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FOREWORD

During the last decade many significant advances have been
made in the in vivo diagnosis of disease. An area of partic-
ular success has been the application of nuclear medical
procedures to the detection of cardiac disease.

Not only is it possible to detect infarction or ischemia
by scintigraphic techniques but by the use of labelled metabol-
ites and analogues of potassium the viability of myocardial
tissue can be evaluated. The efficiency of the heart pump can
be calculated and wall motility observed in one simple proce-
dure. The use of ultra short life radionuclides has made the
evaluation of rapid changes in myocardial function feasible.
Altogether a broad and impressive diagnostic package.

In this volume up-to-date reviews of all of the available
techniques have been collected including methods which are
still in the development phase. There is an inherent emphasis
on European experience in Nuclear Cardiology which ié then
placed in context with world wide experience in the field.

This volume will be of interest to all concerned with
cardiac diseases and we hope that it will serve to stimulate

further developments in the future.

H.J. Biersack, Bonn
P.H. Cox, Rotterdam
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I. BASIC SCIENCE



MYOCARDIAL ISCHEMIA: A PROFILE OF ITS PATHOPHYSIOLOGICAL
BASIS AND ITS DETECTION BY NUCLEAR CARDIOLOGY

W.J. REMME

INTRODUCTION

As a muscular pump with the specific task of ensuring the
optimal circulation of blood under the most variable conditions,
the heart continuously consumes energy at a very high rate. A
large quantity of high energy phosphates are produced continu-
ously to meet its specific requirements which makes a normal
oxygen and substrate delivery, removal of wastage and an un-
disturbed cellular metabolism essential. During myocardial
ischemia however, myocardial blood-flow and hence the oxygen
and substrate supply is reduced. Due to diminished venous
efflux from the ischemic area metabolic endproducts accumulate
and myocardial metabolism and function quickly deteriorates.

By means of nuclear medical techniques coronary blood-
flow and myocardial function can be monitored and metabolic
and hemodynamic changes registered. In this chapter the normal
physiology of myocardial perfusion, metabolism and cardiac
function, the pathophysiological changes which occur during
myocardial ischemia and possible approaches to a bettef under-
standing of its inherent problems via nuclear medical proce-

dures will be discussed.

Coronary circulation

The coronary arterial system can be subdivided into the
large epicardial arteries (the conductance vessels), from which
smaller arteries branch off to penetrate the myocardial wall
at an approximate 90° angle and eventually form the arterioles
and capillary bed. Resistance to coronary flow is determined
mainly by the arterioles, the resistance vessels, which under

maximal pharmacological vasodilation have the capacity to increase
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coronary blood-blow by a factor 4 to 5. In the wide conductance
vessels the resistance to flow under normal conditions will be
low. The compressive forces of walltension exerted on intra-
myocardial vessels also creates a certain resistance to flow,
which will be especially noticeable in the subendocardial
region where the walltension is highest (fig 1a). In the normal
situation this already results in vasodilatation of the sub-
endocardial resistance vessels to ensure sufficient coronary
flow. This is particularly important in view of the higher
oxygen consumption of the subendocardial cells which are
subjected to higher loading conditions than the subepicardial
cells. This, however, implies that during progressive proximal
coronary artery narrowing and hence increase in conductance
vessel resistance the possibility of further dilation of the
coronary reserve, will be exhausted earlier in the subendo-
cardial region compared with the subepicardial region. Thus,
myocardial ischemia always begins in the subendocardium, and
only progresses in a subepicardial and lateral direction during
more severe and prolonged periods of reduced coronary blood-
flow (fig 1b and 1c).

The regulation of coronary blood-flow

With equal myocardial performance, coronary blood-flow
will be constant in spite of varying perfusion pressures. The
continuous adjustment of coronary resistance and flow to meet
the instantaneous oxygen need of the muscle exists strictly
on the basis of local mechanisms which are mainly metabolic.
This is known as autoregulation. The most important and
instantaneous regulator of flow is the nucleoside adenosine,
the first catabolite of the high energy phosphates, which can
diffuse across the intact cell membrane. This is formed as a
result of cleavage of a phosphate group from 5'-adenosine
monophosphate (5'-AMP) by the enzyme 5'-nucleotidase located
at the cell membrane, which facilitates the release of
adenosine into the surrounding interstitial fluid (1-3). It
then presumably combines with specific adenosine receptors on

the perivascular myocytes and directly influences arteriolar
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Fig. 2. Adenine nucleotide breakdown during myocardial ischemia. In the
absence of oxydative phosphorylation resynthesis of ATP from ADP is
inhibited which results in the accumulation of AMP and Pq. AMP can either
be dephosphorylated to adenosine or deaminated to IMP. The latter reaction
however will be inhibited by the accumulating P1, resulting in an increase
of adenosine which is the first ATP catabolyte able to pass the cellmem—
brane into the interstitial space. It then presumably combines with
specific adenosine receptors on the arterioles and induces vasodilata-
tion. Adenosine is easily and quickly deaminated to inosine and is only
found in very small amounts in the venous effluent. Its breakdown
products inosine and especially hypoxanthine can be detected more easily
and may be used as biochemical markers of myocardial ischemia.

1. 5'-nucleotidase

2. adenosine deaminase

3. nucleoside phosphorylase

4. xanthine oxidase

5. adenylic acid deaminase.
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vascular tone (4). This provides an immediate metabolic link
between energy production and oxygen delivery. During ischemia
adenosinetriphosphate (ATP) is not resynthesized from adeno-
sine diphosphate (ADP) and 5'-AMP accumulates. Although 5'-AMP
may be converted into 5'-IMP, by the enzyme adenylic acid
deaminase, this is inhibited by the reduction of ATP and
accumulation of inorganic phosphate (pi), which results in

the formation of adenosine (1) (fig 2). An increase of adeno-
sine or its breakdown products inosine and hypoxanthine in

the venous effluent during ischemia has been demonstrated in
both animal and human studies (5-10) and the release of these
nucleosides by the heart are used as an indicator of myocardial
ischemia. Hypoxanthine especially seems to be a promising
metabolic indicator of myocardial ischemia in man (8,9). Work
induced vasodilatation however is more difficult to explain.
It is possible that relative decreases in pO2 are sensed by
chemoreceptors on specific pericyte type cells, which then
increase local activity of the enzyme 5-nucleotidase and thus
stimulate adenosine production (11). Other metabolic factors
which influence coronary vascular tone without direct auto-
regulatory effects are pH, pCOZ, osmolarity changes and the
prostaglandins (fig 3). Although a direct autoregulatory
effect of pH and pCO2 is unlikely on gquantitative grounds,
i.e. nonphysiological large changes are needed to adapt the
coronary flow to instantaneous O2 demand, changes in pH and
pCO2 presumably modulate the sensitivity of the‘autoregulatory
(adenosine?) receptors.

Metabolic acidosis will enhance coronary blood-flow while,
on the other hand, alkalosis induces vasoconstriction with
small decreases in flow, i.e. during hyperventilation. A
continuous neural regulation of coronary vascular resistance
exists; vasoconstriction being induced by sympathetic impulses
and vasodilatation by parasymphathetic stimulation. A constant
degree of neurally induced vasoconstriction normally exists
which is continuously reflex modulated. However, these changes
in coronary resistance are low (30-40%) when compared to the
alterations caused by metabolic stimulation which can be 5-6

fold (12). Furthermore, autonomic nerve stimulation is mainly



confined to the resistance vessels. Excessive sympathetic
vasoconstriction which results in coronary artery spasm of the
large epicardial vessels seems an unlikely event because of

their sparse sympathetic innervation.

Coronary insufficiency and myocardial ischemia

Coronary insufficiency is a pathophysiological disturbance
in coronary perfusion and therefore of oxygen and substrate
supply to the myocardial cell in relation to demand. In nearly
all cases coronary insufficiency is the result of a local
stenosis in one or more of the greater epicardial coronary
arteries. This stenosis can be fixed (the arteriosclerotic
lesion) or dynamic (the coronary artery spasm). As a result of
this local stenosis a regional disturbance of coronary artery
flow occurs with a subsequent relative or absolute shortage of
oxygen and substrates which results in regional myocardial
ischemia.

Although exercise-induced myocardial ischemia is nearly
always caused by arteriosclerotic coronary artery lesions a
clinical syndrome of myocardial ischemia in patients with
normal coronary arteries without obvious spasm (syndrome X)
has been described (13). In these patients a diminished
coronary dilatory reserve was found without histologic abnormal-
ities of the small intramyocardial vessels. Degenerative changes
of the myocardial cell with mitochondrial alterations were,
however, often present.

The vasodilatory reserve of the coronary vasculature
prevents flow reduction in a moderate coronary artery diameter
narrowing of 40-50% or less. A progressive reduction of normal
resting coronary artery flow was found with acute diameter
reductions of 85% or more with minimal or absent vasodilatory
reserve (14) (fig 4). With stenoses of more than 50% of
diameter, the blood-supply can either be improved by peripheral
arteriolar dilatation or will remain unchanged in the event of
an exhausted coronary vasodilatory reserve.

Whether coronary flow will be sufficient to prevent
ischemia in lesions of 50 to 85%, depends both on the remaining

vasodilatory reserve as well as on instantaneous myocardial
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Fig. 4. Coronary artery flow and vasodilatory reserve. The relation
between percentual coronary artery diameter constriction to resting
mean flow (—————=———=—- ) and the hyperemic response (—— )
to intracoronary contrast injections in dogs is shown. Flows are
expressed as ratios to control resting mean values at the beginning
of each experiment. The shaded area indicates the limits of the
relation plotted for individual dogs. (Fram Gould KL et al, Amer. J.
Cardiol. 33:89 (1974) with permission.
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oxygen demand. The occurence of myocardial ischemia has now
become critically dependent on the extent to which myocardial
energy consumption, and therefore oxygen need, is raised and
will be determined by the direct supply/demand ratio (fig 5).
Recent studies in animals suggest an actual decrease in flow
over a critical coronary lesion during maximal peripheral
vasodilatation (15). A decrease in peripheral perfusion
pressure and increase in stenotic resistance has been suggest-
ed. Also, the occurrence of a steal phenomenon, during coronary
vasodilatation, of blood from areas with a reduced coronary
reserve i.e. supplied by collaterals to low resistance areas
has been described (16,17).

The myocardial oxygen demand depends only to a small
extent on the basic cellular functions needed for cell
viability. Whilst the beating canine heart consumes 8-15 ml/
min/100 gr oxygen only 2 ml/min/100 gr is needed in the
quiescent non-beating heart (18).

Walltension, especially in the enlarged heart, contract-
ility and heart rate are the major determinants of myocardial
oxygen consumption. The occurence of ischemia in the event of
a critical coronary lesion largely depends on these hemo-

dynamic variables.

Coronary spasm

The concept of the supply-demand ratio for the development
of ischemia is of less importance when spasm occurs in one of
the epicardial vessels. Although originally described in
patients with normal coronary arteries (19), pharmacologically
induced spasm has been shown to occur predominantly in exist-
ing arteriosclerotic lesions (20). Furthermore, even relative
small luminal reductions due merely to increased vasotone
rather than frank spasm can alter a moderate lesion into a
critical stenosis with diminished coronary flow reserve (fig
6) . Depending on the severity of the constriction, clinical
signs of only subendocardial or complete transmural ischemia
will be found. In the same patient, exercise-induced angina
pectoris due to a fixed arteriosclerotic lesion and angina at

rest, presumably of vasopastic origin, may be found.
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Fig. 7. Reduction of regional coronary flow during spontaneocus angina
pectoris at rest in the same area as during atrial pacing induced
ischemia. In this patient Kr8im is continuously infused into the left
circumflex artery which has a 70-90% stenosis (arrow). During pacing-
induced anginal pain Kr81m distribution is decreased over the post-
stenotic area with an increase over the nommal area. 5 min after pacing
the Kr81m changes have nearly returned to the control situation after
angina has subsided for several minutes. However, thereafter, during
spontaneous anginal pain Kr81m again disappears in the same area with
an increase over the normal region suggesting a reduction in coronary
flow due to spasm of the artery at the site of the stenosis.
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81m (see later

During our studies using intracoronary Kr
in this volume), several patients developed angina at rest
with similar reductions in coronary blood-flow as were observed
during atrial pacing induced ischemia (fig 7). Various
mechanisms have been proposed to expla%n the occurrence of
spasm, including the effects of a-adrenergic and serotonergic
stimulation (21). The opposing effects of arachidonic acid

metabolites thromboxane A2 and the prostanoid PGI., (prosta-

cyclin) on blood-platelets and vascular smooth muicle are
believed to be relevant to the pathophysiology of vasospasm
and intravascular platelet aggregation (22,23). The strong
vasospastic properties of thromboxane Az, released from plate-
lets adhering to the rough surface of an arteriosclerotic
plaque, could be of importance in the absence of locally
produced prostacycline (24).

This prostaglandin which is formed in the normal, undamaged
vessel wall has strong counteracting vasodilating properties
at low doses. A vicious circle may be envisaged with continuous
platelet adherence during spasm producing small thrombusforma-
tions and thromboxane release, which in turn prolong arterial
spasm and induce myocardial ischemia with the final outcome

of an occluding thrombus and myocardial infarction (20,25).

Myocardial metabolism

In contrast to other types of muscle, the heart with its
ever continuing sequence of contraction and relaxation, is
not allowed an oxygen debt. It is in constant need of large
quantities of energy which are generated and kept as ATP with
a small reserve of creatinine phosphate (CrP). Under normal
conditions this ATP is formed exclusively by oxidative metabol-
ism with only 1% production via anaerobic pathways. Under
normal circumstances oxygen extraction from the blood is al-
ready maximal (+ 75% compared to only 25% in other types of
muscle) and any extra supply of oxygen has to be met by
augmentation of the coronary flow. The energy eventually
generated will be used for contraction/relaxation of the cell,
biosynthesis and membrane transport.

The substrates used by the heart for its ATP-production
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in declining order of importance are: free fatty acids (FFA),
glucose, lactic acid and ketone bodies. Their rate of incorpora-
tion and utilization will depend on plasmaconcentration, hormon-
al activity (i.e. insuline, catecholamines) and the immediate
metabolic rate.

FFA metabolism

Free fatty acids provide up to 60-70% of the total sub-
strate during oxydative metabolism (26). Uptake by the cell
depends on blood-concentration, the ratio of total FFA to
high-binding sites on albumen and the chain length and degree
of unsaturation. During the first passage 40-50% of labelled
FFA is extracted by the myocyte (27). Membrane passage is
both by diffusion as well as by carrier. Intra-cellulary FFA
are mainly esterified to lipids and stored as glycerol (90%)
or transformed to phospholipids to partake in membranefunction
(10%) (28,29). A small portion remains soluble and another
small, but rapidly replenished portion, is metabolized (fig 8).
Before metabolism in the B-oxidation pathway can take place
FFA must be transformed into the mitochondria by way of Acyl-
CoA and carnitine. During B-oxydation Acyl-CoA is degraded
stepwise to form Acetyl-CoA fragments, which then can enter
into the tricarboxylic acid (Krebs) cycle.

Glucose metabolism

The normale rate of glucose utilization is low (10-30%) at
a normal workload. When the only available substfate glyto-
lytically derived acetyl-CoA can rise to 70% during extreme
workloads, aerobic conditions and high glucose uptake, while
at the same tome a slight increase (7%) of the anaerobic
production of ATP is found (30). This, however, is insufficient
for normal contractility. FFA will therefore always be required
for optimal contractile function.

Glucose is transported over the sarcolemma carrier-bound
with increased uptake stimulation by insulin, adrenaline and
intracellular hypoxia (fig 9). It is then transformed to
glucose-6-phosphate by hexokinase and either follows the

glycolytic pathway to pyruvate entering the Krebs cycle via
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Acetyl-CoA
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CoA-SH
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Citrate
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Fig. 10. Pathways of Acetyl-CoA oxydation. a. Tricarboxylic acid cycle or
Krebs cycle. Citrate is formed after condensation of acetyl-CoA with
oxaloacetate and eventually transformed in the Krebs cycle to oxalo-
acetate, during a process of oxydation and decarboxylation, where a
number of reduced co-enzymes are formed. b. Substrate level phosphoryla-
tion. Each mole of enzyme-bound CoA released fram succinyl-CoA provides
for the generation of a single mole of ATP. From Katz AM, Physiology of
the heart, Raven Press, New York, P 57 (1977) with permission.
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acetyl-CoA or is stored as glycogen. During its passage
through the glycolytic pathway a net yield of 2 moles of ATP
per mole of glucose is produced.

Lactate

Under normal conditions lactate is never produced by the
myocardium. The net extraction pattern varies between 0-35%;
largely depending on arterial lactate level, catecholamine
stimulation and substrate competition (FFA). It enters the

Krebs cycle via transformation to pyruvate and acetyl-CoA.

Energy generation by phosphorylation

After condensation with oxaloacetate to citrate, acetyl-
CoA is oxidized and decarboxylated in the Krebs cycle, during
which process substrate phosphorylation at the succinyl-CoA
level yields 1 mole ATP (fig 10).

More important is the formation of the reduced co-enzymes
NADH and FADHZ, which also occurs during B-oxidation. NADH
and FADH2 are then oxidized during the respiratory chain
phosphorylation, where under the influence of the mitochondrial
membrane-~bound enzymes (cytochromes and co-enzyme Q) the
electrons initially carried by the reduced co-enzymes NADH
and FADH2 are transferred to molecular oxygen, producing 02-,
which combines with 2H' to H20. During this process chemical
energy in the form of ATP is generated. Energy, that can be
stored as ATP or CrP, or used for a great variety of chemical
processes, including enzymeregulation, membranefunction,
contractility and relaxation. To this purpose ATP has to be
transported from the mitochondria into the cytoplasm, a process
which is carried out by the adenine nucleotide translocase
system.

Although ATP is in part formed by substrate phosphoryla-
tion, virtually all of the aerobic generated ATP is obtained
by the respiratory chain linked phosphorylation with a total
yield of 36 moles of ATP per mole of glucose.
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Myocardial metabolism during ischemia

During myocardial ischemia oxidative phosphorylation will
soon be halted when no oxygen is available. Secondary to the
diminished electrontransport and subsequent rise in NADH/NAD
and FADH,/FAD ratios in the mitochondria, an inhibition of
B-oxidation occurs (31). This leads to accumulation of intra-
cellular acetyl-CoA bound FFA, followed by a rapid decline of
FFA cellular uptake, diminished transport into the mitochondria
and an increased formation of triacyl-glycerol ("fat droplets")
(32,33). The increased intracellular FFA levels are thought to
induce various deleterious effects, including an inhibition of
adenine nucleotide translocase, possibly also of the enzymes
Na/K ATP-ase of the sarcolemma and Mg/Ca ATP-fase of the sarco-
plasmatic reticulum with inhibition of the calcium pumping
system into the sarcoplasmatic reticulum (34-36). At the mito-
chondrial level uncoupling of the electrontransport has been
described (37). Elevated FFA levels could also lead to a
detergent effect on the cellmembrane by disruption of enzyme
binding function, resulting in an altered permeability with
electrolyte loss and cell swelling (38).

When FFA-utilization is reduced during ischemia, glyco-
lysis will be activated mainly by the increased activity of the
enzymes, phosphofructokinase (PFK) and glyceraldehyde-dehydro-
genase (G3PDH) due to accumulation of the ATP-catabolites
(ADP, AMP and P, (32) (fig 11). Uptake of glucose by the cell
will be maximal (insulin), as well as the formation of glucose-
6-P by hexokinase. However, this supply of substrate is critic-
ally dependent on the level of myocardial ischemia and the
possibility of blood reaching the ischemic cells.

Glycogenolysis will also be increased to supply as much
substrate for glycolysis and anaerobic ATP-production as
possible. However, these reserves are limited and during
severe anoxia will be exhausted within minutes (39). The
pyruvate formed during glycolysis cannot enter the Krebs
cycle, but will be transformed to lactate. Myocardial lactate
production rather than the normal extraction pattern is found

very early during the ischemic process and serves as a sensit-



22

91245 sqauy

— WA. voD — 4100y Ha1
VA/ ajoAnuAg

—— _m:xuu._ -

I
340192419 -4 =10 €’1
RD<Z\IQ<Z ‘a)pjo07 QVwmu:wmo‘_nxr_wD — d £ — apAysp|p1a4|D
d € — 3pAysp|p1aa4|9 ¢

|

d4!Q 9’ esoioniy
GYN/HAwN ‘Hd ©

N aspupjo4onigoydsoyy
1d'dWY ‘dav @

d ~- 9 — asojoniyg (2odt

(seutwpjayaps ‘20 d @) aspupjoxaH

asopAioydsoyy d =9 = 3509N|) ~t——r _030:_9

usbood| o =

* (14®) S2UWD|OYD3§Od

uy

-

nsuj )

- cm:xu_u._

o
QmOUZ_O



23

ive marker of myocardial ischemia (40). In our experience
lactate production during pacing-induced ischemia was observed
in 92% of patients with left coronary artery disease, as
compared to ECG-changes and anginal pain in only 72% and 78%
respectively (41). However, although being a good indicator

of short lasting periods of ischemia, lactate production will
again decline during longer episodes of coronary flow reduction,
due to inhibition of glycolysis, especially at the G3PDH level
(42,43). This is mainly caused by accumulation of H'-ions and
lactate due to reduced venous efflux from the ischemic area,
which results in pH changes and a rise in the NADH/NAD ratio.
The ensuing inhibition of glycolytic flux leads to a decrease
in (anaerobic) ATP production.

Hemodynamic and electrophysiological changes during
ischemia

Contraction of the myocardial myofilaments occurs as a
sliding movement of the thin filaments (actin) over the thick
filaments (myosin) under the influence of regulatory proteins
(troponins, tropomyosin) and in the presence of a critical
amount of Ca-ions.

During this movement the actin filaments attached to
either end of the sarcomere, the fundamental unit of myocardial
muscle, shift to the centre of the sarcomere causing it to
shorten; an energy (ATP) consuming process.

ATP, which is bound to the myosin cross-bridges is hydro-
lyzed by myosin ATP-ase stimulated by actin and forms ‘an
actin-myosin (+ADP+Pi)active complex in which release of phos-
phate bound energy results in a shift in position of the
myosin cross-bridges and sliding of the filaments. This inter-
action of actin with the myosin cross-bridges inhibited by the
troponin-tropomyosin complex, attached to actin and being more
or less "in the way" of the reaction at low free calcium
levels in the cytoplasm (fig 12). The increase in cytoplasmatic
free galcium as it occurs during excitation allows for binding
of ca“”

of the troponin-tropomyosin complex and de-inhibition of the

to troponin C, which then results in a re-arrangement

interaction between actin and myosin (44). The very complex
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Fig. 12. Possible mechanism by which calcium binding troponin iniates
contraction. In resting muscle the troponin/tropomyosin complex prevents
interaction between actin (A) and myosin (M) . Release of calcium upon
excitation in the cytoplasm enables binding of Ca2+ to troponin C (C)
(right) , thereby reducing the affinity of troponin I(I) to actin and a
shift of the position of tropamyosin (Tm), which allows actin to inter-
act with the myosin crossbridges and thereby to initiate muscular
activity. (Fram Katz AM, Physiology of the heart, Raven Press, New York,
p 110 (1977), with permission.
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Fig. 13. Transsarcolemmal ionic fluxes during the various phases of the
action potential. After an initial depolarization fram the resting mem—
brane potential (phase 4) to threshold level a fast inward current carried
by Nations depolarizes the cellmembrane to a positive value (phase O).
This is immediately followed by a small repolarization (phase 1) due to
ongoing Cl™-ions and a voltage dependent inhibition of the fast inward
current to the plateauphase (phase 2), maintained by a voltage-dependent
slow inward current (mainly Ca2+ and Na*/Ca2*-ions) and the gradual onset
of Kt movement out of the cell. After termination of the slow inward
current this K+t-ion efflux repolarizes the membrane (phase 3) until phase
4 is reached. During this phase active Na/K exchange (Na/K pump) Na/K-
ATP-ase or sodium potassium pump takes place to reinstitute their respect-
ive original intercellular levels. A different, voltage dependent Kt
efflux is present during phase 4 which may result in a gradual depolariza-
ticn of the diastolic membrane potential. Apart from the slow channels
transsarcolemmal Ca2+ transport also depends on a 2Na+(Ca2+ exchange
system and an active Ca2+ pump (Ca/Na-ATP-ase), which removes Ca2+ fram
the cell.
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series of processes beginning with depolarization of the
sarcolemma to calcium-binding of troponin C is called the
excitation—-contraction coupling. Mainly because of the relativ-
ely slow diffusion of Ca2+ over the cellmembrane to the contract-

ile proteins other mechanisms for Ca2+

delivery and removal
are utilized, including various subcellular storage systems
such as the sarcoplasmatic retiéulum.

Sarcolemmal permeability for ions is governed by the action-
potential (fig 13). During diastole the sarcolemma is, highly
permeable for K+; however not for Na' and Ca2+ ions.

At phase O the rapid upstroke of the action potential is
caused by a fast inward current, carried by Na® ions.

Sodium ion conductance through the fast sodium channels in
the sarcolemma is a voltage dependent process starting after
an initial partial depolarization of the cellmembrane to its
threshold potential and terminating abruptly after complete
depolarization (45,46). Full recovery of these channels takes
place only after complete repolarization to the resting membrane
potential, so similar ingoing Na® fluxes can not be found
until this period (phase 4).

A brief period of rapid repolarization (phase 1) occurs
immediately after the initial upstroke due to a transient
increased chloride conductance into the cell. The ensuing
plateau (phase 2) is caused by the slow inward current carried

2+ ions, however, in part also by slow Na+/Ca2+ currents

mainly Ca
K ions efflux starts during this phase and together with
anr impermeability for Ca2+ during- phase 3 results in repolari-
zation of the action potential to its original resting diastol-
ic level. During this diastolic period (phase 4) intra- and
extracellular Na+ and K© jon levels have to be rearranged to
anable the next depolarization. In order to achieve this
against their gradients energy is required and a specific
enzyme in the sarcolemma Na-K-ATP-ase, or the so-called
sodium-potassium pump. Prerequisites for proper functioning
of this sodium-potassium pump is the availability of sufficient
ATP and Mg2+ ions. Digitalis glycosides are known to specific-

ally inhibit Na/K-ATP-ase (47), depending on the extracellular
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Fig. 14. Calcium fluxes during excitation-contraction coupling. Calcium
influx (A) is a "downhill" flux over the sarcolemma largely by the slow
channels to the "activator pool", presumably the subsarcolemma cisternae.
This Ca2*, entering the cell during each cycle, is in itself quantitativ-
ely insufficient to occupy all binding sites on troponin C. A relatively
small Ca2+ flux from the activator pool may trigger the release of a
larger amount of-calcium from an intracellular pool, most likely the
sarcoplasmatic reticulum (activation) to enable contraction (C). Relaxa-
tion (D) occurs by a cyclic-AMP dependent Ca2+-ATP-ase, which pumps CaZ*
back into the sarcoplasmatic reticulum. The resulting fall in cytosolic
Ca2+ concentration causes calcium to become dissociated fram its binding
site on troponin C. The sodium~calcium exchange system (B) can transport
calcium in both directions, however is mainly involved in a nonelectro-
genic exchange of Ca2* for Nat, removing it out of the cell against its
gradient. (Fram Karz AM, Physiology of the heart, Raven Press, New York,
p 144 (1977) with permission.
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K" level and it is of interest that Thallium transport over
the sarcolemma is partly inhibited both by ouabain and in-
creasing extracellular K levels (48) . Apart from the potassium
fluxes mentioned above several other voltage dependent out-
going K' movements have been described, particularly in connec-
tion with spontaneous phase 4 depolarization (49). Calcium
fluxes within the myocardial cell are quite complex and at
least 3 separate calcium pools are involved: the subsarcolemmal
cisternae, the sarcoplasmatic reticulum and the calcium~binding
sites on troponin C (50) (fig 14). Calcium entering the myo-
cardial cell via the slow channels is apparently retained in
the subsarcolemmal cisternae. This calcium, which in itself
is quantitatively insufficient for binding with troponin C
might serve as an activator for calcium release from the more
important calcium pool: the sarcoplasmatic reticulum. While
this process is non-energy consuming the successive removal
of calcium from troponin C against its concentration gradient
into the sarcoplasmatic reticulum however is carried out by
hydrolysis of ATP by a cyclic~-AMP dependent Ca2+-ATP—ase.
Impaired relaxation will be an early event during myocard-
ial ischemia and can be found seconds after coronary artery
occlusion. Depending on the severity and size of the area with
impaired relaxation, a reduced compliance of the left ventricle
develops with elevated enddiastolic pressures, which may
account for the dyspnoe the anginal patients so often experience.
The elevated enddiastolic and pulmonary wedge pressures

may be the reason for increased Tl201

uptake in the lung
during myocardial ischemia (51). Both impaired relaxation and
reduced contractility can be attributed to derangements in
intracellular Ca2+ metabolism. Shortage of ATP will effect
both myosin-ATP-ase activity which results in diminished
contractility and wallmotion disturbances as well as the Ca2+—
ATP-ase of the sarcoplasmatic reticulum leading to impaired
relaxation. Contractility will further be effected by the
development of acidosis during ischemia, when H' ions tend to
replace Ca2+ ions from its binding sites on troponin C (52).

Ischemia also results in dysfunction of the sodium-potassium



29

12 /-/

pmotl g‘1 wet wt.

60 120 180

Timel(s)

Fig. 15. Immediate changes of intracellular high energy phosphate and
lactate content after complete coronary occlusion in dogs. During the
first 15 sec there is little change. However, a marked increase in
lactate and decrease in CrP occurs during the following 15 sec, indicat-
ing both the appearance of anaercbic glycolysis and the immediate effect
of depression of aerobic metabolism on high energy phosphate metabolism.
Note that ATP content decreases relatively little during the first 3
min. (Fran Jenning RB, Reimer KA, Biology of experimental acute myocardial
ischemia and infarction. In: Enzymes in Cardiology, Diagnosis and
Research. Hearse DJ, De Leiris J, (eds), John Wiley & Sons, Chichester,
p 30 (1979). with permission.
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pump of the sarcolemma (Na/K-ATP-ase) with K* loss and Na©
gain of the cell (53). Accompanied by accumulation of HZO this

eventually will lead to cell swelling and oedema (54).

Progression to infarction

All metabolic, hemodynamic‘and electrophysiological changes
are completely reversible when the ischemic period is of short
duration. With continuing coronary blood-flow reduction and
ischemia, irreversible alterations develop. In animal experiments
total occlusion of a coronary artery leads to complete utiliza-
tion of oxygen dissolved in the cytoplasm during the first
seconds. Anaerobic glycolysis increases with a quadrupling of
lactate in 1 min (55) (fig 15). The CrP content will be
exhausted to 20% within 3 min, while total ATP decreases at a
slower rate. This does not mean that compartmentalized ATP
pools (i.e. near the sarcoplasmatic reticulum) could not be
deplenished at a faster rate, which is suggested by the
immediate decrease in contractile force. Within 15 min total
ATP will be diminished by 65% and by 85% in 30 min (56). Ultra-
structural changes with swelling of the mitochondria can be
seen after 20 min and small patches of subendocardial necrosis
are observed. Disruption of lysosomes and leakage of lysosomal
enzymes is found after 30 min with extension of the region of
cell death, so that after 40 min an area of confluent sub-
endocardial necrosis is present, which tends to spread in a
lateral and transmural way. With continuing coronary obstruc-
tion, 50-60% of the transmural wall will be necrotic after 3
hours and 75% after 6 hours (57). Throughout this process of
progressive necrosis, the infarct area always is surrounded by

an area of ischemic, but still viable tissue (58) (fig 16).

.The application of nuclear techniques for the evaluation

of myocardial ischemia

The great majority of current nuclear cardiological inves-
tigations are applied in the detection of myocardial ischemic
events. Functionally they can be divided in the study of:
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Fig. 17a. Kr81m distribution changes during atrial pacing induced myo-

cardial ischemia in a patient with an 80% proximal stenosis of the left
anterior descending (arrow), and normal circumflex artery. Kr8Im is
continuously infused in the left coronary artery and images taken during
succesive 15 sec intervals (fig 7b). At rest there is normal, egual
distribution. During pacing induced anginal pain Kr81m distribution
decreases over the poststenotic area with an increase over the normal
area, signifying the functional significance of this lesion.

(b/min = beats/min; P-P = post pacing) .

a. myocardial blood-flow

b. myocardial cell perfusion

c. myocardial metabolism

d. hemodynamics or myocardial function

e. myocardial cell necrosis.

Myocardial blood-flow

The application of microspheres, labelled with various



Fig. 17b.

Fig. 18. Electrophoresis of K43Cl and T1201C1 solutions demonstrating
the negative charge on the Thallium ion.
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nuclides, is presently the most accurate technique for the
measurement of regional myocardial blood-flow (59). However,
precise and multiple determinations are limited to the animal
experimental laboratory, where proper mixing of the micro-
spheres in the arterial system and accurate counting after
sacrifice of the animal is guaranteed. A variety of human
studies have been carried out and the procedure reported to be
safe (60-63). Nevertheless, only a few studies per patient can
be performed which is an important drawback of this method in
man.

The inert gas technique for the measurement of myocardial
blood-flow has been used for many years (64). Argon in partic-
ular was shown to be a realiable tracer, even with high
coronary artery flows (65,66). One disadvantage is its poor
resolution in time; one measurement taking approximately 4-5
min. The main drawback with this kind of technique, is that
only left ventricular blood-flow is measured.

Regional flow studies can be performed using the pre-

cordial mapping technique with Xe‘]33 or Kr81m as diffusable

33

tracers (fig 17. Xe1 has been applied for many years and its

potentials and disadvantages are well recognized (67-71).
Kr81m has only recently been used in man and seems not to
133 (72-75) . The most

important advantage is its very short half-life (13,3 sec),

share some of the disadvantages of Xe

which together with its biological and chemical inertness
makes it an ideal tracer for regional coronary flow studies
when administered directly into the coronary arfery system
(76-79) . The main drawback of both techniques however, is the

invasive nature of the procedure.

Myocardial perfusion

Myocardial blood-flow studies as described above should be
distinguished from the myocardial perfusion studies using
radiopharmaceutical agents like radio-potassium (K43) or
radioisotopes of its cationic analogues, rubidium and Thallium.
Of these, T1201 has gained widespread use for the detection of

myocardial ischemia (80-84). The principal difference with the
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inert gas or microsphere method for the determination of myo-
cardial flow is that myocardial perfusion images with cationic
tracers will not only depend on regional myocardial blood-flow,
but also on their biological properties which affect uptake
and release by the myocyte. Although the ionic radii of potas-
sium and Thallium are close, their biological properties now
seem not to be so identical as originally believed. T1201
uptake by the myocyte is dose-dependent and of a greater
magnitude that K43. Also, there is doubt about its dependence
of the Na/K-ATP-ase system of the sarcolemma (85). It has

been suggested that Thallium complexes in the presence of

43 hiloride

NaCl form TlCl4_ complexes, which in contrast with K
are negatively charged (86,87) (fig 18). Although precise
knowledge about the cellular mechanism of Thallium uptake is
lacking, widespread clinical practice has demonstrated its
value in the visualization of ischemic areas and distinction
between reversible vs irreversible myocardial injury.

Application of quantitative measurements of uptake and
redistribution and tomographic devices have improved its
diagnostic potential (88,89). Yet, its relatively low energy
profile (95% mercury K X-rays of 60-83 KeV) and long half-life
of 73 hours calls for the search of other, better markers of
myocardial (cell) perfusion. Promising results have been
published with Rb®? (half-life 78 sec) (90) and N'° (half-life
9.9 min) (91,92). These radionuclides however are positron
emitters, narrowing down their application to a limited field
of investigators. Also it has to be realized that these
compounds do not behave as pure perfusion agents, but are
dependent on cellular extraction as well. The intracellular
behaviour of NH133, which circulates in the blood as an NH133/
NH134+ complex, is complicated (93). Incorporation in gluta-
mine and carbamylphosphate is believed to occur, so that its
clearance from the myocardium depends on a variety of metabolic
processes, including the Na+/K+—ATP—ase and glutamine synthe-
tase activity, as well as the possibility of carbamylphosphate
to enter the urea cycle (94-96).
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Myocardial metabolism

Free fatty acids, the most important substrates for oxydat-
ive metabolism have been used increasingly for the detection
of myocardial ischemia and infarction. Studies with C11—
palmitate have demonstrated its usefulness in the detection
and quantification of ischemic areas and infarcted regions of
the heart (93,97-99). For this, positron emitting computer
tomography (PECT) and an in-house cyclotron are required.

123 in the omegé-position

Labelling of medium-chain FFA with I
does not alter their normal biological behaviour significantly
(100,101) . Studies with labelled phenylpenta-, hexa- and hepta-
decanoic acid have been conducted measuring its half-life of
disappearance from the myocardium, which is believed to reflect
their metabolic turnover in the B-oxydation pathway. Apart

from visualization of infarct areas, abnormal turnover rates

of 1123—FFA in ischemic and infarcted regions can then be
measured (102,106). In very recent publications, doubt has
arisen whether the measured change in radioactivity really
represents the metabolic turnover of FFA or merely the kinetics
123 (107,108).

Glucose as the main fuel for energy production during

of free I

anaerobic glycolysis is theoretically the more desirable sub-
strate to indicate elevated glycolytic flux. Complete study
of glycolysis with labelled glucose, have not been entirely

possible so far. Fluoro-2-deoxyglucose labelled with F18 is

trapped after being converted to F18

-2~deoxyglucose-6-P and
does not enter the glycolytic pathway. It therefore only
indicates the rate of cellular uptake and subsequent phos-
phorylation. Although the latter is related to the degree of
glycolysis it also is dependent on glycogen formation. In view
of its long half-life (109.7 min, B+ 97%), the value of its
use is dubious, especially in the event of a progressive
reduction in regional coronary flow.

Myocardial necrosis is visualized with Tc99m—pyrophosphate

or tetracycline complexes, preferably administered 24-72 hours

after onset of infarction (109-113). Uptake is determined by
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the presence of myocardial necrosis and presumably by calcium
deposits in the infarcted area (114,115), although in later
animalstudies pyrophosphate uptake was shown not to correlate
with calcium uptake (116). The time interval after onset of
infarction and optimal pyrophosphate uptake, is presumably
due to the development of collateral flow into the infarcted
area. With this technique transmural infarcts consisting of
more than 3 grams necrotic tissue can be demonstrated, as well
as acute subendocardial infarcts in the majority of instances
(110,117) . Small nontransmural necrotic areas and inferior or
true posterior infarcts can be missed by this imaging tech-
nique (112,121). Although in most infarcts a positive Tc99m—
pyrophosphate scan becomes negative after approximately one
week it can persist for months in some patients (118,119).
Also, positive scans may be found in patients with unstable
angina without definite clinical signs of infarction (119,
120) . In these cases small multifocal areas with coagulation
necrosis, myocytolysis or, with elder lesions, fibrosis have
been found (121).

A good correlation between estimated infarct size and
Tc99m—pyrophosphate was observed in experimental anterior
infarcts, however, less consistent in subendocardial and
inferior infarcts (122,123). The correct estimation of infarct
size will be rather difficult in clinical practice because of
imaging problems, when not utilizing a tomograph system, and
the dependence of the infarct-avid isotope on (changing)
collateral flow.

Myocardial function

Isotope methods for the assessment of myocardial function
include first pass and dual or multigated equilibrium tech-
niques which allow for the determination of overall ejection
fraction, heart volumes and local ventricular wallmovement
(124~135) . In the detection of myocardial ischemia which is
essentially a regional disease the study of local changes in
contractility and relaxation and thus in regional wallmotion

seems most important. The multigated blood-pool scan with
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Tc99m labelled erythrocytes and sufficient computer facilities

provides an excellent opportunity for the non-invasive study
of myocardial function, which compares well with angiographic
techniques (129,136,137).

A disadvantage here is the superposition of other intra-
vascular structures, especially the right ventricle when
investigations are performed in the antero-posterior or right
anterior-oblique position. This problem is bypassed using the
first pass technique, which permits the independent study of
left and right ventricle due to temporal separation. The use

of Tc99m as radionuclide however, permits only a few studies

to be carried out at short intervals (138). Recently, Au195m
has been introduced with a very short half-life of 30.5 sec

produced from a Hg195m/Au195m

generator (139). Multiple
investigations using the first pass method are possible with
an interval of 1.5 = 3 min with promising results in animal
studies as well as in man (140,141).

Potential drawbacks in patient studies are the contamina-
195m (half-1life 41.6 hours) and

its photopeak of 262 KeV, which is not ideal using the 1/4

tion with its motherproduct Hg

inch single crystal cameras currently 'employed in cardioclogy
work (142).

Conclusion

Nuclear cardiology offers the clinical cardiologist a wide
spectre of diagnostic possibilities. Its still growing
potentials are made possible by the introduction of new radio-
pharmaceuticals and the development of instrumentation. It
contributes to the diagnosis of the main pathophysiological
areas in myocardial ischemia: i.e. coronary blood-flow, myo-
cardial perfusion, metabolism and myocardial hemodynamic
function. However, various limitations, especially concerning
the presently used radiopharmaceuticals, exist influencing
their optimal application. Although positron-emitting radio-
nuclides offer greater possibilities in the study of myocard-
jal perfusion and metabolism, their use remains limited to

only a few centers. Further research and development of new



gamma-emitting radiopharmaceuticals is therefore necessary.
New developments in this field are being discussed in this

volume.
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