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Preface

With the completion of the human genome project, followed by the rise in high-throughput
technologies like the various microarray and now high throughput genomic sequencing
platforms, we experienced the birth of Systems Biology after its long gestation. This revolution is
marked by a change in the research paradigm from the single small-scale experiment, i.e., following
the change of a component in a multi component system, to one that attempts to simultaneously
monitor the change of tens of thousands of molecules within this body. This clearly necessitates the
unparalleled use of project-specific informatic tools, which, to date, requires an unprecedented level
of development to collect, manage and mine the data for interesting associations.

To begin to understand this information we now rely on statistical analysis to aid in our selection
of the fruit from the tree. However, this often takes us on a journey into a new field for which we are
not yet prepared. Samuel Johnson (1709–1784) foreshadowed the dilemma we would face and
characterized it as follows: ‘‘Knowledge is of two kinds. We know a subject ourselves, or we know
where we can find information on it.’’ It is for the latter that we routinely turn to the literature. The
rate of growth of the literature parallels that of sequencing data and the array data placing an
almost impossible task before each investigator. To partially ease this burden we are again turning
towards developing informatic aids that mine the literature and data to develop summaries and
associations to directly address the questions posed and the new hypotheses that are to be tested.

Although more clearly articulated, we again face similar challenges as those tackled during the
course of the human genome project. It is essential that the training of the biologist and computer-
scientist occur in an interdisciplinary environment of cross-fertilization. With this goal in mind the
textbook ‘‘Bioinformatics for Systems Biology’’ was undertaken.

We begin this explorationwith Part I, to provide the computer scientist with an introduction to the
underlying principles of cell biology. This is followed by a brief introduction in Part II as a means for
the biologist to become familiar with concepts and the statistical analysis of large datasets. Part III
then describes, to date, the best characterized use of the microarray platform that is now moving
towardswhole genome analysis.With all of this data, how dowe begin analysis for common elements
guiding the underlying principles? This is discussed in Part IV which leads to Part V and Part VI to
test, in silico, the relationships on a wide scale in order to assess their applicability. Upon developing
the associations, Part VII asks how does this information relate towhat wasmeasured? As these basic
principles are developed from an ‘‘omics’’ driven biological systems approach, they are applied in
Part VIII to translational medicine. An excellent example is the new term ‘‘personalized medicine’’
that is beginning to reverberate in clinical care. It is the culmination of the Systems Biology revolution
where technological advances and cross-fertilization have driven the field to mature to the point
where it is being incorporated in a true bench-to-bedside manner.

As you read the chapters, you will find that they can stand alone, yet can be combined to
emphasize the integral role of informatics in Systems Biology. Most of the figures and tables are in
grey scale. I would encourage you to view those that benefit from color on the accompanying CD.
The material contained on the CD provides an excellent source of slides for your lectures and
presentations.
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The chapter-related Glossary and Abbreviations section will assist in familiarizing you with the
terms. You will also find the literature and suggested reading sections, including key references,
very useful as you delve into the subject matter. Technology, by its very meaning implies refinement
and change. The informatics approaches used in systems biology are continually subject to
refinement. With this reality, you are encouraged to utilize the web site information provided in
various chapters to help access the most current information and resources available. As Systems
Biology develops we are able to witness growing pains and milestones. With continued informatic
and biological cross-fertilization, advancements in Systems Biology will revolutionize personalized
medicine answering questions by integrating information in unexpected ways.

vi Preface



Contents

Part I Life of a Cell and Its Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Structure and Function of the Nucleus and Cell Organelles . . . . . . . . . . . . . . . . . . . . . . . . 3
Jon Holy and Ed Perkins

2 Transcription and the Control of Gene Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Nadine Wiper-Bergeron and Ilona S. Skerjanc

3 RNA Processing and Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Christina Karamboulas, Nadine Wiper-Bergeron, and Ilona S. Skerjanc

4 DNA Replication, Recombination, and Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Linda B. Bloom

5 Cell Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Daniel A. Rappolee and D. Randall Armant

6 Epigenetics of Spermiogenesis – Combining In Silico and Proteomic Approaches

in the Mouse Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Sophie Rousseaux and Myriam Ferro

7 Genomic Tools for Analyzing Transcriptional Regulatory Networks . . . . . . . . . . . . . . . . . 119
John J. Wyrick

Part II Statistical Tools and Their Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8 Probability and Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Michael L. Kruger

9 Stochastic Models for Biological Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Gautam B. Singh

10 Population Genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Jill S. Barnholtz-Sloan and Hemant K. Tiwari

11 Statistical Tools for Gene Expression Analysis and Systems Biology

and Related Web Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Chiara Romualdi and Gerolamo Lanfranchi

vii



Part III Transcriptome Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

12 What Goes in is What Comes Out: How to Design and Implement a Successful

Microarray Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Jeffrey A. Loeb and Thomas L. Beaumont

13 Tools and Approaches for an End-to-End Expression Array Analysis . . . . . . . . . . . . . . . . 227
Adrian E. Platts and Stephen A. Krawetz

14 Analysis of Alternative Splicing with Microarrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Jingyi Hui, Shivendra Kishore, Amit Khanna, and Stefan Stamm

Part IV Structural and Functional Sequence Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

15 An Introduction to Multiple Sequence Alignment — and the T-Coffee Shop. Beyond Just

Aligning Sequences: How Good can you Make your Alignment, and so What? . . . . . . . . . 283
Steven M. Thompson

16 A Spectrum of Phylogenetic-Based Approaches for Predicting Protein

Functional Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Dukka Bahadur K. C. and Dennis R. Livesay

17 The Role of Transcription Factor Binding Sites in Promoters and Their

In Silico Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Thomas Werner

18 In Silico Discovery of DNA Regulatory Sites and Modules . . . . . . . . . . . . . . . . . . . . . . . . 353
Panayiotis V. Benos

Part V Literature Mining for Association and Meaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

19 Mining the Research Literature in Systems Biology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Keir T. Reavie

20 GoPubMed: Exploring PubMed with Ontological Background Knowledge . . . . . . . . . . . . 385
Heiko Dietze, Dimitra Alexopoulou, Michael R. Alvers, Liliana Barrio-Alvers,
Bill Andreopoulos, Andreas Doms, Jörg Hakenberg, Jan Mönnich, Conrad Plake,
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Part I

Life of a Cell and Its Analysis



Chapter 1

Structure and Function of the Nucleus and Cell Organelles

Jon Holy and Ed Perkins

Abstract Living eukaryotic cells must carry out and coordinate an enormous number of biochem-
ical reactions in order to obtain and convert energy to usable forms, break down and interconvert
organic molecules to synthesize needed components, sense and respond to environmental and
internal stimuli, regulate gene activity, sense and repair damage to structural and genomic elements,
and grow and reproduce. This level of complexity requires that biochemical reactions be highly
organized and compartmentalized, and this is the major function of cell organelles and the
cytoskeleton. Cells have elaborated an elegant cytoplasmic membrane system composed of the
nuclear envelope, ER, Golgi apparatus, and associated endocytotic, endosomal, lysososomal, and
secretory vesicles and compartments. These membranes serve to both organize and compartmen-
talize biochemical reactions involved in protein and lipid synthesis, targeting, and secretion. The
cytoskeleton not only facilitates cytosolic molecular interactions, but also serves to organize the
entire cytoplasmic membrane system. The key to cellular life is organization, and eukaryotic cells
display a remarkably rich and elegant architecture to carry out the demands of life.

Keywords Cell � Structure � Nucleus � Organelle � Function

1.1 Introduction

The myriad of biochemical reactions that comprise life processes are too numerous and complex to
be carried out entirely by simple diffusion-mediated interactions between enzymes and substrates.
Instead, sequences of biochemical reactions must be efficiently organized and integrated with other
sets of reactions by the cell. Two fundamental structural elements are used by eukaryotic cells to
organize and integrate these reactions: membranes and a cytoskeletal system. An elaborate system
of cellular membranes, in the form of the plasma membrane, membrane-bound organelles, and the
nuclear envelope, has evolved to provide reaction surfaces and to organize and compartmentalize
molecules involved in specific metabolic pathways. Other cytosolic biochemical reactions, as well as
the organization of membranous organelles within the cell, are regulated by interactions with the
cytoskeletal system. Consequently, enzymes and proteins involved in biochemical reactions can be
located in the cytosol, within membranes, on the surfaces of membranes, within the interior of
membrane-bound compartments, or in association with the cytoskeleton. The elaboration of these
structural elements has allowed for the sophisticated level of interaction and integration of
biochemical reactions that exist in living eukaryotic cells (Fig. 1.1).

Over two hundred different types of cells are found in higher animals, including humans, and the
interaction of these diverse cell types is responsible for the formation and functioning of tissues and

J. Holy
Departments of Anatomy, Microbiology & Pathology, University of Minnesota School of Medicine, Duluth
1035 University Avenue, Duluth, MN 55812, USA
e-mail: jholy@d.umn.edu

S. Krawetz (ed.), Bioinformatics for Systems Biology, DOI 10.1007/978-1-59745-440-7_1,
� Humana Press, a part of Springer ScienceþBusiness Media, LLC 2009
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Fig. 1.1 Diagram of the
major cell organelles,
including the cytoskeleton
and nucleus. This drawing
depicts a single idealized cell,
and so does not include the
cell-cell and cell-ECM
interactions. (Copies of
figures including color
copies, where applicable,
are available in the
accompanying CD)

Fig. 1.2 Examples of low-power electron micrographs of thin sections of rat tissues showing how cell organization
reflects cell function. (A) Shows intestinal epithelial cells, which are modified to aid in the digestion and absorption of
food. The apical membranes of these cells develop highly organized microvilli (MV), which are supported by bundles of
microfilaments, to increase the surface area of these cells. The epithelial cells are bound to each other by junctional
complexes (JC) consisting of a cluster of tight junctions, zonulae adherens junctions, and desmosomes. The tight
junctions prevent material in the intestinal lumen from diffusing between cells into the body cavity, and the adherens
and desmosomal junctions firmly anchor cells to each other. Amigrating immune cell (LYM, lymphocyte) is also present
in this section. (B) Shows salivary gland cells, which are specialized to produce and release large amounts of secretory
glycoproteins. These cells contain extensive arrays of rough endoplasmic reticulum (RER) filled with secretory vesicles
(SV). Two nuclei (N) are present in this section, and both display prominent nucleoli (Nu). (C) Shows cells of the
esophageal epithelium, which are specialized to accommodate and resist mechanical stresses. These cells are constantly
renewed by the mitotic activity of a basal layer of cells (MC, mitotic cell). As cells are produced and differentiate, they
move towards the lumen of the esophagus, become flattened, and form extensive desmosomal connections (D) with
neighboring cells (Copies of figures including color copies, where applicable, are available in the accompanying CD)

4 J. Holy and E. Perkins



organs. Different types of cells carry out specialized functions (Fig. 1.2), but all cells face similar sets
of challenges to exist. In general, cells must maintain a barrier against, and sensing mechanisms to
interact with their external environment; synthesize and recycle their structural and enzymatic
components; repair physical or chemical damage; grow and reproduce; and generate energy for all
of these activities. These generalized functions, as well as the more specialized functions of individual
cell types, are all performed by cell organelles. Cell organelles perform the basic functions that allow
cells to survive and replicate, and are dynamic entities that become modified to help specialized cells
carry out specific functions. For example, all cells contain a cytoskeletal filamentous system that
functions tomaintain cell shape and allows for some degree ofmovement, butmuscle cells contain far
greater numbers of these filaments, to carry out the contractile activity of the muscles.

Classically, the phrase ‘‘cell organelle’’ has been used to denote distinct membrane-bound struc-
tures that are readily visible by light or electron microscopy and possess characteristic morphological
features that make them readily identifiable in essentially all eukaryotic cells. Such structures include
the plasma membrane, endoplasmic reticulum (ER), Golgi apparatus, lysosomes, peroxisomes, and
mitochondria. The structure and function of these organelles, as well as the cytoskeleton and nucleus,
are reviewed in this chapter. Because membrane structure plays fundamental roles in organelle
function, the basic features of membrane organization will be considered first.

1.2 Membrane Structure

Cell membranes are composed of lipid and protein; the lipid is assembled into two opposing layers,
called the lipid bilayer. Although the lipidmake-up ofmembranes is very complex, fourmajor types of
phospholipids and cholesterol comprise most of the lipid portion of the bilayer. The phospholipids
include the choline-containing lipids phosphatidylcholine and sphingomyelin, and the amine-contain-
ing phosphatidylethanolamine and phosphatidylserine. All of these phospholipids possess hydrophilic
polar heads, and two hydrophobic fatty acid tails. The membrane bilayer represents an energetically
favorable conformation of these lipids in that the tails associate with each other to form a hydrophobic
environment in the center of the bilayer, with the polar heads facing outward to interact with the
charged aqueous environment of the cytoplasm, organelle lumen, or extracellular space. The hydro-
phobic region resulting from the association of lipid tails creates a barrier to the passage of charged
molecules, and only small uncharged molecules, or lipid-soluble molecules, can freely penetrate the
lipid bilayer. Cholesterol, which is shorter and stiffer than phospholipids, comprises approximately
50% of the total membrane lipid. The hydroxyl end of cholesterol interacts with the polar heads of
phospholipid molecules, with the rest of the molecule in the same plane as the fatty acid tails of
phospholipids. Its presence in membranes is thought to help prevent phase transitions by stiffening
membranes at higher temperatures, while alsomaintainingmembrane fluidity at lower temperatures.
Although cholesterol is prevalent and equally represented in both bilayers of a membrane, the major
phospholipids can be asymmetrically distributed among different membranes, high concentrations of
choline-containing phospholipids present in the non-cytoplasmic layer (the layer facing the extra-
cellular matrix), and high concentrations of amine-containing phospholipids in the layer facing the
cytoplasm of the plasma membrane, for example.

In addition to lipids, membranes are also composed of proteins. Membrane proteins are either
classified as integral membrane proteins, if they penetrate or are anchored in the bilayer, or as
peripheral membrane proteins, if they are just associated with the surface of the bilayer. Integral
membrane proteins are difficult to remove from membranes, usually requiring disruption of the
lipid bilayer (e.g., with detergents), in order to be released. Peripheral proteins are easier to remove
from membranes, as they are generally held in place by protein-protein interactions. Integral
membrane proteins can penetrate the bilayer completely a single time (single-pass proteins) or
multiple times (multi-pass proteins). They can also be anchored in the membrane through covalent
attachments to lipid molecules in the bilayer.

1 Structure and Function of the Nucleus and Cell Organelles 5



A number of the membrane lipids and proteins are glycosylated. Glycosylation of membrane
components takes place in the ER and Golgi apparatus. Because glycosylation occurs exclusively
within the interior (or lumen) of these organelles, the sugar groups of glycoproteins and glycolipids
all face toward the luminal surface of membranes of organelles, and the extracellular matrix (ECM)
side of the plasma membrane. Glycosylation of membrane lipids and proteins is thought to help
protect membranes, and, in the case of the plasma membrane, to help identify the cell and to assist
in the adhesion of cells to the ECM.

Membrane lipids and proteins carry out a number of functions. In addition to serving as the
structural framework of the membrane, they mediate the functions of all membranes of the cell.
Membrane lipids can form specialized sub domains composed of specific lipid populations (lipid
rafts) that are associated with defined functions, and somemembrane lipids are intimately involved
in signal transduction events. Membrane proteins carry out a wide variety of functions, including
serving as membrane channels, carriers, and pumps; transducing cytoplasmic and extracellular
signals; targeting membranes to specific locations; and adhering membranes to each other and to
the ECM.

1.3 The Plasma Membrane

The plasma membrane encloses the cytoplasm of a cell and carries out multiple functions. It forms
both a barrier to and an interface with the cellular environment. The plasma membrane is a
selectively permeable barrier that, by regulating what enters and exits a cell, is a primary determi-
nant of the composition of the cytoplasm. The plasma membrane is associated with sensing
mechanisms that transduce environmental information into a cytoplasmic or nuclear response.
The plasma membrane is involved in cell-cell and cell-ECM attachments, and also contains
cell-specific molecules that help identify cells, thereby helping to establish the appropriate position
and arrangement of each cell in the body.

1.3.1 Barrier Functions

The hydrophobic nature of the central region of the lipid bilayer serves as a barrier to charged and
large hydrophilic molecules. Thus, the lipid bilayer is impermeable to small ions (e.g., Naþ, Kþ,
Cl�) and proteins. Only small, uncharged molecules (e.g., CO2, H2O), or molecules freely soluble in
lipid (e.g., steroid hormones, dioxin) are able to pass directly through the lipid bilayer. In this way
the plasma membrane is selectively permeable. However, materials can be transported into and out
of the cell by specific transport mechanisms carried out by the plasma membrane (see Transport
Functions, below). The carbohydrate moieties of glycolipids and glycoproteins contribute to the
membrane acting as barriers, impeding the access of molecules to the surface of the plasma
membrane, which can also protect the plasma membranes exposed to harsh environments (e.g.,
the stomach and intestinal lumen).

1.3.2 Transport Functions

Because the lipid bilayer is impermeable to most types of organic molecules, the cell must possess
mechanisms to move materials between the cytoplasm and the external environment. Two
approaches are used by the cell to move materials into and out of the cytoplasm: (i) transport
through the membrane and (ii) transport involving membrane flow.

6 J. Holy and E. Perkins



1.3.2.1 Transport Through the Plasma Membrane

Transport through membranes is mediated by integral membrane proteins, which help conduct
materials past the hydrophobic lipid bilayer in a number of ways. Integral membrane proteins can
form channels by associating to form pore-like structures in the membrane. Such pores allow for
diffusion of molecules small enough to fit through them. This type of transport allows for the flow
of molecules down their concentration gradient and an expenditure of energy is not needed if the
channel is open. Thus, molecules can move through protein channels by passive diffusion. Exam-
ples include ion channels that allow for the passage of ions such as Naþ and Kþ, and the connexons
in gap junctions, which allow for the passage of molecules <1000 daltons through the plasma
membrane. Whether these channels are open or closed is tightly regulated in order to prevent the
constant leakage of small molecules into or out of the cell.

Integral membrane proteins can also act as carriers that bind to specific molecules and help them
traverse the lipid bilayer. Binding of the appropriate molecule to carrier proteins results in a
conformational change in the structure of the carrier protein, such that the ligand is conveyed
across the membrane. Release of the ligand results in reversion of the carrier to its original state,
ready to bind another ligand. This type of transport is driven by the concentration gradient of the
ligand, and does not require the expenditure of energy by the cell. An example of transport by this
method of facilitated diffusion includes glucose transporters in the basolateral membranes of
intestinal epithelial cells.

Cells can also transport molecules against their concentration gradients, and this type of
transport is carried out by integral membrane proteins that act as pumps and requires expendi-
ture of energy. This is referred to as active transport and it is an essential process in living cells.
Examples include a number of different ion pumps, which keep the cytoplasm relatively low in
Naþ and high in Kþ. Ion pumps are vital elements of the plasma membrane, and it has been
estimated that as much as one-third or more of the energy consumed by a living cell is used to
actively transport Naþ out of the cell. The concentration gradients of certain ions established by
these membrane pumps, can themselves serve as motive forces for other transport mechanisms. For
example, in addition to moving out of a cell by facilitated diffusion, glucose is actively transported
into cells by integral membrane proteins that bind both glucose and Naþ. Because these transpor-
ters bind both Naþ and glucose, the high concentration of Naþ outside the cell relative to the
cytoplasm drives the movement of both Naþ and glucose into the cell, against the concentration
gradient of glucose.

Acquisition of glucose from the small intestine represents an example of how active transport
can be coupled with facilitated diffusion tomovemolecules past the epithelia. The apical membrane
of intestinal epithelial cells contain Naþ coupled active transporters, which moves glucose against
its concentration gradient to accumulate in the cytoplasm. Consequently, the concentration of
glucose is higher in the cytoplasm of these cells than in the extracellular spaces underlying them, and
carrier proteins in the basolateral membranes of these cells allow for the facilitated diffusion of
glucose out of the cell (down its concentration gradient) and into the circulation. It can be seen from
this example that directional transport of molecules past epithelial cells require the integral
membrane transport proteins to occupy specific locations within the plasma membrane (i.e., either
the apical or basolateral membrane). How transporters are organized within the plasmamembrane
is determined by specific targeting mechanisms acting in conjunction with cell junctions and the
cytoskeleton.

1.3.2.2 Transport Involving Membrane Flow

In addition to the movement of materials through membrane channels, carriers, and pumps, the
plasma membrane mediates the transport of material into and out of cells by membrane flow.
Internalization of extracellular material can occur by entrapment in membrane-bound vesicles that
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pinch off from the plasma membrane and are transported into the cytoplasm for processing. This
process, called endocytosis, can be subdivided into a number of different categories based on the
mechanics of how the invagination and formation of vesicles occurs at the plasma membrane, and
includes the formation of clathrin-coated vesicles from coated pits, and the formation of noncla-
thrin-coated vesicles derived from structures called caveoli.

Clathrin-coated vesicles comprise a major pathway in which specific extracellular molecules are
recognized and bound to the plasma membrane prior to internalization. This process involves
membrane receptors, which are integral membrane proteins of the plasma membrane that recog-
nize specific ligands. One of the best understood examples of this process involves how cholesterol
is taken up by cells. In the circulation, cholesterol is packaged in low-density lipoprotein (LDL)
particles, which are small particles, composed of protein and cholesterol esters. Specific LDL
receptors are present in the plasma membrane that bind and anchor LDL particles to the surface
of the cell. LDL bound receptors form clusters in the membrane that recruit adaptor proteins and
the cytoplasmic protein clathrin. Clathrin molecules assemble underneath the receptor clusters to
form a basketwork that deforms the plasma membrane into an invagination referred to as a coated
pit. Continued assembly of the clathrin protein results in the continued invagination, and finally
pinching off, and release of a membrane-bound coated vesicle containing LDL receptor and LDL
cargo into the cytoplasm. Once the vesicle is formed, the clathrin coating is disassembled and the
clathrin recycled to the plasma membrane to assist in the formation of more coated pits. The
clathrin-free vesicle then fuses with a membrane-bound compartment called an endosome, which,
in addition to receiving vesicles from the plasma membrane, also receives lysosomal vesicles filled
with hydrolytic enzymes packaged by the Golgi apparatus. Membrane-bound structures contain-
ing a mixture of LDL particles and acid hydrolases then arise from the endosome to form mature
lysosomes. During this process, LDL dissociates from the LDL receptor in the acidic endosomal
environment, and vesicles enriched with LDL receptors pinch off from the endosome to be recycled
back to the plasma membrane. Digestion of LDL particles occurs in the lysosome, followed by the
release of cholesterol from the lysosome into the cytoplasm of the cell. This process of receptor-
mediated endocytosis is used to concentrate and internalize a number of extracellular molecules.
Other common features of receptor-mediated endocytosis include the recycling of both clathrin and
receptor; the fusion of internalized vesicles with endosomes; and the formation of lysosomes, which
are digestive organelles for materials internalized by this route.

A second endocytotic pathway exists that does not involve clathrin, and may bypass delivery
of internalized material to lysosomes. In this pathway, which appears to involve both receptor-
mediated endocytosis as well as the non-specific internalization of extracellular fluid, vesicles are
created from non-clathrin coated invaginated membrane regions called caveoli. Caveoli may
form from specialized membrane domains with distinct phospholipid contents called lipid rafts.
Invagination and formation of vesicles in these areas does not require clathrin, and the vesicles
formed may be transported directly to the Golgi apparatus or ER instead of the endosomes and
lysosomes. Presumably this route is for material that would be damaged or degraded by
exposure to lysosomal enzymes. Many cells display a constitutive formation and internalization
of these non-coated vesicles in a process sometimes referred to as pinocytosis, or cell drinking
(Fig. 1.3J).

1.3.3 Signaling Functions

The plasma membrane serves as the interface with the cell environment and possesses a number of
mechanisms to detect and transduce specific extracellular signals. Integral membrane proteins that
serve as signal receptors can be categorized into three broad classes: ion channel-linked receptors,
G-protein-linked receptors, and enzyme-linked receptors.
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Ion channel-linked receptors undergo conformational changes upon ligand binding, thereby
opening a membrane channel permeable to small ions. Examples of this type of receptors include
some types of neurotransmitter receptors. G-protein-linked receptors are integral membrane
proteins that, upon ligand binding, activate small GTP-binding proteins (G-proteins), which in
turn activate other effector molecules, including ion channel-linked receptors and various enzymes
(e.g., adenylate cyclase). Thus, G-protein-linked receptor activity can lead to ion transients across

Fig. 1.3 Micrographs illustrating the structural features of various cell organelles. (A) shows epithelial cells from a
tadpole (Rana pipiens) tail; (B), (H) (I), and (J) show endocrine cells from a rat pituitary gland; (C) and (G) show
secretory cells from digenetic trematodes (Halipegus eccentricus and Quinqueserialis quinqueserialis, respectively),
and (D), (E), and (F) show melanoma cells in culture. (A) Low-power electron micrograph of an epidermal cell,
showing a number of cell-cell and cell-extracellular matrix junctions. These cells elaborate numerous desmosomes
(D) and hemidesmosomes (H), and the cytoplasm is filled with prominent bundles of intermediate filaments, which
interconnect these junctions. (B)Cytoplasm of an endocrine cell, showing smooth endoplasmic reticulum (SER) and
flattened cisternae of the Golgi apparatus (G). (C)A dense array of RER from a secretory cell; note the high level of
organization in the parallel alignment of cisternae. Attached ribosomes appear as small granular bodies. (D) Light
micrograph of a thin extension of cytoplasm, through which mitochondria (arrow) can be seen. Differential
interference microscopy. (E) Same field of view shown in D, but photographed with fluorescence optics in order
to display the elongated mitochondria, which had been labeled with the fluorescent probe tetramethylrhodamine
methyl ester. (F) Double-exposure (E superimposed on D), showing mitochondrial organization in this region of
cytoplasm. The arrows indicate the same mitochondrion in D-F. (G) Electron micrograph of a cluster of spherical-
to-slightly elongated mitochondria. Their striped appearance is due to the invagination of the inner mitochondrial
membrane, which forms the cristae (C). (H) Endocrine cell cytoplasm, showing two small lysosomes (L), secretory
vesicles (SV), and the centriole pair (CT) of a centrosome. In this section, pericentriolar material and attached
microtubules are not clearly displayed. (i) Exocytosis in an endocrine cell. This micrograph shows the periphery of
the cell, and the deep concavity of the plasma membrane (*) indicates the site where a secretory vesicle has recently
undergone exocytosis. (J) Pinocytosis in an endocrine cell. The plasma membrane of this cell displays numerous
small, smooth invaginations (arrows), characteristic of non-clathrin mediated internalization of material (Copies of
figures including color copies, where applicable, are available in the accompanying CD)
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the plasma membrane, or the generation of second messengers such as cAMP. Examples of
G-protein-linked receptors include polypeptide-hormone receptors. The third class of membrane-
associated signaling molecules is enzyme-linked receptors, which upon ligand binding activate an
enzyme activity, which is usually either a protein kinase or guanalyl cyclase. Examples of enzyme-
linked receptors are growth factor receptors, whose tyrosine kinase activity is an important
regulator of the cell cycle.

In addition to the membrane receptors involved in signal transduction events, cells also possess
other types of receptors not associated with the plasma membrane. For example, steroid hormones
(e.g., estrogen and testosterone) are lipid soluble and pass directly through the lipid bilayer without
the need to bind to proteins exposed on the external face of the plasma membrane. Receptors for
these types of signaling molecules are found in the cytoplasm and nucleus.

1.3.4 Cell Junctions

Specializations of the plasma membrane also help cells adhere to each other and to the ECM, form
barriers against the diffusion of material between cells of an epithelium, and form channels linking
adjacent cells. All of these functions are carried out by cell junctions.

1.3.4.1 Cell-Cell Barrier Junctions

It is important for the body to prevent the passage of material between epithelial cells. For example,
amajor function of intestinal and bladder epithelia is to prevent the direct passage of the contents of
the intestine and bladder into the body cavity (Fig. 1.2a). The ability of epithelia to form effective
barriers between different compartments is due to the presence of special cell-cell junctions called
occluding or tight junctions. Tight junctions are composed of linear arrays of the integral mem-
brane proteins occludin. Occludin binds tightly to itself, and a barrier between cells is formed as the
strands of occludin encircling the apical part of adjacent epithelial cells line up and bind to each
other. Epithelia that form strong barriers to intercellular leakage contain many tight junction
strands, whereas more leaky epithelia generally display fewer strands. Occludin molecules are
associated with other cytoplasmic proteins that appear to furnish some linkages with the cytoske-
leton, although extensive cytoskeletal interactions, such as those associated with adhesive-type cell
junctions (see below), are not readily apparent in tight junctions.

1.3.4.2 Cell-Cell Adhesive Junctions

These specializations of the plasma membrane allow cells in an epithelium to bind tightly to each
other, and can be subdivided into two categories, adherens junctions and desmosomes based on the
type of cytoskeletal system associated with the junctions. Adherens type cell-cell junctions form
belt-like arrays encircling the apical part of epithelial cells and are associated with a thick band of
microfilament. Zonulae adherens are comprised of integral membrane proteins belonging to the
cadherin family of proteins, a number of linking proteins (e.g., vinculin, catenin) that connect
cadherins to microfilaments, and associated microfilaments. Cadherins from adjacent cells bind
tightly to each other in the presence of Caþþ, and Caþþ chelating agents promote cell dissociation.
Interestingly, b-catenin is able to function as an adherens plaque protein, and as a transcription
factor in the nucleus. Thus, b-catenin may serve as a sensing device that translates changes in cell-
cell adhesion into changes in gene activity.

Desmosomes are punctate cell-cell adhesive junctions that are associated with the intermediate
filament (IF) cytoskeleton (Figs. 1.2b and 1.3a). Like adherens junctions, they are also composed of
cadherin integral membrane proteins and proteins that link cadherins to IFs. One type of desmo-
somal cadherin is a protein called desmoglein, and the major linking protein of desmosomes is a
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member of the plakin family of proteins called desmoplakin. Desmosomal intermediate filaments
form dense bundles that interconnect desmosomal plaques, thus strengthening cell-cell attachment
and contributing to the mechanical integrity of the epithelium.

1.3.4.3 Cell-Cell Communicating Junctions

Two types of cell-cell junctions, gap junctions and synapses, constitute specializations of the plasma
membrane that allow cells to communicate with each other. Gap junctions are punctate structures
that electrically couple cells through channels that provide for direct cytoplasmic communication
between adjacent cells. Gap junctions are made up of clusters of pore-like structures, called
connexons that span the lipid bilayer and allow for the passage of molecules smaller than 1000
daltons. Connexons, made up of hexameric arrays of the integral membrane protein connexin, line
up between adjacent cells to form continuous, tightly sealed channels from cell to cell. These
connections maintain a barrier against leakage of material to or from the extracellular compart-
ment, but ions and small molecules can diffuse from cell-to-cell to permit electrical coupling.
Electrical coupling of gap junctions performs vital functions in propagating the contractions of
cardiac muscle. The conformation of connexons is regulated by Caþþ such that they remain open in
low concentrations of Caþþ, but close down in the presence of Caþþ.

In addition to the direct coupling of cells at gap junctions, neurons also communicate with each
other at synapses. At synapses, cells release neurotransmitters in quantal fashion through the
regulated exocytosis of membrane-bound vesicles. Neurotransmitters rapidly diffuse across a
narrow extracellular space to bind to specific receptors on the plasma membrane of the adjacent
cell. These receptors are either ion channels or, in some cases, G-protein-linked receptors. When
stimulated by a neurotransmitter, the ion channels open, allowing Naþ to enter the cell by diffusing
down its concentration gradient, thereby depolarizing the plasma membrane. G-protein-linked
receptors that bind neurotransmitters release activated G-proteins that may subsequently activate
and open other ion channels. The depolarization of the plasma membrane is conducted down the
cell body of the stimulated cell, and can trigger the release of neurotransmitters at synaptic
junctions between the stimulated cell and other adjacent cells. In this way, signaling activity is
propagated between cells connected by synapses.

1.3.4.4 Cell-ECM Adhesive Junctions

Cells elaborate two types of cell-ECM junctions that assist in their adherence to the ECM.
Hemidesmosomes anchor epithelial cells to underlying connective tissue and are associated with
IF cytoskeletal fibers, whereas focal contacts can be formed by many types of cells and involve
microfilament-associated linkages with the ECM. Hemidesmosomes resemble half-desmosomes
(Fig. 13a): integrins form the integral membrane component and are linked to IFs by members of
the plakin family of proteins. Integrins are also the integral membrane proteins of focal contacts
and are connected to bundles of microfilaments by vinculin, talin, and other linking proteins. Focal
contacts are associated with protein kinases, called focal adhesion kinases (FAKs). FAKs are
thought to help transmit the status of cell-ECM linkage at focal contacts to the cytoplasm and
nucleus. Normal (non-cancerous) cells must usually be in contact with a substrate to divide, and
FAKs are involved in relaying contact information to the regulatory elements of the cell cycle.

1.3.5 Cell Protection and Cell Identity

Many proteins and lipids of the plasma membrane possess covalently linked sugar groups. These
sugar groups are asymmetrically distributed and are present exclusively on the ECM side of the
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membrane. Plasma membrane glycoproteins and glycolipids serve important roles in both protect-
ing the membrane and in identifying specific cell types. Epithelial cells lining the small intestine
elaborate a thick glycocalyx that helps to protect them against the harsh digestive conditions of the
intestinal lumen. Protruding sugar groups may help protect the membrane components by limiting
access of hydrolytic enzymes to the surface of the membrane. Examples of cell recognition
processes involving glycoproteins and glycolipids include the patterns of antigens responsible for
blood groupings. Another example involves the initial adhesion of neutrophils to endothelial cells
in areas of inflammation. During inflammation, endothelial cells express the integral membrane
protein P-selectin, which possesses a lectin domain that recognizes a four sugar group (N-acet-
ylglucosamine, galactose, fucose, and sialic acid) present on glycoproteins and glycolipids of
neutrophils. Neutrophils adhere to endothelial cells expressing P-selectin, which facilitates their
subsequent migration past the capillary bed to reach the sites of inflammation.

1.4 Endoplasmic Reticulum

The endoplasmic reticulum (ER) is a prominent organelle in most cells, and its total membrane area
can constitute more than half of all the membrane of a cell. ER membranes delimit enclosed spaces
that vary in form from flattened sheets, or cisternae, to branching tubules or distended sacs; the
total enclosed luminal space can occupy 10% or more of the cell volume. A number of distinct
functions are carried out by the ER. The ER is the primary site of synthesis of membrane lipids and
integral membrane proteins for all membranous organelles (ER, Golgi, lysosomes, endosomes,
secretory vesicles, and plasma membrane) except mitochondria and peroxisomes. It is also the site
of production of secreted proteins and luminal proteins of ER, Golgi, and lysosomes. In addition,
the ER functions in lipid synthesis, detoxification and Caþþ regulation.

ER can be categorized as either rough (RER) or smooth (SER). RER is so designated due to the
presence of numerous ribosomes bound with the cytoplasmic surface of the cisternal membranes
(Fig. 1.3c), whereas SER lacks associated ribosomes (Fig. 1.3b). These different forms of ER are
specialized for different functions; RER is the site where integral, luminal, and secretory proteins
are synthesized, whereas SER is the major site of detoxification and lipid synthesis.

1.4.1 Protein Synthesis

Protein synthesis takes place on ribosomes, which are either present freely in the cytoplasm, or
attached to membranes of the ER (forming RER). Cytoplasmic proteins (e.g., cytoskeletal pro-
teins) are synthesized by free ribosomes, whereas proteins associated with membranes (including
the plasma membrane) or the luminal compartments of membrane-bound organelles, as well as
proteins destined for secretion, are synthesized by RER. The lipid components of membranes are
also made by the ER, and both protein and lipid are delivered to the plasma membrane and most
organelles by membrane flow involving transport and fusion of membrane-bound vesicles between
ER, the Golgi apparatus, and other target organelles. Exceptions to this pattern of membrane
biogenesis and renewal include mitochondria and peroxisomes. Interestingly, most proteins of
mitochondria, and all peroxisomal proteins, are made by free ribosomes, and subsequently deliv-
ered to these organelles via transport mechanisms that move individual proteins into or past their
membranes. Membrane lipids are delivered to these organelles by transport proteins that extract
lipid from ER membranes and insert them in the membranes of mitochondria and peroxisomes.

Whether ribosomes remain free in the cytoplasm or are bound to ER is determined by the amino
acid sequence of the polypeptide chain as it emerges from the ribosome. ER-associated proteins
possess a signal sequence that functions in docking the polypeptide to the membranes of the ER.
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The signal sequence is recognized and bound by a signal recognition particle, or SRP. The SRP in
turn binds to a SRP receptor in the membrane of the ER. A protein translocator apparatus, which
forms a pore in the ER membrane through which growing polypeptide chains can pass, also
associates with the SRP and SRP receptor, and receives the protein as translation proceeds.
Thus, proteins with signal sequences are injected directly into the membrane of the ER as they
are synthesized. The signal sequence, which is hydrophobic, remains inserted into the lipid bilayer
while the rest of the protein spools past as it elongates. The relative orientation of the signal
sequence influences whether theN- or C-terminus of the polypeptide is threaded into the ER lumen.
Soluble luminal proteins spool all the way through the bilayer, and a signal peptidase then clips the
protein at the signal sequence, liberating the protein into the lumen. Single- and multi-pass
membrane proteins are thought to achieve their conformations by internal stop-transfer and
start-transfer sequences, which interact with the bilayer to either promote the passage of the
growing polypeptide chain through the bilayer (start-transfer sequences), or halt the transmem-
brane passage (stop-transfer sequences). Multiple start- and stop-transfer sequences therefore can
result in a polypeptide chain that doubles back and forth to penetrate the bilayer at multiple points,
forming loops in both the cytoplasm and ER lumen.

Because protein function reflects the three-dimensional shape, the polypeptide chain as it folds
upon itself adopts a thermodynamically favorable conformation. Protein synthesis in the ER is
associated with a robust quality control system that monitors the presence of proteins that fold
incorrectly during their production and maturation. Chaperone proteins are proteins whose func-
tion is to help newly synthesized proteins fold correctly to adopt their appropriate conformation.
Should errors in folding still occur, a number of enzymes function to detect and retain misfolded
proteins in the ER, so that subsequent attempts at re-folding can bemade. Ultimately, proteins that
remain misfolded are exported from the ER and marked for destruction by the enzymatic addition
of ubiquitin groups. Proteins with attached ubiquitin molecules are recognized by proteosomes –
complexes of proteolytic enzymes that recognize, hydrolyze, and destroy ubiquinated proteins.

A number of post-translational modifications of proteins occur in the ER, as well as in the Golgi
apparatus. Disulfide bonds form, and many proteins are glycosylated, or may have glycolipid
anchors added. Glycosylation is carried out by the initial assembly of sugars into polymeric
structures attached to the membrane lipid dolichol. The assembled carbohyhdrate group is then
transferred intact from dolichol to the protein molecule. The glycoprotein may be processed in the
ER by trimming of some sugars, and addition of others. Further processing of glycoproteins, and
the formation of glycolipids, are the major functions of the Golgi apparatus.

1.4.2 Lipid Synthesis

In addition to the synthesis of proteins for membranes, lysosomes, and secretory vesicles, the ER is
also responsible for the synthesis of most membrane lipids for all organelles, including mitochon-
dria and peroxisomes. Enzymes involved in lipid synthesis are embedded in the membrane of the
ER, with their active sites facing the cytoplasm. Fatty acids are added to the glycerol phosphate to
form phosphatidic acid, which then receives various head groups. Phosphatidylcholine, phospha-
tidylserine, and phosphatidylethanolamine are formed in this way and initially added to the
cytoplasmic leaflet of the lipid bilayer. Phospholipid translocators (flippases and scrambleases)
are present in the membrane, and transfer phospholipids between each leaflet of the bilayer.
Scrambleases do not exhibit substrate specificity, and help keep the total numbers of phospholipid
molecules approximately equal between the two layers. In contrast, some flippases preferentially
transfer choline-containing phospholipids from the cytoplasmic half to the luminal half of the lipid
bilayer, thereby promoting membrane asymmetry in the distribution of these lipids. Sphingomyelin
synthesis is more complex; serine is first attached to fatty acids to form ceramide, which is exported
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to the Golgi apparatus, where phosphocholine head groups are added. Mitochondria and peroxi-
somes appear to receive their membrane lipid from the ER through the activity of phospholipid
exchange proteins, which transfer phospholipids between membrane systems by extraction and
insertion of individual lipid molecules within bilayers. In addition to membrane lipid synthesis, the
ER plays important roles in other aspects of lipid metabolism. For example, steroid hormones are
synthesized from the cholesterol in the SER.

1.4.3 Detoxification

Harmful substances that are relatively insoluble are difficult to clear from the cell. Such substances
can occur either as environmental contaminants or as products of metabolism. SER contains a
variety of enzymes that are able to process insoluble toxicants to make them more water soluble and
amenable for excretion. The best-studied detoxification enzymes are the members of the cytochrome
P450 family of enzymes. Liver hepatocytes are among the most active cells involved in detoxification
reactions, and contain large amounts of SER to house the P450 enzymes. The quantity of SERwithin
a cell can fluctuate in response to different levels of exposure to toxic compounds.

1.4.4 Caþþ Regulation

The ER membrane contains Caþþ-ATPases that actively transport cytoplasmic Caþþ into the ER
lumen. This activity keeps cytoplasmic Caþþ levels very low, which is necessary to allow Caþþ to
effectively function as a signaling molecule. In electrically excitable cells, depolarization of the
plasma membrane promotes influx of Caþþ from outside the cell; in non-excitable cells, however,
most of the Caþþ released into the cytoplasm comes from the ER. ER membranes contain Caþþ

release channels that are activated by inositol triphosphate (IP3), a signaling molecule released by
the activation of certain G-protein-linked receptor proteins at the plasma membrane. The contrac-
tion of muscle cells is triggered by Caþþ, and these cells possess an extensive and specialized SER
system (the sarcoplasmic reticulum) that contains a second type of Caþþ-release channel in the SER
membrane. After release from the ER, Caþþ concentrations are lowered in the cytoplasm by the
activity of plasma membrane and ER pumps.

1.5 Golgi Apparatus

TheGolgi apparatus functions in part as the ‘post office’ of a cell, packaging and directing different
types of cargo from the ER to different organelles and the plasma membrane. In addition to
packaging and targeting membrane-associated proteins and lipids, as well as secreted proteins, to
their appropriate destinations, the Golgi apparatus modifies certain proteins and lipids received
from the ER. In addition, lipid biosynthesis also occurs in the Golgi membranes. Glycolipids are
formed in the Golgi by the addition of oligosaccharide chains to ceramide, and processing of
glycoproteins continues in the Golgi.

The Golgi apparatus is made up of a set of flattened, membrane-bound cisternae and associated
tubulovesicular elements and membrane-bound vesicles in the process of being transported
between ER, Golgi, and other locations (Fig. 1.3b). The stacks of Golgi cisternae are biochemically
distinct, and the entire stack is polarized, so that a cis, or entry face, and a trans, or exit face, exist.
The cis face lies adjacent to ER and is the site of vesicular traffic back and forth between the ER and
Golgi. The trans face is the site of formation of a number of types of vesicles, which convey material
to the plasma membrane, produce secretory vesicles, and form lysosomes. Integral membrane
proteins, membrane lipids, and soluble cisternal protein formed by the ER traverse the Golgi and
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are targeted to their appropriate destinations by this organelle. Three major routes of export from
the Golgi occur: (i) constitutive delivery of membrane-bound vesicles to the plasma membrane; (ii)
formation of secretory vesicles whose exocytosis is regulated; and (iii) formation of lysosomes.
Specific targeting signals are associated with the formation of lysosomal vesicles and secretory
vesicles; however, the pathway from the Golgi apparatus to the plasma membrane appears to be
largely constitutive and unregulated, forming a default pathway.

Proteins destined to be secreted in a regulated manner (e.g., release of hormones from endocrine
cells) are concentrated and packaged in large membrane-bound vesicles in the trans Golgi. These
secretory vesicles are stored in the cytoplasm until signals to fuse with the plasma membrane are
received, thereby resulting in the liberation of their contents outside the cell. Targeting mechanisms
exist that direct secretory vesicles to the appropriate cellular location for release. For example, some
secretory vesicles are released from the apical plasma membranes of epithelial cells, whereas others
fuse with basolateral membranes.

Proteins destined for lysosomes are tagged with mannose-6-phosphate (M6P) groups in the
Golgi. M6P receptors are present in Golgi membranes, and vesicles containing lysosomal proteins
bound to M6P receptors bud off from the Golgi and fuse with endosomes to form mature
lysosomes. During this process, the M6P receptors are recycled for repeated use by vesicular
trafficking from endosome to Golgi apparatus.

1.6 Lysosomes

Lysosomes (Fig. 1.3h) are the digestive organelles of the cell and are filled with acid hydrolases that
are most active at a pH of about 5. Lysosomal vesicles from the Golgi apparatus fuse with
endosomes that have received materials from endocytotic vesicles. Endosomes have a moderately
acidic pH (about 6) that promote dissociation of ligands from the internalized plasma membrane
receptors as well as dissociation of acid hydrolases fromM6P receptors. Both types of receptors are
recycled by being routed back to the plasma membrane and the Golgi apparatus in membranous
vesicles that are pinched off from endosomes. The endosome then matures to form a lysosome by
condensing into a spherical or an irregular membrane-bound structure. Proton pumps in the
membrane of the maturing lysosome lower the pH inside the organelle to maximally activate the
acid proteases to digest the internalized material. Other transporters exist in the lysosomal mem-
brane to allow digested organic molecules to enter the cytoplasm for use by the cell.

In addition to the confluence of lysosomal and endocytotic vesicles at endosomes, materials can
be targeted for lysosomal degradation by at least two other mechanisms. Neutrophils and macro-
phages are cells specialized for the engulfment of bacteria and other large particulate material,
which are then internalized by phagocytosis. Lysosomes fuse with these large phagocytotic vesicles
to deliver their hydrolases, resulting in the formation of phagosomes. Lysosomes also contribute to
the breakdown of cellular material that is not needed or should be turned over. Excess, old, or
malfunctioning organelles can be targeted for destruction by being enveloped by cisternae of ER,
which then fuse with lysosomal vesicles to form autophagosomes. Recently, evidence has been
gathered suggesting that a fourth route to lysosomes may exist that involves the transport of single
cytoplasmic molecules through the lysosomal membrane by specific transport proteins.

1.7 Membrane Flow

The synthesis, maturation, and ultimate localization of secreted, membrane, and lysosomal pro-
teins, as well as membrane lipid, is reflected in a complex but effective and elegant flow of
membranes and organic molecules between the various organelles and cytoplasmic compartments
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of eukaryotic cells. With the exception of mitochondria and peroxisomes, the membranes of all

organelles, vesicles, and the plasma membrane are initially produced by the ER, modified and

packaged by the ER andGolgi, then targeted and delivered via the trafficking of membrane-bound

vesicles. A common theme in this vesicular trafficking is ‘priming’ of the donor membrane by the

binding of small GTPase proteins, which then recruit proteins that form a polymeric coating on the

membrane, which causes the invagination and leads to vesicle formation. The coat proteins usually

dissociate from the vesicle shortly after formation, and other membrane-associated proteins

mediate the recognition, binding, and fusion of vesicles with the target membranes. The three

best understood coat proteins involved in vesicle formation and trafficking include COPI (coat

protein I), COPII, and clathrin (described above under Transport Involving Membrane Flow).

Trafficking between the ER andGolgi is mediated by COPI and COPII, which either direct vesicles

from the ER to the Golgi (COPII) or direct vesicles from the Golgi to the ER (COPI). For many

ER-resident proteins, there appears to be little restriction on their flow from the ER to the Golgi.

However, these ER-resident proteins contain the amino acid sequences KDEL and KKXX (where

X is any amino acid) which mark luminal and integral membrane proteins respectively, for return

transport from the Golgi to the ER in COPI-coated vesicles. Thus, proteins with these sequences

are essentially restricted to the ER by being rapidly returned from the Golgi apparatus. The exact

mechanisms of how membrane flows through the Golgi apparatus is still a matter of some debate,

but at least part of the flow appears to be carried out by membrane-bound vesicles and COPI. The

flow of membrane from Golgi to the plasma membrane includes a constitutive, default pathway

that operates in the absence of specific targeting signals. However, delivery of material to secretory

vesicles and lysosomes (Figs. 1.3h and I) requires defined targeting information. Interestingly,

clathrin is involved in the formation of lysosomal and secretory vesicles from the trans Golgi, but

not in the constitutive formation of vesicles destined for the plasma membrane. In addition to the

ER andGolgi apparatus, bi-directional membrane flow also occurs between plasmamembrane and

endosome, and plasmamembrane andGolgi. Clathrin-coated endocytotic vesicles from the plasma

membrane travel inward to fuse with endosomes, and the receptors subsequently return to the

plasma membrane via small vesicles formed from endosomal membranes. Endocytotic vesicles

formed from caveolae may bypass lysosomes and fuse directly with Golgi or ER. In general, the

outward pathway of membrane flow from ER-to Golgi-to plasma membrane is balanced by the

inward flow from plasma membrane-to endosome-to lysosome, and plasma membrane-to

Golgi/ER. Both outward and inward trafficking, fusion of vesicles with the appropriate target

membrane is carried out through the functioning of SNARE proteins. SNAREs are transmem-

brane proteins present in both vesicle (v-SNARE) and target (t-SNARE) membranes. The cyto-

plasmic extensions of v- and t-SNARES recognize and bind each other, and promote the fusion of

the vesicle and target membranes.

1.8 Mitochondria

The primary function of mitochondria is to convert energy sources into forms that can be used to

drive cellular reactions. Not surprisingly, they comprise a significant volume of the cell, normally

about 20% of the total cell mass. Mitochondria replicate by a process involving growth and fission

of pre-existing mitochondria. Interestingly, mitochondria contain their own DNA in the form of a

circular chromosome that resembles a prokaryotic chromosome. Based on this and other lines of

evidence, it appears that mitochondria arose by the prokaryotic colonization of eukaryotic cells,

early in their evolution. Although mitochondria contain DNA and are able to carry out transcrip-

tion and translation, they only produce about 5%of their protein, the rest being encoded by nuclear

genes, synthesized by cytoplasmic ribosomes, and subsequently transported and inserted into
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mitochondria. They also appear to obtain most of their membrane lipid from the ER, mediated by
phospholipid transfer proteins that shuttle these molecules from the ER to mitochondria.

Cells use ATP as their primary energy source, and the main function of mitochondria is the
production of ATP from food sources. Energy is obtained from the oxidation of food material by
the sequential transfer of electrons to lower energy states; the released energy from this process is
used to drive membrane-bound proton pumps, thus establishing an electrochemical gradient.
Protons are then allowed to flow back across the membrane down their concentration gradient,
and the released energy is used to drive the synthesis of ATP from ADP and Pi. The electrons are
ultimately transferred to O2, and the entire process is therefore referred to as oxidative
phosphorylation.

1.8.1 Mitochondrial Structure

Mitochondria are composed of two membranes that enclose distinct compartments. The outer
mitochondrial membrane is somewhat permeable to small molecular weight compounds (< 5000
daltons); conversely, the inner membrane contains a very high ratio of protein to lipid, and
movement of material past this membrane is tightly regulated. The space between the two mem-
branes is called the intermembrane space, and the compartment delimited by the inner membrane is
called the mitochondrial matrix. The inner membrane is folded into sheet- or tube-like invagina-
tions into the matrix, thus increasing its surface area (Fig. 1.3G). The increased surface area of this
membrane allows mitochondria to house greater numbers of electron transport systems and ATP
synthase complexes. The matrix is the site of conversion of pyruvate and fatty acids to acetyl CoA,
and the location of the citric acid cycle, where acetyl CoA is oxidized.

1.8.2 Chemiosmotic Generation of ATP

With respect to energy production, the pathways of carbohydrate and lipid metabolism converge in
the generation of acetyl CoA in the mitochondrial matrix. Carbohydrate is converted to glucose
6-phosphate, which, as a substrate for glycolysis, gives rise to two pyruvate molecules. Pyruvate is
transported to the mitochondrial matrix were it is converted to acetyl CoA by the pyruvate
dehydrogenase complex. Fatty acids are oxidized in the mitochondrial matrix, releasing acetyl
groups that are then linked to CoA. Acetyl CoA derived from carbohydrate and fatty acid
metabolism is fed into the citric acid cycle, resulting in the production of CO2 and NADH.
NADH carries electrons to the electron transport chain, which is located in the inner mitochondrial
membrane. The electron transport chain is complex, being composed of about 40 different proteins.
The actual transfer of electrons is carried out by a number of different heme groups linked to
various cytochromes, iron-sulfur centers-containing proteins, ubiquinone, copper atoms, and a
flavin. These are organized into three large enzyme complexes, with ubiquinone and cytochrome C
serving as carriers of electrons between the complexes. The three complexes are the NADH
dehydrogenase complex, the cytochrome b-c1 complex, and the cytochrome oxidase complex.
Electrons shuttled across these complexes move to progressively lower energy states, with the
released energy used to pumpHþ from the matrix to the intermembrane space. Then, Hþ is allowed
to flow down its concentration gradient (from the intermembrane space to the matrix), through the
ATP synthase complex. This is a large transmembrane complex of about 500,000 daltons that
contains multiple proteins, and constitutes about 15% of the total inner membrane protein. The
energy that is released is used to couple Pi to ADP tomake ATP. Finally, the electrons used to drive
the Hþ pumps are combined with O2 and Hþ. Thus, the generation of ATP from electron transport
in mitochondria by this chemiosmotic mechanism consumes O2 and produces water.
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1.8.3 Other Mitochondrial Functions

In addition to converting food energy into ATP, mitochondria are also involved in a number of
other functions, including Caþþ regulation and apoptotic signaling. Like the ER, mitochondria are
able to sequester Caþþ to help keep cytoplasmic levels low. In addition to producing ATP, the Hþ

gradient can be used to import Caþþ into the mitochondrial matrix. Caþþ is important in regulat-
ing the activity of certain mitochondrial enzymes. Deposits of calcium can be formed in mitochon-
dria in response to high cytoplasmic levels of Caþþ.

In addition to roles in ATP production and Caþþ homeostasis, mitochondria are centrally
involved in the regulation of programmed cell death, or apoptosis. Programmed cell death is a
normal and essential component of embryogenesis, where it helps to sculpt a number of morpho-
genetic events, such as digit formation andmaturation of neuronal circuitry patterns. Furthermore,
apoptosis is involved in the maintenance of tissues and organs by the orderly turnover of cells, and
in the removal of injured and damaged cells. A central mechanism by which apoptosis is carried out
involves the activation of the caspase family of cystine proteases in the cytoplasm of cells. Release
of cytochrome C by mitochondria can facilitate caspase activation, and involves the association of
this cytochrome with other molecules (e.g., APAF-1) and with pro-caspases to activate the caspase
cascade. Release of cytochrome C from mitochondria can occur in response to specific membrane
signaling events, as well as from cytoplasmic and nuclear damage. Thus, positive feedbackmechan-
isms exist between the plasma membrane, cytoplasmic, and nuclear signaling, where mitochondria
can function in an ‘‘amplification loop.’’ Among the triggers that can initiate apoptotic cell death is
cellular damage resulting from the generation of reactive oxygen species (ROS). ROS are toxic by-
products of the oxidative phosphorylation reactions carried out by mitochondria, and these
organelles thus appear to be quite susceptible to ROS-linked damage. It has been proposed that
a variety of age-related disorders, including some types of cancer, are fundamentally linked to
mitochondrial damage resulting from ROS.

A number of imaging techniques have demonstrated that mitochondria are highly dynamic
organelles, continuously undergoing fission and fusion in many types of cells. They can be viewed
as forming a network which is in a constant state of flux; what is an individual mitochondrion one
moment may fuse with, and become part of, an extended reticular array the next. Similarly, areas of
a continuous, branching, mitochondrial network can rapidly fragment to form a number of
individual mitochondria of different shapes and sizes (Figs. 1.3D-F). Intriguingly, there is increas-
ing evidence that the ability of mitochondria to undergo fusion and fission is linked to their
functional capacity. A number of studies have shown that inhibiting these processes limits the
ability of mitochondria to produce ATP andmaymake the cell more susceptible to the induction of
apoptosis.

1.9 Peroxisomes

Peroxisomes are membrane-bound vesicular organelles that have been classically understood to be
involved in lipid metabolism and a number of oxidative reactions of the cell. This contains high
concentrations of enzymes that are able to form H2O2 by the transfer of hydrogen atoms from
substrates to molecular oxygen. In addition, peroxisomes contain catalase, which breaks down
H2O2 to oxidize various substrates, including toxins. Like mitochondria, peroxisomes replicate by
fission and growth of pre-existing organelles. All the proteins and lipids of the peroxisome is made
in the cytoplasm, and subsequently imported into the peroxisomal membrane and lumen. Inter-
estingly, recent evidence suggests that peroxisomes are also involved in modulating the functioning
of signaling lipids that are involved in developmental events, including cell differentiation and
morphogenesis.
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1.10 The Cytoskeleton

The cytoskeleton of eukaryotic cells is composed of a complex system of proteinaceous filaments
and filamentous arrays that are present in both cytoplasm and nucleus. Three major cytoskeletal
systems are elaborated by cells, and include microfilaments, microtubules, and intermediate fila-
ments. These different cytoskeletal systems are biochemically and functionally distinct.

1.10.1 Microfilaments

Microfilaments are small solid filaments about 6 nm in diameter, composed of the 45 kDa globular
protein actin. Actin is one of the most abundant proteins in cells, composing up to 5% or more of
the total cell protein. Microfilaments help support and organize the plasma membrane and are
involved in cell motility and maintenance of cell shape, serving as the muscle of the cell.

A large number of actin-associated proteins mediate the functions of microfilaments, including
regulating actin polymerization (e.g., profilin, WASp, and ARP), cross-linking microfilaments to
form organized arrays (e.g., filamin, fimbrin, and villin), interacting with membrane proteins to
establish and maintain distinct membrane domains (e.g., vinculin, catenins, and Z0-1 of tight
junctions), and functioning as motor proteins (type I and II myosins) to carry out motility events.
Much of the actin in cells is present as soluble monomers (g-actin) bound to profilin. This interaction
inhibits the polymerization of actin monomers into filaments (f-actin). Signals from the plasma
membrane, mediated in large part by small GTP-binding proteins (e.g., rac, rho, and cdc42), activate
WASp and ARP proteins, which promote the dissociation of profilin from g-actin and seed the
growth of new microfilaments from the sides of pre-existing microfilaments. Microfilament poly-
merization is controlled by the addition of capping proteins to the end of the growing filaments, and
turnover of filaments occurs by the actions of microfilament cutting proteins such as gelsolin,
followed by depolymerization of f-actin to g-actin and association of the latter with profilin.

Although some cell movements and membrane activities appear to be driven by the polymeriza-
tion and depolymerization of actin, many other types of motility events require the interaction of
microfilaments with myosin motor molecules. Myosin functions as an actin-activated ATPase,
undergoing cycles of microfilament attachment and detachment with associated conformational
changes, resulting in power strokes. These events are linked to the binding, hydrolysis, and release
of ATP, Pi, and ADP. Myosin activity can slide microfilaments past each other, transport vesicles
and other cargo down microfilaments, and deform membranes that are linked to microfilaments.

A number of mutations are known that interfere with microfilament functioning.WASp protein
was discovered as the protein mutated in Wiscott-Aldrich syndrome, which results from a defi-
ciency in the ability of actin to polymerize. Dystrophin is a large linkingmolecule that connects sub-
membrane arrays of microfilaments to integral membrane proteins and ECM proteins of skeletal
muscle cells. Mutations in dystrophin that interfere with its ability to link microfilaments to the
plasma membrane weaken the plasmamembrane, causing the eventual death of the muscle cell and
giving rise to some forms of muscular dystrophy.

1.10.2 Microtubules

Microtubules are small proteinaceous tubes about 25 nm in diameter, composed of the protein
tubulin.Microtubules function to organize the cytoplasm andmediate intracellular motility events.
They are associated with motor proteins that interact with membrane-bound organelles and
vesicles to help determine their location and organization within the cytoplasm. They also carry
out crucial functions in cell division, forming the spindle apparatus that segregates replicated
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chromosomes among the daughter cells. Microtubules also support and power cilia and flagella,
which are highly motile appendages produced by ciliated epithelial cells and sperm.

Unlike microfilaments and intermediate filaments IFs (see below), microtubules are associated
with a distinct organizing center, called the centrosome orMTOC (microtubule-organizing center).
The centrosome is composed of a pair of centrioles (Fig. 1.3H) surrounded by an amorphous mass
of pericentriolar material. Centrioles themselves are short, barrel-like arrays of microtubules and
are associated with the ability of the centrosome to replicate. Pericentriolar material both nucleates
microtubule growth and anchors the ends of microtubules. Three types of tubulin genes are
expressed in eukaryotic cells, including a-, b-, and g-tubulin. Microbules are composed of hetero-
dimers of a- and b-tubulin, and g-tubulin is a component of the pericentriolar material that
participates in the nucleation of microtubule growth. Microtubules possess an intrinsic polarity
and are all oriented, so one end (the minus end) is anchored in the pericentriolar material, with the
free end (the plus end) extending into the cytoplasm. Microtubule polymerization and depolymer-
ization occurs at the plus end, and involves addition or removal of a-b heterodimers in a GTP/
GDP-controlled process. Tubulin heterodimers are GTP-binding proteins that also possess
GTPase activity. Heterodimers associated with GTP readily polymerize, whereas hydrolysis of
tubulin-bound GTP to GDP weakens the heterodimer interconnectivity and favors depolymeriza-
tion. Prior to assembly, heterodimers of a- and b-tubulin are associated with GTP; at some point
after polymerization, the tubulin-bound GTP is hydrolyzed to GDP. As long as the terminal
tubulin subunits at the plus end are associated with GTP, the microtubule will grow by the addition
of GTP-containing heterodimers. Occasionally, however, the GTPase activity catches up with a
growing end of the microtubule, hydrolyzing GTP to GDP in the terminal subunits. At this point,
the microtubule rapidly disassembles, shrinking in size back toward the centrosome. Depolymeriz-
ing microtubules can be rescued and re-grown if sufficiently high concentrations of GTP-contain-
ing tubulin heterodimers are present so that the GTP cap can be re-established. Because of these
events, most microtubules in the cell continuously oscillate between slow growth and rapid
depolymerization, a feature that has been called dynamic instability.

Like the microfilament cytoskeleton, the organization and functions of microtubules are regu-
lated and carried out by associated proteins. Microtubule-associated proteins are generally cate-
gorized as either structural proteins or motor proteins. Structural proteins include higher molecular
weight proteins called MAPs (microtubule-associated protein) and lower molecular weight tau
proteins. Structural MAPs and tau proteins are thought to help organize microtubule arrays in the
cytoplasm. Microtubule-associated motor proteins include dyneins and kinesins, both of which,
like myosin, undergo cycles of binding, conformational changes, and dissociation in an ATP-
dependent manner to move microtubules past each other, or to move cargo along microtubules.
Microtubule-mediated intracellular transport is carried out by multiple members of both the
dynein and kinesin family of proteins, but ciliary and flagellar motility selectively utilize dynein.
The microtubule bundle, or axoneme, supporting a cilium is anchored in a specialized centrosome
called a basal body. Unlike regular centrosomes, axoneme microtubules originate as direct exten-
sions from one of the centrioles in a basal body, and not from associated pericentriolar material.
Axonememicrotubules form circular arrays of doublets surrounding a central pair ofmicrotubules.
The outer microtubule doublets are associated with dynein, which spans to the adjacent micro-
tubule pairs. Dynein motor activity attempts to slide microtubule pairs past each other, which is
converted into a bending of the cilium because the bases of the microtubule pairs are attached to the
basal body and not free to slide. In this way, hydrolysis of ATP by dynein powers the rapid, whip-
like movements of cilia and flagellae in a microtubule-dependent manner. Other forms of micro-
tuble-mediated motility occur in the cytoplasm, where membrane-bound vesicles, organelles, and
other cargo associated with dynein or kinesin move along microtubules. Motor proteins exhibit a
directionality, which, combined with the fact that microtubules are polarized, allows for vectorial
transport of material within the cell. Dyneins move cargo towards the minus ends of microtubules,
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and kinesins generally move cargo towards the plus ends of microtubules (although minus end-
directed members of the kinesin family are known).

In dividing cells, centrosomes replicate along with DNA in S-phase, and subsequently partici-
pate in the formation of the mitotic spindle. Daughter centrosomes move apart and promote the
complete reorganization of the microtubular cytoskeleton prior to, and during, nuclear envelope
breakdown. The plus ends of microtubules radiating from the centrosomes, now called spindle
poles, bind and become stabilized by the kinetochores of chromosomes, forming bundles of
kinetochore microtubules. Microtubule-mediated motility events align chromosomes on the meta-
phase plate and are subsequently responsible for the separation of daughter chromosomes in the
anaphase of mitosis. Pinching of the cell into two daughter cells (mediated by bundles of micro-
filaments in association with the plasma membrane at the cleavage furrow) leads to the inheritance
of the correct number of chromosomes and a single spindle pole, which becomes the centrosome in
each daughter cell. Interestingly, other organelles such as mitochondria and peroxisomes appear to
be randomly apportioned to each daughter cell by virtue of the fact that they are distributed
throughout the cytoplasm, whereas the ER and Golgi apparatus vesiculate and disperse through-
out the cytoplasm early in mitosis to be inherited in the same way.

A number of drugs interfere with microtubule dynamics; examples include colchicine, which
actively promotes tubulin depolymerization, and taxol, which stabilizes microtubules and inhibits
depolymerization. Both of these drugs are toxic to cells, indicating that the oscillation between
polymerization and depolymerization is crucial to microtubule function and cell health. A number
of taxol-based compounds have been developed for use in the chemotherapeutic treatment of
cancer, highlighting the importance of microtubule dynamics in cell division.

1.10.3 Intermediate Filaments

Intermediate filaments (IFs) are solid filaments about 10 nm in diameter, made up of one ormore of
a large family of IF proteins. IFs are found in both the cytoplasm and the nucleus. They function in
strengthening the cytoplasm of cells, as well as in mechanically integrating cells of a tissue by
interconnecting desmosomes and hemidesmosomes.

The IF family of proteins is the most complex family of cytoskeletal proteins, with over 50
different IF gene products elaborated by cells of higher vertebrates. IF proteins can be divided into
five groups: (i) acidic keratins, (ii) neutral/basic keratins, (iii) vimentin-like proteins, (iv) neurofila-
ment proteins, and (v) lamins. IF proteins are expressed in tissue-specific patterns, with epithelial
cells containing keratins, cells of mesenchymal origin expressing vimentin-like IF proteins, and
neuronal cells expressing neurofilament IF proteins. Lamins are present in essentially all nucleated
cells, and form a filamentous network underlying and supporting the inner membrane of the
nuclear envelope. There is evidence that lamins help organize chromatin and are involved in
some aspects of DNA synthesis. Interestingly, mutations in lamins have been found that give rise
to some forms of muscular dystrophy, lipidodystrophies, and progeria (premature aging) diseases.

IF proteins are long, rod-like molecules that contain a central domain, rich in alpha helices. The
rod domain of IF proteins coil around each other to form coiled coil dimers, which then associate
into higher order structures, much like the weaving together of strands to form a rope. The
polymerization state of IF proteins is mediated by phosphorylation, and hyperphosphorylation
of IF proteins appears to lead to dissociation of IFs by repulsion of subunits bearing multiple
negative phosphate charges. One of the best studied examples is the depolymerization and repoly-
merization of nuclear lamina filaments during cell division. At the onset of mitosis, lamins are
hyperphosphorylated and the nuclear lamina depolymerizes, facilitating nuclear envelope break-
down. At the end of mitosis, lamins are dephosphorylated and a nuclear lamina and nuclear
envelope re-forms around each daughter nucleus.
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Only a relatively few IF-associated proteins are known, and these appear to help organize
intermediate filaments and mediate interactions with other cytoskeletal proteins and organelles.

1.11 Nuclear Organization

The largest and most prominent structure in most cells is the nucleus, which serves as a repository
for the cell’s inheritable genetic material (Figs. 1.4A and E). Within the nucleus several subnuclear
bodies have been identified microscopically. The most prominent of these is the nucleolus, a major
organizing substructure consisting of a myriad of protein and RNA aggregates responsible for
generating and processing ribosomal RNA (rRNA) and the assembly of ribosomes (Figs. 1.4B and
C). Portions of a number of chromosomes that contain amplified sequences encoding ribosomal
RNA (rRNA) and ribosomal protein mRNA cluster together and associate with a number of other
proteinaceous elements in the nucleus to facilitate the formation of the nucleolus. The size of the
nucleolus can vary greatly within the nucleus often occupying a significant volume, particularly
under conditions when large amounts of protein must be synthesized and there is a high demand for
ribosomes by the cell. Within the nucleoli three morphologically distinct regions can be observed
(fibrillar center, dense fibrillar component, and granular component) each thought to represent
progressive stages of rRNA synthesis, processing and eventual ribosome production (Fig. 1.4D).
While much remains to be learned regarding nucleolus organization and function, it is clear that its
morphology can alter greatly depending on the particular cell cycle stage. In preparation for
mitosis, nucleolar dissociation is observed during cell division with subsequent nucleolar fusion
as the resulting daughter cells prepare for a new round of DNA replication.

In addition to the nucleolus, additional subnuclear structures can be observed. Cajal bodies are
thought to be sites of ribonucleoprotein (RNP) and small nuclear RNA (snRNA) metabolism,
processing, and storage. Often closely associated with Cajal bodies, Gemini of coiled bodies
(GEMS) are thought to be functionally and structurally similar to Cajal bodies and together they
appear to function as recycling centers for small nuclear ribonucleoproteins (snRNPs) and
snRNAs. Another subnuclear domain speckle the interchromatin granule clusters that appear to
contain high levels of RNA splicing snRNPs and other mRNA splicing factors. Additional sub-
nuclear domains are being characterized at the genetic andmolecular level and their contribution to
human disease has only recently begun to be appreciated.

In eukaryotes, the nucleus is the assembly center for packaging and transmitting the genetic
material that resides on chromosomes. Mammalian chromosomal DNA has a total linear length of
about two meters when fully extended and is packaged into an average nuclear size of about 10 mM
(i.e., 1/100 of a millimeter) in diameter. The approximately three billion base pairs that encode the
human genome are organized into 24 distinct chromosomes (22 autosomal and one pair of sex
chromosomes, X and Y). The chromosomal DNAmust be packaged into the nucleus in such a way
as to allow access to transcriptional and replication machinery, and the nucleus as a whole must
allow for a high level of nuclear-cytoplasmic transport and signaling. For this, DNA fibers complex
with a defined set of proteins to form chromatin and facilitate the approximately 200,000-fold
compaction necessary to house the entire genome into the nucleus. Packaging of DNA is mediated
by histones, which form octameric arrays around which approximately 200 base pairs of DNA are
wound. This first order of DNA packing resembles ‘beads on a string,’ with the beads, or nucleo-
somes, composed of histone octamers and associated with DNA. Nucleosomes are further coiled to
form 30 nm diameter solenoid fibers, which are subsequently more or less condensed to form
heterochromatin (tightly compacted and relatively transcriptionally inactive DNA) or euchroma-
tin (loosely compacted and transcriptionally active DNA). Each chromosome usually consists
of a mixture of heterochromatin and euchromatin, and occupies more-or-less defined areas
within the nucleus. Transitions between heterochromatin to euchromatin and euchromatin to
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heterochromatin states are greatly influenced by a variety of temporal and physical posttransla-
tional modifications of the histone tails of chromatin. The temporal and spatial pattern of histone
modification, referred to as the histone code, together with specific modifications of the DNA
sequence itself can greatly influence the whole genome gene expression signatures in specific cell
types or tissues as well as in normal and diseased cells. It is becoming increasingly apparent that in
addition to local chromatin structure, the physical location of chromosomes within the nucleus can
greatly influence gene expression. During interphase, interactions can occur between distal chro-
matin regions between the same chromosomes or across different chromosomes. Thus, where a
chromosome resides within the nucleus, or its chromosome territory, can affect gene expression,

Fig. 1.4 Light and electron micrographs of nuclear features of cells. (A) Light micrograph of cells in culture, stained
with a fluorescent dye that binds nuclear DNA. This image is a double exposure showing both differential
interference and fluorescence images (similar to Fig. 1.3F). Fluorescent nuclei (N) can be seen, surrounded by the
cytoplasm of these cells. (B) Electron micrograph of a nucleus of an oocyte from a digenetic trematode. Nuclei from
these cells contain mostly euchromatin (loosely compacted, active DNA), and a prominent nucleolus (Nu). (C)
Electron micrograph of a nucleus of a rat esophageal epithelial cell. These nuclei are smaller than oocytes nuclei,
present an irregular border, and contain patches of heterochromatin (more condensed, inactive DNA). A nucleolus
(Nu) is also present in this nucleus. (D)Higher magnification of a nucleolus (Nu) from a trematode oocyte nucleus.
Granular and fibrillar areas can be discerned within the nucleolus, which lies next to the nuclear envelope (NE) in this
cell. (E) DNA staining and fluorescence microscopy of cell spreads to display chromosome structure. A human
fibrosarcoma cell line was treated with colchicine to arrest cells in mitosis, after which the cells were applied to
microscope slides. In this image, the nuclear material from two cells are present. To the left are chromosomes from a
metaphase-arrested cell; at this stage of the cell cycle, the nuclear envelope has broken down and the replicated
chromosomes are highly condensed and visible as distinct structures. To the right is a nucleus (N) from a cell that had
not yet reached mitosis; thus, the nucleus is intact and the uncondensed chromosomes fill the entire nuclear volume
(Copies of figures including color copies, where applicable, are available in the accompanying CD)
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DNA repair in response to damage, and cell development. For example, chromosome regions with
few genes (gene poor) or that which are replicated at later stages of DNA replication tend to be
located at the nuclear periphery and perinucleolar regions. Also, repositioning of actively tran-
scribed genes with respect to the centromeric heterochromatin can lead to gene silencing.

Mounting evidence suggests that chromosomes may be organized on a protein or protein-
RNA based scaffolding. This scaffolding, the nuclear matrix, is biochemically ill-defined, but
appears to be composed of filaments that form a three-dimensional meshwork within the nucleus,
which is surrounded by the denser filamentous mat of lamin IFs underlying the nuclear envelope.
Although the biochemical makeup of the nuclear matrix is not well understood, it is possible that
lamin IFs are not restricted to the nuclear periphery, but contribute to at least some of the matrix
structure. Certain DNA sequences have been found to bind to the nuclear matrix much more
tightly than others, leading to the proposal that distinct matrix attachment regions (MARs) or
scaffold attachment regions (SARS), periodically link chromosomes to the matrix, resulting in
the formation of large (30–100 kilobase) loops of DNA tethered to the matrix at MAR domains.
These DNA sequences do not display a rigid consensus sequence, but have a number of features
in common, including being relatively AT rich, histone poor, and possessing multiple topoisome-
rase II binding sequences. MAR domain DNA may also confer position independent expression
of exogenous DNA incorporated into random sites within the genome. Thus, it has been
proposed that MAR domains form participate as long-range regulatory elements, helping to
control gene expression. Chromosome ‘‘insulators’’ appear to demarcate heterochromatin/
euchromatin boundaries and may function by stopping the spreading and expansion of hetero-
chromatin across a chromosomal region.

The nucleus is bounded by the nuclear envelope, which consists of two membranes (inner and
outer), the underlying nuclear lamina composed of lamin IFs, and numerous nuclear pores that
span the inner and outer membranes. Nuclear pores are multimolecular arrays exhibiting an eight-
fold symmetry that are involved in the exchange of material between cytoplasm and nucleus.
Material moves through nuclear pores by both passive diffusion and active transport; molecules
smaller than 5,000 daltons are freely permeable between nucleus and cytoplasm, but those larger
than about 60,000 daltons must be actively transported. Molecules between these sizes can move
between nucleus and cytoplasm without active transport, but take longer to equilibrate with
increasing size. Proteins actively transported into the nucleus contain nuclear localization
sequences that are recognized by the pore complexes. Nuclear localization signals vary in amino
acid sequence, but usually contain a number of lysine residues and are positively charged.

Rapidly evolving genomic technologies provide us the unprecedented opportunity to monitor
entire transcriptional and proteomic outcomes in response to a variety of cues. Our understanding
of global gene regulation will require far more than the simple deciphering and analysis of DNA
sequences andmust include an appreciation of nuclear architecture and chromosome organization.
Towards that end, deduced gene expression signatures must be interpreted with an appreciation of
chromosome location within the nucleus, nuclear-cytoplasmic signaling mechanisms, and overall
cell structure and function.

Glossary and Abbreviations

Actin: The protein used to form microfilaments. Actin can be either soluble (g-actin) or polymerize
to form microfilaments (f-actin).

Adherens junction: A type of cell-cell adhesive junction in which bundles of microfilaments are
connected to the plasma membrane via linking proteins (e.g., catenin). The linking proteins
connect microfilaments to integral membrane proteins called cadherins, which bind to each
other in the presence of Caþþ to adhere cells together.
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ADP: Adenosine 5’-diphosphate. A nucleotide associated with cellular energy regulation. The

release of one of the three phosphate groups of ATP yields usable energy and ADP (which

contains two phosphate groups and is at a lower energy state). ATP can be regenerated from
ADP with the input of energy to attach a third phospate group.

Apoptosis:A specific way by which cells die, as a result of injury or as a result of programming (e.g.,
during the maturation of some tissues and organs during embryonic development). Apoptosis

includes defined biochemical pathways that, when initiated, activate caspases and result in the
destruction of key cytoplasmic and nuclear proteins.

ATP:Adenosine 5’-triphosphate. A molecule used as an energy source by the cell, most of which is

normally generated by oxidative phosphorylation inmitochondria. ATP is the primary source of
cellular energy used to power enzymatic reactions.

Basal body: A specialized type of centrosome (or MTOC) that gives rise to a cilium or flagellum.
Cadherin: An integral membrane protein found in desmosomes and adherens junctions. In the

presence of Caþþ, cadherens from adjacent cells bind, adhering cells to each other. Cadherins
are connected to microfilaments at adherens junctions via linking proteins such as catenin, and

to the intermediate filament cytoskeleton at desmosomes via linking proteins such as
desmoplakin.

Cajal bodies: A nonmembrane-bound sub nuclear domain required for the processing of small

nuclear RNAs (snRNA) and small ribonucleoproteins (snRNPs)
Caspases: Proteases that are activated during apoptosis. Caspases destroy key cellular components,

as well as activate nucleases, thus promoting nuclear disassembly and cell death.
Catenin: A type of linking protein found in adherens-type cell-cell junctions. Catenins are particu-

larly interesting in that they can translocate to the nucleus and function as transcription factors,

thus transducing events at the cell surface into changes in gene expression.
Caveolae: Invaginations of the plasma membrane involved in endocytosis. Caveolae are not

associated with clathrin, but possess a distinct lipid makeup, and may constitute a specialized

type of lipid raft.
Cell junction: Specializations of the plasma membrane that allow for anchorage and communica-

tion between cells, and between cells and the extracellular matrix.
Centriole: A short, barrel-like structure composed of a cylindrical array of microtubule triplets.

Centrioles are associated with centrosomes, basal bodies, and spindle poles, and function in the
replication of these microtubule organizing centers.

Centrosome: The organizing center for the microtubular cytoskeleton. Centrosomes are composed

of centrioles and pericentriolar material. Three forms of centrosomes are found in cells, includ-
ing the single centrosome of non-dividing cells, the two spindle poles of dividing cells, and the

basal bodies of ciliated cells.
Chromatin: A complex of DNA, histones and additional proteins that form the chromosomes that

reside in the nuclei of cells.
Chromosome: The organizational macromolecule of DNA and associated proteins that provides

the structural and functional basis for inheritance of the nuclear genetic material.
Cilia: Motile, whip-like extensions of the cell, supported by a bundle of microtubules that are

connected to basal bodies. Cilia actively beat back and forth as a result of interactions between
microtubules and the motor protein dynein, in a ATP-requiring process.

Clathrin: A protein involved in receptor-mediated endocytosis. Clathrin molecules assemble onto

membranes, forming a coat which leads to an invagination of the plasma membrane. These
coated pits subsequently pinch off into the cytoplasm to form coated vesicles.

Claudin:An integral membrane protein associated with tight junctions, which are sealing junctions

that form transcellular barriers between cells.
Coated pit: see Clathrin
Coated vesicle: see Clathrin
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COPs: Proteins involved in directing membrane-bound vesicles between the ER and the Golgi

apparatus.
Cytochrome P-450: A group of proteins involved in detoxifications reactions.
Cytoskeleton: A system of filaments and tubules in the cytoplasm and nucleus that perform

numerous functions, including maintaining cell shape, driving cell motility and cell division,
and organizing the cytoplasm. Three major types of fibers comprise the cytoskeleton: microfila-

ments, microtubules, and intermediate filaments.
Dalton: A measure of molecular mass; one Dalton is about the mass of a hydrogen atom. Small

proteins are a few thousand Daltons in size, medium and large proteins range from tens of

thousands to hundreds of thousands of Daltons.
Desmosome: A type of cell-cell adhesive junction in which bundles of intermediate filaments are

connected to the plasmamembrane via linking proteins of the plakin family (e.g., desmoplakin).
The linking proteins connect intermediate filaments to integral membrane proteins of the

cadherin family, which bind to other desmosomal cadherins in adjacent cells to adhere cells
together. Numerous desmosomes are found in tissues subjected to mechanical stress, such as the

epidermis.
DNA: Deoxyribonucleic acid.
ECM: Extracellular matrix.
Endocytosis: A process by which cells internalize material via the formation of plasma membrane

invaginations, which pinch off into the cytoplasm to form membrane-bound vesicles containing
the engulfed material. Specific extracellular molecules can be concentrated and internalized by
this method in a process called receptor-mediated endocytosis.

Endoplasmic reticulum: An extensive, membrane-bound cytoplasmic organelle involved in protein

and lipid synthesis, as well as in detoxification reactions and Caþþ regulation.Membranes of the
ER form enclosed compartments that range in morphology from flattened sheets to intercon-
nected tubular network. Protein and lipid products made by the ER can be delivered to other

parts of the cell or secreted, via membrane-bound vesicles that traffic between the ER, Golgi
apparatus, and plasma membrane. Protein synthesis occurs in ER that possesses attached

ribosomes (rough ER, or RER), and lipid synthesis is primarily associated with ER lacking
ribosomes (smooth ER, or SER).

Endosome: A membrane-bound structure formed by the coalescence of endocytotic vesicles and
vesicles containing lysosomal enzymes from the Golgi apparatus. Endosomes can give rise to

lysosomes; organelles that efficiently digest internalized material.
ER: Endoplasmic reticulum.
Exocytosis: A process by which cells secrete material via fusion of membrane-bound secretory

vesicles with the plasma membrane.
Extracellular matrix:An elaborate system of proteins and polysaccharides that surrounds cells and

tissues. Composed of structural elements, as well as soluble factors that influence cell growth,

differentiation, and function.
FAK: Focal adhesion kinase.
Flippase:Amembrane-associated enzyme that is able to transfer phospholipids between each layer

of the lipid bilayer.
Focal adhesion kinase: A protein kinase associated with focal contacts involved in transducing

contact information at the cell surface into a cellular response.
G-protein: Small proteins involved in signaling functions that are able to bind GTP or GDP.

G-proteins cycle between active and inactive states, depending on whether they are associated

with GTP or GDP.
Gap junction: A type of cell-cell communicating junction that allows for the direct passage of small

molecules between cells. Gap junctions are formed by the alignment of membrane-spanning
pores, called connexons, between the cells.
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GDP: Guanosine 5’-diphosphate. A nucleoside formed by the hydrolytic removal of a phosphate

group from GTP.
Hemidesmosome: A type of adhesive junction that attaches epithelial cells to the extracellular

matrix (ECM). Bundles of intermediate filaments (IFs) are connected to integral membrane

proteins of the integrin family via linking proteins. Hemidesmosomal integrins bind to protei-

naceous elements of the ECM, thereby providing mechanical linkage between IFs and the ECM.
IF: Intermediate filament.
Inositol triphosphate: A type of membrane-associated lipid molecule involved in cell signaling.
Integral membrane protein: A protein that passes through, or is embedded in, at least one layer of

the lipid bilayer. Integral membrane proteins are strongly attached to membranes and usually
require disruption of the membrane structure to be released.

Intermediate filament: One of the three major cytoskeletal groups of proteinaceous fibers found in

cells. Associated with desmosomes and hemidesmosomes, they function in strengthening the

cytoplasm of cells, as well as mechanically linking cells of an epithelium with each other and with

the ECM. Intermediate filaments are also found in the nucleus, where they form a lamina that

helps support the nuclear envelope.
IP3: Inositol triphosphate.
LDL: Low density lipoprotein.
Lipid bilayer: The structure phospholipids molecules adopt to form amembrane. Composed of two

layers of phospholipids molecules, where the hydrophobic tails face each other and the polar
heads face outward, creating a hydrophobic central region sandwiched between charged

surfaces.
Lipid raft: A region of the plasma membrane exhibiting a specialized phospholipid makeup. It is

associated with specific functions, including formation of caveolae and signal transduction.
Lumen: An enclosed space, or chamber. Usually refers to the compartment enclosed by a membra-

nous organelle.
Lysosome: A digestive organelle formed by the ER and Golgi apparatus. Hydrolytic enzymes

synthesized by the ER are concentrated and packaged by the Golgi apparatus into lysosomal

vesicles. Lysosomal vesicles fuse with either endosomes or with old cell organelles to digest

internalized material, or cellular material to be recycled, respectively.
M6P: Mannose-6-phosphate.
mRNA: Messenger RNA, the type of RNA that encodes the sequence of amino acids to be

assembled into a specific protein in association with a ribosome.
Mannose-6-phosphate: A polysaccharide tag attached to hydrolytic enzymes that marks them for

packaging into lysosomal vesicles by the Golgi apparatus.
MAR: Matrix attachment region.
Matrix attachment region: A specialized sequence of DNA that is bound to the nuclear matrix.
Microfilament: One of the three major cytoskeletal groups of proteinaceous fibers found in cells.

Microfilaments are concentrated underneath the plasma membrane, which they help support

and organize. They are also associated with adherens junctions, microvilli, and cleavage furrows.
Microfilaments are involved with maintaining cell shape and powering cell motility.

Microvilli: Finger-like extensions of the plasma membrane supported by core bundles of micro-

filaments. Microvilli serve to increase the absorptive area of epithelial cells.
Microtubule: One of the three major cytoskeletal groups of proteinaceous fibers found in cells.

Microtubules help to organize the cytoplasm, participate in intracellular transport, allow for

ciliary and flagellar motility, and organize and segregate chromosomes during mitosis.
Microtubule organizing center (MTOC): see Centrosome.
Mitochondria: Double-membraned organelles primarily involved in converting the energy from

food molecules into a form usable by the cell. This is largely accomplished by using food energy
to create a proton gradient across the inner mitochondrial membrane, which in turn is used to
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drive the synthesis of ATP. Mitochondria also function in calcium homeostasis and in the

regulation of programmed cell death, or apoptosis.
Mitosis: The segregation of chromosomes during cell division. Cell division includes mitosis,

followed by cytokinesis, or the division of the parental cell into two daughter cells.
MTOC: Microtubule organizing center.
Nuclear envelope: A double-membraned structure enclosing the nucleus that establishes and main-

tains a distinct nuclear environment. The nuclear envelope is perforated by nuclear pores, which

allow for the regulated transport of material between nucleus and cytoplasm.
Nuclear matrix:A protein (and possibly RNA) based scaffolding within the nucleus that is thought

to help organize chromatin. The composition of the nuclear matrix is not well understood, but it
appears to play important roles in DNA synthesis and regulation of gene activity.

Nucleolus: A specialized structure within the nucleus involved in ribosomal RNA synthesis and

ribosome assembly.
Occludin: An integral membrane protein associated with tight junctions that helps form a transcel-

lular barrier between cells.
Occluding junction: Another term for tight junction.
Organelle: A readily identifiable cellular inclusion that possesses a characteristic morphology

and function. The term is usually used to refer to the major membrane-bound structures

within cells, including the nucleus, ER, Golgi apparatus, lysosomes, peroxisomes, and

mitochondria.
Pericentriolar material: The amorphous material surrounding centrioles in a centrosome. Micro-

tubules associated with centrosomes and spindle poles arise from the pericentriolar material.
Peripheral membrane protein: A membrane-associated protein that is not embedded in the lipid

bilayer. Peripheral proteins can be associated with the phospholipids heads of the bilayer, or

with the portions of integral membrane proteins that extend beyond the bilayer.
Peroxisome: An organelle involved in lipid metabolism and oxidation reactions, including the

generation and destruction of H2O2.
Phagocytosis: A type of endocytosis where large particulate matter is taken up by a cell (e.g., the

engulfment of bacteria by macrophages).
Pinocytosis: A type of endocytosis where small vesicles internalize extracellular fluid for uptake by

the cell.
Plasma membrane: The membrane surrounding a cell. The plasmamembrane, sometimes called the

plasmalemma, encloses the cytoplasm and protects the cell contents from the environment. It

carries out vital functions in protection, transport of material into and out of the cell, sensing

and responding to the environment, and in cell identification.
RER: Rough endoplasmic reticulum.
Rough endoplasmic reticulum: ER that possesses ribosomes (thus presenting a ‘‘rough’’ surface).

RER is primarily involved in the synthesis of membrane, lysosomal, and secreted proteins.
Ribosome: A multimeric array of protein and ribonucleic acid that is involved in protein synthesis.

Ribosomes assemble individual amino acids into a polymer, or polypeptide, in a specific
sequence determined by an associated mRNA molecule. Ribosomes can exist either ‘‘free’’ in

the cytoplasm or attached to the ER. In the former location, the proteins they express are

released into the cytoplasm; in the latter location, the proteins are either inserted into the

membrane of the ER or released into the lumen of the ER.
RNA: Ribonucleic acid. Includes a number of subtypes, including messenger RNA (mRNA),

ribosomal RNA (rRNA), transfer RNA (tRNA), and micro RNA (miRNA).
SER: Smooth ER.
Signal recognition particle:An assembly of proteins that help dock ribosomes to ER, forming RER.
Smooth endoplasmic reticulum: ER that lacks ribosomes (thus presenting a ‘‘smooth’’ surface). SER

is involved in lipid synthesis, calcium transport, and detoxification reactions.
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SNAREs: Proteins that help regulate the trafficking of membrane bound vesicles bymediating their
fusion with specific target organelles.

S-Phase: The stage of the cell cycle where DNA synthesis occurs.
Spindle pole: A microtubule organizing center that assembles the microtubule spindle during cell

division.When cells divide, their centrosome duplicates andmoves apart to form a bipolar spindle.
Spliceosome: An assembly of protein and RNA molecules that processes newly-made mRNA into

mature mRNA.
SRP: Signal recognition particle.
Start-transfer sequence: A specific sequence of amino acids that initiates the penetration of a

growing polypeptide chain into the lipid bilayer of the RER.
Stop-transfer sequence:A specific sequence of amino acids that stops the insertion of a polypeptide

chain into the lipid bilayer of the RER.
Synapse: A type of communicating cell-cell junction found between neurons in nervous tissue.
Tight junction:A type of cell-cell junction that establishes a transcellular barrier. Also referred to as

an occluding junction.
Trans-Golgi: The portion of the Golgi apparatus that releases membrane-bound vesicles after their

contents have been processed by the Golgi apparatus.
Tubulin: The protein used to form microtubules. Most microtubules continually oscillate between

growth and disassembly by the addition or removal of tubulin heterodimers at the plus ends of
microtubules.

WASp: The protein mutated in Wiscott-Aldrich syndrome patients. This protein plays an impor-
tant role in regulating actin polymerization.

Zonulae adherens: Large, belt-like adhesive junctions usually found encircling the apical regions of
epithelial cells.
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Chapter 2

Transcription and the Control of Gene Expression

Nadine Wiper-Bergeron and Ilona S. Skerjanc

Abstract Transcription, the initial step of gene expression is a tightly regulated process. In addition
to variability in the core promoter region of the RNA polymerase II transcribed genes, which can
stabilize or destabilize the basal machinery and influence transcription rates, promoters contain
enhancer regions which can be far upstream from the gene transcribed. These enhancers and their
DNA binding factors are highly variable and can lead to the recruitment of unique co-activator
complexes that can influence the initiation and progression of the polymerase through the nucleo-
somal structure of chromatin. In essence then, every promoter becomes a unique microenviron-
ment, the sum of several enhancer elements, core promoter elements and chromatin structure. The
gene’s transcription rate is then dependent on the efficiency of these interactions – an average of the
effects of each enhancer and co-activator leading to a fine tuning of transcriptional responses
according to cellular needs. It is therefore not surprising that transcription is the major checkpoint
for gene expression in the cell. The next step for the new mRNA molecule is post-transcriptional
modification, which augments the stability of the messenger mRNA export to the cytoplasm (in
eukaryotes) and translation into proteins.

Keywords Transcription � Initiation factors � Termination � RNA polymerase � Coactivators/
Corepressors � Nucleosome

2.1 Introduction

Transcription is a process by which genetic information is copied onto a single stranded RNA
molecule. This copy, the transcript, can be used to form components of the protein translation
machinery that includes the transfer RNA [tRNA], ribosomal RNA [rRNA]) or to direct the
production of a specific protein encoded by a messenger RNA (mRNA). Production of these
different RNAs is catalyzed by a family of enzymes known as RNA polymerases. RNA poly-
merases use a single-stranded DNA template and nucleotides to synthesize a complementary RNA
strand. Phosphodiester bond formation releases pyrophosphate which is rapidly hydrolyzed to
ensure a unidirectional reaction which favors the addition of nucleotides to the nascent chain.

2.1.1 Structure of RNA Polymerases

In prokaryotes, one RNA polymerase exists that catalyzes the production of all cellular RNAs. It is
made up of 5 polypeptides, which are assembled into a holoenzyme of approximately 450 kDa with
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the general structure a2bb’os (Fig. 2.1) [1]. The b and b’ subunits form a crab-claw structure which
positions theDNA template near theMg2+ containing catalytic site found in a tunnel-like structure
[2]. The s subunit, which dissociates from the enzyme once transcription begins, is required to
correctly position the polymerase at the initiation site for transcription [3].

In eukaryotes, the process of transcription is more complex and is mediated by three different
but related RNA polymerases. RNA polymerase I catalyzes the synthesis of the majority of rRNAs
whereas RNA polymerase II synthesizes mRNA. Family member RNA polymerase III synthesizes
the 5S rRNA, the tRNAs and other small cellular RNAs.

Eukaryotic polymerases are multi-subunit enzymes that share many structural features with the
prokaryotic RNA polymerase and with each other [1]. In particular, RNA polymerase I, II and III
share a common catalytic core made up of subunits Rpb5, Rpb6, Rbp8, Rpb10, and Rpb12
(Table 2.1) [4,5]. Outside the core of conserved subunits, there is extensive structural and physical
similarities between many of the additional components of the different RNA polymerase holoen-
zymes [4,5]. For example, subunits Rpa14/43 of RNA polymerase I are thought to be homologous
to Rbp4/7 of RNA polymerase II and C17/25 of RNA polymerase III [4].

RNA polymerase II is the enzyme responsible for the catalysis of mRNA formation, and since
gene transcription is a major control point for gene expression, the polymerase is tightly regulated.
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Fig. 2.1 Schematic representation of the prokaryotic RNA polymerase. Bacterial RNA polymerase is composed of 5
subunits (2 a, b, b’, o and s). The b and b’ subunits form a jaw-like structure into which is fed the DNA template.
Upon unwinding of the template, transcription can begin by adding complementary bases forming a DNA:RNA
hybrid. Because the s subunit blocks the exit channel for the nascent RNA, it must dissociate to permit elongation of
the chain (Copies of figures including color copies, where applicable, are available in the accompanying CD)

Table 2.1 Subunit components of S. cerevisiae RNA polymerases. The subunits which are used by all three
polymerases are grouped under common subunits. Note that subunits AC40 and AC19 are used by both
RNA polymerase I and III

RNA pol I RNA pol II RNA pol III

Common subunits Rpb5 Rpb5 Rpb5

Rpb6 Rpb6 Rpb6

Rpb8 Rpb8 Rpb8

Rpb10 Rpb10 Rpb10

Rpb12 Rpb12 Rpb12

AC40 (Rpc5) AC40 (Rpc5)

AC19 (Rpc9) AC19 (Rpc9)

Unique subunits Rpa1 Rpb1 Rpc1

Rpa2 Rpb2 Rpc2

Rpa3 Rpb3 Rpc3

Rpa4 Rpb11 Rpc11

Rpa5 Rpb4 Rpc6

Rpa8 Rpb7 Rpc12

Rpa9 Rpb9 Rpc4

Rpc8

(Copies of tables are available in the accompanying CD.)
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The crystal structure of RNA polymerase II has been solved, both on and off DNA templates,
a work that earned Roger Kornberg the Nobel Prize in Chemistry in 2006 [6–8]. These studies have
confirmed that the polymerase matures during transcription of a gene through a process involving
covalent modifications of the polymerase and conformational changes. RNA polymerase II has
many structural features which are linked to both its function and regulation (Fig. 2.2). There exist
2 ‘‘jaws’’, which act to grab and position the DNA template within the catalytic site of the enzyme,
which resembles the structure formed by the b and b’ subunits of the prokaryotic RNA polymerase
(Fig. 2.1). The DNA template is fed into a positively charged cleft within the enzyme, which
stabilizes the DNA-polymerase interaction. In addition a ‘‘clamp’’ closes over the DNA template
essentially locking it in place (Fig. 2.2B). This region is in an open conformation in the free
polymerase molecule, permitting the association of DNA template with the catalytic site. The
DNA template is then separated and positioned by 3 loops which originate from the clamp: the
rudder, the lid and the zipper (Fig. 2.2, only rudder is visible) [9]. Finally, a bridging helix formed by
the Rpb1 subunit of the polymerase makes direct contact with the DNA template and promotes
translocation of the template during transcription [3,6,7,10–12].

In addition to these features, RNA polymerase II has a C-terminal tail, or domain (CTD), which
acts as a regulatory domain (Fig. 2.2). The CTD is composed of tandem repeats of the amino acid
sequence YSPTSPS. The number of repeats varies greatly among species [13]. The CTD is the target
of modifying enzymes which control the polymerase’s activity (kinases) and acts as a docking site
for mRNAprocessing enzymes [14]. Since the nascent transcript exits the polymerase at a site found
beneath the CTD, the mRNA processing enzymes are in close proximity to their substrate, thus
effectively coupling transcription to mRNA maturation (discussed chapter 3) [15].

Rpb5

Rpb9Rpb3

(A)

(B) clamp

RNA

Rpb1

Rpb2

Rpb4

Rpb7Rpb11

Rpb8

Rpb12 Rpb10

Rpb3

Rpb2

wall

rudder

Fig. 2.2 Schematic
representation of eukaryotic
RNApolymerase II. (A)The
structure of RNA
polymerase II resembles
bacterial RNA polymerase.
The jaws are formed by
subunits Rpb1 and Rpb2.
Note that the C-terminal
domain of subunit Rpb1 is
unique to RNA polymerase
II. (B) During transcription,
theDNA template is fed into
the jaw structure formed by
Rpb1 and Rpb2, guided and
stabilized by the rudder
domain. Unwinding of the
template to form the
transcription bubble permits
the formation of the
DNA:RNA hybrid. The
nascent transcript exits the
polymerase from a site
beneath the C-terminal tail
or domain (CTD) (Copies of
figures including color
copies, where applicable, are
available in the
accompanying CD)
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RNA polymerase II functions as part of a multiprotein complex which matures as transcription
is initiated and as it progresses along the DNA template [3,10]. RNA polymerase II associates with
transcription factors, which are necessary to direct the polymerase to the transcription start site, to
stabilize interactions with the DNA, and to unwind the DNA template. These factors, which are
required for the transcription of all RNA polymerase II transcribed genes, are called general
transcription factors (GTFs) and bear the nomenclature TFIIX, where X is unique [10].

2.2 What Drives Transcription – The Promoter Region

To ensure transcription of a region of the DNA, DNA sequences are required upstream (or 5’) to
signal where transcription should begin and to direct RNA polymerase II positioning. These
sequences make up the promoter region of the gene and ensure the induction of transcription
from the locus. In prokaryotes, promoter regions are very simple, consisting of a TATAAT element
(Pribnow box) located at position –10 relative to the transcription initiation site [16,17]. In addition
to the Pribnow box, particularly strong promoters, which drive the transcription of genes that are
highly expressed also have an element at position –35 (TTGACA) [18–20]. These elements direct the
prokaryotic RNA polymerase to associate with the initiation site, and permit the unwinding of the
template DNA, a step necessary for the initiation of transcription.

Similar to prokaryotic promoters, eukaryotic promoter regions for rRNA and tRNA consist of
relatively short sequences which direct the correct placement of their respective polymerase [21]. In
the case of RNApolymerase I, the promoter region spans approximately 50 base pairs and contains
an AT-rich sequence known as the ribosomal initiator element [22]. The RNA polymerase III
promoter contains promoter elements found downstream of the transcription initiation site, which
direct the initiation of transcription by the polymerase [21]. For genes transcribed by RNA
polymerase II, however, the promoter regions are generally more complex and can span to regions
distal to the transcription start site. The high variability in RNA polymerase II promoter archi-
tecture permits gene-specific transcriptional responses which can be fine-tuned to answer to intra-
and extracellular signaling events.

2.2.1 The Core Promoter Region

Although there is high variability, eukaryotic RNA polymerase II transcribed genes have common
features in their promoter regions [23,24]. The core promoter region spans from position �35
to +35 and houses the minimal sequence elements required to direct basal transcription of a gene
by RNA polymerase II [25–27]. Position +1 is the transcriptional start site.

2.2.1.1 The TATA Box

The TATA box was the first core promoter element identified and consists of a TA rich sequence
located at�35 to�25 relative to the transcriptional start site (notable exception is yeast, where the
TATA box is located at �120 to �40). The optimal site is 5’–TATATAAG–3’, although this is
highly variable and it is recognized by the general transcription factor TFIID [25–27]. TFIID is a
multi-protein complex which includes the TATA Binding Protein (TBP) which binds to the minor
groove of the TATA box in a sequence-specific manner. TBP, with its saddle-like structure, binds
DNA in a directional fashion and causes the DNA template to bend almost 908 [28–30]. This
interaction is thought to correctly position the RNA polymerase, which is recruited to the DNA
after TFIID to the transcription initiation site.
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2.2.1.2 The Initiator Element

The Initiator Element is the transcription initiation site (most often adenosine at +1 and cytosine
at –1) that is recognized by many general transcription factors including TFIID, TBP Associated
Factors (TAFII150, TAFII250; part of TFIID), RNA polymerase II itself, and transcription factor
YY-1 [31,32]. The initiator element and the TATA box appear to correctly position the polymerase
at the transcriptional start site. When spaced approximately 25 base pairs apart, they act synergis-
tically [25–27].

2.2.1.3 The Downstream Promoter Element

Although many RNA polymerase II transcribed genes have TATA boxes which are recognized by
TBP, the presence of a TATA box is not necessary for initiation of transcription. The Downstream
Promoter Element (DPE), located in the coding region of the gene (approximately +28 to +32) is
typically, though not exclusively found in TATA-less promoters [33]. This element may help
correctly position the basal machinery at the promoter in the absence of sequence specific TBP
binding.

2.2.1.4 The TFIIB Recognition Element

The TFIIB Recognition Element is a short sequence found upstream of the TATA box [34]. This
sequence is recognized and bound by TFIIB, a general transcription factor which helps to stabilize
the interaction of TFIID with the TATA box, ensuring correct positioning of the polymerase at the
initiation site [34].

2.2.1.5 CpG Islands

CpG islands are core promoter regions with high CG content [35]. They are often found in
housekeeping gene promoters, which are expressed ubiquitously at steady levels. Interestingly,
the promoters which have CpG islands are often the ones which lack a functional TATA box.

2.2.1.6 The Motif Ten Element (MTE)

TheMTE is a highly conserved element found at position+18 to+27 relative to the initiator [36].
While the presence of the initiator element is required, the MTE can function to stimulate
transcription in the absence of other core promoter elements such as the TATA box or the DPE.

2.2.2 Enhancer Elements

For a cell to respond/adapt to its environment, it must be able to fine tune the expression of its
genome. One way in which this control is achieved is through the induction of transcription rates
above that which is achieved by the basal machinery (GTFs and RNA polymerase II). To achieve
this induction, DNA sequences called enhancers, located upstream of the core promoter, can direct
the DNA binding of sequence specific factors (transcription factors) which can increase or decrease
transcription rates via the recruitment or stabilization of the basal transcriptional machinery at the
initiation site [37]. In fact, in eukaryotes, the binding of transcription factors to the enhancer region
is necessary to stimulate the assembly and association of the basal machinery with the core
promoter [37–39].
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2.3 What Stimulates Transcription – Transcription Factors

Transcription factors are protein molecules that act to control the transcription of genes. They
function by binding to specific DNA sequences found in the enhancer region of gene promoters via
specialized DNA binding domains. Transcription factors also possess one or more activation
domains, which are regions of the protein that allow them to stimulate or repress transcription of
the target gene in response to intra- and extracellular signaling pathways. Transcription factors can
increase the rate of transcription by (i) recruitment and binding of basal machinery to the core
promoter, and (ii) remodeling of the chromatin structure which can present a barrier to the active
polymerase [39–41].

2.4 The Mechanics of Transcription – Making mRNA

2.4.1 Prokaryotic Transcription

To initiate prokaryotic transcription, the RNA polymerase first binds to the Pribnow box element of
the promoter forming the closed complex. The DNA template at the initiation site is then unwound to
form the template strand (or anti-sense strand) and is made accessible to the enzyme’s active site (open
complex). The polymerase then begins to synthesize the RNA strand using base complementarity, but
because one of the holoenzyme’s subunits (s) blocks the exit channel for the nascent RNA strand, the
first attempts at transcription produce only truncated abortive transcripts (Fig. 2.1) [42].Dissociation of
the s subunit permits the exit of the growing RNA transcript and productive elongation (Fig. 2.1).

2.4.2 Eukaryotic Transcription

2.4.2.1 Initiation

Once sequence specific transcription factors bind to their respective enhancer elements they can, via
their activation domains, stimulate the recruitment and assembly of general transcription factors and
RNA polymerase II at the initiation site. One way by which this is achieved is by recruiting the multi-
subunit complex, Mediator, a step which appears to be generally required for transcriptional activa-
tion byRNA polymerase II [43].Mediator acts as a bridge between the distal enhancers and the basal
transcriptional machinery (Fig. 2.3) and may itself receive regulatory inputs to modify the transcrip-
tional response. For example, the recruitment ofMediator by DNA-bound transcription factors can
facilitate the recruitment of the polymerase and the GTFs, thereby promoting the assembly of the
pre-initiation complex [41]. In addition, Mediator may directly modulate the activity of RNA
polymerase II by stimulating phosphorylation of the CTD [41].

Recruitment of the basal machinery occurs as follows (Fig. 2.3C,D) [44,45]. First, TFIID
(TATA binding protein (TBP) and TBP Associated Factors (TAFs)) bind at the TATA box of
the core promoter. It is important to note that not all promoters contain TATA elements, and in
these instances, TFIID can bind to DNA in a sequence independent fashion, directed by other
GTFs. After TFIIDDNA binding, TFIIA joins the complex binding to both TFIID andDNA at a
position upstream of the TATA box. Subsequently, TFIIB binds to TFIID opposite the TFIIA
interaction site, and may serve to correctly position the polymerase which arrives next along with
TFIIF. TFIIE recruitment to the complex helps to recruit TFIIH, a large protein complex that
contains the CDK7/cyclin H kinase complex and a DNA helicase, to the promoter and to regulate
RNA polymerase activity through the stimulation of TFIIH kinase activity (Fig. 2.3) [46]. TFIIH
helicase activity ensures that the polymerase transcribes the correct DNA strand by unwinding the
template [47] while its kinase activity acts to promote transcriptional elongation through
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phosphorylation of the CTD of RNA polymerase II. TFIIH and TFIIE interact strongly, and
TFIIE appears to be an important regulator of TFIIH’s kinase and ATPase activity [46,48].

Assembly of the GTFs at the core promoter triggers the formation of the transcription bubble, a
melted region of DNA which permits the addition of the first nucleotide. Once transcription
initiation begins, the pre-initiation complex becomes an initially transcribing complex (ITC).
This complex can catalyze the addition of short strands of RNA which are prone to release
(abortive transcription) similar to what is observed during prokaryotic transcription.
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Fig. 2.3 Assembly of the pre-initiation complex at a eukaryotic RNA polymerase II-transcribed core promoter.
(A) Structure of a typical eukaryotic RNA polymerase II transcribed promoter consisting of the core promoter
(TATA box, initiator element is indicated by the arrow). Note that the initiator element is not accessible due to the
nucleosome structure. Upstream is the enhancer element, which can bind to sequence specific transcription factors and
due to nucleosome spacing, it is accessible. (B) Binding of transcription factors to the accessible enhancer element
nucleates the assembly of a co-activator complex which includes Mediator, chromatin remodeling activity and histone
acetyltransferase activity. (C) Chromatin remodeling activity repositions nucleosomes to make the initiator element
accessible to RNA polymerase II. The transcription factor: co-activator complex recruits TFIID (TBP and TAFs) to
the TATA box. (D) Stable association of TFIID with the TATA box recruits the GTFs and RNA polymerase II to the
core promoter (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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2.4.2.2 Elongation

The elongation phase of transcription can be divided into 3 steps: promoter clearance, promoter-
proximal pausing, and productive elongation (Fig. 2.4B,C) [3,11,49]. Promoter clearance (or
escape) is the event in which RNA polymerase II frees itself from the GTFs, thereby liberating it
from the core promoter contacts (Fig. 2.4C). This stage is completed once the nascent RNA strand
associates stably with the transcription complex, a process stabilized by TFIIB [50,51]. In addition,
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Fig. 2.4 The conversion of the pre-initiation complex to an elongation complex. (A)The pre-initiation complex (PIC)
is assembled at the core promoter and the RNA polymerase II is positioned at the initiator element (assembly of the
PIC is described in Fig. 2.3). (B) Formation of the transcription bubble allows the incorporation of the first few bases
of the nascent RNA molecule. At this stage, the polymerase is prone to pausing and reinitiation cycles.
(C) Phosphorylation of the RNA polymerase C-terminal domain by TFIIH results in the liberation of the
polymerase from the GTF complex. Pausing and backtracking are frequent. The paused/arrested polymerase
complex can be reinitialized by the elongation factor TFIIS, which cleaves the nascent RNA to reposition it at the
catalytic site of RNA polymerase II. The TFIIS complex also possesses chromatin remodeling activity and may
promote elongation by removing the nucleosomal barrier to polymerase progression, as indicated by nucleosomal
displacement (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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TFIIH (which possesses kinase activity) phosphorylates RNA polymerase II on a serine residue
within its C-terminal domain (CTD) [48,52,53]. TFIIH phosphorylates the serine residue at posi-
tion 5 within the repeated sequence, which results in the liberation of the polymerase from the GTF
complex, facilitating promoter clearance [52,53].

Promoter clearance converts the ITC into an early elongation complex (EEC) which is prone to
frequent pausing and backtracking [49]. This promoter-proximal pausing and 5’ movement of the
polymerase continues frequently until RNA polymerase II reaches position+30–50 [54]. The back-
tracked polymerase can spontaneously re-initiate transcription by sliding forward along the
template until the active site is in the correct position. However, if the pausing persists, the
polymerase will arrest. The arrested EEC can be re-initialized by TFIIS, an elongation factor,
which cleaves the nascent transcript to realign the RNA transcript with the active site of the
polymerase (Fig. 2.4C) [55]. TFIIS is also part of a larger chromatin remodeling complex
(CTEA, chromatin transcription enabling activity), which contains histone acetyltransferase activ-
ity and may also help a paused polymerase by remodeling the chromatin structure [56].

Once the polymerase escapes the promoter region, it continues to move in the 3’ direction while
adding nucleotides to the nascent RNA molecule at a rate of 20–50 nucleotides per second. As the
polymerase progresses, it becomes hyperphosphorylated, by accumulating phosphorylated Ser2 in
its CTD, a modification catalyzed by the elongation factor p-TEFb, which is composed of Cdk9 and
a cyclin (T1, T2a, T2b, or K) [14,57,58]. Modification of the CTD at serine 2 is characteristic of an
elongating polymerase [14]. In addition to TFIIS and p-TEFb, both Elongator and Elongin com-
plexes can act to promote RNA polymerase II elongation [59,60].

The choice of which nucleotide to add to the chain depends entirely on base complementarity
with the DNA template. Because of its lack of innate error correction, the misincorporation of
bases into the nascentmRNAbyRNApolymerase II cannot be corrected. Despite the possibility of
misincorporation, the fidelity of transcription is quite high. The few errors made by the polymerase
are tolerated since RNA molecules are transient copies of the genetic material and do not have an
impact on the status of the genome. In addition, since mRNA molecules are produced in large
quantities, a few mistakes in the sequence will have little impact on overall functional protein
production.

2.4.2.3 Termination

Termination of transcription in prokaryotes and eukaryotes appears to occur via a process of
spontaneous dissociation, which is facilitated by a helicase called Rho (Fig. 2.5) [61]. Although
there is no ‘‘termination’’ signal in RNA, certain features can lead to the spontaneous dissociation
of the nascent RNA from the DNA:RNA hybrid [62]. First, a stretch of 4–10 A/T residues, which
base pair less strongly to the DNA template, can trigger the release of the RNA template
(Fig. 2.5A). Often, upstream of this A/T rich region is a palindromic sequence that is rich in GC
and is able to fold onto itself to form a hairpin. This hairpin, which does not interact with the DNA
template, creates a stress that potentiates the detachment of the template at the AT rich region [62].

It has, however, been noted that transcripts produced in vitro with recombinant factors were
often longer than transcripts produced in vivo, leading to the hypothesis that a factor exists in vivo
that facilitates termination of transcription. Rho, a hexameric protein of identical subunits is a
NTP-hydrolyzing helicase which can unwind the RNA molecule from the DNA template,
thereby triggering its release from the RNA polymerase [61,63]. Rho appears to recognize a
sequence within the RNA molecule which is C-rich and G-poor and contains no secondary
structure (Fig. 2.5B). Rho binds the RNA at this site and slides along the nascent RNA in the
3’ direction to catch up with the polymerase. When the polymerase pauses at the termination site,
Rho catalyzes the unwinding of the RNA:DNA duplex and frees the RNA molecule from the
polymerase (Fig. 2.5B) [61].
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2.5 DNA Structure and Transcription

In vivo, DNA is highly compacted into chromatin. Chromatin is composed of repeating units of
protein-DNA complexes called nucleosomes. Nucleosomes are made up of a histone octamer
composed of two units each of histone H2A, H2B, H3 and H4 around which a 146 base pair
DNA sequence is wrapped [64,65]. This organization of DNA into nucleosomes creates an
energetic barrier against transcription, preventing the association of transcription factors and the
RNA polymerase with the DNA substrate. The N-terminal tails of the histone molecules appear to
be important in the overall compaction of the DNA because they are responsible for the formation
of inter-nucleosomal contacts [65]. For efficient transcription to occur on chromatin templates, a
transcription factor must be able to direct localized changes in the chromatin structure to allow
recruitment of the basal transcriptional machinery [66]. Protein complexes containing enzymatic
activities that are correlated with gene activation, such as the ability to acetylate histones (histone
acetyltransferase activity), create a permissive state of the DNA that can then be remodeled by
ATP-dependent protein complexes [67–69].
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2.6 Coregulatory Complexes

Co-activator molecules, normally found in large multi-protein complexes, drive transcription by
modifying and remodeling the chromatin, and/or by recruiting and stabilizing interactions with the
basal transcriptional machinery [70,71]. For a protein to be defined as a co-activator molecule it
must be recruited to the DNA via a transcription factor, and it must enhance transcription by that
factor but not affect basal transcription rates [72].

2.6.1 Histone Acetyltransferases (HAT)

Acetylation of lysines in the N-termini of histone tails causes the dissociation of higher order
nucleosome structures and increases access for the transcription factors and basal transcriptional
machinery to DNA. This may be due in part to the charge neutralizing effect of the modification,
where ablation of the positive charge of the lysine residues decreases the interaction of the histone
tail with the negatively charged DNA.

Histone acetyltransferases have a highly conserved structure, which includes the catalytic
domain and a bromodomain [73]. The bromodomain has been implicated in binding acetylated
lysine residues and may serve to target the acetylase to the chromatin [73–75]. There are several
families of HAT proteins including the p160 family, p300/CBP, and GNAT families.

The p160 co-activator family is a family of evolutionarily related proteins, which were initially
characterized by their ability to interact with and potentiate the transcriptional activity of nuclear
receptors, a class of transcription factors [76,77]. By virtue of their multiple protein interaction
motifs, p160 co-activators can serve as scaffolds onto which larger co-activator complexes can be
assembled [78].Members of the p160 co-activator family are not specific for nuclear receptors, but
have been shown to act as co-activators for other transcription factors. For example, the p160 co-
activator SRC-1 has been shown to stimulate transcription mediated by AP-1, NF-kB and
p53 [79].

p300 was originally purified as the cellular binding protein for the adenoviral protein E1A [80].
The closely related protein CBP was originally purified as a factor associated with the cAMP
response element binding protein CREB [81]. p300/CBP share 63% amino acid identity over their
length, but have much greater similarity in the domains they share such as the CREB binding site,
the E1A binding site and the bromodomain [82]. Although closely related, CBP is not able to rescue
the role of p300 in the embryo and the opposite is also true suggesting that the gene dosage of these
transcriptional co-activators is essential for development and survival.

Both p300 and CBP possess powerful histone acetyltransferase activities that are able to
acetylate histone targets such as histone H3 and H4 as well as many non-histone targets including
the basal transcription factor TFIIEb, p53, GATA-1, NCoA3/p/CIP and HMG-1(Y) [83–89]. The
large multi-domain structure of these co-activators also allows them to act as bridges between the
DNA-bound transcription factors and the basal transcriptional machinery, as well as providing a
link between transcription factors and other co-activator molecules [90].

The GCN5-related N-acetyltransferases (GNAT) family of acetyltransferases includes GCN5,
the p300/CBP associated factor PCAF and the more distantly related Hat1, Elp3, and Hpa3 [91].
The family is grouped into sub-families based on sequence similarity over four conserved domains,
and all are related to the yeast protein GCN5. Both GCN5 and PCAF are able to interact with
p300/CBP and form part of large co-activating complexes associated with nuclear receptors and
other transcription factors [92,93]. In addition, PCAF and GCN5 function as part of large distinct
multiprotein complexes that share many of the same subunits as the related yeast SAGA complex,
including members of the basal transcriptional machinery like the TAFs (part of TFIID)
[87,94–96].
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2.6.2 ATP-Dependent Chromatin Remodeling Complexes

To permit the assembly of the pre-initiation complex and the progression of RNA polymerase II
along the DNA template during elongation, nucleosomes have to be somehow displaced. This can
be accomplished by unwinding the DNA template from around the histone octamer and displacing
the histones onto chaperone proteins or by sliding the nucleosome along the DNA template
(Fig. 2.6) [97]. A high turnover rate of histone proteins at active genes has been noted, an
observation that correlates well with the idea that nucleosomes are removed from the DNA
template ahead of the polymerase. Histone chaperone proteins (FACT, Spt6) have also been
isolated and may serve to stabilize the displaced histone proteins during elongation [98,99]. To
re-position the nucleosomes during transcription, chromatin remodeling factors use ATP to make
DNAmore accessible to the polymerase and to the transcription factors. There are four families of
ATP-dependent chromatin remodelers (ISWI, SNF2, CHD and INO80/SWR) which function as
part of large multiprotein complexes [100,101]. It is important to note that not all chromatin
remodeling activity is associated with an increase in promoter accessibility and increased transcrip-
tion rates. Remodeling activity has also been identified in complexes that act to condense the
chromatin and shut down active transcription [102].

2.7 Covalent Modification of Histones and Transcription Factors

2.7.1 Regulation of Transcription Factors by Acetylation and Deacetylation

Acetylation of histone tails increases the accessibility of DNA to transcription factors and to the
basal transcriptional machinery. Histone acetylation is associated not with transcription per se, but
with a permissive state which would allow transcription to occur. However, modification by
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acetylation is not reserved to histones alone. Many transcription factors have recently been shown
to be targets of acetylation by p300/CBP, PCAF, or GCN5, or combinations thereof, and this
covalent modification regulates their transcriptional activation potential. Acetylation can modu-
late a transcription factor’s DNA binding activity (e.g. p53 acetylation by p300/CBP and PCAF),
its association with other transcriptional regulators (e.g. acetylation of C/EBPb by GCN5), or its
half-life (e.g. E2F1 acetylation by PCAF) [86,103–106].

2.7.2 Regulation of Transcription by Ubiquitylation

The ubiquitin-proteasome system is proposed to act to control transcription by recruitment of the
26 S proteasome to the promoters of active genes. Since many acidic transcriptional activation
domains have been shown to act as sequences that drive the destruction of the transcription factor
(degrons), it has been suggested that the recruitment of members of the ubiquitin pathway to the
promoters of active genes would lead to the ubiquitylation of not only the transcription factor,
but also the histone targets (such as histone H2B), RNA polymerase II and possibly the recruited
co-activator molecules [107–113]. Indeed, the potency of an activation domain has been inversely
linked to protein stability, but only when linked to an intact DNA-binding domain [114]. This
mechanism would ensure the rapid shutdown of transcription by making the activation of
transcription self-limiting.

Both H2A and H2B can be mono-ubiquitylated [115]. These modifications are observed espe-
cially at the promoter end of a gene and are correlated with the production of full length transcripts
[116]. In addition, ubiquitylation of H2B may direct the post-translational modification of other
residues, such as lysine methylation [117,118].

2.7.3 Regulation of Transcription by Other Post-translational Modifications

In addition to acetylation and ubiquitylation, histones and transcription factors can be methylated
(on lysine and arginine residues) and sumoylated (on lysine residues) [67]. Unlike acetylation, which
is strongly correlated with a permissive chromatin environment, methylation of histone proteins
can be associated with repressed or active gene transcription. For example, the frequency of
methylation of lysine 4 on histone H3 decreases from the promoter region and 5’ end of the gene
to the 3’ end, while methylation of lysine 36 increases towards the end of the transcribed region
[119,120]. Transcription factors and co-regulatory molecules are also the targets of methylation,
especially on arginine residues [121,122].

While mono-ubiquitylation of histones is thought to help the polymerase elongate the RNA
strand, sumolation (the addition of SUMO. Small Ubiquitin-like Modifier) to lysine residues
prevents acetylation and correlates with a repressed chromatin structure [123]. Correlations
between phosphorylation and acetylation have also been noticed, where phosphorylated histone
tails act as better templates for acetylases and are less likely to be methylated, producing permissive
chromatin [124,125].

Glossary and Abbreviations

CBP CREB-binding protein
CREB cAMP responsible element binding
CTEA Chromatin transcription enabling activity
DPE Downstream promoter element
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EEC Early elongation complex
HAT Histone acetyltransferase
ITC Initially transcribing complex
SUMO Small ubiquitin-like modifier
TAFs TBP associated factors
TBP TATA binding protein
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Chapter 3

RNA Processing and Translation

Christina Karamboulas, Nadine Wiper-Bergeron, and Ilona S. Skerjanc

Abstract The information that codes for all proteins in a cell is found on specific segments within the
DNA.When a cell requires the function of a particular protein, it must initiate the steps involved in the
synthesis of this protein. The overall process is termed gene expression. Transcription is the process
whereby the cell makes a copy of the genetic information required to build that particular protein.
Transcription yields the copy of a particular gene termed the primary transcript, which undergoes
several processing events to generate the mature messenger RNA (mRNA). The mRNA molecule is
then transported to the cytoplasm where it associates with the ribosome. Here, the information within
the transcript is decoded into a polypeptide chain of amino acids to give rise to a particular protein with
a specific function. The details of RNA processing and translation are discussed in this chapter.

Keywords RNA � Processing � Protein � Translation � Amino acids � Genetic code � Ribosome

3.1 Introduction

Once anRNAmolecule is transcribed it is referred to as a primary transcript or pre-mRNAbecause
it must be processed before translation can occur. First, the pre-mRNA is modified at its 3’
(3’ polyadenylation) and 5’ (5’ capping) ends to increase its stability. Increased stability is impor-
tant since the mRNA must be shuttled out of the nucleus for translation in eukaryotes.

In addition, the pre-mRNA is cleaved and religated, via a process called RNA splicing, to
remove intronic sequences that do not code for any protein (Fig. 3.1A). RNA splicing also permits
the production of alternative protein products from a single pre-mRNA species and is therefore a
target of regulatory mechanisms.

3.2 RNA Processing

3.2.1 The 5’ Cap

The 5’ cap protects the mRNA from degradation, aids in the transport of the mRNA out of the
nucleus and is involved in the initiation of protein translation (reviewed in [1]). The 5’ capping of the
pre-mRNA occurs during transcriptional elongation once the nascent RNA transcript reaches a
length of 25 nucleotides. At this stage, the first 5’ phosphate group of the initial nucleotide is
removed (Fig. 3.1B). Subsequently, guanosine monophosphate is added in an inverted orientation
to yield a unique 5’-5’-triphosphate linkage, a process catalysed by guanylyltransferase, an RNA
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polymerase II associated enzyme that catalyzes the transfer of GMP to the nascent mRNA [2].
Next, methylation by methyl transferases takes place on the newly added guanosine base at the
7 position and on the ribose sugar of the initial nucleotide of the mRNA at the 2’ position.

3.2.2 The 3’ Poly(A) Tail

Modification at the 3’ end of the RNA transcript includes the cleavage of the transcript down-
stream of a signal sequence (AAUAAA) and the subsequent addition of a string of adenosine

5' Cap Poly(A) Tail

A

5' 3'
AAUAAA

Signal SequenceIntrons

Pre-mRNA

B

mRNA

guanosine monophosphate
(inverted)

A

U

U

Exons

RNA

UTR UTR

5'

3'

Fig. 3.1 Schematic of pre-mRNA, mature mRNA and the 5’ methylguanosine cap. (A) Newly transcribed mRNA or
pre-mRNA consists of exons with intervening introns. Pre-mRNA undergoes RNA processing events: 5’ capping,
splicing (removal of introns) and 3’ polyadenylation. The 5’ end is modified by capping enzymes with the addition of a
methylguanosine cap. The 3’ end is modified by initial cleavage of �20 nucleotides downstream of the polyadenylation
signal sequence (AAUAAA). The enzyme poly A polymerase subsequently adds up to 250 adenosines. Mature mRNA
also contains 5’ and 3’ untranslated regions (UTRs). (B) Structure of the 5’ cap. The 5’ nucleotide of anmRNAoriginally
contains three phosphate groups. The first phosphate is removed and a guanosine monophosphate is linked in an
inverted orientation, creating a unique 5’-5’ triphosphate bridge.Methylation occurs on the newly added guanosine base
at the 7 position and on the ribose sugar of the adjacent nucleotide (in this case adenosine) at the 2’ position (Copies of
figures including color copies, where applicable, are available in the accompanying CD)
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residues (Fig. 3.1A). The mechanism requires the activity of two multi-subunit complexes, that are
bound to RNA polymerase II during transcription, termed the Cleavage and Polyadenylation Speci-
ficity Factor (CPSF) and the Cleavage Stimulation Factor (CstF) [3,4]. Once the RNA polymerase
transcribes the signal sequence, these complexes dissociate from the RNA polymerase and bind to the
RNA transcript. CPSF and CstF recruit cleavage factors and stimulate the cleavage of the RNA
approximately 20 nucleotides downstream of the signal sequence. Following RNA cleavage, Poly(A)
polymerase is recruited to the pre-mRNA, to which it adds �100 to 250 adenine nucleotides in a
template independent fashion. As the poly(A) tail increases in length it recruits Polyadenylate Binding
Proteins (PABPs) which act as a molecular ruler, determining the length of the poly(A) tail. Similar to
the 5’ cap, the poly(A) tail increases the pre-mRNA’s stability by protecting it from premature
degradation, assisting its transport out of the nucleus, and facilitating the initiation of translation.

3.2.3 RNA Splicing

TheDNA template used to synthesize the pre-mRNA contains sequences, termed introns, which do
not code for any protein sequence. Before translation can occur, these non-coding sequences within
the RNAmust be removed via a process called splicing. In prokaryotes, which have more compact
genomes, there are no intronic sequences and so splicing is unnecessary.

Eukaryotic pre-mRNAs can include several intronic sequences that must be cleaved before the
initiation of translation and protein production. Intronic sequences are bordered by special
sequences, known as splice sites (5’ splice site and 3’ splice site), which are highly conserved and
serve as recognition signals in the splicing process. In addition to the splice sites, other sequences,
known as the branch point and a pyrimidine rich region (pyrimidine tract) are required for efficient
splicing (Fig. 3.2A). The branch point contains an invariable adenine residue found within a
conserved sequence. Sequences located within exons (protein coding regions) called exonic splicing
enhancers (ESEs) are also required [5,6]. These sequences ensure accurate recognition and splicing
of introns. Precision of splicing is essential as the addition or removal of a single nucleotide can shift
the reading frame of the mRNA and can result in the formation of a non-functional protein.

Splicing occurs via two sequential trans-esterification reactions, which are depicted in Fig. 3.2B.
At first, the 2’OH group of the ribose sugar of the adenine residue (Fig. 3.2B, see A), also termed the
branch point, reacts with the phosphate at the 5’ end of the intron. This reaction results in the
formation of a 2’-5’ phosphodiester bond and a looped structure called a lariat. Secondly, together
the free 3’OH group of exon 1 reacts with the 5’ end of exon 2 which joins exon 1 and exon 2 and
releases the lariat (intron) which is then degraded.

The chemical reactions described above are regulated by a largemulti-protein complex called the
spliceosome, which assembles in a stepwise manner on the RNA transcript at intron/exon junc-
tions. Five small nuclear ribonucleoproteins (snRNPs) designated U1, U2 and U4-U6 and their
associated small nuclear RNAs (snRNAs) are essential for the spliceosome assembly at the splice
site. The establishment of an active spliceosome requires the coordinated assembly and disassembly
of the 5 snRNPs and several rearrangements of the RNA [7].

The steps in the assembly of the spliceosome are depicted in Fig. 3.3. TheU1 snRNP binds to the
pre-mRNA at the 5’splice site whereas the U1 snRNA base pairs with the conserved sequence in
the 5’splice site. Branch- point binding protein (BBP) and the helper proteinU2AF are bound to the
branch point A, and recruit U2 snRNP. Base pairing between U2 snRNA and the bases surround-
ing the A residue displaces BBP and U2AF and causes the A to bulge out of the pre-mRNA. This
places the 2’OH group of the branch point adenosine residue in a favorable position to react with
the phosphate at the 5’ end of the intron. U4,U5, and U6 binding to the 5’splice site results in
changes in RNA-RNA interactions within and among the three snRNPs. Consequently, U6 and
U2 interact, U1 and U4 are released, and the first trans-esterification reaction occurs. Binding of

3 RNA Processing Translation 53



U5 snRNA with exon 1 stabilizes this site and allows for the interaction with the 3’splice site.
Subsequently, U6 catalyzes the second trans-esterification reaction, which involves the reaction of
the free 3’OH group of exon 1 with the 5’ end of exon 2. Exon 1 and exon 2 are joined together
triggering the release of the lariat.

Components that recruit the snRNPs to the splice sites are bound to the CTDof RNApolymerase
during transcription, effectively linking the process of transcriptional elongation with splicing.
Similar to capping and polyadenylation, RNA polymerase appears to form a platform for the
association of the proteins that will be required for the modification of the nascent transcript [8,9].

3.2.3.1 Alternative Splicing

It is possible to generate different mature mRNAs from a single transcript by splicing events. For
example, consider the splicing of a pre-mRNA containing the exons A, B, C, and D (from 5’ to 3’).
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Fig. 3.2 Splicing of pre-mRNA. (A)Eukaryotic pre-mRNAs generally contain conserved sequences at each end of an
intron. The 5’ (G/GU) splice site and the 3’ (AG/G) splice site are located within these conserved sequences.
A pyrimidine tract is located near the 3’ end of the intron. (B) The steps of RNA splicing. The 2’ OH group in the
ribose sugar of the adenine residue (at the branch point) reacts with the 5’ phosphate of the guanosine nucleotide, at
the 5’ splice site, which results in a 2’-5’ phosphodiester bond. The looped structure formed is termed a lariat. The free
3’ OH at the end of Exon 1 reacts with the 5’ phosphate at the beginning of Exon 2. This results in the joining of Exon
1 with Exon 2 and the release of the lariat, which is degraded (Copies of figures including color copies, where
applicable, are available in the accompanying CD)
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It is possible that, depending on which splice sites are used, different mRNA species will be
produced (for example A-B-C-D, A-C-D, A-B-D among others). In this example, the prediction
of some of the mRNA species required the splicing of exons along with introns, producing a unique
sequence. The end product includes mature mRNAmolecules with different information, which in
effect produces different proteins. The significance of alternative splicing lies in the fact that a single
gene can give rise to different protein products. Consequently, the alternate proteins produced may
differ in binding properties, intracellular localization, enzymatic activity, and protein stability and
increase the variability of the cellular response.
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Fig. 3.3 Assembly of the Splicing Machinery. The removal of introns in pre-mRNA requires the coordinated
assembly and disassembly of a multi-protein complex termed the spliceosome. The spliceosome contains five small
nuclear ribonucleoproteins (snRNPs) (U1, U2, U4, U5, and U6). See text for details. BBP – Branch-point binding
protein (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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Exonic splicing enhancers (ESEs) determine which exons are retained in the mature mRNA and
which are spliced out via the recruitment of serine-arginine-rich (SR) proteins (7,10). SR proteins
are nuclear phoshoproteins that contain two domains: an N-terminal RNA binding domain and a
C-terminal SR-rich domain. Recent studies showed that U1snRNP/SR associates with RNA
polymerase II suggesting that the coupling of transcription and splicing results in highly efficient
splicing of pre-mRNA transcripts [11,12].

3.3 Translation

Translation is the process by which the processed mature mRNA is used as a template for protein
synthesis. Translation is a highly regulated process that requires a cell organelle termed ribosome.
RNA has proven to play a very important role during translation. Not only is mRNA a copy of the
genetic information of DNA, the process of translation requires other RNA molecules such as
transfer RNAs and ribosomal RNAs.

3.3.1 Messenger RNA

Messenger RNA (mRNA) serves as the template for protein synthesis. The mRNA molecules are
polymers of nucleotides (sugar, phosphate, and base) whose sequence of bases specify the primary
structure (amino acid sequence) of a protein. How does a sequence of bases translate into a
sequence of amino acids? If each of the four bases coded for 1 amino acid, there would not be
sufficient bases to encode all amino acids (20 in total). Using a combination of 2 nucleotides would
still not suffice to code for all 20 amino acids (42 ¼ 16). However, a combination of three
nucleotides would consist of more than enough codes to specify all amino acids (43 ¼ 64). A
three-letter code was discovered, termed the genetic code. Each triplet of bases that is translated
into an amino acid is called a codon. The majority of codons (61 of the 64), specify individual amino
acids, while the remaining three codons (UAA, UAG, and UGA) act as termination signals, which
indicate to the translation machinery that the protein synthesis is complete. All the possible
codons and the amino acids they code for are shown in Table 3.1. Since the genetic code produces

Table 3. 1 Genetic Code. All the possible combinations of triplet nucleotides (codons) are shown. Each codon codes
for a particular amino acid (except the stop codons UAA, UAG, and UGA)

5’ U C A G 3’

U UUU Phe UCU Ser UAU Tyr UGU Cys U

UUC Phe UCC UAC Tyr UGC Cys

UUA Leu UCA UAA Stop UGA Stop

UUG Leu UCG UAG Stop UGG Trp

C CUU Leu CCU Pro CAU His CGU Arg C

CUC CCC CAC His CGC

CUA CCA CAA Gln CGA

CUG CCG CAG Gln CGG

A AUU lle ACU Thr AAU Asn AGU Ser A

AUC lle ACC AAC Asn AGC Ser

AUA lle ACA AAA Lys AGA Arg

AUG Met ACG AAG Lys AGG Arg

G GUU Val GCU Ala GAU Asp GGU Gly G

GUC GCC GAC Asp GGC

GUA GCA GAA Glu GGA

GUG GCG GAG Glu GGG

(Copies of tables are available in the accompanying CD.)
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an excess of combinations to code for the amino acids, one amino acid can havemore than one codon
(e.g. serine, proline, and threonine). Thus, the genetic code is redundant but not ambiguous.

Codons are read by the ribosome in a 5’ to 3’ direction along themRNA. It is possible to produce
very different proteins depending on where the translation machinery starts the translation of the
message. For example, consider the mRNA molecule 5’. . .UUUCCCAAAGGG. . .3’. If transla-
tion were to start at the first U, the protein sequence would read Phe-Leu-Ile-Gly. However, if the
sequence is read from the second U, this sequence of nucleotides would code for the amino acids
Phe-Pro-Lys- and if read from the third U, Ser-Gln-Arg. Thus the same mRNA can be read in
3 frames, which produce very different protein products. Indeed, identifying the correct starting
point for translation is essential for the production of functional proteins. The first codon to be read
by the translation machinery is the ‘start’ codon. The codon AUG which codes for the amino acid
methionine is the first amino acid of almost all proteins. The sequence between the start codon
and one of the possible stop codons makes up the open reading frame of the mRNA.

3.3.2 Transfer RNA

During the process of translation, transfer RNA (tRNAs), serve as ‘adapter’ molecules between the
amino acid and the corresponding codon in the template mRNA [13]. tRNAs are small (75–95 nucleo-
tides long) non-coding RNAs that contain complementary regions. These complementary regions base
pair and formdouble helical ‘stem’ structures, while the non-complementary bases form ‘loop’ structures.
In two-dimensions, tRNAs resemble a cloverleaf structure made up of four base paired stems and three
loops: D loop (usually contains dihydrouridine), T�CG loop (where � is a pseudouridine), and the
anticodon loop (Fig. 3.4). The interaction between the D loop and the T�CG loop causes the tRNA to
fold into its classic L-shape structure. The three nucleotides that base pair with the three complementary
nucleotides of a codon in the mRNA are called the anticodon, found in the anticodon loop.

The acceptor arm includes a 3’ acceptor site that contains the invariable 5’-CCA-3’ sequence.
The 3’-OH or 2’-OH of this last adenine residue is covalently linked to the carboxyl group of an
amino acid by an ester bond. A tRNAmolecule linked to an amino acid is referred to as a ‘charged’
tRNA and is produced by the enzymatic activity of the aminoacyl-tRNA synthetase (aa-tRNA
synthetase). There are 20 different aa-tRNA synthetases, one for each amino acid. Aminoacyl
synthetases recognize tRNAs by interacting with the anticodon, acceptor arm, and variable pockets
and loops in the tRNAmolecule [14,15]. Each tRNA is recognized by one aa-tRNA synthetase and
is therefore linked to one amino acid, which ensures the specificity of the translation process.

3.3.3 Wobble Base Pair

The genetic code contains 61 codons and 20 amino acids. It was first thought that there would be 61
tRNAs, one corresponding to each codon. However, many cells contain less than 61 tRNAs. Upon
closer examination of the genetic code, amino acids with more than one codon, all have the same
first two bases, but differ in the last base. For example, CUU, CUC, CUA and CUG all code for
Leucine. Furthermore, it was observed that the first base (5’) of the tRNA anticodon does not
necessarily follow standard Watson-Crick base pair rules with the third (3’) base of the mRNA.
This is due to the phenomenon known as wobble base pairing [reviewed in 16]. In fact, the first base
(5’) of the anticodon frequently is ionisine, which can base pair with A, C or U (Fig. 3.4). For
example, the anticodon 5’ IAG 3’, which would carry the leucine amino acid, would recognize all
four codons for leucine. Therefore for many amino acids, it is the base pairing between the first two
bases of the codon in mRNA, and the last two bases of the anticodon in tRNA that is required for
proper recognition. This results in a genetic code that is more tolerant of point mutations.
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3.3.4 Ribosomal RNA

Ribosomal RNA (rRNA) is a non-coding RNA that associates with ribosomes. In eukaryotes, one
mRNA transcript codes for three of the four cytoplasmic rRNAs, which is subsequently cleaved into
RNA products of varying lengths (18S, 5.8S, and 28S). The fourth rRNA, is transcribed indepen-
dently (5S rRNA). The rRNA molecules make up �80% of the total RNA molecules found in a
typical cell. Similar to tRNAs, rRNAs form secondary and tertiary structures which are important
for their functions. Ribosomal proteins in the cytoplasm are transported into the nucleus where they
are assembled with the rRNAs and then transported back into the cytoplasm. As amajor constituent
of the ribosome, rRNAs play several key roles. rRNAs are important for stabilizing proteins in the
ribosome, attracting mRNA molecules, catalyzing peptide-bond formation, recruiting accessory
factors, and for proper interaction between the large and small ribosomal subunits during elongation.

3.3.5 Ribosome

A multi-protein complex associated with a distinct set of rRNAs, make up the small and large
subunit of the ribosome (summarized in Table 3.2). In prokaryotes, the small subunit (30S)
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contains 21 proteins (designated S1-S21) and a 16S rRNA. The large subunit (50S) contains
34 proteins (designated L1-L34) and a 5S and 23S rRNA. In eukaryotes, the small subunit (40S)
contains 33 proteins and an 18S rRNA and the large subunit (60S) contains 49 proteins and a 5S,
28S and 5.8S rRNA.

The small and large subunits are joined, and they form a space that becomes occupied with the
mRNA and tRNAs (17–19). The small subunit is particularly complex in structure, with features
called the head, neck, shoulder, body, platform, and spur [20]. The head is predominantly active
during translocation. The portion of the small subunit that faces the large subunit forming the
space is lined with rRNA. X-ray crystallography of the two ribosomal subunits in prokaryotes,
shows the tRNAs bound at three sites termed the A (aminoacyl) site, the P (peptidyl) site, and the E
(exit) site (Fig. 3.5) Permission – Cate et al., 1999 [21]. In addition to creating a platform onto which
the mRNA meets tRNAs, the ribosome (large subunit) contains what is termed the peptidyl-
transfer center (PTC), which catalyzes the formation of peptide-bonds between amino acids. This
catalytic site in the large subunit is also lined by rRNA and it is proposed that the rRNA houses
the catalytic activity.While the PTC is important for the stabilization of the two aminoacyl-tRNAs,
the exact mechanism of catalysis is not clear. The large subunit also contains a tunnel through
which the newly synthesized polypeptide chain travels and finally exits at the exit channel.

3.4 The Steps of Protein Synthesis

The synthesis of a protein requires the proper assembly of the ‘protein factory’, which includes
ribosomes, tRNAs charged with their corresponding amino acid, mRNA, accessory factors, and
GTP. Protein synthesis can be divided into 3 stages: initiation, elongation, and termination.

Fig. 3.5 Model for the bacterial 70S ribosome. Data fromX-ray crystal structures of the 70S bacterial ribosome were
used to construct the model shown. The small and large subunits are depicted with three tRNAs positioned in the A,
P, and E sites. From Cate JH, Yusupov MM, Yusupova GZ., Earnest TN, and Noller HF. (1999) X-ray Crystal
Structures of 70S Ribosome Functional Complexes. Science 285(5436): 2095–2104. Reprinted with permission
from AAAS (Copies of figures including color copies, where applicable, are available in the accompanying CD)

Table 3.2 The constituents of the small and large subunits of the ribosome in prokaryotes and eukaryotes

Cell type Proteins rRNA

Subunit Prok. Euk. Prok. Euk. Prok. Euk.

Small 30S 40S 21 33 16S 18S

Large 50S 60S 34 49 5S, 23S 5S, 28S, 5.8S

S stands for Svedberg, a measure of the sedimentation rate of suspended particles centrifuged under
standard conditions
(Copies of tables are available in the accompanying CD.)
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3.4.1 Initiation in Prokaryotes

Initiation begins with the binding of the small subunit (30S) to the start site of the mRNA [reviewed
in 22,23]. The start site of the messager RNA is specified by the start codon, AUG, which codes for
the amino acid methionine. Methionine is generally the amino acid found at the beginning of all
proteins, however, methionine is also found within proteins. Therefore, the ribosome must bind at
the AUG, which specifies the start site. In prokaryotes, the presence of a sequence (Shine-Delgarno
sequence), located upstream of the start codon indicates the correct start codon. Base pairing
occurs between the 16S rRNA (in the small subunit) and the Shine-Delgarno sequence (in the
mRNA) which allows for enhanced binding of the 30S subunit at the starting AUG codon. The
AUG is positioned in the P-site of the ribosome (see below).

The efficient binding of the small subunit (30S) to the mRNA requires accessory factors termed
initiation factors (IFs). In prokaryotes, three IFs (IF1, IF2, and IF3) are involved. IF1, assists in the
binding of the small subunit to the mRNA and also binds to and blocks the A-site. This directs the
initial aminoacyl-tRNA to enter the P-site. IF2 bound toGTP associates with the initial aminoacyl-
tRNA and recruits it into the P-site. IF3 is thought to prevent binding of the large subunit (50S) to
the small subunit until the small subunit (30S) binds the mRNA and the aminoacyl-tRNA, causing
hydrolysis of GTP-IF2 and the release of IF3.

Since methionine residues not only initiate a protein sequence but are also found throughout a
protein, there are 2 methionyl-tRNAs. One type is the initiator tRNAs that are only incorporated
at the starting AUG site. In prokaryotes, the initiator methionine is tRNAfMet, where the methio-
nine is modified to contain a formyl group that is later enzymatically removed. In eukaryotes, the
initiator methionine is tRNAiMet. For methionines incorporated within the peptide chain, another
tRNA is used (tRNAm

Met in prokaryotes and tRNAMet in eukaryotes). The same aminoacyl-tRNA
synthetase (Met-tRNA synthetase), can add Met to both of these tRNAs, however only the Met-
tRNAiMet can bind to the codon methionine which specifies the start site for translation.

3.4.2 Initiation in Eukaryotes

Protein translation in eukaryotes is similar to that of prokaryotes, however, there is a higher degree
of complexity [reviewed in 22,23]. Eukaryotic mRNAs contain a 5’methylguanosine cap and a 3’
polyadenine tail (poly[A] tail), larger ribosomes and several initiation factors (eIFs, ‘e’ for eukar-
yotic). Distinct from prokaryotes, the small subunit (40S) forms a 43S ‘pre-initiation complex’. This
complex includes the small ribosome (40S) bound with the charged initiator tRNA (Met-
tRNAi

Met)/eIF2-GTP. Thus, the initiator tRNA is bound to the P-site of the ribosome before the
ribosome interacts with the mRNA (Fig. 3.6). Recall that in prokaryotes, the ribosome binds
directly to the AUG in the mRNA and thereafter the charged initiator tRNA is recruited.

The initiation factors eIF1, eIF1A, and eIF3 are bound to the small subunit (40S), and they
facilitate the binding of the small subunit to themRNA (Fig. 3.6). Several eIFs are already bound to
the mRNA. For instance, eIF4E binds the 5’cap, eIF4F acts as an RNA helicase to remove any
double stranded mRNA that would interfere with the movement of the ribosome, and eIF4G links
the 5’ capped end of the mRNA to the 3’ poly (A) end, by interacting with eIF4E and poly(A)
binding proteins (PABPs). The eIF3 in the pre-initiation complex interacts with eIF4G, bringing
the 40S subunit in association with the mRNA. eIF1A/eIF3 assists in scanning of the pre-initiation
complex along the mRNA in search of the AUG codon [24]. The AUG (usually 5’-
CCACCAUGC-3’) is found by its base pairing with the Met-tRNAi

Met, after which eIF2-GTP is
hydrolyzed and then eIF5 (not shown) aids in the release of eIF2-GDP, eIF3, and eIF4. Finally, the
large ribosomal subunit (60S) then binds to complete initiation. Interestingly, rather than using this
scanning mechanism for the initiation of translation, in some cases, ribosomes have been shown to
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bind directly at sites within the 5’untranslated region (UTR) called the internal ribosome entry sites
(IRES). IRES sequences are many bases in length and form complex secondary structures that can
bind the pre-initiation complex (reviewed in [25]).

Initiation of translation requires the proper assembly of all eIFs at the 5’ cap along with its
interaction with the poly(A) binding proteins. Interference results in the repression of translation.
In fact, this is one method the cell utilizes to regulate the amount of protein to be synthesized from a
particular mRNA. For instance, in response to various stimuli, active phosphorylated eIF2 is
diminished and/or eIF4E is sequestered by other proteins, which inhibits translation. In addition to
limiting eIFs, regions in the 5’UTR and 3’UTR of some mRNAs are involved in regulating
translation [26]. Secondary stem-loop structures in the 5’UTR block assembly of the pre-initiation
complex and/or the scanning of the ribosome [27–29]. In some cases, proteins bind and stabilize
these secondary structures. The 3’UTR may also bind proteins that cause the inhibition of
translation. Interestingly, small strands of RNA (20–25 nucleotides) termed microRNAs
(miRNAs) can also bind to regions of the 3’UTR and prevent translation [30,31].

3.4.3 Elongation

Initiation has now set in place all the required factors to begin decoding the information in the
mRNA (Fig. 3.7). The P-site is occupied by aminoacyl-tRNAi

Met and the A-site is empty awaiting
the entry of the appropriate aminoacyl-tRNA. The tRNAs travel through the three sites A, P, and
E. Similar to initiation, accessory factors are required to enhance the efficiency of the elongation

Fig. 3.6 Initiation of translation in eukaryotes. The initiation of translation requires the bindingof the ribosome to the start
site of the mRNA. Initiation is facilitated by several initiation factors (eIFs, e = eukaryotic). There are 3 steps: (1) the
formation of the pre-initiation complex, (2) the binding of the pre-initiation complex to the 5’ endof themRNA, and (3) the
binding of the large (60S) subunit with the release of eIF2-GDP and other eIFs (eIF1, eIF1A, eIF3). The pre-initiation
complex contains the 40S subunit bound to eIF1, eIF3, and eIF2, which is itself bound to Met-tRNAi

Met. Initiation in
prokaryotes is similar, but however, less complex (see text). The eIFs involved are listed to the right, indicating their
role and function during initiation (Copies of figures including color copies, where applicable, are available in the
accompanying CD)
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process. For example, the elongation factor EF-Tu (eEF1� in eukaryotes) binds to GTP and
recruits the aminoacyl-tRNA to the A-site. To ensure that the correct aminoacyl-tRNA
interacts stably with the A-site, it must contain the correct anticodon, and interact with the
16S rRNA [19]. If correct matching is in place, the ribosome-tRNA complex is stabilized and
translation can occur. EF-Tu hydrolyzes the bound GTP and EF-Tu-GDP is released from the
tRNA. In the absence of this proper stabilization of the ribosome, the tRNA will dissociate
from the complex.

Recent studies with improved resolution of the 70S ribosome of Escherichia coli bound to
mRNA and tRNAs, confirm a sharp bend between the codons in the A-site and P-site [19]. This
kink is thought to prevent the mRNA from slipping out of the ribosome and becoming out of
frame. Furthermore, it was observed that a magnesium ion is responsible for stabilizing this bend
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mRNA

Large subunit (50S)

Small subunit (30S)

Fig. 3.7 The stages of elongation. (1) The first step of initiation positions the ribosome at the start codon (AUG) along the
mRNA, which is base-paired with the initiator tRNA, which occupies the P-site. The codon exposed to the A site is CGC
which codes for arginine. EF-Tu bound to GTP recruits an aminoacyl (arginine) tRNA to the A-site. (2) A correct match
between the anticodon of theArg-tRNAand the codon of themRNAallows for hydrolysis ofGTP and the release of EF-
Tu-GDP. (3) A peptide-bond formation between methionine and arginine is catalyzed within the peptidyl transferase
center (PTC) of the large subunit. The P-site tRNA is deacylated, andmethionine is linked to the arginine on the A-site of
the tRNA. (4) The binding of EF-G-GTP and the subsequent hydrolysis of GTP toGDP provides the energy for the shift
of the mRNA, with its attached tRNAs through the ribosome. (5) The ribosomemoves or translocates forward along the
mRNA by three codons in a 5’ to 3’ direction. Thus, the dipeptidyl-tRNA is shifted from the A-site to the P-site, and the
deacylated tRNA is shifted from the P-site to theE-site. The next three codons of themRNAare nowexposed to theA-site
(CUC), which codes for leucine. Again, the next tRNAwill enter the A-site, the arginine will be linked to the leucine, and
the ribosome will shift by three codons. This cycle continues, until the ribosome reaches a stop codon (Copies of figures
including color copies, where applicable, are available in the accompanying CD)
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[18]. The tRNA in the P-site is securely bound and surrounded by rRNA and ribosomal proteins
from both subunits. This is thought to prevent loss of the peptidyl tRNA and also maintain the
reading frame.

The acceptor arms of the tRNAs in the P-site and A-site are located in the PTC of the large
subunit. The PTC catalyzes a reaction between the amino acid components of the charged tRNAs.
The carbonyl group of the aminoacyl-tRNA in the P-site reacts with the amino group of the
aminoacyl-tRNA in the A-site, forming a peptide-bond and releasing water. This reaction occurs
spontaneously and the bond produced is extremely stable. The end result is a dipeptidyl-tRNA in
the A-site and a deacylated-tRNA in the P-site.

Once the amino acids are linked together, the ribosome shifts in the 5’ to 3’ direction along the
mRNA. Translocation of the ribosome is highly intricate and requires specific interactions between
the small and large subunits [18–20]. The small subunit moves against the large subunit in a fashion
that ‘pulls’ the mRNA through the ribosome like a filmstrip. The dipeptide tRNA in the A-site
shifts into the P-site and the deacylated tRNA in the P-site shifts into the E-site. The GTP-bound
elongation factor EF-G (eEF2 in eukaryotes) binds to the ribosome where hydrolysis of GTP
to GDP provides energy for translocation. After translocation, the next codon now occupies the
A-site and a new aminoacyl-tRNA is recruited into the A-site. The cycle of aminoacyl-tRNA
acceptance, peptide-bond formation and translocation continues until the ribosome reaches a stop
codon. The peptide chain elongates one amino acid at a time, translocating through a tunnel within
the large subunit and finally leaves the ribosome through an exit channel.

3.4.4 Termination

Termination of translation occurs when one of the three codons (UAA, UAG, or UGA) occupies
the A-site. Rather than coding for an amino acid, these codons bind release factors (RFs), a family
of factors containing a conserved tripeptide that is proposed to directly interact with the stop
codon. There are three RFs in bacteria: RF1 (binds codonsUAA andUAG), RF2 (binds UAA and
UGA) and the G-protein RF3 which enhances the activity of both RF1 and RF2. In eukaryotes,
there are two release factors eRF1 (binds to all stop codons) and the G-protein eRF3 (enhances
eRF1 activity).

Once the ribosome reaches a stop codon the release factors enter the A-site. In the P-site, the last
amino acid of the peptide is still attached to its tRNA through an ester linkage. The binding of
release factors to the A-site causes the transfer of a water molecule to the C-terminal end of the
peptide. Hydrolysis allows for the release of the nascent peptide chain and the disassembly of the
small and large subunits of the ribosome.

Glossary and Abbreviations

RNA Processing

Alternative splicing refers to the splicing events of pre-mRNA that results in different combina-
tions of exons and gives rise to slightly different forms of proteins.

Branch point sequence a conserved sequence located near the 3’ end of the intron that contains a
conserved adenine required for the first step of splicing.

BBP Branch-point binding protein
C-terminal domain (CTD) a domain within the large subunit of RNA polymerase II, which is

subject to phosphorylation; CTD serves as a major platform for binding of many factors
including transcription factors.
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CPSF Cleavage and polyadenylation specificity factor
CstF Cleavage stimulation factor
Exon the segments of genes that code for a protein; it is the sequence of bases in the genetic

information that will be translated into proteins.
Exonic splicing enhancers (ESEs) sequences in exons that act on splice sites to accurately recruit the

splicing machinery.
Intron the ‘non-coding’ segments of genes; the sequence of bases in the genetic information that

will be removed or spliced from pre-mRNA and not be translated into proteins.
Messenger RNA (mRNA) the RNA transcribed from DNA (the message) and refers to the mature

RNA transcript that has undergone 5’capping, 3’polyadenylation and splicing.
PABPs Polyadenylate binding proteins
Polyadenylation the addition of adenine residues (to the 3’ end of mRNA).
Poly(A) Binding proteins
Precursor mRNA (pre-mRNA) describes the mRNA in its nascent form after transcription and

before being processed or modified. Also referred to as the primary transcript.
RFs Release factors
Small nuclear ribonucleoproteins (snRNPs) particles made up of protein and RNA that recognize

and bind to splice sites in mRNA and serve as a docking site for the spliceosome.
Small nuclear RNA (snRNA) small molecules of RNA that are always associated with proteins

forming what is termed small nuclear ribonucleoproteins (snRNPs), and are important in RNA
splicing.

Spliceosome a complex involved in RNA splicing that contains 5 small nuclear ribonucleoproteins
(snRNPs).

Splice sites sites within the RNA that contain conserved sequences that are recognized by the
splicing machinery, resulting in cleavage at these sites.

SR Serine-arginine-rich
Trans-esterification the chemical reaction that occurs during splicing where one ester bond is

exchanged for another.
UTRs Untranslated regions

Translation

A site or aminoacyl site site of the ribosome that binds incoming tRNAs charged with an amino
acid.

Anticodon a region of the tRNAmolecule that consists of the three bases that will complementarily
base pair with the corresponding codon in mRNA during translation.

Codon a triplet sequence of RNA that codes for a specific amino acid.
E site or exit site site in the ribosome that occupies the deacylated tRNAs.
Genetic code a list of codons that were discovered to code for a particular amino acid, which is

universal across all species.
Internal ribosome entry site (IRES) are sequence elements located in the 5’ untranslated region of

eukaryotic mRNAs where ribosomes can bind and initiate translation.
Peptide-bond the bond formed after a reaction between an amino group and a carboxyl group

resulting in the release of a water molecule:

-C-N- + H2O

O

-C-OH + NH2

H

O

P site or peptidyl site site in the ribosome that is occupied by the tRNA which is linked to the
elongating peptide chain of amino acids.
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Peptidyl transfer center (PTC) the region in the large subunit of the ribosome that catalyzes the
peptide-bond formation between the amino acid linked to the tRNA in the A-site and the amino
acid linked to the tRNA in the P-site.

Ribosome a complex of proteins made up of two subunits, the small and large subunits, which
together function in the binding of mRNA and the synthesis of the peptide chain coded in the
particular mRNA.

Shine-Delgarno sequence a specific sequence of bases located upstream of the start codon in the
mRNA of prokaryotes. This sequence, base pairs with regions of the 16S rRNA found in
the small subunit of the ribosome, thereby facilitating the binding of the small ribosome to the
mRNA during the initiation of translation.

Translocation the movement of the ribosome relative to the mRNA during translation which is
catalyzed by the binding of EF-G-GTP and the hydrolysis of the GTP to GDP.

Wobble base pair a base pair that does not follow the standardWatson-Crick base pair rules (G-U)
or that which is formed between U, A, C, and the modified base I (ionosine). Wobble base
pairing occurs frequently in the secondary structures of RNAmolecules and plays an important
role in the base pairing between the first (5’) position in the anticodon of tRNA and the last (3’)
position in the codon of mRNA.
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Chapter 4

DNA Replication, Recombination, and Repair

Linda B. Bloom

Abstract The instructions needed for producing all the components of a cell and for regulating
their functions are encoded in the sequence of DNA. Accurate transmission of this information to
the progeny and protection of the genome from chemical degradation are essential to life. Com-
plementary base pairing in duplex DNA provides an elegant means for accurate replication of
DNA and repair of DNA damage. Each strand of the duplex provides a template for generating the
other strand and in essence acts as a ‘‘back-up copy’’ of the information. The many different
proteins and enzymes required to physically manipulate large DNA polymers in replication,
recombination, and repair, take advantage of the complementary base pairing between the strands
to accomplish their tasks. These enzymes are capable of a sufficient level of accuracy to maintain
genetic integrity, yet also allow a low level of mutations to generate genetic diversity ultimately
allowing a population to adapt to changing conditions. Understanding how the cellular machinery
functions to replicate, recombine, and repair the genome is central to understanding evolution of
species and the origin of genetic diseases and cancer.

Keywords DNA replication � DNA recombination � DNA repair � Replication fidelity � DNA
damage

4.1 Introduction

DNA contains an instruction set, which is used by cells, to produce and regulate the components
necessary for their survival. This information is encoded in the order, or sequence, of the four
possible nucleotide bases that are covalently linked to form a linear DNA polymer. Hydrogen
bonding interactions between complementary base pairs bring two linear DNA polymers together
to form a double helical structure. James Watson and Francis Crick not only deduced the double
helical structure of DNA, but also recognized that hydrogen bonding between complementary
DNA bases would provide a mechanism for DNA duplication [1]. Complementary, or Watson-
Crick, base pairing of adenine with thymine and guanine with cytosine (Fig. 4.1) allows one strand
of DNA to serve as a template for synthesis of the other strand by directing the incorporation of
complementary nucleotides into the new polymer. The double-stranded structure of DNA genomes
also provides a mechanism for preserving the code. If one strand of DNA is damaged, the other can
be used as a template to regenerate the damaged strand and recover information encoded in its
sequence.

L.B. Bloom
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room R3-234, Gainesville, FL 32610-0245, USA
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Typically, DNA replication, recombination, and repair are presented as three separate topics,
and these processes will be presented one-at-a-time here for clarity. However, at the outset, it
should be made clear that these processes are highly interdependent. Like any molecule, DNA can
become damaged or it can degrade with time. Damage that is encountered during the process of
DNA replication must be repaired either by recombination or other repair mechanisms in order for
replication to be completed. DNA recombination and repair that occurs outside the replication
phase of the cell cycle requires limited DNA synthesis which is catalyzed by many of the same
enzymes that function during replication.

4.2 DNA Replication

4.2.1 Overview of DNA Replication

The overall process of DNA replication and many of the key enzymes have been conserved from
organisms ranging from bacteria to man. Immediately prior to every cell division, the DNA
genome must be duplicated, so that each daughter cell receives an identical copy of the instruction
set (Fig. 4.2). Genome replication is not a trivial task. The genome of the bacterium Escherichia coli
(E. coli), amodel organism, is comprised of about 5million base pairs ofDNA, organized in a single
circular chromosome, or individual DNA molecule. Human cells at mitosis contain about a
thousand timesmore DNAor 6 billion base pairs of DNAwhich divide into 46 linear chromosomes
(see Fig. 4.2 legend). Individual human chromosomes range in size from about 50–250 million base

Fig. 4.1 (A) Chemical structures for Watson-Crick A �T and G�C base pairs. Adenine and guanine are purines and
cytosine and thymine are pyrimidines. For each Watson-Crick base pair, a purine pairs with a pyrimidine to make a
base pair that has the same overall size and shape. (B) Unwinding of the DNA helix for initiation of replication.

Schematic representation of aDNAduplex is shown in the upper panel in which each ‘‘rung’’ of the ‘‘ladder’’ structure
represents an individual Watson-Crick base pair as shown in A. A small region of DNA is initially unwound by the
activities of the initiator proteins to form a bubble. DNA helicases are loaded at the unwound site that unwinds the
DNA duplex further. The rest of the components of the replisome bind and begin DNA synthesis. Ultimately, two
replication forks (circled structures) form andmove away from the origin synthesizing theDNA as they go (Copies of
figures including color copies, where applicable, are available in the accompanying CD)
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pairs, and if stretched out, they would range in length from 1.7–8.5 cm.Many enzymes and proteins
are required to physically manipulate these large DNA polymers to catalyze the synthesis of new
DNA, and to ensure that DNA replication is accurate. In addition, the process of DNA replication
must be regulated so that the entire genome is duplicated only once, and each daughter cell receives
a complete instruction set.

DNA replication begins at a specific time in the cell cycle and at specific sites, termed as replication
origins, in the genome. The DNA duplex is unwound at the replication origins to allow the enzymes
that synthesize DNA access to the individual DNA strands (Fig. 4.1). Each strand of parental DNA
serves as a template for a DNA polymerase to synthesize a new strand of DNA. Single nucleotide
monomers that form complementary base pairs with the parental template are incorporated into a
new DNA polymer by DNA polymerases. As the new DNA grows, the parental duplex is

Fig. 4.2 Mitotic cell division in eukaryotes. Most eukaryotic cells are diploid in that they contain two copies of each
chromosome, one derived from each parent. Human cells contain 22 pairs of homologous chromosomes plus two sex
chromosomes, two X chromosomes in females or an X and Y chromosome in males, making a total of 46
chromosomes. A single pair of homologous chromosomes is shown in this figure for simplicity. Prior to cell
division, chromosomes are duplicated by the process of DNA replication. After replication, the replication
products, the sister chromatids, remain tethered together by proteins until the cell divides. This physical linkage is
required to help ensure that the chromosomes are properly segregated (divided equally) between the two daughter
cells. During cell division, sister chromatids separate and each daughter cell receives one copy of each pair of
homologous chromosomes. Genome duplication and cell division is similar in bacteria except that bacterial cells
are typically haploid and only contain a single copy of each chromosome (Copies of figures including color copies,
where applicable, are available in the accompanying CD)
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progressively unwound forming replication forks that move away from their origin. In E. coli,
replication forks move at a rate of about 500 nucleotides per second while in eukaryotes they move
about 10 times slower. DNA replication is semi-conservative, ultimately forming two DNA double
helices that contain one strand of parental DNA and one strand of new DNA.

Much of our knowledge of the biochemistry of DNA replication is based on the studies of model
systems such as E. coli, however, more recent investigations of eukaryotic replication mechanisms
are revealing that many of the key features of the bacterial replication machinery are also common
to eukaryotes. The process of DNA replication in these model organisms will be compared and
contrasted with that of eukaryotes.

4.2.2 Initiation of DNA Replication

Initiation of DNA replication requires two elements, a site on the DNA where replication will start
or originate and an initiator protein [2, 3]. Origins of DNA replication have been fairly well defined
for unicellular organisms such as bacteria and yeast, but not formulticellular eukaryotes. Origins of
DNA replication contain two general DNA sequence elements, an element that is recognized by
initiator proteins, and an element that is relatively easy to unwind. The E. coli genome contains a
single 245 base pair (bp) origin of replication, oriC, that contains several defined sequence elements.
Within the oriC are a series of 9-bp sequence elements that are recognized by the E. coli initiator
protein, DnaA [4], and three 13-bp AT-rich regions of DNA that are relatively easy to unwind.
Several DnaA molecules bind to oriC through interactions with the 9-bp repeats, and form a large
protein-DNA complex that bends the DNA to initiate unwinding of the DNA helix at the 13-bp
AT-rich sequence. Many of the steps in DNA replication, recombination, and repair, such as
unwinding of DNA at the origin, require energy to manipulate the structures of macromolecules
and disrupt noncovalent interactions such as hydrogen bonding between the two complementary
DNA strands. Enzymes that catalyze changes in these noncovalent interactions utilize the chemical
energy stored in the phosphoryl bonds of adenosine-5’-triphosphate (ATP) to domechanical work.
TheDnaA protein utilizes the energy gained fromATP hydrolysis to power the unwinding of DNA
at the origin.

Defined origins of replication, or autonomously replicating sequences (ARS), have been identi-
fied in the yeast Saccharomyces cerevisiae (S. cerevisiae) [5]. Unlike the E. coli genome, which
contains a single origin, eukaryotic genomes contain multiple origins of replication on a single
chromosome. Each origin initiates replication of a segment of the genome. S. cerevisiae origins
share key features with the E. coli origin, a sequence element recognized by the initiator proteins
and an A-T rich region that could be easily unwound. Yeast origins are recognized by an origin
recognition complex (ORC), which is composed of six different polypeptides. Like theE. coliDnaA
protein, ORC uses ATP to facilitate the initiation of replication.

The elements that constitute the origin of replication in multicellular eukaryotes remains to be
defined [5]. Initiation of replication has been identified at several loci, but conserved DNA
sequences such as the 9-bp site to which DnaA binds in E. coli have yet to be identified. It is
possible that epigenetic elements, or elements that are not defined by the sequence of nucleotides in
the DNA, such as the nature of the histone proteins that bind DNA, help to define origins of
replication in multicellular eukaryotes. It is estimated that the human genome contains about
30,000 origins of replication, of which each is responsible for replication of about 100,000 base pairs
of DNA. Initiator proteins in multicellular eukaryotes are homologous to those in yeast and are
comprised of six different ORC proteins [6].

Once the DNA duplex is opened, a DNA helicase is loaded to continue the unwinding DNA
process. DNA helicases are enzymes that utilize the energy from the hydrolysis of ribonucleoside
5’-triphosphates, most commonly ATP, to break the hydrogen-bonding interactions between

70 L.B. Bloom



complementary DNA strands and unwind the nucleic acid duplexes. In E. coli, six molecules of the
DnaB protein form a ring-shaped hexamer that encircles single-stranded DNA and functions as a
helicase. This hexameric helicase structure is common to other organisms including eukaryotes
where the MCM (mini-chromosome maintenance) proteins are believed to perform the function of
replicative DNA helicase. In E. coli, the DnaB hexamer is assembled around the DNA by the ATP-
dependent activity of a helicase loader, DnaC. Likewise in eukaryotic cells, helicase loaders, Cdc6
and Cdt1, are required to assemble the MCM proteins on DNA.

Before DNA synthesis can begin, RNA primers, which are short oligonucleotides on the order of
10–15 nucleotides in length must be made. DNA polymerases are unable to synthesize DNA de
novo and can only extend the RNA (or DNA) primers that are already paired with the template to
be copied. Primases synthesize these primers using ribonucleoside 5’-triphosphates as building
blocks to form a short strand of RNA complementary to the DNA template. The E. coli primase
interacts with the DnaB helicase and begins the synthesis of RNA primers shortly after DnaB has
begun to unwind DNA. In eukaryotes, a hybrid RNA-DNA primer is synthesized by an enzyme
complex containing both primase and DNA polymerase a. The primase synthesizes a short RNA
oligonucleotide which is then extended by DNA polymerase a. Replicative DNA polymerases,
DNApolymerase III inE. coli andDNApolymerases d and e in eukaryotes, extend these primers to
synthesize the bulk of DNA required to duplicate the genome.

Initiation of replication must be regulated, particularly in eukaryotic cells that contain multiple
chromosomes and multiple origins of replication, so that the entire genome is replicated only once.
The consequences of incomplete or over-replication of parts of the genome can be lethal to
eukaryotic cells, or at the very least, result in severe genetic abnormalities and diseases. In E. coli,
initiation of replication is regulated by controlling the access of DnaA to OriC, but it is not as
stringent as in eukaryotic cells. When E. coli is grown in a rich medium in a laboratory, re-initiation
of replication typically occurs prior to cell division. In eukaryotes, initiation of replication is tightly
regulated, and occurs in two phases. In the first phase, pre-replication complexes (pre-RCs)
composed of the initiator proteins (ORC), helicase loaders (Cdc6 and Cdt1), and helicase
(MCM) assemble at the origins. In the second phase, these pre-RCs are activated and the enzymes
begin to open theDNAduplex. These two phases are regulated by the activities of cyclin-dependent
kinases (CDKs), which are expressed at a specific phase of the cell cycle. Prior to the S phase, a
phase of the cell cycle in which DNA is replicated, CDK activity is low and pre-RCs assemble at
origins of replication. During the S phase, CDK levels increase and the origins are activated.
Importantly, new pre-RCs cannot form during the S-phase when CDK levels are high. This
prevents origins that have already been activated and which have initiated replication from being
rebound by initiator proteins and being re-replicated.

4.2.3 Enzymes at the Replication Fork

Assembly of the replisome is complete when the replicative DNA polymerase and its accessory
proteins join the helicase and primase at the replication fork [7] (Fig. 4.3). The replisome synthesizes
the new DNA, unwinding the parental duplex as it goes. The chemical synthesis of new DNA is
catalyzed by a DNA polymerase contained within the replisome. Cells contain many different
DNA polymerases that have different functions in DNA replication and repair. There are 5 known
DNA polymerases in E. coli and over a dozen in humans. In E. coli, DNA polymerase III catalyzes
the bulk of DNA synthesis during replication and DNA polymerases d and e do so in eukaryotes.

All DNA polymerases use 2’-deoxyribonucleoside 5’-triphosphates (dNTP’s) as monomeric
building blocks for making DNA. DNA polymerases catalyze the attack of the 3’ hydroxyl
group of the nucleotide at the primer end on the a-phosphoryl group of an incoming dNTP
displacing pyrophosphate (Fig. 4.4A). Thus, DNA polymerases extend the DNA polymers in the
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5’ to 3’ direction by incorporation of 2’-deoxyribonucleoside monophosphates. Watson-Crick base
pairing interactions between the incoming dNTP and the next unpaired template base direct the
incorporation of correct nucleotides. The frequency of addition of incorrect nucleotides can be less
than one in amillion, but even with this low error frequencymistakes will be made. To further reduce
errors, the DNA polymerases that function in replication contain a 3’ to 5’ exonuclease activity, that
allows them to proofread the nucleotides that have been incorporated. This exonuclease activity
catalyzes the hydrolysis of the phosphodiester bonds to remove the last nucleotide added to the 3’
primer end (Fig. 4.4B). Thus, a nucleotide that has been added incorrectly can be removed.

The overall efficiency of synthesis by DNA polymerases is enhanced by accessory proteins
which increase the processivity of the DNA polymerase, or in other words, the number of
nucleotides incorporated per DNA binding event. These accessory proteins consist of a ring-
shaped sliding clamp and a clamp loader that assembles the clamp on the DNA. Sliding clamps
[8, 9], made of identical protein subunits, encircle the DNA and are capable of sliding along the
DNA duplex (Fig. 4.5). When a DNA polymerase binds to a sliding clamp on the DNA, it is
effectively tethered to the DNA template, so that it is capable of incorporating thousands of
nucleotides without dissociating. In the absence of a sliding clamp, DNA synthesis is less efficient
because DNA polymerases frequently dissociate from the template and must rebind to continue
synthesis. Ring-shaped sliding clampsmust be assembled onto the DNA by the activities of clamp
loaders. Like DNA helicases, clamp loaders are enzymes that require energy from ATP to
catalyze the mechanical reaction of clamp loading. An interface between two clamp monomers
must be opened by the clamp loader to allow the DNA to pass through the center of the clamp.
After placing the ring on the DNA, this interface must close to prevent the clamp from easily
falling off from the DNA. The clamp loader uses energy from ATP to alter noncovalent interac-
tions and open the clamp.

Fig. 4.3 Proteins at the E. coli replication fork. A dimeric polymerase (golden brown) complex is capable of
coordinated DNA synthesis on the leading and lagging strands. The leading strand polymerase synthesizes new
DNA (gray) in the direction of the fork movement and the lagging strand polymerase synthesizes DNA (gray) in the
opposite direction. The hexameric helicase (six blue spheres) unwinds theDNA ahead of the polymerase, and primase
(red) makes RNA primers (blue lines) on the lagging strand. Single-stranded DNA that forms as the helix unwinds is
coated with single-stranded binding protein (purple) to prevent reannealing of strands and to remove secondary
structure that may form within a single-strand. Sliding clamps (green rings) are assembled on each primer on the
lagging strand by the clamp loading complex (yellow ‘‘C’’-shaped structure). Topoisomerase works ahead of the fork
to remove superhelical tension that forms in the duplex as a result of unwinding by the polymerases. The same basic
proteins are present at the eukaryotic replication fork (Copies of figures including color copies, where applicable, are
available in the accompanying CD)
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Fig. 4.5 Structures of sliding clamps from E. coli and humans. (Left panel) The E. coli b sliding clamp is a head-to-tail
dimer of identical monomer subunits. (PDB accession ID: 2pol [9] ) (Right panel) The human PCNA sliding clamp is
similar in overall structure to the b clamp, but is a trimer of identical monomers. (PDB accession ID: 1axc [8] ) Each
ring has a central hole that is large enough to encircle the B-DNA (Copies of figures including color copies, where
applicable, are available in the accompanying CD)

Fig. 4.4 Reactions catalyzed by DNA polymerases. (A) 2’-Deoxyribonucleoside 5’-triphosphates (dCTP in this
example) are used as substrates by DNA polymerases to extend the primer in template-directed reactions. The net
reaction is incorporation of 2’-deoxyribonucleoside monophosphates onto the 3’ hydroxyl of a primer with loss of a
pyrophosphate (PPi). (B) DNA polymerases can ‘‘proofread’’ newly incorporated nucleotides and excise incorrect
nucleotides. This excision reaction removes the last nucleotide that was incorporated by hydrolysis of the
phosphodiester bond to release a 2’-deoxyribonucleoside monophosphate (dTTP in this example). This is not the
reverse of the polymerase reaction because it produces a dNMP rather than a dNTP (Copies of figures including
color copies, where applicable, are available in the accompanying CD)
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4.2.4 Leading and Lagging Strand Synthesis

In E. coli, a complex containing a dimeric DNA polymerase and accessory proteins interacts
directly with the helicase and primase to form a replisome. This physical interaction stimulates
the activity of the helicase, and increases the rate of fork unwinding. The replisome, which contains
two copies of DNA polymerase III, is capable of simultaneously copying both strands of parental
DNA at the replication fork. But the twoDNA polymerases must work in opposite directions to do
this because DNA strands in a duplex are antiparallel and DNA polymerases can only synthesize
DNA in the 5’ to 3’ direction. To accomplish this, one DNA polymerase working on the leading
strand, synthesizes the DNA in a single continuous piece moving in the direction of the replication
fork. The other DNA polymerase working on the opposite or lagging strand, synthesizes the DNA in
short fragments called the Okazaki fragments after Reiji Okazaki whose work led to their discovery
(Figs. 4.1 and 4.3). As the fork progresses, a loop of single-stranded DNA is created on the lagging
strand and a primer is synthesized to begin synthesis of each Okazaki fragment. The clamp loader
loads a clampon each primer and the lagging strand polymerase extends these primers in the direction
opposite to fork movement until it encounters a completed Okazaki fragment. Then, the polymerase
dissociates and rebinds to a new primer closer to the fork and extends it. Thus, the lagging strand
polymerase must repeatedly dissociate from the completed Okazaki fragments and rebind to new
primers to continue DNA synthesis in a discontinuous manner. To date, there is no evidence for a
direct physical interaction between the leading and lagging strand polymerases in eukaryotes, how-
ever, one strand of DNA is synthesized continuously and the other discontinuously in Okazaki
fragments. In E. coli, Okazaki fragments are 1000–2000 nt in length and in eukaryotes they are
100–200 nt. The overall DNA synthesis is semi-discontinuous because it is synthesized as one
continuous strand on the leading strand and as discontinuous fragments on the lagging strand.

The process of unwinding the DNA helix causes the DNA helix ahead of the fork, to become
more tightly wound. If this superhelical tension created ahead of the advancing fork were not
relieved, it would become increasingly difficult to unwind the DNA at the fork and replication
would stop. This problem is overcome by topoisomerases, which are enzymes that function ahead
of the fork to remove the tension. Topoisomerases do this by physically breaking one or both
strands of DNA, passing DNA through the break, and rejoining the DNA strands.

Each Okazaki fragment starts with an RNA primer. To complete DNA replication, RNA
primers must be replaced by DNA and Okazaki fragments must be joined together to form a
continuous strand. In E. coli, removal of RNA primers and synthesis of DNA can be accomplished
by a single enzyme, DNA polymerase I. The 5’ to 3’ exonuclease activity of DNA polymerase I
degrades the RNA primers while the 5’ to 3’ polymerase activity simultaneously synthesizes DNA
to replace the RNA. In eukaryotes, separate enzymes are responsible for degrading the RNA and
replacing it with DNA. Finally, the DNA fragments on the lagging strand are joined by a DNA
ligase to form one continuous polymer. DNA ligase catalyzes the formation of a phosphodiester
bond between the 3’ hydroxyl group at the end of one Okazaki fragment and the 5’ phosphate at the
beginning of the next. Any ‘‘nick’’ in one strand of the DNA duplex that has a 3’ hydroxyl on one
side and 5’ phosphate on the other can be sealed by the activity of a DNA ligase.

4.2.5 Fidelity of DNA Replication and Mismatch Repair

DNA replication can be accomplished with less than one mistake, in a billion nucleotides incorpo-
rated. This amazing accuracy or fidelity of synthesis is achieved, for the most part, by the DNA
polymerase but is further enhanced by a group of mismatch repair enzymes that function to detect
and correct replication errors [10, 11]. Onemain feature of the DNA polymerase that contributes to
this fidelity is the geometry of the active site which is optimized for bindingWatson-Crick base pairs
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where the overall shape of both A:T or G:C pairs are the same (Fig. 4.1). Mispairs such as G:T
deviate from this ideal geometry so that incorrect nucleotides are incorporatedmuch less efficiently.
The frequency of adding an incorrect nucleotide range from 1 in 1000 to 1 in 10,000,000 nucleotides
added depending on the nucleotide added and theDNA sequence context. In a rare instance when a
mistake is made, DNA polymerases have the ability to remove the incorrect nucleotide using the 3’
to 5’ exonuclease activity contained in the enzyme. This proofreading capability is further enhanced
by a reduced efficiency of adding the next correct nucleotide onto a primer that ends with an
incorrect nucleotide. Thus, when a mistake is made, the rate of adding a second nucleotide to the
incorrect nucleotide is greatly reduced which gives the exonuclease more time to remove the
incorrect nucleotide. Once an incorrect nucleotide is removed, rapid incorporation of correct
nucleotides by the DNA polymerase activity resumes. This proofreading activity increases the
accuracy of DNA synthesis by a factor of about 10 to 100.

Mispairs that escape proofreading by the DNA polymerase, can be corrected by the post-
replicative mismatch repair processes [12, 13] (Fig. 4.6). The net result is the removal of the segment
of DNA containing the incorrect nucleotide and resynthesis of DNA to replace the segment that
was excised. The key enzymes responsible for mismatch repair are conserved from bacteria to
humans. Mispairs are detected in the double-stranded DNA byMutS in E. coli or MutS homologs
(MSH) in eukaryotes. The MutS proteins recruit other mismatch repair proteins to the site of the
mispair to initiate repair. An endonuclease cleaves the DNA strand containing the mispair, and an
exonuclease, degrades the DNA containing the mispair by excising nucleotides starting at the
cleavage site created by the endonuclease and working back towards the mispair. Endonucleases
are enzymes that hydrolyze a phosphodiester bond at an internal site on one DNA strand to
effectively cut the DNA strand into two. Exonucleases are enzymes that progressively degrade the
DNA by removing one or a few nucleotides at a time, starting from one end and moving with a

Fig. 4.6 Methyl-directed mismatch repair inE. coli.TheMutS (blue) protein recognizes and binds mismatches such as
G �T (red) in the DNA and recruits the rest of the mismatch repair machinery. One of the enzymes recruited to the
mispair is an endonuclease which cleaves the newly replicated and unmethylatedDNA strand at theGATC sequence,
closest to the protein-mismatched DNA complex. The letter P in a gold circle represents a 5’ phosphate group. DNA
is degraded by an exonuclease until the mismatch is removed. The missing segment of DNA is replaced by a DNA
polymerase, and the DNA strands are joined together by the activity of a DNA ligase. Mismatch repair in human
cells occurs by a similar mechanism except that the mechanism by which the human mismatch repair enzymes
recognize which strand of DNA must be degraded is not known. The methylation status of DNA is not used for
strand discrimination in human cells (Copies of figures including color copies, where applicable, are available in the
accompanying CD)
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defined polarity, either in the 5’ to 3’ or 3’ to 5 directions towards the other end. The endonuclease
and exonuclease work in concert to remove the segment of DNA containing the incorrect nucleo-
tide by degrading this segment. A DNA polymerase can then resynthesize DNA to replace the
segment removed by the mismatch repair enzymes and complete the repair process.

How do the mismatch repair enzymes know which nucleotide of the mispair is incorrect? In
E. coli, the methylation status of the DNA allows the mismatch repair enzymes to distinguish
between the newly synthesized DNA strand and the parental strand. Adenine is methylated in the
E. coli genome when it appears in the sequence 5’GATC.Methylation of 5’GATC sequences occurs
shortly after replication, so for a short period of time, the daughter strand is unmethylated while the
parent strand is methylated. These 5’GATC sequences are also recognized by the endonuclease
which cuts the unmethylated daughter strand at these sites. These cut sites can be up to 1000–2000
nt away from themispair so a fairly large segment of theDNAmay be removed and replaced.While
the overall process of mismatch repair is similar in eukaryotes, it is not yet clear how the eukaryotic
enzymes distinguish between the newly synthesized strand and the parental strand. Although
eukaryotic genomes can also be methylated, for example on C’s at 5’CpG sites in humans, evidence
suggests that the methylation status of the DNA strand does not direct repair. The leading theory,
at this time, is that the eukaryotic mismatch repair machinery uses some signals from DNA
replication such as unligated Okazaki fragments or perhaps the replisome itself to determine
which strand is the newly synthesized daughter strand.

4.3 DNA Recombination

4.3.1 Overview of Recombination

Through the process of recombination, twoDNA duplexes can combine to create hybrid molecules
containing sequences from each of the original molecules. Recombination provides mechanisms for
generating genetic diversity and repairing DNA strand breaks. Recombination pathways can be
grouped into three major classes, homologous, nonhomologous end-joining, and site-specific.
Homologous recombination is the most general mechanism for recombination, and it plays a
central role in both generation of genetic diversity and DNA repair. Homologous recombination
occurs between two regions of DNA with similar or homologous, but not identical, sequences.
Crosses between these two regions produce two new molecules that are hybrids of the original
molecules. During meiosis (a process of cell division that ultimately produces germ cells containing
a single copy of each chromosome), these crosses allow the alleles (alternate forms of the same gene)
to be exchanged between homologous chromosomes so that chromosomes passed onto haploid
daughter cells are a hybrid of their progenitors (Fig. 4.7A). This process allows a child to inherit
traits from all of the grandparents, even though the child only receives a single chromosome from
each of his parents. By a similar mechanism, a double-strand break in one chromosome can be
repaired without loss of genetic information by recombination with the homologous chromosome.

Double-strand breaks can also be repaired by nonhomologous end-joining to simply reattach
the two broken ends. This recombination process ‘‘trims’’ the duplex ends at the break site to
remove damaged nucleotides and uncover a small stretch (one to several nucleotides) of homology
and then rejoin the two ends. Double-strand break repair by nonhomologous end-joining is not as
accurate as homologous recombination because the trimming step can result in loss of genetic
information. However, a double-strand break is one of the most lethal forms of DNA damage.
A single double-strand break can kill a cell, and nonhomologous end-joining is able to repair these
breaks in order to allow the cell to survive at the cost of possible loss of information. In vertebrate
cells, nonhomologous end-joining is the predominant pathway for DNA double-strand break
repair at times when the cell is not actively replicating DNA.
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Fig. 4.7 Homologous recombination. (A) Double-strand break model for homologous recombination. DNA duplexes are illustrated by antiparallel arrows. The arrow
indicates the polarity of DNA in which the arrowhead is at the 3’ end. ‘‘A’’ and ‘‘a’’ represent two alleles of gene A and ‘‘B’’ and ‘‘b’’ represent two alleles of gene B. In this
model, recombination is initiated by the formation of a double-stranded break (step 1) in one of the homologous duplexes. The broken DNA is then processed by partial
degradation, by an exonuclease to generate single-stranded DNA on the 3’ ends (step 2). One 3’ single-stranded end invades the homologous duplex forming a D-loop in
the intact duplex (step 3). The invading 3’ end is extended by a DNA polymerase enlarging the D-loop which can then pair with the remaining 3’ single-stranded end (step
4). As the D-loop expands, it can displace the 5’ end of the broken duplex which is then free to pair with the intact duplex (step 5). Branchmigration enlarges the regions of
heteroduplexDNAby ‘‘unzipping’’ the regions thatwere originally paired and ‘‘zipping’’ themonto the homologous duplex (step 6). Finally, the cross-over points orHolliday
junctions are resolved by cleavage of the crossing strands (step 7). Two different products, patched and spliced, are formed depending on which of the crossed strands are
cleaved. In the patched products the same alleles are maintained on each chromosome, but some intervening sequence comes from the homologous duplex. In the spliced
product, the left side of one duplex is spliced onto the right side of the other so that the alleles are swapped. (B)Homologous recombination can repair double-strand breaks
that form during DNA replication. In step 1, the upper duplex is processed by an exonuclease to generate a 3’ end that can strand invade the lower duplex forming a D-loop.
Homologous pairing of the light blue and gray strands (step 2) displaces the dark blue strand which can then pair with the black strand. Further branchmigration can extend
the heteroduplex regions. Resolution of theHolliday junction by cutting the ‘‘crossed’’ strands (dark blue and gray, step 3 left side) regenerates the replication fork and patched
recombination products. Resolution by cutting the uncrossed strands (light blue and black, step 3 right side) also regenerates a replication fork and spliced recombination
products(Copies of figures including color copies, where applicable, are available in the accompanying CD)
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Site-specific recombination does not require homologous sequences between two DNA duplexes.
As its name implies, site-specific recombination occurs when one DNA sequence is inserted into a
specific site in another DNA duplex. This type of recombination produces a newDNA duplex where
information from one is ‘‘spliced’’ into the other duplex. Some viruses use site-specific recombination
to integrate their genomes into the genome of a host. Bacteriophage �, integrates its viral genome into
the genome of its E. coli host, and retroviruses such as human immunodeficiency virus (HIV)
integrate a double-strandedDNA copy of their viral RNA genome into the host genome. Transposi-
tion is an example of site-specific recombination where a genetic element, referred to as the transpo-
son, moves from one location in a genome to another. This repositioning requires a specific nuclease,
called the transposase, which is encoded within the transposon.

This section will largely focus on homologous recombination because it provides a mechanism
for generating genetic diversity that allows a population to adapt to a changing environment as well
as a mechanism for repairing DNA and maintaining the information encoded in the sequence.

4.3.2 Homologous Recombination

4.3.2.1 DNA Repair by Homologous Recombination

Extensive homology or significant complementarity in DNA sequence is a prerequisite for homo-
logous recombination between two duplexes. In addition, the physical exchange of information
requires breaking and rejoining of the DNA molecules. Modern models for homologous recombi-
nation propose that recombination is initiated by formation of a double-stranded break in one of
the two duplexes [14–16]. These breaks can result from DNA damage or can be created by specific
enzymes as happens during meiosis. The broken duplex is then processed by an exonuclease which
partially degrades the ends to generate free single-stranded overhangs, and these processed break
sites serve as substrates for initiating recombination. One of the single-stranded ends will invade the
intact duplex and pair with the region of homologous sequence to produce a heteroduplex contain-
ing strands from two separate DNA duplexes (Fig. 4.7A). The strand invasion and homologous
pairing reactions are not spontaneous but require the activity of an enzyme, RecA protein in E. coli
and its homolog, Rad51, in eukaryotes, to catalyze the reactions.

The strand invasion reaction generates a ‘‘D-loop’’ structure which is formed by the comple-
mentary strand from the intact duplex that was displaced. The invading strand is extended by a
DNApolymerase that increases the size of the single-stranded region in theD-loop. This opens up a
region of the DNA homologous to the other single-stranded end of the broken duplex which then
pairs with the D-loop. This end can also be extended by aDNApolymerase. Extension of both ends
effectively replaces the segments of DNA that were removed by the exonuclease to generate single-
stranded ends that initiate recombination. Thus, homologous recombination requires limitedDNA
synthesis by a DNA polymerase.

Two crossover points between the two homologous duplexes are created following strand
invasion by one half of the broken duplex and pairing between the displaced D-loop and the
other half of the broken duplex. These crossed strands are named Holliday junctions after Robyn
Holliday who first proposed their occurrence in homologous recombination. Holliday junctions
can migrate down the DNA duplexes ‘‘unzipping’’ the original duplexes while simultaneously
‘‘zipping’’ the other strands together with new partners thereby extending the heteroduplex regions
of the DNA. This process of branch migration can continue as long as homology between the
regions of DNA is high. The branch migration reaction is catalyzed by enzymes that are similar to
DNA helicases and require ATP.

Following branchmigration, the twoDNAduplexes are separated or resolved by cleaving the two
DNA strands in the Holliday junctions. This cleavage is catalyzed by a nuclease or a resolvase that is
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specific for theDNA inHolliday structures. Depending onwhich strands in the junctions are cleaved,
two distinct products can be formed that contain different segments of DNA from the original
duplexes (Fig. 4.7A). A spliced product can be formed where each end of the hybrid duplex is derived
from one of the original duplexes. Alternatively, a patched product can be formed where each new
recombinant duplex contains a short patch or segment of DNA from the other original duplex.

All organisms use homologous recombination to repair double-stranded breaks, however, they
differ in the extent to which they rely on this mechanism of repair (Fig. 4.7b). InE. coli, homologous
recombination is the predominate mechanism by which double-stranded breaks are repaired. In
eukaryotes, other mechanisms such as nonhomologous end-joining are used in addition to homo-
logous recombination to repair double-stranded breaks. In vertebrate cells, the choice of mechan-
ism depends in part on the phase of the cell-cycle. When cells are actively replicating or have just
finished replicating their genomes, sister chromosomes are typically juxtaposed which facilitates
strand invasion and the homology search required for homologous recombination [17]. During
these phases of the cell cycle, homologous recombination is used extensively to repair double-strand
breaks. When cells are not actively replicating, homologous chromosomes may not be located near
one another, and regions of the chromosomes required for recombination may be condensed and
not accessible to the recombination machinery. During these phases, nonhomologous end-joining
is the predominant mechanism for repairing double-strand breaks.

4.3.2.2 Homologous Recombination to Generate Genetic Diversity

Homologous recombination provides a mechanism for generating genetic diversity by recombining
genetic material from two different, but homologous, chromosomes [18]. Although bacteria have
mechanisms for acquiring genetic material from other bacteria, viruses, and exogenous DNA, the
most common mechanism for exchanging genetic information is through sexual reproduction.
Individual cells in multi-cellular eukaryotes contain two copies of each chromosome, one homolog
from each parent. Normally, these cells divide by a process called mitosis in which the genome is
duplicated so that four copies of each chromosome are present, the cell divides into two, and
chromosomes are equally divided so that each daughter cell receives two homologous copies of
each chromosome (Fig. 4.2). A second mechanism for cell division called meiosis produces germ
cells that contain a single copy of each chromosome (Fig. 4.7). During meiosis, DNA is replicated
as normally happens prior to cell division, but cells undergo two rounds of division so that each of
the four germ cells contains one copy of each chromosome instead of two. Prior to the first cell
division, the newly replicated chromosomes, the sister chromatids, remain together and must pair
with the homologous chromosomes. This pairing as well as proper segregation of the chromosomes
into daughter cells during the first round of cell division requires homologous recombination. The
mechanism for homologous recombination during meiosis is the same as that for DNA repair
except that an enzyme (Fig. 4.8A), Spo11, initiates the process by making a programmed double-
strand break in one of the homologous chromosomes [19]. Following resolution, the two homo-
logous pairs of sister chromatids go to different daughter cells at the first cell division. This differs
from the mechanism of chromosome segregation that occurs during mitosis in which each mitotic
cell receives a sister chromatid from each of the two homologous chromosomes rather than a pair of
chromatids from the same duplicated chromosome. Following meiosis, each of the chromosomes
may contain regions derived from the homologous chromosomes.

Homologous recombination requires extensive regions of homology, but not completely iden-
tical sequences. As a result, sequence polymorphisms that exist between the two homologous
chromosomes result in mispairs in the heteroduplex regions created by strand invasion and branch
migration. These mispairs are corrected by the same enzymes required for mismatch repair
following DNA replication, however, in this case, there is no ‘‘right’’ or ‘‘wrong’’ nucleotide or
strand. Repair can occur on either strand, randomly, and depending on which strand is corrected,
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the sequence will either match that of the chromosome that was originally broken, or the chromo-
some that was invaded. This process can lead to a gene conversion event in which alleles of a given
gene are not equally represented among the four daughter cells following meiosis (Fig. 4.8B). For
example, gene conversion could result in three daughter cells with a paternal allele and one with a
maternal allele rather than the expected pattern of two cells with maternal and two with paternal
alleles. Gene conversion events can also result from the DNA synthesis that occurs following the
initial strand invasion event. If a gene was located near the site of a double-strand break, DNA
synthesis will make a copy of the allele that was present on the intact duplex.

Fig. 4.8 Meiotic cell division in eukaryotes. (A) Meoisis is a specialized pathway for cell division that produces
haploid germ cells (e.g., eggs and sperm). Chromosomes are duplicated normally by DNA replication. Prior to the
first cell division, homologous chromosomes pair and undergo homologous recombination, which is required for
proper chromosome segregation. During the first cell division the sister chromosomes remain paired and
homologous chromosomes go to different daughter cells. This differs from mitotic cell division (Fig. 4.2) in which
the sisters separate and a homologous pair goes to each daughter cell. In the second cell division, the sister chromatids
are separated and each daughter cell receives a single chromosome. (B) Meiotic cell division with gene conversion.
Repair of the base mispairs resulting from homologous recombination during meiosis can result in a gene conversion
event. If homologous recombination without gene conversion occurred as illustrated in panel A, alleles present on the
regions of genes that crossed over, the upper tip of the chromosome in this example, would be equally represented
among the daughter cells. That is there would be two copies of the paternal (blue) and two of the maternal (pink)
alleles. A gene conversion event would result in an unequal number of alleles as illustrated in the example in panel B in
which there are three copies of the paternal alleles (blue) in the upper tip of the chromosomes, and single daughter cell
containing the maternal allele (Copies of figures including color copies, where applicable, are available in the
accompanying CD)
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4.4 DNA Repair

4.4.1 Overview of DNA Repair

DNA, like any other molecule, can spontaneously decompose with time, react with chemicals
including those naturally present in a cell, or be damaged by UV or ionizing radiation [20]. Damage
to DNA can have many deleterious effects on the cell. Some types of damage alter the structure of
DNA bases so that the sequence is misread byDNA polymerases causing it to incorporate erroneous
bases and generate mutations. Others are so severe that DNA synthesis by DNA polymerases is
completely blocked at the site of damage. DNA damage occurs with a frequency high enough that it
would be lethal to a cell if it were not repaired. Recombination, as discussed above, provides a
mechanism for repairing DNA strand breaks. This section describes the mechanisms responsible for
repairing damaged bases in DNA so that the code contained in its sequence is preserved.

There are two general strategies that can be taken up by a cell to fix DNA damage, (1) direct
reversal of the damage, and (2) replacement of a segment of DNA containing the damage. Direct
reversal of DNA damage requires enzymes capable of catalyzing different chemical reactions to
undo different types of damage. There are fewer examples of enzymes that repair DNA by direct
reversal of damage perhaps because each type of damage would require a different enzyme and
chemistry. Themajority of DNA damage is repaired using an excision/resynthesis strategy in which
a group of enzymes removes a segment of DNA containing damage and replaces it with a new
DNA. For this type of process, the same basic set of enzymes can remove many types of DNA
damage because they are catalyzing the same basic reaction that involves removing a segment of the
damaged DNA.

4.4.2 Direct Reversal of DNA Damage

4.4.2.1 DNA Photolyase Catalyzed Splitting of Thymine Cyclobutane Dimers

When exposed to UV light, two neighboring pyrimidine bases, C or T, in the same DNA strand can
react with each other to become covalently linked. One reaction that occurs is the formation of
thymine-cyclobutane dimers (Fig. 4.9). The covalent linkage between the two T residues affects the
twist of the DNA helix at the site thus distorting the local structure of DNA. Cyclobutane dimers
are no longer recognized as two consecutive T’s by DNA polymerases, and in general, DNA
polymerases can incorporate an A opposite the first T, but are blocked and cannot synthesize
past the second T. In bacteria, the enzyme, DNA photolyase, reverses the formation of thymine
dimers. Enzyme-bound cofactors absorb light and initiate an electron transfer reaction that
catalyzes the splitting of the thymine dimer to regenerate two intact thymine bases. There is no
known homolog of photolyase in mammalian cells where cyclobutane dimers are repaired pre-
dominantly by nucleotide excision repair.

4.4.2.2 Removal of Methyl Groups by O
6-methylguanine Methyltransferase

Chemicals that are naturally present in the cell, as well as chemicals in the environment, can react with
DNA to methylate DNA bases. One product of this reaction,O6-methylguanine (O6-MeG), induces
mutations because a DNA polymerase has the tendency to incorrectly incorporate a T opposite O6-
MeG rather than a C that normally pairs with G (Fig. 4.9).O6-MeG is repaired byO6-methylguanine
methyltransferase (MGMT) by directly removing the methyl group to regenerate a normal guanine
residue. MGMT is not an enzyme in the true sense of the word because it does not act catalytically;
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Fig. 4.9 Some examples of damaged DNA bases. Thymine cyclobutane dimers are created by exposure to UV light
and are repaired in E. coli by photolyase, and in mammals by nucleotide excision repair. Deamination is the result of
a reaction with water and converts cytosine to uracil and adenine to hypoxanthine. Alkylation damage produces
O6-methylguanine which is repaired by methylguanine methyl transferase and also produces 3-methyladenine and
7-methylguanine which are repaired by base excision repair. Reactive oxygen species that generate oxidative damage
like, 8-oxoguanine, formamidopyrimidines (FaPy), and thymine glycol are repaired by base excision repair (Copies
of figures including color copies, where applicable, are available in the accompanying CD)



instead it is a suicide enzyme. The methyl group is transferred from guanine to a cysteine residue on
the proteinwhere a covalent bond is formed. BecauseMGMTcannot be demethylated, it is incapable
of catalyzing the removal of other methyl groups and becomes inactive. MGMT is the only protein
known to repair O6-MeG and is found in both bacteria and eukaryotes.

4.4.3 Repair by Excision/Resynthesis

The process of excision of a section of damaged DNA followed by resynthesis allows cells to use the
same basic chemical reaction and a common set of enzymes to repair many different types of DNA
damage. The two main pathways responsible for excision repair are base excision repair that
usually replaces a single damaged base and nucleotide excision repair that replaces a short segment
of DNA containing the damaged nucleotide.

4.4.3.1 Base Excision Repair

The base excision repair pathway primarily repairs damage to DNA bases much of which occurs
spontaneously in the cell without the influence of environmental hazards [21]. Examples include
oxidation, deamination, and alkylation of DNA bases. These damaged bases are recognized by
damage-specific DNA glycosylases that initiate the base excision repair pathway. DNA glycosy-
lases bind to the damaged bases and cleave the C1’-N glycosylic bond between the base and sugar.
This leaves a baseless sugar, or AP (for apurinic or apyrimidinic) site, in DNA that is removed by
other enzymes in the pathway (Fig. 4.10A). Several different DNA glycosylases are present in
cells, and each recognizes a specific damaged base or a class of damaged bases. For example,
uracil DNA glycosylase recognizes and excises only uracil which can be formed in DNA by
deamination of cytosine. Formamidopyrimidine (FaPy) DNA glycosylase recognizes several
different bases damaged by oxidation including 8-oxoguanine and formamidopyrimidines
(Fig. 4.9).

Once a DNA glycosylase has removed a damaged base, the AP site that it leaves must be
repaired. An AP endonuclease starts this process by cleaving the phosphodiester bond on the 5’
side of the AP site to generate a 3’hydroxyl and a 5’deoxyribose phosphate. A deoxyribophosphate
lyase removes the 5’deoxyribose phosphate and leaves a one nucleotide gap in the DNA. A DNA
polymerase extends the 3’ end to replace the missing nucleotide and the resulting nick is sealed by
the activity of a DNA ligase. In E. coli, separate enzymes catalyze the removal of the baseless sugar
and incorporation of the missing nucleotide. In humans, DNA polymerase b contains two enzy-
matic activities and is capable of both incorporating the missing nucleotide and removing the
baseless sugar residue.

4.4.3.2 Nucleotide Excision Repair

The nucleotide excision repair pathway recognizes and repairs damage that generates larger more
bulky lesions and local distortions in the DNA structure, such as a thymine- cyclobutane dimer. In
the nucleotide excision repair pathway, damage is recognized by a protein complex capable of
identifying many different types of damage [22, 23]. It is believed that this complex recognizes
distortions in the overall DNA structure at sites of damage, or an increase in the ease of unwinding
the duplex in the region of the damage. Regardless of the mechanism, this complex identifies sites of
damage and recruits the rest of the repair machinery to these sites (Fig. 4.10B). The DNA duplex is
then locally unwound at the site of damage, and endonuclease activities within the complex cleave
the DNA backbone both at 5’ and 3’ to the site of damage. These endonucleases are structure-
specific and cleave single-stranded DNA at the single-strand/double-strand junction that has been
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Fig. 4.10 Repair of DNA by excision of the damage and resynthesis of DNA. (A) The base excision repair pathway
begins with the removal of a damaged base by a DNA glycosylase. In this scheme undamaged DNA bases are
indicated by black squares and the damaged base is indicated by a red square. The C1’-N glycosylic bond between the
base and the sugar is cleaved leaving a baseless sugar residue (AP site) in DNA. The DNA strand is cut 5’ to the AP
site creating a 3’ hydroxyl on one side of the cut and a 5’phosphate (‘‘P’’ in gold circle) on the other. Deoxyribose
phosphate lyase (dRP lyase) activity is required to excise the sugar-phosphate residue to create a one nucleotide gap
that can be filled in by a DNA polymerase. Repair is complete when the strands are ligated by a DNA ligase. (B) The
nucleotide excision repair pathway removes a short segment of DNA containing a helix-distorting DNA damage (red
starburst). The damage is recognized and bound by a protein complex. This protein complex serves to direct the other
proteins to the site of damage so that it can be repaired. A DNA helicase separates the DNA strands on either side of
the damaged nucleotide. Specific endonucleases recognize the forked single-stranded/double-stranded DNA
junctions at these sites, and cleave the DNA at the junctions. The DNA strand is cleaved 3’ to the damaged
nucleotide, followed by cleavage on the 5’ side. The gap created by excision of the damaged DNA segment is filled
in by a DNA polymerase and the two strands are joined by a DNA ligase (Copies of figures including color copies,
where applicable, are available in the accompanying CD)
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created by the DNA unwinding activity of the repair complex. DNA cleavage creates a short
oligonucleotide segment, 12–13 nt long in E. coli and 24–32 nt long in eukaryotes, that is displaced
by a DNA helicase. The resulting gap in DNA can be filled in by a DNA polymerase to leave a nick
that is sealed by DNA ligase.

Glossary and Abbreviations

Allele alternate forms of the same gene that differ in primary sequence at some sites.
AP endonuclease an enzyme that cleaves the DNA backbone on the 5’ side of an AP site to create a

3’ hydroxyl and 5’ phosphate.
AP site a baseless sugar in DNA. AP is an abbreviation for apurinic or apyrimidinic.
Base excision repair a pathway that repairs damage to DNA bases by excising the damaged base

and replacing it with an undamaged nucleotide.
Branch migration movement of a Holliday junction that unwinds DNA strands ahead of the

junction and pairs them with homologous strands behind the junction.
CDKs Cyclin-dependent kinases
DNA glycosylase an enzyme that catalyzes the excision of damaged bases by cleaving the C1’-N

glycosylic bond between the damaged base and the sugar.
DNA helicase an enzyme that catalyzes the unwinding of the duplex DNA.
DNA ligase an enzyme that joins two strands of the DNA at a nick by ligating a 3’ hydroxyl end to

a 5’ phosphate end.
DNA polymerase an enzyme that catalyzes the extension of a DNA polymer by incorporating

2’-deoxynucleoside monophosphates in a template directed reaction.
Endonuclease an enzyme which cleaves DNA at an internal site by hydrolysis of the phosphodie-

ster bond between the two nucleotides.
Epigenetic changes in DNA function that are not due to changes in the primary sequence of DNA.
Exonuclease an enzyme that catalyzes the excision or removal of nucleotides from a DNA strand

by progressively removing one or a few nucleotides from one end of the DNA strand. Exonu-
cleases have defined polarity and degrade in either a 5’ to 3’ or 3’ to 5’ direction.

Fidelity refers to the accuracy of synthesis by DNA polymerases.
Holliday junction a four-way DNA junction formed when strands from homologous duplexes

crossover during recombination.
Initiator protein a protein that recognizes origins of replication, and helps in the initial unwinding

of DNA and recruiting of replication proteins. The term comes from the original replicon model
proposed by François Jacob, Sydney Brenner, and Jacques Cuzin to explain the initiation of
replication.

Lagging strand the strand synthesized as discontinuous segments called Okazaki fragments.
Leading strand the strand of DNA synthesized as one continuous piece in the direction of replica-

tion fork progression.
MCM proteins Mini-chromosome maintenance proteins form the eukaryotic replicative DNA

helicase.
Meiosis process of cell division that generates eukaryotic germ cells.
Mitosis process of cell division in eukaryotic somatic cells.
MSH MutS homologs
Nick a single-stranded break in a DNA duplex.
Nucleotide excision repair a pathway that repairs DNA damage by removing a short segment of

DNA containing the damage and resynthesizing that segment.
Okazaki fragments discontinuous segments of DNA that are synthesized on the lagging strand.
Origin of replication a site in the genome where DNA synthesis is initiated during replication.
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ORC Origin recognition complex
Primase an enzyme that synthesizes short segments of RNA to prime synthesis by DNA

polymerases.
Primer a short oligonucleotide complementary to and paired with a larger DNA template.
Processivity refers to the number of nucleotides which a DNA polymerase can incorporate in a

single DNA binding event.
Proofreading the process of removing incorrectly paired nucleotides that is catalyzed by the 3’ to 5’

exonuclease activity of DNA polymerases.
Replication fork the branched DNA structure formed, when a DNA helicase separates the two

complementary strands of DNA during replication.
Replisome the ensemble of enzymes that function at the replication fork to duplicate the DNA.
S-phase the phase of the eukaryotic cell cycle in which DNA is replicated.
Semi-conservative refers to the replication of DNA which produces duplexes composed of one

newly synthesized and one original strand.
Semi-discontinuous refers toDNA synthesis that produces one continuous segment of DNAon the

leading strand and Okazaki fragments or discontinuous segments on the lagging strand.
Strand invasion pairing of a single-stranded DNA with a homologous region of duplex DNA to

form a D-loop.
Topoisomerase enzymes that relax the superhelical tension which builds up ahead of the replication

fork as the result of unwinding the DNA strands during replication.
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Chapter 5

Cell Signaling

Daniel A. Rappolee and D. Randall Armant

Abstract Signal transduction is the molecular process whereby a cell receives, transmits, amplifies,
and integrates extracellular stimuli. Key parameters of the signaling pathways are duration and
magnitude of the input and subsequent biological responses. Key features of signaling processes
include the time- and dose-dependent responses mediated by downstream molecular effectors. The
precision of signaling is accomplished through negative feedback and branching between the
pathways that mediate cross-talk. Since rate-limiting enzymes in different pathways have different
inputs and outputs, integration of signal transduction pathways leads to the optimal biological
responses that have been selected during evolution.

Keywords Signal transduction � Pathway � Communication cascade

5.1 Introduction

The intent of this chapter is to present a broad overview of the functions of signal transduction
mechanisms, the basic pathways mediating these functions, and factors that affect the initiation,
completion and control of signal transduction pathways. We define signal transduction as the
molecular mechanism used by a cell to sense and transduce stimuli from one place to another over a
period of time. In this chapter, we focus on signal transduction from the cell surface to the
cytoplasm and nucleus. In a broader sense, signal transduction can also occur between cells and
from one point to another within a cell, but this is not the focus here. To facilitate the assimilation of
a large body of data, there is a section with acronyms and abbreviations at the end of the chapter.
To should facilitate future information assimilation. A table is provided that includes electronic
resources that aid in attending up to date information on fast-moving research in the field of signal
transduction.

5.2 Basic Concepts

5.2.1 Types of Intercellular Signaling Molecules: The Ligand

Intercellular communication is essential for development and homeostatic function in multicellular
organisms. The language of intercellular communication is via protein growth factors (e.g., local
paracrine FGF or blood-borne endocrine growth hormone), hydrophobic steroids (e.g., estrogen)
and lipid mediators (prostaglandins, leukotrienes), modified amino acids (e.g., neurotransmitters
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such as adrenaline), other metabolites and precursors to second messengers (see below) not present
in the previous groups (e.g., NO or nitric oxide, Ca++, cyclic AMP). Some of these ligands are
present at low concentrations in the nanomolar range (FGF and insulin), whereas others can be as
high as the millimolar range (amino acids that can be modified to make neurotransmitters or
Ca++). This chapter will focus largely on small protein growth factors that modulate growth,
differentiation, apoptosis, and steady state function during development and in the adult.

5.2.2 General Function and Speed of Intercellular Communication

An essential role of signal transduction is to coordinate functions of identical or diverse cell types
within an organ to synchronize the cellular activity in multicellular organisms. The speed of inter-
cellular communication is dependent upon distance and the mode of delivery of the intercellular
signal. Local or paracrine intercellular communication acts within milliseconds over distances less
than 10–20 cell diameters (about 200 microns), but endocrine or blood-borne signaling acts over
distances up tometers, and requires seconds or minutes [1, 2]. Specialized short distance signaling, like
that mediated by gap junctions, and allows linked cells to share small intracellular signal transduction
intermediates (second messenger molecules) downstream of cell surface receptors or metabolic inter-
mediates. Specialized long distance signaling mechanisms can span meters within milliseconds due to
the increased conductance speed accomplished through mechanisms such as saltatory movement of
signals in neurons coupled with the fast action of neurotransmitters at post-synaptic membranes [3].

5.2.3 Speed and Magnitude of Intracellular Communication Dictates
the Nature of the Signal

Intracellular signal transduction is initiated once a ligand has bound to its receptor. In assessing the
mechanisms that govern intracellular signaling, it is useful to consider the speed and magnitude of
the signaling. It is important to keep in mind the vast concentration range of extracellular signals
with respect to intracellular signaling. Whereas most growth factors are in the nanomolar range,
some neurotransmitter precursors (amino acids) are near the millimolar level, and Ca++ is at about
1 millimolar concentration outside the cell. There is an intrinsic requirement to amplify the growth
factor signal inside the cell, that requires energy at every amplification step. The signaling inter-
mediates in the growth factor pathways are inherently at comparatively low concentrations and this
limits the number of downstream effector molecules that can be regulated. Therefore, these path-
ways serve as servomechanisms. However, signaling by some second messengers, exemplified by
Ca++, is intrinsically different. The high potential energy of 1 millimolar extracellular Ca++

enables the cell to use this signaling molecule for regulating a very high number of effector outputs.
Therefore, growth factors initiate pathways that control transcription through a hierarchy of
downstream networks. Downstream networks with large number of effector proteins require
stoichiometric control. These networks, exemplified by the contractile sarcomere of heart muscle
or cortical granules in the oocyte are best controlled by the highly abundant second messengers
(see below), such as Ca++.

Another intrinsic property of signaling mechanisms is speed. After the receptor is activated by
phosphorylation or some conformational change, receptor binding by non-enzymatic docking mole-
cules peaks within approximately one minute, as in the case of insulin receptor substrate (IRS)-1 [4].
After transiting the cytoplasm, these signal transduction pathways climax in the nucleus where, for
example, phosphorylation of AP-1 transcription factors results in peak transcription of c-fos within 15
minutes and initial transcription within one minute [5]. Other hormones, such as estrogen, activate
transcription over slower time periods, approaching one hour. In some signal transduction processes,
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such as in vision chemistry, the complete process of photons activating the rhodopsin is finished in one
second [3]. Kinase cascades such as MAPK, and estrogen signaling, operate over minutes to hours,
whereas second messengers tend to mediate rapid signaling lasting seconds to minutes. The speed of
signal transduction mediates very rapid organismal survival responses, rapid cellular metabolic and
homeostatic responses, and slower, permanent changes exemplified by those occurring during
embryonic development.

5.2.4 Second Messengers

Secondmessengers are small molecules that direct and amplify signals within the cell. They are smaller
than proteins and can range in size from ions like Ca++ to lipids like diacylglycerol (DAG). Other
important second messengers include cyclic AMP, cyclic GMP, inositol 1,4,5-trisphosphate, (IP3),
and NO. Induced changes in the cellular concentration of second messengers amplify the signal and
send it to specific cellular compartments that are accessible to these small molecules [3]. Inmost cases,
second messengers are generated directly or indirectly by enzymes that are activated upon activation
of receptor molecules by primary messengers, such as growth factors. For example, phospholipase C
becomes enzymatically activated either by binding to phosphorylated tyrosines on receptor tyrosine
kinases (phospholipase Cg isoforms) or by G proteins coupled to seven pass transmembrane
receptors (phospholipase Cb isoforms) [6]. Both IP3 and DAG are produced as a result of hydrolysis
by phospholipase C of phosphatidylinositol 4,5-bisphosphate, a phospholipid residing in the plasma
membrane. IP3 is hydrophilic and can enter the cytoplasm where it activates the IP3 receptor, an ion
channel located in the membranes of several cellular organelles. The opened channel releases Ca++

into the cytoplasm where many Ca++-dependent regulatory proteins reside. DAG is hydrophobic
and partitions within the lipid bilayer of the plasma membrane where it activates protein kinase C,
which phosphorylates numerous protein substrates that influence cell adhesion and other plasma
membrane functions. These three secondmessengers significantly alter the cellular state through their
ability to impact a large number of biochemical reactions within specific cellular compartments.

Second messengers are produced by a burst of synthetic or regulatory activity, which subsides
and becomes overtaken by constitutive degradative activity, generating a biphasic concentration
profile. Phospholipase C generates IP3 within seconds of its activation by a growth factor, but the
cytoplasmic IP3 concentration returns to basal levels within minutes [6]. The opening of the IP3

receptor is inhibited by cytoplasmic Ca++, providing a negative feedback that limits the maximal
concentration of cytoplasmic Ca++ and allowing Ca++ pumps to begin moving Ca++ back into
storage organelles. Because second messenger signaling is transient, it is possible for different
receptors to use a common secondmessenger as a switch to turn on downstream signaling cascades.
The pathways downstream of a second messenger can change when cells alter their production of
target proteins. As a result, the same second messenger could have widely differing effects as a cell
differentiates or matures. Indeed, signaling downstream of a second messenger could alter expres-
sion of its target proteins so that a repeated burst of signaling produces different outcomes. It is,
therefore, possible for a single second messenger to transit a cell over time through sequential steps
of differentiation by temporally activating different downstream events. For example, Ca++

transients occurring after fertilization are required to advance the early embryo through a series
of developmental processes, from completion of meiosis to exocytosis of cortical granules, to mitosis, to
embryonic genomeactivation, and then tomorphogenesis [7]. The biochemical basis of each event differs
widely, but all are similarly initiated by a transient elevation of cytoplasmic Ca++.

In summary, second messengers are generated transiently downstream of receptor-induced
enzymes and target large numbers of signaling proteins within specific cellular compartments.
They operate as generic switches for the upstream signaling pathways to recruit downstream targets
that can shift with the physiologic state of the cell. Second messengers have unique capabilities and
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functions in contrast to protein and kinase cascades such as theMAPK pathway. Although second
messengers can influence long-term decision-making such as cell cycle commitment, they specialize
in rapid regulation of housekeeping functions. Since second messengers are small and have special
properties, they have specialized capabilities in transducing large signals with relatively low energy
requirements through gap junctions, cell membranes, and nuclear pores.

5.2.5 The Nature of the Receptor

If the ligands are the ‘verbs’ of intercellular language, the receptors are the ‘ears’. Trans-membrane
plasmalemma receptors are of several types: (1) receptor tyrosine kinases such as the FGF receptor,
(2) serine-threonine kinase receptors such as the TGF-beta receptor, (3) non-enzymatic transmem-
brane receptors (e.g., integrins) that are linked to intracellular tyrosine kinases (e.g., FAK –focal
adhesion kinase- and PYK2-proline rich tyrosine kinases), (4) transmembrane-seven pass
G-proteincoupled receptors (e.g., the Wnt receptor; frizzled), (5) non-enzymatic receptors that
are linked to signaling pathways which are derepressed by allosteric-conformational changes (e.g.,
smoothened receptor for hedgehog ligand), and (6) receptors that are proteolytically converted to
ligand (e.g., the Notch intracellular C terminal domain) [1].

Another class of signaling receptors is located in the cytoplasm. They bind hydrophobic
hormones such as steroids (e.g., estrogen), thyroid hormones and retinoic acid ligands, and then
translocate to the nucleus where they act as transcription factors [3].

Whether positively activated or if its function is regulated by derepressing signaling enzymes,
receptors initiate and amplify signals from outside the cell. Receptors can typically be activated for
minutes and tend to undergo negative feedback regulation to limit signaling, even if the ligand
continues to be present (see below).

5.2.6 Nature of the Signal Cascade Within the Cell: Aspects of Pathway
Function – Amplification, Timing, Branching, and Negative Feedback

Signaling cascades begin as allosteric changes in the receptors or non-enzymatic docking proteins
(IRS-1 family and FRS2). These events convey the signal through conformational changes, and by
becoming phosphorylation targets of receptor kinases. In either case, the function of the signal
transduction pathway is to quickly amplify and directionally conduct information that must reach
the cell by transmitting it through a series of tyrosine and serine-threonine kinases. The direction-
ality, speed, andmagnitude of the signaling are based on the functions of the cell type and history of
signaling by the cell.

The majority of the transmembrane receptors are in the ‘off’ state until induced by an extracellular
ligand. Receptors act like allosterically regulated enzymes with the active site in the cytoplasmic
domain. Many of the tyrosine kinases require oligomerization, as there is no sufficient flexibility in
the transmembrane alpha-helix to mechanically transduce the ligand–induced conformational
change [8]. Oligomerization brings together cytoplasmic kinase domains that cross-activate and
then signal to downstream docking and enzymatic signal transduction proteins.

The receptor is activated for a period of time before it is internalized and degraded, desensitized
through phosphorylation by a receptor induced kinase such as b-adrenergic receptor kinase/
BARK; [9]), or dephosphorylated [3].

During the activation period, a single activation event can become highly amplified. For example,
a single quantum of light activating the photoreceptor rhodopsin, leads to the hydrolysis of one
hundred thousand cGMP signaling molecules for a duration of one second [3].

The activated receptor has multiple phosphorylation sites available in its cytoplasmic domain.
These phosphorylated sites are capable of interacting with a large number of signaling
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intermediates that bind to the activated receptor through src homology domains-2 (SH2) which
recognize phosphorylated tyrosines (Fig. 5.1). If the activated receptor is the hub of activity, the
docking proteins provide the spokes that radiate out to multiple downstream targets. Docking
proteins such as IRS-1 and FRS-2 (insulin and FGF receptor substrate) are receptor-binding
proteins that can initiate many branches of the signal transduction pathway. This branching of
pathway choices immediately downstream of the FGF receptor is considered in the next section of
this chapter (Figs. 5.1, and 5.2; Receptor tyrosine kinases, mitogenic signal). Although receptors

Fig. 5.1 The FGF receptor is an allosteric enzyme with the allosteric sites in the ectodomain and the enzymatic
tyrosine kinase in the cytoplasm. Many mapped potentially functional and functionally active tyrosine activation
sites are known (Copies of figures including color copies, where applicable, are available in the accompanying CD)

Fig. 5.2 shows the known mitogenic and transcription activating signal transduction pathways downstream of
FGFRs. Note that the preponderance of evidence in cell lines suggests that the ras-MAP kinase pathway mediates
the mitogenic signal of FGFR. src, crk are only indirectly implicated in FGFR signal transduction due to sequence
homology with other receptors and possible binding sites in the cytosolic domain. Jun kinase and P1, 3 Kinase can be
mitogenic in certain circumstances, but mutation of the P1, 3 Kinase activating site in an FGFR in vitro did not
prevent mitogenic response to FGF. STAT1 pathway has recently been shown to be anti-mitogenic in FGFR-3
mediated chondrocyte cell division cessation. The + indicate the most likely pathways for FGFR cell division
control (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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can share docking proteins such as Grb2 and GAB1, some receptors have more complex sets of
docking proteins as is the case for FGF receptor campared with EGF receptor [48]. An array of
these docking proteins distinguishes different cell types, which may each express the same
receptor to facilitate different signaling pathways. The importance of the additive effect of
branched pathways, is indicated by studies analyzing the effects of mutations in the phosphor-
ylation/docking sites of the PDGF receptor on activation of sets of newly transcribed genes
(reviewed in [10]. Sets of newly transcribed genes were analyzed for quality and magnitude of
induced transcription by cDNA array. The results suggest that more than one phosphorylation/
docking site on the PDGF receptor is needed for the full and proper magnitude and breadth of the
transcriptional response.

For the three MAPK families (Figs. 5.2, 5.3, Table 5.1), there are three non-enzymatic signal
transduction intermediates before the ras GTPase becomes activated. After ras, which is a key
component in mitogenic signal transduction [11], there are 4 sequential vertical tiers of serine-
threonine kinases (Table 5.1), that each can have different ‘horizontal’ interacting components. In
the three MAPK signal transduction pathways, the first two serine-threonine kinases have only or
largely cytoplasmic targets, whereas the last two tiers have both cytoplasmic and nuclear targets.
Therefore, the activation of these last two tiers of serine-threonine kinases (MAPKs and MAP-
KAPS), can lead to nuclear localization, transcription factor phosphorylation (e.g., Elk1 and
ATF2 for ERK1, 2), and gene transcription. Other non-tyrosine kinase initiated pathways also
have homologous cytoplasmic signal transducers. For example, although it is thought that Raf1

Fig. 5.3 MAPK Families the three MAPK families are embedded in enzymatic cascades of intracellular serine-
threonine kinases regulated by tyrosine kinases and allosteric docking proteins. The pathways initiate at the
plasmalemma by receptor tyrosine kinases, ECM-binding integrins, and G protein-coupled receptors. See text for
details (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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mediates the effects of the FGF receptor (Fig. 5.2, Table 5.1), Raf1 homologs also have a function
in the TGF-beta pathway (TAK1; Fig. 5.3, Table 5.1), and in G protein-coupled receptor pathways
(RafB; Fig. 5.3, Table 5.1). Branching of the pathway can occur at any tier of the vertical cascade
(Table 5.1). Regulation of branching also distinguishes cell types and prior extrinsic interactions of
the cell [12].

Table 5.1 Extracellular to intracellular signal transduction for threeMAPK families (example FGF ligand receptor)
Levels of signal transduction in the cascades of the three MAPK families. FGF signaling is used as an example. For
detail, see text

Ligand
j

.

FGF1-20 Other ligands

Receptor
j

.

FGFR1-4 Other receptors

Non-enzymatic

Docking molecule 1 FRS2 GAB1,2 IRS1-4

RTK binding
j

.

Non-enzymatic

Docking molecule 2 Grb2 shc shb

RTK binding

Docking molecule

1 binding
j

.

Ras superfamily

Regulatory molecules
j

.

SOS (GEF family) GRF family

Rate limiting

GAP family vav

Ras superfamilyras Rac Rho cdc42 Rap1

G protein family

Enzyme
j

.

Kinase 1 (MEKK) Raf-1 RafB KSR Tak1

Enzyme
j

.

Kinase 2 MEK1, 2, 5 MEK3,6 MEK4,7

Enzyme
j

.

MAPK family MAPK family MAPK family

One Two Three

Kinase 3
j

.

p42, 44 ERK1,2

MAPK1,2, MAPK5

p38MAPK SAPK/JUNK enzyme

Kinase 4 p90RSK MAPKAP MNK1,2 MSK1

Enzyme
j

.

Resident or Trans-

located nuclear

Factors Elk1 myc/max pRSK90 MAPK family ATF-2 STAT1 MSK1 Jun

(Copies of tables are available in the accompanying CD.)
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5.2.7 The Nature of Signal Transduction, Thinking About What Different
Time-and Dose-Dependent Responses Means

Signal transduction mechanisms can be studied in many ways. In order to understand, and
prior to the cause-and-effect testing for enzyme function in transduction pathways, common
foundation studies include elucidating the time- and dose-dependent responses of the enzymes
to stimuli.

There are key common themes and interpretations for studies of time-dependence. The most
obvious one is that the enzyme must be activated before it can be considered as a candidate to
mediate downstreammolecular or biological effects. Two commonmechanisms for positive stimuli
are a biphasic response or a plateau response, where enzyme activity in unstimulated cells is
arbitrarily set as the baseline.

As an example, a biphasic peak enzyme activity reached at 30 minutes may be 10-fold over
the baseline and may return to baseline by 2 hrs. There are two major interpretations of this.
The first mechanistic interpretation is that the timing of the peak activity for an enzyme is
a function of how many molecular steps are there, between the reception of the stimulus
and the enzyme. For example, a docking protein at step two in the pathway has transient peak
activity well before the peak activity of an enzyme at step eight. Also, mechanistically the
downward slope of the biphasic activity is mediated by negative feedback, but can also be a
product of toxicity. Secondly, the functional interpretation is that the enzyme with a biphasic
peak activates substrates that ultimately lead to effector pathways that set into motion a
biological response. This response outlasts the enzymatic peak, and the enzyme is not directly
responsible for this long-term response. An additional functional significance is that, resetting the
reception pathway to zero allows the cell to accurately sense fresh stimuli. The significance of this
is intuitively understood, as if one has driven for several miles behind a car with an uncancelled
turn signal. Once the cell has set a new homeostatic equilibria, or the car has changed lanes, it is
important to reset the sensing mechanism so that new inputs can be interpreted and sent to
downstream effectors.

The plateau response for time-dependent enzyme activation suggests that the enzyme may
participate in the effector mechanism as well as being part of the signal transduction pathway.
This is in contrast to the biphasic response. Shared with the biphasic response is an initial lag phase
whose length is a function of the pathway length prior to the enzyme.

There are also biphasic and plateau responses observed whenmeasuring dose-dependence. As an
example, a biphasic response starting at a baseline might increase to 10-fold over background at
400mM hyperosmolar sorbitol and return to baseline at 1,000mM [13]. This suggests that high
doses of stimulant activate a negative feedback or that there is toxicity. A plateau response suggests
that the enzyme itself has become saturated. Alternately, effectors downstream may be saturated
and put up a feedback response on the upstream enzyme tomaintain it at constant, plateau levels of
activity.

5.2.8 Turning Off the Response

Signaling requires expeditious and tight control to maintain homeostasis and to ensure proper
regulation. Control is exerted at all tiers of the pathway and at various levels of production and
activation of the signal transduction proteins. As mentioned above, the receptor is activated for a
period of time before it is: (i) destroyed, (ii) desensitized, or (iii) dephosphorylated. Other tiers of the
pathway are regulated in similar ways. Ras is inactivated by GTPase activating proteins (GAPs),
MEK family members are dephosphorylated and inactivated by protein phosphatase (PP)1 and
PP2A. ERK family members are dephosphorylated and inactivated by MAP kinase phosphatases
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(MKP)3 and MKP6 [14], and JNK is inactivated by MKP3/6 [15] and references therein). The
mRNA transcripts for many of the signal transduction genes have a consensus destruction
sequence in the 3’ untranslated region that confers a short half-life on them [16]. At the levels of
protein and mRNA stability, and protein activation, signal transduction component levels can be
regulated rapidly.

5.3 Signal Transduction Pathways

This section with will focus on FGF receptors and their activation of the three MAPK families
(Figs. 5.2 and 5.3) emphasis on recent progress in illuminating signal transduction pathways. Some
models will be touched upon only briefly. Although these are very important pathways and will
make up a bulk of future research, the space limitations in this short review prohibit their
discussion. They are mentioned here for the sake of completeness and to alert the reader to other
sources (Table 5.2). These include activation of PKA and PKC, the mechanism of Calcium-
calmodulin signaling, prostaglandins and leukotrienes, and nitric oxide. Other cytostatic pathways
mediated by JAK-STAT receptors for the IFNg receptor, and apoptosis pathways through TNFa
are also not covered in depth. Non-canonical pathways mediated by serine-threonine receptor
kinases (TGFb receptor), and novel pathways for signaling by derepressing G protein-coupled
receptors (Hedgehog-ligand derepression of patched receptor by smoothened) are covered else-
where. A novel signaling mechanism important in development, signaling by proteolytically
cleaved ligand-activated receptor (Delta ligand activation of Notch protein to cleave and translo-
cate to the nucleus) is also described in signal transduction knowledge environment (STKE). The
Wnt-frizzled-GSK3-b-catenin pathways interaction with Ecadherin-bcatenin are not covered here.
These pathways are very important in embryonic development and in pathology (especially
carcinogenesis), and their elucidation and interaction with other pathways will provide important
future areas of research.

Table 5.2 Signal transduction websites. Electronic resources for signal transduction reagents and information

http://stke.sciencemag.org/ Signal transduction knowledge environment (STKE)
Excellent resource for broad and focused signal
transduction electronic and archival published literature
PDFs and full text articles with JPG figures are available
Requires AAAS membership and an STKE users fee

http://kinase.oci.utoronto.ca/signallingmap.html Very good focus with map of the 3 MAPK families and
clickable short to long descriptions of molecules on the map

http://www-personal.umich.edu/%7Eino/List/ Good outline of signal transduction pathways with links to
PubMed discovery articles

http://www.copewithcytokines.de/cope.cgi Extracellular signaling

http://www.grt.kyushu-u.ac.jp/spad/index.html Good, clickable diagrams, but not recently updated

http://vlib.org/Science/Cell_Biology/
signal_transduction.shtml

Good cross-referenced site for information about function and
sequence references for signal transduction genes

http://www.clontech.com/ Company site. Short description of signaling intermediates in
literature on antibodies. Also, check sections under pathway
diagrams check other web resources links

http://www.clontech.com/ Company site for signal transduction expression transgenes

http://www.scbt.com/ Company site. Short description of signaling intermediates in
literature on antibodies. Also, check sections under pathway
diagrams check other web resources links.

http://www.ihop-net.org/UniPub/iHOP/ Information hyperlinked over proteins (IHOP). Good site for
all proteins, their structure, function, expression, and
interaction. See Chapter 22.

(Copies of tables are available in the accompanying CD.)
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5.4 Receptor Tyrosine Kinases (FGF Receptor) and Mitogenesis FGF Receptor

as an Example of the Selection of Possible Signaling Pathways that Mediate

Distinct Functions

The FGF signaling system includes 22 FGF ligands and 4 receptors [17,18]. Ligand-dependent

autophosphorylation and activation of the FGFRs leads to signaling through four proven path-

ways that lead to new transcription (Figs. 5.1 and 5.2). Two of the downstream targets, p38MAPK
and Jun kinase, are generally notmitogenic cell lines ([19] and references therein). Themajor FGFR

mitogenic signaling pathway is the ras-Raf-1-MEK-ERK pathway, also known as the ‘universal

cassette’ because of the weight of evidence for its mitogenic role in diverse cell lines. FGF activation

of ERK1/ERK2 is necessary and sufficient to activate transcription factors elk and SRF, leading to
new transcription and a strong mitogenic responses [8,20].

A second pathway that mediates mitogenesis through the FGFRs leads to binding of phospho-

lipase C (PLC)g and PI3kinase activation. Phosphoinositol turnover by PLCg generates inositol

trisphosphate, leading to intracellular Ca++ mobilization, and diacylglycerol, leading to the

activation of PKC [21,19]. There are three groups of PKC noted: conventional (a, b, g), novel (x,
Z, n, y), and atypical (�). The x and atypical families are not mitogenic and are brain-specific
[22,23]. Activation of PKCa, b, and g leads to an increased mitogenic response, mainly through
Raf1 and MAPK, although this appears to be less important than the ras-dependent MAPK
pathway [24,19]. Substitution of tyrosine on FGFR-1 responsible for PLC-g binding and activation
of PKC does not diminish FGF-dependent mitogenesis in two cell lines, suggesting that PKC is not
necessary for mitogenesis [25,26]. However, in studies with the related PDGF receptor, mutation of
all tyrosine phosphorylation sites was rescued from the mitogenic effects, by inclusion of only the
tyrosine that activates the PLCg-PKC pathway, suggesting that the PKC pathway can be sufficient
for mitogenesis. It is important to note that PKC and ras activate Raf1 by separatemechanisms and
that Raf1 activates mitogenesis via MAPK activity. Recent analysis of the raf1 null mutant has
suggested that ras is more important, but that the RafB, not Raf1 is necessary for growth factor
mediated mitogenesis in embryonic fibroblasts (reviewed in [27]).

Activation of src is a third possible pathway of FGFR activation of cell cycle. The FGFR also

activates src (Fig. 5.1, [21,28,19]). This src activation is not mitogenic for FGF, but src itself is
mitogenic in other cell lines and mediates functions like cell scattering and activation of nuclear

transcription during PC-12 differentiation [29] and references therein). However, these studies were

done in cell lines, not in animals.
A fourth pathway has arisen in which FGF activity suppresses cell division through STAT1. In

the gain-of-function mutation leading to sporadic non-familial dwarfism, a single change in a
transmembrane amino acid in FGFR-3 results in a gain-of-function enzymatic activity that leads to

cessation of cell cycle in chondrocytes [30]. Recently, suppression of chondrocyte division was

shown to require STAT1 activity, but the mode of activation of STAT1 is not understood [31].

However, STAT1 should be considered when interpreting results after perturbing FGF receptors,
but its perturbation will not be considered as a major area of effort until more is understood about

its mechanisms.

5.5 Signal Transduction Cascades, the ‘Universal Cassette’,

and the Three MAPK Families

In their biochemical pathways of docking proteins and kinases, the three MAPK family pathways

(Table 5.1, Fig. 5.3) are very similar. However, functionally, the ERK pathway tends to be more
mitogenic and the p38MAPK and SAPK/JNK pathways are more homeostatic and cytostatic. The
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mechanistic basis for the separation of function is not clear, but is based on the quality and quantity
of each type of transcription factor that is activated, more than their differences in enzymatic rates.
Each MAPK family activates a largely overlapping group of transcription factors (Fig. 5.3), but
overexpression of receptors (increasing pathway strength), can change an outcome from mitogen-
esis to differentiation within a single cell type (reviewed in [10]). Recent studies using cDNA arrays
suggest that different factors induce transcriptional activation of similar sets of genes. The strength
of transcription is an important difference. Others have concluded that the choice of activation of
individual monomers and ensuing heterodimeric pairs can have different effects. For example, in
the AP-1 heterodimeric transcription factor, junB inclusion leads to an anti-growth inflammatory
response, whereas junC inclusion is primarily mitogenic [32]. However, early studies looked at
functionally similar receptors (mitogenic FGF and PDGF) and did not compare receptors that
mediated more diverse biological outcomes. Also, less work has been done on the analysis of the
second wave of transcription after the immediate early response. The use of cDNA arrays to
analyze intermediate transcriptional outcomes (primary and secondary waves of induced transcrip-
tion) with respect to upstream receptor signaling capacity and downstream biological outcome, will
yield strong insights into the function of signaling pathways.

The MAPK pathway governs cellular functions that lead to outcomes as diverse as S phase and
cell cycle commitment [33], and determining cell fate during embryonic development [34]. SAPK
and p38MAPK pathways are structurally similar, but tend to mediate homeostatic responses
generated during stress in adult somatic cells as exemplified by inflammatory reactions [35].
Emerging evidence suggests that p38MAPK and SAPK pathways also mediate homeostatic
responses during embryonic development, but may play a role in normal development, and also
intervene in long-term decision-making by ‘‘taking over’’ the developmental decision making
during transient stress [36,37].

In summary, MAPK cassette pathways typically amplify nanomolar extracellular signals and
transduce these signals over minutes to hours. The biological effects include long-term nuclear
decision-making that determine the cellular efforts for periods of time lasting hours or days (cell
cycle commitment) or years (in determining cellular fate).

5.6 Insights into the Functions Between Proliferation-Promoting and Inhibiting

Subfamilies of the MAPK Superfamily and How Mechanisms Underly

These Functions

Using the tools and current knowledge discussed in this chapter, biological responses can be
understood in terms of enzymatic function. Two contrasting models with different biological
functions serve to illustrate key differences in how signal transduction pathways accomplish
biological effects. During development, the embryo and fetus in humans must produce several
trillion cells in the nine months between the one cell zygote and the newborn baby. In contrast, the
100 trillion cells in adult humans exist for years without net increases in accumulation, although a
few of the approximate 200 different cell types maintain stem cells with proliferative capacity [3].

For the MAPK pathway, negative feedback leads to a canonical biphasic response during in
vitro growth factor stimulation of somatic cells derived from adults. MKP can lead to a shortened
MAPK response, that may lead to failure of cells to sustain an anabolic response leading to G1-S
phase commitment and cell proliferation [38,33]. In contrast, activated MAPK persists in FGFR
response fields in the embryo and fetus for many consecutive days [39,40], enhances cell accumula-
tion and has other consequences. Thus embryos may prolong MAPK signaling to enhance cell
accumulation.

Observations also imply that signal transduction pathways in embryos are more sensitive than
those in adults. The concentration producing half maximal rates of anabolic and other functions,
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for insulin [41] and EGF [42] can be 1,000–10,000 fold less in embryos than it is in adult somatic
cells. TheKd of the EGF receptor in the embryo is not known, but the Kd for the insulin receptor in
embryos is similar to adult somatic cells [43]. Taken together, these data suggest that embryonic
cells are more sensitive to growth factors than adult somatic cells, and this enhanced sensitivity is
downstream of the receptor. The enhanced sensitivity may be a product of signal transduction.

5.7 Cross-Talk Among Receptors

Cross-talk occurs when downstream signaling of a receptor, leads to activation of another receptor-
mediated pathway. Cross talk increases the complexity of signaling and permits greater fine-tuning
of the regulatory machinery than possible by individual pathways. Of the many signaling pathways
available within the cell, multiple pathways can be used in various combinations to transduce
signals downstream of a single ligand-receptor interaction. Shared second messengers can lead to
the activation of a common downstream pathway by different intercellular signals. Many G
protein-coupled receptors, for example, activate phospholipase C downstream of their associated
G protein, resulting in elevation of DAG and intracellular Ca++ (Fig. 5.4). Therefore, exposure to
any of the ligands would result in activation of calmodulin and protein kinase C, as well as other
common pathways, and produce similar biological outcomes. During early pregnancy, the uterus
secretes calcitonin and lysophosphatidic acid, which both accelerate preimplantation embryonic
development to a similar extent through a mechanism dependent on intracellular Ca++ [44,45].
Calcitonin and lysophosphatidic acid each bind to a specific receptor, but both receptors are
coupled to G proteins that activate phospholipase C. This type of cross-talk provides biological
systems with redundancy to ensure the success of critical processes such as blastocyst implantation.

Another form of cross-talk occurs when completing the biological output of a signaling path-
way, downstream of one receptor that requires the participation of a signaling pathway down-
stream of another class of receptor. In the example of signaling in the uterus discussed above,
lysophosphatidic acid was not able to accelerate embryonic development if tyrosine kinase activity
was inhibited, suggesting the participation of a protein tyrosine kinase. In this case, intracellular
Ca++ signaling was found to induce the secretion of a member of the epidermal growth factor
(EGF) family, heparin-binding EGF-like growth factor (HBEGF). HBEGF then binds to its

Fig. 5.4 Receptor cross-talk as a result of EGF receptor transactivation by aGprotein-coupled receptor agonist. The
trimeric (a, b and g subunits) G protein coupled to a seven pass transmembrane receptor becomes dissociated upon
agonist binding, permitting the subunit to activate phospholipase C (PLC). PLC activity leads to the elevation of
intracellular Ca++ concentration and activation of protein kinase C (PKC), which are responsible for increased
metalloproteinase (MP) activity at the cell surface. The transmembrane form of EGF family growth factors (pro-GF)
become secreted by the action ofMP on their exodomain and are free to bind to their receptor tyrosine kinase (RTK)
on the same or neighboring cells. Transphosphorylation of tyrosine (Y) residues in the cytoplasmic domains of
dimerized RTKs, create sites for docking proteins with SH-2 domains and downstream signaling (Copies of figures
including color copies, where applicable, are available in the accompanig CD)
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receptors, EGF receptor and ErbB4. Treatment with HBEGF alone is sufficient to cause a similar
stimulation of embryonic development [46]. This type of receptor cross-talk has been described in
many cellular systems [47], where the signal passes through the plasmamembrane three times; once
when the G protein-coupled receptor is ligated, or when the EGF family growth factor is secreted
and a third time as the receptor tyrosine kinase is activated. There are numerous examples of EGF
receptor transactivation by agonists of G protein-coupled receptors, as well as after exposure to
stress or radiation. In each case, it has been shown that the stimulus activates a metalloproteinase
by either raising intracellular Ca++ or inducing protein kinase C activity [47]. The metalloprotei-
nase activity is required for the secretion of EGF-like growth factors, which are initially produced
as transmembrane proteins which are shed upon cleavage of their extracellular domain. The
released growth factor is then free to bind to its receptor in an autocrine signaling loop (Fig. 5.4).
Signaling downstream of the EGF receptor can then orchestrate additional biochemical changes,
such as MAPK activation, as a result of the original stimulus.

5.8 Conclusions and Future Directions

Previous research in the field of signal transduction has focused upon identifying novel signaling
intermediates and their major roles in the pathways. The three MAPK families illustrate the
following common features of related and interacting signal transduction pathways: speed of
transduction, amplification via cascading enzymatic activity, branching, interaction with other
pathways, and distinct and shared biologic functions mediated through distinct and shared tran-
scription factors.

The next phases of research will focus on the functions of all members within each family of
signal transduction genes as the human andmouse genome projects provide complete sets of family
members. Large-scale approaches will give a broad picture of the responses of cells to ligands that
induce distinct biological outcomes, such as cell death, mitosis, differentiation or motility. Proteo-
mics and cDNA arrays will be used to detect broad changes in signaling quantity and quality of
related transcription factors between wild type cells and null mutants or cells with receptor mutants
with differential signal transduction capacities [10]. Arrays will also be used to detect differences in
transcriptional quantity and quality between functionally different receptors that activate mitogen-
esis through FGF receptor-ERK signaling, that blockmitogenesis through TGFb receptor–SMAD
signaling, or induce apoptosis through TNFa receptor–Fas (FADD) signaling.

Deep and narrow research will still focus on the function of single-signal transduction genes. A
central principal in studying the functions of these families will be the use of loss-of-function of
single genes (and crosses to knockout out multiple genes in one family) through null mutations in
vivo. Key focus will be on the unique properties of signal transduction multi-functional enzymes
with overlapping ranges of inputs and outputs.

Glossary and Abbreviations

AP1 Activating protein
ATF2 Activating transcription factor 2
CRE-BP1, CREB2 Cas Crk–associated substrate, p130CAS (**C in integrin signaling complex);

cRaf-Raf proto-oncogene S/T protein kinase
DAG Diacylglycerol
DPC-4 Deleted in pancreatic cancer locus 4, SMAD4
EGF Epidermal growth factor
ELK1 Ets domain transcription factor
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ERK Extracellular signal-regulated kinase, MAPK
FAK Focal adhesion kinase (**FK in integrin signaling complex)
FGF Fibroblast growth factor
FGFR Fibroblast growth factor receptor
FRS2 FGF receptor stimulated, lipid-anchored Grb2 binding protein
Fyn Src family tyrosine kinase (**Fn in integrin signaling complex)
GEF Guanine nucleotide exchange factor (example is SOS son-of-sevenless)
GRB2 Growth factor receptor-bound protein 2
GSK3 Glycogen synthase kinase
HB EGF-heparin binding-EGF
IFN Interferon; JNK-Jun N-terminal kinase; Jun-transcription factor
MAPK Mitogen-activated protein kinase
MAPKAP MAP kinase-activated protein kinase 2
MEK MAPK/ERK kinase, MAPKK; MKK MEK kinase
MKP MAPK phosphatase
MLK Mixed lineage kinase
MSK 1-Mitogen and stress-activated kinase 1
p53 Tumour suppressor protein that protects from DNA damage;
Paxilin P in integrin signaling complex;
PKA and PKC Protein kinase A and C, respectively
PLC Phospholipase C
PP Protein phosphatase
PYK2 Proline-rich tyrosine kinase-2 (**P in integrin signaling complex)
rac G-protein
ras G-protein
RSK Ribosomal S6 kinase
SAPK Stress-activated protein kinase
Sos Son of sevenless guanine nucleotide exchange factor
SRF Serum response factor
STAT Signal transducer and activator of transcription
TAK TGFb-activated kinase
Talin (**T in integrin signaling complex)
TGF Tumor growth factor
TNF Tumor necrosis factor
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Chapter 6

Epigenetics of Spermiogenesis

Combining In Silico and Proteomic Approaches in the Mouse Model

Sophie Rousseaux and Myriam Ferro

Abstract One of themost dramatic chromatin remodeling and genome reorganization ever observed
takes place during the post-meiotic maturation of male germ cells. Indeed, after meiosis, early male
haploid cells, or spermatids, inherit a somatic-like chromatin-based genome organization. In the
following stages of their maturation, histones are removed and replaced by testis-specific basic
proteins, while their genome undergoes a dramatic compaction. Despite the fundamental nature of
these events, the molecular basis of the driving elements controlling them is not known. Moreover,
the resulting sperm specific genome structure could be crucial for the epigenetic information as welll
as move conveyed to the embryo, but this structure is completely unknown.

Keywords Spermatogenesis � Proteome � Histone � Protamine � In silico analysis

6.1 Introduction

In order to characterize the molecular events and identify structures and factors involved in the post-
meiotic chromatin re-organization of the male genome, we initially characterized post-translational
modifications affecting the histones before their removal. These include a global acetylation of the
core histones H2A and H4, which dramatically increase in early elongating spermatids. Our
hypothesis is that this global histone acetylation could act as a signal for recruiting factors
important for the chromatin re-organization events occurring later on.

Facing a complete lack of data concerning the molecular basis of post-meiotic chromatin
remodeling we then undertook two complementary approaches for the systematic identification
of factors involved in this process.

Our first approach was a comprehensive in silico analysis of known and unknown chromatin-
binding factors expressed in the testis. A particular focus was made on bromodomain-containing
factors, since bromodomains (Brd) are known to specifically bind acetylated histones. A list was
established and interesting factors were selected for further studies.

On the parallel front, our second approach was based on a global proteomic strategy to identify
additional chromatin-associated factors in the post-meiotic cells. This proteomic approach has led to
the identification of approximately 200 factors, including new histone variants, which could specifi-
cally be involved in the pericentric heterochromatin reprogramming in late condensing spermatids, as
well as chaperones, which might have a role in histone/testis-specific protein exchanges.

The functional data obtained for selected factors provide a basis to build new working hypoth-
eses and shed light on one of the most dramatic and less known process in biology. In addition to
genetic information, the spermatozoon conveys an epigenetic message to the future embryo.

S. Rousseaux
Inserm U823, 38706 La Tronche cedex, France and Université Joseph Fourier, Institut Albert Bonniot,
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Fig. 6.1 Chromatin in
somatic cells. Schematic
view of the nucleosome. The
basic unit of chromatin is the
nucleosome, which is
constituted of an octamere
of core histones, around
which 146 bp DNA is
wrapped. Each core histone
is comprised of a well-
structured C-terminal part
as well as an N-terminal
extremity, or ‘‘tail’’, which
can be modified on specific
amino-acid residues (Copies
of figures including color
copies, where applicable, are
available in the
accompanying CD)

Fig. 6.2 Epigenomic modifications in somatic cells. Modifications include: (i) methylation of Cytosine residues of the
DNA molecule (catalysed by DNMTs – DNA Methyl Transferases) (ii) post-translational modifications of histones
(mainly affecting residues of the N-terminal tails): acetylation of lysines, methylation of lysines or arginines,
phosphorylation of serines, etc. . . these modifications are thought to interact and combine with one another in order
to define a specific code, known as the ‘‘histone code’’. Enzymatic activities catalyse these modifications or remove
them, for example the histone acetyl transferases (HAT) acetylate histones, whereas histone deacetylases (HDACs)
remove the acetyl residues. (iii) These histone modifications can be recognized by factors or complexes, which are
recruited on chromatin, via the binding of specific ‘‘domains’’ on specific modifications. For example, bromodomain-
containing proteins bind acetylated histones, whereas chromodomain-containing proteins are recruited on histone H3
when is tri-methylated Lysine 9. These factors are named as ‘‘histone code readers’’. (iv) The incorporation of histone
variants also modify the nucleosome and can play a role in specific epigenomic modifications. (v) Other modifications
of the nucleosome structure are likely to be involved, which are not described here. These chromatinmodifications help
in defining specific chromatin regions, such as euchromatin and heterochromatin (Copies of figures including color
copies, where applicable, are available in the accompanying CD)
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In the somatic cells, the molecular basis of the epigenetic information is the ‘‘epigenome’’ and
involves DNAmethylation as well as modifications of the genome packaging structure, or chromatin.
The basic unit of chromatin is the nucleosome,which is a 146bpDNAwrappedaround an octamere of
core histones,H2A,H2B,H3 andH4 (Fig. 6.1) [1].Well-studiedmodifications of this structure include
histone covalent modifications, the incorporation of histone variants, the recruitment of chromatin
remodeling factors and the expression of non-coding RNAs (Fig. 6.2) (Bernstein et al. 2007).

Spermatogenesis is the differentiation of male germinal cells from spermatogonia to spermato-
zoa. Beginning at puberty, spermatogenesis is a continuous process, characterized by three major
stages: pre-meiotic, meiotic and post-meiotic (or spermiogenesis) (for review see [2]). Spermatogo-
nia divide by mitosis. They then enter meiosis by the formation of primary spermatocytes, which
replicate their DNA, undergo meiotic division I, yielding secondary spermatocytes, which then
rapidly go through meiotic division II, and generate haploid round spermatids.

During the post-meiotic maturation of the male germinal cells, or spermiogenesis, the spermatid
undergoes a global remodeling of its nucleus, which elongates and compacts itself into the very
unique nucleus structure of the spermatozoon. During this process, a drastic reorganization of the
chromatin structure takes place where most histones are removed and replaced by sperm specific
nuclear proteins, transition proteins (TPs) and protamines (Prms), the latter being responsible for
the very tight compaction the sperm genome (Fig. 6.3).

Despite the fundamental nature of these events, the molecular basis of the driving elements
controlling them is not known. Moreover, the resulting sperm specific genome structure could be
crucial for the epigenetic information conveyed to the embryo, but this structure remains comple-
tely unknown.

6.2 Objective and Strategies

Our objective was to shed light on the events and factors involved in the post-meiotic reorganization
of the male genome, one of the last ‘‘black boxes’’ of modern biology, and more specifically to find
answers to the following specific questions: what are the molecular mechanisms and factors
controlling the general histone removal and the assembly of new chromatin structures? what are
the structures replacing nucleosomes? are there genomic regions specifically marked by these
structures, and if so which ones? and do sperm specific genomic structures convey male-specific
epigenetic information?

Fig. 6.3 Global chromatin re-organization during the male post-meiotic cell maturation. In pre-meiotic, meiotic and
early post-meiotic cells (round spermatids), the chromatin has a nucleosomal somatic-like structure. During elongation
and condensation of the genome this structure is completely re-organized since most histones are removed and replaced
by transition proteins (TPs) and protamines (Prms), the latter being responsible for the very compact sperm-specific
nucleoprotein structure (DNA associated with protamines), ensuring a protective environment for the male genome
(Copies of figures including color copies, where applicable, are available in the accompanying CD)
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Due to a complete lack of data on factors involved in the male post-meiotic genome re-
programming, we have established strategies for the massive identification of factors potentially
important in this process (specifically regarding the issues raised above). We then proceeded to
their functional studies.

6.3 What Was Initially Known About Chromatin Re-Organization During

Spermatogenesis?

Prior to histone removal, two specific events affect the nucleosome: the incorporation of histone
variants and an increased global acetylation of the core histone tails. It has been postulated that
these modifications could result in a looser nucleosomal structure, and facilitate the recruitment of
factors and complexes further involved in histone replacement. For review see [3,4].

Our initial working hypothesis was that this global histone acetylation could be a signal for the
recruitment of factors and complexes re-organising chromatin. We therefore initiated this work by
characterizing the nature and the timing of histone acetylation during spermatogenesis in the
mouse as well as in humans. Both published, and yet unpublished, investigations showed the
occurrence of a massive increase in global histone acetylation in elongating spermatids in both
species, which mostly affected H4 and H2A [5,6].

In order to establish a molecular link between histone acetylation and their replacement, we
focused our attention on factors potentially capable of reading and functionally interpreting these
specific histone acetylation marks, i.e., factors bearing the acetyl-lysine binding module, the
bromodomain (Brd).

Our first approach was a comprehensive in silico analysis of known and unknown bromodomain-
containing factors expressed in the testis. A list was established and interesting factors were selected
for further studies. In parallel a global proteomic approach was undertaken to identify additional
factors.

6.4 Characterization of Histone Modifications During Spermiogenesis

The analysis of the best-characterized histone modifications rapidly pointed to acetylation of H4
and H2A, as well as to phosphorylation of the H4 serine 1 (S1), as potentially important events in
the genome post-meiotic reprogramming. The analysis of the other histone modifications did not
allow highlighting any other remarkable event.

Our observations showed that a genome-wide histone H4 hyperacetylation occurs at the begin-
ning of spermatid elongation and is accompanied by a dramatic reprogramming of the pericentric
heterochromatin [7].

Indeed, after the completion of meiosis, in the early round spermatids, the pericentric hetero-
chromatin regions become grouped and organized in a unique round chromocenter. Our investiga-
tions have shown that, in these cells, the chromocenter bears all the expected characteristics of
somatic-cell heterochromatin, i.e., association with HP1 proteins and enrichment in H3 tri-methy-
lated in K9 (H3K9me). Interestingly, in elongating spermatids, we showed that the occurrence of the
global histone H4 hyperacetylation corresponds to a dramatic de-compaction of this unique chro-
mocenter, followed by a complete reprogramming of these pericentric regions. Indeed, initially
devoid of acetylated histones, these regions gain histone H4 acetylation, and loose the associated
HP1 proteins. However, despite the spreading of histone acetylation, H3K9me remains associated
with these pericentric regions (Fig. 6.4). A detailed analysis shows that, at this stage, pericentric
heterochromatin is composed of a mixture of nucleosomes individually bearing, either the usual
H3K9me mark or acetylated H4, but not both. Moreover, as the elongation/condensation of the
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spermatids proceeds, histone acetylation persists in the pericentric regions, while it disappears from
the other regions, reflecting global histone removal in the latter.

Additionally, we observed the occurrence of H4S1 phosphorylation in meiotic cells, that persists
during the post-meiotic stages and precedes histone H4 acetylation [8].

This meticulous observation and thorough description of chromatin-related events during the
post-meiotic stages of mouse spermatogenesis was used as a guide to select appropriate factors
for further functional studies. For instance the detailed knowledge of histone hyperacetylation
during spermiogenesis was a determinant in the selection of the appropriate Brd-proteins to be
studied: a potentially interesting factor needs to be expressed in cells when hyperacetylation
occurs.

6.5 In Silico Identification of Factors Involved in Post-meiotic Chromatin

Re-organization

The data described above suggested that histone acetylation could be associated with either histone
replacement by transition proteins (in most of the genome) and/or with constitutive heterochro-
matin reprogramming.

Logically, factors capable of catalysing these events should bear bromodomains, which would
allow for a specific interaction with acetylated histones. Indeed these domains are the best-
characterized structural motifes capable of binding acetylated lysines.

6.5.1 Principle of In Silico Approaches

This approach is based on the identification of transcripts from the testis in various databanks,
encoding important factors potentially capable of acting on chromatin. For the reasons
expressed above we focused on bromodomain-containing factors capable of binding acetylated
histones.

Fig. 6.4 Dynamics of H4 acetylation during mouse spermatogenesis. Before removal, histones are massively and
globally hyperacetylated in the elongating spermatids. By immunofluorescence with an anti-acetylated H4 antibody,
we have shown that in early elongating spermatids there is a global increase of acetylated H4, which is present in the
whole volume of the nucleus. As the spermatid elongates and starts to condens, the acetylated H4 is removed, but
remains present in a restricted area of the genome, mainly corresponding to heterochromatin structures (arrows). It
then completely disappears in condensed spermatids (Copies of figures including color copies, where applicable, are
available in the accompanying CD)
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6.5.2 Search for Bromodomain-Containing Testis-Specific Proteins

Originally, dbESTanddbESTCumulativeUpdateswere searched using the bromodomain region of the
factor namedGCN5 as a query. In order to rapidly identify interestingly expressed sequence tags (ESTs)
(those presenting the best similarity the query), we designed a computer program to treat the raw data
and to set up a schematic representation of homologous ESTs. The ESTs were sorted according to their
origin and only the ESTs present in libraries for testis were selected (Fig 6.5). For details, see [9].

http://blast.ncbi.nlm.nih.gov/Blast

List of mouse ESTs with bromodomain homologies

Group same ESTs

Selection of testis-expressed ESTs

Selection of testis-specific ESTs

Identification of testis-specific bromodomain factors

Fig. 6.5 In silico strategy for the identification of testis-specific bromodomain containing factors (Copies of figures
including color copies, where applicable, are available in the accompanying CD)
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6.5.3 Expression and Functional Studies

Functional studies were immediately started on a testis-specific double bromodomain-containing
protein of completely unknown functions, named Brdt [9].

During this work, we also gathered information on other chromatin-related factors with a link to
acetylation and selected Cdyl, a chromodomain containing protein, for functional studies.

6.5.3.1 BRDT

BRDT, a double bromodomain containing protein expressed in the testis and present during the
critical post-meiotic stages, appeared as a very interesting candidate. Our early investigations
showed that Brdt has the extraordinary capacity for compacting chromatin, in vivo and in vitro in
a strictly acetylation-dependent manner [9] (Fig. 6.6). Later we obtained an antibody, which
allowed us to show that Brdt co-localized very precisely with acetylated genomic regions all through
spermiogenesis [7]. These results suggested that Brdt could indeed be involved in an early global
compaction of acetylated chromatin occurring in condensing spermatids.

6.5.3.2 CDYL

CDYL, another testis-expressed chromatin-related factor, also attracted our attention because of
its potential link to acetylation. Indeed, CDYL possesses a N-terminal chromodomain fused to a
domain showing significant homology to the Coenzyme A (CoA) binding pocket of enoyl-CoA
hydratase. We have shown that CDYL can bind chromatin via its chromodomain, and is likely to
be involved in the regulation of histone acetylation during spermiogenesis by recruiting histone
deacetylases via its CoA binding pocket [10].

6.6 Proteomic Identification of Chromatin-Associated Factors

in Male Germinal Cells

6.6.1 Principle of Proteomic Approaches

This approach is based on a global proteomic analysis of extracts obtained from staged post-
meiotic cells (i.e. round, elongating and condensing spermatids representing various levels of
genome reorganization).

Fig. 6.6 The functional
studies of Brdt show that it
binds acetylated histones
(pull down assay – left panel)
and has the unique property
of compacting acetylated
chromatin when
overexpressed in somatic
cells (when transfected cells
are treated with TSA
(Trichlora statin A) in order
to increase histone
acetylation, Brdt induces
the compaction of
chromatin-right panel)
(Copies of figures including
color copies, where
applicable, are available in
the accompanying CD)
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Two types of extracts were used for proteomic analyses (Fig. 6.7).

� Proteins associated with chromatin fibres (proteins released by microccocal nuclease digestion),
isolated from staged spermatogenic cells were individually or collectively identified. The selected
stages include spermatocytes, as well as round and elongating spermatids.

� Acid-soluble nuclear proteins (mostly DNA-interacting proteins), extracted from condensing
spermatids were collectively identified. We focused our attention on these basic proteins,
because most of the known DNA organizing proteins, including histones, Transition Proteins
(TPs) and Protamines (Prms), are highly basic. The objective was to identify new and yet
unknown factors that specifically organize the genome in the spermatids after histone removal.
This approach yielded very exciting data. Indeed it led to the discovery of new histone var-
iants [7], and chaperones involved in the assembly of yet unknown spermatid-specific DNA-
packaging structures [11].

Proteins from the extracts prepared as above were then analysed by electrophoresis. As some
specific chromatin proteins are highly basic (e.g., histones and protamines), one dimension SDS-
PAGE electrophoresis was preferred to 2-dimensional electrophoresis (2DE). Indeed standard
2DE allows efficient protein separation for proteins within a 4–7 pI range. Once the proteins were
separated by SDS-PAGE, in-gel trypsin digestion was carried out directly on the excised gel
bands. The so-generated peptides were then analyzed by mass spectrometry either by peptide
mass fingerprinting (PMF) or by tandem mass spectrometry (MS/MS) sequencing. The PMF
method allows theMW(molecular weight) of the peptides corresponding to a same gel band to be
measured. This is generally achieved with a MALDI-TOF instrument. For database searching
purposes the measured masses of the peptides, are compared to the theoretical peptide masses
retrieved from the in silico digestion of proteins present in a protein database (e.g., UniProtKB).
The PMF method is well-adapted to 2DE-separated proteins but shows some limitations when
more complex samples have to be analyzed. In this case MS/MS analyses is preferred to the
peptide sequence information that is used for database searching purposes. In context of MS/MS
data, the fragmentation pattern of a given peptide is compared to the theoretical fragmentation
patterns of peptides derived from the in silico digestion of proteins present in a protein database

Fig. 6.7 Strategies for
proteomic identification
of post-meiotic chromatin
re-organising factors.
R = round spermatids,
E = elongating spermatids,
C= condensing spermatids,
PCA = perchloric acid,
LC = liquid
chromatography,
MS/MS = tandem mass
spectrometry (Copies of
figures including color
copies, where applicable, are
available in the
accompanying CD)
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(for review see). Overall, the proteomic analyses carried out with these two types of extracts have
led to the identification of about 200 proteins (unpublished data, [11, 7]). Among these proteins,
several may yield new concepts.

6.6.2 Proteomic Identification

The proteomic strategy described in the previous section was applied to the acid extracts obtained
from condensing spermatid (steps 12–16) nuclei in order to gain an insight into the nature of
genome-organizing proteins in these cells. About 50 proteins were identified, including, as
expected, many DNA-packaging proteins [11]. Among the linker histones, the newly identified
H1t2 [13] was present, and within the high mobility group proteins, testis-specific as well as
uncharacterized members could be identified. In addition to canonical core histones, many variants
were found including new H2A and H2B variants, that were called H2AL1, H2AL2, and H2BL1
and were further characterized [7]. Other proteins not related directly to chromatin remodeling
were also found.

Characteristic features, such as the isoelectric point (pI) and the molecular weight (MW),
were examined for the 50 proteins soluble in H2SO4 (sulphuric acid). Fig. 6.7A shows the
distribution of those proteins according to their pI, MW and function. Three functional classes
were pointed out: (i) chromatin proteins that include histones (core, linker and variant), HMG
proteins, transition proteins and protamines, (ii) chaperones, such as nucleoplasmin and
HSP70.2, and (iii) a miscellaneous class that gathers elongation factors, proteasome-related
proteins and others. As expected, chromatin proteins, most of which are basic, remain cluste-
red in the high pI range and the low MW range on the diagram presented in Fig. 6.8A. More
surprisingly acidic proteins, and especially known chaperones with a pI between 4.5 and 6, were
identified from acid extracts of condensing spermatids. Based on these data, we hypothesized
that a tight association between these acidic proteins and their potential basic partners, such as
the chromatin proteins, may have induced their solubility in H2SO4. Accordingly, these cha-
perones might have a specific function in the context of chromatin remodeling. Thus, further
investigations were undertaken regarding the HSP70.2 protein, which was known to play a
critical role in the completion of meiosis during male germ cell differentiation but whose
function in post-meiotic cells was unknown. Our recent data strongly suggested that, after
meiosis, HSP70.2 acquires new functions, such as being the chaperone of TP1 and TP2, and
contributes to the dramatic spermatid-specific genome-wide reorganization [11]. The work
described by Govin et al. points out how a global proteomic approach can open up perspectives
to investigate yet unknown processes involved in the genome-condensing structure assembly in
the course of spermiogenesis.

6.6.3 Expression and Functional Studies of Factors Selected from the Proteomic
Approaches

6.6.3.1 Histone Variants

The persistence of nucleosomes associated with the constitutive heterochromatin of condensing
spermatids, despite their replacement in the other regions, attracted our attention to a group of yet
unknown histone variants, which were found among the acid-soluble proteins extracted from the
condensing spermatids.

We reasoned that these surviving nucleosomes could constitute a privileged site for their assembly.
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Antibodies were generated against these new histone variants in order to study their expression
and localization during spermatogenesis. The data obtained showed that they are late expressing
histones, which accumulate at the same time or even later than TPs and become specifically
associated with the pericentric heterochromatin (Fig. 6.9). These findings are a very important
contribution to the understanding of spermiogenesis, since for the first time they evidence elements
of a differential genome organization with potentially important implications in the transmission of
male-specific epigenetic information.

More detailed investigations have shown that TH2B, an already identified testis-specific H2B
variant of unknown function, could provide a platform for the structural transitions accompanying
the incorporation of these new histone variants [7].

(B)

Fig. 6.8 Factors identified by the proteomic strategy. (A)A subset of the protein identified by H2SO4 acid extraction
in late spermatids: distribution according to their isoeclectric point (pI) and molecular weight (MW). (B)All proteins
(approximately 200) identified from acid extractions and isolated chromatin fibres during spermiogenesis:
distribution according to their function and/or their known localization. The proportions of testis-specific proteins
versus non-testis specific factors are shown (Copies of figures including color copies, where applicable, are available
in the accompanying CD)

(A)
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6.6.3.2 Chaperones with Unexpected Functions

The examination of the list of acid-soluble proteins (in principal basic, positively charged proteins
(see Fig. 6.8) from condensing spermatids revealed the unexpected presence of a group of acidic
proteins. The analysis of the identity of these proteins showed that they were mostly chaperones.
We reasoned that these chaperones could have been solubilized because of their acid-resistant
association with the basic (DNA-binding) proteins. We became very interested in these proteins
since there is a considerable lack of information on the chaperone systems involved in the assembly
of spermatid-specific DNApackaging structures. The analysis of testis-specific HSP70.2, revealed a
specific post-meiotic role for the protein in the assembly of TP-containing structures [11].

6.7 Conclusion

The combination of in silico and proteomic strategies has led to the identification of several hundred
of protein potentially involved in post-meiotic genome reorganization in male germ cells. A detailed
analysis of chromatin modifications during spermiogenesis was followed by the functional studies of
factors carefully selected because of their direct link with these chromatin re-modeling events. The
resulting data have enabled us to establish a general scheme of post-meiotic genome reprogramming
during mouse spermatogenesis, which is as follows (Fig. 6.10).

Fig. 6.9 Late expressing histone variants accumulate in pericentric heterochromatin in the late condensing spermatids,
contributing to the existence of new nucleosome-like structures. Right Panel: acid extraction of nuclear proteins from
late condensing spermatids and mass spectrometry has allowed for the identification of three new histone variants,
H2AL1, H2AL2 andH2BL1. Antibodies raised against these variants show that they are present at the very late stages
of spermiogenesis, and specifically localize in pericentric heterochromatin regions (Western Blots and IF). Left Panel:
MNAse digestion of late condensing spermatids has led to the identification of a regular nucleosomal structure (left
circle) as well as an unknown MNAse resistant smaller structure (right circle). The histone variants H2AL1/2 and
H2BL1 are specifically detected in the newMNAse resistant structure (Copies of figures including color copies, where
applicable, are available in the accompanying CD)
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After meiosis, the induction of a massive and genome-wide histone hyperacetylation triggers
reprogramming. This is associated with histone replacement in most of the genome and specific
reprogramming of pericentric heterochromatin.

Our functional investigations, suggests the following working hypotheses.

– In round spermatids, CDYL associates with HDACs, maintaining a low level of histone
acetylation in these cells, which could contribute to the general repression of transcription.

– HDACs are then massively degraded, which induces a global increase in histone acetylation in
elongating spermatids.

– Histone acetylation signal their removal and degradation.
– BRDT would link histone acetylation to a first step of genome compaction and massive histone

removal in most of the genome, as well as to nucleosome survival and histone exchange, with
incorporation of new histone variants, in pericentric regions.

– The assembly of these structures would allow a regional differentiation of the male genome to be
established in mature spermatozoa and would mediate the transmission of male-specific epige-
netic information to the embryo.

All these events should somehow be linked together. Future efforts will focus on establishing these
links and on detailing the molecular basis of major transitions occurring during spermiogenesis.

Glossary and Abbreviations

2DE 2-dimensional electrophoresis
Brd Bromodomain
CoA Coenzyme A
ESTs Expressed sequence tags

Fig. 6.10 Our current workingmodel for the molecular basis of post-meiotic reprogramming of themale genome (see
text for comment) Rs = round spermatids; ES=elongating spermatids; CS=condensing spermatidss copies, where
aplicable, are available in the accompanying CD)
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HDACs Histone deacetylases
MS/MS Tandem mass spectrometry
PMF Peptide mass fingerprinting
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Chapter 7

Genomic Tools for Analyzing Transcriptional

Regulatory Networks

John J. Wyrick

Abstract In this chapter, we described how genomic tools can be used to construct and analyze
transcription networks. We focus on the ChIP-chip technique as this genomic tool has proven to be
a powerful method for identifying the genomic targets of transcription factors. We discuss bioin-
formatics methods that can be used to analyze ChIP-chip data and discover the DNAmotifs bound
by a transcription factor. Finally, we describe bioinformatics tools, such as Athena, that can be
used to visualize and analyze transcription factor binding sites. We have shown that integrating the
analysis of transcription factor binding data with information about gene function or expression
can be a powerful tool for deciphering transcriptional networks.

Keywords Chip-chip � Transcription � Network � Athena

7.1 Introduction

Dynamic regulation of gene transcription is critical for the development and adaptation of
eukaryotic organisms to their environment. The central regulators of gene transcription are the
transcription factor proteins. Transcription factors identify their target genes by binding to short,
specific DNA sequences, which are typically located in promoter regions upstream of genes. Once
bound, transcription factors can either activate or repress the transcription of adjacent genes.

This simple picture of transcription regulation is complicated by a number of biological factors.
First, even the simplest eukaryote species contains a large number of transcription factor proteins.
For example, more than 200 transcription factors have been identified in the unicellular yeast
Saccharomyces cerevisiae. The human genome is thought to encode even more—at least 1300 genes
encode transcription factor proteins, according to recent tallies. Past studies have focused primarily
on individual transcription factors and individual target genes. While they are important, these
studies are insufficient to decipher how the global network of transcription factors regulates the
transcription of the genome.

Secondly, the mechanisms by which transcription factors regulate gene expression are complex. In
the simplest case, a transcription factor regulates the transcription of a gene independent of other
factors that may be bound to the gene’s promoter. In reality, many transcription factors act
synergistically or redundantly with one another to specify a gene’s transcription frequency. Hence,
it can be difficult to untangle the individual contributions of each factor in the transcription network.

Thirdly, transcription factor proteins often bind to short DNA sequences with relatively low
sequence specificity. For this reason, it can be difficult to predict which DNA sites in the genome will
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be bound by a transcription factor even if its binding specificity has been extensively characterized
using biochemical methods. While computational methods are being used to predict transcription
factor targets based on their DNA binding specificity, many of the predicted binding sites are
inaccurate (i.e., the sites are not bound by the transcription factor protein in vivo). Hence, construct-
ing networks that accurately identify a transcription factor’s target genes is a nontrivial problem.

Fortunately, many of these limitations can be addressed using a new generation of genomic and
computational tools. In this chapter, we will discuss a method known as chromatin immunopre-
cipitation microarray analysis or ChIP-chip. This experimental method can be used to identify the
global set of genes bound by a transcription factor. By using ChIP-chip analysis to identify
transcription factor targets, a transcriptional network can be rapidly constructed. We will then
discuss how DNA binding motifs can be defined using ChIP-chip data, and how networks of these
binding motifs can be analyzed using bioinformatics tools.

7.2 Genome-Wide Profiling of Transcription Factor Binding Targets

Transcription factors regulate transcription by binding to specific DNA sequences in the genome.
Hence, the first step in deciphering a transcription network is to identify the genomic DNA targets
that are bound by each transcription factor protein. This is a non-trivial problem. To date, one of
the most successful methods of identifying transcription factor targets is by chromatin immuno-
precipitation (ChIP). A ChIP experiment results in the purification of the DNA fragments that are
bound by a protein of interest, typically a transcription factor. The purified DNA fragments are
subsequently identified by PCR amplification, DNA microarray analysis, or high-throughput
DNA sequencing.

In this section, we will focus on the ChIP experiments that are coupled with DNA microarray
analysis, as this method has been proven to be very successful in mapping the genome-wide binding
sites of transcription factors. Our focus will be on the general concepts and practice of the ChIP-
chip method. Readers interested in detailed experimental protocols should consult the references
listed at the end of chapter.

7.2.1 Chromatin Immunoprecipitation

Chromatin immunoprecipitation (ChIP) consists of four essential steps: (A) In vivo chemical cross-
linking of the protein to DNA; (B) Fragmentation of the DNA; (C) Purification of the DNA-protein
complexes by immunoprecipitation; and (D) Reversal of protein-DNA cross-links. Fig. 7.1 shows a
schematic describing the ChIP protocol. Each of these steps will be described in detail below (Copies
of figures including color copies, where applicable, are available in the accompanying CD).

7.2.1.1 Chemical Cross-linking of Protein to DNA

The power of the ChIP technique is that it measures in vivo DNA-binding events. This is accom-
plished through chemical cross-linking of intact cells. Essentially, the addition of a cross-linker
‘‘freezes’’ the transcription factor proteins to their in vivoDNA targets. This enables the researcher
to capture the DNA binding events that may be transient or dependent upon particular cellular or
environmental conditions (e.g., transcription factor binding during heat shock or at a particular
phase of the cell cycle). The cross-linking step also lends confidence that the detected DNA binding
events were present in the cell, and not caused by experimental artifacts during subsequent steps of
the ChIP protocol.

The most commonly used chemical cross-linker in the ChIP experiments is formaldehyde.
Formaldehyde reacts with the amino groups of lysine residues in proteins and the amino groups
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present in DNA bases. If a protein is associated with the DNA, a molecule of formaldehyde can
react both with the DNA base and the protein to form a stable molecular link between the DNA
and its bound protein (see Fig. 7.1A). Formaldehyde is advantageous because it can readily diffuse
into the nucleus of a cell to form protein-DNA cross-links, and these cross-links can be easily
reversed at subsequent steps by heat-treatment (see below).

7.2.1.2 DNA Fragmentation

Ideally, one would want to cross-link the transcription factor only to the DNA that comprises its
actual binding site, and not to the surrounding DNA. In order to accomplish this goal, the cross-
linked DNA must be broken into very short fragments, approximating the size of a transcription
factor binding site (5–30 bp). In practice, it is not feasible to fragment the DNA to this degree.
Instead, one must make do with longer DNA fragments. In the conventional ChIP protocol, the
cross-linked DNA is fragmented by exposure to high frequency sound waves emitted by a soni-
cator. This generates a range of DNA fragments with sizes ranging from 200–1000 bp (Fig. 7.1B).

The DNA fragmentation step is an important determinant of the resolution and sensitivity with
which one can measure DNA binding events. For example, if the average size of the DNA
fragments is relative large (>1 kb), it will be difficult to narrow down the transcription factor’s
actual DNA binding site. In addition, a large DNA fragment size can also influence the sensitivity
of the ChIP experiment due to the confounding influence of adjacent DNA fragments.

DNA can also be fragmented through digestion by a DNA endonuclease. For example, diges-
tion of DNAwith micrococcal nuclease (MNase) has been frequently used in ChIP experiments for
histone associated proteins or histone post-translational modifications. Digestion with MNase
typically results in a smaller average DNA fragment size (�150 bp) than that achieved by DNA
sonication. Unlike DNA sonication, however, the MNase cleavage pattern is not random, but is
dependent upon the positioning of nucleosomes in the genomic DNA.

Chromosome 

Transcription Factors 

(A) Formaldehyde cross-linking 

cross-link 

(B) DNA fragmentation 

DNA fragment 

(C) Immunoprecipitation 

Antibody 

(D) Reversal of cross-links 
Purified DNA 

fragments 

~300 bp 

Fig. 7.1 A schematic
diagram illustrating the
experimental steps involved
in the chromatin
immunoprecipitation
(ChIP) technique (Copies of
figures including color
copies, where applicable, are
available in the
accompanying CD)
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7.2.1.3 Purification of Protein-DNA Complexes by Immunoprecipitation

The crucial step in the ChIP protocol is the purification of transcription factor-bound DNA
fragments from the overall pool of genomic DNA. This is typically accomplished by immunopre-
cipitating the protein-DNA complexes using an antibody that binds with high affinity to the
transcription factor of interest (Fig. 7.1C). The affinity and specificity of the antibody for the
transcription factor is critical. Antibodies lacking these qualities will not adequately purify
the cross-linked DNA, or worse will purify the DNA that is bound by other, nonspecific proteins.
Frequently, even antibodies that work well in other experimental applications (e.g., western blot or
immunofluorescence) will not work well in ChIP experiments. Hence, it is essential that the anti-
body used is of ChIP-grade.

A common strategy is to fuse the transcription factorwith a short protein sequence that encodes an
epitope tag. Epitope tags are recognized by high affinity commercially available antibodies. Examples
of commonly used epitope tags include the Hemagglutinin (HA) tag,Myc tag, or FLAG tag. The use
of an epitope tag obviates the need to raise a ChIP-grade antibody against the transcription factor of
interest, as the high affinity anti-tag antibody can be used to immunoprecipitate the transcription
factor-DNA complexes. The effectiveness of this strategy was highlighted in a recent study, in which
the authors fused a Myc epitope tag to each of 203 yeast transcription factors, in order to system-
atically perform the ChIP-chip analysis on yeast transcription factors [1].

7.2.1.4 Reversal of Protein-DNA Cross-Links

In order to identify the DNA fragments bound by the transcription factor, the immunoprecipitated
DNA must be released from its protein cross-links. Fortunately, formaldehyde cross-links can be
easily reversed by heat treatment (Fig. 7.1D). This frees up the immunoprecipitated DNA for
subsequent enzymatic steps, which are the topic of the next section.

7.2.2 DNA Microarray Analysis of ChIP DNA

Once the DNA fragments bound by the transcription factor have been isolated by chromatin
immunoprecipitation, the identity of each of these DNA fragments must be determined. This can
be accomplished by analyzing the immunoprecipitated DNA using DNAmicroarray analysis. This
involves two steps: (i) Amplification and labeling of the immunoprecipitated DNA; and (ii)
Hybridization of the labeled samples to a DNA microarray.

7.2.2.1 Amplification and Labeling of Immunoprecipitated DNA

ChIP experiments typically yield a rather small amount of DNA. Hence, the DNA must be
amplified prior toDNAmicroarray analysis. A number of protocols have been developed to amplify
the DNA from ChIP experiments: ligation mediated PCR (LM-PCR), random primer PCR ampli-
fication, or T7 RNA polymerase-based amplification. In the LM-PCR method (see Fig. 7.2),
the immunoprecipitated DNA is ligated to short linker oligonucleotides (Fig. 7.2A). The ligated
DNA fragments are then PCR amplified using primers that anneal to the linker oligonucleotides. To
label the DNA for subsequent DNA microarray analysis, the PCR amplification mix includes
modified nucleotides that are conjugated to a fluorescent dye (e.g., Cy5). These modified nucleotides
are incorporated during PCR amplification (Fig. 7.2B), and thus the amplified ChIP DNA can be
subsequently detected using a microarray scanner.

Typically, a control sample of DNA is also PCR amplified and labeled in parallel with the ChIP
DNA sample. The choice of the control sample is important for the success of the ChIP-chip
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experiment. Common controls include fragmented genomic DNA that has not been immunopre-

cipitated (otherwise known as whole cell extract DNA), or DNA that has been immunoprecipitated

using a control antibody. If an epitope tagged transcription factor is used, then DNA immunopre-

cipitated from an untagged cell line is often the best control. The control DNA sample is commonly

labeled with a different fluorescent dye (e.g., Cy3), so that a two-colormicroarray hybridization can

be performed (see below).

7.2.2.2 Hybridization of Labeled Samples to DNA Microarrays

The labeled immunoprecipitated (IP) and control DNA samples are mixed and hybridized to the

same DNA microarray (Fig. 7.2C). The DNA microarray is then washed and scanned, and the

relative signal for the IP and control DNA is quantified for each probe on the microarray. An

example of a scanned ChIP-microarray is shown in Fig. 7.3. The DNA microarray experimental

methodology is covered in more detail in the other chapters in this book.
The choice of microarray depends upon the organism being studied, but usually a promoter

microarray is used. This is because it is assumed that transcription factors generally bind to

promoter sequences. A promoter microarray contains probes for each promoter region in the

genome. For the yeast S. cerevisiae promoter microarrays contain a single DNA probe for each

promoter. This is due to the small size of the yeast promoter regions (�0.5 kb on an average). For

the human genome, which contains much longer promoter regions, multiple probes for each

promoter sequence are included in a promoter microarray.
Tiling microarrays are a recent innovation that greatly expands the genome coverage and

resolution of DNA microarrays. Tiling microarrays contain millions of oligonucleotide probes

spaced at short intervals from one another (e.g., every 35 bp). The large number and density of

microarray probes allows the user to interrogate the genome at very fine sequence resolution. In

particular, the use of tiling microarrays to analyze ChIPDNA provides high resolution detection of
transcription factor binding sites.

ChIP DNA Control DNA

Linker DNA

(A) Ligation of Linker DNA
Linker DNA

(B) LM-PCR
Cy5-labeled
nucleotides

Cy3-labeled
nucleotides

(C) Hybridize 
   to array

Fig. 7.2 A schematic
diagram illustrating the
experimental steps involved
in the amplification,
labeling, and hybridization
of ChIP DNA to DNA
microarrays. The
experimental protocol for
the Ligation Mediated
Polymerase Chain Reaction
(LM-PCR) method is shown
(Copies of figures including
color copies, where
applicable, are available in
the accompanying CD)
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7.3 Bioinformatics Analysis of ChIP-chip Microarray Data

The process of chromatin immunoprecipitation selectively purifies DNA fragments that are
bound by the transcription factor of interest. It is important to note, however, that the ChIP
protocol does not completely remove the unbound genomic DNA fragments. Instead, the ChIP
protocol enriches the sample for the bound DNA fragments relative to the unbound DNA
fragments. Hence, when analyzing the DNA microarray data, one looks for promoter regions
whose spots show significant enrichment in the IP DNA sample relative to the control. Fig. 7.3
illustrates this process. The spots highlighted with arrows indicate promoter regions that show
significant enrichment in the IP sample (colored red in the color image provided in the supple-
mentary CD) compared to the control sample (colored green). Promoters that display this level of
enrichment in the ChIP sample are likely to be the transcription factor binding sites.

7.3.1 Error Model Analysis of ChIP-Chip Data

A common statistical approach to identify the enriched microarray probes/promoter regions is to
use error model analysis. The errormodel calculates the statistical significance of the enrichment for
each microarray probe and assigns a confidence measure (P-value) for the likelihood of protein
binding. The confidence measure for each probe is calculated using the following formula:

X ¼ a2 � a1

�21 þ �22 þ f 2 a21 þ a22
� �� �1=2 (7:1)

P ¼ 1� ErfðjXjÞ (7:2)

IP DNA (Cy5)

Control DNA (Cy3)

Merge

Fig. 7.3 An example of a scanned promoter microarray following hybridization of amplified and labeled ChIP DNA.
Each spot corresponds to a yeast promoter region. The fluorescence signal for the experimental ChIPDNA is shown in red
(see color image provided in supplementalCD); the fluorescence signal for the controlDNA(whole cell extractDNA in this
case) is shown in green. The ChIP DNA was immunoprecipitated using an antibody against the yeast Gcn4 transcription
factor. Spots that show enrichment for the IPDNAare indicated bywhite arrows, and are likelyGcn4 binding sites (Copies
of figures including color copies, where applicable, are available in the accompanying CD)
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whereP is the confidencemeasure, a1 and a2 are the Cy3 (control) and Cy5 (IP) fluorescent intensities,
respectively; a1 and a2 are the uncertainties associated with the Cy3 and Cy5 measurements; and f
is an empirically derived scaling factor. The scaling factor, f, is chosen so that the calculated X
values fit a Gaussian distribution, which allows a P-value to be estimated using equation 7.2.

Typically, aP-value threshold of 0.005 or 0.001 is chosen to identify enrichedmicroarray probes.
Promoter regions with a P-value less than the threshold are considered to be bound by the
transcription factor. An example of error model analysis of ChIP-chip data for the yeast Gcn4
transcription factor is shown in Fig. 7.4. Each point in the graph corresponds to the fluorescent
intensities of a single microarray probe representing a yeast promoter region. Points in red
(see color image provided in supplemental CD) indicate promoter regions that are significantly
bound by Gcn4 (P< 0.005) according to the error model.

7.3.2 Identifying Transcription Factor Binding Motifs from ChIP-Chip Data

When one has identified the promoter regions that are bound by a transcription factor, the next step
is to identify the short DNA motif present in the promoter sequence that comprises the actual
binding site. This search process can be aided if tiling microarrays are used for the ChIP-chip
experiment. The high density of the probes in a tiling microarray will allow one to localize the DNA
motif bound by the transcription factor with high resolution (Fig. 7.5). When using tiling micro-
arrays, one typically finds that multiple consecutive probes will show enrichment for ChIP DNA.
This phenomenon is due to the large size of the DNA fragments relative to the high density of
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Fig. 7.4 Error model analysis of Gcn4 ChIP-chip data. Each spot represents the signal from a yeast promoter region
on the microarray. The y-axis plots the Cy5 intensity (IP DNA); the x-axis plots the Cy3 intensity (control DNA).
The error model cutoffs for P-values equal to 0.005 (red line) and 0.05 (yellow line) are displayed. Spots in red (see
color image provided in supplemental CD) are significantly bound by Gcn4 according to the error model criteria.
Spots in blue are not bound by Gcn4 (Copies of figures including color copies, where applicable, are available in the
accompanying CD)
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microarray probes on the tiling microarray. The location of the bound DNA motif can be inferred
by finding the probe(s) with the peak signal (see Fig. 7.5), as these probes are likely to correspond to
the actual transcription factor binding site.

Most current ChIP-chip experiments are conducted using low-resolution promoter microarrays
that contain only a few (or one) microarray probes per promoter region. In such cases, computa-
tional methods are necessary to define the DNA motif that constitutes the actual transcription
factor binding site. A typical approach is to compile the complete set of promoter regions bound
with high affinity by the transcription factor (based on the ChIP-chip data) and search these
promoter regions for DNA sequence commonalities that constitute the DNA binding site. A
number of software tools have been developed to identify conserved DNA sequences from promo-
ters identified by ChIP-chip analysis, including MDscan, MEME, CONVERGE, and AlignACE.

7.3.2.1 Computational Representations of DNA Motifs

Analysis of ChIP-chip data using the methods described above will typically yield a series of short
DNA sequences that comprise the direct binding targets of the transcription factor. These
sequences can be used to generate a sequence motif that expresses the commonalities present in
this pool of high affinity binding sequences.

One common method is to write the motif as a pattern. A pattern represents the consensus
sequence of a binding motif. To construct a motif pattern, one typically performs a multiple
sequence alignment of the identified DNA sequences bound by the transcription factor.
The motif pattern is written using the alignment, and the conserved sequence at each position in
themotif is expressed using IUPAC symbols. IUPAC symbols can readily handle ambiguities in the
DNA pattern. For example, the IUPAC symbol W indicates that the nucleotide at that position in
the pattern can be either A or T. The definition of each DNA IUPAC symbol is given in Table 7.1.

Chromosome

Transcription Factor

ChIP

Bound DNA
Fragments

Microarray
hybridization

Tiling microarray
probes

Chromosome

Predicted Binding Site

Probe signal
intensity

Fig. 7.5 Schematic diagram showing how the peak signal from high density tiling microarray data can be used to
predict a transcription factor binding site with sequence resolution and accuracy (Copies of figures including color
copies, where applicable, are available in the accompanying CD)
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Alternatively, the binding motif can be represented as a position-specific weight matrix (PSWM).
A PSWM gives the quantitative likelihood of observing each nucleotide at each position in the
motif. This is commonly expressed as the log-likelihood ratio. The calculated log-likelihood ratios
comprise the elements of the PSWM. It must be noted that because the PSWM provides a
quantitative model of the nucleotide propensities, it provides a more accurate representation of
the binding motif. More details about PSWM can be found in [2].

7.3.2.2 Example of the Gcn4 DNA Binding Pattern and Profile

As an example, the alignment of high affinity binding sequences for the yeast transcription factor
Gcn4 is shown in Fig. 7.6A. These binding sequences were identified by computational analysis of
the Gcn4 ChIP-chip data [1]. The motif pattern derived from this alignment is shown in Fig. 7.6B.
In column 2 in this example (k=2), the IUPAC symbol G represents that Guanine nucleotides are
predominately found at this position in the motif. In column 4 the IUPAC symbol S is used to
indicate that only G or C nucleotides are found at this position.

The PSWM of the Gcn4 binding motif is shown in Fig. 7.6C. In column 4 in this example (k=4),
we observe high log-likelihood scores for the nucleotidesG (0.5) andC (1.2) and low likelihood scores
for the nucleotides A (–2.6) and T (–2.6). The PSWM also more accurately describes the greater

(A) Alignment of binding sites 

A G A C C A A
G G A C G C A
T G A C T C A
T G A C T C A
T G A C T C A
T G A C T C A
T G A C T C A
T G A C T C A
T G A G T C T
T G A G T C T
T G A G T C T
T G T G T G T

k = 1 2 3 4 5 6 7

T G A S T C W 

(B) Motif pattern 

(C) Position-specific weight matrix 
k =  1    2   3    4   5    6   7

A  –1.1   –2.6    1.0   –2.6   –2.6   –1.1    0.7
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Fig. 7.6 Computational analysis and representation of the Gcn4 transcription factor binding motif. (A) Shows the
sequence alignment of DNA sequences bound with high affinity by Gcn4. ‘K’ indicates the column numbers of the
alignment. (B) Shows the motif pattern that can be derived from the sequence alignment shown in A. (C) Shows
the position-specific weight matrix for the Gcn4 binding sites. Each term in the matrix is the log-odds score for that
nucleotide at each motif position. (D) Sequence logo representation of the Gcn4 binding motif. The sequence logo
was generated using the WebLogo software [3] (Copies of figures including color copies, where applicable, are
available in the accompanying CD)

Table 7.1 IUPAC codes for nucleotide ambiguities

IUPAC Code Nucleotides Indicated IUPAC Code Nucleotides Indicated

A A N A, C, G, T

B C, G, T R A or G

C C S C or G

D A, G, T T T

G G U U

H A, C, T V A, C, or G

K G or T W A or T

M A or C Y C or T

(Copies of tables are available in the accompanying CD.)
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propensity of C nucleotide toG nucleotide at position 4 of the motif. This quantitative information is
lost in the pattern representation, as the S symbol gives equal weight to the G and C nucleotides.

A common method for visually representing a DNAmotif is to use sequence logos. An example
of a sequence logo, which in this case represents the Gcn4 DNA binding motif, is shown in
Fig. 7.6D. The x-axis indicates each position in the motif. The y-axis measures the information
content (in bits of information) for each position. Nucleotide symbols indicate the predominant
nucleotide at each position. The smaller symbols indicate nucleotides that are present in a minority
of sequences at that position. The sequence logo is a simple but powerful method to graphically
convey the sequence similarities of transcription factor binding sites.

7.3.3 Assessment and Interpretation of ChIP-Chip Data

To decipher a transcriptional network one must identify the target genes regulated by each
transcription factor. The ChIP-chip approach is a powerful method for determining the genome-
wide binding sites of a transcription factor. Unlike in vitro or computational methods for
predicting binding sites the ChIP-chip approach should, in principle, reveal the DNA sites
that are truly bound in the cell. Hence, the ChIP-chip data can be used to construct a network
of binding targets for each transcription factor. Indeed, ChIP-chip studies have deciphered
the transcriptional networks controlling the cell cycle [4] and stem cell identity [5], for
example. An ambitious study used the ChIP-chip method to survey the binding targets of
all the 203 yeast transcription factors, which allowed them to construct a comprehensive
transcriptional network for a simple eukaryote cell [1].

7.3.3.1 Constructing the Gcn4 Transcriptional Network

An example of a transcriptional network that has been constructed from this comprehensive ChIP-
chip data set is shown in Fig. 7.7. In this diagram, each of the circles represents a transcription

Fig. 7.7 Diagram showing the transcriptional network associated with the Gcn4 transcription factor. Each circle
(node) indicates a transcription factor gene. The arrows connecting the circles denote transcriptional regulation. The
direction of the arrow indicates who regulates whom. For example the arrow pointing fromGLN3 toGCN4 indicates
that Gln3 binds to the promoter of the GCN4 gene. The network was constructed using Cytoscape [6], based on
transcription factor binding data from [1] (YPD data only; P-value < 0.005). Only genes encoding transcription
factors are shown in the network (Copies of figures including color copies, where applicable, are available in the
accompanying CD)
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factor gene that is functionally related to the Gcn4 transcription factor. The arrows indicate
transcription regulation as measured by promoter binding. The direction of the arrow indicates
who regulates whom, for example the arrow pointing fromGCN4 toMET4 indicates that the Gcn4
transcription factor binds to the promoter of the MET4 gene and presumably regulates its
transcription. Hence, some of the transcription factors regulate GCN4 expression (i.e., FHL1,
GLN3, HAP4, and RAP1), while other factors are themselves regulated by Gcn4 (i.e., LEU3,
MET4, PUT3, STB1, STB4, and UGA3). Gcn4 is a yeast transcription factor that regulates genes
that function in amino acid biosynthesis. Intriguingly, many of the transcription factors that are
connected to Gcn4 in this transcriptional network are also known to regulate genes involved in
amino acid biosynthesis (i.e., LEU3, MET4, PUT3) or protein synthesis (i.e., FHL1, RAP1).
Hence, this simple network shows the striking interconnectedness of the protein and amino acid
biosynthetic pathways.

7.3.3.2 Potential Pitfalls in Interpreting ChIP-Chip Data

A common assumption when interpreting ChIP-chip data is that gene regulation can be directly
inferred from promoter binding. It is important to note, however, that the binding of a transcrip-
tion factor to a gene’s promoter does not necessarily imply that the transcription factor actually
regulates that gene. There are numerous examples where a transcription factor binds to a promoter,
but does not fully or even partially control the transcription of the adjacent gene. For this reason,
one must be cautious in inferring functional regulation from binding data alone.

An alternative approach to identify transcription factor target genes is to use expression micro-
arrays to determine the geneswhosemRNA levels are alteredwhen the transcription factor of interest
is genetically perturbed (either mutated or over-expressed). A change in mRNA levels caused by a
perturbation in a transcription factor provides strong evidence that the gene is functionally regulated
by the transcription factor. Again, however, caution must be taken when inferring direct functional
relationships from expression data alone. Transcription factor mutants, for example, can affect the
expression of large sets of genes indirectly, either by influencing the expression of other transcription
factors (which is common), or by altering the expression of genes in important signaling pathways. A
recent study of the yeast Leu3 transcription factor found that nearly 300 genes showed alteredmRNA
levels inLEU3mutant cells [7]. However, only 9 of these genes (3%) were directly bound by the Leu3
transcription factor. These results indicate that 97% of the genes identified by expression profiling
were influenced indirectly by the LEU3 mutant.

Because of the caveats discussed above, the most powerful approach is to combine ChIP-chip
analysis with expression profiling of transcription factor mutants. The intersection of these data
sets typically yields high confidence target genes for each transcription factor. These target genes
can then be used to model the transcriptional network.

7.4 Bioinformatics Analysis of Transcription Factor Binding Sites

Once the DNA binding sites for each transcription factor have been identified; the next step is to
analyze the resulting transcription factor network in biologically meaningful ways. The hope is that
through this analysis, one can begin to connect transcription factors to biological pathways. For
example, one might test whether a transcription factor regulates genes that function in glycolysis or
othermetabolic pathways, or if a transcription factor functions to regulate genes expressed periodically
during the cell cycle. Identifying such connections enables us to better understand how the transcrip-
tional network functions to control key biological processes such as metabolism and cell division.

For the purposes of this chapter, we will describe analysis methods using the Athena database
and software tool [8]. Athena is a promoter database for the model plant Arabidopsis thaliana.
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Athena contains predicted genomic binding sites for 105 distinct transcription factors. These
binding sites have been predicted in the promoter sequences for more than 30,000 Arabidopsis
genes. While these transcription factor binding sites have not been experimentally determined—by
ChIP-chip experiments, for example—similar analysis tools can be used in both cases.

7.4.1 Visualization of Transcription Factor Binding Sites

Perhaps the simplest means of studying transcription factor binding sites is through promoter
visualization. Promoter visualization allows one to rapidly inspect a set of promoters for shared
binding sites. The Athena promoter visualization tool graphically represents the relative positions
of transcription factor binding sites. In this example, Athena was used to visualize a 300 bp
promoter sequence of the gene BRCA2A (systematic Arabidopsis gene name: At4g00020), which
encodes the Arabidopsis homologue of the human breast cancer susceptibility protein 2a. The
BRCA2A gene is required for meiosis in Arabidopsis. A portion of the resulting display is shown in
Fig. 7.8A. The display uses color-coded boxes to indicate the locations of the predicted transcrip-
tion factor binding sites in the promoter sequence (see color image provided in supplemental CD).
In this example, the identity of each transcription factor binding site is labeled in Fig. 7.8A. The
transcription start site of the BRCA2A gene is indicated with a black arrow.

Athena also displays a transcription factor table beneath the promoter image. This table provides
a key to the color-coded transcription factor binding sites, lists the number of instances of each
binding site in the promoter (#S column in Fig. 7.8B), and calculates the significance of enrichment
(P-value) for each binding site in the promoter sequence (for more details about enrichment analysis,
see section below). An example of a transcription factor table is shown in Fig. 7.8B.

TATA

Myb1

E2F

T-box Cca1ABRE

Myb1

–300 –100 –1

At4g00020
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Distance upstream (bp)
–200

Fig. 7.8 Visualization of the promoter region of the plantBRCA2A (At4g00020) gene. (A) The promoter sequence of
BRCA2A was visualized using the Athena Arabidopsis promoter database (www.bioinformatics2.wsu.edu/Athena).
The locations of predicted transcription factor binding sites are denoted by color-coded boxes (see color image
provided in supplemental CD), which match those in the transcription factor table (B). The arrow indicates the start
of transcription. TheDNA sequence can be read off of the image (A¼> red, T¼> brown, C¼> blue, G¼> green). (B)
The transcription factor binding site table lists the binding sites that are present in the first 500 bp of the At4g00020
promoter (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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7.4.2 Enrichment Analysis of Transcription Factor Binding Sites

Often one wishes to discover whether transcription factor binding sites are enriched or over-

represented in a selected set of genes or promoters. Over-represented binding sites are indicative

that such factors may function to regulate the set of selected genes. A common method is to use the

hyper-geometric probability model to calculate the statistical significance of enrichment. The
following equation can be used to calculate the resulting p-values:

P ¼ 1�
Xk�1

x¼0

m

x

� �
N�m

n� x

� �

N

n

� � (7:3)

where N is the total number of promoters in the genome, n is the number of promoters in the

genome containing the specified transcription factor binding site, m is the size of the selected set of
promoters, and k is the number of selected promoters with the specified binding site (i.e., the

overlap between m and n).
This sort of analysis can be automated to systematically investigate connections between

transcription factors and gene function. Arabidopsis genes have been classified into functional

categories based on their known or predicted function. Such categories are known as gene ontology

(GO). An example is the DNA replication GO category. Sixty-four Arabidopsis genes have been
annotated as functioning in this cellular process, including many DNA polymerase subunits and

replication origin recognition proteins (e.g., ORC1A and ORC2).
Figure 7.9 shows the results of systematically mining the set of genes in a variety of GO

categories for enriched transcription factor binding sites. In this example, the calculated

p-values were used to hierarchically cluster the functional categories and transcription factor
binding sites. The clustering grouped together and binding sites that were similarly enriched in

GO terms, GO terms that showed similar transcription factor binding site enrichment. Hence,

this display shows the relationship between transcription regulatory sites and gene functions.

Note, for example, that the three E2F family transcription factor binding sites are enriched in

the regulation of cell cycle, DNA repair, DNA replication, DNA replication initiation, and
chromosome segregation GO categories (Fig. 7.9). This connection between E2F family tran-

scription factors and DNA replication has been previously identified in both animal and plant

cells.

7.4.3 Spatial Analysis of Transcription Factor Binding Sites

Some transcription factor binding sites show a strong position bias in the promoter regions. For

example, in higher eukaryotes theTATA box site is often located at position –35 bp upstream of the

transcription start site. The Athena visualization tools was used to examine whether the E2F

transcription factor binding site showed a position bias in the promoters of genes that function
in DNA replication. The E2F transcription factor binding site is defined by the following sequence

pattern: TTTCCCGC. To visualize these binding sites in multiple promoters, Athena’s compact

promoter visualization tool was used (Fig 7.10). Only the E2F binding site is visualized in this

display; all other transcription factor binding sites are hidden. The position of each E2F binding

site is indicated by a vertical line. Inspection of Fig 7.10 indicates that the E2F binding site may
indeed show a position bias near the transcription start site.
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To quantify this bias, Athena’s histogram tool was used to plot the spatial distribution of E2F
binding sites in the promoters of its functional target genes. The resulting plot is shown in Fig 7.11.
A significant peak of binding sites is observed between positions –200 and –1 bp upstream of the
transcription start site. This display confirms that the E2F binding sites show a strong position bias
near the transcription start site. The location of a binding site in the promoter sequence can be
critical to its proper function in transcription regulation, and thus this observed position bias could
be important for the proper functioning of the E2F transcription factor.

7.4.4 Integrated Analysis of Transcriptional Networks
and Gene Expression Patterns

Genes that contain the same transcription factor binding sites in their promoter sequence fre-
quently have similar patterns of expression. Indeed, often one wishes to test whether gene expres-
sion patterns fit the predictions of the transcriptional regulatory network. To test these predictions,
one needs tools that integrate gene expression data from expression microarrays with transcription
networks.

Athena expression profile tool enables one to conduct such analyses. This tool displays the gene
expression patterns for a user-selected set of genes. These expression patterns are derived from a
comprehensive microarray data set, which profiled the changes in gene expression in nearly one
hundred distinct Arabidopsis tissue types and developmental stages.

*

Enrichment (P-value)

Fig. 7.9 Transcription factor binding site enrichment analysis for Gene Ontology (GO) terms is present in ‘other
physiological processes’ category. Only those binding sites that showed at least marginal enrichment (P< 10–2) in at
least one GO category are included in the display. The intensity of the blue spots at the intersection of each GO term
and binding site indicates the magnitude of the p-value of the enrichment, with the darker blue being more significant
(see color image provided in supplemental CD). The significant enrichment of E2F binding sites in the DNA
replication and cell cycle GO categories is indicated in red (Copies of figures including color copies, where applicable,
are available in the accompanying CD)
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The Athena expression profile tool was used to display the gene expression patterns for DNA
replication genes that contained E2F binding sites in their promoter sequence. The resulting display
is shown in Fig 7.12. The x-axis plots the different microarray experiments, which are organized
according to the tissue type from which the mRNA was extracted. The y-axis plots the change in
mRNA levels represented in this case as a modified Z-score. A positive Z-score indicates that a
gene’s mRNA level (or expression) is increased in that experiment; a negative Z-score indicates that
a gene’s mRNA level is decreased in that experiment. Each black line corresponds to the expression
pattern of a single gene. The red line (see color image provided in supplemental CD) shows the
average expression pattern for all the selected genes for each tissue type and developmental stage.

Inspection of the data indicates that the genes regulated by the E2F transcription factor show
peak expression in theApex tissue (see Fig 7.12). The shoot apex is the site of rapid cell division and
DNA replication in plants. Hence, it is not surprising that E2F regulated genes are highly expressed
in apex tissue.

E2F binding site

Fig. 7.10 Compact visualization of E2F binding sites in the promoters of genes implicated in DNA replication. The
Athena database was used to visualize the promoters of 10 genes that function in DNA replication. Only the E2F
binding sites, which are indicated by a vertical aqua line or hash mark, are displayed in the visualization (Copies of
figures including color copies, where applicable, are available in the accompanying CD)
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Glossary and Abbreviations

ChIP-chip Chromatin immunoprecipitation microarray analysis
GO Gene ontology
LM-PCR Ligation mediated polymerase chain reaction
PSWM Position-specific weight matrix
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Fig. 7.12 Genome expression profile of DNA replication genes that contain an E2F binding site in their promoter
region (10 genes total). Each black line represents the expression pattern of a single gene; the heavy line indicates the
average expression pattern of the selected genes. The x-axis lists the microarray experiments (e.g., ATGE3) organized
according to the tissues from which the mRNA samples were collected. The y-axis indicates the change in mRNA
levels for that gene in that experiment, in this case represented as a modified Z-score. Expression data from (Schmid,
et al., 2005) (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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Fig. 7.11 Histogram plot of
the distribution of E2F
binding sites in the
promoters of genes involved
in DNA replication or cell
cycle. The bins indicate the
number of E2F binding sites
present in each 40 bp
window of promoter
sequences. The gray
distribution backdrop is the
expected distribution if the
E2F binding sites are
randomly distributed
(Copies of figures including
color copies, where
applicable, are available in
the accompanying CD)
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Chapter 8

Probability and Hypothesis Testing

Michael L. Kruger

Abstract This chapter provides an elementary introduction to the concept and characteristics of
probability and the use of probability theory in hypothesis testing. Examples of the use of the
binomial theorem and Fisher’s exact in associating gene expression with observed outcomes
(i.e., disease) are presented. A brief introduction to the concepts of hypothesis testing, power,
ROC (receiver-operating curves) and sensitivity and specificity are also presented.

Keywords Probability � Binomial probability distribution � Power � Hypothesis testing �
Experimental design

8.1 Introduction

In order to determine whether an association exists between genes and disease we need to first
identify candidate genes or groups of genes, and then determine if the observed association is
significantly greater than what we would expect by chance. This chapter is designed to provide an
introduction to probability theory and hypothesis testing. Although the material presented here
does not directly refer to the area of bioinformatics, the principles and concepts can be applied to all
areas of scientific research.

Probability can be simply defined as the likelihood of the occurrence of an event, where an event
is simply defined as the outcome of a trial or an experiment. These events are said to be independent
if the occurrence or non-occurrence of the event has no effect on the probability of occurrence of
other events. A simple example would be a coin toss. Each coin toss outcome is completely
independent of the outcome of previous coin tosses. The outcome of heads or tails each has
equal probability (0.5 or 50%) of occurrence. This is an example of a binary or dichotomous
outcome. An example of an independent event that has more than two outcomes is the rolling of
a six-sided dice. Each outcome, 1 through 6, has equal probability of occurrence (0.166 or 16.6%),
and each roll of the dice is completely independent of the outcome of previous rolls of the dice.
A common example of an event where the outcomes are not independent is the drawing of a single
card from a standard deck of 52 playing cards. Since there are four suits (clubs, diamonds, hearts
and spades) and there are thirteen cards in each suit, the probability of drawing a heart is 0.25 (13/
52), but on the next drawing of a card the probability of drawing a heart is 0.235 (12/51) since there
is one less heart in the deck of cards following the drawing of the initial card. The probability of
drawing subsequent cards is therefore dependent on the outcome of the prior drawing of cards.
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Events are said to be mutually exclusive if they cannot occur simultaneously. An individual
cannot simultaneously have both blue and brown eyes, or be less than 21 and greater than 21 years
of age, or both a mammal and lay eggs.

Using these two characteristics of probability, we can define probability in the following
manner: If an event can occur in N mutually exclusive and independent ways and if m of these
possesses a specific characteristic, E, the probability of the occurrence is equal to m/N.

PðEÞ ¼ m

N
(8:1)

For example, if we sample 100 people for a particular gene linked to hypertension and 25 of them
have the gene, then the probability of having the gene is 0.25 or 25%. Probability is measured on a
continuous scale of values between 0 and 1 inclusive. An event that is impossible has a probability
of occurrence of 0, and an event that is certain to occur has a probability equal to 1. An event that is
equally likely to occur or not occur has a probability of 0.5 (e.g., getting a head or a tail on a coin
toss).

Sickle cell anemia was the first genetic disease to be characterized at the molecular level. The
mutation responsible is just a single nucleotide of the DNA. It is the result of a point mutation in the
b-globin gene. As a result of this mutation, valine is inserted into the b-globin chain instead of
glutamic acid. The mutation causes red blood cells (RBCs) to become stiff when they release their
load of oxygen and become ‘sticky’ resulting in their sickle shape. These cells tend to get stuck in
narrow blood vessels which may cause severe pain and damage to the heart, lungs or kidney. The
recessive gene tends to be maintained in the gene pool because individuals who are heterozygous do
not develop sickle cell anemia and are less likely to contract malaria. They are able to survive and
reproduce in malaria-infected regions of the world such as Africa.

Below is some hypothetical outcome data of the inheritance patterns of the sickle cell gene for
forty (40) offspring of heterozygousmothers and fathers. This data will be used to illustrate some of
the basic properties of probability.

8.2 Basic Rules of Probability

1. All events have a probability greater than or equal to zero. The probability of any event is never
greater than 1 or less than 0.

PðEÞ � 0 (8:2)

2. Addition rule: If an event is satisfied by any one of a group of mutually exclusive outcomes,
the probability of the event is the sum of all of the mutually exclusive probabilities in the
group.

PðE1 orE2Þ ¼ PðE1Þ þ PðE2Þ (8:3)

Table 8.1 Human sickle cell anemia: (observed frequencies)

Father

Mother B ( + ) b ( – ) TOTAL

B ( + ) BB (20) Bb (6) 26

b ( � ) Bb (8) Bb (6) 14

TOTAL 28 12 40

B: dominant normal globin gene (+)
b: recessive sickle cell gene (�)
(Copies of tables are available in the accompanying CD.)
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For example, the probability of drawing either an Ace or a Jack is equal to (1/13 + 1/13) = 2/13
(15.4%), or using the data from Table 8.1, of having an offspring with a non-sickle cell phenotype
(BB, Bb) is equal to (20/40 + 6/40 +8/40)=34/40 (85%).

3. The sum of all mutually exclusive probabilities is equal to one (exhaustive).

PðE1Þ þ PðE2Þ þ . . .PðEnÞ ¼ 1 (8:4)

From Table 8.1, the sum of the probabilities of homozygous normal (BB) and homozygous sickle
cell (bb) and heterozygous (Bb) equals 20/40 + 6/40 + 14/40 = 40/40 = 1.0 (100%). Each of the
three possible sickle cell outcomes is referred to as a simple probability.

A conditional probability is the chance of a particular event happening that depends on the
outcome of some other event. It is the probability that eventA occurs given that eventB has already
occurred. The probability is calculated with a subset of the total group as the denominator:

PðA=BÞ ¼ A \ B

B
(8:5)

An example would be the probability of drawing a face card (King, Queen or Jack) that is a heart=
3/13= 0.231 or using the data from Table 8.1, if the father contributes a normal sickle cell gene (B)
the probability of having a heterozygous child is 8/28 = 0.286.

A Joint probability is the probability that a subject picked at random will possess two character-
istics simultaneously:

PðA \ BÞ ¼ ðPA � PBÞ: (8:6)

For example, the probability of a homozygous normal offspring (BB) with both the mother and
father contributing a B sickle cell gene if they each had equal probability of donating a normal or
recessive sickle cell gene is 0.5 � 0.5 = 0.25.

Independent probability is when the probability of event A has no effect on the probability of
event B. If events A and B are independent then their joint probability is:

PðA \ BÞ ¼ PðBÞ � PðAÞ if PðAÞ 6¼ 0 and PðBÞ 6¼ 0 (8:7)

For example, the probability of picking an ace of spades is (4/52)� (1/4)=1/52. The probability of
picking an Ace has no effect on the probability of picking a spade. They are statistically independent
probabilities.

8.3 Counting Rules

In order to determine probabilities we need to define the number of all possible events that can
occur and their frequency. This requires a discussion of what are generally referred to as counting
rules. In many cases an event is a sequence of observations, and the outcomes of a series of trials can
be thought of as a particular sequence. We can calculate the number of permutations, or ordered
sequences, by N!. This is the number of different ways that N distinct things may be arranged in
order. If we are interested in how the four nucleotide bases, Thymine, Guanine, Cytosine and
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Adenosine can be arranged with respect to order; 4! = 24. If we are interested in determining the
number of ways to select ‘r’ objects from among N distinct objects, the following formula is used:

nPr ¼
N!

ðn� rÞ (8:8)

Using the example of four nucleotide bases arranged into ordered pairs:

nPr ¼
4!

ð4� 2Þ ¼ 12 ordered pairs (TG TC TA GT GC GA CT CG CA AT AG AC)

If the order of the elements is not important, we are then interested in determining the number of
possible combinations, or arrangements of objects without regard to the order.We use the following
formula to calculate the number of possible combinations of N things taken ‘r’ at a time:

nCr ¼ nPr

r!
¼ N

r

� �
N!
N�rð Þ!
r!

¼ N!

r!ðN� rÞ! (8:9)

Using the four nucleotide bases TGAC taken two at a time:

4

2

� �
¼ 4!

2!ð4� 2Þ! ¼
4� 3� 2� 1

2� 1ð2� 1Þ ¼
24

4
¼ 6 ðTG TC TA GC GA CAÞ

This formula can be used to determine howmany possible unique sequences a group of genes can be
arranged into in order to calculate the probability of the occurrence of a particular sequence. For
example, if we have 20 genes available to make a pattern of 5 genes and we want to determine the
number of unique patterns of the five genes:

20C5 ¼
20!

5!� 15!
¼ 20� 19� 18� 17� 16

5� 4� 3� 2� 1
¼ 1860480

120
¼ 15; 504

When a process or trial can result in only one of the twomutually exclusive outcomes, such as a coin
toss, it is called a Bernoulli trial. The characteristics of a Bernoulli trial are:

1. Each trial results in one of two possible mutually exclusive outcomes (success or failure).
2. Probability of success, p, is constant across all trials and the probability of failure (1 – p) is q.
3. Each trial is independent. The outcome of one trial is not affected by the outcome of any other

trial.

When N Bernoulli trials are conducted, the number of successes forms a distribution called the
binomial distribution. This distribution represents the probability of ‘r’ successes inN trials and can
be represented by the following formula:

NCr � pr � qðN�rÞ (8:10)

For large samples and where order is not important we use the combination rule to calculate the
number of combinations of n objects that can be formed by taking r at a time and p as the
probability of a ‘success’ and q as the probability of ‘failure’. The binomial formula can be used
to compute the probability of each possible outcome of r ‘successes’ inN trials. This method can be
used to determine the expected probability of each number of possible successes and whether an
observed outcome is significantly different than that expected by chance. For example, if the
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probability of either a male or female birth is 0.5 (p = 0.5 and q = 0.5), we can use the binomial
formula to obtain the probability of getting exactly 3 male births in 8 pregnancies.

NCr ¼
N!

r!ðN� rÞ! The number of combinations of N things taken r at a time. (8:11)

5C3 ¼
8!

3!ð8� 3Þ ¼
8� 7� 6

3� 2� 1
¼ 56 possible combinations

The binomial probability for 3 male babies in 8 births is:

56� ð0:5Þ3 � ð0:5Þ5 ¼ 56� ð0:125Þð0:03125Þ ¼ 0:2188 ¼ 21:9% probability of 3 male births.

Therefore we would conclude that this observed probability is not significantly different than
chance if we were to use the traditional scientific significance level of 5% (more on this later in
the chapter).

Examining Fig. 8.1 we can see that the binomial distribution is an approximation of the normal
distribution, and as the number of trials (N) increases the binomial distribution becomes a closer
approximation of the normal distribution.

8.4 Hypothesis Testing using the Binomial Formula

The data in Table 8.2 represents the association of two gene patterns (ABC and abc) that are
thought to be associated with male infertility, with ABC representing the pattern associated with
the abnormal condition of infertility and ‘abc’ with normal male fertility in 19 males (N=19). The
question to be addressed is whether the observed outcomes are significantly different than what we
would expect from chance.

To use the binomial formula to determine the probability of obtaining the observed results we
use the column marginal totals to obtain the expected probability of infertility (9/19) = 0.474 and

Fig. 8.1. Comparison of
binomial (histogram) and
normal (curved line)
distributions for n = 8
(Copies of figures including
color copies, where
applicable, are available in
the accompanying CD)

Table 8.2 Hypothetical outcome for two hypothetical ‘gene patterns’ associated
with male infertility

Male Fertility

Gene Pattern Infertile Fertile Total

ABC 7 3 10

abc 2 7 9

TOTAL 9 10 19

(Copies of tables are available in the accompanying CD.)
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of fertility (10/19) = 0.526 for each of the gene patterns. If there is no difference between the gene
patterns then the percentage of fertile and infertile should be the same for each pattern.

We calculate the probability of obtaining the outcome seen in Table 8.2 using the ABC
frequencies:

nCr �
10!

7!ð3!Þ ¼
10� 9� 8

3� 2� 1
¼ 720

6
¼ 120

120� p7q3 ¼ 120ð:474Þ7 � ð:526Þ3 ¼ 120� :0054� :1455 ¼ :0939 ð2-tailedÞ or :0469 ð1-tailedÞ

We would use a 1-tailed or directional hypothesis since we are asking whether the probability of
the observed association of infertility with the ‘ABC’ pattern is significantly greater than with the
‘abc’ pattern. If we did not have a hypothesis about which pattern was associated with infertility,
then we would use a two-tailed hypothesis test to establish that there is simply a difference in the
proportion of infertile cases between the two gene patterns. Using a significance level of a=0.05,
we can conclude that the observed results (Table 8.3) are significantly different than what we
could expect from chance since the one-tailed observed probability is (0.0939/2)= 0.047. This use
of the binomial formula is a statistical test called the Fisher’s Exact test. As the name implies,
the Fisher’s Exact Test involves the calculation of exact probabilities for the observed frequencies
in any 2�2 table. We can calculate the exact probability of any pair of dichotomous outcome
variables such as disease state (+ or �) versus treatment (control, treatment) or gene state
(present, absent).

Table 8.3 All possible outcomes for hypothetical male infertility and ‘gene pattern’ based on the observed marginal
totals

Outcome 1 Outcome 6
Pattern Infertile Fertile Total Pattern Infertile Fertile Total

ABC 0 10 10 ABC 5 5 10

abc 9 0 9 abc 4 5 9

Total 9 10 19 Total 9 10 19

Outcome 2 Outcome 7

Pattern Infertile Fertile Total Pattern Infertile Fertile Total

ABC 1 9 10 ABC 6 4 10

abc 8 1 9 abc 3 6 9

Total 9 10 19 Total 9 10 19

Outcome 3 Outcome 8

Pattern Infertile Fertile Total Pattern Infertile Fertile Total

ABC 2 8 10 ABC 7 3 10

abc 7 2 9 abc 2 7 9

Total 9 10 19 Total 9 10 19

Outcome 4 Outcome 9

Pattern Infertile Fertile Total Pattern Infertile Fertile Total

ABC 3 7 10 ABC 8 2 10

abc 6 3 9 abc 1 8 9

Total 9 10 19 Total 9 10 19

Outcome 5 Outcome 10

Pattern Infertile Fertile Total Pattern Infertile Fertile Total

ABC 4 6 10 ABC 9 1 10

abc 5 4 9 abc 0 9 9

Total 9 10 19 Total 9 10 19

(Copies of tables are available in the accompanying CD.)
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Table 8.4 provides the probabilities of all possible outcomes based on our row and column
marginal values. These are the probabilities of observing each of the tables if the null hypothesis is
true. The total of all of these probabilities is 100% since the observed outcomes are exhaustive of all
possible outcomes for the observed data. With increasingly large sample sizes (N) the probability
distribution will approach a normal distribution.

The Fisher’s Exact Test is an example of a statistical test. Statistical tests are procedures by
which one determines the degree to which collected data are consistent with a specific hypothesis. A
statistical hypothesis is a statement about a population, which is based on the observed data that
one seeks to either support or refute the observed data. A statistical test is a set of rules by which a
decision about the hypothesis is reached. The measure of the statistical test’s accuracy is a prob-
ability statement about making the correct decision when certain conditions are true for the
population being studied.

8.5 The Null Hypothesis and the Alternative Hypothesis (H0 and H1)

The null hypothesis (H0) is a statement that there is no relationship between the variables or factors
being examined. The alternative hypothesis (H1) states that there is a relationship between the
variables or factors being examined. Using our hypothetical data from Table 8.2 we could state the
null and alternative hypotheses as:

H0 – there is no difference in the proportion of infertile cases between gene patterns ‘ABC’ and
‘abc’or there is NO genetic basis for male infertility.

H1 – there is a difference in the proportion of infertile cases between gene patterns ‘ABC’ and
‘abc’ or there IS a genetic basis for male infertility.

The statement of the alternative hypothesis is non-directional or two-sided. It states that there is a
difference between the gene patterns without specifying which of the gene patterns are associated
with male infertility. In our example we made a directional or one-sided hypothesis that the ‘ABC’
pattern is associated with male infertility. The outcome of a research study can be classified in the
following decision table (Fig. 8.2). The condition of the null hypothesis may be thought of as the
‘true state of affairs’ in the population.

Table 8.4 The probabilities of observing each of the outcomes shown in Table 8.3 if
the null hypothesis of equal proportions is true (Hop1 = p2)

Outcome Probability Outcome Probability

1 0.00001 6 0.3437

2 0.0009 7 0.1910

3 0.0175 8 0.0468

4 0.1091 9 0.0044

5 0.2864 10 0.00019

(Copies of tables are available in the accompanying CD.)

Fig. 8.2 Null hypothesis
decision table (Copies of
figures including color
copies, where applicable, are
available in the
accompanying CD)
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With the collection of data we are obtaining a single sample from a population and then making
a decision based on this sample data. If we choose to reject the null hypothesis based on our sample
data and it is actually true that there is no relationship between the variables being studied, we have
made a Type I or a error. The probability of making this kind of an error is almost equal to the
level of significance of our statistical test (the p value). Traditionally, this value has been set by
scientific convention to 0.05 or 5%. This means that we are accepting a 5% risk of erroneously
rejecting the null hypothesis when it is actually true. If the probability of the observed data is
smaller than the significance level (p < 0.05) then the data is said to contradict the null hypothesis
and the null is rejected. Rejection of the null hypothesis is equivalent to supporting or accepting the
alternative hypothesis.

Figure 8.3 represents the two-tailed regions of rejection (p < 0.05) for a normally distributed
variable. If the point marked by 0 on the X-axis represents the population mean, then any sample
mean obtained that falls either 1.96 standard deviations above or below the populationmean would
lead to a rejection of the null hypothesis. The shaded regions are referred to as the regions of
rejection since mean values obtained that fall into these areas lead to the rejection ofH0. If we were
to use a directional alternative hypothesis our region of rejection would be at one end of the normal
distribution, (Fig. 8.4) depending on whether we expected our alternative mean to be greater or
smaller than that of the null hypothesis.

If the decision rules fail to reject the null (H0), when in fact it is not true (false), we have made a
Type II error. The magnitude of the type II error depends upon the level of significance and which
of the alternative hypotheses is actually true. In the design of an experiment, the a and b error are
not independent. Decreasing the probability of a Type I error (alpha) increases the probability of a
Type II error (beta).

If instead of simply labeling our male subjects as fertile or infertile, we were to use spermmotility
values obtained from semen analysis, we would then state our null and alternative hypotheses with
respect to the mean sperm motility values for the two gene patterns.

H0 : �ABC ¼ �abc

H1 : �ABC5�abc

Reject H0 Reject H0

Accept H0

Z Value

Fig. 8.3 Region of rejecting
Ho when p< 0.05 (Copies of
figures including color
copies, where applicable, are
available in the
accompanying CD)

Accept H0
Reject H0

Z Value

Fig. 8.4 Region of rejecting
Ho when p < 0.05
and H1: p1 > p2 (Copies of
figures including color
copies, where applicable, are
available in the
accompanying CD)
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The null hypothesis would be that the mean sperm motility is not different for the two gene
patterns and the alternative hypothesis would be that the mean spermmotility is lower for the ABC
gene pattern.

If this observed difference is not ‘real’ and is a result of sampling bias or confounding with
another variable, then we have committed a Type I error. We rejected the null hypothesis of no
difference when it is actually true. If we had used another measure of fertility, such as sperm
concentration data, and concluded that there was no significant difference between the two
gene patterns, when in reality there is, we would have committed a Type II error. Type II error,
or b error, is the failure to reject the null hypothesis when it is false. By convention, b error is set to
0.20 or 20%. The complement of Type II error (1 – b) is referred to as the power of a statistical test.

The power of a test with respect to a specified alternative hypothesis is equal to 1 minus the
probability of Type II error (b). This is the area of the sampling distribution when H1, the
alternative hypothesis, is true that falls in the region of rejection of H0. Power is the probability
that the decision rule rejects the null when the alternative is true. By convention we use 0.80 as our
desired level of power. Each alternative hypothesis has its own power since the region of rejection is
different for each alternative hypothesis. The closer the alternative hypothesis is to the null
hypothesis the lower the power of the test will be with respect to that specific alternative hypothesis.
In Fig. 8.5, we can see that by reducing our level of Type I (a) error from 0.05 to 0.01 results in a
large reduction of power since it increases the risk of Type II (b) error with all other factors being
equal. A well-designed experiment will have relatively high power. The bigger the difference one
expects between groups the more powerful the test. The desired power and significance levels
selected should be based upon issues other than statistical principles. The cost of the various types
of error and the questions being studied should be part of the decision process. The risks of harmful
side effects, the failure to detect an effective treatment, its costs (life or death) as well as practical
issues such as the cost of conducting the study, the number of patients and length of time required to
complete the study, and all the other factors must be considered in the design of a study. For
example, in the treatment of infertility, there may be long-term harmful effects or the cost of the
treatment may outweigh the benefits that it provides.

The power of a statistical test is determined by the effect size, the sample size and the alpha
(Type I error) level. Effect size is the magnitude of the treatment effect and it is influenced by several
factors such as the variability of the sample population, the differences in the treatment variable
(i.e., dosage, duration and other protocol differences).

Fig. 8.5 Regions of rejection and non-rejection of H0 for a=.05 and a=0.01 (Copies of figures including color
copies, where applicable, are available in the accompanying CD)
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Regardless of the setting of the a level, a test may be made more powerful against any given
specific alternative hypothesis by increasing the sample size. Large sample sizes aren’t always
possible and may be costly. So ideally, we determine the minimum sample size required to obtain
the desired power for a certain expected effect size. Careful experimental design and control will
result in smaller population variability resulting in greater precision and thus more power.

8.6 Sensitivity and Specificity

In our example of using the binomial distribution for hypothesis testing we used gene pattern,
‘ABC’ and ‘abc’ as a dichotomous or binary variable and associated it with sperm motility. In
practice, gene expression is actually a continuous measure of the gene’s activity level in the
production of specific proteins. With the use of ROC (Receive Operator Curve e.g., Fig. 8.6) we
can determine the best cut-point value for categorizing gene expression as ‘positive’ or ‘negative’.

Values of gene expression that are above the cut-point, ‘positives’, are associated with the
presence of disease (e.g., male infertility) and those values below the cut-point, ‘negatives’, with
the absence of the disease. From this we can construct a 2�2 table of the ‘Predicted Condition’ of
positive or negative based on the cut-point determined by the ROC method, and the ‘True
Condition’ of the presence or absence of disease in the observed sample:

Sensitivity is the proportion of cases with the disease that are predicted positive on a test (true
positives).

Sensitivity ¼ cases with true positive results

total number of cases with disease

Specificity is the proportion of cases without the disease that are predicted negative on a test
(true negatives).

Fig. 8.6 ROC Curve in
which the diagonal dotted
line represents chance
prediction. Curve represents
corresponding sensitivity
(y-axis) and 1-specificity
(x-axis) for various
cut-points in the observed
dependent measure (Copies
of figures including color
copies, where applicable, are
available in the
accompanying CD)
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Specificity ¼ cases with true negative results

total number of cases without disease

Using the coordinates obtained from the ROC curve we can obtain measures of accuracy of our
classification using the gene expression value. The ROC curve provides measures of sensitivity on
theY-axis and 1-specificity on the X-axis. From these values we can calculate the number of cases in
each cell of the sensitivity-specificity table seen in Table 8.5. Other commonly used measures of
diagnostic accuracy that can be obtained from this are the positive predictive and negative predictive
values of the test. The positive predictive value of a test is the probability that the patient has the
disease when restricted to those patients who test positive. This term is sometimes abbreviated as
PPV. You can compute the positive predictive value as:

PPV ¼ True Positives (TP) / Number of subjects who test positive on the test (TP + FP):

The negative predictive value of a test is the probability that the patient will not have the disease
when restricted to all patients who test negative. This term is sometimes abbreviated as NPV. You
can compute the negative predictive value as

NPV ¼ True Negatives (TN) / Number of subjects who test negative on the test (TN + FN):

Note that all four of these diagnostic measures sensitivity, specificity, PPV and NPV, are
examples of conditional probabilities indicating a patient’s status given another condition is
met. Sensitivity is the conditional probability of a positive test when the disease or condition is
present, P(T+/ D+), while the positive predictive value is the conditional probability of having
the disease when the test is positive, P(D+/ T+). These values can be utilized to determine the
usefulness of particular genes or sets of genes in predicting disease. They also provide an
objective method of measuring the effectiveness of various treatments as well as the cost-
benefit tradeoff of both missed diagnoses (false negatives) and incorrect diagnoses of the
disease (false positives).

8.7 Concluding Remarks

In this chapter we have tried to present the basic concepts of probability and its’ uses in testing the
hypotheses about the association of gene pattern and expression with disease. An introduction to
hypotheses testing is provided to guide the reader in examining gene association and disease. The
concept of statistical power provides a way of thinking about how to best ask questions and design
research for revealing these relationships between genetics and human characteristics.

The diagnostic tools of ROC and the indices of sensitivity, specificity, and positive and negative
predictive value have been widely used to demonstrate the utility of a variety of screening tools and
are likely to be useful in demonstrating the extent of associations between genetic patterns and
disease conditions and other human characteristics.

Table 8.5 Sensitivity and specificity table disease present

Test Result Yes No Total

Positive True Positive (TP) False positive (FP) Subjects positive on the test (TP+FP)

Negative False negative (FN) True negative (TN) Subjects negative on the test (FN+TN)

Total Subjects with disease Subjects without disease All subjects

(Copies of tables are available in the accompanying CD.)
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Chapter 9

Stochastic Models for Biological Patterns

Gautam B. Singh

Abstract This chapter reviews the prevalent mathematical formalisms for modeling biological
sequences and patterns. Underlying theoretical principles for computationally simple IID models
is followed by a discussion on the Markov models for sequences. Similarly, discussions on pattern
models focused on the theoretical background of Position Specific Scoring Matrices and Profiles
for representation of biological sequence patterns. A detailed discussion and illustration of model-
ing patterns using Hidden Markov Models is presented.

Keywords HMM � Hidden markov model � PSSM � Position specific scoring matrix � Patterns

9.1 Introduction

Mathematical formulations for representing bio-sequence patterns are of great significance for
detection of patterns and functional motifs in biological sequences. Patterns at various levels of
abstractions are the drivers of genomics and proteomics research. Starting at the fine level of
granularity, the patterns are comprised of the splice sites, binding sites, and domains. These are
subsequently utilized for the definition of patterns at a higher level of abstraction such as introns,
exons, repetitive DNA, and locus control regions.

DNA sequences are oftenmodeled as probabilistic phenomena, with the patterns of interest being
defined as samples drawn from the underlying random process. For example, the underlying DNA
sequence is modeled as aMarkov chain of random variables taking on the values {A, C, T, G}. Given
this underlying assumption, one may next model a splice site as a function P that assigns a sample
sequence, S, of 8–10 nucleotides a value equivalent to their probability of being a splice site.

A pattern detection algorithm would consider each substring from a DNA sequence that could
potentially be a splice site, and assign a probability to each candidate. The substrings scoring a high
value may be further investigated using the appropriate wet-bench approaches. While this is a
simple illustration, it does bring forth an important point. The underlying models that define the
DNA sequences and their accuracy are ultimately a determinant of the accuracy that the patterns
are subsequently detected. The modeling of the sequences and that of patterns are two comple-
mentary objectives. Sequence models provide a basis for establishing the significance of the
patterns observed, while the pattern models help us look for specific motifs that are of functional
significance. We therefore must consider both of these issues.

G.B. Singh
Department of Computer Science and Engineering, Advanced Software and Information Engineering
Laboratory, Oakland University, Rochester, MI 48309, USA
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S. Krawetz (ed.), Bioinformatics for Systems Biology, DOI 10.1007/978-1-59745-440-7_9,
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9.2 Sequence Models

The two main sequence models are the Independent Identically Distribution and Markov Chain.
Sequence models are needed to represent the background stochastic processes in a manner that
enables one to analytically justify the significance of the observation. To provide an analogy, the
determination of the sequence model is similar to determining the probability of obtaining a head
(H) while tossing a coin. (For a fair coin, this probability would be 1=2). In general, however, we
may estimate this probability by studying the strings of the heads and tail sequences that a given
coin has produced in the past. Similarly, given the DNA sequence(s), we may induce the underlying
model that represents the maximally likely automaton that produced the sequence.

Let us continue our analogy further. After the coin model has been induced, it would be possible
to predict the probability of observing coin tossing pattern such as ‘‘three heads in a row’’, etc.
Similarly, after inducing a DNA sequence model, it would be possible to deduce the expected
frequency of occurrence of a DNA sequence pattern. This is helpful in classifying the patterns in
terms of their relative abundance in a sequence specific manner.

9.2.1 Independent Identically Distribution (IID)

The simplest of all the sequencemodels is the Independent Identically Distribution or IIDmodel. In
this model, each of the four nucleotides is considered to occur independent of each other. Further-
more, the probability of occurrence of a given nucleotide at a given location is identical to the
probability of its occurrence at another location. Thus, for example, assume that the sequence is
defined using an IID random variable which can take on the possible values defined by the DNA
alphabet � = {A, C, T, G}. In this case, defining the individual probability values (pA, pC, pT, and
pG) specifies the complete model for the sequence. The values may in turn be computed simply by
considering the prevalence of each base in the given sequence. In statistical terminology, the

maximally likely or ML estimator for probability of occurrence of a given base, X, is simply
nX
L

where nx is the frequency of occurrence of the base X in a sequence of length L.
In general, the maximal likely estimator for the parameters may be used. Using the ML

estimation, the probability of each base � may be estimated as:

P̂ð�Þ ¼ n�ðLÞ
jLj (9:1)

This simply counts the relative frequency of the nucleotide � in a sequence of length L. This
estimator has the advantage of simplicity, and usually works well when |L| is large. It may not work
well when |L| is small.

Given the Model MIID has been induced from the sequence data, the probability of the
occurrence of a pattern x may be computed using the following:

PðxjMIIDÞ ¼ �
i¼1;:::;nðxÞ

PðxiÞ (9:2)

where P(xi) is the probability of nucleotide xi, at position i, along the pattern. The model assumes
that the parameters (probability of each of the four nucleotides) are independent of the position
along the pattern.

Example 1: Consider the following DNA sequence of length = 25:

SEQ = AACGT CTCTA TCATG CCAGG ATCTG

In this case the IID model derived from the sequence given the alphabet � = {A, C, T, G}, the

sequence model parameters are f 625 ; 7
25 ;

7
25 ;

5
25g, corresponding to the maximally likely estimation of
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the occurrence of each of the four bases. These are thus the IID parameters for the background

sequence. The probability of finding the pattern CAAT on this sequence would be equal to

pC.pA.pA.pT or ð 725Þ � ð 625Þ � ð 625Þ � ð 725Þ ¼ 0:0045.

9.3 Markov Chain Models

In a Markov chain the value taken by a random variable is dependent upon the value(s) taken by
the random variable in a previous state(s). The number of historical states that influence the value
of the random variable at a given location along the sequence is also known as the degree of the
Markov process. The first-degreeMarkov chainmodel has j�j þ j�j2 parameters, corresponding to
the individual nucleotide frequencies as well as dinucleotide frequencies. In this manner, this model
permits a position to be dependent on the previous position. However, the frequencies are modeled
in a position-invariant manner, and thus may be unsuitable for modeling signals.

This sequence model M is defined on the sample space �* and assigns to every sequence x of
length n(x) on �* a probability:

PðxjMÞ ¼ P1ðx1Þ �
i¼2;:::;nðxÞ

P2ðxijxi�1Þ (9:3)

where P1 is a probability function on � that models the distribution of �’s at the first position in the
sequence andP2 is the conditional probability function on ��� that models the distribution of �’s
at position i > 1 on the alphabet symbol � at position i-1.

The parameter estimation using the Maximally Likely estimator proceeds in a manner analo-
gous to the IID model estimation. The transition probabilities are, however, estimated using Bayes
theorem. Using Laplace’s rule all the frequency counts are incremented by one to eliminate the
effect of zeros in the frequency table.

P2ð�j�Þ ¼
Pð� �Þ
Pð�Þ ¼

freqð� �Þ þ 1
P

�

ð freqð� �Þ þ 1Þ (9:4)

In this manner, the conditional transitional probabilities of finding a base � at position (i) given
that the base�was found at position (i–1) is computed by finding the abundance of the dinucleotide
�� as a fraction of the abundance of the nucleotide �.

Example 2: Consider once again the same 25-nucleotide sequence as above:

SEQ = AACGT CTCTA TCATG CCAGG ATCTG

While considering the first-degree Markov chain models, the 4-parameters corresponding to
individual nucleotide frequencies, and the 42 parameters corresponding to the dinucleotide fre-
quencies need to be computed. The � parameters are the same as those computed before: {pA, pC,
pT, pG} = {6/25, 7/25, 7/25, 5/25}.

In order to compute P2, the � � � conditional probability values, the dinucleotide frequencies

and probabilities are computed from the sequence data. The dinucleotide frequencies and the
probabilities are shown below (with the parenthesized numbers representing the probabilities):

freq ðAAÞ ¼ 1 freq ðACÞ ¼ 1 freq ðATÞ ¼ 3 freq ðAGÞ ¼ 1

freq ðCAÞ ¼ 2 freq ðCCÞ ¼ 1 freq ðCTÞ ¼ 3 freq ðCGÞ ¼ 1

freq ðTAÞ ¼ 1 freq ðTCÞ ¼ 4 freq ðTTÞ ¼ 0 freq ðTGÞ ¼ 2

freq ðGAÞ ¼ 1 freq ðGCÞ ¼ 1 freq ðGTÞ ¼ 1 freq ðGGÞ ¼ 1
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The condition probabilities are next computed using the Bayes theorem equation 9.4. For
example, the probability of finding ‘‘C’’ at position (i+1) given that an ‘‘A’’ has been found at

position (i) isPðCjAÞ ¼ pAC
pA
¼ freqðACÞþ1P

X2fA;C;T;Gg
ð freqðAX Þþ1Þ

¼ 2
10. The conditional probabilities for the

example sequence are shown in Table 9.1.
Using these model parameters, the probability of finding the pattern CAAT on this sequence

using the first order Markov model of the underlying sequence would be equal to P(C).P(A|C).
P(A|A).P(T|A) or ð 725Þ � ð 311Þ � ð 210Þ � ð 410Þ ¼ 0:0061. This probability is higher than the ID sequence
model probability of the same pattern computer earlier as 0.0045.

9.3.1 Higher Order Markov Models

Higher orderMarkov chains have been described. For example, the nth orderMarkov process has a
memory of n, and thus the occurrence of a nucleotide depends on the previous n nucleotides. The
probability of observing a sequence x is defined in equation 9.5, in a manner similar to the first
order Markov chains.

PðxjMÞ ¼ P1ðx1Þ �
i¼2;:::;nðxÞ

P2ðxijxi�1; :::; xi�nÞ (9:5)

An nth order Markov chain over some alphabet A is equivalent to a first order Markov chain over
the alphabet An of n-tuples. This follows from calculating the probability of A and B, given B is the
probability of A given B, i.e., Pðxkjxk�1; :::; xk�nÞ ¼ Pðxk; xk�1:::xk�nþ1jxk�1:::; xk�nÞ. In other
words, the probability of xk given in the n-tuple ending in xk�1 is equal to the probability of
the n-tuple ending in xk given the n-tuple ending in xk�1.

9.4 Pattern Models

This section describes the statistical modeling procedures for DNA patterns. Thus, our attention is
now focused somewhat more on modeling the motifs that are associated with certain biological
functions. In the previous section our goal was to characterize the ‘‘sea’’ of data in which these
biological ‘‘nuggets’’ of information are hidden. In contrast, our goal in this section is to model the
nuggets themselves.

There are a growing number of well-established patterns that we may wish to model and search
for in DNA sequences. Often these patterns, which are of functional significance, are brought forth
after an alignment of the sequences belonging to a particular family. Such a multiple sequence
alignment is often interspersed with gaps of varying sizes. However, there are sections in the final
alignment that are free of gaps in all of the sequences. This fixed size, ungapped aligned regions
represent the patterns we would like to model for detection in DNA sequences. The statistical

Table 9.1 Conditional nucleotide probabilities for the
25-nt example sequence

# Si�1Si ! A C T G

A 2/10 2/10 4/10 2/10

C 3/11 2/11 4/11 2/11

T 2/11 5/11 1/11 3/11

G 2/8 2/8 2/8 2/8

(Copies of tables are available in the accompanyingCD.)

154 G.B. Singh



techniques that may be employed for developing such a closed form representation of a set of
patterns are described below.

9.4.1 Weight Matrices

ADNA sequence matrix is a set of fixed-length ,DNA sequence segments aligned with respect to an
experimentally determined biologically significant site. The columns of a DNA sequence matrix are
numbered with respect to the biological site, usually starting with a negative number. A DNA
sequence motif can be defined as a matrix of depth 4, utilizing a cut-off value. The 4–column/
mononucleotide matrix description of a genetic signal is based on the assumptions that the motif is
of fixed length, and that each nucleotide is independently recognized by a trans-acting mechanism.
For example, the frequency matrix in Table 9.2 has been reported for the TATAA box:

If a set of aligned signal sequences, of length ‘‘L’’, corresponding to the functional signal under
consideration, then F ¼ ½ fbj�; ðb 2 �Þ; ð j ¼ 1::LÞ is the nucleotide frequency matrix, where fbi is the
absolute frequency of occurrence of the b-th type of the nucleotide out of the set�={A, C, G, T} at
the j-th position along the functional site.

The frequency matrix may be utilized for developing an ungapped score model when searching
for the sites in a sequence. Typically a log-odds scoring scheme is utilized for this purpose of
searching for pattern x of length L as shown in equation 9.6. The quantity ei(b) that specifies the
probability of observing the base b at position i, is defined using the frequency matrix such as the
one shown above. The quantity q(b) represents the background probability for the base b.

S ¼
XL

i¼1
log

eiðxiÞ
qðxiÞ

(9:6)

The elements of log
eiðxiÞ
qðxiÞ behave like a scoring matrix similar to the PAM and BLOSUM

matrices. The termPosition Specific ScoringMatrix (PSSM) is often used to define the pattern search
with the matrix. A PSSM can be used to search for amatch in a longer sequence by evaluating a score
Sj, for each starting point j in the sequence from position 1 to (N–L+1), where L is the length of the
PSSM.

Amethod for converting the frequencymatrix into a weightmatrix has been proposed by Bucher
(1990). The weights at a given position are proportional to the logarithm of the observed base
frequencies. These are increased by a small term that prevents the logarithm of zero and minimizes
sampling errors. The weight matrix is computed as shown in equation 9.7. The term ebi represents
the expected frequency of the base b at position i, ci is a column specific constant, and s, a smoothing
percentage.

Wðb; iÞ ¼ ln
fbi
ebi
þ s

100

� �
þ ci (9:7)

These optimized weight matrices can be used to search for functional signals in the nucleotide
sequences. Any nucleotide fragment of length L is analyzed and tested for assignment to the proper

Table 9.2 Weight Matrix for TATAA box

T 6 49 1 56 6 22 6 20

C 14 6 0 0 3 0 1 2

A 8 4 58 4 51 38 53 30

G 32 1 1 0 0 0 0 8

(Copies of tables are available in the accompanyingCD.)
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functional signal. A matching score of
PL

i¼1
Wðbi; iÞ is assigned to the nucleotide position being

examined along the sequence. In the search formulation, bi is the base at position i along the
oligonuclotide sequence, and W(bi, i) represents the corresponding weight matrix entry for base bi
occurring along the ith position in the motif.

Profiles are similarly defined for modeling functional motifs in amino-acid sequences. A profile
is a scoring matrixM( p, a) comprised of 21 columns andN rows, whereN is the length of the motif.
The first 20 scores represent the weight for each individual amino acid, and the 21st column
specifies the cost associated with an insertion or deletion at that position. The value of the profile

for amino acid ‘‘a’’ defined for position p is Mða; pÞ ¼
P20

b¼1
Wðb; pÞ � Yðb; aÞ, where Y(b, a) is

Dayhoff’s matrix and W(b, p) is the weight for the appearance of amino acid b at position p. The
position specific weight is defined by log½ fðb; pÞ=N�, or as the frequency of occurrence of the amino
acid as b, as a fraction of the total N sequences utilized for construction of the profile, with a
frequency of 1 being used for any amino acid that does not appear at position p.

9.4.2 Position Dependent Markov Models

The Markov models have been considered as a means to define the background DNA sequence.
This model enabled us to define the probability of a nucleotide conditioned upon the nucleotides
occurring in the previous position. However, the modeled dependency is position-invariant. A
position-dependent Markov model may be utilized for the representation of a sequence signal or
motif. This model is defined on the sample space �n and assigns to every sequence x on �n, a
probability:

PðxjMÞ ¼ P1ðx1Þ �
i¼2;:::;n

P2;iðxijxi�1Þ (9:8)

This model has j�j þ ðn� 1Þ � j�j2 parameters. This model permits position-specific dependencies
on the previous position by allowing a unique set of transition probabilities to be associated with
each position along the signal. This model assumes that sufficient training data is available to
induce position specific Markov probabilities.

9.4.3 Hidden Markov Models

There are several extensions to the classical Markov chains, and the hidden Markov models
(HMM) are one such extension. The rationale for building a hidden Markov model comes from
the observation that as we search a sequence, our observations could arise from a model character-
izing a pattern, or from a model that characterizes the background. Hidden Markov DNA
sequence models are developed to characterize a model as an island within the sea of non-island
DNA, And the Markov chain characterizing both of these, needs to be present within the same
model, with the ability to switch from one chain to the other. In this manner, a HMM utilizes a set
of hidden states with an emission of the symbols associated with each state.

From a symbol generation perspective, the state sequence executed by the model is not
observed. Thus, the state sequence must be estimated from the observed symbols generated by
the model. From a mathematical perspective, the HMM is characterized by the following
parameters:
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� � is an alphabet of symbols.
� Q is a set of states that emit symbols from the alphabet �.
� A = (akl) is |Q| � |Q| matrix of state transition probabilities.
� E = (ek[b]) is a |Q| � |�| matrix of emission probabilities.

Although a general topology of a fully connected HMM allows the state transitions from any state
to any other, this structure is almost never used. This is primarily due to the inadequacy of the
available data for training a model with the large number of parameters needed for a fully
connected HMMdeveloped for any practical problem. Often, the over-generalized model produces
sub-optimal results due to the lack of training data. Consequently, more restrictive HMMs that rely
on the problem characteristics to suitably reduce the model complexity and the number of model
parameters that are needed, are utilized. One suchmodel is defined to be the profile-HMM,which is
induced from a multiple sequence alignment. The structure of a profile HMM is shown in Fig. 9.1.

The parameters of a profile HMM are estimated using the sample alignments of the sequences
used for training. The transitions and the emissions of the symbols in the alignment are used to
derive the Maximally Likely (ML) estimator of the HMM parameters. These values are assigned as
shown in equation 9.9. The actual transition and emission frequencies Akl and Ek(a) respectively,
are used to define the transition and emission probabilities, akl and ek(a). Furthermore, pseudo-
counts are added to the observed frequencies to avoid zero probabilities. The simplest pseudo-
count method is the Laplace’s rule, which requires adding one to each frequency.

akl ¼
AklP

X

AkX
and ekðaÞ ¼

EkðaÞP

Y

EkðYÞ
(9:9)

Example 3:Consider the following multiple sequence alignment defined on the amino acid residues
for five globin sequences:

HBA_HUMAN ...VGA--HAGEY ...
HBB_HUMAN ...V----NVDEV ...
GLB3_CHITP ...VKG------D ...
LGB2_LUPLU ... FNA--NIPKH...
GLB1_GLYDI ... IAGADNGAGV ...
Match States *** *****

A HMM with 8 match states may be constructed based on this alignment. The residues AD in
GLB1_GLYD1 are treated as insertions, with respect to the consensus. In match state 1, the
emission probabilities are (using Laplace’s rule):

eM1ðVÞ ¼
4

25
; eM1ðFÞ ¼

2

25
; eM1ðIÞ ¼

2

25
; and eM1ðaÞ ¼

1

25
for all others

Dj 

Mj End Begin 

Ij 

Fig. 9.1 A Profile HMM utilizes the insert (diamond) and delete (circle) states. The delete states are silent and are not
associated with the emissions of any symbols. The parameters of a profile HMM are learned from a multiple sequence
alignment (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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The transition probabilities from match state 1 are as follows:
aM1;M2 ¼ 5

8 ; aM1;D2 ¼ 2
8 ; aM1;I1 ¼ 1

8, corresponding to the one deletion in HBB_HUMAN, and

no insertions. The emission probabilities for state I1 are all equal to (1/20). The Viterbi algorithm
yields the optimal path through the HMM, as well as the log-odds score for observing a given
sequence from a HMM. It is commonly used to match a profile HMM to a sequence. The Viterbi
algorithm is a recursively defined optimization procedure that is quite similar to the dynamic
programming algorithm used for sequence alignment.

The various scores for matching a sequence to the profile HMM are defined in equation 9.10. In
this formulation, VM

j ðiÞ represents the log-odds score of the best path matching subsequence x1. . .i

to the submodel up to state j, ending with xi being emitted by stateMj. SimilarlyVI
j ðiÞ is the score of

the best path ending in xi being emitted by Ij, and VD
j ðiÞ for the best path ending in state Dj.

VM
j ðiÞ ¼ log

eMj
ðxiÞ

qxi
þmax

VM
j�1ði� 1Þ þ log aMj�1Mj

VI
j�1ði� 1Þ þ log aIj�1Mj

VD
j�1ði� 1Þ þ log aDj�1Mj

8
><

>:

VI
j ðiÞ ¼ log

eIj ðxiÞ
qxi
þmax

VM
j ði� 1Þ þ log aMjIj

VI
j ði� 1Þ þ log aIjIj

VD
j ði� 1Þ þ log aDjIj

8
><

>:

VD
j ðiÞ ¼ max

VM
j�1ðiÞ þ log aMjDj

VI
j�1ðiÞ þ log aIj�1Dj

VD
j�1ðiÞ þ log aDj�1Dj

8
><

>:

(9:10)

Generally, there is no emission score eIjðxiÞ in the equation for VI
j ðiÞ, as it is often assumed that

the emission distribution from the insert states, Ij, is the same as the background distribution. Also,

the D!I and I!D transition terms may not be present, and those transition probabilities may be
very close to zero.

A detailed example showing the procedure for building a HMM from a multiple sequence
alignment and using the HMM to search a sequence is presented next. DNA sequence models
are chosen for simplicity.

Example 4: Consider the following multiple sequence alignment that needs to be formalized as an
HMM.

The alignment of six sequences shows that there are three states where there is an agreement of 3 or
more sequences.These are labeled asM1,M2, andM3, and represent the corematch states of themodel.
StatesM0 andM4 are dummymatch states representing the beginning and end of themodel Table 9.3.

The multiple sequence alignment corresponds to the HMM topology shown below Fig. 9.2.

(Copies of tables are available in the accompanying CD.)
Table 9.3 Simple multiple
sequence alignment
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Using the topology of the HMM, the number of transitions from each state to the next,
generated by the training sequences is counted as shown in Table 9.4.

Consider, for example, the alignment for seq 1. The given sequence GACCA goes through the
states: M0M1M2 I2 I2 I2 D3M4.While inM1, it emits symbol G, inM2 it emits symbol A, then it
emits symbols C, another C and A in state I2. From I2, it moves to state D3 and then to M4.
Corresponding transition frequencies in the above table are also incremented. Specifically, transi-
tion frequency counts corresponding to the following, M0!M1, M1!M2, M2!I2, I2!I2,
I2!I2, I2!D3, D3!M4, are all incremented by 1.

These frequency counts are next converted to probabilities using Laplace rule where all the
frequency terms are incremented by one to avoid zero values from occurring in the probability
table. Further, the probability values are converted into likelihood by assuming that

Fig. 9.2 HMM topology of
MSA from Table 9.3
(Copies of figures including
color copies, where
applicable, are available in
the accompanying CD)

(Copies of tables are available in the accompanying CD.)

Table 9.4 Frequency of
math emissions, insert
emisson and frequenceis in
MSA example in Table 9.3
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q(A)=q(C)=q(T)=q(G)=¼. That is, all the bases are equally probable under the background
model. The probability values listed below are thus obtained from Table 9.5

Searching for the pattern represented by the HMM in a sequence is illustrated in the table
below. In this case, a sequence AGGAC is matched to the HMM. Viterbi equations are
utilized to complete the cells. The maximally likely state sequence is M0 M1 M2 I2 I2 M3
M4 (Table 9.6).

(Copies of tables are available in the accompanying CD.)

Table 9.5 Probability values
for frequencies observed in
Table 9.4

(Copies of tables are available in the accompanying CD.)

Table 9.6 Patterns presents in MSA example
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9.4.4 Mixture Models

Mixturemodels are defined in relation to the sample space�n. Themixture modelM, is amixture of
component models Mi; i ¼ 1; :::; k, and assigns to every sequence x on �n, a probability defined in
equation (9.11).

PðxjMÞ ¼ �
i¼1;:::;k

PðxjMiÞPðMiÞ (9:11)

whereP(Mi) is theweightof thecomponentmodelMi in themixture.Anyprobabilitymodelmaybeused
asacomponentmodel.Furthermore, themixturemodelmayhavecomponentmodelsofadifferent type.

A mixture model is best suited for modeling data that is comprised of sub-groups. In this
manner, an observed data set may be assigned to a class, if a high probability is assigned to it by
at least one component model of sufficient weight. This may be considered to be a stochastic analog
of a weighted OR function.

Consider for example a set D of short aligned sequences corresponding to some functional site.
Further, assume that we have a reason to believe that the observed sequences are characterized to
belong to two categories. The goal, which is to establish if an observed sequence x is similar to setD,
may be achieved by developing a mixture model for the set D. The mixture model is comprised of
two constituent sub-models that are represented in the set.

9.4.5 Goodness of Fit

As described in the previous sections, there are often several methodologies for developing a model
for a pattern. Consequently, the natural question to ask is whether there is a systematic methodol-
ogy that may be utilized to evaluate which of the possible models is best suited for the data at hand.
We may utilize the goodness of fit measure described below to estimate how well a given model
represents the observed dataset. Generally, all data items, d, in the training, or another data set,D,
are considered to be independent.

Under the independence assumption, the likelihood of the dataset D may be estimated as a
product of all the probabilities of the individual observations d.

PðDjMÞ ¼ �
d2D

PðdjMÞ (9:12)

Rewriting equation 9.11 in its log-likelihood form, yields equation 9.13.

logPðDjMÞ ¼ �
d2D

logPðdjMÞ (9:13)

This is often desired to prevent numeric underflows that are likely to occur when small numbers are
multiplied. In this manner, one may choose a model instance M* that best fits the dataset D
according to the maximum likelihood principle defined below.

M� ¼ argmax
M

ðPðDjMÞÞ ¼ argmax
M

ðlogPðDjMÞÞ (9:14)
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Chapter 10

Population Genetics

Jill S. Barnholtz-Sloan and Hemant K. Tiwari

Abstract Population genetics is the study of evolutionary genetics at the population level focusing
on the exchange of alleles and genes within and between populations as well as the forces that cause
or maintain these exchanges. This exchange of genes and alleles causes changes in the specific allele
and hence genotype frequencies within and between populations. Studying this evolution helps us
to better understand how to use human populations as a data set to clarify genetic predisposition to
disease.

Even with all these discoveries in the field of population genetics and in the characteristics that
cause population-based changes and their consequences (e.g., how genetics can affect human
disease susceptibility), until recently, the advances in molecular biology and genetics had only
enabled genotypes to be assessed one at a time by a technician in a laboratory. Nowwith the advent
of the gene chips or microarrays, these methods can be automated and carried out at a much larger
scale, i.e., 1 million genotypes per person on a single gene chip. The faster techniques will allow all
genes to be tested for polymorphism within and between populations for many individuals in a
population at a time andmany populations at a time. The new technology will allow an even greater
insight into the relationship between evolutionary forces and genetic changes in human
populations.

Keywords Hardy-Weinberg equilibrium � SNPchip genotype � Disease � Populations

10.1 Introduction

A species is comprised of many populations of individuals who breed with each other, each with
a unique set of genes (or loci) and alleles. Even so, the population as a whole shares a pool of all
genes and alleles. Evolution is the change of frequencies of alleles in the total gene pool. In order
to predict changes in the incidence of disease. some genotypes, such as those associated with
rare and sometimes deadly human diseases must be understood from a population genetics
perspective. Most individuals do not carry the genotypes that cause an extreme phenotype (or
trait), but of the ones that do, their phenotype varies greatly from the average person in the
population.
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44106, USA
e-mail: jsb42@case.edu

S. Krawetz (ed.), Bioinformatics for Systems Biology, DOI 10.1007/978-1-59745-440-7_10,
� Humana Press, a part of Springer ScienceþBusiness Media, LLC 2009
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10.2 Hardy-Weinberg and Linkage Equilibrium (HWE and LE)

Abasic understanding of equilibrium in populations is needed in order to begin to understand these
changes in allele frequencies over time and across generations. The two types of equilibrium
assumed in populations are Hardy-Weinberg Equilibrium (HWE) within loci and Linkage Equili-
brium (LE) between loci.

Fundamental to understanding these equilibria is the understanding that genotype frequencies
are determined by mating patterns, with the ideal being random mating. Random mating assumes
that mating takes place by chance with respect to the locus under consideration. With random
mating, the chance that an individual mates with another having a specific genotype is equal to the
population frequency of that genotype. In human populations, mating seems to be random with
respect to some traits, such as blood group type, and non-random with respect to certain physical
and cultural characteristics such as height, race/ethnicity, and age.

One’s genotype at any locus is made up of two alleles (one of two or more forms that can exist at a
locus), one allele from the mother, and one allele from the father. A gene (or locus) is the
fundamental physical and functional unit of heredity and will carry information from one genera-
tion to the next (NOTE: gene and locus will be used interchangeably). By definition, a gene encodes
for some gene product, like an enzyme or a protein. A gene can have exactly two alleles in a di-allelic
locus or a large number of alleles in amulti-allelic locus. A genotype can either be homozygous (both
alleles received from the mother and father are the same allele), or heterozygous (the alleles received
from the mother and the father are different).

Independently in 1908, G.H. Hardy [1] and W. Weinberg [2, 3], both published results showing
that in a very large populationwithout overlapping generations, the frequency of particular genotypes
in a sexually reproducing diploid population reaches equilibrium after one generation of random
mating, assuming there is no selection, mutation, ormigration. They then showed that the frequencies
of the genotypes in the ‘‘equilibrium’’ population are simple products of the allele frequencies.
Suppose that a locus, L, has alleles A and a, with p=frequency (A)=f(A) and q=f(a)=1–p. Then,
if members of the population select their mates at random, without regard to their genotype at the L
locus, the frequencies of the three genotypes, AA, Aa, and aa, in the population can be expressed in
terms of the allele frequencies: f(AA)=p2; f(Aa)=f(Aa)+ f(aA)=2pq; f(aa)=q2 (see Table 10.1).

Statistical tests for the presence or absence of HWE for each of the loci of interest are performed
either using a chi-square goodness of fit test or an exact test, to test the null hypothesis that the locus
is in HWE versus the alternative hypothesis that the locus is not in HWE. Both tests examine the fit
between the observed and expected numbers. If the observed numbers are similar enough to the
expected numbers, then we accept the null hypothesis of the locus being in HWE. Exact tests are
used when sample sizes are small and/or when they involve multi-allelic loci.

Exact tests for HWE are much more computationally extensive and complicated than the chi-
square goodness of fit test. However, an exact test is more powerful for multi-allelic loci than the
goodness of fit chi-square test because it does not depend on large sample asymptotic theory. The
exact test for HWE is permutation based and is founded on the theory proposed by Zaykin et al.

Table 10.1 Observed and expected frequencies of the genotypesAA, Aa and aa at Hardy-Weinberg equilibrium after
one mating of female and male gametes, for a total sample of n individuals

Female gametes

Observed=p=f(A) Observed=q=f(a)

Male Gametes Observed=p=f(A) Observed= p2 =f(AA) Observed =pq=f(Aa)

Expected= np2 Expected=npq

Observed=q=f(a) Observed=pq=f(Aa) Observed=q2=f(aa)

Expected=npq Expected= nq2

(Copies of tables are available in the accompanying CD.)
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[4] and Guo and Thompson [5]. Zaykin et al. [4] proposed an algorithm that performs an exact
test for disequilibrium between alleles within or between loci by calculating the probability of the
set of multi-locus genotypes in a sample, conditional on the allelic counts, from the multinomial
theory under the null hypothesis of equilibrium being present. Alleles are then permuted and the
conditional probability is calculated for the permuted genotype array. In order to permute the
arrays, they employ a Monte-Carlo method, as suggested by Guo and Thompson [5]. The
proportion of permuted arrays that are no more probable than the original sample provides the
significance level for the test. The complexity of this testing procedure makes a using of computer
program essential.

In short, HWE refers to the concept that there are no changes in genotypic proportions in a
population from generation to generation. This equilibrium will remain constant unless the
frequencies of alleles in the population are disrupted. Any selection, migration, non-random
(assortative) mating and inbreeding, population substructure or subpopulations, mutation or
genetic drift (e.g., [6, 7]) can disrupt the equilibrium.

When we look at a single locus, we find two important random-mating principles: (1) genotype
frequencies are simple products of the allele frequencies, and (2) HWE is reached after one
generation of random mating. However, when we look at two or more loci, the first principle still
applies for each locus independently, whereas the second may not because the alleles of one locus
may not be in random association with the alleles of the second locus. The linkage equilibrium (LE)
between loci is defined as a random allelic association between alleles at the loci. In other words,
considering any two loci, the probability of the combination of alleles, one from each locus, is the
same, if the loci are in the same individual or in different individuals. This state of LE will be
reached given enough time, but the approach to equilibrium is slow and highly dependent on the
recombination fraction, �. Note that HWE is defined within a single locus and LE is defined between
two or more loci.

The genetic distance in centimorgans (cM) between two loci can be estimated from the recombi-
nation fraction, �, between these loci, where � can be calculated as the probability that the gamete
transmitted by an individual is recombinant, i.e., an individual whose genotype was produced by
recombination after DNA duplication in which adjacent chromosomes can change parts, or
‘‘recombine’’ (see Fig. 10.1). It is this genetic shuffling that enables species to have a rich diversity
of phenotypical expressions from generation to generation in a given population. If the loci are
extremely close on the same chromosome, then there will hardly ever be a crossover between them
and the recombination fraction will approach zero. By contrast, if the loci are far apart or are
located on different chromosomes, then recombination will occur by chance in 50%ofmeioses, and
the alleles at one locus will be inherited at random with respect to the alleles at the other locus. Loci
with recombination fractions close to zero are tightly linked to each other whereas loci with
recombination fractions of 0.5 are completely unlinked to each other.

Thus, allelic linkage disequilibrium (LD) is measured by a statistic D, which is defined as
D ¼ Pij � piqj, where Pij is the frequency of the gamete carrying the ith allele of one locus and the

a   b  c  d  e 

A   B  C  D  E 

A   b  c  d  e 

a   B  C  D  E 

Fig. 10.1 A pictorial representation of recombination or crossing over between chromosomal segments (or loci)
(Copies of figures including color copies, where applicable, are available in the accompanying CD)
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jth allele of another and pi and qj are the frequencies of the i
th and jth alleles of the two loci.D can be a

positive or negative number or zero. Another commonly used measure is the standardized LD
statisticD’,which isD divided byDmax therefore makingD’ bounded by 0 and 1. In randommating
populations with no selection, LD is reduced in every generation at a rate of � (recombination
fraction), 0 � � � 0:5; leading to DðtÞ ¼ ð1� �ÞtDð0Þ, where D(t) is the disequilibrium at genera-
tion t and D(0) is the disequilibrium at generation zero.

Tests for significant allelic LD for different combinations of alleles from two and three loci
adjacent on a chromosome are performed using a chi-square procedure to test the null hypothesis
thatD=0, versus the alternative thatD 6¼ 0. In order to calculate an allelic disequilibrium measure,
allele and genotype/haplotype frequencies must first be calculated which could be done very simply
by directly counting the possible genotypes/haplotypes present in the population of interest. This
total can then be used to assess allele frequencies. A haplotype is the combination of several alleles
from multiple loci.

Linkage disequilibrium can result from many different circumstances. LD could have been
present in the founding population, and because of a very small �, this LD would not have had
ample time (in generations of random mating) to disappear. Alternatively, the loci could be tightly
linked, making recombinants rare and slowing the approach to equilibrium. Interaction between
the loci of interest can cause LD when the loci are closely linked. Additionally, the selection of
specific heterozygotes can also overcome the natural tendency for D to go to zero. Population
stratification (PS), or the matings of different subpopulations with different allele frequencies, can
also cause LD. LD can also be caused purely by chance, in that some loci may present themselves at
a higher frequency in a population and stay at that frequency. For further information on
estimating and testing of LD refer [8–10].

10.2.1 Linkage Disequilibrium Mapping

The recent completions of the human genome sequence [11] and the HapMap project [12] have
renewed interest in the area of LD mapping. Also called allelic association, LD mapping was
proposed many years ago [13, 14]. LDmapping is based on the premise that regions adjacent to the
mutation in a putative disease gene are transmitted through generations along with that mutation
because of the presence of a strong LD. The idea behind LD mapping is to exploit LD between the
putative disease locus and single nucleotide polymorphisms (SNPs) which are abundant through-
out the genome. This strategy is useful for localizing genes for complex traits which show non-
Mendelian patterns of inheritance and are most likely affected by multiple genes acting together
and/or by environmental factors. LDmapping uses population-based samples, such as case-control
designs, instead of family-based samples and provides a greater statistical power for detection of
genes for complex traits. However, there are a few disadvantages to LD mapping; for example (i)
when the extent of LD is small in population data, a very dense set of SNPs as well as a large
number of cases and controls would be necessary to have a reasonable power to detect the gene of
interest (i.e., 10,000 or more SNPs genotyped on at least 1000 cases and 1000 controls); or (ii) when
LD is a result of population stratification, additional markers need to be genotyped to adjust for
this stratification in order to avoid any false results, false positive or false negative, in the associa-
tion analysis [15–17].

10.2.2 Population Stratification

Allele frequencies are known to vary widely within and between populations and these differences
are widespread throughout the genome [12, 18]. When cases and controls have different allele
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frequencies attributable to variation in genetic ancestry within or between race/ethnicity groups,
population stratification (PS) is said to be present. Essentially ancestry is now a confounding
variable. PS is present in recently admixed populations like African- Americans and Latinos
[19–21], and also in European-American populations [22–25] and historically isolated populations
including Icelanders [26].

A consequence of PS is the potential for bias in the estimate of allelic associations because of
deviations from Hardy-Weinberg equilibrium and induction of linkage disequilibrium [27]. In
order for the bias due to PS to exist, both of the following must be true: (i) the frequency of the
marker variant of interest varies significantly by race/ethnicity, and (ii) the background disease
prevalence varies significantly by race/ethnicity [28]. If either of these is not fulfilled, bias due to PS
cannot occur. Bias due to PS can induce both false positive and false negative associations. This
bias has been shown in some studies to be small in magnitude [28–30], and bounded by the
magnitude of the differences in background disease rates across the populations being compared
[31]. Simulation studies have also shown that the adverse effects of PS increase with increasing
sample size [32, 33].

No true consensus has been reached as to how to test for and/or adjust for population
stratification [29, 34], although many methods have been developed [15–17, 35, 36]. Controlling
for self reported race has generally been thought to suffice [37], but recent data shows that
matching based on ancestry is more robust although in many populations, whether recent
admixed or not, individuals are not aware of their precise ancestry [38, 39]. Genomic control
[15, 36] and structured association [16, 17, 35] are two techniques commonly used to control and
adjust for possible PS in association studies. Genomic control uses a set of non-candidate,
unlinked loci to estimate an inflation factor, l, which was caused by the PS present and then
corrects the standard Chi-square test statistic for this inflation factor. The structured association
method utilizes Bayesian techniques to assign individuals to ‘‘clusters’’ or subpopulation classes
using information from a set of non-candidate, unlinked loci and then tests for an association
within each ‘‘cluster’’ or subpopulation class. A newer, less widely used technique involves the
estimation of ancestral proportions through the genotyping of ancestry informative markers
(AIMs), which are markers that show large allele frequency differences between ancestral
populations and have been found throughout the genome [22, 40–42]. These estimates of either
individual or group-specific ancestry can then be used to delineate associations between genetic
variants and traits of interest by using genetic ancestry instead of ‘‘race/ethnicity’’ to measure
stratification within a study sample [43–47].

10.3 Darwin and Natural Selection

The assumptions of equilibrium, both HWE and LE, and hence, allele and genotype frequencies,
are all directly affected by the forces of evolution that exist around us, such as natural selection,
mutation, genetic drift, inbreeding, and non-random mating. The mechanism of evolution was
speculated by a number of people in the early nineteenth century, but it was Charles Darwin [48]
who brought this problem to the forefront. He proposed that the cause of evolution was natural
selection in the presence of variation, which is the process by which the environment limits the
population size.

Darwin based this theory on three key observations: (i) When conditions allow individuals in a
population to survive and reproduce they will have more offspring than can possibly survive
(population size increases exponentially), (ii) lack of resources threatens the individuals’ ability
to survive and reproduce, and (iii) No two individuals are the same because of variation in inherited
characteristics, and, accordingly, all will vary in their ability to reproduce and survive. From these
observations he deduced the following: (i) There is competition for survival and successful
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reproduction, (ii) Heritable differences that are favorable will allow those individuals to survive and
reproduce more efficiently than individuals with unfavorable characteristics; i.e., elimination is
selective, and (iii) Subsequent generations of a population will have a higher proportion of the
favorable alleles than previous generations. With the increase of these favorable alleles in the
population, comes an increase of the favorable genotype(s), so that the population gradually
changes and becomes better adapted to the environment. This is the definition of fitness; genotypes
with greater fitness produce more offspring than less fit genotypes. Fitness of a gene or allele is
directly related to its ability to be transmitted from one generation to the next.

Because individuals must compete for resources in order to stay alive and reproduce successfully,
genotypes determining more favorable characteristics in a population will become more common
than those that determine less favorable characteristics. Group interactions, environmental factors,
and the relative frequency of particular genotypes can affect a genotype’s likelihood of success.
Sexual selection is a key component to the likelihood of success can be affected both by direct
competition between individuals of the same sex for a mate and by mating success, which is a direct
result of the choice of a mate [49].

There are three modes of natural selection (Fig. 10.2): (1) Stabilizing selection – this removes
individuals who deviate too far from the average and maintains an optimal population, i.e.,
selection for the average individual, (2) Directional selection – this favors individuals who are at
one extreme of the population, i.e., selection of either of the extreme individuals, and (3)Disruptive
selection – this favors individuals at both extremes of the population, which can cause the popula-
tion to break into two separate populations.

Darwin’s theory was transformed into Neo-Darwinism when variation was recognized to be a
direct result of spontaneous mutation. The theoretical basis of Neo-Darwinism is based on a
mathematical framework (e.g., [50–52]) and has become essential to our understanding of mole-
cular evolution. From the 1930s to the 1950s, researchers to tried to better understand the empirical
basis of neo-Darwinism, but this was met with great difficulty since a human’s lifetime is generally
not long enough to be able to observe substantial changes in populations [6].

Time 1 

Time 2 

Time 3 

Directional DisruptiveStabilizing

Fig. 10.2 Three types of
natural selection, stabilizing,
directional and disruptive,
over the course of three
different time periods 1, 2
and 3 (three subsequent
generations of mating) and
their effects on the normally
distributed initial
population in time period 1
(Copies of figures including
color copies, where
applicable, are available in
the accompanying CD)
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10.4 Types of Variation

Darwin’s work and the work of the Neo-Darwinists helped us to better understand that the
variation within and between populations is caused and maintained by mutation, genetic drift,
migration, inbreeding and non-randommating, as well as by the types of natural selection that were
discussed in the previous section. Table 10.2 summarizes whether each of the components of
evolution increases or decreases variation within and between populations.

In 1953, the Watson-Crick model [53] of DNA (deoxyribonucleic acid) was put forward, open-
ing doors to the application of various molecular techniques in population genetics research.
Because DNA is the chemical substance that encodes for all genes, relationships between andwithin
populations could now be characterized through the study ofDNA.Now researchers could study the
variation within a species instead of having to study the species as a whole. Researchers began by
studying amino acid changes, that was accelerated in the mid 1960s, with the advent of electrophor-
esis (a simpler method of studying protein variation), they switched to studying genetic polymorph-
isms within populations. Many other technical breakthroughs have emerged such as gene cloning,
rapid DNA sequencing and restriction enzyme methods that have uncovered many unexpected
properties of the structure and organization of genes.

10.4.1 Mutation

These newmethods of molecular study led researchers to discover that all new variations begin with
a mutation or a change in the sequence of the bases in the DNA. A mutation in the DNA sequence
caused by nucleotide substitution (e.g., sickle cell hemoglobin production [54]), by insertions/
deletions (e.g., hemophilia A and B, cystic fibrosis [55], cru-du-chat syndrome [56]), by triplet
expansion (e.g., Huntington’s disease [55]), by translocation (e.g., Down syndrome [55]), etc.,
may be spread through the population by genetic drift and/or natural selection (e.g., [6,57]) and
eventually become fixed in a species. If this mutant gene produces a new phenotype, this new
characteristic or trait will be inherited by all subsequent generations unless the gene mutates again.
Some mutations, called silent mutations, will not affect the protein product and some mutations
will occur in non-coding regions, which may or may not have regulatory roles. Clearly, the most
interesting variations in terms of effects on the population are those that occur in regions where the
sequence is functionally significant.

Spontaneous mutation rates are appreciably small, 10–4 to 10�6 mutations per gene per genera-
tion, so it is the cumulative effects of mutation over long periods of time that become important (see
Fig. 10.3). The simplest kind of mutation is when one nucleotide is replaced by another (a base
substitution). These substitutions can be transitions, A to G or C to T, or transversions (all other
types of substitutions). If a base substitution results in the replacement of an amino acid in the

Table 10.2 The effect of the different forces of evolution on variation within and between populations.
(Either an increase or decrease of variation within and/or between populations is shown for each force)

Evolutionary component Within populations Between populations

Inbreeding and non-random mating Decrease Increase

Genetic drift Decrease Increase

Mutation Increase Decrease

Migration Increase Decrease

Selection:

- Stabilizing Increase Decrease

- Directional Decrease Increase and Decrease

- Disruptive Decrease Increase

(Copies of tables are available in the accompanying CD.)
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protein product, this is a missense mutation. Mutations can also result in a loss or gain of genetic
material, deletion or insertion, which can result in frame-shift mutations. Genetic material can also
be rearranged, as with a translocation in which pieces of different chromosomes change places with
one another. Mutations due to gene conversion come from the misalignment of DNA, which is
associated with the unequal crossing over of parts of adjacent chromosomes.

Fully grasping the concept of mutation requires a basic understanding of polymorphisms,
heterozygosity, and gene diversity. The ability to correctly tabulate allele and genotype frequencies
for a given population is also imperative.

10.4.1.1 Allele and Genotype Frequencies

The most fundamental quantitative variable in the study of population genetics is allele frequency
which is determined as follows. In a population ofN diploid individuals, we have 2N alleles present.
If the number of alleles, i, in the population is ni, then the frequency of that allele in the population is
defined as pi ¼ ni=2N. There is no limitation to the number of alleles that may exist at a single locus
but their frequencies must always sum to one. When a locus has only two alleles we denote their
frequencies as p and q=1�p. A bi-allelic locus,L, with allelesA and a, has three possible genotypes,
AA, Aa and aa. However, not all genotypes are necessarily present at all times in a population.

The genotype frequencies at a particular locus are similarly defined; the frequency of a particular
genotype is the number of that genotype present in the population divided by the total number of
genotypes present. Like the allele frequencies, genotype frequencies must sum to one over all the
genotypes present in the study population. However, the number of genotypes is constrained and
equals [m(m+1)]/2, if there are m alleles at the locus with m homozygotes and [m(m�1)]/2
heterozygotes [54].

As an example of how to count alleles and genotypes in a population, theMN blood group will
be used. Assume that a population consists of 543 MM (phenotype M), 419 MN (phenotype MN),
and 457 NN (phenotype NN) individuals (total = 1419 individuals). We first need to determine the
values of p = f(M) and q = f(N) and the genotype frequencies in the population. In this simple
example, the values of p and q and the genotype frequencies can be determined by the straightfor-
ward counting of genotypes and alleles. To determine the genotypic frequencies, we simply divide
the number of each genotype present in the population by the total number of individuals present in
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Fig. 10.3 The cumulative
effect of mutation over
generations of mating (over
time), on the change in
frequency of allele A, where
the mutation rate for A to
become a, is maintained at a
constant rate of 10–5 (Copies
of figures including color
copies, where applicable, are
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the population (see Table 10.3), where the genotypic frequencies will add up to one. To determine
the allelic frequencies we simply count the number ofM orN alleles and divide by the total number
of alleles. The 543 MM individuals will contribute 543 � 2 = 1086 M alleles. The 419 MN
individuals will contribute 419 M alleles and 419 N alleles, and the 457 NN individuals will
contribute 457 � 2 = 914 N alleles. Therefore, there are 1086 + 419 = 1505 M alleles total in
the population and 419 + 914 = 1333 N alleles total in the population. So, p = f(M) = 1505/
[2(1419)] = 0.53 and q = f(N) = 1333/[2(1419)] = 0.47 = 1�p.

10.4.1.2 Polymorphism

When a locus has many variants, or alleles, it is referred to as being polymorphic. Polymorphism is
defined as the existence of two or more alleles with large relative frequencies in a population
(occurrence of no less than 1–2%). The limiting frequency of the most common allele, and thus for
the polymorphism, is set at 99% [58]. Mutation(s) at a locus generate these multiple alleles, most of
which are eliminated from the population by genetic drift or purifying selection. Only a small
number of them are incorporated into the population by chance or selection. The first human
polymorphism discovered was the ABO blood group identified by Landsteiner [59]. Most poly-
morphisms are genetically straightforward, with two alleles directly determining two versions of the
same protein. Some, however, can be highly complex, with multiple, related loci engaged in a
complex system on a chromosome.

There are four primary ways to determine polymorphisms: Restriction fragment length poly-
morphisms (RFLPs), ‘‘Minisatellites’’ or Variable number of tandem repeats (VNTRs), ‘‘Micro-
satellites’’ or Short tandem repeats (STRs) or/and Single nucleotide polymorphisms (SNPs).
RFLPs are DNA segments of different lengths generated by restriction enzyme cuts, which depend
on specific base sequences at a potential cut site. The different sized DNA fragments can be
separated using electrophoresis. Since RFLPs are based on single nucleotide changes, they are
not very polymorphic in the population and usually have heterozygosities of less than 50%.
Minisatellites or VNTRS are repeats of a relatively short oligonucleotide sequence that vary in
number from one person to another. They are much more polymorphic than RFLPs. Microsatel-
lites or STRS are multiple (often 100 or more) repeats of very short sequences (2–4 nucleotides),
e.g., (CA)n repeats that are amplified by PCR and electrophoresed to score allele sizes. These are
highly polymorphic in the population, with most individuals being heterozygous. Thousands of
such markers are available, conveniently located throughout the genome. Tri- and tetranucleotide
repeats are often easier to score than dinucleotide repeats. Microsatellites are often the markers of
choice for genetic linkage studies. SNPs, abundantly available throughout the genome, are a class
of recently identified markers characterized by variation at a specific nucleotide. Only 2 alleles exist
for a given SNP in the population, so they are less polymorphic than microsatellites.

10.4.1.3 HapMap Project

There are approximately 10–15 million SNPs in the human genome. Alleles of SNPs that are close
to each other on the same chromosome tend to segregate together resulting in a non-random

Table 10.3 Genotypic frequencies of the three genotypes present in the MN blood
group; MM, MN and NN, calculated from a total of 1419 individuals

Genotype Number of individuals Genotypic frequencies

MM 543 543/1419 = 0.38

MN 419 419/1419 = 0.30

NN 457 457/1419 = 0.32

Total 1419 1.0

(Copies of tables are available in the accompanying CD.)
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association between alleles, or LD. A set of associated SNP alleles in a region of a chromosome is

called a haplotype. Closely located SNPs inherited together are also referred to as haplotype blocks.

A haplotype block is a discrete (does not overlap another block) chromosome region of high LD

and low haplotype diversity. Haplotype blocks are determined by SNPs in strong LD, thus a few

SNPs can provide most of the information on the pattern of genetic variation in the chromosomal

region of interest. The SNPs in LD within the block are called haplotype tagging SNPs, or tag

SNPs. Due to historical recombination events, LD is strong among SNPs within the haplotype

blocks but weak between haplotype blocks. Therefore, chromosome regions corresponding to these

haplotype blocks have only few common haplotypes (i.e., frequency of at least 5%), accounting for

most of the variation among individuals, since haplotype frequencies vary widely across different

world-wide populations. The whole genome can be parsed in haplotype blocks of variable lengths

[18, 60, 61].
Hence, gaining a complete understanding of SNP diversity and hence haplotype block diversity

in world-wide populations could facilitate gene discovery for complex disease. Begun in October

2002, with its first full release in 2005 [12], the HapMap project has developed a haplotype map of

the human genome which describes common patterns of genetic variation among different popula-

tions world-wide. The HapMap project, a collaborative project, including scientists from Canada,

China, Japan, Nigeria, the United Kingdom, and the United States of America, has become an

essential resource assisting scientists world-wide in discovering genes predisposing to diseases and

drug response. The complete description of the HapMap project, including the populations from

which the samples were selected for generating haplotypes, the Ethical, Legal, and Social Implica-

tions (ELSI), and the list of participating scientists and planning groups can be found at http://

www.hapmap.org. All data generated by the HapMap project is freely available to the scientific

community.

10.4.1.4 Gene Diversity and Heterozygosity

When examining a large number of loci, the amount of variation is usually measured by the

proportion of polymorphic loci, which can be reported for a single locus, as an average over several

loci, or as the average heterozygosity per locus (or gene diversity). The heterozygosity (the propor-

tion of heterozygotes or polymorphic loci) is defined purely in terms of the genotype frequencies in

the population. If nij is the observed count of heterozygotes i, j, at locusL, where i and j are different

alleles in a sample of size n, then the sample heterozygosity for that locus L is given by

HL ¼
X

i

X

i 6¼j

nij
n
: (10:1)

Heterozygosity is calculated separately for each locus under study and then averaged over all loci

under consideration (m), to give

�H ¼ 1

m

Xm

l¼1
HL: (10:2)

Average heterozygosity or gene diversity is a more useful measure of variation than the propor-

tion of heterozygotes (heterozygosity) because it is not subject to bias caused by sample size,

whether it be the size of the study sample or the number of loci being examined. Also, the average

heterozygosity is calculated from allele frequencies and not genotype frequencies. Assume that pj is

the frequency of the jth allele at the lth locus, then the gene diversity at this locus, L, is
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DL ¼ 1�
X

j

p2j ; (10:3)

and as an average over m loci,

�D ¼ 1� 1

m

X

l

X

j

p2jl; (10:4)

where l=1,. . .,m. In a randomly mating population, �D is equal to the average proportion of
heterozygotes per locus. Hence, a very polymorphic locus will have higher gene diversity, because
with more alleles present at a locus, more heterozygotes are possible.

However, it is not just mutation that is responsible for sustaining variation. Natural selection,
genetic drift, and migration also play key roles in maintaining variation, as do inbreeding and non-
random mating and the genetic structure of a population. Selection acts against the dysfunctional
alleles that are continuously being created bymutation such that, at equilibrium, the number of new
dysfunctional alleles equals the number lost by selection. Selection, in fact, favors heterozygotes,
because they maintain two different alleles in their genotypes, and rare alleles are more common in
a heterozygous individual. Hence, the heterozygous individual can carry more genetic information
than the homozygous individual.

10.4.2 Genetic Drift and Migration

Genetic drift is the change in allele frequency that results from the chance difference in the
transmission of alleles between generations. The gene pool changes at each generation, so the
frequencies of individual alleles will change (drift) through time, and these frequencies can go up or
down, accumulating with time. Drift’s largest effects are seen on small populations (because larger
samples will be closer to the average), and on rare alleles (the more individuals carrying the allele,
the higher the transmission frequency). Drift is important since it has a greater effect on transmis-
sion of rare alleles than selection, because the latter mechanism helps remove or promote very rare
alleles.

In small populations, drift can cause certain allele frequencies to be much larger or smaller than
would likely occur in a large population. From this process emerges the founder effectwhich occurs
when a small, under-represented group forms a new colony. The Amish in the United States are a
good example of this because the roots of this population can be traced to a small number of
immigrant families. Occasionally some environmental factor like disease reduces a population to a
small number of individuals who subsequently become the parents of a new large population. This
process is called bottle-necking. Drift can also cause small isolated populations to be very different
from the norm, and this can in turn lead to the formation of new species and races.

The basic calibrator of genetic drift is effective population size, Ne. This is the size of a homo-
geneous population of breeding individuals, half of which are male and half female, that would
generate the same rate of allelic fixation as observed in the real population of total sizeN [54]. Thus,
in a population of size N, with random mating, the variance of the random deviation of allele
frequencies is [ p(1�p)]/2 N and the rate of decay is 1/2 N. But a real human population is structured
in many different ways: its individuals are of different sexes, ages, and geographical and social
groups, for example. Because an actual population does not match the ‘‘ideal’’ population, Ne is
estimated indirectly to be N/2 to N/3 [54]. Ne can be estimated directly if one knows the hetero-
zygosity or the inbreeding coefficient of the population being studied.

Migration also causes variation within a population, because of the possibility of mixing many
populations together. Geographically defined populations generally show variation between each
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other, and such variation can have an effect on the fate of that population. Through migration,
these populations subdivide and mix with new individuals to form new, sustainable populations.
Population subdivision (or population stratification) causes a decrease in homozygous individuals,
known asWahlund’s principle [62], because it increases variation in the newly formed population. In
human populations, the main effect of this fusion of populations is a decrease in the overall
frequency of children born with genetic defects resulting from homozygous recessive genes that
have high frequency in one of the mixing populations.

10.4.2.1 Wright’s Fixation Indices

The genetic structure of a species is characterized by the number of populations within it, the
frequencies of the different alleles in each population and the degree of genetic isolation of the
populations. The evolutionary forces previously discussed will cause a differentiation within and
between subpopulations within a larger species population. Wright [51, 63, 64] showed that any
species population has three levels of complexity: I, the individual, S, the various subpopulations
within the total population and T, the total population. In order to assess this population
substructure and test for allelic correlation within subpopulations, Wright defined three measure-
ments called fixation indices that have correlational interpretations for genetic structure and are a
function of heterozygosity. FIT is the correlation of alleles within individuals over all subpopula-
tions; FST is the correlation of alleles of different individuals in the same subpopulation; and FIS is
the correlation of alleles within individuals within one subpopulation. Cockerham [65, 66] later
showed analogous measures for these three fixation indices, which he called the overall inbreeding
coefficient, F, and the coancestry, � and f, respectively.

In order to calculate the three fixation indices, we must first calculate the heterozygosities. HI is
the heterozygosity of an individual in a subpopulation and can be interpreted as the average
heterozygosity of all the genes in an individual. HS is the expected heterozygosity of an individual
in another subpopulation and can be interpreted as the amount of heterozygosity in any subpopula-
tion if it were undergoing randommating. AndHT is the expected heterozygosity of an individual in
an equivalent random mating total population and can be interpreted as the amount of hetero-
zygosity in a total population where all subpopulations were pooled together and mated randomly.

If Hi is the heterozygosity in subpopulation i, and if we have k subpopulations in total,
then

HI ¼
Xk

i¼1

Hi

k
: (10:5)

If pjs is the frequency of the j
th allele in the subpopulation s, thenHS is the expected heterozygosity

in subpopulation s, for a total of h alleles at that locus.

HS ¼ 1�
Xh

i¼1
p2js; (10:6)

�HS, is the average taken over all subpopulations. Finally if �pj is the frequency of the jth allele
averaged over all subpopulations,

HT ¼ 1�
Xk

i¼1
�p2j ; (10:7)

for all k subpopulations.
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Thus, Wright’s F statistics are

FIS ¼
�HS �HI

�HS

; FST ¼
HT � �HS

HT
; FIT ¼

HT �HI

HT
(10:8)

and these three equations are related by the following identity, 1� FISð Þ 1� FSTð Þ ¼ 1� FITð Þ.

10.4.2.2 Genetic Distance

The degree of genetic isolation of one subpopulation from another can be measured by genetic
distance, which can be interpreted as the time since the subpopulations that are under comparison
diverged from their original ancestral population. Nei proposed the most widely used measure of
genetic distance between subpopulations in 1972 [67], even though the concept of genetic distance
was first used by Fisher [68] and Mahalanobis [69] and later refined by Sanghvi [70]. Thus, Nei’s
standard genetic distance is given byD= -ln(I) where I (called the genetic identity and corrected for
bias) is calculated through the following equation:

I ¼
ð2n� 1Þ

P

l

P

j

pj1pj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

l

ð2n
P

j

p2j1 � 1Þ
P

l

ð2n
P

j

p2j2 � 1Þ
r ; (10:9)

where we are examining the jth allele at the lth locus for populations 1 and 2 and pj1 is the frequency
of the jth allele at the lth locus for population 1, and pj2 is the frequency of the j

th allele at the lth locus
for population 2, from a total sample of n individuals.

10.4.3 Inbreeding and Non-random Mating (Assortative Mating)

Inbreeding and other forms of non-random mating, or assortative mating, can also have a profound
effect on variation within a population. Inbreeding refers to mating between related individuals, or,
more precisely, mating in which genetically similar (related) individuals mate more frequently than
would be expected in a randomly mating population. Inbreeding mainly causes departures from
Hardy Weinberg equilibrium (HWE) and as a consequence of this departure from equilibrium, an
increase in homozygotes. This occurs because inbreeding can cause the offspring to have replicates of
specific alleles present in the shared ancestor of the parents. Thus, inbred individuals may carry two
copies of an allele at a locus that are identical by descent (IBD) from a common ancestor. Themeasure
of how frequently two offsprings share copies of the same parental (ancestral) allele is referred to as
the proportion of IBD. While inbreeding alone cannot change allele frequencies, it can change how
the alleles come together to form genotypes. The amount of inbreeding in a population can therefore
be measured by comparing the actual proportion of heterozygous genotypes in the population that is
inbreeding to the proportion one would expect in a randomly mating population.

In order to illustrate this change in genotype frequencies, we can examine a simple case of
inbreeding, where the reference population will be the preceding generation so that the inbreeding
coefficient, F, measures the increase in IBD from one generation to the next. If allele A has a
frequency of p and allele a has a frequency of q, q=1�p, then the frequency of AA genotypes in an
inbred gamete will be f(AA) = p2(1�F) + pF = p2 + pqF. An individual of genotype AA can be
formed in one of the two ways, either by independent origin, which has a probability of p(1�F), or
by identical by descent, which has a probability of F. Therefore, if F> 0, there will be an excess of
AA homozygotes relative to what would be expected byHWE. If F=0 then the frequency of theAA
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homozygotes is what would be expected by HWE. Similarly, the frequency of the homozygote aa
would be.

fðaaÞ ¼ q2ð1� FÞ þ qF ¼ q2 þ pqF; (10:10)

and the same rules would hold for the relationship between the value of F and HWE. The
probability of the heterozygote Aa is more complicated to calculate. But, we know that the
frequencies of the genotypes must sum to one so,

fðAaÞ ¼ 1� fðAAÞ � fðaaÞ ¼ 2pqð1� FÞ ¼ 2pq� 2pqF: (10:11)

Table 10.4 shows a summary of the changes in genotype frequencies after one generation of
inbreeding.

If natural selection and inbreeding act together, they can have a profound effect on the course of
evolution because of the increase in the frequency of homozygous genotypes. Inbreeding in human
populations can result in a much higher frequency of recessive disease homozygotes, since recessive
disease alleles generally have low frequencies in humans. Inbreeding affects all alleles and genes, in
inbred individuals, thereby exposing rare recessive disorders that may not have presented them-
selves if no inbreeding had occurred.

Non-random mating or assortative mating occurs when a mate is chosen based on a certain
phenotype. In other words, it is a situation whenmates aremore similar (or dissimilar) to each other
than would be expected by chance in randomlymating population. In positive assortative mating, a
mate chooses a mate that phenotypically resembles himself or herself. In negative assortative
mating, a mate chooses a mate that is phenotypically very different from himself or herself.
Assortative mating will only affect the alleles that are responsible for the phenotypes affecting
mating frequencies. The genetic variance (or variability) of the trait that is associated with the
mating increases with more generations of assortative mating for that trait. In humans, positive
assortative mating occurs for traits like intelligence (IQ score), height, or certain socio-economic
variables. Negative assortative mating occurs mostly in plants.

Glossary and Abbreviations

Allele one of two or more forms that can exist at a locus (variants of a locus).
Average Heterozygosity (or Gene Diversity) the average proportion of heterozygotes in the popu-

lation and the expected proportion of heterozygous loci in a randomly chosen individual.
Bottle-Necking when a population is reduced to a small number, possibly because of disease, and

later becomes the parents of a new large population.
Chi-Square Goodness of Fit Test a statistical test used to test the fit between the observed and

expected numbers in a population; the test statistic has a chi-square distribution.
Degrees of Freedom the number of possible classes of data minus the numbers of parameters

estimated from the data minus 1.

Table 10.4 Frequencies of genotypes AA, Aa and aa after one generation of inbreeding where the reference
population is the preceding generation before inbreeding. The inbreeding coefficient, F and the two different types
of origin, independent and identical by descent, are incorporated in the calculations

Origin

Genotype Independent Identical by descent Original frequencies Frequency change after inbreeding

AA p2(1-F) + pF = p2 + pqF

Aa 2pq(1-F) = 2pq – 2pqF

Aa q2(1-F) + qF = q2 + pqF

(Copies of tables are available in the accompanying CD.)
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Directional Selection favors individuals who are at one extreme of the population, i.e., selection of

either of the extreme individuals.
Disruptive Selection favors individuals at both extremes of the population, which can cause the

population to break into two separate populations.
Effective Population Size, Ne the size of a homogeneous population of breeding individuals, half of

which are male and half are female, that would generate the same rate of allelic fixation as is

observed in the real population of total size N.
Evolution the change of frequencies of alleles in the total gene pool of a given species.
Exact Test a statistical test used when the sample sizes are small or the locus under study is multi-

allelic because it is more powerful than the chi-square goodness of fit test.
Fitness the ability of a gene or locus to be transmitted from one generation to the next; genotypes

with greater fitness produce more offspring than the less fit genotypes.
Founder Effect when a small, underrepresented group forms a new colony.
Gene (or locus) the fundamental physical and functional unit of heredity, which will carry infor-

mation from one generation to the next; generally encodes for some gene product, like an

enzyme or protein. It can have anywhere from two alleles, a bi-allelic locus, to a large number

of alleles, a multi-allelic locus. (Note: gene and locus are used interchangeably).
Genetic Distance the degree of genetic isolation of one subpopulation from another; interpreted as

the time since the subpopulations that are under comparison diverged from their original

ancestral population.
Genetic Drift the change in allele frequency that results from the chance difference in transmission

of alleles between generations.
Genotype made up of two alleles at a particular locus, one from the mother and one from the

father; homogeneous genotype, i.e., both alleles received from the mother and father are the

same allele or heterogeneous genotype, i.e., the alleles received from the mother and the father

are different.
Haplotype the combination of several alleles from multiple loci.
Hardy-Weinberg Equilibrium (HWE) the frequencies of the genotypes in the ‘‘equilibrium’’ popu-

lation are just simple products of the allele frequencies.
Heterozygosity the proportion of heterozygotes or polymorphic loci in a population.
Identical by Descent (IBD) how frequently two offspring share copies of the same parental

(ancestral) allele.
Inbreeding when genetically similar (related) individuals mate more frequently than would be

expected in a randomly mating population.
Linkage Equilibrium (LE) random allelic association between alleles at any loci, i.e., considering

any two loci, the probability of the combination of alleles, one from each locus, is the same if the

loci are in the same individual or in different individuals.
Migration the movement of individuals within and between populations.
Mutation a change in the sequence of the bases in the DNA.
Natural Selection the process by which the environment limits population size.
Non-randomMating (or Assortative Mating) mating does not take place at random with respect to

some traits; for example, mates can choose each other based on such physical and cultural

characteristics as height, ethnicity, age and etc.
Phenotype trait or characteristic of interest.
Polymorphism the existence of two or more alleles with large relative frequencies in a population

(occurrence of no less than 1–2%); limiting frequency is 99%; four ways to determine them

include: Restriction fragment length polymorphisms (RFLPs), ‘‘Minisatellites’’ or Variable

number of tandem repeats (VNTRs), ‘‘Microsatellites’’ or Short tandem repeats (STRs) or and

Single nucleotide polymorphisms (SNPs).
Population Stratification the matings of different subpopulations with different allele frequencies.
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Population Genetics the study of evolutionary genetics at the population level.
Random Mating mating takes place by chance with respect to the locus under consideration; the

chance that an individual mates with another having a specific genotype is equal to the popula-
tion frequency of that genotype.

Recombination Fraction (�) the probability that the gamete transmitted by an individual is a
recombinant, i.e., an individual whose genotype was produced by recombination

Stabilizing Selection removes individuals who deviate too far from the average and maintains an
optimal population, i.e., selection for the average individual.

Wahlund’s Principle a decrease in homozygous individuals in a population, caused by population
subdivision.
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Chapter 11

Statistical Tools for Gene Expression Analysis and Systems

Biology and Related Web Resources

Chiara Romualdi and Gerolamo Lanfranchi

Abstract During the past decade advanced technologies in the field of genomics have revolutio-
nized life sciences and medical research. Large-scale applications of these technologies are making
possible the completion of the sequences of an ever growing number of genomes of a variety of
organisms in animal, plant and prokaryote kingdoms. The next major task to achieve is the
understanding of the function of genes and their interactions.

In this chapter we will briefly introduce the major statistical techniques proposed for gene
expression data analysis and for data integration, and then we will focus on the description of
the most widely used and freely accessible web tools and software dedicated to genomic data
analysis (Systems Biology).

Keywords Boolean Networks � Asterias � Visualization � Data integration

11.1 Introduction

The first step in trying to understand gene function and interaction is the analysis of the transcrip-
tional pattern of genes (transcriptome) in tissues and cells of organisms, in both physiological and
pathological conditions. Novel genomic approaches such as transcriptional profiling by DNA
microarrays, based on oligonucleotide and cDNA microarray platforms, allow the simultaneous
analysis of tens of thousands of transcripts in a single assay. Applications of this technology are
expanding exponentially. An example of the power of this approach is given by the transcriptome
microarray studies of neoplastic diseases in humans that are enabling prognostic classification of
cancer patients, besides standard histopathological criteria [1–2].

The peculiar structure of gene expression data characterized by the large number of features
(statistical variables) and small number of experiments (statistical replicates) combined with the
complex dependence structure among genesmake the analysis of expression data a very challenging
issue. Particularly in human studies, the small number of replicates, for example, due to paucity of
biological samples and ethical restriction, leads to a decrease of statistical power in the analysis of
genomics data.

In the last decade, several statistical techniques have been proposed to tackle the management of
microarray expression data. Furthermore, the availability of public gene expression repositories
has opened up a new realm of challenging possibilities provided by the efficient integration of gene
expression data on the same issues generated by different research groups using, for example,
different microarray platforms or experimental conditions. Data integration is a very useful
approach in order to confirm and strengthen the results of single studies as well as to find or
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complete common cellular pathways that are found altered in specific physiological or pathological
processes under study. Pivotal studies of this type have been performed on cancer [3]. The analysis
of multiple gene expression data-sets concerning a common biological problem, called ‘‘meta-
analysis’’, has shown the capability of retrieving much more relevant information than single
experiment data-sets.

Microarrays are just one out from the variety of ‘‘omics’’ techniques that are supplying high-
throughput, genome-scale data. Other technologies include comparative genomic- hybridization
(CGH), array CGH, chip-based high-throughput genotyping using single nucleotide polymorph-
ism (SNP) markers, chromatin immunoprecipitation on arrays to find transcription factor binding
sites (ChIP-chip), proteomics approaches including two-dimensional gel electrophoresis and mass
spectrometric identification as well as large-scale yeast two-hybrid studies, and metabolomic
profiling of metabolic output using mass spectrometry or nuclear magnetic resonance.

The greatest value of the ‘omics’ data lies in the realization that together they provide us
complementary views of the biological processes we are studying. Consequently, there is a need
of novel techniques and tools to manage these diverse data into a common frame, so that we can
organize and facilitate data interpretation. The integration of different types of genomic data
(e.g., gene sequences, transcriptional levels, functional characteristics, protein interactions) is a
fundamental step in the identification of networks of molecular interaction, which will allow us to
turn genomic research into accurate and robust biological hypotheses. In this context, the Systems
Biology approach is a composed cycle of theory [4]. The cycle begins with proposing a computa-
tional model for specific testable hypotheses about a biological system. The next step consists of
experimental validation by the acquisition of a quantitative description of the biological system is
required to refine the computational model proposed in the first step of the cycle. Since the
objective is a model of interactions in a system, the experimental techniques that most suit Systems
Biology are those that are system-wide and attempt to be as complete as possible. Therefore, high-
throughput techniques applied to transcriptomics, proteomics, and metabolomics are used to
collect quantitative data for the construction and validation of models.

Individual researchers commonly report that searching or interpreting ‘‘omics’’ information is
incredibly time consuming and sometimes discouraging since the data is scattered across the web.
This common feeling is fully justified; as a matter of fact, as of this writing the NAR online
Molecular Biology Database Collection, that contains a very complete survey of databases and
tools dedicated to genomics and molecular biology, brings the total list of resources dedicated to
‘‘omics’’ data to 1078 [5].

The task of data integration and data retrieval across all these databases is not easy and needs
bioinformatics, statistical, mathematical and computer science expertises. Even though several
research groups are currently working on genomic, proteomic and metabolomic standards, diffi-
culties in data retrieval still persist because of several reasons that include but not limited to the
following: (i) lack of standards which effectively encapsulate genomic annotation data as a whole
(annotation is available in various ad hoc texts and binary formats from different data sources);
(ii) lack of a single common identifier for a gene or its RNA or protein products (gene/protein
information cannot be interlinked syntactically); (iii) controlled vocabularies which are infre-
quently used, making impossible the task of semantic integration.

In addition, statistical models proposed for data analysis (normalization, identification of
significant targets, meta-analysis etc.), are constantly updated and improved as described in
bioinformatic papers are rarely provided in a ready-to-use fashion (e.g., software, web tools).
An excellent effort in this direction is the implementation of Bioconductor [6]. It is an open source
and open development software project, based on the programming language R for the analysis
and comprehension of genomic data that should assist biologists and statisticians working in
bioinformatics. Nevertheless, the use of Bioconductor is still difficult for researchers without a
strong statistic and/or mathematical background, but it is sufficiently flexible to be implemented
through a web interface.
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Apart from the availability of programs and/or tools, working with ‘‘omics’’ data enabling data
integration needs considerable computer power, as represented by the use of Web Services [7] of
Systems Biology. Web services allow different applications from different sources to commu-
nicate with each other without time-consuming custom coding. Since all the communication is
based on XML language, Web services are not tied to any specific operating system or pro-
gramming language. For example, under XML, Java can talk with Perl, Windows applications
can talk with UNIX applications, etc. An increasing number of tools and databases for geno-
mics and bioinformatics are available as Web Services. As an example, the Taverna project
discussed in this chapter is an interesting application that makes building and executing work-
flows accessible to bioinformaticians who are not necessarily experts in web services and
programming.

11.2 Statistical Analysis for Gene Expression Data and ‘‘Omics’’ Data Integration

11.2.1 Gene Expression Data Normalization

Although microarray technology has given an enormous scientific potential in the comprehension
of gene regulation processes, many sources of systematic variation can affect the measured gene
expression levels. In this context, performing data normalization before any other statistical
analysis becomes a crucial step in data analysis. The purpose of data normalization is to minimize
the effects of experimental and/or technical variations so that meaningful biological comparisons
can be made and true biological changes can be found within one and among multiple experiments.
Several approaches have been proposed and have been demonstrated to be effective and beneficial
in the reduction of systematic errors.

11.2.1.1 Normalizations for Two-channel Technology

Global normalization is usually directed to balance the different incorporation and signal generation
efficiency of the two fluorescent molecules (commonly the cyanine Cy3 and Cy5) in two-channel
technology. Global intensity normalization relies on the assumption that the quantity of RNA is
the same for both the labelled samples. Furthermore, assuming a symmetrical distribution of over-
and under-expressed genes for thousands of genes in a microarray platform, these changes should
balance out so that the total quantity of RNA hybridizing to the array from each sample is the
same. Consequently, the total integrated intensity for all spots should be the same for both the
fluorescent images of microarrays obtained by the analysis of the two labelling dyes. Under this
assumption, a normalization factor can be calculated and used to re-scale the intensity for each
gene in the microarray.

Yang and colleagues [8] observed that the standard global median normalization can often be
inadequate in cases of spatially- and intensity-dependent dye biases. Under the assumption that a
significant fraction of the probes in the array are expressed at similar levels, they proposed the use
of a non-linear regression technique (the widely used LOWESS, LOcally WEighted Scatterplot
Smoothing) based on robust local regression of the log ratios Cy3/Cy5 on overall spot intensity
Cy3*Cy5 (the lowess smoother for the so called MA-plots, where M is log transformation of Cy3/
Cy5 and A is the log transformation of the squared root of Cy3*Cy5). According to Yang et al. [8],
the MA plot is helpful to underline the possible spot artefacts and intensity dependent patterns in
the data.

New normalization procedures have been proposed especially focussed on the problem of
variance stabilization. In fact, an important characteristic of gene expression data is the depen-
dence between mean and variance, the higher being the variance of the expression measure. A
number of recent papers have addressed the importance of constant variance in the analysis of
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gene-expression microarray data [9–10] proposing new data transformations to stabilize variance
across gene expression. Rocke and Durbin [11] presented three different families of transforma-
tions as alternatives to any other pre-processing technique and especially to log ratios, concluding
through simulated results that the generalized logarithmic transformation (also called glog)
performed significantly better than other types of transformations. The glog transformation is
based on the assumption that the raw gene-expression intensities can be modelled as the sum of
three components: (i) average background noise, (ii) true expression level multiplied by an
exponential error term normally distributed with zero mean and constant variance, and (iii) an
additive error term normally distributed with zero mean and constant variance.

11.2.1.2 Normalizations for Single-channel Technology

One of the first normalization proposed for Affymetrix type of microarray data was the quantile
normalization [12]. The goal of quantile normalization is to give the same empirical distribution of
intensities to each microarray. If two data vectors have the same distribution, a quantile-quantile
plot will be represented by a straight diagonal line, with slope 1 and intercept 0. Thus, if the
quantiles of two data vectors are plotted against each other and each of these points are then
projected onto the 45-degree diagonal line, a transformation will be obtained that gives the same
distribution to both data vectors. Based upon quantiles, other normalization approaches have been
proposed, [13, 14, 15].

The cyclic loess method is a generalization of the global loess method, [8]. When dealing with
single-channel microarray data, there are pairs of arrays that are normalized to each other. The cyclic
loess method normalizes intensities for a set of microarray data by working in a pair-wise manner.
With only twomicroarrays, the algorithm is identical to that inYang et al. (2002) [8].Withmore than
two arrays, only part of the adjustment is made. In this case, the procedure cycles through an all pair-
wise combination of arrays, repeating the entire process until convergence is reached.

Using Scaling/Linear method, which was proposed by Affymetrix Inc., a baseline microarray
(reference array) is chosen and all other microarrays are scaled to have the same mean intensity as
this reference. This is equivalent to selecting a baseline array and then fitting a linear regression
(without intercept term) between each array and the chosen array; the fitted regression line is used
as the normalizing relation. A proposed modification is based on trimmed mean (the exclusion of
the highest and lowest intensities when computing the mean). Affymetrix removes the highest and
lowest 2% of the data.

Some variations of this last normalization approach have been proposed, such as the use of a
non-linear relationship between eachmicroarray and the baseline microarray [16], currently used in
the dChip software developed [17]. Among these, cross-validated splines [16], running median lines
[18] and loess smoothers [12] have also been proposed. Finally the glog transformation proposed by
Rocke andDurbin [11] for the two-channel technology and described in the previous section can be
equally applied to one-channel technology.

11.2.2 Inferential Statistics for the Identification of Differentially Expressed Genes

11.2.2.1 Hypothesis Testing

A common task in analyzing microarray data is the identification of genes that are differentially
expressed across two or more samples obtained under two or more experimental conditions. The
null hypothesis is that the gene is equally expressed in all samples compared. The alternative
hypothesis (generally a two-sided hypothesis) is that the gene is either up or down regulated.
Assuming the independence of genes in the platform, a statistical test is then performed for each
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gene. The typical result of a statistical test is the significance level ( p-value), defined as the measure
of how much evidence we have against the null hypothesis. The lower the p-value, lower is the
probability of error in rejecting the null hypothesis. Problems related to gene expression data can be
summarized in twomain issues: (i) the small sample size (small number of replicates per sample) and
(ii) the large number of statistical tests to be performed (one for each gene). Small sample size leads
to reduced statistical power (defined as the probability of detecting a differentially expressed gene
when it is really differentially expressed) and to a raw variance estimate of gene expression, while
the large number of tests leads to an explosion of false positives (defined as the number of genes
identified as differentially expressed that actually are equally expressed across samples). Recently,
several statistical methods have been proposed to accomplish this goal when there are replicated
samples under each condition.

11.2.2.2 Statistical Tests

A straightforward method is to use the traditional two-sample t-test. There are several versions of the
two-sample test, depending on the dimension of sample size and whether it is reasonable to assume that
gene expression levels have an equal variance under two conditions. Because sample sizes are usually
small and there is evidence to support unequal variances, the right statistical test to be used is the t-test
with two independent small Normal samples with unequal variances. This t-test was proposed by
Welch [19]. Two common problems with this approach are: (i) small sample size for an accurate gene
specific variance estimate, and (ii) the strong parametric assumption of the null distribution of the test
statistics. To handle these potential drawbacks, a number of procedures have been proposed: among
others we mention Cyber-t [20], SAM [21] and Broberg [22]. Most of these methods deal with the
problem of inaccurate variance estimate by inflating the denominator, a procedure that is called
moderation. Bayesian approaches such as the empirical Bayes methods, compensate for the lack of
sufficient replicates by combining information across the microarrays [23]. In addition, most of these
methods use a non-parametric approach trying to estimate the null distribution directly by permuta-
tion. For a complete comparative evaluation of the statistical tests proposed for microarray data see
Pan and Colleagues [24] and the more recent work of Jeffery et al. [25].

11.2.2.3 Multi-comparison Problem

Statistical theory demonstrates that in the case of multi-comparison tests, the whole type I error
(the event of rejection the null hypothesis) grows exponentially with the increasing number of
tests. Several statistical methodologies have been proposed in the last years to overcome this
problem. The most popular and definitely the easiest to apply is the Bonferroni’s correction
that controls the so-called family-wise error rate (FWER), defined as the probability of at least
one false positive in the list of differentially expressed genes (null hypothesis rejection). It is a
conservative method which decreases type I error of each single test by a factor equal to the
number of comparisons. In this way, the whole type I error, even if increasing, will not become
too large. In the case of microarray data, Bonferroni’s correction is certainly too conservative
due to the large amount of statistical tests to be performed. For gene expression data, the
method of Benjamini and Hochberg [26] for the control of False Discovery Rate (FDR), which
is defined as the expected number of false positives among the rejected hypotheses, is a valuable
alternative. FDR or Q-values for each gene has been defined as:

Q ¼ ðp� nÞ=i; (11:1)

where p is the p-value of the gene, n the total number of genes and i is the number of genes at or
better than p.
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11.2.3 Multivariate Analysis Applied to Genomic Data

Differential expression analysis focuses on the identification of de-regulated genes without con-
sidering similarities of expression profiles along the experimental conditions. Identifying patterns
of gene expression and grouping genes into expression classes might provide greater insights into

their biological functions and relevance.
Several classification techniques have been proposed for the analysis of gene expression data,

including hierarchical clustering, principal component analysis (PCA) and self-organizing maps
(SOMs). The first step for any classification algorithm is the choice of amathematical description of
similarity. For a series of measurements several measures of similarity of two genes can be used,
such as the Euclidean distance, angle, or dot products of the two n-dimensional vectors representing
a series of n-expression measurements. Anyway, standard correlation coefficient (i.e., the dot

product of two normalized vectors) is informative on the intuitive biological notion of gene ‘‘co-
expression’’. This statistic, in fact, captures similarity in ‘‘shape’’ without emphasis on the magni-
tude of the measurements.

Clustering methods can be divided into two classes: supervised and unsupervised. In supervised
clustering, observations are classified with respect to known reference class. In unsupervised
clustering, no predefined reference class is used. While the first is usually adopted in predictive
analysis, the second is widely used for descriptive purposes. Unsupervised clustering can be further

divided into hierarchical and non-hierarchical clustering techniques. The classification resulting
from hierarchical clustering has an increasing number of nested classes and the result resembles a
dendrogram similar to those used for phylogenetic classification. Non-hierarchical clustering
techniques, such as k-means clustering, simply separate objects into different clusters, the numbers
of which must be defined a priori, without trying to specify the relationship between the individual
elements. There are various hierarchical clustering algorithms which can be applied to expression

data analysis. These differ in the way by which distances are calculated between the growing
clusters and the remaining members of the data set, including other clusters. The most common
methods of calculating distances are described briefly below:

� Single-linkage clustering. The distance between two clusters, i and j, is calculated as the
minimum distance between a member of cluster i and a member of cluster j. This method
gives more importance to cluster cohesion with respect to cluster isolation, then, it tends to
produce trees with many long, single-addition branches representing clusters that have grown
by accretion.

� Complete-linkage clustering. The distance between two clusters is calculated as the greatest
distance between members of the relevant clusters. This method has the tendency of producing
very compact clusters of elements and clusters are often very similar in size.

� Average-linkage clustering. The most common is the unweighed pair-group method average
(UPGMA). The average distance is calculated from the distances between each point in a cluster
and all other points in other clusters. The two clusters with the lowest average distance are joined
together to form a new cluster.

� Weighted pair-group average. This method is very similar to UPGMA, except that in computa-
tions, the size of the respective clusters (i.e., the number of objects contained) is used as a weight.
This method should be used, instead of UPGMA, when the cluster sizes are suspected to be
greatly uneven.

Another methodology, usually applied to multidimensional data, is the principal component
analysis (PCA). PCA, also called singular value decomposition, is a mathematical technique which
generates new factors (linear combination of the original features) to pull out patterns from data. It
is extremely powerful in reducing the effective dimensionality of gene-expression space without
significant loss of information. PCA belongs to a family of related techniques that includes factor

186 C. Romualdi and G. Lanfranchi



analysis and principal coordinate analysis, providing a ‘‘projection’’ of complex data-sets onto a
reduced, easily visualized space. In most implementations of PCA, it is difficult to define accurately
the precise boundaries of distinct clusters of data or to define genes (or samples) belonging to each
given cluster. However, PCA is a powerful technique for analysis of gene-expression data when
used in combination with other classification techniques, such as k-means clustering or SOMs,
which require the user to specify the number of clusters.

Supervised methods represent a powerful alternative which can be applied if some previous
information is available concerning which genes/experiments are expected to cluster together. In
the last few years several supervised statistical techniques have been proposed for analysis of gene
expression data. They can be divided into parametric supervised techniques (linear and quadratic
discriminant analysis), which assumes a probabilistic distribution on expression data, and non-
parametric techniques (nearest neighbor, neural networks, support vector machine), which do not
need any probabilistic assumptions.

Supervised techniques, also called learning machines, utilize a two step procedure. First, a
training set is used to learn the system (to distinguish between members and non-members of
the class on the basis of expression data). Secondly, a test set is used to predict the unknown
cases according to the result obtained in the previous process. In general, procedures of cross-
validation generate the train and the test sets by randomly dividing the whole gene expression
data into two groups, iteratively. In this way, supervised techniques use biological information
to determine expression features that are characteristic of a group and to assign genes to
selected classes.

11.2.4 Meta-Analysis of Gene Expression Data

Due to the huge accumulation of publicly available microarray data, it is increasingly
important to develop methods to integrate the findings across studies. The combination of
results from different studies should partially solve the problem of sample number (small in
microarray experiments) and thus increase the power to detect differentially expressed genes.
Meta-analysis has been extensively used in medical and public health applications, but only
recently applied to microarray studies. The two primary methods for data integration consist
of: (i) combining gene expression measures across studies, (ii) combining summary measures
of expression, such as p-values. According to the first approach, Wang and colleagues [27]
applied a weighted average procedure combining standardized mean expression differences
across three independent studies. Choi et al. [28] and Stevens and Doerge [29], combined
standardized gene effects into an overall mean effect using statistical modelling accounting
for different sources of variation in microarray studies, including differences between studies.
Hu et al. [30], extended previous techniques by incorporating a study quality index for each
gene into the effect size estimate. Other investigators [31], combined ‘‘raw’’ gene expression
data rather than gene effects, but in this case data must be comparable across studies (e.g.,
same gene expression technique, same experimental protocols).

Due to the difficulty in comparing cross-laboratory and cross-platform expression mea-
sures several microarray meta-analysis methods have combined the summary measures of
expression rather than the expression measures themselves. Rhodes et al. [32], calculated p-
values in individual lung cancer studies and combined the p-values providing an overall
estimate of gene significance, while Romualdi et al. [33], applied p-value combination only
after the construction of a meta-profile, defined as the trimmed median expression profile of
all the features equally annotated. Parmigiani (2004) [34], introduced an integrative correla-
tion approach that identified genes with consistent expression patterns across multiple
platforms.
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Recently, Bayesian meta-analysis models [35] analogous to the classical methods described
above have been introduced. Bayesian approaches have the advantage of being well suited to the
small sample sizes of microarray studies since they borrow information from all genes to estimate
model parameters. They also provide a framework for incorporating information a priori in a
systematic way, and explicitly include model and parameter variability.

11.2.5 Network Analysis

The use of systematic genomic, proteomic and metabolomic technologies to construct models of
complex biological systems and diseases is becoming increasingly common place. These efforts,
known as Systems Biology, establish an approach to interrogate and iteratively refine our knowl-
edge of the cell. Systems Biology integrates knowledge from diverse biological components into
models of the system as a whole. At the end, this knowledge, in terms of similarity measures among
diverse components, can be reported in a graph as edges, possibly weighted, connecting nodes
representing genes with similar characteristics. These technologies typically depend on the knowl-
edge of the complete sequence of the organism’s genome. For instance, DNA microarrays involve
spotting thousands of these gene sequences on a solid substrate to bind and detect the complemen-
tary RNAs. Global changes in RNA expression can be measured with DNA microarrays and
networks can be inferred in terms of gene expression effects (e.g., 36–37). Other technologies give us
insights into molecular interactions to form a large and complex intracellular network yielding
information on how the cell transmits information in response to stimuli and dynamically forms the
molecular machines required for life (e.g., 38–40). These networks are representative of different
functional mechanisms of the cell. Then, the integration with weighted or unweighted procedures
will be challenged in the process of regulatory network inference.

There are a large number of factors that complicate the simple mathematical modelling of gene
networks, and sometimes simplifications have to be made. For example, although stochastic
models show more realistic dynamics [41], models of gene networks are usually deterministic.
The reason for this simplification is the difficulty to infer an underlying network if the expression
patterns are the result of a stochastic process.

Weight matrices are the most established method for reconstruction of gene networks. A weight
matrix consists of n � n weight values, each of which indicates the relation strength between two
genes. In a certain biological system, the n � n weights composing the matrix are unknown
measures at the initial step of the study. The idea is that they can be estimated and approximated
from expression data during the process of network reconstruction. The estimation of the values is
usually done by one of the several classical learningmechanisms, such as neural networks or genetic
algorithms.

A Boolean network consists of n nodes (e.g., genes), which either can be repressed or activated
(the node has state 0 or 1, respectively). The dynamics of the network are determined by a list of n
(Boolean) functions each receiving input from k specified nodes. Every node has its own specific
function, which can determine its next state from the current states of all the input nodes.
Compared to gene networks, Boolean networks are of course a simplification. Gene expression is
not simply regulated in a on or off manner, and it is also unlikely that the number of input nodes of
each gene is specifically bounded by k. Nevertheless, Boolean networks show comparable behavior
to features of biological gene networks including global complex behavior, self-organization,
redundancy [42].

Recently, linear and non-linear differential equations have been used to infer regulatory
networks. These techniques search for parameters that indicate the rates of change of a gene. In
this case a series of assumptions are necessary including discrete time steps for the network’s next
state.
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11.3 Web Resources and Statistical Tools

In the last few years the number of databases, web tools and software for genomic and gene
expression data management have proliferated. Unfortunately, few of them provide constant
maintenance and updating after publication. Open source software is the right strategy for
providing novel tools to the rapidly changing requirements of genomic research. In this section,
we have decided to review the widely used and freely available resources, with particular attention
to those that are not based on specific computer systems (platform independent). Due to the
massive and still increasing amount of publications proposing novel bioinformatic resources, a
selection had to be made, and therefore apologise to the Authors of tools that have been excluded
from this review. Unfortunately, due to the complexity of the analysis required, there are today few
tools that perform meta-analysis across diverse microarray data-sets.

11.3.1 Expression Data Analysis

11.3.1.1 MIDAW

MIDAW is a web interface that integrates a series of statistical algorithms for normalization,
analysis and interpretation of two color microarray data [43], http://midaw.cribi.unipd.it/, Fig.
11.1A). MIDAW takes as input a tab-delimited flat file with experiment values and feature
description. In the normalization phase it is able to normalize several experiments simultaneously
with background correction, global and local mean and variance normalization strategies
(Fig. 11.1B). The data analysis section allows for a graphical display of expression data for
descriptive purposes (expression density estimation, box-plot, distribution of the mean and of the
standard deviation of genes), estimation of missing values (by the k-nearest neighbors technique,
row and column mean, missing data deletion), reduction of data dimension (partial least squares,
principal component analysis), identification of differentially expressed genes (fold change with
variation coefficient control, t-test with permutational approach and SAM test with Benjamini and
Hochberg p-value correction), cluster analysis (hierarchical and non-hierarchical through k-means
algorithm) and identification of marker genes (PAM discriminant analysis [44]) (Fig. 11.1C). The
statistical results are organized in dynamic web pages and tables, where the transcript/gene probes
contained in a specific microarray platform can be linked (according to user) to external databases
(GeneBank, Entrez Gene, UniGene) (Fig. 11.1D). The goal of the Authors was the implementation
of a web interface for some R/Bioconductor packages specifically designed for microarray data.
Normalization and analysis steps can be used in a pipeline or separately according to the user’s
request. MIDAW is based on R/Bioconductor packages and functions, and for each analytical step
the list of R commands and eventually of R error/warnings messages can be browsed. MIDAW is
GPL licensed.

11.3.1.2 GEPAS

This is a comprehensive web tool designed and oriented for the analysis of DNA microarray gene
expression experiments ([45], Fig. 11.2A). GEPAS includes a number of interconnected tools
(from the normalization step to the analysis and the interpretation of the results), implemented
as individual modules (Fig. 11.2A) that can be used either independently or within the pipeline.
GEPAS performs normalization either for two-channel technology, using lowess algorithm (print-
tip and global, Fig. 11.2B), or for Affymetrix data, using quantile, robust quantile, loess and
others. As an input file it requires GPR files for the two-channel technique and CEL files for
Affymetrix experiments. Furthermore, it performs filtering (by inconsistent replicates, number of
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Fig. 11.1 MIDAWweb tool. In the front page (panel A) the user can be directed to the normalization step (panel B) or
directly to the analyses step (panel C). Resulting lists of differentially expressed or of co-regulated genes will be
reported in dynamic web pages linked to the external databases (according to the user choice) (panel D) (Copies of
figures including color copies, where applicable, are available in the accompanying CD)
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missing value, and standard deviation), imputation of missing values (with knn algorithm),
clustering algorithms (SOTA, SOM, hierarchical clustering, Fig. 11.2C and D), identification of
differentially expressed genes (using t-test, empirical Bayes method and SAM), discriminant
analysis (like support vector machine, linear discriminant analysis, knn and PAM). Interestingly,
GEPAS provides a new implementation for visualization and analysis of CGH arrays by
merging DNA copy number and gene expression. GEPAS is freely available at the Centro de
Investigación Prı́ncipe Felipe, CIPF. Connected to the pipeline GEPAS, a useful tool dedi-
cated to gene functional annotation, called BABELOMICS, is provided. BABELOMICS will
be discussed in the section 11.3.2.

Fig. 11.2 GEPAS web tool. The web structure of GEPAS web tool is represented by the Authors as a underground-
network (A). Starting from the normalization steps (B DNAM packages for two-colors technology normalizations),
the user can go through the networks following different strategies; e.g., cluster analysis (B) with k-means algorithm
(C) (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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11.3.1.3 ASTERIAS

This web tool shares a common history with GEPAS and some of the Authors who developed
ASTERIAS have been also involved in GEPAS development ([46], http://asterias.bioinfo.cnio.es/,
Fig. 11.3A). Differently from GEPAS, ASTERIAS perform normalizations only for two-channel
technology (the same package used by GEPAS). Filtering (based on knn, number of missing values,
gene variance estimate, Fig. 11.3B), identification of differentially expressed genes (through t-test and
ANOVAmodels, Fig. 11.3C), discriminant analyses (the same asGEPASwith the addition of random
forest algorithm) are provided as separate tools included in one single pipeline (Fig. 11.3A). ASTER-
IAS does not offer clustering algorithms, but includes an interesting tool, based essentially on survival
models, for gene selection and signature finding in problems where the dependent variable is patient
survival or, more generally, a right-censored variable. Furthermore, ASTERIAS contains the PaLs
tool that filters from a list of gene/clone/protein identifiers, those that meet certain criteria related to
connected references such as scientific papers indexed in PubMed, Gene Ontology terms and KEGG
or Reactome Pathways (Fig. 11.3D). Apparently, ASTERIAS Authors handle most of these applica-
tions parallel computing (via MPI) using a server with 60 CPUs for computation.

11.3.1.4 CARMAweb

This web resource allows the analysis of Affymetrix GeneChip, ABI microarrays and two-colors
microarrays ([47], https://carmaweb.genome.tugraz.at/carma/). It is essentially based on R/Bio-
conductor packages. The analyses available include several normalizations and data pre-proces-
sing techniques (either for Affymetrix and for two-colors technology), detection for differentially
expressed genes (t-test with permutation approach and Benjamini and Hochberg p-value correc-
tion, SAM, empirical Bayes test and the simple fold change), cluster analysis (hierarchical, non-
hierarchical through k-means algorithms, PCA and correspondence analysis) and GO functional
categories enrichment analysis. Input file type is highly flexible in CARMAweb, since Affymetrix
CEL file, tab-delimited and GPR files are allowed. Users are encouraged to create an account
(even a guest account is always usable) and the management guarantees password-protected
access to the user’s data and analysis results. After account creation, a user data directory is
provided were the result files are returned after each analysis allowing a successive reloading as
novel input files for further analysis. The user data directory is secured by the management that
allows only the owner to access the directory. The web application is based on the Java 2
Enterprise Edition (J2EE) including Java Servlets and JSP technology, the Jakarta Struts frame-
work and Enterprise Java Beans (EJB). Rserve package is used as interface between Java and R.

11.3.1.5 RACE

This resource contains a collection of web tools designed for the analysis of DNA microarray data
[48]. RACE performs probe level data pre-processing, quality checks, normalization and visualiza-
tion only for Affymetrix GeneChips. In addition, RACE identifies differentially expressed genes (for
all platforms type, not only for Affymetrix data) through empirical Bayes test (Bioconductor limma
packages) estimating false discovery rates (FDR). A Gene Ontology term analysis assists in the
biological interpretation of gene lists. The user can customize each analysis and upon submission the
analysis is executed in a fully automated way. RACE is lacking any supervised and unsupervised
clustering or dimension reduction algorithms.

11.3.1.6 TM4

TM4 [49] is not a web application but a suite of tools, available at The Institute of Genomic
Research TIGR, consisting of four major applications: Microarray Data Manager (MADAM),
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TIGR_Spotfinder, Microarray Data Analysis System (MIDAS), and Multiexperiment Viewer

(MeV), as well as a Minimal Information About a Microarray Experiment (MIAME)-compliant
MySQL database. All four applications can be used as a pipeline of data analysis even if each single
application can be used independently from the others. Most of the tools are designed for two-
channel technology. Three of the TM4 applications (MADAM, MIDAS, and MeV) were

Fig. 11.3 ASTERIASweb tool. The web structure of ASTERIAS is represented by the Authors as a see star (panel A).
The core of the see star is represented by the starting point of data analysis, that is pre-processing (panel B),
then the user can decide to proceed with different statistical algorithms such as testing (panel C) or pathways
analysis (panel D) (Copies of figures including color copies, where applicable, are available in the accom-
panying CD)
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developed in Java and have been tested on all platforms (Unix, Windows and Machintosh). TIGR
Spotfinder was written in C/C++ and runs only on Windows systems. MADAM facilitates the
entry of data into a relational MIAME compliant database and can be considered as the starting
point of data management. TIGR Spotfinder was designed for the analysis of microarray images
and quantification of gene expression. It reads paired 16-bit TIFF image files generated by most
microarray scanners.MIDAS provides users an interface for normalization and filtering steps. Pre-
processing includes normalization modules (global and lowess normalizations) and filtering (low-
intensity cut-off, intensity-dependent Z-score cut-off, and replicate consistency trimming). Finally,
MeV tool performs several different statistical analysis including hierarchical clustering, k-means
clustering, SOMs, PCA, cluster affinity search, self-organizing trees, template matching, statistical
test (t-tests, SAM), support vector machines, gene shaving, and relevance networks. Interesting
features such as boot-strap and jack-knife resampling techniques that are usually missed by other
are implemented here to generate consensus clusters (a measure of support for each cluster
generated by clustering algorithms). TM4 and in particular MeV are constantly upgraded accord-
ing to new proposed algorithms.

11.3.1.7 Bioconductor

Most of the previous web tools are based on R/Bioconductor packages and therefore, we think that
fewwords should be spent on the Bioconductor project. The Bioconductor project [6] is an initiative
for the collaborative creation of extensible software for computational biology and bioinformatics.
It is primarily based on the R programming language. R is a high-level interpreted language in
which one can easily and quickly prototype new computational methods. The R environment
includes a well-established system for packaging together related software components and doc-
umentation. The packaging system has been adopted by hundreds of developers around the world
and lies at the heart of the Comprehensive RArchive Network, where hundreds of independent and
interoperable packages pertaining to a wide range of statistical analysis and visualization objectives
may be downloaded as open sources. Dynamicity is perhaps themost important characteristic of R;
statistical computing experts and computational biologists are collaborating in the development of
R receiving feedback from molecular biologists and researchers in genomics for problem solving.
Results of the Bioconductor project include an extensive repository of software tools, documenta-
tion, short course materials, and biological annotation data at http://www.bioconductor.org/.

11.3.1.8 Meta-Analysis Tools

The simplest strategy for comparing different gene expression studies involves the comparison of
differentially expressed gene lists among related studies, visualizing overlapping genes through a
Venn diagram. Automated tools that perform this type of approach are L2L [50] and LOLA [51].
This method is quick and smart but is limited by the potentially heterogeneous strategies of analysis
performed by original studies from which the lists are derived.

The very recent web tool EXALT [52] enables comparative analysis of microarrays derived by
different studies (also using different platforms) through a more statistically sound approach,
called ‘‘signature similarity approach’’. It stores thousands of data-sets derived by GEO standar-
dized database (Gene Expression Omnibus at the NCBI) and encodes them in a searchable format.
The statistical approach used by the Authors is similar to that proposed by Rhodes et al. (2005) [3].
EXALT performs statistical tests and then calculates a p-value for each probe, separately for each
study, obtaining a list of statistically de-regulated genes for each dataset. In case a probe has the
same RefSeq ID, EXALT assigns to the gene ID the average p-value of all the probes annotated
with the same ID. Then, a total identity score (TIS) is computed through the matching of the
generated lists.
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11.3.2 Annotation and Functional Class Enrichment

Iterpretation of results derived by statistical analysis of high-throughput genomic data is extremely
intricate. The usual result of a microarray study is a series of lists that contain genes dysregulated in
a particular experimental condition with respect to others. In this context, the researcher should
find a connection among all of these genes trying to identify one or more metabolic pathways or
signalling cascades. This task is extremely challenging and difficult without additional bioinfor-
matic resources aiming at functionally annotating all these features. In the following, we will
illustrate some widely used and freely accessible web tools for functional annotation of genomic
data.

11.3.2.1 DAVID Bioinformatics Resources

The DAVID Database for Annotation, Visualization and Integration Discovery released in
2003 has been recently upgraded and expanded [53]. In the previous version, DAVID simply
provided a typical batch annotation and gene-GO term enrichment analysis, highlighting the
most relevant GO terms associated with a given gene list. In the current version, the
enrichment analysis is extended to over 40 annotation categories, including GO terms,
protein– protein interactions, protein functional domains, disease associations, bio-pathways,
sequence general features, homologies, gene functional summaries, gene tissue expression,
literature. (Fig. 11.4A).

The core of this resource is the DAVID Knowledgebase that consists of a collection of
different and redundant databases that hold the gene’s biological knowledge. DAVID Knowl-
edgebase is built around a method developed to agglomerate gene/protein identifiers from a
variety of public genomic resources, including NCBI, PIR and UniProt, into broader secondary
gene clusters, called the DAVID Gene Concept. The new DAVID integrates more than 20 types
of major gene/protein identifiers and more than 40 well-known functional annotation categories
from dozens of public databases. In particular, it tries to address the redundant relationships
among many genes-to-many terms by developing a set of novel algorithms, such as the DAVID
Gene Functional Classification Tool, the Functional Annotation Clustering Tool, the Linear
Searching Tool, the Fuzzy Gene-Term Heat Map Viewer. These interesting tools provide a novel
way to functionally analyze a large number of genes in a high-throughput fashion by classifying
them into gene groups based on their annotation term co-occurrence (Fig. 11.4B). DAVID
dynamically visualizes genes from a users list within the most relevant KEGG and BioCarta
pathways with the DAVID Pathway Viewer.

Enrichment analysis is based on the EASE score. EASE score is basically a modified one-tail
Fisher exact test. The Fisher exact probability for over-representation is calculated using the
Gaussian hyper-geometric probability distribution that describes sampling without replacement
from a finite population consisting of two types of elements. In the case of microarray data, EASE
defines this population of elements as the set of genes on the microarray, annotated within a given
gene-classification system. For each possible classification, the two types of elements are: genes that
belong to that classification; and genes that do not, (Table 11.1).

Given the number of genes of each type within the finite population, it is possible to calculate
the exact probability of randomly sampling a given number of genes and observing a specific
number that belongs to the classification. The one-tailed Fisher exact probability of over-
representation is calculated by summing this probability with all probabilities for situations in
which there is a greater number of genes within the classification. The EASE score is offered as a
conservative adjustment to the Fisher exact probability that weights significance in favor of
themes supported by more genes. The EASE score is calculated by penalizing (removing) one
gene from the list within a given category and calculating the resulting Fisher exact probability
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Fig. 11.4 Annotation tools. After uploading the user gene list through the dedicated web forms (A left frame for
DAVID tool; C for BABELOMICS tool), dynamic web pages display the proportion of genes belonging to
annotation categories (B for DAVID and D for BABELOMICS) (Copies of figures including color copies, where
applicable, are available in the accompanying CD)
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for that category. Therefore it penalizes the significance of the categories supported by few
genes. Enrichment analysis in DAVID is calculated considering the entire set of genes in the
genome. It should be pointed out, however, that a correct enrichment analysis should be
performed on the entire set of genes represented in the microarray platform used and not in
the genome. The use of with current microarray platforms are able to allocate a high number of
features representative of the entire set of genes present in the most complex genomes, This
calculation can be considered unbiased. In case of specific customized microarrays (such as
tissue-specific array or diagnostic array), the enrichment p-value calculated with DAVID leads
to biased results. Despite this last observation, DAVID remains a highly flexible platform, since
it can accept several types of gene identifiers as input and the dynamic result pages are rapidly
returned.

11.3.2.2 BABELOMICS

The BABELOMICS web tool ([54], Fig. 11.4c) is the extension of the precursor FatiGO tool (Fast
Assignment and Transference of Information using Gene Ontology [55]). FatiGO was developed
to annotate gene lists with GO and KEGG categories or to find significant differences in the
distribution of GO terms between groups of genes. Currently, BABELOMICS is composed of
several modules, and includes biological information for functional annotation coming from
different sources, such as GO, pathways (KEGG and BioCarta), Interpro functional motifs,
tissues and chromosomal locations, miRNAs, transcription factor binding sites. Different from
DAVID, BABELOMICS does not provide an enrichment p-value when a single gene list is
provided; only the percentage of the total number of genes submitted is reported. Enrichment p-
value is calculated when the user selects the comparison between two lists of genes (option not
covered by DAVID). In this case the enrichment significance is based on the Fisher exact test with
the Benjamini and Hochberg [26] correction. BABELOMICS accepts a wide range of gene
accession numbers as input. Output results are stored as dynamic web pages and the result files
can be mailed to the user, downloaded as zip directory with flat files or browsed on the web (Fig.
11.4D). BABELOMICS tools for gene functional annotations can be used in combination with
GEPAS tools [45], to study gene expression using microarrays; in fact all the tools in BABELO-
MICS are connected to the proper tools of GEPAS.

11.3.3 Web Services Platforms: TAVERNA

Integrating tools and databases available on the web frequently involves either parsing web pages
using scripting languages like PERL or a manual copy-and-paste of data between applications.
Each of these methods has its drawbacks. Parsing is a notoriously fragile method, especially in case
of web page changes, while copy-and-paste of data between applications is not feasible in case of
hundreds of operations and it enormously increases the execution time and the probability of
mistakes by the user. Web services technology provides some solutions. Web services have several
advantages: (i) tools and databases do not need to be installed locally on the user machine or the
laboratory server, as they are programmatically accessible over the web, (ii) tools created using

Table 11.1 Elements that belong to each classification

Fisher Exact test 2�2 table generated for
each functional category

User’s genes in the
submitted list

Genes in the whole
genome

# genes belonging to category X n11 n12
# genes not belonging to category X n21 n22

(Copies of tables are available in the accompanying CD.)
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different programming languages (e.g., Python, PERL, Java, etc.) and platforms (e.g., Unix,
Windows, etc.) can be accessed through the same web service interface (avoiding the need for the
user to know about all the different platforms and programming languages underneath), (iii) the
need for file parsing integration scripts is reduced and ‘copy-and-paste’ integration between web
applications is eliminated, (iv) workflows, or pipelines, of web services can be custom-built to
provide high-level descriptions of analyses.

Nevertheless, there are also several limitations of using web services: (i) tool and database
providers should describe their application or database using the standard Web Services
Description Language (WSDL), (ii) services are provided by autonomous third-parties
around the world who frequently have insufficient or non-existent meta-data (invoking
services relies on knowing exactly what data a service takes as input, information which is
not always available), whose consequence is that many services can be difficult to find in a
registry [3], (iii) joining services together into pipelines is frequently problematic, as the
inputs and outputs are not directly compatible, (iv) the web services can be difficult to
debug providing poor documentation by default and cryptic error messages when services
fail, (iv) services accessed over the network can have unpredictable performance and relia-
bility, when individual services fails, for whatever reason, the whole workflow can not be
run.

Working with both these strengths and limitations, Taverna [56], part of themyGrid project [57],
is an application that makes building and executing workflows accessible to bioinformaticians who
are not necessarily experts in web services and programming (Fig. 11.5A). Taverna provides a single
point of access to a range of services with programmatic interfaces, primarily web services. There
are thousands of these publicly available services in molecular biology, provided by a range of third
parties around the world. Currently, building workflows of these services in Taverna allows users to
join these diverse resources relatively quickly. There are several services available in Taverma
provided by INSDC organization (the EMBL-EBI, the NCBI Eutrez programming utilities and
the DNA Databank of Japan DDBJ). Additional tools and databases are provided by the Protein
Databank of Japan (PDBJ), Kyoto Encyclopedia of Genes and Genomes (KEGG), BioMART,
PathPort/ToolBus tools, BioMOBY, BIND, SeqVista and Pfam from the Wellcome Trust Sanger
Institute.

11.3.4 Networks Visualization

Network reconstruction is a pioneering field that makes use of complex mathematical and statis-
tical models. At the moment there are only a few freely available resources dedicated to this
purpose. Here we describe two examples of interesting and well-designed software dedicated only
to network visualizations (not to network construction).

11.3.4.1 Osprey

Osprey is a software platform for visualization and manipulation of complex interaction
networks (58). Osprey represents genes as nodes and interactions as edges between nodes
(Fig. 11.5B and C). Unlike other applications, Osprey is fully customizable and allows the user
to define personal settings for the generation of interaction networks. Any interaction data-set
can be loaded into Osprey using one of several standard file formats, or by uploading from an
underlying interaction database. By default, Osprey uses the General Repository for Interaction
Data-sets as a database (The GRID), from which the user can rapidly build out interaction
networks. User-defined interactions are added or subtracted from mouse-over pop-up windows
that link to the database. Networks can be saved as tab-delimited text files for future

198 C. Romualdi and G. Lanfranchi



Fig. 11.5 Example of TAVERNA work-bench and work-flow (panel A), Osprey and Cytoscape network visualiza-
tions (respectively panels B-C and panels D-E) (Copies of figures including color copies, where applicable, are
available in the accompanying CD)

11 Statistical Tools for Gene Expression Analysis and Systems Biology and Related Web Resources 199



manipulation or exported as JPEG or JPG graphics, portable network graphics (PNG), and
scalable vector graphics (SVG). Osprey simplifies network layouts through user-implemented
node relaxation, which disperses nodes and edges according to a number of layout options.
Osprey also provides several default network layouts, including circular, concentric circles, spoke
and dual ring. For comparison of large-scale datasets, Osprey superimposes two or more net-
works in an additive manner. In conjunction with filter options, this feature allows interactions
specific to any given approach to be identified. Finally, Osprey provides a series of graphical
devices such as user-defined colors to indicate gene function, experimental systems and data
sources. Genes can be colored according to their biological process as defined by standardized
Gene Ontology annotations. Genes that have been assigned to more than one process are
represented as multicolored pie charts.

11.3.4.2 Cytoscape

Shannon and collaborators [59] developed the cytoscape tool as an open source software project for
integrating bio-molecular interaction networks with high-throughput expression data and other
molecular states. Although applicable to any system of molecular components and interactions,
Cytoscape is most powerful when used in conjunction with large databases of protein-protein,
protein-DNA, and genetic interactions that are increasingly available for humans and model
organisms. Cytoscape software core provides basic functionality to layout and query the network,
to visually integrate the network with expression profiles, phenotypes, and other molecular states;
and to link the network to databases of functional annotations (Fig. 11.5D and E). Similar to
Osprey, Cytoscape integrates annotations with other types of network data by transferring the
desired levels of annotation onto node or edge attributes. It is possible to have many levels of
annotation all active and on display at the same time, each as a different attribute on the nodes or
edges of interest. Cytoscape supports a variety of automated network layout algorithms, including
spring-embedded layout, hierarchical layout, and circular layout. To reduce the complexity of a
large molecular interaction network, Cytoscape includes tools for the selection and display of
subsets of nodes and edges. Nodes and edges may be selected according to a wide variety of criteria,
including selection by name, by a list of names, or on the basis of a given attribute. Furthermore,
Cytoscape has a plug-in that is able to merge different networks with the union, intersection and
difference option. The Cytoscape is written in Java and has been released under an LGPL Open
Source license.

Glossary and Abbreviations

LOWESS Locally WE lighted scatterplot smoothing
glog Generalized logarithmic transformation
FWER Family-wise error rate
FDR False Discovery rate
PCA Principle Component Analysis
SOMs Self-organizing maps
UPGMA Unweighed pair-group method average
GEO Gene Expression Omnibus
TIS Total identity score
DAVID Database for Annotation, visualization and Integration Discovery
FatiGO Fast Assignment and Transference of Information using Gene ontology
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Chapter 12

What Goes in is What Comes Out: How to Design

and Implement a Successful Microarray Experiment

Jeffrey A. Loeb and Thomas L. Beaumont

Abstract Microarrays that measure thousands of gene expression changes simultaneously are
powerful tools to pose far-reaching biological questions that could not have been asked previously.
The trick is to understand what goes on inside the ‘black box’ before designing a microarray
experiment. In this way, a high level of confidence will be generated that truly novel and interesting
results are being generated, rather than re-affirmations of previous notions or experimental
artefacts. This requires limiting the experiments to examine only the variables to be tested, design-
ing microarray experiments with sufficient replicates to achieve high statistical power, analyzing
results in an impartial way, and verifying the findings both technically and functionally. If these
principles are addressed, microarray experiments can provide a rich substrate on which many
exciting new discoveries can be realized.

Keywords Microarray � Power � Experimental design � Hybridization � Statistical analysis

12.1 Introduction

In a multicellular organism, what makes each cell type unique is the amount and specific pattern of
genes that are expressed. Gene expression can tell us the difference between a brain cell and kidney
cell, but can also reveal important clues as to what is different when that cell becomes diseased or
transformed into a pathologic form, such as in cancer. It is thus not surprising that efforts to
measure the expression of a large number of genes simultaneously has become a central methodol-
ogy in the post-genomic era. While there are a number of other methods to measure gene expres-
sion, microarrays have taken the lead as a widely available, rapid, relatively inexpensive, and highly
accurate way tomeasure relative gene expression that can lead to important new research directions
(see review articles [1–6]). The central goal of this chapter is to take the reader, step-by-step,
through the experimental design and analysis of a typical microarray experiment in a way that
makes the reader comfortable with each step of the process. A key point is that each experiment
must begin with a focused scientific question and should end with a useful result that answers the
question(s) posed. Because of the perceived high cost and ready availability, many have designed
microarray experiments using a ‘black box’ strategy wherein those designing, performing, and
analyzing the results are not the same individuals asking the question. This leaves those asking
questions often ignoring the many methodological and statistical steps required for accurate and
meaningful results, and those performing and analyzing the experiment lacking an understanding
of the experimental design and interpretation of the results. Unsuccessful microarray results due to
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poor experimental design and interpretation can therefore steer researchers into many wrong
directions. Thus what goes in and what comes out of the ‘box’ should not overshadow what
happens within it.

12.2 Choosing the Optimal Microarray System

Microarrays are nothing more than high density dot blots of specific nucleotide sequences that take
advantage of the fundamental principle that antisense nucleotide sequences will hybridize best to
their exact complementary sequence. This specific affinity thus allows the quantification of many
copies of that complementary sequence that are present in a given sample or ‘target’, based on the
amount that hybridizes to a given spot (or ‘feature’). Most microarrays consist of microscopic
deposits of individual coding gene sequences permanently attached to a surface so that each
spot allows for the measurement of a given gene. In most cases, these surfaces are specially treated
glass slides prepared in such a way to minimize non-specific association of nucleic acids. The
original microarrays started out as true ‘dot blots’ consisting of arrays of genes spotted onto nylon
membranes. Table 12.1 lists some of the more common platform microarray technologies and
summarizes their differences and advantages.

One of themajor differences between different microarrays that can have profound effects on the
experimental results is the selection of which nucleotide or ‘probe’ sequences that are to be
deposited. One of the major distinctions is whether smaller oligonucleotides (25–100 nucleotides)
or longer and sometimes full-length cDNA probes are used. While larger cDNAs offer the
advantage of increased sensitivity, because they cover a larger proportion of the gene, they can
suffer considerably from reduced specificity. For example, since many genes have homologous
regions to other genes, a given labeled target gene will hybridize to any probe gene sequence with
sufficient homology thus giving a large number of false positives that will have to be verified in
subsequent experiments. Using sophisticated algorithms, shorter oligonucleotide sequences within
each gene can be identified with little to no sequence homology to other genes [7]. These can also be
selected for a similar proportion of nucleotides with high affinity binding (often called the GC
content) in order to minimize the biased identification of genes that have the strongest hybridiza-
tion kinetics. Finally, one particular platform that uses multiple 25 nucleotide probes for each gene
(Affymetrix), also includes ‘mismatch’ sequences that are expected to hybridize less efficiently and

Table 12.1 Types of microarrays

Microarray type Probe type Comments

cDNAs on filters Large cDNA inserts –High sensitivity, low specificity

–Can hybridize only one sample at a
time and can strip and reprobe

cDNAs on glass slides Large cDNA inserts –High sensitivity, low specificity

–Can hybridize multiple samples
using fluorescent targets

Large oligonucleotides on
glass slides

Single 60-mer nucleotides (e.g., Agilent) –High sensitivity and specificity

–Can hybridize multiple samples
using fluorescent targets

Large oligonucleotides on
silica beads

50-mer nucleotides (e.g., illumina) –High sensitivity and specificity

–High density, multiple arrays per
slide

Small oligonucleotides on
glass slides

Multiple 25-mer nucleotides for each gene
together with mismatches (e.g., Affymetrix)

–Low sensitivity, high specificity
–Can hybridize only one sample at a
time

(Copies of tables are available in the accompanying CD.)
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aid in identifying the false positives. While there are clear advantages to looking at multiple probes
for a given gene, the use of the mismatch data from this platform has been questioned [8].

12.3 Defining an ‘Answerable’ Question by Minimizing the Variables

Figure 12.1 is a flow chart that shows a step-by-step outline, from start to finish, of a typical
microarray experiment that will be referred to in subsequent sections of this chapter. The first
and most important part of the experiment is defining the question and designing a highly
focused experiment to answer that question, without answering many other unintended ques-
tions, along the way. Given that most microarray systems simultaneously measure thousands
of genes, any unintended variables will produce many additional gene expression changes that
cannot be differentiated from the effect of interest. For example, if one wants to determine the
effect of a drug on a cell line in culture, both the treated and control cultures must be exactly the
same in every way except for the drug treatment. If the cells are from a different passage or are
processed to prepare RNA on a different day, your list of genes at the end of the analysis will
also reflect these differences.

Similarly, when choosing what tissue to assay for gene expression, the simpler andmore consistent
will be better. While a tumor may seem homogeneous, some tumors may have varying degrees of
vascularization (blood vessels) or may have sat at room temperature for different periods of time
before being frozen or prior to RNA preparation. Unless your question is to identify genes in blood
vessels or the effects of letting tumors sit at room temperature, it is crucial tomake an effort in order
to keep every variable, from each sample you compare, as similar as possible. This will limit the
gene expression changes you observe to those associated with the effect of interest and not simply
reflect the technical artefacts.

Fig. 12.1 Flowsheet for the
design and implementation
of a successful microarray
experiment (Copies of
figures including color
copies, where applicable, are
available in the
accompanying CD)
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Keeping track of these seemingly unimportant differences is critical in biomedical applications
where complex tissues are often the starting material for a microarray experiment (such as surgical
or post-mortem specimens). The more complex the tissue and the experimental question, the more
important it is to minimize the variables you can control. The bottom line is that while strictly
controlled samples are always essential for all types of biological experimentation, microarrays are
totally unforgiving because of the large numbers of gene measurements you are making that will
reflect any and all differences between the samples.

12.4 Importance of Replicates

Because of their cost, many investigators have given microarrays a bad name by performing
underpowered experiments with too few replicates. Error in microarray experiments can be
either random (such as a piece of lint covering several spots on a given slide) or systematic.
Systematic errors can be highly reproducible and due to a number of both known and
unknown variables including the specific gene sequence, dye effects, or slide production defects.
One thing to look for in a microarray platform is reproducibility. This includes spot morphol-
ogy, signal intensity, and background from one slide to the next. This will significantly reduce
the random errors. A fundamental approach to reduce both these types of errors is through a
combination of biological and technical replicates that includes ‘dye flipping’ or control-control
hybridizations for microarrays that employ two fluorescent-labeled targets hybridized together on
the same slide [9].

An example of a biological replicate would be to set up 4 plates of cultured cells that are each
treated with the same drug and processed in parallel with 4 untreated plates of cells. The gene
expression ratios between the treated and untreated cells can then be determined for each pair of
cultures, and then the 4 ratios can be compared to one another. Any gene expression changes due to
subtle differences in experimental technique, unique to a given plate of cells, would not be seen after
averaging the results of the other 3 replicates. Without these biological replicates, one cannot
differentiate which gene expression differences are from the treatment and which are due to a
subtle, and often unanticipated, methodological difference.

In addition to biological replicates, equally important are technical replicates. A technical
replicate for the above experiment would be to prepare quadruplicate slides from each pair of
cell cultures (treated vs. untreated). A statistical power analysis can be performed to determine the
number of technical replicates necessary to measure the statistically significant expression changes
based on the variance of the measurement. Power analyses [10] can be used to predict the degree of
statistical confidence for a given microarray platform in a given investigator’s hands by providing a
statistical measure of whether an observed change in gene expression may actually be real. The
example in Fig. 12.2 shows that a 1.5–fold change in expression can bemeasured at 92%power with
quadruplicate measurements.

Ideally, combinations of both biological and technical replicates are needed to minimize errors
and false positives. From the above example, 16 slides would be required to maximize both
biological and technical replicates (4 biological replicates each performed in quadruplicate).
Given the potential cost for this experiment, it is thus not surprising that only a few laboratories
have been rigorous in their experimental design and they will either pool samples together and
perform technical replicates (increasing false positives), or perform only biological replicates (with
no measure of statistical significance for each experiment). There is no simple solution, but it is
important to understand the inherent risks one takes with the experimental design and the
consequences that it will have on the outcome.
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12.5 Designing the Experiment

While there are ways to reduce the number of slides to save money, given the above considera-
tions, it is important to design the experiment to maximize the likelihood of finding ‘true
positives’, through both biological and technical replicates. How the experimental design pro-
vides for these replicates is dependent on the microarray platform chosen. For example if a
membrane filter is chosen, it can be re-used several times. Glass slides with cDNAs and oligonu-
cleotides are generally used only once and then discarded. For these types of microarrays, most
commonly in use today, the first consideration is whether to apply only a single sample or
multiple samples with different fluorescent labels hybridized against one another on the same
array. Choosing a microarray platform that uses a single dye makes both the design and
subsequent analysis simpler, but requires twice the number of slides. While slides with multiple
spots representing small oligonucleotides from different regions of the same gene (e.g., Affyme-
trix) can increase confidence in specificity, they do not truly represent the technical replicates, as
each of the probes is different and cannot be equated. Similarly, they cannot account for the slide-
to-slide variance. The discussion here will be limited to glass oligonucleotide slides with two
different fluorescent targets (samples) applied simultaneously. Because of the two dyes, this
design is more complicated than a single target per slide, but can easily be converted to a single
target per slide design by doubling the number of slides. Two different experimental paradigms
will be described below. The statistical treatment of each if these experimental paradigms will be
discussed in a later section of this chapter.

Fig. 12.2 Power analysis to determine the number of replicates required to detect a 1.5-fold change of gene
expression. This experiment was performed to find out how many replicate arrays are needed to achieve statistical
significance at p-values (alpha) of 0.1, 0.05, and 0.01 based on the variance from the replicate Agilent 60-mer
oligonucleotide microarrays hybridized with fluorescent-labeled targets. In order to reach 92% power at a = 0.05,
quadruplicate arrays are needed (shown at intersection of dashed lines). This type of analysis should be performed for
each new microarray study, as the variance of a given measurement for each combination of platform, tissue and
experimentes can be quite different. Specialized statistical software such as SAS v9, used here, or MATLAB can be
used to perform such analyses (Copies of figures including color copies, where applicable, are available in the
accompanying CD)
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12.5.1 Comparison of two or more samples to each other

If the goal of the experiment is to compare two samples with each other, such as treatment and control,
4 slides can be used with a flip-dye design to generate quadruplicate data points for each sample and
reduce variances due to dye and slide effects. Fig. 12.3A shows a typicalmicroarray experimental design
for this type of comparison. This experiment generates 4 independent measurements of gene expression
for each gene that can be used to compute an average fold-change together with ameasure of statistical
significance for each gene on the array. This is really no different than doing the experiment one gene at
a time using Polymerase Chain Reaction (PCR) or other methods to measure the mRNA levels. The
reason for doing half of the samples with each dye is to compensate for any systematic differences that
are due solely to the differences in dye characteristics. This type of flip-dye design can also be expanded
to a ‘loop’ design as shown for 3 ormore samples in Fig. 12.3A. An advantage of the loop design is that
2 treatment effects can be interrogated without using twice the number of slides.

Fig. 12.3 Designing the experiment. (A)Comparison of two or more samples to each other. Shown here in Kerr-Churchill
notation, is the simplest typeof comparison to generate quadruplicate results for each geneusing two-color, dye-swaparrays.
Note that each arrow labeled (A1, A2...) represents a single microarray. Each target is labeled with each of the two dyes. The
treatment sample (T) is combined with the control sample (C) and hybridized on a single slide. Two arrays use the red (Cy5)
dye for T and green (Cy3) for the C, while the other two arrays ‘flip’ the dye so that T is for green and C is for red. When
comparing 3 ormore samples a ‘loop’ design is used to reduce the total number of slides required.As shownon the right. For
3 samples, quadruplicate measurements can be obtained with only 6 slides. (B)Data series to compare sequential samples.
Here a data series using an individual array for eachmeasurement (e.g., time point or dose) and a common reference, usually
the control or zero point, is used to provide a standardized reference for each point. A control-control hybridization is
included in the series to identify false positives.Replicate arrays canbe used for increased power but are usually not necessary
with this design (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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12.5.2 Data series to compare sequential samples

In addition to replicates, another way to reduce extraneous variables in an experiment is to identify
gene expression changes that are assumed to vary in a specific way over a series of sample points.
For a given treatment effect, this could be a function of time or dosage, as might be measured in a
time-course or dose-response experiment. The hypothesis is that gene expression changes will
increase, decrease, or show a more complex effect (e.g. biphasic) in response to a treatment.
While technical replicates add power to the comparison experiments discussed above, in a data
series experiment, themain power comes from the number of time points or doses that are analyzed.
The closer the data series approximates a theoretical response, such as increasing with time, the

Fig. 12.4 Control-control hybridizations to reduce false positives. (A) Some spotted genes artefactually fluoresce more at one
wavelength than the other. This is shown for the two spots (arrows) that are red both in the treatment/control (T/C) experiment
as well as in the control-control (C/C) experiment using a cDNA array. For the control-control experiment, mixing an equal
amount of red and green should produce all yellow spots when the two images are superimposed. (B)When the mean signal
intensities for each dye are plotted against one another, each data point should fall very near the normal, reflecting only subtle
differences in dye characteristics. Those spots that deviate significantly from this line are false positiveswith a higher intensity of
either the red or green dye. The two clusters of spots near the y-axis are control spots on the Agilent array used for this
experiment (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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more likely the change is true. As such, instead of simple p-values, significance comes from
correlation coefficients to the theoretical response. Figure 12.3B shows an example of such a series
that uses duplicate measurements at each point in the series and a common reference design to
reduce false positives. A flip-dye approach is not needed here as the dye effects will be constant
across both the control and treatment arrays allowing the identification of gene expression changes
as a function of the variable of interest such as time or dose.

This design uses the control as a common reference and also includes a control-control hybridization,
which simplymeans that the same sample is labeled with two different dyes and applied to the same slide.
This type of control is needed if absolute, rather than relative differences in gene expression are required.
As shown inFig. 12.4, a control-control hybridization should produce approximately equal intensities for
both dyes, viewed as all yellow spotswhenusing a green/red color scheme. In fact, whilemost spots on the
microarray will be yellow, there are often many that are aberrantly more red or more green. These are
systematic errors that, for unclear reasons, produce high signals for one dye or the other (for a detailed
analysis of the importance of taking into account these systematic errors [9]). Even if such spurious signals
represent only 1%of the spots on the array, they can lead to hundreds of false positive results, all ofwhich
could be eliminated with an experimental design that includes a control-control hybridization.

12.6 Target Labeling, Hybridization, and Image Analysis

12.6.1 RNA

Once the experimental plan is in place, it is time to get into the laboratory and perform the actual
experiment. To start with, highly purified DNA-free RNA samples from control and treatment
samples are needed. Before proceeding, a critical step involved is showing that each RNA prepara-
tion is clean and not degraded. Enzymes that degrade RNA called RNases are highly stable
proteins that are ubiquitous in the laboratory. Working with RNA requires extreme care in the
techniques and the use of RNase free reagents and buffers. If total RNA is being used, the simplest
way to verify RNA purity and integrity is by analyzing each RNA sample on a gel that resolves the

Fig. 12.5 Measurement of RNA purity. Purified RNA that is not degraded is critical for accurate microarray results. On
the left is a denaturing gel of a preparation of the total RNAmade from human brain.While the sample in the first lane is
intact, the sample to the right is degraded and runs as a smear. On the right a densitometric scan of this same gel shows the
most abundant ribosomal RNA species at 18S and 28S (a measure of their size). For human RNA, the normal 28S/18S
ratio is approximately 2.0. While the intact sample on the left shows this ratio, in the quantitation shown on the right
(dark/solid line), the degraded sample, shows a broad distribution of sizes representing the smear seen on the gel (lighter/
dashed line) (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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relatively abundant ribosomal RNA bands. A quantitative measure of the ratio of 28S/18S (2:1 for
mammalian samples) is a widely usedmethod. Figure 12.5 shows total RNA samples run on a gel and
their quantitation comparing the intact and degraded samples. No matter how valuable the original
sample was, it makes little sense to spend the time and money on degraded RNA samples.

12.6.2 Labeling

The next step is to chose the labeling method to convert the mRNA from each sample into
labeled targets that can bind to the probes on your microarray. Early on, most researchers in
the field used direct labeling methods that generated a 1:1 mRNA:cDNA or cRNA. This
direct labeling method has the advantage of creating a direct copy of the mRNAs present in
the sample without introducing non-linearity that could occur during target amplification.
The major disadvantage of this method is that it requires large amounts of RNA to generate
enough targets, to see a signal on a single slide (up to 40 mg of total RNA). Clearly, with the
need for technical replicates, this is rarely feasible for most experiments particularly in
biomedical applications where tissue is limited. More recently, this problem has been cir-
cumvented by the development of linear amplification methods that can use as little as 25 ng
of the total RNA and still provide an accurate reflection of the amount of each species of
mRNA in the original sample [11]. For most of the commercial microarray platforms, amplifica-
tion methods that use a combination of reverse-transcription and in vitro transcription with RNA
polymerases have been optimized by manufacturers [12,13]. Labeling of the target is achieved by
incorporating labeled nucleotides into the enzymatic reactions. Most use fluorescent dyes, such as
Cy3 and Cy5, when multiple samples are applied to the same slide. The amount of each labeled
target that binds to each spot on the array can then be quantified using a laser scanner to
measure the total amount of mRNA in each sample.

12.6.3 Hybridization

The labeled targets are mixed together in a hybridization solution, applied to a small volume on the
slide, and allowed to hybridize at a specific temperature for 1–2 days. Small volumes are necessary
to maintain the high concentrations of labeled targets required to generate a strong signal. How-
ever, working with small volumes can also result in poor coverage of the hybridization solution on
the slide and hence uneven results. While the traditional method of placing a glass cover slip over
the slide to distribute the hybridization solution evenly often works, it can often produce uneven
hybridization or drying artefacts on the slides, thus leaving a large number of spots unreadable.
One of the advantages of amplifying the target is to produce enough targets so that larger volumes
of hybridization solution can be applied in a larger chamber size that will allow even spreading of
the solution over the slide. The hybridization buffer, temperature, and time are the variables that
can influence both the spot signal and the background signal. For cDNA arrays, the hybridization
kinetics can vary for each gene spotted on the array because of the variability in the affinity of the
target for each probe that depends on the GC content of nucleotides. For most oligonucleotide
arrays that are designed to have similar GC contents for the probes, the conditions have been
worked out by the manufacturers, and they generally perform best using the labeling and hybridi-
zation reagents and instructions provided by the manufacturer. Following hybridization, labeled
nucleotides that are not specifically bound to their complementary sequences are washed away with
increasingly stringent, low-salt buffers. The wash buffer and temperature can greatly influence the
signal-to-noise ratio and thus, requires optimization. Slides must be dried carefully without salt
precipitation and kept free of dust prior to laser scanning.
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12.6.4 Image Analysis

Each spot on the microarray can be viewed as an independent experiment that is performed in
replicate to give information on the expression of a particular gene. As such, each spot needs to be
quantified in a uniform manner. When two or more dyes are used, this has to be performed at each
of the wavelengths that are optimal for the excitation/emission spectra for that dye. Differences in
dyes can lead to systematic errors that have to be taken into account and, to an approximation, can
be reduced by flipping the dyes as discussed in the experimental design section. Most investigators
use high-resolution laser scanners that are required to resolve large numbers of small spots, up to
200,000 per glass slide. Scanners need to be set in such a way as to obtain the strongest signal
possible to detect the weakest spots, but not too strong a signal that will lead to saturation of higher
intensity spots. If a spot is saturated it cannot be measured. Some investigators will scan a slide
twice, once at low gain and once at high gain to increase the dynamic range of the scan.

Once the slide is scanned at the optimal settings, the data is saved as an image file such as a
Tagged Image File Format (TIFF) for each channel as shown in Fig. 12.6. This image is then
pseudo-colored so that one dye color is shown as red and the other green. Most investigators using

Fig. 12.6 Microarray image analysis. For each spot on the microarray that has been hybridized with two differently
colored (wavelength) targets, the total intensity from each color needs to bemeasured. The top panel shows a low-power
magnification of the red and green channels separately and then combined and shows a box around a single spot that,
when combined, shows a higher intensity in the red channel (see CD for color figure). The middle panels shows a higher
magnification of this spot that is used for quantitation. The exact same region of interest (ROI) is drawn around the spot
for each channel individually (fine dashed line) and the total number of pixels (area) as well as the average intensity per
pixel and total intensity for each channel is calculated in the bottom panel. Without background correction, the ratio of
the red to the green signal is 0.77 or –1.30 fold. Since the background signal can significantly contribute to this total signal,
a second ROI outside the first circle (dashed line) is used to calculate the average background intensity between the two
ROIs. This can then be multiplied by 200 pixels to give the total background signal contributing to the smaller ROI
around the spot. When this background is subtracted from the total intensity, the ratio of red/green signal is reduced to
0.70 or –1.43 fold (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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the combination of Cy5 and Cy3 dyes, pseudo-color them red and green, respectively, even though
Cy3 is in fact a lot closer to red and Cy5 is infrared and hence not visible. When combined into an
Red Green Blue (RGB) image, spots where gene expression is unchanged and hence have an equal
amount of red and green, appear yellow. Spots appear more red due to a higher level of gene
expression in the Cy5 labeled targets and more green when the Cy3 targets are more abundant.

The next step is to quantify the intensity of each spot at each wavelength. This is achieved by a
number of commercially available software programs, some of which are provided with scanners.
Others that offer more flexibility can be purchased separately and used for analyzing any micro-
array image. How this quantitation is performed can make an enormous difference in the final
results and hence is worth going through in detail. Figure 12.6 shows a step-by-step approach that
illustrates this point. The first step is to define a region of interest (ROI) that is generally a circle that
surrounds a circular spot. While the size of the circle can make a difference, most importantly,
whatever size that is used must be the same ROI for each wavelength of the two images being
compared. Within this ROI, the software can then determine the area of the spot, or total number
of pixels, and the intensity of each pixel within that area. The sum of the intensity measurements
represent the total intensity of the ROI. After performing these calculations at each wavelength, a
ratio of the intensity of the red and green channels provides a measurement of the fold-change in
gene expression.

In a perfect world, one could stop here and do this analysis for the entire slide to obtain results.
However, most slides have an appreciable background signal that can be due to auto-fluorescence
of the glass slide. This background signal varies for each dye/wavelength and can also vary
significantly in different regions of the slide, making it often necessary to account for the local
background signal near each spot. In fact, for spots of low intensity, the background signal can
represent a significant proportion of the total signal intensity. It is therefore not surprising that a
number of sophisticated image analysis methods have been developed to take into account the local
effects of the background. Figure 12.6 gives a simple example of how the background is measured in
a region outside the ROI, but within a larger concentric circle around the same spot. As shown in
this example, the average background intensity within this local area times the total number of
pixels in the ROI is then subtracted from the total intensity of the ROI. This gives a more accurate
measure of the total intensity of each spot at each wavelength. This example also shows a significant
difference in the ratios of gene expression calculated with and without background subtraction that
will be of greatest significance for spots of low intensity.

12.7 Statistical Analysis

Once an accurate measure of the intensity of all the spots on the arrays is obtained for each dye, a
detailed statistical analysis is required to determine the significance for each gene expression
change. Performing a statistical analysis in a microarray experiment in which tens of thousands
of measurements are made simultaneously is an ongoing challenge that has led to the development
of a whole new area of statistical research. An important principle to keep in mind throughout this
section is that statistics only provides a probability measurement that something, in this case gene
expression, might be changed based on the magnitude of the change relative to the variance of the
measurement. Having sufficient statistical grounds to reject the null hypothesis (‘gene x is
unchanged’) does not however prove that the gene is in fact changed.

While there are a number of other chapters in this text on the statistical approaches to micro-
array data-sets, here we will concentrate on the initial analysis of gene expression changes based on
the two types of experimental designs discussed earlier. Reducing the number of false positives and
false negatives at this stage is critical for subsequent bioinformatic analyses and biological con-
firmation of gene expression data-sets.
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12.7.1 Comparison of two or more samples to each other

Fig. 12.3A shows the simplest experimental design that uses 2 samples, each labeled with a different
dye and hybridized against one another on the same slide. A total of 4 slides are used that results in
quadruplicate measures for each gene. By labeling each sample with each dye and then ‘flipping’ the
dyes, systematic errors due to dye effects should be taken into account. In order to determine the
difference in signal intensity between the 2 samples that is not due to differences from the array,
gene, and dye variations, statisticians commonly use an ANalysis Of VAriance (ANOVA) to
identify and remove these systematic and random variances. The end result attempts to determine
the true differences due to differential gene expression. A sample approach used bymany in the field
uses a two-interconnect ANOVA model referred to as Mixed Model Analysis of Microarray Data
(MANMADA) (to identify differentially expressed genes). The first step employs a normalization
model for log2-transformed intensity measurements:

yijk ¼ �þ Ai þDj þ ðADÞij þ rijkg (12:1)

where � is the sample mean, Ai is the effect of ith array, Dj is the effect of the jth dye (cy3 or cy5),
(AD)ij is array-dye interaction and rijkg is the residual co-variance. This residual co-variance can be
taken as a ‘‘normalized’’ expression level and used in following gene model to obtain the treatment
effect on each gene:

rijkg ¼ Aig þDjg þ Tkg þ "ijkg (12:2)

where rijkg is the residual of each gene from the normalization model, Aig andDjg are the array and
dye effects, respectively,Tkg is the treatment effect (control or treated) and eijkg is random error. It is
important to note that if the model performed optimally, eijkg will contain only random errors and
thus, be a normal distribution of values centered on 0with a standard deviation of 1. The expression
change for each gene is thus:

log 2ðfoldÞ ¼ Ttreated � Tcontrol (12:3)

The same model could be applied to the loop design on the right side of Fig. 12.3A. The main
difference would be an additional fold-change and significance values for each treatment effect
(T1, T2,...Tn) assessed. One of the main advantages of using ANOVA models is their scalability.
Potential co-variance can be added and removed based on the extent to which they are found to
contribute to the overall variance of the measurement.

12.7.2 The Multiple Comparison Problems

At this point, we have a fold-change and statistical significance value for each gene on the
microarray. Because we are performing tens of thousands of pair-wise comparisons simulta-
neously, it is important to adjust the significance values for multiple tests or ‘comparisons.’ For
example, consider a microarray with 100 genes. If a statistical significance is set at 95% (a= 0.05),
we expect 5 genes to be significant by chance alone (false positives). If we expand this to a high-
density microarray with 20,000 genes, we could anticipate 1000 false positives. Thus, a list of
300 gene expression changes obtained without adjustment for multiple comparisons could be
entirely due to false positives. To address this problem of multiple comparisons, a number of
statistical methods are used to control this family-wise error rate. The method of Bonferroni is the
simplest approach, which multiplies the uncorrected p-value by the number of simultaneous tests
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performed. However, it is excessively restrictive for very large datasets and will likely result in very
few significant gene expression changes. An alternative approach that is of much use is the False
Discovery Rate (FDR)method of Benjamini, which controls for false positives with a sophisticated
algorithm that adapts to the simulated proportion of true null hypotheses in the data-set [14]. As the
number of genes in a microarray data-set increases, the proportion of truly unchanged genes
increases and the adaptive algorithm scales down the significance adjustments to the smaller
proportion of genes that are indeed changed.

12.7.3 Data series to compare sequential samples

While a series measurement may not have as many replicates per point, it maintains its statistical
power with the assumption that gene expression increases, decreases, or changes as a non-linear or
bi-phasic function of the variable being tested. As discussed in Fig. 12.3B, two of the most simple
examples would be a time course, where RNA is extracted from the same tissue or cells at increasing
time intervals after a treatment; or a dose response, where increasing amounts of a substance is
added to the tissue and RNA is prepared at the same time point. Often with this type of experi-
mental design, two dyes/targets per slide are not needed, but can be used if the same ‘control’
sample is used as a reference for each time or dose. The advantage of using a reference sample, as
similar as possible to the treatment samples, is to identify false positives more readily by having
different dyes, that are similar in intensity, on all the spots except those that are changed. The first
group of slides with this design would then be a control-control hybridization where any calculated
changes in gene expression are, by definition, artefacts and can form a baseline measurement for
any real changes observed (See [9] for details of this control correction method).

For slides in a data series, the first step is to use the ANOVA to normalize the data for each slide,
for array and dye effects. This will give an absolute normalized intensity for each of the genes that
will then be averaged for each point in the series. The second step is to identify genes whose
expression correlates in a statistically significant way with the variable beingmeasured, such as time
or dose. A simplistic approach is to assume a linear increase (or decrease) in gene expression and
calculate a statistical correlation coefficient for each gene. This can be done with a measure of
correlation distance such as the Pearson metric linear regression model. Genes can then be ranked
in order of their statistical significance to the variable being changed in the series. Using this
scheme, it is desirable first to use an arbitrary fold-change, minimum between the first and last
points in the series. A more complicated way that does not have to assume a linear relationship
between gene expression and the variable measured is to perform a cluster analysis to identify
groups of genes with similar patterns of expression across the variable.

The end result from either of the two experimental designs and statistical analysis methods is to
create lists of genes that change as a function of the variable of interest. These can then be ranked
from greatest to least significant and studied further individually or group wise, based on known
information about their functions and sequences. Either of these approaches can lead to exciting
new research directions that would not necessarily have been predicted.

12.8 Using Bioinformatics to Simplify Results and Generate New Research

Directions

While the goal of a sound microarray experimental design is to minimize the variables, so that only
genes are changed due to the variable of interest, in many experiments the list of significant gene
expression differences can be quite extensive. Often the central goal is to generate new testable
hypotheses and research directions. One of the major pitfalls by investigators confronted with long
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lists of genes, is to simply ‘pick’ one’s favorite genes for further studies. The experiment then
becomes a self-fulfilling prophecy based on pre-existing biases of the investigator that will not lead
to new research directions. If this is the case, there is really no point in doing the microarray
experiment in the first place. A simple set of PCR reactions would have sufficed.

How do we allow the data-set to tell us what are the most important differences in gene
expression from a large set of expression changes in an impartial way? The basic principle is to
use bioinformatic algorithms on the genes, shown to be significantly changed, and then to divide
them into smaller subgroups based on known gene functions or structural classifications. For a
majority of genes in the human genome there is some knowledge of function from the scientific
literature and even more information about gene structure through large-scale sequencing studies.
Thus for each gene, the investigator can develop a suggestion of function that can be combined with
the level of statistical significance to create a transcriptional ‘fingerprint’. Browsing through the rest
of this book, it should be clear to the reader that using bioinformatics to select genes and pathways
for further studies can be done in many ways with many custom or commercial software programs.
These include promoter analysis, ontological (functional) analysis, cluster analyses, and key word
interaction maps. No matter how good one’s bioinformatic algorithm is, to ascribe functions, it is
hard to beat a careful literature analysis of groups of changed genes within the same biological
context as the experimental system or tissue being studied.

Ultimately, the goal of any bioinformatic analysis should be to simplify groups of genes into
major biological pathways or transcriptional control mechanisms. Once a pathway or transcrip-
tional control mechanism is clearly suggested, it is still not proven until both the expression changes
and biological pathways are verified. The bottom line is that microarray experiments can help form
new hypotheses, each with a statistical likelihood, but other methods are required to validate those
predictions. A microarray experiment without validation, while sometimes may be tantalizing, can
lead to frustration and a lot of wasted time and resources.

12.9 Verification and Significance of Results

12.9.1 Other means of measuring relative mRNA levels

The best way to assess the accuracy of a given microarray platform is to show the same gene
expression change using a different method. While this cannot realistically be done for all of the
genes on a microarray, it should be done on a proportion of the genes that are chosen to be studied
further to rule out that the change is a false positive. False negatives, or genes that have been shown
to change by another method, but do not change on the microarray, can also be discovered in a
similar manner. Quantitative measurements of mRNA levels for a specific gene can be achieved in a
number of ways including quantitative real-time RT-PCR (qPCR), Northern blotting, and nucle-
ase protection.

Because of its ease of use and consistency, most microarray researchers use qPCR. This form of
PCR has the key advantage of being able to verify a large number of samples quickly and
inexpensively using a method that is very different from the microarray method. While it is beyond
the scope of this chapter, the reader is referred to a recent review of qPCR [15]. The ‘q’ of qPCR is
extremely important, as other non-quantitative and ‘semi-quantitative’ forms of PCR are generally
unreliable. It is also important that, when choosing which genes to verify, genes are chosen across a
wide range of intensity levels and fold changes. This provides an index of reliability across the
dynamic range of the microarray platform for each experimental condition. It is not surprising that
genes with low-signal intensities, relative to the background, and genes with lower fold changes are
less likely to be verified. Although there are no absolute rules, the number of genes chosen to be
verified should be determined based on these same parameters.
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12.9.2 Localization of genes in complex tissues (in situ hybridization)

While in some experiments, it is possible to collect RNA from cultures of a single cell type or from
specific cells within a complex tissue, such as by laser capture microdissection, in many cases this is
not possible. Complex tissues containing multiple cell types are often the starting material used to
generate RNA samples for microarray studies. A gene expression change seen from such a complex
tissue, therefore, cannot be attributed to one or more cell types within that tissue without verifica-
tion. In situ hybridization is a method that uses complementary hybridization of nucleotide

Fig 12.7 Localization of
genes expressed in complex
tissues by in situ
hybridization. Once a gene is
found to be increased or
decreased, it is important to
show exactly in which cells
this occurs, particularly in
the case of complex tissues
with multiple cell types.
Shown here is an in situ
hybridization of the human
brain probed for a gene that
is induced at sites where
epileptic seizures are
generated and it shows
selective labeling of the
neurons, mostly in the
superficial cortical layers
(layers I–IV) (Copies of
figures including color
copies, where applicable, are
available in the
accompanying CD)
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sequences to identify which cells in a complex tissue express a given gene of interest. Ideally, a
histological section of the same tissue that was used to prepare RNA for the microarray analysis
can reveal exactly which cells express a given gene is observed to be differentially expressed. An
example of an in situ hybridization that uses a radioactively labeled probe on human brain sections
is shown in Fig. 12.7 (see [16] for an example of how in situ hybridization can localize differentially
expressed genes in human epileptic brain tissue). This image shows that only a small proportion of
cells express the gene of interest in specific neurons within the brain. This result also emphasizes the
importance of having amicroarray system that is as sensitive as possible. If only a small proportion of
cells change their expression of a given gene, the effect could be diluted out by all of the other cells in
which gene expression does not change.

12.9.3 Functional verification

Ultimately, the goal of the microarray experiment is to answer an important biological question.
While confirming that a given gene expression change is in fact real by qPCR and localizing that
change to specific cells using in situ hybridization are essential steps, they cannot prove that a
predicted pathway is indeed activated or inhibited. To do this one will require a biological knowl-
edge of the pathway and further experiments with the same tissue. An example of this could be that
a significant group of activated genes are known to be transcriptionally regulated by a specific
transcription factor and that this transcription factor is phosphorylated when activated. Chromatin
Immunoprecipitation (ChIP) for the activated transcription factor could be used to demonstrate
that it is indeed bound to the proximal promoters of a group of target genes observed to be
differentially expressed on the microarray. A Western blot showing this transcription factor is
indeed turned on by covalent phosphorylation would further demonstrate pathway activation in an
entirely independent manner from the microarray experiment.
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Chapter 13

Tools and Approaches for an End-to-End Expression

Array Analysis

Adrian E. Platts and Stephen A. Krawetz

Abstract Microarray experiments can appear daunting because the considerations called for in
their analysis cover several fields of research. To understand the data microarrays generate some
knowledge of classical statistics and recent complexity theory are useful while emerging computa-
tional techniques such as XML directed workflows could aid in managing the data. These con-
siderations are called for because as experimental tools, microarrays (arrays) exemplify the recent
trend in biological research towards high dimensionality datasets. Until recently observations were
made on only a few variables at a time and these were used to support or refute hypotheses, but high
dimensionality datasets are generated by observing a very large number of variables (e.g. gene
expression measurements) at the same time. The number of expression measurements made on
arrays is not only high, but notably high when compared to the size of a typical sample population.
This combination of high dimensionality and asymmetry leads to large datasets and fundamental
problems when using standard approaches to interpret the data. An end-to-end approach is a
general framework in which to place some useful considerations when planning an analysis. The
framework described here explores the origins of signal and several sources of variance, approaches
to representing high-throughput data, the statistical considerations when modeling array data and
the software tools that can aid in carrying out the analysis.

Keywords Microarray � Statistical analysis � Data repository � False discovery rate � Promoter
analysis

13.1 Introduction

Many reviews have presented the individual elements that separately contribute to the interpreta-
tion of array data. These include valuable treatments on quality control [1], variance [2], experi-
mental power [3] and error rates [4]. The framework presented here is an overview and pointers into
this wider literature are suggested. The approaches described are based on RNA expression arrays
with a limited overview of DNA arrays. Non-nucleic acid platforms such as protein arrays, lab-on-
a-chip micro-fluidics and indirect assays such as ChIP-chip fall beyond the scope of this discussion.

Expression arrays provide an alternative to established RNA sequencing techniques such as
EST, 3’/5’ SAGE, CAGE and the more recent pico-liter sequencing approaches [5]. Both sequen-
cing and array approaches aim to take similar snapshots of whole-genome transcription by making
large numbers of measurements on a sample. Despite the extent of this measurement, what is being
quantified may vary in significance. In heterogeneous biological systems, the extent to which
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measurements include different cell-types or cells that are in different states is rarely negligible.
Arrays nonetheless measure the total contribution of expression from all the elements that are
included in the system. If only ten percent of the cells in a system express a gene at a high level, this
condition would be difficult to differentiate from the state where all the cells express the gene at a
much lower level. Measured systems may vary from being in synchronous to relatively incoherent
states. The latter might be encountered when assessing unstable systems such as proliferating
tumors. As Heng et al. have recently observed, averaging disparate states to generate tissue-level
statistics may tell us little about the progression trajectories being followed at the individual cell
level [6]. rtPCR has been demonstrated to be sensitive to elements in the single cell, and clinical tests
usually measure parameters of the person in their environmental context. Arrays sit between,
averaging the properties of cell groups or tissue systems. Before introducing an analysis framework,
it is useful to connect the parameters that are measured by the array technologies.

The loss or gain of chromosomal DNA is readily visualized, but the exact property of the cell
that is measured by an expression array requires more exploration. Expression studies sometimes
quantify non-coding RNA species that are functional within the nucleus but are more generally
designed to quantify the abundance of mRNA transcripts, and from this to infer levels of protein
translation.

mRNA is most of all a highly specific intracellular messenger that is actively transported from
its site of nuclear transcription to the cytoplasmic sites of protein synthesis. In the nucleus,
mRNA is transcribed from potentiated genic domains [7] by RNA polymerase II. This takes
place predominantly within specific regions termed transcription factories identified between the
coherent spatial domains occupied by individual chromosomes [8]. Transcription factories are
spatially constrained regions found to be rich in the proteins that functionally bind to gene
promoter domains and that determine the rates of transcription. Within these factories, DNA
that has been potentiated by decondensation [9] is bound by accessory transcription proteins and
polymerase II to initiate transcription. Multiple polymerase complexes then iterate along the
DNA sequence, each one assembling a complementary strand of mRNA from ambient nucleo-
tide precursors. The origins of most mRNA lies in the nucleus, a smaller population of mtRNAs
encoded by the mitochondrial DNA are transcribed in the mitochondria. Following transcrip-
tion, mRNAs in the nucleus are immediately bound by splicing, capping and quality control
proteins many of which remain with the transcript to form the messenger ribonuclear particles
(mRNPs). In these complexes, introns are removed from the sequence and a 5’ cap sequence and
in most cases a 3’ poly(A) sequence are added (capping and polyadenylation). The cap and
poly(A) tail sequences stabilize the product allowing the mRNPs to be transported to the
peripheral nuclear lamina just internal of the nuclear membrane. Here the nuclear pore com-
plexes interact with mRNPs, in a further quality control step, that identifies poorly transcribed
RNA prior to nuclear export. Exosomal complexes rapidly remove any mis-transcribed or mis-
spliced RNA through nonsense mediated decay and nonstop initiated decay. Following export to
the cytoplasm for translation, ribosomal complexes associate in large numbers with the indivi-
dual transcripts potentially transcribing hundreds of identical proteins from each sequence in a
process that gradually reduces the length of the poly(A) tail.

Injecting a pure polyadenylated mRNA into a cell’s cytoplasm generates both rapid protein
translation in conjunction with rapid degradation through the activity of decay bodies and
ribonucleases [10]. If the cells contained only this unbound RNA, then expression array measure-
ments would generally reflect immediate levels of protein generation. In reality, both processes of
translation and degradation are moderated by the functional proteins that bind mRNA [11]. These
proteins, predominantly 3’ and 5’ UTR binding proteins, recognize both the structures and
sequences and hence vary in their transcript specificity. The availability of these stabilizing proteins
is also influenced by a range of environmental conditions such as acidity, temperature and ATP
availability. Since these proteins adjust transcript stability, the lifespan of the different transcripts
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ranges considerably, from only a few minutes for highly regulated transcripts, such as c-myc and
c-fos, to several tens of hours for stable species, e.g., cytochrome P450c [12]. During this lifespan,
most mRNAs are actively translated into functional proteins, but examples can be found where
transcripts are differentially stabilized by RNA binding proteins and maintained in a non-translat-
ing state. Both neurons and germ cells generate translin and translin-like proteins. These assist in
the protracted storage of specific transcripts for transport to distant synapses (neurons) or for
translation at a later time after transcription is shutdown (spermatids/oocytes) [13].

All of this has consequences for the expression arraymeasurementmuch of which was quantified
by Hargrove and Schmidt [14]. Their model of RNA stability and its effect on gene expression
measurements and total protein turnover introduces non-transcriptional effects. The pool of
cellular RNA detected by an array has a transcriptional feed and several possible drains, formed
by the different RNA degradation pathways. Stabilizing RNA can increase its concentration in a
cell even where the rates of transcription remain unchanged. Since the stabilizing proteins bound to
the RNA are sensitive to the structure of both 3’ and 5’ UTRs, slightly different 3’ and 5’ terminus
iso-forms of a gene can have quite different capping complex affinities and hence be both differ-
entially transcribed, and differentially stabilized. Microarrays generate snapshots of the popula-
tions of these transcript pools that are constantly re-populated by the processes of mRNA creation,
and depleted by the complex and environmentally sensitive processes of RNA removal. Conse-
quently, arrays measure the average properties of groups of cells that cannot be easily disaggre-
gated from the wider systems in which they are located.

Virtually all expression arrays share common design and sample processing elements. Total RNA
is first extracted from its cellular environment and purified. mRNA is then amplified by being first
reverse transcribed into a cDNA before being converted back into an amplified and labeled single-
stranded complementary cRNA. Thousands of somatic cells, each containing around 30 pg of RNA
of which �0.7 pg would be poly(A) mRNA, are typically sufficient as a starting template. The
amplification process can take nanogram levels of RNA to producemicrogram levels of the amplified
product. Single- stranded oligonucleotides (short base sequences) that can bind the cRNA extracted
from the sample are positioned as a series of micron sized probes on an array slide. These probes can
either be printed as millions of identical oligonucleotide spots on a slide or generated in-situ on a gene
chip through photolithography. In both cases, a precise map of where each sequence is positioned on
the chip is generated. The labeled cRNA is mixed with a buffer solution and placed onto the
microarray slide. Watson-Crick bonding between perfectly complementary sequences on the chip
and in the labeled cRNA sample takes place in a thermally controlled environment that ensures non-
specific binding is prevented by thermal disruption. The reaction takes place in a carefully controlled
environment. Agitation is generally used to ensure an even hybridization. Fluorescent tags such as
green Indocarbocyanine 3 (cy3, excitation � � 550 nm) or red Indocarbocyanine 5 (cy5, excitation �
� 650 nm) are directly incorporated into the cRNA or complexed with the cRNA that will allow the
RNA to be detected. All arrays gain their extreme sensitivity from the capacity to image at high
resolution the binding of the fluorescently bound sequences tomicron-sized features on an array thus
making them sensitive to microgram levels of RNA.

While early arrays were frequently printed with lengthy cDNA sequences, the accuracy of this
approach was impacted by the potential for cross-hybridization between sub-sequences and by
the relatively uncontrolled thermal binding profile of the comparatively long sequence. Conse-
quently, the trend has been to move towards shorter (oligo) reporter sequences that can be
controlled for homogeneous isothermal binding, the absence of stable secondary structure and
that are unique in sequence. However design trade-off exists. Shorter sequences contain less
information and are more difficult to generate as uniquely specific elements. Once the length of an
oligonucleotide is below �25 bp, unique sequences proximate to the 3’ end of genes are rare [15].
Hence oligonucleotides used in current arrays vary in length between platforms designed by
different companies, but generally fall between 25 nucleotides on the shorter oligonucleotide
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platforms through around 40 bp on medium length platforms and up to 60 bp for the longer
oligonucleotide platforms. Since the amplification step generally uses a poly-dT sequence that
will bind the mRNAs poly(A) tail as one primer, probes tend to be located within a few hundred
bases of the 3’ end of a transcript. The location varies by platform, and in the case of Affymetrix a
series of 25 bp probes termed probe-sets are designed that cover one or more 3’ exons transcribed
from the gene. The placement and design of the probes is noteworthy for the investigator and will
be investigated further in the next section.

13.2 A Framework of Considerations

13.2.1 Constructing a Hypothesis and Design

The fluorescent signal detected on an array must be interpreted with some care. In discussing what
arrays measure, it was suggested that arrays could quantify elements within the transcript pool.
However, arrays vary in quality as tools for the absolute quantification of transcript levels. Both the
amplification stages of preparation, residual secondary structure in the hybridized sequence and
the intrinsic performance metrics of the different probe sequences may impact absolute signal
measurements [16]. This creates different signal levels where the same amount of RNA is hybridized
to the different probe sequences. Consequently, arrays are generally used to determine differential
transcript abundance betweenmeasurement and control conditions. This relies on linear sensitivity
differences between the probes being cancelled in a differential analysis. An experimental approach
will therefore generally use exploratory or prior evidence to develop a series of tests where the role
of the arrays will be to assess differential expression.

A concise list of the question(s) being addressed with the arrays during a study design is a useful
starting point. For each question, the outcome that would comprise a positive and a negative outcome
are essential. These questions can then be restated as a set of testable hypotheses with respect to the
conditions to be tested. Early array work was often fully data driven, but poor power considerations
and the lack of a falsifiable null hypothesis led to some unreliable conclusions. Without a null
hypothesis and the power to validate both this negative outcome and the alternate positive hypothesis,
any results at any level of significancemay be reported. A hypothesis can bemultipart or nested, but the
simplest and most common description is a simple binary statement that describes the null condition
that has to be disproved for the alternate significant hypothesis to be suggested:

NullHypothesis H0: The experiment will not detect the presence of a differentially abundant set
of transcripts. Reporting transcripts in this group as differentially present when in fact they
are unchanged would generate a Type-I or false positive error.

Alternate1 Hypothesis H1: The experiment will detect the presence of a differentially abundant
set of transcripts. The failure to report elements of this set when they are truly disrupted
would generate a Type-II or false negative error.

The hypothesis draws its conclusion relative to a null model, that is, the anticipated distribu-
tion of signal generated in the case where the test and control conditions are the same. Since
measurement variance is unavoidable, a log normal distribution of measurements is often
assumed. This null distribution may be estimated post-hoc in several ways, for example by
randomly comparing the distribution of signal from samples within replicate groups (biological
replicates) or pooled RNA, hybridized to several different arrays (technical replicates).

1 This is the one-tailed alternate hypothesis a two-tailed alternate hypothesis could have multiple conditions such as
H1 and H2 for over and under abundance relative to null condition.
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Experimental design becomes the key to implementing an approach with sufficient power in
order to characterize the major sources of variance, and through a replicate structure to realistically
establish the alternate hypothesis and reject the null hypothesis. The primary considerations here
are sample size and the replicate structure with respect to the identified origins of spurious variance.
Where biological change is small, relative to the nuisance noise in the measurement, then larger
sample sizes are required to suggest that the observed changes in expression are significant, relative
to the background. Large differences within population groups that have been categorized as
similar can arise from the unintended influence of confounding variables such as lifestyle and
environment. A large meta-study of several different cancers and the predictive power of array
studies of different sizes found that, in these heavily lifestyle impacted scenarios increasing the
sample size did not always lead to more predictive power.

The experiment will have sufficient power to generate a high confidence result only when the
perturbation in the signal generated by the test condition can be resolved relative to other sources of
variance. Since sampling variance and the extent of expression change can frequently be estimated
in advance, it is often useful to conduct this assessment a priori in justifying a design. Design power
calculations can suggest the likely experimental power, given the requirements for specificity and
sensitivity. Various tools exist to establish these criteria. Lee, for example, has a web-based suite of
calculators that generate design specific experimental power estimates for array experiments [17],
while Seo et al., have developed a tool that uses online microarray expression archives to generate
‘‘real-world’’ test data-sets from which to determine experimental power [18].

When asserting H1 based on array data, independent validation from other approaches can add
further support to the experimental design. These may be small scale real time PCR studies or protein
based. Protein based analysis such as high-resolution 2D gel electrophoresis – mass spectrometry are
particularly useful, given the complexity of the transcription-translation degradation pathway.

Arrays tend to be used in a mixed mode both to test prior hypotheses and at the same time to
generate data for revised hypotheses. Caution is urged in the context of validating a refined hypothesis
particularly with respect to false discovery rates. Approaches such as sample splitting are generally
suggested to avoid cyclical reasoning. By forming one hypothesis generating sub-group and an
independent or permuted hypothesis testing sub-group, the revised hypothesis can be assessed, but at
some cost to the experimental power due to the reduced testing population size.

13.2.2 Selecting a Measurement Platform

Transcript sequencing approaches make relatively few assumptions regarding the transcripts
they will quantify. Arrays however can only be used to measure the levels of transcripts com-
plementary to their probe sequences. It is therefore useful to consider the choice of sequences
made by different array platforms and the ways in which these will impact the analysis. Econom-
ics of the design and reporter generation make generic species-specific arrays such as Affymetrix
human U133(v2) or Mouse MG430(v2) arrays, the most commonly used in academic research.
These arrays will typically have at least one reporter sequence for every well established protein-
coding gene in a genome. Considerations in choosing a suitable platform to address the research
hypothesis might include:

13.2.2.1 Model Systems

Not all platforms cover species in equal depth and the source of the transcript sequence evidence
can also vary. It can be useful to determine the provenance of the sequence data. For example,
where sequence data is from a major build of the species genome, which build and how frequently
are the array sequences and related bioinformatics revised. If the data is to be compared directly
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with archived data, it can be useful to use chips with the same design to ensure comparability, even
if this is not the most current design. Conversion tools that translate between builds can be found,
but they cannot fully compensate for different probe characteristics.

13.2.2.2 Coverage and Redundancy

The extent to which reporters seek to cover both potential genes and the different isoforms of a gene
described by the sequencing and protein literature varies. Some platforms seek to be relatively
exhaustive in this coverage while others limit reporters to common somatic isoforms. It is generally
useful to explore annotation files in advance for the coverage of genes of interest. The RefSeqmodels
for a species represent the core set of genemodels with strong supporting proteomic evidence. Beyond
these are other model sets. The NCBI describes a set of Entrez gene models (formerly Unigene) that
extend beyond the Refseq set, but are still strongly supported by at least EST evidence. Beyond these
are in-silico gene models, generated primarily from sequence evidence that suggests a potential for
open reading frames. Both Ensembl and theNCBI have sets of these models, but they require caution
sincemuch that contributes to actual transcription relates to local structure rather than sequence [19].
Recent data suggests that the transcriptome is ubiquitously transcribed, and hence the transcript
evidence will be found even at low levels for many of these models and non-RefSeq genes. On some
platforms the choice can be made between either a RefSeq targeted design (e.g., Illumina Human
WG8) or a design that includes more extensive gene models (e.g., Illumina Human WG6).

13.2.2.3 Channels

The comparison between states measured by the arrays can be indirect, where material from
different conditions is hybridized to different arrays. Alternatively, multiple conditions can be
compared directly by binding one fluorescent marker to the RNA from one condition and another
marker that is distinct, and can be excited independently, to the RNA from another condition. In
multi-color array designs the RNAs from both conditions are hybridized in conjunction to the same
array and the spot’s color bias is used to estimate the relative contributions from the two condi-
tions. In order to compensate for the inherent differences between the fluorescence of the dyes in a
multi-channel array, replicates are frequently run in a dye swapped design that interchanges, or
flips the dyes between the measured RNA pools. This approach allows a more direct comparison,
although single-color platforms are more common in recent expression work. Nonetheless multi-
color arrays remain dominant in DNA array CGH approaches on platforms such as Nimblegen.
Specific aspects of normalization for multi-channel platforms has been reviewed [20].

13.2.2.4 Masking Options

If the study is destined to be xenobiotic or genes are to be inserted from other species to create
transgenic animals, it may be useful to be able to mask from the analysis probes that can cross-
hybridize between species. The potential for such a masking varies by platform. Both DChip and
GCOS can mask Affymetrix platform probes. Equally valuable in this setting is the availability of
comprehensive pre-computed cross-species BLAST resources that can be used to remove cross-
hybridizing probes from the analysis permitting a species-specific analysis.

13.2.2.5 Sequence Uniqueness

Generally, only a few complex repeat sequences such as ALUs are incorporated exonically and
hence are of interest for expression analysis. Nonetheless, repeats remain of interest since their
knock-out can change the distance between transcribed genes and functional upstream elements.

232 A.E. Platts and S.A. Krawetz



They are thus of interest in both a DNA and RNA array context. The potential for the signal to
arise from non-specific hybridization generally forces the design of unique sequence probes. In so
doing, repetitive sequences or highly similar exonic domains from homologous genes are generally
excluded from the analysis. In exceptional circumstances, segments where two different repetitive
regions meet to create a unique combination of sequences at their boundary can be found. Where
homologous genes are the subjects of the investigation, custom designs may be necessary that place
small sequence differences in the most thermally sensitive area of the probe mirroring the approach
used in SNP chips.

13.2.2.6 Non-Coding RNA

If the functional transcripts of interest are non-coding, small or micro-RNAs for example, hybri-
dizing RNA to a dense and overlapped tiling pathway arraymay be considered. These arrays report
the levels of RNA at a high resolution and can detect both low levels of transcription from
unexpected locations as well as rare events such as run-on transcription. miRNA platforms
based on databases such as the miRBase are available from, for example, Agilent.

13.2.2.7 Extranuclear Expression

Most platforms will also include some reporters for mitochondrial genes, be these in the nucleus or
in the mitochondrial DNA itself. Consideration again needs to be given to the separate mitochon-
drial ribosome pathway used to translate these genes.

13.2.2.8 Bioinformatics Assets

The popularity of arrays as research tools has produced a wealth of free and commercial analysis
tools. Some are highly specific and perform only one function such as clustering where as others
such as GeneSpring and TIGR are suites of tools able to perform many elements of an array
analysis. Many tools work across array platforms, but others such as BeadStudio and GCOS are
proprietary and work only with the products of one company. Perhaps the most flexible research
environment is the free Bioconductor suite of analysis tools developed for use in the R statistical
development environment. In R/Bioconductor, many pre-compiled packages such as the com-
monly used Affy, Sma and Rma packages can be scripted to exchange their data and the results to
create a complex analysis workflow. Nonetheless, some array platforms are naturally more well
established than others. History has to an extent determined where bioinformatic database assets,
such as probe annotations, have accumulated to provide the established platforms with more
complete resources than some newer technologies. In the worst case no more than a gene ID and
a reporter ID may be provided with the platform along with marginal analysis capabilities. At the
other end of the spectrum systems may have highly advanced bioinformatic resources, covering
numerous forms of inter-genomic and inter-chip comparison with many third party tools able to
parse the probe IDs for analysis. Choosing an array with the level of support required to complete
the bioinformatics tasks proposed can save considerable time.

It may be necessary to consider alternatives where no satisfactory generic platforms can be found.
For example, a custom design may be warranted when no off-the-shelf array covers tissue-specific
isoforms. Probe generating software such as ArrayDesigner can rapidly generate isothermal repeat-
masked probes with unique sequences given a region or a set of genes of interest. Once prohibitively
expensive, the gene chips currently available from Combimatrix, NimbleExpress and Agilent are
printed as readily with a custom design as they are with a generic design, making the creation of
custom tiling or splice arrays a relatively inexpensive option. Once created, a tiling design can be
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readily explored as a custom track in many genome viewers such as UCSC’s genome browser or
Sanger’s Artemis.

Whatever array platform is selected, a standardized protocol for RNA extraction, amplifica-
tion, labeling and hybridization is required. This may only be a recommended protocol and
specific circumstances may require modifications. It is useful to note these modifications in the
experiment description when providing the results to archives such as GEO. This can help other
investigators to be aware of these changes in considering meta-studies. To this end the MIAME
protocol has been developed to ensure a minimal catalog of information is available through
which an array experiment can be unambiguously duplicated.

13.2.3 Quantifying Expression

Expression quantification is a serial process by which raw fluorescence is transformed into an
expression profile, with one or more expression levels, for each gene covered by the chip. The
choices made at each stage of this process will influence the experiment’s outcome although many
platforms now automate much of this process. Several excellent spike-in studies [21] and theoretical
analyses [3] have been conducted to determine which options work well as an analysis pipeline. The
choice of steps nonetheless varies by both the array platform and with the required levels of
sensitivity and specificity selected. Some approaches are evidently more conservative with respect
to the balance between Type-I and II error than are others, and it is useful to consider how theymay
contribute to the outcome of an array study.

13.2.3.1 Image Analysis

The first step in a microarray analysis, following hybridization, involves quantifying the level of
fluorescently bound sequence that has attached to the probe. A scanner is generally used and one or
more lasers excite fluorescence. The micron-sized printing of the array necessitates careful analysis
to remove artefacts such as scratches and blemishes that can arise from manufacturing flaws or
hybridization buffer contamination. Most manufacturers create a random or highly dispersed
distribution for their probes to ensure that if multiple targets for a transcript are present, they are
not physically collocated and hence are unlikely to be effected by a common surface defect. A useful
step in array quality assessment can be an initial visual inspection of the hybridization to the chip.
Some analysis software provides this while in other cases it may be necessary to access the raw
image output from the scanner. When problems in the preparation introduce contamination into
the hybridization buffer or the hybridization well has leaked, it can often be readily detected by a
visual inspection of the array (Fig. 13.1).

Fig. 13.1 Slide quality control. Examples of processed Affymetrix (DChip) array images demonstrating (A) even
hybridization (B) surface contamination (white boxes), (C) uneven hybridization (white box) (Copies of figures
including color copies, where applicable, are available in the accompanying CD)
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13.2.3.2 Background Correction

Following hybridization of the target material to the array probes, a wash step removes sequences
that have not hybridized. The effectiveness of this wash determines the threshold level below which
the transcriptional signal cannot be resolved from the background. Although arrays are poor tools
for determining absolute expression, the extent of the background signal will determine the
confidence of a not-expressed call. Nonetheless, there will generally be some residual background
signal and this may vary over the surface of the array. Various local and global adjustments can be
made. The Affymetrix GCOS suite uses a set of local points from the backgrounds around each area
of measurement to assess a local background level. Subtraction of this background level brings the
signal as close to zero as possible for unhybridized probes. These values are frequently rounded up to
the tenth percentile of the chip signal or to a small positive value to avoid problems in log analyses.
Choe determined that in the Affymetrix context a localized background signal determined from a set
of background points worked well [21].

13.2.3.3 Array Normalization

Normalization (sometimes called standardization or scaling) is a data transformation procedure
introduced to remove systematic preparation bias between arrays, allowing biologicallymeaningful
comparisons to be made. The need for normalization arises because the preparation of the material
hybridized to arrays can vary between arrays. This might lead to one array having, for example, a
slightly more concentrated reagent mix or lower hybridization temperature resulting in a global
shift in the expression signal. On two-channel platforms, differences in the efficiency by which the
different dyes are incorporated, are removed by the normalization procedure. Due to the way
arrays performwhen presented with different transcript concentrations, the shift may be non-linear
with some higher signal shifted more than medium or lower signal. These gross differences need to
be corrected by normalization, such that two genuinely identical samples would generate virtually
identical expression profiles after normalization.

In order to select the most appropriate normalization procedure it helps when the source and
structure of the variance is recognized. Choosing an inappropriate normalization may over-adjust
or under-adjust the data, both of which will lead to spurious results. Normalization differences are
a likely sourc of a great deal of the analytical difference generated when different analysis packages
quantify the same arrays [22]. The assumption made in most normalization routines is that the
perturbation in the gene expression due to a treatment or condition is small, relative to the global
expression of a cell and is relatively balanced with equally as much increase as decrease in
expression change. Hence, the gross distribution of the signal on two chips is adjusted by these
approaches to be broadly similar. Normalization approaches are numerous and range from simple
median adjustments through to curve-remodeling normalizations. Five popular normalization
strategies are described below alongside their software implementations:

13.2.3.4 Array Median

Amedian normalization is a whole profile shift that centers the distributions from a number array
so that their median signal is equal. Choosing the median or less often a trimmed mean as the
measure of central tendency, is required to produce a robust measure that is insensitive to the high
signal outliers that would otherwise bias a mean adjustment. The approach works well when the
expression is shifted consistently between arrays. But it is unable to correct for the non-linear trend
differences between arrays caused for example by differential saturation and non-linear sensitivity.
Many expression analysis packages such as GeneSpring introduce Median normalization as a
default first-stage normalization in a series of normalization steps.
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13.2.3.5 Invariant set

An invariant set normalization is a distribution adjustment approach. The algorithm changes the
intensities of probe signals relative to each other rather than globally shifting the intensities as in
themedian normalization. The aim of the approach is to adjust the broad shape of multiple-signal
distributions so that they match each other. While some probes may dramatically change their
expression due to a treatment effect, a set of stable probes is anticipated to maintain their rank in
an ordered list of expression across all arrays forming an invariant set. Even if a section of one
distribution is exaggerated in a non-linear way or the global trend changes, the rank of these
stable probes should not change. These rank-invariant probes are identified from all arrays and
the expression of this set on an exemplar array is used to create an adjustment curve for the entire
profile. The algorithm may suppress some of the signals and emphasize others in order to
standardize these invariant sets of genes relative to each other. An invariant set will generally
also approximate a median normalization although this cannot be fully guaranteed. The invar-
iant set normalization is the default approach used in DChip.

13.2.3.6 Quantile

The quantile normalization assumes that the global shape of the signal distribution should be
similar between any two conditions with only a subset of genes changing their relative expression in
a fairly symmetrical manner. Under this assumption, the median signal of the top percentile of
signal expression from one chip should broadly equal that on another well normalized chip. The
Quantile normalization makes this adjustment, iterating through the whole data-set on a percentile
basis, adjusting the median signal for each percentile bin relative to a standard array. The quantile
normalization is the default approach used in the more recent Affymetrix expression console and is
available as an option in versions of DChip after 2006.

13.2.3.7 Cubic-Spline

Cubic Splines are a popular example of the generic polynomial spline curves used throughout the
industrial design industry to create smoothly changing surfaces. Using splines has been most
generally applied to normalize the channels of two-color array platforms. The approach is optimal
for systems that have a broad and low frequency non-linearity, or in simpler terms when the
expression is plotted in a dot plot there is a smooth bow in the expression dot plot (see section 4).
Consequently, sudden irregular hybridization at the extreme end of an array’s profile may not be
well corrected by the approach. Lowess (locally weighted scatter plot smoothing) is a variant of this
smoothing, often also implemented with cubic polynomials due to their flexibility. The main
difference between the lowess and cubic spline approaches lies in the local weighting generated in
the lowess algorithm that makes the approach less sensitive to dispersed outliers. The Lowess
normalization is commonly used in GeneSpring and is the default approach for many of the
bioconductor analysis suites.

13.2.3.8 Housekeeping/Background

Rather than using the global expression profile or elements of it determined after hybridization,
another approach is to use a pre-determined set of genes. These can be spiked in, that is, added at
varying levels to generate a standard by which to differentially normalize the array. Alternatively
housekeeping genes can be used although these tend to be biased in expression terms and selecting
good housekeeping genes can be a problem. In some cases, the background signal can be selected.
These approaches are available in both GeneSpring and Illumina’s BeadStudio packages.
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13.2.3.9 Per Gene Normalization

While the approaches listed above are intended to make one array comparable with another (per
chip normalizations), it is sometimes the case where a group of genes need to be compared with each
other and that their signal needs to be normalized to a baseline so that correlations between the
relative changes in signal can be identified. A per gene normalization will typically set a default
experiment, for example, the first time point in a time series experiment and scale the expression of
all genes to a set level at this point. By applying the same per-gene scaling to subsequent arrays, the
relative changes in the expression between genes can be readily displayed.

There are instances where normalization can be a source of problems notably where the
necessary assumptions regarding expression profile identity between experiments and fold change
symmetry are breached. In some experiments, in which the gross signal is anticipated to shift due to
the experimental condition, normalization may actually introduce aberrant signal variance. For
example, in X-chromosome inactivation experiments in Drosophila it would be inappropriate to
normalize relative to the global signal since the X-chromosome makes up a large percentage of the
genome. In this scenario, the normalizing probes might be specifically chosen from the somatic
chromosomes without X-chromosome homologues. In conditions where the perturbation is even
more pronounced, potentially as a result of poor data it is worth assessing whether the difference
between group replicates suggests that a standard normalization might be omitted or replaced by
an ANOVA normalization [23]. Where normalization is omitted, confidence limits need to be
adjusted to the reproducibility evident between unnormalized biological replicates.

13.2.3.10 Signal Modeling

Platforms vary in the ways in which probe replicates are designed. Some platforms have serially
tiled probes and others multiple replicate probes or multiple reporter sequences per gene. If these
replicates are to be utilized to infer signal stability then a modeling stage that combines multiple
probe signals to generate a more reliable signal is suggested.

13.2.3.11 Affymetrix

On the Affymetrix platform a tiled sequence of probes defines a probe-set. This set of oligonucleo-
tide targets includes both a perfect match (PM) to the sequence and a central base mismatched
probe (MM) to detect spurious hybridization. The tiling sequence allows a series of comparisons to
be made between the background hybridization and the correctly aligned sequence signal. Inter-
preting the signal from these probes is the task of the modeling software. A range of options are
available all of which seek to develop a stable adjusted signal level from the multiple probes that
make up a probe-set. The original MAS algorithms implemented by Affymetrix in the GCOS
package, used the anti-log of a robust, non-parametric, Tukey bi-weight average of the difference
between the log PMandMMprobe signals. Robust parametric statistics are relatively insensitive to
deviations from ideal models used in parametric tests and hence are suggested for noisy probe
models. Later Affymetrix approaches include Probe Logarithmic Intensity Error (PLIER) that is
an option within the expression analysis suite. Independent algorithms include RMA (Robust
Multi-array Analysis) available within the Bioconductor package or as a windows executable. The
RMA approach is both a normalization and modeling step based solely on the PM signal. It
produces a robust, that is to say a stable, log2 transformed signal value using amedian polish model
and quantile normalization. A variant gcRMA available as a bioconductor package (gcRMA)
additionally corrects for GC to AT bias in the probe design. Li and Wong’s DChip package offers
several options in its signal model based expression index. TheMBEI algorithm has been shown to
be sensitive to signal change particularly when used in PM-MM mode. Many alternative and
derivative approaches are available and discussion continues as to the merits of the respective
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algorithms with respect to sensitivity and stability. Irizarry presents an excellent exploration of this
discussion [24]. While all of these approaches seek a stable signal value from the different measure-
ments made along the probe-set, not all the approaches maintain the probes as elements within the
probe-sets. Genomatix’ ChipInspector uses a novel gene model to re-map probe level data to gene
targets. Probe signals are associated with the Genomatix detailed gene models and are not re-
assembled into probe-sets for analysis.

13.2.3.12 General Platforms

Most manufacturers use replicates to determine the signal stability. For example, Illumina expres-
sion arrays use up to 60 randomly located beads per transcript. Signal and signal stability are then
assessed from robust factors such as the median signal across beads and the variance between the
replicates. DNA platforms such as Nimblegen operating in a CGHmode usually summarize signal
slightly differently with similar sections of a chromosome grouped together and treated as a series
of windows with confidence levels determined by the channel variance within windows. While
normalization and modeling steps aim to minimize gross inter-array differences, it is useful to
identify the origin of as much variance within the replicate groups as possible.

13.2.4 Sources of Preparation Variance and Biological Variance

A degree of spurious variance between measurements is invariably encountered in biological
experiments. Scanning and background noise tend to be relatively unbiased and onmost platforms,
contribute little to the variance in the final signal after modeling. Indeed technical replicates
generated by re-hybridizations of the same RNA, applied independently to different arrays from
the same platform, typically have correlations of around 0.995 (Illumina WG8) to 0.997 (Affyme-
trix U133[v2]). Other sources of extraneous variance usually contribute more and may introduce
bias between the measurement sample groups where this is poorly controlled for.

13.2.4.1 Preparation Variance

RNA is typically amplified either prior to and/or during the creation of labeled probes. Amplifica-
tion kits typically demonstrate selectivity with respect to the transcripts that are preferentially
amplified. The use of either different amplification kits or different numbers of amplification cycles
when preparing the samples can consequently impact the quality of the data generated. When
comparing Enzo and Ambion amplification kits on the testis total RNA, for example, the correla-
tion (r2) between preparations was 0.6 (Affymetrix U133 with DChip), while the correlation
between 1 amplification cycle and 2 amplification cycles from Ambion kits was 0.8 (Illumina
WG8(2) and BeadStudio). Normalization can to an extent compensate for differences. However,
this is difficult to correct when transcripts have been differentially amplified relative to each other in
a non-linear process. Non-parametric statistics such as rank comparisons may be necessary. To a
lesser extent very different initial RNA concentrations applied to a chip can result in non-linear
signal variance and although manufacturers may indicate an acceptable range of RNA hybridiza-
tion quantities, most experiments benefit from using similar initial concentrations.

A hazard in RNA analysis arises from its relative instability particularly to thermal and
biological degradation. If a cell sample is prepared but time elapses before either RNA stabiliza-
tion with guanidinium or snap freezing, then endogenous cellular ribonuclease activity will
continue to degrade the RNA in the sample. In samples with very low starting levels of RNA it
is useful to optimize the DNase treatment to minimize RNase activity when removing the genomic
DNA during the preparation. The general characteristics of degraded RNA can often be identified
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prior to hybridization. In the RNA obtained from somatic tissues the ratio of the area under the
ribosomal 28S:18S peaks on an electropherogram decreases, as the longer 28S RNA degrades faster
than its shorter counterpart. If the ratio drops below the optimum of 1.8, then RNA degradation may
be indicated [25]. Instruments such asAgilent’s bio-analyzer, use a library of total RNA electrophoretic
profiles from intact and degraded RNA to develop a related RNA integrity number (RIN). This
extends the 28S:18S ratio by profiling the RNA from rRNA free mRNA, as well as total RNA. Other
pre-hybridization approaches include sensitive ribogreen fluorometry and the relatively less sensitive
but broad 260/280 nm absorption profile. A general trend towards higher signals from probes posi-
tioned towards the 3’ end of the transcript is a further indication of degradation. This ratio of 3’ to 5’
probe signal is reported on theAffymetrix platform as a quality variable but can also be generated from
raw cel data using a bioconductor (AffyRNAdeg). If differential degradation is evident between the
sample groups, then the analysis will likely be heavily compromised. DChip, however, allows the
masking of a series of n 5’ probes from all probe-sets where n is set by the user. This may restrict the
probe signal to more intact regions of the transcript.

Freezing is a way of stabilizing the RNAs, but recognition should be given to the impact that the
freeze thaw process has on the RNA quality of tissue samples. Multiple freeze-thaw events can
disrupt cellular compartments and lead to RNA degradation over multiple cycles. If some samples
experience more freeze-thaw cycles than others, then spurious variance may again be introduced
between the samples.

13.2.4.2 Biological Variance

To an extent biological variance is an inherent property of the measured system and is consequently
important to characterize, rather than necessarily remove. Distinct populations can, for instance,
share genetic traits that will differentiate their expression profiles [26] relative to the species average.
Nonetheless, gross sources of unintended biological variance may be introduced that bias results
relative to the changes being investigated. When not using cell lines this may arise from differences
in the homogeneity of tissues or from tissue contamination. Contamination may arise either from
the tissue collection procedure, or in tumor contexts, from the infiltration of non-tumor cells such
as immune cells. The processes of fine micro-dissection, such as laser capture, required to remove
these contaminating tissues may inherently stress tissues into non-physiological modes of expres-
sion. While problematic, this can be detected where suspect tissues can be identified by using
marker genes that are present to a greater extent in these tissues. Where high levels of undesirable
material is present it my be useful to conduct an in-silico study using the data from archives such as
GEO, to establish the results that could be generated due to contamination. These results can then
be discounted in the final analysis as potentially spurious and arising from tissue mixing. More
subtle sources of biological variance can arise due to sampling of tissues at various stages of
synchronization. Recent evidence suggests that many genes, in most organs, demonstrate a
circadian expression rhythm such that taking measurements from biological samples at asyn-
chronous points would introduce a degree of variance [27]. Circadian synchronization is worth
noting in tissue samples, but it can be more problematic in well-synchronized cell cultures.
Agonal factors such as hypoxia and acidosis have been demonstrated to significantly impact the
expression profiles, and measurements taken from samples with different terminal conditions
may differ significantly [28].

13.2.5 Visualizing Expression Distributions

In the simplest case of two groups representing a treatment ‘before’ and ‘after’ design, the first task
after having quantified expression is generally to view the expression distributions in a meaningful
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way. This can be challenging, as many of the standard approaches such as bar charts become
overwhelmingly dense and consequently unintelligible when presented with tens of thousands of
data points. When the number of conditions in the experiment is increased the optimum visualiza-
tion approach will depend upon the design, specifically whether comparisons are made relative to a
baseline condition or iteratively between each successive condition.

13.2.5.1 Histograms

Histograms are familiar tools and are readily applied to expression studies. The distribution of the
signal generated by an array is viewed by placing the large number of measurements into a small set
of bins. The Y-axis is generally linear while the X-axis is frequently logarithmic and divided into a
series of sequential expression bins. The shape of the distribution of raw data can often be helpful in
determining the most appropriate normalization procedure (Fig 13.2A). When two microarrays to
be compared have distributions of similar shape, but are offset relative to each other, a weak
normalization such as a median adjustment may be completely satisfactory. Where histograms

Fig. 13.2 Expression
Histogram. The expression
histogram from two arrays
measuring the RNA
abundance in normal and
structurally abnormal
human spermatozoa (A)

prior to normalization
and (B) after invariant set
normalization (Copies of
figures including color
copies, where applicable, are
available in the
accompanying CD)
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indicate a more complex difference between intensity profiles a more aggressive normalization such
as a quantile or an invariant set approach may be required. Following the normalization it can be
useful to review the histograms to assess how effective the normalization has been and whether
further or alternate approaches should be considered (Fig 13.2B). The histogram does not generate
information about individual reporter probes, scatter plots are more appropriate tools for visualiz-
ing gene-level data.

13.2.5.2 Scatter Plots

Perhaps the simplest but also one of the most useful ways of representing high through-put
data is the scatter or dot plot (Fig 13.3). This can frequently be generated in the array analysis
software, suite packaged with the array platform. Caution should be exercised when using
generic spread-sheet applications, since they are frequently unable to represent the extent of
the data generated by an array experiment (Microsoft Office 2003: 32,000 rows, OpenOffice
1.1: 16,000 rows). A dot plot is a useful way of viewing both the level of data correlation
between two experiments, the noise envelope and any skew in the broad expression profile
between experiments. Given two expression experiments A and B, a dot on the chart is plotted
for each reporter, based on its signal from array A plotted on X and B on the Y-axis. The
result is a scatter plot that represents the gross trends in signal between the two conditions.
When the signal on A is identical to the signal on B, the dot plot will lie on the central line
X=Y, (Fig. 13.3A) with the points most distant from the origin indicating a high array signal
on both the arrays. When the signal from A and B differs, the points plotted will move above
the line where B has greater expression than A and below the line for the points where A has
greater expression than B. For experiments conducted in replicate groups, the expression
levels plotted will usually show the median of the group expression, potentially with error
bars. While the experiments in Fig. 13.3A are normalized well, Fig. 13.3B illustrates a dot plot
where there is a clear non-linearity in the data, indicating a need for a normalization correc-
tion, such as cubic spline.

Like, histograms scatter plots can be useful in assessing the correlation between any two
experiments. Typically, the Pearson correlation coefficient [r] is generated by attempting to fit a
straight line to the data. A least squares fit seeks to fit the gradient and offset of a straight line by
minimizing the sum of the distances between each experimental point and the closest point on the
fitted line. The result is not only a line that optimally fits the data but that also measures correlation
r, and the coefficient of determination r2. The value of r can range from –1.0 to +1.0 covering the

Fig. 13.3 Scatter Plots. A scatter-plot of all chip data from two IlluminaWG8 arrays is shown with logarithmic axes.
The expression of each gene in the two measured conditions is shown as a dot relative to a log-log scale. The central
line represents the unchanged signal between the two conditions. Upper and lower parallel lines show the limits
beyond which a 3–fold change in expression is observed. Created in the BeadStudio analysis suite, plot (A) illustrates
well-normalized signal and (B) data that is clearly in need of normalization (Copies of figures including color copies,
where applicable, are available in the accompanying CD)
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range of perfect anti-correlation to perfect correlation with the zero point indicating no relationship
between two experiments. The coefficient of determination describes the percentage of the expres-
sion trend from experiment A evidenced in B. When the r2 value is 1, the two experiments perfectly
co-predict each other, when 0 there is no mutual information shared.

13.2.5.3 Volcano Plots

Volcano plots were devised as a way of viewing the fold change between conditions and confidence,
from replicate information at the same time. Both the axes are generated on a log scale, and each
dot represents one gene expression comparison between two conditions. Increasing height indicates
increasing confidence in the expression change, and increasing distance from the center on the X-
axis, a greater fold change (Fig. 13.4). If the plot is overly central, little expression change may have
been detected between the two states, where it is low on the Y-axis but well dispersed on the X-axis,
problems in reproducibility may be suggested.

13.2.5.4 M-A Plots

In an M-A Plot or similar R-I (ratio-intensity) plot, the broad differences in the normalized trends
between the two arrays are plotted. The log ratio of the signal between the two arrays is shown on
the Y-axis (M) and the log product of the two signals on the X-axis.MAplots are generally useful in
identifying the efficacy of normalization, and have been routinely used in dual-channel measure-
ments. Following an appropriate normalization, the ratio of signal between any two arrays (Y) will
not demonstrate a trend with respect to signal level (X). Figure 13.5 illustrates the condition where
good normalization leads to a flat relationship relatively to the poorly normalized starting signal.
Most array analysis solutions such as R/Bioconductor and DChip can generate MA plots to assess
the normalization quality.

Fig. 13.4 The Volcano Plot. The volcano plot is a form of scatter-plot used to overview chip-level data on expression
change. The axes of a volcano plot represent two aspects of differential expression derived from groups of replicates.
On the Y-axis is plotted �log10(p) of differential expression from a t-test and on the X-axis log10 (fold change). Since
transcripts with a low p-value and a high fold change are of interest, the transcripts in the domains indicated by
dotted lines are consistently down regulated (left) and up regulated (right) and might be considered for further
exploration (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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13.2.5.5 Series Plots

Series plots are useful ways of illustrating groups of genes that change their expression in a
consensus manner between states even if their expression levels are very different. Series plots can
be produced following a per gene normalization, and are typically employed to draw attention to
the expression of groups of genes displaying similar trends across experiments.

Fig. 13.5 TheM-A Plot. The
M-A plot represents yet
another axis variation of the
scatter-plot. The purpose is
to demonstrate how the
fold change between two
expression profiles varies as a
function of expression. The
Y-axis indicates the log of
fold change and the X-axis
the log of the expression
product. Data is shown
from DChip prior to
normalization (top) and
post normalization (bottom)
by the invariant set method.
The invariant probes from
an Affymetrix study are
highlighted in red. Clearly, a
significant non-linearity with
respect to the signal is
corrected (Copies of figures
including color copies, where
applicable, are available in
the accompanying CD)
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13.2.5.6 Box (Whisker) Plots

Virtually all generic array analysis suites can use box and whisker plots to illustrate the range
and dispersal of data under different conditions (Fig. 13.6). The degree of difference between
the conditions can be readily visualized relative to the variance of the signal.

13.2.5.7 Heat Maps

One of the most powerful tools for representing groups of genes with a similar expression pattern
either across a time-course or between conditions is the heat map. Genes are typically ordered
vertically and arrays inmeasurement groups horizontally to create amatrix.Within thematrix, color
is used to represent the relative expression of genes with red frequently chosen for over expression
and blue or green for relative under expression. Clustering is frequently used to order genes such that
those with similar expression are next to each other (Fig. 13.7). A heat map can be another useful
tool for identifying problems in array normalization. Where all the genes on an array are included
and a column is constantly more red or blue than those around it normalization failure is suggested.
Heat maps can be generated in most custom and generics array analysis packages such as Bead-
Studio, GCOS,DChip andGeneSpring. In addition,HeatMapBuilder allows some visual alternative
representations and JavaTreeView provides a visual interface to the output of Cluster 3.

13.2.6 Statistical Modeling

Using the approaches above, trends in array data can be readily visualized. These trends can be
explored inmore depth within a statistical model. Below is an outline of the description of processes
typically undertaken when assigning levels of statistical significance to array data. A host of further
statistical approaches are available that combine or extend elements from these to make themmore
suitable for specific contexts of analysis. The probability value (p-value), we consider, is that of

Fig. 13.6 Box and whisker plots. Box plots (Sigma Plot) represent the distribution of signal sampled in a murine
spermatogenesis time-course experiment. Each box and whisker summarizes expression from a single chip. The
central dot represents the median signal at each interval, the box the inter-quartile range between the first and third
quartiles and the lines the limits of the expression range. Dark and light boxes contrast data ranges from two different
replicates prior to normalization (Copies of figures including color copies, where applicable, are available in the
accompanying CD)
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rejecting the null hypothesis. This ranges from 1, where the null hypothesis is certainly true and no
real change is possible, to 0 where the null hypothesis can be completely rejected and a real change is
suggested.

13.2.6.1 Scale

A frequent source of confusion in interpreting an array analysis is the choice of scale. Logarithmic
scales are frequently, but not exclusively, used to represent and analyze data from arrays since they
hold several advantages over linear or power scales. The dynamic range of array data makes
visualization over five orders of magnitude difficult to represent meaningfully on a linear scale.
Additionally, the distribution of signal from arrays tends towards a normal distribution when
transformed to the log scale. Since classical statistical analysis draws inference based on departures
from the normal distribution, the suitability of t-tests or ANOVA for assessing significance,
benefits from the log-transformed data. The log scale also aids in fold change analysis since the
log-transformed fold change is symmetric around the no change condition, where log(Experiment/
Control)=0, thus readily allowing visualization of fold change in both directions. It is important
not to divide two log-transformed values to generate a fold change. The log fold change can be
readily arrived at for data that has already been log-transformed by subtracting log(signal) values
between the two conditions. As indicated earlier, the rounding of zero and negative values in the
raw normalized signal up to a small positive value avoids problems with nonsense data on the log
scale. Attention in assessing array fold change data also needs to be paid to the base of the
logarithm used.

13.2.6.2 Fold Change

Making the assumption that arrays can report without error the fold change in the expression of a
gene between two conditions, this differential expression suggests itself as the initial metric for
identifying the genes of interest. Typically 2, 5 and 10-fold changes in expression, either up
regulation or down regulation, from control to experimental conditions have been taken as

Fig. 13.7 Heat Maps. A heat map showing the expression of proteosomal genes in which the high signal is shown
darker and low is lighter. Hierarchical clustering of both samples (right dendrogram) and genes (top dendrogram) is
shown. Clear evidence for clustering amongst both samples and genes can be seen (Copies of figures including color
copies, where applicable, are available in the accompanying CD)
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thresholds for identifying the genes of interest. Platforms differ in the extent that exploration of a
change below 2-fold can be justified. Genes selected may either be large groups with reduced
confidence that they are all correctly identified (e.g., 2-fold), or smaller groups of higher confidence
genes (e.g., 10-fold). As discussed in the context of Volcano plots, there are at least two dimensions
to be considered when assessing genes of interest for further investigation; fold change and the
p-value of this change being reproducible. It is useful to explore how the p-value value is calculated
and the considerations thatmay drive us to look beyond classical statistics and introduce additional
parameters into the confidence measure assessment.

13.2.6.3 The Null Model

Typically, analytical models will generate a null distribution relative to which the measured change
in the signal is assessed for the significance of this divergence. Null models vary in the extent to
which sources of identifiable extraneous variance are incorporated. Parametric boot-strap models
make assumptions about the distribution of the signal generally from the trends evident in large
sample studies with characteristics such as Gaussian or gamma distributions. Non-parametric
approaches can use the differences between samples in the biological replicate groups to achieve
a model using, for example, randomization.

13.2.6.4 Regression Models

In population studies, expression change is generally explored with respect to multiple possible
impacting elements both genetic and environmental. If, for example, we were looking at expression
in an unmatched population of diabetic and non-diabetic subjects then there would likely be age
effects in combination with disease effects. Since these factors are not known in advance, we may
wish to explore models where many factors are categorized for each subject and then explore the
relationship between expression change and these variables. Regression models are used to explore
this relationship generating a correlation strength for each variable as well as a confidence measure
from either the F-statistic or t-statistic. Most statistical packages such as SAS, SPSS, Matlab and
SigmaStat are well suited for the investigation of linear and non-linear regression models. For more
advanced investigations, R/Bioconductor and Mathematica offer a range of enhanced approaches
including, for example, penalized models that attempt to reduce over-fitting [29] or zeta theory
models that can incorporate very large numbers of co-factors [30].

13.2.6.5 T-Statistics

T and F statistics are examples of classical frequentist statistics generated by observations made on
random subsets of very large populations. They can inform when the difference between distribu-
tion means (T) or variance (F) of two groups of observations suggest that the samples came from
similar or different populations. Given two sample groups, between which there is an anticipated
difference, it is important to characterize this difference relative to the within-group variance. In the
case of the diabetes study, we may have identified both age and disease as influences and conse-
quently have two sets of age matched groups. For each gene, the signal change between the tested
conditions needs to be assessed relative to an appropriate variance measure such as the standard
deviation within the two groups.

A t-test is well suited to a two-group unmatched design where the test is used to assess the
significance of the mean difference separating two datasets relative to the variance within the two
groups. The p-value of this ratio is inferred from the t-distribution and compared to a limit, �, the
acceptable risk of falsely assigning the measured variable significance. In low dimensionality
experiments � might be set at 0.05 or 0.01 where the threshold for wrongly inferring a difference
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between the groups is set at 1 in 20 or 1 in 100. However, we generally need to be more rigorous in
array scenarios. T-tests can be adjusted to reflect the assumptions made in the experimental design.
Where an unmatched case-control design is adopted, an unpaired t-test would be appropriate.
However, where a treatment effect is the design objective and each group has a matched before and
after case, then a paired t-test would be applicable. Equally, one tailed or two tailed t-tests can be
selected depending on whether it is change or a directional change to test and equal or unequal
variance in the compared data-sets. All of these considerations will adjust the assigned significance.
T-tests can be made in virtually all statistical packages and Microsoft Excel has a t-test function.
Excel should be used for any array analysis with caution, however, since its inbuilt format-
recognition system may irreversibly and without notification change some gene and Probe IDs
into dates and other common formats.

13.2.6.6 ANOVA Approaches:

T-statistics used on sets of control and experimental groups compare the dispersion of signal
within the groups relative to that between groups. Analysis of Variance (ANOVA) takes this
approach further. Standard ANOVA models come in 3 basic model classes:

Model 1. Fixed Effects: This most closely resembles the t-test and compares the mean difference
between groups to group variance.

Model 2. Random Effects: Uses the F-test to determine whether the differences between the
groups exceed what would be expected from random re-sampling of the within-group
distribution.

Model 3. Mixed, Fixed and Random: This approach uses both the random effects and direct
effects to suggest significance.

ANOVA can also model various levels of factor-factor interactions. A one-way approach,
models the contribution to variance arising from the primary factor identified, e.g., the treatment
effect. A two-way ANOVA model would take multiple contributing factors and explore the effect
of each and the cross-interactions between these effects.

A one-way (model 1) ANOVA of a gene’s expression in two conditions is simply a t-test. The
power of ANOVA for array work lies in its extensibility beyond this simple case. ANOVA
approaches employ both the t-test to characterize mean difference and the F-test to compare
whether variance profiles appear similar. For array analysis, its other utility lies in the capacity
to directly compare not just two, but multiple conditions. Hence, a one-way ANOVA on three
conditions, can indicate where inter-group variance is significant relative to intra-group variance of
the three groups (F-statistic) or where the mean difference between any is significant.

Two-way ANOVA is more generally suitable for in-depth array analysis and deals more
explicitly with the sources of variance identified in an experiment with a view to isolate the signal
from gene expression change. This is achieved by creating a matrix of the likely sources of variance
and their (two-way) interactions with each other. Typically, an effect level for each parameter and a
residual that the model was unable to incorporate will be generated in the analysis. These should
be noted as indicators of whether the experiment determined the true origins of variance. Where a
two-way ANOVA cannot usefully resolve the contributing variance, higher-order ANOVAmodels
may be explored that consider three-way interacting elements.

Further development of the ANOVA approach can be found for most experimental designs.
A continuous experimental variable such as time can be modeled using Continuous ANOVA
(CANOVA). In designs that consider two or more treatment factors in conjunction, multivariate
extensions to ANOVA are suggested. Multivariate analysis of variance (MANOVA) approaches
use the off-diagonal elements in the covariance matrix to draw conclusions regarding interactions.
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One limiting consideration in the standard ANOVA approach is that the effect terms are not signal
dependent, and hence the effects that change strength as a function of expression can only be
summarized rather than modeled. Storey and Dabney have developed an ANOVA model to
incorporate intensity-dependent effects, allowing ANOVA to be used for chip level normalization
after which a gene level ANOVA can be introduced to assess differential expression [23].

Most ANOVA approaches are ultimately extensions of the classical t/F-statistics and as such
require a range of criteria to bemet, to have confidence in their inferred significance levels. The data
should be normal in distribution after appropriate adjustment (e.g., log or power transformation),
the relationships between the factors investigated should be linearly co-dependent and far outliers
should be avoided. Additionally, the distributions underlying the T and F statistics require a certain
population size to stabilize their predictive outcomes such that for small sample sizes estimates of
variance can be unreliable. Since array data is usually based on small-n populations that may not be
normal in distribution and will frequently contain outliers, we have to treat the classical-parametric
statistics with caution. Most array analysis packages including commercial products such as
GeneSpring as well as free/open software including R/Bioconductor (multtest package), DChip
and the NIA’s ANOVA analysis suite, can conduct basic ANOVA. CANOVA, MANOVA and
MANCOVA analyses are generally more easily conducted in specialist statistics packages or
programming environments (R/Bioconductor).

13.2.6.7 Non-Parametric Tests

ANOVA approaches extend t-tests but are constrained by their assumptions. Non-parametric
approaches are more robust and not as limited by their prior assumptions of data distribution.
The simplest and most widely used non-parametric statistic is rank. Non-parametric tests are
generally regarded as being less powerful but frequently more reliable than their parametric
equivalents for array data. Typically expression levels in two classes will be converted to ordinal,
that is ranked, values and the difference in rank used to assess change. Specifically a Wilcoxon-
signed rank test can generate a p-value for a set of genes from the comparison of ranks between two
data sets. The rank value is useful because non-linear differences between the response behaviors of
different experiments can be compensated. If two arrays with highly non-linear relative signal are
compared, acceptable normalization may be difficult to achieve. But for a serially reducing
expression pattern A)C, provided A>B>C is reported by both arrays, rank order change can
still be used to infer significance. Clearly this is insensitive to non-linearity and robust since outlier
signal is not able to contaminate the rank model. The statistical tests that rely upon ranks include
the Mann-Whitney U-test as the non-parametric equivalent of the t-test and the Kruskal-Wallis
analysis for the equivalent of ANOVA/MANOVA. Statistical packages such as SPSS and Sigma-
Stat as well as GeneSpring can provide non-parametric statistics.

13.2.6.8 Bayesian Inference

Perhaps the most interesting development in statistical modeling arises out of a departure from
frequentist approaches and adoption instead of Bayesian conditional inference. Bayesian inference
differs markedly from classical- parametric approaches in that both a prior expectation of the form
of a null distribution and new knowledge about the distribution are readily integrated into an
analysis. This allows a more stable estimation of probability where sample sizes are small since we
have prior expectation with which to weigh the evidence, but the cost, if there is one, lies in the
incorporation of subjectivity into an otherwise ‘‘objective’’ approach. Where all prior information
accords with classical log normal distributions, the Bayesian approach tends towards the classical
ANOVA. Unlike the non-parametric rank tests, expression information is integrated in a fully
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quantitative mechanism. Baldi and Brunak present a useful introduction to the topic [31] and
further specialist texts are available [32].

As with all statistical measures, the aim is to resolve the probability of the actual biological
change (H0) given the data evidenced. Bayesian inference permits models with prior information
about the hypothesis to be integrated with the sensitivity of the array for observing the expected
evidence. This produces a posterior, or adjusted probability that can serially update the prior
information. In the Bayesian approach, the evidence provided by the array is used in conjunction
with our knowledge about the hypothesis likelihood within the system’s context. Hence, the
probability of there being a biological change given that chip evidence is calculated in two steps.
The first step involves estimating from our knowledge of the system the base rate at which the tested
hypothesis will be genuinely true, for example, if the hypothesis relates to fold change, from the
anticipated rates of real expression change between the measured systems. This is combined with
the probability of the fold change evidence, we detect for this change being observed, given the
general sensitivity of our platform, for example, as a function of the signal. Secondly, the prob-
ability generated is assessed relative to the probability of observing the fold change evidence
whether or not there was a differential expression. This is calculated from the sum of the first
step carried out over all null and alternate hypotheses. More formally:

P H0 j Evidenceh i ¼ P H0h i�P EvidencejH0h i
P Evidenceh i (13:1)

Clearly, our result P H0 H0Evidencej Evidenceh i can now be used to update the prior information
such as P H0h i for our next round of analysis. This is a powerful way of moving forward, given
parallel lines of evidence, since each replicate in a system can help converge our expectations of the
tested hypothesis. Several applications are able to develop both t-test and Bayesian p-values from
the data. Cyber-T is perhaps the most readily accessible and provides both a T-statistic and a
final column with the adjusted Bayesian probability. Cyber-T also supports a modified ANOVA
analysis where the distributions used are Bayesian rather than t/F-statistic based. For a bayesian
analysis of gene expression levels on two-channel experiments, the BAGEL system is a free
executable, available for most platforms, while packages such as bridge and bgx are available for
R/Bioconductor.

13.2.6.9 Correcting for Multiple-Hypothesis Testing

While the t-test introduced by Gosset (‘student’) has a long tradition in both industrial and
scientific statistics the application to array technologies is not without challenges. If we use arrays
for generating hypotheses and estimating significance from the changes observed then we must
consider the effect of multiple comparisons. This is the large p (number of genes measures) relative
to a small n (sample size) problem, where p>>n that makes over- assignment of significance a peril.

The t-statistic is based on a difference between two distributions with known form and Bayesian
statistics on a modified probability distribution function. If these tests are used with p-values on a gene
by gene basis between our control and experimental conditions, and if�<0.05 is employed then 1 in 20
comparisons could trigger a false positive by chance alone. In an array analysis used in an explorative
modewe are inherently testing tens, if not hundreds of thousands of gene expression change hypotheses
in parallel. It is difficult then to rule out the worst case scenario, that in a comparison between samples
on arrays with 50,000 probes of which 5,000 may show a fold change of interest and �=0.05, that
hundreds of the transcripts we identify as significantly different were not selected by chance alone.

Several measures have been introduced to extend the p-value for a single comparison to describe
the disparity between the groups of genes selected in an analysis relative to the real population of
differentially expressed genes. These include sensitivity; the power to detect real positives, and
specificity; the power not to detect false positives (Fig. 13.8). The array literature is mostly
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concerned with minimizing false positive (Type-I) errors without unduly prejudicing the power
(sensitivity) of the analysis generally defined as 1-p (Type-II error). Strong limiting conditions
have been considered such as the family-wise error rate (FWER) that describes the probability of at
least 1 Type-I error appearing in the result set and the per comparison error rate (PCER). When
FWER is the controlling factor in an array experiment, Type-II error would be expected to be
high since the criteria to accept a transcript as genuinely differentially abundant would need to be
strict. A weaker limit is the Per Family Error Rate (PFER) that can be used as a limit for the
expected number of Type-I errors that should be reported. Rather than an absolute number of
errors, the more commonly used weak measure adopted to control Type-I error in multiple
hypothesis testing, is the proportion of results (rejected null hypotheses) that are false positives,
or the False Discovery Rate (FDR) [33]. The q- value is sometimes introduced as the multiple
hypothesis corrected analogue of the p-value, being the smallest FDR expected for a given
p-value cutoff.

A number of approaches can be taken to adjust confidence levels relative to the multiple-
hypotheses tests and thereby control these different error rates. The strongest was suggested by
Bonferroni to limit the FWER. If a test is conducted with conditions that yield an error 1 in 20 times
(�=0.05), then by repeating the test we double the probability of there being an error generated in
the combined results to 1 in 10 instances. In order to maintain the 1 in 20 rate of error in the
combined family of results, the stringency must be doubled. With an �=.025 cut-off applied to
both experiments, the expectation of a false result from the combined family of results would
remain at the 1 in 20 level. Extending this to amicroarray experiment, to maintain a FWER � of .05
when conducting 50,000 parallel comparisons, our cut-off should be adjusted by 0.05/10,000= 1e-6.
Clearly the Bonferroni approach will strongly control our FWER, but at the expense of grossly
prejudicing our chance of ever identifying a true positive. Hence, the Bonferroni adjustment
penalizes Type-I error at a prohibitive expense to Type-II error. Moreover, the Bonferroni adjust-
ment makes the assumption of independence between the comparisons that is not the case when
comparing large numbers of genes against each other. Hence there are several adjustments to the
Bonferroni approach that may seek to moderate the correction, while assessing the impact this will
have on the FDR, FWER and PFER. These are generally frequentist approaches to limiting error
in multiple- hypotheses scenarios, but Bayesian approaches are also possible.

Fig. 13.8 Specificity and sensitivity. All probes on the array (rectangle), probes with real biological change (dark
green) and probes identified on the array as differentially abundant (striped). (A)High specificity low sensitivity (B)

High sensitivity low specificity (C) Low specificity low sensitivity (D) high specificity high sensitivity (Copies of
figures including color copies, where applicable, are available in the accompanying CD)
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One of the simplest ways to assess the frequency at which a platform is producing error was
suggested by Westfall and Young [34]. This approach can be used to create a non-parametric
estimate of the level of Type-I error generated per chip at a given per-gene significance threshold.
Taking two gene expression data-sets each of which contains biological replicates, the class
assigned to each sample in the study is randomly permuted. For example if samples A-F are
controls and G-L test conditions, a permuted group 1 might contain B, G, L, F, H, I and the
remaining samples would form group 2. The identical tests applied to the real data, be it ANOVA
or Bayesian analysis or simply a fold change with t-test, are then considered with respect to each
gene in the randomly permuted groups. By generating numerous randomly permuted groups we
can estimate a median chip level false-discovery rate and report this as the confidence measure.
When a high FDR, relative to the stringency levels applied is observed, it may be valuable to
explore whether the data distribution meets the criteria necessary for the type of statistical test
being performed.

A useful extension to this approach is to examine the impact of false positives on downstream
analyses such as pathways and ontology. If we anticipate by permutation that 100 genes may be
included as false positives, then a pathway analysis of a set of 100 randomly selected genes can
suggest the impact of a given FDR on downstream conclusions. The significance generated from
the 100 random genes would become the new baseline relative to which generated p-values would
need to be adjusted.

Several other false discovery rate corrections are available. These include the strong Sidak
correction, Holm’s step-wise adjustment formed from the ranked p-values and Storey’s Q-value
that uses the distribution of p-values to assess a false discovery rate. Most microarray analysis
packages allow the false discovery rate to be estimated. For example, DChip permits every
comparison to be accompanied by a Westfall and Young permutation. Several packages exist in
the R/Bioconductor suite including OCplus and LBE. Storey’s Q-value can be assessed using either
the standalone Q-value executable or the R/Bioconductor package.

A final note of caution is suggested with respect to false discovery at the per hypothesis level.
This can be thought of as the rate of generating a false hypothesis given a genuine fold-change.
There are several million ways in which we can select any two genes from a set of 5000 potentially
identified, by an array study. If three genes are selected that appear to have a potential for
mechanistic linkage and it is estimated that there is only a 1e-6 chance of this linkage being
spurious, then this presents itself as an attractive group for further investigation. However there
are several hundred billion ways of selecting three genes from 5000 with critically a very low base-
rate significance. Hence, even a 1e-6 level of significance may be suspect. It is then, not simply the
misidentified genes that need concern us, but equally the potential for misconstruing the hypotheses
generated from sets of genuinely differentially expressed genes.

13.2.6.10 Representing Experimental Power

If spike-in data is available to quantify the levels of expression change in a data-set relative to that
reported by the array, then the power of the instrument can be quantified. A useful way to represent
the results of such an analysis is by a receiver operating characteristic curve (ROC) (Fig. 13.9). In an
ideal situation, we would be able to obtain a false discovery rate of 0 while detecting 100% of the real
transcripts that change. In the poorest circumstances even allowing the false discovery rate to
approach 100% might gain us only little information on the real transcript change. In a real
situation, we find that arrays as instruments lie between these two extremes. The relationship between
false positive rate (Type-I error) and true positive rate (experimental power) is determined in part by
the biological stability and hence the biological variance of the system and in part by the measure-
ment error introduced. A ROC curve demonstrates this relationship. In an experiment with ideal
performance, nearly 100% true positive results will be achieved with almost no false positive results.
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Realistically we might hope to obtain a 90% true positive rate with only a 10% false positive rate.
Attempting to push past the 90% true positive rate would, in this system, introduce copious amounts
of false positive data. Our worst-case scenario is the zero power experiment in which no matter what
criterion is chosen we may expect to find equal false and true positive data.

13.2.6.11 Concordance

The discussion above describes statistical models and confidence measures for data largely derived
from a single platform. But, a question naturally arises as to how platforms concord in their results
and how arrays compare with other expression measurement approaches such as sequencing. The
concordance between array platforms has generated much discussion. For similar samples hybri-
dized to the same array platform the largest difference in results was discovered between labora-
tories suggesting, small differences in preparation procedure may be significant. Comparisons
between array platforms hybridized with the same RNA sample pools indicated that high con-
fidence target genes accorded poorly [35]. In part, this arises from different isoform targets on
different platforms but analysis pathway differences also contribute to the discordance. The
differences have led the FDA to establish the MicroArray Quality Control project (MAQC), that
aims to provide tools and approaches for standardizing array results. The reproducibility issue is
also a core element in several software projects such as R/Bioconductor. The second part of the
question is more open. Array and RT-PCR results have been shown in many instances to accord
well, with an r2 in excess of 0.8. Array and sequencing libraries have a much lower concordance as
do array and SAGE data.

Fig. 13.9 ROC Curves.
Examples of three receiver
operating characteristics
illustrating experimental
power. The curves shown
illustrate an analysis with no
power (bottom line), low
power (middle line) and high
power (upper line) (Copies of
figures including color
copies, where applicable, are
available in the
accompanying CD)
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13.2.7 Inferring Biological Meaning

Clustering is one of the most flexible and visually effective ways to make classification decisions
with respect to the high dimensionality data. Array data is considered to have high dimensionality,
since each probe’s expressionmeasurement can be projected along its own axis in the same way that
a spatial coordinate measurement generates values in three orthogonal axes. An expression study
that uses a 22,000 probe platform can be considered as taking measurements in a 22,000 dimension
space.We should also consider that while the array may be quantifying several tens of thousands of
variables, biological systems are inherently complex and a significant amount of high dimension-
ality variability describing the organism, its history and environment lie beyond the array plat-
form’s measurements. Nonetheless, some work is needed to discover what may be similar between
the vectors generated in this high dimensionality measurement space.

The aim of clustering is generally to infer some classification of either genes or samples into
groups based on similarities evident between them. They partition the very large number of
expression measurements into subgroups (sub-spaces). Within these subgroups patterns are shared
between examples and between the groups large differences should be evident. Because of the many
different ways in which patterns can be detected and their similarity assessed, there are many
clustering approaches. Some of these are completely automated (unsupervised) and others take
some training or classification information from the investigator (supervised). Many excellent
reviews of the clustering approaches are available [36], and the summaries below provide only
general overviews in an array context.

13.2.7.1 Hierarchical

Hierarchical clustering is an unsupervised approach that is frequently performed at the gene and
the sample levels. Put simply, genes or samples that behave in similar ways are placed next to each
other in the output [37], the greater the similarity the greater their proximity. When differential
expression is represented on a heat map using a color scale simple trends become evident. Cluster-
ing can be carried out on genes alone, for example, in a time-course experiment the genes that show
similar expression trends through the study are brought together. Alternatively in a bi-clustering
mode, samples and genes are used in conjunction. Groups of genes that show similar trends through
the sample data are brought together on one axis, and conversely samples with a similar profile over
their genes are grouped together on the other axis. In the example, clustering shown in Fig. 13.7,
dendrograms are used to show the degree of difference in the expression pattern. The length of the
lines represents the level of dissimilarity between the profiles. Hence, the top 5 samples are clearly
similar and are linked by short lines but are very different from the lower samples, and so the line
linking the upper and lower samples is relatively long. The same can be seen with respect to the
proteosomal genes, where the small groups of genes on the left of the heat map clusters together and
away from the larger set of genes to the right.

This clustering approach is termed hierarchical since no assumption is made in advance about
the way the elements will cluster. The most similar elements are brought together to form a pair,
and each pair is then organized next to its most similar pair. This process is iteratively repeated to
generate a hierarchy. Several distance measures can be used that describe the profile similarity. The
Pearson correlation coefficient (r) or absolute correlation (|r|) is popular, but several other metrics
are possible. Equally, the way in which themultiple elements in sub-clusters are compared can vary.
The simplest way is to use the mean profile from each cluster (centroids), but many other options
are available based on, for example, the minimum or maximum distance between elements in the
clusters. The choice of these options can determine how weakly or strongly similar expression
profiles are brought together. Clustering algorithms seek to minimize the difference in expression
within the clusters andmaximize that between clusters. The exact decision as to which combination
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of distance metrics and clustering modes works best can, in part, be made based on this within-to-
between cluster difference, but many other factors such as sensitivity to small changes in the profiles
can be considered. In data that is difficult to normalize, the use of non-parametric rank correlation
may prove more robust than correlation. Many investigators opt for consistency and choose to
cluster with the same metrics. Indeed iterating through the clustering approaches until a desired
pattern of clustering is obtained should generally be avoided.

Most array analysis suites such as DChip, BeadStudio and GCOS include clustering algorithms.
Stand-alone applications with a wider range of distance metrics and clustering functions are also
available such as Cluster 3.0, originally developed by Michael Eisen [37].

13.2.7.2 K-Means

K-Means and K-Medians are similar to hierarchical clustering approaches, but with several notable
differences. Instead of building, a hierarchy of similarity, the process takes as an input, a value [K],
provided by the user and the arrays are partitioned into only these K-groups. The approach then
seeks to divide the profiles into the K-groups, to maximize the similarity within the groups relative to
that between groups. K-Means starts with a random selection of mean centroids, and arrays are
assigned to the K-classes based on the proximity to the centroids. A new centroid is computed for
each of theK-groups and the arrays are once again assigned to the closest centroid.Median clustering
differs from mean clustering, in defining centroids from median values and is thus less sensitive to
group outliers and hence more stable. Over thousands of iterations (N), the arrays are re-assigned
between the groups in the search for an optimal segregation. If no stable segregation is found within
the N optimization cycles, the clustering can generate different results because of the random initial
seeding state. If there is a prior hypothesis regarding the number of clusters, for example, where
samples need to be categorized into diseased or healthy groups, then K-Means/Medians can be more
effective than hierarchical clustering. K-Means/Medians clustering can be performed in many
applications including TM4 Cluster 3.0 and R/Bioconductor.

13.2.7.3 PCA/LDA

Principal Component Analysis and its close relation the Linear Discriminant Analysis are examples
of dimensionality reduction approaches. These approaches take the thousands of different probe
readings (dimensions) and seek to reduce these to only two or three dimensions by plotting the
expression from multiple, similarly expressed genes along the same axis. This allows samples to be
positioned on a 2-dimensional X-Y plot, based on the combined expression of many genes
summarized on each axis. As in hierarchical clustering, the algorithm seeks the patterns of expres-
sion that are most similar between some genes and most different between others. This forms the
genes that make up the first axis. The process is repeated for patterns with less significance each
time a new potential axis is generated. In some approaches, sub-groups of genes make up the
compound axes while in others all genes contribute to all axes but with varying positive and
negative weights accorded by their similarity to the pattern. Usually only the first two or three
axes are used to plot samples (Fig. 13.10). PCA can be conducted on all genes, or on subsets of genes
from different functional groups that can be used to indicate whether there is any evidence of linear
separability between sample groups based on the functional group chosen. LDA can be performed
in DChip while PCA is a clustering function available within Cluster 3.0 and both approaches can
be explored in R/Bioconductor (pcaPP).

Many other clustering approaches can be found including self-organizing maps, support vector
machines, and QT clustering.Most of these are available for R/bioconductor (kernlab) andMatlab
while compiled executable of SVMLight are available for many platforms and the flexible cluster-
ing environment RapidMiner.
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13.2.7.4 Ontology Analysis

Ontology analysis is an example of a broader classification analysis that seeks to find commonality
between the diverse sets of transcripts. The aim of an ontology analysis is to relate the changes in
expression detected on an array to the genes involved in biological systems that are well established
from prior research. This mapping is used to directly suggest coordinated biological systems that
are undergoing disruption between the control and test conditions. In an ontology analysis, the
genes that have been established as demonstrating a response to the treatment condition, for

Fig. 13.10 Principal
component analysis.
Compound axes are created
through the linear
combination of signal from
multiple probes. (A) Signal
from genes of the apoptosis
pathway for two data-sets
are plotted on the first two
principle axes demonstrating
that a linear discriminant
function can be developed
that separates most of
sample group 1 (dark) from
sample group 2 (light).
(B) The same samples, with
PCA conducted on genes
involved in oxidative stress;
with this group of genes no
linear separability is
evidenced (Copies of figures
including color copies, where
applicable, are available in
the accompanying CD)
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example, those identified in an ANOVA analysis, are mapped to known groups of genes (ontolo-
gies) that act together in biological mechanisms. Ontologies are currently organized by the GO
consortium into three broad classes: Biological Function, Biological Process, and Cellular Com-
partmentalization, representing approximately orthogonal descriptions of a protein’s role in the
cell. Within these categories, a hierarchical relationship is formed with respect to classification. For
example, a gene whose protein product locates to the nucleolus is a member of the nucleolus group
with respect to cellular compartmentalization. The nucleolus, in turn, is a part of the nucleus and
hence the gene is also amember of the nucleus group. Above this hierarchy lies the cellular organelle
and the cell, all of which will count one gene if the transcript is present. The transcript would have
similar hierarchical entries under the biological process and function.

Genes are mapped in a one-to-many manner with a single gene able to count in multiple
ontology groups where it has multiple roles in the cell. Some investigators choose to investigate
up regulated and down regulated genes independently. However the processes of negative feedback
in biological systems suggest that up and down regulated transcripts can usefully be investigated in
conjunction. Once the set of genes has been mapped to ontology groups, a p-value is generally
assigned to each ontology group to demonstrate whether a disproportionate number of genes map
into this group relative to a background expectation (Fig. 13.11). Again, a multiple-testing condi-
tion arises and both a t-test and FDR corrected p-value will be presented. In Fig. 13.11, where pre
and post metastatic solid tumors are compared, it is noteworthy that genes interacting with the
extra-cellular matrix are highlighted. These could be cataloged and further analyzed to determine if
a common regulatory factor is shared in a promoter analysis. There are many other ways to classify

Fig. 13.11 Ontology
Analysis. An example of an
ontology analysis produced
by the NIH DAVID system
showing (A) Biological
Process (B) Molecular
Function and (C) Cellular
Compartmentalization
ontologies for differentially
expressed genes identified
between solid tumors
contrasted in their pre and
post metastatic states
(Copies of figures including
color copies, where
applicable, are available in
the accompanying CD)
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sets of genes beyond just the basic ontologies. These can include their association with specific
diseases, collocation to specific genomic loci (Fig. 13.12) or activity with respect to cohesive
structures such as the proteosome.

Very many software tools exist for ontology analysis, and some of the first were OntoExpress
and EASE, which was later developed as NIH DAVID. With a web interface, the NIH DAVID
system offers an elegant combination of ontology, pathway and proteomics analysis. The system
also offers a novel ‘clustering-of-clusters’, combining the different classification of clustering and
pathway analyses to develop meta-clusters. The system also has valuable FDR features including
the option to upload specific background lists and estimate Bonferroni, Hochberg and Westfall
corrections to the t-based p-value. A plethora of ontology analysis tools now exist, many of which
are linked from the GO consortium.

An extension of the ontology analysis is the Gene-Set Enrichment Analysis introduced by
Subramanian [38] and recently revisited by Tibshirani [39] in exploring null models. In this
approach, the significance of the individual gene expression differences between control and
test conditions is combined in a non-parametric mechanism to create a score for a group of
genes. This extends the standard ontology analysis, in which only the absolute number of genes
above a p-value cutoff is counted to generate a rank. The genes in a gene set can be derived from
standard ontology groups or groups created from other information such as ab inito pathway
analysis. Gene sets are then ranked by this combined probability score, to identify sets of genes
with probability profiles that are unusually significant. A java tool is available for GSEA
analysis.

Fig. 13.12 Genomic
Clustering. Differentially
expressed genes are located
(DChip) on a genomic map
(gray) and significant
clustering that might suggest
a co-regulated locus or
aneuploidy is identified by
correlation analysis (black)
(Copies of figures including
color copies, where
applicable, are available in
the accompanying CD)
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13.2.7.5 Pathway Analysis

Pathway analysis is another classification system that extends the ideas employed by ontology
analysis. As in ontology analysis, the aim is to map differentially expressed genes into biological
pathways. The disruption to these pathwaysmay then be indicated as linked with the test condition.
Generally, pathway analysis is more concise in its indication of disruption, since there is a cause and
effect process mapped by a biological pathway that can be examined for consistency with the
disruption evidenced in array data. Pathway analysis then proceeds in two directions, curated and
de novo approaches.

In the first approach, very much like ontology analysis, the differentially abundant genes, and
optionally their homologues, are mapped into well-established pathways. Openly available data-
bases of pathway maps, such as those curated at Kyoto and Biocarta, are frequently used and
allow well established mechanisms to be compared with a differential expression profile. Where a
pathway’s disruption is suggested, it may be possible to generate downstream hypotheses con-
cerning what else should be disrupted and to test these with respect to the data. Figure 13.13
illustrates how array data could suggest disruption to several of the pathways by which ubiqui-
tylation is achieved and specific proteomic degradation initiated.

In the more advanced de novo approach, novel pathways are sought from the literature in a
discovery mode. There are several ways to approach this but the most common seek to assess the
abstract database of archives, such as Pubmed, for any links that have been suggested between the
genes presented, either directly or by N intermediate stages where the user specifies the N.
Evidently, given even a low value of N, the number of possible links between the genes and hence
the possible pathways grows to unmanageable proportions. This requires careful consideration

Fig. 13.13 Curated Pathway
Analysis. The ubiquitin
pathway as represented in
the KEGG pathway
database. Genes suggested
by the array analysis as
differentially expressed are
highlighted by stars
introduced from an analysis
of differentially abundant
genes in the NIH DAVID
system (Copies of figures
including color copies,
where applicable, are
available in the
accompanying CD)
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with respect to the discussion FDR and hypotheses. A further concern arises with some tools, as to
whether computerized analysis of the literature is sufficiently powerful to generate the databases of
pathway links. Several tools use teams of scientists to collate their databases where as others use
natural language analysis software. Figure 13.14 illustrates a hybrid approach that extends curated
pathways with de novo linkage.

Some tools for pathway analysis are free; the KEGG pathways can for instance be explored from
within the NIH DAVID system. Other tools are available as commercial products, including the web
based GeneGo, Java based Pathway Studio and the sophisticated promoter-pathway analysis suite
Bibliosphere Pathway, that adds functionality to Chip-Inspector. Pathway analysis components are
increasingly being incorporated within the major array analysis suites such as GeneSpring.

13.2.7.6 Promoter Analysis

Any pathway or ontology analysis that suggests a set of disrupted genes within a common
biological system raises the question of regulation. A promoter analysis takes small groups of
genes that show evidence of co-regulation and seeks to identify the functional elements within
primarily the promoter domains, 5’ of transcription start sites that may help activate or moderate
expression. Several systems have been developed to conduct these searches, and variation exists in
the assumptions theymake about promoter locations and the structure of the active elements. Some
are restricted to consensus transcription start sites such as those catalogued in the DbTSS, whereas
others use CAGE tags to map multiple-fuzzy promoter regions. Equally, there are those such as
KSPMM, that identify functional binding with respect to simple transcription factor binding site
(TFBS) motifs identified by nucleotide weight matrices, whereas others such as the Genomatix
frameworker, generate models that consist of multiple regions of motif evidence discovered to have
a spatial conjunction. This type of analysis can typically be propagated, in that, it will suggest
transcription factors that could underlie the disruption. These can then be assessed in the expression
profile for a change between the control and experimental conditions allowing evidence for a pathway
disruption to be extended.More generally, promoters can be explored for regions of identity between
species, while the major genome browsers such as UCSC, NCBI and Enesmbl all allow genomic
features, such as CpG islands and repeat structures to be explored. For more in-depth sequence
analysis, data from the ENCODE project can be visualized at UCSC although a word of caution is

Fig. 13.14 Hybrid pathway
analysis. This network of
interactions is not a fully
curated biological pathway
model. It was generated by
combining curated
pathways with data mined
from the Pubmed database
to locate gene-gene
interactions (GeneGo).
These links are used to
suggest the interactions that
might connect over-
expressed genes (circled)
identified in an array study
of F344 Rat pituitary
tumors (Copies of figures
including color copies,
where applicable, are
available in the
accompanying CD)
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warranted for all such comparisons – ensure that the genome builds selected in the different genome
browsers are the same, since promoter and gene sequences do shift coordinates between the builds.
Promoter analysis can produce large data-sets of potential TFBS’s, while arrays produce large data-
sets of differentially expressed genes. To infer the relationship between the two, bi-clustering
approaches can be used as described earlier with samples replaced by TFBS elements.

Figure 13.15 illustrates a promoter analysis usingKSPMM inwhichmultiple strands of evidence
are combined. Two motif-model databases are compared alongside the evidence for functional
protein binding and the conservation of non-coding promoter sequences between vertebrates.
Figure 13.16 illustrates a similar analysis with the genomatix system, in which a common frame-
work of binding sites is found in co-disrupted elements of the GABA A receptor. Many other tools

Fig. 13.15 Promoter Analysis. Promoter analysis can be used to identify the sequences characteristic of the
regulatory elements located in the promoter domains of genes showing the same expression pattern. The region
shown is 1 kb upstream of the transcription start site of Protamine 1. Predictions are made based on evidence from
the JASPA databases. Sites around 100 bp upstream of the transcription start site show evidence for sequence
conservation (Copies of figures including color copies, where applicable, are available in the accompanying CD)

Fig. 13.16 Expression and Promoter Analysis. Expression analysis can lead to the identification of novel functional
elements. In a study cataloguing the abundance of transcripts for receptor proteins in the sperm of fertile and infertile
individuals, the largest difference was evident with respect to the subunits of the GABAA receptor. Identification of
the protein binding sequences (Genomatix Frameworker) common to these subunits but absent from the promoters
of the unchanged subunits suggested co-regulation by a Brn-3 and HOX module (Copies of figures including color
copies, where applicable, are available in the accompanying CD)
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are available for promoter analysis, some of which use databases of transcription factor binding
sequences such as Transfac and Jaspar, as well as others that use sequence alignment searches to
identify novel patterns common to the promoter regions.

13.2.7.7 Clinical Application

A few array platforms are beginning to receive the regulatory approval necessary for translation
from the research lab into the clinical setting. In the clinical setting, the utility of the array may lie in
taking an expression snapshot that may reveal multiple nuances of disruption that are coincident
with later disease progression trajectories. Many studies have taken tumor samples and used
them to try and develop a list of genes, the expression of which may be predictive of outcome. The
problem with these approaches lies in the potential of the unstable tumors to undergo stochastic
genomic rearrangement that can lead to almost unlimited trajectories. Nonetheless, in more
stable diseases it may be possible to use arrays to predict clinical outcomes and inform treatment
decision-making. Tools such as PAM have been developed to generate clinical classifiers using
semi-supervised expression clustering.

13.2.7.8 Data Repositories

As arrays have become more popular, the volume of expression evidence has swelled to well beyond
the terabyte domain. In order to leverage the power of this extensive evidence major archives have
been developed to host and aid in the exploration of this data. These include the NCBI’s gene
expression omnibus (GEO) archive, that archives over 160,000 high- throughput data experiments
from many sources. The GEO system also permits searching and visualization within the arrays
through hierarchical clustering and rank comparison. The XML interface into all of the NCBI’s core
databases has permitted extensions to these tools such as LaralinkGEO that re-categorizes expression
evidence from across the GEO data-sets by disease and tissue. XML and web services have become
powerful mechanisms for automating the identification of remote archives tools and exchanging
information between them. Through interfacing databases of repetitive tasksmany procedures can be
co-ordinated through XML directed workflows, for example the annotation and publication of the
metadata for new genome builds. Other major archives include the EBI’s ArrayExpress. Smaller
archives may be subject specific covering, for example, only germ cell development with the limited
amount of free software available for the development of customized databases. Generally raw signal
data extracted from the image data is archived, for example, Affymetrix CEL files but not DAT files,
together with at least a minimal structured description of the experiment conducted (MIAME).
Where the MIAME standard describes the minimal information, the MAGE object model describes
XML data structures for exchanging this data between repositories.

With these archives in place it is possible to conduct a range of in silico experiments, in which array
experiments are re-analyzed for data relating to a topic not explored in the analysis of the original study.
Where multiple investigators have covered the same topic but not managed to achieve results with
statistical significance, meta studies can be conducted on the archived data to extract the significance or
additional insight from several independent experiments. The power of these approaches continues to
increase as more evidence is generated. Should arrays be widely adopted in the clinical field, another
order ofmagnitude of data will be generated.Whether the potential of this data to understand complex
disease is realized will largely depend on surmounting the very considerable challenges associated with
the sharing of anonymized clinical data between organizations.
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Chapter 14

Analysis of Alternative Splicing with Microarrays

Jingyi Hui, Shivendra Kishore, Amit Khanna, and Stefan Stamm

Abstract Alternative splicing is one of the most important post-transcriptional processing steps
that enhances genomic information by generating multiple RNA isoforms from a single gene.
Recently, microarrays have been developed that can detect changes in splice site selection. Cur-
rently, the biggest challenge for the analysis of alternative splicing with microarrays is the bioinfor-
matics analysis of array data and their low reproducibility by RT-PCR. Despite these problems,
microarrays revealed an unexpected number of expressed RNAs, showed changes of alternative
splicing in diseases and indicated that a splicing factor regulates a biologically meaningful set of
genes.

Keywords Alternative splicing � Microarrays � RNA isoforms � Experimental validation � Exon �
intron

14.1 Introduction

Almost all protein-coding genes in higher eukaryotes have introns, which are removed during pre-
mRNAprocessing by RNA splicing. It is estimated that more than 88%of human genes are subject
to alternative splicing, i.e., the cell decides whether to remove part of the pre-mRNA as an intron or
include this part in the mature mRNA as an alternative exon [1]. Since most alternative exons
encode parts of protein, the alternative splicing mechanism allows the creation of multiple proteins
from a single gene, which increases the coding potential of the genome. Alternative splicing
generates protein isoforms with different biological properties, such as altered protein-protein
interaction, subcellular localisation or catalytic ability [2]. Bioinformatic analyses estimated that
a quarter of the alternative exons introduce pre-mature stop codons that either lead to the genera-
tion of truncated isoforms or to the degradation of the mRNA by nonsense-mediated decay [3].
However, recent array analyses show that these variants are generated at a low level [4].

14.2 Alternative Splicing and Gene Expression

The importance of alternative splicing is evident from the large number of diseases that are
associated with or caused by the wrong selection of alternative exons [5, 6]. It has been estimated
that up to 50% of disease mutations localized in exons can change the splicing patterns [7]. Naturally
occurring single nucleotide polymorphisms (SNP) result in different alternative splicing patterns
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within a population that has consequences for human health. This is illustrated by CYP2D6, a
member of the cytochrome P450 family of proteins. Due to an intronic SNP that changes splicing
patterns, up to 10% of Caucasians express non-functional CYP2D6 and cannot metabolize certain
prescription drugs [8, 9]. In addition, drugs like acetaminophen act on a specific isoform generated
by alternative splicing [10], demonstrating the role of alternative splicing in drug action.

The functional differences between the isoforms created by alternative splicing are often subtle [2, 7].
The first reports of large-scale analyses in tumor tissues indicate that the combination of numerous
subtle changes in isoform ratios contribute to the disease phenotpye [11], and not surprisingly, changes
in alternative splicing are frequently found in cancer [12]. Finally, low abundant splicing variants are
specific for individual species, where theymost likely contribute to a pool of isoforms that evolution can
act on [13]. This implicates that not all human-specific isoforms have been identified, an assumption
that is supported by the identification of new mRNA isoforms in global array analyses [14].

The importance of alternative splicing for human gene regulation makes it necessary to create
global high-throughput analysis tools. Isoform-sensitive arrays have now been developed and
applied to analyze alternative splicing. We review the different systems and studies that have
been performed which reveals the current experimental limitations.

14.3 Detection of Splicing Variants with Microarrays

14.3.1 Structure of Splice Variants

Alternative splicing patterns can be classified into five basic categories: cassette exons, alternative 5’
and 3’ splice sites, retained introns andmutually exclusive exons (Fig. 14.1A). Combination of these
events andmore complicated splicing patters are possible [15]. Cassette exons are the most frequent
form of alternative splicing [7]. In addition to alternative splicing, alternative mRNA isoforms can
be generated by alternative promoter usage, alternative polyadenylation and RNA editing [16].
Typically a gene generates several different mRNA isoforms with often severe differences in
expression levels.

14.3.2 Systems for Exon Detection

cDNA arrays cannot discriminate between the splicing variants and detect the mixture of isoforms.
Therefore, specific array formats have been developed that discriminate splicing events. These high-
throughput analyses of splice variants were performed in two basic systems: bead-based fiber-optic
arrays and oligonucleotide arrays in slide format.

14.3.2.1 Fiber-optic Arrays

Bead-based fiber-optic arrays are sold by Illumina. In this technique, arrays of beads are randomly
assembled onto patterned optical fiber bundles. Each bead contains an oligonucleotide probe
which can detect a complementary probe. Only specified splicing variants can be detected using
this system, which requires the ligation of oligonucleotides prior to detection. The system is named
RASL for RNA-mediated annealing, selection, and ligation. Typically, oligonucleotides will be
designed that ligate across exon-boundaries to detect differences in the isoforms. One of these
oligonucleotides contains an index-sequence, which allows identification on the array. The oligo-
nucleotides are annealed on themRNA,which is captured on a solid phase using biotinylated oligo-
dT. In a next step, these oligonucleotides are ligated and amplified by PCR. The PCR products
are then hybridized to the array. In a subsequent step, the array is decoded, i.e., the beads binding to
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the index-sequence are identified by hybridization to colored beads carrying the known index-
sequence. The major advantage of the system is its high sensitivity and reproducibility by RT-PCR,
the drawback are the limited number of events that can be studied [11, 17]. Since the detection relies
on the amplification of short RNA parts, fractionated RNA resulting, for example, from storage in
paraffin embedded sections can be used [11].

A

B

CA

A5

A3

RI

ME

type of probe

exon body

exon junction, alternative

exon junction, constitutive

tiling

Figure 14.1 Detection of alternative splice variants with oligonucleotide designs. (A) Basic types of alternative
splicing. The alternative exon is indicated by a black box, constitutively used exons are indicated by a white box.
The splicing patterns are indicated by lines. CA: cassette exon, A5: alternative 5’ end exon, A3: alternative 3’ end
exon, RI: retained intron, ME: mutually exclusive exons. (B) Detection of alternative exons. Part of an mRNA is
indicated with constitutive exons as a white and the alternative exon as a black box. Oligonucleotides are indicated as
small lines, exon-junction probes as dotted lines. The exon-junction oligonucleotide is complementary to the
constitutive (white) exons. An increase of the alternative exons would be indicated by an increase of its exon-
junction and exon-body probes, and a decrease of the exon junction of the constitutive exons, as indicated by
small arrows. For simplicity, only one exon body probe is shown, usually there are at least three probes, space
permitting (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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14.3.2.2 Glass Arrays

The majority of arrays used to study alternative splicing, use oligonucleotides that are attached to
glass slides. These slides can be produced by ink-jet printing (Agilent, Exonhit) or by photolitho-
graphy (Affymetrix). The major advantage of ink-jet printing is that it can be easily customized,
since it does not require the generation of photolithograpical masks. The drawback is the smaller
number of spots per array (currently around 150,000). The major advantage of arrays generated by
photolithography is their high number of spots (currently around 5,500,000). A compromise
between the two systems is maskless photolithography offered byNimblegen, which creates custom
arrays with about 300,000 spots.

14.3.2.3 Probe Designs

Array designs differ in the nature of probe-sets. Probes can be arranged at even spacings in tiling
arrays; they can target only exon-bodies or exon-junctions (Fig. 14.1B). The use of exon-junction
probes (Fig. 14.1b, dotted lines) allows the direct probing of exon-exon junctions, whereas tiling
arrays indicate the relative change of exon expression. Custom-made designs often combine
different types of probes. The scale of the probes is another feature that differentiate various
designs. Probe-sets can be genome-wide, addressing either all exon-exon junctions [14] or all
currently known exons [18]. More recently, highly focused designs were used to study a smaller
number of better-characterized genes [11]. A large portion of the currently known exons is derived
from EST predictions, which is reflected in a bias towards the 5’ and 3’ ends of genes in array
designs based on these databases. This problem can be overcome by genome-wide tiling arrays.
Their usage identified a large number of new transcripts that are not annotated in the current
databases, which indicates that current database-generated genome-wide arrays will be incomplete
[19]. In an all slide-based system, the mRNA is transcribed into cDNA. During this reversed
transcription step, fluorescent dyes are incorporated into the cDNA, which is then hybridized to
the array. The details of the labeling and detection procedure have been recently reviewed [20].

14.3.2.4 Array Designs using Exon Junction Oligos

The detection of a splicing event with a combination of exon-junction and exon-body probes is
illustrated in Fig 14.1B. Typically, several probes are made against exons (exon body probe) and
a junction probe hybridizes half to the end of one exon and half to the beginning of the next exon.
An increase of exon usage is indicated by a simultaneous increase of signal for its junction and body
probes, whereas there is no change for the signal from the body probes from adjacent exons. In an
ideal case, the signal from the junction oligonucleotide detecting the joining of both constitutive
exons would decrease proportionally. However, in our laboratory we have never observed such a
perfect case. The combined signal from the body probes detecting the constitutive exons indicates
the general transcript level, which allows discrimination between alternative splicing and a simple
change in transcript abundance. There is flexibility in the design of the exon-body probes that can
be optimized for a similar hybridization temperature [21]. However, there is almost no flexibility in
the design of exon-junction probes. One solution for this problem is the usage of several exon-
junction probes that are offset by 1–2 nucleotides, which allows their combined analysis [14]. It is
also difficult to detect small exons with oligonucleotides as the exons are too short to allow the
design of body probes. Such short exons are frequently found as 3–nt long variations of alternative
3’ splice sites [22].

Commercially available Affymetrix designs do not contain junction probes. Here, a change in
exon usage is detected by a change in the splicing index, which is the logarithm of the ratio of the
exon signal to the total signal from the gene (log2[exon/total]).
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14.3.2.5 Array Designs using Tiling Probes

Tiling arrays can cover the complete genome and contain 25–mer oligonucleotides that are
currently spaced 5-35 bp apart, which defines the resolution of the arrays. Due to technical
progress, this resolution will increase. For each oligonucleotide, a nucleotide with a mismatch
serves as a control. One major advantage of tiling arrays is that they are unbiased, i.e., they do not
rely on previous experiments collected in the databases. This advantage became apparent when the
use of tiling arrays spaced 5-nt apart showed that more than half of the human gene expression is
not yet annotated [23].

14.4 Analysis Tools

The most difficult part of an array experiment is the data analysis and verification. Currently,
several algorithms are used without a single program emerging as a standard application, which
highlights the difficulty in the analysis. Arrays detecting alternative splicing are more complicated
than cDNA arrays, since they detect multiple products from one gene and have to discriminate
between changes in splicing and changes in the overall gene expression.

14.4.1 PLIER

The PLIER (Probe Logarithmic Error Intensity Estimate) method produces an improved signal
by accounting for experimentally observed patterns in probe behavior and handling errors at low
and high signal values. The PLIER algorithm was developed and released by Affymetrix in 2004.
Many commercially available software packages that analyze microarray data are using PLIER
(e.g., Avandis (Strand Genomic) and ArrayAssist [Stratagene]). The PLIER algorithm produces
an improved gene expression value that is a summary value for a probe set, which is done by
incorporating experimental observations of feature behavior. PLIER uses a probe affinity para-
meter, which represents the strength of a signal produced at a specific concentration for a given
probe. Calculation based on the data across the arrays defines the probe affinities and the error
model employed by PLIER assumes that the error is proportional to the observed intensity,
rather than to background-subtracted intensity. However, the derivation of the method also
assumes that the error of the mismatch probe is the reciprocal of the error of the perfect match
probe.

14.4.2 MIDAS

TIGR’s MIDAS (Microarray Data Analysis System) is a Java based application that offers an
interface to design microarray data analysis protocols combining one or more normalization and
filtering steps. This assumes that the data from individual hybridizations is treated in a uniform and
reproducible manner. MIDAS harbors the normalization modules that includes locally weighted
linear regression (loess; [24, 25]) and total intensity normalization. These can be linked with filters,
including low-intensity cutoff, intensity-dependent Z-score cutoffs, and replicate consistency trim-
ming creating a highly customizable method for preparing expression data for subsequent compar-
ison and analysis. Data analysis methods are constructed using a graphical scripting language and
can be saved for application to other data-sets. Scatter-plots generated by the program illustrate the
effects of each algorithm on the data.
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14.4.3 ASPIRE

ASPIRE (Analysis of Splicing by Isoform Reciprocity) was designed to identify the reciprocal
splicing changes between two samples i.e., it is normalized to steady-state levels. This approach

allows one to identify changes in alternative splicing with high sensitivity and to discriminate them
from the changes in RNA stability. Data quantification is based on the change in the fraction of
exon inclusion [26].

14.4.4 GenASAP

GenASAP (Alternative Splicing Array Platform) predicts the level of alternate splicing for exon-

skipping events detectable on custom microarray chips. It uses Bayesian learning in an unsuper-
vised probability model to accurately predict alternate splicing levels from the microarray data. It
reads the hybridization profiles of microarray data, while modeling noise processes and missing or

aberrant data. It has been applied to the global discovery and analysis of AS in mammalian cells
and tissues [27]. Different models have been recently reviewed [28].

14.4.5 Commercial Software

Algorithms have been implemented in several commercially available programs are summarized
below:

XRAY [Biotiquesystems]: The program can run in EXCEL spreadsheets and analysis gene
expression and alternative splicing events. It uses a mixed model ANOVA algorithm to discrimi-

nate between changes in alternative splicing and gene expression.
Genomatix’s ChipInspector [Genomatix]: Carries out significance analysis on the single-exon

probe level. Exon probes with significant expression ratios are annotated based on the Genomatix
proprietary genome annotation and analysis system ElDorado.

Partek Genomics Suite [Partek]: Performs statistical analysis and allows visualization of the
result. The program annotates all results and provides hyperlinks to internet databases of splicing.

Arrays from theAgilent platforms are distributed by Exonhit, which offers SpliceArrayAnalysis
Tool (SAT). The SpliceArray Analysis Tool is an Excel application, that allows identification of

changes in splicing by indicating expression values, fold changes, p-Values and Pearson correlation.

14.5 Experiments with Splice-site Sensitive Microarrays

Published experiments using microarrays that were designed to identify splicing variants are
summarized in Table 14.1. In almost all the array experiments performed, changes in alternative
splicing were validated by RT-PCR. The validation rates range from 35% [18] to 100% [26]. In the

validation, only false positive events were detected. It is likely that the false negative detection rates
are in the same range. Slightly higher validation rates were observed when real time-RT-PCR was
used [29], which probably reflects the ability of real time PCR to detect changes over a larger range

of RNA concentrations. The published data show that there is no significant difference between the
available analysis programs in predicting splicing events that can be validated by RT-PCR. The
highest validation rates are achieved when the result of the array experiment can be combined with
other experimental data, such as binding signatures of regulatory factors [30].
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Table 14.1 Overview of array experiments performed that detect variations in alternative splicing

Platform Comments Analysis Validation Ref

Affymetrix Platton

A prototype array was
used to predict tissue-
specific splice variants in
10 normal rat tissues.

The array represents 1600
rat genes. The
expression of each gene
is measured by 20 pairs
of perfectly match
and mismatched
probes (25–mer
oligonucleotide). The
probes are selected from
the 3’ region of each
gene, which biased
information to the 5’end

SPLICE, NEIGHBOR-
HOOD

50%, (3/6),
validated by
One-Step
RT-PCR

[33]

Prototype splice junction
microarray with exon-
body probes was used to
examine alternative
splicing in 22 adult
mouse tissues.

A combination of splice
junction and exon
probes were designed to
monitor 6216
alternative splicing
events derived from
alignment of mouse
EST and cDNA
sequences to the genome
sequences. Each splice-
junction probe set
contains six 25–mer
oligonucleotide probes
tiled across the junction.

custom 85%, validated by
RT-PCR

[31]

Prototype splice junction
microarray with exon-
body probes was used to
examine alternative
splicing in mouse N2A
cells after inhibition of
NMD.

The array design was
described by Sugnet
et al., [31].

custom 96%, (24/25),
validated by
RT-PCR

[34]

The Affymetrix GeneChip
Human Exon 1.0 ST
array was used to detect
alternative splicing in 20
paired tumor-normal
colon cancer samples.

The GeneChip Human
Exon array contains
�5.4 million probes
grouped into 1.4 million
exon clusters within the
known and predicted
transcribed region of the
entire genome. About
90% of the exons are
represented by four
25–mer oligonucleotide
probes.

PLIER, MIDAS,
ANOVA

35%, (15/43),
validated by
RT-PCR

[18]

An Affymetrix exon array
was used to detect
tissue-specific
alternative splicing in a
panel of 16 different
adult human tissues.

The array contains more
than 9.6 million probes
for more than one
million annotated and
predicted exon clusters.
� 90% of the exons are
covered by 4 probe
pairs. Each probe pair
consists of a perfect
match and a mismatch
probe.

Simplified expression
analysis (SEA),
DABG, splicing index

86%, (72/84),
by RT-PCR

[35]

14 Analysis of Alternative Splicing with Microarrays 273



Table 14.1 (continued)

Platform Comments Analysis Validation Ref

A custom Affymetrix
microarray to detect
alternative splicing in
brains of Nova knock-
out mice relative to
those of wild-type mice
and between different
brain and immune
tissues.

The microarray contains
40,443 exon-junction
probe sets derived from
7,175 genes with one or
more bioinformatically
predicted alternative
transcripts. Most probe
sets consist of six 25–mer
perfectly matched
probes spanning the
exon-exon junction.

ASPIRE 100%, (49/49),
validated by
RT-PCR

[26]

Agilent platform

An exon-junction array
was used to monitor
alternative splicing in
52 tissues and cell lines.

�125,000 different
oligonucleotide probes
36 nt in length, centrally
positioned with respect
to every consecutive
exon-exon junction are
designed for all human
Refseq mRNA
sequences representing
more than 10,000 multi-
exon human genes.

48%, (73/153),
validated by
One-Step
RT-PCR

[14]

A custom Agilent
microarray was used to
detect alternative
splicing in 5 human
tissues.

Exon-body probes (40
mer) and splice junction
probes (36 mer, 5 probes
per junction) were
designed for 316 human
genes derived from an
alternative splicing
database (ASAP).

85%, (11/13),
validated by real
time RT-PCR

[29]

Custom-spotted platform
was used to study
alternative splicing in
several mammalian
tissues and cell lines.

3126 alternative splicing
events representing 2647
distinct genes were
selected based on
sequence alignment of
mouse cDNA and EST
sequences to genome
sequences. Each
alternative splicing event
was measured by using a
probe set of 7 probes: 3
exon-body probes, 3
splice junction probes
and 1 intron probe.

GenASAP Validated by
One-Step
RT-PCR

[36]

A quantitative microarray
platform (Agilent) was
used to study alternative
splicing during T-cell
activation.

The array design was
described by Pan et al.,
2004

GenASAP 100%, (35/35),
validated by
One-Step
RT-PCR

[37]

A custom exon-junction
array (Agilent) was used
to monitor alternative
splicing events regulated
by 4 splicing factors in
Drosophila.

36–mer exon-exon
junction probes were
designed to assay all
annotated alternative-
splicing events (2931
genes) in Drosophila.

100%, (6/6),
validated by
RT-PCR

[38]
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Table 14.1 (continued)

Platform Comments Analysis Validation Ref

Other systems

A custom exon-junction
array was used to detect
alternative splicing in
mouse neuroblastoma
N2A cells in which the
expression of PTB,
nPTB, or both proteins
was knocked-down by
RNAi

The arrays probed the
splicing of �1300 exons
that were selected for
their likely functional
significance.

>80%, validated
by real time
RT-PCR

[39]

A self-printed
oligonucleotide array
designed for each
intron-containing yeast
gene was used to detect
intron retention caused
by the loss of 18
different mRNA
processing factors.

40-mer oligonucleotide
probes were designed to
detect the splice
junction, the intron, and
the second exon for each
yeast intron-containing
gene.

Splice Junction (SJ)
index, Intron
Accumulation (IA)
index

Validated by
RT-PCR,

[40]

A custom alternative
splicing microarray
(Geniom OneR system)
was used to identify
different mRNA
variants of neuron-
specific regulators in
Hodgkin Lymphoma
Cells.

Expression of 86 mRNA
involved in the
regulation of alternative
splicing was
investigated. 13 pairs of
25–mer oligonucleotides
were used to probe each
mRNA. �100 splicing
events were detected
using 13 pairs of
oligonucleotides
corresponding to the
constitutive or
alternative exons and 11
pairs of spanning
alternative splice
junctions.

90%, validated by
Semi quantitative
RT-PCR.

[32]

Maskless Array
Synthesizer (MAS)
technology was used to
synthesize custom
microarrays to generate
a gene expression map
for the Drosophila
melanogaster genome.

The array consisted of
179,972 probes (36-nt)
targeting exons, introns,
intergenic regions, and
splice junctions.

PEAB, ANOVA Not determined [41]

Cell-specific alternative
splicing was detected on
a fibre optic microarray
platform.

20 mer oligonucleotides
were used as probes to
hybridize both the exon
specific sequence and
the splice junctions.

100%, (6/6),
Validated by
RT-PCR,
RASL(RNA
mediated
annealing,
selection and
ligation)-PCR.

[17]

(Copies of tables are available in the accompanying CD.)
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The major outcomes of the current array analyses are the identification of functionally related
targets of the splicing factor NOVA–1 [30], the finding that tissue-specific exons are flanked by
highly conserved intronic parts [31] and the description of widespread changes of alternative
splicing in human tumors [11,32].

14.6 Problems with Array Analysis

The major problem with array experiments is their poor reproducibility with other methods, notably
RT-PCR. The validation rate can be as low as 35%. In the majority of cases it is around 50–70%
(Table 14.1). Since these numbers only address the false positive cases, the real error rates, that also
include false negatives, will bemuchhigher. One reason for the poor reproducibility could be the large
amount of unknown RNAs that often overlap with known transcripts [23]. An example is shown in
Fig. 14.2A,B.Here, an unknownRNA is expressed that contains the alternative exon (black box, Fig.
14.2B). Due to the up-regulation of this RNA, probes in the first alternative exon would indicate its
up-regulation, which could not be confirmed by RT-PCR using primers in exons 1 and 3.

The next problem that needs to be overcome is data analysis. Currently, several programs for
data analysis are available that use different algorithms. None of these programs showed consis-
tently better prediction of splicing events. In our laboratory, we analyzed the same data-sets with
different programs and surprisingly obtained different, non-overlapping predictions of changes in
alternative splicing. None of the programs tested showed better reproducibility of its prediction
with RT-PCR.

Another important constraint is that array experiments give no connectivity information
between distant exons. In the example in Fig. 14.2C, the array cannot determine whether exon 1
is connected with its downstream exon 5. In an hypothetical experiment where up-regulation of the
alternative exons 2 and 4 are observed, it cannot be determined by array analysis whether this is due
to the generation of a mRNA containing both alternative exons, or due to the appearance of two
mRNAs, each of which contain one alternative exon.

Figure 14.2 Problems and limitations of array analysis. (A) Hypothetical pre-mRNA with two alternatively spliced
exons, shown as black boxes. (B) The occurrence of new, until now unknown transcripts can simulate alternative
splicing events. In this example, an unkownRNA contains the alternative exon, identical to exon 2 in Figure A (black
box) that is flanked by novel exons (striped boxes). If this isoform is up-regulated under the experimental conditions,
it is impossible to distinguish between a change in alternative splicing that up-regulates the alternative exon or an
increased expression of this new RNA. (C) Connectivity problem. If array analysis detects changes, e.g., up-
regulation of both alternative exons, it cannot be predicted whether isoform 1 is up-regulated or isoforms 2 and 3
are simultaneously up-regulated, since the array does not give information about the connection of the exons
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14.7 Conclusion

Array analysis of alternative splicing events has emerged in the last few years as a promising high-
throughput analysis tool. The use of arrays to systematically analyze transcript structures have
already given significant insights into gene regulation; there are many additional transcripts
expressed than annotated, splicing factors seem to regulate biological meaningful set of genes
and numerous small changes are associated with tumor formation. At this stage, arrays are a
detection tool and it is likely that improvements in probe design, databases and analysis tools will
make arrays a reliable quantitative analysis tool.

Glossary and Abbreviations

PLIER Probe Logarithmic Error Intensity Estimate
MIDAS Microarray Data Analysis System
ASPIRE Analysis of Splicing by Isoform Reciprocity
GenASAP LAlternative Splicing Array Platform
SAT Splice Array Analysis Tool
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Chapter 15

An Introduction to Multiple Sequence

Alignment — and the T-Coffee Shop. Beyond

Just Aligning Sequences: How Good can you Make

your Alignment, and so What?

Steven M. Thompson

Abstract I begin the chapter with a discussion of the fundamental principles of multiple-sequence
alignment starting with pair-wise dynamic programming, then I move onto significance and
similarity statistics, then amino acid scoring matrices, and I end the introduction with multiple-
sequence alignment algorithms themselves. Reliability issues, complications, and applications of
multiple-sequence alignment are discussed next. The chapter concludes with a description and
tutorial about using the T-Coffee multiple-sequence alignment package.

Keywords Multiple sequence alignment � Dynamic programming � Significance � Reliability �
T-Coffee � M-Coffee � 3DCoffee

15.1 Introduction

What can we know about a biological molecule, given its nucleotide or amino acid sequence? How
does it fit into a particular system in some organism? What is its role in some network? We may be
able to learn about it by searching for particular patterns within it that may reflect some function,
such as the many motifs ascribed to catalytic activity; we can look at its overall content and
composition by performing several of the gene finding algorithms; we can map its restriction enzyme
or protease cut sites; and so on. However, what about comparisons with other sequences? Is it
worthwhile? Yes, naturally it is. Inference through homology is fundamental to all the biological
sciences.We can learn a tremendous amount by comparing and aligning our sequence against others.

Furthermore, the power and sensitivity of sequence-based computational methods dramatically
increase with the addition of more data. More data yields stronger analyzes — if done carefully.
Otherwise, it can confound the issue. The patterns of conservation become ever clearer by compar-
ing the conserved portions of sequences amongst a larger and larger data-set. Those areas most
resistant to change are most important to the molecule, and to the system, that molecule interacts
with. The basic assumption is that those portions of sequences of crucial structural and functional
value are most constrained against evolutionary change. They will not tolerate many mutations.
Not that mutation does not occur in these regions, it is just that most mutations in the area are
lethal, so we never see it. Other areas of the sequence are able to drift more readily, being less subject
to this evolutionary pressure. Therefore, sequences end up as a mosaic of quickly and slowly
changing regions over evolutionary time.

However, in order to learn anything by comparing sequences, we need to know how to compare
them. We can use those constrained portions as ‘anchors’ to create a sequence alignment allowing
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comparison, but this brings up the alignment problem and ‘similarity.’ It is easy to see that
sequences are aligned when they have identical symbols at identical positions, but what happens
when symbols are not identical, or the sequences are not of the same length?. How can we know
when the most similar portions of our sequences are aligned, when is an alignment optimal, and
does optimal mean biologically correct?

A ‘brute force,’ naive approach just would not work. Even without considering the introduction
of gaps, the computation required to compare all possible alignments between just two sequences
requires time proportional to the product of the lengths of the two sequences. Therefore, if two
sequences are approximately of the same length (N), this is a N2 problem. The calculation would
have to repeated 2N times to examine the possibility of gaps at each possible position within the
sequence, now a N4N problem. Waterman [1] pointed out that using this naı̈ve approach to align
two sequences, each 300 symbols long, would require1088 comparisons, more than the number of
elementary particles estimated to exist in the universe, and clearly impossible to solve. Part of the
solution to this problem is the dynamic programming algorithm, as applied to sequence alignment,
which will be reviewed next.

15.1.1 Dynamic programming

Dynamic programming is a widely applied computer science technique, often used in many
disciplines whenever optimal sub-structure solutions can provide an optimal overall solution. Let
us begin with an overview of sequence-alignment dynamic programming with just two sequences.
I’ll use an incredibly oversimplified example first; I’ll consider matching symbols to be worth one
point, and will not consider gapping at all. The solution occurs in two stages. The first begins very
much like the dot matrix methods; the second is totally different. Instead of calculating the ‘score
matrix’ on the fly, as is often taught as one proceeds through the graph, I like to completely fill in an
original ‘match matrix’ first, and then add points to those positions that produce favorable
alignments next. I also like to illustrate the process working through the cells many authors prefer
to work through the edges; they are equivalent. Points are added based on a ‘‘looking-back-over-
your-left-shoulder’’ algorithm rule where the only allowable trace-back is diagonally behind and
above. The illustration is given in Table 15.1.

Below are the two alignments from the path graph (f) in Table 15.1. They both have a score of
three, the three matches found by the algorithm, and the highest score in the bottom row of the
solved matrix:

SCATS SCA.TS
| || | ||

AC.TS ..ACTS

Most software will arbitrarily (based on some internal rule) choose one of these to report
as optimal. Some programs offer a HighRoad/LowRoad option to help explore this solution
space.

The next example will be slightly more difficult. Unlike the previous example without gap
penalties, I will now impose a very simple gap penalty function. Matching symbols will still be
worth one point, non-matching symbols will still be worth zero points, but we will penalize the
scoring scheme by subtracting one point for every gap inserted, unless they are at the beginning or
end of the sequence. In other words, end gaps will not be penalized; therefore, both sequences do
not have to begin or end at the same point in the alignment.

This zero penalty end-weighting scheme is the default for most alignment programs, but can
often be changed with a program option, if desired. However, the linear gap function
described here, and used in the example below, is a much simpler gap penalty function than
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that which is normally used in alignment programs. Normally [2] an ‘affine’ function is used,
the standard ‘y = mx + b’ equation for a line that does not cross the X, Y origin, where ‘b,’
the Y intercept, describes how much initial penalty is imposed for creating each new gap:

total penalty ¼ ð½length of gap� � ½gap extension penalty�Þ þ gap opening penalty

To run most alignment programs with the type of simple linear DNA gap penalty used in my
example below, you would have to designate a gap ‘creation’ or ‘opening’ penalty of zero, and a gap

Table 15.1 Dynamic programming without gap costs

a) The completed match matrix using one point for matching and zero points for mismatching:

S C A T S

A 0 0 1 0 0

C 0 1 0 0 0

T 0 0 0 1 0

S 1 0 0 0 1

b) Now begin to add points based on the best path through the matrix, always working diagonally, left to right and
top to bottom. Keep track of those best paths. The second row is completed here:

S C A T S

A 0 0 1 0 0

C 0 1 0 0+1 0+1
T 0 0 0 1 0

S 1 0 0 0 1

c) Continue adding the points based on the best previous path through the matrix. The third row is completed here:

S C A T S

A 0 0 1 0 0

C 0 1 0 1 1
T 0 0 0+1 1+1 0+1
S 1 0 0 0 1

d) The score matrix is now complete:

S C A T S

A 0 0 1 0 0

C 0 1 0 1 1
T 0 0 1 2 1
S 1 0 0+1 0+1 1+2

e) Now pick the bottom, right-most, highest score in the matrix and work your way back through it, in the opposite
direction as you arrived. This is called the trace-back stage, and the matrix is now referred to as the path graph. In
this case that highest score is in the right-hand corner, but it need not be:

S C A T S

A 0 0 1 0 0

C 0 1 0 1 1
T 0 0 1 2 1
S 1 0 1 1 3

f) Only the best trace-backs are now shown in outline characters. They are both optimal alignments:

S C A T S

A 0 0 1 0 0

C 0 1 0 1 1

T 0 0 1 2 1

S 1 0 1 1 3

(Copies of tables are available in the accompanying CD.)
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‘extension’ penalty of whatever counts in that particular program as an identical base match for
DNA sequences.

My example here uses two random sequences that fit the TATA promoter region consensus
of eukaryotes and of bacteria. The most conserved bases within the consensus are capitalized
by convention. The eukaryotic promoter sequence is along the X-axis, and the bacterial
sequence is along the Y-axis in the following example. The solution illustration begins at the
top of Table 15.2.

There may be more than one best path through the matrix. In this example, starting at the top
and working down as we did, then tracing back, I found two optimal alignments, each with a final

Table 15.2 Dynamic programming with a constant, linear gap cost

a) First complete a match matrix using one point for matching and zero points for mismatching between bases, just like in the previous
example:

c T A T A t A a g g

c 1 0 0 0 0 0 0 0 0 0

g 0 0 0 0 0 0 0 0 1 1

T 0 1 0 1 0 1 0 0 0 0

A 0 0 1 0 1 0 1 1 0 0

t 0 1 0 1 0 1 0 0 0 0

A 0 0 1 0 1 0 1 1 0 0

a 0 0 1 0 1 0 1 1 0 0

T 0 1 0 1 0 1 0 0 0 0

b) Now add and subtract the points based on the best path through the matrix, working diagonally, left to right and top to bottom, just as
before. However, when you have to jump a box to make the path, subtract one point per box jumped, except at the beginning or end of the
alignment, so that end gaps are not penalized. Fill in all the additions and subtractions, calculate the sums and differences as you go, and
keep track of the best paths. The score matrix is shown with all the calculations below:

c T A T A t A a g g

c 1 0 0 0 0 0 0 0 0 0

g 0 0+1=1 0+0�0 =0 0+0�0 =0 0+0�0 =0 0+0�0 =0 0+0�0 =0 0+0�0 =0 1+0�0 =1 1+0=1

T 0 1+1�1 =1 0+1=1 1+0 or+1�1 =1 0+0�0 =0 1+0�0 =1 0+0�0 =0 0+0�0 =0 0+0�0 =0 0+1=1

A 0 0+0�0 =0 1+1=2 0+1=1 1+1=2 0+1�1 =0 1+1=2 1+1�1 =1 0+0�0 =0 0+0�0 =0

t 0 1+0�0 =1 0+1�1 =0 1+2=3 0+1=1 1+2=3 0+2�1 =1 0+2=2 0+1=1 0+0�0 =0

A 0 0+0�0 =0 1+1=2 0+2�1 =1 1+3=4 0+3�1 =2 1+3=4 1+3�1 =3 0+2=2 0+1=1
a 0 0+0�0 =0 1+0�0 =1 0+2=2 1+3�1 =3 0+4=4 1+4�1 =4 1+4=5 0+3=3 0+2=2
T 0 1+0�0 =1 0+0�0 =0 1+1=2 0+2=2 1+3=4 0+4=4 0+4=4 0+5=5 0+5�1 =4

c) Clean up the score matrix next. I’ll only show the totals in each cell in the matrix shown below. All the best paths are highlighted:

c T A T A t A a g g

c 1 0 0 0 0 0 0 0 0 0

g 0 1 0 0 0 0 0 0 1 1

T 0 1 1 1 0 1 0 0 0 1
A 0 0 2 1 2 0 2 1 0 0

t 0 1 0 3 1 3 1 2 1 0

A 0 0 2 1 4 2 4 3 2 1
a 0 0 1 2 3 4 4 5 3 2
T 0 1 0 2 2 4 4 4 5 4

d) Finally, convert the score matrix into a trace-back path graph by picking the bottom-most, furthest right and highest scoring coordinate.
Then choose the trace-back route that got you there, to connect the cells all the way back to the beginning using the same ‘over-your-left-
shoulder’ rule. The two best trace-back routes are now highlighted with outline font in the trace-back matrix below:

c T A T A t A a g g

c 1 0 0 0 0 0 0 0 0 0

g 0 1 0 0 0 0 0 0 1 1

T 0 1 1 1 0 1 0 0 0 1

A 0 0 2 1 2 0 2 1 0 0

t 0 1 0 3 1 3 1 2 1 0

A 0 0 2 1 4 2 4 3 2 1

a 0 0 1 2 3 4 4 5 3 2

T 0 1 0 2 2 4 4 4 5 4

(Copies of tables are available in the accompanying CD.)
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score of 5, using our example’s zero/one scoring scheme. This score is the highest, bottom-right
value in the trace-back path graph, the sum of six matches minus one interior gap in one path, and
the sum of five matches minus no interior gaps in the other. This score is the number optimized by
the algorithm, not any type of a similarity or identity percentage. This first path is the GCG
Wisconsin Package [3] Gap program High Road alignment found with this example’s parameter
settings (note that GCG uses a score of 10 for a base match here, not 1):

GAP of: Euk_Tata.Seq to: Bact_Tata.Seq

Euk_Tata: A random Eukaryotic promoter TATA Box
Preferred region: center between �36 and �20.
Bact_Tata: A random sequence that fits the consensus from the
standard E. coli RNA polymerase promoter ‘Pribnow’ box –10 region.

Gap Weight: 0 Average Match: 10.000
Length Weight: 10 Average Mismatch: 0.000

HighRoad option LowRoad option

Quality: 50 Quality: 50

Ratio: 6.250 Ratio: 6.250
Percent Similarity: 75.000 Percent Similarity: 62.500

Length: 10 Length: 10
Gaps: 2 Gaps: 80

Percent Identity: 75.000 Percent Identity: 62.500

1 cTATAtAagg 10 1 cTATAtAagg 10
| | | | | | | | | | |

1 c g . TAtAaT. 8 1 . c gTAtAaT. 8

The GCG Low Road alignment is my second, equivalent path. Notice that even though it
has 62.5% identity as opposed to 75% identity in the HighRoad alignment, it has exactly the
same score! Another way to explore the dynamic programming solution space is to reverse the
entire process. This can often discover other alignments; therefore, see alternative by rever-
sing the sequences.

To recap, and for people who like mathematics, an optimal pair wise alignment is defined as an
arrangement of two sequences, 1 of length i and 2 of length j, such that:

1) you maximize the number of matching symbols between 1 and 2;
2) you minimize the number of gaps within 1 and 2; and
3) you minimize the number of mismatched symbols between 1 and 2.

Therefore, the actual solution can be represented by the following recursion:

Sij ¼ sij þmax

Si�1 j�1 or

max Si�x j�1 þ wx�1 or

25 x5 i

max Si�1 j�y þ wy�1

25 y5 i

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;
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where Sij is the score for the alignment ending at i in sequence 1 and j in sequence 2,

sij is the score for aligning i with j,
wx is the score for making a x long gap in sequence 1,
wy is the score for making a y long gap in sequence 2; and
allowing gaps to be any length in either sequence.

However, just because dynamic programming guarantees an optimal alignment, it is not
necessarily the only optimal alignment. Furthermore, the optimal alignment is not necessarily the
‘right’ or biologically relevant alignment! Significance estimators, such as Expectation values and
Monte Carlo simulations can give you some handle on this, but you must always question the
results of any computerized solution, based on what you know about the biology of the system. The
above example illustrates the Needleman and Wunsch [4] global solution. Later refinements [5]
demonstrated how dynamic programming could also be used to find optimal local alignments. To
solve dynamic programming using local alignment (without going into all the gory details), the
following two tricks can be used:

1) Mismatches are penalized by using a match function that assigns negative numbers to them.
Therefore, bad paths quickly become very bad. This leads to a trace-back pathmatrix withmany
alternative paths, most of which do not extend the full length of the graph.

2) The best trace-back within the overall graph is chosen. This does not have to begin or end at the
edges of the matrix — it is the best segment of alignment.

15.1.2 Significance

The concept of homology versus similarity is particularly misunderstood: there is a huge differ-
ence! Similarity is merely a statistical parameter that describes how much two sequences, or
portions of them, are alike according to some set scoring criteria. It can be normalized to
ascertain statistical significance as in database searching methods, but it is still just a number.
Homology, in contrast and by definition, implies an evolutionary relationship — more than just
the fact that all life evolved from the same primordial ‘slime.’ You need to be able to demonstrate
some type of evolutionary lineage between the organisms or genes of interest in order to claim
homology. Better yet, one can demonstrate experimental evidence, structural, morphological,
genetic, or fossils, that corroborates your assertion. There really is no such thing as percent
homology; something is either homologous or it’s not. Walter Fitch (personal communication)
explained with the joke, ‘‘homology is like pregnancy — you can’t be 45% pregnant, just like
something can’t be 45% homologous. You either are or you are not.’’ Do not make the mistake of
calling any old sequence similarity homology. Highly significant similarity can argue for homol-
ogy, not the other way around.

So, how do you tell if a similarity, in other words, an alignment discovered by some program,
means anything? Is it statistically significant, is it truly homologous, and even more importantly,
does it have anything to do with real biology? Many programs generate percent similarity scores;
however, as seen above, these really do not mean a whole lot. Don’t use percent similarities or
identities to compare sequences except in the roughest way. They are not optimized or normalized
in any manner. Quality scores mean a lot more but are difficult to interpret. At least they take the
length of similarity, all of the necessary gaps introduced, and the matching of symbols all into
account, but quality scores are only relevant within the context of a particular comparison or
search. The quality ratio is the metric optimized by dynamic programming divided by the length of
the shorter sequence. As such, it represents a fairer comparison metric, but it also is relative to the
particular scoring matrix and gap penalties used in the procedure.
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A traditional way of deciding alignment significance relies on an old statistical trick —Monte
Carlo simulations. This type of significance estimation has implicit statistical problems, however,
few practical alternatives exist for just comparing two sequences, and they are fast and easy.
Monte Carlo randomization options in dynamic programming alignment algorithms compare an
actual score, in this case the quality score of an alignment, against the distribution of scores of
alignments of a randomized sequence. These options randomize your sequence at least 100 times
after the initial alignment and then generate the jumbled alignment scores and a standard
deviation based on their distribution. Comparing the mean of the randomized sequence align-
ment score to the original score, using a ‘Z-score’ calculation. can help you decide the signifi-
cance. An old ‘rule-of-thumb’ is, if the actual score is much more than three standard deviations
above the mean of the randomized scores, the analysis may be significant; if it is much more than
five, than it probably is significant; and if it is above nine, then it is definitely significant. Many
Z-scores measure this distance from the mean using a simplistic Monte Carlo model assuming a
normal Gaussian distribution, in spite of the fact that ‘sequence-space’ actually follows an
‘extreme value distribution’; however, this simplistic approximation estimates significance
quite well:

Z-score ¼ ½ðactual scoreÞ � ðmean of randomized scoresÞ�
ðstandard deviation of randomized score distributionÞ

When the two TATA sequences from the previous dynamic programming example are com-
pared to one another using the same scoring parameters as before, but incorporating a Monte
Carlo Z-score calculation, their similarity is not found to be significant. The mean score based
on 100 randomizations was 41.8, +/� a standard deviation of 7.4. Plugged into the formula: (50 –
41.8) / 7.4 = 1.11, i.e., there is no significance to the match in spite of 75% identity. Composition can
make a huge difference— the similarity is merely a reflection of the relative abundance of A’s and T’s in
the sequences

The FastA [6, 7], BLAST [8, 9], Profile [10], and HMMer [11] search algorithms, all use a similar
approach, but base their statistics on the distance of the query matches from the actual, or on a
simulated extreme value distribution from the rest of the ‘insignificantly similar’ members of the
database being searched. For alignments without gaps, the math generalizes such that the Expecta-
tion value E relates to a particular score S through the function E = Kmne��s [12]. In a database
search,m is the length of the query and n is the size of the database in residues.K and � are supplied
by statistical theory, dependent on the scoring system and the background amino acid frequencies,
and calculated from the actual or simulated database alignment distributions. Expectation values
are printed in scientific notation and the smaller the number, i.e., the closer it is to 0, the more
significant the match. Expectation values show us how often we should expect a particular
alignment to occur merely by chance alone in a search of database particular size. In other
words, in order to assess whether a given alignment constitutes evidence for homology, it will
help to know how strong an alignment can be expected from chance alone. Rough, conservative
guidelines to Z-scores and Expectation values from a typical protein search are given in Table 15.3.

Table 15.3 Rough, conservative guidelines to Z-scores and Expectation values from a typical protein search

�Z-score �E value Inference

�3 �0.1 little, if any, evidence for homology, but impossible to disprove!

ffi5 ffi10�2 probably homologous, but may be due to convergent evolution

�10 �10�3 definitely homologous

(Copies of tables are available in the accompanying CD.)
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Be very careful with any guidelines such as these, because they are entirely dependent on both the
size and content of the database being searched as well as on how often you perform the search.
Think about it: the odds are way different for a rolling dice depending on how many dice you roll,
whether they are ‘loaded’ or not, and how often you try.

Another very powerful empirical method of determining significance is to repeat a database
search with the entry in question. If that entry finds more significant ‘hits’ with the same sort of
sequences as the original search, then the entry in question is undoubtedly homologous to the
original entry, i.e.,the homology is transitive. If it finds entirely different types of sequences, then it
probably is not. Modular proteins with distinctly separate domains confuse issues considerably,
but the principles remain the same, and can be explained through domain swapping and other
examples of non-vertical transmission. And, finally, the ‘gold-standard’ of homology is shared
structural folds — if you can demonstrate that two proteins have the same structural fold, then,
regardless of similarity, at least that particular domain is homologous between the two.

15.1.3 Scoring Matrices

However, what about protein sequences — conservative replacements and similarities, as opposed
to identities? This will certainly be an additional complication. Particular amino acids are very
much alike, structurally, chemically, and genetically. How can we take advantage of the amino acid
similarity in our alignments? People have been struggling with this problem since the late 1960’s.
Dayhoff [13] unambiguously aligned closely related protein data-sets (no more than 15% different,
and in particular cytochrome), available at that point in time and noticed that certain residues, if
they mutate at all, are prone to change into certain other residues. As it works out, these
propensities for change fell into the same categories that chemists had known for years — those
same chemical and structural classes mentioned above — conserved through the evolutionary
constraints of natural selection. Dayhoff’s empirical observation quantified these changes. Based
on themultiple-sequence alignments that Dayhoff created and the empirical amino acid frequencies
within those alignments, the assumption that estimated mutation rates in closely related proteins
can be extrapolated to more distant relationships, and with matrix and logarithmic mathematics,
Dayhoff was able to empirically specify the relative probabilities at which different residues
mutated into other residues through evolutionary history, as appropriate within some level of
divergence between the sequences considered. This is the basis of the famous PAM (corrupted
acronym of ‘accepted point mutation’) 250 (meaning that the matrix has been multiplied by itself
250 times) log odds matrix.

Since Dayhoff’s time, other bio-mathematicians [esp. see ref- 14], BLOSUM series of matrices,
and for a somewhat controversial matrix see [15], have created matrices that are regarded more
accurate than Dayhoff’s original, but the concept remains the same. Furthermore, Dayhoff’s
original PAM 250 matrix remains a classic, as historically the most widely used amino acid
substitution matrix. Collectively, these types of matrices are known as symbol comparison tables,
log odds matrices, and substitution or scoring matrices, and they are fundamental to all sequence
comparison techniques.

The default amino acid scoring matrix for most protein similarity comparison programs is
now the BLOSUM62 table [14]. The ‘‘62’’ refers to the minimum level of identity within the
ungapped sequence blocks that went into the creation of the matrix. Lower BLOSUM numbers
are more appropriate for more divergent data-sets. The BLOSUM62 matrix is given below in
Table 15.4; values of magnitude � 
 4 are drawn in shadowed characters to make them easily
recognizable.

Notice that positive identity values range from 4 to 11, and negative values, for rare substitu-
tions, go as low as �4. The most conserved residue is tryptophan with an identity score of 11;
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Table 15.4 The BLOSUM62– amino acid scoring matrix

A B C D E F G H I K L M N P Q R S T V W X Y Z

A 4 �2 0 �2 �1 �2 0 �2 �1 �1 �1 �1 �2 �1 �1 �1 1 0 0 �3 �1 �2 �1
B �2 6 �3 6 2 �3 �1 �1 �3 �1 �4 �3 1 �1 0 �2 0 �1 �3 �4 �1 �3 2

C 0 �3 9 �3 �4 �2 �3 �3 �1 �3 �1 �1 �3 �3 �3 �3 �1 �1 �1 �2 �1 �2 �4
D �2 6 �3 6 2 �3 �1 �1 �3 �1 �4 �3 1 �1 0 �2 0 �1 �3 �4 �1 �3 2

E �1 2 �4 2 5 �3 �2 0 �3 1 �3 �2 0 �1 2 0 0 �1 �2 �3 �1 �2 5

F �2 �3 �2 �3 �3 6 �3 �1 0 �3 0 0 �3 �4 �3 �3 �2 �2 �1 1 �1 3 �3
G 0 �1 �3 �1 �2 �3 6 �2 �4 �2 �4 �3 0 �2 �2 �2 0 �2 �3 �2 �1 �3 �2
H �2 �1 �3 �1 0 �1 �2 8 �3 �1 �3 �2 1 �2 0 0 �1 �2 �3 �2 �1 2 0

I �1 �3 �1 �3 �3 0 �4 �3 4 �3 2 1 �3 �3 �3 �3 �2 �1 3 �3 �1 �1 �3
K �1 �1 �3 �1 1 �3 �2 �1 �3 5 �2 �1 0 �1 1 2 0 �1 �2 �3 �1 �2 1

L �1 �4 �1 �4 �3 0 �4 �3 2 �2 4 2 �3 �3 �2 �2 �2 �1 1 �2 �1 �1 �3
M �1 �3 �1 �3 �2 0 �3 �2 1 �1 2 5 �2 �2 0 �1 �1 �1 1 �1 �1 �1 �2
N �2 1 �3 1 0 �3 0 1 �3 0 �3 �2 6 �2 0 0 1 0 �3 �4 �1 �2 0

P �1 �1 �3 �1 �1 �4 �2 �2 �3 �1 �3 �2 �2 7 �1 �2 �1 �1 �2 �4 �1 �3 �1
Q �1 0 �3 0 2 �3 �2 0 �3 1 �2 0 0 �1 5 1 0 �1 �2 �2 �1 �1 2

R �1 �2 �3 �2 0 �3 �2 0 �3 2 �2 �1 0 �2 1 5 �1 �1 �3 �3 �1 �2 0

S 1 0 �1 0 0 �2 0 �1 �2 0 �2 �1 1 �1 0 �1 4 1 �2 �3 �1 �2 0

T 0 �1 �1 �1 �1 �2 �2 �2 �1 �1 �1 �1 0 �1 �1 �1 1 5 0 �2 �1 �2 �1
V 0 �3 �1 �3 �2 �1 �3 �3 3 �2 1 1 �3 �2 �2 �3 �2 0 4 �3 �1 �1 �2
W �3 �4 �2 �4 �3 1 �2 �2 �3 �3 �2 �1 �4 �4 �2 �3 �3 �2 �3 11 �1 2 �3
X �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1
Y �2 �3 �2 �3 �2 3 �3 2 �1 �2 �1 �1 �2 �3 �1 �2 �2 �2 �1 2 �1 7 �2
Z �1 2 �4 2 5 �3 �2 0 �3 1 �3 �2 0 �1 2 0 0 �1 �2 �3 �1 �2 5

(Copies of tables are available in the accompanying CD.)
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cysteine is next with a score of 9; histidine gets 8; both proline and tyrosine get scores of 7. These
residues get the highest scores because of two biological factors: they are very important to the
structure and function of proteins, and they are the rarest amino acids found in nature. Also check
out the hydrophobic substitution triumvirate — isoleucine, leucine, valine, and to a lesser extent
methionine— all easily swap places. So, rather than using the zero/one match function that we used
in the previous dynamic programming examples, protein sequence alignments use the match
function provided by an amino acid scoring matrix. The concept of similarity becomes very
important with some amino acids being ‘more similar’ than others.

15.1.4 Multiple sequence dynamic programming

Dynamic programming reduces the pair wise alignment problem’s complexity to order N2. But
how do you work with more than just two sequences at a time? It becomes a much harder problem.
You could manually align your sequence data with an editor, but some type of an automated
solution is desirable, at least as a starting point for manual alignment. However, solving the
dynamic programming algorithm for more than just two sequences rapidly becomes intractable.
Dynamic programming’s complexity, and hence its computational requirements, increases expo-
nentially with the number of sequences in the data-set being compared (complexity=[sequence
length]number of sequences). Mathematically this is an N-dimensional matrix — quite complex, pair
wise dynamic programming solves a two-dimensional matrix and the complexity of the solution is
equal to the length of the longest sequence squared. A three-member standard dynamic program-
ming sequence comparison would be a matrix with three axes, the length of the longest sequence
cubed, and so forth. You can at least draw a three-dimensional matrix, but more than that becomes
impossible to even visualize. It quickly boggles the mind!

Several different heuristics have been employed over the years to simplify the complexity of the
problem. One program, MSA [16], attempts to simultaneously solve the N-dimensional matrix
recursion using a bounding box trick. However, the algorithm’s complexity precludes its use in
most situations, except with very small data-sets. One way to simultaneously solve the algorithm
and yet reduce its complexity is to restrict the search space to only the most conserved ‘local’
portions of all the sequences involved. This approach is used by the program PIMA [17]. MSA and
PIMA are both available through the Internet at several bioinformatics servers (in particular
see 18], or they can be installed on your own machine.

15.1.5 How the Algorithms Work

Most implementations of automated multiple alignment modify dynamic programming by estab-
lishing a pair wise order in which to build the alignment. This heuristic modification is known as
pair wise, progressive dynamic programming. Originally attributed to Feng and Doolittle [19], this
variation of the dynamic programming algorithm generates a global alignment, but restricts its
search space, at any one time, to a local neighborhood of the full length of only two sequences.
Consider a group of sequences. First, all are compared to each other, pair wise, using some quick
variation of standard dynamic programming. This establishes an order for the set, most to least
similar, like a ‘guide-tree’ if you will. The sub-groups are clustered together similarly. The
algorithm then takes the top two, most similar sequences, and aligns them. It then creates a
quasi-consensus of those two and aligns that to the third sequence. Next create the same sort of
quasi-consensus of the first three sequences and align that to the forth most similar. The way the
program makes and uses this ‘consensus’ sequence is one of the big differences between the various
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implementations. This process, all using standard, pair wise dynamic programming, continues until
it has worked its way through all of the sequences and/or sets of clusters, to complete the full
multiple-sequence alignment.

The pair wise, progressive solution is implemented in several programs. Perhaps ClustalW [20]
and its multi-platform, graphical user interface ClustalX [21] are the most popular. ClustalWmade
the first major advances, beyond the basic Feng and Doolittle algorithm, by incorporating variable
sequence weighting, dynamically varying gap penalties and substitution matrices, and a neighbor-
joining (NJ) [22] guide-tree. The programs can be downloaded from the ClustalX homesite, ftp://
ftp-igbmc.u-strasbg.fr/pub/ClustalX/, to install on your own machine, or they can be run through
theWorld WideWeb (WWW) at several sites. ClustalX is available for most windowing Operating
Systems: most UNIX flavors, Microsoft Windows, and Macintosh. Complete documentation
comes with the program and is accessed through a ‘‘Help’’ menu. The GCG program, PileUp
implements a similar method, but without the later innovations, and ClustalW is included in the
GCG package as well.

Several variations on the theme have come along in recent years. T-Coffee (Tree-based
Consistency Objective Function For alignment Evaluation, [23]) was one of the first after Clus-
talW, and it has gained much favor. It will be presented in further detail in this chapter’s final
section. Its biggest innovation is the use of a pre-processed, weighted library of all the pair wise
global alignments between the sequences in the data-set, plus the ten best local alignments asso-
ciated with each pair of sequences. This helps build both the NJ guide-tree and the progressive
alignment. Furthermore, the library is used to assure consistency and help prevent errors,
by allowing ‘forward-thinking’ to see whether the overall alignment will be better one way or
another after particular segments are aligned one way or another. Notredame [24] makes the apt
analogy of school schedules: everybody, students, teachers and administrators, with some folk
being more important than others, i.e., the weighting factor, puts the schedule they desire in a big
pile, i.e., T-Coffee’s library, with the trick being to best fit all the schedules to one academic
calendar, so that everybody is happiest, i.e., T-Coffee’s final multiple sequence alignment. T-Coffee
is one of the most accurate multiple sequence alignment methods available because of this ratio-
nale, but it is not the fastest.

Muscle [25] is another relatively new multiple-sequence alignment program. It is incredibly
fast, yet nearly as accurate as T-Coffee. Muscle is an iterative method that uses weighted log-
expectation profile scoring along with a slew of optimizations. It proceeds in three stages: draft
progressive using k-mer counting, improved progressive using a revised tree from the previous
iteration, and refinement by sequential deletion of each tree edge with subsequent profile
realignment. Another fairly new program, MAFFT [26], can be run either in the fast, approx-
imate mode, using a Fast Fourier Transformation, where its capability to handle large data-sets
and its speed is similar to Muscle, or in a slow, iteratively refined, optimized mode, where its
results and capabilities are similar to T-Coffee. Perhaps the most accurate new multiple-sequence
alignment program is ProbCons [27]. It uses the Hidden Markov Model (HMM) techniques and
posterior probability matrices that compare random pair wise alignments to expected pair wise
alignments. Probability consistency transformation is used to re-estimate the scores, and a guide-
tree is then constructed, which is used to compute the alignment, which is then iteratively refined.
These methods and more are all tied into T-Coffee as external modules, as long as they are all
installed on your system.

15.1.6 Coding DNA Issues

All of these alignment algorithms, pair wise, multiple, and database similarity searching, are far
more sensitive at the amino acid level than at the DNA level. Twenty match symbols are just
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much easier to align then only four; the signal to noise ratio is so much better. Plus, the concept of
similarity applies to amino acids, but generally not to nucleotides. Furthermore, manyDNA base
changes (especially third position changes) do not change the encoded protein. All of these factors
drastically increase the ‘noise’ level of the DNA; typically giving the protein searches a much
greater ‘look-back’ time, at least doubling it. Therefore, database searching and sequence align-
ment should always be done on a protein level, unless one is dealing with noncoding DNA, or if
the sequences are so similar as to not cause any problems. Therefore, if dealing with coding
sequences, translate the DNA to its protein counterpart, before performing multiple-sequence
alignment.

Even if one is dealing with very similar coding sequences, where the DNA can be directly
aligned, it is often best to align the DNA along with its corresponding proteins. In addition to the
much more easily achieved alignment, this also ensures that the alignment gaps are not placed
within codons. Phylogenetic analysis can then be performed on the DNA rather than on the
proteins. This is especially important when dealing with data-sets that are quite similar, since the
proteins may not reflect many differences hidden in the DNA. Furthermore, many people prefer
to run phylogenetic analyzes on DNA rather than protein regardless of how similar they are —
the multiple substitution models have a long and well-accepted history, and yet are far simpler.
In fact, some phylogenetic inference algorithms do not even take advantage of amino acid
similarity when dealing with protein sequences; they only count the identities, though many
others can use PAM style models. However, the more diverged a data-set becomes, the more
random the third and eventually the first codon positions become, which introduces noise (error)
into the analysis. Therefore, often the third positions and sometimes first positions are masked
out of the data-sets. Just like in most of computational molecular biology, one is always
balancing signal against noise. Too much noise or too little signal, both degrade the analysis
to the point of nonsense.

Several scripts and programs, as well as some Web servers, can perform this sort of codon-
based alignment, but they can be a bit tricky to run. Examples include mrtrans [28] (also available
in EMBOSS [29] as tranalign and in BioPerl [30] as aa_to_dna_aln), transAlign [31], RevTrans
[32], protal2dna [33], and PAL2NAL [34]. Dedicated sequence analysis editors, such as GCG’s
SeqLab, based on Smith’s Genetic Data Environment (GDE), [35] can also be used for this in a
manual process. The logic to this manual paired protein and DNA codon alignment approach is
as follows:

1) The easy case is where you can align the DNA directly. If the DNA sequences are directly
alignable because they are quite similar, then one can use whatever automated tool one wants to
create one’s DNA alignment and load it into the multiple sequence editor. Next, the editor’s
align translation function is used to create aligned corresponding protein sequences. Select
the region to translate based on the CDS reference in each DNA sequence’s annotation. Be
careful of CDS entries that do not begin at position 1— the GenBank CDS feature annotation
‘‘/codon_start=’’ identifies which position the translation begins within the first codon listed
for each gene. Onemay also have to trim the sequences down to just the relevant gene or exons,
especially if they’re genomic. Group each protein to its corresponding DNA sequence, if the
option is available, so that subsequent manipulations will keep them together.

2) The way more difficult case is where one will need to use the protein sequences to create the
alignment because the DNA is not directly alignable. In this case, one needs to create the
protein sequence alignment first, and then load their corresponding DNA sequences into the
editor. The DNA sequence accession codes can be found in the annotation of the protein
sequence entries. Next translate the unaligned DNA sequences into new protein sequences
with the align translation function and group these to their corresponding DNA sequences,
just as above. However, this time the DNA along with their translated sequences are
not aligned as a set, just the other protein set is aligned. Also, group all of the aligned protein
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data-set together, separately from the DNA/aligned translation set. Now comes the manual
part; slide the original aligned protein sequence set apart to match the codons of the DNA
along with its aligned translation, inserting gaps in whichever set needs them to recreate the
alignment. Merge the newly aligned sequences into the existing alignment group as you
go, and then start on the next one. It sounds difficult, but since one is matching up two
identical protein sequences, the DNA translation and the original aligned protein, it’s really
not too bad.

Multiple sequence alignment is much more difficult if one is forced to align nucleotides, because
the region does not code for a protein. Automated methods may be able to help as a starting point,
but they are certainly not guaranteed to come up with a biologically correct alignment. The
resulting alignment will probably have to be extensively edited, if it works at all. Success will largely
depend on the similarity of the nucleotide data-set.

15.2 Reliability?

One liability of most global progressive, pair wisemethods is that they are entirely dependent on the
order in which the sequences are aligned. Fortunately, ordering them from most similar to least
similar usually makes biological sense and works quite well. However, the techniques are very
sensitive to the substitution matrix and gap penalties specified. Some programs allow ‘fine-tuning’
of areas of an alignment by realignment with different scoring matrices and/or gap penalties; this
can be extremely helpful. However, any automatedmultiple sequence alignment program should be
thought of as only a tool to offer a starting alignment that can be improved upon, not the ‘end-all-
to-meet-all’ solution, guaranteed to provide the ‘one-true’ answer. Although, in this post-genomics
era, when one is dealing with giga bases of data, it does make sense to start with the ‘best’ solution
possible. This is the premise of using a very accurate multiple-sequence alignment package, such as
T-Coffee [23].

Regardless of the program used to create an alignment, always use comparative approaches to
help assure its reliability. After the program has offered its best guess, try to improve it further.
Think about it— a sequence alignment is a statement of positional homology— it is a hypothesis of
evolutionary history. It establishes the explicit homologous correspondence of each individual
sequence position, in each column in the alignment. Therefore, ensure that you have prepared a
good one— be sure that it makes sense— devote considerable time and energy towards developing
the best alignment possible.

Editing alignments to ensure that all columns are truly homologous should be encouraged.
Dedicated sequence alignment editing software such as GCG’s SeqLab [3], Jalview [36], Se-Al [37],
and SeaView [38] are great for this, but any editor will do, as long as the sequences end up properly
formatted afterwards. Use your understanding of the system to help guide your judgment. Look for
conserved functional sites and other motifs — they should all line up. Searches of the PROSITE
Database of protein families and domains [39] for catalogued structural, regulatory, and enzymatic
consensus patterns or ‘signatures’ in one’s data-set can help, as can de novo motif discovery tools
like the MEME [40] and MotifSearch [41] program pair.

Make subjective decisions. Is it good enough: do things line up the way that they should? Assure
that the known enzymatic, regulatory, and structural elements all align. Look for columns of
strongly conserved residues such as tryptophans, cysteines, and histidines; important structural
amino acids such as prolines, tyrosines and phenylanines; and the conserved isoleucine, leucine,
valine substitutions. If, after all else, you decide that you just can’t align some region, or an entire
sequence, then get rid of it. Another alternative is to use the mask function available in some
programs. Cutting an entire sequence out of an alignment may leave columns of gaps across the
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entire alignment that will have to be removed. The extreme amino- and carboxy-termini (5’ and 3’
in DNA) seldom align nicely; they are often jagged and uncertain, and should probably be
excluded. The results of subsequent analyses are absolutely dependent upon the quality of your
alignment.

Researchers have successfully used the conservation of co-varying sites in ribosomal and other
structural RNA alignments to assist in alignment refinement. That is, as one base in a stem
structure changes the corresponding Watson-Crick paired base will change in a corresponding
manner. This principle has guided the assembly of rRNA structural alignments at the Ribosomal
Database Project at Michigan State University [42] and at the University of Gent, Belgium, at the
European Ribosomal RNA database [43].

Be sure an alignment makes biological sense — align things that make sense to align. Beware of
comparing ‘apples and oranges.’ Be particularly suspectful of sequence data-sets found through
text-based database searches such as Entrez [44] and GCG’s LookUp (based on the Sequence
Retrieval System [SRS] of Etzold and Argos [45]). For example, don’t try to align receptors and/or
activators with their namesake proteins. Be wary of trying to align genomic sequences with cDNA,
when working with DNA: the introns will cause all sorts of headaches. Similarly, aligning mature
and precursor proteins, or alternate splicing forms, from the same organism and locus, doesn’t
make evolutionary sense, as one is not evolved from the other, rather one is the other. Watch for
redundant sequences; there are many in the databases. If creating alignments for phylogenetic
inference, either make paralogous comparisons (i.e., evolution via gene duplication) to ascertain
gene phylogenies within one organism, or orthologous (within one ancestral loci) comparisons to
ascertain gene phylogenies between organisms (which should imply organismal phylogenies). Try
not to mix them up without complete data representation. Otherwise, confusion can mislead the
interpretation, especially if the nomenclature of the sequences is inconsistent. These are all easy
mistakes to make; try your best to avoid them.

Remember the old adage ‘‘garbage in — garbage out!’’ Some general guidelines to remember
include the following [46]:

� If the homology of a region is in doubt, then throw it out.
� Avoid the most diverged parts of molecules; they are the greatest source of systematic error.
� Do not include sequences that are more diverged than necessary for the analysis at hand.

15.3 Complications

Sequence data format is a huge problem in computational molecular biology. The major databases
all have their own distinct format, plus many of the different programs and packages require their
own. Clustal [47] has a specific format associated with it. The FastA database similarity-searching
package [6] uses a very basic sequence format. The National Center for Biotechnology Information
(NCBI) uses a library standard called ASN.1 (Abstract Syntax Notation One), plus it provides the
GenBank flat file format for all sequence data. GCG uses three sequence formats: Single Sequence
Format (SSF),Multiple Sequence Format (MSF), and SeqLab’s Rich Sequence Format (RSF) that
contains both sequence data and annotation. PAUP* (Phylogenetic Analysis Using Parsimony
[and other methods, pronounced ‘‘pop star’’] 48), MrBayes [49], and many other phylogenetic
analysis packages, have a required format called theNEXUS file. The PAUP* interface in theGCG
Package, PAUPSearch, generates the NEXUS format directly from GCG alignments. Even
PHYLIP (PHYLogeny Inference Package, 50) has its own unique input data format. Format
standards have been argued over for years, such as using XML for everything, but until everybody
agrees, which is not likely to happen, it just won’t happen. Fortunately, several freeware programs
are available to convert formats back and forth between the required standards, but it all can get
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quite confusing. BioPerl’s SeqIO system [30] and ReadSeq [51] are two of the best. T-Coffee [23]
comes with one built in named ‘‘seq_reformat.’’

Alignment gaps are another problem. Different program suites may use different symbols to
represent them.Most programs use hyphens, ‘‘–’’; the GCGPackage uses periods, ‘‘.’’, for interior
gaps, and tildes, ‘‘�’’, for placeholder gaps. Furthermore, not all gaps in the sequences should be
interpreted as deletions. Interior gaps are probably okay to be represented this way, as, regardless
of whether a deletion, insertion or a duplication event created the gap, logically they are treated
the same by the algorithm. These are known as ‘indels.’ However, end gaps should not be
represented as indels, because a lack of information before or beyond the length of any given
sequence may not be due to a deletion or an insertion event. It may have nothing at all to do with
the particular stretch of sequence being analyzed. It just may not have been sequenced! These
gaps are just placeholders for the sequence. Therefore, it is safest to manually edit an alignment,
to change the leading and trailing gap symbols to ‘‘x’’’s which mean ‘‘unknown amino acid,’’ or
‘‘n’’’s which mean ‘‘unknown base,’’ or ‘‘?’’’s which is supported by many programs, but not all,
and means ‘‘unknown residue or indel.’’ This will assure that the programs don’t make incorrect
assumptions about your sequences.

15.4 Applicability?

Now that we understand some of the principles and problems of multiple sequence alignment,
what’s so great about doing it anyway; why would anyone want to bother? Multiple sequence
alignments are:

� very useful in the development of PCR primers and hybridization probes;
� great for producing annotated, publication quality, graphics and illustrations;
� invaluable in structure/function studies through homology inference;
� essential for building HMM profiles for remote homology similarity searching and alignment;

and
� required for molecular evolutionary phylogenetic inference programs.

Amultiple sequence alignment is useful for probe and primer design by allowing one to visualize
themost conserved regions of an alignment. This technique is invaluable for designing phylogenetic
specific probes as it clearly localizes the areas of high conservation and high variability in an
alignment. Depending on the data-set that you analyze, any level of phylogenetic specificity can be
achieved. Pick out the areas of high variability in the overall data-set that correspond to areas of
high conversation in the phylogenetic category subset data-sets, to differentiate between universal
and phylo-specific potential probe sequences. After localizing general target areas on the sequence,
one can then use any of several primer discovery programs, such as GCG’s Prime, or MIT’s
Primer3 [52], or the commercial Oligo program (National Biosciences, Inc.), to find the best primers
within those regions, and to test those potential probes for common PCR conditions and problems.
(See my workshop tutorial illustrating this technique using GCG and SeqLab at bio.fsu.edu/
�stevet/PrimerDesign.pdf if you are interested.) The technique is illustrated in Fig. 15.1, below
where potential primer locations are identified that should differentiate between the major capsid
protein genes (L1), of the highly carcinogenic Human Papillomavirus (HPV) Type 16 strains from
the rest of the Type 16 relatives.

Graphics prepared frommultiple sequence alignments can dramatically illustrate functional and
structural conservation. These can take many forms of all or portions of an alignment— shaded or
colored boxes or letters for each residue (e.g., BoxShade [53], and the various PostScript output
options in GCG’s SeqLab), cartoon representations (e.g., WebLogos [54] and GCG’s SeqLab
graphical feature representation), running line graphs of overall similarity (as seen above with
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GCG’s PlotSimilarity and as displayed by ClustalX), overlays of attributes, various consensus
representations, etc. — all can be printed at high-resolution, usually in color or gray tones. These
can make a big difference in a poster or manuscript presentation. Fig. 15.2 shows a multiple
sequence alignment of the most conserved portion of the HMGDNA-binding domain from several
paralogous members of the human HMG-box super family.

Conserved regions of an alignment are important. In addition to the conservation of the primary
sequence, structure and function is also conserved in these crucial regions. In fact, recognizable
structural conservation between true homologues extends way beyond statistically significant
sequence similarity. An often cited example is in the serine protease super family. S. griseus protease
A, demonstrates remarkably little sequence similarity when compared to the rest of the super family
(Expectation values E�101.8 in a typical search), yet its three-dimensional structure clearly shows
its allegiance to the serine proteases (RMSD of less than 3 Å with most of the family) (Pearson,
W.R., personal communication). These principles are the premise of ‘homology modeling’ and it
works remarkably well. An automated homology-modeling tool is even available on the ExPASy
server in Switzerland. Supported by the Swiss Institute of Bioinformatics (SIB) and GlaxoSmithK-
line, the Swiss-Model [55] has dramatically changed the homology modeling process. It is a
relatively painless way to get a theoretical model of a protein structure.While not always successful,
theminimal amount of effort involved tomake the attempt makes it an excellent time investment. It
will not always generate a homologymodel for your sequence, depending on how similar the closest
sequence with an experimentally solved structure is to it; however, it is a very reasonable first
approach and will often lead to remarkably accurate representations. I submitted aGiardia lamblia
Elongation Factor 1a sequence to Swiss-Model in ‘‘First Approach mode.’’ The results were
e-mailed back tome in less than five minutes. Figure 15.3 displays a RasMac [56] ‘‘Strands’’ graphic
of the Giardia EF–1a structural model from the Swiss-Model superimposed over the eight most
similar solved structural templates.

Fig. 15.2 A GCG SeqLab
Post-Script graphic of the
most conserved portion of
the HMG-box DNA
binding domain from a
collection of paralogous
human HMG-box protein
sequences (Copies of figures
including color copies,
where applicable, are
available in the
accompanying CD)
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Profiles are a position specific scoringmatrix (PSSM) description of an alignment or a portion of
an alignment. Gap insertion is penalized more heavily in conserved areas of the alignment than it is
in variable regions, and the more highly conserved a residue is, the more important it becomes.
Profiles are created from an existing alignment of related sequences, and then they are used to
search for remote sequence similarities and/or to build larger multiple sequence alignments.
Originally described by Gribskov [10], and then automated by NCBI’s PSI-BLAST [9], later
refinements have added more statistical rigor (see e.g., Eddy’s Hidden Markov Model profiles
[11]). The original Gribskov style profiles require a lot of time and skill to prepare and validate, and
they are heuristics based. An excess of subjectivity, and a lack of formal statistical rigor are also
drawbacks. Eddy’s HMMer (pronounced ‘‘hammer’’) package uses Hidden Markov modeling,
with a formal probabilistic basis and consistent gap insertion theory, to overcome these limitations.
The HMMer package can build and manipulate HMMer profiles and profile databases, search
sequences against HMMer profile databases and vice versa, and can easily create multiple sequence
alignments using HMMer profiles as a ‘seed.’ This ability to easily create larger and larger multiple
sequence alignments is incredibly powerful and faster than starting all over each time you want to
add another sequence to an alignment. The ‘take-home’ message is that HMMer profiles are much
easier to build than traditional profiles, and they do not need to have as many sequences in their
alignments in order to be effective. Furthermore, they offer a statistical rigor not available in
Gribskov profiles, plus they have all the sensitivity of any profile technique. In effect, they are like
the ‘old-fashioned’ profiles pumped up on steroids! One big difference between HMMer profiles
and others is when the profile is built, one has to specify the type of eventual alignment it will be
used with, rather than when the alignment is built. TheHMMer profile will either be used for global
or local alignment, and it will occur inmultiples or singly on a given sequence. All profile techniques
are tremendously powerful; they can provide the most sensitive, albeit, extremely computationally
intensive, database similarity search possible.

Fig. 15.3 A RasMac
representation of the Swiss-
Model Giardia lamblia EF-
1a structure superimposed
over the eight most similar
solved structures (Copies of
figures including color
copies, where applicable, are
available in the
accompanying CD)
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Finally, we can use multiple sequence alignments to infer phylogeny. Based on the assertion of
homologous positions in an alignment, many, different methods can estimate the most reasonable
evolutionary tree for that alignment. A few of the packages that incorporate these methods were
mentioned earlier in the complications section with regard to format issues, e.g., PAUP* [48],
MrBayes [49], and PHYLIP [50]. This is a very huge, complicated, and highly contentious field of
study. (See the Woods Hole Marine Biological Laboratory’s excellent summer short course, the
Workshop on Molecular Evolution). However, always remember that regardless of the algorithm
used, any form of parsimony, all of the distance methods, all maximum likelihood techniques, and
even all types of Bayesian phylogenetic inference, all make the absolute validity of your input
alignment matrix their first and most critical assumption refer to [57].

Therefore, the accuracy of your multiple sequence alignment is the most important factor in
inferring reliable phylogenies; your interpretations are utterly dependent on its quality. Structural
alignments are the ‘gold-standard,’ but the luxury of having homologous solved structures is not
always available. In fact, many experts recommend not using any questionable portions of
sequence data at all. These highly saturated regions have the property known as ‘homoplasy.’
This is a region of a sequence alignment where so many multiple substitutions have occurred at
homologous sites that it is impossible to know if those sites are properly aligned, and thus,
impossible to ascertain the relationships based on those sites. Phylogenetic inference algorithm’s
primary assumption is most violated in these regions, and this phenomenon increasingly confounds
evolutionary reconstruction, as divergence between the members of a data-set increases. Because of
this, only analyze those sequences and those portions of your alignment that assuredly align. If any
sequences or portions are in doubt, exclude them. This usually means trimming down or masking
the alignment’s terminal ends and may require internal trimming or masking as well. These
decisions are somewhat subjective by nature, experience helps, and some software, such as ASa-
turA [58] and T-Coffee [23], have the ability to evaluate the quality of particular regions of your
alignment as well. Bio-computing is always a delicate balance — signal against noise — and
sometimes it can be quite a balancing act!

15.5 The T-Coffee Shop

I call this section the T-Coffee shop because T-Coffee [23] is much more than merely a program for
doing multiple sequence alignment. Much like a Starbucks1 coffee shop that offers many different
flavors and types of coffee drinks, the T-Coffee command line offers an entire suite of multiple
sequence alignment tools. Notredame [24] has done a very good job of providing documentation
with the package’s distribution. In particular, be sure to read the entire Tutorial and FAQ. It’s quite
good, and I cannot do justice to it in my description here. Therefore, I will attempt to distil the most
vital portions of the documentation, and illustrate a subset of T-Coffee’s potential in a ‘bare-bones’
manner, just enough to get a novice user started in exploring the package.

As mentioned in the algorithm section, T-Coffee is one of the most accurate multiple sequence
alignment tools around, and it does this in its default mode. It achieves its accuracy by producing
the multiple sequence alignment that has the highest consistency level with a library of pre-
processed, global, and local pair wise alignments. However, it can do much more than that. In
addition to merely aligning a sequence data-set, it can combine pre-existing alignments, evaluate
the consistency of alignments, extract a series of motifs to create a local alignment, perform all sorts
of data manipulation, format operations, and with SAP (Structure Alignment Program, [59])
installed it can even use structural information to make the most accurate protein alignment
possible.

T-Coffee’s ‘‘seq_reformat’’ tool can perform standard data reformatting operations and change
the appearance of your alignment, but it is incredible, as well, for extracting or combining subsets of
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your data based on sequence names, patterns, coordinates in the alignment, and/or level of consensus.
It even has the ability to translate DNA sequences into their corresponding protein sequences, or to
generate DNA alignments based on the corresponding protein alignment, either using the actual
DNA sequences (ala mrtrans and relatives) or by using a random back-translation procedure.
Furthermore, ‘‘seq_reformat’’ can read phylogenetic trees in Newick format to compare two trees
or to prune tips off of a tree. Another practical utility inT-Coffee is ‘‘extract_from_pdb;’’ it allows you
to download either the three-dimensional coordinates or the FastA format sequence of structures
held at the PDB (ProteinDataBank, [60]), usingUNIX’s ‘‘wget’’ command. There is little that cannot
be done with the T-Coffee utility tools when it comes to data organization and manipulation. One of
my favorites is using it to remove sequences that are, or are nearly, redundant. Pages 11 through 25 of
Notredame’s tutorial [24] cover all these operations very well, and I encourage you to work through
these examples; I will not take the space to review them here.

Okay, how do we begin? I’m making the presumption that you already have T-Coffee installed
on either your own computer or on a server that you have access to. If this is not the case, then refer
to Notredame’s [24] Technical Documentation, and either install it yourself, or get a local systems
administrator to do it for you. I’m using version 5.05 here. I’ll be consistent in my command syntax
in these examples, but realize that Notredame’s tutorial mixes up command syntax a bit, freely
replacing equal signs and commas with spaces in some examples and not in others, and T-Coffee
doesn’t mind. Also realize that all commands are typed on a single line that will wrap in your
terminal window. They are just shown here on multiple lines to simplify reading them. Let’s first
look at T-Coffee’s default mode. Issue the following command to see all of T-Coffee’s default
parameter settings:

Prompt% t_coffee -help

The list is huge; scroll back to skim over the entire thing. Notice the ‘‘–seq’’ parameter usage:
‘‘List of sequences in any acceptable format.’’ T-Coffee will accept several input formats, but it
works most reliably if you have your input files in FastA format. If I have a file containing
unaligned sequences in FastA format named ‘‘unaligned.fa,’’ then the following command will
run T-Coffee without any options or parameter specifications:

Prompt% t_coffee unaligned.fa

This will produce a screen trace of the program’s progress; an output alignment named
‘‘unaligned.aln’’ in Clustal Aln format; another alignment file named ‘‘unaligned.html’’ in HTML
format for Web browsers, with columns color-coded based on reliability; and a file named
‘‘unaligned.dnd,’’ that contains the Newick format tree used to guide the alignment. If you have
your data-set spread around in more than one file, then you can use the ‘‘–seq’’ option followed by a
comma-delimited list of input files. This option will also strip the gaps out of any input file that
might already be an alignment. And if you don’t want the Clustal Aln format, use the ‘‘–output’’
option. Here I’ll use it to generate a FastA format output alignment file named ‘‘unaligned1.fas-
ta_aln’’ from two FastA input files (T-Coffee uses the first file’s primary name to identify the output
file). The only output alignment file produced this way is in FastA format:

Prompt% t_coffee -seq=unaligned1.fa,unaligned2.fa -output=fasta_aln

The T-Coffee ‘‘–output’’ option supports alignment formats with the following identifiers:
‘‘msf_aln’’ (for GCG MSF), ‘‘pir_aln’’ (for PIR), ‘‘fasta_aln’’ (for FastA), ‘‘phylip’’ (for PHYLIP),
as well as its default ‘‘clustalw_aln’’ and ‘‘html’’. You can produce output files in more than one
format by comma separating the identifiers. So, you cannot get directly to NEXUS format, but
PAUP* has the ability to import GCG MSF, PIR, or PHYLIP format with the ToNEXUS
command. Plus, if you do not like T-Coffee’s default output file naming convention, you can use
the ‘‘–outfile’’ option to specify any name you might want.
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15.5.1 Alignment Parameters

As in nearly all sequence alignment programs, the substitution matrix and the gap penalties are
very important run parameters. In most cases, the T-Coffee matrix defaults, the BLOSUM62 and
50 matrices for its global and local pair wise alignment steps, respectively, will work just fine.
And, in fact, T-Coffee only uses these matrices in its first pass through your data-set, when it
builds its consistency library. It replaces the usual BLOSUM style matrix when building its final
multiple sequence alignment with the optimal position specific scores of all the potential pair wise
matings in its library. Regardless, using the optional ‘‘–matrix=blosum30mt’’ flag (or blo-
sum40mt or blosum45mt depending on your data’s level of divergence) is a great idea, when
dealing with sequences that are quite dissimilar. Furthermore, gap penalties can be changed,
if you really want to, but the default gap opening penalty of –50 and gap extension penalty of
zero, changed through the ‘‘–gapopen’’ and ‘‘–gapext’’ options are, as Notredame [24] says,
only ‘‘cosmetic,’’ changing the final alignment’s appearance by changing how residues slide
around in ‘unalignable’ regions, since all the ‘alignable’ regions are found from the previously
built library. It’s much more complicated if you want to change how the library alignments are
built, and I don’t suggest messing with it. If you insist, the parameters are specified through the
‘‘–method’’ option, and two methods build the pair wise alignment library by default (several
others are available by option for special cases): a global, ‘‘slow_pair,’’ one, and a local,
‘‘lalign_id_pair,’’ one. To change their respective default behaviors a combination of
‘‘MATRIX’’ specification and ‘‘GOP’’ and ‘‘GEP’’ parameters are used. The defaults for the
global library alignments are a ‘‘GOP’’ of –10 with a ‘‘GEP’’ of –1, and for the local alignment
library a ‘‘GOP’’ of�10, with a ‘‘GEP’’ of�4. For instance, if I have a real difficult data-set, with
barely discernible homology, and with no structural homologues, then perhaps using a combina-
tion of parameters such as the following would produce a more accurate and pleasing looking
multiple sequence alignment:

Prompt% t_coffee -seq=lousydata.fa -matrix=blosum30mt
-gapopen=-100 -gapext=0 -output=fasta_aln,clustalw_aln,html
-method=slow_pair@EP@GOP@-5@GEP@-1,lalign_id_pair@EP@GOP@-5@GEP@-4

Notice the bizarre syntax: the at sign, ‘‘@,’’ is used as a method parameter separator, and ‘‘EP’’
stands for ‘‘Extra Parameter.’’ This command would run both the global and local library builds
with the BLOSUM30 matrix, will double the ‘cosmetic’ gap opening penalty, would cut the
penalties in half for opening a gap in both the global and local library alignments, and would
keep all the extension penalties at their default levels. Additionally, it would produce output
alignments in FastA, ClustalW, and HTML formats. If you want to use different substitution
matrices for the different methods, then you would add e.g., ‘‘MATRIX@blosum45mt’’ after
‘‘@EP@’’ and before ‘‘@GOP@ for the appropriate method. But, will this actually produce a
‘better’ alignment?

15.5.2 Quality

This brings up the heart of T-Coffee: consistency. T-Coffee’s method relies on reconciling its
internal pair wise alignment library as best as it can with its eventual multiple sequence alignment;
the more these agree, the more consistent the alignment and, we assume, the more accurate. This
premise allows us to use T-Coffee to evaluate and compare alignments. The easiest way to see how
accurate T-Coffee ‘thinks’ its alignment is, is to look at the ‘‘SCORE’’ it receives in its ClustalW or
HTML format output. The higher this score value the more closely the alignment overall agrees
with the internal pair wise alignment library. Notredame [24] says that values above 40 are ‘‘usually

15 Multiple Sequence Alignment and T-Coffee 303



pretty good.’’ Every T-Coffee ClustalW and HTML format output alignment has this value

associated with it. However, what if you don’t have the right output format, or you want to see

how the output from some other alignment program ranks, or you are interested in how different

alignments compare to each other, or you are interested in what portions of an alignment are good

and what portions are bad? T-Coffee can do all of this.
I’ll discuss methods that do not rely on structure first. Structural methods will follow when I

discuss T-Coffee’s ability to integrate sequence and structure. T-Coffee’s CORE index is the local

consistency level of each position within your alignment. All the T-Coffee HTML format output

alignments represent this index with color-coding, plus there are specific score output file options.

Position colors range across the spectrum from blue, to green, to yellow, to orange, and finally red,
corresponding to an increase in the consistency level from none to absolute. These colors corre-

spond to local consistency values of 0 through 9. To test a pre-existing alignment with the CORE

index use the ‘‘–infile’’ specification for your alignment, the ‘‘–evaluate’’ (replaces the deprecated

‘‘–score’’ flag, and in default mode equivalent to ‘‘–special_mode=evaluate’’) option, and mini-
mally specify HTML output format:

Prompt% t_coffee -infile=lousydata.fasta_aln -evaluate -output=html

Notice we need to use ‘‘–infile’’ rather than ‘‘–seq’’, in order to run T-Coffee in this manner. There
are even ways to automatically filter unreliable columns from your alignment, based on the CORE

index; however, the various commands’ syntax are quite complicated, and I refer you to page 45 of

Notredame’s [24] tutorial.

15.5.3 Comparing Alignments

T-Coffee has several ways to compare existing alignments of the same sequences beyond just

looking at their consistency scores. The ‘‘aln_compare’’ module is one of the more powerful, and

can tell you how different two alignments are. It needs to be launched with the ‘‘–other_pg’’ option,

which tells T-Coffee that you want to use an external module. This option must be the first
parameter on the command line after ‘‘t_coffee.’’ ‘‘aln_compare’’ supports several further options

that can help with the visualization. Here, the ‘‘aln_compare’’ module is used to analyze the

difference between two existing alignments with the ‘‘–al1’’ and ‘‘–al2’’ options to produce an

output screen trace of the first alignment where all residues with less than 50% of their pairing

partners in the other alignment are represented as an ‘‘x:’’

Prompt% t_coffee -other_pg=aln_compare -all=trial1.fasta_aln
-al2=trial2.fasta_aln -output_aln -output_aln_threshold 50
-output_aln_modif x

The same command without the ‘‘–output_align’’ parameters will produce summary statistics of
the percentage of similarity between the two alignments by counting the sum of all pairs of residues in

those alignments. Type the command without any parameters to see all that ‘‘aln_compare’’ offers:

Prompt% t_coffee -other_pg=aln_compare

All of T-Coffee’s built in external modules support this help syntax, versus its standard ‘‘–help’’

option.
Another way to compare alignments is to turn one into T-Coffee’s library and leave the other as

an alignment. You need to use the ‘‘–aln’’ option to do this. This option tells T-Coffee to use the
specified input alignment file to build its library. The following command will show how well the
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alignment ‘‘somedata1.fasta_aln’’ agrees with the library produced from the alignment
‘‘somedata2.fasta_aln:’’

Prompt% t_coffee -infile=somedata1.fasta_aln
-aln=somedata2.fasta_aln -evaluate -output=html

The HTML alignment output will highlight those residues that are either in agreement or not
between the two input alignments, using T-Coffee’s standard CORE index-coloring scheme.

15.5.4 Combining Alignments

Again, there’s a slew of ways to combine alignments with T-Coffee. One neat way is to not really
worry how alignments compare and just turn them all into a T-Coffee library so that they will
combine together yielding one optimal alignment that best agrees with all the input alignments.
They do not even need to all have the same sequences to do this. Turn the three specified alignments
into a library and produce an output alignment in Clustal Aln, FastA, and HTML format with the
command below:

Prompt% t_coffee -aln=one.fasta_aln,two.fasta_aln,three.fasta_aln
-output=clustal_aln,fasta_aln,html

And, of course, you could easily add some unaligned input sequences to the mix with the ‘‘–seq’’
option as well.

As discussed in this chapter under multiple sequence alignment applications, profiles are a very
powerful technique for building larger and larger alignments. T-Coffee can deal with profiles in
several ways, though they are not quite the same sort of profile as, for instance, Gribskov [10] or
Eddy [11] envisioned. T-Coffee defines profiles as multiple sequence alignment matrices that will
not have their gaps removed, rather than a true PSSM where residues receive higher weights in
more conserved regions. Regardless, T-Coffee can take as many different profiles and sequences as
you want to specify, and combine all of them into one alignment (given that it is biologically correct
to attempt to align them):

Prompt% t_coffee
-profile=one.fasta_aln,two.fasta_aln,three.fasta_aln
-seq=lousydata.fa,evenworsedata.fa
-output=clustal_aln,fasta_aln,html

This command will feed three alignments to T-Coffee, such that, the sequences within them will
not have their gaps removed, it will add more gaps to reconcile those three alignments, and it will
add two more sequences to the resulting alignment in the most consistent manner.

And to get the most accurate profile alignment add ‘‘–profile_comparison=full,’’ which runs the
profile alignment in a slower, more exact mode, ‘‘on a library that includes every possible pair of
sequences between the two profiles,’’ as opposed to the above command, which ‘‘vectorizes’’ the
multiple sequence alignments designated as profiles [24].

15.5.5 Combining Methods

T-Coffee has a special ‘Meta’ mode named M-Coffee [61]. This gives T-Coffee an incredible
amount of power. M-Coffee is amazing for those situations where you just do not know what
alignment tools to trust, and you don’t want to have to build and test many alternatives.
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It automatically runs up to eight different multiple-alignment programs (by default, more external
methods can be added) on your data, and combines the best parts of each, to come up with
one, most consistent, consensus alignment. Your system needs to have ClustalW [20], POA [62],
Muscle [25], ProbCons [27], MAFFT [26], Dialign-T [63], PCMA [64], and T-Coffee [23] all
installed for this to work. If I want to see how M-Coffee handles that difficult data FastA format
file I have, then I would issue the following command to run M-Coffee in its default mode:

Prompt% t_coffee -seq=lousydata.fa -special_mode=mcoffee
-output=clustal_aln,fasta_aln,html

The output Clustal and HTML format files will list the alignment’s overall score as a
percentage of consistency between all the methods. The HTML format will additionally provide
T-Coffee’s usual color-coded position consistencies. Or, If you prefer some methods to others,
you can select the particular methods to combine with the ‘‘–method’’ option, with syntax like the
following:

Prompt% t_coffee -seq=lousydata.fa
-method=t_coffee_msa,mafft_msa,muscle_msa -output=fasta_aln,html

Here’s some general guidelines as to which of T-Coffee’s integrated external multiple sequence
alignment methods are best in which situations (based on [24 and 65]):

clustalw_msa neither the fastest nor the most accurate, but a reasonable ‘industry-standard.’
probcons_msa uses consistency and Bayesian inference to provide ultra-accurate, but runs

very slow.
muscle_msa very, very fast for large data-sets, especially; uses weighted log-expectation

scoring.
mafft_msa in fast mode (FFT-NS-i) screamingly quick on large data-sets, but not

incredibly accurate; in slow mode (L-INS-i) very accurate but quite slow,
especially with large data-sets.

pcma_msa combines ClustalW and T-Coffee strategies.
poa_msa very accurate local alignments using partial order graphs.
dialignt_msa accurate local, segment-based, progressive alignment.

Pick and choose among the most appropriate methods and let M-Coffee combine the best
aspects of each.

15.5.6 Local Multiple Sequence Alignments

If you know the coordinates of some pre-defined sequence pattern in one sequence, you can use
T-Coffee’s mocca routine (Multiple OCCurrences Analysis, [66]) to find all the occurrences of similar
patterns in other sequences and assemble a localmultiple sequence alignment of them.Mocca is a perl
script that launches T-Coffee, computes a T-Coffee library from the input sequences, and then
prompts you with an interactive menu to extract the homologous motifs and assemble the alignment.
It is designed to find and alignmotifs of 30%and greater identity that are at least 30 amino acids long.
The interactive menu can be confusing, so I recommend that you place the sequence with your
identified motif first in the data-set, and specify the beginning and the length of your motif on the
command line, rather than in the menu. I’ll use mocca here to prepare a local sequence alignment of
the motifs in a data-set named ‘‘motifdata.fa,’’ where I know the first occurrence of the motif is at
absolute position 35 and runs for 65 residues in my first sequence of the data-set:

Prompt% t_coffee -other_pg=mocca motifdata.fa -start=35 -len=65
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You cannot use the ‘‘–seq’’ option with mocca to specify your input file in this command.
Specifying your motif coordinates is also a bit tricky, since all the input sequences have their
gaps removed (if it was an alignment) and are then concatenated together. That’s why it’s easiest if
you put your known motif sequence first. After mocca computes the optimal local alignment with
your motif, it pauses and displays its menu. Type a capital ‘‘X’’ to exit the program and write the
default Clustal Aln and HTML alignment files.

15.5.7 The ‘Gold-standard:’ Creating Structure based Alignments

As mentioned earlier, you need to minimally have SAP [59] installed on your system for T-Coffee’s
structure based alignment mode to actually use structural information. And, even better yet, have the
FUGUE package [67] installed as well. Additionally you need ‘‘wget’’ on your system, to access PDB
files over the Internet, but mostly all UNIX/Linux installations should include this utility. T-Coffee
uses a special mode named 3DCoffee [68] to create structure-based alignments. By default, 3DCoffee
uses four methods to create the T-Coffee consistency library, if you specify an input sequence data-set:
the standard T-Coffee global ‘‘slow_pair’’ and local ‘‘lalign_id_pair,’’ SAP’s ‘‘sap_pair,’’ and FUGUE’s
‘‘fugue_pair.’’ If I have a data-set that includes some PDB structures, and those sequences are named
using the PDB’s identifier with a chain name (e.g., 1EFTA for chain A of the Thermus aquaticus
elongation factor Tu structure [69]), then the following command will produce the most consistent
alignment of them, based on all the available structural pairs and T-Coffee’s usual pairs:

Prompt% t_coffee -seq=elongation.fa -special_mode=3dcoffee

You’ll get three output files by default with this command: ‘‘elongation.aln,’’ ‘‘elongation.html,’’
and ‘‘elongation.dnd’’. The alignment files will have T-Coffee’s standard reliability index. If you
specify that your input data-set is already in alignment, then the local ‘‘lalign_id_pair’’ will not be
used, and the alignment will be turned directly into T-Coffee’s library along with the SAP and
FUGUE pairs:

Prompt% t_coffee -aln=elongation.fasta_aln -special_mode=3dcoffee

These 3DCoffee analyses will even produce output alignments if you don’t have SAP or
FUGUE installed, but they will report error warnings for every pair, and, naturally, no structural
information will be used in the production of the alignment. If you don’t like the warning messages,
just specify the particular methods you have available, for e.g.:

Prompt% t_coffee -aln=elongation.fasta_aln

-method=sap_pair.slow_pair

A nice trick is to combine two existing, related, but only distantly so, alignments with 3DCoffee,
if they both have at least one sequence where the structure has been solved, and they follow proper
naming conventions. Suppose I have one alignment of elongation factor Tu sequences containing
the sequence for the solved structure for Thermus aquaticus, and another alignment of elongation
factor 1a sequences containing the sequence of the solved human structure. Do this analysis with
the ‘‘–profile’’ input specification:

Prompt% t_coffee
-profile=elongationla.fasta_aln.elongationtu.fasta_aln
-special_mode=3dcoffee

The output alignment will combine the two existing alignments in the most consistent manner
with the structural alignment of the human and Thermus aquaticus sequences.
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15.5.8 Using Structure to Evaluate Alignments

Your existing alignment needs to have at least two members with solved structures in order to
evaluate it using T-Coffee’s structural method, and, as above, those sequences need to be named
according to their PDB identifiers as well as their chain. T-Coffee uses a special version of Root
Mean Square Distance Deviation analysis, not dependent on specific a carbon backbone super
positioning called iRMSD (the ‘‘i’’ stands for intra-catener [70]), for structural alignment evalua-
tion. It also reports a normalized NiRMSD not dependent on the alignment’s length, and it reports
an older measure, APDB, not as powerful as iRSMD, based on the fraction of residue pairs with
‘correct’ structural alignments. The smaller the iRMSD Å numbers are, the bigger the APDB
percent will be, and the better will the alignment correspond to structural ‘reality.’ As with the other
integrated external methods in the T-Coffee package, iRMSD is launched with the ‘‘–other_pg’’
option. Specify your alignment’s file name with the ‘‘–aln’’ option, and specify an output file with
the ‘‘–apdb_outfile’’ option, otherwise the output will just scroll to screen. Optionally generate an
HTML alignment output as well with ‘‘–outfile’’:

Prompt% t_coffee -other_pg=irmsd -aln=elongation.fasta_aln
-apdb_outfile=irmsd.out=outfile=irmsd

The summary statistics at the end of the output file are the most telling:

# TOTAL for the Full MSA
TOTAL EVALUATED: 81.58 %
TOTAL APDB: 78.25 %
TOTAL iRMSD: 0.75 Angs
TOTAL NiRMSD: 0.93 Angs

# EVALUATED: Fraction of Pair wise Columns Evaluated
# APDB: Fraction of Correct Columns according to APDB
# iRMDS: Average iRMSD over all evaluated columns
# NiRMDS: iRMSD*MIN(L1,L2)/Number Evaluated Columns
# Main Parameter: -maximum distance 10.00 Angstrom
# Undefined values are set to -1 and indicate LOW Alignment Quality
# Results Produced with T-COFFEE (Version 5.05)
# T-COFFEE is available from http://www.tcoffee.org

My elongation factor 1a/Tu alignment is pretty good with an overall NiRSMD of less than 1 Å
and anAPDB statistic of 78%. The old T-Coffee external method specification ‘‘–other_pg=apdb’’
produces the same output. The optional HTML output shows which residues in the solved
structures (only) are in agreement with the structural alignment, using the APDB coloring scheme,
where blue corresponds to 0% and red corresponds to 100% (get iRSMD coloring with
‘‘–color_mode=irmsd’’).

15.5.9 Special Situations

Even though T-Coffee is great for so many things, its default run parameters are far from ideal for
some special situations. It does not work very well for larger data-sets, i.e., anything with over 100
sequences, it does not particularly like DNA/RNA alignments, and it has some problems with
jumping over huge gaps that one would see when aligning splicing variants or cDNA to genomic
DNA containing introns. Fortunately, there are ways around each one of these scenarios, andmost
of all multiple sequence alignment programs have trouble with the same situations as well.
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Let’s start with real large alignments. Both Muscle and MAFFT (in fast mode) are more
appropriate for data-sets with more than around 100 sequences; however, T-Coffee does have a
special mode that will at least allow it to estimate an approximate alignment with such data-sets.
This should work when your data-set has an overall identity of 40% or more:

Prompt% t_coffee -seq=hugedata.fa -special_mode=quickaln

The resulting alignment should be about as accurate as that built with ClustalW. For data-sets
between 50 and 100 sequences, T-Coffee automatically switches to another heuristic mode named
DPA (double progressive alignment).

Naturally, DNA andRNA alignments are harder for T-Coffee to perform. The rationale for this
phenomenon is explained in the introduction, and it confounds every multiple sequence alignment
program. DNA is just really hard to align, unless the sequences are 90% or so identical. One way to
help T-Coffee with an alignment that must be built using DNA or RNA, especially if the locus does
not code for a protein, is to specify that the sequences are DNA with the ‘‘–type’’ option:

Prompt% t_coffee -seq=DNadata.fa -type=dna

T-Coffee should detect this sequence type automatically, but it can’t hurt to declare it up front.
When T-Coffee realizes that it is working with DNA, it uses specific DNA optimized methods to
build its library, ‘‘slow_pair4dna’’ and ‘‘lalign_id_pair4dna.’’ These methods have lower built-in
gap penalties and use a DNA specific scoring matrix. And if your DNA is a particularly noisy
coding locus, but you just can’t figure out the translation, because it is so noisy, then T-Coffee’s
special ‘‘cdna_fast_pair’’ method takes potential amino acid similarity considering frame shifts into
account, and may help:

Prompt% t_coffee -seq=noisy_cDNAdata.fa -method=cdna_fast_pair

You may want to try this when aligning cDNAs to the genomic DNA as well, in order to jump
over the introns. If the results look good, you can even use T-Coffee’s external ‘‘seq_reformat’’
module to translate it to the appropriate protein translation in spite of how noisy the original DNA
sequences were:

Prompt% t_coffee -other_pg=seq_reformat

-in=noisy_cDNAdata.fasta_aln

-action=þ clean_cdna, þ translate > noisy_pep.fasta_aln

Notice that ‘‘seq_reformat’’ does not support ‘‘–outfile;’’ you need to use UNIX ‘‘>’’ output
redirection. ‘‘+clean_cdna’’ is a small HMM that tries to maximize the appropriate frame choice at
every point in the sequences to best match the alignment of all the other sequences, and ‘‘+trans-
late,’’ obviously, does the translation.

T-Coffee is actually pretty good at jumping over big gaps in protein sequence alignments, that
can be present when trying to align various protein splicing variants. It achieves this by relying
heavily on the local, pair wise knowledge gained in its internal ‘‘lalgn_id_pair’’ method. If you can’t
find the alignment using default parameters, try to restrict your method to the local pair library
only:

Prompt% t_coffee -seq=splicingvariant.fa -method=lalgn_id_pair
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Another trick that can work well with EST sequences is to increase the default ktuple size from 2
to 5, along with specifying the ‘‘cfasta_pair_wise’’ ‘‘dp_mode’’ option:

Prompt% t_coffee -seq=EST.fa -dp_mode=cfasta_pair_wise -ktuple=5

This should use a ‘‘checked’’ [24] version of the FastA algorithm with a word size of five to create
T-Coffee’s consistency library. A DNA alignment can be produced much faster this way than with
other methods given sufficient similarity, but difficult regions will be less accurate. Try mixing and
matching the various methods most appropriate for your data to come up with the ‘most satisfying’
multiple sequence alignment you can.

15.5.10 T-Coffee Servers and Expresso

Finally, if all this command line stuff just bewilders you, there are several T-Coffee Web servers
around, e.g., the primary one at http://www.tcoffee.org/; they just can’t do all the things that can be
done in the package from the command line. T-Coffee Web servers do, however, offer ‘‘Regular’’
and ‘‘Advanced’’ modes. Furthermore, at the time of this writing, T-CoffeeWeb servers are the only
way to run Expresso [71]. Expresso, is T-Coffee’s latest and greatest mode. It’s the triple-shot
espresso, extra whip cream, Irish whiskey enriched, grandé cappuccino, of modes! It’s a logical
pipeline. The server runs an all against all BLAST search of your data-set against the sequences in
PDB, finds all the templates with greater than 60% identity to any of your sequences (if they exist),
and then uses T-Coffee/3DCoffee to align your data-set using that structural information to build
the consistency library, as well as T-Coffee’s usual library methods, all in an automated fashion.
Give it a try. It’s very slick, and impressively accurate.

15.6 Conclusion

The comparative method is a cornerstone of the biological sciences, and key to understanding
systems biology in so many ways. Multiple sequence alignment is the comparative method on a
molecular scale, and is a vital prerequisite to some of the most powerful bio-computing analyzes
available, such as structure/function prediction and phylogenetic inference. Understanding some-
thing about the algorithms and the program parameters of multiple sequence alignment is the only
way to rationally knowwhat is appropriate. Knowing and staying well within the limitations of any
particular method will avert a lot of frustration. Furthermore, realize that program defaults may
not always be appropriate. Think about what these default values imply and adjust them accord-
ingly, especially if the results seem inappropriate after running through a first pass with the default
parameters intact. Consistency based approaches, such as those implemented in T-Coffee, can help
with these decisions.

Oftentimes you will need to deal with quite complicated data-sets — distantly related local
domains, perhaps not even in syntenic order between sequences; or widely divergent paralogous
systems resulting from large gene expansions; or extremely large sequence collections with mega
bases of genomic data; often you’ll even need to resort tomanual alignment, at least in some regions—
these are the situations that will present vexing alignment problems and difficult editing decisions.
These are the times that you’ll really have to think. A comprehensive multiple sequence editor such as
GCG’s SeqLab, or alternative freeware and public-domain editors, can be a lifesaver in these situa-
tions.As can the powerful evaluation and comparisonmodes built into theT-Coffeemultiple sequence
alignment package.
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Gunnar von Heijne in his quite readable but dated treatise, Sequence Analysis in Molecular
Biology; Treasure Trove or Trivial Pursuit [72], provides an appropriate conclusion:

‘‘Think about what you’re doing; use your knowledge of the molecular system involved to guide both your
interpretation of results and your direction of inquiry; use as much information as possible; and do not blindly
accept everything the computer offers you . . . . Don’t expect your computer to tell you the truth . . . if any lesson
is to be drawn . . . it surely is that to be able to make a useful contribution one must first and foremost be a
biologist, and only second a theoretician . . . .We have to develop better algorithms, we have to findways to cope
with the massive amounts of data, and above all we have to become better biologists. But that’s all it takes.’’
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Chapter 16

A Spectrum of Phylogenetic-Based Approaches for Predicting

Protein Functional Sites

Dukka Bahadur K. C. and Dennis R. Livesay

Abstract This chapter introduces four distinct, yet aligned, computational approaches to predict
protein functional sites. The methods range from simple alignment conservation scores to more
sophisticated phylogenetic-based approaches (i.e., evolutionary trace, ConSurf, and phylogenetic
motifs). Each approach and its theoretical underpinnings are discussed in detail. Key differences
within later revisions of each method (when appropriate) are also provided. Applications of the
method and how it has been assessed are also discussed for several methods. Finally, information
on availability of each method is provided.

Keywords Multiple sequence alignment � Phylogeny � Shannon entropy � Sum of pairs �
Evolutionary trace � Consurf � Phylogenetic motif

16.1 Introduction

High-throughput genome sequencing projects have resulted in an explosion of known protein
sequences. Assigning functions to these proteins is a key bioinformatics challenge. There are
various bioinformatics approaches for the analysis of protein function [1]. However, while global
descriptions of function are clearly important, only interrogation at specific functional residues
can provide mechanistic details. Traditionally, these interrogations have been carried out through
experimental site-directed mutagenesis. The collective knowledgebase gained from these efforts has
dramatically advanced our understanding of protein function. Unfortunately, the time and expense
associated with site-directed mutagenesis limits its wide scale utility in the post-genomic era. In
response, there are currently dozens of computational protein functional-site prediction techniques
described in the literature. The theoretical underpinnings of these methods are highly variable,
ranging from methods that base predictions on conservation across a Multiple- Sequence
Alignment (MSA) to sophisticated biophysical calculations.

In this chapter, we introduce the most commonly applied protein functional-site predictions
methods, namely those based on the concepts of phylogeny. In fact, we discuss four broad classes of
phylogenetic-based methods; each varies significantly in its approach and predictions. Neverthe-
less, all of the methods are based on the straightforward premise that conservation of function is the
ultimate evolutionary driving force. The first set of methods are based on the simple premise that
alignment positions that are more conserved are more likely to be functional than those that are not
conserved. The second set of methods, called evolutionary trace, goes one step further and includes
alignment positions that are not strictly conserved, but whose variations are consistent with known
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functional variability. Meaning, these positions are likely responsible for the subfamily functional
differences. The third set of methods, which are based on the ConSurf algorithm, is ostensibly a
hybrid of the first two; however, in actuality it is closer to the first class of methods than the second.
ConSurf uses sophisticated Bayesian (or maximum likelihood) statistics and phylogenetic tree
topology to improve the accuracy of its predictions over simple conservation scores. Finally, the
fourth class of methods discussed is based on phylogenetic motifs. Phylogenetic motifs are align-
ment fragments that reproduce the overall familial phylogeny, which have been shown to represent
good functional site predictions.

It should be pointed out that all of the methods discussed here are fundamentally sequence-
based: none explicitly requires structural information. Yet, common usage of most of the methods
discussed (especially evolutionary trace and ConSurf), use structures to improve their predictions.
By structurally clustering their predictions, better accuracy is achieved when predicting protein
functional sites. This approach is well justified due to the amount of functional details encoded
within the structure. However, the expansion of sequence-space is increasing much faster than that
of structure-space. As such, accurate methods that do not rely on structure are also necessary. For
example, the phylogenetic motif method has been explicitly designed to fill this need. Usage of
evolutionary trace and ConSurf in the absence of structures is also discussed.

16.2 A (Very) Brief Overview of Phylogenetic Reconstruction

Before delving into the various methods of predicting protein functional sites, a brief introduction
of phylogeny is in order. A phylogeny describes an inferred evolutionary history across a sample set
based on their relatedness. For example, the field of systematics attempts to infer these relationships
at the species level. In molecular biology, phylogenetic trees are generally constructed for sets of
evolutionarily related proteins and/or genes. The tree describes the evolutionary history of a set of
related proteins based on their sequence similarity. Each protein sequence (sometimes called a leaf)
is clustered based upon its similarity/dissimilarity to the others within the data-set. In an alignment
of N sequences, there will be N leaves within the phylogenetic tree. In addition, phylogenetic
reconstruction attempts to describe the common ancestor at each node (branch point) within a
tree. For example, the following two sequences (AICGS and AVCGT) could have evolved from
AVCGS. In each case, a single mutation to the common ancestor leads to the observed pair. The
earliest common ancestor is called the root.

There are a wide number of computational algorithms to infer evolutionary relationships (called
phylogenetic reconstruction) from molecular sequence data. The simplest of these methods are the
distance-based approaches. Distant-based methods use overall sequence similarity to approximate
phylogenetic trees. While computationally fast, these methods are generally the least accurate
approaches. More advanced, and more computationally costly methods include parsimony, max-
imum-likelihood, and Bayesian inference. A complete discussion of each is outside the scope of the
present chapter. Interested readers are encouraged to refer to the excellent text by Felsenstein [2] for
a deeper discussion of phylogenetic reconstruction.

16.3 Conservation Methods

Using conservation within an alignment to predict evolutionarily important positions is a funda-
mental tenet of biology and bioinformatics. Strong evolutionary pressures must be present to
counter-balance random divergence. The standard interpretation of these pressures is that they
are present to conserve the structure and/or function of the protein. For example, the catalytic triad
of serine proteases is exactly conserved across an alignment of the family. There is a wide variety of
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conservation scores described within the literature; here we describe a few of the most common.
Note that, strictly speaking, conservation scores are not based on ‘‘phylogenetics’’ since the
evolutionary relationships between each protein sequence are ignored. However, since conserva-
tion is a similar concept, they are frequently discussed together.

16.3.1 Methods that Ignore Residue–Residue Relationships

The simplest way to measure conservation is to simply evaluate the percent conservation of each
alignment position. The most abundant residue occurring in each position is identified and
counted. The final conservation score is simply the count divided by the number of sequence
present. While commonly used, this method suffers from two key theoretical shortcomings. The
first is that the method is sufficient for very conserved positions, but what about the pathological
problem of a column that is 51% Ala and 49% Val? Its conservation score is exactly the same as a
column that was 51% Ala, 19% Val, 10% Ile, 10% Phe, and 10%Met. Clearly, the first column is
more ‘‘conserved’’ than the second, even though the conservation score for each is 51%. Similarly,
the second limitation is based on the assumption that each amino acid identity is an independent
state, meaning that chemical and/or statistical relationships between the various amino acids are
ignored. For example, in these methods, a column that is 70% Lys and 30% Arg is treated exactly
the same as a column with 70%Val and 30%Cys. However, the amount of chemical conservation is
clearly different since Lys andArg are chemically similar (they are both basic amino acids), whereas
Val and Cys are vastly different. Nevertheless, in spite of these two gratuitous limitations, these
methods can be quite powerful. Additionally, their popularity is further supported by their ease of
use and implementation.

The Shannon entropy resolves the first incongruity of percent conservation. In bioinformatics,
the Shannon entropy is a useful extension of Shannon’s early work in information theory [3]. The
Shannon entropy of column i (designated Hi) is calculated by:

Hi ¼ �
X20

i¼1
Pi log2 Pi (16:1)

where the count is over all the twenty amino acids andPi is the probability of each residue occurring
within the alignment column. The values of such an expression range from zero (strictly conserved)
to 4.32 (which is the value if each of the twenty amino acids have uniform probability). Going back
to the pathological problem, the Shannon entropy of the first column is 1.0, whereas the entropy of
the second (less conserved) is 1.9. Note that the Shannon entropy is unit less.

16.3.2 Sum of Pairs

In bioinformatics, a scoring matrix describes the likelihood of one amino acid being changed
(mutated) to another. As such, a method to resolve the second incongruity of the percent con-
servation score is available. The most common scoring matrices are those based on the work of
Margaret Dayhoff (called PAM matrices) [4]. While a complete discussion of scoring matrices is
outside the scope of this chapter, they reflect chemical similarity of the amino acids through
observed substitutions. For example, the substitution score of the residue pair a,b (designated
s[a,b]) is larger when the substitution is more likely to occur, which can be assumed to indicate
greater chemical similarity. The self-substitution scores, s(a, a), are generally the largest values
within the matrix. The sum of pairs (SP) score uses scoring matrix substitution values to determine
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the amount of conservation within an alignment column. The SP score of column mi (designated
S[mi]) is calculated as:

SðmiÞ ¼
X

k5l

sðmk
i ;m

l
iÞ (16:2)

where the sum is overall all possible pairs within a single alignment column. Since larger s(a, b)
values indicate greater similarity, larger SP scores indicate greater conservation. Meaning that we
now have a means to resolve the conundrum in the first paragraph of Section 16.3.1(namely, which is
more ‘‘conserved’’— a position with 7 Lys and 3 Arg or a position with 7 Val and 3 Cys?). Using the
PAM250 scoring matrix, the SP score of the first example is 138.0 (indicating strong conservation),
whereas the SP score of the second is only 43.5. While not present in this simple example, alignment
positions with gaps are not defined in s(a, b). The standard application of the method is to simply
evaluate gap characters the same way as the twenty amino acids (meaning, gaps are considered the
21st residue type). As such s(a,�) and s(�,a) are simply equal to the gap penalties.

16.3.3 Availability

It is very simple to implement any of the above methods into computer code. Doing so would be a
good exercise and may be the best way of computing their values when dealing with large data-sets
that require specialized scripts and/or programs. Nevertheless, when one needs only to compute the
values on a small number of data-sets, re-implementation of the methods is impractical. Currently,
there are a large number of web-servers and freely available code to compute the various conserva-
tion scores. One of the best is the Scorecons server [5] from the Janet Thornton’s group at the
European Bioinformatics Institute. Scorecons includes online implementations of a wide variety of
conservation scores and allows the user to define a variety of input parameters (i.e., scoring matrix,
gap parameters, etc.). Scorecons is on the web at http://www.ebi.ac.uk/thornton-srv/databases/cgi-
bin/valdar/scorecons_server.pl

16.4 Evolutionary Trace

Computational prediction of functionally important residues in proteins from a MSA is a long-
standing paradigm. The method relies on the two basic tenets of protein family evolution, namely
functionally important residues have fewer mutations than less critical positions, and protein
structures descending from a common ancestor maintain a conserved structure. As such, strictly
conserved positions that group together in structure-space make very good functional site predic-
tions. However, it is also well known that alignment positions that are overall variable, but whose
variability is limited to boundaries between subfamilies can be functionally important as well. It is
assumed that these subfamily specific residues mediate functional differences (i.e., substrate speci-
ficity, differences in catalytic efficiency, etc.) between the various groups. Evolutionary Trace (ET),
which is one of the first phylogenetically based method of prediction of protein functional sites [6],
uses this concept to improve functional site predictions. Themethod is widely used (as of June 2007,
the original ET paper has been cited over 380 times) and its predictions have been experimentally
verified [7]. Oliver Lichtarge, who was then in Fred Cohen’s laboratory at the University of
California at San Francisco, originally developed the ET approach. Since then, Lichtarge has
started his own laboratory at the Baylor College of Medicine. Most of the ET methodologies
discussed here were developed by Lichtarge or by the members of his laboratory.
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As the name suggests, ET attempts to trace the evolutionary history of the protein family in

order to identify functionally important residues. ET uses information from phylogenetic analyses,
sequence conservation and 3D structure. The fundamental steps in Evolutionary Trace are:

1. Generation of MSA from homologues of the query sequence. It is important that at least one
member of the homologues has a solved 3D structure.

2. Construction of a phylogenetic tree from the MSA and division of sequences into subfamilies.
When functional interrelationships are known, the partitions are chosen based on expert
curation. Otherwise, the partitions are chosen with reference to a phylogenetic tree. Various
partition identity cutoffs (PICs) are chosen to define partitions. Grouping together sequences
that branch off from a node to the right of a PIC line generates a partition of the entire sequence.
At low PIC, partitions consists of a few large clusters and at high PIC, partitions consists of
many smaller clusters.

3. ET is constructed for each partition, which is done in two steps: (i) A consensus sequence for
each group is calculated where positions varying within the group are left blank and are termed
as ‘neutral sites’ and the invariant position in each group is assigned the conserved residue type
and is termed ‘class-specific’. (ii) All consensus sequences are aligned to obtain the evolutionary
trace for the entire partition. In the alignment, any position is called neutral if it is variable within
any of the consensus sequences. Otherwise, the position is termed conserved if all the consensus
sequences are invariant, or class-specific if the residue type varies between consensus sequences.
Class-specific residues are commonly called ‘Trace Residues’ (TRs). However, since the con-
served (invariant) residues are class-specific at rank i = 1, TRs generally refer to the union of
class-specific and conserved residues.

4. TRs are mapped onto the known 3D-structure. Residues that form clusters over the 3D-
structure are considered to have some important information, and residues that are dispersed
on the 3D-structure are considered as noise. As such, structural information is used to filter out
ET results that are less likely to be functional. Nevertheless, the underlying TR identification is
based solely on sequence-based information (namely, an alignment and a phylogeny).

One of the most important steps in the above procedure is step [2], which defines the evolu-

tionary partitions. For example, let us consider the phylogenetic tree in Fig. 16.1A. If it is known a
priori that the sequences in the tree can be functionally grouped, then the known functional
discriminations defines the considered phylogenetic partitions. For example, in the above example,

suppose sequences in Group A have function A’, Group B has function B’ and Group C has
function C’, meaning the tree is partitioned into three sub-families as shown. The consensus

sequences for the three groups are (shown in Fig. 16.1B) –L–A–D–, ML–A–Q– and –L–A–Q–,
respectively. The corresponding ET sequence is –L–A–X–, where L and A are conserved residues

and X is class-specific, meaning that these three alignment positions constitute the TRs that
are projected onto the structure. However, a key challenge is to define the partitions when
functional annotation is lacking. While it is ideal to use known functional relationships to define

the number of phylogenetic partitions, unfortunately, complete knowledge of the functional
relationships is rare.

In such scenarios, PIC is introduced to identify the phylogenetic partitions from tree topology.

The vertical lines X, Y, Z in Fig. 16.1A, represent different PICs that define a series of phylogenetic
partitions to be considered. For each PIC, a partition of sequences is generated by grouping
together sequences that branch-off from a node to the right of the PIC line, which corresponds

to grouping sequences together such that the lowest level of sequence identity inside the group is
greater than the value of PIC for that line. At low PIC partitions, partitions consist of a few large

clusters, whereas partitions obtained at higher PICs achieve higher functional resolution as large
clusters are fragmented into smaller ones. The ET sequence corresponding to the three shown PICs
are provided in Fig. 16.1C. The partition corresponding to line X corresponds to a PIC value of x%,
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line Y to a PIC value of y%and line Z to a PIC value of z%, and x< y< z. The trace produced by

line X (PIC value of x%), partitions the sequences into one group and the evolutionary trace

sequence corresponding to this partition is –L–A–––. Conversely, the trace produced by line Z (PIC
value of z%), partitions the sequences into five groups whose class consensus sequences are:

GL–A–D–,ML–A–D–,ML–A–Q–, PL–A–Q–, TL–A–Q–,meaning the ET sequence is XL–A–X–.
A key point of this example in Fig. 16.1 is that the set of TRs varies for the various different

traces. Moreover, as PIC increases, the number of TRs must also increase. Initial implementations

of the ET method relied on the visual inspection of mapped residues on the structure for the
determination of PIC [6]. In particular, PIC was chosen such that the number of TRs scattered or

dispersed while mapped on the structure was the minimum.
The above process can be repeated such that each residue position is assigned an evolutionary

rank. The evolutionary rank of a residue is the minimum number of branches into which the tree

must be divided for it to become class-specific. For example, the first position of the above example
does not become a TR till the PIC value of z% (corresponding to vertical line Z), which partitions

the sequences into five groups — consequently, its rank is 5. The third position of the alignment

does not become a TR till some PIC value which partitions the tree into ten groups and hence its

rank is 10. However, the 2nd and 4th positions of the alignment become trace residues at a PIC
value of x%, which partitions the sequences into one group and hence for each of these position,

meaning their rank is 1. Top ranks (1, 2, 3, . . .) are assumed to be intimately related to function,

whereas lower ranks are assumed to be of limited importance. In the above example (Fig. 16.1d),

the corresponding ET rankings for each alignment position are provided.
After initial development of the ET algorithm in 1996 [6], it has been tested in SH2 and SH3

domains, type II zinc-fingers from nuclear-hormone receptors, heterotrimeric G proteins, RGS

Fig. 16.1 A schematic diagram of Evolutionary Trace (ET). (A) A hypothetical phylogenetic tree and its underlying
multiple-sequence alignment. Each sequence is associated to a group based on outside functional annotation. Dashed
vertical lines represent different partition identity cutoffs (PIC). (B) For each functional group, a class consensus
sequence is created and compared to others from which, the ET sequence is generated. Note that the ET sequence
is within the box, and that class-specific residues are signified by X; conserved (invariant) residues are simply labeled
with their one-letter amino acid code. Class-specific and conserved residues constitute the group of ‘trace residues’.
When outside functional annotation is unavailable, PIC can be used. The class consensus and ET sequences at each
PIC are shown in (C). The resultant ET rankings for the example are provided in (D) (Copies of figures including
color copies, where applicable, are available in the accompanying CD)
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proteins, and G protein-coupled receptors. Moreover, ET has been also successfully applied in
PBTI, heregulin, TGF-beta and related growth factors, and in PHD zinc-fingers. Although, ETwas
tested on a large variety of proteins for functional site prediction, two key issues that limited the
applicability of the method on a large scale were ignored until Madabushi’s 2002 paper [8].

16.4.1 Dealing with Gaps and Automation

Two key limitations of the original ET implementation were resolved in the 2002 paper by
Madabushi et al. [8]. The first is that the basic algorithm completely ignores gapped alignment
positions. Hence, the selection of sequences is drastically limited due to the number of gaps within
the MSA from even moderately distant homologues. On this basis, the method assumes that any
position with a gap cannot be functional. For example, in the example within Fig. 16.1a, position 3
is treated as a neutral position and hence can never be a TR. In newer implementations of the
method, gaps are treated as 21st amino acid, meaning the above restriction has been removed. For a
simple example, let us consider the following three class consensus sequences: AE–TFT, VERT–T
and ADR.YT, meaning the ET sequence is XX–––T. However, when allowing for gaps, the fourth
position changes from neutral (no consensus) to a TR (XX–X–T). Gaps often occur in blocks and
these blocks indicate some functional importance at the location of these gaps. Hence, in practice
the ability to rank gapped positions eliminates ‘‘holes’’ from ET analyses. The comparison of the
original, gap-intolerant method, to the new gap-tolerant method was performed in order to
evaluate the approach, and it was observed that the newer method achieved more significant
clusters.

The second limitation is that the original implementation of the method required visual inter-
pretation of the results to identify clusters of top-ranked residues in structure space. A few large
clusters would be considered as a true signal, whereas small-scattered clusters would be considered
as noise. However, near the signal-to-noise threshold this approach becomes too subjective. For the
automation of the PIC, objective statistics to assess the significance were introduced [8]. Moreover,
it was shown that the top-ranked residues cluster spatially within the protein structure. The
statistical significance measures are based on the size of the largest cluster and the number of
identified clusters. Clusters of random residues will be scattered throughout the structure and thus
will tend to give rise to many small clusters. By comparing the number of clusters and the size of the
largest cluster to the random expectation, it was demonstrated that these quantities could be used as
an objective assessment of the cluster with the greatest statistical significance.

16.4.2 Weighted ET

Originally, ET [6] only considered those residues that are strictly conserved within the cluster for
subsequent trace analysis and neglected positions that are not conserved within the cluster. How-
ever, when dealing with a large numbers of sequences it becomes important to be able to consider
those residue positions where there are limited numbers of mutations. In such cases, it is better to
employ some sort of quantitative measure of residue variation at each position. In this regard,
Landgraf et al. [9] introduced a quantitativemeasure of residue variation at each position within the
ET protocol, which they termed ‘weighted evolutionary trace’ (WET). The logic behind the WET
method is that if one is interested in the specificity of a set of sequences within a fraction of the
alignment (subfamily), a given position could be conserved within the fraction, but otherwise
variable. Meaning, one can infer that the particular position contributes specifically to subfamily
functional specificity.
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In order to quantify the above considerations, a measure of variability was calculated in each
position based on an amino acid substitution matrix. Each amino acid sequence is weighted
according to its uniqueness and the variability in each position. Conserved residues in one sub-
family that are variable in another are considered possible specificity-conferring residues. The
variability measure Vp(M) in each position p of the MSA M is calculated as:

VpðMÞ ¼
Xn

i¼1

Vi;p

n
(16:3)

where n is the number of sequences in the multiple alignment and Vi,p is the variability measure at
position p using sequence i as a reference. The value of Vp(M) ranges from 0 to 1 where zero means
no variability. The individual variability score Vi,p is calculated as:

Vi;p ¼
Xn

j6¼i;j¼1

SMði;pÞ;Mði;pÞ � SMði;pÞ;Mðj;pÞ
SMði;pÞMði;pÞ

�Wi (16:4)

where SM(i,p),M(i,p) is the value of substituting the amino acid at position p in sequence i with the
amino acid in the same position, but of sequence j, as given by Gonnet matrix [9]. Gaps are also
allowed and givenmaximum substitution penalty.Weights are assigned to each sequence according
to its level of similarity in order to avoid over-representation of identical or nearly identical
sequences [9]. The sum of all weights equals 1.0. Finally, a cluster formed by m sequences that
has variabilityVp(m), the variability ratio at position p, is given by:

CmðpÞ ¼
VMðpÞ þ 1

VmðpÞ þ 1
� 1 (16:5)

Cm(p) is designed to assign high scores to positions that display variability across the entire
alignment position, yet are conserved within the cluster of m sequences.

The method was tested on a set of sequences that represent the heregulin family of proteins,
which is a subset of the family of EGF-like growth and differentiation factors. The application of
weighted evolutionary trace method identified two distinct clusters of residues, which are thought
to represent binding sites that are specific to the heregulin family and ‘‘. . .reflect differences between
hrg (heregulin) ligands and the EGF-like ligands as a whole. Besides the preference for a different
subset of receptors (HER2, 3 and 4 versus EGFR), hrg also shows a strong preference for the
interaction with receptor heterodimers versus the homodimeric interaction seen between EGF and
EGFR’’ [9]. Using this idea, heregulins were conferred a distinct specificity within the family of
EGF-like growth factors.

As suggested above, the WET method is likely to be of use in the search for clusters that identify
functional sites, specific to a particular subfamily and contributing to the specificity of the functional
site.However, even though theWETmethod proved useful in this particular study, it should be noted
that it is not general enough to be applicable to any type of sequence data and thus cannot be applied
on a large scale. As noted by the authors, the method is useful mostly when one is interested in a
subfamily with a high level of sequence similarity between the sequences used in the alignment.

16.4.3 Modified ET with a Focus on Invariant Polar Residues

As stated above, the original algorithm used visual inspection to identify ET clusters. Aloy et al.
developed an automated approach to identify the cluster on the 3D-structure focusing on invariant
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polar residues [10]. The approach improved the basic ET in the sense that no manual intervention
was required to determine the ideal cluster. Due to their functional importance, this method
focused on the analysis of invariant polar residues (D, E, H, K, N, Q, R, S, T). In essence, the
slightly modified version of the algorithm for determination of clusters for invariant residues
consists of the following steps:

1. An alignment obtained by using the master protein sequence (of known structure) as a query
sequence is generated. A phylogenetic tree is constructed from the MSA. Subsequently, the
query sequence is traced along the tree and every time that a new sequence or a group of
sequences, is added to its own cluster, a consensus sequence is constructed. At each alignment
position, residues that are totally conserved are taken as invariant and the number of invariant
residues in the MSA divided by the length of the query expressed as a percentage is called
‘attained identity’ (AI).

2. Starting at a low AI (say 10%), the invariant polar residues corresponding to the phylogenetic
tree are then mapped to the structure. Spatial clustering is applied to identify those residues that
are proximal in space. Residues are clustered by a single linkage, meaning a residue is added to
the cluster if it is less than 8 Å from at least one residue already within the cluster. If a spatial
cluster is formed, go to step 4; otherwise, go to step 3.

3. The tree is examined and the alignment is modified, and sequences that are far in the phyloge-
netic tree are removed in order to achieve a higher level of attained identity and then spatial
clustering is performed as described in step 2. If a cluster is formed, go to step 4; otherwise,
repeat step 3.

4. A sphere containing all the clustered residues is built using the geometric centroid of the cluster
as the center and the largest distance from the center to any C-beta atom of the clustered residues
as the radius. The sphere and all the residues inside form the predicted functional site.

A key result of the Aloy et al. paper was their unbiased assessment of themethod [10]. By comparing
their predicted functional site sphere to a sphere defined by known functional sites, they were able to
quantify howwell themethod performed. If the overlap of the two spheres was greater than 50%of the
volume of the predicted functional site, the predicted site was considered correct. If the spheres over-
lapped to a lower degree, the method was deemed useful. Otherwise, the prediction was wrong.
Impressively, 79% of the predictions were correct, a further 15%were useful and only 6%werewrong.

16.4.4 Ranking of Residue Importance using ET

Fundamentally, ET combines information obtained from phylogenetics and structure to predict
the functional sites in a protein. However, there are cases when the structural information is not
available. Considering such scenarios, various versions of ET has been developed such that it can be
useful for the prediction of functional sites of a protein. Essentially, these types of methods rank the
residues of a protein in the order of their functional importance. Here, we describe two types of
ranking scores developed using ET analysis.

16.4.4.1 Integer-Valued ET

As discussed above, it is useful to rank each position within the input alignment on the basis of its
relative importance. In Fig. 16.1, the original ET algorithm is repeated for each PIC, meaning, the
positions can be ranked based on their evolutionary importance. However, the definition of rank in
the original ET paper was based on tree topology and lacked mathematical formulation. In this
regard, Mihalek et al. [11] developed the integer-valued ET (ivET) procedure. The mathematical
formulation precisely defines the tree partitions using the following iterative process:
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1. Identify the nearest node, which corresponds to themost recent common ancestor on the tree. This
node is labeled n=N – 1, where N is equal to the number of leaves in the tree. The node defines a
partition (just like PIC did above), meaning that leaves to the right of the node are grouped.

2. The next nearest node is identified, which is labeled n = N – 2. This process is iterated
throughout the tree, with every node label decreasing by 1. This process ensures that the label
of the root is 1 (see Fig. 16.2A).

Additionally, at each step in the iteration corresponding to the assignment of node label n,
the leaf set is divided into n groups, which corresponds to a partition occurring there. For example,
Fig. 16.2a highlights the two groups corresponding to node n=2. Subsequently, the ivET rank for
each alignment position i is defined as:

ri ¼ 1þ
XN�1

n¼1

0 if position i is conserved within each group g

1 otherwise

�
(16:6)

where g simply represents each of the groups defined by node n. In other words, the summation
stops at a division into groups such that the position i is conserved within the group. The 1 added
before the sum is simply provided to ensure that the ivET and original ET results are consistent.

It is to be noted here that equation [6] simply constitutes a mathematical description of the
ranking of the original ET algorithm. In fact, the rankings of each position calculated using the
original ET and ivET are exactly the same. Nevertheless, the importance of ivET is that it now
places the ET rankings into a rigorous mathematical equation and, perhaps more importantly, lays
the foundation for a hybrid ET/entropy method (see next section).

In Fig. 16.2B, the ivET rank is shown for each residue calculated using equation 16.6. For
example, position 1 is not conserved within groups corresponding to nodes 1, 2, 3 and 4 and is

Fig. 16.2 Calculation of integer-valued ET (ivET) rankings. (A) The method labels each node n=1 (which
corresponds to the root) to N–1 (which corresponds to the nearest node); N is equal to the number of leaves
within the tree. The node labeled n, divides the tree into n groups. For example, at node n = 2, the tree is split into
two groups as shown. Subsequently, the ivET rank is evaluated for each position using equation 16.6. Integer-valued
ET ranks are provided in (B), which are exactly the same as the ranking using original ET as in Fig. 16.1 (Copies of
figures including color copies, where applicable, are available in the accompanying CD)
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conserved within groups corresponding to nodes 5, 6, 7, 8 and 9. Hence, its ivET rank is
1+(1+1+1+1+0+0+0+0+0) = 5. Similarly, position 2 is conserved throughout, meaning
its ivET rank is 1+(0+0+0+0+0+0+0+0+0) = 1. Conversely, position 3 is never conserved,
thus its ivET rank is 1+(1+1+1+1+1+1+1+1+1) = 10.

16.4.4.2 Real-Valued ET

Mihalek et al. [11] combined ivET and a conservation-based approach into an expression for a
hybrid score called real-valued ET (rvET) (sometimes called hybrid ET). This method is a marriage
between two different functional site prediction classes, namely methods based on sequence
conservation (Shannon entropy) and methods based on phylogenetic analysis (all-or-none
approaches). Consequently, it maintains the added power of phylogenetic-based methods, yet is
more robust against deviations from the ideal family-tree picture. Meaning, conservation scores,
unlike ET, are sensitive to cases where alignment positions are nearly conserved, whereas ET is
sensitive to positions that can be subdivided into two or more out-groups. Conservation scores fail
in the latter as they only see global conservation.

Real-valued ET combines both into an expression giving the rank of a residue belonging to
position i by:

�i ¼ 1þ
XN�1

n¼1

1

n

Xn

g¼1
�
X20

a¼1
f g
ia ln f

g
ia

 !

(16:7)

wheref g
ia is the frequency of the amino acid of type awithin a sub-alignment corresponding to group g,

and index n refers to the number of groups. The first part of the equation (1+the first sum) coincides
with the ivET ranking for position i, whereas the second sum is simply the Shannon entropy (see
equation 16.1). This expression can be viewed as an extension of the ET method; a group g
contributes 0 to the score if the residue at position i is conserved and contributes any value between
0 to ln 20 if the position is not conserved. Residue-importance ranking is based on its rvET score ��.

It has been verified using a number of protein sets that rvET performs better than the ivET [11].
Real-valuedET is able to handle raw sequence input and its robustnessmakes it potentially applicable
on the proteomic scale. In essence, rvET is more robust to sequence errors and sequence fragments.
Real-valued ET [11] is particularly robust and suitable for making blind predictions about the
evolutionary behavior of residues. Recent version of ET server [12], at Lichtarge’s group also uses
rvET for the calculation of ET. Moreover, there is another variant of the hybrid method for ranking
of residues called ‘zoom’ described in [11] and interested readers are advised to refer to this paper.

16.4.5 Availability

There are various web-based tools available for performing ET analysis. Here, we will discuss a few
of those freely available to academic users.

16.4.5.1 ET Server at Baylor College of Medicine

The ET server at Lichtarge’s group is available as two front-end programs for running and viewing
evolutionary trace results:

(i) Evolutionary trace report maker [13]: This takes a PDB identifier as its input and uses different
sources for protein sequence, structure and elementary annotation, and infers the evolutionary
behavior at each site using real-valued evolutionary trace method and is available for academic
use at http://mammoth.bcm.tmc.edu/report_maker.
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(ii) Evolutionary trace viewer [12]: ET viewer is a set of integrated modules that make such
predictions of functional sites and specificity determinants widely available. ETV allows a
user to launch traces, and then interactively view the alignment, the related phylogenetic tree,
and a molecular graphics display of top-ranked residues mapped on the structure for any user-
specified adjustable rank threshold. This also requires only the PDB id as the input. ETV is
implemented using Java to run across different operating systems using Java Web Start
technology and is available for download from http://mammoth.bcm.tmc.edu/traceview/
index.html. An example of the ET viewer output on the glycolytic enzyme triose-phosphate
isomerase (TIM) is provided in Fig. 16.3.

16.4.5.2 TraceSuite II

TraceSuite II [14] is a fully automated evolutionary trace server developed at Blundell’s group and
is available at http://www-cryst.bioc.cam.ac.uk/�jiye/evoltrace/evoltrace.html. The server takes a
sequence alignment as the input and performs ET analysis. Any sequence with a PDB code as the
sequence name will be regarded as a known structure and the results of the ET will be mapped onto
this structure.

16.4.5.3 JEvTrace

JEvTrace [15] is a JAVA graphical interface of the Evolutionary Trace method at Fred Cohen’s
group in UCSF and is available for download at http://www.cmpharm.ucsf.edu/�marcinj/JEv-
Trace/.

Fig. 16.3 Example of the
evolutionary trace (ET)
output on the glycolytic
enzyme triose-phosphate
isomerase, using the ET
Server at Baylor College of
Medicine. Color-coding
corresponds to the distinct
trace residue clusters;
clusters of just one residue
are colored dark grey. The
largest cluster (colored red)
coincides with the enzyme’s
active site (Copies of figures
including color copies,
where applicable, are
available in the
accompanying CD)
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16.4.5.4 MASH

MASH is a tool for extraction of functional sites by evolutionary trace and related methods. This
tool consists of different variants of ET methods and various conservation-based methods. The
service is developed andmaintained at the Toh lab at KyushuUniversity. The service can be used as
a web server and is also available for download at http://timpani.bmr.kyushu-u.ac.jp/�mash/.

16.5 ConSurf

A second set of phylogenetic-based approachs to protein functional site prediction is based on
the ConSurf algorithm. ConSurf also relies on the assumption that key residues that are
important for functions should be conserved throughout evolution; hence the algorithm is
closely related to the simple sequence conservation scores (i.e., Shannon entropy or sum of
pairs). While conservation scores can be easily estimated from an input alignment, a key
problem is that sequence-space is generally sampled unevenly: the value of the conservation
score is only as good as the alignment it is calculated from. Furthermore, all-or-none consensus
sequence-based treatments in ET [6], treat all columns with variable amino acid residues as
non-conserved regardless of the physio-chemical similarity between them. For example, even
when only one sequence differs in a certain position, the position is considered to be non-
conserved. The research group of Nir Ben-Tal at the Tel Aviv University has developed
ConSurf (Conservation Surface Mapping) in direct response to this limitation [16]. The process
used in ConSurf consists of the following steps:

1. Search for homologous sequences and generate MSA. Subsequently, a phylogenetic tree is
reconstructed. In the original implementation of ConSurf, a parsimony reconstruction method
(as implemented in PHYLIP [17]) was used. Parsimony methods generate a large number of
possible trees and presents the simplest tree as the correct one — parsimony is often compared to
the principle ofOccam’s razor, which states that the simplest explanation is generally the best. One
caveat of the parsimony reconstruction is that it frequently identifies multiple equally good trees.

2. Calculate the ConSurf conservation score for each site as defined by the phylogenetic tree. Each
exchange between amino acids i and j is multiplied by a weight factorMij, calculated by Miyata
et al., determined the physio-chemical similarity between the ij pair [18]. Meaning, Mij is a
substitution matrix score; however, it is based on chemistry-derived rules instead of observed
substitutions (i.e., the PAMmatrices). The conservation grade Pk at position k in the alignment
is calculated as:

Pk ¼
XN

m¼1
ðAm

ij ðkÞMijÞ (16:8)

where Aij(k) is 0 if there is no substitution and 1 when there is substitution; N denotes the
number of sequences within the alignment. In cases where multiple good trees are identified,
ConSurf simply averages over each.

3. After calculating the conservation score for each position in the alignment, the score is normal-
ized such that the average score for all positions is zero and the standard deviation is one.

4. Finally, the conservation scores are projected onto the 3D-structure. The lowest scores represent
more conserved positions, whereas higher scores indicate plasticity. To aid in the visualization of
the coloring scheme, the score is coarse-grained to an integer between 1 and 9. Variable sites
(color grade = 1) are colored blue, whereas conserved sites (color grade = 9) are colored
Bordeaux (see Fig. 16.4).
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A careful consideration of equation 16.8 reveals that it is very similar to the SP score defined in
equation 16.2. However, there is a key difference. ConSurf uses inferred phylogenetic information
to correct for unevenly sampled alignments. For example, consider an alignment that is enriched in
mammalian sequences with the conserved position k. Is position k conserved due to evolutionary
pressures, or is its high conservation score simply a fact of poor sampling of non-mammalian
sequences? Incorporating evolutionary relationships in the form of phylogenetic trees helps to
resolve such issues. A very good description of how the process works is provided by Pupko et al.
[19]. However, in practice, our (unpublished) results indicate that ConSurf is surprisingly insensi-
tive to differences in tree topology or phylogenetic reconstruction accuracy.

ConSurf was originally applied on SH2 and PTB domains, and it was shown that the patches of
conserved residues correlate well with the known functional regions of the domains [16]. Moreover,
comparison to ET shows similar mapping of the conservation of the peptide binding face. More-
over, ConSurf detected a contact area of the SH2 domain with the other domains of the Src protein
that was not identified by ET.

Since the original implementation of the approach, newer versions of ConSurf have been
developed with the intent of improving the position-specific conservation score calculation.
Recently, two new conservation calculations have been implemented into ConSurf; one is
based on maximum-likelihood (ML), whereas the other is based on Bayesian inference methods
[19]. Both provide results that are substantially better than the original method described in [16].
Testing of ConSurf indicates that the Bayesian conservation score provides better results than the
ML method [20]. Hence, the current version of the Consurf server uses it as a default [21].
However, note that the improved performance comes at the cost of additional computational
complexity.

Fig. 16.4 Example of the
ConSurf output on the
glycolytic enzyme triose-
phosphate isomerase (the
orientation is the same as in
Fig. 16.3). The most
conserved residues (colored
Bordeaux) coincide with the
enzyme’s active site (Copies
of figures including color
copies, where applicable, are
available in the
accompanying CD)
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16.5.1 ConSeq

For functional site prediction in families of unknown structure, a variant of ConSurf, called
ConSeq [22], has been developed. ConSeq performs the same conservation analysis as ConSurf;
however, the mapping of the results to the structure is, of course, omitted. ConSeq does provide
some additional features to better inform the functional site prediction from sequence. For
example, the solvent accessibility of each residue is predicted from an Artificial Neural Network
algorithm. Based on whether a conserved position is exposed or buried, sites are classified as
functionally or structurally important, respectively. The output of the ConSeq also maps the
conservation scores, using the same color scheme from above, onto the sequence alignment.
Predicted solvent accessibility is also indicated (see Fig. 16.5).

16.5.2 Rate4Site

The conservation algorithm used by ConSurf and ConSeq is called Rate4Site [19]. Rate4Site has
been implemented into a stand alone program that can be used locally in large-scale analyses.

16.5.3 Availability

The ConSurf server is available at http://consurf.tau.ac.il/ and the ConSeq server is available at
http://conseq.bioinfo.tau.ac.il/. Rate4Site is available for free download as either a Windows execu-
table or UNIX/LINUX (C++) source code at http://www.tau.ac.il/�itaymay/cp/rate4site.html.

Fig. 16.5 Example of the
ConSeq output on the
glycolytic enzyme triose-
phosphate isomerase. The
sequence provided is that of
the query. Color-coding on
the sequence is the same as
used by ConSurf (Copies of
figures including color
copies, where applicable, are
available in the
accompanying CD)
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16.6 Phylogenetic Motifs

As pointed out in the excellent review by Jones et al. [23], protein functional site prediction

algorithms can generally be classified into one of the two groups: methods based on sequence

conservation or methods based on ‘‘feature’’ (or phylogenetic) conservation. ET is clearly a feature

conservationmethod, whereas ConSurf is closer to a sequence conservation approach (even though

it does use some phylogenetic information). The phylogenetic motif [24] approach, which was

developed in our laboratory, is unique in that it overlaps the two classifications. Moreover, PMs

are unique from the rest of the methods discussed herein since they identify stretches of residues

versus single alignment positions. This difference comes at the cost of specificity; however, it

improves sensitivity.
The PM method was first described by La et al. [24]. The approach is based on a previous

observation that motifs taken from regions known to be functionally important a priori conserve

the overall phylogeny of the family. Specifically, using the ubiquitous enzyme copper-zinc super-

oxide dismutase (CuZnSOD), we have shown that a contiguous subsequence taken from three

functionally annotated motifs conserve the overall phylogeny of the family [25]. The functional

subsequence represented �10% of the overall alignment. Randomly chosen subsequences of

similar size never reproduced the overall phylogeny as well as how the functional one did. This
process was later repeated on a small number of additional protein families. The PMmethod simply

reverses this scenario. Meaning, the algorithm uses alignment fragments that parallel the overall

phylogeny as its functional site predictions.

16.6.1 PM Identification

The PM algorithm is based on a sliding sequence window (SSW) approach. The SSW generates all

possible alignment fragments of fixed width (generally five alignment positions). Subsequently, a

‘‘phylogenetic’’ tree is constructed on each fragment. Finally, the method compares each of the

fragment trees to the overall phylogenetic tree. Fragments with tree topologies closest to that of the

overall familial tree are deemed as PMs. Above, phylogenetic is highlighted in quotes because using

this term is not exactly correct. A phylogeny describes the overall evolution of a group of

evolutionarily related proteins. Here, the sequences within the alignment fragment are not com-

plete, so the term phylogeny is technically wrong, even though we use exactly the same reconstruc-

tion algorithms for building the window trees.
Tree topology comparisons are done using the ubiquitous partition-metric algorithm [26]. The

partition metric algorithm, which is also called the symmetric difference or the Robinson-Foulds

distance, quantifies how different two trees are. The partition metric simply counts the number of

partitions, which are defined by the tree branch points that vary between the pair. (Note that the

partition metric used here is slightly modified from the true symmetric difference. The modification

and its rationale are beyond the scope of this discussion, but are described completely in [27]) The

raw partition-metric counts for each alignment fragment are converted into z-scores, which are

then plotted as a phylogenetic similarity spectrum (Fig. 16.6). The smaller the phylogenetic similar-

ity z-score (PSZ), the more similar the fragment tree is to the overall tree. All the overlapping

windows (in sequence) that score past the user-defined PSZ threshold are defined as a PM. In the

example in Fig. 16.6, there are seven PMs, which are composed of 38 alignment fragments. The

shortest PM is equal to two fragments, whereas the largest is composed of ten fragments. Com-

prehensive testing of window widths between 2 and 20 on a structurally heterogeneous data-set

indicated that a window size of 5 and a PSZ threshold between �1.5 and �2.0 are best for
identifying functional regions [24].
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16.6.2 Prediction Assessment

The PM example shown in Fig. 16.6 is again from TIM. In Fig. 16.7A, the PMs have been mapped
to structure. It can clearly be seen that despite little proximity in sequence, PMs structurally cluster
near the TIM active site. In fact, the PMs cover the two catalytic residues of TIM and all residues
that define substrate specificity (Fig. 16.7B). Moreover, application of the method to a set of 14
other structurally and functionally diverse protein families indicates that annotating the identified
PMs as functional is consistent with structural and biochemical data.

Fig. 16.6 The phylogenetic similarity spectrum of triose-phosphate isomerase. The tree of each alignment fragment
(plotted on the abscissa) is compared to the overall tree using the partition metric algorithm, which is plotted on the
ordinate as a phylogenetic similarity z-score (PSZ). When the PSZ values are below a user-defined threshold (here
equal to –1), all overlapping windows are grouped into a single phylogenetic motif. In this example, there are seven
PMs identified (Copies of figures including color copies, where applicable, are available in the accompanying CD)

A B

Fig. 16.7 All phylogenetic motifs (PMs) are plotted (left) (A) onto the triose-phosphate isomerase (TIM) structure.
The color-coding is the same as in Fig. 16.6; orange indicates the substrate analog bound within the enzyme’s active
site. The orientation is the same as in Figs. 16.3 and 16.4. The identified PMs include all TIM-substrate electrostatic
contacts, as shown to the right (B). In fact, Glu165 and His95 are the enzyme’s two catalytic residues, meaning they
directly partake in the enzyme-mediated reaction mechanism (Copies of figures including color copies, where
applicable, are available in the accompanying CD)
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16.6.3 Comparisons to Traditional Motifs and ET

It was observed early on that PMs are strongly conserved in sequence, despite being solely identified
from tree topology. Hence, PM scores have been directly compared to traditional motif scores that
quantify alignment fragment conservation. In order to quantify the relationship, a False Positive
Expectation (FPE) is calculated for each alignment fragment. FPE provides a probability of
randomly encountering a sequence described by the motif within the SwissProt [28] database.
Fragments with FPEs close to zero are conserved, whereas values above �0.15 are indicative of
plasticity. Fig. 16.8 plots PSZ vs. FPE for each TIM alignment fragment. The shape of the plot is
very typical, indicating that PMs are rarely unconserved; however, there are several conserved
windows that are not PMs. A cursory analysis of these windows indicates that they are less likely to
be functional. PM results have also been shown to be consistent withMEME [29] results, which is a
very common motif identification procedure.

Comparison of all identified PMs to ET predictions indicates that PMs are significantly
populated by TRs. This similarity is to be expected since the methods are based on similar
evolutionary arguments— PMwindows generally contain two to four TRs, whereas the remaining
positions approach strict conservation. However, a complete analysis of PM and ET predictions
(without structure) concluded that PM predictions structurally cluster better around known func-
tional sites, especially around substrate-binding epitopes. In essence, it appears that the sequence
clusters of TRs that allow PMs to be identified focus the predictions to the active site region. While
it remains to be tested, it is possible that an algorithm that simply identifies sequence clusters of ET
residues could have the same effect.

16.6.4 Automated Similarity Threshold Selection

As stated above, the original implementation of the PM method [24] required manual selection of
the PSZ threshold. This requirement made large-scale application of the method intractable. As
such, we have automated the signal to noise problem inherent in PSZ threshold selection. There are
many ways of dealing with signal to noise problems; here, we use a simple clustering algorithm to
detect the optimal threshold. In addition, some data manipulation is performed which has the
effect of ‘‘sharpening’’ the phylogenetic similarity spectrum. The automated algorithm [30] for
determining the PSZ thresholds consists of following three steps:

Fig. 16.8 An example, in
this case triose-phosphate
isomerase, of a plot of
phylogenetic similarity
z-score (PSZ) vs. false
positive expectation (FPE).
Note that windows with
large FPEs have very large
PSZs, meaning they are not
identified as phylogenetic
motifs (Copies of figures
including color copies,
where applicable, are
available in the
accompanying CD)
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1. Raw data preprocessing: Based on our earlier investigations [24], we know that any alignment
fragment with a PSZ < �2.0 should definitely be included within a PM. Further, any fragment
with a PSZ > �1.0 should definitely not be included within a PM. The remaining fragments,
with�1.0< PSZ>�2.0, constitute the set of fragments whose annotation is unclear. In keeping
with the PM algorithm, namely that overlapping fragments are grouped into a single PM, the
data within the gap is ‘‘sharpened’’ to accentuate differences within the PSZ distribution. Within
a set of local values inside the gap, the smallest (most negative) value is used to represent the
entire set; while the other values are eliminated (see Fig. 16.9).

2. Subsequently, the sharpened values are clustered using Partition Around Medoids Clustering
(PAMC) [31] into two groups— the cluster of larger values represents noise, whereas the cluster
of smaller (more negative) values represent PM signals. The number of data points in a signal
cluster is counted. If the signal cluster contains five or less data points, the threshold is set to the
least negative value in that cluster.

3. An algorithmic override is invoked if any of the following three situations occur: (i) the cluster
contains more than five data points, (ii) if less than three sharpened points occur in the gap— it
does not make sense to cluster so few data points into two groups, or (iii) no PSZs < �2.0 are
present within the distribution. In each case, the override defines the PSZ threshold as the first
(rank ordered) PSZ value is greater than �2.0. This process normalizes the number of putative
functional sites, preventing both too few and too many predictions.

Using a quantitative assessment similar to that as discussed by Aloy et al., above for ET, [10], we
have benchmarked the accuracy of the automated PM method. On a small data-set of 32 protein
families, the method had 69% correct predictions and 23% useful predictions. Only 11% were
deemed wrong. The ability of our sequence-based predictions to get close to the performance of the
structurally informed ET predictions is exciting. Interestingly, in the case of arginyl-tRNA synthe-
tase, PMs correspond to regions surrounding both the amino acid/tRNA receptor stem and
enzyme-anticodon interactions (see Fig. 16.10). Presumably, the PMs occurring at the anticodon
stem help orient properly the tRNA onto the surface of the synthetase enzyme.

Fig. 16.9 The phylogenetic similarity spectrum of arginyl-tRNA synthetase is shown. In the traditional implementation
of the phylogenetic motif identification algorithm, the user must determine the appropriate phylogenetic similarity z-
score (PSZ) threshold. The automated threshold identification algorithm attempts to classify (signal or not) values
between PSZ = –1.0 and –2.0 (termed the gap). The algorithm begins by ‘‘sharpening’’ the phylogenetic similarity
spectrum, meaning, values colored yellow are reset to PSZ= 0. Subsequently, the scores remaining within the gap are
clustered using Partitioning Around Medoids Clustering (PAMC) into two groups, representing the signal and noise
clusters (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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16.6.5 Improved PM Detection using Parsimonious Trees

Heretofore, all phylogenetic trees have been computed using the Neighbor Joining (NJ) method as
implemented within ClustalW [32]. NJ, which is a distance-based approach, is used for computa-
tional tractability. For example, in the case of TIM, over 250 trees must be computed. Nevertheless,
it is well known that parsimony phylogenetic reconstruction methods are generally superior to
distance-based approaches. As such, a parsimony implementation of the method has been devel-
oped. Our results indicate that parsimony-PMs do a better job in accurately predicting functional
sites; this is especially true in divergent data-sets.

16.6.6 Availability

MINER [33], which is our implementation of the PM identification algorithm, is freely available
from the web at http://coit-apple01.uncc.edu/MINER/. The input toMINER is anyMSA or a set
of unaligned sequences, which MINER will align using ClustalW. Note that the easiest way to
improve PM prediction accuracy is to simply improve the alignment. As such, we strongly
recommend alignments from MUSCLE [34,35], ProbCons [36], or Probalign [37]. Optionally, a
PDB structure may be submitted to better highlight the PM regions, however, this is only used for
assessment of the method. PM identification currently does not consider any structural informa-
tion. The MINER output is a framed HTML file that provides Phylogenetic similarity versus
window number plots, an annotated structure, and an annotated MSA. Moreover, interactive
structural visualization of the identified PMs is achieved via Jmol. Upon request, a stand alone
version of MINER is available (see the MINER website for details).

Fig. 16.10 Arginyl-tRNA synthetase phylogenetic motifs (PMs) are highlighted. Residues colored red indicate PMs
identified using the automated PSZ threshold identification algorithm. The arginine substrate is colored yellow; the
tRNA is colored blue; and the anticodon is colored cyan. Two structurally unique phylogenetic motif clusters are
identified. The larger cluster corresponds to the enzymes active site, whereas the smaller coincides with threeH-bonds
between the enzyme and the anticodon arm of tRNA. It is believed that these interactions help orient the tRNA
properly onto the enzyme surface (38). The orientation of the figure on the right is the same as the left, but non-PM
regions of the enzyme have been removed for clarity (Copies of figures including color copies, where applicable, are
available in the accompanying CD)
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16.7 Which Method Is Best?

A perfectly legitimate question for the novice to ask is, ‘‘Which of the discussed methods is best?’’
Unfortunately, this question cannot be answered uniquely. In a recent analysis of the relative
predictive ability of five methods (sequence conservation, ET, ConSurf, PMs, and FPE) against the
neurotransmitter/sodium symporter (NSS) family, we found that PMs had the best sensitivity,
whereas ConSurf had the best specificity (unpublished results). Surprisingly, a simple percent
conservation metric had the best overall balance between the two. However, if one wanted to
identify positions that define subfamily functional divergence, then ET would be the most appro-
priate technique. Note that the above analysis was done in the absence of structure. Undoubtedly,
the results would change had structure considerations been included.

A second surprising result from this work was the observation that the various methods tend to
provide results that are orthogonal to each other. We developed an orthogonality scale from 0 to 1,
where 0 = perfectly symmetrical predictions and 1 = perfectly orthogonal results. Across all
method pairs, the average orthogonality score was 0.62, meaning that the methods provide some-
what distinct prediction sets. However, in spite of this result, accuracy is substantially improved
when residues are predicted by multiple methods. In fact, when any position was identified by any
three methods, both sensitivity and specificity are greater than 0.5.

This brief discussion is not meant to establish a clear ranking of the various methods. In fact,
applying the methods to other families result in somewhat different assessments. Rather, a discus-
sion meant to demonstrate that simultaneous application of various methods is the most prudent
approach. And then, after applying the various methods, the collective knowledge can be used to
inform one’s conclusions and guide downstream experimental studies.
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Chapter 17

The Role of Transcription Factor Binding Sites in Promoters

and Their In Silico Detection

Thomas Werner

Abstract As detailed in this chapter TFBSs are among the most important elements of transcrip-
tion control in promoters, enhancers, locus control regions, and Scaffold/Matrix Attachment
regions, to name only the best known. So far, the best way to identify TFBSs in genomic sequences
is by sequence similarity searches with whatever method is suitable for the task. As detailed,
nucleotide weight matrices are the most popular and developed tools for this purpose. However,
all of these methods locate TFBSs one by one and independent of each other, yielding what is called
physical binding sites. The only answer such results can provide is the physical binding probabilities
of a whole group of different TFs. Neither specific binding of a particular TF can be deduced from
such data nor can any functional properties of the stretch of DNA where the TFBS was found be
determined. TFBSs do not act as isolated individual binding sites but always as part of a larger
context.

Keywords Transcription factors � Frameworks � ModelInspector � Bindingsite � Promoter

17.1 Introduction

Transcriptional regulation is the key link between the static genomic sequence and all the variable
events that can be summarized as life. Therefore, regulatory regions in the genome influencing the
level of transcription at various levels represent a natural focus for research, linking genomics
and transcriptomics or as defined in a previous article ‘‘regulomics’’ [1]. Regulatory regions share
several features despite their obvious divergence in sequence and function such as promoters,
enhancers, locus control regions, or scaffold/matrix attachment regions. Most of these features
are not fixed nucleotide sequences but are variable in sequences restrained by functional require-
ments. Therefore, understanding of the major components and events during the formation of
regulatory DNA-protein complexes is crucial for the design and evaluation of algorithms for the
analysis of regulatory regions. One of the most important classes of proteins acting in this context is
represented by transcription factors (TFs), many of which interact directly with the genomic DNA.

Algorithms for the analysis and recognition of transcription factor binding sites (TFBSs),
necessarily rely on the underlying biological principles in order to generate suitable computa-
tional models. Therefore, a brief overview over the biological properties and mechanisms is
required to understand why an individual algorithm has been developed in a particular way.
The choice of the parameters and implementation of the algorithms largely control the sensitivity
and speed of a program. The specificity of software recognizing TBFBs in DNA is determined, to
a large extent, by how closely the algorithm follows what will be called the biological model from
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here on. However, every biological model of individual TFBSs is necessarily incomplete as it
became quite evident that a focus on individual TFBSs is too narrow to capture biological
function. Extension of the models to consider the relevant context in particular, combinations
of several TFBSs, are required to match biology. Nevertheless, even such sophisticated models
ultimately have to rely on recognition of the individual TFBSs as a first step.

17.2 Transcription Factors

Transcription factors (TFs) represent a special class of proteins that comes in two flavors: Those TFs
that bind directly to DNA and exhibit at least some sequence specificity or better selectivity in their
binding and those who form protein-protein networks important in transcription control but do not
bind toDNA directly. This latter group are also known as mediators and they will be largely ignored
in this chapter due to the fact that they remain invisible to any TFBSs detection. The focus is on the
TFs that do bind toDNAdirectly andmore specifically on the corresponding TFBSs of these factors.

17.2.1 Expression, Modifications, and Localization

The extraordinary importance of TFs in the general pool of genes and proteins is clearly visible
from the greater variability of expression exhibited by transcription factor genes as compared to
other genes. Transcription factor genes producemore alternative transcripts resulting in alternative
proteins (62%), than other genes (29%), and also produce more tissue-specific isoforms than the
average gene [2]. Often, alternative transcripts of TF genes are also associated with alternative
promoters adding another level of complexity to the regulation of TF gene expression. However,
the presence and functionality of TFs is controlled on many levels far beyond the initial transcrip-
tion and translation of all their isoforms.

TFs quite naturally have to enter the nucleus in order to exert any effect on the genomic DNA.
Since they are translated, like most other proteins, in the cytoplasm they must cross the nuclear
membrane to reach the chromatin, the site of their action. TFs may be regulated in several ways by
prevention or facilitation of this cytoplasmic-nuclear transfer, as is the case for NfkB, for example.
The classical regulator is IkB, which in itself comes in three isoforms, a, b, c [3], hindering the
nuclear transfer of NFkB. It is destructed proteolytically, releasing NFkB triggered by signaling
pathways, which is known as the canonical pathway of NFkB activation. However, a variant form
of a NFkB precursor protein, P100 can act as a fourth IkB protein and prevent the NFkB complex
from nuclear transfer as well. This mechanism of cytoplasmic NFkB retention and its release by
other signaling pathways is known as the non-canonical pathway of NFkB activation [4]. Adding
the sequestration of NFkB components by other factors, e.g., glucocorticoid receptors illustrates
the enormous complexity of even such a simple mechanisms as sequestration. This is by no means
restricted to NFkB, as other TFs are also subject to sequestration such as the glucocorticoid
receptor, which is guided by heat shock proteins throughout the activation process [5].

17.3 Transcription Factor Binding Sites (TFBSs)

The counterparts of the TFs on the genomic DNA are their binding sites (TFBSs), which attract
TFs to the appropriate sites of genomic DNA. Despite the enormous variability of such binding
sites and the different selectivity of such TFBSs with respect to the TFs that will bind to them, they
do exhibit a few common features, which will be summarized below as physical properties of
TFBSs.
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17.3.1 Physical Properties

TFBSs generally consist of about 10–30 nucleotides, only a few of which are crucial for specific
protein binding. Therefore, individual TFBSs can vary in sequence considerably, even if they bind
to the same protein. Nucleotides contacted by the protein in a sequence-specific manner are usually
the best-conserved parts of a binding site. Other nucleotides involved in the DNA backbone
contacts, i.e., contacting the sugar-phosphate framework of the DNA helix (not sequence specific
as they do not involve the bases A, G, C, or T) are much less conserved. The least conserved regions
are the internal ‘‘spacers’’ that are not contacted by the protein at all. In general, protein-binding
sites exhibit enough sequence conservation to permit the detection of candidates by a variety of
sequence similarity-based approaches. However, potential binding sites can be found almost all
over the genome and are by no means restricted to (known) regulatory regions. Quite a number of
binding sites outside the regulatory regions are also known to bind their respective binding proteins
[6], indicating that the abundance of predicted TFBSs is not just a shortcoming of the detection
algorithms but at least in some cases reflects biological reality.

Another important feature of TFBSs is their actual lack of specificity. They do bind selectively to
TFs but by no means are restricted to a single TF. In many cases, several distinct TFs can bind to
the same DNA sequence complicating the identification of the actually binding protein (e.g.,
STAT1 and STAT3 competing in the IL10 promoter for the same binding site [7]).

It is important to keep inmind that binding of the TF to its cognate binding site is only half of the
story. Timely dissociation is at least as important, as transcriptional complexes must disassemble in
time to allow for the release of the DNA at the end of the action. As a consequence, nature has not
only optimized TFBSs for binding of the TFs but also for releasing them, which is probably one of
the reasons why we always have to deal with suboptimal binding sequences in all analyses of real
DNA sequences. This has some very important consequences for the development and perfor-
mance of TFBSs detection algorithms.

17.3.2 Functional Properties–Functional Context

Often it is not possible to identify individual binding proteins as they might bind as part of
multi-protein complexes [8]. This illustrates another important point already raised in the intro-
duction: TF-binding in vivo is usually context-dependent. The isolated TFwill bind to a cognate site
quite differently if brought together in a reaction tube as a naked protein andDNA probe (e.g., in a
gel shift assay) than in vivowhere the adaptive DNA structure, chromatin, other TFBSs, and a host
of other proteins are around. As it became evident from several chromatin immunoprecipitation
(ChIP) studies even in vivo binding of a TF does not automatically imply a function in transcription
control as was found in a genome-wide study, which identified manymore CREB binding sites than
CREB regulated genes [9].

17.3.2.1 Epigenetic Context

There is a very simple method to prevent a TF from exerting any effect on a corresponding binding
site: Hiding that DNA stretch from the protein by any means will do the trick. There are several
mechanisms that will effectively sequester TFBSs efficiently summarized as epigenetic events. The
simplest way to prevent many TFs from binding to their cognate sites is byDNAmethylation which
changes the structure sufficiently to inhibit TF binding [10, 11]. Another mechanism is to inhibit
protein access to the DNA by packing the DNA more tightly as is achieved by deacetylation of
histones resulting in a denser chromatin structure [12]. All of these modifications cannot be read
from the DNA sequence directly and are thus necessarily ignored in any sequence-based analysis
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method such as computational TFBSs detection, which is another reason why potential and real
binding sites do not necessarily correspond.

17.3.2.2 Promoters

The context-dependency of TFBSs can be best illustrated by the example of eukaryotic polymerase
II (pol II) promoters. The TFBSs within the promoters (and most likely in other regulatory
sequences as well) do not show any general patterns with respect to location and orientation within
the promoter sequences although particular functionality may be associated with a specific location
or association within the promoter [13]. However, even functionally important binding sites for a
specific transcription factor may occur almost anywhere within a promoter if a large number of
promoters are analyzed statistically. However, different locations of TFBSs in individual promo-
ters very often are correlated with specific and distinct functions of such TFBSs. For example,
functional AP-1 (Activating protein 1, a complex of two TFs, usually one from the fos and one from
the Jun family) binding sites can be located far upstream, as in the rat bone sialoprotein gene where
an AP-1 site located about 900 nucleotides upstream of the transcription start site (TSS) inhibits
expression [14]. An AP-1 site located close to the TSS is important for the expression of Moloney
Murine Leukemia Virus [15]. Moreover, functional AP-1 sites have also been found inside exon 1
(downstream of the TSS) of the proopiomelanocortin gene [16] as well as within the first intron of
the fra-1 gene [17], both located outside the promoter. AP1 is only one example, the principles
outlined here also apply to other TFBSs, illustrating why the overall statistical correlation of
TFBSs within promoters is not meaningful with respect to the biological function of the TFBSs.
The context of a TFBS is one of the major determinants of its role in transcription control and the
context in this case has to be defined functionally. Physical vicinity of two TFBSs may or may not
be functionally relevant; the particular interactions of the binding TFs determines which TFBSs are
just nearby or essential for transcriptional function. I will refer to a set of functionally interacting
TFBSs in any regulatory region (not restricted to promoters) as transcriptional modules. The same
TFBSs can be part of distinct transcriptional modules depending on the condition or cell type as has
been shown experimentally numerous times (e.g., [18]). A subset of overlapping transcriptional
modules from the RANTES promoter is shown in Fig. 17.1. The original definition of transcrip-
tional modules by Arnone and Davidson was more general than the one used here [19].

17.3.2.3 FrameWork Concept

The context of a TF-site is one of the major determinants of its role in transcription control [18].
As a consequence of context requirements, TF sites are usually grouped together in functional
groups (frameworks), which have been described in many cases and conveying a specific pro-
moter function will require more than one site (e.g., [20]). When the mutual dependency of TFBSs

Fig. 17.1 Proximal transcriptional modules in the human RANTES promoter R(A) – R(D) identify experimentally
verified promoter regions in the RANTES promoter [18]. Below the boxes, the identifiers of the corresponding
TFBSs are given (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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in a framework has been experimentally verified, such frameworks are also called transcriptional
modules (Fig. 17.1). The organization of the binding sites (and probably also of other elements)
of a transcriptional module appears to be much more restricted than what the apparent variety of
TFBSs and their distribution in the whole promoter suggests. Within a transcriptional module,
both sequential order and distance can be crucial for function indicating that these modules may
be the critical determinants of a regulatory region rather than the individual binding sites.
Promoter modules are always constituted of more than one binding site. Since regulatory regions,
such as promoters, can contain several modules that may use overlapping sets of binding sites, the
conserved context of a particular binding site cannot be determined from the primary sequence
(Fig. 17.1). This is also the reason why analysis of a DNA sequence solely for individual TFBSs
will miss the functional context and thus can only serve as the first step in elucidating transcrip-
tional functions in a DNA sequence. The corresponding modules must be either known a priori,
determined by comparative sequence analysis or experimentally in suitable expression assays.

17.4 How Transcription Factors Bind to DNA

Transcription factors bind to DNA via a multitude of atomic interactions that are either van der
Waals hydrophobic contacts or supported by juxtaposition of oppositely charged amino acids and
DNA components. Generally, two basic modes of molecular interactions can be distinguished:

1. The first involves nonspecific contacts between the protein side chains and the so-called back-
bone of the DNA, which consists of the sugar-phosphate structure linking the bases together
(Fig. 17.2). Such contacts can form anywhere on a DNA (double)strand and is responsible for
the general tendency of TFs to associate with the DNA.No sequence specific effects are involved
in this interaction.

2. The second mode is the sequence-specific recognition achieved by direct contact of amino acid
side chains with particular bases of the DNA. Therefore, these contacts can only be formed
where there is a suitable succession of bases, i.e., a specific nucleotide sequence (Fig. 17.2).
However, as the protein mainly recognizes the DNA structure this allows for some sequence
variation as long as the binding structure is maintained.

Fig. 17.2 Basic structure of
a single DNA strand. The
gray area represents the
sugar-phosphate backbone
involved in the nonspecific
protein contacts. The white
boxes represent the bases,
which are responsible for the
sequence specific contacts
with proteins (Copies of
figures including color
copies, where applicable, are
available in the
accompanying CD)
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17.5 Transcription Factor Binding Site Detection In Silico

TFBSs need to be differentiated from all the other possible sequences by any detection algorithm.
Algorithms used to analyze and detect TFBSs are necessarily based on some kind of a usually
simplified model of what a particular TFBS should look like. All models used are inevitably
compromising between accuracy with respect to the biological model (the standard of truth) and
the computational feasibility of the model. For example, a computational model based on a priori
three-dimensional structure prediction derived from molecular dynamics using sophisticated force
fields may be the most accurate model for a TFBS but cannot be used for the analysis of real data
due to excessive demand on computational resources as well as the limited knowledge about
structure-sequence relations. Nevertheless, it would represent the ideal biological model, as pro-
teins can only interact with structures and not with letters, we call sequences.

17.5.1 Models of TFBSs

Over time, various different models have been introduced to describe TFBSs. There are several
approaches to take the inherent variability of TFBSs into account. The basic models will be
discussed in the order of rising complexity.

17.5.1.1 Direct Sequences

The easiest way of course is to put all real sequences of TFBSs into a database and then locate the
exact matches only. Figure 17.3 shows the binding sites for glucocorticoid receptor – binding sites
as collected in MatBase (Genomatix Software GmbH, Munich) as an example. The biggest
disadvantage of such an approach is that as the level of abstraction of this ‘‘model’’ is zero,
sequences are taken as they are, and there is no way of inferring onto anything similar. While

Fig. 17.3 Binding sites for
glucocorticoid receptors
collected from various genes
and mammalian organisms.
Name: gene symbol,
Alignment: actual sequence,
Matrix Similarity:
MatInspector score,
Reference: PubMedID
(Copies of figures including
color copies, where
applicable, are available in
the accompanying CD)
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this will yield only proven binding sites, this approach will miss all variant binding sites and
becomes unfeasible if huge numbers of TFBS sequences are to be considered. Naturally, direct
sequence matching is not used in any computational approach.

However, those collections of real binding sites are a prerequisite for all modeling approaches
and thus databases containing collected TFBSs are valuable resources providing the training
sequences for all algorithms used so far.

17.5.1.2 IUPAC Consensi

The most rudimentary improvement to matching direct sequences is to allow for mismatches but
this allows indiscriminative matching of all sequences differing by the number of allowed mis-
matches, taking none of the TF-specific restrictions into account. The simplest model introducing
such restrictions is based on simple sequence similarities detected by a IUPAC consensus (using
additional letters to describe ambiguities such as R = A or G). Such IUPAC-sequences can be
easily used on a computer. Figure 17.4 shows the complete IUPAC ambiguity code.

The IUPAC-sequences can deal with variant sequences but a major drawback of the method is
that the definition of the consensus sequence is highly arbitrary depending on which rules are being
used to determine the ‘‘prevalent’’ nucleotides as well as the number of sequences considered (e.g.,
[21]). IUPAC consensi are also very promiscuous in allowing patterns that do not occur anywhere
in reality by odd combinations of substitutions. They treat all positions as equally important, which
is in stark contrast to the biological reality (base-specific, backbone-, non-binding), i.e., a mismatch
at a specific contact site is scored the same as a mismatch in a spacer region. Below is the IUPAC
representation of the GRE sequence alignment from Fig. 17.3:

GRE-IUPAC: N N G G T W C W N N N T G T T C T N R

It is easy to see that a lot of sequences not matching any of the founding TFBS sequences will be
accepted as well and no particular scoring is possible.

The next model in terms of complexity would be the positional weight matrices. They have been
proven to be the most widely used models as of today and will be discussed after the more complex
Hidden Markov Models.

17.5.1.3 Hidden Markov Models (HMM)

This is a sophisticated statistical model that has been successfully applied to describe protein-
sequence alignments [22]. In brief, HMMs are fully probabilistic models, allowing manipulation
and optimizing parameters using Bayesian probability theory. To explain this in simpler terms,
consider flipping coins where there are just two possibilities for the outcome. Either the digit is
visible or the picture (an eagle if you throw US quarters) is visible. You may attempt to find out
what is the probability of either side to show up next just given the outcome of the last event. This
would constitute a simpleMarkov chain. Now consider, there is somebody behind a curtain (so you
cannot observe the actual action) throwing coins and telling you the outcome. Again, you attempt

Fig. 17.4 The 15 letter
IUPAC ambiguity code
(Copies of figures including
color copies, where
applicable, are available in
the accompanying CD)
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to predict the outcome from the previous result. However, this time things are complicated by the
fact that the person behind the curtain has several coins to choose from and would not tell you
which one was thrown. So, what you are told is the final result while you do not know the start
condition (i.e., which coin was thrown). The selection of the coins is supposed to be a stochastic
background process, which cannot be observed directly (hidden). Calculating probabilities for
outcome scenarios from the previous outcome involving such a hidden background process con-
stitutes a Hidden Markov Model (HMM).

There are strong as well as the weak points with respect to TFBSs descriptions. In order to train a
probabilistic model sufficiently well, a huge training set of instances (here sequences) is required. In
terms of binding sites this is about 1,000 or more sequences per model, i.e., binding sites, while
realistic numbers for verified sequences is typically in the range of 5–50. AlthoughHMMs represent
by far the best mathematical model to describe the full range of parameters influencing the TFBSs
(Fig. 17.5), they require far more sequences than those available at present. For this sole reason,
HMMs are still not the method of choice for TFBS descriptions. Another problem is that even
sophisticated HMMs still do not account for mutual dependencies of nucleotide positions within
the TFBSs, which are known to occur in a number of real TFBSs.

New high-throughput methods such as ChIP-on-chip provide us with more and more experi-
mentally verified TFBS-sequences, so one could expect that HMMs may be well- posed to replace
the weight matrix based methods one day. However, simultaneously we are learning that subtle
differences in such large collections of TFBSs may actually have important functional (i.e., context-
dependent) consequences, arguing against throwing them together for HMM training. It is too
early to come up with a definitive answer as to whether the final nod goes to HMMs or weight
matrices, or something else.

17.5.1.4 Positional Weight Matrices (PMW)

This is a simple and robust model that has been around for more than a decade and is still the prevalent
method in every day application [23–26]. In brief, the method starts with an alignment of pre selected
sequences (TFBSs for a given factor) and derives a nucleotide distribution matrix from that alignment
(counting the number of occurrences for each nucleotide at each position of the alignment). Then
weighting is applied, which depends on the particular algorithm used. The resulting positional weight
matrix (PWM) is then used to score sample sequences for how well they fit into the matrix. Figure 17.6
shows the nucleotide distribution matrix for the GRE alignment shown in Fig. 17.3.

At the bottom of Fig. 17.6 the Consensus Index (Ci) is shown, which is used to weight the
individual positions in the scoring of any sequence. This weighting is based on the concept of

Fig. 17.5 Schematic architecture of a HMM describing the alignment of sequences with a length of five nucleotides.
The square boxes indicate matching positions. The circles above the boxes indicate insertions and the circles below
indicate deletions. Note that each sequence can feed through a different path in this HMM. The bold arrows
represent the transitions and carry the parameters determining the relative probabilities for these transitions
(Copies of figures including color copies, where applicable, are available in the accompanying CD)
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mutual information content (Shannon entropy), which reflects the varying importance of the
different positions of a TFBS due to different contact restrictions as discussed. The algorithm
was originally described by [26] and further improvements and extensions are described by [23].

The graphical representation of the Ci in comparison with biological evidence from Fig. 17.6 is
shown in Fig. 17.7, illustrating the enhanced sensitivity of the weighted matrix towards biological
features (sequence specific binding, backbone contacts and spacer region).

So, how can all of that be dealt with in a practical application? There are many different
approaches to detect TFBSs and the reader is directed to a recent review for an overview [27].
This chapter will use theMatInspector approach for illustration as this is the only program directly
connected to further analyses that take functional context into account and thus at least allows one
to go beyond the mere physical results.

17.5.2 TFBS Variability and Multiple TF Binding

All search programs attempting to locate potential TF binding sites in the genomic DNA basically
face similar challenges. Themost notorious one is incomplete data, preventing the generation of high

Fig. 17.6 Nucleotide distribution at the 19 positions of the GRE alignment from Fig. 17.3. IUPAC: IUPAC
consensus sequence, Ci: Consensus Index as calculated by the MatInspector algorithm (Copies of figures including
color copies, where applicable, are available in the accompanying CD)

Fig. 17.7 Comparison of calculated importance (consensus index based on Shannon entropy) and experimental
evidence for the Glucocorticoid Receptor Binding site. The scale on the left shows the normalized consensus index
[28] derived from the nucleotide weight matrix of the GRE [26]. The experimental evidence is given as follows: –= no
DNA contact by the protein, + = backbone contact, ++ = unspecific base contact, +++ = sequence specific
base contact (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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quality descriptions by anymeans as discussed in the context of the HMMs. If only two examples for
a specific binding site are available, it is meaningless (but not impossible) to construct a weight matrix
and even a simpler IUPAC string will not be very useful. The situation is very close to that of a non-
existent description, which is the next most frequent problem. Just because there is no IUPAC or
matrix available for a binding site does not mean there is no specific binding site for that protein.

Now, let us consider the case where there is a sufficiently well defined weight matrix and this is
used to scan sequences. There are two additional features of TFBSs to be taken into consideration.
The first is the inherent suboptimal binding affinity (due to dissociation requirements), which
renders strict scoring optimization unsuitable for obtaining biologically meaningful results. The
second problem is that very often, similar sequences are known as binding sites for different but
related TFs. As already discussed, such TFs (e.g., within the STAT or NFkB families) can actually
bind to their mutual binding sites quite well. One solution to take these biological facts into account
is the concept of matrix families uniting closely similar TFBS matrices into groups that are then
used to score DNA sequences, as has been successfully implemented in theMatInspector algorithm
based on grouping of TFBS matrices by self organizing maps [23].

17.5.3 Threshold Issues

Regardless of the model used to describe TFBSs there is one common factor to all of them– the use
of one or more thresholds to determine whether a given sequence should be considered a match or
not. Choosing the right threshold for matrix detection is always a choice between Scylla and
Carybdis. A very sensitive approach will minimize the amount of false negative TFBS predictions
and thus is oriented towards a complete annotation. However, this inevitably requires accepting
large numbers of additional TFBS hits whichmight be false positives and easily outnumber the true
positive predictions (i.e., verified ones) by an order of magnitude. Just to complicate things even
more, all the TFBS methods are designed to detect physical TFBS, i.e., TFBS that will be able to
bind to the respective TF, e.g., in a gel shift assay. However, most of the time researchers are not
interested in such physical binding sites, but want to know about binding sites that are functional
with respect to the transcriptional control of a particular gene. Due to the context-dependency of
the TFBS functions, a rather weak match may be the biologically functional one, while a very
strong match elsewhere is void of biological function in a particular context.

For these reasons every threshold used in finding TFBS matches in sequences is necessarily a
compromise between sensitivity, selectivity, likelihood of TF binding and some kind of ‘black box’
called biological functionality. What became more than clear over the past decade is that there is
definitely no single threshold of the one-size-fits-all type. Matrices are quite different in length and
relative sequence conservation, which mandates amore differentiated treatment of thresholds. This
is the reason why MatInspector uses individually optimized thresholds for all matrices.

Again, the dilemma between finding TFBS individually (the physical TFBSs) and functional
requirements (such as in frameworks and transcriptional modules) has an influence on thresh-
old selection. While a relatively low threshold does not make any sense in scanning large
sequences, it is perfectly fit – even required – in a close functional context such as a transcrip-
tional module. The reason is that cooperative binding often substitutes for the requirement of a
strong TFBS, as a weaker TFBS might be sufficient in connection with the protein-protein
interaction between the two binding TFs. However, such information cannot be retrieved or
used by any means if the method focuses on the detection of single TFBSs. Therefore, TFBS-
model thresholds remain a thorny issue and whatever choice is made it remains suboptimal in
other circumstances.

Just to complicate things a bit further it is also becoming increasingly difficult to determine true
positive and true negative matches of TFBS models due to the context dependency of functional
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‘‘truth’’. A TFBS void of function in one tissue may very well be functionally required within the
same promoter in another context (Fig. 17.1).

17.6 How to Define Unknown Transcription Factor Binding Sites?

Especially in the light of an ever-growing number of full-scale genomic sequencing projects, it is
very important to go after new, unknown binding sites. However, since the generation of a weight
matrix requires a set of known binding sites, how is this accomplished for unknown binding sites?

There are several ways to get out of this dilemma, at least partially. So far, there is no way to go
for (TFBSs) from a large totally anonymous sequence. Some previous knowledge is required in
order to use pattern definition algorithms to produce new patterns that can be turned into IUPAC
consensus sequences or nucleotide weight matrices. A very effective and relatively simple approach
is the experimental determination of the binding site spectrum for a given protein. This is called
SELEX, and is actually an in vitro selection of binding sequences from a large collection of random
oligonucleotides. Only the sequences with sufficient affinity to the protein will be bound, the rest
can be washed away and then sequencing of the bound oligonucleotides reveals individual binding
sequences that can be used to derive a nucleotide weight matrix. The catch is that before that can be
done an extensive purification of the protein has to be carried out.

Another experimentally oriented approach is the evaluation of expression array data. Here,
large amounts of gene probes are arrayed onto a filter or glass chip. This array is then hybridized to
the RNA (via complementary DNA) isolated from cells that underwent some treatment. The
amount of signal over each spot indicates the approximate level of RNA present for this gene. By
comparing such values with other experiments with untreated cells, it is possible to detect which
genes changed their RNA levels under treatment. Then it is possible to cluster the genes according
to their expression patterns. Analyzing the promoter regions from genes with a very similar
expression pattern and at least within a common biologically functional context can be used to
identify common patterns from scratch, many of which are transcription factor binding sites.
Brazma et al. have demonstrated this approach successfully in the yeast system [29]. Fortunately,
promoters in higher eukaryotes, like mammals, are now as readily available as in yeast, due
to improved promoter prediction (e.g., [30]) as well as large-scale experimental efforts to locate
TSS [31].

Regardless of the way the promoter sequences are acquired, the sequences need to be analyzed
for unknown motifs hidden in the set. There are many programs available to go after pattern
definition in a set of sequences. The most popular methods are the Gibb’s sampler [32], expectation
maximization algorithms (e.g., [33], and a variety of other approaches (e.g., [34]).

Discussing all of these algorithms is beyond the scope of this article but all of these methods have
specific strong and weak points. There is no single program that will do in all the cases, so a
considerable effort in trying out different methods with one set of sequences is still mandatory. The
reader is again referred to the excellent review of Tompa et al. [27].

17.7 How to Proceed from Physical TFBSs to Functional Context?

It is quite clear that a single sequence will yield few clues to what the functional context might be,
especially as the same sequence may contain organizational structures that are linked to many
different functional scenarios. Comparative sequence analysis is one of the most powerful methods
to deduce regulatory features and organization, because a selection of sequences to be compared
can be based on functional similarities of the sequences (e.g., same pathway or expression beha-
vior). Basically, two types of comparative analysis can be distinguished. The first approach
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compares the regulatory regions, e.g., promoters within one species such as promoters co-expressed
under particular conditions (e.g., from microarray studies). The second approach compares only
orthologous regulatory sequences across several species (again promoters are the most prominent
representatives) in order to elucidate which features and elements remained conserved in evolution.
Such features should be closely associated with functional conservation of the corresponding
regulatory regions. While comparative analysis within species not necessarily allows distinguishing
between pure statistical findings and functional conservation, phylogenetic analysis of orthologous
regulatory sequences should indicate the predominantly functionally conserved features. However,
intra-genomic comparisonmay differentiate between individual functions especially when based on
selectionmethods such as microarrays [35], while phylogenetic analysis will always yield a summary
over all the conserved functions. Thus, very often a combination of both approaches is the best way
to go [36, 37].

Most of this approach has been implemented into the program package GEMS Launcher1
(Genomatix Software GmbH), which contains MatInspector1, to locate individual TFBSs and
the program FrameWorker to carry out automatic comparative sequence analysis for TFBS-
frameworks as well as the program ModelInspector1 to locate other regulatory sequences in
whole genomes containing the same organizational structures as described in a recent publication
[23]. This way, the crucial step from physical to functional sequence analysis becomes possible
and the principle has been applied successfully in numerous projects and publications (e.g., [36,
38, 20, 35, 7]).

17.8 Summary

Therefore, elucidation of the role of TFBSs in promoters requires taking the functional context
(frameworks) into account, which none of the individual detection programs is capable of. There-
fore, in the light of all accumulated knowledge about the mechanisms of transcriptional regulation,
the title of the chapter should actually read: ‘‘The role of transcription factor binding sites in
promoters and in silico detection of their functional context.’’ Still, finding the individual TFBSs is
and remains to be an important task, but stopping there is like collecting all words of a book
without looking at the sentences. You will have all the data and almost none of the information
contained within.

Frameworking as explained in that chapter is not the only way to elucidate functional context of
TFBSs but the only way to do so is based on comparative sequence analysis alone. All other
approaches require a lot more experimental evidence such as ChIP data or functional assays
(deletion or mutation studies, etc.). Therefore, framework analysis appears to be the natural first
step, not excluding or replacing any of the other methods. It is also a very efficient way to take
advantage of the enormous wealth of information hidden in the vast amount of genomic sequences
available today.
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Chapter 18

In Silico Discovery of DNA Regulatory Sites and Modules

Panayiotis V. Benos

Abstract In this chapter we describe methods commonly applied for pattern representation and
some analogies to the physical world of protein–DNA interactions. Next we present the general
methodology for de novo DNA pattern discovery in a set of promoter sequences with and without
prior information and we discuss some well-established algorithms. The common problems of
pattern matching, i.e., the prediction of a site based on prior information are discuss along with the
contribution of the evolutionary information to the pattern discovery and pattern matching
algorithms. Finally, in we introduce the topic of cis-regulatory modules (CRMs) and some of the
algorithms designed to find them.

Keywords Bioinformatics � Genetics � Genomics � Transcription � DNA regulatory regions

18.1 Introduction

18.1.1 Role of TFs in Regulation of Gene Expression

Systems Biology aims to the understanding of the interactions between the various molecular
components in the cell and between the cell and its extra-cellular environment. Cells respond
continuously to a constantly changing environment by adjusting the expression levels of their
genes. This applies to responses to extracellular stimuli, developmental needs, and differentiation.
A fundamental control of the expression of every gene takes place at transcription, during which the
genomic DNA is copied (‘‘transcribed’’) into RNA. The rate of transcription is influenced by
various factors. On a large scale, the status of the chromatin (‘‘opened’’ or ‘‘closed’’ form) deter-
mines whether the genomic DNA is accessible or not to interacting proteins, which has been
associated with activation or silencing of large parts of the genome. On a gene-by-gene basis,
transcription regulation is achieved for the most part by the presence or absence of transcription
factor (TF) proteins in the nucleus. TFs recognize short DNA ‘‘signals’’ (typically 6–15 bp long) in
the vicinity of the genes’ transcription start site (TSS) and they have the potential to initiate
(activators) or repress (repressors) the transcription of nearby genes. These ‘‘DNA signals’’ are
commonly referred to as transcription factor binding sites (TFBSs) or more generally as
cis-regulatory elements.
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18.1.1.1 Organization of the Promoter in Prokaryotes and Eukaryotes

The genomic region with the TFBSs that control the expression of a gene is called the promoter. The

size and the organization of a promoter differ depending on the organism and the gene under study.

Protein coding genes have a set of core promoter elements, which are characteristic of the domain

the organism belongs. Prokaryotic organisms (like bacteria) have two distinct regulatory elements

in their core promoters: the Pribnow box, which is located about 10 bp upstream of the TSS (typical

sequence: TATAAT) and a second element located around position �35 (typical sequence:

TTGACA). Eukaryotic core promoters are more variable. However, many of them contain a

TATA box at position�30 from the TSS (typical sequence: TATAAA) and aCAAT-box at around

75–100 bases upstream of the TSS (typical sequence: CCAAT).
Besides these core elements, a number of gene-specific DNA elements regulate the appropriate

transcription rate of a gene. These are the target sites of the sequence-specific transcription factor

proteins. They are located either upstream of the gene’s TSS or downstream, in its exons or introns

(for the eukaryotic genes). The distance at which these elements can be found varies from some

hundreds of bases in bacteria or single cell eukaryotes (e.g., yeast) to 10–20,000 bases in complex

eukaryotes (e.g., in the fruitfly Drosophila melanogaster). Sometimes the more distant regulatory

elements, also known as enhancers, are not sufficient to drive transcription but they rather play an

assisting role. Mutations on TFBSs have been associated with diseases, like b-thalassemia in

humans. Schematic views of typical prokaryotic and eukaryotic core promoters are presented in

Fig. 18.1.

18.1.1.2 Protein-DNA interactions

The DNA cis-regulatory sites are recognized by the transcription factor proteins via the formation

of chemical bonds between the amino acids and the DNA. Hydrogen bonds as well as van der

Waals interactions and water-mediated bonds have been observed in crystal structures. Most of

these interactions, are not sequence-specific, i.e., they are formed between the DNA backbone and

the protein. As such they do not contribute much to the binding specificity except through indirect

reading, which is associated with the ‘‘bendability’’ potential of the DNA and other DNA

Fig. 18.1 Schematic view of
prokaryotic (A) and
eukaryotic (B) core
promoters. The elements of
the general transcription
factors as well as examples
of gene-specific binding sites
are depicted (Copies of
figures including color
copies, where applicable, are
available in the
accompanying CD)
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properties. Nevertheless, most of the sequence specificity is obtained via hydrogen bonds between
the amino acids and bases.

In most cases, the TF proteins use a-helices to attack the DNA major groove. Each helix can
‘‘read’’ only 3–4 bases, which is an insufficient length for unique target recognition in a genome of
thousands or millions of bases. Therefore, TFs utilize multiple a-helices to build composite DNA
patterns (e.g., proteins of the C2H2 zinc-finger family), or a combination of multiple helices and
amino acid tails that contact the bases in both the major and the minor grooves (e.g., some
homeodomain proteins, like Drosophila engrailed). In other cases, proteins with short DNA targets
(4–6 bases long) can form homodimers, hence expanding their total target length (e.g., bZIP and
bHLHproteins). In addition, eukaryotic organisms are able to inactivate large parts of the genome,
by making them inaccessible to TFs through chromatin packaging or insulator molecules (like
CTCF protein).

In terms of computational searching for DNA patterns in the promoter regions of the genes,
two questions are frequently asked: (i) given a set of co-regulated genes (e.g., from microarray
experiments), what are the putative DNA binding sites of the (unknown) TFs that are regulated
by them? (ii) given a single promoter, does TF X regulate the associated gene? A number of
methods have been developed to address the first question. The underlying hypothesis of these
methods is that all or most of the promoters contain binding sites for the same TF(s). In Section
18.3, we will describe the most important of these strategies and algorithms. For the second
question, the straight-forward approach is to scan the promoter of the gene of interest with the
binding site pattern of the TFs of interest. In this way, putative sites are predicted based on some
user-defined threshold. Typically, this method results in a high number of false positive predic-
tions, which can be reduced by utilizing evolutionary information. The underlying hypothesis
here, is that biologically important parts of the promoter (e.g., those containing binding sites of
TFs important for that gene’s expression) will evolve at a slower rate and thus will tend to bemore
conserved between species.

However, the hypotheses underlying both these methodologies have been known to be true only
to a certain extent. Noise in microarray data and uncertainties associated with the data analyses
may result in the inclusion of irrelevant genes in the set of co-regulated genes. This will increase the
noise of the method, especially when analyzing promoters of complex eukaryotic organisms, where
usually large parts of the genomic DNA upstream and downstream of the TSS are considered. For
the second methodology, it has been recently shown that in some organisms TFBSs have a high
turnover. In other words, sites that are functional in one organism may become non-functional in
another organism andmay get replaced by sites in other parts of the promoter region. Despite those
known limitations, these general methodologies are used to address these two very important
questions.

18.2 DNA Pattern Representation

Typically, each TF recognizes multiple DNA target sites in a sequence-specific manner. The target
sites are frequently viewed as variants of a ‘‘preferred’’ (consensus) site. Given a set of known
binding sites of a TF, the first question is: what is the best way to organize the information so that it
becomes useful in the search of other, yet unknown, sites? When the number of known TFBSs is
small or their variation is limited, they can be used directly in simple string searches to identify new
occurrences. This is the case of the c-myc TF. The vast majority of the known c-myc targets contain
the sequence CACGTG, although another target CATGTGor its reverse-complement (CACATG)
has also been reported. With such limited repertoire, one can directly scan a genomic DNA
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sequence and seamlessly identify all potential c-myc sites. Given that most of the known c-myc sites
are CACGTG, biologists will naturally have more ‘‘trust’’ in predictions with this hexanucleotide
than in the other two forms when it comes to prioritizing their tests.

18.2.1 Representation by Consensus

Most of the TFs have more than three known target forms, in which case a straightforward method
to summarize and present the binding preferences is done by calculating their consensus sequence.
The targets are aligned on the top of each other and for each position the IUPAC code is used to
denote bases and base ambiguities (Table 18.1). A regular expression search can then be employed
to predict new sites of this TF. Consensus target representation is used frequently in the literature to
effortlessly present positional base preferences, but it has limited value when it comes to searching
for new sites. In order to better understand why, let’s consider the c-myc example above. The
consensus representation of the three c-myc sites would be CAYRTG. This representation will
capture all three known sites, but it will also yield sequence CATATG as putative c-myc target,
which is not known to be true. For TFs with longer and more variable targets, the consensus may
quickly deteriorate into a useless pattern as more variable functional sites are discovered and added
to the consensus. Consider, for example, the aligned target sequences of Fig. 18.2A. If we knew only
the top eight targets, then the consensus pattern would have been GGRHKTYCCC, which would
have detected 2.3 putative ‘‘hits’’ on an average on a random DNA sequence about 100,000 bases
long (assuming equal background probabilities for all bases). These are the sites generated under a
background model, so they represent the amount of ‘‘noise’’ or false positive predictions one might
expect. When all known sites of Fig. 18.2A are considered, the consensus pattern becomes
RGRNDNYYMH, which will detect 4.4 sites for every 1,000 bases on average. So, the latter
pattern will generate�200 times more false positive sites than the former, although the former will
miss more of the (total) known sites of Fig. 18.2A.

Furthermore, the consensus representation provides no insights on the quantitative nature of the
binding. The example of the three c-myc sites, it neglects the fact that CACGTG is a much more
frequent c-myc target than all the rest. Clearly, a probabilistic way to represent these patterns
should be more powerful.

Table 18.1 IUPAC codes for DNA bases and their combinations

Symbol Combination Name

A Adenosine

C Cytidine

G Guanine

T Thymidine

M A C Amino

R A G Purine

W A T Weak

S C G Strong

Y C T Pyrimidine

K G T Keto

V A C G

H A C T

D A G T

B C G T

N A C G T

(Copies of tables are available in the accompanying CD.)
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18.2.2 Representation by Weight Matrices

The Position-Specific Scoring Matrices (PSSMs; also known as Position Weight Matrices or
PWMs) is the most widely used way to capture and represent binding site information. Like
consensus sequences, PSSM models are generated from a set of aligned known sites, but each
position is represented by a set of four weights that correspond to the likelihood of each base
appearing in this position of the target sequence. The construction method of a PSSM model is
illustrated in Fig. 18.2. For each position, I, of the alignment, the four-dimensional vector con-
stitutes the log-likelihood of the observed frequency of each base at this position over an expected
background frequency (Fig. 18.2C). These weights provide a quantitative measure of how fre-
quently a particular base is observed in the set of known sites as opposed to the background (e.g., in
the genome). Positions that are more important for the TF binding tend to have higher log-
likelihood ratios. The composite model of all L vectors (L is the length of the pattern) is the
4 � L PSSM model. The average log-likelihood for each position is the relative entropy, which is
formally defined as:

RHðIÞ ¼
XT

b¼A
fðb; IÞ � ln fðb; IÞ

PrefðbÞ
(18:1)

where f(b,I) is the estimated frequency of base b at position I of the pattern and Pref(b) is the
background frequency of base b (e.g., in the genome). Averaging all the L positions, we obtain the
average relative entropy of the motif. A number of motif finding algorithms identify patterns that
maximize either the overall log-likelihood of the motif or its relative entropy.

Although they are derived from Shannon information theory, PSSMmodels have an interesting
explanation that is based on the thermodynamic properties of the proteins and DNA [1]. Assuming
that a TF, P, interacts freely with its genomic DNA targets (i.e., no protein-protein synergistic or
competing actions take place and no change in the protein concentration occurs during the

Fig. 18.2 PSSM model
representation. A set of
aligned target sites (A) can
be used to generate a
position-specific count
matrix (B) The count matrix
is later transformed into a
log-frequency matrix
(C) (with or without
background correction).
Any of the three forms of
information can be
graphically represented as a
LOGO of symbols (D) using
the appropriate software
(Copies of figures including
color copies, where
applicable, are available in
the accompanying CD)
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interaction), then under equilibrium one would expect that the probability that a given target,D, is
bound by the TF would be:

PðD � PÞ ¼ PrefðDÞ � e�HðD;PÞ=RTP
Di
PrefðDiÞ � e�HðDi;PÞ=RT

(18:2)

where Pref(D) is the background frequency of D and H(D, P) is the energy of the interaction
between the target and the protein. The denominator is the partition function, which ensures that the
sum of the probabilities over all targets,Di, will be 1. Based on that, the log-likelihood PSSM score
(see above) is equal to the negative energy of the interaction in RT units (plus some constant).

PSSM models, like the consensus patterns, assume that the positions in the DNA target are
independent in their contribution to the overall TF-DNA specificity. In other words, the observed
base frequencies at position I are independent of the frequencies in any other position. In equation
18.2, this translates into: the energy function being further partitioned on individual base-amino
acid contacts to simplify their calculation. This is known as the additivity assumption and has been
highly debated over the years. Studies on individual TFs show that although this assumption is not
completely accurate, it is still useful in many cases, in the sense that it produces reliable predictions
[2]. From a biologist point of view, this is what matters most. Few models have been proposed that
consider higher order of position dependencies [3, 4], but the limited data availability for most TFs
makes these models inefficient due to the problem of overfitting.

18.2.3 Scoring Sites with a PSSM Model

There are many ways to interpret a PSSMmodel. The most useful one is perhaps as a probabilistic
model of a set of known sites (for a very good review, see [5]). According to that, a frequency matrix
is a multinomial distribution that can generate target sites. Hence, we can measure the probability
that a given site,Dk, was generated by this frequency matrix by multiplying the probabilities of the
Dk bases at the corresponding positions. However, multiplying the probabilities can quickly lead to
a memory underflow problem. It is usually more convenient to calculate the sum of log-likelihoods
instead. When the PSSM model, W, is the log-likelihood ratio of the frequency matrix over the
background frequencies, the following score function can be used:

SðDk

r
jWÞ ¼

XL

i¼1

XT

b¼A
wðb; iÞ � �ðDkðiÞ; bÞ (18:3)

where w(b, i) is the PSSM weight of base b at position I in Dk, and � is the Kronecker’s delta
function, which is 1 if the i-th base of theDk is b and zero otherwise. Assuming that the PSSM scores
have taken into consideration the background frequencies, a positive composite score will generally
mean that the sequence, seq_x, is more likely to have been produced by themodel that generated the
real target sites than by the background model. For example, the highest scoring sequence in the
model of Fig. 18.2, is GGAATTTCC (score = 14), whereas one of the lower scoring sequences is
TTTCCAAAT (score = �38).

18.2.4 Visual Pattern Representation with LOGOs

We, humans, can much easily comprehend and appreciate biological patterns when they are
presented in a graphical rather than in a numeric form. In 1986, Schneider and colleagues developed
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a method to graphically represent the DNA and amino acid patterns [6, 7]. The method represents

each position of the multiple-sequence alignment as a stack of symbols (bases, amino acids). For

DNA sequences, the total height of the stack at position I is equal to:

HðIÞ ¼ 2þ
XT

b¼A
fðb; IÞ � log2 fðb; IÞ (18:4)

where f(b, I) is the observed frequency of base b at position I. This formula calculates the decrease

in entropy (from amaximum value of two for DNA sequences in log2 scale) due to uncertainty. For

a column with maximum uncertainty (equally probable bases), H(I) = 0. For a column with

maximum conservation or zero uncertainty [when one base has f(b,I) = 1], H(I) takes its

maximum value, i.e.,H(I) = 2. Once the stack’s height, H(I), has been determined, the height of

the individual symbols within the stack is calculated proportionally to its relative frequency, f(b,I).

The LOGO of the frequency matrix of the alignment in Fig. 18.2A is presented in Fig. 18.2D as an

example. Note that the relative entropy in equation 18.1 is the entropy in equation 18.4 normalized

for the background frequencies.

18.3 De Novo Pattern Discovery

Let’s now focus on the most common problem related to the identification of regulatory sequences

(for a very good review of various methods, see [5]). Suppose we have a list of genes that are found

to be co-regulated. These, for example, can be genes resulting from microarray or other gene

expression data analysis. A reasonable assumption is that a large proportion of these co-regulated

genes share a set of TFs that regulate them by binding to conserved DNA elements in their

corresponding promoter regions. In most cases the identity of these TFs and their DNA binding

preferences are unknown so the problem can be formalized as: given a set of (unaligned) promoter

regions identify common DNA elements that are likely to be targets of some TF.
Several methods have been developed to address this problem. Typically, these methods search

for DNA patterns over-represented in these sequences compared to some ‘‘background’’ or

‘‘expected’’ frequency. The methods differ on the objective function they try to optimize, the

computational algorithm they use for this optimization and the background model they consider.

Below we describe some general principles of these methods.

18.3.1 Finding Patterns with a Greedy Search

One of the first algorithms for finding patterns in unaligned DNA sequences was Consensus,

developed by Hertz and Stormo in 1990 [8, 9]. Program Consensus (not to be confused with the

consensus representation of binding patterns described before) uses a greedy algorithm in order to

identify the set of sequences of a given length that maximize the pattern’s information content,

formally defined as:

ICðpatternÞ ¼
XL

I¼1

XT

b¼A
fðb; IÞ � log2 fðb; IÞ (18:5)
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where f(b,I) is the frequency of base b at position I. For a given pattern length L, the algorithm
starts by creating one sequence matrix for each sequence L-mer ‘‘word’’. In the subsequent cycles,
this matrix is compared against all the other sequences and ranks the resulting pairwise alignments
according to their information content. In order to reduce the search space and time, in each cycle,
only a percent of the examined patterns is retained (e.g., 10%matrices with the highest information
content). In its present form the algorithm manages to keep the calculation cost very low [O(N2) in
time and O(N) in space for N sequences].

18.3.2 Finding Patterns with Iterative Optimization

One general algorithm for the maximum likelihood parameter estimation in probability mixture
models, is the expectation-maximization or EM. In 1990, Lawrence and Reilly applied it for the
first time in biological pattern finding [10], although perhaps the most famous implementation as
of today is program MEME, developed in 1993 by Bailey and Elkan [11]. Assuming a set of
observed quantities (e.g., binding sites) determined from a set of hidden or missing data (e.g.,
PSSMmodel of TF-DNA binding), the EM algorithm seeks to identify the PSSMmodel that best
explains the observed quantities. However, since the binding sites are also unknown, the EM
algorithm iterates between predicted sites and PSSM models. For each iteration the current
PSSM model is used to calculate the expected likelihood of all subsequences of length L in the
unaligned promoter data-set. The set thatmaximizes this expectation is the new (predicted) set of
binding sites, which is used to calculate the new PSSMmodel to be used in the next cycle. In other
words, in each cycle the algorithm selects the parameters (PSSM model) that maximize the
expected likelihood of the observed data calculated over the values of the missing data and
model parameters. When the PSSM model does not change significantly or when a maximum
number of iterations have been reached, the algorithm terminates. Initializations of the PSSM
model can be done by performing a one step EM with all possible motif-starting points and then
evaluating the results.

One of the disadvantages of the EM algorithms is that they can be trapped in local maxima.
Another very popular algorithm, Gibbs sampling, is designed to overcome this problem. Gibbs
sampling is very similar to EM, but in each cycle the candidate sites are selected randomly with their
probability of selection calculated by their match to the current PSSM model. In this way,
suboptimal patterns (with respect to the current PSSM model) can enter the next cycle hence
help escaping local optima. Initialization of the Gibbs sampling algorithm is typically done by
randomly selecting one ‘‘word’’ from every input sequence and by using them to calculate the first
PSSMmodel. The first Gibbs sampling algorithm implementation for DNA and protein sequences
was performed in 1993 by Charles Lawrence and colleagues [12], since then many other algorithms
have implemented it [13, 14].

18.3.3 Other Pattern Finding Methods

A number of other strategies have been explored in the search for better methods for DNA pattern
identification. These include artificial neural networks like perceptrons and self-organizing maps
(e.g., programsANN-SPEC [15] and SOMBRERO [16]). Also, they include the so called dictionary-
based or word enumeratingmethods. The basic principle of the dictionary-based methods is that the
biologically important patterns will show relatively small variability and there will be significantly
more frequent in the test set (e.g., unaligned promoter sequences) than in some background. Thus,
enumeration of all ‘‘words’’ and comparison of their frequencies to the expected background can
help in the identification of the most statistically significant ones. In this context, the concept of the
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‘‘word’’ can be extended to include patterns with a predetermined variability (e.g., k ofL bases to be
conserved) or regular expression patterns (e.g., GG[AG]A[TA][TG][TC]CC for the pattern in
Fig. 18.2D).

18.4 Pattern Matching

Nowwe switch to a different kind of problem. Assuming we know the binding preferences of a TF
in a form of a weight matrix of length L, how can we predict if and where it binds in a given
promoter? One straightforward way is to use the PSSMmodel to ‘‘scan’’ the promoter region and
score each subsequence of length L (both strands) using equation 18.3. Note that since the
weights, w(b,i), in equation 18.3 are a function of the logarithms of the base probabilities from
the model of the observed (known) sites, the above sum is the log-likelihood that the target comes
from that set (corrected for the background base frequencies). Having calculated a score for each
subsequence of the promoter region, the initial problem now changes into a problem of determin-
ing an appropriate threshold that discriminates between true positive and true negative sites.
Unfortunately, this is not a trivial problem. The prediction of TF binding sites is notoriously
difficult mainly due to a relatively low signal-to-noise ratio. Part of the problem is the incomplete
modeling of the binding preferences. Higher order models have been proposed in the past, but
with limited usefulness, due to the small number of known sites for most TFs. However, the high
false positive rate may also be an inherent property of the TFs themselves. After all, a TF needs to
specifically recognize its targets, but the protein-DNA association also needs to be easily
reversible.

Having noted this, there are two main methodologies one can follow to set up a threshold.
According to the first method, given a set of known target sites and their resulting PSSM
model, a score can be calculated for each of these sites based on the model. Then, a score
threshold can be defined as the score that would detect the top x percent of the known
targets (x is a user-defined cutoff, e.g., 90%, 95% or 100%). This cutoff will correspond to
the expected false negative rate.

The second method calculates a score according to a user-defined expected false positive rate or
false discovery rate (FDR). In order to do so, we first need a model for the background DNA. For
the purposes of this test, background DNA sequence is a sequence that is not expected to contain
binding sites for the TF of interest. On a first approximation, the background can be modeled by
the single nucleotide or higher order frequencies of the genome (di-nucleotides, tri-nucleotides,
etc.). A number of random background sequences can be generated based on these frequencies.
Alternatively, as background, we can consider the coding nucleotide regions or the intronic regions,
since these are not expected to contain TF binding sites (although some times the introns –especially
the first intron- may contain TF binding sites). The background sequences will then be scanned and
each subsequence will be scored according to the PSSM model. Since the background is not
expected to have any binding sites, all predictions can be considered ‘‘false positives’’. The score
of the top xth percentile subsequence is the threshold with x percent FDR. For example, if we have
10 background sequences, each of length 1,000 bp, then the PSSM score of the 10th top scoring
subsequence (20th if we scan both strands) will constitute the threshold for FDR=1%. MatIn-
spector, a popular scanning program, uses FDR = 3�10�4 as its default value. We note that the
FDR is sometimes referred to as the p-value by some researchers.

These two methods for determining the threshold are based on different expectations (false
negative vs. false positive predictions). So, it will be useful to compare the two. Fig. 18.3 presents
graphically the performance of these two methods for four TFs with good PSSM model site
representation. For the background, we have used the first orderMarkov model of 1,000 randomly
selected genomic pieces, 5,000 bases long.
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18.5 The Light of Evolution

In order to overcome the problem of the low signal-to-noise ratio on pattern matching algorithms,
evolutionary information can be taken into account. The idea is simple–‘‘true’’ (i.e., biologically
relevant) TF binding sites should be conserved between related species. Of course, sites can be lost
or replaced and new sites can be generated and the mechanism of this process is still unclear. It has
been shown, however, that the functional sites tend to congregate in evolutionary conserved
regions. In a recent study, we analyzed the promoters of 513 human genes in 8 other vertebrate
species. We compared the promoter percent conservation with the number of known sites found in
conserved regions. Table 18.2 shows the results of this analysis (all species compared to human, the

Table 18.2 Promoter and TF binding site conservation

Human vs. No. ortholog. genes Detectable sites Promoter conservation Sites in conserved regions

Chimp 512 1157 94.06% 94.81%

Mouse 506 1146 24.20% 72.34%

Opossum 389 912 6.72% 41.23%

Chicken 189 451 3.21% 21.73%

Tetraodon 166 363 2.50% 12.12%

Average percent conservation of the 5 kb regions upstream of the transcription start site of 1,162 protein coding genes in six
vertebrate species. Percent of 513 knownhumanTFbinding sites located in the corresponding conserved regions. Conserved
regions are defined as a window of at least 50 bp in length with >65% nucleotide identity. All species conservation is
measured with respect to the human genes. Data from [17]
(Copies of tables are available in the accompanying CD.)

Fig. 18.3 False positive (FP) and false negative (FN) rate comparison for various TFs. The FP to FN rate is very
different for the four well-studied mammalian TFs. These plots illustrate the difficulty one has to establish an
objective PSSM threshold for predicting new binding sites (Copies of figures including color copies, where applicable,
are available in the accompanying CD)
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reference genome in this study). We see that although both promoter sequences and site conserva-
tion rates decrease with the evolutionary distance, the sequence conservation does so much faster.

This idea of evolutionary conservation has been explored by various pattern-matching algorithms,
in order to reduce the large number of false positive predictions that are almost inevitable in such
searches. This concept is known as phylogenetic footprinting. rVista [18], a popular phylogenetic
footprinting method, scans one of two homologous promoters with PSSM models of known TFs
and then evaluates the putative sites based on the degree of conservation of the site themselves and the
interval in which they are located between the two species under comparison. Sites should be ‘‘globally
aligned’’ in the homologous promoters in order to be reported,meaning, they should be locatedwithin a
specific window length (typically: 21 bp). ConSite [19] is another phylogenetic footprinting algorithm.
Unlike rVista,ConSite scans both promoter regions and reports those predicted sites that are located in
equivalent positions in the conserved regions of the two homologous promoters. Like in rVista,
conserved intervals are also calculated using a sliding window approach. FOOTER [20] is the newest
of these methods. Unlike the other two, FOOTER uses both the location and the PSSM score to
statistically evaluate the potential of a pair of sites to be functional. Also, predicted sites on both the
conserved and non-conserved regions are examined.

18.6 Cis-Regulatory Modules

Sydney Brenner once said: ‘‘complex organisms evolve from simpler ones not by constantly inventing
new genes, but by fine-tuning the regulation of existing ones’’.1With themaximum number of genes set
to a moderate number of less than 25,000, complex eukaryotic organisms, such as flies and mammals,
are expected to have developed complicated mechanisms for gene regulation. This has been shown to
be true in many cases. Multiple TFs are co-operating or competing in order for the gene to be properly
expressed under a given condition. At theDNA level, the binding sites of competing TFs are frequently
overlapping or located in close proximity on the promoter. In this way, when one of the proteins is
bound to its target, it inhibits the binding of its competitor. Similarly, the binding sites of co-operating
TFs are expected to be located close to each other, so that the proteins can facilitate binding through
cross-talk via protein-protein interactions on a given promoter. Sometimes, proteins that bind DNA
targets, thousands of bases from each other, can ‘‘communicate’’ via DNA looping (see Fig. 18.4).

Fig. 18.4 Schematic view of a typical eukaryotic promoter. The elements of the general transcription factors as well
as examples of gene-specific binding sites (CRMs) and enhancer elements are presented. Arrows indicate possible
communication between the enhancer binding proteins and the CRMs on the core transcription complex. The
interactions can be direct or via other proteins (Copies of figures including color copies, where applicable, are
available in the accompanying CD)

1 From Sydney Brenner’s seminar ‘‘Return of the human genome’’, Washington University in St. Louis, St. Louis,
Missouri, 2000.
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Anumber of algorithms have been developed to identify co-occurrences of TF binding sites, also
known as cis-regulatory modules or CRMs. Some of these algorithms incorporate a de novo motif
finding method with CRM identification. Co-Bind [21], for example, applies a Gibbs sampling
method to identify concurrently twomotifs located within a window of a user-defined length. Other
methods attempt to assign significance on the observed motif co-occurrences. The significance can
be assigned by various methods, including p-value calculation (e.g., methodMSCAN), and Monte
Carlo simulations (e.g., method SCORE).

Despite the success of such algorithms in identifying some of the known CRMs, it is still unclear
what constitutes a CRM or how general their observed properties may be. For example, in some
cases the order and spacing of the individual TF binding sites is important. This is the case of the
well-known SRY module in the promoters of the major histocompatibility complex (MHC) genes.
In this case, the distance between the individual cis-regulatory elements as well as the distance of the
whole SRY module from the transcription start site of the downstream gene is important. In other
cases, the order and/or the spacing of the individual sites as well as the exact location of the CRM
does not seem to be very important. This is the case of many enhancers that have been found to
work equally well from tenths of thousands of bases away from the transcription start sites and
when placed near it. This variability in the CRMproperties makes the design of efficient algorithms
for CRM detection more difficult.

18.7 On-Line Resources

Although links to on-line resource pages tend to quickly become outdated, we mention here some
that we believe will be useful to the readers.

DNA Motif and cis-regulatory site databases

– JASPAR (open access database): http://jaspar.genereg.net/
– PLACE (plant): http://www.dna.affrc.go.jp/htdocs/PLACE/
– TRANSFAC (public version): http://www.gene-regulation.com/pub/databases.html

Promoter retrieval

– EPD: http://www.epd.isb-sib.ch/
– dbTSS: http://dbtss.hgc.jp/index.html
– SCPD (yeast): http://rulai.cshl.edu/SCPD/
– TRED promoter database: http://rulai.cshl.edu/TRED/

Motif finders

– AlignACE: http://atlas.med.harvard.edu/
– ANN-SPEC: http://www.cbs.dtu.dk/services/DNAarray/ann-spec.php
– BioProspector: http://robotics.stanford.edu/�xsliu/BioProspector/
– Consensus: http://bifrost.wustl.edu/consensus/html/Html/interface.html
– Gibbs motif sampler: http://bayesweb.wadsworth.org/gibbs/gibbs.html
– MEME: http://meme.nbcr.net/meme/intro.html
– MotifSampler: http://homes.esat.kuleuven.be/�thijs/Work/MotifSampler.html
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Phylogenetic footprinting

– ConSite: http://www.phylofoot.org/consite
– FOOTER: http://www.benoslab.pitt.edu/Footer
– rVista: http://rvista.dcode.org/
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Glossary and Abbreviations

PSSM Position-Specific Scoring Matrix
SNP Single Nucleotide Polymorphism
TF Transcription Factor
TFBS Transcription Factor Binding Sites
TSS Transcription Start Site
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Chapter 19

Mining the Research Literature in Systems Biology

Keir T. Reavie

Abstract The research literature in Systems Biology is growing exponentially, making it difficult
for the researchers to efficiently search, retrieve, analyze, and apply the literature to new research in
a timely fashion. This chapter helps researchers to efficiently search the major biomedical literature
databases PubMed and theWeb of Science, stay current with the literature using alert services, and
manage personal article citation databases using bibliographic management software likeEndNote.
Tricks for getting the most out of database search interfaces and using them in innovative ways are
presented. The chapter also discusses new bioinformatics tools that go beyond the standard
database search interfaces and present the published literature in ways that elucidate hidden
relationships within the Systems Biology research, which can lead to new information discovery
and more productive research.

Keywords Databases, bibliographic � Database management systems � Information storage and
retrieval � Libraries, digital � PubMed � MEDLINE � Web of science � Science citation index

19.1 Introduction

Any researcher who tries to stay current of the literature in Systems Biology knows that it proliferates
at an exponential rate and ensuring that the literature can be retrieved, analyzed, and applied to new
research in a timely fashion is an increasingly complex task. The MEDLINE database, which
constitutes the largest part of PubMed, contains over 15 million records, with 2,000 to 4,000 new
article citations added every week [1], and PubMed is not the only venue indexing the extensive
Systems Biology literature. This chapter discusses how to efficiently access, stay current with, and
manage the published research literature. In addition, we briefly discuss new bioinformatics tools
specifically designed to mine the literature and efficiently extract relevant published research using
methods that can lead to new information discovery and more productive research.

19.2 Searching the Research Literature

19.2.1 Overview

Access to the published literature in Systems Biology is available from a handful of key resources
and a large number of new and growing resources that provide access to the literature in different
contexts. The most common resource used to search biomedical research literature is PubMed.

K.T. Reavie
Peter J. Shields Library, University of California, Davis, 100 North West Quad, Davis, CA, 95616, USA
e-mail: ktreavie@ucdavis.edu

S. Krawetz (ed.), Bioinformatics for Systems Biology, DOI 10.1007/978-1-59745-440-7_19,
� Humana Press, a part of Springer ScienceþBusiness Media, LLC 2009
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PubMed embodies the MEDLINE database and is a vital tool in enabling access to the research
literature in Systems Biology. PubMed indexes articles from the journal literature. The database is
freely available to the general public, is well constructed and easy to use.

Another important literature index for searching the Systems Biology literature, although not
openly available to the public, is the Web of Science (WoS), which includes the Science Citation
Index (SCI). The WoS is designed to track the research literature via analysis of citations within
journal articles. PubMed and WoS duplicate much of the research literature, but each index has
unique information and search features that when used judiciously, enable researchers to complete
comprehensive searches and stay current with the literature.

Many researchers will also be familiar with search systems likeGoogle Scholar, mainly for their ease
of use and ability to retrieve large comprehensive sets of research publications. We will not discuss
Google Scholar in this chapter, as the data fromwhich it extracts information is not as comprehensive as
that found in databases likePubMed andWoS, and it does not allow for very precise subject searching.
Google Scholar is useful for locating specific articles, or articles by specific authors and institutions, but
it is not recommend for efficient subject searching and staying current with the literature.

19.2.2 PubMed

19.2.2.1 MEDLINE

MEDLINE is a database produced by the National Library of Medicine (NLM), that indexes
clinical and biomedical research literature. The database originally enabled access to literature back
to 1966. PREMEDLINE, which included earlier citations to the literature, has been absorbed into
MEDLINE, enabling access to literature dating back to approximately 1950. Older material is
being added to MEDLINE all the time, pushing this date back on a continuing basis. MEDLINE
now indexes articles from approximately 5,000 journals. The database currently holds approxi-
mately 15 million references [1].

The subject coverage in MEDLINE is extensive. It is easily the most relevant database for
searching biomedical research literature, especially in the area of Systems Biology. MEDLINE is
available through a number of third party vendors that provide a variety of search interfaces, both
free and commercial, to search the database. PubMed, produced by the National Center for
Biotechnology Information (NCBI) and NLM, is one of the best search interfaces for access to
MEDLINE, particularly when searching the literature in Systems Biology, as it provides numerous
links for easy access to information in the NCBI suite of databases.

19.2.2.2 Medical Subject Headings

All citations entered into theMEDLINE database are indexed using theMedical Subject Headings
(MeSH).MeSH is the NLM indexing vocabulary. It is updated on a regular basis [2] and it enables
the NLM indexers to control the terminology used to index articles in MEDLINE. It is also
invaluable to the researcher, who can use this vocabulary to extract information from the database.
By using MeSH in the search process, researchers can be both precise and comprehensive in
retrieving citation records from MEDLINE.

Citation records are added to PubMed everyday. However, the indexing of each citation can
vary. Important journals are indexed quickly (perhaps within days) and more obscure titles may
not be indexed for several months. Because of the time lag in the indexing process, recent citations
in PubMed cannot be retrieved by searching the MeSH field of the database, as the most recent
citations do not yet have the MeSH terms added. Fortunately, PubMed provides an algorithm to
enable easy retrieval of both indexed and un-indexed citations (see next Section of this chapter).
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19.2.2.3 PubMed

PubMed provides an easy to use interface for basic searching but also provides sophisticated search
features that enable researchers to quickly access the literature, perform precise searches, and
retrieve a comprehensive list of citations for journal articles. The main features of the PubMed
interface that facilitate searching are the mapping algorithm and the MeSH Database.

The PubMed screens are laid out with links, to search services in a menu, to the left. Tabs below
the main search box provide easy access to the variety of search features. There is also a context-
sensitiveHelp link in the left-hand menu that can be used at any time to get assistance with a service
or feature.

Any search phrase entered into the main search line of PubMed is processed using a mapping
algorithm that attempts to identify and then useMeSH terms to complete the search. The mapping
algorithm can also recognize and extract author names and journal titles from the author and
journal title indexes, and then formulate and complete a search based on these terms. The mapping
algorithm is designed to improve your search, to make it specific, as well as comprehensive and to
ensure that no important references are missed. Be aware, however, that the algorithm is not
infallible. Depending on the search terms entered, PubMed can easily mistake author names and
journal titles forMeSH terms and retrieve irrelevant search results. To ensure relevant retrieval it is
a good idea to think carefully about your search terms and search strategy before approaching
PubMed. Searching may also require the use of synonymous terms and trial and error to locate the
relevant literature. One cannot always expect PubMed to provide relevant retrieval the first time a
search is performed. It is an iterative process that often requires many steps.

Basic PubMed Searching

To see how PubMed operates let’s try a simple search to retrieve articles on the mapping of protein
interactions in yeast. The search may look something like this:

protein interaction map AND yeast

Protein interaction map and yeast are combined using the Boolean operator AND, to retrieve
citations that discuss both of these topics together. The two other Boolean operators used when
searching PubMed are OR and NOT. OR will retrieve articles on one topic or the other, or both,
andNOTwill remove any articles on a selected topic from the search set. Boolean operators should
be entered in the upper case when searchingPubMed.When PubMed sees a Boolean operator in the
upper case, it knows to treat it as a Boolean operator. If it is in the lower case, it will attempt to treat
the term like any other in the search phrase. This is particularly important when combining search
sets on the History screen, which we will discuss in a moment.

When searching PubMed from the main search box, the mapping algorithm breaks the phrases
into components to identify relevantMeSH terms for the search strategy. When the algorithm fails
to find MeSH terminology, it will break the search phrase into smaller parts and continue the
mapping process. If Boolean operators are not present in the search phrase, PubMed will auto-
matically assume an AND operator and place it between the phrases and MeSH terms. To avoid
any confusion in the search strategy, it is a good practice to always include relevant Boolean
operators in the search phrase.

Enter the search into the PubMed search box and hit Enter or click the Go button to the right of the
search box. PubMed will respond with a list of citations. To understand how PubMed retrieved the
citations, click the Details tab to view how the mapping algorithm identified the MeSH terms and then
performed the search. For the above search, themapping algorithm creates the following search strategy:

((‘‘protein interactionmapping’’ [TIAB]NOTMedline[SB]) OR ’’protein interactionmapping’’ [MeSHTerms]
OR protein interaction map[Text Word]) AND ((‘‘yeasts’’ [TIAB] NOT Medline[SB]) OR ‘‘yeasts’’ [MeSH
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Terms] OR (‘‘saccharomyces cerevisiae’’ [TIAB] NOTMedline [SB]) OR ’’‘‘saccharomyces cerevisiae’’ [MeSH
Terms] OR yeast [Text Word])

Some of the information in this search strategy is a little complicated and incomprehensible, but it is
important to note that PubMed was able to identify theMeSH terms protein interaction mapping
and saccharomyces cerevisiae as the most appropriate for this search strategy. PubMed also
searched the MeSH and originally entered terms as text words in citation titles and abstracts. In
this way, PubMed is attempting to make the search more comprehensive, so that you do not miss
any relevant articles. It is important to search the title and abstract fields, since the most recent
literature added to PubMed may not yet be indexed with MeSH terms. If we perform PubMed
searches on the MeSH field only, these recent articles will not be retrieved in our search results.

You will notice that PubMed uses parentheses to provide an order in the search strategy. When
the PubMed interface sees parentheses, it will process the Boolean operators within the parentheses
first. If you do not use parentheses in a PubMed search, PubMed processes the Boolean operators
from left to right, which can lead to irrelevant search results. Most search strategies will require that
all OR operators be executed first, so when using OR to combine terms, parentheses should be
placed around theOR phrase. You can see how the mapping algorithm has done this in the above
search strategy from the Details page.

Note that the Details screen allows the searcher to edit the search and run it again against the
database by clicking on the Search button. This enables quick and easy search modification, to
retrieve additional and more relevant citations.

Using the MeSH Database

TheMeSH Database is an excellent tool to help increase the accuracy of searches in PubMed. The
database enables a researcher to identify MeSH terms, build a search strategy, and then run the
strategy against the PubMed database. The MeSH Database link is in the PubMed Services list in
the left-hand menu.

If we enter yeast into theMeSH Database search box, it will respond with a list ofMeSH terms
from which you can select the appropriate term to search. You will see that saccharomyces
cerevisiae appears at the top of the list. The MeSH Database uses its cross-referencing features to
identify appropriateMeSH terms. It identifies terms differently than the mapping algorithm in the
PubMed search interface, so you may find that the MeSH Database does not always find appro-
priate MeSH terms in the way the mapping algorithm is capable.

Select the appropriate MeSH term by clicking on its link. This will open the Detailed MeSH

screen, which includes the term, a definition of how it is defined for use as an index term inPubMed,
the year it was added toMeSH as an index term, and a list of Subheadings that enable the searcher
to focus the search to more specific aspects of a subject. If we were specifically interested in locating
research on yeast genetics, we could select genetics from the Subheading list by selecting the box to
the left of the term. This will focus the search on that specific topic. Information on how each
Subheading is defined can be found in the PubMed Help. Any combination of the Subheadings can
be selected and included in the search strategy. If two or more Subheadings are selected, theMeSH

Database will place anOR operator between the search terms. For example, if we are interested in
the genetics and cytology of saccharomyces cerevisiae, we would select those two Subheadings and
the MeSH Database would create the following search:

‘‘Saccharomyces cerevisiae/cytology’’ [Mesh] OR ‘‘Saccharomyces cerevisiae/genetics’’ [Mesh]

TheMeSHDetails screen also enables the researcher to limit a search to only those articles where the
topic is defined as amajor subject. To do this, select theRestrict search toMajor Topic headings only. All
citations in PubMed are indexed with major and minor topics. This will reduce the size of your search
retrieval set. It is recommended that you do not use this feature unless necessary, for example, if your
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search retrieval set is very large. If you limit to the major topics only, there is a chance that you could
miss some relevant articles where the subject being searched was considered minor by the indexer.

In addition, it is possible to turn off the Explode function when searching MeSH terms. All
MeSH terms are ordered in a hierarchy of terminology from general to specific subjects. At the
bottom of the screen, you will see where the MeSH term selected, is located in the MeSH Tree

hierarchies. When using MeSH terms to search PubMed the Explode function is turned on all the
time, unless you request it be turned off by selecting the Do not Explode this term option. The
Explode function in PubMed searches all subordinate terms to the MeSH term you have selected,
enabling the retrieval of citations indexed with more specific MeSH terms. This is important in
PubMed, since the rule for indexing articles in the database is to use the most specific MeSH term
available to the indexer. For example, if we search sequence analysis in theMeSHDatabase, we can
see in theMeSHTree that there are a number of more specificMeSH terms listed as subordinate to
sequence analysis, such as sequence analysis, protein. By searching sequence analysis we can
retrieve all articles indexed under sequence analysis and all the more specific terminology sub-
ordinate to it. In this way we are able to make our search more comprehensive, and not miss
important citations. It is recommended that you leave the Explode feature turned on at all times
when searching PubMed. The Explode function is also in play when searching from the main
PubMed search box. Once the mapping algorithm identifiesMeSH terms for the search strategy, it
will Explode those terms when it performs the search.

Once you have selected aMeSH term or Subheading, it can be added to a search box by using the
Send to pull down menu near the top of the screen. With the first term you can select any of the
Search Box options in the menu. A search box containing the selected search term will appear. It is
now possible to look up additionalMeSH terms and add them to the box as well, in order to build
more complex searches, usually using the Search Box with AND option in the Send to menu, to
combine terms using the AND Boolean operator. You will see that the OR or NOT operators are
also available to help you build a search. The search constructed in the search box can be run
against the PubMed database at any time by clicking the PubMed Search button below the box.

Search Limits

After completing the initial subject search in PubMed the search results can be furthered filtered
using the Limits options. Limits are accessible through the Limits tab below the search box. The
most common search limits for filtering searches include: date limits, both publication date and
date entered into PubMed; English language; andHuman or Animal studies. A quick browse of the
Limits page will show that searches can also be limited by: Type of Article, such as Review articles;
studies on a particular Gender; studies on specific Age groups; Subsets of journal collections or
subject areas in PubMed; and to articles that are available in Full Text online. You will notice that
there is also a limit to provide access to articles from journals that are available in Free Full Text.
This will limit your search citations for articles that are freely available online. It is recommended
that the researcher use limits sparingly when they are trying to complete comprehensive searches.
Any one limit has the potential to filter out an important article.

Display Options

When the PubMed search (Fig 19.1) has been completed, PubMedwill respond with a list of articles
in a Summary format, which includes authors, article title, journal title, journal volume, issue, page
numbers, and the PMID, or PubMed ID. All citations in the PubMed database have a unique
PMID. This ID can be used to quickly retrieve the article in future by simply typing it into the
PubMed search box and clicking onGo. This ID is also used to track the article and obtain a copy if

19 Mining the Literature 373



it is not readily accessible online or from a local library. You should consult with your institution’s
library to get help for retrieving articles not readily available online or in the library.

If you pull down the Display menu at the top of the PubMed retrieval screen you will see
numerous display formats. Many of these are formats enable linking to other NCBI databases,
including links to gene and protein information. It is recommended that you try these links to get an
idea of the ease the researcher can link from the literature to gene and protein sequence data.

The basic options for displaying citations in PubMed are Abstract, AbstractPlus, Citation, and
MEDLINE. The Abstract format displays the Summary information, as well as the first author’s
institutional affiliation, the abstract and full text links. AbstractPlus displays the same information
as the Abstract display, but also includes links to what PubMed considers Related Articles. These
links can lead researchers to other similar articles in the database.Related Articles are derived from
an algorithm that looks at similarities in MeSH terminology, and words and phrases in titles and
abstracts of citations. They are ordered from most relevant to least relevant, so they are not in
chronological order like references on the main retrieval screen. If you click on an author’s name on
the main PubMed retrieval page, the single citation is displayed in the AbstractPlus format. The
Citation display is the same as Abstract, but also includes the MeSH index terms for the citation.
TheMEDLINE format displays all fields in the PubMed records with a two or four letter tag. The
MEDLINE format is read by bibliographic management software like EndNote, Reference Man-
ager, ProCite and RefWorks (see Section 19.2.3.5 below). You should use this format when down-
loading PubMed references to be loaded into these software packages.

By default PubMed displays 20 references on the retrieval screen. You can display more
references by clicking the Show menu and selecting a larger number, up to 500.

Print and Download Options

PubMed citations can be printed or saved in a variety of ways using the Send tomenu at the top of
the citation list. Before saving or downloading records, select the citations you wish to keep by

Fig. 19.1 The PubMed search retrieval screen (Copies of figures including color copies, where applicable, are
available in the accompanying CD)
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clicking the box to the left of the citation. If you do not select any citations, PubMed will
automatically print or save the entire retrieval set. Next, select the display method in which you
want to print or download the references. Remember that saving references to be read into
bibliographic management software like EndNote requires the records to be in the MEDLINE

format. After selecting the display format, select the appropriate option from the Send to menu.
The Printer option creates a page without all the PubMed interface graphics, so the references can
be easily printed. The Download option will invoke the download operation in your operating
system. The Send to menu also enables you to Email references to yourself or another researcher,
and set up an RSS feed for your PubMed search. RSS enables quick retrieval of new citations in
PubMed from within a web browser’s bookmark menu. We will discuss this more in Section 19.3.2.

Another option you will notice in the Send to menu is Clipboard. The Clipboard provides a
temporary storage area into which you can save citations. This is a useful feature when performing
multiple searches in PubMed, as it enables you to save citations as you go. You can open the
Clipboard by selecting the Clipboard tab, and then print or download all the citations saved in the
Clipboard as a group.

Access to Full Text Articles Online

Access to full text articles online is available from theAbstract orAbstractPlus displays in PubMed.
To the top right of each abstract there is a publisher’s link to the full article. Note that the
publisher’s link will only appear in PubMed if the publisher has made an agreement with PubMed
to allow the link. Not all abstracts will have a full text link, and citations without a link may still be
available online. Alternatively, your institution may be using one of PubMed’s linking services,
which allow institutions to set up links to online journals for which it has subscriptions. If this is the
case, you will see another button next to the publisher’s, which links to your institutional subscrip-
tions. This linking service will vary from institution to institution, so it is important to check with
your library to obtain information on how it works.

Search History

Another useful tool in PubMed is the History, which can be accessed by selecting the History tab.
TheHistory screen displays all recent PubMed searches. For researchers performing more complex
searches,History enables the creation of numerous searches that can then be combined in different
ways using Boolean operators, to obtain different search results.

19.2.3 Web of Science

TheWeb of Science (WoS) is comprised of three databases: the Science Citation Index (SCI), Social
Science Citation Index, and theArts andHumanities Citation Index. In this section we are concerned
only with SCI, since it is the most relevant database for Systems Biology. WoS is produced by the
Institute for Scientific Information (ISI), who developed and maintained a number of resources
related to journal citation analysis.WoS is the search interface for the citation indexes. The citation
indexes as a whole contain information from approximately 9,300 journals, with well over 6,000 of
these titles related to scientific research. The entireWoS database has over 30 million references [3].
The great strength ofWoS is that it tracks journal article citations.WoS is designed to enable quick
access to the articles that have been cited by others, making it possible to easily follow research
fronts in the literature and locate new articles on related research. Note that the WoS is a
commercial resource and is not freely available like PubMed. You will need to be located at an
institution that subscribes to this resource to obtain access.
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19.2.3.1 Subject Searching the SCI in WoS

Subject searching on the WoS is more difficult than PubMed, mainly because the WoS does not
provide a controlled vocabulary like MeSH to assist in the search process. We are left to search
WoS with the vocabulary that we, the researcher, thinks is most appropriate. We need to think
carefully about search terms and any synonymous vocabulary that may be relevant in retrieving
records from the WoS, so that we do not miss important citations. WoS does provide for the
searching of author provided keywords, which are extracted from the journal publication, and
something called Keywords Plus. Keywords Plus terms are derived by scanning the titles of
references in the indexed articles and extracting commonly occurring terms and phrases. Author
keywords and Keywords Plus do provide some capacity to make searches more precise and
comprehensive, but we need to remember that they are derived from diverse and uncontrolled
sources, unlikeMeSH, which is maintained by an editorial board. In summary, subject searching in
the WoS can be problematic, especially given its enormous size.

Subject searches can be performed from the main search page. It should be noted that theWoS is
a great database to search for publications by authors from specific institutions. ISI maintains a
comprehensive database of author addresses, and normally provides the addresses of all authors on
an article in the citation record. Addresses can be searched in the Address line.

Subject searches can be entered into the Topic search box. Terms are searched in the keywords,
titles, and abstracts of citations. Because there is no controlled vocabulary, if we want to search for
articles on yeast, we should use the search phrase yeast OR saccharomyces cerevisiae to retrieve all
citations on yeast, since the authors may have used either yeast or saccharomyces cerevisiae as a
keyword. InWoS, the Boolean operators do not need to be in upper case, like inPubMed. However,
it is good practice to search this way, to be consistent in your approach to searching the literature in
all databases. The other search term from our example search, protein interaction map, should be
truncated using an asterisk (*). Again, when using a controlled vocabulary likeMeSH, truncation is
not as important, but in this case, searching for protein interaction map* will retrieve all citations
where authors have used the terms map, maps, and mapping, etc. as keywords. The full search
strategy would look like the following:

(yeast OR saccharomyces cerevisiae) AND protein interaction map*

Since we are using two different Boolean operators, AND and OR, in our search strategy, it is
important to use parentheses like we would in PubMed, to ensure the search terms are processed in
the correct order. Search phrases in parentheses are processed first by theWoS interface. TheWoS
search interface processes AND operators first, followed by OR operators, unless it sees parenth-
eses. Without parentheses on this search strategy, we would retrieve all articles using the keywords
saccharomyces cerevisiae and protein interaction map*, and then all articles using the keyword
yeast, whether or not the articles have anything to do with protein interaction maps.

19.2.3.2 Citation Searching

The strength of the citation indexes is that they index and provide access to the article references for
all citations in the database. This enables cross-referencing of articles and discovery of new research
through citations and cited research. The Cited Reference Search option inWoS allows us to track
who has cited a particular article or author. In other words, we can take a published research article
that is 5 or 10 years old and enter the citation information intoWoS to see who has cited it, and thus
obtain access to more recent research.

Select Cited Reference Search button on the top left of the WoS screen to do a cited reference
search. Simply enter an author’s name to retrieve a list of all articles that have cited that particular
author, or be more specific and add a journal title (in the search box called Cited Source) and year,
to see who has cited a specific article. Note that when entering the Cited Source information,WoS
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requires that you use the journal title abbreviation from the ISI journal title index. Click the search
link and enter the beginning of a journal title into the search box. This is a little cumbersome if you
have no idea what the abbreviation might be, so this process can take a bit of browsing. Once the
title abbreviation is found, click theADD button to the left of the title. The title will appear in a box
at the bottom of the screen. Click the OK button to add the title to the Cited box.

If we enter only an author’s name into the Cited Reference Search, WoS will provide a list of all
articles by that author. On the far right are links that enable you to view the actual citation for an article
inWoS. Some articles in the listmay not have a link to a citation in the database, either because they are
too old or come from a publication that is not indexed in the citation indexes. On the retrieval screen
select all the citations for which you wish to view the citing articles, and then click the Finish Search

button at the top or bottom of the screen.WoS will provide a list of citations for all articles that have
cited the selected citations. Be careful that you select all citations in which you are interested. TheWoS
contains many typos that transfer directly from typos in the reference lists of journal articles. The same
publication may appear in a variety of ways on your cited reference retrieval list.

To trace even more relevant research using the cited reference search feature, use two or three
journal articles on the topic of interest. Look up each article separately in the Cited Reference

Search and then use theWoS Search History feature to identify recent articles that have cited all of
these publications together. Once you have completed eachCited Reference Search, click the Search
History button on the top of the screen. You will see a list of all your searches. Select the articles you
wish to combine in the history by checking the boxes to the left of each search. Select the AND

option in theCombine Sets area and then click theCombine button. TheWoSwill provide you with
a set of articles that cite all the articles in your searches. The citations retrieved in this combined set
should be more relevant, since they cite more than one related article.

19.2.3.3 Limiting Search Results

TheWoS search retrieval screen has a number of options that enable the researcher to filter a search
retrieval set. Select any option in theRefine results links to the left of the retrieval list. Awindowwill
open that provides options to limit the search to Subject Categories, Source Titles,Document Types,
Authors, and Publication Years. For Example, selecting Source Titles will display a list of journal
titles that appear in the search retrieval set, indicating how many articles in the set appear within
that journal. Search retrieval can be limited to specific journals by selecting the box to the left of the
title, and then clicking on the View Records button.

The WoS also allows researchers to limit a search by searching for additional keywords within the
current retrieval set. Use theSearch within these results search box to perform searches on the retrieval set.

19.2.3.4 Display Options

WoS displays 10 records per page. Up to 50 records can be displayed per page by changing the Show
10 menu to either 25 or 50. The records are displayed with the basic citation information: author,
title, journal, volume, issue, and page numbers.WoS does not provide additional display options to
view the abstracts. Abstracts must be viewed one at a time by clicking on the citation’s title. The
abstract display includes the abstract, keywords and author addresses, as well as links to Cited

References and Times Cited. These links provide access to the article references and those articles
that cite the one being displayed.

19.2.3.5 Print and Download Options

To the left of the abstract display inWoS there is a box with the headingOutput This Record, which
provides numerous options for printing, downloading, or transferring the record to bibliographic
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management software. You can also send records to theWoSEndNoteWeb (see Section 19.5). This
box may also contain your institution’s link to the full text article online, assuming they have this
option set up and subscribe to the online version of the journal. This link also appears on the main
search retrieval screen under each citation. You should check with your institution’s library to
obtain more information about access to full text journal articles online, as the process will vary
from institution to institution.

While you can print and download records individually inWoS, it is best to browse and select the
records you wish to save by clicking the box to the left of each citation. After selecting the records
you want to save, click the Add toMarked List button to the right of the screen. TheMarked List is
a temporary storage area for citations. TheMarked List button on the top ofWoS pages opens the
marked or saved list of citations, so that it can be printed, downloaded or transferred as a group.

19.2.3.6 Analyzing WoS Search Retrieval

Recent versions of the WoS, enable analysis of search results to identify authors, research institu-
tions, and journals that appear frequently in search retrieval sets (Fig. 19.2). To analyze search
results, click the Analyze button in the left hand menu of the search retrieval screen. The Analyze
tool allows ranking of the citations by Author, Country/Territory, Document Type, Language,
Institution Name, Publication Year, Source Title (Journal), and Subject Category. The subject
categories are defined by ISI. These are broad subject areas used to order journals in the ISI
Journal Citation Reports, which ranks journals in the subject categories based on how often their
articles are cited.WoS is able to analyze up to 100,000 records, so you could do very broad subject

Fig. 19.2 TheWoS search retrieval screen (Copies of figures including color copies, where applicable, are available in
the accompanying CD)
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searches and view for example what journals or institutions are publishing the most in a particular
research area.

19.2.4 BIOSIS Previews

There are a number of other databases that may be useful for retrieving literature in Systems
Biology, although PubMed andWoS will cover all major scientific journals. Of note is the BIOSIS
Previews database. BIOSIS Previews is a large comprehensive database that indexes the biological
literature, and is useful in providing access to the literature of proceedings, books and patents,
which PubMed and WoS do not. The database indexes 5,500 sources from around the world,
including 1,500 regularly published proceedings for conferences. The full database contains over 18
million records going back to 1926, so BIOSIS Previews is also a good source for older literature, if
needed [4].

Depending on the topic being searched, it is advisable to consult with a science or medical
librarian, familiar with the breadth of available literature databases, so they can direct you to other
resources that may have unique content relevant for the search.

19.3 Alert Services

Alert services enable researchers to stay current with new literature as it is being published. When
doing thorough research, one cannot do it in one day. Good research requires constant searching of
the literature and following citations to ensure nothing important is missed. Alert services are an
efficient way to stay on top of the research as it is being published. Both PubMed andWoS provide
alert services, but it is important to note that almost all, if not all databases that index the scientific
literature provide some form of alert service. Many electronic journals also provide table-of-
contents alert services, so you can scan the contents of your favorite journals in your email as
new issues are published.

19.3.1 My NCBI

The My NCBI service in PubMed is simple to use. My NCBI links are found at the top right
hand corner of the PubMed search screen. Registration is quick and only requires that you
provide a login and email address which will be used to send the alerts. Once signed into My

NCBI, you can enter theMy NCBI services by clicking theMy NCBI link in the left hand menu
of the PubMed screens. At sign in,My NCBI gives you the option of remaining signed in all the
time. Selecting this option ensures that you will always be signed into the service when searching
PubMed. My NCBI offers a number of services, including the ability to set up alerts in other
NCBI databases.

To save a PubMed search as an alert, click the Save Search link to the far right of the PubMed
search box. This will invoke My NCBI. You can simply save the search, in which caseMy NCBI

allows you to re-run the search at any time and retrieve only the references that have been added
to PubMed since the search was last run. To save the search as an alert, choose Yes for theWould

you like to receive e-mail updates option. This opens a larger window that provides alert options,
like: the day to run the search, how often to run it, the format in which you wish to view the
citations, and whether the search results should be emailed to you in a text or HTML format.
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HTML is the preferred format, as this enables direct linking from the email alert to PubMed
abstracts.

19.3.2 PubMed RSS Feeds

PubMed searches can also be saved as an RSS (Really Simple Syndication) feed. To use the RSS
feed you will need an RSS reader. There are a variety of different RSS readers available on the web,
like Bloglines or My Yahoo. However, the easiest way to set up the feed is by a bookmark in your
web browser. The bookmark displays a list of titles for PubMed citations, with the most recent
citations added to PubMed at the top of the list.

If you are using the Firefox, complete your PubMed search, and then click the orange RSS feed
link to the right of the web address in your browser’s address box. You will be asked to add the feed
to the bookmarks. The bookmark is then available at any time to view the titles of new citations in
PubMed.

If you are using Internet Explorer or Safari, or a web-based RSS reader, after completing the
PubMed search select RSS Feed from the Send to menu. Choose the number of references you
would like to view in the feed at one time, up to 100, from theLimit items if more thanmenu, give the
feed a Name, and then click the Create Feed button. To complete this process, click the orange
XML button. PubMed will give you the choice of adding the feed as a Live Bookmark in your
browser, or in another RSS feed service.

19.3.3 WoS Alerts

One of the salient features of creating an alert in theWoS is the ability to do a cited reference search
on an author or paper and have the WoS email you new citations for articles that have cited the
author or paper.

To create alerts for new citations in WoS after completing a search, click the Search History

button at the top of the search retrieval screen. The Search History displays your completed
searches. Choose the search strategy you wish to create an alert for, by selecting the box to the
left of the search, and then click the Save History button at the top right of the Search History. You
will be asked to sign in. If you do not have a sign in for WoS it can be easily set up by clicking the
Register link. When saving the search be sure to check the Send Me E-mail Alerts option. You will
see similar options to those in My NCBI for saving an alert. The search can be run weekly or
monthly, and delivered in a text or HTML format. Again, the email alerts should be delivered in an
HTML format, so you can link directly from references in the email to the abstracts in WoS.

After saving a search in WoS you are also given the option to save it as an RSS feed. After
clicking the Save button, you will see a screen that contains an orange XML button. Click this
button to save an RSS feed to your bookmarks, like in PubMed. You can also do this by accessing
your saved search history. The Saved Search History page provides theXML option for each saved
search. Simply click the orange XML button for any saved search to set up the RSS feed in your
bookmarks.

19.4 Text Mining Tools

PubMed provides open protocols for searching and extracting data from the database. This has
enabled development of search interfaces by third parties that can target specific user groups,
more easily navigate the literature, andmine data not easily extracted using the standard PubMed
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interface. The current state and future development of literature mining resources available to the
systems biologist has been discussed in the literature [5,6]. The basic operations of these search
interfaces, which for the most part extract records from PubMed, use a combination of gene,
protein, disease and drug terminology to scan article titles, abstracts and indexes using algorithms
that identify relationships between terminology that in turn elucidate for example, protein-
protein or protein-disease interactions not evident by simply browsing abstracts. Interfaces are
also being designed to help researchers visualize relationships in the literature, and in turn save
the countless hours normally required to browse citations and manually identify links between
disparate research and publications. This can hopefully accelerate new discovery and research
directions.

Algorithms used for mining the literature and extracting protein-protein interactions use a
combination of weighting and proximity tools that derive search terminology from MeSH and
the Gene Ontology (GO). Different tools have developed various methods of mapping and
extracting term relationships between MeSH and GO, and that information has been used to
mine data from PubMed records and highlight term relationships that enable researchers to
visualize the relationships between different publications that are not apparent in the traditional
PubMed search interface. Explanations on the design of numerous text-mining algorithms, tools
and studies on their success in navigating and mining the published Systems Biology research can
be found in the bioinformatics literature [7–12], including iHOP (Information Hyperlinked Over
Proteins), which is discussed at length in chapter 22 of this book. The number of tools available to
navigate the literature is too great to be discussed here. Readers are free to explore the variety of
text mining tools in the cited references.

In addition to mining tools, there are tools being developed to increase the capabilities of search
interfaces like iHOP. One such tool is the iHoperator, which enables direct access to specific
PubMed records based on term relationships and the ability to visualize links between PubMed
references [13]. It is easy to see that in time we will have access to a variety of tools tomake searching
more efficient and help researchers navigate the vast published research literature, leading them to
the most important and relevant articles quickly.

It should be noted that the extensive use of PubMed as the source of mined data from the
literature, due to its open accessibility, does present some limitations to linking together all
available research publications. PubMed for the most part will retrieve all literature from the
major biological and biomedical research journals, but maymiss articles published in more obscure
titles indexed in theWoS, and conference proceedings indexed in databases like BIOSIS Previews.
Over time we can expect to see the development of more mining tools that extract information from
databases other than PubMed.

19.5 Bibliographic Management Software

In addition to staying current with the literature, it is important to manage the literature for
future reference and publication purposes. There are several bibliographic management software
(BMS) packages available at a variety of prices that can manage references to the published
literature in personal databases. The most popular packages are EndNote, Reference Manager,
ProCite and RefWorks. RefWorks differs from the other packages in that it is web-based and is
available on a subscription basis. The other packages require a one-time purchase of the software,
although software like EndNote releases a new version every year, requiring an annual purchase
to maintain the latest version. EndNote also has a stripped down web-based version available in
the WoS, so researchers can do basic management of citations while searching this database.
However, to use the software’s more powerful features, like formatting papers for publication,
the records need to be transferred into the full EndNote, or another BMS package.
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All of these packages enable the researcher to import citations from the literature databases, in
some case directly manage a database of citations, and format publications with references and
endnotes. All the softwarementioned above provide formatting tools designed for specific journals.
For example, if you are sending a publication to Nature, you simply have a software like EndNote
format the publication for submission to Nature.

There are also a number of other BMS tools freely available on the web, or that can be attached
to your web browser. One tool available for Firefox is Zotero. Zotero runs in conjunction with the
browser and allows you to quickly grab citation information for articles viewed online or web sites.
Zotero can export references to the more powerful BMS tools like EndNote.

19.5.1 Communal Citation Management and Alert Services

The web now provides numerous resources that enable scientists to collaborate with other scientists
around the world and share information about the research literature. Some resources, like
Connotea available through Nature Publishing Group, enable researchers to work together and
develop a library of publications relevant to the researchers’ interests, and to also discuss the
significance of specific publications. Connotea allows researchers to freely set up their own colla-
borative groups, to which anyone can join and discuss their specific research interests together.

Other resources like Faculty of 1000, a commercial resource available through BioMed Central,
use leading scientific researchers (the Faculty) to identify, review and rate specific journal articles as
they are published, to help direct researchers to important and breakthrough research as it becomes
available. Faculty of 1000 has a Biology and Medicine resource, each of which are divided into
specific subject areas that are easily browsed and searched.
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Chapter 20

GoPubMed: Exploring PubMed with Ontological

Background Knowledge

Heiko Dietze, Dimitra Alexopoulou, Michael R. Alvers, Liliana Barrio-Alvers, Bill Andreopoulos,

Andreas Doms, Jörg Hakenberg, Jan Mönnich, Conrad Plake, Andreas Reischuck, Loı̈c Royer,

Thomas Wächter, Matthias Zschunke, and Michael Schroeder

Abstract With the ever increasing size of scientific literature, finding relevant documents and answer-
ing questions has become even more of a challenge. Recently, ontologies—hierarchical, controlled
vocabularies—have been introduced to annotate genomic data. They can also improve the question
and answering and the selection of relevant documents in the literature search. Search engines such as
GoPubMed.org use ontological background knowledge to give an overview over large query results
and to answer questions. We review the problems and solutions underlying these next-generation
intelligent search engines and give examples of the power of this new search paradigm.

Keywords PubMed � Literature search � Ontology � Intelligent search

20.1 Introduction

Which techniques use the Prominin-1 (CD133) marker? Which proteins are related to Alzheimer’s disease?
Which hormone is Autistic Disorder associated with? Is apoptosis a hot topic? Which are leading centers and
scientists for liver transplantation? Where is the main research done for dengue and leprosy? What treatments
does the web discuss for Alzheimer disease?

The scientific literature and the web hold answers to all of these questions, but it is difficult to obtain
them with the classical search engines, as they merely present, possibly, a long lists of search results. In
contrast, ontology-based search engines can use their hierarchical background knowledge to provide
an intelligent filing system, which categorizes the results. The categorization gives an overview over
large result sets and can be used to answer questions. For example to find the techniques associatedwith
CD133, a query for CD133 will return many documents as a long list in a classical search engine. In
contrast, a search engine with ontological background knowledge will identify flow cytometry as a
technique and categorize the documents accordingly. The user can then use this hierarchical filing
system to select the few articles mentioning the techniques and even fewer mentioning flow cytometry.

Key to this new search paradigm is the background knowledge, which is used to categorize
documents. With efforts such as the Gene Ontology [1] andMeSH, the needed knowledge is readily
available. MeSH contains, for instance, the fact that flow cytometry is a technique and Gene
Ontology contains, that, apoptosis is also known as programmed cell death and that caspases are
part of the apoptotic program.

The central problem of ontology-based search is the mapping of ontology terms to the text. This
task, known as term extraction, is difficult, as authors do not write their abstracts with an ontology
in mind. For instance the mapping must be flexible and map the ontology term ‘‘transcription
factor binding’’ to the text ‘‘. . . a transcription that binds . . .’’, although it does not appear literally.
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In the remainder of this chapter, we give a brief introduction to ontologies, finding ontology
terms and entity recognition in text. We show how GoPubMed.org, a search engine which uses the
Gene Ontology and MeSH to index PubMed, can answer the introductory questions and more.
Furthermore, we present GoWeb, an application using the GoPubMed features to introduce an
ontological knowledge base web search. We conclude by comparing several other search engines,
including other PubMed search engines and ontology-based search engines.

20.2 Ontology-based Text Mining

20.2.1 Ontologies

A fundamental aspect for the work of researchers is the need to share knowledge. In the beginning,
this was often donewithout the help of a controlled vocabulary or nomenclature. This is in particular
applicable for the biomedical area and life sciences. There are many genes and proteins that have
multiple names or identifiers. An example isHnrpa1which is also known as Tis, Fli-2, heterogeneous
nuclear ribonucleoprotein A1, helix-destabilizing protein, single-strand-binding protein, hnRNP
core protein A1, HDP-1, and topoisomerase-inhibitor suppressed. But there are also names such
as Cleopatra, Ariadne, Groucho, Lost in Space, Brokenheart, Hairy, Superman and many more. Of
course, there have also been efforts to standardize names or at least to reach a consensus for naming.
For instance in the context of yeast research and for human genes there are widely used standards,
even if they are not always adhered to in literature.

Similar issues arise, if the task is to annotate genes and their function within the categories
biomedical process, molecular function, and cellular components. You can find that

� Cellulose 1,4-beta-cellobiosidase is also known as exoglucanase,
� superoxide-generating NADPH oxidase as cytochrome B-245,
� thiamin as vitamin B1,
� pyrexia as fever,
� heme as haem, and
� Apoptosis as cell death.

The aim of ontologies is to reduce this problem. They include concepts, synonyms, and their
relationships.

One prominent example for a widely used ontology is Gene Ontology [1]. In the beginning, it was
developed for the annotation of the fruit fly genome. Later the Gene Ontology was adapted and
expanded for mouse and other genomes and it now covers biomedical processes, molecular
functions, and cellular components. It uses two kinds of relationships to model the dependencies
between the concepts: is-a and part-of. Today the Gene Ontology is part of the Open Biomedical
Ontology (OBO) effort, which houses over 60 ontologies covering many areas of interests. This
includes anatomy, chemical compounds, development, experimental conditions, phenotype, tax-
onomy and more.

The second example is the Medical Subject Headings (MeSH). The MeSH thesaurus is devel-
oped by the U.S. National Library of Medicine (NLM). Its main purpose is to provide an index for
articles, books, and other media in the National Library ofMedicine. It tries to cover all the relevant
topics for the medical area and this includes disease, anatomy but also others like geographic
locations and experimental techniques.

There are other medical ontologies, e.g., GALEN, SNOMED, and UMLS [2]. An overview of
all presented Ontologies is available in Table 20.1. The UnifiedMedical Language System (UMLS)
has a different approach. It tries to integrate as much relevant ontology as possible. The UMLS
consists of three parts: a meta-thesaurus, a semantic network, and the specialist lexicon. Whereas
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the meta-thesaurus represents the concepts including the synonyms, the semantic network corre-
sponds to categories and the specialist lexicon acts as a kind of index.

A non-trivial aspect is the design and evolution of ontologies. With many thousands of concepts
and definitions how does one keep it all including the relations consistent. Although this starts with
the question: How is consistency defined in the first place? Gene Ontology follows an informal
approach. The transitive closure still has to hold. This means, if a concept A is-a B and B is-a C then
A is-a C has to be true. These inferred redundant relationships are not kept directly in the ontology.
This helps to ease the maintenance of the ontology, as corrections, modifications, and additions
only need to check if their direct relations are still valid.

Even though this consistency definition is a pragmatic solution there are more formal approaches.
One such idea is the usage of description logics to formally define concepts and their relations. This
was used for instance in the GALEN and SNOWMED ontologies. The advantage of the formal
definitions is the chance to automatically check for inconsistencies in the ontology. Imagine that one
adds the new fact that heparin is-a glycosaminoglycan, but it was not yet stated that heparin
biosynthesis is-a glycosaminoglycan biosynthesis. Because of the formally defined relations and
concepts, this additional relation can be inferred with this new fact in the knowledge base.

20.2.2 Finding Ontology Terms in Text

The ontologies presented above have been designed to annotate data or to be used as classification
schemes. But they were not designed for the purpose of building novel search engines. Therefore,

Table 20.1 URLs for ontologies, literature search engines and ontology-based literature search engine

Ontologies

Gene Ontology.org Ontology with �20.000 terms on biomedical processes, molecular functions
and cellular component

nlm.nih.gov/mesh Medical Subject Headings created by the U.S. National Library of Medicine,
taxonomy with �150.000 terms

opengalen.org formal medical ontology, with �70.000 terms

snomed.org commercial medical ontology, which contains �350.000 terms

nlm.nih.gov/research/umls/ Unified Medical Language System created by the U.S. National Library of
Medicine, contains �1.000.000 terms

obofoundry.org Open Biomedical Ontology, collection of over 60 specialized biomedical
ontologies

Search engines

pubmed.org NIH’s literature search engine

hubmed.org ‘‘PubMed rewired’’

invention.swmed.edu/etblast/ Text similarity: an alternative way to search Medline

glycosciences.de/tools/PubFinder/ PubFinder

www-tsujii.is.s.u-tokyo.ac.jp/medie MEDIE answering questions

ihop-net.org iHOP, gene network for navigating the literature

scholar.google.com Google’s literature search engine

academic.live.com Microsoft’s literature search engine

scopus.com Elsevier’s literature search engine

clustermed.info Document clustering on the fly with Vivisimo

Ontology-based literature search engines

gopubmed.org Explore PubMed with ontological background knowledge

textpresso.org Wormbase full texts with many ontologies

xploremed.org Classification with high-level MESH headings and word co-occurrences

(Copies of tables are available in the accompanying CD.)
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the identification of ontology entities in free text remains a challenging task. For instance, a recent
assessment for extracting Gene Ontology terms revealed performance around 20% success rate [3].
The difficulties of automating manual annotation is evident from the fact that as few as 15% of
manually annotated terms appear literally in the associated abstracts. Biomedical text mining uses
various techniques and algorithms, e.g., natural language processing, information retrieval, and
machine learning, to identify the relevant entities [8] and consider groups of problems.

20.2.2.1 Ad-hoc Variations of Names

To begin with, terms in vocabularies and labels of concepts in ontologies appear in many, slight or
severe, variations in natural language texts.

� orthographic: IFN gamma, Ifn-g
� morphological: Fas ligand, Fas ligands
� lexical: hepatic leukaemia, liver leukemia
� structural: cancer in humans, human cancers
� acronyms/abbreviations: MS, Nf2
� synonyms: neoplasm, tumor, cancer, carcinoma
� paragrammatical phenomena/typographical errors: cerevisae, nucleotid

Some of the terms encountered in texts are rather ad-hoc creations, which cannot be found in
any term list.

20.2.2.2 Synonymity of Ontological Terms

As mentioned before, terms in a vocabulary or ontology might not appear literally in a text, but
authors rather use synonyms for the same concept. First of all, this complicates proper searches:
When searching for ‘‘digestive vacuole’’, results should also contain texts that mention ‘‘phagolyso-
some’’; mentioning of ‘‘ligand’’ should refer to the concept ‘‘binding’’; an ‘‘entry into host’’ might
occur as an ‘‘invasion of host’’. In the Plant ontology for example, many synonyms exist for the
same structure in different species. ‘‘Inflorescence’’ is referred to as ‘‘panicle’’ in rice, and as ‘‘cob’’ in
sorghum, and ‘‘spike’’ in wheat, for instance. We note that there are also intra-ontology synony-
mities: ‘‘eye’’ in AnoBase can refer to the eye spot or the adult compound eye.

20.2.2.3 Ambiguity of Ontological Terms

Terms can have a very specific meaning in biomedical research, but may mean other things in other
contexts. Examples are ‘‘development’’, ‘‘envelope’’, ‘‘spindle’’, ‘‘transport’’, and ‘‘host’’. Protein
names such as ‘‘Ken and Barbie’’, ‘‘multiple sclerosis’’ or ‘‘the’’ that resemble common names,
diseases, or common English words are especially hard to disambiguate. The same problems arise
from drug names like ‘‘Trial’’ or ‘‘Act’’.

20.2.2.4 Stemming and Missing Words

Some aspects for finding terms in text refer to the actual processing of natural language and appear
rather technical. Very often, words will appear in different forms, such as ‘‘binding’’ and ‘‘binds’’.
These refer to the same concept, which can be solved by resolving words to their stem (‘‘bind’’).
However, the analogous reduction of ‘‘dimerization’’ to ‘‘dimer’’ is more questionable. The former
talks about the process, the latter about the result. A similar example is ‘‘organization’’, where a
transformation into ‘‘organ’’ is invalid.
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Texts contain additional words that are missing in the ontological term. This happens, for
instance, when a text contains further explanations that describe the findings in more detail. An
example is ‘‘tyrosine phosphorylation of a recently identified STAT family member’’ that should
match the ontology term ‘‘tyrosine phosphorylation of STAT protein.’’ In general, matching is
allowed to ignore words such as ‘‘of’’, ‘‘a’’, ‘‘that’’, ‘‘activity’’, but obviously not ‘‘STAT’’.

Additional background information on term variations is needed to know that a ‘‘familymember’’
can refer to a protein. Formatting of terms represents another source for potential matching errors.
Terms in ontologies contain commas, dashes, brackets, etc., which require special treatment. For
‘‘thioredoxin-disulfide’’ the dash can be dropped, for ‘‘hydrolase activity, acting on ester bonds’’ the
clause after the comma is important, but unlikely to appear as such in text. Terms containing
additions such as ‘‘(sensu Insecta)’’ may have important contextual information, but are also less
likely to appear in text.

20.2.2.5 Ontology Specific Issues

Term overlaps—some concepts can overlap in their labels or synonyms: in many cases there is a
difference between what the authors write and what they actually mean to express. Unfortu-
nately, researchers do not have strict and formal ontologies or nomenclatures in their minds
when composing a scientific article; in most of the cases they might use parent terms to refer to a
child term, or vice versa. For example, many people are treating theMeSH terms ‘cardiovascular
disease’ and ‘coronary artery disease (CHD, CAD)’ the same, although the latter is a child of the
first.

Descriptive labels—inmost of the cases, the labels in annotation ontology cannot be used directly for
text mining, often due to their explanatory nature. For example, it is unlikely that the Gene
Ontology term ‘‘cell wall (sensu Gram-negative bacteria)’’ will appear as such in text. Terms like
‘‘positive regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism’’ and
‘‘dosage compensation, by inactivation of X chromosome’’ are almost complete sentences and are
also unlikely to be found as such in text.

Ambiguity—results either from identical abbreviations for different terms, or, in general, tokens
that can refer to terms that may or may not be of our interest. An example of an ambiguous
abbreviation is ‘‘CAM’’ that can stand for ‘‘constitutively active mutants’’, ‘‘cell adhesion mole-
cule’’, or ‘‘complementary alternative medicine’’. The second category of ambiguities—and the
most difficult to handle—is that of terms that (in the context of anatomy) can refer to different
species. An example of such ambiguities is ‘‘embryo’’, which can be a chicken, mouse, human, or
even zebrafish embryo.

20.2.3 Entity Recognition

Although finding ontological concepts in free text is important, there are many more relevant
things to find in the text for instance:

� proteins,
� genes,
� species, or
� mutations.

The task to find these entities is called entity recognition. The identification of ontology terms
can be seen as a sub species of the more general task of entity recognition. As a consequence, many
of the techniques and problems described above are also valid for entity recognition. But, for
instance, for protein and gene name identification there are some other difficulties [12].
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One challenge is the increased ambiguity and synonymity of names. Often, the gene name and
the protein are used by the authors as synonyms or a gene has the same name in different organisms.
Another task is to deal with the number of entities one can find. As an example, the UniProtKB/
TrEMBL protein database contains over 4,500,000 entries. The real number tomatch is even higher
as one has to integrate all the synonyms and variants of the protein names and genes. A recurring
problem is for the case of identification of which species an article describes that the species
is sometimes never mentioned in the text. For mentioning point mutations, one has to recognize
the mutations and the related proteins to have a useable result [13, 14]. Moreover many cases of
ambiguities and missing concepts can only be resolved if one tries to use any information available
from the text. For example with additional information on species or point mutations, ambiguous
gene or protein names can be filtered. If a mentioned protein candidate does not match the species
from text, it’s less likely to be correct. Furthermore if the protein doesn’t have the corresponding
residue for the point mutation, it can be ignored.

The importance of entity recognition and their relations has been acknowledged by the scientific
community. There have been efforts to establish benchmarks and competitions to advance the
research. Examples of this are the ‘‘bio-entity recognition task at JNLPBA’’ [10] or the ‘‘Critical
Assessment of Information Extraction in Molecular Biology’’ (BioCreAtIvE) [9]. In the BioCre-
AtIvE II, genemention task, the best systems [11] could achieve a precision of 78.9% and a recall of
83.3%. An example for the current state of the art.

All of the above problems mean that extracting entities from literature will not be error-free.
However, despite all of these problems, ontology-based literature with text mining can answer
questions as posed in the introduction. Next, we introduce GoPubMed and illustrate how they help
to answer questions.

20.3 Question and Answering with GoPubMed

Traditional keyword based searching gives a possible very long list of results. But finding the
relevant documents is only the start; the user has to check if the results are relevant to him. Often,
there is a question behind a query. GoPubMed can answer all the introductory questions, as it uses
the ontological background knowledge, namely the Gene Ontology and MeSH to index search
results. This allows GoPubMed to categorize the search results, identify relevant terms in the result
set and summarize trends for a topic. This topic can either be a term and its children or the result set
of a query. For an ontology-enhanced web search, the GoWeb system is available. Figure 20.1
shows a screen shot of GoPubMed. The main panel contains the search results and the panel on the
left the relevant categories from the ontologies in a summary and as a tree.

Now let us consider the questions and more importantly the answers in detail. Please note that
these questions were answered with GoPubMed in July 2007, and due to the increasing number of
publications the results may vary in the future.

Question: Which techniques use the Prominin-1 (CD133) marker?
Answer: Search in GoPubMed for ‘‘CD133’’ and open Techniques and Equipment in ‘‘top five &
more’’ on the left. Listed as first is ‘‘Flow Cytometry’’. If you hover with the mouse above this term,
you will see the description in a tool tip. The listed articles for flow cytometry contain statements like:

‘‘CD133+ and CD34+ cells were analyzed by flow cytometry to assess expression of cell division antigens’’
(Denner L. et al., Cell Prolif., 2007).

Other interesting terms are ‘‘Cell Separation’’ and ‘‘Immunohistochemistry’’ There you can find a
statement like:

‘‘Microarray screening, single and dual-label immunocytochemistry and RT-PCR were performed to detect
embryonic and neuronal stem cell markers, such as Oct3/4, Nanog, CD133, andMusashi-1.’’ (Seigel GM et al.,
Mol. Vis., 2007).
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A follow up question might be ‘‘Which types of cells are often targeted with these techniques?’’ The
answer is already present ‘‘Stem Cells’’; it is the top term for the query.

Question: Which proteins are related to Alzheimer’s disease?
Answer: Type in Alzheimer and open chemicals and drugs in ‘‘top five & more’’ on the left. Among
others, there are ‘‘Amyloid’’, ‘‘Amyloid beta-Protein’’ and ‘‘Cholinesterase Inhibitors’’ listed as
related proteins. By clicking on Amyloid beta-Protein, we can reduce from 1000 to 60 relevant
articles and get the following definition:

Fig. 20.1 Which proteins are related to Alzheimer’s disease? GoPubMed uses its ontological background knowledge
to index search results according to theGeneOntology andMeSH. The interface consists of three parts. The topmost
part contains the input field for the query, in this example it is ‘‘Alzheimer’’. You can submit a query by using the
‘‘find it!’’ button. The panel below, comprises the results for the query and is split into to a left and a right part. The
left panel contains the ontological background knowledge relevant to your query. A summary over all identified
terms in your result is presented in ‘‘top five & more’’. If you open the category ‘‘Chemicals and Drugs’’ you can find
also proteins. In the ‘‘hierarchy of content’’ the complete induced ontology tree is available for browsing all the
concepts found.
On the right side, you can browse the found articles. The articles are shown with title, authors, journal, abstract and
affiliation, also Wikipedia links and links to proteins identified from the text are offered if available. The picture
shown here is the abbreviated version for articles for faster browsing. You may switch between the full and short
variant with the provided buttons. On top of the articles there is a summary with details for the query. This may
include a link to dynamic Hot Topics and if your query matched an ontological concept a link to the corresponding
term Hot Topics. There are also links to export the results to citation mangers.
After selecting a term from the left side, here ‘‘Amyloid beta-Protein’’, the result view is updated. It now shows
the articles containing the selected concept. This also includes all the child terms of the selected term. Please
note that the initial result set size of 1000 articles was reduced down to 50 relevant articles in two clicks. In the
summary field, the term description and term synonyms are listed. In case of ‘‘Amyloid beta-Protein’’ there are
currently 10 synonyms listed. To select an interesting article into the built-in clipboard, use the paper clip icon
provided directly next to the each article. To export a single article you can use the export icon. To view the
content of your clipboard select Clipboard link in the top bar. There you can also find the link to Hot Topics,
Advanced Search, Help and a contact form (Copies of figures including color copies, where applicable, are
available in the accompanying CD)
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‘‘A 4-kDa protein, 39–43 amino acids long, expressed by a gene located on chromosome 21. It is the major
protein subunit of the vascular and plaque amyloid filaments in individuals with Alzheimer’s disease and in
aged individuals with trisomy 21 (DOWN SYNDROME). The protein is found predominantly in the nervous
system, but there have been reports of its presence in non-neural tissue.’’

The article from Ohyagi Y et al. in 2007 mentions, e.g., ‘‘Inhibition of aggregation of amyloid p-
protein (AP) . . . are known as potent therapeutic tools for Alzheimer’s disease (AD).’’ Another
article (Chiarini A. et al., Ital J. Anat. Embryol., 2006), states ‘‘Reportedly, beta-amyloid peptides
(Abeta40 and Abeta42) induce the neurodegenerative changes of Alzheimer’s disease (AD) . . .’’.

Question: Was Abeta42 already used in a clinical setting?
Answer: Enter ‘‘Abeta42 drug’’ into the GoPubMed system and go on the result page to hierarchy of
content on the lower left. Open first the category ‘‘Chemicals and Drugs’’ and than ‘‘Organic Chemi-
cals’’. By clicking on ‘‘hydrocarbons’’ you reduce the result set to only 41 articles. A quick skimming
over of the abstracts reveals statements like

� ‘‘. . . minocycline treatment did not alter the cerebral deposition of Abeta . . .’’ (Fan R et al.,
J Neurosci, 2007), or

� ‘‘. . . naproxen that do not lower Abeta42 . . .’’ (Cole GM. et al., Ann. NY Acad. Sci., 2004).

Select the next category ‘‘Carboxylic Acids’’, this will display 36 articles. On the top of the results
you can find again the definition of the term but also a link, the Wikipedia article about carboxylic
acids. The list of articles includes statements such as

� ‘‘. . . ibuprofen possess preferential Abeta42-lowering activity . . .’’ (Leuchtenberger S. et al.,
Curr. Pharm. Des., 2006).

The GoPubMed system also provides links for protein names mentioned in an article, e.g., APP.
This links opens the EBI-Swissprot database showing a list of all proteins related to APP.

Question: Which hormone is Autistic Disorder associated with?
Answer: Submit Autistic Disorder as query in GoPubMed. In ‘‘hierarchy of content’’ open ‘‘Che-
micals and Drugs’’, then ‘‘Hormones, Hormone Substitutes and Hormone Antagonists’’, and then
select ‘‘Hormones’’, which reduces the number of relevant articles to 49. For more details on special
hormones you can browse in the ‘‘Gonadal Hormones’’ category which also has the term ‘‘Testos-
terone’’. Selecting testosterone, the result now shows 5 articles, with sentences like

� ‘‘. . . that high fetal testosterone levels could play a role in the aetiology of autism.’’ (de Bruin EI.
et al., Dev. Med. Child Neurol., 2006),

� ‘‘Fetal testosterone and sex differences in typical social development and in autism’’ (Knickmeyer
RC. et al., J Child Neurol, 21 (10): 825–845, 2006), or

� ‘‘. . . high levels of testosterone influences some autistic traits and that hormonal factors may be
involved in vulnerability to autism’’ (Knickmeyer R. et al., Horm. Behav., 2006).

For more examples of questions and answers have a look at Table 20.2.

20.3.1 Hot Topics

Despite the overall growth of literature, some topics are hot and take-off while others are stagnant
or are in a cool down phase. Bibliometric analyses aim to shed light on such developments and help
to identify emerging trends. Such analyses date back to the 1960s [4] and are typically focused on
research topics [5], specific journals [6], or on the researchers themselves [4,7]. TheHot topic feature
of GoPubMed, features views on ontology terms from the knowledge base. It considers a term and
all its children as one topic. For each topic a bibliometric analysis is provided.
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The hot topic page for an ontology term includes two graphs (Fig. 20.2) showing the absolute
number of publications per year for a topic. The second graph shows the relative share compared to
the total number of publications per year in PubMed. An increase in the share indicates that the topic
is growing faster than the overall number of publications. Both graphs can be used to check whether
the publication activity in a topic is decreasing, stagnant, or growing. In addition, to the publication
count you can find a list of the most active authors, the list of journals with the most publications for

Table 20.2 More example questions answered with GoPubMed

Which diseases are associated with HIV?

Answer: Type ‘‘HIV’’ and wait for the tree on the left to appear. Go to ‘‘top five & more’’ and click on ‘‘disease’’.
Among others hepatitis and tuberculosis are mentioned. Clicking on tuberculosis retrieves the relevant articles
including statements such as ‘‘HIV and parasitic co-infections in tuberculosis patients’’.

Which anatomical structure is affected by the bacterium helicobacter pylori?

Answer: Type ‘‘helicobacter pylori’’, go to ‘‘top five & more’’ and open ‘‘anatomy’’ Among the terms listed is ‘‘gastric
mucosa’’. Hovering the mouse over the term reveals an explanation, which mentions that gastric mucosa is the
lining of the stomach.

Which biological process is the protein Rab5 involved in and where is located in the cell?

Answer: Type ‘‘rab5’’ and wait for the tree on the left to appear. Go to ‘‘top five & more’’. Click on biological process
shows ‘‘endocytosis’’ and clicking on ‘‘cellular component’’ shows ‘‘endosomes’’. Hovering over the terms displays
brief explanations of what endocytosis and endosomes are.

In which organisms is toluene degradation studied?

Answer: Type ‘‘toluene degradation’’ and wait for the tree on the left to appear. Go to ‘‘top five & more’’ and open
‘‘organisms’’. The bacteria pseudomonas is listed first. A click retrieves the relevant articles.

Which enzymes are inhibited by aspirin?

Answer: Type ‘‘aspirin’’ and wait for the tree on the left to appear. Go to ‘‘hierarchy of content’’ and then ‘‘chemicals
and drugs’’ and ‘‘enzymes and co-enzymes’’. From there always click the top child until you reach ‘‘cyclooxygenase
1’’ and ‘‘cyclooxygenase 2’’. Clicking reduces the articles to a few which mention that aspirin inhibits
cyclooxygenases.

Which enzymes are important for congenital muscular dystrophy?

Answer: Type ‘‘congenital muscular dystrophy’’ and wait for the tree on the left to appear. Go to ‘‘hierarchy of
content’’ and then ‘‘chemicals and drugs’’, ‘‘enzymes and co-enzymes’’, ‘‘enzymes’’, ‘‘transferases’’. There are a
number of articles with statements such as ‘‘glycosyltransferases has revealed a novel mechanism for congenital
muscular dystrophy.’’

Which techniques are frequently used to study zebrafish development?

Answer: Search for ‘‘zebrafish development’’. Under ‘‘top five & more’’ open

‘‘techniques and equipment’’. In situ hybridization is listed first. Clicking the term retrieves relevant articles.

Which process are osteoclasts involved in?

Answer: Search for ‘‘osteoclast’’. Under ‘‘top five & more’’ open ‘‘biological process’’. The first entry is ‘‘bone
resorption’’.

What are common histone modifications?

Answer: Search for ‘‘histone modification’’. Under ‘‘top five &more’’ open ‘‘biological sciences’’ and find methylation
and acetylation.

Which diseases are associated with wnt signalling?

Answer: Search for ‘‘wnt signalling’’. Under ‘‘top five & more’’ open ‘‘disease’’ and find ‘‘carcinoma’’ and many other
cancer terms.

Were there clinical trails focusing on Abeta42 and were any side effects observed?

Answer: Search for ‘‘Abeta42 clinical trail’’. In ‘‘top five & more’’ open Diseases and click on ‘‘Meningoencephalitis’’.
The result now shows 4 articles, with titles like ‘‘Subacute meningoencephalitis in a subset of patients with AD after
Abeta42 immunization’’. So, yes there where clinical trials, but there were also severe side effects like brain
inflammation.

Which molecular function is Autistic Disorder associated with?

Answer: Search for Autistic Disorder. Under ‘‘top five &more’’ open ‘‘Molecular Function’’ and find ‘‘neurexin binding’’.

Which disease is Autistic Disorder associated with?

Answer: Search for Autistic Disorder. Under ‘‘top five & more’’ open ‘‘Diseases’’ and find for instance ‘‘Fragile X
Syndrome’’ as a related disease.

(Copies of tables are available in the accompanying CD.)
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this topic and a list of cities and countries with the most publications. To visualize co-authorship,
which author publishes together with which other authors, we provide a co-author network image.
Publications between authors are denoted as edges between the author nodes. If no edge exists then the
authors did not yet publish together, according to the publications listed in PubMed for this topic. The
last feature is a worldmapwhere red dots indicate where all the publications are located for the current
topic. All these features of the hot topics page are pre-calculated using the list of authors and affiliation
of an article and the annotations from the GoPubMed system for all 16 Million PubMed articles.

To check the hot topics in GoPubMed for a term there are two options. The first way is to just
search for the term in the normal search field and select the link from the list after ‘‘Show statistics
for term:’’. Or by the second option, one can directly use the ‘‘Hot Topics’’ mode by selecting it in
top bar. There you could also choose to use the advanced search, use the help page, a contact form,
or see the content of your clipboard.

Question: Is apoptosis a hot topic?
Answer: Use the hot topics to search for apoptosis. There are two apoptosis entries available, one
from the Gene Ontology and the other fromMeSH. Select one of them by clicking on it. To answer
the questions about trends, have a look at the two graphs in Publications over time. They both reveal
that the topic has been growing since the early 1990s. This is in line with Garfield and Melino’s [5]
investigation of the field. But the second graphwith the relative research interest shows that in the last
3 years the growth was not faster than the average growth of the whole PubMed literature.

Question: Which are leading centers and scientists for liver transplantation?
Answer:Query GoPubMed for ‘‘liver transplantation’’ and open the hot topics statistics for this term
(see also Fig. 20.2). Among the top authors is ‘‘Neuhaus P’’ and among the top cities is ‘‘Berlin’’. Prof.
Peter Neuhaus works at the Charité Hospital Berlin, Germany. He is a leading specialist in the field.
A look in the co-author graph reveals with whom Peter Neuhaus has worked and published with.

Question: Where is the main research done for dengue and leprosy?
Answer: Retrieve the term statistics for Dengue. You will find that in the list of top cities there are
Bangkok and Rio de Janeiro as the two top cities. In the top countries Brazil, Thailand and India
are in the top 4.

For the term Leprosy you will find in the countries section India is the top country. This is also
reflected in the list of important cities, where one can find several cities located in India. Both terms
show that the local occurrence of diseases can be shown in GoPubMed.

All the examples for the usage of hot topics were based on the pre-computed statistics using the
ontology terms from the knowledge base as topics. But the result set of a given query may also be
seen as a topic. This dynamic hot topics feature of GoPubMed offers you a bibliometric analysis of
any result set of a query. This analysis contains the graphs about the publications over time, the lists
of top authors, journals, cities and countries. It also includes the world map for the visualization of
the geographic locations.

The dynamic hot topics can of course also be used to answer questions, for instance:

Question: Who are the top authors for Abeta42 Protein?
Answer:Use the GoPubMed site to search for ‘‘Abeta42’’. This query finds currently 767 articles. In
the query summary field, above the articles, there is a link saying ‘‘Show statistics for these 767
articles’’. Clicking on this link will lead to the dynamically created hot topics. After the two graphs
for the publications over time, there is the list of top authors. Listed there you can find for instance
‘‘Bennow K’’ as top author. The number of shown authors can be increased by clicking on the
‘‘more’’ link below the table. The publications for the author can be retrieved by using the provided
link with the author name from the table.

Question:Who publishes most at theMax Planck Institute ofMolecular Cell Biology andGenetics,
Dresden (MPI-CBG)?
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Answer: Search for ‘‘Dresden[AD] Planck[AD] Genetics[AD]’’ and click on the link ‘‘show statistics
for these 305 articles’’. Currently, the top author is Kai Simons with 41 publications, but this will
probably change when new articles are published. In addition to the people, one can also easily
retrieve all publications in the Science journal from the MPI-CBG by clicking on the provided link
‘‘Science’’ in the top journals list.

Fig. 20.2 Hot topics for ‘‘Liver Transplantation’’
The result page for a query to Hot Topics starts with a summary for the selected concept including a description,
synonyms or the number of all publications in PubMed. Under Publication over time you can find two graphs. The
first graph displays the number of publications related to this term per year. The second graph visualizes the fraction
of publications on the topic over the total number of publications in that year. For ‘‘Liver Transplantation’’ the first
graph displays the growing number of publications, but the second graph denotes over the last years stagnation in
comparison to the overall publication growth in PubMed. The top authors, journals, cities, and countries are
presented as tables. All table entries are links that retrieve the related articles. If you would click on ‘‘Neuhaus P’’
you can retrieve all the publications which have an author with this name. The co-author graph shows which author
published together with whom. The more thick a line, the more articles contain their names as co-authors. The world
map shows the regional distribution of the articles (Copies of figures including color copies, where applicable, are
available in the accompanying CD)
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This example can be extended to be used with any institution mentioned in the affiliations of
PubMed articles. One might also consider to use date ranges (e.g., years), to check for changes in
the publication profiles over time.

20.3.2 GoWeb

Sometimes the search with PubMed is not enough and the user wants to use a general purpose
search engine like Google or Yahoo. With GoWeb we offer an internet search with ontological
background knowledge. Some of the resources you can search with are, for instance, full text
articles not included in PubMed, non-scientific sources like wikipedia or web based patent data-
bases, commercial sites and vendors for equipment, special interest sites like the alzforum.org, or
even news sites.

GoWeb uses standard web search engines and categorizes the results with its annotation
algorithms. Normally web searches return the url and the title as well as a short text snippet from
the result page containing your searched keywords. These texts are text mined, and the resulting
terms are used in the same way as in GoPubMed to present the results of your search. You can use
the ontological background knowledge to answer questions and reduce the result in a fast an
efficient way without the need to read all the presented results. It includes, if available, also
wikipedia links and protein names. Some example questions and answers are:

Question: Are there antibodies for ADDL?
Answer: GoPubMed can also search the web. Go to gopubmed.org/goweb and type ADDL anti-
body. Open ‘‘Chemicals and Drugs’’ and click on ‘‘Antibodies, monoclonal’’. The search results are
now reduced from 100 to 8. Besides many pages of the Alzforum, there is the news that ‘‘Acumen
and Merck Enter Into Alzheimer’s Collaboration’’ which talks about: ‘‘. . . exclusive rights Acu-
men’s ADDL technology monoclonal antibodies . . . million development approval milestones first
antibody product is commercialized. . . .’’

Question: What treatments does the web discuss for Alzheimer?
Answer: Go to gopubmed.org/goweb and type ‘‘Alzheimer treatment’’. Go to ‘‘Chemicals and
Drugs’’, there you can find the termMemantine and also the term Vitamins. For more information
on Vitamins click on the term. This will reduce the result set from 100 to 2 documents. In the result
snippets you can find a statement like: ‘‘. . . vitamin may also be an ideal natural treatment for
Alzheimer’s disease too. . . . Over the course of a small study, researchers at the University of
Wisconsin . . .’’

20.4 Comparison and Conclusion

Currently, there is a lot of interest in literature searching as evidenced by the recent search engines
such as Google Scholar orMicrosoft’s Windows Live Academic (see Table 20.1). This also includes
publishers like Elsevier with Scopus. These Engines offer a more comprehensive or different
document base, than the classical PubMed, but they currently do not include intelligence to answer
questions.

GoPubMed [15] indexes PubMed search results with ontological background knowledge, such
as Gene Ontology and MeSH. As shown above, this novel approach to search can help answer
questions. In particular, the summary of important terms in ‘‘top five & more’’ is a most helpful
feature for answering questions or reducing the big initial result to a smaller set of relevant articles
in one click. With GoWeb, the ontological background knowledge can also be applied to normal
web search and be able to answer questions from non-PubMed sources to answer questions.
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GoPubMed’s hot topics feature, additionally allows users to get an overview of research trends,
relevant journals, key authors, and regional research interests. This feature is not provided by any
of the other engines so far. GoPubMed is scalable and the system currently handles a user’s search
result of up to 10.000 documents. It also provides additional useful features like links to wikipedia
pages and mentioned proteins in SwissProt.

There are a number of related tools (see also Table 20.1):

� HubMed [16] is the direct front end to PubMed. It offers tools for the citation management of
PubMed articles. It also provides options for expanding the query or clusters the results in
categories. This is all based on the MeSH terms directly provided by PubMed. If there are no
MeSH concepts available for an article, then this features does not work, because no term
matching is done by HubMed itself. This is usually the case for the more recent articles. As an
alternative they offer a tagging system where you can add your own tags to an article.

� iHOP[21] uses genes and proteins as hyperlinks between sentences and abstracts. It converts the
information in PubMed into one navigatable resource.The navigation along the gene network
allows for a stepwise and controlled exploration of the information space. Each step through the
network produces information about one single gene and its interactions.

� eTBLAST [18] is quite a different approach to search the PubMed articles. It is based on text
similarity and allows you to search for related articles using a relevancy, ranking different from
PubMed. Input a paragraph/abstract which is relevant for your search and eTBLAST returns a
list of articles. For a search result one can list relevant authors, journals and a timeline.

� PubFinder [17] Similar to eTBLAST, it can find related articles from a set of abstracts. It derives
a list of discriminating words, which is subsequently used for scoring all defined PubMed
abstracts for their probability of belonging to the defined scientific topic.

� Textpresso for C. elegans [19] has been developed as part of the Wormbase effort. It currently
offers about 100 concepts such allele, anatomy, association, characterization, clone, compar-
ison, consort, developmental stage, disease, drugs, effect, entity feature, gene, involvement, life
stages, mutants, nucleic acid, organism, pathway, phenotype, purpose, regulation, reporter
gene, restriction enzyme, sex, spatial relation, strain, time relation, transgene, transposon, vector
and including also a subset of Gene Ontology concepts. It searches only abstracts and full text
articles relevant for C. elegans. Textpresso does not offer an ontology tree for the exploration of
a result set.

� Vivisimo ClusterMed does not use existing ontologies, but clusters documents hierarchically,
although it distinguishes between categories like title and abstract, authors, affiliation, or
publication date. From the document clusters, it derives representative terms. This automated
hierarchy generation inevitably merges concepts of different nature, as the algorithm is only
guided by the given documents, thus missing a lot of background knowledge a human uses in the
creation of an ontology. Since Vivisimo clusters documents on the fly, there is a limit to its
scalability.

� XploreMed [20] filters the PubMed results by the eight main MeSH categories and then extracts
topic keywords and their co-occurrences. Abstracts can be retrieved for co-occurring keywords.
The topic keywords are single words, usually occurring with a high frequency. Thus, multi-word
concepts such as ‘‘Stem Cell’’ are not proposed as keyword. Currently XploreMed has a limited
scalability and searches are restricted to 500 documents.

The combination of text mining and ontology-based background knowledge holds the
possibility for intelligent search either in the literature or in the web. With a new generation
of emerging search engines, biomedical researchers can answer questions and get an overview
of a topic.
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Chapter 21

BiblioSphere — Hypothesis Generation in Regulatory

Network Analysis

Anton Epple and Matthias Scherf

Abstract With its microarray analysis strategy BiblioSphere introduced a new analysis concept for
the interpretation of microarray results. The first level of analysis integrates multiple complemen-
tary data sources, to compile a network that covers the entire knowledge and data available for the
biological entities in the input data set to enable the interactive analysis of the data. A broad range
of filters together with ranking techniques are available as tools to enable the sub grouping of
entities and relations to focus the analysis to the user’s interest.

To complement this highly dynamic and interactive process, BiblioSphere introduces a second
level of analysis by modelling Genomatix expert knowledge in an integrated expert system for the
rule-based analysis of input data. Strategies that have proven successful in network analysis for the
assessment of regulatory relations over the years have been formalized to an expert system for the
automated generation of hypotheses.

While the first level enables the interactive analysis of microarrays by experts, the second level of
analysis makes network analysis available for high-throughput microarray data evaluation.

Keywords Textmining � Microarray � Network � Statistical analysis

21.1 Introduction

In recent years, the availability of high-throughputmethods likemicroarray analysis has dramatically
changed biological sciences. Before the availability of microarrays, the applicability of expression
analysis was limited to testing a given hypotheses. As only a few transcripts could be tested in parallel,
an initial hypothesis had to be developed based on the data available, before the experimental design
could decide which transcripts should be tested under experimental conditions. The change from
being able to conduct only a small number of experiments at the same time to monitoring the whole
transcriptome led to a change in experimental design. Previously the limited technical possibilities
forced scientists to carefully choose the biological entities they would monitor in an experiment, to
verify or falsify a given hypothesis. The new techniques make expression analysis available for data
collection as the first step of the scientific method. The process of hypothesis generation shifted from
the experimental design to the interpretation of the results. Instead of being the starting point, the
hypothesis is now the desired result of most expression analysis experiments.

While high throughput techniques enable a new experimental design, they also pose new chal-
lenges for the analysis and interpretation of these data and they require new tools that help with this
process. The aim of such tools is to guide the user in generating hypotheses to explain the observed
expression patterns. In an ideal setting, the user would be presentedwith a ranked list of hypotheses to
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choose from as a starting point for further analysis. Statistical methods proved helpful in identifying
biological entities that show significant differences under experimental conditions, and clustering
algorithms help to group entities by common features. However, biological interpretation of results
remains themost challenging part of the analysis. This article focuses on a two level analysis approach
to provide a workflow for biological interpretation. The first level of analysis classifies input sets by
the biological topics and compiles the network of potential relations from independent lines of
evidence. The second level of analysis uses a rule based approach for the semantic interpretation of
these relations in a biological context. These techniques for classification, graph analysis and rule
based hypothesis generation have been combined into a workflow for automated hypothesis genera-
tion that is available in the BiblioSphere program package.

21.2 Data and Data Sources

To enable the integration of multiple complementary lines of evidence, BiblioSphere provides an
ontology of biological entities, each of which can be assigned to catalogs of pre-defined classes, as
well as a formal semantic describing their relationships in regulatory networks. Entities, entity
relations and classifications are mapped to common standard identifiers to allow cross-
referencing.

21.2.1 Biological Entities

The catalog of molecular components, that BiblioSphere supports for modelling regulatory net-
works, consists of a set of base entities that are further classified and sub grouped by additional
annotations. Most pathway and protein interaction databases as well as the major part of the
relevant literature, focus on genes or proteins. Therefore, most available tools also focus on these
elements as the base units of regulation. As BiblioSphere also includes in-silico sequence analysis
techniques, its data model is more fine-grained and based on alternative transcripts and their
respective promoters from the ElDorado database (Genomatix Software GmbH), as base elements
of gene regulation.

Nevertheless, the replication units are mapped to EntrezGene loci [1] and their respective protein
products, to integrate available databases or data derived from literature analysis. In addition,
BiblioSphere makes use of an expert curated database of regulatory relevant protein complexes
with a focus on transcription factors, kinases and receptor complexes. ChemIdPlus identifiers are
used for referencing biologically relevant small molecules. Table 21.1 shows the biological entities
referenced in BiblioSphere together with their referenced datasource.

Table 21.1 Biological entities

Biological entity Source

Small molecules PubChem (http://pubchem.ncbi.nlm.nih.gov/)

Transcript Genomatix

Gene EntrezGene

Protein EntrezGene

Protein complex Genomatix / NetPro

Transcription factor MatBase (Genomatix Software GmbH)

Gene/protein EntrezGene

(Copies of tables are available in the accompanying CD.)
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21.2.2 Entity Classes

Experiments indicate correlations within groups of biological entitites (usually RNAs or proteins).
The initial step to associate groups with a pertinent biological context is biological classification.
Statistical methods can be applied to deduce significantly over represented classes in standardized
catalogs or ontologies from the class assignments of individual constituents of a set. BiblioSphere
makes extensive use of this approach integrating publicly available and proprietary catalogs and
data sources. Expert curated or electronically inferred annotations are added as attributes to the
entities. Table 21.2 gives an overview of the available annotation sets for biological entities in
BiblioSphere.

21.2.3 Entity Relations

While classification of biological entities identifies the biological processes affected by the experi-
mental settings, they do not supply information on the role of the individual biological entities
involved. This can be achieved by mapping the entities to a network compiled from pair wise
relations between biological entities. Supported relations in BiblioSphere range from protein-
protein interactions, predicted transcription factor binding sites in promoters to interactions of
small molecules and proteins. BiblioSphere is, at the time of this writing, the only application that
integrates relations derived from such different data sources like natural language processing,
expert curated manual annotations, in silico promoter analysis and expression profiles.

21.2.3.1 Promoter Analysis

The keymechanism underlying results frommicroarray experiments is transcriptional regulation. In-
silico promoter analysis can be applied to predict regulatory relations between transcript and
potential regulators. To enable this, the BiblioSphere database includes a genome-wide in-silico
promoter analysis data. Transcription factor binding site matrices from MatBase (Genomatix Soft-
wareGmbH,Munich) are used to scan all known promoters from theGenomatix promoter resources
for potential binding sites using MatInspector1 [2]. Background information on the analysis of
promoters for transcription factor binding sites and more details on the MatInspector program is
given in another chapter of this book (Chapter 17 by Thomas Werner).

21.2.3.2 Natural Language Processing

BiblioSphere analyzes the PubMed database for co-occurrence of protein names using a large
expert curated synonym database (Fig. 21.1).

Table 21.2 Classes of biological entities currently supported

Biological entity Class catalog Annotation source Evidence type

transcript Genomatix tissue catalog GNF Experimental data

transcript Genomatix tissue catalog dbEST Experimental data

Gene/protein Genomatix Pathway catalog EntrezGene Expert curated/ electronically inferred

Gene/protein GO biological process EntrezGene Expert curated/ electronically inferred

Gene/protein GO cellular component EntrezGene Expert curated/ electronically inferred

Gene/protein GO molecular function EntrezGene Expert curated/ electronically inferred

Gene/protein Genomatix MatBase EntrezGene Expert curated/ electronically inferred

(Copies of tables are available in the accompanying CD.)
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Techniques in information extraction range widely from the mere co-citation analysis to the
highly sophisticated semantic analysis. While simple techniques suffer from a large number of false
positive matches and therefore show only low specificity, they usually have a high recall (depending
on the lexicon); vice versa, more sophisticated techniques tend to show a lower recall factor while
providing a better specificity (Fig. 21.2).

BiblioSphere enables users to dynamically set the level of specificity. Specificity levels range from
simple co-citation analysis, over template based and context aware information extraction techni-
ques to entity relations curated by domain experts:

� Level 0: Two biological entities are co-cited somewhere within an abstract of a publication.
� Level 1: Two biological entities are co-cited within the same sentence.
� Level 2: Two biological entities are co-cited in the same sentence and the sentence also contains a

"function word".
� Level 3: Sentence matches a pre-defined information extraction template.
� Level 4: Manually confirmed connection of two biological entities.

The decision whether it is sensible to go for a higher recall or for a higher specificity depends on the
application. If the information extracted from literature constitutes the single source of relational

Fig. 21.1 BiblioSphere literature viewer with syntax highlighting for identified entities (Copies of figures including
color copies, where applicable, are available in the accompanying CD)

Fig. 21.2 Precision is defined as the proportion of retrieved and correct facts to all the facts retrieved, while recall
defines the proportion of relevant facts that are retrieved, out of all the correct facts available (Copies of figures
including color copies, where applicable, are available in the accompanying CD)
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information, or if the data base is very large, it is advisable to go for higher specificity, unless a broad
statistical base is needed, whereas in cases where literature independent information is available
(other lines of evidence), it is favorable to go for higher recall and to combine the literature derived
information with these other lines of evidences to rule out false positives. BiblioSphere already
systematically integrates several independent lines of evidence to leverage this approach.

21.2.3.3 Pathway Databases and Expert Curated Knowledge

In addition to relations extracted from the scientific literature by Genomatix domain experts,
BiblioSphere also integrates external databases. Molecular Connections NetPro database is an
expert curated database, covering the whole range of relations relevant to network analysis
including protein-DNA binding, protein-protein interactions and small molecules. More than
115,000 individual expert curated relations for biological entities have been imported into the
BiblioSphere knowledgebase.

21.2.3.4 Expression Profiles

Besides relationsmanually or automatically extracted from literature or inferred by in-silico sequence
analysis, BiblioSphere also includes experimental expression data. A series of microarray analysis
experiments in different tissues has been performed to create tissue profiles for individual transcripts.
Entity relations are based on the similarity of these profiles as an indicator for co-regulation.

21.2.3.5 User Data

In addition to these sources of relations, user-defined data can be used to complement the data
sources of BiblioSphere. Thus, BiblioSphere can be enhanced to reflect new types of connections
such as entity relations based on e.g. microRNAs.

21.2.4 Entity Relation Classes

Like the biological entities themselves, relations between them can be used for the classification of
entity sets. The same statistical methods that are used to find significantly over represented classes
for a set of biological entities can be applied when annotations are available for a relation. If the
relation is derived from Genomatix proprietary pathway annotation, the respective pathway
catalog can be utilized to classify the set of relations and thereby indirectly the set of related
entities. Relations derived from PubMed can be evaluated using their classification with the
hierarchical MeSH catalog. Table 21.3 shows the different entity relation classes included in the
BiblioSphere knowledge base.

Table 21.3 Entity relation classes in BiblioSphere

Entity Relation Class catalog Annotation source Evidence type

Protein-Protein MeSH: Disease PubMed Expert curated

Protein-Protein MeSH: Chemicals and Drugs PubMed Expert curated

Protein-Protein MeSH: Anatomy PubMed Expert curated

Protein-Protein MeSH: Biological Sciences PubMed Expert curated

Protein-Protein MeSH: Analytical, Diagnostic and
Therapeutic Techniques and Equipment

PubMed Expert curated

Protein-Protein MeSH: Disease PubMed Expert curated

(Copies of tables are available in the accompanying CD.)
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21.2.5 Same Information – Different Sources: Multiple Lines of Evidence

As shown before, BiblioSphere integrates a wide range of independent lines of evidence for
individual entity relations. The idea behind this concept is that there are many indicators pointing
to a certain interaction, which are too weak to build a useful hypothesis when evaluated in isolation.
Therefore, BiblioSphere enables the user to filter interactions that are supported by independent
lines of evidence indicating the same relationship.While this approach is not capable of verifying or
falsifying a hypothetical relationship, it helps in ranking relationships and identifying the most
promising candidates for further evaluation. As an example, co-expression taken as a single line of
evidence, is only a weak indicator of co-regulation as is the occurrence of the same transcription
factor module in the promoter of two transcripts; taken together they form a stronger indication. If
the transcription factors, known to bind this module, are found to be co-cited in literature with one
of the gene products of these transcripts, this further strengthens the hypothesis. The gene products
might also be annotated to belong to the same biological process, show a similar tissue profile, and
so on. All of these individual findings are weak when viewed in isolation, while taken together they
provide strong evidence for certain type of relationships based on the consistency of the different
lines of evidence. While small data sets may be manually evaluated by presenting these integrated
lines of evidence to the user, this is not possible for data-sets derived from high-throughput
experiments with millions of potential relations. Here, it is necessary to have a tool that helps
identify the most likely candidates. To do so, BiblioSphere allows the users to rank relationships by
evidence and to dynamically filter for relations that are supported by many lines of evidence.

21.3 First Level Analysis

A widely accepted technique for biological interpretation is to classify groups of biological entities
for identifying processes and pathways affected by the experimental settings usually called GO-
ranking. A variety of methods and tools are available for this task including DAVID [3], GoSurfer
[4] or FuncAssociate [5]. BiblioSphere similarly analyzes annotations of biological entities and
relations, with controlled vocabularies, to find categories that are overrepresented for the input set
but not limited to GO-terms. Another common method of many bioinformatics software tools for
the analysis of microarray experiments is to project the experimental data onto precompiled
pathways, to facilitate the interpretation of the results. While this method helps to bring experi-
mental data into the context of common knowledge from textbooks, pathway databases and
scientific articles, it limits the analysis to the small subset of the analyzed data for which such
information is available. BiblioSphere also allows such projections of expression data but it is not
restricted to this limited set of expert curated information. Due to its multiple lines of evidence
approach as described above it enables a much larger portion of the data to be analyzed.

21.3.1 Statistical Analysis of Entity-Sets

All entity class and entity relation class catalogs can be used to subgroup the entities and relations
between them by their respective annotations. In addition, these controlled vocabularies or ontol-
ogies can be used to detect classes that are overrepresented in the set. BiblioSphere uses a method
called p-value ranking as a statistical test for the overrepresented groups. P-value ranking corrects
for wrong positives that result from performing thousands of null hypothesis tests at once, a
problem known as ‘‘multiple-hypothesis testing’’. Figure 21.3 shows an example report for a set
of genes that have been found to be upregulated on stimulation with Platelet-derived growth factor
(PDGF) in a time series experiment. Original microarray data from [6], is publicly available from
Gene Expression Omnibus (GEO, accession number GSE1484).
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The most overrepresented groups are consistent with the findings of the original study, where
Sterol biosynthesis was identified as the key process activated by PDGF stimulation. It is also
possible to compare two results to test how the over represented categories differ for two different
experimental conditions or time points (Fig. 21.4).

21.3.2 Network Analysis

Networks are compiled from all relationships that exist between the biological entities in an input
set. BiblioSphere networks can be mathematically interpreted as graphs consisting of vertices (the
biological entities) and edges (the entity relations). Standard graph algorithms may therefore be
applied. The main purpose of network visualization in BiblioSphere is to give an overview on how
entities interact, to identify higher-order functional modules and to understand the flow of
information in and between these functional modules.

Due to the large knowledgebase behind BiblioSphere, networks tend to be too large to be
comprehensible when displayed unprocessed. For a list of 1000 transcripts, which is the average
input size for the analysis of microarray results, the number of relations in BiblioSphere database
can easily exceed 100,000. It is a general theory that the size of networks should not exceed 100
nodes. Consequently, the graph needs to be reprocessed before being presented to the user. This
coincides with the typical size of known functional modules or pathways, as contained in metabolic
pathway databases like KEGG [7] or signal transduction pathways like STKEwhich typically have
a size of 5 to 60 entities.

Fig. 21.3 Example report
for overrepresented groups
in an input set of 105 genes
(Copies of figures including
color copies, where
applicable, are available in
the accompanying CD)
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The twomain strategies to reduce graph complexity in BiblioSphere are filtering and clustering by
connectivity. Bibliosphere offers a potent system of filters to customize the analysis output according
to your needs. This includes filters based on the content of the literature itself, as well as on functional
analysis using hierarchical annotation terms. Table 21.4 gives an overview of the available filters.

A second strategy for the reduction of complexity makes use of dense sub-graphs or clusters in
the network. Obviously, clusters that have a lot of relations between their constituents have a
greater likelihood of belonging to a common process than loosely coupled components. The
connectivity of a cluster in biological networks has been shown to be correlated with biological
function [8].

It has already been shown that functional grouping provides a very simple way to identify
subgroups that belong to a common category, but it has a major drawback when used to analyze
groups of genes. Grouping nodes or edges by their attributes in functional clustering makes a clear
separation between nodes having a certain attribute or not, while connectivity is less restrictive.
Functional clustering represents the current knowledge about a process, given that all known
entities that belong to a group are correctly annotated, and eventually reveal new relations between
the constituent members of a cluster. Connectivity clustering, however, can identify new members
of a group, and it can even identify groups that represent a new category.

While these methods are able to reduce the number of nodes in a graph, they do not reduce
the number of relations between them. Even a mathematically scarce graph can be ‘‘dense’’ in
terms of visualization. The upper graph (A) in Fig. 21.5, shows a sub-network for genes upregulated
in PDGF-stimulated fibroblasts showing only the relations that have been verified by domain
experts. It is still hard to comprehend the individual relations between pairs of entities or even
identify a coherent information flow.

Fig 21.4 A report to compare the ranking results for different rankings (Copies of figures including color copies,
where applicable, are available in the accompanying CD)
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A simple strategy to reduce the complexity here is based on the observation that users usually
start exploring the network from a single biological entity of interest.

To focus the graph on one entity, only the shortest path of this node to all other nodes in the set is
displayed. This converts the graph to a tree structure and hides all the other edges. The lower graph
(B) in Fig 21.5, illustrates how this reduces the complexity and enhances readability of a network.
This strategy allows users to explore the network in a stepwise manner by the exploration of
focussed sections. It is important to note, that all filtering operations still work on the full set of
edges, the reduction is only affecting the display.

21.4 Second Level Analysis

The major shortfall of simply projecting the data onto pathways or regulatory networks is that the
results are only visualized, while the process of semantic interpretation of the results is left to the user.
Given the thousands of relations between biological entities this can be a challenging, if not impos-
sible, task. To help users with the interpretation of these regulatory networks, BiblioSphere introduces
a rule-based generation of hypotheses based on experimental data as a second level of data analysis.

21.4.1 Rule-Based Hypothesis Generation

It has already been shown how multiple lines of evidence can be used to rank relations between
individual entities by simply counting the number of distinct classes of complementary relations
identified.While this method is useful, it does not allow for a presumption on the semantic nature of
the connection.

BiblioSphere uses a production rule system to cope with this problem. A schematic view of this
system is shown in Fig. 21.6. The core component of a production rule system is an inference engine
that matches facts and data against production rules, to infer conclusions and trigger actions.

Table 21.4 Filters available in BiblioSphere

Filter Name Source
Filtered
Entitiy Type

GO: Molecular Function Gene Ontology /
EntrezGene

Gene Hierarchical

GO: Biological Process Gene Ontology /
EntrezGene

Gene Hierarchical

GO: Cellular Component Gene Ontology /
EntrezGene

Gene Hierarchical

MeSH: Disease MeSH / PubMed Abstract Hierarchical

MeSH: Chemicals and Drugs MeSH / PubMed Abstract Hierarchical

MeSH: Anatomy MeSH / PubMed Abstract Hierarchical

MeSH: Biological Sciences MeSH / PubMed Abstract Hierarchical

MeSH: Analytical, Diagnostic and Therapeutic
Techniques and Equipment

MeSH / PubMed Abstract Hierarchical

Co-Citation: frequency Natural Language
Processing

Gene Plain

Co-Citation: Specificity level Natural Language
Processing

Gene Plain

Co-Citation: Connectivity Natural Language
Processing

Gene Plain

Free text Natural Language
Processing

Abstract Plain

(Copies of tables are available in the accompanying CD.)
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A Production Rule is a two-part structure using the first order logic for knowledge representation.
The left hand side of the rule is a condition, while the right hand side defines the action invoked in
case the condition is true.

One of the major advantages of using a rule-based solution is the separation of the logic rules
from the data model. Rules can thus be written in a domain specific language by users without
programming experience. Genomatix experts have used their domain knowledge to build a knowl-
edge base with rule sets, for various strategies of hypothesis generation. These rules can be adjusted
to reflect new semantic knowledge or extended to cover other types of entities or relations. All data
about entities, relations as well as their class attributes including data supplied by the user (such as
expression values), build the input to the system. Figure 21.7 shows an example of rule set for the

(b)

Fig. 21.5 Both networks show a view of the same graph. The network created from an input set of 105 genes
upregulated in PDGF-stimulated fibroblasts has been filtered for relations supported by expert curated annotations.
(A) An unrestricted view of the graph; (B) Only the shortest path for node Jun is displayed (Copies of figures
including color copies, where applicable, are available in the accompanying CD)

(a)
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Fig. 21.6 A schematic overview of the hypothesis generation process in BiblioSphere. Users provided or pre-defined
sets of rules are loaded into the production memory. Input data and relational data from the BiblioSphere database
are uploaded to the working memory. The rule engines pattern matching mechanism determines all matching rules
and creates an agenda for conflicting rules. The generation of a new hypothesis is triggered by matching its respective
rule (Copies of figures including color copies, where applicable, are available in the accompanying CD)

Fig. 21.7 Two simplified rules for hypothesis generation. The first rule ‘‘Transcription factor activates Transcript’’,
tests for transcriptionally upregulated transcription factor-transcript pairs based on the uploaded expression array
data. If the transcription factor has a binding site in the promoter of a transcript and both have been found co-cited, a
new hypothesis is added to the data model. The second rule ‘‘transcript co-regulated transcript’’ tests for upregulated
transcripts that share the same promoter module (Copies of figures including color copies, where applicable, are
available in the accompanying CD)
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generation of hypotheses on gene regulation. Pre-defined rule sets cover transcriptional regulation
and protein-protein interactions. Every generated hypothesis can be manually evaluated since the
rule engine allows to keep track of the decisions and the evidence for these decisions.
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Chapter 22

Biological Knowledge Extraction

A Case Study of iHOP and Other Language Processing Systems

Florian Leitner, Robert Hoffmann, and Alfonso Valencia

Knowledge is of two kinds. We know a subject ourselves, or we know where we can find
information on it.

—Samuel Johnson (1709–1784)

Abstract Text Mining is the process of extracting [novel] interesting and non-trivial information
and knowledge from unstructured text (GoogleTM search result for ‘‘define: text mining’’). Infor-
mation retrieval, natural language processing, information extraction, and text mining provide
methodologies to shift the burden of tracing and relating data contained in text from the human
user to the computer. The emergence of high-throughput techniques has allowed biosciences to
switch its research focus on Systems Biology, increasing the demands on text mining and extraction
of information from heterogeneous sources. This chapter will introduce the most fundamental uses
of language processing methods in biology and present the basic resources openly available in
the field. The search for information about a common disease, chronic myeloid leukemia, is used
to exemplify the capabilities. Tools such as PubMed, eTBLAST, METIS, EBIMed, MEDIE,
MarkerInfoFinder, HCAD, iHOP, Chilibot, and G2D – selected from a comprehensive list of
currently available systems – provide users with a basic platform for performing complex opera-
tions on information accumulated in text.

Keyword iHOP � CML � Text mininig � Language processing

22.1 Introduction

During the turn of the millennium, the emergence of high-throughput methods in Molecular
Biology posed a significant change in the experimental approach. After the field of genomics had
completed the most ambitious biological project of the last century, the sequencing of the human
genome, and established the gene microarray expression profiling, other areas have profited from
these large-scale experimental approaches. In proteomics, the chip technology has been expanded
to protein arrays for analyzing a multitude of protein interactions with nucleic acids, antigens, and
other proteins. Metabolomics is exploring the interaction of the genome and proteome with the
chemical environment of the cell. Building on data contributed by all these ‘‘Omics’’, Systems
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Fernandez Almagro, 3, E-28029, Madrid, Spain
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S. Krawetz (ed.), Bioinformatics for Systems Biology, DOI 10.1007/978-1-59745-440-7_22,
� Humana Press, a part of Springer ScienceþBusiness Media, LLC 2009
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Biology has emerged as a completely new discipline of research utilizing this information genera-
tion and a broad range of biological facts.

The wealth of information produced by these large-scale experimental approaches is being
analyzed by various data mining methods to produce new insights and potential research
targets, e.g., assembling list of genes potentially associated to cancer. These data are stored in
dedicated databases, which index and distribute the content in a well-structured form. Yet,
database projects cataloging the generated facts are struggling to keep up with this informa-
tion flood, annotating publications and depositing the contained data in tabulated units.
Because of this bottleneck, by far the largest repositories of biomedical data still are
the publications. In 2006, the MEDLINE# PubMed# collection of biomedical abstracts
surpassed the 16 million mark1 – accordingly, every day it is becoming increasingly more
difficult to keep track of publications and new information. MEDLINE is the ‘‘meta-database’’
of all biomedical publications, containing title, abstract, author names and several
annotations for each published article, while the full texts of articles are stored with each
journal separately.

This imposes some limitations on the usability of the data: the full text is not freely
accessible and the publications are often distributed in PDF format, which is a proprietary
format and very difficult to disassemble. Because of the restricted access, searches over the full
text of documents is only possible on a single repository at a time, for e.g., while reading a
publication on Nature.com, it is not possible to search the Science magazine in the same
interface. To counter these limitations, several Open Access initiatives have been created, e.g.,
the Public Library of Science (PLoS), BioMed Central (BMC), the National Institute of
Health (NIH, with the PubMed Central (PMC) repository), or the Wellcome Trust, to solve
this issue. One of the advantages of repositories such as PLoS, BMC, or PMC is that they
provide free access to the full text, which is distributed in both human (PDF) and machine
(XML) readable format.

To provide consistent descriptors for documents, in 1954 the Medical Subject Heading
(MeSH) thesaurus was created. Thesauri (or subject headings) are used to annotate objects
(e.g., MeSH is used to annotate MEDLINE documents), and can be understood as indexed
collections of terms agreed upon by the community that uses them. Although this supplies
additional information for each publication, they do not make direct connections to database
objects. The respective entities in the text, like the gene names, although annotated to the
MEDLINE record as a MeSH term, are not directly linked to their database entries, e.g., the
gene sequence.

We Imagine a world where scientific content is freely accessible and exhaustively annotated.
Searches across all (full text) repositories would become available, making it possible to locate
specific information at a full level of detail, e.g., searching for publications describing a specific
diseases in conjunction with a special compound and a unique mutation. While reading publica-
tions, the respective mentions of the entities in the text are hyperlinked with their database
objects. These objects in turn link back to all the publications relevant to them, making it easy
to find former publications for a specific gene, extracting a set of RNA sequences for a disease, or
locating chemical compounds interacting with a given protein. Carried to the extreme, complete
signaling pathways and interaction networks could be browsed and extracted in such an
environment.

Apart from the bureaucratic, political, and commercial restrictions mentioned, we will attempt
to describe the technical limitations that scientific research is aiming to overcome to fulfill this
vision. We will be looking at increasingly more complex problems on this path, and then will

1 As of beginning 2007, the MEDLINE database of biomedical abstracts contains 16,120,074 entries, of which
686,406 were added just in 2006.
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introduce existing applications at least partially closing the gap to such an ideal world of open and

interconnected information. Beginning with tools that allow locating and retrieving publications
with functionalities going beyond simple search engine queries, we take the reader all the way to the

applications that allow one to view and explore networks.
Although biomedical text mining per se might be relatively new, with the first approaches

published in the 80s of the last century, its building blocks come from several different long-running

areas (for an historic overview, see Fig. 22.1).

22.2 Applications

There is a broad range of text mining tools available by now.Here, we will focus on a small subset of

tools useful to the biologists for retrieving and discovering information. Apart from the tools

presented in this section, an extensive list of tools can be found in Table 22.4. To exhibit the

utilization and abilities of each tool, we will use a well-known cancer, Chronic Myeloid Leukemia
(CML), as example topic throughout this section.

Fig. 22.1 Timeline
explaining the evolution
of biological information
extraction. After making
the MEDLINE resource
publicly available, the
development of algorithms
and applications began to
flourish. Through the
introduction of cups and
challenges, standards to
compare and assess these
tools were established.
For explanations see text
Legend: octagons –
resources (thesauri, corpora,
ontologies); diamonds –
cups and challenges;
squares – breakthroughs
and novel techniques in
BioNLP/TM; circles –major
applications. Abbreviations:
NLM: [U.S.] National
Library of Medicine.
IE: Information Extraction,
IR: Information Retrival,
KGT: Knowledge Genera-
tion from Text, NLP:
Natural Language
Processing. (Copies of
figures including color
copies, where applicable,
are available in the
accompanying CD)
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22.2.1 Chronic Myeloid Leukemia

CML (OMIM2 ID 608232) is characterized by the increased and unregulated clonal proliferation of
myeloid cells from the pluripotent bone marrow stem cells. It is mostly 3 caused by a chromosomal
translocation forming an abnormally small chromosome, the Philadelphia chromosome (Ph), as a
result of a reciprocal recombination between chromosome 9 and 22 (Ch 9 and Ch 22). This
translocation (t[22;9][q34;q11]) commonly creates a fusion gene on the Ph from the two genes
breakpoint cluster region (bcr, Ch 22) and Abelson murine leukemia viral oncogene homolog 1
(c-abl, also known as abl1, on Ch 9) called bcr-abl.

The fusion protein BCR-ABL is exclusively found in the cytoplasm and can cross-phosphorylate
its own Tyr residues. It has been shown to have transforming potential:

� Enhancing proliferation by preventing CDK-activity and cell cycle arrest, by gradually inducing
myc transcription, and by altering the cells response to various growth factor signals;

� Reducing bone marrowmatrix adhesion to the stromal layers and fibronectin and phosphoryla-
tion of focal adhesion proteins; and

� Inhibiting apoptosis via activating the STAT5, RAS and PI3K/AKT pathways and reducing
apoptosis induced by TNFa signaling.

Most of the interactions originate from the uncontrolled activity of the SRC-homology 1 (SH1) Tyr
kinase domain contributed by the abl gene.

Until the 80’s of the last century, CML was considered incurable until allogenic stem cell
transplantations became available. Recent treatment strategies mainly have focused on silencing
the ABL SH1 domain using Tyr kinase inhibitors (Imatinib mesylate – also known as Gleevec),
while some approaches also attempt to target downstream effectors of BCR-ABL. The latest review
on CML and the pathways involved is in [2], describing a downstream effector model for CML.
Another very complete overview can be found in [3].

22.2.2 Overview

Table 22.1 is an overview of the applications treated in this chapter. The applications will be
grouped by the results they produce. The first part will treat systems that allow the user to retrieve
abstracts based on their query. This section will begin with results presented as lists of articles, and
then advance to more sophisticated ways of presenting the results based on evidence passages or
biological entities (genes, proteins). The second part will focus on applications that allow con-
structing interaction networks from the queries in graphical form. Finally, a short introduction to
hypothesis generation systems will be presented, together with a tool to mine genes related to
inherited diseases.

22.2.3 Retrieving Abstracts

22.2.3.1 Search Engines

The first step in locating information, usually, is the retrieval of documents or data objects relevant
to a certain topic and is called Information Retrieval (IR). Typical examples of such IR systems are

2 Online Mendelian Inheritance in Man, a catalog of human genes and genetic disorders.
3 see Ref. [1]
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search engines like Google1 or PubMed. They commonly employ an index of terms mapping the
association of each term with the documents that contain them and storing the frequency of each

term (term frequency, TF – the number of occurrences of a term in a document) [4]. Documents

containing a query term can then be retrieved in ranked order by dividing the TF by the number of
documents in which the term appears (document frequency, DF). It can be assumed that the

document with the highest TF_IDF (Term Frequency times Inverted Document Frequency) score
is the most specific document for that term. Such a system was used for example to cluster

MEDLINE documents [5].
All three major scientific search engines –Google ScholarTM, Scirus1, and PubMed – have some

functionality in common: Boolean queries (using the ‘‘AND’’ and ‘‘OR’’ operators between terms –
where the default joining of words and phrases is ‘‘AND’’), and searching for phrases by enclosing

multiple words in double quotes – a search using cell cycle will return a larger result than searching

for ‘‘cell cycle’’ (i.e., the former retrieves all documents containing the words cell AND cycle
anywhere in the document). They do not just index the document but assign the content to specific

fields, and PubMed even adds manually annotated terms (medical subject headings, MeSH) to
the documents. Yet, each engine has a different set of fields available, which are summarized in

Table 22.2. All the query fields available in Scholar and Scirus are also available with PubMed, but

instead of the ‘field:term’ syntax, PubMed (and all of the NCBI query forms) uses a slightly

Table 22.2 Search engine specific query fields

Field Scholar Scirus PubMed

Author author: au: [AU]

Author affiliation - af: [AD]

Domain n/a Dom: n/a

EC Number - - [RN]

First author - - [1AU]

Journal * jo: [TA]

Keywords - ke: [MH] (MeSH)

Publication date * * [DP]

Publication type * - [PT]

PubMed ID - - [PMID]

Title intitle: ti: [TI]

Topic - - [SB]

URL site: url: n/a

*available in advanced search mode
(Copies of tables are available in the accompanying CD.)

Table 22.1 Overview of applications in this section (without search engines)

Application Query Data Result Description

eTBLAST Text paragraph Similar abstracts

MedBlast Sequence or BLAST result Related abstracts

METIS Sequence or SwissProt ID Related abstracts

EBIMed Keywords Abstracts indexed by biological concepts
and binary relations

MEDIE Semantic keywords Related sentences

MIF Genomic markers Related abstracts

HCAD Genes or genomic bands Genes, terms and related sentences

iHOP Gene/protein symbols and
chemical compounds

Related sentences, entities and network
graph

Chilibot Gene/protein symbols and
keywords

Related sentences and network graph

G2D Genomic location or gene ID Candidate genes

(Copies of tables are available in the accompanying CD.)
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different form –‘term[field]’. Another functionality offered by all three engines is the retrieval of
similar (related) articles.

22.2.3.2 Text-based Searches

Keyword searches are obviously the domain of search engines. Yet, instead of just listing results by
some ranking system that then has to be scanned manually, more sophisticated approaches for
result presentation would be desirable. The systems described in the remaining part of this section
do not directly provide the user with lists of abstracts, but first present sentences that were relevant
to the query. By highlighting important concepts, the user can quickly locate interesting articles by
scanning through these passages, instead of having to deduce the relevance of the article from the
title (or worse, the complete abstract).

Just like, the ‘‘related article’’ functions of the search engines, abstracts can be retrieved based on
the content of a given example document. Documents which align best to the query string (i.e., a
linear set of characters) are retrieved [6]. This is analogous to the BLAST sequence alignment, and
basically uses the same dynamic programming approach to find the most similar string. The
eTBLAST search engine provides such a text similarity search interface [7]. The eTBLAST system
fetches the first 400 high-scoring MEDLINE abstracts that have the most similar distribution of
words as the input example. These 400 documents are then re-ranked by similarity to the input
sample, aligning the characters of each input sentence to the sentences in the documents.

An interesting example would be to retrieve highly specific articles for a given topic. Using the
abstract from ‘‘BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2
domain of the GRB-2 adaptor protein’’, Pendergast et al., 1993, PMID 8402896, describing the
binding of Grb2 to Tyr177 phosphorylated BCR in the fusion protein (this interaction is subse-
quently required for the RAS pathway activation), we run another eTBLAST. Although the system
returns some unspecific results, most top hits are either describing GRB2s role in the RAS pathway
and/or BCR-ABLs role as a tyrosine kinase. While it might be as effective to search PubMed using
the query grb2 bcr abl, this system returns documents which do not necessarily have to match all the
query terms and can be useful for retrieving less specific articles, but still well related to the input
(i.e., at better recall).

Apart from retrieving documents based on a query string, a classifier can be trained for
discerning the records. The currently best approach of such Document Classification is the use of
Support Vector Machines (SVMs) [8]. As with all supervised data mining methods, this requires a
training and a test set with samples tagged as positive or negative, and is the most labor-intensive
part of this approach. The sample texts are tokenized into their single words, creating a word
frequency dictionary for each document (a Bag-of-Words). Each word in the complete test set then
represents a dimension (or feature) and the frequency of a word is the coordinate value on that
dimension for a document. The SVM models a hyperplane in this multi-dimensional space, which
best separates the positive from negative documents. Using statistical analysis, the most significant
words in the positive set can be extracted.

22.2.3.3 Sequence-Based Searches

A more abstract way of retrieving articles is by using a biological sequence as the starting point.
Such sequence-based search facilities are provided by MedBlast [6] and METIS [9]. Using one or
several protein (or genomic) sequences as input, these systems retrieve articles related to the
submitted sequences. A two-step process achieves this: first, the sequences are submitted to
BLAST to find the most similar known sequences. For these known sequences then the database
annotations and linked MEDLINE articles are fetched. This is especially useful to help explore
completely new or unknown sequences. MedBlast retrieves all the articles from a BLAST result up
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to a user-defined e-value cutoff, while METIS allows selecting specific BLAST hit pairs used to
further extract functional, structural or disease-related evidence sentences for the selected BLAST
result. These sentences are extracted using machine learning (SVM) and pattern-based methods.

Assuming we would not know what sequence we had, submitting the BCR-ABL p210 fusion
protein (NCBI Entrez GI 120431578) sequence toMETIS and then selecting all significant BLAST
results (the top 9 hit pairs up to BCRMOUSE, e-value 4e-6), we could use this system tomake some
hypothesis on the sequence. The disease extraction results clearly identify CML and the Ph
chromosome for this sequence. The structure results return many evidence sentences on the
involved SH2 and SH3 domains, while the functional annotations hint on the kinase activity of
ABL1 and the fusion protein. Each evidence sentence is marked up for keywords and contains links
to the PubMed abstract (see Fig. 22.2). The system can help to quickly highlight important aspects
when examining a new sequence.

22.2.3.4 Enhanced Keyword Searches

The next step is to analyze the retrieved documents, extracting factual knowledge from the text –
this is the concept of Information Extraction (IE). The most obvious single pieces of information in
biological research papers are the gene names. Finding such gene names, as well as other terms, like
proteins, diseases, chemical compounds, etc. is called Named Entity Recognition (NER).

The most successful algorithms for locating entities in texts are Conditional Random Fields
(CRFs), a machine learning technique very similar to Hidden Markov Models (HMMs) 3 [10].

Fig. 22.2 METIS search – BLAST result selection and evidence sentences for diseases related to the BCR-ABL
fusion gene (Copies of figures including color copies, where applicable, are available in the accompanying CD)

3 Themain difference between CRFs andHMMs is that in CRFs states are not independent of each other, while in an
HMM, the transition probabilities only depend on the current state. That is, for the elements in an HMM, the
independence assumption has to be true, for a CRF not to be true.
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Recognized gene names are then further normalized, which means to identify the correct sequence
database ID corresponding to a gene name (therefore, calledGene and Protein Normalization) [11].
This is commonly done using patternmatching to dictionaries of known gene names (e.g., extracted
from the NCBI Entrez database), retrieving a unique database identifier for the gene name. The
main handicap is disambiguating genes with multiple names (synonyms) and names assigned to
multiple genes (homonyms) to their correct entries, taking into account the necessity to discern the
correct species in the process. Although all this might seem trivial at a glance, it can get very tricky.
For example, the word ‘arm’ can be a valid gene name (see SwissProt accession O46082) and ‘arm’
is also assigned to Q9XZT1. The correct organism mapping is not always straightforward, e.g., for
human and mouse publications, the respective organism is often not explicitly quoted. Beyond
these obvious limitations, the name usage of genes is constantly evolving [12], making it hard to
keep track of literature on a specific gene, and it is not uncommon that the official gene name
nomenclature is not used in the literature [13].

Using recognized entities, another possible improvement on search engines is to present the
search results based on biomedical concepts. This is precisely what the EBIMed service provides:
systematic retrieval of MEDLINE abstracts based on co-occurrence of biomedical entities
(genes/proteins, drugs and diseases) and concepts [14]. It indexes all the MEDLINE documents
using Lucene4. The Lucene query systems allows one to query using Boolean and wildcard
operators as provided by other search engines, but adds some interesting functionality. After
submitting a query, the system processes the results, indexing protein, gene, drug, and species
name matches, as well as matching terms from the Gene Ontology (see next section) to the query
result. Instead of providing a list of articles, it returns a summary table to navigate the concepts
found. From this summary, a detailed investigation of a specific biomedical concept related to the
query is possible, and EBIMed focuses on the retrieval of HitPairs, i.e., co-occurrence of two
terms in a sentence.

Using our CML example, lets look for sentences providing evidence and useful abstracts
about the fusion protein. Bcr-abl might also be written as bcr/abl, BCR-ABL1, Bcr-Abl, bcr/c-
abl, etc., so we can use the special Lucene proximity search syntax ‘‘bcr abl’’<1 to state we want
abstracts containing bcr and abl within one word distance, which will commonly be the fusion
protein mention. Additionally, we add the keywords fusion and kinase to the search, making the
query more specific for abstracts about the fusion protein (or gene) and the tyrosine kinase
activity. Following the number links, we are presented with the sentences providing evidence for
the fusion protein, its tyrosine kinase activity, the interaction with the Imatinib (Gleevec) kinase
inhibitor, and the chromosome translocation process required for CML development. Following
other Protein/Gene links for ABL in the summary table, we can easily recover sentences for other
interactions, such as the activation of the RAS/RAF, AKT, or STAT5 pathways by the onco-
gene. Using the various sorting functions of the table, we can find associations of our query with
other biological concepts: if we sort by the Cellular component column, we can use the HitPair
‘‘chromosome’’ and ‘‘pathogenesis’’ to discover abstracts explaining the translocation leading to
the fusion protein; Sorting by ‘‘Drug’’, we can quickly find publications about Imatinib
(Gleevec).

Going beyond searches for evidence passages based on keywords and fields, MEDIE provides
an interface to create semantic queries [15]. This ‘‘Semantic Search’’, which consists of up to three
terms entered in the fields for subject, verb and/or object, retrieves documents based on the
semantic similarity of the query to sentences in MEDLINE articles, which have all been parsed
and grammatically analyzed by the system beforehand. MEDIE then presents sentences contain-
ing the query terms in the given context (i.e., used as subject/verb/object), plus links to the
MEDLINE abstracts the sentences that were extracted. For example, to find BCR-ABL

4 http://lucene.apache.org.
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inhibitors, we would enter ‘‘inhibit’’ in the field verb and ‘‘bcr-abl’’ in object. We get a large list of
sentences describing the inhibition of BCR-ABL, and we notice the system has some built-in
intelligence: e.g., it knows that words such as ‘‘suppress’’ or ‘‘block’’ are also used to describe
inhibition and includes them in the results. Certain keywords are linked to databases, such as gene
mentions to their most probable EntrezGene entry, or disease names to the OMIM database.
Using this query logic, we run a more interesting search: what are the targets of BCR-ABL?
We know the oncogene works via its SH1 kinase domain, so we search using bcr-abl in the subject
field and phosphorylate as the verb. We can immediately extract a list of targets from the 9
sentences matching our query.

22.2.3.5 Entity-Based Searches

After having located the correct entity, annotating the functional properties describing the entity in
the text can be attempted. The first approach was to extract keywords for protein families that are
used significantly more frequently with those proteins only [16]. Using such statistical inference, the
text can be analyzed for these keywords and then accordingly assigned to a protein family. After
investigating these methods and because of the growth of biological databases, it soon became
obvious that such annotations require a strict naming convention if they are to be used across
different databases and applications [17].

Out of this requirement, the Gene Ontology (GO) was born. Ontologies are, just like thesauri
introduced in the first section, a form of controlled vocabularies. The main difference between a
thesaurus and an ontology is that the latter additionally provides qualified relationships between its
entities (in the case of GO, those are either ‘‘part of’’ or ‘‘is a’’ relations). Actually, GO consists of
three distinct ontologies for biological processes, cellular components, and molecular functions.
For example, the Abelson murine leukemia viral oncogene homolog 1 (c-abl) gene is annotated
with the following GO terms: it is associated with the term nucleus (GO:0005634, cellular compo-
nent), has protein-tyrosine kinase activity (GO:0004713, molecular function), and plays a role in the
regulation of progression through cell cycle (GO:0000074, biological process). Therefore, functional
annotations extracted from text now maps the functional description in the text to a unique
identifier of the corresponding ontology [18]. Using the GO, reveals some problems related to
consistency and coherence. It is unified for all organisms, not all processes and functions in the
ontology that exists in every organism. The limitation to two relations types can be insufficient
(especially the broad use of ‘‘part of’’ relations); and the strict separation of the three different
hierarchies makes it impossible to relate terms in separate categories. The main obstacle to over-
come in language processing is the tentativeness of finding the correct ontology term for a given
textual mention, as the jargon used in scientific publications usually does not coincide with the
descriptive expressions used in ontologies.

Often we will already have a list of IDs (such as gene IDs, OMIM IDs, etc.) about which we want
to know more, or we will know other well-characterized facts, that are represented in an ontology
such as the Gene Ontology. Instead of using keywords, text or sequence, it is possible to use such
unique identifiers to extract information.

One such attempt is the tool MarkerInfoFinder (MIF), which allows the direct retrieval of
publications relevant to a genomic marker, such as cytobands, STSs, SNPs, or genes and
proteins [to be published]. Although the main focus of this system is to extract literature a
given NCBI SNP ID, we will not reproduce such an example directly here. Extracting SNP
IDs, e.g., bcr and then submitting these to the system would be more like an exercise to
validate the system. Yet, for genome-wide SNP association studies or for just identifying the
significance of a single SNP this tool relieves the researcher from manually extracting genomic
markers around the given SNPs and then searching MEDLINE with these marker names for
abstracts.
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Instead of using the SNP approach, we will search for abstracts for our two genes bcr (Entrez ID

613, UniGene ID Hs.517461) and abl (Entrez ID 25, UniGene ID Hs.431048). The resulting page
presents us with the top most frequent MeSH headers (see the PubMed search engine description

and subsection 22.1.2.2) in the related documents. Using a limit of 100 MeSH descriptors, this
produces a list of the 100 most frequent MeSH terms associated to the articles found for the given
gene IDs. As compared to searching PubMed with the query abl bcr human, which returns more

than 4,300 articles, these sets are rather small, from 355 papers tagged for ‘‘Philadelphia Chromo-
some’’ to as little as 3 articles for ‘‘Drug Resistance, Neoplasm’’ (which must be attributed to the
very shallow annotation of MeSH terms, not the MIF system).

Another literature mining-based tool is the Human Chromosome Aberration Database

(HCAD) [19]. It allows the user to retrieve evidence sentences about chromosomal aberrations
for a given cytoband or gene name. For example, searching for the cytoband 9q34 (ABL1) in the
Breakpoint Browser, we will find CML as the first entry in the list of MeSH terms associated with

this breakpoint region. Additionally, genes associated with this breakpoint are listed, including
ABL1 and BCR, for which direct links to UniProt and OMIM (among others) are provided.
Selecting that term, we are presented with sentences mentioning the chromosomal region in

conjunction with CML. From this view we can either investigate a given MeSH term or gene, or
we can read the abstract the sentence is associated to. This leads us to the second possibility of
accessing HCAD, via genes. Searching for ABL1 in the Gene Browser, we are again directed to the

9q34 breakpoint. Thus, HCAD provides a very rapid way to find literature associated to a
chromosomal breakpoint, which can be either based on the location of the breakpoint itself or

on a gene closely associated to the breakpoint. Further, it allows identifying other genes also
associated to the same breakpoint and because of the association withMeSH terms, breakpoint-to-
disease associations can be browsed readily.

22.2.4 Reconstructing Networks

All applications discussed so far only retrieve or extract single pieces of information, making the

data accessible as lists or tables. Yet, biological data can be provided by modeling their relation-
ships and presenting the user with networks to view and navigate the data associated to the nodes
and connectors of these networks [20]. Going beyond single entities, Relationship Extraction

attempts to combine two or more objects based on some correlation. A typical example would be
mining for protein-protein interactions (PPIs) in text. The first attempt at this task was to extract
PPIs based on linguistic patterns of interaction verbs, a technique used in Natural Language

Processing (NLP) [21]. That is, sentences describing PPIs are analyzed for typical verbs joining
the two proteins, such as ‘‘ABL1 phosphorylates GRB-2’’. Patterns of the form ‘‘proteinA . . . .
interaction-verb . . . proteinB’’ are then used tomine documents for new PPIs. Although such pattern

approaches produce high quality results (high precision), because of the versatile nature of the
language, many interaction mentions are missed (low recall). Alternatively, statistical approaches

have been applied, which achieve better recall values in exchange for precision. Therefore, current
approaches commonly apply a harmonic mixture5 from both the linguistic and statistical domain.

This section will present two network exploration tools, Chilibot and iHOP. According to the
Alexa web traffic statistics, iHOP probably is the most used online text mining application for

biology if ranked by Internet traffic and excluding search engines (i.e., PubMed, Google Schoolar,
Scirus, etc.), other highly used tools with slightly lower usage statistics include HubMed and
EBIMed.

5 The combined value from recall and precision is called F-Score.
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22.2.4.1 iHOP information resource

The iHOP information resource takes an interactive approach to exploring the biomedical litera-
ture [22]. The basic idea behind iHOP is to make the network of concurring biological entities
accessible for navigation. In iHOP, with genes and proteins acting as hyperlinks between sentences
and abstracts, a large part of the information in PubMed becomes a giant navigable information
network exhibiting all the advantages of the Web. Hence the original name of iHOP: Information
Hyperlinked over Proteins.

Under the hood, iHOP employs state-of-the-art text-mining methods to screen, index and
annotate information specific on genes and proteins, their physical interactions and regulatory
relationships, their relevance in pathologies, and their interactions with chemical compounds.

Every day, thousands of novel PubMed documents are mined and information specific to thou-
sands of different biological molecules is collected. As of May 2007, iHOP contains information
pertaining to 104,000 genes, 41,000 chemical compounds and 13,000 MeSH terms gathered from
more than twelve million sentences. This wealth of information makes iHOP the most comprehen-
sive and up-to-date resource for literature-derived gene information on the Web.

However, iHOP users should always be aware that information in iHOP is generated with
automatic text mining methods and can thus exhibit certain systematic errors. The details and
estimated efficiency of the employed text mining technologies are published [23]. For instance, a
major problem for text-mining methods in the biomedical domain is the correct detection and
identification of entities (e.g. genes and proteins) in the natural text, because of the high semantic
overloading of abbreviations and synonyms. Even human experts can have difficulties to identify
the correct gene or chemical compound for very ambiguous synonyms. However, many text-mining

problems can bemitigated, because of the interactive nature of iHOP: iHOP users navigate between
sentences taken directly from their source abstracts and thus retain control over the reliability of the
information they obtain (Table 22.3). In particular, three features assist the user and maximize
transparency of the iHOP system: First, biomedical entities (e.g., genes, proteins, chemical com-
pounds, pathologies, etc.) are highlighted within the original sentences based on a consistent color
scheme and mouse-over information is always available. Second, the iHOP text-mining algorithms
use context information to assign confidence scores to every gene reference in the text. Third, users
are always informed if there are reasonable doubts concerning the correct identification of a gene.
This notion of maximal transparency provides iHOP users with all the benefits of automatic text

mining, while minimizing the downsides.
Recent advances in high-throughputmethods such asmicroarrays and protein interaction screens,

enable the systematic exploration of functional gene groups, but present a formidable challenge to

data analysis. In iHOP, experimental network data (e.g., from protein interaction screens) can be

Table 22.3 The different views on genes and proteins in iHOP

View Description

Minimal information
view

Contains basic information about the gene, like the name and links to external resources.
It is available for most genes; all other views are only available for genes that have been
found in the scientific literature.

Defining information
view

Lists the most informative sentences that mention the gene together with chemical
compounds or MeSH terms. Sentences in this view contain no other genes beside the
selected gene to increase specificity. The most frequent associations will always rank
higher in this view, so that the user can quickly obtain an idea of the function of a protein.

Interaction view Lists the most informative sentences about the association between the selected gene and
other genes.

Most recent
information view

Contains the most recent informative sentences on a gene from the literature of the past
two years. This view shows associations between the gene and any other entity in a
mixed fashion.

(Copies of tables are available in the accompanying CD.)
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superimposed upon the literature network to support simultaneous analysis of novel and established

knowledge. Technically, this is achieved by highlighting sentences in the iHOP network that contain

protein associations for which external experimental evidence exists (Fig. 22.4).
Another important feature to make navigation in iHOP efficient is a history function, which

allows users to keep track of their movements through the network. In the course of navigation,

interesting sentences can be added to the Gene Model, which also serves as a ‘‘log book’’ and

represents the results of an investigation. The log book also includes a dynamically generated figure

to provide a graphical representation of all associations between the genes in collected sentences

(Fig. 22.5). This graph represents the condensed result of a literature search, but also remains

hyperlinked to the corresponding sentences. In this way, users can familiarize themselves with the

newly acquired information in an interactive manner and further extend the model.
In the context of chronic myeloid leukemia, iHOP can be used to explore the detailed functions

and relationships of the genes in the current model, but also to extend the model. Before diving into

the sentences, it is a good idea to explore the summary page of a gene, for instance the defining

information view on ABL1 (Fig. 22.3). This view shows the chemical compounds, andMeSH terms

and the frequencies at which these concur with ABL1. The most frequently concurring chemical is

L-tyrosine, which is expected since ABL1 is a protein tyrosine kinase. The second chemical in the

ranked list is the drug Gleevec. By clicking on the term Gleevec, one may retrieve the chemical

structure from the PubChem database or zoom-in on the sentences that describe the relationship

between Gleevec and ABL1. From these sentences, it is immediately obvious that Gleevec has been

studied as an ABL tyrosine kinase inhibitor and thus in the treatment of chronic myeloid leukemia.

Similarly, it is possible to zoom-in on the relationship with other frequent MeSH terms, i.e.,

Leukemia, Myeloid, Chronic or Translocation, to access the source literature on these

relationships.

Fig. 22.3 This screenshot illustrates the iHOP summary page of the defining information view on ABL1.
According to the current filter settings, it lists all MeSH terms, chemical compounds and the number of
concurrences with ABL1 in the literature (Copies of figures including color copies, where applicable, are
available in the accompanying CD)
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The other important view in iHOP lists the interactions and associations of ABL1 with other
genes (Fig. 22.4). As expected, the association with BCR is one of the most frequent observations,
but also the disease relevant interactions with IFNA1, CRKL, GRB2 and STAT5A can be found
among the top sentences. By clicking on a gene in one of the sentences one can zoom-in on the
specific interaction of ABL1 and this gene. For example, clicking on CRKL makes it immediately
clear that CRKL is studied as a target for phosphorylation by the BCR-ABL fusion protein. At any
step, the user can collect relevant relationships or observations into the Gene model to create a
summary of the explored genes (Fig. 22.5).

Fig. 22.4 This is a screenshot of the iHOP interaction view on ABL1, which contains all the gene-gene associations of
ABL1 found in PubMed. Sentences are ranked according to frequency, impact, date of publication and optional
parameters. Flasks at the right indicate experimental evidence on specific interactions (Copies of figures including
color copies, where applicable, are available in the accompanying CD)

Fig. 22.5 This illustrates an iHOP gene model or log book created by the user. Sentences can be added to the
gene model over the course of literature exploration. Associations in the collected sentences are illustrated in an
interactive graph (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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Besides the interactive web interface for individual researchers, much of the information in
iHOP is accessible through a programmatic web service API [24]. This allows integrating iHOP
information in bioinformatic programs and workflows, and to facilitate large-scale data-set ana-
lysis. iHOP is currently hosted by the cBio/MSKCC and updated on a daily basis.

22.2.4.2 Chilibot Relationship Mining

Another such system to identify and browse networks constructed from MEDLINE abstracts is
Chilibot [25]. In contrast to iHOP, Chilibot creates networks not exclusively based on gene and
protein names, but also includes the use of other keywords, such as diseases or drugs, but requires
an input of all components of the network beforehand. The search strategy of Chilibot is always
based on binary relations; i.e., a query consists of two or more terms. Searches can be made for the
relation between the two terms (binary, 1 to 1), all binary relations in a list of terms (pair wise, n to
m) or all binary relations from one list of terms to another list of terms (1 to n). Additionally, a
context for the search can be added, for example a disease name that has to co-occur with all terms.
Chilibot makes a linguistic analysis of the relationships and integrates this information into the graph
by color-coding.Using 1 to 1 binary searches it presents the user with a list of sentences in which these
termswere co-occurring and their links to the originatingMEDLINEabstracts.When using pairwise
search for a list of terms, the user is presented with a graph representing the relational strengths
between each term: the vertices are the search terms, while the edges have numbers representing the
number of sentences found which contain the two terms, color coded for the relationship type, the
edge represents stimulative, inhibitory, both, neutral, and parallel relationships as well as abstract
relations (i.e., co-occurrence only)). Clicking on such a graph edge presents the user with the sentences
from which this relationship was extracted, facilitating the evaluation of the relationship type and
giving access to the PubMed display of the MEDLINE abstract.

It is easier to understand what Chilibot can do by using the leukemia example. First let us examine
the concept space of some of the more prominent proteins involved in CML. We will try to find
cancer-related functional properties of prominent proteins in the disease development. Therefore, our
first list will consist of the terms apoptosis, proliferation, and adhesion, plus our two proteins BCR
and ABL1, while in the second list we will put a list of proteins6, which are affected by the fusion
protein. On the advanced page we restrict our context to CML7 and remove the line containing
‘‘!ABL’’ from the ABL1 synonyms (as we want to allow ABL as a synonym for ABL1) and add
‘‘CD56’’ to the synonyms of N-CAM. Because of the list of terms we use, the query will take a while –
returning later through the Saved Sessions, the results are ready to view (Fig. 22.6). For example, lets
explore the relations ofMYC to the list of terms:MYC enhances proliferation as we can see from the
texts extracted, although the link is red, not green, because most sentences describe the relation using
negations – which means that relationship types are to be verified by the user before trusting them,
and should only be used as quick guides.MYC also attenuates apoptosis, correctly displayed as a red
link and has a neutral relation with adhesion, a result from unspecific co-occurrences of the two terms
MYC and adhesion (to the knowledge of the author, there is no direct relation between myc and cell
adhesion). To summarize, although the graph alonemight have not been informative by itself, maybe
even misleading, a short examination of the evidence sentences will tell us the correct correlation
rapidly and directly leads us to the publications relevant for the given relation.

Microarray analysis augmented with text mining tools is a type of application belonging in this
section. Here, evaluating microarray experiments has been shown to be possible together with the

6 MYC, RAS, STAT5, AKT, BCL-X, BCL-2, ICSBP, LFA-3, N-CAM.
7 Using chronic myeloid leukemia OR CML OR chronic myelogenous leukemia OR chronic granulocytic leukemia as
context keywords.
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Fig. 22.6 Resulting Chilibot
network graph for the CML
example query (see text).
Sentences providing
evidence for the relation
(edges) can be browsed, and
the quality of the relations is
coded in the color of the
edges (not shown) (Copies of
figures including color
copies, where applicable, are
available in the
accompanying CD)

Table 22.4 List of tools and applications for biological information extraction

URL

Name Type Description

Anni MA http://biosemantics.org/applications/main.html

analyze microarray datasets to cluster genes based on functional relations mined from
the literature

Arrowsmith IM http://arrowsmith.psych.uic.edu/arrowsmith_uic/index.html

identify meaningful links between two sets of MEDLINE search results

BioIE AR http://www.bioinf.manchester.ac.uk/dbbrowser/bioie/

extract informative sentences from MEDLINE based on a keyword search

BioRAT AR http://bioinf.cs.ucl.ac.uk/biorat/

NLP-based automated update service

BITOLA IM http://www.mf.uni-lj.si/bitola/

discover potentially new relations between biomedical concepts

Chilibot NW http://www.chilibot.net/

investigate relations between proteins, genes, or keywords from MEDLINE in
graph form

ConceptLink NW http://project.cis.drexel.edu/conceptlink/

graphically explore medical concept relations in MEDLINE

Dragon TF
AM

IM http://research.i2r.a-star.edu.sg/DRAGON/

mining potential associations between transcription factors, biomedical terms, and
diseases from MEDLINE

EBIMed AR http://www.ebi.ac.uk/Rebholz-srv/ebimed/index.jsp

identify MEDLINE records for a concept or binary relation retrieved from a keyword
search

eTBLAST AR http://invention.swmed.edu/etblast/etblast.shtml

retrieve MEDLINE records similar to a given input paragraph

FABLE AR http://fable.chop.edu/

find MEDLINE records for a specific gene or list genes associated to a keyword

G2D IM http://www.ogic.ca/projects/g2d_2/

scan a human genomic region for genes related to an inherited disease

GeneScene NW http://genescene.arizona.edu/index.html

navigate genetic regulatory pathway relations extracted from biomedical literature
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Table 22.4 (continued)

URL

Name Type Description

GoMiner MA http://discover.nci.nih.gov/gominer/

interpret microarray data by relating genes to processes, functions and components
of GO

GOPubMed AR http://www.gopubmed.org/

ontology-based keyword search of MEDLINE records

HAPI MA http://array.ucsd.edu/hapi/

interpret conceptual similarities of a cluster of genes based on MEDLINE MeSH terms

HCAD AR http://www.pdg.cnb.uam.es/UniPub/HCAD/

analyze chromosome breakpoints and their related genes

HubMed AR http://www.hubmed.org/

an alternative interface to PubMed for searching MEDLINE

iHOP NW http://www.ihop-net.org/

navigate the network of genes and proteins in MEDLINE to construct graphical
Gene Models

KinasePathway NW http://kinasedb.ontology.ims.u-tokyo.ac.jp

database of protein kinases and their interaction pathways mined from the literature

LitMiner AR http://andromeda.gsf.de/litminer

find frequently co-cited genes, molecules, phenotypes and tissues for a given key term

MIF AR http://brainarray.mhri.med.umich.edu/brainarray/

search, identify and retrieve MEDLINE records for different types of genetic markers or
genetic variations

MedBlast AR http://medblast.sibsnet.org/

retrieve MEDLINE records based on a input sequence

MedGene IM http://medgene.med.harvard.edu/MEDGENE/main.do

database of diseases and their associated genes mined from MEDLINE

MEDIE AR http://www-tsujii.is.s.u-tokyo.ac.jp/medie/

retrieve biomedical correlations from MEDLINE records based on semantic queries

MedMiner AR http://discover.nci.nih.gov/textmining/main.jsp

extract relevant sentences in the literature based on gene, gene-gene, or gene-drug queries

MedMOLE MA http://medmole.cineca.it/

group genes co-regulated on the basis of MEDLINE co-occurrence mining

METIS AR http://www.bioinf.manchester.ac.uk/

retrieve evidence sentences from MEDLINE based on a input sequence

microGENIE MA http://www.cs.vu.nl/microgenie/

batch query PubMed using thousands of GenBank or UniGene Ids

PubGene NW http://www.pubgene.org/

visualize relationships between proteins, genes, and terms from MEDLINE and
sequence data

PubMatrix NW http://pubmatrix.grc.nia.nih.gov/

retrieve pair-wise co-occurrence frequencies from two lists of terms in MEDLINE

ReleMed AR http://www.relemed.com/

interface to PubMed for searching MEDLINE, ranking results be relevance

SGO MA http://shad.cs.utk.edu/sgo/sgo.html

cluster genes based on conceptual relationships derived from MEDLINE abstracts

Textpresso AR http://www.textpresso.org/

C. elegans-specific literature information retrieval and extraction tool

XplorMed AR http://www.ogic.ca/projects/xplormed/

explore associations between MEDLINE abstracts from a keyword query

AR: abstract retrieval, IM: inference methods, MA: microarray analysis, NW: network retrieval
(Copies of tables are available in the accompanying CD.)
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iHOP tool. Yet, there are also tools specifically designed for this task only, which are discussed in
other chapters of this book. For reference, these tools have also been included in Table 22.4.

22.2.5 Inferring Relations

Only beyond extracting relevant information, the field of text mining begins, attempting to uncover
patterns and associations in and across documents. Although the term ‘‘text mining’’ is often used
interchangeably with IE, it is distinct from IE in that it is concerned with generating a new hypothesis
based on the mined information. It is a subset of knowledge discovery; therefore, text mining is also
called Knowledge Discovery in Text (KDT). The classical reference for KDT is Swanson’s relation
between fish oil and Raynaud’s disease [26]: Raynaud patients have high blood viscosity and platelet
aggregation, and they suffer from vasoconstriction. Fish oil, or rather its active ingredient eicosa-
pentaenoic acid, lowers viscosity and aggregation, and causes vasodilation. Mining these facts from
different sources in the literature, Swanson inferred that fish oil might aid patients suffering from
Raynaud’s disease. This type of application emphasizes that discovering associations not directly
extractable from a single text alone, requiremultiple text sources, even using sequence datawith other
biological knowledge. Ultimately, these tools are used to infer results based on connections between
the data, which are not readily extractible from their single sources.

Probably the most straightforward tool of this kind is Genes to Disease (G2D) [27]. This system
aims at extracting candidate genes related to a genetic disease and a genomic region established by
genetic linkage mapping. After determining a linkage mapping for a disease, the last step is the
identification of the gene(s) contributing to this phenotype. To improve this bottleneck of finding
candidate genes, the system uses a combination of data and text mining (phenotype data) and gene
sequence analysis (genotype data). As an input, the system requires a disease definition in the form
of anOMIM ID and a genomic region that should be searched for potentially associated genes. The
inference then made by G2D is the assumption that for phenotypically similar diseases, genes
known to be associated to the diseases can be used to discover genes currently not reported to have
a relation. If a gene with no known association to the disease has functions in common with some
known gene, the unknown gene is a candidate for being associated to the same disease. Although
functional similarity here is based on sequence similarity and might be a very unspecific method, it
has a great advantage that genes lacking functional annotations will be detected as well. Also, as
this method first searches MEDLINE abstracts annotated with the input disease, it can use the
phenotype to mine known genes for the disease instead of requiring a fixed set of input genes.

As an example lets attempt to detect one of the two rare fusion proteins also found in a few CML
patients with slightly different cytogenetic abnormalities: ZNF198-FGFR1 (t[8;13][p11;q12]) and
TEL-PDGFRB (t[5;12][q33;p13]). Both fibroblast growth factor receptor 1 (FGFR1) and platelet-
derived growth factor receptor b (PDGFRB) have cytoplasmatic tyrosine kinase domains, conse-
quently they should be detectible by the system. Checking for the human FGFR1 onNCBI, we find
that it is in the genomic position around 38,400,000 on chromosome 8. Using the PHENOTYPES
query box of G2D, we enter 189980 as the OMIM ID (can be selected also from the list available at
the interface) and in the location box we put 36000000 41000000 as our search region, selecting
Position and chromosome 8 (Fig. 22.7). On the result page, the first hit is the FGFR1.We found the
functional homolog of ABL1 using only a phenotype and the region around the breakpoint as
input. Compared to searching for the corresponding gene using fluorescence in-situ hybridization
(FISH) and cloning of the potential regions to vectors to test for cytogenetic abnormalities, a
significantly shorter procedure, although in this case the gene (FGFR1) is a known alternative to
the bcr-abl translocation in CML, therefore this is slightly ‘‘cheating.’’

The more generalized KDT tools require much background knowledge of the subject of interest
and a firm grasp of the inference model underlying the system. Although these systems might seem
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straightforward and fairly simple to understand, without firm background knowledge of the field
investigated and the assumptions beingmade it is rather unlikely to derive any discovery using these
tools. They do allow making conclusions and hypothesis that would have been impossible without
them, but using them for successful knowledge generation is far from trivial. Therefore, we have not
included the more complex systems like Arrowsmith [28] and BITOLA [29]. In the final section of
this chapter, some introductory literature to the topic of hypothesis and knowledge generation can
be found.

22.3 Evaluation

To evaluate a literature-mining method, either an expert needs to judge a reasonable sample of the
results, or the performance of the system is measured against a gold standard. Community-wide
assessments of biological information extraction are held at several international workshops and
challenges. The first effort of this kind was the annual KDD (Knowledge Discovery and Data
mining) Cup 2002, focusing on bioinformatics and text mining in that year. Currently, there are two
recurring events, the Text Retrieval Conference (TREC)Genomics track8 and BioCreative (Critical
Assessment of Information Extraction systems in Biology). While TREC traditionally focuses on
IR – retrieving passages from large document sets for a given topic – the BioCreative tasks are
modeled after typical IE needs of biologists and biological database annotators.

The two BioCreative (BC) challenges so far were split into two task groups, the first dealing with
finding the gene and protein names and mapping these to database identifiers. The second task
group focused on assigningGene Ontology (see Entity-based Searches) term annotations to protein
mentions in full text articles (BC I), and the extraction of protein-protein interactions, including the
experimental evidences for these interactions (BC II). From these challenges it is becoming evident

Fig. 22.7 Screenshot of the
G2D input for finding the
FGFR1 Tyr kinase on
chromosome 8 (a rare form
of CML with the znf198-
fgfr1 fusion gene) (Copies of
figures including color
copies, where applicable, are
available in the
accompanying CD)

8 the last track was held in 2008 – TREC objectives change every few years.
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that some tasks such as gene name normalization are reaching mature levels, while the more
complex problems, such as correct protein-protein interaction extraction, are fields still requiring
research and development [30]. These challenges are the basis for creating standards in the scientific
community and they strongly promote the development of knowledge extraction applications.

22.4 Outlook

Providing amore in-depth coverage of the techniques in information extraction and text mining is
far beyond the scope of this chapter. For interested readers, some starting points in the form of
reviews and books are assembled here. Although the theoretical part covered some of the
technical aspects of language processing, the reader might be interested in a more systematic
introduction on the topic of NLP and text mining. The complex and concise nature of the
biomedical literature renders most generic natural language processing tools, as used, e.g., on
news wire text, inapplicable. Instead, a wide range of applications adapted to the domains of
biology and medicine have been developed and are described in a review on text mining for
bioinformatics applications. Finally, KDT systems are only briefly covered in this chapter, as
they are not easily applicable, require very complex background, and except for the presented
tools have no straightforward user interfaces. The interested reader will find a good review on
knowledge discovery. For all the three topics (theory, applications, and KDT) complete books
are available (see Key References).

A comprehensive list of applications related to the purposes of information retrieval, informa-
tion extraction and text mining in the field of Molecular Biology is supplied in Table 22.4. It
contains links to all the tools discussed in this chapter and many others, which cannot all be
presented in the context of a single chapter. A short description will help the reader identify tools of
potential interest.

Apart from these applications dedicated to end users, one of the main topics on natural language
processing in biology is extending and enhancing annotations of entities in databases [31]. For this
purpose, journal content has to be openly accessible to databases and information extraction tools.
Unrestricted access to full text is also necessary to extract data not contained in abstracts, such as
experimental evidence, kinetic rates, or sequence motifs.

TheWeb can be considered as themain presentation layer of scientific information;Web services
and grid computing based on standardized protocols and data objects enable information exchange
to present compound data originating from many different sources, while research interests
currently are about developing ontologies (e.g., the Open Biomedical Ontologies (OBO) Foundry)
and standardized annotations (e.g., the Systems BiologyMarkup Language, SBML). The Semantic
Web is the most prominent exponent of this intent. It is an extension to theWWW to annotate web
content in both human and machine readable form, thus permitting to share, integrate and relate
information more easily. Currently, journals and database are separate, discreet entities. A vision
of tomorrow’s information technology is the semantic publishing of scientific texts [32], i.e., adding
markup to publications, like the Semantic Web markup (Web Ontology Language, OWL). This
will lead to simplified information extraction from text and will allow to link descriptions in journal
articles to their corresponding database entries (and vice versa). Going even beyond this data
assimilation, semantically annotated documents can be processed using deductive reasoning and
inference, bringing text mining and hypothesis generation to an all-new scale. For this scenario to
become a reality, the journals need to enforce annotation standards for authors; NLP tools could
simplify the annotation process, e.g., automatically suggesting keywords and database identifiers
to the author.

A researcher’s interest will be in finding new functional and structural properties of the genes or
proteins being investigated, spotting pathway connections and regulatory influences that are
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unknown to the researcher him, elucidating possible phenotypes generated by the given genotypes,
discover unrelated work significant to the researchers line or research, etc. – just to name a few
objectives. We hope this chapter has provided the reader with a good overview of tools utilizing
natural language documents as data sources. It should help to significantly decrease the time spent
searching and browsing for such information, providing substantial aid in pursuing the goals
above.
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Chapter 23

Using KEGG in the Transition from Genomics

to Chemical Genomics

Kiyoko F. Aoki-Kinoshita and Minoru Kanehisa

Abstract KEGG is well known as a useful pathway reference database, containing all of the major
metabolic and signaling pathways such as carbohydrate, energy, lipid and amino acid metabolism,
membrane transport and signal transduction. The latest addition to KEGG, the KEGG BRITE
database, is a resource of hierarchical classifications of biological data, including pathway-based gene
ortholog information, which, as a result, provides genetic information, computed in the biological
context within which genes are expressed. Moreover, BRITE contains chemical compound data
derived from the KEGG COMPOUND database, which has been classified based on compound
structure similarity such that they may be analyzed as ligands via hierarchical classifications. Thus,
KEGG provides a valuable resource for genomic analysis in terms of its wealth of data in the
PATHWAY, GENES and ENZYME knowledgebases, while at the same time providing a unique
but important resource for understanding the chemical environment in which these biological
processes occur. The concept of chemical compound similarity is increasingly being utilized in the
latest research of ligand prediction and drug design. Such researchwill be able tomake use of the data
in KEGGBRITE as well as the newKEGGDRUG database containing maps of drug development
and drug classifications. In this chapter, we will provide an introduction to the KEGG databases as
well as the latest research in chemical genomics using KEGG. We will also describe some of the
available practical means of accessing KEGG, such as directly via a computer program using the
KEGGAPI.

Keywords KEGG � Pathways � Orthologs � Chemical genomics

23.1 Introduction

KEGG, a well known useful pathway reference database, contains all of the major metabolic and
signaling pathways such as carbohydrate, energy, lipid and amino acid metabolism, membrane
transport and signal transduction. All of the pathway maps in KEGG PATHWAY are drawn
manually based on textbook and literature references. Feedback is quickly incorporated and the
maps are continuously and manually updated with information from the latest resources. The
pathways are all linked with genetic, enzymatic and chemical information, which are available in
KEGG GENES, KEGG ENZYME and KEGG LIGAND, respectively. Moreover, the latest
addition, KEGG BRITE, includes pathway-based ortholog information, which, as a result, pro-
vides genetic information computed in the biological context within which the corresponding gene
is expressed. Inversely, the chemical compounds in the KEGG COMPOUND database have been
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classified based on compound structure similarity such that they may be analyzed via hierarchical
classifications as ligands. These classifications are also contained in BRITE. Thus, KEGGprovides
a valuable resource for genomic analysis in terms of its wealth of knowledge in the PATHWAY,
GENES and ENZYME databases, while at the same time providing a unique but important
resource for understanding the chemical environment in which these biological processes occur
[Aoki and Kanchisa, 2005]. The concept of chemical compound similarity is increasingly being
utilized in the latest research in ligand prediction and drug design. In contrast to traditional drug
discovery techniques where potential chemical compounds as drugs are scanned against a parti-
cular drug target for binding affinity, new research is finding that the proteins acting as ligands for a
particular compound may be scanned, in not only predicting drug targets but also in surveying
possible ligands causing side-effects [1]. Such research will be able tomake use of the data inKEGG
BRITE as well as the newKEGGDRUGdatabase containingmaps of drug development and drug
classifications.

23.2 KEGG for Genomics

KEGG is a bioinformatics resource for understanding the functions and utilities of cells and
organisms from both high-level and genomic perspectives [2]. It consists of four major data sources
called PATHWAY, GENES, BRITE, and LIGAND.

23.2.1 BRITE

The KEGG BRITE database serves as the foundation for the genomic and chemical classifica-
tions on top of which the PATHWAY maps are constructed. KEGG BRITE is a collection of
hierarchical classifications of biological systems, including genes, their interactions and chemi-
cal compounds. In contrast to KEGG PATHWAY, which is limited to molecular interactions
and reactions, KEGG BRITE incorporates information on a variety of inter-relationships.
Thus, the mapping of genomic and molecular data to KEGG BRITE (by the KO system
described below) supplements the KEGG PATHWAY mapping for inferring higher-order
functions.

At the time of this writing, KEGG BRITE consists of hierarchies and classifications for
(1) Genes and Proteins, (2) Compounds and Reactions, (3) Drugs and Diseases, and (4) Cells
and Organisms. This information is available from the main BRITE page at www.genome.jp/kegg/
brite.html. One of the most ubiquitous of these classifications is the KEGG Orthology, or KO
system. The KO hierarchy contains classifications of orthologous genes (determined by best-best
hit relationships) based on pathway information. The KO groups are identified by the prefix ‘‘K,’’
and each group contains those orthologous genes that are found to participate in the same reaction
of the same pathway. In this way, the biological context is maintained in these KO groups that are
generated in the genomic context. That is, the genes in the same KO groups are ensured to be those
that are not only orthologous, but also functionally equivalent, due to the fact that they are known
to participate in the same pathway performing the same functions.

23.2.2 PATHWAY

PATHWAY contains the latest knowledge on metabolisms, signal transduction, etc., for various
biological processes. They consist of manually drawn pathway maps that can be visualized in a
number of ways. The default pathway is called the Reference pathway, which provides a birds-eye
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view of all known genes among all known organisms containing this pathway. Genes are repre-

sented by rectangles with their EC (Enzyme Commission) numbers, which are written over the
arrows for the enzymatic reaction that they catalyze. Circles are the chemical compounds that are

being catalyzed. Large ovals are links to other pathways. The genes are hyperlinked to their
corresponding ENZYME entry page (Fig. 23.1), and compounds are linked to their COMPOUND

entry page (Fig. 23.2). A species-specific pathway can be viewed by selecting an organism name
from the pull-downmenu at the top. Fig. 23.3 is a snapshot of this pathway forHomo sapiens. These
pathway maps are colored to indicate those genes that are known to be found in the given species.

Therefore, clicking on these green colored boxes will display their corresponding KEGG GENES
entry pages, as illustrated in Fig. 23.4.

The pull-down menu at the top of each pathway contains the list of species that can be viewed,

and the options for other types of pathways, including Reference pathways for Reactions, those for
KOs, and ‘‘all organisms inKEGG.’’ In the Reaction Reference Pathway, the genes are hyperlinked

to their respective REACTION Entry (Fig. 23.5). The KO Reference Pathway is colored with
purple-colored boxes hyperlinked to the KO Entry for the corresponding group of orthologous
genes in the pathway (Figs. 23.6 and 23.7).

Fig. 23.1 An enzyme entry page containing a variety of information corresponding to this enzyme (Copies of figures
including color copies, where applicable, are available in the accompanying CD)
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23.2.3 GENES

The GENES database contains all the genes known to be found in all of the organisms in the
KEGG taxonomy. The list of organisms and the data source from which they have been retrieved
can be viewed at http://www.genome.jp/kegg/catalog/org_list.html. This table also lists the KEGG
Organism ID, which is a three-letter code that prefixes each gene ID in the KEGG GENES
database. Each GENE entry lists the given gene’s definition including its EC number, its KO
number, the pathways in which it is involved, links to entries in motif databases such as Pfam and
PROSITE, links to other sequence databases such as NCBI, its chromosomal position and its
amino acid and nucleotide sequences (See Fig. 23.4). Links to other tools such as BLAST are also
available, indicated by grey oval buttons. For example, the ‘‘DB Search’’ button in Fig. 23.4, next to

Fig. 23.2 A COMPOUND entry page, containing the structure, reactions, and pathways, among others,
corresponding to this chemical compound (Copies of figures including color copies, where applicable, are
available in the accompanying CD)
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the amino acid sequence, is linked to the BLAST search form for the given sequence, as in Fig. 23.8.
On this form, the given sequence can be compared against (a) all of KEGG GENES, (b) a selected
list of organisms, (c) all of KEGG GENES and genes from draft genomes in DGENES, (d) genes
from viral genomes, or (e) other outside databases such as NCBI, Swiss-Prot, UniProt, RefSeq and
PDB. The standard BLAST options are also available at the bottom. The results of this BLAST
search will appear as in Fig. 23.9. The results list the most similar genes by KEGGGene ID. From
here, several tools can be run by selecting the desired list of similar genes (using the checkboxes) and
clicking on the pull-down menu as in the figure. Multiple-sequence alignment by ClustalW,
MAFFT and PRRN are available. The alignments can be visualized using the ‘‘Draw alignment’’
options, and the sequence motifs in Pfam or PROSITE that are common to the selected sequences
can be found using the respective ‘‘Search common motifs’’ options.

23.3 KEGG for Chemical Genomics

In order to analyze the chemical compounds involved in a particular pathway, the computational
model representing a pathway needs to be defined. Pathways viewed as networks can be turned
around to focus on the chemical compounds underlying the network. In computer science terms, a
graph, which describes the sets of objects (called nodes) and the relationships (called edges) between
pairs of these objects, is usually used to represent a network. Then, a line-graph L(G) of a graph G
is a graph whose nodes are the edges inG and whose edges are the nodes inG. Thus, the inverseG is

Fig. 23.3 The cysteine metabolism pathway for human, where colored genes represent those found in human (Copies
of figures including color copies, where applicable, are available in the accompanying CD)
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L(G). Considering a pathway, where nodes represent genes and edges represent the compounds
involved in the catalysis, the graph can be transformed such that nodes represent the compounds
and the edges represent the genes catalyzing the reaction. A pathway can thus be described as a
dual-network. It has been shown that the dual graph (or dual-network) has some interesting
properties, including the fact that it still follows a power-law distribution, thus maintaining the
scale-free property. A scale-free network, in general, is described as one containing hubs of nodes;
i.e., a few of the nodes in the network are heavily connected with other nodes, while others are
sparsely connected. In the case of dual-networks, we may consider these hubs as those chemical
compounds that serve key roles in the network [3].

Fig. 23.4 The GENE entry for the human gene serine dehydratase (Copies of figures including color copies, where
applicable, are available in the accompanying CD)
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Fig. 23.5 The REACTION entry for coenzyme A: oxidized-glutathione oxidoreductase (Copies of figures including
color copies, where applicable, are available in the accompanying CD)

Fig. 23.6 TheKOReference pathway for cysteine metabolism, where colored genes are linked to their corresponding
KO entries (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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It has been shown that chemical compound similarity can be effectively used as a measure to
group related proteins based on their ligands [1]. Proteins with similar ligands that are different in

sequence may actually be related by the common ligand shared by them, serving as a clue to their

function. In this work, targets that would have been considered unrelated were found to be closely

related according to their ligands. Chemically similar drugs were found to bind to proteins that
were different in both sequence and structure. These proteins may explain why specific drugs cause

unexpected side effects due to seemingly unrelated proteins binding to them. As a result, proteins

were classified based on the drugs that they were found to interact, consequently grouping proteins
together which were previously believed to be unrelated.

Fig. 23.7 The KO entry for cysteine synthase, containing all the genes for this ortholog group (Copies of figures
including color copies, where applicable, are available in the accompanying CD)
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23.3.1 LIGAND

KEGG LIGAND consists of six major components: COMPOUND, DRUG, GLYCAN,
REACTION, RPAIR and ENZYME. These correspond to data on chemical compounds, com-
pounds used as therapeutic drugs, glycans, biochemical reactions, reactant-pair alignments and
enzyme nomenclature. The structures are represented inKEGGChemical Function, or KCF, format
so that they can be conveniently stored and re-used. KCF represents compound structures also as
graphs. In the case of chemical structures, nodes represent atoms and edges represent their bonds.
KCF is also used to represent polysaccharides, or glycans, with nodes representingmonosaccharides,
and edges representing their glycosidic linkages. In either case, the graphic representation allows one
to use graph-based computations for comparing chemical compounds (or glycans) with one

Fig. 23.8 BLAST search page from KEGG using the selected sequence (Copies of figures including color copies,
where applicable, are available in the accompanying CD)
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another. Subsequently, algorithms for such computations have been developed and implemented in
KEGG as tools. SIMCOMP is available for comparing compounds [4], SUBCOMP computes the
most similar substructures, and KCaM computes glycan similarity [5]. These tools are used in
practice to perform structure-based searches on the COMPOUND and GLYCAN databases.

The data in KEGG LIGAND are all linked with the pathway maps where applicable. That
is, those compounds that are involved in any pathway in KEGG are hyperlinked to their corre-
sponding entry in LIGAND. To browse all of LIGAND, a portal interface to LIGAND is available
at http://www.genome.jp/kegg/ligand.html. This page lists all ligand-related information, including
tools for chemical compound analysis. For example, e-zyme is a tool to automatically assign EC
numbers to reactant pairs of compounds, and PathComp is a tool to generate all possible reaction

Fig. 23.9 BLAST search result page, when the selected (checked) sequences can be used as input to analysis such as
ClustalW and PRRN (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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paths given a list of enzymes. This latter tool takes as input a list of enzymes and uses the reactions that
they catalyze to predict the consecutive reactions (paths) that could possibly take place between them.

23.3.2 KEGG BRITE

The development of the BRITE classification of chemical compounds, reactions, drugs and
diseases is intended to organize chemical data in order to understand its interactions with other
biomolecules. By looking at the genome from the perspective of chemical compounds as the main
players, new insights may be gained into the function of seemingly unrelated proteins. In KEGG,
compounds are grouped by structural similarity and organized hierarchically. The portal page for
BRITE is at http://www.genome.jp/kegg/brite.html. Here, classifications for genes/proteins, com-
pounds/reactions, drugs/diseases and cells/organisms are available. As such, the annotations
between groups at various levels of hierarchy from genes/proteins and chemical compounds may
be compared with new classifications or with one another such that the current knowledge of such
groups of data can be applied for new analyses.

The BRITE hierarchies of compounds and reactions provide classifications of compounds, reac-
tions, and compound interactions. These classifications are further classified according to various types
of interactions and biological functions. Table 23.1 lists the classifications currently available at the time
of this writing. For example, under Compound Interactions, there is the hierarchy of GPCR Ligands,
as in Fig. 23.10. The down-arrows across the top of the hierarchy can be used to open or close the
hierarchy at various levels. Clicking on the right-most arrow will open all the levels. At the lowest level
for GPCR Ligands, the specific entries are listed as compound or drug entries, depending on the
database in which they are found (COMPOUND or DRUG, respectively). These entries are grouped
in terms ofKO annotation at the third level of the hierarchy. EachKO group can be viewed by clicking
on the given K-number, whose entry provides the list of pathways or BRITE hierarchies in which the
given ortholog group can be found. Alternatively, the hierarchy of Receptors and Channels under
Protein families in BRITE lists as one group GPCRs, which groups KO orthologs by receptor.

From the chemical compound perspective, the hierarchies under Compounds represent classi-
fications of compounds based on structural similarity. Furthermore, the Reactions classifications
are hierarchies of reactions based on similarity. These sorts of classifications can be used to
determine their correspondence to the ligands with which they bind [Izrailev and Farnum 2004].
New classifications based on such binding affinity data will likely produce interesting results

Table 23.1 BRITE classifications of compounds and reactions

Class Subclass

Compounds Compounds with biological roles

Lipids

Phytochemical compounds

Polyketides and nonribosomal peptides

Bioactive peptides

Reactions IUBMB reactions

IUBMB reaction hierarchy

Glycosyltransferase reactions

Compound
interactions

Enzyme ligands

Transporter substrates

Ion channel ligands

GPCR ligands

Nuclear receptor ligands

Cytochrome P450 substrates

(Copies of tables are available in the accompanying CD.)
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whereby drug development may benefit by producing drugs that are both effective and produce
fewer side-effects.

A recent component of KEGG BRITE is the Pathway Module hierarchy, whose entries are
indicated as M-numbers. It is useful to look at pathways as a whole to get a bird’s-eye view of
various biological processes. However, sometimes the details may be overwhelming, in which case
one attempts to break down the whole into meaningful components [Paolini et al. 2006]. The
Pathway Module hierarchy organizes the pathways into meaningful modules of sub-networks,
fromwhich one can analyze theKO groups as well as chemical reaction and compound information
involved in the module. Thus from a single module, the chemistry behind the modules can be
analyzed for further exploration.

Another addition to KEGGBRITE includes the hierarchies for Drugs and Diseases. The Drugs
hierarchies include those for therapeutic categories of drugs and the classification of drugs as
defined in [6]. The therapeutic categories of drugs can be viewed in two ways: with target informa-
tion or pathway map number. There are currently two hierarchies for Diseases: ‘‘Infectious
diseases’’ and ‘‘Metabolic disorders.’’ Table 23.2 gives an overview of these hierarchies. Currently,
the Infectious Diseases category mainly consists of bacterial and viral infections, along with
Protozoal diseases and Mycoses. Metabolic disorders mainly cover those related to the existing
pathways in KEGG, including disorders associated with carbohydrate, lipid, glycan and amino
acid metabolism.

23.3.3 Linking Genomes to Endogenous Chemical Substances

With the chemical-based resources in KEGG, it is possible to make predictions regarding the
chemical repertoire of a biological system from genomic information. For example, glycosyltrans-
ferases are enzymes that synthesize glycan (carbohydrate sugar chain) structures. With microarray
technology, it is possible to measure the expression of glycosyltransferases and other carbohydrate
enzymes. Since KEGG contains the GLYCAN database of carbohydrate structures, predictions
can be made as to which structures correspond to a given glycosyltransferase expression
profile [7,8].

This process involves various pieces of information including the glycosidic bonds synthe-
sized by a glycosyltransferase gene, the glycosidic bonds comprising a glycan structure, and a
method of computing the likelihood of a given glycan structure given a microarray expression
profile. First, a glycosidic bond profile is generated for each glycan structure, where the

Fig. 23.10 The hierarchy ofGPCRLigands in BRITE (Copies of figures including color copies, where applicable, are
available in the accompanying CD)
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distribution of bonds is computed. Thus, a library of these profiles is accumulated. Next, a
coefficient is calculated for every pair of co-occurring bonds, such that the co-occurrence of
two glycosidic bonds amongst all known glycan structures is obtained. In this manner, the
glycosyltransferases that co-express can be associated with the corresponding co-occurrence
scores of glycosidic bonds to predict which glycan structure is most likely being synthesized in
the given microarray experiment.

23.3.4 Linking Exogenous Chemical Substances to Genomes

Conversely, it is also possible to make predictions at the genomic level when given information
regarding chemical substances. Just as similarity scores for sequences are calculated using the
Smith-Waterman algorithm or BLAST, similarity scores for small molecules can also be

Table 23.2 BRITE hierarchies of drugs and diseases

Hierarchy Contents

Therapeutic category of drugs Agents affecting the nervous system and sensory organs

Agents affecting individual organs

Agents affecting metabolism

Agents affecting cellular function

Crude drugs and Chinese medicine formulations

Agents against pathologic organisms and parasites

Agents not mainly for therapeutic purposes

Narcotics

Drug classification Autonomic drugs

Cardiovascular-renal drugs

Drugs that act on smooth muscle

Drugs that act on the central nervous system

Drugs used to treat diseases pertaining to blood inflammation and gout

Endocrine drugs

Chemotherapeutic drugs

Others

Infectious diseases Bacterial infections – gamma proteobacteria

Bacterial infections – beta proteobacteria

Bacterial infections – delta/epsilon proteobacteria

Bacterial infections – alpha proteobacteria

Bacterial infections – gram-positive bacteria

Bacterial infections – actinobacteria

Bacterial infections – Chlamydia

Bacterial infections – spirochetes

Bacterial infections – bacteroides

Protozoal diseases

Mycoses

Viral infections – dsDNA viruses

Viral infections – retroviruses

Viral infections – ssRNA viruses

Viral infections – ssDNA viruses

Metabolic disorders Disorders of Carbohydrate Metabolism

Disorders of Lipid Metabolism

Disorders of Glycan Metabolism

Disorders of Amino Acid Metabolism

(Copies of tables are available in the accompanying CD.)
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calculated. This is done using atom types. The list of atom types used in KEGG is provided at

http://www.genome.jp/kegg/reaction/KCF.html. These atom types are the basis by which the

SIMCOMP and SUBCOMP calculations are made. Using these atom types, then, chemical
reactions can also be compared. That is, enzymatic reactions can be viewed as a set of atom

type modifications between pairs of compounds, called reactant pairs. Thus, in addition to the
reaction and chemical compound information in the KEGG LIGAND database, a novel

database of reactant pair alignments is available as the KEGG RPAIR database [9]. This
database is a collection of compound structure transformation patterns involved in all the

reactions in KEGG REACTION. These patterns are defined as RDM patterns for the changes
between the substrate and product molecules involved in the reactions. RDM patterns involve

the KEGG atom type changes at the reaction center (R), the difference region (D) and the

matched region (M) for each reactant pair. Recent work has shown that these patterns are
useful for characterizing enzymatic reactions by comparing them against the pathways in which

characteristic RDM patterns are found [10].
All of the pathways in KEGG were analyzed by looking at all the reactions involved and listing

the RDM patterns that were found. These are summarized in Table 23.3 by listing the pathway

categories analyzed along with the number of reactions, number of chemical compounds, number
of RDMs and the number and percentage of unique RDMs. From this table, one can see that the

pathway category with the largest percentage of unique RDM patterns is the Xenobiotics pathway
category. With this knowledge, we may assume that the reactions involved in xenobiotics degrada-

tion are distinct from those in other pathways, so a prediction method can be applied to predict the
bio-degradation pathways given a query compound.

This method basically works as follows. The given query compound is first searched globally

against the COMPOUND database using SIMCOMP. The resulting matching compounds are
then locally searched for, against the RDM pattern library, to produce a list of possible RDM

patterns possibly involving the query compound. These RDMpatterns are then applied against the
query compound to generate a list of product compounds that may be produced from the original

compound. As a result, we now have a list of possible pathways containing one reaction. These

product compounds are then used as query compounds to search for the next step in the predicted
pathways.

Further analysis showed that there were cases where consecutive RDM patterns of three to five

were conserved amongst distinct pathways. Such ‘‘RDM pattern profiles’’ may be considered as
‘‘pathway modules’’ which may also aid in new prediction schemes, including the prediction of

missing enzymes and even new pathways.

Table 23.3 Unique RDM patterns in KEGG pathway categories

Metabolic pathway category # Reactions # Compounds # RDMs # Unique RDMs (%)

1. Carbohydrate 727 452 444 303 68.2

2. Energy 171 114 128 62 48.4

3. Lipid 560 450 261 169 64.8

4. Nucleotide 256 143 102 66 64.7

5. Amino acid 723 534 430 254 59.7

6. Other amino acids 170 147 119 55 46.2

7. Glycan 243 96 42 14 33.3

8. PK/NRP 210 226 97 66 68.0

9. Cofactor/vitamin 336 279 224 151 67.4

10. Other secondary metabolites 533 514 245 161 65.7

11. Xenobiotics 580 522 347 275 79.3

Total 4,256 3,057 1,901 1,576

(Copies of tables are available in the accompanying CD.)

450 K.F. Aoki-Kinoshita and M. Kanehisa



23.4 Using the KEGG Resources

There are a number of ways to access the KEGG resources other than via the web at http://
www.genome.jp/. Originally, the DBGET and LinkDB systems were developed such that related
data, including those outside of KEGG, but related toKEGG, could be retrieved together. Because
these tools are being developed under a separate project, the usage of these tools is beyond the scope
of this manuscript, and the interested reader is referred to the online documentation at http://
www.genome.jp/en/about_dbget.html.

The KEGG API was later developed such that users could program the code to directly access
relevant KEGG data on-the-fly. The classic approach for obtaining KEGG data using FTP is also
available at ftp://ftp.genome.jp/pub/kegg/, which can be downloaded by academic users. Further-
more, KEGG data can be downloaded in a specialized XML format called KGML.

23.4.1 KEGG API

Themost direct approach is to use the KEGGAPI, which is a SOAP/WSDL interface to the data in
KEGG. Currently, libraries are available for Perl, Ruby, Python and Java. Documentation is
available for setting up one’s programming environment to be able to retrieve data from the
available KEGG resources.

23.4.2 KGML

KGML, which stands for KEGGMarkup Language, supports BioPAX Level 1 format, such that all
the metabolic pathways can be easily transferred between systems supporting BioPAX. (Further
information on BioPAX, a standard exchange format for pathway data) In KGML, pathways are
specified as graph objects, with the entry elements as its nodes and the relation and reaction elements as
its edges. The relation and reaction elements indicate the connection patterns of rectangles (gene
products) and the connection patterns of circles (chemical compounds), respectively, in the KEGG
pathways. The two types of graph objects, those consisting of entry and relation elements and those
consisting of entry and reaction elements, are called the protein network and the chemical network,
respectively. Since themetabolic pathway can be viewed both as a network of proteins (enzymes) and as
a network of chemical compounds,metabolic pathways inKEGGare viewed as both protein networks
and chemical networks whereas regulatory pathways in KEGG are viewed as protein networks only.
All of the metabolic and regulatory pathways in KEGG are available for download as KGML files at
ftp.genome.jp/pub/kegg/xml/.

23.5 Summary

In the post-genomic era, it is no longer sufficient to analyze sequence similarity for understanding
protein function. To this end, many databases attempt to organize protein-related information, such
as those based on protein-protein interactions and pathways. In terms of the latter, many factors are
involved, the major one being the substituents involved in an enzyme’s catalytic reaction. KEGG’s
utility in providing a number of generalized and comprehensive resources for pathways, protein and
ligand information is acknowledged worldwide. As the era of chemical genomics begins, KEGGwill
continue to provide the latest and most comprehensive information towards the understanding of
human diseases and the development of pertinent approaches for drug therapy.

23 Using KEGG for Chemical Genomics 451



References

1. Keiser, M.J., Roth, B.L., Armbruster, B.N., Ernsberger, P., Irwin, J.J., and Shoichet, B.K. Relating protein

pharmacology by ligand chemistry. Nat. Biotech. 2007;25(2):197–206.

2. Kanehisa,M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh,M., Kawashima, S., Katayama, T., Araki, M., and

Hirakawa, M., From genomics to chemical genomics: new developments in KEGG. Nucl Acids Res. 2006;34:D

354–357.

3. Schwartz, J.M., Gaugain, C., Nacher, J.C., deDaruvar A., andKanehisaM.Observingmetabolic functions at the

genome scale. Genome Biol. 2007;8, R123.

4. Hattori,M., Okuno, Y., Goto, S., andKanehisa,M.Development of a chemical structure comparisonmethod for

integrated analysis of chemical and genomic information in the metabolic pathways. J. Am. Chem. Soc.

2003:125;11853–11865.

5. Aoki, K.F., Yamaguchi, A., Okuno, Y., Akutsu, T., Ueda, N., Kanehisa, M. and Mamitsuka, H. Efficient Tree-

Matching Methods for Accurate Carbohydrate Database Queries. Genome Informatics, 2003;14:134–143.

6. Katzung, B.G. Basic & Clinical Pharmacology. McGraw-Hill Medical. 2006, VK.

7. Kawano, S., Hashimoto, K., Miyama, T., Goto, S., and Kanchisa, M. Prediction of glycan structures from gene

expression data based on glycosyltransferase reactions. Bioinformatics. 2005; 21:3976–3982.

8. Suga, A., Yamanishi, Y., Hashimoto, K., Goto, S., and Kanehisa, M. An improved scoring scheme for predicting

glycan structures from gene expression data. Genome Informatics. 2007; 18:237–246.

9. Kotera, M., Okuno, Y., Hattori, M., Goto, S., and Kanehisa, M. Computational assignment of the EC numbers

for genomic-scale analysis of enzymatic reactions. J. Am. Chem. Soc. 2004;126:16487–16498.

10. Oh. M., Yamada, T., Hattori, M., Goto, S., and Kanehisa, M. Systematic analysis of enzyme-catalyzed reaction

patterns and prediction of microbial biodegradation pathways. J. Chem. Inf. Model 2007;47:1702–1712.

Key References

� Izrailev, S., and Farnum, M.A. Enzyme Classification by Ligand Binding. PROTEINS: Struct., Funct., Bioinf.

2004;57:711–724.

� Paolini, G.V., Shapland, R.H.B., van Hoorn, W.P., Mason, J.S., and Hopkins, A.L. Global mapping of

pharmacological space. Nat. Biotech. 2006;24(7):805–815.

Suggested Reading

KEGG Overview

1. Aoki, K.F., Kanehisa, M., Using the KEGG database resource, chapter 1.12 in ‘‘Current Protocols in Bioinfor-

matics,’’ Current Protocols, (series ed. Liz Miranker), John Wiley & Sons, Ltd., August, 2005.

Web Resources

www.genome.jp/kegg/brite.html
http://www.genome.jp/kegg/catalog/org-list.html
http://www.genome.jp/kegg/ligand.htmt
http://www.genome.jp/kegg/reaction/KCF.html
http://www.genome.jp/
http://www.genome.jp/en/about_dbget.html
http://ftp.genome.jp/pub/kegg/
http://www.biopax.org/
ftp.genome.jp/pub/kegg/xml

452 K.F. Aoki-Kinoshita and M. Kanehisa



Chapter 24

Ensembl

Open-Source Software for Large-Scale Genome Analysis

Anne Parker and Fiona Cunningham

Abstract Ensembl is a Perl-based application designed for the easy retrieval and analysis of
genomic data. Both a command-line API and a web interface are available, allowing the manipula-
tion of sequences and associated genomic features. Additionally, the web interface displays this
information in a variety of graphical formats. All software and associated data are freely down-
loadable and are released under an open-source licence.

Keywords Gene � Prediction � Analysis � Annotation � Perl � Web � Interface � Display

24.1 Introduction

Biological sequence analysis presents computational challenges as great as those faced by other ‘‘big
science’’ projects such as particle physics and climate simulation. Since the completion of the human
genome project (HGP) in 2003, research and computational biologists have had access to genomic data
onanunprecedented scale.The reference sequencealone consists ofapproximately threebillionbasepairs
of DNA, enough to fill 134 complete sets of the Encyclopaedia Britannica, according to some estimates.

Data on this scale presents enormous computational problems, in storage, memory management
and delivery. Conventional methods of genome data curation and annotation cannot keep up with the
rate at which data are accumulating. And with the move from the study of a single reference genome to
the comparison of sequences from many individuals or populations, this gap will continue to widen.

Ensembl [1], a joint project between the Wellcome Trust Sanger Institute (WTSI) and the
European Bioinformatics Institute (EBI), was designed to meet the need for an automated annotation
system capable of handling large volumes of finished and unfinished sequence data. It provides
researchers with access to state-of-the-art automated annotation of genomic data, based on sequences
from projects around the globe. Initial development was naturally concentrated on human genomic
data, but the model is now applied to a wide variety of eukaryote organisms, including the classic
experimental species such as mouse, fly and worm, as well as a selection of representative chordates.

24.2 Ensembl: An Open-Source Tool

One of the major successes of the HGPwas to make the human genome sequence freely available to
all. However, at that time, the computational resources necessary to analyze the data were not
widely available outside of large private companies. This could have had the effect of confining the
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usefulness of the raw genome data to a small number of well-funded groups. One of Ensembl’s
principal aims has been to bring these data to the widest possible audience.

A central tenet of the Ensembl philosophy is openness: all data, software and associated
information is freely available and without restriction. The project has enthusiastically embraced
the open-source ethic, with all the code released under an open-source licence, and contributors
around the globe supplying expertise and time free of charge [2].

24.3 The Ensembl Code Base

The Ensembl project generates a substantial body of Perl code [3], all of which can be downloaded
from the website. The code base consists of three main parts:

� the analysis pipeline, which adds new data and analyses to the databases
� the API (application programming interface), which gives structured access to these data
� the web interface, which uses the API and graphics code to generate user-friendly views of the data

Other implementations building on the elements of the code base, such as Java clients, stand-
alone applications and so forth, are certainly possible and indeed encouraged.

24.3.1 The Analysis Pipeline

The Ensembl analysis pipeline runs a series of in silico analyses on an individual genome, integrat-
ing data from protein, cDNA and EST evidence to predict and refine gene models. Gene predic-
tions may be labelled as ‘known’ or ‘novel’. ‘Known’ indicates that the prediction is based on
evidence from the same species as the assembly and with a high matching score; the label ‘novel’ is
applied to predictions based on proteins from other species, or matches which had a lower score.
The finished gene set is then compared with manual annotations from the Havana project [4], and
genes that match are assigned to a ‘gold’ merged set. The final non-redundant set of gene models,
and the evidence used to build these models, are presented in a single database.

Additional data from external sources, such as microarray probesets, single nucleotide poly-
morphisms (SNPs), and gene ontologies, may be included in the species data-set where available.
Comparative genomics analyses provide sequence alignments and homology predictions based on
multi-species comparison.

24.3.2 The API

The Ensembl API provides a representation of the data in an Ensembl database in terms of model
biological objects: genes, clones, contigs, etc. This abstraction shields programmers from the
underlying complexity of the data, making it easier to retrieve information in a meaningful form.
This makes the API an extremely powerful tool for biologists. It is simple, for example, to extract a
specific clone object from the database and query it for biological properties such as contigs, length,
sequence, and any features added by the analysis pipeline such as genes, repeats and CpG islands.
The API also enables access to the additional databases, so that sequence objects can be queried for
variations, orthologues and other external data.

24.3.3 The Web Interface

While the Perl API offers a rapid and efficient way to access the Ensembl databases, the
website enables visual representations of often complex data, making it more human-
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readable. Perl modules auto-generate images from the genomic data, allowing the display not
just of sequences and their associated annotations, but of karyotypes, gene trees, and other
genomic data.

While most Ensembl data can be accessed through either the website or the Perl API, a few
features are web-only. These include LD (linkage disequilibrium) values, which are calculated on
the fly (using code written in C) then displayed via Ensembl’s Perl drawing modules, and search
tools such as BLAST (see Section 23.5), using the Ensembl website.

Another web-only feature is the system of user accounts, which enables quick access to your
favorite Ensembl pages from any computer, as well as facilitating collaboration and data
sharing. More on adding your own data to an Ensembl display and sharing the results can be
found below.

24.4 Ensembl Data Concepts

The Ensembl data model revolves around two central ideas: an assembly and a slice. Genomic
sequence data is accumulated as a set of overlapping clones, each containing one or more sequence
fragments called contigs. In the unfinished data, the order and orientation of these contigs is often
unknown. Finished data has been fully assembled, such that each clone comprises only a single
contig, i.e., the clone has been fully sequenced. The clone overlap information, combined with data
from genetic maps, can be used to assemble the clones into a continuous pathway along a
chromosome. This pathway through the data, containing the non-redundant sequence, is some-
times referred to as the golden path.

It is often necessary to work with regions of an assembly that do not map exactly to a single clone
or contig. For example, onemight wish to examine the firstmegabase of a chromosome. TheEnsembl
API allows this manipulation of arbitrary regions by providing an abstraction of the underlying
assembly, called a slice. A slice behaves as if it were a real contig, but may actually be constructed
‘‘behind the scenes’’ from multiple contigs and fragments of contigs.

24.5 Using the Ensembl Website

The Ensembl website displays genomic data in a variety of graphical forms, including sequence
alignments, wiggle plots and tree diagrams. It offers a hierarchical interface to the various genomes,
so that the user can drill down into the data by selecting successively more detailed views. For
example, clicking on a chromosome takes you to a high-level display of the region, and from there
to detailed displays of individual clones, genes, transcripts, proteins and other sequence features.

As well as drilling down into the data, the user can search for particular identifiers, or find
sequence locations using alignment methods such as BLAST [5]. The website also provides
extensive facilities for exporting data in a variety of forms, including FASTA, EMBL, tab-
delimited lists, and several image formats, and incorporates the BioMart data-mining tool [6]
which allows extraction of information from combinations of disparate data-sets. A wide variety
of learning materials are now available to help you use Ensembl, both on the website itself (under
‘Help & Information’) and in print [7].

24.5.1 Displaying Other Data in Ensembl

In addition to the annotations provided by the Ensembl pipeline, you can view your own data
alongside the genome. The simplest method is to upload a file in one of the commonly used formats
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such GTF, BED or PSL; data can either be uploaded directly from your computer, or via a URL
anywhere on the Internet. Alternatively, you can display data in DAS (Distributed Annotation
System) format, by attaching any source from a public DAS server to Ensembl. DAS [8] is a
standard used by institutions around the world to share genomic resources without having to copy
vast amounts of data back and forth.

The Ensembl website includes a DAS Registry, which is a selection of publicly accessible DAS
sources. These include data from projects based at the Wellcome Trust Sanger Institute, such as
Decipher (Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl
Resources), plus a selection of other public sources such as NCBI RefSeq. Many of these DAS
sources are maintained within the WTSI or the EBI, either on the Ensembl DAS server or within
individual research projects. Other sources are located on servers around the world and may
occasionally be unavailable from within Ensembl. For more information on using these data, see
the examples, below.

24.6 Website Tour

As an introduction to the Ensembl website, we will investigate SGCB. This is the gene for beta-
sarcoglycan, a glycoprotein associated with dystrophin and hence potentially involved in muscular
dystrophy.

Note: Screenshots for these examples were taken from the Ensembl release 44 (April 2007) – see
the relevant archive at http://apr2007.archive.ensembl.org. A revised and reorganised version of
the site will be released in the second half of 2008, but the basic features remain unaltered.

24.6.1 Searching for a Feature

The website uses the Exalead search engine to provide a full index of all the Ensembl databases,
enabling fast and comprehensive searches. A search box can be found in the top right corner of
most pages, or you can start from the main search on the Ensembl home page (Fig. 24.1).

Fig. 24.1 The Ensembl website home page (Copies of figures including color copies, where applicable, are available
in the accompanying CD)
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SGCB is an HGNC Symbol, i.e., a short, unique name for the gene which has been assigned by the
HUGOGene Nomenclature Committee. A gene symbol can map to more than one Ensembl predic-
tion; however in this case, entering ‘human beta-sarcoglycan gene’ in the text field gives us only one hit
– Ensembl gene ENSG00000163069. All Ensembl genes, transcripts, exons and proteins have an ID
beginning with ‘ENS’ – this stable id can be tracked from release to release, so you can always be sure
you are looking at the same information. Non-human genes also have a three letter code identifying
the species (e.g., ‘MUS’ forMusmusculus). Each identifier then has a single letter to identify the object
type – G for gene, T for transcript, P for protein and so on – followed by a numeric ID.

Clicking on the name of the gene in the SearchView takes us to GeneView, where information
about the gene is displayed.

24.6.2 GeneView

The GeneView page (Fig. 24.2) contains much detail and information about SGCB including its
Ensembl identifier, description, genomic location, and transcripts. Links in the left-hand menu bar
lead to further information about the gene, including regulatory regions, variation displays and
phylogenetic trees across Ensembl species.

SGCB lies on the reverse strand, so in Ensembl it is shown below the broad blue line representing
the contig (labelled ‘AC093858’ in the figure); genes aligned to the forward strand are shown above
the contig.

Fig. 24.2 The Gene Report for SGCB (Copies of figures including color copies, where applicable, are available in the
accompanying CD)
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Also, SGCB is a member of the Consensus CDS set (a subset of human genes agreed upon
between Ensembl, UCSC and NCBI) and has been manually annotated by the Havana project, so
the transcript diagram shows both the Ensembl prediction (the lower transcript, in dark red on the
web) and the Havana annotation (the upper transcript, in blue). Exons are shown as boxes, introns
as angled lines; the empty box at the left-hand end of each transcript represents the non-coding
UTR (untranslated region) portion of the gene.

Additional tracks such as EST genes, SNPs and regulatory regions can be displayed alongside
the transcript by clicking on the ‘‘Features’’ menu button in the yellow bar at the top of the image.
Further down the page are sections on individual transcripts, including orthologues in other
species, associated GO (gene ontology) terms, and Interpro protein domain matching. To find
out more about the protein translation for this gene, you can click on the link ‘Protein Information’
in the left-hand menu, or there are links above the transcript neighborhood diagram.

24.6.3 ProtView

ProtView displays more detailed information about the protein produced from a transcript,
including domains, protein families and the amino acid sequence. The sequence display can be
customized to show the introns and exons in different colors and also to highlight SNPs (Fig. 24.3).

Fig. 24.3 ProtView, showing the amino acid sequence of SGCB (Copies of figures including color copies, where
applicable, are available in the accompanying CD)
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From ProtView (or GeneView), we can go to the chromosomal region for this gene, by clicking
on either the ‘Graphical View’ link in the left-hand menu or on the coordinates link in the Genomic
Location section of the main table.

24.6.4 ContigView

ContigView is the main genome browser display for the Ensembl website. It allows the user to walk
freely up and down any chromosome, and displays all the sequence features appropriate to the
current region. There is a variety of navigation tools provided to enable the user to move to any
location, zoom in and out, and focus on a specific area.

The ContigView display is customizable. The user can turn various feature tracks on and off,
including gene sets, markers, aligned proteins, oligo probes, and repeats. A number of standard DAS
tracks are provided, or you can attach aDAS source from any external server (see below). Finally, the
size of the image can be configured and legends, rulers, pop-up menus, etc., can be turned on-or-off.
All of these customizations can be saved in your Ensembl user account, so that you can access exactly
the same display from any computer you use, without having to reset all the options.

Clicking on any of the features will display a pop-up menu with more feature information and
links to alternative views such as GeneView and ExportView. As can be seen in Fig. 24.4, Contig-
View shows a hierarchy of views. The topmost view shows the chromosome that we are looking at.

Fig. 24.4 ContigView (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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A box marks the region (in this case, close to the centromere of chromosome 4) that is represented in
the next image- the overviewdisplay. The overview shows, by default, onemegabase ofDNA, and is a
high-level view of the region. For this reason, it shows only landmark features such as markers and
genes. Clicking anywhere on the overview brings up a generic zoom menu, or you can click and drag
the mouse to outline the area you are interested in and bring up a context-sensitive zoom menu.

Below the overview is the detailed display (see Fig. 24.5). It shows a relatively short region of the
genome, but can display all the features present in that area. Only a few tracks are turned on in Fig
24.4, but you can see the Ensembl and Havana transcripts below the contig, as in the transcript
image on the GeneView page.

One final display, basepair view, is available below the detailed view, but is collapsed by default
and is not visible on the screenshot. It shows a 100 bp window whose location will be marked in the
detailed view when the basepair view is open. Just click on the plus sign next to its name to display
the individual base pairs and possible amino acid translations in all six reading frames (forward and
reverse), along with the restriction enzymes.

Figure 24.5 shows a close-up of the detailed view, with additional tracks turned on from the
‘Features’ menu. The Eponine and FirstEF tracks are indicators of possible transcription start
sites, while CpG islands are associated with the promoter regions. Also turned on is the SNP track,
showing single nucleotide polymorphisms in and around the gene.

24.6.5 Sharing your Data with DAS

As well as all the data produced by the Ensembl pipeline and associated projects, you can view any
other annotation data via DAS sources. A selection of useful sources is pre-configured, and available
via the DAS sources menu in ContigView.

In Fig. 24.6, we can see a DAS track at the bottom of the detailed view, displaying RefSeq data
selected from the basic list. Ensembl also includes a registry of additional DAS sources, or you can
provide the URL from another server. In either case you can configure the color, layout and style of
these extra tracks (see Fig 24.7).

Fig. 24.5 Additional tracks in ContigView (Copies of figures including color copies, where applicable, are available
in the accompanying CD)
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24.7 Using the Ensembl API

24.7.1 Installation

Before using the Ensembl API, youmust first obtain and install the Ensembl softwaremodules. The
components you will require for a basic installation are:

� Bioperl – provides some foundation objects used by the Ensembl API [9]
� Ensembl – the core functionality and database objects

Fig 24.6 DAS track in ContigView (Copies of figures including color copies, where applicable, are available in the
accompanying CD)

Fig. 24.7 Configuring your DAS track (Copies of figures including color copies, where applicable, are available in
the accompanying CD)
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These components, along with instructions for retrieving and installing them, can be found on
the Ensembl website, www.ensembl.org. You will also need a local installation of the Perl pro-
gramming language – we recommend upgrading to the latest version of Perl and associated
packages, especially standard modules such as DBI and CGI, to avoid bugs.

You will also need an Ensembl database to run your code.While it is possible to download all the
Ensembl MySQL databases and make a local installation, at the time of writing the compressed
downloads total around 500 GB, so in most cases it will be quicker and easier to use the public
database servers at the Wellcome Trust Sanger Institute. These are the servers we will be using in
this example. Note that this is a separate installation from the databases used by the website; we
strongly encourage you to use the public databases for your scripts, as it avoids degrading the
service for other users!

Important note: the database schema typically changes from release to release, so you will need to
make sure that your API version matches the version of the database you are using. The CVS
checkout command (see the online installation instructions) will tell you which release of the code
you are getting; the database names include the version number as well. Names of all the current
databases can be found via theMySQL links on http://www.ensembl.org/info/data/ft-links/html or
by logging onto ensembldb.ensembl.org using a MySQL client and user ‘anonymous’.

24.7.2 Setup of the Ensembl Software Environment

Once you have installed the necessary software, you will need to configure your environment so
that your Perl script will know where to find the modules. The easiest way to do this is to add the
location of the modules to the PERL5LIB environment variable.

For example, if you installed Ensembl and Bioperl into a directory called /home/bob, then set the
environment as follows:

In UNIX:

csh: setenv PERL5LIB /home/bob/ensembl/modules:/home/bob/bioperl

bash: export PERL5LIB = /home/bob/ensembl/modules:/home/bob/bioperl

On Windows:

set PERL5LIB c:\home\bob\ensembl\modules;c:\home\bob\bioperl

Note that the /ensembl/modules directory contains only the core API for accessing sequences, genes
and other transcription features in the core Ensembl databases. If you wish to use the comparative
genomics or variationAPI calls to access features from other databases (as in the example below), these
are in separate directories and they will also need to be added to your environment.

The code shown below only scratches the surface; the API has many powerful features for
retrieving genomic data, including a database registry whichmakes setting up database connections
even quicker and easier than in the example. Additional details are available at the website, which
always contains the latest API documentation.

24.7.3 Worked Example

In the following example, we will use the API to find all the SNPs on a particular gene in the mouse,
Mus musculus. The gene we have chosen is Tyr, responsible for the production of the enzyme
tyrosinase which catalyses several steps in the conversion of tyrosine to melanin. Mutations in this
gene can thus cause albinism in mice (and other mammals) by disrupting pigment production.
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Firstly, we need to load the database adaptor modules, which will allow us to connect to the
database. Genes are stored in the core database, but SNPs are stored in the variation database for a
species, so we will need to load both the adaptors. The modules are:

� Bio::EnsEMBL::DBSQL::DBAdaptor
� Bio::EnsEMBL::Variation::DBSQL::DBAdaptor

To make the connection, we need to specify the host machine that is serving the database
(ensembldb.ensembl.org), the name of the database to connect to (e.g., mus_musculus_core_44_36e),
and the username to connect as (ensembldb accepts the user anonymous).

The code to make the connection is:

my $dbCore = Bio::EnsEMBL::DBSQL::DBAdaptor->new
(-host => 'ensembldb.ensembl.org',
-dbname => 'mus_musculus_core_44_36e',
-species => 'mouse',
-group => 'core',
-user => 'anonymous');

We can repeat this process for the variation database, using the same connection details and the
database name mus_musculus_variation_44_36e. If either of the connections fail, you will get an
error message. Otherwise you are ready to start working with the data in the databases.

As described in the opening section on the Ensembl code base, the API offers an abstract
representation of all the various genomic ‘‘objects’’ stored in the database. There is an adaptor
for each type of object, which gives you easy access to a number of standard method calls, such as
‘fetch_all_by_description’. For this example we will need adaptors for three types of objects: gene,
SNP and slice.

The gene and SNP objects both contain their location in the form of a region name (usually a
chromosome), start and end coordinates, and strand; however, rather than having dozens of
specific calls such as ‘fetch_SNPs_by_gene’, ‘fetch_SNPs_by_exon’ and so on, the API uses the
generic slice object (see Section 4, Ensembl Data Concepts) to map features onto one another. The
slice object is thus one of the most often-used objects in the Ensembl API.

We create our object adaptors by making calls on the appropriate database adaptor:

my $gene_adaptor = $dbCore->get_GeneAdaptor();
my $slice_adaptor = $dbCore->get_SliceAdaptor();
my $vf_adaptor = $dbVariation->get_VariationFeatureAdaptor();

Note that SNPs are not the only kind of data that can be stored in the variation database (insertions
and deletions are also types of variation, although there are presently none in Ensembl), so we can use
the generic Variation Feature Adaptor to get the SNPs rather than a specialized SNP adaptor.

Oncewehave our adaptors,we can start creating the genomicobjects and extractingdata from them.
The gene name Tyr is an MGI symbol (a short unique name assigned by the Mouse Genome
Informatics project); in other words, it has been assigned outside Ensembl. Therefore, the first thing
we need to do is to find out which gene predictions within Ensembl have been identified as
corresponding to this gene.

It is possible for an external name to map to more than one Ensembl stable ID, though as it
happens there is only one mapping for Tyr in mouse, namely ENSMUSG00000004651.

The command we need is straightforward:

my @genes = @{$gene_adaptor->fetch_all_by_external_name('Tyr') };

Note that, the method call fetch_all_by_external_name always returns a reference to an
array, so we need to de-reference it to get our gene objects. We can then loop through the array to
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get information on each Ensembl gene. Of course if we knew in advance that we would definitely
only get one Ensembl gene returned for Tyr, we could simple take the first element of the array, but
the script will be more reliable and reusable if we assume the possibility of multiple gene objects.

Within our foreach loop, we first need to get the stable ID from the gene object. Unsurprisingly,
the method name is stable_id:

my $id = $gene->stable_id;

Once we have that, we can find the DNA sequence underlying the gene:

my $slice = $slice_adaptor->fetch_by_gene_stable_id($id, 0);

The fetch_by_gene_stable_id takes two parameters: the stable ID, and an integer representing
the length of the flanking sequence required. In this script, we will confine our search to the gene
itself, but if we were interested in, for example, regulatory mutations, we could extend the search
area by any number of base pairs.

Finally, we can search our slice for SNPs, using a call on the VariationFeature adaptor:

my $vfs = $vf_adaptor->fetch_all_by_Slice($slice);

Again, the method returns an array reference, which we can de-reference and loop through to get
information about each SNP:

print "Variation: ", $vf->variation_name, " with alleles ",
$vf->allele_string, " in chromosome ", $slice->seq_region_name,

"and position ", $vf->start,"-",$vf->end,"\n";

A screenshot of the resultant printout can be seen in Fig. 24.8.

24.7.3.1 Finished Script

#!/usr/bin/perl

use strict;
use warnings;
# load required API modules
use Bio::EnsEMBL::DBSQL::DBAdaptor;
use Bio::EnsEMBL::Variation::DBSQL::DBAdaptor;

Fig. 24.8 Sample printout
from the API script (Copies
of figures including color
copies, where applicable, are
available in the
accompanying CD)
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# connect to Core database

my $dbCore = Bio::EnsEMBL::DBSQL::DBAdaptor->new
(-host =>'ensembldb.ensembl.org',

-dbname =>'mus_musculus_core_44_36e',

-species =>'mouse',

-group =>'core',

-user =>'anonymous');

# connect to Variation database

my $dbVariation = Bio::EnsEMBL::Variation::DBSQL::DBAdaptor->new

(-host =>'ensembldb.ensembl.org',

-dbname =>'mus_musculus_variation_44_36e',

-species =>'mouse',

-group =>'variation',

-user =>'anonymous');

# get all the adaptors we'll need
# (more efficient to get them outside of any loops!)
my $gene_adaptor = $dbCore->get_GeneAdaptor();
my $slice_adaptor = $dbCore->get_SliceAdaptor();
my $vf_adaptor = $dbVariation->get_VariationFeatureAdaptor();

# find gene stable ids corresponding to the MGI symbol 'Tyr'

my @genes = @{ $gene_adaptor->fetch_all_by_external_name('Tyr') };

# loop through array of genes

foreach my $gene (@genes) {

my $id = $gene->stable_id;

print "SNPs in gene $id \n";

my $slice = $slice_adaptor->fetch_by_gene_stable_id($id, 0);

# return all variations defined in $slice

my $vfs = $vf_adaptor->fetch_all_by_Slice($slice);

# print out the results

foreach my $vf (@{$vfs}){

print "Variation: ", $vf->variation_name, " with alleles ",

$vf->allele_string, " in chromosome ", $slice->seq_region_name,

"and position ", $vf->start,"-",$vf->end,"\n";

}
}
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24.8 Future Developments

Ensembl is under active development. The already rich API is growing constantly to provide
convenient access to a wider range of genomic data resources. Each release of the database sees
the inclusion of additional data of ever-increasing quality and scope, including more species and
new data types. The website is also being adapted to represent these underlying improvements in
the API and data, and to meet the increasingly complex demands of the research community.
Future developments currently being considered include:

� further extending the data beyond single reference genomes, particularly in the areas of
functional genomics and variation

� additional development of web collaboration and customization tools

24.9 Contact List

The Ensembl project has a very active development mailing list called ensembl-dev. All of the
Ensembl team participate in the list, so if you have a question or comment about Ensembl you can
be assured it will be answered there. There is also a low-traffic mailing list, ensembl-announce, which
is used to announce major updates or a new release. To subscribe to these lists, send an email to
majordomo@ebi.ac.uk with either subscribe ensembl-announce or subscribe ensembl-dev in the body
of the mail. These mailing lists are archived on the Ensembl website.

Ensembl also maintains a helpdesk facility that will answer any questions pertaining to the
project. Either send an email to: helpdesk@ensembl.org, or use the form on the website. The
Ensembl team is always interested in any feedback you might have on the site. Comments and
suggestions are all carefully considered, and often make their way into the next version of the code.
The web team can be contacted through the Ensembl helpdesk, or via webmaster@ensembl.org.
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Chapter 25

Management of Spatially Organized Biological

Data using EMAGE

Jeffrey H. Christiansen, Duncan R. Davidson, and Richard A Baldock

Abstract Images are used to record the outcomes of many biological experiments, including those
that employ in situ hybridization and immunohistochemistry assays. The most widespread method
currently used to describe these images for archiving and analysis purposes is employing a text
based description, whereby the pattern of staining observed in each image is described by a human
using a standardized vocabulary of anatomical terms.

In this chapter, we describe a complementary approach, whereby, the spatially organized infor-
mation inherently contained in data images is extracted and spatially integrated via a semi-automated
process and then housed in a three-dimensional atlas of biological structure. Thus, spatial data from
multiple assays can be interrogated directly by spatial based approaches to find patterns that display
similarities or differences of patterns over local or entire regions of the specimen.

Keywords Biological images � Gene expression � Spatial � Database � in situ hybridization �
Immunohistochemistry � Mouse � Embryo

25.1 Introduction

The practise of biology has always relied heavily on the use of images to record experimental
observations. The format of these has changed over time according to available technologies: from
hand-drawn images, to film photography, to digital photography and more recently onto 3D/4D
digital image capture and beyond. Automation of laboratory procedures, advances in imaging
technologies and the availability of affordable digital data storage have combined to allow for the
production of this type of data on an unprecedented scale.

These images are sometimes used to document the gross morphology of a biopsy or a specimen
(e.g., the appearance of a ‘wild-type’ vs. a mutant), or they may depict specimens that have been
‘stained’ to detect a specific biological process or entity. Staining procedures exists, for example, to
detect cell proliferation, cell death, the output of distinct biological pathways or enzymatic reac-
tions, particular tissue types or the presence of the expression of a single gene.

This chapter will focus on the images of the last type that depict the detection of specific mRNA
or protein molecules from in situ hybridization or immunohistochemistry experiments. Topics
covered will include a background of the theory of these experimental techniques and different
approaches that have been utilized for the digital archiving and analysis of this data. As an
illustration of a spatial-based approach to archiving and analysis of the image-based in situ gene
expression data, the EMAGE database will be discussed in detail.

J.H. Christiansen
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Kingdom
e-mail: jeffc@hgu.mrc.ac.uk
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25.2 Methods to Detect Gene Expression

The genome of an organism such as a human or mouse contains approximately 20,000 genes. As
every gene is not expressed in every cell throughout the body, if one wishes to gain an appreciation
of the potential sites of action of a gene product, it is necessary to assess the levels and distribution
of each gene’s expression in different tissue and cell types. As gene expression involves transcription
from genomic DNA to produce mRNA and then translation of these mRNAs to protein (see Fig
25.1A), assaying for the presence of either the mRNA or protein can be used as a read-out for the
process of ‘gene expression’.

25.2.1 Assaying for mRNA Presence

The most common methods to assess the expression levels of the mRNA/transcript all rely on one
of the central dogmas of molecular biology– that of base pairing between the sense and anti-sense
complementary strands in nucleic acid hybrids. In these cases, a single-stranded nucleic acid probe is
designed to be complementary to its intended single-stranded mRNA target and is synthesized in
vitro, where it is labelled such that it can be subsequently detected. The probe and the target
transcript are then mixed together under conditions permissive for the specific binding of the
complementary strands to each other in a process called hybridization, and the excess, unbound
probe is subsequently removed by extensive washing. Following this procedure, any remaining
probe will be tightly bound to its intended target in a hybrid. Therefore, when the labelled probe is
subsequently detected, the presence of its bound target hybrid complementary strand will also be
detected.

This method has been used for many years to measure the presence of transcripts for individual
genes, one at a time, within complex mixtures of thousands of transcripts, either from dissociated
samples or to whole, fixed tissue biopsies (or sections of these on glass microscope slides). In the
latter cases the target transcripts are permanently attached to adjacent molecules within the tissue
at the site where they were naturally present by chemical fixation. Therefore, following the
hybridization and signal detection process, signal is only detected at the sites of expression in
situ. This technique is known as in situ hybridization and the output of the experiment is docu-
mented using an image (see Fig 25.1B).

25.2.2 Assaying for the Presence of a Protein

One of the most common methods to detect the presence of proteins in biological samples is to
use an antibody-based approach, where an antibody is generated against a single target protein.
This can be achieved either by directly immunizing an animal with the target protein itself, or
production of the antibody by other methods such as phage display. The antibody can be
labelled by a number of methods. Because an antibody has the ability to recognize and tightly
bind to the specific protein it was generated against, when bound, the presence of the antibody
can be used to identify the presence of its target protein in a complex mixture of any number of
proteins.

Similar to hybridization as discussed earlier, appropriate samples for antibody-detection ana-
lysis can also be either dissociated samples or whole fixed tissue biopsies (or sections of these, fixed
onto glass microscope slides) that are subjected to the antibody binding and target detection
procedure. When tissues or sections are used, the process is termed immunohistochemistry, and
(as for in situ hybridization), the data output is also image based (see Fig 25.1B).
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25.2.3 Transgenic Techniques for Assessing Gene Expression

Another powerful technique for assessing the expression profile of genes, particularly in vivo, is the
use of transgenic reporter assays. The general method employed is to genetically modify an

Fig. 25.1 (A)Gene expression involves a two-step process where the DNA in the nucleus is first copied into anmRNA
molecule. The mRNA copy is subsequently used as a template to instruct the building of a protein during translation.
(B) The processes of in situ hybridization and immunohistochemistry are used to detect the presence of mRNAs and
proteins within biological specimens. Both these images showwhole, intact samples, yet the method can also be applied
to tissue sections (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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organism, such that it will express a detectable marker under the normal controls of the gene, whose
expression one wants to examine. For example, the transgenic animal can be constructed such that
a fusion protein is made between an endogenous protein and a fluorescent protein, so that
monitoring the occurrence of fluorescing cells, points to the presence of the hybrid protein and
therefore also to the endogenous protein (it is assumed that the hybrid protein is deployed in the cell
in the same manner as the endogenous protein). When fluorescent markers are used, these
techniques can offer the advantage that imaging of the target molecule can be achieved within
intact, living specimens. 2D, 3D and 4D images can be captured to document these experimental
outcomes.

25.2.4 The Pros and Cons of in situ Based Gene Expression Techniques

ISH, IHC and transgenic techniques, to assess gene expression patterns, all allow direct visuali-
zation of the signal within the organism in situ, to the single cell, and sometimes sub-cellular
resolution. As such, it is possible to discern the precise positions of individual cells that express a
gene of interest and their spatial relationships to other cells in a complex, spatially organized
biological sample. Such an appreciation is generally not possible using non- in situ based gene
expression profiling techniques like microarrays, mass spectrometry etc. because in these cases
the sample is usually dissociated from a spatially organized tissue into a suspension prior to
analysis.

The major drawback in the use of in situ based techniques, has until recently, been the amount of
‘hands-on’ time required to perform these procedures. However, the advent of automated robotic
basedmethods to treat the samples, has now allowed these methods to be used in a high-throughput
manner. For example, several in situ gene expression screening projects are currently in progress
that will have collectively generated several millions of images documenting the sites of gene
expression in the mouse or human upon completion e.g., EURExpressII; BGEM; GENSAT;
GUDMAP; GenePaint; Allen Brain Atlas and the Human Protein Atlas.

These data-sets are all being produced to develop an understanding of the sites within the
organism where the products of different genes are deployed. This will culminate in an appreciation
of various molecular portfolios of different tissues, and is a biologically important question as
it can point to possible relationships between sets of different genes. For example, if two or more
gene products have similar spatio-temporal expression profiles within an organism (i.e., they are
found in the same places at the same times), this can point to the existence of potential interactions
between them, or a common regulatory mechanism governing their expression. Elucidating com-
prehensive gene expression profiles for each and every region of a species also has the potential
to reveal an alternative view of the spatio-temporal organization of various tissues. This ‘molecular’
view of anatomy can be compared to classical anatomy that has been described based on visible
morphological features.

25.3 Methods for Archiving and Describing Sites of Expression Identified

from Image-based in situ Expression Profiling Techniques

25.3.1 Traditional Methods

Traditionally, the medium where in situ gene/protein profiling data has been archived, is the
scientific literature. This has involved the publication of one or more photographs in a journal,
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documenting the outcomes of the experiment along with an accompanying text description – either
in the figure legend or in the main text, outlining the author’s interpretation of the results seen
within the image(s). At least one journal: Gene Expression Patterns is entirely devoted to the
publication of these types of data. While this method does allow for the archiving and distribution
of this information, data published in this manner is often difficult to retrieve from the literature via
database searching (e.g., PubMed), unless appropriate information pertaining to the expression
pattern is included in the title, abstract, key words or MeSH terms of the paper. Unless the paper
has been specifically published to describe the expression pattern itself, this is usually not the case.
When this information is included in the title/abstract etc, it can still prove challenging to retrieve
via literature citation database searching because of the variations in language and spelling used by
the author to describe the sites of gene expression. For example, the ‘stomatodaeum’ (i.e., the
precursor of the mouth during embryo development) could be described using the words ‘stoma-
todaeum’, ‘stomatodeum’, ‘stomodaeum’, ‘stomodeum’, ‘oral pit’ or ‘mouth pit’. Therefore, lit-
erature databases would have to be searched using all of these words in order to retrieve all possible
data.

25.3.2 Standardized Text-Based Descriptions of Gene Expression Patterns

To help alleviate the problems associated with the use of non-standard text-based descriptions
of sites of gene expression discussed above, various standardized vocabularies (or ‘ontologies’) to
name anatomical structures present in an organism have been developed. These can be in a simple
list format or hierarchically organized, with ‘part-of’ relationships, such that smaller structural
units (e.g., ‘eye’) are part of a larger anatomical unit (e.g., ‘head’ or ‘sensory system’). The
hierarchical approach is usually adopted by databases because it allows greater flexibility in
retrieval of the data. For example, if a gene expression is detected in the ‘eye’, it is therefore also
detected in the ‘head’, and should be able to be retrieved from a database when either term is used
for query. Some databases also offer greater search flexibility by a system of defining synonym
relationships between certain words that have the same meaning. For example in the ‘stomato-
daeum’ example mentioned earlier, the words ‘stomatodaeum’, ‘stomatodeum’, ‘stomodaeum’,
‘stomodeum’, ‘oral pit’ and ‘mouth pit’ could all be defined as synonyms and thus used inter-
changeably for query purposes.

Examples of databases that have adopted text as their main strategy to archive gene expression
data from in situ gene expression experiments include all the major model organism databases, for
e.g., MGI; ZFIN; XenBase; WormBase; FlyBase as well as a number of large screening projects
currently underway e.g., GenePaint; Human Proteome Atlas; EURExpress, GUDMAP; EuRe-
Gene; MEPD and GEISHA.

While this approach offers an excellent method to quickly describe the broad anatomical regions
where expression is noted (e.g., ‘‘GeneA exhibits expression in the brain, the limbs and the eye’’) and
is flexible for different data types (e.g., gene expression profiling data from diverse methods such as
MS, SAGE,Microarrays and ISH/IHC can easily be integrated), it is very difficult to use effectively
if one wants to describe the subtilities of an expression pattern as detected using an in situ based
technique, as these need to include information on the sites, patterns and gradients of expression
levels. For example, a text-based description of the expression pattern of a (hypothetical) gene with
a reasonably complex expression pattern could be as follows: ‘‘GeneA has expression in the
anterior-most third of the telencephalic part of the forebrain, on both sides of the midline. In this
region, it is expressed in a ring that excludes the very anterior tip of the telencephalic vesicle. There
is a gradient of expression in this region such that the outer part of the ring expresses the gene at a
higher level than the inner part of the ring. Two other regions of expression are detected in the
diencephalic part of the forebrain: one in a lateral stripe that extends in an anterior-posterior
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direction along the wall of the diencephalon, which sits just ventral of the dorso-ventral midline;
and another that exhibits a spotted pattern with very high apparent expression levels in the dorsal
most aspects of this region’’. This example illustrates that such text annotations can become
unwieldy.

Due to the complexity of the text-based description that is required to describe a pattern as well
as the associated time constraints that are usually available in which to perform the annotation, a
drawback of this approach is that such annotations tend to be partial. Other factors that can
contribute to the paucity of annotations made with this method can be a lack of anatomical
knowledge that is required to perform the annotation in the first place, or ‘selective vision’ of the
annotator. Text-based descriptions alone are also very difficult to use effectively if one wishes to
convey information about variations of patterns in space or strength, or variations in morphology.
Even if a careful full description is made using words, it is unlikely that the description could be
used to describe a complex 3D expression pattern definitively and unambiguously. A parallel task
would be attempting to definitively and unambiguously describe the face of one of your friends to a
portrait artist using only words, and then expecting the artist to produce a photographic likeness of
your friend’s face from this information alone.

25.3.3 Spatial-Based Descriptions of Gene Expression Patterns

A common feature of multi-cellular organisms is that the normal development is governed by a strict
body-plan, which ensures that all members of a species develop with a similar and stereotypical
morphology.Within each individual, the sites of the biological processes such as gene expression, cell
division, cell death, enzyme production etc, are strictly spatially and temporally controlled to ensure
correct development and function. Thus, one can envisage that developing a 3D computer model
representation of an organism, and subsequently denoting regions within this model that exhibit each
different biological process, would lead to an ‘atlas’ of biological functions for that organism.
Subsequent spatial-based analyses of the spatial data itself could lead to an appreciation of those
patterns that have similarities or differences in their spatial deployment and therefore regulation.

An example of this approach, used in practice to store and analyze gene expression patterns in a
spatial format, is the EMAGE gene expression database. EMAGE contains data from in situ
hybridization, immunohistochemistry and transgenic reporter assays that have been conducted on
mouse embryo specimens at various stages of development.

25.4 EMAGE Database Structure

25.4.1 Concept

The framework that houses the data contained in the EMAGE gene expression database is the
EMAP Anatomy Atlas of Mouse Development (see Fig. 25.2). This interactive atlas consists of a
set of reference 3D virtual models of the mouse embryos at different stages of embryonic develop-
ment. The staging system utilized is that of Karl Theiler (1989), who defined 26 stages of mouse
embryonic development, each characterized by a particular set of morphological features [7].

The reference embryo models are 3D digital images, made of voxels (volumetric pixels) stacked
in 3D space. Voxel size in the models range from 2�2�2 m to 10�10�10m, depending on the
method of model production. The reference embryo models can be viewed from any angle to assess
external embryo morphology or can be virtually sliced in any plane to view internal embryo
morphology. Within many of the reference model embryos, 3D anatomical regions have been
delineated voxel by voxel.
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The complementary part of the EMAP Atlas is an ontology of terms describing the anatomical
parts visible at each Theiler Stage of development. This ontology contains approximately 17,500
anatomical terms across the 26 Theiler stages and includes common synonyms.

The 3D anatomical regions that have been defined in each model are linked to their correspond-
ing names in the anatomy ontology. Thus, it is possible to either identify the name of a 3D
anatomical structure found within a model, or to view the 3D structure within a model that
corresponds to an anatomical name found within the ontology.

The EMAP anatomy atlas has subsequently been deployed to act as a scaffold for the EMAGE
database, inwhich a combination of both standardized spatial representations of in situ gene expression
data (used to show the sites of expression in the correct place) and standardized text-based descriptions
(used to describe in words the sites of expression), are used to denote gene expression patterns.

25.4.2 Software

EMAGE has client-server architecture. The application-domain information is stored in a data-
base. The database is currently a C++ object-oriented model but the intention is to change it to a
relational model in the future. Client software includes a Java application delivered to a client
computer using JavaWebStart, a web interface viewable through a normal HTML web browser,
and web services delivered using the SOAP and WSDL standards.

25.5 EMAGE Data Sourcing and Entry

25.5.1 Data Sourcing

As a community resource, the data in EMAGE originates from a variety of sources. EMAGE
provides an interface for data submissions designed to be used by individual laboratories or
consortia. The interface allows creation of local, private databases for in-lab data management.
This software also allows electronic submission to the EMAGE curators for entry to the public

Fig. 25.2 The EMAPAtlas ofMouseDevelopment consists of a set of 3D digital images of mouse embryos at various
stages of development and an accompanying ontology of anatomical terms at each stage. The models and anatomy
ontology are linked by defining regions within the 3D models that correspond to various words in the ontology
(Copies of figures including color copies, where applicable, are available in the accompanying CD)
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database. Alternatively, images and associated data can be provided in an ad hoc manner via post
or electronic means to EMAGE staff for entry. EMAGE curators also obtain data from some
collaborating projects by direct database access or through web site ‘screen scraping’.

A proportion of data in EMAGE has been previously published in the literature, and incorpora-
tion of this data is achieved in collaboration with the text-based Gene Expression Database (GXD)
at Mouse Genome Informatics (MGI), Maine, USA. GXD curators identify examples of in situ
expression data in the literature and produce a standardized text description by annotating the
EMAP text ontology to denote sites of gene expression in these assays, that is based on the author’s
non-standardized text description. GXD and EMAGE have secured global copyright agreements
with the Company of Biologists Ltd and Elsevier BV to reproduce images that have been published
in the journalsDevelopment,Developmental Biology,Mechanisms of Development andGene Expres-
sion Patterns.

25.5.2 Data Entry

In all the cases, the following information is obtained and entered in each database entry: [1] at least
one image used to document the outcomes of the assay; [2] information on the reagent used to
detect expression in the assay (i.e., nucleic acid probe, antibody or details of the construction of the
transgenic reporter line); [3] information on the specimen (age, strain, sex etc.); [4] information
about the experimental conditions used in the assay (e.g., fixation procedure of the specimen); [5]
source of the data (e.g., screening consortia, submitter/lab details); and [6] sometimes a text-based
description (either standardized or non-standardized) of the sites of gene expression.

25.5.2.1 Text Annotation

In the case of non-standardized text annotations, EMAGE curation staff will transfer the given
description across to equivalent terms in the standardized anatomy ontology.

25.5.3 Spatial Annotation

EMAGE curators also assess all images for their suitability and for spatial annotation. When
deemed to be suitable, specimens depicted in data images are assessed for their Theiler Stage of
development, by visual inspection, for morphological features indicative of the stage. This infor-
mation is then used to select an appropriately stage-matched target ‘standard’ embryo template
from the EMAP Atlas for the annotation. If the data image depicts sectioned material, manual
navigation through the 3D space of the target embryo model is used to find an appropriately
morphologically matched arbitrary section plane. Determination of lateral views of WM speci-
mens, as left- or right-hand side, is assessed by visual inspection and used to select the appropriate
template model view. Subsequently, a bespoke in-house computer program, MAPaint, is used for
data mapping. The process initially requires defining a set of anatomically equivalent points in both
the data image and the template image. These are then used as anchor points in a further process
where the data image is ‘warped’ onto the template embryomodel view using a radial basis function
transformation. Intensity of the signal in the data image is subsequently extracted by manual
selection of a point on the image showing maximal signal intensity and then using an interactive
thresholding procedure to extract the signal from the combined RGB color channels. Up to five
regions of apparent signal intensity can be extracted. These include regions of ‘strongest’, ‘moder-
ate’ and ‘weakest’ apparent signal intensity, regions where there is no apparent signal detected (‘not
detected’), and ‘possible’ where curators cannot confidently assess if the expression is either
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definitively present or absent. These domains are transferred to the template model using the warp
parameters as a spatial guide, saved inWoolz digital image format and then housed in the EMAGE
database (see Fig. 25.3). The color convention we have adopted to depict these regions of apparent
signal intensity on the spatial templates are: red (strong); yellow (moderate); blue (weak); green
(possible); black (detected) and cyan (not detected).

25.5.3.1 Automatic Text Annotation

When 3D (e.g., section) data is spatially mapped into one of the 3D template models that has the 3D
anatomical regions pre-defined, automatic text annotation is given for structures in the ontology

Fig. 25.3 Spatial annotation in EMAGE is achieved by denoting gene expression in morphologically equivalent
regions in the 3D embryo template that corresponds to the data image. This is performed for data that is from either a
sectioned material or from left or right lateral views of intact specimens (Copies of figures including color copies,
where applicable, are available in the accompanying CD)
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where the gene expression domains intersect with each corresponding 3D anatomy region. This is
articulated by denoting expression as ‘present’ in the structure/anatomical term, and also denoting
the percentage of voxels of the underlying anatomy structure, in the regions examined, that show
expression at each level of signal intensity. For example, think of a single section plane through the
embryo that has been spatially annotated and contains 1000 voxels. If this plane intersects with
‘structure X’ (whose TOTAL 3D volume¼ 20,000 voxels) only over a region of 500 voxels, and out
of these 30 have been annotated as having a ‘strong’ signal intensity, then the proportion of
‘structure X’ in this region, that has a signal intensity of ‘strong’, is 30/500 voxels or 6%.

25.6 EMAGE Data Querying

Themodes for accessing EMAGEdata are via a Java client interface,HTMLpages andWeb Services.
All can be accessed via the EMAGE homepage.

25.6.1 Query via Java Client Interface

Screencast movies showing each of the different searches outlined below being performed in the Java
client interface are available on-line from http://genex.hgu.mrc.ac.uk/Emage/database/EMAGE_
Docs/emagePreview.html.

25.6.1.1 Performing Spatial Searches

By selecting the menu option, Central Database>Search, a user can formulate a query such as
‘‘What (genes) are (detected/possibly detected/not detected) in the following (region) at the follow-
ing (Theiler stage) of development?’’ Two separate types of spatial data are housed in EMAGE –
from wholemount embryos and from sectioned material, and for querying purposes these are
treated independently during searches.

This process requires an initial selection of a left-or right-hand view (for wholemount data) or
choosing an arbitrary section plane (for section data), within a template model by the user. The user
subsequently defines a search region in one of the standard embryo models using a painting tool
(search regions are denoted in magenta), and then clicks on ‘Search’. The current underlying search
algorithm, firstly demarcates a local region which will be used for the subsequent spatial comparison,
and is defined as a region 30 voxels/pixels larger (in all directions) from the edges of the query domain.
Subsequently, similarity values are calculated between the query domain (d1) and all the domains (or
parts thereof) (d2) in the database that reside within the comparison region. The calculation is based
on the Jaccard Index (V), which is defined as the ratio of the shared features of the two entities to the
number of all features in both entities i.e., V¼ (d1 \ d2)/(d1 [ d2). (see Fig. 25.4).

Spatial transformations from the right side of each template model and its left side have been
defined, such that, the wholemount data from both sides of an embryo can be returned from a single
spatial search. In addition, further spatial transformations between some template models and their
next most morphologically similar/temporally adjacent template models have been added, such
that, spatial searches across multiple stages of development can be performed. In these cases, the
transformation parameters across the image have been pre-defined, and are based on prior defini-
tion of several anatomically equivalent points between each model. Under these circumstances, the
pre-defined warp parameters are applied to the query region, and then used separately in Jaccard
analyses for each relevant stage that was defined in the query.

In addition, the converse question can be asked: ‘‘What (regions) (express/possibly express/do
not express) the following (genes) at the following (Theiler stage) of development?’’ The user defines
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their gene of interest and subsequently, a list of regions corresponding to the query result are
returned. These are either 2D (wholemount data) or 3D (section data). The 2D results can be
visualized directly in the results interface, and the 3D results (which cannot be visualized in the
search interface) can be downloaded in Woolz image format for visualization in other suitable
standalone software such as MAPaint (details on how to order a CD containing MAPaint) or
JAtlasViewer. Any downloaded domains can also be used as an input domain for a subsequent
spatial based search (as discussed previously) if desired.

In these searches, gene name/symbol synonym searches are supported. This is important as gene
names and symbols may change over time. Official mouse gene names and symbols are decided by
theMouse Gene Nomenclature committee and the information outlining the current approved and

Fig. 25.4 Spatial searches formulated using the EMAGE Java client interface. (a) Wholemount data searching. The
interface, and an illustration of the underlying algorithm are shown with the 8 most similar query results. (b) 3D (section)
data searching (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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withdrawn synonyms, as well as a non-changing ‘gene ID’ is stored in a database held at Mouse
Genome Informatics. This data is utilized in EMAGE gene synonym searches. An example search
containing the withdrawn gene symbol Krox20, would return data for this gene under its approved
symbol Egr2.

25.6.1.2 Performing Text-Based Searches in the EMAGE Java Client Interface

By selecting the menu option, Central Database>Search, a user can formulate a query such as ‘‘What
(genes) are (detected/possibly detected/not detected) in the following (named anatomical components)
at the following (Theiler stage) of development?’’ The user is presented with an hierarchically
organized anatomy-ontology for that Theiler stage of development. The ontology tree can be browsed
for a term by opening the branches, or searched by text for a specific structure. Common synonyms
for anatomical structures (e.g., stomatodaeum¼ stomatodeum¼ stomodaeum¼ stomodeum¼ oral
pit¼mouth pit) are supported in these text searches, and are highlighted in the tree in yellow when
found. Once a term is found, it can be selected (it will be highlighted in magenta) and used for query.
Results are returned as a list of genes with accompanying original data images.

The converse question can also be asked: ‘‘What (named anatomical components) (express/
possibly express/do not express) the following (genes) at the following (Theiler stage) of develop-
ment?’’ The user defines their gene of interest and subsequently, a list of anatomical terms
corresponding to the query result are returned. As discussed previously, gene name/symbol
synonym searching is supported. Because of the hierarchical nature of the ontology, all terms
including and higher than the search term (i.e., superstructures), are returned when querying for
structures expressing a gene, and all terms including and lower than the search term (i.e., sub-
structures), are returned when querying for structures that do not express the gene. For example, if
a gene is expressed in the ‘foot’, by definition, it is also expressed in the ‘limb’. Conversely, if a gene
is not expressed anywhere in the ‘limb’, by definition, it is not expressed in the ‘foot’ either. All
EMAGE text searches retrieve data that has been either manually or automatically text annotated.

25.6.2 Query via HTML

EMAGE data is also accessible via a standard HTML web browser. Current search capabilities
allow listing of all data entries in a tabular format, sorting of the various columns and performing
simple text-based searches of the data values in the following columns: ID; Gene symbol (synonym
searching is supported); Probe ID; Theiler Stage; Alternate Staging system value; Assay type (ISH/
IHC/reporter); Specimen Type (wholemount/section); genotype (wild type/mutant). A thumbnail
of the original data image is always shown (see Fig. 25.5).

Current re-factoring will move the Java Interface search capabilities, discussed previously, into a
HTML-based web-browser interface in the near future. Under these circumstances, results will be
returned in the same HTML list format as mentioned above. The capability to select one or more
entries in these HTML lists and create a ‘collection’ will also be added (achieved by the use of
cookies). The contents of the multiple ‘collections’ can then be compared for commonalities or
differences, allowing Boolean-type searches. For example, if one wants to ask the question: ‘‘What
genes are expressed in region X but not in the named anatomical structure Y?’’, this can achieved by
performing the two searches ‘‘What genes are expressed in region X?’’ and ‘‘What gene are not
expressed in the named anatomical structure Y?’’, independently and then finding the intersection
of the two query result collections.

EMAGE data can also be accessed in HTML format from an Ensembl mouse Gene Report, via
a distributed annotation system (DAS) server. In such cases, EMAGE is listed amongst the DAS
sources for a mouse gene, and when selected, the results in EMAGE for that gene are displayed,
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including the gene symbol and Theiler stages and the numbers of tissues in which expression
annotations are present. Reciprocal links lead from EMAGE HTML entries to the relevant
mouse gene entries in Ensembl. The number and type links from EMAGE HTML pages to other
databases will be increasing over time.

25.6.3 Query via Web Services

Web services are a way to access the EMAGE database (server), over the internet, using a software
client. The interface to the web services is described by WSDL, a language that defines the services
provided and the data structures involved. Programmers can use the WSDL description to design
client software that makes requests to EMAGE and processes the results that are returned. The
EMAGE database uses Apache Axis to deliver its web services.

25.6.4 Comparison Between Patterns in the Database for Spatial Similarity

We have developed procedures to mine the data housed in EMAGE, to find examples of images of
gene expression displaying overall spatial similarities. In these analyses, whole patterns housed in
the database are compared for similarities with all the other whole patterns that have been spatially

Fig. 25.5 The HTML client interface for EMAGE data browsing. Simple text searches and sorting of the data by
columns is supported (Copies of figures including color copies, where applicable, are available in the accompanying
CD)
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annotated to the same embryo model. This is achieved by calculating Jaccard similarity scores (as
described previously) between all possible pairs of patterns in the database to give a matrix of
numerical values that represents the spatial similarity of every pattern to all others in the data-set.
Subsequent hierarchical clustering of these Jaccard values and visualization using an open source
software that was originally developed for analysis of microarray data i.e., Cluster and TreeView,
can be used to segregate patterns into groups that have overall similar values of spatial overlap with
all the other patterns in the data set. Heat maps depicting the common regions of signal from
constituent images on each branch can be generated to give a visual feedback to the user (see Fig.
25.6). In this manner, gene expression patterns that have overall global spatial similarities can be
identified from large numbers of images.

Fig. 25.6 An example of
data mining spatially-
mapped biological data.
(A) Three examples of
spatially annotated TS18
gene expression data in
EMAGE. (B) An
illustration of the spatial
comparison calculations
between these three patterns
using the Jaccard Index.
(C) 101 TS18 spatially
annotated patterns have
been compared using the
Jaccard Index in a pair-wise
manner and the results
hierarchically clustered. The
method segregates the 101
gene expression patterns
into smaller groups that
display spatial similarities.
10 different branches of the
tree with accompanying heat
maps are shown. The heat
maps show yellow regions in
the embryo that correspond
to regions of gene expression
from the contributing
images on each branch
(Copies of figures including
color copies, where
applicable, are available in
the accompanying CD)
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Hierarchical clustering analyses of EMAGE data is currently performed offline and the pre-
canned result files are made available through the EMAGE website, however these search cap-
abilities will be moved to an interactive web-accessible format in the future.

25.6.5 Future Developments in EMAGE

EMAGEwill continue to acquire and spatially annotate gene expression patterns in the developing
mouse embryo. This includes data from the literature as well as data acquired from large scale
screening projects. Planned developments apart from those discussed in the text, include the release
of all data images prior to spatial annotation, and the inclusion of full 3D data images that are
derived from stained whole mount embryos imaged using Optical Projection Tomography (OPT).
A mailing list is used to announce major updates or a news release. Send emails requesting to join
the list to MA-EMAGE-request@jiscmail.ac.uk.

25.7 Perspective

Spatial-based data storage and query methods can allow for searching of large numbers of images
of biological specimens for similarities or differences in staining patterns. This approach does not
require an intermediate ‘deconstruction’ step where the image is described using a text-based
language and importantly, allows for data access to users who are not, or who are only partially
familiar with anatomy and its associated nomenclature. While the focus of this chapter has been on
images depicting gene expression patterns in situ, the approaches discussed can be applied to any
other in situ image-based data, for e.g., staining for cell death, cell division etc. As spatial annota-
tion procedures are capable of being automated, the use of this approach in annotation of image-
based biological data will increase over time. This will allow a powerful new approach for data
analysis that is independent of the traditional text language-based anatomical descriptions.

Glossary and Abbreviations

DAS Distributed annotation server
DNA Deoxyribonucleic acid
HTML Hypertext mark-up language
IHC Immunohistochemistry
ISH In situ hybridization
MeSH Medical subject headings
MRNA Messenger RNA
MS Mass spectrometry
OPT Optical projection tomography
RGB Red-green-blue
RNA Ribonucleic acid
SAGE Serial analysis of gene expression
SOAP Simple object access protocol
TS Theiler stage
WSDL Web service definition language
XML Extensible mark-up language

25 EMAGE Spatial Database 483



References

1. Bard, JB. Anatomics: the intersection of anatomy and bioinformatics. J Anat 2005;206(1):1–16.
2. Davidson, D, Baldock, R. Bioinformatics beyond sequence: mapping gene function in the embryo.NatRevGenet

2001;2(6):409–417.
3. Baldock, RA, Bard, JB, Burger, A, et al. EMAP andEMAGE: a framework for understanding spatially organized

data. Neuroinformatics 2003;1(4):309–325.
4. Sunkin, SM. Towards the integration of spatially and temporally resolved murine gene expression databases.

Trends Genet 2006;22(4):211–217.
5. Wilkinson DG, Nieto, MA. Detection of messenger RNA by in situ hybridization to tissue sections and whole

mounts. Methods Enzymol 1993;225:361–373.
6. Hsu, SM. Immunohistochemistry. Methods Enzymol 1990;184:357–363.
7. Theiler, K. The House Mouse: Atlas of Embryonic Development. New York: Springer-Verlag; 1989.

Web Resources

http://www.eurexpress.org/
http://www.stjudebgem.org/web/mainPage/mainPage.php/
http://www.gensat.org/
http://www.gudmap.org/
http://www.genepaint.org/
http://www.brain-map.org/
http://www.proteinatlas.org/
http://www.nlm.nih.gov/mesh/
http://www.informatics.jax.org/
http://www.zfin.org/
http://www.xenbase.org/
http://www.wormbase.org/
http://www.flybase.bio.indiana.edu/
http://www.euregena.org/
http://www.ani.embl.de:8080/mepd/
http://www.geisha.arizona.edu/
http://www.informatics.jax.org/mgihome/GXD/aboutGXD.sthml/
http://www.genex.hgu.mrc.ac.uk/Emage/database/
http://www.genex.hgu.mrc.ac.uk/Emage/database/EMAGE-Docs/emagepreview.html/
http://www.genex.hgu.mrc.ac.uk/MouseAtlasCD/intro.html/
http://www.genex.hgu.mrc.ac.uk/Software/JavaTools/JAtlasViewer/intro.html/
http://www.biodas.org/
http://www.w3.org/TR/wsdl/
http://www.ws.apache.org/axis/
http://www.bonsai.ims-u-tokyo.ac.jp/�mdehoon/software/cluster/
http://www.jtreeview.sourceforge.net/
http://www.genex.hgu.mrc.ac.uk/Emage/cluster-analysis/
http://www.bioptonics.com/

484 J.H. Christiansen et al.



Chapter 26

Equality of the Sexes? Parent-of-Origin Effects

on Transcription and de novo Mutations*

Rivka L. Glaser and Ian M. Morison

Abstract Two main categories of the parent-of-origin effects are reviewed in this chapter:
parent-of-origin effects on transcription, or genomic imprinting, and parent-of-origin effects on
the development of de novo mutations. Each type of parent-of-origin effect is described, and
the mechanisms that contribute to each discussed. The parent-of-origin effect database provides
a catalog reports of genomic imprinting and related effects as well as reports of the parental origin
of spontaneous mutations. This database provides a useful tool for finding genes, diseases, or traits
that exhibit a parent-of-origin effect in humans and animals, conducting comparative analyses of
the imprinted genes among different species, and examining the role of parent-of-origin effects for
different types of spontaneous mutations in human genes.

Keywords Parental origin � Genomic imprinting � de novo mutations � Transcription

26.1 Introduction to the Range of Parent-of-Origin Effects

The term ‘‘parent-of-origin effects’’ describes two distinct phenomena: parent-of-origin effects on
transcription and parent-of-origin effects on the development of spontaneous, or de novo, muta-
tions. Parent-of-origin effects on transcription, also known as genomic imprinting, refer to unequal
expression of parental alleles. For most genes, transcription occurs from both the alleles equally;
however, for imprinted genes in mammals, one copy is exclusively or preferentially expressed.
Expression from an allele is dependent upon the sex of the parent from which it was inherited. This
phenomenon is caused by epigenetic modifications of the genome, not by changes to the sequence of
the genome [1, 2].

Parent-of-origin effects on mutations refer to the preferential occurrence of some de novo
mutations in either the paternal or maternal germline (Fig. 26.1). For example, base substitutions
are more likely to be paternal in origin, whereas chromosomal abnormalities, such as trisomies, are
more likely to be maternal in origin [3, 4]. The mechanisms that give rise to these types of
spontaneous mutations differ depending upon the parental germline in which the mutation has
occurred. Base substitutions caused by errors during DNA replication tend to be paternal in origin
due to the greater number of cell divisions in spermatogenesis compared to oogenesis. Trisomies are
mainly caused by maternal non-disjunction errors in meiosis. During oogenesis, oocytes are
arrested in prophase of meiosis I until females reach sexual maturity, when one oocyte per month

* Portions of this chapter are reproduced with some modification from R. L. Glaser, E. W. Jabs, Dear Old Dad. Sci.
Aging Knowl. Environ. 2004 (3), re1 (2004).
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is selected to resume the cell cycle. It is thought that the longer the oocytes are arrested in this phase
of meiosis, the greater the chance for a non-disjunction event to occur [4]. Older parental age can
influence the development of some types of mutations. When advanced paternal or maternal age is
associated with the development of mutations, and therefore the development of genetic disorders,
this phenomenon is referred to as the paternal or maternal age effect, respectively.

Both types of parent-of-origin effects play important roles in the inheritance of certain pheno-
types in humans, mice, and other animals. Imprinted genes have been implicated in human
disorders such as Prader-Willi, Angelman, and Beckwith-Weidemann syndromes [5–7], growth
and maternal behavior in mice [8], and the callipyge ‘‘beautiful buttock’’ phenotype in sheep [9].
These phenotypes exhibit parent-of-origin effects since they only occur if there is loss of function of
the expressing parental allele; deletion or mutation of the silent allele has no effect. Certain human
genetic disorders such as achondroplasia [10] and Apert [11], Crouzon, and Pfeiffer syndromes [12]
are caused by paternally-derived base substitutions and exhibit a paternal age effect, whereas Down
syndrome and other trisomies are mainly caused by maternally-derived non-disjunction errors and
exhibit a maternal age effect [13].

26.1.1 The Parent-of-Origin Effects Database (www.otago.ac.nz/IGC)

The first catalogue of parent-of-origin effects was published in 1998 and it contained comprehen-
sive lists of parent-of-origin effects on transcription in humans, mice, and other animals [14]. This
published catalogue served as the basis for amore complete, searchable, online database, which was
made publicly available in 1999. The original database included information on 41 imprinted genes
and other parent-of-origin effects [15]. A comprehensive summary of the imprinting section was
published in 2005 [16]. In 2006, a section on parent-of-origin effects on de novo mutations was
added to the database [17]. Originally known as ‘The imprinted gene and parent-of-origin effect
database’ or ‘Imprinted Gene Catalogue’, the database has been renamed to ‘The catalogue of
parent-of-origin effects’. The database provides unrestricted online access to this collation of
parent-of-origin effects. Each section provides customizable searches and lists or tables of the
parent-of-origin effects of interest.

26.1.1.1 Introduction to the Imprinted Gene and Related Effects Catalogue

The genomic imprinting section of the database includes a wide variety of observations from
animals. The user can search for entries according to taxon, chromosome, gene name, a text

Fig. 26.1 Parent-of-origin
effects for different
mutation types (Copies of
figures including color
copies, where applicable, are
available in the
accompanying CD)
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word from the description, and the category of entry (see below). The search results are displayed as
a list of separate entries each of which, includes the taxon, chromosome, location, the gene name
(or phenotype), a description of the parent-of-origin effect including PubMed links, the category of
the entry and external links (most commonly to NCBI Gene or OMIM). The type and quality of
evidence for the presence of genomic imprinting varies enormously, from well documented gene
expression data showing parent-of-origin specific expression to poorly substantiated hypotheses
regarding the possibility of imprinting for a specific phenotype.

The entries are divided into four main categories. The first category of entries describes genes for
which genomic imprinting has been reported (182 entries). These entries include observations from
human, mouse, sheep, cow, pig, rat, rabbit, and marsupial. To be included within the imprinted
gene category, there has to be reasonable evidence of parental-specific imbalanced allelic expression
from a specific gene transcript, but for some of the entries provisional or conflicting data are noted.

The second category includes ‘parental effects’ not covered in other categories and includes
214 entries. Most of these are descriptions of human and animal diseases or traits for which a
parent-of-origin effect has been reported.

The third category of entries describes the uni-parental disomies (UPD) and includes 32 entries
from human and mouse. The usual state of any pair of chromosomes in a mammal is bi-parental
heterodisomy, i.e., two different chromosomes, one from each parent. Rarely in humans, and
experimentally in mice, an offspring inherits both copies of a chromosome from one parent
(i.e., UPD). The occurrence of a consequent phenotype suggests that the two parental chromo-
somes provide an unequal genetic contribution to the offspring, often indicating the presence of
imprinted genes within the region.

The fourth category, designated as ‘others’ (118 entries), includes a wide variety of records such
as disputed observations, hypotheses, and the location of orthologs in taxons for which a gene is not
imprinted or where the imprinting status is unknown.

26.1.1.2 Introduction to the Parental Origin of De Novo Mutations Catalogue

This part of the database allows the user to search the entries in the catalogue according to the
mutation type, disorder, chromosomal location, gene name, and inheritance pattern. Each entry in
the database is hyperlinked to the relevant references in PubMed andOnlineMendelian Inheritance
in Man (OMIM). For example, if the user wanted to search the database for all reported cases of a
parental origin for any base substitution (missense, nonsense, splice site mutations), the user would
select ‘‘P’’ from the drop down menu for mutation type on the main search page (Fig. 26.2). The
outcome of the search is presented in a table format, as shown in Fig. 26.3. Each entry is specific for
one type of base substitution (missense, nonsense, or splice site). As some more current articles
include a review of cases in the literature which may already be catalogued in the database,
references are cross checkedwith information already in the database, in order to avoid cataloguing
a mutation more than once. Other information included in the returned search is the disorder in
which the mutations were found, inheritance pattern and incidence of the disorders, gene name,
chromosomal location, evidence of a paternal or maternal age effect, recurrent mutations that have
been found, number of paternal and maternal mutations, and the PubMed reference. In the case of
base substitutions, data are further separated according to whether the mutation is a transition or
transversion mutation, and whether the base substitution occurs within a CpG dinucleotide.

As shown in Fig. 26.3, a total of 11 paternally-derived base substitutions and no maternally-
derived base substitutions have been reported for Crouzon syndrome. The three separate entries for
this disorder show the user that four of the 11 mutations are transition missense mutations, five are
transversion missense mutations, and two are transition splice-site mutations. The two transition
splice-site mutations are recurrent mutations (A344A (G>A)). In achondroplasia, 40 paternally-
derived missense mutations have been reported. No maternally-derived missense mutations have
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been reported for this disorder. The 40 reported mutations are comprised of both transition and
transversion mutations. Achondroplasia is an excellent example of a disorder caused by recurrent
mutations. As is shown in this entry, the 40 cases are caused by two recurrent missense mutations
(G380R (G>A) and G380R (G>C)) in the FGFR3 gene.

For deletions and insertions, the distinction is made between large deletions and insertions
(>20 base pairs) and small deletions and insertions (< 20 base pairs). This size distinction is based
upon the possibility of different mechanisms contributing to these different types of mutations, and
therefore potentially different parental origins [3]. In general, large deletions do not appear to have
a parent-of-origin effect, whereas small deletions are more often paternal in origin.

Currently, approximately 1800 mutations with a parent-of-origin effect found in 65 different
disorders are catalogued in this database. Large deletions comprise the largest category in this

Fig. 26.3 A portion of the
returned search for all points
mutations (Copies of figures
including color copies,
where applicable, are
available in the
accompanying CD)

Fig. 26.2 The main search menu for the parental origin of de novomutations catalogue. Any point mutation (P) was
selected as the search criterion from the drop downmenu for mutation type (Copies of figures including color copies,
where applicable, are available in the accompanying CD)
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database, with approximately 900mutations catalogued. Base substitutions form the second largest
category in the database, with approximately 500 mutations. Trisomies, other aneuploidies, and
polyploidies are not currently catalogued in the database.

26.1.2 Other Imprinting and Parent-of-Origin Websites

Two other databases provide specific information about the imprinted genes. The Mammalian
Genetics Unit at the Medical Research Council in Harwell, United Kingdom provides an excellent
resource for mouse imprinting. It contains maps, data, and references relating to the location and
function of imprinted genes in the mouse, along with descriptions of chromosome regions with
imprinted phenotypes. Geneimprint, from the laboratory of Dr. R.L. Jirtle at Duke University in
North Carolina, USA, provides well referenced commentary on the evolution, mechanisms and
consequences of genomic imprinting.

In 2003, a list of 2100 candidate imprinted genes was published [18]. The data are available from
CITE: Candidate Imprinted Transcript from gene Expression. However, our analysis of the genes
within the list, focusing on those in mouse chromosome 7, revealed no enrichment of known
imprinted genes [16]. The number of imprinted genes identified, by screening for differences in
expression between parthenogenetic and androgenetic mouse embryos, was nomore than would be
expected by chance. Thus, it seems likely that the majority of candidate genes on this site do not
reflect previously undetected imprinted genes.

26.2 Imprinting Effects

Imprinted genes are those genes for which the relative expression level of a parental allele is dependent
upon the sex of the parent fromwhich that allele was inherited. The ‘strength’ of the imprinting effect
varies. For some imprinted genes, one parental allele is completely silenced in all tissues. For example,
the SNRPN transcript is maternally silenced and paternally expressed in all expressing tissues. Other
genes show weaker imprinting effects that are limited to specific tissues. For example, Cd81 shows
relative repression of the paternal allele, and only in extra-embryonic tissues.

The parental effect that establishes an imprinted locus is a ‘mark’ in an imprint control region
(ICR) [19], or an imprint control element (ICE) [20]. Imprint control regions consists of differen-
tially methylated domains (DMD) that are established during gametogenesis. The methylation
marks that constitute the imprint control regions, usually exert primary regulatory control over one
transcript, and subsequently through a variety of mechanisms bring about ‘secondary imprinting’
of a variable number of adjacent genes [19]. For example, at themouse Igf2r locus, the ICR controls
the imprinted expression of theAir transcript, whereas Igf2r, Slc22a2 and Slc222 a3 are secondarily
imprinted through mechanisms that remain incompletely understood [21]. When considering the
properties of imprinted genes and their adjacent sequences, it is important to distinguish those
genes which are primarily imprinted from those which are secondarily imprinted. An example of a
small but useful analysis is provided by Paoloni-Giacobino et al [22], who usefully compared the
DMDs from three ICRs to determine features that are shared in common.

26.2.1 Summary of Known Imprinted Genes

At the time of this writing, 101 transcriptional units (TU) in human, mouse, rat, cow, sheep, pig,
rabbit, andmarsupial were considered to be imprinted. Because of the presence ofmultiple-imprinted
elements within single transcripts, we have used the TU concept when collating imprinted ‘genes’.
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ATUhas been defined as a group of transcripts that contain a common core of genetic information
having the same orientation, which does not necessarily correspond to protein-coding regions [23].
In addition to the 101 imprinted TUs, a further 12 TUs have provisional or conflicting
data regarding their imprinting status. Apart from one example, BEGAIN, for which imprinting
has only been reported in sheep, all the reported imprinted transcripts are represented by human
or mouse orthologs. In mouse, 84 imprinted TUs have been reported whereas 50 have been
reported for human, 11 for sheep, 8 for cow, and 5 each for pig, rat, and marsupial, and 1 for
rabbit (Fig. 26.4).

In rodent extra-embryonic tissues such as the placenta [24] and in all female marsupial tissues
[25], the paternal X chromosome is preferentially inactivated. Since several hundred X chromo-
some genes are therefore expressed in a parent-of-origin specific manner, it is reasonable to
consider that these genes are imprinted. Although other secondarily imprinted genes, such as the
genes surrounding Kcnq1ot1, are included in the lists of imprinted autosomal genes, traditionally
Xist and Tsix, that control X-inactivation, are the only X chromosome genes that are listed to
represent imprinted X-inactivation.

26.2.2 Imprinted Genes are Usually Clustered

The vast majority of mammalian imprinted genes aggregate together in clusters; 81 of the 101 TUs,
being found within 16 clusters (Table 26.1). Indeed, about half [52] of the imprinted TUs are located
within 5 clusters, these being the Kcnq1ot1/Cdkn1c cluster at mouse chromosome 7 F5 (human
11p15), the Snrpn cluster at mouse 7 B5 (human 15q11), the Dlk1 cluster at 12 F1 (human 14q32),
the Peg3 cluster at 7 A2 (human 19q13) and the Peg10 cluster at 6 A1 (human 7q21).

Eighteen imprinted genes appear to exist as singletons. Interestingly, seven (39%) of these genes
are reported to have discordant imprinting status between mouse and human (AMPD3, DHCR7,
DCN, GATM, IMPACT, HTR2A, L3mbtl), compared to seven (9%) discordances among the
82 clustered genes. For some of these singleton genes, independent confirmation of imprinting and
more data about adjacent and overlapping genes would be desirable before concluding that these
genes are indeed imprinted and, if so, not clustered.

Fig. 26.4 Frequency of reported imprinted transcriptional units by taxon (Copies of figures including color copies,
where applicable, are available in the accompanying CD)
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26.2.3 Mechanisms of Imprinting

The mechanisms by which the parental imprints are mediated into patterns of allelic expression
differ. When a gene promoter includes a differentially methylated CpG island, the transcript is
silenced on the methylated allele. Methylated DNA then recruits methyl-DNA binding domain
proteins, which subsequently recruit histone modifying enzymes that result in repressive histone
structures, compact chromatin, and gene silencing.

For many imprinted regions, the primarily imprinted transcript subsequently induces imprinting
of adjacent genes. Examples include the non-coding transcripts Air and Kcnq1ot1. In mouse, the
Air transcript itself, or the act of transcribing Air, silences the expression of Igf2r, Scl22a2 and
Slc22a3 in cis, i.e., on the paternal allele. In contrast, methylation-induced silencing of Air is
associated with the expression of these three protein-encoding genes in cis. The mechanism by
which transcription of Air silences the three adjacent genes is unclear, but sense/antisense tran-
scriptional overlap can be excluded as the mechanism since Air does not overlap Slc22a2 and
Slc22a3. It has been proposed that the action of transcription interacts with a long-range cis-acting
domain regulator [21,26]. Similarly, in mouse, transcription of the paternally-inherited allele of
Kcnq1ot1, a non-coding RNA, results in the suppression of multiple protein-coding RNA tran-
scripts. Suppression is associated with the acquisition of repressive histone modifications through-
out the imprinted domain, but is also influenced by DNA methylation [27,28].

Antisense interference may be the mechanism by whichUBE3A is imprinted. The long SNURF/
SNRPN transcript extends formore than 460 kb to becomeUBE3A-antisense. Although it has been
assumed that overlap from the SNURF/SNRPN transcript interferes with UBE3A transcription,
this mechanism has not been proven and other plausible models exist [29].

Some ICRs mediate their imprinting effects via the binding of the insulator protein CTCF.
Indeed, the differentially methylated ICR, upstream ofH19 contains multiple CTCF binding sites.
Methylation on the paternal allele is not only associated with suppression ofH19 expression, but it
also inhibits the binding of the insulator protein CTCF to its target site as well. Consequently,
the absence of bound CTCF allows distant enhancers to access the paternal IGF2 promoters.
Conversely, the absence of methylation on the maternal allele allows CTCF to bind and exert its
insulator activity, placing IGF2 in an inaccessible chromatin loop [30].

Table 26.1 The majority of imprinted transcriptional units are located within 16 clusters (parentheses indicate
clusters that are not imprinted)

Mouse location Human location Number of TUs Representative gene

7 F5 11p15 15 CDKN1C

7 B5 15q11 13 SNRPN

12 F1 14q32 10 DLK1

7 A2 19q13 7 PEG3

6 A1 7q21 6 PEG10

6 A3 7q32 6 MEST

17 A1 (6q25) 4 Igf2r

7 F5 11p15 4 IGF2

X A7 (X) 3 Xlr3b

11 A3 (2p15) 2 Commd1

10 A1 6q24 2 PLAGL1

(2 E) 11p13 2 WT1

9 E3 (15q24) 2 Rasgrf1

2 G3 20q11 2 MCTS2

2 E1 20q13 2 GNAS

X D (X) 2 Xist

Total 81

(Copies of tables are available in the accompanying CD.)
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26.2.4 Imprinted Non-coding RNAs

Twenty-seven of the 101 imprinted TUs are non-coding RNAs. These non-coding RNAs include
antisense transcripts, small nucleolar RNAs (snoRNAs), microRNAs, pseudo-genes, and other
RNAs of unknown function. Nine imprinted non-coding genes appear to have a role in regulating
the imprinting of adjacent protein-coding genes in cis. Five of these genes express overlapping
antisense transcripts [Air, KCNQ1OT1, UBE3A-AS, SANG, Tsix], whereas in three, the regulatory
effect occurs in cis from a distance [H19, MEG3, Xist] [31]. The maternally-expressed anti-Rtl1
RNAplays a role in post-transcriptional regulation of paternally expressedRtl1RNA [PEG11], via
miRNAs that are processed from the anti-Rtl1 transcript. These miRNAs regulate Rtl1 in trans by
guiding the RNA-induced silencing complex (RISC)-mediated cleavage of its mRNA [32]. In
addition, there are six non-coding antisense RNA transcripts that are paired with the imprinted
sense protein-coding transcripts, for which an imprint control function has yet to be determined
[MESTIT1, COPG2IT1, IGF2AS, WT1AS, Zfp127as [antisense to Mkrn3], AK014392 [antisense
to Ndn]).

Small nucleolar (snoRNA) and microRNAs (miRNA) are commonly found within the
imprinted transcripts. The extended human SNURF/SNRPN transcript is host to seven snoRNAs
(four in mouse), the loss of some of which are believed to play a role in the pathogenesis of Prader-
Willi syndrome [33]. Similarly, the mouse Rian transcript hosts seven snoRNAs that are expressed
in the brain, but whose function is not known. Fourteen imprinted miRNAs have been reported
within the three transcripts,H19, anti-Rtl1, andMirg. As noted above, the miRNAs derived from
anti-Rtl1 guide RISC-mediated degradation of Rtl1 [32], and the miRNAs within the Mirg
transcript are thought to play a undefined role in mouse development [34]. The role of miR-625,
derived from the highly abundant H19 transcript, also remains to be established [35].

Twelve other non-coding RNAs have been reported. These include:MEG3/Gtl2,whose putative
structure and function has been compared to H19; Pec2, Pec3 and PWRN1 from the mouse and
human Prader-Willi locus; ITUP1 which is upstream of, and oppositely oriented to, PEG3; Zim3
and Zfp264 which are both pseudogenes; HYMAI a transcript that overlaps PLAGL1 in the same
orientation; Dlk downstream transcripts; 4930524O08Rik [A19]; Peg13; and INPP5F_V2.

26.2.5 Comparative Imprinting Data and Analysis

The database provides a useful starting point for comparative analysis of imprinted genes. Such an
analysis can be used to document the evolutionary history of an imprinted gene, or to explore the
mechanism of the imprint. For example, a search for IGF2 reveals the presence of imprinting in
human, mouse, rat, cow, sheep, pig and marsupials, but not in monotremes, birds or fish,
supporting the onset of IGF2 imprinting in therian mammals [36]. Similarly, a search for IGF2R
reveals the timing of evolutionary gain and loss of imprinting. It is imprinted in mouse, rat, cow,
pig, sheep, and marsupials but not in monotremes, nor in euarchonta (tree shrew, flying lemur and
human) [37]. In another example, the comparison of the imprinting status of the murine and human
copper metabolism gene, Commd1, indicates that imprinting was acquired sometime after diver-
gence of human and mouse. Commd1 became imprinted in mouse after the insertion, by retro-
transposition, of Zrsr1 [U2af1-rs1] into its first intron [38].

26.2.6 Conflicting Data

The database attempts to be inclusive rather than selective. The types of evidences that are used to
judge whether a gene is imprinted vary enormously. For some transcripts, there are multiple
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independent reports showing exclusive expression of one parentally-derived allele in virtually all
tissues at all developmental stages, whereas for other transcripts there may be a single report showing
biased expression in a single tissue. Conflicting observations are noted when they are recognized.

There are now many imprinted genes for which early reports of imprinting were probably
incorrect. These include: human MAS1, mouse Mas1, human COPG2, human HTR2A, mouse
Ins1, human TRPM5, human SDHD, mouse Pira and Pirb, and mouse Mkrn1-ps1. For each of
these genes, the database discusses the basis for the early reports and subsequent evidence for lack
of imprinting. For several other genes, there is an ongoing debate about the imprinting status.
These include: human IGF2R, human GABA-A receptor subunit genes, mouse Atp10a, and
human WT1.

Human IGF2R has been reported to be polymorphically imprinted by some groups [39,40],
whereas other groups have found no evidence for its imprinting [41]. However human IGF2R
maintains a differentially methylated region, and it has been speculated that the strong CpG island
in intron 2 might allow the possibility of expression of a human IGF2R antisense [AIR] transcript
(and thus IGF2R imprinting) in some situations [42].

The GABA-A receptor subunit genes were reported to be expressed in mouse A9 hybrids
containing a single human paternal chromosome 15, but not in cells containing a maternal
chromosome 15, leading to the conclusion that human GABRB3, GABRA5, GABRG3 are
imprinted and are exclusively paternally expressed [43]. Comparison of expression levels between
lymphoblastoid cell lines derived from the Prader-Willi syndrome cases, with paternal deletions or
maternal uni-parental disomy, led to the conclusion that GABRA5 and GABRB3 showed higher
expression levels from the paternal allele [44]. However, expression data from the mouse brain
provides no evidence for imprinting of Gabrb3, Gabra5, or Gabrg3 [45], but in the heterozygous
Gabrb3 knockout mice, some phenotypes were associated with the parent-of-origin of the deletion,
suggesting partial genomic imprinting [46].

MouseAtp10awas reported to be predominantly expressed from thematernal allele in the brain,
but others have reported that Atp10a is bi-allelically expressed in multiple tissues including the
brain. It was suggested that imprinting may be strain-background dependent [47].

Polymorphic mono-allelic expression of the major transcript of human WT1 has been reported
in placental villous samples, preterm placentas, and in fetal brains (maternal expression was
demonstrated in three of the placentas) [48,49]. In contrast, exclusive paternal expression of WT1
was also shown in cultured fibroblasts and non-cultured lymphocytes from two of seven individuals
[50]. Fetal kidney WT1 showed no imprinting. However, the reported imprinting of an alternative
WT1 transcript and of an antisense transcript, suggest that some transcripts within the locus are
imprinted [51].

For many other genes the evidence for imprinting should be regarded with caution, usually
because of a combination of factors such as: a small number of cases studied; evidence derived solely
from mono-chromosomal hybrids; the gene not being in a known imprinted cluster; or an ortholog
not being imprinted. Examples of these genes include human ZNF215, CTNNA3, TCEB3C, PON1,
SLC22A1LS, ZNF331 and mouse Pon2, Pon3, AK014392 [Ndn-as] and F7. Many non-imprinted
gene transcripts show allelic imbalance [52] and the chance, for example, of 5 samples all showing
repression of either the maternally or paternally-inherited allele is disturbingly high (12.5%).

26.3 Uni-parental Disomy

26.3.1 Human Uni-parental Disomy

Recognition that human genes were imprinted came from early observations of uni-parental
disomy, the situation in which both copies of a chromosome are derived from a single parent
[53]. For example, the observation that Prader-Willi syndrome occurs when a child inherites both
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copies of chromosome 15 from the mother, indicated that the respective parental copies of some
chromosomes are not equivalent [54]. Uni-parental disomies that cause disease through the loss of
gene expression or a doubling of gene expression are now recognized to cause at least seven
developmental syndromes or diseases (Table 26.2).

26.3.2 Mouse Uni-parental Disomy

In mice, Robertsonian and reciprocal translocations have been used to generate uni-parental
disomies and uni-parental duplications of whole or selected chromosomal regions, respectively
[55]. Abnormally imprinted phenotypes, including growth abnormalities, lethality, and behavioral
changes, have been detected for 15 regions of maternal or paternal duplication [56]. For each of
these regions, except the central chromosome 12, one ormore imprinted genes have beenmapped to
the region of interest.

Some of the disomic mouse phenotypes correspond to those observed in human. For example,
maternal disomy of central chromosome 11, a region that includes Grb10, causes fetal growth
retardation in mice, comparable to the intra-uterine growth restriction observed in children who
have maternal disomy of 7p, that contains human GRB10. However, in general, the lethality
associated with most of the disomic mouse models precludes comparison with human
phenotypes.

26.4 Parental Effects in Genetic Linkage

26.4.1 Inheritance Patterns of Human Familial Conditions

A few of the imprinted genes have been discovered through study of loci that show parental effects
on the transmission of inherited diseases or traits. For example, the rare familial cases of Beckwith-
Wiedemann syndrome indicate that transmission almost always occurs maternally [57]. The
phenotype of Albright hereditary osteodystrophy (AHO) depends on the sex of the parent trans-
mitting the GNAS mutation; when inherited maternally, the phenotype includes end organ resis-
tance to various hormones including the parathyroid (pseudo-hypoparathyroidism type 1a), but
when the paternally transmitted offspring have the physical features of AHO but lacked hormone
resistance (pseudopseudo-hypoparathyroidism) [58]. Familial paragangliomas type 1 (glomus
tumors), provides an example of when inheritance patterns can be misleading. These tumors are
always paternally inherited, suggesting that the mutated gene, SDHD on 11q23, was imprinted

Table 26.2 Human developmental imprinting syndromes associated with uni-parental disomy

Phenotype Location Gene

Beckwith-Wiedemann syndrome Paternal UPD 11p15 Double dose IGF2, loss of CDKN1C

Prader-Willi syndrome Maternal UPD 15q11-q12 Loss of SNURF-SNRPN transcript

Angelman syndrome Paternal UPD 15q11-q12 Loss of UBE3A expression

Silver-Russell syndrome Maternal UPD 7p11-p13, 7q Double dose of maternal growth repressor

Transient neonatal diabetes mellitus Paternal UPD 6q24 Double dose of PLAGL1

Maternal UPD 14 syndrome 14 Unknown

Paternal UPD 14 syndrome 14 Unknown

MaternalUPD 16 syndrome (possible) 16 Unknown

MaternalUPD 20 syndrome (possible) 20 Unknown

(Copies of tables are available in the accompanying CD.)
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[59, 60]. However, the results of subsequent studies have implied that the apparent imprinting of
SDHD is attributable to the need to delete a maternally expressed tumor suppressor gene elsewhere
on chromosome 11 [61].

26.4.2 Parental Effects and Quantitative Traits

In humans and in livestock, there is considerable interest in the incorporation of parent-of-origin effects
in models of genetically-complex diseases and quantitative trait loci (QTL) linkage analysis. When
imprinted genes contribute to phenotypes, the power of tests for linkage can be enhanced if imprinting
models are included (for example see [62]). In humans, parent-of-origin linkage analysis has detected
putative imprinted loci involved in obesity, alcoholism, bipolar affective disorder, autism, type II
diabetes mellitus, and others. If imprinted genes are indeed involved in genetically complex disorders,
models that incorporate parent-of-origin effects may need to be used to unravel these conditions.

In pig, 63 QTLs, some of which overlap, have been reported to show parental effects. Of
particular interest is a QTL for lean meat that has been attributed to a nucleotide substitution in
intron 3 of IGF2, a known imprinted gene. Many of the other QTLs with parent-of-origin effects
may, however, reflect false discovery, a common problem for genome-wide association studies [63].
This assumption is supported by the reporting of QTLs with parent-of-origin effects in chickens
[64, 65], a species that does not appear to exhibit genomic imprinting, and would not be expected to
show parental effects. As for complex human diseases, the incorporation of imprinting models into
animal QTL analysis is an important component for discovery of genetic association [66, 67].

26.4.3 Animal Phenotypes

It has been known for amillennia that the breeding of mules requires the correct parent-of-origin in
the horse-donkey cross. A mule is produced when a female horse is mated with a male donkey,
whereas the less desired offspring, a hinny, is produced when the cross is reversed [68]. More
recently, inter-species’ crosses of zoo animals have revealed that the offspring from a tiger-lion
mating have different phenotypes that depend on the direction of the cross. A female tiger crossed
with a male lion produces a large animal (liger) while the reciprocal crosses (tigons) are smaller.

Given such blatant examples of imprinting, it is surprising that genomic imprinting was not
recognized earlier, but the overzealous interpretation of Mendel’s first law of heredity may have
hindered the interpretation of these parental effects. Mendel, himself ,clearly described some
parent-of-origin effects, noting that in certain crosses ‘‘The hybrids had the greatest similarity to
the pollen parent. [69]’’.

26.5 Parent-of-Origin Effects on De Novo Mutations

26.5.1 The Influence of Parental Age on De Novo Mutations

The parental age effect refers to the increased incidence of sporadic genetic disorders in children
born to older men and women. The first observation of a relationship between age and the
incidence of a disorder was in 1912, when Wilhelm Weinberg noticed that children with achon-
droplasia, an inherited skeletal disorder, were more likely to be born later in sibships. However, he
could not distinguish between the effects of birth order, paternal age, and maternal age at this time
[4, 70–72]. Three decades later, E.T. Mørch noted that parental age, not birth order, was respon-
sible for the increased incidence of achondroplasia [71, 73, 74]. The distinction between the influ-
ences of paternal and maternal ages was made almost half a century after Weinberg’s initial
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observation, when L.S. Penrose [75] observed that paternal age, not maternal age, correlated with
the incidence of de novo achondroplasia.

Approximately 20 autosomal dominant disorders are now known to be associated with advanced
paternal age (Table 26.3). Risch et al. [76] analyzed the effects of parental age on the de novo cases of
these disorders by comparing the distribution of parental ages for the affected children (O) for each
disorder, to the distribution of parental ages in the general population (E).A strong paternal age effect is
evident in some disorders, such as achondroplasia and Apert, Crouzon, and Pfeiffer syndromes, where
the birth frequency of the affected individuals increases rapidlywith paternal age (Fig. 26.5A).However,
for other disorders, such as neurofibromatosis, a much weaker paternal age effect is seen. The rate of
increase in the frequency of sporadic cases of this disorder (O/E) is much less marked (Fig. 26.5B).

Clearly, paternal age influences the development of spontaneous mutations more in some
disorders than in others. Penrose [83], suggested that one possible cause of spontaneous mutation
was DNA copy errors in chromosomal replication during mitotic cell division. These mutations
would most likely be base substitutions caused byDNA polymerase errors during DNA replication.
Such errors would occur preferentially in the paternal germline, as opposed to the maternal germ-
line, due to the larger number of cell divisions in spermatogenesis than in oogenesis. Furthermore,
these mutations would be dependent upon paternal age and notmaternal age, as the total number of
cell divisions increases with age in spermatogenesis, but not oogenesis (Table 26.4) [71].

Table 26.3 Disorders associated with advanced paternal age. Boldface type indicates the disorders with a reported
preferential paternal origin of base substitutions. Italicized type indicates the disorders with a reported preferential
paternal origin of deletions and other mutations. The parental origin of mutation has not yet been determined for the
remaining disorders. Adapted from reference 3

Disorder

Avg.
paternal
age (years)

Avg. paternal
age in control
population

Avg.
maternal
age (years)

Avg. maternal
age in control
population

Paternal
age
effect

Acrodysostosis 33.0 28.7 28.1 25.9 Strong

Achondroplasia 36.8 30.4 31.0 27.5 Strong

Apert syndrome 35.8 27 30.8 27 Strong

Basal cell nevus syndrome 36.9 29.9 31.7 26.5 Strong

Cleidocranial dysostosis 33.1 28.7 29.8 25.9 Strong

Costello syndromea 37.2b 32.1b 32.4c NDd Strong

Crouzon syndrome 33.9 28.7 28.6 25.9 Strong

Fibrodysplasia ossificans
progressiva

34.8 28.5 30.1 27.8 Strong

Marfan syndrome 36.6 29.9 29.3 26.5 Strong

Muenke syndromea 34.7e 30.6e 31.2e 28.0e Strong

Multiple endocrine neoplasia 2A
a,

medullary thyroid carcinomaa
39.3f 30.6 34.8f 27.6 Strong

Multiple endocrine neoplasia 2B
a 33g 29.9 29.5g 26.6 Strong

Noonan syndrome 35.6h 29.5h NDd NDd Strong

Oculodentodigital dysplasia 32.3 28.7 28.1 25.9 Strong

Pfeiffer syndrome 35.9 28.2 29.6 26.0 Strong

Progeria 34.1 28.7 29.7 25.9 Strong

Waardenburg syndrome 34.8 29.9 30.5 26.5 Strong

Bilateral retinoblastoma 32.3 27 28.2 27 Weak

Multiple extostoses 30.6 28.7 26.1 25.9 Weak

Neurofibromatosis 1 32.5 29.7 29.8 26 Weak

Sotos syndrome 31.7 28.7 28.8 25.9 Weak

Treacher Collins syndrome 31.2 28.7 27.0 25.9 Weak
aDisorders not mentioned in ref. 76; b from ref. 77; c from ref. 78; dND¼ not determined; e from ref. 79; f ref. 80;
g from ref. 81; h from ref. 82.
(Copies of tables are available in the accompanying CD.)
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While increasing maternal age does not influence the incidence of base substitutions, it does
influence the development of other spontaneous mutations, namely chromosomal abnormalities.
Oocytes are arrested in the prophase of meiosis I, until females reach sexual maturity. During this
stage of meiosis, homologous chromosomes pair up, or synapse [84]. When puberty begins, one
oocyte per month is selected to come out of arrest and resume the cell cycle. Some oocytes,
therefore, may be arrested for 10, 20, or more years. It is thought that the longer the oocytes are
arrested, the harder it is for the chromosomes to separate properly when meiosis resumes, and
therefore the greater the chance for the occurrence of a non-disjunction event that would lead to a
chromosomal abnormality in the offspring [4, 85].

26.5.2 Parent-of-Origin Effects on Different Mutation Types

In order to determine the parental origin of a mutation, the maternal and paternal alleles in the
affected child must be distinguished from one another. Single nucleotide polymorphisms near the
mutations of interest are used to identify the parental alleles in the child and thereby establish the
parental origin of mutation.

26.5.2.1 Base Substitutions

Using the database to conduct a search for the parental origin of base substitutions yields a list of
mutations found in 26 different disorders. Several observations about the parental origin of base
substitutions are immediately apparent. First, base substitutions in general, are paternally
inherited. Of the 439 reported cases of base substitutions, where parental origin was established,
353, or 80%, are paternal in origin (Fig. 26.1). Secondly, point mutations in some disorders, such as
achondroplasia, Apert syndrome, Crouzon syndrome, Pfeiffer syndrome, and progeria are exclu-
sively paternal in origin (Table 26.5). Many of the disorders, with exclusive paternal origin of
mutation, were previously shown to have a strong paternal age effect [76, Table 26.3).

Fig. 26.5 Ratio of the
observed (O) to the expected
(E) affected births in the
general population, by age.
(A) One example of a
disorder with a strong
paternal age effect. (B) One
example of a disorder with a
weak paternal age effect.
Adapted from [3] (Copies of
figures including color
copies, where applicable, are
available in the
accompanying CD)

Table 26.4 Comparison between the number of cell divisions in spermatogenesis and oogenesis

Age (years) Spermatogenesis Oogenesis

20 150 24

30 380 24

40 610 24

50 840 24

60 1070 24

70 1300 24

(Copies of tables are available in the accompanying
CD.)
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Table 26.5 Disorders with an exclusive paternal origin of base substitutions. Boldface type indicates the disorders that were previously identified as having a
strong paternal age effect. Adapted from reference 3

Disorder Gene
No. of
paternalcases

No. of
maternal cases aa

Paternal age
effect?

Recurrent
mutations
present?

Mutations in
CpG
dinucleotides? Reference

Achondroplasia FGFR3 40 0 1 Y Y Y 10

Alport syndrome COL4A5 2 0 1 Unknown N N 86

Apert syndrome FGFR2 57 0 1 Y Y Y 11

Childhood
hypophosphatemia

ALPL 1 0 1 Unknown N N 87

Charcot-Marie-Tooth

syndrome

CMT 1 0 1 Unknown N N 88

Crouzon syndrome FGFR2 11 0 1 Y Y N 12

Diamond-Blackfan

anemia

RPS19 2 0 1 Unknown N N 89

MEN 2Ab, MTCc RET 11 0 1 Y Y N 80, 90–92

Muenke syndrome FGFR3 10 0 1 Y Y Y 79

Noonan syndrome PTPN11 14 0 1 Y Y N 84

Pfeiffer syndrome FGFR2 11 0 1 Y Y N 12

Progeria LMNA 8 0 1 Y Y Y 93

Total for all disorders 168 0 1
aRatio of the number of paternally derived mutations to maternally derived mutations for each disorder; bMEN 2A¼multiple endocrine neoplasia type
2A; cMTC ¼medullary thyroid carcinoma.
(Copies of tables are available in the accompanying CD.)
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There are several defining characteristics of the mutations found in disorders with exclusive
paternal origin of mutation. In most of these disorders, there is a high prevalence of mutations at
one or two loci in each gene, possibly due to these loci being mutational hotspots, bias of
ascertainment, or selection for those mutations that cause a phenotype. Recurrent mutations are
found in eight of the 13 (61%) disorders in this group (Table 26.5). In four of these nine disorders,
one or two recurrent mutations account for the majority of all cases and are found within a CpG
dinucleotide, a known mutational hotspot.

In achondroplasia, 98% of the cases are caused by one mutation within a CpG dinucleotide in
the fibroblast growth factor receptor 3 gene [FGFR3]. In Apert syndrome, greater than 99% of all
sporadic cases are caused by one of two mutations in the fibroblast growth factor receptor 2 gene
[FGFR2]. One of these mutations occurs in a CpG dinucleotide [11]. More than 90% of cases of
progeria are also caused by a recurrent mutation within a CpG dinucleotide in the lamin A gene
[LMNA] [93, 94]. The most recent addition to this group of disorders is the Muenke syndrome. All
the cases of this disorder are characterized by one recurrent missense mutation in the FGFR3 gene,
the same gene involved in achondroplasia. This recurrent mutation, like the recurrent mutation
found in achondroplasia, also occurs within a CpG dinucleotide [83].

Recurrent missense mutations are also found in medullary thyroid cancer (MTC), multiple
endocrine neoplasia 2A (MEN2A), Crouzon syndrome, Pfeiffer syndrome, andNoonan syndrome;
however none of these mutations occur within a CpG dinucleotide. Mutations in the RET proto-
oncogene, cause 30% and 85% of all cases of MTC and MEN2A, respectively [90, 95, 96]. The
recurrent mutations found in Crouzon, Pfeiffer, and Noonan syndromes occur at much lower
frequencies compared to the recurrent mutations found in the other disorders. The mutational
heterogeneity is much greater in Crouzon, Pfeiffer, and Noonan syndromes as well. Over 25 and 30
different mutations have been reported in Pfeiffer and Crouzon syndromes, respectively, the
majority of which are base substitutions [97]. Twenty-two different missense mutations have
been reported in Noonan syndrome [98].

Perhaps the most intriguing observation about the disorders with an exclusive paternal origin of
mutation is that five of the disorders are caused by gain-of-function mutations in the same
two genes – FGFR2 and FGFR3. These genes may be pre-disposed to mutational events and the
high proportion of specific nucleotide changes may be due to a selective advantage of the mutated
germ cell [11, 99, 100]. FGFRs are expressed in rat spermatogonial stem cells and seem to be
important in maintaining spermatogenesis [100–103]. Dimerization of the receptors upon ligand
binding results in auto-phosphorylation of the intracellular tyrosine kinase domains [104], which
triggers downstream signaling pathways, resulting in changes in gene expression and other biolo-
gical consequences. Phosphorylation of tyrosine kinases is also important in sperm motility
and capacitation [105, 106]. The gain-of-function mutations in these genes may confer some
selective advantage to the sperm, in terms of motility and capacitation, through constitutive or
altered activation of the FGF receptors. In fact, many of the disorders with a strong paternal age
effect and an exclusive paternal origin of mutation are caused by gain-of-function mutations in
genes involved in similar or interacting signal transduction pathways [FGFR2, FGFR3, RET, and
PTPN11] [84, 107–111].

For the 13 disorders in which some maternally-derived cases were reported (Table 26.6),
approximately 70% of the reported base substitutions are paternal in origin. Recurrent mutations
are found in just five (or 38%) of these disorders, compared to 8/13 (61%) disorders with exclusive
paternal origin of mutation in which recurrent mutations were found. Mutations in CpG dinucleo-
tides are found in three disorders: Rett syndrome, hemophilia B and vonHippel-Lindau syndrome.
The disorders that have a paternal bias of mutation are caused by a variety of different mutation
types and are generally not associated with advanced paternal age, whereas the disorders that have
an exclusive paternal origin of mutation tend to be caused primarily, if not only, by point mutations
and tend to be associated with advanced paternal age.
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There are some disorders that have been previously associated with a strong paternal age effect
(Table 26.3), yet do not appear in this database. For some disorders in this group, like acrodysostosis
and fibrodysplasia ossificans progressive, the parental origin of mutations has yet to be established
because the gene is not known. For other disorders like cleidocranial dysostosis, oculodentodigital
dysplasia (ODDD), basal cell nevus syndrome, Marfan syndrome, and Waardenburg syndrome, a
range of mutation types are found [3], making the determination of the parental origin of mutation
much harder, as a different experimental approach must be taken with each type of mutation. It
remains to be seen whether these disorders will follow the pattern of other disorders with a strong
paternal age effect, such as Apert syndrome and achondroplasia, and show a paternal bias of
mutation.

26.5.2.2 Deletions

Deletions are catalogued in the database as ‘‘large deletions’’ (involved >20 bp), ‘‘small deletions’’
(involving <20 bp), or simply ‘‘deletions’’, if the size of the deletion was not reported in the
literature. This size distinction is made based on the different mechanisms, and potentially different
parental origins, that contribute to each type of deletion. In contrast to base substitutions, large
deletions do not demonstrate a noticeable parent-of-origin effect or a strong paternal age effect, as
47% of all reported cases are paternal in origin (Fig. 26.1, Table 26.7).

Table 26.6 Parent-of-origin effects for base substitutions. Adapted from reference 3

Disorder Gene

No. of
paternal
cases (%)

No. of
maternal
cases (%) aa

Paternal
age effect?

Recurrent
mutations
present?

Mutations in
CpG
dinucleotides? Reference

Alexander disease GFAP 24 (86) 4 (14) 6 N Y Y 112

Costello syndrome HRAS 23 (92) 2 (8) 11.5 Y Y Y 77, 78

Craniofrontal nasal
syndrome

EFNB1 5 (83) 1 (17) 5 N N N 113

Familial adenomatous
polyposis

APC 5 (83) 1 (17) 5 Y N N 114

Hemophilia A FVIII 8 (80) 2 (20) 4 Y N N 115

Hemophilia B FIX 54 (51) 51 (49) 1.06 Y N Y 116

Hirschsprung disease RET 0 3 0 N N N 117

MEN 2Bb RET 25 (93) 2 (7) 12.5 Y Y N 81

Neonatal diabetes
mellitus

KCNJ11 13 (72) 5 (28) 2.6 N Y Y 118

Neurofibromatosis 1 NF1 1 31 (89) 4 (11) 7.75 N N N 119–121

Neurofibromatosis 2 NF2 13 (57) 10 (43) 1.3 Unknown Y N 122

Pelizaeus-Merzbacher
disease

PLP 4 (80) 1 (20) 4 N N N 123

Rett syndrome MECP2 29 (91) 3 (9) 9.67 N Y Y 124–126

Townes-Brocks
syndrome

SALL1 14 (88) 2 (12) 7 N Y Y 127

Tuberous sclerosis TSC2 2 (40) 3 (60) 0.67 N N N 128

von Hippel-Lindau
syndrome

VHL 4 (57) 3 (43) 1.33 N N Y 129

Total for all disorders 254 (72) 97 (28) 2.62

Total for disorders with a
paternal age effect

115 (66) 58 (34) 1.98

aRatio of the number of paternally derived mutations to maternally derived mutations for each disorder;
bMEN 2B¼multiple endocrine neoplasia type 2B.
(Copies of tables are available in the accompanying CD.)
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While large deletions in general do not have a parent-of-origin effect, a clear parent-of-origin
effect is observed in some individual disorders. For example, in bilateral retinoblastoma, cri-du-
chat, Sotos, and Wolf-Hirschhorn syndromes, 86–90% of large deletions are paternal in origin
(references in Table 26.7). In comparison, 64–86% of the large deletions in del 1p36 and del 22q11
syndromes, neurofibromatosis type 1 (NF1) and Duchenne and Becker muscular dystrophies are

Table 26.7 Parent-of-origin effects for large deletions. Adapted from reference 3

Disorder Gene
No. of paternal
cases (%)

No. of maternal
cases (%) aa

Paternal
age effect? Reference

Alagille syndrome JAG1 1 0 8 Unknown 130

Bilateral retinoblastoma RB1 17 (89) 2 (11) 8.5 N 131–134

Congenital deafness CGSb 1 0 8 N 135

Craniofrontal nasal
syndrome

EFNB1 1 (33) 2 (67) 0.5 N 113

Cri-du-chat syndrome CGS 85 (86) 14 (14) 6.07 Unknown 136–138

Del 1p36 CGS 19 (36) 34 (64) 0.56 Unknown 139, 140

Del 3p CGS 1 0 8 Unknown 141

Del 9p CGS 10 (71) 4 (29) 2.5 Unknown 142, 143

Del 14 CGS 5 (63) 3 (37) 1.67 Y 144–149

Del 22q11 CGS 65 (30) 153 (70) 0.42 Unknown 150–157

DiGeorge syndrome CGS 8 (53) 7 (47) 1.14 Unknown 152, 158

Duchenne and Becker
muscular dystrophies

DMD 5 (14) 30 (86) 0.17 Unknown 159

Familial adenomatous
polyposis

APC 3 0 8 Unknown 114

Gorlin syndrome 1 0 8 Unknown 160

Hemophilia A FVIII 2 (40) 3 (60) 0.67 N 161

Hemophilia B FIX 3 (27) 8 (73) 0.38 Y 116, 162

Hirschsprung disease RET 1 0 8 N 117

HNPPc PMP22 4 (57) 3 (43) 1.33 Unknown 163

Langer-Giedion syndrome
(TRPSII)

CGS 6 (67) 3 (33) 2 Unknown 164, 165

Miller-Dieker syndrome CGS 5 (83) 1 (17) 5 Unknown 166, 167

Neurofibromatosis 1 NF1 18 (23) 60 (77) 0.3 N 168–172

Rett-like syndrome and
autism

CGS 1 0 8 Unknown 173

Ornithine transcarbamylase
deficiency

0 1 0 Unknown 174

Severe myoclonic epilepsy
of infancy

3 0 8 Unknown 175

Sotos syndrome NSD1 18 (90) 2 (10) 9 N 176

TRPS1d CGS 0 1 0 Unknown 177

Tuberous sclerosis TSC2 0 2 0 N 128

Unilateral retinoblastoma RB1 5 (45) 6 (55) 0.83 N 132–134

von Hippel–Lindau VHL 3 (50) 3 (50) 1 N 129

Williams syndrome CGS 93 (44) 118 (56) 0.79 N 178

Wolf-Hirschhorn/Pitt-
Rodgers-Danks syndrome

CGS 27 (87) 4 (13) 6.75 N 179

Gamma-delta-beta-
thalassemia

HBB 0 1 0 Unknown 180

Total for all disorders 412 (47) 464 (53) 0.89
aRatio of the number of paternally derived mutations to maternally derived mutations for each disorder; b CGS¼
contiguous gene syndrome; cHNPP¼ hereditary neuropathy with liability to pressure palsies; d TRPSI¼ trichorhi-
nophalangeal syndrome type I.
(Copies of tables are available in the accompanying CD.)
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maternal in origin (references in Table 26.7). The nature of the repeated sequences that mediate
deletions may influence the parental origin, as some sequences may be predisposed to recombina-
tion and deletion during oogenesis, whereas other deletions may be detrimental to mature sperm,
and to other stages of spermatogonial development [155,156].

In contrast to large deletions, small deletions fewer than 20 base pairs tend to be paternal in
origin (Table 26.8). This type of mutation is thought to arise during replication by mispairing and
misalignment of the direct repeats or short runs of identical bases [186]. Because small deletions
may occur during replication, it may explain the higher mutation frequency seen inmales compared
to females. However, small deletions are not associated with older paternal age, whereas point
mutations, which also are thought to arise during replication, are associated.

26.5.2.3 Duplications and Insertions

Duplications, like point mutations, also tend to be paternally inherited. In the literature, there are
only 84 cases for which the parental origin is reported, 79 (94%) of which is paternally inherited.
Duplications in Charcot-Marie-Tooth syndrome comprise the majority of the cases in the database.

There are very few reported cases of the parental origin of insertions in the literature. In some
instances, the parental origins of several types of mutations have been reported together in one
article and it is impossible to distinguish insertions from the other types of mutations.

26.5.2.4 Parent-of-Origin Effects in Disorders Caused by Many Mutation Types

When a variety of mutations are observed in one disorder, a paternal age effect for one type of
mutation (e.g., point mutations) may be diluted by the presence of other types of mutations
(e.g., deletions) that are not associated with age [4]. Some of these disorders, such as NF1, Sotos
syndrome, bilateral retinoblastoma, multiple exostoses, and Treacher Collins syndrome, were
previously shown to have a weak paternal age effect (76, Table 26.3). It would be interesting to
see if a strong paternal age effect is observed for only the point mutations in these disorders.

Table 26.8 Parent-of-origin effects for small deletions. Adapted from reference 3

Disorder Gene
No. of paternal
cases (%)

No. of maternal
cases (%) aa

Paternal age
effect? Reference

Alport syndrome COL4A5 0 1 0 Unknown 86

Alexander disease GFAP 1 0 8 N 112

Beta-thalassemia HBB 1 0 8 Y 181

Familial adenomatous
polyposis

APC 8 (47) 9 (53) .89 N 114, 182

Hirschsprung RET 1 0 8 N 117

Lhermitte-Duclos
syndrome

PTEN 1 0 8 Unknown 183

Neurofibromatosis 2 NF2 8 (89) 1 (11) 8 Unknown 122

Rendu-Osler-Weber
syndrome

ENG 1 0 8 Unknown 184

Rett syndrome MECP2 3 0 8 N 125, 126

Townes-Brocks
syndrome

SALL1 5 0 8 N 127

Treacher-Collins
syndrome

TCOF1 6 (67) 3 (33) 2 N 185

Tuberous sclerosis TSC2 3 (60) 2 (40) 1.5 N 128

Total for all disorders 38 (70) 16 (30) 2.38
aRatio of the number of paternally derived mutations to maternally derived mutations for each disorder.
(Copies of tables are available in the accompanying CD.)

502 R.L. Glaser and I.M. Morison



Interestingly, in NF1, 89% of base substitutions are paternal in origin, whereas only 23% of
large deletions are paternal in origin (references in Tables 26.6 and 26.7). Conversely, in NF2, base
substitutions do not show a bias of parental origin, whereas deletions do; 90% of the deletions are
paternal in origin (Tables 26.6 and 26.8) [122]. The fact that ratios of paternally-derived to
maternally-derived mutations differ depending on the mutation type and that some mutations
are not strongly associated with parental age, argue for the existence of more than one mechanism
underlying the origin of these mutations.

26.5.2.5 Trisomies

As can be seen from Fig. 26.1, the majority of trisomies are maternal in origin. Observations of an
association between trisomies and advanced maternal age have been made since the mid–1900’s
[187]. Maternal non-disjunction in meiosis I is responsible for the majority of cases of trisomy 13,
16, 21, and 22. Maternal non-disjunction in meiosis II has been shown to be responsible for most
cases of trisomy 18 [188].

26.5.3 Mechanisms of Mutation

26.5.3.1 Higher Frequency of Base Substitutions in Males

In his study of X-linked hemophilia, Haldane suggested that there is a higher mutation frequency in
the germ cells of human males as compared to females [189]. He based this hypothesis on his
observation that affected males were more likely to be born to heterozygous carrier mothers than
unaffected mothers, meaning that the mutation must have occurred in an earlier generation. While
other studies have found a higher mutation frequency in human males and males of other species,
there is a disagreement about how much higher the mutation frequency is, in males compared with
in females (reviewed in 190).

The ratio of the mutation frequency in males compared to females (a) provides a measure of the
extent of parental bias for each disorder. As discussed earlier, point mutations in several disorders
were found to be exclusively paternal in origin and associated with older age. These disorders have
the highest a, as no maternally-derived cases have been observed yet (Table 26.5). Since these
disorders also have a strong paternal age effect, there is an association between the disorders with a
strong paternal age effect and disorders with the highest a. Is this the case for base substitutions in
other disorders? For the disorders listed in Table 26.6, the average a is 2.62, although the value
varies greatly between the individual disorders. Combining the data from all base substitutions
(Tables 26.5 and 26.6), yields 422 paternally-derived base substitutions compared with 97 cases of
maternally-derived base substitutions (a¼ 4.35).

While point mutations in general may be more prone to occurring in the male germline, it
should be noted that a is close to 1 (i.e., there is no parent-of-origin effect) in four disorders,
Hemophilia B, neurofibromatosis type 2 (NF2), tuberous sclerosis, and von Hippel-Lindau
syndrome. In tuberous sclerosis and von Hippel-Lindau syndrome, however, the estimated a
may not be correct due to the small number of cases reported for each of these disorders.
Interestingly, there were no disorders in which a significantly greater number of maternally-
derived base substitutions was observed.

This higher prevalence of mutations in males may explain the observed lack of affected males
and reduced fitness of females with any of the several dominant X-linked disorders, once thought to
be lethal in males [191]. For these disorders, the higher frequency of mutation in males would result
in paternally-derived de novo mutations on the X chromosome, which would manifest only in
heterozygous (affected) females, due to lack of X chromosome transmission from father to son. In
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the absence of maternally-derived mutations, affected males would be born only to affected
mothers, but because of the reduced fitness of such females, familial cases are very rare.

26.5.3.2 The Role of Methylation

Differences in the methylation status of the DNA in male and female germ cells may play a role in
the observed higher frequency ofmutation inmales than females. CpGdinucleotides are considered
hypermutable because in most of these dinucleotides, the cytosine is methylated, which pre-
disposes it to spontaneous deamination to thymine. In humans and mice, sperm DNA has been
shown to be more methylated than oocyte DNA, and this has been suggested to account for the
greater number of paternally-derived mutations occurring within a CpG dinucleotide [192,193].
Indeed, the ratio of paternally-derived to maternally-derived base substitutions in a CpG dinucleo-
tide is 1.5–2 times higher than the ratio for base substitutions at all locations (Table 26.9). This
mechanism could explain the increased incidence of paternally-derived base substitutions, in CpG
sites, in disorders with no age effect, such as Rett syndrome [124–126]. This mechanism would not,
however, explain the association of the frequency of CpG mutations with older paternal age, as
seen in achondroplasia, Apert syndrome, Muenke syndrome, and progeria. Few studies have
examined the relationship between age and the extent of DNA methylation in the sperm as an
explanation for the paternal age effect seen in these disorders [195]. One such study found that
methylation was stable with increasing age at nucleotide 1138 of FGFR3, the locus implicated in
most cases of achondroplasia. The existence of CpG mutations that are mostly paternal in origin
and not associated with older paternal age; such as those in Rett syndrome, suggests that the
mechanisms that generate base substitutions with both parent-of-origin and paternal age effects
differ from the mechanisms that generate base substitutions with only a parent-of-origin effect.

26.5.3.3 Mutations Arising in Meiosis

Mutations arising in meiosis would not be expected to show a parent-of-origin or a parental age
effect because a limited number of meiotic divisions occur in both spermatogenesis and oogenesis

Table 26.9 Parent-of-origin effects for CpG mutations. Adapted from reference 3

Disorder Gene
No. of paternal
cases (%)

No. of maternal
cases (%) aa

Paternal age
effect? Reference

Achondroplasia FGFR3 40 (100) 0 1 Y 10

Alexander disease GFAP 14 (93) 1 (7) 14 N 112

Apert syndrome FGFR2 38 (100) 0 1 Y 11

Costello syndrome HRAS 22 (92) 2 (8) 11 Y 77, 78

Hemophilia B FIX 14 (48) 15 (5) 0.93 Y 116, 162

Muenke syndrome FGFR3 10 (100) 0 1 Y 79

Neonatal diabetes
mellitus

KCNJ11 11 (79) 3 (21) 3.7 N 118

Progeria LMNA 7 (100) 0 1 Y 93, 194

Rett syndrome MECP2 26 (90) 3 (10) 8.67 N 124-126

Townes-Brocks
syndrome

SALL1 6 (86) 1 (14) 6 N 127

von Hippel-Lindau
syndrome

VHL 2 0 1 N 129

Total for all
disorders

190 (88) 25 (12) 7.6

Total for disorders with a
paternal age effect

131 (89) 17 (11) 7.7

aRatio of the number of paternally derived mutations to maternally derived mutations for each disorder.
(Copies of tables are available in the accompanying CD.)
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[4,196]. Recombination between repeated sequences, repetitive sequence elements (like Alu ele-
ments), or in some cases, non-homologous sequences during meiosis have been hypothesized to
account for many of the large deletions listed in Table 26.7 (Refs from table). As discussed
previously, large deletions do not show either a parent-of-origin or a parental age effect. This
same mechanism may generate other chromosomal abnormalities such as large insertions and
duplications [196], for which we would not expect to see parent-of-origin or parental age effects
either.

26.5.4 Challenging Penrose’s Copy Error Hypothesis

A number of different mechanisms have been mentioned that could give rise to mutations
associated with a parent-of-origin effect either alone or in conjunction with a paternal age
effect. One such mechanism, copy error during DNA replication, predicts a paternal origin
of base substitutions associated with older paternal age. However, several studies and
observations have provided evidence that challenge this hypothesis. First, there are several
disorders that show a parent-of-origin effect for base substitutions, but not a parental age
effect (Table 26.6). Secondly, the linear increase in the number of chromosomal replications
in sperm, with age alone, is expected to produce a linear increase in the number of base
substitutions with age. However, the increase in the frequency of affected children born to
older fathers actually is exponential [4,71,76] (Fig. 26.5a). This suggests that mechanisms in
addition to replication errors contribute to the paternal age effect. Regardless of the
mechanism by which these mutations are generated, the increase in the incidence of disorders
with a paternal age effect should be a reflection of the increasing number of mutations
present in sperm as men age.

Over the last several years, various studies have attempted to quantify the number and type of
mutations in sperm with age. Age-related increases in the frequency of the most common achon-
droplasiamutation (1138G>A in FGFR3) and several Apert syndromemutations in FGFR2, in the
sperm of unaffected men have been observed [195,197,198]. No age-related increases in the
frequency of sperm with aneuploidies or diploidies were observed [199].

Most recently, ‘‘protein-driven selection’’ of mutations was proposed to explain the accumula-
tion of FGFR2 mutations in the male germline. These mutations are thought to arise in low
frequency in mitotic spermatogonial stem cells and confer the cells with a selective advantage,
allowing them to clonally expand over time [100].

26.6 Closing Remarks

The range of parent-of-origin effects is wide – from epigenetic modifications of the genome that
affects the expression of parental alleles to parent-of-origin effects on the development of de novo
mutations. Genomic imprinting, that results in parentally-derived suppression of allelic expression,
has been documented for approximately 100 genes in mammals. The total number of genes that are
affected by genomic imprinting remains unclear. Given that most imprinted genes occur in clusters,
which have now been well characterized, the number of additional imprinted genes may be small.
Alternatively, subtle or undiscovered imprinting effects may contribute to a large number of
complex phenotypes in humans and other mammals.

De novo base substitutions, regardless of the context in which they occur, are generally pater-
nally-derived. Not all base substitutions, however, are associated with older paternal age, suggest-
ing that there are a number of different mechanisms that contribute to this type of mutation. Large
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deletions do not show a parent-of-origin effect or a paternal age effect, whereas small deletions are
more often paternally derived, but also do not show a paternal age effect. Certain genes, such as
FGFR2 and FGFR3, are frequently mutated at specific nucleotides. These mutations are exclusively
paternal in origin and have a strong paternal age effect, suggesting that the sequence of these genes
may predispose them to mutation, or that the mutations themselves may confer a selective
advantage to the sperm cells.
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85. Muller F, Rebiffé M, Taillandier A, Oury JF, Mornet E. Parental origin of the extra chromosome in prenatally

diagnosed fetal trisomy 21. Hum Genet. 2000;106:340–344.
86. Hertz JM, Juncker I, Persson U, et al. Detection of mutations in the COL4A5 gene by SSCP in X-linked Alport

syndrome. Hum Mutat. 2001;18:141–148.
87. Taillandier A, Sallinen SL, Brun-Heath I, De Mazancourt P, Serre JL, Mornet E. Childhood hypopho-

sphatasia due to a de novo missense mutation in the tissue-nonspecific alkaline phosphatase gene. J Clin
Endocrinol Metab. 2005;90:2436–2439.

88. Roa BB, Garcia CA, Suter U, et al. Charcot-Marie-Tooth disease type 1A. Association with a spontaneous
point mutation in the PMP22 gene. N Engl J Med. 1993;329:96–101.

89. Orfali KA, Ohene-Abuakwa Y, Ball SE. Diamond Blackfan anaemia in the UK: clinical and genetic hetero-
geneity. Br J Haematol. 2004;125:243–252.

90. Mulligan LM, Eng C, Healey CS, et al. A de novomutation of the RET proto-oncogene in a patient withMEN
2A. Hum Mol Genet. 1994;3:1007–1008.
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182. Ripa R, BisgaardML, Bülow S, Nielsen FC. De novomutations in familial adenomatous polyposis (FAP). Eur
J Hum Genet. 2002;10:631–637.

183. Delatycki MB, Danks A, Churchyard A, Zhou XP, Eng C. De novo germline PTEN mutation in a man with
Lhermitte-Duclos disease which arose on the paternal chromosome and was transmitted to his child with
polydactyly and Wormian bones. J Med Genet. 200340:e92.
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Chapter 27

Methods for Structural Inference and Functional Module

Identification in Intracellular Networks

Maria Manioudaki, Eleftheria Tzamali, Martin Reczko, and Panayiota Poirazi

Abstract The ways in which intracellular components interact in order to produce certain
functions remains a mystery to the scientific community. Although parts of biological systems
become more and more characterized, a more global understanding of the structure, dynamics and
functionalities of complex intracellular networks is currently lacking. Systems Biology approaches
aim at providing such a global picture by combining analytical and experimental techniques across
several multi-disciplinary fields. In this chapter, we provide an overview of the analytical
approaches and computational tools that have been applied to biological systems in order to
describe them at different levels of abstraction. We start by reviewing methods that model or
infer a topological map of complex biological networks (structural inference) and move on to
discuss ways of discovering the functionalities of sub-network entities that comprise these networks
(functional module inference). Although clearly not exclusive, this chapter aims at providing a
representative overview of the currently available methods that have been successfully used to
characterize complex biological networks and reveal their structure and function.

Keywords Modelling � Mathematical methods � Cellular networks � Modules � Motifs �
Inference

27.1 Introduction

The central dogma of biology states a rather simple principle: DNA is the carrier of the genetic
information and it is transcribed tomRNA, which is thereafter translated into proteins. Behind this
simple idea of genetic information flow, lays a dramatically complex cascade of regulatory events.
A large number of biological components influence each other in a selective, functionally diverse,
and non-linear manner to effectively produce stable behaviors. Understanding how cellular com-
ponents interact in time and space is crucial for deciphering the functions inside a living cell.
Towards this goal, Systems Biology approaches are frequently used to identify the components of
the system and their relationships, to build in silicomodels that explain complex cellular processes
and make testable predictions, as well as to represent these interactions graphically so that the
complexity becomes more comprehensible.

Technological advances in the last decade allow simultaneous detection of thousands of biolo-
gical variables, resulting in the ongoing accumulation of massive amounts of experimental data.
Microarrays, the epitome of these high-throughput techniques, are used to measure the expression
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levels of thousands of genes simultaneously, yeast-two-hybrid assays are used to locate large-scale
protein-DNA interactions and ChIP-chip methods are used to identify interacting proteins, just
to name a few. The challenge in this post-genomic era is to properly integrate all the available
information so as to reconstruct, as accurately as possible, the complex network of interactions
inside a cell, beginning from the identification of its static structure and moving on to characterize its
dynamic behavior and functional role. Towards this goal, the main properties of the system, such as
complexity, robustness and adaptation must first be derived from available data, in order to design a
model that not only describes faithfully its structure but also makes useful predictions about its
behavior. In order to cope with the massive amount of data that need to be analyzed and synthesized
for modeling a biological network, mathematical and computational methods are inevitably required.

A biological system can be viewed as a set of diverse and multi-functional components (genes,
gene products, and metabolites), whose population levels change over time in response to internal
interactions and external signals. A snapshot of this dynamic evolution, referred to as the system
state, describes the values of each component of the system at a given time. In gene regulatory
networks, for instance, the system components are usually genes and gene products, which produce
directly (protein profiles) or indirectly (mRNA profiles) observation values that vary over time.
The interactions among the system components reflect the influence that the value of a component
has on the values of other components. These interactions are usually governed by a set of
biophysical laws, most of which are only partially known. Modeling concerns inference of both
the interaction map (structural inference) of the system and the mathematical formalisms that
approximate the dynamic biophysical laws the system follows (dynamical inference). Both of these
approaches aim at characterizing the systems function at different levels of abstraction. As cellular
components often interact selectively in order to accomplish certain functions, identification of the
sub-networks responsible for such tasks (functional module inference) provides an alternative
approach towards this goal.

Identifying the mathematical framework that better describes a biological system is not trivial.
While the general suggestion is that, things should be made as simple as possible, but not simpler – a
razor that places a trade off between simplicity and complexity – available data and computational
complexity issues comprise a hurdle that can’t be ignored. Demanding a low level of abstraction –
that is a ‘fine’ model to describe the biological system – requires large amounts of experimental data
but the risk of overfitting is particularly high in the absence of such information. Alternatively, a
high level of abstraction – that is a ‘coarse’ model – requires less data but presents the challenge of
building a model, capable of capturing the biological behaviors of the system without losing
generality. The information we have for the system under study and the type of information we
wish to infer from the model, define more or less the golden section for method selection, keeping in
mind that the model will eventually be as good as the assumptions made for it.

Boolean and Bayesian networks comprise the mainmethods of a broader class of algorithms, the
network-based algorithms, that qualitatively describe the topology of a biological system (structural
inference). Based on various assumptions, these algorithms search for a network, among all
possible structures, which best describes the information given for the underlying system.

Another approach used to reduce the complexity of this search and extend structural to functional
inference, is to decompose the problem, for the identification of interconnected functional sub-
networks (modules) within the biological system (functional module inference). Functional modules
are discrete entities whose task is separable from those of other modules [1]. Modules interact with
each other, in order to form larger networks, thus allowing for an orchestrated regulation of
intracellular processes. Searching for functional modules is thus a critical step in illuminating
intracellular networks and their functionalities. Computational methods for inferring both structural
and functional characteristics of intracellular networks will be discussed in this chapter.

At the other end of the modeling spectrum stand highly specifiedmodels that strive to capture, in
detail, the fundamental biophysical dynamics of the system (dynamical inference). These models
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(discussed in Chapter 28) use various types of equations to describe the interactions between the
system components (equation-based algorithms). According to the assumptions made about the
nature of the underlying system, these equations can be linear, non-linear, differential equations
and so on. The dynamical equations are often applied on a network structure that is either known
a priori or derived from network-based algorithms.

In-depth analysis of each of the available modeling techniques is beyond the scope of this
chapter. Our main goal is to provide the reader with the intuition behind the methods and highlight
the capacity of a given method to describe the real biological phenomena, as well as the possibility
to infer a method-based model from the available data. A graphical representation of the biological
components and their relations discussed in this chapter is shown in Fig. 27.1.

27.2 Structural Inference

A biological system consists of a large set of diverse and multi-functional molecular components,
that interact selectively, obeying specific biophysical laws in response to certain environmental
conditions and signals. The selective interactions among the components of the system define a
connectivitymap (network) which is what structural inference approaches try to reveal. Specifically,
the network inference problem is defined as follows:

‘‘Given a set of interacting components as well as any prior knowledge and any set of observa-
tions that the system components produce, find the network connectivity that satisfies a given set of
constraints and assumptions (model).’’

Fig. 27.1 A general drawing summarizing intracellular network organization, which is the main focus of this chapter
(Copies of figures including color copies, where applicable, are available in the accompanying CD)

27 Structural and Functional Modeling 519



To understand the variety of the modeling approaches used for inference, explanatory
definitions of what a network and a state of a network represent are needed.

Network:A network is a representation of the interactions among the components of a system. The
components of interest are depicted as nodes in the network, while the interactions between these
components are depicted as edges. An edge can either be directed (arc), representing the flow of
information or undirected representing simply the interaction between the components. Each compo-
nent can also be seen as a variable, whose values describe the component’s molecular population levels.

Examples of network nodes include genes, proteins, and the metabolite variables. Interactions
can be physical, representing the potential of physical contact between two components (such as
protein-DNA binding) or temporal, describing the influence a component will have on another
component in a posterior time, thus tracking the temporal transition of each component of the
system, or they may even depict dependencies among components under certain environmental
conditions. Any kind of meaningful integration of the above is also possible.

Metabolism, for example, is commonly represented as a flow network where the nodes are metabo-
lites and the edges establish the metabolic reactions that are catalyzed by certain enzymes. In an
alternative representation, the nodes of the network correspond to metabolic genes, while an edge
among two components exists if and only if there is a metabolite that is catalyzed by enzymes encoded
by both components. In gene regulatory networks, genes and gene products comprise the nodes of the
networks, while the edges represent the assumed influences between them as shown in the Fig. 27.2.

State: A state of a component is a description of a certain property (e.g., concentration) of that
component at a given time point. Similarly, the state of a system describes the properties of each
component at a given time.

Overall, several different representations are usually possible for the same system of compo-
nents, depending on the algorithms used and their underlying assumptions. As a result, the kind of
influence we want to represent (physical, temporal, conditional), the underlying assumptions
regarding the system behavior (deterministic, stochastic), the level of detail in the system’s observa-
tions (from Boolean to continuous variables) and the algorithms used, define the qualitative and
quantitative information that can be incorporated into and/or inferred from a model.

27.2.1 Boolean Networks

While Boolean networks were mainly designed for studying in a simplified manner the dynamical
properties of a system, they are frequently used to infer structural properties in intracellular
networks by identifying causal relationships between the network components under the Boolean
assumptions. In these networks, the nodes are reduced to binary (0 or 1) variables and the
interactions between them are described by logical functions.

Fig. 27.2 A small gene regulatory system and its corresponding network representation. Genes are translated into
proteins which may form complexes as the gene products 1 and 3; these proteins or complexes regulate in turn the
genes, thus forming a network of interactions. Discontinuous arrows indicate regulations. (Copies of figures
including color copies, where applicable, are available in the accompanying CD)
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Boolean networks were first used to model gene regulation by Kauffman [2], who was convinced
that despite their inherent simplicity, these algorithms can capture the complex dynamics of gene
networks and give a qualitative interpretation of their behavior. In Kauffman networks, the
activation of a gene (node state) was assumed to be binary, i.e., to have only two states, on
(expressed or over-regulated) or off (not expressed or down-regulated). All intermediate levels of
activation were ignored. Each node was randomly connected with K nodes that remain its
regulators throughout the system’s temporal evolution. The interactions between genes were
described by non-linear deterministic Boolean logic rules such as AND, OR and NOT, combined
properly to enable a dynamic network behavior, which resembles that of the biological system. In
essence, having the state of each network component (gene expression) at a given time, step t and a
set of rules that approximate the regulation functions among components, the state of any network
component at a next time, step t+1 could be determined. The network updates its values in a
deterministic parallel fashion. An example of a Boolean network is shown in Fig. 27.3.

This early work was able to describe certain behaviors of gene regulatory networks with
relatively high accuracy. A limitation of the Kauffman Boolean network is that the model exhibits

Fig. 27.3 (A)A regulatory Boolean network of 3 components A, B and Cwith their corresponding interactions. Edge
directions indicate flow of causality. The regulators of the component B, for example, are the components A and C.
Thus, B changes its values in respect to the updating rule between A and C. (B) Each component can take a value of 1
or 0. The updating of logical rules for each node of the network are shown. The rules are applied to the nodes under a
synchronous updating scheme and the table of the corresponding temporal transitions of the system for each possible
state is presented in table (C)An example of the temporal profiles of each component of the network when the initial
state corresponds to the values 0 for A, 0 for B and 1 for C. The states of the components A and B change periodically
in time. The component C reaches a steady state (Copies of figures including color copies, where applicable, are
available in the accompanying CD)
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a robust behavior similar to that of biological systems, only if the number K of connections per
component is less or equal to two [3, 4]. In reality, this constraint is rarely satisfied. Individual
genes, for example, are known to interact with several –often with up to 20– regulatory factors.
Fortunately, the homogeneous network topology and the ‘match in step’ updating scheme of
Kauffman networks that impose this restriction can be modified to better reflect the natural,
intrinsic properties of the biological systems. The dynamic behavior of the system is strongly
dependent on those intrinsic properties, thus both issues should be addressed. The choice of
Boolean functions, the updating schema from synchronous to asynchronous and the global net-
work properties are some of the issues currently being revised in the field. For the interested reader,
C. Gershenson discusses many of the state-of-the-art topics in the field of Boolean networks [5].

The amount of theoretical work done on Boolean networks [6–11] and their respective biological
applications [12–16], show that these algorithms are capable of qualitatively describing the com-
plex, dynamic phenomena present in biological systems. More importantly, computational meth-
ods have been developed to provide further insights towards understanding the regulatory
mechanisms within a biological system, by enabling the inference of the biological network
structure from observations of its constituents. Specifically, the value of any given node in the
Boolean network is derived by a set of K parent nodes, which are sufficient to determine it fully.
Thus, the problem of revealing causal relationships in the data, also known as a consistency
problem, amounts to finding the parent nodes for each network component subject to a constraint:
a Boolean function applied on the parent nodes of any component should determine its two
possible values and reproduce its observation profile.

Given unlimited computational recourses, an exhaustive search over all possible tuples of the
system components could be performed to determine the parent set for each target component that
fulfils the observation consistency constraint. However, as this is computationally very expensive a
more efficient search algorithm is required. Furthermore, given the high content of noise in most
types of biological data, it is likely that not even a single consistent tuple is identified. Thus, the
consistency search problem has been reformulated to search for a Boolean formula that minimizes
the number of inconsistencies, known as the best-fit extension approach. Several theoretical studies
have analyzed the pros and cons of these two different approaches [17–22]. Since the number of
examples required to identify the parent set is exponentially dependent on the size of parent nodes
[23], when limited amounts of data are available, it is prudent to constrain the size of candidate
tuples by sacrificing real representations.

For both theoretical and practical reasons it is interesting to know whether the network under
construction is unique. The inference problem does not necessarily imply a single structure for the
system under study. On the contrary, a number of Boolean networks are frequently suggested as
optimal for the data given. A key question, however, is whether one should demand a unique
solution. Keeping in mind that biological networks are robust and adaptable to environmental
(internal or external) changes, different structures corresponding to a variety of internal alterations
in the interactions may be equally good representations, as long as the dynamic behavior of the
system does not change dramatically. Given additional knowledge concerning the structure of the
system, the set of all possible networks could be reduced to a more representative subset [24].
Additionally, it could be interesting to investigate the dynamic behavior of all possible structures.
Networks with similar dynamics may depict various manifestations of the same biological system
that ensure robustness against environmental changes [25].

Boolean networks have frequently been used to infer and model the transcriptional regulatory
network from sets of time-course gene expression data. A variety of algorithmic strategies for
inference have been proposed in the literature [17, 19, 20] and applied for the Boolean network
reconstruction and analysis of the Saccharomyces cerevisiae cell cycle [22, 24], the immunology
microarray data-sets [25] and themetastatic melanoma related gene expression data [12, 26], among
others.
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27.2.2 Generalized Logical Networks

The generalized logical method was introduced by Thomas and colleagues in 1995 [27] and has been
extended thereafter [28, 29]. Like Boolean networks, the method assumes discrete values for the
system components, with the exception that these values can be more than two. It also allows a
more sophisticated definition of logical interactions as well as the asynchronous temporal transi-
tion of system components.

In the Boolean formalism, a threshold is needed to convert the continuous values of the system
observations to binary values. Only when a component’s value surpasses the threshold an effect on
the other components is generated.Multivariate logic values offer a more realistic representation of
biological reality, where single elements interact with multiple elements in different ways, thus
requiring multiple thresholds to be defined. The molecular population bandwidth of a node
variable, in that sense, may have to be quantized to as many degrees needed to reflect the different
levels of activation of each node that it regulates.

In the generalized logical networks shown in Fig. 27.4, each edge is labeled with a sign that
expresses inhibition (‘–’) or activation (‘+’) and a rank number of the threshold above which, the
regulatory effect occurs. The logical functions, used to determine the component values, are
generalizations of the Boolean functions specified in a way that is consistent with threshold
restrictions and biological considerations. To achieve an asynchronous temporal transition of the
system from one state to another, the logical functions map the current states to all potential states
the system can undergo when no simultaneous update of the components is allowed. Taking into
account the time delays in information flow from one component to another, the transition path
that the system will follow given an initial state, can be determined. Under the above considera-
tions, Rene Thomas observed that the dynamics of such systems correspond to discrete states of the
original system and can be approximated by differential equations [30].

The generalized logic approach is primarily used to analyze systems of known interactions. It has
been successfully applied to a number of small-scale, well studied regulatory systems, such as the flower
morphogenesis gene network in Arabidopsis [31], the control of cell determination during early
Drosophila development [32] and the core network, controlling the mammalian cell cycle [15]. Since
themethod is not particularly suited for identifying a structure that best represents the real systemunder
certain assumptions, inference is a major drawback, that results from the difficulty to find a natural
scoring function for all the possible networks and thus identify the one that best describes the data.

27.2.3 Bayesian Networks

The main characteristic of these models is the introduction of stochasticity in the system states; the
system components are allowed to take on values that depend on the inter-relations between them

Fig. 27.4 The node i influences m other nodes (left).m distinct thresholds (Ti1,Ti2, . . .,Tim) on the population level of
the ith component may hold for its influence to be present in each of the m components (right) (Copies of figures
including color copies, where applicable, are available in the accompanying CD)
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and can be described in a probabilistic manner by what is called a joint probability distribution joint
probability distribution. These inter-relations are characterized by two main principles: dependency
and conditional independency. Two components are termed dependent if the knowledge of one
provides predictive knowledge of the other. However, if knowledge of a set of components is
enough to determine another component, the latter is conditionally independent of any other
component of the system, given that set.

A Bayesian network is a graphical representation of the joint probability distribution of the
underlying system, which incorporates faithfully the dependencies and conditional independencies
among the system components. Thus, it is minimal with respect to the connections it represents. A
Bayesian network is a directed acyclic graph, which means that feedback loops are not accommo-
dated in the model and only static regulations can be described. In this graphical representation, the
nodes represent the system components and the edges the direct dependencies among those
components. Each component is associated with a conditional probability distribution that quan-
tifies the strength of its dependencies. The value of a system component can be either discrete or
continuous, and the Bayesian models have the potential to include any or both of these representa-
tions, describing the system at different levels of detail.

Consider a very simple example of three genes in a Bayesian representation as shown in Fig. 27.5.
How is information transferred in that network? Gene 1 and Gene 2 depend directly on Gene 3.
This means that a change in the value of Gene 3 will affect the values of the others. Moreover, Gene
1 andGene 2 are indirectly dependent if the change of Gene 3 is not given. However, when the value
of Gene 3 is known, Gene 1 and Gene 2 are no longer dependent. The probability of the system
being in a certain state (joint probability) where each gene takes values g1, g2, and g3, respectively is
given by:

Pðg1; g2; g3Þ ¼ Pðg3ÞPðg2 g3ÞPðg1 g2; g3Þjj (27a)

Pðg1; g2; g3Þ ¼ Pðg3ÞPðg2 g3ÞPðg1 g3Þ ¼
Y

i
ðgi PaðgiÞÞj

���
��� (27b)

The joint probability distribution can always be factorized according to the chain rule as shown
in equation (27a). The conditional independences of the system, depicted in the structure of the
Bayesian network (Fig. 27.5), can be used to further simplify the factorized form as shown in
equation (27b). Equation (27b) shows the Markov condition implied in the Bayesian networks
according to which the probability distribution of any node (gi) in the network, given its parents
Pa(gi), are independent of any subset of its non-descendent nodes. The state of the system is thus
probabilistically determined by the knowledge of the factor terms.

Two important issues should be mentioned about Bayesian networks. The first deals with the
fact that there is no unique graphical representation of the joint probability distributions and the set

Fig. 27.5 A Bayesian network with 3 components (e.g., genes) depicts the independencies and conditional
dependencies among its constituents. Knowledge of the value of gene 3 implies that the value of gene 1 can be
determined independently of the value of gene 2. However, if the value of gene 3 is not known then there is an
information flow among genes 1 and 2 (Copies of figures including color copies, where applicable, are available in the
accompanying CD)
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of independencies the system comprises. More than one graph may imply exactly the same set of
independencies. This ambiguity is crucial when trying to infer a network from the data and
understand its properties. However, it has been shown that all equivalent graphs, with respect to
the joint probability distribution they represent, have the same underlying undirected structure1.
The second issue concerns the flow of causality among the system components. A directed edge in
the graph is not necessarily an edge from a cause to its effect. Inferring a causal Bayesian network
from observations alone is usually not possible and prior knowledge – especially knock out
experiments – have to be taken into account. In general, Bayesian networks have several advan-
tages: they can handle missing data and unobserved values of system components by allowing
latent components to be present in the network; they are robust for noisy data, as they are
probabilistic in nature, and are inherently optimal for describing processes composed of locally
interacting components.

Inferring the most probable Bayesian network from the data is generally a hard problem. The
difficulty comes from the number of system components that the network consists of and the
complexity of their interactions. Current state-of-the-art algorithms struggle to scale up to thousands
of components in a reasonable time while learning remains a challenge. Incorporation of prior
biological knowledge and integration of different sources of data (binding data, protein expression
data, knock-out experiments, etc.) for the system under investigation, make the problem more
tractable. Bayesian methodology provides a principled way of incorporating additional information
as prior knowledge, but the challenge is to assign a weight of trust in these different sources of
information.

The Bayesian framework was first used to represent gene interactions Friedman et al. [33] was
applied. A learning method to infer the cell cycle regulatory system from gene expression data. In
[34], the method was used to reconstruct the galactose regulatory network in Saccharomyces
cerevisiae, while Jansen, et al. [35] used the Bayesian framework to predict genome-wide protein-
protein interactions in yeast and Le Phillip, et al. [36] studied the impact of incorporating prior
structural knowledge on learning.

27.2.4 Dynamic Bayesian Networks

Bayesian networks can only describe static regulatory systems due to their acyclic structural
constraint property. They are capable of describing causal interactions, but the dynamic evolution
of the system is not taken into account. As dynamic data are richer in information than static data,
their use should further reduce the ambiguities concerning the underlying network structure.
Temporal or dynamic Bayesian networks are extensions of the Bayesian networks that explicitly
model the stochastic evolution of the system components through discrete time. Dynamic Bayesian
networks can be seen as a stream of static pictures/frames of the system spanning across time, which
are connected through temporal arcs explaining the time interaction among the components. The
connections that describe each frame do not change over time so that the network is stable. It is also
assumed that the state of the system at a given time point depends only on the state of the system at
a previous time (Markov property). The assumption is satisfied when the regulatory process and
the experimental sampling rate2 are in agreement. The whole dynamic phenomenon is thus

1 A directed graph is comprised of a set of nodes and a set of directed edges that express the direction-flow of
interaction among nodes. The undirected structure of a directed graph is comprised of the same set of nodes and
edges but the edges have no direction.
2 The sampling rate is defined as the frequency of samples (e.g. gene expression levels/gene) taken over the temporal
evolution of the phenomenon.
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described in a probabilistic manner and the joint probability distribution tracks the temporal
evolution of each of the components of the system.

Theoretical work on how to learn Dynamic Bayesian networks from time course data was first
done by Murphy [37]. Since prior knowledge improves the quality of inferred networks, a lot of
research work has been done towards the integration of such knowledge in the Bayesian framework
and the resulting algorithms have been applied in several biological systems [38–41].

27.2.5 Supervised Structural Inference

Asmore andmore knowledge about biological systems is acquired, not only on the level of different
sources of observations for the system components, but also on the level of the sub-structures that
comprise those systems, a multi-level integrated model can be more beneficial for structural
inference of the whole system. Methods that take advantage of the knowledge provided by
experimentally verified sub-structures (such as functional modules) within a network, in addition
to the known observations, are referred to as supervised approaches and will be discussed in the
following section. The intuition is that these sub-networks offer structural information about the
system and the goal is to complete the whole network by adding, under supervision, the rest of
the components and their potential connections to better match the observations [42, 43].

27.3 Identifying Functional Modules in Biological Networks

In our efforts towards identifying the structure and function of intracellular networks, it is
important to remember that cells are well-organized systems having their components strategically
positioned and regulated in a functionally independent, modular manner. This form of internal
organization was selected throughout evolution as a ‘divide and conquer’ method to successfully
manage the increasing complexity and also as a ‘safety switch’ where diverse reactions could be
carried out without cross-talk that might harm the cell. Connectivity among such functional
modules is the key feature that makes the cell operate as an integrated system, allowing internal
functions to influence one another [1]. Identifying functional modules is thus crucial for under-
standing intracellular functions. In this section, we discuss two approaches that try to reach this
goal: the bottom-up approach (Section 27.3.1) where raw data are being analyzed and grouped
based on a common property, thus revealing discrete blocks that would comprise the functional
modules and the top-down approach (Section 27.3.2) where modular organization is derived from
already structured networks.

27.3.1 From Modules to Networks: A Bottom-up Approach

The ongoing accumulation of large amounts of multi-faceted biological data and the need for
handling and interpreting the available information led to the development of many novel compu-
tational methods. Initially, the algorithms used aimed at identifying similarities or extremes among
the components of a data-set, in an effort to group together those sharing a similar property – thus
creating the first modules – or to identify the components with a particularly different behavior
compared to the rest [44]. In these early attempts, two main types of data were used to derive
functional modules: genomic data (primarily from microarray experiments) and proteomic data
(such as protein expression and protein-protein interactions). Several algorithms were applied
based on different similarity measures, resulting in the partitioning of the data into groups. The
degree to which these groups formed ‘functional modules’ was estimated by comparing the
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computational predictions to known functional entities or designing novel experiments to support
(or reject) the biological significance of each group. Later on, in an attempt to delineate the
biological mechanisms that govern the regulation of these modules, more sophisticated algorithms
were developed, capable of combining different kinds of experimental data including sequence
data, annotation data, protein-DNA interactions etc [45, 46]. In the following paragraphs, we will
briefly discuss the pioneering or most widely used algorithms as well as some examples of their
application to biological data.

Many of the algorithms used to analyze and integrate large-scale biological information focus
on grouping similar data together. Various clustering (e.g., Hierarchical, Self Organizing Maps,
k-Means, k-Nearest Neighbor) and dimensionality reduction (e.g., Principal Component Analysis,
Independent Component Analysis, Multi-Dimensional Scaling, Partial Least Squares) algorithms
are some of the methods most frequently used to identify functional modules.

27.3.1.1 Clustering Algorithms

Clustering techniques are used to organize the data in groups (clusters), based on their similarities
(or differences), in an attempt to reveal well-defined sub-structures that may be of biological
significance. Three main issues need to be addressed when using a clustering algorithm. First,
what is the specific property or combination of properties of the system under consideration whose
similarity should be measured, i.e., what can be clustered?. Then, a measure of similarity (metric)
has to be defined. This is the critical step for all clustering methods as different measures can result
in different clusters [47]. Finally, a way for evaluating the clustering results needs to be selected, the
best being experimental verification.

Since there are many clustering algorithms that can be applied to the same data-set, each one
imposing different biases on the structure of the clusters [48], the selection of an optimal algorithm
is not-trivial. However, several criteria can be used as a measure of clustering ‘correctness’, such as
cluster accuracy (how biologically meaningful the derived clusters are compared to existing knowl-
edge) and cluster stability (if the same clusters are derived when the algorithm is applied to synthetic
data) [49]. However, since clustering is the answer to the question, ‘what is the best partitioning of
objects given specific similarity criteria’, a measure of ‘good’ clustering from the mathematical
point of view is how accurately an algorithm performs this task. Therefore, a technically optimal
algorithmmay not necessarily provide the best answer to a biological question unless special care is
paid on posing the question in a mathematically sound way.

The simplest method for arranging genes in groups is called Guilt-By-Association (GBA) and was
initially used to find genes with similar expression patterns compared to that of a known cancer-
associated gene [50]. The algorithm calculates the pair-wise association between the genes in the data-
set and the gene of interest, using the hyper-geometric distribution, and computes a p-value showing
the probability that the observed co-expression is due to chance. This method has also been used to
search for modules of co-expressed genes where, nearby genes in the expression space were grouped
together using a pre-defined p-value cut-off and the results were then confirmed experimentally [51].

Clustering methods are divided in hierarchical and non-hierarchical. Hierarchical algorithms
result in a tree-shaped structure called dendrogram, where each cluster connects to others, thus
forming larger groups, as shown in Fig. 27.6. Hierarchical clustering can be either agglomerative or
divisive, that is use top-down or bottom-up approaches. Agglomerative clustering starts with each
vector forming its own cluster, and merges similar clusters together until there is one single super-
cluster remaining or a pre-defined termination condition satisfied. Divisive clustering starts with
the entire data-set as a single cluster, which is iteratively split into smaller clusters according to some
dissimilarity criterion. Since the computational cost for dividing a cluster into two, given all
possible choices is high, divisive clustering is less commonly used. In one of the first applications
of hierarchical clustering on gene expression data, Eisen et al. [52] derived clusters that contained
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genes known to belong to the same biological function using microarray data from the budding
yeast Saccharomyces cerevisiae and human fibroblasts. This work was based on the assumption
that co-expressed genes aremost likely to be co-regulated under particular conditions andmay have
the same biological function, which was also the case in several subsequent studies [53–57].

Non-hierarchical clustering methods, like k-Means and Self-Organizing Maps (SOMs), divide the
data into k different clusters, such that the objects in a cluster are more similar to each other than to
objects in different clusters. The k-Means algorithm starts by randomly assigning the input points
(e.g., genes) into k-pre-determined initial groups and then calculates the mean point called centroid
for each group. The data are then reassigned so that they belong to the groupwhose centroid is closer,
and this procedure iterates until the means converge. Different number of clusters (k) as well as
different initial centroid positions may yield different results. Therefore, it is important to run the
algorithm several times with different random initial conditions [48]. The k-Means algorithm has
been used to analyze microarray cell cycle data from Saccharomyces cerevisiae, resulting in the
partitioning of gene expression profiles in 30 clusters, with 49–186 genes per cluster. A significant
number of clusters contained genes that belonged to the same functional class [53]. Other applications
of this algorithm for functional module identification can be found in [58–60].

A variation of the centroids approach is also used by the Self OrganizingMaps algorithm, which
was developed to model the way in which neurons in the brain become tuned to specific receptive
fields [61]. It is a neural-network based divisive clustering technique that projects high-dimensional
data to a low-dimensional, usually 2D or 3D grid. The nodes in the grid represent neurons, which,
during an iterative unsupervised learning process becomes specifically tuned to various input signal
patterns or classes of patterns in an orderly fashion. The algorithm starts by defining the dimen-
sions of the grid whose nodes are subsequently initialized with random values. Each sample in the
initial data-set is compared, using a specified metric, to each node and assigned to the most similar
one. For each assigned sample, the centroids of the ‘winner’ node along with the adjacent nodes are
re-calculated to incorporate the new sample. During this learning process, individual changes may
be contradictory, but after a large number of iteration steps, the net process is a mapping of the
initial data-set, so that similar samples are clustered together, as well as nearby clusters in the
topologymapping contain samples that are near each other in the input space. SOMs can thus serve
as a clustering tool as well as a tool for visualizing high-dimensional data. An example of a SOM
algorithm output generating a 5 � 5 grid is illustrated in Fig. 27.7. Several studies used SOMs to
search for functional modules in biological data [62, 63]. A good example is the work of Tamayo
et al., who used SOMs to recognize and classify gene expression features from complex multi-
dimensional data: a cell cycle microarray data-set from Saccharomyces cerevisiae and a human
hematopoietic differentiation data-set. In both cases, SOMs identified biologically significant
clusters capturing cell cycle periodicity and known pathways, respectively [64].

Fig. 27.6 Dendrogram representing the output of a hierarchical algorithm. At different stages of the algorithm there
are different numbers of clusters, ranging from a single cluster on the top merging all the components, to the
maximum number of clusters at the bottom, representing each component as an individual cluster (Copies of figures
including color copies, where applicable, are available in the accompanying CD)

528 P. Poirazi et al.



27.3.1.2 Dimensionality Reduction Methods

Clustering is a quantitative way to gain first order knowledge from the data by partitioning data points

into disjoint groups and maximizing intra-group similarity. However, clustering techniques cannot

simplify the large number of dimensions in the data space, and dimensionality reduction methods are
utilized to perform this task.Principal Component Analysis (PCA) achieves dimensionality reduction by

finding new axes, called principal components, which identify the linear combinations of signaling axes
most tightly connected with one another. Instances are thus assigned to these real-valued vectors in a

lower dimensional space (often just two or three dimensions) that capture the most important informa-

tion in each of the original signaling axes. Briefly, in a data-set with N vectors from k-dimensions, the
algorithm finds c� k orthogonal vectors that can be used to represent the data without significant loss

of information. The original data-set is thus reduced to one consisting ofN data vectors on c principal
components, where each data vector is the linear combination of the c principal component vectors.

The PCAmethod has the advantage of radically reducing dimensionality while preserving most of the

variance in the original data space. Clustering approaches like those described in the previous para-
graphs can then be applied to the reduced data-set. Although some scientists argue against the quality

of the clusters after using PCA, this method has proved to be valuable for a number of biological
applications for viewing high-dimensional data spaces compactly [47]. For example, PCA is frequently

used on microarray data to improve visualization and facilitate clustering, classification or modeling

efforts by filtering out the components that contribute to noise [65, 66].
Partial Least Squares (PLS) is another method used for dimensionality reduction, similar to

PCA. The main difference is that while PCA factors the entire data set into principal components in

an unsupervised manner, PLS predicts a set of dependent variables from a larger set of independent
variables based on a proposed relationship [47]. PLS places strong emphasis on predicting the

system responses without explaining the underlying relationship between the interacting variables.
For example, it aims to predict future signaling responses from events at earlier times [47].

However, experimental observations are frequently not adequate for calculating a unique solution

that estimates the contribution of each signaling variable in the independent block to those in the
dependent block. It is in this context that principal components and PLS are most useful. Rather

than performing the regression in the original data-set, PLS reduces the dimensions to a principal-
component space and then regresses the independent and dependent principal components [47].

Fig. 27.7 Output of a 2-dimensional 5�5 Self-Organizing Map. Each node represents a cluster of samples while
neighboring clusters include the samples which are located close to each other in the original space (Copies of figures
including color copies, where applicable, are available in the accompanying CD)
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PLS methods are characterized by high computational efficiency, flexibility, and versatility which
make them particularly attractive for analyzing biological data. Using mRNA expression data and
protein-DNA binding information, Boulesteix and Strimmer estimated transcription factor activities
as well as the functional interactions of regulators [67]. Following the analysis of microarray data on
sporulation of budding yeast, the gene expression levels of representative geneswere regressed against
the expression levels of the remaining genes [68]. Finally, using amino acid composition data,
Clementi et al. attempted to predict secondary structure [69] using PLS.

27.3.1.3 Integration Methods

Most of the computational approaches that have been used to identify functional gene modules,
describe the regulatory events in a cell utilizing a single type of biological data, e.g., gene expression
or protein-DNA interaction data and so on. However, expression data based approaches, often
assume that co-expression of a gene implies co-regulation and that the expression levels of
regulators and their target genes are somehow related. This is not always true as post-translational
modifications of transcription factors, for example, are well documented [45, 70]. Algorithms based
solely on protein-DNA interaction data cannot distinguish between positive and negative regula-
tion as such data are often very noisy due to non-specific binding [46].

Algorithms that integrate multiple data types are currently a fast developing area in the bioinfor-
matics field [71]. The goal of these algorithms is to integrate diverse, high-throughput data to discover
patterns of combinatorial regulation and to understand how the activity of genes, involved in similar
biological processes is coordinated and interrelated. Examples of such algorithms that have been
extensively used to identify functional gene regulatory modules by combining various types of data
(such as gene expression, protein interaction, growth phenotype, transcription factor binding data
etc) include theGRAM [46], the ReMoDiscoverymethod [72], GeneXpress [45] and SAMBA [73], to
name a few. Next, we briefly describe GRAM as a representative example of this class of algorithms.

The GRAM algorithm [46] combines gene expression with protein-DNA interaction and
annotation data to identify modules of genes that are bound by the same transcription factors
and share similar expression profiles. Using annotation data the algorithm also pin points the most
likely biological function of the genes in the identified modules. The method starts by finding
groups of genes that share the same set of regulators based on a p-value criterion. Within each
group, the genes that are co-expressed form the core of a module. Additional genes with similar
expression profiles, which are also bound by the same transcription factors but with a more relaxed
binding criterion, are then added to the module. The algorithm also correlates the expression
profile of each regulator to that of the average gene expression pattern in the module, to infer
whether it acts as a positive or a negative regulator. The GRAM algorithm was first applied to
Saccharomyces cerevisiae using binding data for 106 transcription factors and over 500 microarray
experiments [46]. 106 gene modules containing 655 distinct genes regulated by 68 transcription
factors were identified and visualized as a network of transcriptional interactions. Comparing
derived modules with experimental results, for example, by performing independent chromatin-IP
experiments and literature research, it was verified that GRAM identifies biologically meaningful
regulatory modules with high accuracy.

27.3.2 From Networks to Modules: A Top-down Approach

Complex biological networks, often consisting of hundreds of interconnected components, are best
visualized as tree-like structures, where nodes represent biological entities and edges represent a
relationship (interaction, regulation, reaction and activation/inhibition) among pairs of the com-
ponents. A plethora of biological networks are present in the literature, including protein-
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interaction networks [74–76], metabolic networks [77, 78], gene regulatory networks [79, 80],
pathway networks [81] etc. The ongoing accumulation of experimental data further increases the
complexity of such networks making them hard to visualize and interpret. Since ‘modularity’ is an
intrinsic property of biological systems [1], a number of algorithms have been developed that try to
isolate smaller functional groups (modules) inside large biological networks, in order to better
visualize and interpret their functions. We will discuss three examples of such approaches, each one
implementing different criteria for specifying modularity.

27.3.2.1 Modules in Metabolic Networks

Cellular metabolism can be represented graphically by the metabolic network, a fully connected
biochemical network where the metabolic substrates (nodes) are densely inter-connected through
biochemical reactions (edges). Jeong and colleagues [77] analyzed the metabolic pathways from
43 organisms, and came to the conclusion that metabolic networks exhibit scale-free topology, as
the probability P(k), that a certain substrate is connected with k-reactions follows a power-law
distribution, i.e., P(k)� k-y where yffi2.2 for all organisms. Metabolic networks are therefore
characterized by the presence of a few, highly connected, substrates (hubs) participating in a
large number of metabolic reactions; a feature that provides robustness against random mutations
or environmental fluctuations of non-hub substrates [77]. This observation led Ravasz et al. [82] to
pose the dilemma whether modularity is indeed a key feature of such networks, since the appear-
ance of hubs integrates all the components in a single web, in which the existence of fully separated
modules is, by definition, prohibited. On one hand, evidence from the analysis of metabolic
networks indicates the existence of functionally separated entities (for example the biochemical
pathways) [83, 84] ,while exhibiting high clustering coefficients, indicative of a modular structure.
On the other hand, scale-free topology implies a highly non-uniform distribution of the inter-
connections, opposing the idea of modularity. This dichotomy was overcome by describing the
metabolic network with a hierarchical architecture keeping both the modular and the scale-free
properties. A synthetic generation of such an architecture would be the iterative quadruplication of
an initial cluster, leading to an inherently hierarchical organization of the nodes with different
degrees of modularity [82].

Application of different algorithms to cluster metabolic networks based on topological proper-
ties has often resulted in the identification of functional modules representing known biological
pathways [82], [78], [85, 86]. Based on the assumption that neighboring components in a biochem-
ical networkmay belong to the same pathway, one approach used a topological matrix representing
the degree to which two substrates share common connections with other substrates and applied a
clustering algorithm to identify such topological modules. When applied to the metabolic network
ofEscherichia coli, this method resulted inmodules with amajor overlap with already characterized
pathways such as the pyrimidine metabolism [82]. Another approach for the partitioning of a
network intomodules is to find the partition that maximizes the within-module links andminimizes
the between-module links, using appropriate algorithms like simulated annealing [78]. Application
of this algorithm to the metabolic networks of twelve organisms including bacteria, eukaryotes and
archaea resulted in an average of 15 different modules in each network with high inter-module
density of links andmodule content that attributes to a specified pathway according to information
from the KEGG database. An alternative computational approach is the application of flux
coupling analysis to metabolic pathways to identify functional groups of reactions [85, 86].

27.3.2.2 Modules in Gene Regulatory Networks

A gene can affect the expression of another gene by binding its product on the control region of the
target gene. At the level of the full genome, we refer to regulatory networks as the regulatory
interactions between genes.
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Carter et al. [87] built a gene network using expression profiles and by considering two genes as
linked if their expression profiles were correlated to a significant degree. The authors confirmed a
power-law distribution model indicative of a hub-oriented network and also a high-level clustering
coefficient that, similar to metabolic networks [82], is characteristic of a hierarchical organization
of modularity. Using deletion experiments it became apparent that highly connected nodes repre-
sent essential genes and that gene-classes enriched in connectivity are process specific, thus reveal-
ing the modular structure of the network.

In an attempt to unravel the structural organization of the transcriptional network of Escher-
ichia coli, the presence of modules as well as their regulators emerged. The transcriptional regula-
tory network appeared to have a five-layer hierarchical structure with a feed-forward regulatory
relationship between the layers. Each gene in a top layer could directly regulate any of the down-
stream genes (but not the upstream) with an average path length of 1.36. Based on the connections
in this hierarchy, groups of common-bound genes were considered as functional modules and their
regulators were identified [88].

27.3.2.3 Modules in Protein Interaction Networks

A ‘functional module’ is an entity with a separable function that can act independently through
chemical, functional, or spatial isolation. In that concept, protein complexes, whether long-lived
(like the F1Fo ATP synthase) or transient (like CDK-cyclin complexes), can be regarded as
modules having spatial and functional isolation with strong interactions within the module and
weak interactions with the external components [89]. However, when considering a protein as part
of a larger cellular network, where each protein can interact with numerous other proteins, clusters
of such interactions could represent functional modules.

Protein-interaction networks also form a highly in homogeneous scale-free structure [74]. There
are a few proteins with many connections (the ‘hubs’), while the vast majority of the proteins have a
very small number of links in the network. The biological role of hubs is considered highly
significant as provend by deletion experiments, where the removal of hubs is usually lethal for
the cell. In a study regarding the analysis of protein interactions in the yeast Saccharomyces
cerevisiae [76], the authors further arranged the hubs in two categories, based on the way they
interact with their partners according to mRNA expression data. They identified ‘party’ hubs that
interact with their partners simultaneously and ‘date’ hubs that bind their different partners at
different times or locations. The authors showed that ‘date’ hubs are, in fact, the connectors
between modules, while the ‘party’ hubs provide the within-module connections.

Traditional clustering algorithms have also been applied to protein-interaction networks to
identify functional modules. A common technique is to describe the interactions with some form of
a weight network. For example, networks whereby weight values are analogous to the reliability of
the particular interaction [90, 91], or to the shortest path length reveal modules that contain
proteins with biologically significant function [92, 93].

27.3.2.4 On a Smaller Scale: Network Motifs

Analyzing networks on a global scale helps uncover the relatively large groups of components that
are somehow related, and play a specific and distinct role in the orchestrated regulation of
interactions. Complementarily, the search for repeated local graph properties has received increas-
ing interest over the last decade and the identification of networkmotifs is now an important field in
Systems Biology. Network motifs are structural elements (patterns) that occur in statistically
significant quantities compared to the respective random structures. Their presence has been
documented in many kinds of networks, from social to biological ones, indicating their significance
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in offering a functional advantage to the system [94]. Interestingly, analysis of protein and genetic

networks revealed that network motifs are dominant within these network structures [81, 94].

Different types of networks are characterized by their distinct motifs, for example, the three-node

feed-forwardmotif is regularly seen in biological networks [81, 94–97] while the four-node feedback

loop is basically apparent in electric circuits [94]. To identify the motifs present in a given network,

all substructures of n nodes are determined [94]. Motifs appear to be evolutionary conserved in the

yeast protein interaction network [98] as well as in genetic networks, indicating a key role in the

optimal design of biological networks [99].

27.4 Evolution of Functional Modules

The revelation of the presence and role of functional modules in numerous complex biological

networks, raises the question of whether a module is evolutionarily conserved. In other words, does

evolution play a role in shaping inter- or intra-module interactions? The answer to this question will

be given by the efforts of future workers. Initial findings suggest that modules are, in general,

evolutionarily conserved entities; the extent of this conservation depends on the type of the

functional module. For example, protein complexes appear to be more evolutionary conserved

than co-expressed gene clusters. Evolutionary changes are more frequently observed in the module

linkage than in the intra-module composition [89, 100].

27.5 Conclusion

In this chapter, we discussed some of the most popular analytical and computational approaches

used to identify the structure and infer the function of intracellular networks at various levels of

abstraction. Since complex intracellular systems are often composed of smaller, functionally

independent sub-network structures, we discussed different approaches that partition a system

into functional modules or reconstruct it based on the interactions between these entities. Different

algorithms may result in different compartmentalization of the underlying structure of the whole,

but when combined effectively, these approaches can – at least in principle – provide a global view

of the coordinated functionalities inside complex biological systems.
Limitations induced by the amount of biological knowledge and the complexity bounds of

certain methods can be overcome by assuming well-defined constraints in the computational

algorithms, while maintaining a high level of modeling accuracy. Nice examples include the
application of Boolean methods, in which the network nodes are reduced to binary variables and

the interactions between them are described by logical functions, in modeling the Saccharomyces

cerevisiae cell cycle [22, 24]. Alternatively, methods that reconstruct a cellular system by

first breaking it down into functional modules which can be studied in more detail and then

connecting the modules into a more complex network are also good examples. The work of

Bar-Joseph et al., [46] in Saccharomyces cerevisiae showed that combining binding data with

expression information can reveal biologically plausible, functionally distinct sub-network struc-

tures with very high accuracy. Overall, the many examples discussed in this chapter illustrate the

far-reaching capabilities of available computational methods, especially when combined with

experimental techniques, in extending our understanding of complex biological networks. Some

of the advantages and disadvantages of the methods discussed in this chapter are shown in

Table 27.1 while several implementations of these methods that are available on the internet are

listed in Table 27.2.
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Table 27.1 Summary of the strengths and weaknesses for some of the computational methods discussed in the chapter. A similar comparison for some of these methods
can be found in [47]

Method class Method
Optimal
dimensions Strengths Weaknesses

Clustering Hierarchical Dendrogram
’branches’

Simple and unbiased; entire dendrogram can be
scanned for assembly of clusters

Clusters must be assembled pairwise; some clusters
might lack biological relevance; dendrogram does
not simplify the data set

Clustering k-means/
SOMs

Centroids Clusters are assembled in groups; allows user to
specify an expected number of biological classes;
centroids provide a simplified representation of the
data set (for SOMs, vicinity of partitions is a
measure of similarity)

Requires user to specify initial number of centroids
and their starting positions; some centroids might
lack biological relevance

Principal
components
analysis
(PCA)

Principal
components

Simple and unbiased; scores and loadings vectors
provide simplified representations of the data set

Cannot pose a hypothetical relationship within the
data set; some principal components might lack
biological relevance

Partial least
squares (PLS)

Classification Principal
components

Allows user to specify an expected set of biological
classes without the need for additional data

Class predictions are inherently qualitative; principal
components might lack biological relevance when
classes are too distantly related to the independent
variables

PLS Prediction Principal
components

Allows user to pose a biological hypothesis;
predictions are quantitative

Often requires an additional data set of dependent
measurements; assumes a linear relationship
between independent and dependent variables

(Copies of tables are available in the accompanying CD.)
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Table 27.2 A list of available software tools implementing computational methods discussed in this chapter

Tool name Description Link

Cluster Performs hierarchical clustering, self-organizing maps http://rana.lbl.gov/

GenePattern Contains clustering, classification, cluster analysis, and
preprocessing algorithms

http://www.broad.mit.edu/cancer/software/software.html

GEPAS A suite of gene expression pattern analysis tools (k-means, SOMs,
SOTA etc)

http://gepas.bioinfo.cipf.es/cgi-bin/clus

caGEDA A web application for the integrated analysis of global gene
expression patterns in cancer

http://bioinformatics.upmc.edu/GE2/GEDA.html

GRAM Identifies modules, collections of genes that share common
regulators as well as expression profiles.

http://psrg.lcs.mit.edu/GRAM/Index.html

SAMBA A novel biclustering algorithm for the identification of modules of
genes that exhibit similar behavior under a subset of the examined
biological conditions.

http://www.cs.tau.ac.il/�samba/

Expander Performs clustering, visualizing, biclustering and downstream
analysis of clusters and biclusters such as functional enrichment
and promoter analysis.

http://www.cs.tau.ac.il/%7Ershamir/expander/expander.html

GeneXpress A visualization and analysis tool for gene expression data,
integrating clustering, gene annotation, and sequence information.

http://genexpress.stanford.edu/

ReMoDiscovery An intuitive algorithm that correlates regulatory programs with
regulators and correspondingmotifs to a set of co-expressed genes.

http://homes.esat.kuleuven.be/�kmarchal/
Supplementary_Information_Lemmens_2006/
Index.html#SW

Cytoscape Software platform for visualizing molecular interaction networks
and integrating these interactions with gene expression profiles and
other state data.

http://www.cytoscape.org/

RBN

MATLAB
Toolbox

Random Boolean network http://www.teuscher.ch/rbntoolbox/

BN/PBN MATLAB Toolbox Boolean and Probabilistic Boolean toolbox http://personal.systemsbiology.net/ilya/PBN/PBN.htm

BNSOFT Bayesian Network

Software packages

http://www.cs.ubc.ca/�murphyk/Bayes/bnsoft.html

BAGEL Bayesian Analysis of Gene Expression Levels: a program for the
statistical analysis of spotted microarray data.

http://web.uconn.edu/townsend/software.html

Bayes Net

MATLAB
Toolbox

Bayesian Network http://bnt.sourceforge.net/

Causal Explorer (CE) Local and Global Causal discovery http://discover1.mc.vanderbilt.edu/discover/public/

(Copies of tables are available in the accompanying CD.)
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Chapter 28

Methods for Dynamical Inference in Intracellular Networks

Eleftheria Tzamali, Panayiota Poirazi, and Martin Reczko

Abstract Equation-based algorithms make hypotheses regarding the biophysical dynamical laws
that govern a biological system and in the form of a mathematical expression, aiming to interrelate
the system components, in an effort to explain and verify the experimental observations. This
approach is what we mainly regard as dynamical inference. Assumptions such as the deterministic
or stochastic laws that govern the system dynamics, the degree of modeling spatial phenomena, the
exact mathematical representations of these biophysical laws and constraints, comprise some of the
main issues of the dynamical inference problem. Another class of algorithms considers the cell as a
whole system that orchestrates its components under physio-chemical constraints towards the
accomplishment of certain cellular functions. These approaches avoid the search of detailed
equation forms as well as the demand of knowledge of the parameters involved in the kinetics,
and produce a steady state dynamic picture of the complex, genome-scale metabolic network of
chemical reactions at the flux level. The constraint-based methods are essential for the analysis of
the metabolic capabilities of organisms as well as the elucidation of systemic properties that cannot
be described by descriptions of individual components or sub-systems.

The current biological knowledge, the available data and the computer power, are the issues that
actually determine the upper limit for the system size and its complexity that can be simulated, thus
defining our level of understanding.

Keywords Differential equations � Stochastic simulation � Spatial organization � Constraint-
based methods � Flux balance analysis

28.1 Introduction

Cells are complex biological systems that consist of components that interact with each other,
under regulatory strategies, in response to internal and environmental signals. These components
can be also seen as players in a game with short and long-term goals which follow certain, finite and
evolutionary sub or fully optimized strategies with the potentiality of updating and self-adjusting.
The goals can be interpreted as the accomplishment of certain functional tasks towards mainte-
nance of life. A strategy involves the temporal succession of the interactions that the components of
the system will undergo during the progress of the dynamic phenomenon. The biophysical laws the
system obeys as well as the evolution process that has driven the system towards a better survival
and source utilization, are the constraints that shape the regulatory strategies under which the
system efficiently orchestrates its components.
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Identification of the system strategies in a qualitative manner is achieved by the network-based
class of algorithms described analytically in the previous chapter. In network representations,
either a dynamics-free-picture of the system or an interpretation-free or a simplified dynamic
interpretation of the interactions is mainly depicted. Besides network inference, explaining and
formulating those strategies is a further step towards understanding the dynamic phenomena that
take place in the system. Equation-based algorithms make hypotheses regarding the biophysical
dynamical laws that govern the system and in the form of a parametric equation aim to interrelate
the system components, in an effort to explain and verify the experimental observations. This
approach is what we call dynamical inference and will be discussed in the following.

Dynamical inference can be seen as a two-fold problem. The first part concerns the determi-
nation of the biophysical description of the system, including assumptions and decisions such as
the deterministic or stochastic nature of the system dynamics, the influence of the in homogeneity
of the actual reacting volume in the dynamics, and the linear or non-linear dynamic interrelation
of the system components. The optimal model is selected based on the available data, and the
biological knowledge and assumptions that are most proper to fit to the biophysical dynamics of
the system under study. The second part attempts to make the biophysical description, selected in
the first step specific, by identifying the missing parameters involved and incorporating them to
the pre-defined mathematical framework. Actually many of the kinetic parameters (reaction
rates, diffusion or transport rates) involved in the governing equations are usually missing.
Therefore, methods for estimating those parameters from experimental data should be applied.
Optimization of the parameters involved is a problem of its own and usually a large computa-
tional effort is needed.

An expressional rich model (many degrees of freedom in the parameters involved), is more
probable to include a representation close to the real dynamics. However, the limited amount of
data and constraints make the identification problem hard and a unique solution is unlikely to be
found. At that point, one may also wonder whether a unique solution is indeed, what describes a
biological system. A plethora of solutions may soundly depict the inherent robustness of the
system. Discrimination between modeling weaknesses and the actual biological system properties
is essential when aiming to understand the real phenomena and predict system behaviors. Chen
et al. (2005) and Mahadevan and Schilling (2003) [1, 2], among others, investigate the robustness
reflected, either as variation in the kinetic parameters or as alternate optimal fluxes with respect to
steady state the maintenance.

Current knowledge certainly places limits to the level of description, and the challenge is to
build mathematical models with the available data at hand that will be able to reveal new
properties and understand the system functioning to further guide new experiments. When a
valid and biologically plausible unified description of the system is found, the iterative model
refinement procedure will come to an end. For gene regulatory systems, the biophysical reaction
mechanisms are not yet fully understood. The individual steps involved in the gene expression
pathway, which includes the information transferred fromDNA to RNA and then to protein, are
thoroughly described [3]. A theory of modeling the reaction steps and placing them in a network
of interactions remains, however, an open problem in Systems Biology. Recent research attempts
that work on the molecular levels of understanding the underlying regulatory mechanisms,
include references [4–6]. Quantitative information on kinetic parameters and molecular popula-
tions is also limited, making the model reconstruction harder. In metabolic networks, on the other
hand, for organisms like E. Coli or yeast, more knowledge is available but the data is far from
being fully complete. An exceptional case comprises the human red cell for which all the kinetic
parameters are available [7, 8].

The chapter is divided into the equation-based and the constraint-based modeling approaches.
The breadth of the description of each approach is proportional to the research works on the fields
and the aspects that we consider educationally essential in understanding.
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28.2 Equation-based Modeling

ProblemDefinition: Given sequential snapshots of the time evolution of the components of a system
(time-course data), a function that explains the dynamic change of the values of each component
with respect to the system’s past values is asked. The solution for the problem should explain and
predict the population levels of the species at any time, given the molecular populations of the
biochemical reacting system at an initial time.

Population levels can either be continuous or discrete variables depending on the resolution, that
better describes the system. In principle, molecular concentrations can be assumed continuous
variables only in the thermodynamic limit of a large number of molecules. Quantization of the
continuous variables is also possible to simplify modeling.

The deterministic or stochastic description of the dynamics of the biochemical reacting system
under study is the first decision to be made. The second, concerns the form of the temporal transition
function, which reflects the further assumptions (e.g., linearity, non-linearity, reaction time evolution
rules)made on the appropriate deterministic or stochastic description of the real biophysical laws that
govern the system, and comes with the cost of the parameter estimations from the current knowledge.

A short overview of the main aspects that concern the dynamic modeling will be presented first
while a deeper analysis of the particular methods that each approach uses will follow.

28.2.1 Overview

28.2.1.1 Deterministic Approach

The deterministic dynamic evolution of a biochemical reacting system, of N species, can be
described by a set of N coupled time-dependent equations of the form presented in Fig. 28.1.

vi[t] expresses the population level of the ith species at time t, and fi is a transition function that
quantifies the temporal relation between the ith species and all the species of the system. V[t]
represents the population levels of each species in a vector form (system state).

In the above representation, the biological system is described by a set of coupled difference
equations. However, a dynamical system can also be represented by a set of coupled, ordinary
differential equations where both the time domain and the molecular concentrations of the
components are considered continuous. If these assumptions hold, each of the above equations
takes the differential form:

dvi
dt
¼ fi v1ðtÞ; v2ðtÞ; : : : ; vNðtÞð Þ (28:1)

Fig. 28.1 The temporal transition of a system. V[t] and V[tþ1] depict the state vectors of the system components at
time t and tþ1 respectively (Copies of figures including color copies, where applicable, are available in the
accompanying CD)
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Differential equations are commonly used to model biochemical systems [9, 10], particularly the
chemical reactions involved in metabolic networks [11, 12]. However, since they require thorough
biochemical detail of the system and because of their deterministic description of the dynamics, they
are generally difficult to apply to modeling gene regulatory networks [13]. Analytical solutions
exists for a few simple systems, thus numerical, computational methods are used to solve the
equations.

The representation of system dynamics in the above formulas implies that the information
propagates quickly in the reacting medium, in a sense that for a certain sampling rate, a component
has the time to respond to a change. In that sense, the population levels of each species at time t can
be determined by those at a previous time step. When this is not the case and time delays arise from
the possible time required to complete processes such as transcription, translation or/and trans-
portation, amodification is needed in the dynamic description. Time delays, which are not modeled
explicitly, can be accommodated in the above (deference or differential) representation [14]. An
example of how a difference equation is reformulated is:

vi½tþ 1� ¼ fi v1½t� ti1�; v2½t� ti2�; : : : ; vN½t� tiN�ð Þ (28:2)

where ti1, . . ., tiN are discrete time delays
Later we shall discuss how spatial models reflect on these phenomena.
The dynamical representations described, additionally imply that biological systems are closed

systems. However, rarely is this the case. Biological systems are open systems where external signals
and environmental changes also control the dynamics. In order for the proposed function to
consistently describe the dynamic phenomenon, the control property should be also accommo-
dated in the formalism as follows:

vi½tþ 1� ¼ fi v1½t�; v2½t�; : : :; vN½t�; ~u½t�ð Þ (28:3)

where ~u is the vector of input signals
A decomposed form of the dynamics to a rate of production ( fi) and a rate of consumption or

degradation (gi) is a common representation and is more convenient since it further allows the
expression of different sub-networks and laws to govern each phenomenon if necessary. The
temporal transition for the ith component in the decomposed formula now takes the form:

vi½tþ 1� ¼ fi v1½t�; v2½t�; : : :; vN½t�ð Þ � gi v1½t�; v2½t�; : : :; vN½t�ð Þ (28:4)

The degradation effect is usually modeled by a first order chemical kinetic reaction and the
above equation becomes:

vi½tþ 1� ¼ fi v1½t�; v2½t�; : : :; vN½t�ð Þ � �i vi½t�; (28:5)

where the parameter �i denotes the degradation rate of the ith component.
Within each time step, usually, more than one interaction-reaction takes place. Hence, we have

expressed the population level of each component in the system as a function of all the system
components of which a certain component may interact within that time interval. Usually, the total
regulatory effect on each component is assumed additive, in a sense that the values of each
component are combined additively, in a proper manner to change the value of a certain compo-
nent. The additive effect can be expressed either as a function of a weighed sum of the values of the
system components (linear models, linear weight matrices models), or as a sum of the regulation
functions of each system component (piece-wise linear models). The approaches will be discussed
separately in following sections.
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vi tþ 1½ � ¼ fið
X

j

wijvj½t� Þ; function of a weighted sum

vi tþ 1½ � ¼
X

j

wij fi vj½t�
� �

;weighted sum of regulation functions
(28:6)

Using the additive expression alone to describe the dynamic change of a component, implies a
system where components behave independently (non-cooperatively). There are cases, however,
where components act cooperatively for an influence to be apparent as a change in the population
level of a certain component. In gene regulation this synergistic effect is particularly common [15]
and expresses tough regulation of some biological tasks. The synergism effect adds (further) non-
linearities to the dynamic expression and different formalisms, have been proposed which are
analyzed further in the paragraphs to follow.

28.2.1.2 Stochastic Approach

The physical basis of the approaches we have mentioned counts on the deterministic dynamic
behavior of the chemically reacting system. Recalling our problem definition of finding a dynamical
expression to explain and predict the time evolution of a biophysical reacting system, Gillespie first
in 1977 placed the problem differently asking how predictable this system actually is. Adopting the
collision theory to describe the chemical reactions, he proposed that reactions take place at discrete
time intervals of random length and that the observed temporal change in the populations of
a species is the consequence of this random process. In that sense, describing the system in its full
momentum-position space and under the assumption that classical mechanics hold, the time
evolution of the system can be considered a deterministic process. However, in the N-dimensional
subspace that we want to describe it, it is not.

Stochastic phenomena have been observed in biological systems. Even in cloned cell populations
and under the same (as possible) experimental conditions, significant phenotypic variations have
been reported in each cell including variations in the rates of development, morphology and
population levels of each species [16–18].

In systems where the populations of the species are large enough (e.g., metabolites), random
effects are averaged out. Nevertheless, if the population of a system component is low enough (e.g.,
mRNA copies, transcription factors), the fluctuations in the molecular levels (e.g., protein levels)
could not be predicted by a deterministic approach. When the microscopic fluctuations produce
macroscopic effects [6] that the deterministic reaction rate equations are unable to predict, micro-
scopic stochastic simulation approaches described in a later section are required [19].

28.2.1.3 Spatial Consideration

All organisms, even bacteria, show a spatial organization into cellular compartments. In the
modeling perspectives discussed so far we assumed a homogeneous distribution of the cellular
components. Including a spatial constituent into the biochemical dynamic expressions is essential
when different reactions evolve differently in separate compartments and the molecular mobility
causes significant non-linear delays to the dynamic system. Spatial phenomena arise when reaction
rates are shown to be comparatively faster than diffusion rates.

In a simple case where the compartments can be assumed homogeneous inside, we could apply
the dynamic equations separately for the species involved in each compartment and use an addi-
tional term to include the transportation of molecules between the compartments. Alternatively, we
can consider space, like time in ordinary differential equations, a continuous variable and express
the dynamic evolution of the system spatio-temporal using partial differential equations [20].
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Spatial phenomena are also apparent when the reacting volume is of high molecular density
(molecular crowding). Signaling pathways have reported suffering from phenomena such this
[21–23].

The following present give a more detailed description of the equation-based dynamical infer-
ence methods we have sententiously mentioned above. The deterministic models, from linear to
non-linear assumptions on their dynamics, are firstly discussed. Afterwards, approaches inspired
by the inherent stochastic nature of some biological systems are analyzed. And lastly, a section
describing the additional consideration of spatial resolution to the models is included.

28.2.2 Deterministic Approach – Methods

Under the deterministic framework, the biophysical laws that describe the temporal evolution of a
system produce precisely and consistently the future states of the system given its initial condition.
A variety of mathematical expressions have been proposed in the literature to specify those laws
and explain the observations.

28.2.2.1 Linear Models

Linear models assume that the response of a component vi[tþ1] depends linearly on its input ~V½t�,
which consists of the values of all of the components of the system at a previous time. The response
of each component of the system is fully determined in deterministic manner by weighting properly
the input. The basic mathematical form is:

vi½tþ 1� ¼
X

j

wijvj½t� ¼ ~Wi
~V½t�;which is commonly extended to

vi½tþ 1� ¼
X

j

wijvj½t� þ bi: (28:7)

The termswij express the influence of the component j to the component i. The bi is a bias term to
the model that expresses the activation of a component in the absence of any other regulatory
inputs. Under the above considerations, the dynamical inference problem is defined as a problem of
finding the parameters wij and bi for each component of the system, given a time sequence of finite,
usually, too few time points. Usually, clustering methods are used to make the inference tractable.
Linear models have been used to describe several gene regulatory systems [24–29]. Chen et al. [29]
extended the linear differential equation to explicitly include degradation terms of mRNAs and
proteins. Wu et al. [27] viewed gene expression levels as observation variables, whose expressions
depend on current internal state variables, and assumed a linear model to describe the dynamic
evolution of those internal variables.

28.2.2.2 Piece-wise Linear Models

Biochemical reactions are non-linear in nature; therefore, linear models are not an optimal design
strategy to describe the dynamics of the biological systems. Without loosing the descriptive power
and keeping simplicity in the formalism of the biophysical laws, locally linear models, known as
piece-wise linear models have been proposed originally by Glass and Kauffman [30]. Thus, piece-
wise linear systems of differential equations are also known as Glass networks.

The method is applicable in interaction systems of switch-like character. Gene regulatory net-
works, for instance, are assumed to usually approximate, that kind of behavior well. Genes are
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activated when the concentration of a regulator (transcription factor) reaches a certain level.
Activation, here, can either mean a positive or negative effect on the amount of a gene. Further-
more, the activation effect is saturated and the whole regulatory effect is similar to a sigmoidal
shape function which can be approximated by a piece-wise linear function (step or logoid function)
(Fig. 28.2). Numerical simulation studies have shown that there are no qualitative differences when
approximating a sigmoid regulation function with a step function. Each regulator shows its own
characteristic region of activation that depends on the gene it activates. Eventually, all the
regulators act independently and additively, in a total regulatory effect that remains piece-wise
linear:

fið~VðtÞÞ ¼
X

j

wij rijðvjðtÞÞ (28:8)

It is possible for the regulator function to further express the synergism effect, in which two
or more regulators form a complex and then activate a gene. This non-linearity can be described in
a piece-wise linear manner as a product of step functions each with its own characteristics (firing
threshold), corresponding to the different regulators that form the complex. The note here is that
the product of step functions is still a piece-wise linear function, a property which is not generally
true.

Switching thresholds play a key role to the dynamic behavior of the system. Determining
those thresholds from data is generally not a difficult problem. Methods applied to linear
systems can be used. However, we must always keep in mind that the system works
cooperatively with reference to its components, and generating a single model independently
for each component is probably not the optimal way [31]. A lot of theoretic work that
investigates the properties of the piece-wise dynamic systems has been conducted [32–38].
Radde et al. [33] has adopted the formalism to investigate the DNA repair system of
Mycobacterium tuberculosis.

Fig. 28.2 (A) The un-weighted regulatory contribution rij of the component vj to the component vi. Step, logoid and
sigmoid functions are commonly used to approximate switch-like regulatory effects. (B) A network representation of
the temporal transition of states, under the assumption that an additive regulatory effect is valid. The next state of a
component is determined by the weighted sum of regulation functions (Copies of figures including color copies,
where applicable, are available in the accompanying CD)

28 Dynamical System Modeling 547



28.2.2.3 Non-linear Models

Various non-linear functions have been proposed to describe the dynamic evolution of biological

systems. The difficulty that these models present is that analytical solutions are often not possible

and numerical techniques have to be applied to solve the underlying equations. The lack of

measurements of the kinetic parameters involved in those equations comprises a significant hurdle

in numerical approaches. As the system complexity grows, the parameter space becomes huge and a

global solution requires a vast amount of data to be found.
Piece-wise linear models were used to replace the non-linear sigmoidal shape updating functions

as shown in the previous paragraph. Artificial neural networks have been used to model the

regulatory effect among genes using sigmoidal transfer functions to simulate the real phenomenon.

In that case, the level of activation of a gene is determined by:

dvi
dt
¼ ai fið

X

j

wij vjðtÞ þ biÞ � �iviðtÞ (28:9)

The factors ai and �i depict the activation and degradation rates respectively and the fi represents
the sigmoidal transfer function. Each gene-regulator contributes additively to the expression level

of a certain gene i. The total contribution is given by the weighted sum of all these individual

expression levels causing the gene to fire according to the sigmoidal function fi. The rate constant,

ai, is applied to the total activation effect. There is no additive sigmoid contribution, as in piece-wise

linear models, but a sigmoidal additive contribution instead.
Each node represents a particular gene and each layer of the network represents the level of

expression of genes at a given time t. In general, all genes can control all others and full connectivity

is assumed if no evidences of the dependencies are available. In reality, a gene is regulated by a

subset of genes imposing a certain structure in the network (weight matrix). The training algorithms

of neural networks are subject to reach a local instead of global minima and conclude with a system

wiring not representative of the biological systems. When limited data are available proper con-

straints should be added to the model. Recurrent neural networks have been used in several gene

regulatory networks [39–44].
Examples of nonlinear functions commonly used to describe biochemical reaction systems are

presented below.

Fig. 28.2 (Continued)
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H-system

Represents an enhancement of the deterministic linear additive (weight matrix) models by the
addition of a non-linear term to the dynamic formula.

dvi tð Þ
dt

¼
X

j

wij vj þ bi

" #

þ vi
X

j

kijvj

" #

(28:10)

S-System

Dynamical and structural rich formalism that captures the dynamics of the complex, non-linear
biological systems such as gene regulatory and metabolic networks are s-sytem. They produce a
number of parameters estimated from data and optimization algorithms that can search effectively
the solution space. Usually evolutionary algorithms are used as optimization strategy. S-systems
are a type of power low formalism:

dvi tð Þ
dt

¼ ai
YN

j¼1
vj tð ÞGij � �i

YN

j¼1
vj tð ÞHij (28:11)

The first term represents the production effect (synthesis)– all influences that increase the value
of the ith component which can either be gene, protein or metabolite, while the second term
corresponds to the consumption effect (degradation) – ai and �i are non-negative parameters
that express the rate constants of the two processes accordingly. The terms Gij and Hij, on the
other hand, are called kinetic exponents and they express the effectiveness of the influence among
the components i and j of the system. The kinetic exponents determine the structure of the regula-
tory network and may have either positive or negative values, inducing or inhibiting correspond-
ingly the effect of the process they participate.

S-systems have been used widely to explore the dynamic behavior of a fermentation pathway in
Saccharomyces cerevisiae in different experimental conditions [45], in a biochemical system of yeast
glycolysis [46] in an attempt to provide a rational basis for the optimization of citric acid production
by Aspergillus niger [47], on the yeast galactose utilization pathway [48], to analyze cDNA micro-
array data of Thermus thermophilus HB8 strains [49], to evaluate the interactions among genes in
the SOS signaling pathway in Escherichia Coli [50], to model the cadBA system in E. Coli [51], on
many case-study models to study optimization methods and dynamic behavior [14, 48, 51–56].

Law of Mass Action and Michaelis-Menten Kinetics

The law of mass action comprises the fundamental, empirical law governing reaction rates in
biochemical systems. This ‘‘law’’ states that for a reaction in a homogeneous, free medium the
rate of a process is proportional to the concentrations of the molecular species involved.

Aþ B!kþ C
dC

dt
¼ kþ A½ � B½ � (28:12)

Most of the chemical reactions that take place in biological systems are enzymatic. Michaelis
and Menten proposed the formation of an enzyme-substrate complex as an intermediate step to
product formation. Taking the decomposed form into account and applying the law of mass action
in each elementary reaction step, the system kinetics can be found. Under the above considerations
assumptions, any chemical reacting system can be expressed as a collection of coupled non-linear
first order differential equations.
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28.2.3 Stochastic Approach – Methods

Molecular reactions are inherently random processes. According to the collision theory, reactants

collide first and if the collision is efficient enough then the reaction takes place. When exactly the

next collision will take place within a volume is not known because molecules undergo Brownian

motion and the exact position-momentum phase space of the system is not provided. Consequently,

the exact time of the next reaction cannot be estimated and the time evolution of the system can thus

only be described under a probabilistic manner. The reaction rates, we have previously seen, are

now replaced by the corresponding reaction probabilities per unit time.
As the number,N, of the reactants increases, the randomness phenomenon smoothes out and the

dynamic behavior of the system becomes more deterministic (noise � 1/N1/2). In the thermody-

namic limit, the system can be viewedmacroscopically. Metabolic, signaling and gene networks are
characteristic examples of systems with components of populations in different scales. The number
of each metabolite within a cell is of the order of millions. Thus, fluctuations in metabolic systems
are usually negligible. In gene networks, though, the number of mRNA molecules produced per
transcription is usually of the order of tens. Metabolic systems are usually comprised of millions of
molecules. Fluctuations can be considered negligible and macroscopic descriptions are approxima-
tions. In gene networks, mRNA copies are of the order of 10. Fluctuations are extremely significant
(finite number effect), and a microscopic view of those systems, which ‘‘sees’’ and models these
fluctuations is required.

In consequence of the above discussion, the physics a system obeys and correspondingly the

appropriate mathematical formalism selection depends on the certain characteristics of the system.

In some cases, it is possible to describe stochasticity by adding a noise term in the deterministic

formalism (Langevin equation). In other cases, the whole dynamics must change description

(chemical master equation).

28.2.3.1 Chemical Master Equation

If we can consider that N distinct molecular species are spatially and uniformly distributed in a

certain volume, V, and can chemically react through M finite reaction channels, then the chemical

master equation describes the time evolution of the molecular populations of the species under a

probabilistic manner. There are, actually Mþ1 different ways in which the chemically reacting

system can evolve in the next infinitesimal time interval, either through accomplishing one of theM

reaction channels or none of them.
The probability that a certain reaction, m, will occur in the volume, V, in the time interval

(t, tþdt), given the system state at time t, depends on the propensity function am and comprises the

fundamental hypothesis of the stochastic chemical kinetics.
The chemical master equation is of no practical use since, in general it cannot be solved

analytically. Gillespie then placed the problem differently asking when and which reaction prob-

ably occurs next, given the system’s current state. The simulation method he proposed was in

accordance to the fundamental premise of the stochastic chemical kinetics and the realizations of

the simulated Markov process describe precisely the chemical master equation. Gillespie’s simula-

tion algorithm is exact in that sense, though it remains computationally intensive especially when

applied to large and highly reactive biochemical systems. Several approximation algorithms have

been proposed to accelerate the exact Gillespie’s algorithm. Instead of leaving the system to

proceed according to the probable next time of the next reaction, thus simulating one reaction

per step, the methods propose one step to leap over many reactions. As long as the propensity

function remains constant within the leap, the leap approximations stay close to the exact algorithm

[57–61].
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28.2.3.2 Chemical Langevin Equation

The chemical Langevin equation describes the time evolution of the chemically reacting system
through the determination of the number of times each reaction channel occurswithin a time interval,
given the system’s current state. The number of occurrences of each reaction is a randomvariable that
depends on the time interval given, the current state of the system and the propensity function. In the
Langevin equation, this random variable is approximated by aGaussian random variable. As a result
of this approximation, the system dynamics are simplified to the corresponding known deterministic
reaction dynamics with an additional temporally uncorrelated and statistically independentGaussian
white noise term.When the approximation holds, Gillespie has shown that the Gaussian assumption
is valid when two conditions are satisfied. The first condition requires the time interval to be short
enough that any propensity function suffers noticeable change. The second condition needs the time
interval to be long enough for any reaction channel to fire several times. In most systems, these two
conditions are hardly satisfied simultaneously. Simpson et al. 2004 [62] presented a modification of
the Langevin approach to overcome the unsound conditions. Furthermore, hybrid stochastic-deter-
ministic methods (multiscale algorithms), able to partition the system into subsystems where different
assumptions may hold in each partition have been proposed [63, 64].

Stochastic methods can be solved for small systems [4, 6, 65]. However, as the system size
increases, the number of reaction events scales up and stochastic simulations face a computational
burden. Methods that either improve the stochastic simulation performance or combine micro-
macroscopic scales in the system or even work on both directions, making minor sacrifices in
accuracy are indispensable.

The simulations of the stochastic models we have discussed, thus far, attempt to solve the forward
problem. The stochastic kinetic parameters involved in modeling are assumed to be given. However,
rarely are these parameters known. With the aim of modeling real large-scale systems, besides the
fruitful theoretical work, the inverse problem should also be considered [66].

Other formalisms to describe the dynamics of a system as the combined effect of a deterministic
driven system and Gaussian noise have also been proposed in the literature. An example is a model
for the glycolytic yeast genes experiencing a diauxic transition upon glucose depletion [67].

28.2.3.3 Hidden Markov Models

HiddenMarkov models (HMMs), are observation driven approaches aiming to explain the observa-
tion data the systemproduces. The systembeingmodeled is assumed to be a stochastic process, where
the Markov property stands. In HMMs, the state of the system is assumed not to be directly visible,
yet variables influenced by the system state are visible. In gene expression experiments for example,
observations can be the mRNA measured values over time, while the exact truth behind, which
causes the chemical reacting-interacting system to produce those observations is actually hid-
den. In microscopic scale, we could consider the number of molecules of each species involved on
the process as the observation state vector and the frequency of each reaction channel at a given
time interval as, the hidden state vector and the actual reason of the observations [68]. In another
consideration, the hidden state vector can represent the expression-molecular population of
gene modules. The transition probability, expresses the interactions among the modules in a
probabilistic manner and the observation state vector represents the gene expression of all the
genes involved in the process as the outcome of these interactions [27, 69].

The temporal transition of the system from one (hidden) state to the next is described
probabilistically. The observation state at a given time depends on the hidden state of the same
time and is also given under a probabilistic manner. When linear dynamics drive the system from
the one (hidden) state to the next and both the hidden transition and emission probabilities are
assumed to be Gaussian, the model is called Kalman filter representing the Gaussian equivalent
of a HMM.
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28.2.4 Spatial Approach – Method

The cell is far from a homogeneous medium! As the volume of the medium in which molecular
chemical reactions and interactions take place increases, well-stirred assumptions are no longer
valid in modeling of the system dynamics. Similar to the importance of the temporal behavior, the
spatial organization should also be considered in modeling to describe the molecular locomotion to
places of action. A recent interesting investigation of the chemical reaction laws describing the
dynamics in intracellular environments is presented in [70]. Furthermore, [71] proposes a criterion
that determines whether the biological system under study needs spatial models to be described.

Spatio-temporal models of the biological processes have recently been proposed including from
coarse-grained to realistic geometries (Fig. 28.3). Virtual Cell [72, 73], is an example of a computa-
tional tool that provides spatial simulations of biological systems at several spatial resolutions and
geometries. The tool allows digital microscopic images to be used for the system space to be
segmented appropriately.

28.2.4.1 Compartmental Modeling

The least computationally expensive and the first more plausible assumption, is to consider cell a
multi-compartment system. Compartments usually reflect the physical entities of the cell (cyto-
plasm, nucleus), where the within distributions of species can be considered time-persistent homo-
geneous. Components present in different compartments are considered as different entities in
modeling, thus the system size increases. Surfaces (e.g., cellular membranes) allow the formation of
gradients and support molecular fluxes across them. The dynamics within the cellular compart-
ments can be described with any of the ways we have seen so far. Additionally, terms for molecular
transportation from one compartment to the other should also be added in whole cell simulations.

Fig. 28.3 Different spatial resolution approaches. The system boundary defines the volume of the interacting
molecular populations. A coarse segmentation of system space is into compartments (grey area). Homogeneity
can be assumed within compartments, however, further segmentation of the space into sub-volumes might be
essential. A microscopic lattice is also shown in the figure (Copies of figures including color copies, where
applicable, are available in the accompanying CD)
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Hirschberg et al. [74] have used compartmental models to describe, kinetically, the VSVG-GFP
protein-traffic through the various compartments of the secretory pathway. Compartmental
modeling has been also used, in modeling of the segment polarity network in early developmental
stages of Drosophila melanogaster [75].

28.2.4.2 Mesh space and Mean-field Approximation Modeling

In order for models to depict the heterogeneous distributions within compartments and their
apparent stationary diffusion gradients, compartments are further divided into sub-volumes.
Finer sub-volumes produce more accurate solutions, yet make simulations computationally expen-
sive. In general, the partitioning of space comprises a challenging problem. Sub-volumes should be
small enough for the spatial phenomena not to arise in them and for the partition to be assumed
homogeneous. Thus, the partition should be such that diffusion within the sub-volume is faster
than the rate of reactions. Partial differential equations have been proposed to describe system
dynamics, representing together, molecular populations and the spatio-temporal evolution of the
system in a continuous manner. In that way, the intracellular kinetics is approached at a macro-
scopic scale under the mean-field approximation where molecular concentrations become a con-
tinuous function of space and time. Partial differential equations require more parameters than
their corresponding ordinary differential equations and are solved numerically, which means that
both the spatial and temporal region should properly be divided to sub-regions. Thus, numerical
integrations face the partitioning problem described above. Partial differential equations have been
used to describe several systems [76–79]. When stochastic effects become significant giving rise to
fluctuations around the mean field, molecular populations should be treated as system of discrete
entities.

28.2.4.3 Discrete Space Modeling

Discrete space models consider the chemically reacting space as a 2D or 3D microscopic lattice.
Each site of the lattice may be occupied by one or several molecules. The molecules propagate from
one site to another according to their velocities or the diffusion rate and then collide and react to
other molecules. The sites may have different shapes or sizes according to the size and the number
of molecules they are supposed to accommodate. Multi-scale segmentation of the space with high
and low-resolution regions is also possible. In accordance to the microscopic or macroscopic
assumptions of the kinetics, the evolution of the system is determined under that prism (cellular
automata). Discrete space modeling provides a framework with significant advantages in compu-
tational efficiency over the even finer particle space models presented below that have been widely
used [80–85].

28.2.4.4 Particle Space Modeling

Particle space is the natural space of the system. In the molecular level of cell description, neither
species populations are considered continuous variables nor is the reacting space artificially
partitioned. Molecules are single entities moving within the cell volume and interacting according
to the bio-physical forces. This perspective actually transfers the problem to a particle space
definition regardless of the kinetic assumptions. The finest many-body molecular dynamics, the
Gillespie stochastic model and the Brownian dynamics, all consider molecules as distinct entities
nicely embedded in a particle space [86–89]. NAMD comprises the state- of- the- art computational
framework for bio-molecular dynamics simulation of large-scale systems of the size of even multi-
million atoms [90, 91].
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28.3 Constraint-Based Modeling

Equation based models attempt to reveal the real biophysical forces, and describe the dynamic laws
that drive the system to its functional properties by going deep into even microscopic scales. In
a complex system of such a variety of components and interactions, robust and highly regulated, as
the biological systems are, the more plausible way to understand the system, at that high resolution,
was to restrict the studies to small parts of the puzzle and then follow the bottom-up approach
towards whole picture reconstruction.

From a different perspective, holistic models consider the cell as a complete system that
orchestrates its components under physio-chemical constraints towards the accomplishment of
certain functions. The constraints actually describe the biophysical laws, the components that the
system obey, as also the evolution process that has driven the system towards a better survival and
source utilization, in a systemic fashion. By taking into account the holistic consideration, con-
straint-based models aim to integrate knowledge (‘‘omics’’ data) at different levels in the cascade,
from genes to proteins and further to metabolic fluxes in a genome-scale metabolic network to
describe and understand the overall cellular functions [92, 93]. Genome-scale metabolic networks
allow the direct correlation between the genomic information and metabolic activity at the flux
level and the elucidation of properties (such as network robustness, product yield, and metabolic
versatility, environmental and genetic phenotypic effects) that cannot be described by descriptions
of individual components. In that sense, constraint-based models are also known as metabolic
models.

How the holistic consideration is actually adopted in modeling? The core assumption of con-
straint-based models is that the system reaches a steady state (intracellular flux balancing) that
satisfies the physio-chemical constraints under any given environmental condition. The hypothesis
is based on the fact that the time-constants which describe metabolic transients are fast as
compared to the constants associated with cell growth experiments. Under that macroscopic time
scale, the cell can be considered as being in a quasi-steady state.

The constraints, the system inevitably obeys, include mass balance, energy balance, flux limita-
tions; constraints which are not fully known though. Originally, the models assumed that the
metabolic system reaches a steady state constrained by its stoichiometry (mass balance). Never-
theless, the stoichiometry alone only bounds the solution space, determining the region of the
possible fluxes the system can reach. The metabolic networks always have more fluxes than
metabolites; thus the system is undetermined under the stoichiometry constraint alone. Thermo-
dynamic constraints that determine the reversibility of the reactions involved and enzymatic
capacity constraints were also included to place limits on the range of possible fluxes. Figure 28.4
abstractly depicts the successive restrictions of the flux space the constraints of the system impose.

What information may the feasible flux space provide for the system? Convex analysis was used
to enumerate the unique set of all distinct metabolic routes (elementary modes) of the network
[94–96], as also to determine the minimal set of convex vectors (extreme pathways) needed to
describe all allowable steady state flux distributions [97–99]. Elementary mode analysis and
extreme pathways were an essential attempt to characterize the solution space. What remains
unanswered is the solution the cell chooses under the given conditions.

Constraint-based models further assume that the cell performs the way it performs following an
optimization strategy to accomplish certain cellular tasks such as the maximization of biomass
production, the minimization of nutrient utilization, the maximization of ATP, under certain
conditions. With the insertion of an optimization function, the problem is formulated to a
combinatorial optimization problem. If the optimization function is linear, with respect to the
fluxes involved, then the optimization problem is a linear programming problem and can be solved
exactly by providing the flux distributions of the system. Flux balance analysis (FBA) models
estimate the optimal flux distribution of the entire biochemical reacting system, providing a

554 M. Reczko et al.



quantitative description of the system when the intracellular fluxes are in balance. Flux balance

methods search the feasible space (Fig. 28.4) for the optimal flux distribution.
For the model to better represent real biological systems and accurately predict the experimental

evidence, further improvements concerning both the constraints and the optimization functions

have been suggested. The thermodynamic constraints were developed to take into account the
intracellular and environmental conditions of the system [100]. Flux limitations with respect to the

way the system responds and adapts to genetic perturbations were also investigated [101]. Further-

more, the incorporation of the temporal constraints to the model who also studied. The stoichio-

metry constraint implies that all the metabolic reactions present in an organism do actually

participate, and all gene products are available to contribute to the certain task-optimal solution.

However, the system may utilize different metabolic pathways to respond to the various conditions
throughout its temporal evolution. Consequently, an ‘active’ subset among all the possible meta-

bolic reactions, actually plays a role in the system dynamics [92, 102–104]. Moreover, researchers

have considered the possibility of having multiple optimal solutions in the flux space [2, 105]. It is

interesting to mention that flux data have also been used to determine inversely the optimization

strategy that the system followed to measure the flux distribution [106].
The method has proved successful in analyzing the metabolic capabilities of several organisms,

including its ability to predict deletion phenotypes, to determine the relative flux values of the

Fig. 28.4 Abstract representation of the flux space. Feasible space is the flux subspace that satisfies all the constraints
the system obeys. FBA methods search for the optimal flux distribution of the system within the feasible space, and
assume that the system’s phenotype is the reflection of this flux optimality. The set of the enzymatic interactions
present in the system under study, together with the corresponding stoichiometric coefficients determine the
stoichiometric constraints of the flux space. Different sets of enzymatic interactions defines different constraints
resulting in different segmentation of the solution space (dotted external curve). The thermodynamic and capacity
constraints are applied on the present set of enzymatic reactions, thus the feasible space will possibly be different for
the different active networks (Copies of figures including color copies, where applicable, are available in the
accompanying CD)
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metabolic reactions, to identify alternate optimal growth states [107–109], to guide the iterative
refinement of the model and to validate metabolic network reconstruction [104, 110–112], and to
identify a group of reactions being active under all environmental conditions [113].

28.4 Conclusions

In principle, with enough computing power, an initial picture of the system at the molecular level
and a proper unified theory of the biophysical laws that govern the system’s dynamics, which takes
into account all peculiarities of the biological system (in homogeneity, randomness, redundancy,
robustness) we have discussed, a whole cell simulation at that molecular-reaction level of detail
could be achieved. However, even though a massive amount of experimental data is currently
available and substantial biological knowledge has been gained, they remain insufficient for the
inference of the missing knowledge, in order to simulate large scale systems at molecular resolution.
There are compromises that, if properly applied, may improve the simulation speed and reduce the
dimensionality problem and the parameter space, while making minor sacrifices in the description
accuracy of the phenomenon. For example, models that partition the system into subsystems,
where different assumptions can be applied, have been proposed including the stochastic-determi-
nistic hybrid models [63, 64]. A recent multi-level integrated software tool for simulation of
complex biochemical systems is COPASI [114]. COPASI incorporates deterministic and stochastic
approaches to simulate biochemical reactions and also provides a package of optimization algo-
rithms to estimate the unknown parameters involved. To keep the problem tractable, the cellular
system has also been partitioned into functional modules (previous chapter) where detailed kinetic
models can be constructed for each. Those divide-conquer (bottom-up) approaches face two
difficulties. The partitioning of the system into functional or mathematical parts, in addition to
the integration which has to be followed is not always a trivial task. Furthermore, when validation
or optimization is needed for the sub-models, we must have in mind that the data are usually
referred to the complete system and not to the parts which are indeed not independent of the rest
system. Based on the modular approach, nice examples of integrative dynamic models are pre-
sented by Snoep et al. and Klipp et al. [115, 116]. Alternative models, which simulate large scale
systems as a whole by incorporating information and data from genes to proteins and enzymes,

Table 28.1 Integrated dynamic systems

Description Name Webpage

Rule-based differential equations for metabolism E-Cell http://www.e-cell.org/software/e-cell-system

Simulation of metabolic pathways & optimization
tool

GEPASI http://www.gepasi.org/

Stochastic-deterministic simulation of complex
pathways & optimization tool

COPASI http://www.copasi.org/tiki-index.php

Compartmental & Spatial model VCell http://www.vcell.org/ www.nrcam.uchc.edu/
login/login.html

Experimentally based simulation SiC http://www.siliconcell.net/

Stochastic Simulator SGNsim http://bioinformatics.oxfordjournals.org/
cgi/content/abstract/btm004v2

Stochastic Spatial Simulator SSS http://www.webpages.uidaho.edu/�krone/
winsss/sss-main.html

Reaction-Diffusion network SmartCell http://smartcell.embl.de/introduction.html

Molecular dynamics simulation NAMD http://www.ks.uiuc.edu/Research/namd/

GRN inference & simulation JCell http://www-ra.informatik.uni-tuebingen.de/
software/JCell/tutorial/index.html

(Copies of tables are available in the accompanying CD.)
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have also been proposed [93], sacrificing dynamic description resolution. Constraint-based models
are widely used as top-down models, for the investigation of the metabolic capabilities of certain
organisms under specific environmental conditions and perturbations. Dynamic phenomena can
be approximated by changing the constraints to shape according to the feasible flux space. The
temporal path of flux distributions that the system undergoes throughout its dynamic evolution
remains an open problem. Additionally, a better way to incorporate other interacting systems such
as signal pathways, and gene regulatory networks to the complex metabolic network leaves room
for improvement towards a multi-level integrated system. Some representative implementations of
the methods described in this chapter available on the internet are listed in Table 28.1.
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Chapter 29

ASIAN: Network Inference Web Server

Sachiyo Aburatani, Shigeru Saito, and Katsuhisa Horimoto

Abstract Network inference in a living cell is one of the main themes in high-throughput assays,
and some computational methods have been developed to deduce the relationships between the
genes and proteins. Recently, we developed a method for inferring a network from a large amount
of numerical data obtained from high-throughput analyses. Our method is now open to the public
on the web, named as ASIAN (http://eureka.cbrc.jp/asian/).

In this chapter, we describe the ASIAN (Automatic System for Inferring ANetwork) web server
for inferring a network from a large amount of numerical data, based on graphical Gaussian
modeling (GGM) in combination with hierarchical clustering. GGM is based on a simple mathe-
matical structure, which is the calculation of the inverse of the correlation coefficient matrix
between variables. The ASIAN web server can analyze a wide variety of data within a reasonable
computational time. The server allows users to input the numerical data, and it outputs the
dendrogram of the objects by several hierarchical clustering techniques, the cluster number is
estimated by a stopping rule for hierarchical clustering, and the network between the clusters by
GGM, with the respective graphical presentations. ASIAN is useful for inferring the framework of
networks from redundant empirical data, in addition to the clustering, concomitant with the
estimation of the cluster number. In particular, the visual presentation of the result provides an
intuitive means for understanding the putative network between the objects.

Keywords: Network inference � Statistical analysis � Hierarchical clustering � Microarray data �
Partial correlation coefficient

29.1 Introduction

The elucidation of the complete genome sequences of model organisms has facilitated the high-
throughput assays of living cells on a genome-wide scale. By the high-throughput assays, molecular
networks and their components in the living cells are measured at multiple levels, such as mRNA
transcript quantities, protein-protein and protein-DNA interactions, chromatin structure, and
protein quantities, localization, and modifications. Among the many genome-wide assays,
whole-genome expression profiling, facilitated by the development of DNA microarrays, repre-
sents a major advance in genome-wide functional analysis. The advances in microarray techniques
have enabled us to monitor the expression levels of thousands or tens of thousands of genes
simultaneously, under multiple conditions. The data obtained by microarray assays are rich
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numerical data that reflect the cellular processes at work. Therefore, to transform the numerical
data into biological insights about the underlying mechanisms, the computational analysis of the
numerical data is required. To reveal the underlying information in the complex expression data,
various types of methods have been proposed, in terms of two analytical approaches. One is gene
classification by detecting similar profile patterns, and the other is network inference by modeling
the expression changes of the genes over the measured conditions.

To classify the genes, cluster analyses and other approaches are usually adopted to the expres-
sion profiles. The genes are classified into some groups by various computational methods, as the
first step toward identifying the gene function. Based on the gene classifications, for example, genes
are allocated into functional categories, and searches for regulatory sequences are performed in the
upstream regions among the genes belonging to each cluster. Thus, classification methods, such as
clustering, have been established as a pre-requisite for the identification of gene function from gene
expression profiles, and several web servers have been developed to perform the clustering of
profiles integrated from different resources. One of the important issues in cluster analysis is the
estimation of gene groups.

As a further challenging investigation, the network of regulatory relationships is inferred by
various approaches directly from the expression profiles. For example, the Boolean and Bayesian
networks have been successfully applied to infer the regulatory networks, and some improvements
and modifications have been reported in the application of Boolean and Bayesian networks.
However, since the two approaches require specific techniques and large amounts of computational
time, it would be difficult to develop a web server, based on the two approaches, to analyze large
numbers of gene expression profiles. Furthermore, the difficulty in inferring regulatory networks is
affected by the composition of the expression profiles. In many profile data-sets, the expression
changes of thousands of genes have been measured under all most two hundred conditions. For
example, the expression changes of about 6200 genes in yeast have been measured under about
200 different conditions. The results indicated that many genes show quite similar patterns of
expression profiles under a restricted number of measured conditions. Thus, the features of the
present profile data on a genomic scale essentially prevent us from inferring the explicit relationship
between each gene. In other words, the pre-processing of the profiles on a genomic scale may be
expected to be the first step towards revealing the whole regulatory relationship.

To enhance the investigations, we developed two methods for expression profile analysis: one is
a method for the automatic estimation of cluster boundaries in a hierarchical clustering, and the
other is a method for the inference of a genetic network by the application of graphical Gaussian
modeling (GGM). The two newly developed methods have been synthesized into a system, named
Automatic System for Inferring A Network (ASIAN), for automatically deducing the framework
of a genetic network, with only the input of a large amount of expression profile data. GGM is one
of the graphical models that include the Boolean and Bayesian models. Among the graphical
models, GGM is the simplest structure in a mathematical sense; only the inverse of the correlation
coefficient between the variables is needed. Therefore, GGM can be easily applied to a wide variety
of data. To apply GGM to expression profiles, ASIAN is devised as a procedure combination with
hierarchical clustering, since the expression profiles often share a similar pattern.

AlthoughASIANwas developed for inferring the regulatory network from gene expression profiles,
this procedure can also be applied to other biological data. Usually, the numerical data obtained by
high-throughput assays, include some redundancy. ASIAN classifies the large number of numerical
data into groups, according to the usual hierarchical clusteringmethod, as a pre-processing for network
inference. To avoid the generation of a non-regular correlation coefficient matrix from the redundant
data, a stopping rule is adopted in the hierarchical clustering. Then, the relationship between the
clusters is inferred byGGM.Thus,ASIANprovides a framework for inferring the network between the
clusters. The new version provides a quick analysis by ASIAN, a step-by-step analysis by ASIAN, and
graphical presentations of the clustering and the cluster boundary estimation.
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29.2 The Overview of ASIAN

The overview of ASIAN is shown in Fig. 29.1. ASIAN is composed of four main parts: (i) the
calculation of a correlation coefficient matrix for the input data, (ii) the hierarchical clustering,
(iii) the estimation of cluster boundaries, and (iv) the application of GGM to the clusters.

On the front page, users can select either a high-throughput analysis or a partial analysis. In the partial
analysis, the user can independently perform the four parts ofASIAN.Thus, the presentASIANweb site
is able to perform network inferences and various statistical analyses based on the user’s interests.

29.2.1 The Calculation of a Correlation Coefficient Matrix

In GGM, the network is inferred by the calculation of a partial correlation coefficient matrix from the
correlation coefficientmatrix. Thus, the calculation of correlation coefficients between all pairs of given
objects is the first step for inferring the network from the data. Actually, the correlation coefficient is
recognized as one of the criteria to measure the strength of the relationship between the two objects.
This part will generate the correlation coefficient matrix between all pairs of the objects.

29.2.2 The Hierarchical Clustering

The partial correlation coefficient matrix can only be obtained if the correlation coefficient matrix
is regular. Since, the empirical data from a high-throughput analysis often include some redun-
dancy; the correlation coefficient matrix between the objects is not always regular. Thus, the
classification of the objects according to the similarity of the redundant data is needed for network
inference by GGM. As the classification method, the hierarchical clustering is performed with the
data as the second step in the ASIAN system.

Furthermore, the hierarchical clustering is one of the major classification methods from the
observed data. By the hierarchical clustering, the distance of similarity between each pair of the
objects is calculated from their numerical data. On the ASIAN system, 3 metrics for measuring the
distance between the objects are prepared, and the Euclidean distance between the Pearson
correlation coefficients is set as a default metric:

djk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

l¼1
ðril � rjlÞ2

s

(29:1)

Fig. 29.1 Organization of
the ASIAN System. The
ASIAN website is indicated
by a cylinder, and the
ASIAN system is composed
of four parts. The input by a
user and the output from the
ASIANweb site are denoted
by a broken and solid
arrows, respectively. (Copies
of figures including color
copies are available in the
accompanying CD)
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where n is the total number of genes, and rij is the Pearson correlation coefficient between the i and j

objects of the numerical data that are measured under nc conditions, pik, (k=1,2,... nc ):

rij ¼
Pnc

k¼1 ðpik � piÞðpjk � pjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnc
k¼1 ðpik � piÞ2 �

Pnc
k¼1 ðpjk � pjÞ2

q (29:2)

where pi is the arithmetic average of Pik over nc conditions. Thus, the similarity between the

numerical data is defined based on the correlation coefficient on the default system. This metric

is robust for both missing and abnormal values. Then, the metric defined in equation 29.1 is

analyzed by a standard hierarchical clustering technique, the unweighted pair-group method

using arithmetic averages (UPGMA), as a default on the ASIAN system.

29.2.3 The Estimation of Cluster Boundaries

In the ASIAN system, the cluster boundaries along the dendrogram, obtained in the former part,

are estimated based on the statistical properties of the data. In this way, the redundancy of the

empirical data is summarized as a group. In addition, the estimation of the object groups is one of

the important issues in the classification methods. In hierarchical clustering, the cluster numbers

are determined by visual inspection and consideration of the other information, but some ambi-

guity exists in determining the object groups. For estimating the cluster boundaries automatically,

the variance inflation factor (VIF) is utilized in the ASIAN system.
The variance inflation factor (VIF) is employed to estimate the linear relationship between the

numerical data in the clusters along the dendrogram. In the multiple regression analysis, the

existence of a high linear relationship among the explanatory variables is known as multi-co-

linearity, and the variables that are involved in the multi-co-linearity are diagnosed by the VIF, as

follows :

VIFi ¼ r�1ii ; (29:3)

where r�1ii is the ith diagonal element of the inverse of the correlation coefficient matrix (CCM)

between explanatory variables. Thus, m VIFs are calculated in the correlation coefficient matrix

among the m exploratory variables. The magnitude of the VIF increases when the correlation

among any independent variables increases. When the explanatory variables in equation 29,

correspond to the empirical data, the VIF expresses the degree of linear relationship between the

data. Given that the threshold in the diagnosis of multi-co-linearity is set to be vc, the linear

relationships of the ith variable exist when VIFi is larger than vc; on the ASIAN system, the vc
value is set to the popular threshold of 10.0 as the default. The m VIFs are assessed with the

following conditions:

maxfVIFig5vc for i ¼ 1; 2; ::::m: (29:4)

If the condition is satisfied, then no linear relationship exists in the m sets of data, and in

contrast, the linear relationship still exists in the data, if the condition is not satisfied. Thus,

the maximum number of clusters with no linear relationship is searched for along the

dendrogram.
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29.2.4 The Application of GGM to the Clusters

The last part of ASIAN is the network inference by GGM. In the high-throughput analysis on the
ASIAN system, the first three parts are prerequisites for analyzing the redundant data, including
many similar numerical patterns. In high-throughput analysis on the ASIAN system, the average of
the numerical data is calculated for each cluster obtained in the former part, as the pre-processing for
the application of GGM. The averaged data of the jth condition for each cluster are calculated, i.e.,

p
ðkÞ
j ¼

1

nk

Xnk

i2clusterk
pij; (29:5)

where nk is the number of members in the kth cluster. Then, the averaged data over nc conditions in
k clusters are subjected to GGM. In the independent analysis, the input data are utilized without
modification. Then, the averaged or input numerical data are subjected to GGMby a step-wise and
interactive algorithm, in order to evaluate which pair of the variables is conditionally independent.

The conditional independency is recognized when the element of a partial correlation coefficient
matrix (PCCM) is zero in GGM. A partial correlation coefficient matrix (PCCM) is calculated
from the inverse of CCM between the averaged or input data, and an element in PCCM with a
minimum absolute value is replaced with zero. Subsequently, the CCM restored from the PCCM is
tested with the original CCM by calculating the deviance, which is expressed as follows:

dev ¼ nc ln
Riþ1j j
Rij j

; (29:6)

where Ri+1 and Ri are the determinants of the CCMs at the i+1 th and ith iteration steps,
respectively. The dev is known approximately to follow a �2distribution with one degree of free-
dom. The iteration of the replacement of minimum values with 0 values in PCCM is stopped on the
ASIAN system, when the probability of deviance is less than 0.05. Finally, a model of the PCCM is
obtained. When the partial correlation coefficient for a pair is equal to 0, the pair is conditionally
independent, indicating no connection between the objects in the network.

29.3 ASIAN Website

ASIAN (see Website: http://eureka.cbrc.jp/asian/) is one of the useful servers, for inferring the frame-
work of a network, from a large amount of numerical data, in addition to clustering concomitant with
the automatic estimation of cluster number. The visual presentation of the results provides an intuitive
means for understanding the putative relationships between genes, proteins, and other objects. Further-
more, the ASIAN system now provides an independent statistical analysis. The front page of the
ASIAN website, shown in Fig. 29.2, describes the analysis procedure and the updated news. A new
analysis window will open, when the ‘‘Analyses’’ button on the front page is clicked.

29.4 Website Tour

To use the ASIAN system, the user first uploads the raw data from their machine, and then inputs
some parameters and their e-mail address. Immediately after receiving the data, the ASIAN system
successively performs the four steps. Concomitantly, the machine will send an ID number and the
details of the input data by e-mail. The user can view the results analyzed on the website, with
security, by the user’s ID number and e-mail address.
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29.4.1 Data Import

The clickable button ‘Analyses’ opens the analysis page. The top part of an analysis page is shown
in Fig. 29.3A. TheASIAN system can analyze the uploaded data in twoways: one is a batch process
that can successively perform the aforementioned four parts with the default parameters, and the
other is a process that can allow the user to input the parameter values in each analysis.

In the batch process, only two steps are needed. First, the program runs by uploading the numerical
data to be analyzed, and then the user selects one of twoways to receive the results: one is an anonymous
use to display the results simultaneously with the processing, and the other is a signed use to receive the
results after all the processes are finished, through a web site that can be accessed by inputting the user’s
email address. The format of the numerical data, which the user prepares, is assumed to be csv or tab-
delimited text files. Information about the input data is available at the help page, which the user can
open by clicking the help button. Immediately after receiving the data and selecting the method for
receiving the results, the server successively performs the four calculation parts with the default values.

29.4.2 Parameter Setting

On the ASIAN System, all parameters are set as default, but the user can set some parameters for
network inference according to their interests. In this case, the user can input some parameters for

Fig. 29.2 The front page of theASIANweb site.On the front page of theASIANwebsite, the outline of the procedure and
the information about the upgrades are displayed on the left and right sides, respectively. The ASIAN system has been
improved since the first version, with the current ver 3.3. The analysis page will open when the ‘‘Analyses’’ button is clicked
(Copies of figures including color copies, where applicable, are available in the accompanying CD)
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A

B

Fig. 29.3 The analysis page of ASIAN. The analysis page is the interface of the ASIAN system. (A)The upper part of
the analysis page. The data and the e-mail address are imported by the user. Furthermore, the user can select an
independent part of the analysis on the ASIAN system. (B) The lower part of the analysis page. The user can set each
of the parameters for network inference according to their interest, as an option. Usually, the parameters are set as
default (Copies of figures including color copies, where applicable, are available in the accompanying CD)

29 ASIAN: Network Inference 569



each step. The user can set these parameters at the option part on the analysis page. The option
part, which exists at the lower part on the analysis page, is shown in Fig. 29.3B.

29.4.2.1 Types of Correlation Coefficient

For the calculation of the correlation coefficient matrix, the user can select one type of correlation
coefficient from the three different types: (i) the Pearson’s correlation coefficient (the default type),
which is a representative correlation coefficient for a continuous variable, (ii) the Kendall’s rank-
correlation coefficient, which is a representative of a categorical variable, and (iii) the Eisen’s
correlation coefficient for the gene expression profile data. In general, the Pearson’s correlation
coefficient is suitable for data obtained from a bi-variate population according to the normal
distribution, while the Kendall’s rank-correlation coefficient is for data that are far from normal.
The Eisen’s correlation coefficient is devised to consider the experimental conditions, by setting the
reference state as a term that corresponds to the average of the Pearson’s correlation coefficient.

29.4.2.2 Clustering Procedure

The user can select a pair of metric and clustering techniques in hierarchical clustering. Since the
metrics and the techniques in the clustering depend on the user’s data and interests, ASIAN allows
the user to select one metric and technique pair from three metrics and seven techniques. The three
metrics, the Euclidian distance between a pair of objects, the Euclidian distance between correlation
coefficients and Eisen’s distance, especially for gene expression analyses, are available in the present
version of ASIAN.

Based on one of the metrics, the profiles are subjected to a hierarchical clustering analysis by one
of these seven techniques: Single Linkage (nearest neighbor), Complete Linkage (furthest neigh-
bor), Unweighted Pair-Group Method using Arithmetic average (UPGMA), Unweighted Pair-
Group Method using Centroid average (UPGMC), weighted pair-group method using arithmetic
average (WPGMA), Weighted Pair-Group Method using Centroid average (WPGMC) and
Ward’s method. The default metric and technique pair is the Euclidian distance between correlation
coefficients and the UPGMA.

29.4.2.3 Threshold of Multi-co-linearity

One of the remarkable features of the ASIAN system is that it can allow users to estimate the cluster
number by a stopping rule for the hierarchical clustering. As mentioned above, in the cluster
number estimation, the variance inflation factor (VIF) is utilized as a measure for the degree of
separation between the clusters. Empirically, 10.0 is used as a cut-off value of VIF in various
statistical analyses, and the cluster numbers estimated by the empirical value have been quite
consistent with the previous numbers, as assessed by visual inspection and consideration of the
biological function in the expression profile analyses. Although the default value of VIF is set at
10.0, the user can set any VIF value in this system.

29.4.2.4 Criterion of Deviance

In the network inference, the average correlation coefficient matrix is calculated from the average
profiles calculated within the members of each cluster. Then, the average correlation coefficient
matrix between the clusters is subjected to the GGM. In the GGM, the co-variance selection is
adopted, and the server allows the users to set the significance probability for the deviance in the
modeling. The default significance probability is set to 0.05.
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29.4.2.5 Select Continuous Step

Furthermore, apart from the high-throughput inference of the network, the system can provide a step-
by-step approach to ASIAN. The user can select several continuous steps, such as parts (1) and (2), to
submit the numerical data as input and to receive the correlation coefficient matrix and the clustering
results as output. The user can select one of the four types of continuous steps in the box, and then
the server performs the checked steps. The default of the step is set to the four continuous parts.

29.5 ASIAN Outputs

Figure 29.4 shows the top page of the result. The results analyzed can be presented on the display
immediately after each process is finished, if the user selects the anonymous use setting. If the user
inputs their email address, then an email notice with the ID number and the URLwill be sent, when
the analyses are complete. In the latter case, the user can view the results analyzed on the web site,
with security, by the ID number and the email address. In the automatic inference of the network,
the analyzed results are composed of the correlation coefficient matrix, the dendrogram of hier-
archical clustering with the cluster boundary in both text and graphic forms, the results of
hierarchical clustering with two other format files (.gtr and .atr) for TreeView software, the average
correlation coefficient matrix, the network between clusters in text and graphic forms, and the other

Fig. 29.4 The top page of the results in ASIAN. In both the interactive form and e-mail form, this page is returned to
the user as the top page of the results. On the upper part of the page, ASIAN displays the set parameters of the
analysis. By the high-throughput network analysis, 11 types of results are returned. After the user clicks on each
sentence, a new window opens to indicate the numerical result or graphical result (Copies of figures including color
copies, where applicable, are available in the accompanying CD)
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format results of the inferred network for displaying the network by the Cytoscape software. In the
independent analysis, the user can obtain each result, according to the selected analysis.

All of the above results are kept in the user’s web site for 30 days after the analysis is completed.
If the uses wish the analyzed results to be deleted or to be kept for more than 30 days, they can
request their wishes by email (asian@cbrc.jp).

29.5.1 Correlation Coefficient Matrix

If the user clicks the ‘‘correlation coefficient matrix’’ on the result front page, then the correlation
coefficient matrix calculated from the input data is displayed. Each numerical element of the matrix
indicates the correlation coefficient values between each pair of objects. In ASIAN, the object
included in the input data is not displayed on this matrix, and only the numerical data are displayed.
Since the order of the rows and columns on this matrix is according to the user’s input data, the user
can easily distinguish the correlation coefficient value between the two objects of interest.

29.5.2 Hierarchical Clustering

ASIAN provides four types of results as the hierarchical clustering. When the user clicks ‘‘hier-
archical clustering’’, the text type result is displayed. On this page, the third column indicates the
distance, which is calculated from the input data, between the two objects displayed in the first and
second columns on the same line. Thus, the user can obtain the numerical distance between the two
objects from this txt format file.

The graphical result of hierarchical clustering is displayed when the user clicks the words
‘‘hierarchical clustering (dendrogram)’’. The dendrogram provides a visual inspection of the
hierarchical clustering. Furthermore, ASIAN has been improved to return two other types of
format files, .gtr and .atr, after the hierarchical clustering. According to the TreeView software. The
TreeView software was developed by Eisen et al., and it is the one of the major graphical interfaces
of hierarchical clustering in microarray data analysis. If the TreeView software is used for display-
ing the hierarchical clustering, then the user imports the .gtr and .atr files obtained by the ASIAN
hierarchical clustering.

The ASIAN system provides 21 types of metric and technique pairs in the hierarchical clustering
module, and thus the user can obtain the results of the hierarchical clustering with the metric and
technique pair of interest.

29.5.3 Cluster Boundaries

The remarkable feature of the hierarchical clustering in the ASIAN system is that the cluster
boundaries are automatically estimated by VIF. The results of these automatically estimated
cluster boundaries are displayed as both txt type and graphic type.

If ‘‘cluster boundaries’’ is clicked on the front page of the results, then the txt type result of cluster
boundaries is displayed in the other window. This file includes two columns. The first column
indicates the estimated cluster numbers, and the second column indicates the objects that are
classified in the cluster. The estimated cluster numbers are also indicated at the headline of this
txt type result, and the first line of each cluster indicates the number of members included in the
clusters.

The ‘‘cluster boundaries (dendrogram)’’ has a hyperlink to a graphical display of the results of
the estimation of cluster boundaries. Figure 29.5 shows an example of a dendrogram with the
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cluster boundary estimated by the default value of VIF. The cluster boundary is indicated by a
verticle line on the dendrogram, and the members in the neighboring clusters are discriminated by
object names, colored blue and red.

29.5.4 Average Correlation Coefficient Matrix

In the high-throughput analysis for the network inference by the ASIAN system, the calculation of
the average numerical data in each cluster is performed. Thus, the correlation coefficient matrix of
the averaged numerical data is calculated again. ASIAN displays the results of the re-calculated
correlation coefficient matrix between the estimated clusters.

Fig. 29.5 Example of the
results of hierarchical
clustering and estimated
cluster boundaries. The
hierarchical clustering is
performed with default
parameters, such as setting
the distance as the Euclidian
distance between correlation
coefficients and themetric as
UPGMA. The VIF is set as
10.0. The estimated cluster
boundaries are displayed by
the line on the dendrogram.
The objects are classified
into 26 clusters. The
members in the
neighbouring clusters are
discriminated by object
names with other colors
(Copies of figures including
color copies, where
applicable, are available in
the accompanying CD)
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A B

Fig. 29.6 Example of an inferred network. (A) Graphic view of the inferred network between the 24 clusters. The clusters that are automatically estimated by the
hierarchical clustering are indicated by rectangles. The inferred relationships between the clusters are indicated by the edges between the clusters. On the web-site, positive
relationships and negative relationships are displayed by red and blue lines, respectively. (B) The summarized network and the member list of a cluster. The edges, which
are those PCC values over 0.3, remain from the raw inferred network. The member list is indicated as the other window on the network (Copies of figures including color
copies, where applicable, are available in the accompanying CD)
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The result page of the average correlation coefficient matrix only includes the numerical
elements of the matrix. Although the cluster numbers are not indicated, the order of the rows
and columns in thematrix is according to the cluster number. Thus, the user can easily recognize the
correlation coefficient value between the two clusters.

29.5.5 Graphical Gaussian Modeling

The inferred network by the GGM is displayed at the ‘‘graphical Gaussian Modeling’’ part on the
front page of the results. Three types of files are displayed in ASIAN: matrix, graph and Cytoscape
format.

The ‘‘graphical Gaussian Modeling (matrix)’’ is linked to the modeled partial correlation
coefficient matrix estimated by GGM. In the GGM, the modeling is performed based on the
partial correlation coefficient matrix, which is calculated from the inverse correlation coefficient
matrix. In the high-throughput network analysis in the ASIAN system, the partial correlation
coefficient matrix is calculated from the correlation coefficient matrix between the estimated
clusters. Thus, the indicated partial correlation coefficient matrix, as the result of GGM, includes
the same number of elements as the average correlation coefficient matrix. If the user selects the
independent analysis for network inference by GGM, on the analysis front page, then the modeled
partial correlation coefficient includes the elements according to the input numerical data. The
modeled partial correlation coefficient matrix also indicates only the numerical data without the
object name.However, the order of this matrix is according to the cluster number or the order of the
input data, and thus, the user can easily recognize the value of the modeled partial correlation
coefficient between the pair of two objects.

In the partial correlation coefficient, the absolute value of an element indicates the strength of
the direct interaction between the two objects. The diagonal element is –1. The sign of an element
indicates that the estimated interaction between the two objects is a positive or negative interaction.
Therefore, the user can obtain the details of the inferred network from this partial correlation
coefficient matrix as the numerical data.

If the user clicks the ‘‘graphical Gaussian Modeling (model)’’, a new graphic page is opened.
A graphic example of the network inferred by the present ASIAN is shown in Fig. 29.6A. In the
default graph, the nodes that indicate the clusters are connected at the edges, if the partial
correlation coefficient between the corresponding clusters is estimated as non-zero by GGM.
When the user clicks the node, the members that are included in the cluster are displayed on a new
page as shown in Fig. 29.6B. In the network graph, the positive and negative partial correlation
coefficients are discriminated by the red and blue lines in the graph, respectively. Furthermore,
the user can set the threshold of the partial correlation coefficient for visualizing the edges. When
the partial correlation coefficient between the clusters is greater than the threshold defined by the
user, the nodes are connected by the edges between the corresponding clusters. This option
facilitates the interpretation of the network, especially that of a complex network with many
edges and nodes.

Recently, other options on this graphic page have been implemented. The layout of the inferred
network can be changed to various patterns. In the default mode, the inferred network is displayed
as a circle. On the left side of the window, the user can select from seven other types of layouts for
the inferred network, corresponding with each layout algorithm, Hierarchical, Fast Organic,
Organic, Self-Organizing, Compact Tree, Redialtree and Tree. The layout of the inferred network
is reset by clicking of ‘‘Reset (Circle)’’. The other improved option of the graphic page is that the
user can search each object included in a cluster. When the user clicks the search button on the top
of page, the text field is opened. After the object name is given in this text field, the search is
performed with all of the cluster members. Thus, the user can find the object easily.
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The last result of graphical Gaussian modeling is the inferred network with the Cytoscape
format. The user can retrieve this file by the clicking of the ‘‘graphical Gaussian Modeling
(cytoscape format)’’. This is the hyperlink word to download the result file in the cytoscape format.
This result file is composed of three columns, and the first and third columns indicate the connected
cluster numbers. Cytoscape is freeware for a graphical view of the network between some objects. If
Cytoscape is used for displaying the inferred network by ASIAN, then the cytoscape format file
should be chosen.

29.6 Concluding Remarks

By using the ASIAN system, an automatic-throughput for object classification and network
inference between the estimated clusters is realized from a large amount of redundant data.
Empirical data usually includes redundancy, but the ASIAN system summarizes the redundancy
by the combination of hierarchical clustering. The improvement of the object classification, by
setting a user-defined threshold for VIF, allows the user to compare frameworks between different
clusters. Of course, if a small amount of data, which has no redundancy is prepared, the user can
utilize the part of the ASIAN analysis for network inference and the other statistical analysis. The
visual presentation of the inferred network provides an intuitive means for understanding the
putative relationships between the objects of interest.

29.7 ASIAN on a Personal Computer

A package of ASIAN on PC (Windows and LINUX), ‘‘Auto Net Finder’’, is commercially
distributed by INFOCOM CORPORATION.

29.8 Contact List

ASIAN is supported by INFOCOM CORPORATION. If you have any questions or comments
about ASIAN, send an e-mail to: asian@cbrc.jp. The ASIAN support team will answer your
questions or respond to your comments as soon as possible. The ASIAN support team is always
interested in any feedback you might have about the site. Comments and suggestions are all
carefully considered, and often make their way into the next version of the site.
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Chapter 30

Bioinformatics for Metabolomics

David S. Wishart

Abstract This chapter is intended to familiarize readers with the field of metabolomics and how it
relates to Systems Biology. It also describes how bioinformatics and metabolic modeling are being
used to facilitate metabolomics research, which in turn, is being used to enable important devel-
opments in Systems Biology. Specifically, this chapter summarizes four areas where computational
biology is playing a key role in both Systems Biology and metabolomics. These include: (1)
metabolic pathway databases; (2) metabolomics databases; (3) spectral and statistical analysis
tools for metabolomics; and (4) metabolic modeling. The needs, challenges and recent progress
being made in the four areas are also discussed.

Keywords Metabolomics � Databases � Bioinformatics � Modeling � Cheminformatics

30.1 Introduction

Systems Biology is an integrated discipline that combines high-throughput experimental techniques
such as genomics, proteomics and metabolomics with computational techniques such as bioinfor-
matics and computer simulations in an attempt to fully understand or mechanistically model a
biological system, such as a cell, organ or organism [1]. While most readers are at least modestly
familiar with genomics, proteomics and/or bioinformatics, relatively few are likely to be familiar with
the other ‘‘omics’’ term—metabolomics. Metabolomics (or metabonomics as it is sometimes called)
is a newly emerging field of ‘‘omics’’ research, concerned with the high-throughput identification and
quantification of the small molecule metabolites in the metabolome [2]. The metabolome can be
defined as the complete collection of all small molecule (<1500 Da) metabolites found in a specific
cell, organ, or organism. It is a close counterpart to the genome, the transcriptome, and the proteome.

Interestingly, some of the first successes in Systems Biology involved the deciphering and model-
ing of metabolic pathways [3,4]. Indeed, there are many experts who view metabolomics as having a
central role in Systems Biology [5–7], and still others who see metabolomics seamlessly blending in
with the other ‘‘omic’’ sciences under the banner of Systems Biology (Fig. 30.1). Metabolomics not
only serves as a cornerstone to Systems Biology, it is beginning to serve as a cornerstone to other
fields as well. In particular, because of its unique focus on small molecules and small molecule
interactions, metabolomics is finding widespread applications in drug discovery and development
[5–8], clinical toxicology [9,10], clinical chemistry [11] and nutritional genomics [12,13].
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Metabolomics, being a relatively new addition to the ‘‘omics’’ sciences, is still evolving some of its
basic computational infrastructure [14]. Whereas most data in the field of proteomics, genomics, or
transcriptomics is readily available and easily analyzed through on-line electronic databases, most

metabolomic data is still housed in books, journals and other paper archives.Metabolomics also differs
from the other ‘‘omics’’ sciences because of its strong emphasis on chemicals and analytical chemistry
techniques such as nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS) and
chromatography. As a result, the analytical software used in metabolomics is often quite different than

most of the software used in genomics, proteomics or transcriptomics [14]. The field of metabolomics is
not only concerned with the identification and quantification of metabolites, it is also concerned with
relating metabolite data to genes, proteins, pathways, physiology and phenotypes. As a result, meta-

bolomics requires that whatever chemical information it generates must be linked to both biochemical
causes and physiological consequences. Thismeans thatmetabolomicsmust combine two very different
fields of informatics: bioinformatics and cheminformatics.

Despite these differences, metabolomics still shares many of the same computational needs with
genomics, proteomics, and transcriptomics. All the four ‘‘omics’’ techniques require electronically
accessible and searchable databases, all of them require software to interpret or process data from

their own high-throughput instruments and all require software tools to predict or model proper-
ties, pathways and processes. These shared computational needs are the common thread that links
metabolomics with all of the other ‘‘omics’’ sciences, and ultimately to Systems Biology.

This chapter is intended to familiarize readers with the field of metabolomics and how it relates
to Systems Biology. It also describes how bioinformatics and metabolic modeling are being used to

facilitate metabolomics research, which in turn, is enabling important developments in Systems
Biology. Four key areas of computational metabolomics are discussed in detail. These include:
(i) metabolic pathway databases; (ii) metabolomics databases; (iii) spectral and statistical analysis

tools; and (iv) metabolic modeling.

30.2 Metabolic Pathway Databases

Electronic databases lie at the heart of almost every ‘‘omics’’ field. Genomics would not exist
without GenBank [15] while proteomics would be bereft without SwissProt [16] or the PDB [16].
These electronic databases serve as the repository of the most current information about genes,
proteins, and protein structures. The shear volume of data contained in these databases (100’s of

gigabytes) makes it impractical to assemble or distribute the information via books, journals, or
even electronic media such as CDs or DVDs. While the volume of data concerning metabolism and
metabolic pathways is not quite as large, the same issues of currency and distribution are still crucial
to metabolomics. So, it is fair to say that databases also lie at the heart of metabolomics.

Fig. 30.1 The blending of
genomics, proteomics and
metabolomics into Systems
Biology (Copies of figures
including color copies,
where applicable, are
available in the
accompanying CD)
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There are two types of metabolomic databases: (i) general metabolic pathway databases, and
(ii) dedicated metabolomic databases. Metabolic pathway databases are designed to house and display
biochemical pathways or metabolite-gene-protein interactions. They are fundamentally visual aids,
designed to facilitate the exploration of metabolism and metabolites across many different species.
Metabolomic databases, on the other hand, containmuchmore information aboutmetabolites and their
physical, chemical, or spectroscopic properties. They also include physiological, biological, or chemical
information, but this information is typically restricted to a single type of organism. In other words,
metabolic pathway databases can be characterized as being broad in coverage but shallow in content,
while metabolomic databases can be characterized as narrow in coverage but deep in content.

Metabolic pathway databases are generally better known than their metabolomic database
counterparts and include such familiar resources as the Roche Biochemical Pathways Chart [17],
KEGG [18],MetaCyc [19], Reactome [20], BRENDA [21], PUMA2 [22] and others. Table 30.1 lists
the names, web addresses, and general features for these and other notable databases. A more
detailed description of some of these databases (excluding the KEGG database which is described
in chapter 25 of this book) is given below.

30.2.1 The Roche Biochemical Pathways Database

Perhaps the first metabolic pathway database to gain wide popularity was not really a database,
but rather a paper wall chart developed by Dr. Gerhard Michal, a staff scientist at Boehringer
Mannheim (now Roche Applied Sciences) and published in 1968 [17]. This richly annotated and
compactly illustrated poster depictsmost of the knownmetabolic pathways, metabolites, and enzymes
associated primarily with human metabolism. It has been revised and expanded many times since its
first release and has proven to be very popular, with more than 1 million copies now in print. To
facilitate its distribution the last published version of the Biochemical Pathways chart was digitized in
1997, given a queryable web interface and posted on the EXPASY website. To access the chart, users
may type in compound names (or parts of names) or they may select zoomable thumbnail/subsection
views of the chart. In this way it is possible to interactively explore metabolic pathways or cellular and
molecular processes on a desktop computer. All compound queries provide hyperlinked lists to EC
numbers (Enzyme Classification codes and the corresponding enzyme information) and to the specific
location of these compound(s) on the Biochemical Pathways wall chart. However, the web version
of the Roche Biochemical Pathways chart does have some limitations. For instance, the presentation
format is now a little outdated and it lacks the interactivity and extensive hyperlinking to other
biologically relevant databases typically found in most other bioinformatics resources.

30.2.2 The MetaCyc Database

TheMetaCyc database or ‘‘Metabolic Encyclopedia’’ has beenmaintained by Peter Karp’s group at
the Stanford Research Institute since 1999 [19]. MetaCyc is a web-accessible database containing
more than 966 experimentally elucidated metabolic pathways from more than 1,000 different
species gathered from the scientific literature or inferred through a variety of computational
methods. At last count (Version 11.1) the MetaCyc staff had catalogued 4271 different types of
enzymes, 6,354 different metabolites, 6,464 reactions and compiled nearly 15,000 references.
MetaCyc contains extensively hyperlinkedmetabolic pathway diagrams, enzyme reactions, enzyme
data, chemical structures, chemical data, and gene information. Likewise, users can queryMetaCyc
by the name of a protein, gene, reaction, pathway, chemical compound, or EC (enzyme classifica-
tion number). Just as with KEGG,mostMetaCyc queries or browsing operations return a rich and
colorful collection of hyperlinked figures, pathways, chemical structures, reactions, enzyme names,
references and protein/gene sequence data.
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Table 30.1 Alphabetical Summary of Metabolite or Metabolic Pathway Databases

Database Name URL or Web Address Comments

BRENDA (BRaunschweig ENzyme Database) http://www.brenda.enzymes.info/ -Enzyme database containing rate constants and some metabolic
pathway data

Chemicals Entities of Biological Interest (ChEBI) http://www.ebi.ac.uk/chebi/ -Covers metabolites and drugs

-Focus on ontology and nomenclature not biol.

HumanCyc (Encylopedia of Human Metabolic
Pathways)

http://humancyc.org/ -MetaCyc adopted to human metabolism

KEGG (Kyoto Encyclopedia of Genes and
Genomes)

http://www.genome.jp/kegg/ -Best known and most complete metabolic pathway database

-Covers many organisms

-Small (<15) number of data fields, no biomedical data

LipidMaps http://www.lipidmaps.org/ -Limited to lipids only (not species specific)

-Nomenclature standard

MetaCyc (Encyclopedia of Metabolic Pathways) http://metacyc.org/ -Similar to KEGG in coverage, but with different emphasis

-Well referenced

-Small (<15) number of data fields, no biomedical data

Nicholson’s Metabolic Minimaps http://www.iubmb.nicholson.org/ -Used for teaching (limited coverage)

PUMA2 (Evolutionary Analysis of Metabolism) http://compbio.mcs.anl.gov/puma2/cgi-bin/
index.cgi

-Used for metabolic pathway comparison and genome
annotation

-Requires registration

Reactome (A Curated Knowledgebase of
Pathways)

http://www.reactome.org/ -Pathway database with more advanced query features

-Not as complete as KEGG or MetaCyc

Roche Applied Sciences Biochemical Pathways
Chart

http://www.expasy.org/cgi- bin/search-
biochem-index

-The old metabolism standard (on line)

(Copies of tables are available in the accompanying CD.)
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Unlikemost other metabolic pathway databases,MetaCyc provides muchmore detailed enzyme
information including data on substrate specificity, kinetic properties, activators, inhibitors,
cofactor requirements and links to sequence/structure databases. Additionally, MetaCyc supports
sophisticated relational queries, allowing complex searches to be performed and more detailed
information to be displayed. These search utilities are supplemented with a very impressive ‘‘Omics
Viewer’’ that allows gene expression and metabolite profiling data to be painted onto any organ-
ism’s metabolic network.MetaCyc also displays metabolic pathway information at varying degrees
of resolution, allowing users to interactively zoom into a reaction diagram for more detailed views
and more detailed pathway annotations. Because it covers metabolic data for so many organisms,
theMetaCyc database supports organism-specific queries and displays this taxonomic information
in its illustrated pathways through gene and enzyme names. One particularly interesting organism-
specific database contained within MetaCyc (or the BioCyc family) is called HumanCyc [23].
HumanCyc (Release 10.6) supports many of the same features found in MetaCyc. It also contains
information on 28,782 human genes, 2,594 human enzymes, 1,253 reactions, 974 human metabo-
lites, and 178 human-specific metabolic pathways.

30.2.3 The Reactome Database

A much more recent addition to the collection of metabolic pathway databases is the Reactome
database [20]. The Reactome project was started in 2002 to develop a curated resource of core
pathways and reactions in human biology. The ‘‘reactome’’ is defined as the complete set of possible
reactions or pathways that can be found in a living organism, including the reactions involved in
intermediary metabolism, regulatory pathways, signal transduction and cell cycle processes. The
Reactome database is a curated resource authored by biological researchers with expertise in their
fields. Unlike KEGG or MetaCyc, the Reactome database takes a much more liberal view of what
constitutes metabolism (or biochemical reactions) by including such processes as mitosis, DNA-
repair, insulin mediated signaling, translation, transcription and mRNA processing in addition to
the standard metabolic pathways involving amino acids, carbohydrates, nucleotides, and lipids.
Furthermore, unlike KEGG or MetaCyc, the primary focus in the Reactome database is onHomo
sapiens (although additional data from 20 model organisms are now included).

The Reactome database (Version 22), currently has 691 human-associated pathways assembled
from 1,845 reactions involving 1,473 proteins or protein complexes. Central to the Reactome
database is a schematic ‘‘Reaction Map’’ which graphically summarizes all the high-level reactions
contained in the Reactome database. This map allows users to navigate through the database in an
interactive and progressively more detailed fashion. Users may also browse through the database
by selecting topics from a table of contents, or they may query the database using a variety of text
and keyword searches. The Reactome database also supports complex Boolean text queries for
different combinations of reactions, reaction products, organisms, and enzymes. The results from
these queries include higher-resolution pathway maps (in PDF, PNG and SVG formats), SBML
(Systems Biology mark-up language) descriptions, and synoptic Reactome web ‘‘cards’’ on specific
proteins or metabolites, with hyperlinks to many external databases.

One of the most useful and innovative features of the Reactome database is a tool called the
Reactome ‘‘skypainter’’. This allows users to paste in a list of genes or gene identifiers (GenBank,
UniProt, RefSeq, EntrezGene, OMIM, InterPro, Affymetrix, Agilent and Ensembl formats) and to
‘‘paint’’ the Reactome reaction map in a variety of ways. In fact it is even possible to generate
‘‘movies’’ which can track gene expression changes over different time periods – as might be
obtained from a time series gene or protein expression study. This tool is particularly useful for
analyzing microarray data, but it is also useful for visualizing disease genes (say from OMIM) and
mapping the roles they play and the pathways in which they participate. In general, the central
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concepts behind the Reactome database are quite innovative and it certainly appears that this
resource could play an increasingly important role in many areas of biology, biochemistry and
Systems Biology.

30.2.4 Miscellaneous Pathway Databases

In addition to the four major pathway resources just described, there are a number of smaller or
lesser-known metabolic pathway databases (Table 30.1). Some, like BRENDA [21] and PUMA2
[22], are actually very comprehensive resources and contain quantities of information comparable
to MetaCyc or KEGG. For instance PUMA2, which is maintained at the Los Alamos National
Laboratory, is both a database and a genomic annotation system. PUMA2, which stands for
‘‘Phylogeny-Metabolism-Alignments’’ is primarily designed for high-throughput genetic sequence
analysis and metabolic reconstructions from sequence data. PUMA2 currently contains pre-
computed analysis of >1,000 genomes and automated metabolic reconstructions for >200 organ-
isms covering more than 3,000 pathways.

BRENDA (BRaunschweig ENzyme DAtabase) is primarily an enzyme database with consider-
able supplementary information on metabolism. Under development since 1987, BRENDA
includes data on 3,500 different enzymes from 7,500 different organisms. BRENDA is essentially
a web-accessible relational database system consisting of 46 interlinked tables containing EC
numbers, source organism, enzyme names, references, substrate/product information, inhibitors,
enzyme mutants, Km values, measurement conditions, enzyme structure data, tissue or organ
sources, subcellular localization, isolation and separation information, and disease information.
Registered BRENDA users may query any combination of these fields through a half dozen
different query tools. Originally, BRENDA was developed with a focus on organism and/or EC
data, but now it is more aligned with other databases that focus on protein or compound searches.
The information in BRENDA is quite unique and can be exploited to model metabolic pathways,
to explore tissue differences in metabolism and to understand the function of potential drugs and
inhibitors.

Table 30.1 also lists several other metabolite-only or somewhat more modest metabolic pathway
databases designed more for educational, ontological or illustrative purposes. These include
LipidMaps [24], ChEBI [25] and Donald Nicholson’s Metabolic Charts (Table 30.1). Of particular
interest to clinicians and biomedical researchers is Dr. Nicholson’s beautifully illustrated Inborn
Errors of Metabolism chart which is now available as a downloadable PDF file. This chart
identifies the sites of over 120 metabolic disorders that are listed along the sides of the chart.

30.3 Metabolomics Databases

Metabolic pathway databases such as KEGG, MetaCyc, and Reactome are designed to facilitate
the exploration of metabolism and metabolites across many different species. This broad, multi-
organism perspective has been critical to enhancing our basic understanding of metabolism and our
appreciation of biological diversity. Metabolic pathway databases also serve as the backbone to
facilitate many practical applications in biology including comparative genomics and targeted
genome annotation. However, the information contained in these ‘‘traditional’’ databases does
not meet the unique data requirements for most metabolomics researchers.

This is because metabolomics is concerned with rapidly characterizing dozens of metabolites at a
time and then using these metabolites or combinations of metabolites to identify disease biomar-
kers or model large scale metabolic processes. As a result, metabolomics researchers need databases
that can be searched not just by pathways or compound names, but also by Nuclear Magnetic
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Resonance (NMR) spectra, mass spectra (MS), GC-MS retention indices, chemical structures, or
chemical concentrations. In addition to these query requirements, metabolomics researchers
routinely need to search for metabolite properties, tissue/organ locations, or metabolite-disease
associations. Therefore metabolomics databases require information not only about compounds
and reaction diagrams, but also data about physio-chemical properties, compound concentrations,
bio-fluid or tissue locations, subcellular locations, known disease associations, nomenclature,
descriptions, enzyme data, mutation data and characteristic MS or NMR spectra. These data
need to be readily available, experimentally validated, fully referenced, easily searched, readily
interpreted and they need to cover as much of a given organism’s metabolome as possible.

These are very tall orders, but there are now a number of newly emerging metabolomics
databases that are beginning to address these needs, either in whole or in part. These include the
Human Metabolome Database or HMDB [26], the METLIN database [27], the BioMagResBank
or BMRB [28], the GolmMetabolome database [29], the BiGG metabolic reconstruction database
[30] and others (see Table 30.2 for a more complete list). Some, like the HMDB, attempt to address
all of the above-mentioned database needs, while others, such as the BMRB tend to focus on the
specific need for creating spectral reference libraries. Following is a brief summary of five of these
metabolomic databases.

30.3.1 The Human Metabolome Database

The HMDB [26] currently contains more than 2,650 human metabolite entries that are linked to
more than 24,800 different synonyms. These metabolites are further connected to some 70 non-
redundant pathways, 3,360 distinct enzymes, 103,000 SNPs as well as 862 metabolic diseases
(genetic and acquired). Much of this information is gathered manually or semi-automatically
from thousands of books, journal articles, and electronic databases. In addition to its comprehen-
sive literature-derived data, the HMDB also contains an extensive collection of experimental
metabolite concentration data for plasma, urine, CSF and/or other bio-fluids for a total of 883
compounds. The HMDB also has more than 8,600 compounds for which experimentally acquired
‘‘reference’’ 1H and 13C NMR and MS/MS spectra have been acquired.

The HMDB is fully searchable with many built-in tools for viewing, sorting and extracting
metabolites, biofluid concentrations, enzymes, genes, NMR or MS spectra and disease informa-
tion. Each metabolite entry in the HMDB contains an average of 90 separate data fields including a
comprehensive compound description, names and synonyms, structural information, physico-
chemical data, reference NMR and MS spectra, biofluid concentrations, disease associations,
pathway information, enzyme data, gene sequence data, SNP and mutation data as well as
extensive links to images, references and other public databases. A screen shot montage of the
HMDB and some of its data content is given in Fig. 30.2. A key feature that distinguishes the
HMDB from other metabolic resources is its extensive support for higher level database searching
and selecting functions. In particular, the HMDB offers a chemical structure search utility, a local
BLAST search [31] that supports both single andmultiple sequence queries, a boolean text search, a
relational data extraction tool, an MS spectral matching tool and an NMR spectral search tool.
These spectral query tools are particularly useful for identifying compounds via MS or NMR data
from other metabolomic studies.

30.3.2 The METLIN Metabolomic Database

The METLIN database, which is currently housed at the Scripps Research Institute, is designed
primarily as a human metabolome resource [27]. It contains an annotated list of 15,000 known and
‘‘predicted’’ metabolites (primarily 8,400 di and tripeptides) including their mass, chemical formula,
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Table 30.2. Alphabetical Summary of Metabolomic Databases

Database Name URL or Web Address Comments

BiGG (Database of Biochemical, Genetic and
Genomic metabolic network reconstructions)

http://bigg.ucsd.edu/home.pl -Database of human, yeast and bacterial metabolites,
pathways and reactions as well as SBML
reconstructions for metabolic modeling

BioMagResBank (BMRB – Metabolimics) http://www.bmrb.wisc.edu/metabolomics/ -Emphasis on NMR data, no biological or biochemical
data

-Specific to plants (Arabadopsis)

Fiehn Metabolome Database http://fiehnlab.ucdavis.edu/compounds/ -Tabular list of ID’d metabolites with images, synonyms
and KEGG links

Golm Metabolome Database http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/
gmd.html

-Emphasis on MS or GC-MS data only

-No biological data

-Few data fields

-Specific to plants

Human Metabolome Database http://www.hmdb.ca -Largest and most complete of its kind. -Specific to
humans only

METLIN Metabolite Database http://metlin.scripps.edu/ -Human specific

-Mixes drugs, drug metabolites together

-Name, structure, ID only

NIST Spectral Database http://webbook.nist.gov/chemistry/ -Spectral database only (NMR, MS, IR)

-No biological data, little chemical data

-Not limited to metabolites

Spectral Database for Organic Compounds (SDBS) http://www.aist.go.jp/RIODB/SDBS/cgi-bin/
direct_frame_top. cgi?lang¼eng

-Spectral database only (NMR, MS, IR)

-No biological data, little chemical data
-Not limited to metabolites

(Copies of tables are available in the accompanying CD.)
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structure image and associated KEGG hyperlink. While the METLIN database contains a very
large number of molecules, many of the listed compounds are actually drugs or drug metabolites
rather than endogenous metabolites. In addition to this metabolite list, METLIN also contains a
database of FT-MS spectra from a number of chromatographically separated human serum
fractions, as well as a smaller number of spectra from other bio-fluids and tissues. In addition, a
set of 216 reference LC/MS profiles and 79 MS/MS data from a variety of tissues and bio-fluids in
various disease states are also present. The METLIN database is one of only a small number of
metabolome databases dedicated to human metabolites and human metabolite profiles. Certainly,
as this database grows it could evolve to be a resource of particular interest to clinicians and
biomedical researchers.

Fig 30.2 A montage of screen shots from the Human Metabolome Database HMDB, illustrating some of the data
content and query capabilities of the database (Copies of figures including color copies, where applicable, are
available in the accompanying CD)
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30.3.3 The Golm Metabolome Database

The Golm Metabolome Database (GMD) contains mass spectral and retention index (MSRI)
libraries obtained from purified tissue of bio-fluid samples derived from mammals, plants, yeast,
and bacteria (corynebacterium) [29]. These libraries include more than 2,000 mass spectral data,
collected from two different kinds of capillary GC-MS systems – a quadrupole GC-MS and a
GC-TOF (time-of-flight)-MS. To date the GMD has assembled 1,089 non-redundant peaks or
mass spectral tags of which 360 have been identified. The GMD supports both compound searches
and mass spectral queries. The compound search utility allows filtered searches, by compound name,
and provides access to the linked mass spectral information housed at the GMD. The GMD mass
spectral search supports both NIST02 and AMDIS formatted input files. The GC-MS searches are
performed by computing the fragment-intensity agreement based on a normalized Euclidean, Ham-
ming and Jaccard distance. The resulting matches are presented as a sorted table containing the
similarity score, the retention index (RI), the spectral identifier and the compound name (if known).

30.3.4 The BiGG Database

The BiGG database [30] is the one metabolomics database that is, perhaps, most intimately
connected to Systems Biology. Developed by the members of Bernhard Palsson’s lab at UCSD,
the BiGG database is actually a database of databases containing metabolic reconstruction data on
6 organisms including yeast, Escherichia coli andHomo sapiens. These carefully curated databases
contain information about metabolites, their pathways, their reactions, and their cellular compart-
ments. The Human entry in the BiGG database contains data on 1,805 distinct metabolites
involved in 3,311 metabolic and transport reactions. SBML representations of all of the reactions
are also provided. Particular care has gone into assembling BiGG’s reaction databases, since these
require mass and charge balance as well as internal self-consistency, especially for the Flux Balance
Analyses that these databases were specifically developed.

30.3.5 The BioMagResBank

The BioMagResBank [28], which was originally developed for deposition of macromolecular
NMR data, has recently been expanded to include NMR data from small molecule metabolites.
Currently, the BMRB (under its ‘‘Metabolomics’’ link) contains one-dimensional 1H and 13C data
as well as two-dimensional 1H TOCSY and 1H,13C HSQC data from �250 metabolites, many of
which are common to both plants and animals. Each compound is listed alphabetically and users
may click on the name to bring up a metabolite page giving compound names, synonyms, chemical
formulas, SMILES strings, CAS numbers, structural details, interactive 3D renderings, hyperlinks
to PubChem, KEGG, ChEBI and other databases, molecular weights (monoisotopic mass), pre-
dicted chemical shifts, NMR data collection conditions and — most importantly — hyperlinks to
all of the experimental NMR spectra and associated peak lists. All the reference NMR spectra are
collected in water so this makes the BMRB data quite compatible with standard metabolomic
measurements (which are also done in water). Like the HMDB’s MS/MS and NMR spectral
libraries, the BMRB’s libraries also supports NMR-based peak searches and spectral comparisons.
These can be particularly useful in identifying or confirming the identity of compounds found in
high-throughput metabolomics experiments.

The need for spectral (MS/MS, NMR, GC-MS) databases and spectral processing tools, is
as fundamental, to metabolomics, as are image repositories and image processing tools for micro-
arrays (in genomics) and 2D gels (in proteomics). In the next section we will discuss these spectral
tools and the methods used for spectral analysis in more detail.
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30.4 Spectral and Statistical Analysis Tools for Metabolomics

Metabolomics shares more than a few similarities with clinical chemistry. Both fields are focused on
identifying or quantifying small molecules from tissues, cells, or bio-fluids. However, what distin-
guishes metabolomics from clinical chemistry is the fact that in metabolomics one is measuring not
just 1 or 2 compounds at a time, but literally hundreds at a time. Furthermore, in clinical chemistry,
most metabolites are typically identified and quantified using colorimetric chemical assays. In
contrast, metabolomics attempts to rapidly measure large numbers (tens to hundreds) of metabo-
lites using non-chemical, non-colorimetric methods such as GC-MS (gas chromatography – mass
spectrometry), LC-MS (liquid chromatography – mass spectrometry), CE (capillary electrophor-
esis), FT-MS (Fourier transform mass spectrometry) or NMR spectroscopy [32].

The fact that most metabolomic data contains hundreds of peaks or spectral ‘‘features’’ means
that it must be analyzed quite differently than conventional clinical chemistry data. In fact, there
are two very distinct schools-of-thought about how metabolomic data should be collected, pro-
cessed, and interpreted. In one version (the chemometric or non-targeted approach) the com-
pounds are not formally identified – only their spectral patterns and intensities are recorded,
compared and used to make diagnoses, identify phenotypes or draw conclusions [33]. In the
other version (targeted profiling or quantitative metabolomics), the compounds are actually
identified and quantified. The resulting list of compounds and concentrations (a metabolic profile)
is then used to make diagnoses, identify phenotypes or draw conclusions [11,34]. Both methods
have their advantages and both have their advocates.

30.4.1 Chemometrics and Metabolomic Data Analysis

Chemometrics can be defined as the application of mathematical, statistical, graphical or symbolic
methods to maximize the information which can be extracted from chemical or spectral data.
Chemometric approaches for spectral analysis emerged in the 1980’s and are primarily used to extract
useful information from complex spectra consisting of many hard-to-identify or unknown compo-
nents [35,36]. Chemometric approaches can also be used to identify statistically significant differences
between large groups of spectra collected on different samples or under different conditions.

To facilitate the spectral analysis process, each input spectrum is usually divided up into smaller
regions or bins. This spectral partitioning process is called ‘‘binning’’, and it allows specific features,
peaks, or peak clusters in a multi-peak spectrum to be isolated or highlighted. Once binned, the
peak intensities (or total area under the curve) in each bin are tabulated and analyzed using
multivariate statistical analysis. This ‘‘divide-and-conquer’’ approach allows spectral components
to be quantitatively compared within a single spectrum or between multiple spectra. Of course, the
number of components or ‘‘dimensions’’ that a binned spectrum may represent could number in
hundreds or even thousands. To reduce the complexity or the number of parameters, chemome-
tricians use dimensional reduction to identify the key components that seem to contain the
maximum amount of information or which yield the greatest differences. The most common
form of dimensional reduction is known as Principal Component Analysis or PCA.

PCA is not a classification technique, rather it is an unsupervised clustering or data reduction
technique. Formally, principal component analysis determines an optimal linear transformation
for a collection of data points such that the properties of that sample are most clearly displayed
along the coordinate (or principal) axes. Amore simplified explanation of PCA is given in Fig. 30.3,
where we use the analogy of the projecting shadows on a wall using a flashlight to find a ‘‘maximally
informative projection’’ for a particular object. If the object of interest is a doughnut (but the
observer can only look at the projected shadow), then by shining the flashlight directly over the
doughnut hole one would generate the tell-tale ‘‘O’’ shadow. On the other hand, if the flashlight was
directed at the edge of the doughnut, the resulting shadow would be a less informative ‘‘hot-dog
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bun’’ shape. This kind of shadow would, likely, lead the observer to the wrong conclusion about
what the object was. While this example shows how a 3D object can be projected or have its key

components reduced to two dimensions, the strength of PCA is that it can do the same with a
hyperdimensional object just as easily.

In practice, PCA is most commonly used to identify how one sample is different from another,

which variables contribute most to this difference, and whether those variables contribute in the
same way (i.e., are correlated) or independently (i.e., uncorrelated) from each other. PCA also

quantifies the amount of useful information or signal that is contained in the data. As a data
reduction technique, PCA is particularly appealing as it allows one to easily detect, visually or

graphically, sample patterns or groupings.
PCA is not the only chemometric or statistical approach that can be applied to spectral analysis in

metabolomics. A second class of chemometric method is known as supervised learning or supervised

classification. Supervised classifiers require that information about the class identities have to be

provided by the user in advance of running the analysis. Examples of supervised classifiers include
SIMCA (Soft Independent Modeling of Class Analogy), PLS-DA (Partial Least Squares – Discrimi-

nant Analysis) andK-means clustering. All of these techniques have been used to interpret NMR,MS/
MS and FTIR spectral patterns in a variety of metabolomic or metabonomic applications [37–39].

PLS-DA or Partial Least Squares – Discriminant Analysis can be used to enhance the separation

between groups of observations by rotating PCA components, such that a maximum separation
among classes is obtained. In doing so, it is hoped that one can better understand which variables are

most responsible for separating the observed (or apparent) classes. The basic principles behind PLS
(partial least squares) are similar to that of PCA. However, in PLS a second piece of information is

used, namely, the labeled set of class identities. PLS-DA, which is a particular form of PLS, is a
regression or categorical extension of PCA that takes advantage of a priori or user-assigned class

information to attempt to maximize the covariance between the ‘‘test’’ or predictor variables and the

training variable(s). PLS-DA is typically used after a relatively clear separation between two or more
groups has been obtained through an unsupervised (PCA) analysis. Caremust be taken in using PLS-

DAmethods as it is easy to create convincing clusters or classes that have no statistical meaning (i.e.,
they over-fit the data). The best way of avoiding these problems is to use N-fold cross-validation

methods, boot-strapping or re-substitution approaches to ensure that the data clusters derived by
PLS-DA or other supervised methods are real and robust [40].

The intent in using pattern classification for spectral analysis in metabolomics is not to identify

any specific compound but, rather, to look at the spectral profiles of bio-fluids or tissues and to
classify them in specific categories, conditions or disease states. This trend to pattern classification

represents a significant break from the classical methods of analytical chemistry or traditional
clinical chemistry which historically have depended on identifying and quantifying specific

Fig 30.3 A simplified picture of Principle Component Analysis (PCA), where a three dimensional object is reduced to
a 2 dimensional representation by prudent selection of the projection plane (Copies of figures including color copies,
where applicable, are available in the accompanying CD)
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compounds. With chemometric profiling methods one is not so interested in quantifying known
metabolites, but rather in trying to look at all the metabolites (known and unknown) at once
[33,37]. The strength of this holistic approach lies in the fact that one is not selectively ignoring or
including key metabolic data in making a phenotypic classification or diagnosis. These pattern
classification methods can perform quite impressively and a number of groups have reported
success in diagnosing certain diseases such as colon cancer [38], in monitoring organ rejection
[41] and in classifying different strains of mice and rats [42,43].

30.4.2 Targeted or Quantitative Metabolic Profiling

Targeted (or quantitative) metabolic profiling is fundamentally different than most chemometric
approaches. In targeted metabolic profiling, the compounds in a given bio-fluid or tissue extract are
actually identified and quantified by comparing the bio-fluid spectrum of interest to a library of
reference spectra of pure compounds [11,34,44,45]. The basic assumption in targeted profiling is that
the spectra obtained for the bio-fluid (which is a mixture of metabolites) is the sum of individual
spectra for each of the pure metabolites in the mixture (see Fig 30.4). This approach to compound
identification is somewhat similar to the approach historically taken by GC-MS methods and, to a
muchmore limited extent, LC-MSmethods [46,47]. ForNMR, this particular approach requires that
the sample pH be precisely known or precisely controlled. It also requires the use of sophisticated
curve-fitting software and specially prepared databases of NMR spectra of pure metabolites collected
at different pH values and atmultiple spectrometer frequencies (400, 500, 600, 700 and 800MHz) [34].

One of the strengths of the NMR-curve fitting approaches is the fact that the NMR spectra for
many individual metabolites are often composed of multiple peaks covering a wide range of
chemical shifts. This means that most metabolites have unique or characteristic ‘‘chemical shift’’
fingerprints. This particular characteristic of NMR spectra helps reduce the problem of spectral (or
chromatographic) redundancy as it is unlikely that any two compounds will have identical numbers
of peaks with identical chemical shifts, identical intensities, identical spin couplings or identical
peak shapes. Likewise, with higher magnetic fields (>600 MHz) the chemical shift separation
among different peaks and different compounds is often good enough to allow the unambiguous
identification of up to 100 compounds at a time, through simple curve fitting [11,34, 45].

Targeted metabolic profiling is not restricted to NMR or GC-MS. It is also possible to apply the
same techniques to LC-MS systems [47]. In the case of MS spectroscopy, the sample MS/MS
spectra must be collected at reasonably similar collision energies and on similar kinds of instru-
ments [48]. Quantification of metabolites by LC-MS is somewhat more difficult than GC-MS or by
NMR. Typically, quantification requires the addition or spiking of isotopically labeled derivatives

Fig. 30.4. The principle of
spectral fitting from a
spectral library to
deconvolute (i.e., identify
and quantify) components
in a complex mixture
(Copies of figures including
color copies, where
applicable, are available in
the accompanying CD)

30 Bioinformatics for Metabolomics 593



of the metabolites of interest to the bio-fluid or tissue sample. The intensity of the isotopic
derivative can then be used to quantify the metabolite of interest.

A key advantage targeted metabolic profiling is that it does not require the collection of identical
sets of cells, tissues or lab animals and so it is more amenable to human studies or studies that require
less day-to-day monitoring. In other words, there is no need for specially designed metabolic cham-
bers. A key disadvantage of this approach is the relatively limited size of most current spectral libraries
(�250 compounds). Such a small library of identifiable compoundsmay biasmetabolite identification
and interpretation. Both the targeted and chemometric approaches have their advocates. However, it
appears that there is a growing trend towards combining the best features of both methods.

Because targeted metabolic profiling yields information about both the identity and concentra-
tion of compounds, it is possible to use a large range of statistical and machine learning approaches
to interpret the data. In fact, the same statistical techniques used in chemometric or non-targeted
studies – PCA, SIMCA, PLS-DA, K-means clustering – can also be used with targeted profiling.
However, instead of using binned spectra or arbitrary peak clusters as input to these algorithms, the
actual names of the compounds and their concentrations are used as input. This added specificity
seems to significantly improve the discriminatory capabilities of most statistical techniques, over
what is possible for unlabeled or binned spectral data [34]. Targeted profiling also seems to be
particularly amenable to other, more powerful, classification techniques such as artificial neural
networks (ANNs), support vector machines (SVMs) and Decision Trees (DTs).

30.5 Metabolic Modeling and the Interpretation of Metabolomic Data

As we have already seen, the statistical and computational methods described in section 4 are
particularly useful at identifying metabolic differences or finding interesting bio-markers. How-
ever, these approaches are not designed to provide a great deal of biological insight nor can they
provide a clear perspective on the underlying biological causes for the metabolic profiles that are
seen. To gain this sort of insight, it is often necessary to either mine the literature or to turn to
metabolic modeling. Metabolic modeling is where metabolomics probably begins to align itself
most closely with Systems Biology.

Metabolic modeling or metabolic simulation can be done in a variety of ways. Traditionally, it is
done by writing down and solving systems of time-dependent ordinary differential equations
(ODEs) that describe the chemical reactions and reaction rates of the metabolic system of interest.
There are now a host of metabolic simulation programs that allows very complex, multi-compo-
nent simulations to be performed [49,50]. These include programs such as GEPASI [51], CellDe-
signer [52], SCAMP [53] and Cellerator [54]. GEPASI is a good example of a typical metabolic or
biochemical pathway simulation package. This program, which has been under development for
almost 15 years, uses a simple interface to allow one to build models of metabolic pathways and
simulate their dynamics and steady state behaviour for the given sets of parameters. GEPASI also
generates the coefficients ofMetabolic Control Analysis for steady states. In addition, it allows one
to study the effects of several parameters on the properties of the model pathway. GEPASI allows
users to enter the kinetic equations of interest and their parameters (Km, reaction velocity, starting
concentrations), solves the ODEs using an ODE solver, and generates plots that can be easily
visualized by the user. GEPASI has been used in a wide variety of metabolic studies such as
bacterial glucose/galactose metabolism [55] and glutathione/phytochelitin metabolism [56] and
continues to be used in many metabolomic or kinetic analyses.

An alternative to solving large systems of time-dependent rate equations is a technique known as
constraint-based modeling [57,58]. Constraint-based modeling uses physico-chemical constraints
such as mass balance, energy balance and flux limitations to describe the potential behavior of a
large metabolic system (a cell, an organ, an organism). In this type of modeling, the time depen-
dence and rate constants can be ignored, as one is only interested in finding the steady state
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conditions that satisfy the physico-chemical constraints. Because cells and organs are so inherently
complex and because it is almost impossible to know all the rate constants or instantaneous
metabolite concentrations at a given time, constraint-based modeling is particularly appealing to
those involved in large-scale metabolomic studies. In particular, through constraint-based model-
ing, models and experimental data can be more easily reconciled and studied on a whole-cell or
genome-scale level [57,58]. Furthermore, experimental data sets can be examined for their consis-
tency against the underlying biology and chemistry represented in the models.

30.5.1 Flux Balance Analysis

One of the most popular approaches to constraint-based metabolic modeling is known as flux-
balance analysis or FBA [59,60]. FBA requires knowledge of the stoichiometry of most of reactions
and transport processes that are thought to occur in the metabolic system of interest. This
collection of reactions defines the metabolic network. FBA assumes that the metabolic network
will reach a steady state constrained by the stoichiometry of the reactions. Normally the stoichio-
metric constraints are too few and this leads to more unknowns than equations (i.e., an under-
determined system). However, possible sets of solutions can be found by including information
about all feasible metabolite fluxes (metabolites added or excreted) and by specifying maximum
and minimum fluxes through any particular reaction. The model can also be refined or further
constrained by adding experimental data, from known physiological or biochemical data obtained
from specific metabolomic studies. Once the solution space is defined, the model is refined and its
behavior can be studied by optimizing the steady state behavior with respect to some objective
function. Typically, the objective function optimization involves the maximization of biomass, the
maximization of growth rate, the maximization of ATP production, the maximization of the
production of a particular product or the maximization of reducing power. Once the model is
fully optimized, it is possible to use that FBAmodel to create predictive models of cellular, organ or
whole organismmetabolism. These predictions can be done by changing the network parameters or
flux balance, changing the reactants, adding new components to the model or changing the
objective function to be maximized.

Critical to the success of any FBA model is the derivation or compilation of appropriate mass
and charge balance [59,60].Mass balance is defined in terms of both the flux of metabolites through
each reaction, the stoichiometry of that reaction and the conservation of mass and charge. Mass
and charge balance considerations give rise to a set of coupled differential equations. This set of
equations is often expressed as a matrix equation which can be solved through simple linear algebra
and optimized through linear programming. The goal of FBA is to identify the metabolic fluxes
in the steady state (i.e., where the net flux is 0). Because there are always more reactions than
metabolites, the steady state solution is always underdetermined. As a result, additional constraints
must be added to determine a unique solution. These constraints can be fluxes measured through
metabolomics experiments (such as isotope labeling experiments) or through estimated ranges of
allowable (feasible) flux values.

FBA methods have been used in a variety of metabolomic studies. In particular, they have been
used in the genome-scale modeling of many bacterial metabolic systems including, Lactococcus
lactis, Corynebacterium glutamicum, Streptomyces coliecolor, Helicobacter pylori and E. coli
[61–65]. Flux balance analysis has also been used to look at yeast metabolism [66,67], erythrocyte
metabolism [68], myocardial metabolism [69] andmost impressively the entire humanmetabolomic
network [30]. Certainly, as more detailed flux data is acquired through isotope tracer analysis and
more information is obtained from quantitative, targeted metabolic profiling it is likely that flux
balance analysis and other kinds of constraint-based modeling will play an increasingly important
role in the interpretation of metabolomic data – and in Systems Biology.

30 Bioinformatics for Metabolomics 595



30.6 Conclusions

This chapter has attempted to highlight the areas where most of the activity in computational
metabolomics has occurred and where most of the interest (at least among the current practitioners)
seems to lie. These areas include: (i) the creation of comprehensive metabolomics databases; (ii) the
refinement of data analysis tools; and (iii) the development ofmetabolicmodeling tools andmethods.
While good progress is beingmade inmost areas, it is also clear that there are still many opportunities
for algorithmic development and bio/chemo-informatics innovation. One of the most obvious trends
in computational metabolomics is the growing alignment or integration of metabolomics with
SystemsBiology [5,6,30]. This integrationwill require thatmetabolomicsmethods and data reduction
techniques will have to become much more quantitative. While chemometric methods for spectral
analysis will likely continue to be popular among some groups for certain types of applications, the
long term trend in metabolomics seems to be towards rapid/high-throughput compound identifica-
tion and quantification. These so-called targeted or quantitative methods will require greater reliance
on spectral libraries and spectral standards and will no-doubt lead to the appearance of organism-
specific metabolite databases. This trend towards large-scale metabolite identification and quantifi-
cation will likely encourage metabolomics researchers to adopt many of the analytical approaches
commonly used in transcriptomics and proteomics, where transcript and protein levels are routinely
quantified, compared and analyzed. Given the importance that bioinformatics has played in estab-
lishing genomics and proteomics, it is likely that continuing developments in bioinformatics will have
an equally profound impact on metabolomics and, ultimately, in its role in Systems Biology.
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Chapter 31

Virtual Reality Meets Functional Genomics

Andrei L. Turinsky and Christoph W. Sensen

Abstract The emergence of the post-genomic era requires new approaches to biomedical data
analysis. To meet this challenge, we are building technologies that combine information from
molecular biology, anatomy and advanced visualization. Our top-down approach to integrative
data analysis utilizes existing software tools and life science knowledge bases. It allows various data
components to be visually manipulated and cross-referenced with other data sources via standard
interfaces. Such techniques are useful for a range of tasks, from gene expression studies to
pharmacokinetic explorations, within the visual model of an organism.

Keywords Bioinformatics � Virtual reality � Java 3D � Ontologies � Atlas

31.1 Introduction

Since the release of the first microbial genome in 1996 [1], the field of genome research has
exploded. To date, hundreds of genomes, from viruses to the human genome has been completely
sequenced and submitted to the public databanks. In addition, new large-scale, high-throughput
experiments have been designed, which allow the characterization of the messenger RNA levels and
the protein contents of an organism. Other fields, such as metabolomics, are rapidly emerging,
leading to complete inventories of all biologically active compounds in an organism.

The rapidly growing data space has posed major challenges for the field of bioinformatics. The
initial task of organizing and annotating the genome information has more or less been solved, but
it has turned out that, unfortunately, genome analysis and annotation through sequence compar-
ison is not sufficient to make much sense of the blueprint of life [2]. Without the additional
information derived from gene expression studies, proteomics and metabolomics experiments,
many organismal systems cannot be understood. For example, the human genome contains
approximately 30,000 genes, but the number of proteins, including all modifications, is estimated
to be between ten and one hundred times larger than this [3].

Aside from the sheer numbers, the distribution of molecules within a cell and their presence over
time in an organ or organism is a spatio-temporal problem and can only be understood if four-
dimensional models are built, which integrate all known facts. Currently, most experiments only
measure the difference between a ‘‘normal’’ population and one with a certain condition, but we
expect that very shortly, time series experiments, which can follow the development of a condition
will become the norm. Spatio temporal experiments are very hard to understand and their results
can become very complex.
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We have begun to create a new bioinformatics (and medical informatics) environment, which is
capable of handling this kind of information in the context of the organism. Our approach strives to
combine all known facts with a surface model of the organism and provide the scientists, who use
this model, with tools that allow them tomanipulate the view of the results in ways that they already
know. At no time do we require the end user to write programs in order to explore the data space.

This top-down approach is in contrast to many approaches, which try to understand the
functional networks within cells through the reconstruction of the interaction of proteins with
other proteins and/or small molecules. Unlike our approach, which allows the existence of knowl-
edge gaps, the bottom-up approach needs complete information in order to succeed. Unfortu-
nately, to date we have studied very few biological systems to the point where we have enough
knowledge to describe the overall-system completely.

Our approach can be divided into four components. The usual two-dimensional display, which
is currently in use for the visualization of most Bioinformatics results, is not sufficient for this kind
of work. We have moved to the use of virtual reality displays, which provide a much higher
resolution (billions of three-dimensional pixels, also called voxels). Using these displays requires
the development of a new software environment, which allows users to manipulate the virtual
objects they experience, with the tools that they ideally are already used to. For each organism
which we study, we need to develop an anatomical atlas, onto which additional information can be
mapped. The last component is the functionality, that the atlas needs to be equipped with in order
to accurately reflect the biological or medical phenomenon studied.

31.2 Hardware

In 2002, we established the world’s first Java 3DTM-enabled CAVE automated virtual reality
environment in our laboratory [4]. While CAVE systems, operating based on proprietary software
environments, were in use approximately 10 years before we installed our machine [5], our system
was the first one to operate based on a generic programming environment, as Java 3DTM can be
used on almost any Java-enabled computer, fromWindows andMacintosh personal computers, to
Linux servers and mainframes. In addition, Java is a generic programming environment that is
often taught as the first programming language to Computer Science undergraduate students.

CAVE automated environments consist of multiple stereo displays, from two to six walls; round
displays have been described as well. To achieve a cubed display, which provides the full CAVE
functionality, at least four walls are necessary, with three of them forming a U-shaped enclosure
and the fourth wall being a floor display. Each wall is operated through a separate graphics unit
(graphics card or processor on amulti-processor graphics card), ultimately providing the illusion of
a three-dimensional view with the help of stereo goggles, which allow each eye to experience a
slightly different perspective.

Our initial setup had four display units, as described above, and was driven by a mainframe
computer (Sun Enterprise 6900 class). This setup is quite expensive (more than one million US
dollars) and therefore only suitable for use at large organizations. We have since installed a much
more modest system, which uses a single wall, a laptop and two passive stereo (polarized light)
projectors. This system, which only costs approximately 35,000 US dollars, allows users to ‘‘look
at’’ rather than immerse themselves within the models, while its portability and affordability allow
the deployment in much smaller settings, such as an individual research laboratory or a rural
hospital.

The interaction with the models displayed in the CAVE is facilitated through a tracking system,
whose sensor is attached to the users glasses, which allows the computer to determine and monitor
the position of the user, and the magic wand (similar to a three-dimensional joystick), which is held
in the user’s hand and can be equipped with various manipulation modes.
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31.3 Software

The manipulation of objects in virtual reality requires a middleware layer, with which the end users
interact. Within Java 3D, virtual objects are organized in a hierarchical fashion. This is quite
beneficial for handling biological and medical information, as almost all of the data can be
organized using controlled vocabularies (also called ontologies), which are essentially hierarchical
expressions of the knowledge base.

Given that all interactions within the CAVE environment are mediated by the tracking device
attached to the stereo glasses (which monitors the user’s position with six degrees of freedom) and
the wand (which looks like a joystick, but of course has six degrees of freedom), we had to create an
entirely new approach to the interaction with objects. Our software system is called JABIRU, or
Java 3D Application Behavior for Immersive Virtual Reality Utilities [6]. JABIRU is a suite of
interactions available to users in a virtual reality environment, as well as a mechanism for creating
new interactions for Java 3D software tools. Through this middleware layer, users can manipulate
virtual objects in many ways: (i) zooming in and out; (ii) rotating objects and positioning them
after picking them up with the wand pointer; (iii) making parts of the model transparent or
(iv) deconstructing the model piece by piece.

The importance of JABIRU lies in its ability to separate 3D interactive behaviors from the main
Java 3D applications that use such behaviors. For example, the same mechanism of zooming into a
3D visual object and increasing its size ten-fold may be re-used by diverse bioformatics applica-
tions: from the studies of 3D structure of RNA and protein molecules [7], to tissue-level compar-
isons between anatomical samples [8], to very complex scenes involving hundreds and even
thousands of visual components in the course of surgical simulations [9]. Furthermore, the separa-
tion between a Java application and the suite of available interactive behaviors allows one to
‘‘rewire’’ any or all such behaviors to different combinations of 3D joystick buttons, mouse move-
ments, and/or keyboard key strokes.

Consequently, the users are able to transfer their bioinformatics Java 3D applications to
different visualization systems or device configurations. This offers tremendous improvement
over other existing approaches to virtual reality development, where tools are commonly created
for only one device setup and require recompilation and/or code adjustment for another setup,
hindering exchange of methods and ideas between researchers.

To achieve this functionality, JABIRU uses the Java 3D ConfiguredUniverse package, which
enables the runtime configuration of Java 3D tools to the desired computational environment. The
viewing environment and the program executables are separated, allowing for complete portability
of the Java 3D code, regardless of the viewing environment that was initially used for development.
It therefore allows the users to port existing molecular biology software packages, such as tools for
viewing protein 3D structure in Protein Data Bank format [10], between an immersive CAVE,
stereo projection system (active or passive), UNIX thin client or personal computer, which is just
equipped with a regular two-dimensional display. Users can install and use such software locally,
which is both faster and more secure than exploring remote data over theWeb. Making prototypes
like JABIRU, applicable to a wider range of systems, is a prominent component of our research.

As an example of a JABIRU-enabled functionality, we adopted several standard 2D graphical
interactions into the CAVE virtual reality environment. To achieve this, we created a 3D wand
mode that controls the mouse movement and generates mouse events from within the immersive
CAVE. As a result, mouse interactions are now available through a regular CAVE wand device,
which opens the way for using common Java 2D Swing GUI objects [11], without leaving the
CAVE immersion.Most 3D bioinformatics applications contain 2DGUI elements, such as various
menus, buttons, check boxes and radio buttons (because they were often created for use on a
standard 2D desktop setup), and therefore require mouse-based interactions, which we have now
made available.
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Our software environment allows the users to interact with objects in-natural ways, by pointing
at them and subsequently using the wand controls for the manipulation. The key to the seamless
operation is the level of detail management, which is a major component of our middleware
software layer. Our complete model of the human body is constructed from hundreds of objects,
each of which is rendered in very high resolution. To manipulate the displayed objects in real time,
the displayed images need to be reduced to a total number of less than one million triangles at any
given time. In addition, objects or parts of objects not visible to the users need to be deleted from the
rendition and re-loaded into the graphics memory if they are becoming visible. This requires a level
of detail management system, which we have implemented. Figure 31.1 shows two views of the
same object, each time from a different angle, clearly showing the changing level of granularity, as
objects move to the forefront and back, respectively.

31.4 Models

Most current anatomical models are derived directly from three-dimensional data such as the
Visible Human [12] or from a combination of MRI and CAT scans. Typically, these kinds of
models are volumetric, i.e., they are three-dimensional pictures, not object-oriented models. While
it is relatively simple to create volumetric models, they are intrinsically meaningless, as they are not
automatically indexed, and need experts for their interpretation.

We have chosen to create a surface-based atlas model, instead of a volumetric model, in order to
be able to automatically use it for the mapping of spatio-temporal data [13]. The hierarchy of
objects within the human atlas is derived from the Terminologia Anatomica [14]. The model is
constructed in a way that allows the addition of new features seamlessly, as leaf nodes are added to
the branches of the hierarchical tree. When using a surface model, automated indexing becomes
possible. This will eventually allow the automated and unattended mapping of volumetric patient
data onto the atlas.

The entire set of objects that now constitutes the complete atlas of the adult male human body
was rendered by two artists. They used a number of sources for the model construction, from
anatomy books, to the virtual human data, to information provided by experts for particular
organs and the inspection of human cadavers at the University of Calgary’s anatomy laboratory.
Special emphasis was given to rendering of a body that reflects a live human, rather than a deceased
individual (as in the case of the Virtual Human). Table 31.1 lists the major components of the
overall system.

Fig. 31.1 Level-of-detail
management mechanism in
a Java 3D environment. A
model with a smaller
polygon count (left) is used
at a larger distance from the
viewer, and is automatically
replaced by a more detailed
version (right) when the user
zooms into the 3D scene
(Copies of figures including
color copies, where
applicable, are available in
the accompanying CD)

604 A.L. Turinsky and C.W. Sensen



Each component of the atlas is broken down into subcomponents, which can be loaded into the
computer separately. The level of granularity that is currently included in the objects varies. It was
determined by the anatomical experts, who oversaw the creation of the respective objects. As the
atlas is constructed ‘‘top down’’, we will be able to add additional granularity if the need arises.
Figure 31.2 shows a close rendition of what users can expect to experience when displaying objects
in the CAVE automated virtual reality environment.

We have begun to explore how automated indexing can be implemented within the context of
our model. The hierarchical surface model provides a connection between a structure, which can be
detected in a volumetric data set and the function of this structure, which is usually provided
through the analysis of a volumetric data-set by an expert. The extraction of hierarchical objects
from volumetric data, without the assistance of a surface model, is usually done through the use of
an equidensity approach. As an example, an expert identifies a set of gray shades within TIFF
file (most of these are 8-bit files with a total of 256 gray shades), which represents the bone, and the
computer then uses this information to extract all the parts of the image with the same gray shades.

Table 31.1 The structure of theRealism anatomical atlas

Organ systems
Surface
polygons

Separate 3D
organs

Skeletal / articular
systems

385,107 214

Muscular system 853,199 1365

Alimentary system 712,628 26

Respiratory system 272,830 68

Urinary system 262,920 32

Genital system
(male)

81,182 24

Endocrine glands 218,243 7

Cardiovascular
system

1,490,485 154

Lymphoid system 127,563 29

Nervous system 1,673,322 338

Sense organs 265,681 46

Integument 84,408 32

Total 6,427,568 2,335

(Copies of tables are available in the accompanying CD.)

Fig. 31.2 Typical user
session in a Java 3D-enabled
CAVE virtual reality
environment, where users
can immerse themselves into
the spatio-temporal models
of the studied organisms
(Copies of figures including
color copies, where
applicable, are available in
the accompanying CD)
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Typically, this approach tends to over-predict, and thus the resulting model is quite crude. In the
case of bones, parts of the surrounding tissues, which in the set of TIFF files have the same gray
shade values, are often included in the extracted model [15].

Using our approach of combining a surface model with the volumetric data, very few gray
shades can be used to identify ‘‘landmarks’’, rather than attempting to extract the complete surface
model from the TIFF files. The landmarks can subsequently be used to morph the surface model
into the patient’s shape. This approach is more likely to yield a high-quality model of the patient’s
phenotype than the direct and unguided extraction from volumetric data sets. A warping of the
rendered 3D space will be required between the atlas and the individual patient’s scan, which will
have to be non-linear to achieve a satisfactory match. Figure 31.3 shows some initial results of our
land marking strategy.

31.5 Modular Design

The atlas-based software system for functional genomics currently consists of several essential
components: the virtual reality atlas of the organism’s anatomy, data analysis modules for each
type of biomedical data, whose results can be mapped onto the atlas (such as data from genomics,
metabolomics, pharmaco dynamics, and medical imaging), and a component for the visual 3D
scene management. The underlying data indexing mechanism ensures that the anatomical atlas can
be cross-referenced with other biomedical data types. The atlas then serves as a common context for
visual correlation and queries of the bioinformatics andmedical data. The use of Java 3Dmakes the
atlas-based system portable and platform independent. It also allows the incorporation of existing
Java tools for biomedical data analysis and data mining into the system, as shown below.

To maintain the biomedical data, we use a modular design similar to a database federation
[16,17,18]. Heterogeneous data from different sources remain in separate databases and an addi-
tional meta-component provides unified data access for the user. This approach presents a number
of advantages: (i) easy integration of additional data sources; (ii) easy integration of additional

Fig. 31.3 Working in the
CAVE on the 3D image
registration. The virtual
scene contains the generic
3D skull model from the
human body atlas, and a set
of landmarks that outline
the shape of a patient’s skull.
The landmarks are used for
the registration of the two
skulls, with the exception of
the jaws; the atlas jaw is
openwhereas the patient jaw
is closed (Copies of figures
including color copies,
where applicable, are
available in the
accompanying CD)
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data analysis tools, which are typically designed for a specific type of data and can therefore operate
autonomously on a corresponding database component; (iii) support of conceptually different data
types: images, numerical values, persistent objects, textual annotations; (iv) support of established
data formats, which makes the source data immediately available to a user; (v) minimal need for
data pre-processing, which is often subjective and error prone.

The usability of the system critically depends on both the quality and the efficiency that themeta-
component can relate heterogeneous data to each other. We are building an XML-based
cross-referencing mechanism, which utilizes the existing standards for XML links and the XML
query language. Other benefits of using XML for metadata include the abundance of open source
XML processing tools and easy web access for remote users. Our team has already used XML
extensively in the development of the MAGPIE genome annotation system [19] and the Bluejay
genomic browser [20]. We have recently published our XML-based strategy and it’s connection to
Web-based ontologies [21]. Ontology support provides a standard mechanism for the semantic
annotation between data sets from different domains of knowledge [22].

The existing modules can be complemented easily through the addition of existing Java-based
applications as well as new modules for the integration of additional data types or for the
exploration of the integrated results.

31.6 Applications

The main outcome of the virtual reality approach to functional genomics is a software system for
visual data analysis. The system focuses on two core areas: the exploration of the effects of
biochemical variation on phenotypical outcomes, and the creation of standard mechanisms of
cross-associations between diverse data types. Molecular processes are captured through the so-
called omics data, such as data from genomics, proteomics, and metabolomics. The organism’s
phenotype is reflected in physical measurements, medical imaging, patient profiles and demo-
graphics data.

It is our goal to overlay the anatomical model with additional information, such as gene
expression patterns, protein distributions or metabolomic information. For many reasons, this
poses quite a challenge. Most of the additional data is multi-dimensional and efforts need to be
made to reduce the dimensionality of the visualization. From the user’s standpoint, the 3D virtual
body becomes a convenient visual portal to biomedical data. However, given the complexity of the
molecular data sets (typically with thousands of attributes), it is often not feasible to bring an entire
original data set into the 3D scene at once. Handling of large volumes of data, such as gene
expression data, may require the use of massive computing resources. The situation is further
complicated when multiple molecular data sets are retrieved simultaneously.

Our solution is to data mine the omics data sets on the fly and retrieve only the resulting visual
models. The models are created by domain-specific data mining tools in response to user activity.
Data mining helps to reduce the size of massive life science data sets, prior to their integration into
the visual context, providing a substantial performance gain, while preserving the data topology.
As the user explores multiple organs, the system automatically locates and processes relevant omics
data, merges new models into the 3D scene, and removes the models for organs that are no longer
selected or visible to the user. This technology allows us to work with limited computing resources.

When starting a new case study in functional genomics, we initially limit the scope of our work to
conducting visual exploration of existing data, finding associations between various data types, and
identifying correlations evident in the collected data. Visualization aspects include not only the data
per se, but also visual models derived from the data, e.g., 3D graphs, visualization of patterns,
abstract maps, and connectivity networks. A typical example of such an exploration includes
filtering down the population and animating several data types simultaneously. Filtering may
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require setting the ranges for multiple parameters such as age, gender, acceptable lymphocyte
concentration, blood type, and disease subtype. Once the data volume is reduced through the
filtering process, the collected molecular and imaging data can be visualized simultaneously. For
example, the user may observe that a group of similar genomic profiles (as identified by clustering
gene expression microarray data) comes from a group of patients of the predominantly relapsing-
remitting subtype of multiple sclerosis, which may indicate a pattern worthy of further studies.

After the preliminary patterns are visually identified, pattern discovery, data mining, and
predictive modeling tasks should follow. Building on the visual associations found in the visualiza-
tion phase, the goal is to establish statistically significant correlations and hypothesise about the
cause-effect links between the omics and the phenotype data types. Naturally, correlation does not
necessarily mean causation, but may nevertheless lead to valuable hypotheses. As with any pattern-
discovery initiatives, the simulation phase is inherently unpredictable: it is generally not known a
priori: (a) to what extent the correlation patterns within the data exist and are learnable via
standard methods; (b) how complex the simulation models should be, in order to match accurately
the data already collected; or (c) to what extent the simulated results will be validated by future
experiments with sufficient statistical significance.

The necessary steps to model such hypotheses involve the recovery of relevant genetic pathways
via genomic data analysis and literature searches; and the enabling of visual manipulations of the
pathways, annotations, and other components. For example, the user should be able to manipulate
a pathwaymodel by visually ‘‘knocking out’’ genes or changing their expression, and then observing
the predicted effects of these manipulations on the dynamics of a disease in question. Subsequent
steps then involve the validation of predictive accuracy with respect to real experimental data.

One of the advantages of using Java for our system is that other Java-based applications can be
rapidly bound into the toolkit. For example, the TIGR Multi-Experiment Viewer (MeV) now
functions from within our system, allowing users to combine gene expression data with the
anatomical model [23]. TIGRMeV implements normalization, clustering, classification, statistical
analysis, and visualization of gene expression data. We provide a visual mapping between the
TIGR MeV output and the Java 3D visual scene, so that data mining results can be piped directly
into the displayed anatomical structures (Fig. 31.4).

We primarily use unsupervised machine learning methods [24] to model gene expression pat-
terns. Generally speaking, unsupervised methods separate massive data sets into much smaller
groups. By extracting a small descriptive model for each group, the user can instantly reduce the

Fig. 31.4 Gene expression
profiles are analyzed in the
TIGR Multi-Experiment
Viewer. Patterns of interest
are visualized as animated
color maps directly on the
chosen organs of the virtual
body (Copies of figures
including color copies,
where applicable, are
available in the
accompanying CD)
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amount of visual input by several orders of magnitude, e.g., from tens of thousands of gene
expression log-ratios to just a dozen prominent trends. We believe that this approach to the
reduction-based retrieval is more appropriate than, for example, data sampling; it avoids the
user-introduced bias usually associated with sampling, and therefore provides access to a more
standardized interpretation of the results. The data mining model creates a high-level overview, but
detailed features are also available for drill-down explorations.

Various combinations of selected organs give rise to different data mining results. Although local
sets are relatively static (unless the user uploads new data into the system), data mining models built
on various combinations of organs may differ substantially. For example, gene expression in the
urinary system differs drastically from gene expression in the central nervous system, and so do the
respective statistical models.Depending on user activity, the system derives high-level representations
of the relevant data on the fly, which are then integrated dynamically into the virtual reality scene.

Similar to the gene expression studies, we can map the distribution of small molecules within
organs. Using the Java 3D atlas of the human body, we can visualize chemical reactions between
proteins, enzymes, and other chemicals in an anatomical context. Most importantly, we are moving
from modeling generic molecular processes in a human body towards modeling these processes for
each individual patient.

As a first example, we have developed a prototype visualization system for biochemical data
mapping using pharmaco dynamics data. Using aspirin (acetylsalicylic acid) as an example, we
were interested in following the events after a patient takes it to relieve a headache (Fig. 31.5). After
the initial uptake, it takes about four hours for each 500mg pill to be digested. The dissolved aspirin
first appears in the stomach, subsequently migrates through the blood vessels and ultimately
reaches the brain. The concentration changes can be visualized using coloration time series,
changing textures, and other visual cues as part of the virtual patient body. Once in the digestive
system, the main content of the aspirin pill is gradually converted into salicylic acid [25]. As the
aspirin is being digested, the concentration of the salicylic acid rapidly rises, as shown by the various
visual time series. At the same time, both chemicals are absorbed from the digestive organs into the
blood stream. Once in the blood, the salicylic acid breaks into four additional chemical by-
products: salicyl acyl glucuronide, salicyluric acid, gentisic acid, and salicyl phenolic glucuronide.
By this time, the patient’s pain subsides, as the substances finally reach the receptors in the brain.
Eventually, all chemicals are filtered from the blood into the urinary system, which excretes them
from the body.

Fig. 31.5 Aspirin metabolism in selected organ systems of a human body atlas. Initially, the concentrations of the
acetylsalicylic acid and the salicylic acid are high in the digestive organs, especially in the stomach, as shown by its
deeper shade (left). After about 30 minutes, the two acids are concentrated predominantly in the blood, and are
visualized using deeper shades of the heart and the central arteries (right) (Copies of figures including color copies,
where applicable, are available in the accompanying CD)
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Visualizing the metabolic activity allows us to observe the biochemical changes directly within a
(virtual) patient’s body. If advanced imaging information is coupled with this information, we are even
able to observe the morphological and histological changes, which occur at the same time.We are now
collecting data on complex drugs, in order to advance to more elaborate pharmaco dynamic models.

The analysis of the differences between the predicted and the observed metabolite concentra-
tions may: (a) allow validation and course correction in pharmaceutical experiments, (b) help assess
the applicability of theoretical models in a given line of research, and (c) possibly lead to other
insights. Thanks to the Java language portability, even the smallest hospital, patient clinic, or
classroom and will be able to use our Java 3D system to model the effects of drug therapies.

Similarly, we use Java 3D technology to model some of the main anatomical manifestations of
genetic diseases and other pathologies. For example, we have begun to visualize the behavior of
various lymphocytes and macrophages, which has important applications to many diseases of the
human immune system. In particular, our collaborators use this technology in their exploration of
multiple sclerosis [26], where changes in blood cell dynamics are important indicators of the on-going
nerve cell damage, such as demyelination and axonal loss. In contrast, physical evidence may only be
available after substantial damage to nerve tissues has already occurred, as evident fromMRI scans.

Our goal is to make a time-series model of molecular and cell proliferation for each pathway
associated with a genetic condition we explore, based on the clinical data. The result of this research
activity will be a mechanism of visualizing spatio temporal patterns of cell proliferation in a
patient’s organ or body fluid. In a simple scenario, this virtual model can then be correlated with
the additional clinical data on drug dosage, represented as one of the controllable parameters in our
visual model.Wewill then focus on the discovery of the associations between different drug dosages
on one hand (such as beta interferon for multiple sclerosis), and different disease patterns on the
other hand. Similarly, genomics data collected through RT-PCR, Western Blot, and microarray
gene expression analysis will be incorporated into the system.

Naturally, personalized medicine does not stop with molecular and biochemical therapies but
also includes macro-scale treatments, such as surgeries. Through automated indexing, we will soon
be able to re-shape the idealized atlas of the human body into the form of an individual patient. The
possibilities of the combination of volumetric data with a surface model are almost endless. They
include the study of a particular disease, the normalization of information from large patient
cohorts, the planning of surgical procedures and maybe in the future even new methods to assist
the execution of robotic surgery.

In summary, we will soon be able to upload any individual’s advanced imaging information,
merge it with the biomedical information and patient history and explore the resulting model in real
time, with a very high resolution and in a way is familiar to physicians. We hope that this will
overcome the fragmented medical landscape, which is reality today. If someone is unfortunate
enough to develop cancer, they are currently forced to see several specialists, who may give them
conflicting advice on how to treat their condition.

In the future, we hope that all specialists will see the same model, which includes all the data
collected from the patient and be able to discuss the treatment jointly. This will lead to the
personalized medicine that we are currently forecasting and hopefully will provide us with the
insights, which are necessary to understand the mechanism of complex genetic diseases and other
ailments for which no treatment is currently available.

31.7 Challenges for the Future

Thus far, the number of true spatio temporal experiments that could be used in connection with our
models is scarce.While we expect this to change over time, this currently poses amajor challenge for
the usefulness of our work. Most experiments to date have only attempted to characterize the
difference between ‘‘normal’’ and ‘‘diseased’’, or the very beginning and the end status of a
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phenomenon. This is, of course, insufficient for the understanding of the mechanisms and networks
that are underlying the observed characteristics.

To date, we have created a model of the male adult human anatomy.We are planning to expand
this collection to include the female body, as well as models of children to reflect the entire process
of human development. This naturally requires much more work, and eventually will lead to a
system that can seamlessly morph between the fetus and the adult stage.

Most biological and medical research uses model organisms. Similar to the creation of
surface models for the various stages of the human body, we need to create surface models for the
animals that we work with. Naturally, this includes rats and mice, and other vertebrates. Eventually,
we will have to continue our work to also include renditions of other models, from bacteria to plant
models such as Arabidopsis, Brassica or rice. Thankfully, the software environment that we have
developed thus far is generic and can rapidly be expanded to include the models proposed above.

The greatest challenge though is presented by the question on how to expand the current models to
the cellular and sub cellular level. Given that a single human finger has more than 1 billion cells, it is
quite clear that no current computer system would be capable of rendering a model with this kind of
resolution. Level-of-detail (LOD) management is one possible direction, in which we create only one
elaborate model of a cell, but replace it with highly simplified, symbolic ‘‘placeholder’’ models for
higher zoom levels. The data is thus separated into a hierarchy of layers and the system allows the user
to switch between the layers, refining both the visual precision and the behavioral veracity of the 4D
component. The LODmechanism is used with great success, for example, inmost of the geographical
information systems [27]. In Java 3D, a visual model is internally represented by a ‘‘scene graph’’, a
tree-like hierarchical structure. The nodes of the scene graph correspond to visible objects, light
sources, geometric transformations, and interactive behaviors that define the 3D model.

To represent cellular processes, the data layering mechanism would need to use runtime pruning
and re-growth of the data within this hierarchical structure, based on a system of semantic rules. The
incoming requests for cellular-level data and models are placed within the atlas using the semantic
attributes, such as the anatomical term from the standard Anatomica Teminologia ontology
(e.g., corpus callosum), the time stamp for time series data, and the required level-of-detail zoom
level. A semantic 4D zoom [28] will retrieve and show high-resolution details only within a small
region of interest, thus balancing the depth of the detail against the breadth of the region of interest.

The reduction of massive life science data sets prior to their integration into the visual context
also poses a serious challenge. Our current approach is to use data mining in order to reduce the
data sets to a small number of groups, descriptors, or trends. A promising complementary
approach is outlier detection. Instead of integrating an entire molecular data-set into the atlas,
the users may focus on extracting only a small ‘‘interesting’’ sample of the data that represents
pathology or an unusual behavior. This approach may provide substantial performance gains
during data integration into the organism’s atlas. Outlier detection is a prominent and
rapidly developing area of data mining. However, one must take into account the potentially
very high dimensionality of the data (e.g., thousands of attributes in microarray gene expression
data) and develop the algorithms that are resistant to the curse of dimensionality [29]. The main
challenge is in detecting ‘‘interesting’’ rare anomalies, and filtering out what can be called ‘‘normal’’
data, such as housekeeping genes in gene expression experiments. We envisage many situations
where only a few outliers are of interest to the investigators.

Finally, haptic technology is emerging as one of the most intriguing new developments with a
huge application potential [30]. By simulating touch and force feedback, haptic devices delve into a
completely new realm of the user’s senses, which has until now been under-utilized. As just one
example of what will likely become possible in the coming years, haptic applications may allow
surgeons not only to see but also to feel the response of different anatomical tissues under the
scalpel, and therefore allow more precise surgical simulations, and perhaps even remote surgeries.
This is an exciting new frontier in bioinformatics.
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Chapter 32

Systems Biology of Personalized Medicine

Craig Paul Webb and David Michael Cherba

Abstract To achieve the promise of individualized molecular-based medicine, the application of
informatic tools to the entire hierarchy of biological system interactions and dynamics will be
required in order to promote the effective discovery, validation and application of new diagnostic
and treatment strategies in a real-time environment. As the field of biomarker discovery continues
to unravel the underlying molecular mechanisms of diseases, the utility of the acquired and
expanding knowledge lags far behind. Systems Biology represents a pivotal component of the
personalized medicine workflow through its ability to consolidate complex data and knowledge
into definable networks, and reproducibly identify key convergence/divergence points representing
the biomarkers of interest. In this chapter, we will provide a brief update in the field of personalized
medicine, and how Systems Biology tools can be used to support biomarker discovery. This chapter
emphasizes the potential utility of Systems Biology for the prediction of network-based treatments
in oncology, using empirical biomarker data sets in conjunction with knowledge and pre-existing
drug resources.

Keywords Pharmacogenomics � Systems Biology � Cancer � Informatics � Biomarkers �
Individualized therapy

32.1 Introduction: The Challenge – The Complexity of Biological Systems

Before providing an overview relating to the potential utility of Systems Biology in personalized
medicine, it is essential to clearly define some terms within this framework. Physicians, after all,
have personalized medicine for decades using their continued education and acquisition of knowl-
edge in the field to optimize care for their individual patients. For this purpose, they use various
objective and subjective inputs such as signs, symptoms and test results. Systems Biology is an
equally ill-defined term derived from an emerging discipline. According to the latest in a long string
of classifications, Systems Biology characterizes an integrated approach by which scientists study
pathways and networks which touch all areas of biology.While the semantic definitions continue to
represent an area of debate, it is far more important to consider how the discipline of Systems
Biology can enable individualized medicine at the molecular level, thereby transforming healthcare
into a more predictive and integrated discipline. Essentially, through Systems Biology it should be
possible to leverage recent improvements in technology and the vast expansion of acquired knowl-
edge to redefine the wiring of diseases, and design network-targeted therapies based upon the
provided input of comprehensive and standardized molecular data. When applied appropriately,
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Systems Biology converts empirical data to network information and, coupled with the knowledge of
biomarker-drug associations, is highly relevant to optimization of targeted therapeutics (Fig. 32.1).

After years of extensive basic research focused on furthering our understanding of the etiology
and progression of disease at the molecular level, it is now generally accepted that virtually all
phenotypes, which may ultimately manifest themselves as signs or symptoms of a disease, are
governed by themolecular constituents of individual cells. These cells interact in the form of tissues,
organs, and the physiological organism as a whole. Molecular constituents increase in complexity,
from the DNA sequence and chromosomal organization, through gene regulation and transcrip-
tion at the DNA–RNA interface, to protein translation at the RNA-protein boundary. This
classical transfer of genetic code to functional protein is further complicated by protein modifica-
tions, protein-protein interactions, and protein-chemical (metabolomic) reactions. This diversity
can provide the capacity to form essentially infinite ‘‘systems’’ within an individual cell or collection
of cells working in concert; i.e., the system is highly dependent on the context, which includes both
temporal (time dependent) and spatial (location dependent) factors. It is unlikely that any cellular
system will be exposed to the identical external environment due to contextual fluctuations. A high
degree of intracellular complexity is required to provide the ultimate plasticity and allow the
individual cell to adapt to or exploit extracellular cues and ensure the long-term survival of itself
and/or the multi-cellular organism. The multicellular organism requires a highly coupled coordina-
tion between its cellular sub-systems, which cannot be excessively rigid in the face of a selective
environment that drives micro and macro-evolutionary processes (1). As multi-cellular organisms
evolved from unicellular precursors, the degree of complexity within the intracellular networks
increased to permit adaptation to, or exploitation of, the changing micro and macro environment

Fig. 32.1 A simplified overview of the role of Systems Biology in the area of individualized molecular-based medicine.
As described in the text, the cellular systems are determined by intrinsic molecular determinants (including the
genetics of the cell) in conjunction with external environmental factors that provide a fluctuating temporal and
spatial context. Systems Biology can assist in the conversion of standardized empirical data to network information
that, in conjunction with pre-existing drug-target knowledge, can be used to predict pathway-directed treatments
(Copies of figures including color copies, where applicable, are available in the accompanying CD)
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(2). The charge of Systems Biology is to understand how this structured complexity can be
simulated to derive predictive models for future healthcare applications (3). In conjunction with
classical control system modeling, the development of predictive models is feasible using system
topology and transfer functions. For example, a regulatory NF-kb module was constructed using
15 molecular variables and a classical control transfer model (4). In the new era of individualized
molecular medicine, the task is to reduce the complexity to practical applications, whereby the
molecular data in conjunction with traditional assessments of physiological systems, can be used
together to predict, detect, diagnose, treat and/or monitor disease.

32.2 The Added Complexity of Cancer

Within oncology, the system complexity is further exacerbated due to the inherent genomic
instability of a tumor cell. Alterations in DNA repair mechanisms at the onset of tumorogenesis,
essentially instigate an accelerated micro-evolutionary process, which naturally results in further
heterogeneity within the intrinsic micro-systems (5). Furthermore, tumors represent a complex
interaction between malignant cells and their host micro-environment, which can include a multi-
tude of proteomic and metabolomic constituents and other cellular components such as endothe-
lial, stromal and inflammatory cells (6,7). Thus, even if one were able to identify the complete
molecular-chemical systems within the individual cells of a tumor mass, no two cellular systems
would be identical at a given point in time. Indeed, the same cell would likely exhibit differences at
multiple time points, and variation would also be prevalent between spatially separated tumor cells
within the same population (such as the primary tumor mass), and between side populations (such
as metastases within different anatomical sites). The various organ or tissue sites hosting primary
tumors and their resulting metastases provide contextual complexity, which coupled with the
underlying genetics of the tumor, drive the interaction between the tumor-host cellular systems
that determines the path of disease progression. Thus, while the molecular genetics of a tumor cell
may promote an accelerated micro-evolutionary process within a population of tumor cells (8), the
interplay between each tumor cell and its micro-environment provides a constantly shifting
context and selective milieu that resembles a high dimensional form of conditional probability.
Current efforts to sequence the cancer genome will naturally identify the predominant genetic
changes within the tumor system as a whole, and may provide some candidate genes, proteins and/
or networks that are frequently utilized by specific tumor types (9,10). However, while in other
diseases the genome is relatively stable, the genetic instability in conjunction with the invariable
changes in environmental context within a tumor, provides arguably the most significant challenge
for individualizing treatments in oncology towards a cure or chronic control of the disease. The
ability of Systems Biology to model interactions between multivariate molecular and chemical
components at any level, and provide a means to identify the driving network aberrations
associated with the malignant phenotype, is pivotal to these efforts.

32.3 Personalized Medicine — The Objectives

The advent of pharmaco-genomics (a subset of personalized medicine), has stemmed from the
realization that individuals and their disease(s) demonstrate a differential response to various
medications that are governed by heterogeneity at the genomic level. The level of interest in this
field has been driven by a number of factors including public demand (11), regulatory agencies (12),
and the possible financial incentives associated with biomarker-drug co-development within the
pharmaceutical and biotechnology industry (13). Coupled with enhanced computational power
and the explosion in new technologies, allowing us to measure the multivariate components of
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cellular systems (DNA, RNA, proteins and metabolites) at an unprecedented density, personalized

medicine is nowa realitywithmany highly active areas of research.However, the lack of expertise and

data integration acrossmedical and scientific disciplines, including those engaged in SystemsBiology,

represents a significant challenge to achieving the practical objectives of individualized, molecular-

based medicine.

32.4 Biomarkers in Practice – The Role of Systems Biology

A biomarker is generally defined as a biological feature (DNA, RNA, protein or metabolite)

that can be objectively measured and used to predict or detect the progression of disease or the

effects of treatment. From an idealistic standpoint, biomarkers could be used to (i) predict the onset

of a condition prior to occurrence; (ii) detect a condition in its infancy (so called occult disease);

(iii) accurately diagnose the condition at presentation and predict prognosis; (iv) predict the

appropriate treatment for a condition; (v) detect target modification within the disease tissue or

an appropriate surrogate tissue; and/or (vi) monitor clinical response (efficacy and/or toxicity).

Within this natural continuum of care, a number of univariate biomarkers and in some cases

multivariate composites, have been successfully translated into clinical practice within oncology.

For example, genetic screening of BRCA1/BRCA2mutations in cellularDNA, from females with a

family history of breast or ovarian cancer, can now be performed to identify those at high risk of

developing tumors, thereby providing options for prophylactic surgery (14). Various isoforms of

the liver cytochrome p450 enzymes are known to be involved in drug metabolism, and ultimately

govern how individual patients respond to a number of drugs prescribed for various indications

including cancer (15). The outlier patients, who either over- or under-metabolize some drugs often

experience serious adverse events or exhibit poor drug efficacy due to differential rates of drug or pro-

drugmetabolism. The first FDA-approvedmultivariate DNAmicroarray that assesses the mutations

in several cytochrome p450 genes, is now available to physicians and their patients, although the

medical reimbursement for this test remains a challenge (16). Recently, the FDA changed the label for

the drug irinotecan, commonly used inmetastatic colon and lung cancer, to include genetic testing for

UGT1A1DNAmutations (17). Some genetic isoforms of UGT1A1 confer an increased risk of drug-

induced toxicity. These and other such genetic tests are performedon normal cellularDNA, and hence

provide a life-time risk assessment for physicians to considerwhen determining the required frequency

of patient assessments and/or therapeutic selections.
Several biomarkers associated with occult and early progressive disease are also in mainstream

clinical use, and include genomic, proteomic andmetabolomicmarkers. These are typically assayed

from readily attainable physiological fluids such as blood, urine, saliva, or stool and may be

measured repeatedly over time to determine the rate of change in the level of the biomarker. The

rate of change is typically a better predictor of early disease onset and/or progression, when

compared with the absolute biomarker level at any given time point (18). Perhaps, the most

renowned protein marker in clinical oncology is Prostate Specific Antigen (PSA), which represents

a relatively non-specific blood-based marker for prostate cancer (19). In some cases, potential

protein markers of early disease detection can be inferred from genome-wide microarray experi-

ments, comparing normal and diseased tissue using some rudimentary aspects of Systems Biology.

For example, in a comparative analysis of the gene expression profiles of malignant and normal

mesothelium from patients with mesothelioma, osteopontin (OPN) was identified as a known

extracellular and plasma protein that was increased in aggressive tumors, and appeared to represent

a common terminal output node within a highly enriched molecular network (20). Screening of

blood OPN levels in patients at a relatively high risk of developing this disease may hold some

promise for identifying those with occult disease (21).
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At the time of disease presentation, it is critical to provide a comprehensive work-up of the
disease to provide a definitive diagnosis and prognosis, which are in turn used to determine the
treatment course. Typically, pathologists utilize microscopic tissue morphology or specific protein/
RNA stains, to characterize the disease and these may provide some prognostic information in
conjunction with macroscopic observations. More recently, molecular diagnostics that simulta-
neously assess multiple biomarkers have been developed to improve on the traditional methods of
diagnosis and prognostication. Themost advanced of these is arguably in breast cancer, where gene
expression signatures within tumors have been shown to characterize those at high risk of recur-
rence post surgery (22). Commercial tests are now available that can identify those patients at the
lowest and highest risk of recurrent disease (23). There are numerous studies in other tumor types
that have identified putative molecular signatures associated with differential phenotypes and/or
clinical outcomes. While the standardization of the various genome-wide technologies under
evaluation is critical to ensure raw data accuracy (24), Systems Biology tools can greatly enhance
the data analysis component that ultimately plays a fundamental role in defining tests that will
perform with the necessary accuracy in the clinical setting. Network-based diagnostic optimiza-
tions, in which components of the same pathway are assessed collectively and not treated as
independent data elements, represent an exciting opportunity for Systems Biology. Analysis of
disparate data-sets at the network level has revealed consistencies across studies that were not
evident from the analysis of the individual network components (25). In this form, Systems Biology
can represent a means of data reconciliation, and can be used to select pivotal biomarkers for
further validation and potential diagnostic development. While individual elements within a net-
work are often redundant and sensitive to disparity in experimental techniques, the network as a
whole represents a unifying theme that is representative of the underlying biology of the disease.

Once an accurate disease diagnosis and associated prognosis has been established, the selection
of an optimal therapeutic is the next natural step. Currently, the vast majority of treatments are
selected based upon a large cohort of clinical trial data in which a portion of patients with the ‘‘same’’
disease phenotype were shown to benefit in some fashion after administration of the treatment. The
degree of benefit in the mythical average patient is a relative term, and treatment approval very
much depends on the ‘‘gold standard’’ for the given disease population at the time of the pivotal
trial(s). Drugs are currently approved with a specific set of phenotypic indications based upon the
diseases studied in the clinical trial(s). Physicians are able to use their best judgment as well as
several other key factors including, known drug-drug interactions or contraindications to perso-
nalize the patients’ treatment. As it has become clear that drugs, which after all target molecular
entities (typically proteins) with varying degrees of selectivity display differential patient toxicity
and efficacy depending on the molecular makeup of the patient and/or their disease, there has been
a shift in thinking towards utilizing molecular-based indications and diagnostics to improve the
probability of the treatment success.

Historically, disease and drug-specific diagnostic tests may be ordered prior to the administra-
tion of a restricted class of drugs. Perhaps, the best example of this remains trastuzumab, which is
recommended for the treatment of tumors that are positive for the ERBB2 molecular target (26).
While plainly intuitive, a series of clinical trials have now demonstrated that ERBB2 positive
tumors showed an improved response to trastuzumab relative to ERBB2 negative tumors, as
determined using assays that measure gene amplification or protein over-expression (27). Indeed,
the drug would not have likely been approved for general use in breast cancer without this
companion diagnostic test, which enriches for a sub-population that is more likely to achieve
therapeutic benefit. In another landmark study, the drug imatinib was developed to target the ABL
kinase due to its constitutive activity in patients with chronic myelogenous leukemia, in which
tumors harbor a BCR-ABL genetic translocation (28). Of critical importance to the field of Systems
Biology, resistant tumors have recently emerged that utilize alternative pathways downstream of
the drug target to circumvent the absolute requirement for the ABL kinase (28). Similar results with
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other targeted agents used in single or minimal combinational modalities are emerging, and
would indeed be predicted from analysis of the target network that demonstrates the level of
redundancy and robustness within signaling pathways (29). Essentially, the plasticity within
these networks reduces the dependency on single nodes within the pathways. Systems Biology
will play a critical role in modeling the pathways to de novo and acquired resistance. This
knowledge can be used in the development of targeted approaches to minimize the probability
that a tumor will develop resistance, and/or target key network nodes/hubs to reverse the
resistant phenotype.

An important area of focus for Systems Biology in the field of oncology, will be its utility in the
modeling of the inactivation status of tumor suppressor genes (30) and/or the activation of
oncogenes (31), within complex systems frommultivariate molecular data. The latter, in particular,
represents therapeutic targets against which a number of drugs are currently available or are in
active development. The classic definition of the oncogene should be stretched to include any
molecular aberration that is causative with respect to the etiology and/or progression of the disease
at the network level. As discussed above, it is well established that there is a high degree of
redundancy within molecular networks, and that tumor cells will ultimately evolve to fully utilize
different means to achieve the same end-result at the sub-system level. For example, inactivation of
a canonical pathway can occur through a number of redundant mechanisms which would be
predicted based upon a pre-requisite knowledge of the pathway (32). A key aspect of future studies
will be to determine the utility of multiplexed ‘‘omics’’ technologies and network reconstruction, to
accurately predict the activation status of potential targets within complex disease systems. The
molecular portrait of a tumor likely reflects, at some level, the consequence of persistent activation/
inactivation of key network inputs (divergent points) and outputs (convergent points). These in
turn, represent excellent targets, and in conjunction with pre-requisite drug-target knowledge, can
be used to infer optimal therapeutic strategies with existing agents. As highlighted below, this
approach represents a key component of our current predictive therapeutics protocol that remains
in its rudimentary stages. The ability to systematically predict potential drugs using an integration
of standardized technology, Systems Biology, and knowledge of biomarker-drug associations, for a
given input remains a fundamental challenge.

Biomarkers that detect drug efficacy or toxicity, typically referred to as surrogate markers of
response, represent another active area of biomarker research. Such biomarkers, could logically be
used to determine the viability of a therapy, and/or be used in an adaptive trial design to optimize the
dosing schedule for individual patients (33). In the case of validated markers of toxicity, these could
be used to terminate treatment in advance, of a serious adverse event. Recently, a Predictive Safety
TestingConsortium, sponsored by the FDAand theCritical Path Institutewas formed to validate the
utility of predictive biomarkers of organ toxicity that have been identified in pre-clinical models.
Analogous to early detection biomarkers, these analytes must be assayed from readily accessible
physiological fluids, and often require a pre-treatment baseline to determine the relative change
following drug exposure. Current efforts are predominantly focused on the measurement of specific
proteins within the blood or urine, or gene expression of circulating blood lymphocytes that may
represent an excellent surrogate cell type for toxicity assessment (34).

Pharmacodynamic markers are also being investigated within physiological fluid and/or
diseased tissue. Early markers of target modification would ideally be evaluated rapidly
after administration of the treatment to determine the relative drug effect on the proposed
molecular target and its associated network. This would be dependent on the pharmaco-kinetic
and pharmaco-dynamic properties of the agent, as well as its molecular mechanism of action. These
analyses would ideally be performed from diseased tissue, but repetitive sampling of a tumor
represents a challenge for most tumor sites. As such, differential protein profiles within blood
serum or plasma that reflect changes in the tumor-host micro-environment provide a possible
opportunity for biomarker development, although the sensitivity of detection remains challenging

620 C.P. Webb and D.M. Cherba



(35). Changes in the molecular target within the circulating lymphocytes may also represent a
surrogate of target modulation within the disease (34), but cannot necessarily be used to ascertain
the adequate delivery of the agent to the target tissue. Molecular-based imaging, and the ability to
detect and characterize low levels of circulating tumor or endothelial cells from blood represent
attractive areas of investigation, since they may permit the detection of changes in the molecular
target within the tumor (36,37). If validated, these methods could be used to optimize the dosing
schedule based upon the relative effect on the molecular target. They may also be used to triage
ineffective drugs earlier in the drug discovery pipeline (38). SystemsBiology can play a significant role
in establishing the optimal biomarker panel for evaluation. For example, the constituents of the
network downstream of the molecular target (the primary network input), typically represent an
amplified signal, and this may provide a more sensitive and systematic means to detect target
modulation. As described above, changes in possible extracellular plasma proteins can be inferred
from a pre-requisite knowledge of the molecular target and its associated network (20). Coupled with
Systems Biology tools, empirical experiments in vitro using gene-targeting technologies in compar-
ison with a therapeutic agent could be used to identify a network associated with early target
modulation, and this could conceptually be assayed in vivo to assess the degree of target activation.
Reverse engineering of the measured changes inmolecular events downstream of the primary input is
also possible, and has been used to reveal off-target effects and/or identify the target for drugswith an
unknown molecular mechanism of action (39) (CPW, unpublished observations).

The same considerations apply to the detection of biomarkers that are associated with long term
therapeutic efficacy (typically termed surrogate markers of clinical response). Validated biomarkers
that detect early clinical response would logically shorten the clinical development time considerably,
and provide a more rapid assessment of the ineffective treatments in subjects. These late onset
markers reflect a hallmark of cascading molecular events, many of which result from contextual
changes in the tumor-host system that arise following long-termdrug exposure (40). The fundamental
cause of the observed changes within a treated tumor may be difficult to reveal in the noise of an
evolved system that has been modified over time, in the backdrop of a changing tumor-host micro-
environment and fluctuating local drug concentrations (the primary input). Unlike the persistent
activation of oncogenes that can cause constant system deregulation, variations in target activity
following intermittent drug exposure may be more difficult to model back to the target. In this
context, Systems Biology is probably more appropriately used to infer biomarkers that could be used
to monitor clinical response, investigate the molecular mechanisms of acquired drug resistance, and
develop therapeutic strategies at the network level thatmay overcome resistance. The same principals
related to Systems Biology essentially apply to all levels of biomarker discovery; the association
between a primary input (the target) and the downstream molecular consequences can be used
reciprocally to simulate and infer target-biomarker associations.

32.5 Challenges to Current Biomarker Development

While there is palpable excitement relating to the development of molecularly-targeted agents in
conjunction with specific biomarkers that may indicate their selectivity in subsets of patients, the
co-development of the necessary companion diagnostic test adds significant time to the cycle of
drug development and clinical implementation. Typically, unless the biomarker positively
impacts the drug approval process itself, drug manufacturers are unlikely to invest in diagnostic
development after the successful marketing of their agent unless post-market forces, such as
value-based reimbursement, encourage their subsequent development and use (41,42). Major
obstacles to the accelerated adoption of biomarkers in medicine include the persistent develop-
ment of new technologies for biomarker detection (the ‘‘me too’’ diagnostic), the development of
biomarkers that are restricted to a specific manufacturer’s drug, and the current uncertainty in
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the precise workflow towards regulated approval for in vitro diagnostics or laboratory tests (43).
In principle, a standardized technology that reproducibly determines the absolute or relative
levels of a comprehensive set of biomarkers (ideally with full genomic/proteomic coverage), in
concert with standard operating procedures (SOP) for tissue procurement and processing, could
provide a consistent measurement of the molecular constituents of a biological system. Systems
Biology tools could be applied to these standardized data-sets to generate network-based math-
ematical models that are robust in the face of some missing data elements, including those
measurements with a lower degree of confidence. Validated algorithms could be logically applied
to new data-sets to predict the desired phenotype based upon the standardized input, and/or infer
likely molecular-based intervention strategies. The new wave of molecularly-targeted drugs,
which target subsets of molecular entities with increased specificity, provide an excellent oppor-
tunity for investigators in the discipline of Systems Biology. In theory, it should be possible to
achieve a more specific disruption of the identified network nodes or hubs with tailored combina-
tions of these agents. From the view point of the drug manufacturer, these efforts could readily
expand the indications portfolio of existing agents by identifying molecular networks within
additional disease subtypes, although economic and regulatory barriers to combinational thera-
pies remain a significant challenge. In the remainder of this chapter, we will describe how we have
begun to utilize Systems Biology in parallel with standardized genomic technologies and the
current biomarker-drug knowledge to implement a strategy for the delivery of personalized and
combinational therapeutics.

32.6 Personalized Molecular Medicine – The Future of Oncology?

The preceding well-established examples illustrate some success stories relating to the implementa-
tion of specific sets of biomarkers into the clinical setting, where they are now being used to improve
the prediction, detection, diagnosis, treatments and/or monitoring of patients with different
diseases including cancer. Systems Biology approaches are frequently used for the discovery of
novel targets in conjunction with gene targeting technologies, and/or to predict the mechanism of
action of a new agent (44). The development of inducible vectors for regulating small interfering
RNA molecules, for example, will allow for more temporal control of target activity and assess-
ment of the molecular consequences at the system level. Perturbations in the system could then be
systematically extracted from cellular ‘‘noise’’ at the empirical level, and the defined sub-systems
fully described and used to detect target activity within tumors. The degree of network similarity
can also be used to compare pre-clinical models with the clinical disease. While homologous
molecular components of the disease may differ across species, similarities in the overall modular
network often provide a measure of the relevance between model systems (45). Thus, network
information can be used at every step within a drug research and development program. The
remainder of this chapter, however, briefly describes the potential use of Systems Biology for the
optimization of existing drugs in various combinations, based upon the identification of the specific
sub-systems at play within the tumor of the individual cancer patient. Whether this approach is
used to expand the indications of compounds within a drug company’s pipeline, or improve the
probability of tumor response in individual patients, the overall theme is consistent. Despite
differences in opinion regarding methods for predicting optimal treatments, few in the field of
oncology now dispute the clear need for combinational treatment strategies that are designed to
target the Achilles heal of the tumor to maximize efficacy while sparing normal cell function to
minimize toxicity. Given the genetic instability within a tumor and the redundancy within mole-
cular networks, the probability that a cell within the average tumor mass will acquire resistance to a
single monotherapy, particularly targeted agents, during the life span of a tumor population would
be expected to be very high (46).
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32.7 A Paradigm Shift – Molecular-Based Indications

Currently, the most advanced diagnostics that accompany the prescription of a drug (known as
companion diagnostics or theranostics) are developed for a single drug or class of drugs in a
relatively small subset of site-specific diseases. Current approaches fail to expedite the utility of
molecular biomarkers, Systems Biology and existing knowledge of biomarker-drug associations in
the selection of patients for potential treatment with any drug or drug combination irrespective of
the patient’s disease classification. Consider the following hypothetical example: a patient with
stage-IV glioblastoma who has failed the standard-of-care therapy visits his/her medical oncolo-
gist, who enters him/her into a research study that generates a molecular profile of the tumor.
Coupled with Systems Biology inference, the profile suggests that the tumor expresses a high level
of activated EGFR, providing some evidence that the glioblastoma may respond to anti-EGFR
therapy (47). While a single validated assay to measure active EGFR and/or its down-stream
signaling molecules can be developed for future screening (48), the development cycle for such a
companion diagnostic is arduous. In addition, the treating physician also acquires knowledge
regarding an association between increased osteonectin gene expression and Abraxane efficacy
(49), and reduced levels of the ERCC1 nucleotide excision repair gene and enhanced sensitivity to
the DNA cross-linking platinum-based therapy (50). Osteonectin is shown to be increased in this
patient’s tumor, while ERCC1 is decreased relative to a series of other well-characterized tumors.
Logically, the gene expression profile in conjunction with informatics, drug-biomarker knowledge,
and Systems Biology may predict a non-tested combination of an EGFR inhibitor, Abraxane and a
platinum-based agent. Should the physician administer this unproven yet logically-inferred pre-
diction? How do we systematically evaluate the simulation methodologies that can model optimal
combinational strategies? As the FDA considers the future labeling of drugs to include molecular-
based indications, there is an increasing list of agents with known molecular mechanisms of action
(targets) or biomarker associations that have been implicated as markers of drug sensitivity and/or
resistance (51); the number of drugs within our knowledge base with a reported biomarker
association at the time of this writing is 1,526. A major challenge remains how to optimize
treatments with the currently available drug resources and biomarker knowledge.

32.8 Optimizing the Translational Research Workflow – Development

of the Critical Infrastructure

At the onset, it is apparent that there are several infrastructural components that are required to
realize the full potential of evidence-based individualized therapy that may be able to benefit
patients in an accelerated and real time fashion. These include full integration of medical and
bioinformatics to permit synchronized data acquisition, consistent sample collection and proces-
sing, assay validation, standardized and documented data processing, a knowledge base that can be
readily expanded and applied in a systematic fashion, and a means to develop and test predictive
models and triage ineffective methodologies. Computational power alone is insufficient, and the
full integration of empirical multivariate data-sets, coupled with knowledge and some theory
(logic) of how to utilize these resources is essential. An efficient means to test the hypothesis
remains critical as with any other scientific discipline. It is important to state that despite some
anecdotal successes in-patient and mouse test cases, our genome and drug-wide approach that is
disease agnostic remains unproven. Nonetheless, our systematic method may significantly advance
the adoption of a predictive therapeutics philosophy, in which molecular-based evidence in con-
junction with Systems Biology tools are used to identify drugs for consideration. At the very least,
this approach could be used to serve as a clearing-house for patient enrichment on drug-specific
protocols.
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While not the focus of this chapter, it is important to briefly discuss the practicalities of a multi-
disciplinary translational research project. Translational medicine requires coordinated multi-
disciplinary teams and an efficient means to communicate the multi-faceted data and results. We
have focused a large extent of our development efforts on building and establishing the necessary
relationships and infrastructure that enable more efficient discovery, validation, and application of
new molecular-based diagnostic and therapeutic strategies. This includes the development of the
necessary informatics (XB-Bio Integration Suite, XB-BIS) that becomes the central hub of any
effective translational research project.

In brief, XB-BIS permits the collection, management, analysis and reporting of data within
our translational research protocols. On the front end, XB-BIS interfaces with existing data bases
including clinical electronic medical record (EMR) data through an IRB-HIPPA portal. This
aspect alone allows us to collect clinical data in a highly efficient and compliant fashion that
includes key date-time stamped data elements such as patient demographics, diagnoses, test
results, treatments, and response variables. These data describe in part the context of the
physiological system under study (Fig. 32.1). The samples that are collected from the subject
are also tracked within XB-BIS, and include descriptions of microscopic pathology that further
define histological context (Fig. 32.1). Standardized experiments are performed that measure the
absolute or relative amount of molecular constituents within the defined sample at a specific date
and time (the time of sample acquisition). The derived molecular (DNA, RNA and/or protein)
data are statistically analyzed within the same system, and the results of the analyses subjected to
further network analysis. The identified networks are further analyzed to identify enriched hubs
and/or input/output nodes that could represent key points for intervention. The results are
overlaid with a knowledge of drug-biomarker associations, that is maintained within the
knowledge base of XB-BIS. Each target (and hence each associated drug) is weighted based
upon the inferred significance at the expression and network level. While we typically utilize
transcriptional profiling to infer the aberrant networks within a given sample, it is critical to
reiterate that gene or protein expression do not necessarily equate to target activation. Within
complex biological systems, there is a large extent of negative and positive feedback and feed-
forward loops that can disrupt linear relationships between target expression and activity. For
example, one of the first molecular events that occurs in some cells following stimulation with an
extracellular ligand can be the down-regulation of the cell surface receptor (reduced protein
expression) and reduced receptor transcription (52). These and other negative feedback loops
within environmental sensors (receptors) have likely evolved to maintain the cells adaptivity and
sensitivity to environmental cues. In tumors, some of these feed back loops are deregulated,
permitting the cancer cell to fully leverage the microscopic environment for survival and/or
expansion. Regardless, the waves of transcriptional events that occur within a tumor cell likely
represent a hallmark of upstream chronic signaling cascades on which the tumor more likely
depends (53). As such, we are currently utilizing standardized gene expression profiling as a
surrogate for the prediction of network activity.

32.9 Implementation of Systems Biology into a Predictive Therapeutics Protocol

Systems Biology/network analysis tools utilize public and/or proprietary knowledge to associate
molecules via various interaction types, and reconstruct possible molecular networks based upon
the input. While this is an effective method to maximize the visualization of existing knowledge in
the form of connectivity maps, misinterpretation of the results is frequent due to the inherent bias
(enrichment) in public knowledge. In conjunction with GeneGo, Inc. we have developed an
algorithm that evaluates the topological significance within reconstructed networks. This tool
determines the number of paths traversing each node within an identified shortest path network,
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and compares this to the total number of paths going via the same node in the complete global

network. The significance for each node within the identified network is calculated based upon its

probability for providing network connectivity. A result of a network topology analysis from the

tumor of a patient with late stage non-small cell lung carcinoma is shown in Fig 32.2. In this specific

tumor, gene expression data was normalized to a relative Z-score by comparison with a large

reference set of tumors processed using standardized methods within a CLIA/CAP-accredited
laboratory that implements critical sample and process quality control. Over-expressed genes were

identified and submitted to network topological analysis. A major divergence point was identified as

EGFR, which was also over-expressed at the transcript level relative to other tumors. Based upon this

inference, the medical oncologist confirmed EGFR gene amplification in the tumor using traditional

FISH analysis. This patient was treated with a combination of erlotinib, cisplatin (reduced expression

of the ERCC1 gene), and bevacizumab (inferred constitutive activation of the VEGF-VEGFR
pathway). The patient exhibited a partial response to this network targeted, combinational treatment.

In the first testing phase on 50 late stage cancer patients, a handful of anecdotal responses were

observed in patients whose tumors exhibited a strong network signal, providing an impetus to

further develop this general approach. As with all scientific disciplines, Systems Biology

Fig 32.2 Topological network analysis of gene expression data from a non-small cell lung carcinoma, inferred a key
input node at the level of EGFR. The results of these analyses are displayed using MetaCoreTM, a Systems Biology
network tool produced byGeneGo (www.genego.com). A knowledge base of drug-target interactions withinXB-BIS
was applied to these results, and the inferred significance of system connectivity used to select a corresponding EGFR
inhibitor. The patient’s tumor showed a partial response to erlotinib in combination with cisplatin and bevacizumab,
which were also indicated from the molecular profiling data (low ERCC1 gene expression and inference of
constitutive VEGF-VEGFR network signaling respectively). Among other applications, this type of systems
approach can be readily applied for the discovery of new disease targets, prioritization and/or validation of the
existing targets, and/or the identification of new indications for compounds that have a known or associated
molecular mechanism of action. A key aspect is to successfully identify the significant convergence or divergence
hubs or nodes within the identified networks (Copies of figures including color copies, where applicable, are available
in the accompanying CD)
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approaches that infer target activation and hence, drug selection, require rigorous testing in indepen-
dent sample sets. Because of the anecdotal nature of patient responses in these case studies, we
developed a pre-clinical component in the protocol in which subsets of the patient tumors were
expanded as tumor-grafts in immune compromised mice. We have shown that these tumor-grafts
closely resemble the patient’s tumor at the histopathological, and more importantly, the molecular
level. However, it is also important to identify that the environmental context for a tumor cell is
evidently different in themouse and human host. Nonetheless, the expansion of a single patient tumor
to a large cohort of tumor-grafts permits the evaluation of Systems Biology tools for identifying the
active molecular networks in this pre-clinical context. This in turn, provides for the cyclic simulation
and testing environment that is critical to evaluate the different computational methodologies of
Systems Biology in a more high-throughput fashion. Although this protocol remains in its infancy,
the preliminary data from early pre-clinical experiments are encouraging (Fig. 32.3).

32.10 Summary and Future Challenges

In this chapter, we have summarized the potential role that Systems Biology tools may play in
biomarker discovery and the realization of personalized medicine. The strength of Systems Biology
is its ability to model standardized molecular data input, and provide consistent algorithm-based
methods for predicting a phenotype of interest. Our current approach uses standardized genomic
technologies, network reconstruction, and pre-requisite target-drug knowledge to infer treatment
strategies for aggressive tumors. This represents only one approach to the realization of individua-
lized treatment that is based upon the identified molecular systems within the tumor. The applica-
tion of this general approach to sub-populations of tumor cells known as tumor stem cells (54)
represents a further area of interest, and may permit the targeted disruption of stem cell networks
that are believed to represent a critical component within a tumor. The relative system complexity
within this proposed side-population of tumor originating cells remains to be determined, but the
key divergence or convergence points within this subsystem represent additional therapeutic targets
for consideration. The challenges for the mainstream adoption of Systems Biology in the area of

Fig. 32.3 An example of a tumor response to a network-targeted combinational treatment strategy using pre-clinical
models to validate the simulation methodologies. In this example, tumor-grafts from an adult patient with metastatic
melanoma were established in immune compromised mice, and processed using gene expression profiling. After data
normalization and comparison to the patient’s original tumor, the network activity was inferred using a Systems
Biology tool that identifies topologically significant nodes and hubs within networks (see Fig. 32.2). In this example,
Sorafenib and Bevacizumab were selected based upon their targets inferred causative role (key input nodes) within
the identified networks. Mice treated with a combination of these drugs showed partial tumor response relative to
vehicle controls. The mean volumes of the measured tumors are shown over time relative to the start of treatment
(day 0) (Copies of figures including color copies, where applicable, are available in the accompanying CD)
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diagnostics and/or predictive therapeutics remain prevalent, and require bio-analytical technolo-
gies that provide the standardized data input, as well as simulation methodologies that provide for
consistent outputs. The complete translational workflow from human disease, to data acquisition
and analysis, computational modeling, validation and clinical application, must be fully integrated
to provide the efficient and practical foundation for personalized medicine initiatives. Relevant and
scalable pre-clinical models that can test the accuracy of the systems approach are needed to select
the most promising computational methodologies, before the general clinical acceptance of the
approach can be expected. While the regulatory hurdles facing the adoption of multiplexed
biomarkers and off-label drug indications remain uncertain, existing knowledge and associated
logic, coupled with the complexity of the tumor system, provide unique opportunities for those in
the Systems Biology field. Systems Biology represents the interface between the genotypic complex-
ity and phenotypic manifestation, and when integrated with other scientific andmedical disciplines,
will likely represent the hub of translational medicine in the 21st century.

Glossary and Abbreviations

ABL v-abl Abelson Murine Leukemia Viral Oncogene
BCR Breakpoint Cluster Region
BRCA1 Breast Cancer 1, Early Onset
BRCA2 Breast Cancer 2, Early Onset
CAP College of American Pathologists
CLIA Clinical Laboratory Improvement Amendments
DNA Deoxyribonucleic Acid
EGFR Epidermal Growth Factor Receptor
EMR Electronic Medical Record
ERBB2 v-erb-b2 Erythroblastic Leukemia Viral Oncogene Homolog 2
ERCC1 Excision Repair Cross-Complementing Rodent Repair Deficiency, Complementation

Group 1
FDA Food and Drug Administration
FISH Fluorescence In Situ Hybridization
IRB Institutional Review Board
mRNA Messenger Ribonucleic Acid
OPN Osteopontin
PSA Prostate Specific Antigen
RNA Ribonucleic Acid
SOP Standard Operating Procedure
UGT1A1 UDP Glucuronosyltransferase 1 Family, Polypeptide A1
VEGF Vascular Endothelial Growth Factor
VEGFR Vascular Endothelial Growth Factor Receptor
XB-BIS XenoBase Bio-Integration Suite
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487–489
websites, 489

on de novo mutations
on different mutation types, 495–497
influence of parental age, 495–497
mechanisms of, 503–505
Penrose’s copy error hypothesis, 505

in genetic linkage, 494–495
human uni-parental disomy, 493–494
imprinting effects

comparative imprinting data and analysis, 492
conflicting data, 492–493
known imprinted genes, 489–490
mechanisms of, 491
non-coding RNAs, imprinted, 492

mouse uni-parental disomy, 494
Partek Genomics Suite, 272
Partial correlation coefficient matrix, 565
Partial least squares, 189, 529–530
Partial least squares – discriminant analysis, 592
PATHWAY, 192, 195, 197, 257–259, 436–437

See also KEGG
PCA, see Principal component analysis
p300/CBP family, 43, 45
PCCM, see Partial correlation coefficient matrix
p160 co-activator family, 43
Penrose’s copy error hypothesis, 505
Peptide mass fingerprinting, 112
Per gene normalization, 237, 243
Peroxisomes, 5, 12–14, 16, 18, 21
Personalized medicine, systems biology of, 615–627

biological systems, complexity of, 615–617
biomarker development, 621–622
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cancer, added complexity of, 617
critical infrastructure development, 623–624
molecular-based indications, 623
molecular medicine, 622
therapeutics protocol and, 624–626

Pfeiffer syndrome, 486, 496–499
Phylogenetic motifs, 316

automated similarity threshold selection, 332–334
availability, 334
detection using parsimonious trees, 334
identification, 330–331
prediction assessment, 331
traditional motifs and ET, comparisons to, 332

Piece-wise linear models, 546–547
See also Equation-based modeling

Plasma membrane, 5, 14–16, 18–19, 21, 91, 101
barrier functions, 6
cell junctions, 10–11
cell protection and cell identity, 11–12
signaling functions, 8–10
transport functions, 6–8

PLS, see Partial least squares
PLS-DA, see Partial least squares – discriminant

analysis
PMF, see Peptide mass fingerprinting
PMs, see Phylogenetic motifs
PMW, see Positional Weight Matrices
Polyadenylate binding proteins, 53, 60
Population genetics

Darwin and natural selection, 167–168
Hardy-Weinberg and linkage equilibrium (HWE and

LE), 164–167
variation, see Variation

Population stratification, 166–167, 174
Positional Weight Matrices, 346–347
Position-specific scoring matrices, 357, 360

scoring sites with, 358
Pribnow box element, 36, 38, 287
Principal component analysis, 186–187, 189, 192, 194,

254–255, 527, 529, 534, 591–592, 594
Probability, 131, 139, 144–149, 152–156, 159–161, 165,

174, 185, 195, 221, 244, 249–250, 272, 293
basic rules, 140–141
counting rules, 141–143

Prokaryotic transcription, 38–39
Protein-DNA interactions, 354–355
Protein functional-site prediction methods, 315

conservation methods, 316–317
ConSurf, 327–328
evolutionary trace (ET), 318–321

availability, 325–327
gaps and automation, dealing with, 321
modified, with focus on invariant polar residues,

322–323
residue ranking, 323–325
weighted (WET), 321–322

phylogenetic motifs (PM)
automated similarity threshold selection, 332–334
availability, 334
detection using parsimonious trees, 334

identification, 330–331
prediction assessment, 331
traditional motifs and ET, comparisons to, 332

phylogenetic reconstruction, 316
Protein synthesis, 12–13, 56, 59, 129, 228

elongation, 61–63
eukaryotes, initiation in, 60–61
prokaryotes, initiation in, 60
termination, 63

PS, see Population stratification
PSSMs, see Position-specific scoring matrices
PubMed, 192, 258–259, 344, 370–375, 379, 381, 403, 405,

409, 414, 417–418, 422–423, 425–426, 428, 487
Medical Subject Headings (MeSH), 370
MEDLINE database, 369

PubMed RSS Feeds, 380
PUMA2 database, 583–584, 586

Q

Quantitative/targeted metabolic profiling, 593–594

R

RACE, 192
Rate4Site, 329
Raynaud’s disease, 429
Reactome database, 583–586
Real-valued ET (rvET), 325

See also Evolutionary trace (ET)
Receiver operating characteristic curve, 148–149,

251–252
ReMoDiscovery method, 535
Replicates, importance, 212–213, 215, 217, 232, 238
Replisome, 68, 71, 74, 76
Ribosomal RNA (rRNA), 22, 33, 36, 56, 58–60, 63, 216,

239, 296, 601
RNA polymerases, 33–42, 44, 53, 56, 217, 228, 287
RNA processing and translation

5’ cap, 51–52
messenger RNA, 56–57
3’ poly(A) tail, 52–53
protein synthesis, 59–63
ribosomal RNA, 58
ribosome, 58–59
RNA splicing, 53–56
transfer RNA, 57
wobble base pair, 57–58

RNA splicing, 22, 53–56
ROC, see Receiver operating characteristic curve
Roche biochemical pathways databases, 583
Rule-based hypothesis generation, in BiblioSphere,

409–412

S

SAT, see SpliceArray Analysis Tool
Scatter-plot, 241–243, 271
Science Citation Index (SCI), 370, 375
Scirus1, 417, 422
Sensitivity and specificity, 148–149, 210, 231, 234,

249–250
Serine-arginine-rich (SR) proteins, 56
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Shannon entropy, 317, 325, 327, 347
Signal transduction pathways, 90, 92–94, 97, 99, 407,

499, 485
Silent mutations, 169

See also Mutations
Single-channel technology, normalizations for, 184
Single nucleotide polymorphisms (SNPs), 166, 171–172,

182, 233, 267–268, 421–422, 454, 458, 460,
462–465, 587

Sliding sequence window approach, 330–331
Small nuclear ribonucleoproteins (snRNPs), 22, 53–55
Space modeling

discrete, 553
mesh space and mean-field approximation

modeling, 553
particle, 553

Spermiogenesis, epigenetics, 105
bromodomain-containing testis-specific proteins,

110–111
chromatin re-organization during, 108
expression and functional studies, 111
histone modifications during, 108–109
objective and strategies, 107–108
proteomic identification of chromatin-associated

factors in male germinal cells, 111–115
in silico approaches, principle of, 109

SpliceArray Analysis Tool, 272
Spliceosome, 53, 55
Splice-site sensitive microarrays, 272–276
SSW approach, see Sliding sequence window approach
Stochastic models, for biological patterns

Markov chain models, 153–154
pattern models

goodness of fit, 161
hidden Markov models (HMM), 156–160
mixture models, 161
position dependent Markov models, 156
weight matrices, 155–156

sequence models, 152–153
Sum of pairs (SP) score, 317–318, 327–328
Support vector machines (SVMs), 418–419, 594

T

Tagged Image File Format (TIFF), 194, 218, 605–606
TATA box, 36–39, 131, 157, 287, 354
TAVERNA, 183, 197–199
T-Coffee, multiple sequence alignment and, 283

alignment parameters, 303
applicability, 297–301
coding DNA issues, 293–295
combining methods, 305–306
comparing alignments, 304–305
complications, 296–267
dynamic programming, 284–288, 292
local, 306–307
quality, 303–304
reliability, 295–296
scoring matrices, 290–292
servers and expresso, 310
significance, 288–290

special situations, 308–310
structure based alignments, creating, 307
structure to evaluate alignments, use of, 308

Text mining tools, 380–381, 386–390, 415, 422–423,
426, 429

TFBSs, see Transcription factor binding sites
TFIIB Recognition Element, 37–40, 44
Tight junctions, 4, 10, 19
TIGR Multi-Experiment Viewer (MeV), 608
Tiling probes, array designs using, 271
TM4, 192–194, 254
TraceSuite II, 326
Transcription, 10, 16, 22, 53, 56, 90, 92–94, 98, 182, 197,

217, 222, 228–233, 235, 259–261, 270, 353, 416,
462, 485, 489, 491–492, 544, 550, 585, 616, 624

and control, of gene expression
coregulatory complexes, 43–44
DNA structure and, 42
factors, 38, 44–45
mechanics, 38–42
promoter region, 36–37
RNA polymerases, structure, 33–36

genomic analysis of, 121
ChIP-chip microarray data, bioinformatics

analysis of, 124–129
chromatin immunoprecipitation, 120–122
DNA microarray analysis, of ChIP DNA,

122–124
factor binding sites, bioinformatics analysis of,

129–134
Transcription factor binding sites, 123–124, 128, 182,

197, 259–260, 340–343, 354–355, 403
define unknown, 344
detection in silico, 344

models for, 344–347
threshold issues, 348–349
variability and multiple TF binding, 347–348

enrichment analysis of, 131
functional properties, 341–343
integrated analysis, 132
physical properties, 341
from physical to functional context, 341
spatial analysis of, 131–132
visualization of, 130
See also Transcription

Transcription start site (TSS), 342, 349, 353–355
Transfer RNA (tRNAs), 33, 36, 57–63, 333–334
Two-channel technology, normalizations for, 183–184,

189, 192

U

Unknown TFBSs, 340–343

V

Variance inflation factor, 566, 570, 572–573, 570
Variation, 167, 169, 183, 187, 220, 270, 273, 292–293,

321, 343, 355, 388–389, 454, 457, 462–465,
473–474, 528, 545, 617

genetic drift and migration, 173–174
genetic distance, 175

638 Index



Wright’s fixation indices, 174–175
inbreeding and non-random mating, 175–176
mutation, 169–170

allele and genotype frequencies, 170–171
gene diversity and heterozygosity, 172–173
HapMap project, 171–172
polymorphism, 171

VIF, see Variance inflation factor
Volcano plot, 242, 246

W

Wahlund’s principle, 174
Watson-Crick model, of DNA, 169
Web of Science, 370, 375, 382

analyzing, 378–379
citation searching, 376–377
display options, 377
limiting search results, 377
print and download options, 377
subject searching SCI in, 376

Web resources, statistical tools and
annotation and functional class enrichment

BABELOMICS, 197
DAVID bioinformatics resources, 195–197

expression data analysis

ASTERIAS, 192
Bioconductor project, 194
CARMAweb, 192
GEPAS, 189–191
meta-analysis tools, 194
MIDAW, 189
RACE, 192
TM4, 192–194

networks visualization
Cytoscape, 200
Osprey, 198–200

TAVERNA, 197
Weighted evolutionary trace (WET), 321–322

See also Evolutionary trace (ET)
Wiscott-Aldrich syndrome, 19
Wobble base pair, 57
WoS, see Web of Science
Wright’s fixation indices, 174–175

X

XRAY (Biotiquesystems), 272

Z

Z-score calculation, 133–134, 194, 271, 289, 330, 625

Index 639


	Contents
	Part I: Life of a Cell and Its Analysis
	1. Structure and Function of the Nucleus and Cell Organelles
	2. Transcription and the Control of Gene Expression
	3. RNA Processing and Translation
	4. DNA Replication, Recombination, and Repair
	5. Cell Signaling
	6. Epigenetics of Spermiogenesis &#8211; Combining In Silico and Proteomic Approaches in the Mouse Mode
	7. Genomic Tools for Analyzing Transcriptional Regulatory Networks

	Part II: Statistical Tools and Their Application
	8. Probability and Hypothesis Testing
	9. Stochastic Models for Biological Patterns
	10. Population Genetics
	11. Statistical Tools for Gene Expression Analysis and Systems Biology and Related Web Resources

	Part III :Transcriptome Analysis
	12. What Goes in is What Comes Out: How to Design and Implement a Successful Microarray Experiment
	13. Tools and Approaches for an End-to-End Expression Array Analysis
	14. Analysis of Alternative Splicing with Microarrays

	Part IV: Structural and Functional Sequence Analysis
	15. An Introduction to Multiple Sequence Alignment &#8212; and the T-Coffee Shop. Beyond Just Aligning Sequences: How Good can you Make your Alignment, and so What?
	16. A Spectrum of Phylogenetic-Based Approaches for Predicting Protein Functional Sites
	17. The Role of Transcription Factor Binding Sites in Promoters and Their In Silico Detection
	18. In Silico Discovery of DNA Regulatory Sites and Modules

	Part V: Literature Mining for Association and Meaning
	19. Mining the Research Literature in Systems Biology
	20. GoPubMed: Exploring PubMed with Onto logical Background Knowledge
	21. BiblioSphere &#8212; Hypothesis Generation in Regulatory Network Analysis
	22. Biological Knowledge Extraction &#8211; A Case Study of iHOP and Other Language Processing Systems

	Part VI: Genomic Databases
	23. Using KEGG in the Transition from Genomics to Chemical Genomics
	24. Ensembl &#2811; Open-Source Software for Large-Scale Genome Analysis
	25. Management of Spatially Organized Biological Data using EMAGE
	26. Equality of the Sexes? Parent-of-Origin Effects on Transcription and de novo Mutations

	Part VII: Biological Networks
	27. Methods for Structural Inference and Functional Module Identification in Intracellular Networks
	28. Methods for Dynamical Inference in Intracellular Networks
	29. ASIAN: Network Inference Web Server

	Part VIII: Bridging the Gap
	30. Bioinformatics for Metabolomics
	31. Virtual Reality Meets Functional Genomics
	32. Systems Biology of Personalized Medicine

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z




