, 416 
normal curvature, 41 
normal curve 

rational, 44 
normal deviation, 661 
normal hull, 331 
normal of a surface, 40 
normal vector, 95, 102 
normalization of a B-spline, 144 
Not-a-knot end condition, 178 
numerical algorithm, 707 
numerical stability, 86, 407 

extrapolation, 78 
numerically controlled machining, 327, 332 
numerics, 683 
NURBS, 732 
NURBS curve, 46, 119 

spherical, 63 
NURBS surface, 46, 131 

object 
auxiliary, 669 
benchmark, 663 
conventional, 651, 656, 663, 665 
free-form, 651, 656 

obstacle-avoidance Voronoi diagram, 445 
occlusion, 654 
octant, 195 
octrees, 486 
odd degree triangulation, 712 
offset, 788 

rational, 58 
offset curve, 407, 408, 418, 420, 436 
offset surface, 332, 436, 577, 788 

circular, 60 
offsetting, 788 
optimal 

approximation order, 706, 710 
optimal approximation order, 714 
optimal valid coverage, 754 
orbifold, 214 
order, 420 
order vs degree, 141 
orthogonal projections, 31 
orthogonal vectors, 30 
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orthogonalization, Gram-Schmidt's, 30 
osculating circle, 39 
osculating curves and surfaces, 36 
osculating plane, 38, 123 
osculating simplex, 45 
osculating space, 44 
osculatory interpolation, 125 
outlier, 654 

Pade approximant 
parametric, 126 

Pade approximation, 126 
parabola, 118, 421 
parabolic supercyclide, 585 
parallel manipulator, 62 
parallelism, 25 
parameter 

correction, 659, 660 
parameter correction, 135 
parameter estimation, 184 
parameter transformation, 79 
parameterization, 659, 742 

harmonic, 660 
initial, 659 
projective, 116 

parametric 
constraints, 498 
constructions, 503 
design, 504 
families, 505, 507 

parametric curve, 76 
domain, 76 

parametric degree, 380 
parametric speed, 407 
parametric surface, 88, 364 

domain, 88 
parametric texture mapping, 757 
parametrics, 519 

parametric solid, 519 
parametric solid modeling, 519 

parametrization, 364 
centripetal, 178 
chord length, 178 

parametrization, equidistant, 178 
parametrization, uniform, 178 

Parry, S., 9, 188 
partial 

derivative, 703 
partial derivative, 94 
partition of unity, 82, 142, 148 

bivariate Bernstein polynomial, 101 
Pascal's theorem, 29 
patch, 89 

hierarchical, 657 
patch complex 

geometric continuity, 209 
pathline, 689 
Peixoto, 693 
pencil-of-line, 375, 383 
performance issues, 338 
persistent naming, 485, 504, 507, 533 
PH quintic, 407 
PH quintic spHne, 414 
PH space curve, 410 
Phong lighting, 771 
Phong shading, 750 
Phong, B., 15 
Picard-Lindelof, 692 
piecewise 

polynomial, 703 
piecewise conic interpolant, 125 
piecewise polynomial, 141 
pipe surface, 136 

rational parameterization, 137 
pipeline 

visualization, 684 
Pliicker coordinates, 668 
planar cubic curve, 791 
planarity filtering, 664 
plane, 664 

control, 50 
hyperbolic, 65 

plane-surface intersection, 764 
Pliicker coordinates, 60 
Pliicker identity, 60 
PMC (Point Membership Classification), 

492 
point 

Bezier, 45 
classification, 481, 489, 492 
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Farin, 732 
frame, 45 
generation, 492 

point cloud, 674 
point light source, 772 
Poisson equation, 283, 296, 301 
polar form, 152, 704, 715 
polarity, 35 
pole and polar plane, 29 
polyhedral 

splines, 714 
polyhedron, 712 
polyhedron, topological, 479 
polynomial 

Bernstein, 77 
monomial, 76 
surfaces, 704 
trivariate, 217 

polynomial ideal, 366 
polynomial interpolation 

oscillate, 170 
polynomial solver 

algebraic technique, 626 
homotopy method, 627 
hybrid technique, 626 
subdivision method, 627 

polynomials, 707 
positions 

control, 738 
interpolation of, 741 

positivity of a B-spline, 143 
Postscript, 772 
Powell, M., 14 
Powell-Sabin 

splits, 709 
triangulation, 709 

Powell-Sabin element, 709 
power 

basis, 363 
power basis, 76 
power diagram, 443 
power distance, 442 
Pratt , M., 14 
Prautzsch, H., 12 
predictor-corrector method, 416 

primary rays, 761 
primary surface, 653, 658, 659, 662 
primitives, candidate, 491 
principal axis direction, 32 
principal curvature, 41 
principal directions, 41 
principle of degree reduction, 711 
priority 

of constraint, 669 
priority queue, 333 
prismatic reconstruction, 674 
projecting line, 783 
projection cone, 791 
projections, orthogonal, 31 
projective A-frame, affine representation, 

29 
projective canal surface, 586 
projective combinations, 34 
projective coordinates, 33 
projective extension, 32 
projective frame, 33 
projective invariance, 113 
projective line, 34 
projective map, 33 
projective space, 32 
projective translation surface, 584 
prong, 456 

Pythagorean theorem, 405 
Pythagorean triple, 406 
Pythagorean-hodograph curve, 406 
Pythagorean-hodograph curve, 58 
Pythagorean-normal (PN) surface, 59 

QSIC, see quadric 
Qu, R , 11 
quadrangulations, 708, 713 
quadric, 137, 655, 665, 777 

affine classification of, 779 
classification, 777 
ellipsoids, 792 

separation of, 792 
Euclidean classification of, 778 
interference analysis, 792 
irreducible, 778 
natural, 651 
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nondegenerate, 778, 779 
parameterization, 780 
projective classification of, 779 
properly degenerate, 778, 779 
QSIC, 789 
singular, 778 
triangular patch on, 784 

quadric in affine space, 27 
quadric in projective space, 34 
quadric surface, 137, 383 

intersection curve of, 789 
quadric, equation of a, 35 
quadric, parametrization of a, 35 
quadrilateral, 708 
quantized hull, 330 
quasi 

crosscut 
partitions, 707 

quasi-interpolation, 712 
quaternion, 411, 727 

dual, 723, 740 
multiplication of, 728 
unit, 723, 728 

quaternion sphere, 729, 743 

R-function, 284, 293, 481 
radial line, 103 
radiosity, 750 
Ramshaw, L., 6, 10, 152 
range data, 652, 653 
ratio, 26, 80 
ratio of parallel distances, 25 
rational arithmetic, 632 
rational B-spline, 739 
rational B-spline curve 

degree elevation, 120 
derivative, 120 
knot insertion, 120 

rational B-spline patch, 131 
derivative, 131 
evaluation, 133 

rational B-spline surface, 131 
rational Bezier, 739 
rational Bezier curve 

degree elevation, 116 

derivative, 114 
reparameterization, 116 

rational Bezier patch, 127 
triangular, 137 

rational Bezier surface, 127 
derivative, 129 
reparameterization, 131 

rational curve, 39, 363, 782, 790 
approximation, 123, 126 
geometric continuity, 122 
interpolation, 123, 124 

rational curves and surfaces, 34 
rational linear transformation, 122 
rational number, 625 
rational parametric surface, 380 
rational patch 

continuity, 133 
rational PH curve, 419 
rational quartic curve, 790 
rational surface 

approximation, 134 
interpolation, 134 

rational triangular Bezier patch, 137 
ray casting, 327, 333 
ray casting, tracing, 494 
ray-surface intersection, 759 
ray-tracing, 384, 750 
real analytic curve, 454 
real-time interpolator, 418 
rectangular Bezier patch, 88 
rectification, 405 
rectilinear 

partitions, 705 
recurrence for B-splines, 142 
recurrence for Bernstein basis, 146 
recurrence for cardinal B-splines, 146 
recursion relation, 82 

bivariate Bernstein polynomial, 101 
recursive refinement, 309 
recursive subdivision, 309 
reference point, 418 
reflection direction, 771 
reflection line, 37 
region 

adjacency, 673 
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growing, 663 
multiple, 664 
simple, 664 

registration, 654 
regular curve, 36 
regular sets, regularization, 476 
regular subdivision, 315 
regular vertices, 270 
renormalization, 44, 583 
reparametrization 

global, 214, 215 
local, 215 
regional, 215 

repeated subdivision 
Bezier triangle, 103 

representation 
boundary, 488 
BSP trees, 486 
cell complexes, 486 
constructive, 481, 483 
conversion, 494, 497 
CSG, 482 
efficient, 671 
enumerative, 481, 485 
faithful, 665 
grouping, 485 
implicit, 480 
implicit, functions, 481 
octree, 486 
of cells, 485 
resolvable, 676 
scheme, 474 
STL, 502 
sweep, 484 
unified, 490 
winged-edge, 487, 489 
with R-functions, 481 

resolvable representation, 676 
resultant, 367, 370, 377, 382, 626 

Bezout, 368 
Dixon, 369 
Sylvester, 367 

reverse engineering, 62, 502, 651 
Riesenfeld, R., 1, 10, 11 
right-continuous, 141 

ring cyclide, 580 
Ritz, W., 283 
robot controller, 743 
robot motion, 723, 743 
robustness, 423, 506 
rolling-ball blend, 672 
rotary table, 654 
rotation index, 413 
rounded interval arithmetic, 631 
rounded interval number, 625 
ruled surface, 62, 762 
ruled tracing, 759 
ruled-surface-surface intersection, 765 
Runge phenomenon, 170 
Rvachev, V.L., 284, 293 

Sabin, M., 3, 8, 11, 15 
saddle point 

higher-order, 216, 220 
sampling interval, 418 
Sbounds, 339 
scan-conversion, 749 
scan-line algorithm, 384 
scanner, 654 
scattered data 

fitting, 701 
scattered points, 712 
Schmidt's orthogonalization, 39 
Schoenberg, 145 
Schoenberg's operator, 158 
Schoenberg-Whitney conditions, 160 
Schoenberg-Whitney Theorem, 160 
Schoenberg-Whitney type conditions, 711 
Schumaker, L., 1, 11 
scientific computing, 745 
scientist, 683 
second-order 

derivatives, 708 
Sederberg, T., 9, 188 
segmentation, 653, 656, 657, 663 

direct, 663 
two-dimensional, 664, 667 

Segre characteristic, 790 
self-conjugate, 29 
self-occluding surface, 764 
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semantic feature, 533 
semi-parabolic supercyclide, 585 
semi-singular 

vertices, 713 
sequential least-squares, 665, 666 
sets 

closed regular, 476 
semi-analytic, 476 

shadow detection, 761 
shape classification, 45 
shape equations, 172, 184 
shape handle, 114 
shape-preserving, 159 
sharp corner, 456 
Sharrock, T., 8 
shift operator, 81 
shoulder point, 118 
shoulder tangent, 118 
Sibson, R., 13 
silhouette, 337 
silhouette area, 772 
silhouette curves, 757 
silhouette edges, 750, 755 
simplex 

splines, 714 
singular 

vertex, 709 
vertices, 705 

singular point, 577, 637 
singular point of a quadric, 28 
singularity, 316, 374 
skeleton, 452 
sketching, 522 

sketched features, 530 
skin thickness, 332 
slerping, 723, 729 
slopes, 704 
smallest angle, 710 
SMC (Set Membership Classification), 495 
smooth surfaces, visual, 37 
smoothing, 170 

functional, 660 
smoothing spline, 14, 160, 161 
smoothness conditions, 147, 149, 706 
Sobolev space, 284 

solidity 
combinatorial model, cell complex, 477 
generalized model, 480 
manifold, 480 
point set model, closed regular sets, 

476 
postulates, 475 
semi-analytic sets, 476 

space 
elliptic, 729 
of geometric objects, 63 

space cubic curve, 790 
space-time, 421 
spatially addressable, 485, 504 
specular highlights, 757 
specular lighting, 770 
specular reflection, 765 
sphere, 131, 136, 664 

fitting, 666 
sphere geometry, 43, 50 

Galilei, 60 
spherical point, 41 
spindle cyclide, 580 
spline, 7, 286 

approximation, 287 
cubic, 742 
cubic Hermite, 743 
hierarchical, 288 
stability, 296 
uniform, 285 
web-, 292 

spline curve, 137, 155, 411 
spline interpolation, 159 
spline of order k with knot sequence t, 

144 
spline space, 710 

dimension, 206 
spline subdivision, 310 
splines on surfaces, 248 
splitting procedure, 708 
sqrt3 subdivision, 321 
stability, 296 
stable, local bases, 710 
standard representation, 116 
standards, data exchange, 505 
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star, 705 
star-supported 

splines, 706 
Steiner surface, 781 
stencil, 310 
STEP, 138 
stereographic projection, 743, 780-782, 791 

generalized, 63, 734, 743, 782 
stitching, 674 
stratification 

computing, 491, 502 
definition, 478 
intersection, 491 
sign-invariant, 490 
Whitney regular, 490 

streakline, 690 
stream 

surface, 690 
structural analysis, 327 
structured 

grid, 685 
subdivision, 81, 303, 377, 714 

4-point, 312 
analysis, 315 
Bezier patch, 96 
Bezier triangle, 103 
bicubic, 314 
biquadratic, 313 
butterfly, 314 
Catmull-Clark, 314 
Chaikin, 309 
cubic, 310 
display, 328 
Doo-Sabin, 313 
for box splines, 263, 264 

convergence, 265 
for half-box splines, 277 
interpolating, 312 
Loop, 314 
of B-splines, 310 
over semi-regular lattices, 321 
precision set, 320 
quadratic, 309 
regular, 315 
repeated, 81 

square root of 3, 321 
subdivision interrogation, 327 
subdivision property, 730, 739 
super 

spline, 709 
spline spaces, 706 
splines, 701 

supercyclide, 576, 583 
central projection, 585 
classification, 585 
first axis, 584 
first pencil, 584 
fourth order, 585 
general, 585 
invariant, 586 
parabolic, 585 
second axis, 584 
second pencil, 584 
semi-parabolic, 585 
third order, 585 

supersmoothness, 710 
support analysis, 315 
support of a B-spline, 143 
surface, 701 

analytic, 665 
base, 659 
bilinear, 89 
blending, 63 
canal, 56 
cone spline-, 68 
Coons, 659 
developable, 49 
domain, 88 
evaluation, 93 
feature, 653, 662 
fitting, 653, 665, 714, 716 

constrained, 653, 668 
free-form, 220, 665 
implicit, 665 
interrogation, 96 
NURBS, 46 
of revolution, 653, 664-667 
offset, 58 
partial derivative, 93 
patch, 89 
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primary, 653, 659, 662 
Pythagorean-normal (PN), 59 
quadric, 665 
rational, 127 
rectangular Bezier patch, 88 
ruled, 62 
stream, 690 
sweeping, 723, 744 
tensor product, 91, 127 

surface coverage, 750 
surface normal, 757 
surface of revolution, 136, 759 
surface rendering, 749 
surface-surface intersection, 762 
Sutherland, L, 4 
sweep, 653, 664, 666, 667, 672 

applications, 499, 500 
definition, 484 
point classification, 484 

sweep surfaces, 759 
sweeping, 723, 744 
swept surface, 411 
Sylvester's 

dialytic method, 367 
resultant, 367, 370 

symmetry, 653 
Bezier curve, 77 
Bezier patch, 92 
Bezier triangle, 99 
Bernstein polynomials, 82 
bivariate Bernstein polynomial, 101 
detection, 675 

systems 
classical, 502 
dual-representation, 503 
parametric, 503 

TABCYL, 8 
tangent hull, 331 
tangent of a curve, 38 
tangent of a quadric, 28 
tangent plane, 93, 95, 102 
tangent plane of a quadric, 28 
tangent vector, 83, 93, 102, 730 
target point, 437 

Taylor series, 418 
template, 310 
tensor product, 312 

approximation, 182 
tensor product interpolation, 181 
tensor product surface, 91, 92, 381 
term order, 365 
terminal point, 456 
texture, 691 
theorem 

Bezout's, 381 
theorem of Sabin, 589 
thick curve, 668 
thin plate energy, 660 
thin plate spline, 12 
timeline, 690 
tolerance region, 55 
tolerances, 507 
topological generality, 309 
topology 

of B-rep model, 673 
torsion, 39, 86 
torus, 131, 136, 578, 651, 664 

fitting, 666, 667 
total curvature, 14 
total degree, 92 

Bezier triangle, 99 
total parametric degree, 381 
totally positive, 160 
trajectories 

of planes, 740 
of points, 739 

transfinite interpolation, 179 
translational surface, 184 
triangular 

B-splines, 714, 716 
triangular Bezier patch, 97 
triangular de Casteljau algorithm, 100 
triangular diagram, 80 
triangular patch on, 784 
triangulation, 184, 476, 478, 652, 654, 655, 

672 
2D, 660 
Delaunay, 655 

tridiagonal system, 415 
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trimmed surfaces, 757, 761 
trivariate B-splines, 189 
trivariate functions, 773 
truncated power, 148 
truncated power functions, 707 
Tschirnhausen cubic, 407 
turning point, 637 
twist vector, 94 
two-sided offset, 421 

umbilic, 577 
umbilical point, 41 
unequal interval subdivision, 322 
uniform type 

triangulations, 707 
unimodular, 261 
UNISURF, 6 
unit point , 33 
unit quaternion sphere, 729, 743 
unit vector, 703 
univariate 

spline, 701 
spline spaces, 711 

unsteady 
vector field, 689 

unstructured 
grid, 686 

unsweep, 484, 499 
upper bound, 705 
usefulness of B-spline basis, 151 

valid coverage, 751 
Vandermonde matrix, 167, 182 
variant 

design, 521 
modeling, 521 

variation diminishing, 78, 158 
variation diminishing property, 112, 120, 

168, 329 
variational 

class, 520 
family, 521 

variational approach, 659 
variety, 366, 377 
vector field 

unsteady, 689 

Vernet, D., 6 
Veronese manifolds, 45 
Veronese surface, 785 
Versprille, K., 10 
vertex 

blend, 672 
viewing direction, 755, 764 
viewing space, 754 
virtual reality, 723 
visualization, 683 

pipeline, 684 
volume deformation, 9, 188 
volumes 

Bezier patch, 96 
Bezier triangle, 104 

volumetric texture mapping, 757 
Voronoi, 429 

diagram, 429 
edge, 430 
point, 430 
region, 429 

Voronoi diagram, 13, 451 
curved, 655 

walking the dog, 755 
Watson, D., 15 
web-spline, 292 
Weierstrass approximation theorem, 85 
weight, 46, 112, 119, 128, 131, 441 
weight function, 120, 291, 293, 295 

singular, 125 
weight point, 113, 128 
Whitney regular stratification, 490, 491 
Whittaker's Cardinal Series, 145 
Whitted, T., 15 
Wilson-Fowler spline, 8 
winged-edge, data structure, 487, 489 

Z-buffer, 327, 333, 749 
Z-depth map, 772 
zero of a spUne, 159 
zero-set, 217, 759, 760 
Zwart-Powell element, 260 




