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Preface

Data do not give up their secrets easily. They must be
tortured to confess.

Jeff Hopper, Bell Labs

The desire to study biology from a systems perspective has led to an emergence of
new science—biological network analysis. Biological network models biological
entities (e.g., proteins and genes) and their relationships (e.g., physical and genetic
interactions) to characterize their cooperative activity within a system. With the
rapid growth of such network data, the information overload problem has become a
major stumbling block to analyze these networks, making human interpretation of
such data increasingly difficult. Hence, there is a growing need to construct methods
for large-scale topological and functional summaries of biological networks to
understand the underlying mechanics of biological systems.

This book presents frameworks, as they stand today, that allow biologists to
rapidly visualize and comprehend high-level topological and functional summary
of the processes that govern biological systems via topological or functional
organization within a biological network (intra-system processes) and relationships
between biological networks (inter-system processes). Drawing on well-founded
principles in data mining, systems biology, and bioinformatics, we present a
multi-resolution and multi-perspective analysis paradigm to address this broad goal.
Note that it is reasonable to expect this picture to change with time.

As a representative example of biological networks, we utilize protein–protein
interaction (PPI) networks in majority part of this book. Our discussion is divided
into five parts. First, we have attempted to review, as accurately as possible, a wide
spectrum of approaches proposed by the bioinformatics community to cluster PPI
networks and highlight their strengths and limitations. The results of such clustering
can be considered as a summary of topological or functional modules in the
underlying PPI network. In particular, a pervasive desire of this review is to
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emphasize the uniqueness of the network clustering problem in the context of PPI
networks and highlight why a panoply of generic network clustering algorithms
proposed by the data mining community cannot be leveraged to address this
problem effectively.

Second, we review a closely related problem to PPI network clustering, func-
tional summarization, which can enable us to make sense out of the information
contained in large PPI networks by generating multi-level functional summaries.
We discuss a data-driven and generic PPI network summarization framework that
constructs higher level functional summary to summarize the underlying PPI net-
work to obtain a concise, interpretable representation of the network. It generates
the “best” summary from both interaction and annotation data by maximizing
information gain for a specific resolution. We evaluate the performance of this
framework on several real-world PPI networks, its superiority over network clus-
tering, and showcase its applicability in comprehending Alzheimer’s disease
network.

Third, we discuss a technique that summarizes a PPI network in a multi-
perspective manner. This is based on the fact that a biological system can be seen
from different functional perspectives (e.g., components in a PPI network can be
organized by localization, process, disease, etc.). Each discovered perspective
represents a distinct interpretation of how the network can be functionally sum-
marized. The performance of this framework is extensively discussed with several
real-world PPI networks highlighting the limitations of network clustering para-
digm to generate such multi-perspective summary. We also performed a case study
using human autophagy system to illustrate the utility of this framework.

Fourth, we discuss a data-driven effort to construct summaries of differential
functional responses of gene interaction networks that undergo “rewiring” after
environmental change. Experimental evaluation with real-world dataset demon-
strates the superiority of this technique to address the differential network sum-
marization problem.

The last topic consists of several open problems of this young field. The list
presented should by no means be considered exhaustive and is centered around
challenges and issues currently in vogue. Nevertheless, readers can benefit by
exploring the research directions given in this part.

The book is suitable for use in advanced undergraduate- and graduate-level
courses on biological networks. It has sufficient material that can be covered as part
of a semester-long course, thereby leaving plenty of room for an instructor to
choose topics. An undergraduate course in algorithms, graph theory, and basic cell
biology should suffice as a prerequisite for most of the chapters. A good knowledge
of C++/Java programming language is sufficient to code the algorithms described
herein. For completeness, we have provided background information on several
topics in Chap. 2: the central dogma of biology, protein–protein interactions,
high-throughput experimental techniques to analyze protein–protein interactions,
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and annotations of these interactions with Gene Ontology. The knowledgeable
reader may omit this chapter and perhaps refer back to comparisons while reading
later chapters of this book.

We hope that this book will serve as a catalyst in helping this burgeoning area of
biological network summarization grow and have practical impact.

Singapore Sourav S. Bhowmick
December 2016 Boon-Siew Seah
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Chapter 1
Introduction

For decades, scientists have studied the components of living systems in isolation [1].
For instance, in a study of proteins, genes, or even biological pathways, the com-
ponent of interest is first removed from its true environment and then studied by
observing its individual properties. This approach has served the research commu-
nity well, and has been – and still is – an extremely effective technique at uncovering
the properties of molecular components (components for brevity) at a detailed level.
However, its limitations are also apparent in recent times [2]. While effective at
studying their behavior and properties in isolation, the behavior of isolated mole-
cular components often cannot be trivially extrapolated to groups of components
when put together. For instance, the behavior of proteins in vitro often contradicts
the behavior in vivo [1]. Proteins often play multiple roles (moonlighting), and the
processes in which they take part are contextual and dynamic [3]. Even biological
processes themselves do not operate in isolation; instead, they are a well orchestrated
cooperation among multiple processes. An extreme example is that of social organ-
isms (e.g., ants) and their social structure needed to survive and operate together [4].

In light of this, the approach of viewing biological systems from a broader, global
perspective is an increasingly attractive enterprise [2, 5, 6]. Rather than modeling
components in an isolated, reductionist manner, the cooperative activity of a group
of components is modeled as well. This “systems-based” paradigm looks at not just
the individual components, but also their activity and relationships as a cooperative
whole [5]. The most well-known method to model biological systems in this manner
is through biological networks (graphs) [7].

A biological network is modeled as a graph G = (V, E,w), where V is a set
containing the components of the network, E ⊆ V × V is a set containing the
pairwise relationships between the components, and w : E → R is a real-valued
weight function that assigns weights to each e ∈ E . It lays out the structure of the

© Springer International Publishing AG 2017
S.S. Bhowmick and B.-S. Seah, Summarizing Biological Networks,
Computational Biology 24, DOI 10.1007/978-3-319-54621-6_1
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2 1 Introduction

components and their relationship and enablesmathematical analysis to be performed
on this structure. Themost commonclass of biological networks is theprotein-protein
interaction network (ppi network) [7]. Here, V is a set of proteins in the ppi network
to bemodeled, E is the set of physical interactions among the proteins in V , andw is a
function that models the strength or confidence of the interactions. Another example
is a biological network model of pathway-pathway interactions [8]. One toy example
of a pathway-pathway interaction network is a network of interactions between cell-
cycle, apoptosis, and DNA repair pathways. In this case, V is the set of pathways,
E is the set of pathway-pathway relationships, and w maps the relationship strength
between pathways. Many other classes of biological networks exist. They may range
from neuronal and disease networks to mRNA networks, transcriptional regulatory
networks, and DNA-protein interaction networks. Although there are unique prop-
erties that defines each class of network, many common network properties emerge
among them, and consequently, many analytical methods that apply to one class of
network can be transferred to other classes of networks.

The desire to study biological systems from a global perspective has led to an
emergence of new science–biological network analysis. With network analysis, one
may uncover key system-wide properties and behaviors of a biological system that
reductionist methods could not. In the seminal paper by Barabasi et al. [9], the
authors discovered the scale-free distribution of biological networks and proposed
the preferential attachment model of real-world networks. Many biological networks
(e.g., ppi network) demonstrate small-world property and high degree of clustering.
Consequently, it contains a few highly connected hubs and there are relatively short
paths between any pair of nodes in the network. Many other subsequent studies
reveal other important models and properties of biological networks using networks
analysis, including the party and date hub model of proteins [10] and the evolution-
ary models of ppi networks [11]. Despite their importance to systems level biology,
there is still a chasm between networks analysis that searches for general proper-
ties and functional analysis1 of networks needed by a biology researcher. While
the aforementioned studies uncover general properties of proteins and their inter-
actions, others may still wish to interpret networks in a more specific and concrete
manner. We justify this with an example. Consider an analysis of the Alzheimer’s
Disease ppi network [12]. Network analysis may reveal interaction distribution and
characteristic of Alzheimer’s Disease from a general viewpoint – for example, the
degree distribution of the proteins in the network – but a typical researcher study-
ing the Alzheimer’s Disease ppi network may also want to look for more concrete
patterns and observations. For instance, one may wish to look for a summary of
most important functional processes and their relationships (e.g., the relationship

1Network functional analysis is the analysis of the underlying biological roles and function of the
network (and its subnetworks).
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Fig. 1.1 Summary of important functional processes in chromatin ppi network

between transport and apoptosis processes) that take part in the network. Figure1.1
illustrates another example of a summary that groups related functional processes in
the chromatin ppi network.



4 1 Introduction

1.1 Challenges

The complexity of modeling biological processes from a systems viewpoint gives
rise to several challenges. The first challenge associated with biological network
analysis is the amount of data it needs to deal with. The information needed to
perform a global perspective analysis is daunting. To illustrate this, consider a simple
case of 100 proteins in a biological system. While there are only 100 proteins to
study in isolation, the networks approach studies not just the 100 proteins, but also
potentially 10,000 pairwise relationships among them. Even in this simple case, the
combinatorial complexity of network analysis literally increases the complexity of
the study by several orders of magnitude. If the cost of acquiring 10,000 relationship
data is prohibitive, then systems-based study is not even close to feasible. Fortunately,
recent advances in high-throughput technologies (e.g., yeast-two-hybrid [13]) have
played a massive role in enabling such studies [14].

The second important challenge is noisiness of the data. A natural consequence of
large scale automated techniques like two-hybrid screening is the high rate of false
positives and false negatives [15]. It is important for any analytical tool to take noise
into account to guard against spurious predictions. The approach proposed in [16],
for example, takes into account the noisy nature of high-throughput data in order to
predict interactions from heterogeneous sources.

Finally, the third challenge is information overload, which is a byproduct of deal-
ing with large volumes of interaction data. Specifically, the deluge of data from
high-throughput experiments comes at a cost. A biologist may find data provided by
interaction datasets in its raw form overwhelming (e.g., Fig. 1.2). The difficulty of
analyzing and interpreting such complex dataset is called information overload. As
such, a major challenge to biologists is to make sense out of the intertwining hairball
of information contained in large biological networks. One may wish to find ways
to extract summarized information about a biological network. Alternatively, one
may wish to find ways to compare several biological networks to identify signifi-
cant patterns. This may allow one to distinguish regions of the network that undergo
significant changes in its diseased state compared to its normal state.

Given the above challenges, a multitude of algorithms have been proposed in the
literature [17–20]. We highlight an important class of such network analysis algo-
rithms that is relevant to this book – network clustering and summarization. Network
clustering aims to identify densely interacting regions of a network. The clustering
process assists in summarizing a biological network and also to reveal interesting
functional predictions regarding the cluster. In [21], network clustering is applied
on the global yeast ppi network to uncover the landscape of important functional
modules within the network including protein complexes. In this book, we shall
discuss techniques for clustering and summarizing biological networks and discuss
their strengths and limitations. Recall the large number of interaction and interactor
attributes are provided by biological network data. When confronted with such a
deluge of data, biological researchers, for instance, are still limited in their ability
to manually interpret and analyze ppi networks together with their protein attributes.
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Fig. 1.2 Information overload in a human ppi network comprising more than 9000 proteins

Each protein may be annotated with hundreds, if not thousands, of attribute informa-
tion. Together with the large number of proteins and their interactions, interpreting
these data as whole can be a daunting task.

1.2 Overview of This Book

This book focuses on making sense out of this deluge of biological network data.
Specifically, we discuss a variety of techniques that address the network clustering
and summarization problems. We aim to bridge the gap between the complexity
of large scale biological network data and concise interpretability demanded by a
typical biologist.

In particular, a major focus of this book is on attributed ppi networks, which is
an extension of general ppi networks. Instead of modeling the proteins in a ppi net-
work as homogeneous entities, in attributed ppi networks we endow each component
with attributes (such as functional annotations). Hence attributed ppi networks refer
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to networks whose proteins are not treated as homogeneous nodes, but entities that
have attributes associated with it. For instance, a protein can have Gene Ontology
(go) term annotations as its attributes. The richness provided by this extended graph-
ical model introduces additional challenges to their analysis (for example, the high
dimensionality of protein attributes), but at the same time, it opens the door for
opportunities to yield novel findings. Few studies have considered network analysis
on attributed ppinetworks.We shall describe later howsuchnetworks canbeobtained,
and how their analysis using a variety of recently proposedmethods are advantageous
to standard attribute-agnostic approaches. Towards addressing existing limitations,
especially with regard to information overload, we organize the discussions in this
book as follows.

• In Chap.2 we present the elements that serve as background for the remaining
chapters of the book. In particular, we focus on the modeling of biological systems
as networks. We discuss how interaction data is acquired, and we discuss several
knowledge-bases that provide a wealth of interaction and functional information.
We also discuss go and gene function annotations [22], which provide controlled
annotation describing functions and activities of genes, gene products (including
proteins) and their interactions.

• Chapter3 introduces progressmade in clustering ppi networks.We present a review
of existing methodologies together with an evaluation of the strengths and limita-
tions of current tools, especially with respect to their ability to assist biologists in
interpreting complex biological networks.

• In Chap.4, we discuss limitations of traditional network clustering techniques and
introduce a methodology that constructs functional summaries of any ppi network.
The central goal of this approach is to provide researchers a summary of a ppi net-
work from a functional perspective. The summary reduces the complex “hairball”
of ppi data into concise functional subgraphs that, along with their interactions,
represent a compressed functional representation of the underlying ppi network.
Unlike graph clustering algorithms that focus on finding strongly coherent sub-
graphs, a functional summarization technique is focused on ensuring the modules
are representative of the functions described by the summary and the entire sum-
mary is representative of the underlying ppi network. Functional summarization
allows researchers to overcome information overload problem associated with the
interpretation of large-scale ppi networks, allowing visual interpretation of the
functional components and their interactions that underlie a ppi network. In addi-
tion, it provides an ability to control the granularity of this summary, with which
we can construct multiple layers of “bird’s-eye” view summaries with varying
complexity.

• Chapter5 discusses a technique that addresses the limitation of existing graph clus-
tering methods, which present only one clustering perspective of a ppi network.
Instead, it recognizes that most ppi networks can be organized in multiple ways.
To this end, it presents a recent technique that extends the capability of network
summarization techniques to construct an atlas of summaries of the underlying
ppi network. Each summary represents a facet of the network that represents a
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particular functional organization, and the set of summaries presented are func-
tionally orthogonal. Intuitively, functionally orthogonal summaries are a collection
of summaries, such that each summary represents a unique functional organization
of the network that is different from the rest of the summaries.

• Recently, [23] proposed a technique to construct a differential network (dE-MAP
network) from two static gene interaction networks (i.e., E-MAP network) in order
to map the interaction differences between them under environment or condition
change (e.g., DNA-damaging agent). This differential network is then manually
analyzed to conclude that DNA repair is differentially effected by the condition
change. Unfortunately, manual construction of differential functional summary
from a dE-MAP network that summarizes all pertinent functional responses is
time-consuming, laborious and error-prone, impeding large-scale analysis on it. In
Chap.6, we present an automated technique that summarizes pertinent functional
differences between two E-MAP networks under contrasting conditions by lever-
aging go annotations in order to obtain a high-level map of functional responses
due to condition change.

• Finally, in Chap.7 we summarize the contributions of this book and list down
interesting open research problems in this arena of clustering and summarizing
biological networks.
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Chapter 2
Background

This chapter provides an overview of key topics that serve as background for the
rest of the book. First, we discuss the roles of proteins in living organisms. This
is followed by a brief discussion on protein-protein interactions and methods for
analyzing them. Finally, we briefly highlight on the roles of databases, ontologies
and annotations in proteins and their interactions.

2.1 Proteins: The Building Block of Life

The basic building block of all living organisms is the cell. The cell itself is a complex
machinery—within it a plethora of processes and components that govern the mech-
anisms of the cell [23]. Microtubules, tubular shaped scaffolds of the cell, provide
not only shape and structure, but also act as tracks for transporting cellular cargoes.
Mitochondrions are the molecular engines of the cell, generating fuel to power cel-
lular machines. These are just a few examples of cellular components that regulate
the cell machinery.

The various parts of the cell work in tandem to regulate biological processes—
functionalities performedwithin the cell that control its behavior and state, depending
on its internal and external environments. For example, the cell cycle is a biological
process that controls the growth and replication of itself. Transport processes cargo
cellular components within the cell, as well as exporting cargoes out of the cell and
importing cargoes into it. Homeostatic processes regulate the equilibriumof chemical
concentration in the cell to a desirable optimum.

Remarkably, the machines that run biological processes of cells are largely per-
formed by one class of molecules called proteins [30]. A protein is composed of a
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Fig. 2.1 The central dogma
of molecular biology. (Image
by Dhorspool at
en.wikipedia)

linear sequence of amino acids that are folded into a 3D structure. Informally, one
can think of proteins as strings of words formed by an alphabet of amino acids.
There are 20 “canonical” amino acids in eukaryotes [36]. Each amino acid exhibits
distinct chemical properties (such as polarity and hydrophobicity) and also physical
properties (such as mass), giving a 3D structured protein its character and behavior.
The roles of proteins are many and varied. For instance, the protein actin lends
structural integrity to cells. Enzymes are a special class of proteins that catalyze
chemical reactions. Signaling proteins like Ras act as messengers that amplify and
distribute signals from a stimuli.

Given the significance of proteins, this begs an important question: what directs
their construction and regulation? Genetic information is the information required
for construction of proteins. The central dogma of molecular biology [7] states
that genetic information flows from deoxyribonucleic acid (DNA) to oxyribonu-
cleic acid (RNA) to protein (Fig. 2.1). Essentially, the DNA (a sequential chain of
polymers called nucleotides) serves as the blueprint for the construction of proteins.
The sequence of nucleotides in DNA encodes the necessary information for pro-
tein construction, which is then transcribed into RNA before translated into proteins.
Regions of theDNA that directly encode the construction of proteins are called genes.
Beyond serving as the blueprint for protein construction, DNA and RNA also encode
information that guides regulation of proteins. For instance, they regulate amount of
proteins produced (expression level); signals to start or stop production (gene acti-
vation or suppression); and signals to modify proteins, affecting their behavior and
interaction (protein modification).
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2.2 Protein-Protein Interaction (PPI)

Protein, DNA, RNA and other biological molecules do not work in isolation; they
cooperate with other proteins to perform a particular biological activity. Two mole-
cules that cooperate to perform a particular function are said to be interacting. It is the
combination of these molecules and their interactions, and not the molecules alone,
that characterize the mechanisms of a biological process. We wish to emphasize that
although the rest of the book largely focuses on proteins, the concepts that we will
discuss may extend to other molecules. Genes, DNAs, RNAs and other entities are
also major drivers of a biological process. Interactions are typically grouped by their
molecule types:

• Protein-protein interactions—cooperation between proteins to drive biological
processes.

• Gene regulatory interactions—interplay of genetic information to regulate pro-
tein expression level.

• Metabolic interactions—cooperation between enzyme proteins to convert a sub-
strate molecule into product molecule through several catalysis reactions.

• rna-dna interactions—cooperation between rna-rna or rna-dna interactions
plays increasingly critical role in diseases.

In this book, major focus is placed on the class of protein-protein interactions,
although most of the concepts covered here apply to other classes of interactions
as well.

Protein-protein interactions can be stable or transient [25]. In stable protein-
protein interactions, a group of proteins forms permanent protein-protein interactions
to perform a biological role. A group of such stably interacting proteins is called a
protein complex. An example of protein complexes is the V-ATPase (Fig. 2.2(a)).
Multiple protein subunits combine to form the V-ATPase enzyme that transports
protons across membranes [24]. In transient protein-protein interactions, two pro-
teins associate with each other briefly to perform a biological activity before disas-
sociating. These interactions regulate a significant portion of biological processes.
The interactions occur when a region of one protein complements the region of
another, forming non-covalent bonds like hydrogen bonds, Van der Waals forces and
hydrophobic bondings. A common surface region is the leucine zipper [22],
a 3D structural motif in proteins with hydrophobic regions that allow two proteins
with complementing zipper motifs to “zip” together. Typically, transient interactions
only occur under conditions that promote their interaction, for instance the phos-
phorylation state of the proteins involved, the protein conformation state or their
localization. Figure2.2(b) shows transient interaction between UBI4 and PEX12;
physical interaction occurs only during ubiquitination.



12 2 Background

a) Stable Interactions

PEX12UBI4

PEX12UBI4

b) Transient Interactions

ubiquitination
V-ATPase subunits

Fig. 2.2 Stable vs. transient interactions

2.3 Methods to Analyze Protein-Protein Interactions

Given the importance of protein-protein interactions in characterizing the mecha-
nisms of a biological process, biologists have developed a range of experimental
methods to detect and predict interactions between proteins. We describe several
pertinent ones below.

2.3.1 Yeast Two-Hybrid (Y2H)

Theyeast-two-hybrid (Y2H)method relies on activating the transcriptionof a reporter
gene to detect interaction between two proteins [17]. Reporter genes are typically
genes with easily observable phenotype. Figure2.3 summarizes the concept behind
Y2H. InY2H, biologists engineer the two tested proteins such thatwhen these twopro-
teins interact, transcription of the reporter gene is activated, and thus, if the reporter
gene phenotype is sufficiently expressed, one can deduce that the two proteins inter-
act. To this end, Y2H uses two types of protein domains: the DNA-binding domain
(BD) and the activation domain (AD). The BD and AD domains must be brought
together proximally to bind and form a transcription activator, which then activates
reporter gene transcription. Given two proteins, the BD domain is fused to one pro-
tein (called the bait) and the AD domain is fused to the remaining protein (called the
prey). If these two proteins interact, the two domains are brought together proximally
and activates reporter gene transcription. Commonly used reporter genes (and their
promoter) include HIS3, URA3 and lacZ. For example, the lacZ reporter gene
when activated causes the yeast cell to express β-galactosidase, which can be
detected by the formation of blue colored yeast colonies. A strong advantage of this
method is its scalability and Y2H can easily be used to screen thousands of proteins
for interactions, giving rise to high-throughput experiment technologies.
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Fig. 2.3 Yeast-two-hybrid to detect protein-protein interactions. (Adopted from The Science Cre-
ative Quarterly)

2.3.2 Tandem Affinity Purification (TAP)

The tandem affinity purification (tap) method identifies protein-protein interaction
by incorporating a TAP tag to the target protein, followed by fishing for other
proteins that interact with the tagged protein [28]. Figure2.4 illustrates the TAP
method. The TAP tag comprises two Immunoglobulin G (IgG) binding domains
and a Calmodulin-binding peptide (CBP). In TAP, the biologist engineers a fusion
protein by fusing the TAP tag to the target protein. Next, the fusion protein, together
with any other proteins attached to it, is isolated using beads coated with IgG.
The biologist then applies the TEV cleavage enzyme to cleave the TAP tag from
fusion, leaving behind the target protein plus the CBP domain bounded to the bead.
A second isolation step is then applied using Calmodulin-coated beads. Here, the
biologist obtains the final product of target protein, CBP and attached proteins that
are interacting with the target protein. Finally, the end products are analyzed viamass
spectrometry or SDS-PAGE [31]. The two step purification process minimizes the
amount of contaminants obtained.

2.3.3 Bimolecular Fluorescence Complementation (BIFC)

Bimolecular fluorescence complementation (bifc) is another protein-protein inter-
action screening strategy that relies on a reporter protein [16]. In this method, the
reporter protein is fluorescent, allowing it to be easily detected and located using tools
such as flow cytometry. A reporter protein, the yellow fluorescent protein (YFP) for
instance, is designed as two complementary fragments (YN and YC). Given two can-
didate proteins, one can separately fuse each fragment to the candidate proteins.
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Fig. 2.4 Tandem affinity purification. (Adopted from [15])

When these two proteins interact, the two fragments will be brought to close prox-
imity, encouraging them to re-attach and re-assemble into the YFP reporter protein.
The fluorescent reporter protein can then be screened through a variety of techniques
including flow cytometry.

2.3.4 Noise in High-Throughput Screening Methods

Rapid high-throughput protein-protein interaction screening methods, however, suf-
fer from significant noise and coverage issues. For instance, the false negative rate,
defined as the probability of interacting protein detected as negative, could be as
high as 70–90% with Y2H data [5]. This imply that there is a significant coverage
gap (coverage here refers to the ratio between the number of detected interactions
and the number of actual interactions in the network). Moreover, high-throughput
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protein-protein interaction screening methods also suffer from relatively high false
positives [13], which is defined as the probability of non-interacting protein detected
as positive.

2.4 Protein-Protein Interaction Databases

Advancements in protein-protein interaction screening methods have enabled the
capability of generating large scale interaction data. Therefore, it is important to cat-
alog and store these datasets to allow rapid and convenient access. We discuss sev-
eral public databases that catalog key protein-protein interaction datasets. Table2.1
lists several well known knowledge-bases with significant protein-protein interac-
tion datasets. The STRING database [34] hosts a large collection of predicted and
known protein-protein interactions. In addition, the STRING database links key
information about the gene that codes for the interactor proteins, including their
DNA sequence, biological annotations, co-occurrence, and co-expression data. The
Kyoto Encyclopedia of Genes and Genomes (KEGG) database [19] is a resource of
manually curated pathway datasets. The KEGG database is especially notable for
its large collection of metabolic pathways for bacterial microbes. Important sig-
naling pathways for a variety of organisms are also hosted in the KEGG database.
The REACTOME database [18] hosts detailed biological pathways specifically for
the human species. As is the KEGG database, pathways in the REACTOME database
are manually curated and handcrafted. The IntAct database [21] stores a large

Table 2.1 Selected protein-protein interaction databases

Database Reference

Human Protein Reference Database (HPRD) [27]

Biological General Repository for Interaction Datasets (BioGRID) [32]

Database of Interacting Proteins (DIP) [35]

Kyoto Encyclopedia of Genes and Genomes (KEGG) [19]

Biomolecular Interaction Network Database (BIND) [2]

The MIPSMammalian Protein-Protein Database [26]

STRING: functional protein association networks [34]

REACTOME [18]

IntAct [21]

BioCyc [20]

BioCarta Pathways [4]

PHOSIDA [10]

Phospho-ELM [8]

DOMINE: a database of protein domain interactions [29]
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amount of protein-protein interaction datasets submitted by individual labs. The
datasets can range for a several protein-protein interactions per dataset to several
hundred thousands of interactions per dataset. The Munich Information Center for
Protein Sequences (MIPS) database [26] is noted for its repository of protein com-
plexes.Other significant databases hosting protein-protein interaction datasets are the
Human Protein Reference Database (HPRD) [27], Biological General Repository for
Interaction Datasets (BioGRID) [32], Database of Interacting Proteins (DIP) [35].

Apart from general protein-protein interaction resources, several web resources
host context-specific datasets that focus on a particular biological topic of interest.
For example, the PHOSPIDA [10] and Phospho-ELM [8] knowledge-bases con-
tain protein phosphorylation sites information, which can be used to deduce their
interacting partners. DOMINE [29] is a database of protein domain-domain interac-
tions. Apart from molecular function specific datasets, disease specific datasets are
also abundant. The IntAct database contains a number of disease-related protein-
protein interaction datasets that include Alzheimer’s, cancer and cerebellar ataxia.

2.5 Annotating the Roles of Proteins and Their Interactions

With the growth of biological literature on the roles of proteins, groups of proteins,
as well as their interactions, the need to annotate these information in a structured
manner becomes pertinent. The Gene Ontology (go) [12] is developed as a standard
for providing a structured ontology describing attributes of genes and gene products
(including proteins). An ontology is a set of controlled concepts (go terms) and their
relationships that models the domain. In go, the concepts describe the roles of the
genes and their products,while the concept relationships connect the various concepts
ingo. For example, theactivation of protein kinase activity con-
cept can be used to annotate the MAPK protein, giving it that particular function. Now
the concept relationships in go may provide additional inferences to this concept.
If suppose go states that activation of protein kinase activity
is a type of regulation of protein phosphorylation, then one can
reason that MAPK protein also has the attribute of regulation of protein
phosphorylation.

The role of go as controlled vocabulary also resolves ambiguity in word descrip-
tions. Functional descriptors that describe the role and function of proteins in the lit-
erature can be ambiguous, redundant and domain specific [1]. For instance, the gene
namesCDC28, Cdc28p or cdc-28 all refer to the same biological entity.With
a controlled vocabulary, computation methods can infer functional roles of proteins
in a consistent manner.

Gene Ontology Annotation (GOA) database [6] stores associations of genes and
proteins to go terms. go term annotation can be undertaken either manually or auto-
matically. In manual annotation, a domain expert or curator who is aware of the
functional description of the gene or protein annotate that protein with the relevant
go terms. The automatic approach, on the other hand, predicts and infers the go terms
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relevant of the protein via a multitude of machine learning techniques including liter-
ature mining and graph-based inferencing tools. The Online Mendelian Inheritance
in Man (OMIM) database [11] supplies important annotations regarding diseases
associated with human proteins.

2.5.1 The Structure of Gene Ontology

The Gene Ontology is modeled as a directed acyclic graph (dag) and is divided into
threemajor domains: biological process, cellular component andmolecular function.
The total number of go terms in the go dag exceeds 30,000.

The biological process domain contains go terms describing the func-
tional processes in cells, tissues, organs and organisms that proteins may take part
in. The Gene Ontology defines a biological process as “a recognized series of events
or molecular functions” with a defined beginning and end. A biological process go
termmay describe the process itself, or it may describe an encompassing process that
is made up of subprocesses. For instance, the biological process term apoptosis
describes cell apoptosis pathways in the cell. Thus, if the p53 protein is annotated
with apoptosis go term, then one can infer that p53 protein participates in cell
apoptosis. The go term cell cycle may describe the cell cycle process which
itself is made up of several subprocesses, such as M-phase cell cycle and G-phase
cell cycle. In Gene Ontology, a process termmay be connected to its parent via is_a
and part_of relationships; the former describes that the process is an instance of
the parent process, while the latter describes that the process is only a part of the
parent process.

The cellular component domain contains go terms describing the com-
ponents of the cell and its extracellular environment. Cellular components may be
anatomical structures or macromolecular complexes. In go, a protein annotated with
a cellular component go term is said to be located in or is a subcomponent of the
component described by the term. For example, the go term mitochrondrial
ribosome describes the mitochondrial ribosomal components. Proteins like ribo-
somal protein L41 may be annotated with such go terms.

Finally, themolecular process containsgo termspertaining to an elemental
activity of a protein. Activities here include any function performed by proteins like
catalysis, binding, phosphorylation, and other enzymatic roles. For example, the
go term phosphorylation describes the molecular activity that a protein may
perform, which in this case is phosphorylation activity. A protein may be annotated
with multiple activities. This is because proteins itself may participate in multiple
functions. Protein kinases like PKC are known to have such capabilities and could
be annotated with these terms.

Figure2.5 depicts a part of the go dag. Formally, the Gene Ontology for each
domain is modeled as a directed acyclic graph D = (Vgo, Ego) where Vgo denotes
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Gene Ontology

Biological Process

Cellular Process Response to stimulus

Cell communication
Cellular Physiological 
Process

Response to stressResponse to 
endogenous stimulus

Response to DNA-
damage stimulus

Fig. 2.5 Subset of the Gene Ontology directed acyclic graph

the set of go terms and Ego—the set of pair relationships between go terms in Vgo—
denotes the set of go term relationships. Here, an edge (v1, v2) ∈ E represents a
parent-child connection between two go terms v1 ∈ Vgo and v2 ∈ Vgo. The ordered
set Δ = 〈Δ1,Δ2, . . . , Δd〉 is a topological sort of D. Each Δi represents a single
go term. We assume that a protein node v ∈ Vi is annotated with a set of go terms
Dv ⊂ Δ. The indicator function of terms annotated in node v is given by I{x∈Dv} :
Δ → {0, 1} such that I{x∈Dv} = 1 if x ∈ Dv and 0 if otherwise.

The root node absorbs all go terms of its descendants, i.e., each descendant go
term is a or is part of the root node. The root nodes of biological process, cel-
lular component and molecular function domains are biological process,
cellular component and molecular function, respectively. As the go
dag branches from the root node, the specificity of the functional description
increases. Thus, one can utilize go dag and its associated annotations to group pro-
teins by their function or parts in a hierarchical manner. For example, in Fig. 2.5, if
proteins MAPK, MAPKK, and MAPKKK are annotated with the intracellular
signaling process term, then these proteins are also part of the signal
transduction, cell communication, cellular process and
biological process.

Gene Ontology and its annotations has been applied to a large number of bioin-
formatics approaches [14]. A pertinent usage is in gene expression analysis stud-
ies [3]. Typically, groups of genes which are either significantly up-regulated or
de-regulated are identified using techniques such as gene clustering and enrichment
analysis [33]. Then, the go annotations are utilized to identify over-expressed func-
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tional roles of these groups of proteins. An example of algorithms of such nature is
the MAPPFinder [9], which looks for genes that are significantly deregulated using
the go annotations.

2.6 Summary

This chapter can be summarized as follows:

• Proteins, DNAs, RNAs and other biological molecules work in tandem to regulate
biological processes. Cooperating molecules that perform a particular function are
said to be interacting, and their interactions can be either transient or stable.

• A range of experimental methods have been developed to detect and predict inter-
actions between proteins in a high-throughput manner. Among them are Y2H,TAP
and BIFC.

• Advancement in protein-protein interaction screening methods has led to large
scale interaction datasets. Several public databases serve as important repositories
of such datasets, including STRING, KEGG and REACTOME.

• The Gene Ontology (go) is developed as a standard for providing a structured
ontology describing attributes of genes and gene products (including proteins).
Gene Ontology Annotation (GOA) database stores associations of genes and pro-
teins to go terms. go term annotations are useful as functional descriptions of a
gene or protein.
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Chapter 3
Clustering PPI Networks

Due to the availability of large-scale ppi networks, since the last decade significant
research efforts have been invested in analyzing these networks in order to compre-
hend cellular organization and functioning [1]. Among myriads of such efforts, net-
work clustering (or graph clustering) is arguably one of the most popular approaches
for analyzing the topological and functional properties of a ppi network. Specifi-
cally, the goal here is to identify clusters, subgraphs of the ppi network that exhibit
significant clustering properties. These clusters enable us to uncover the following
modules:

• Functional modules: These are collection of proteins of similar or related func-
tional properties in the same network neighborhood. That is, a functional module
represent a collection of molecular interactions that work together to achieve a
particular functional objective in a biological process. These modules may be
pathways, protein complexes or other biological processes. An example of such
pathway is the MAPK signaling, a collection of interacting proteins that act as mes-
sengers to amplify and distribute signals from stimuli to intended destinations.

• Topological modules: These modules represent locally dense neighborhood in a
ppi network. Particularly, vertices in a topological module have a higher tendency
to connect to other vertices within the same local neighborhood than to vertices
outside it. Note that these modules are oblivious to the function of individual
proteins.

Hence, ppi network clustering can be considered as summarizing a ppi network
with respect to its topological and functional modules. Furthermore, ppi network
clustering may also enable us to infer function of a protein by assigning to it the
function of another protein which belongs to the same cluster. Figure3.1 illus-
trates a clustering of a ppi network, showing the RSC complex and SWI/SNF
complex proteins grouped into distinct clusters. The shape of a protein node indi-
cates an assignment of the protein into either RSC complex cluster (circle nodes)
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Fig. 3.1 An example of
ppi network clustering
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or SWI/SNF complex cluster (square nodes). Note that the number of protein-
protein interaction connections within a cluster is significantly higher than those
which are between clusters. Despite the computational complexity of the problem
of identifying such modules, a wide spectrum of ppi network clustering algorithms
with various characteristics have emerged since the last decade. In this chapter, we
give a comprehensive review of these [2] techniques.

The rest of the chapter is organized as follows. In the next section, we formally
introduce the ppi network clustering problem and associated concepts. In Sect. 3.2,
we present an overview of key ppi clustering approaches proposed in the literature,
highlighting their respective strengths and weaknesses. We introduce some of the
key measures used in the literature to validate predicted clusters by these techniques
in Sect. 3.3. We provide a comparative summary of these techniques in Sect. 3.4. The
last section concludes this chapter. Due to the cornucopia of techniques proposed in
the literature for ppi network clustering, we do not focus on exhaustive performance
comparison of various clustering techniques in this chapter. The reader may refer [3]
to get a glimpse of such performance study.

3.1 PPI Network Clustering Problem

In this section, we first formally introduce the ppi network clustering problem and its
associated terminology that we shall be using in the sequel. Next, we articulate the
challenges associated with clustering ppi networks and why generic network clus-
tering algorithms that are not specifically designed for such networks fail to provide
effective solutions to this problem. Then, we briefly identify the representative clus-
tering measures used in the literature to cluster ppi networks. Lastly, we present a
brief overview and classification of different ppi clustering techniques proposed in
the literature. In the next section, we shall review these techniques in detail.
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3.1.1 Problem Definition

A protein-protein interaction (ppi) network can be modeled as an undirected graph
G = (V, E, ω) that contains a set of vertices (or nodes) V representing proteins and
a set of edges E representing interactions. The function ω assigns each interaction
e ∈ E a weight that represents its interaction strength or confidence. Formally, a
clustering of G aims to partition V into a set of clusters C = {C1,C2, . . . ,Cd}
that maximizes clustering property objective function f : C → R, i.e., find any C

in argmaxC f (C) = {C|∀C′ : f (C′) ≤ f (C)}. Typically, f (·) rewards clusters that
exhibit many within-cluster edges and few between-cluster edges. Quantitatively,
it can be defined as follows [4]. Let din(vi ) and dout (vi ) be the number of edges
connecting a vertex vi ∈ Ck to other vertices in a cluster Ck and the number of edges
connecting vi to vertices in G that are not in Ck , respectively. Then, Ck is a strong
cluster if ∀vi ∈ Ck :

din(vi ) > dout (vi ) (3.1)

On the other hand, Ck is a weak cluster if:

∑

vi∈Ck

din(vi ) >
∑

vi∈Ck

dout (vi ) (3.2)

Recall that pathways and processes in a biological system do not work in isolation;
instead they work in tandem to coordinate the functionalities of the cell. Moreover,
it is possible to organize these processes into even higher-order processes, forming
a hierarchy of biological processes [5]. Hence the key objective of ppi network
clustering is to analyze the topological and functional properties of a ppi network
to identify and predict potential topological and functional modules represented as
clusters.

A clustering is disjoint or non-overlapping if the vertices in C forms partition of
V , i.e., ∀Ci ,C j ∈ C, Vi ∩ Vj = ∅ and

⋃
k∈[1,|C|] Vk = V . On the other hand, a clus-

tering has overlapping clusters if ∃Ci ,C j ∈ C, Vi ∩ Vj 
= ∅. Clustering algorithms
may be characterized by whether the clustering obtained are disjoint or overlapping.
Specifically, in overlapping clusters, different modules are allowed to share the same
vertices in the network. Non-overlapping clustering, on the other hand, constructs
modules that share no vertices.

3.1.2 Challenges

The unique characteristics of ppi networks demand that clustering techniques
designed for these networks should consider the following distinguishable features
of the network and clusters.
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• Overlapping nature of clusters. In recent years the idea of “one gene-one protein-
one function” has been superseded by the knowledge that many proteins have
multiple functions. One category of such proteins is called “moonlighting” pro-
teins which includes diverse set of enzymes, chaperones, transcription factors, and
proteins withmany other types of functions (e.g.,Ubp6). Consequently, clusters in
a ppi network may overlap where a protein is involved in multiple functional mod-
ules. This necessitates that ppi clustering techniques should generate overlapping
clusters.

• Edge weights of interactions. Recall that ppi networks are incomplete and noisy
due to the limitations in the experimental procedures. Hence, edges of a ppi net-
work may be associated with weights to model the uncertainty associated with the
interactions. A clustering algorithm should consider this noisiness during cluster
detection.

• Attributed ppi networks. Recall that with the growth of biological literature on
the roles of proteins, groups of proteins, as well as their interactions, increasingly
nodes in a ppi network are annotated with attributes (such as Gene Ontology (go))
to encode information such as functions, localization, and biological processes
that they are involved with. The richness provided by this (partially) attributed
ppi networks introduces additional challenges to their clustering (for example, the
high dimensionality of protein attributes), but at the same time, it opens the door for
opportunities to yield novel findings. Hence, clustering techniques should leverage
such annotations whenever available to create superior quality clusters.

• Dense and sparse clusters. As remarked earlier, although topological modules
may be dense but functional modules may not be. Specifically, pathways may be
sparsely connected to perform certain functions. Hence, a ppi clustering technique
needs to consider both dense and sparse clusters for identifying superior quality
results.

• Full coverage of the ppi network. It is important for a clustering technique to cover
all the nodes of a ppi network as clusters can be both dense and sparse. This will
ensure that important functional modules or protein complexes are not missed
during the clustering process.

• Scalability. With the advent of high-throughput experimental techniques, infor-
mation on thousands of ppi are being generated. It is estimated that the complete
set of protein interactions for humans contains 650,000 interactions [6]. Hence
scalable tools are necessary to cluster such large ppi networks.

There has been significant effort by the data mining community to address the
generic network clustering or community detection problem. For instance, spectral
techniques [7–9] discover dense network modules and bipartite structures by per-
forming recursive bisection and multiway partitioning based on the Fiedler vector of
the graph Laplacian. Brandes et al. [10] have proposed minimum cuts or maximum
flows-based technique to detect clusters (community). There are also several tech-
niques that are density-based [11, 12] or leverage hierarchical agglomerative clus-
tering principle to detect community structures [4, 13–15]. Graph partitioning-based
approaches [16, 17] aim to partition the network into equal or unequal size partitions
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using techniques such as weighted k-means. More recently, the data mining commu-
nity has focused on clustering attributed networks [18]. Unfortunately, these generic
network clustering techniques cannot be adopted easily to cluster ppi networks as
they do not address one ormore of the aforementioned issues. For instance, several of
these techniques do not generate overlapping clusters, or only identify dense clusters,
or do not consider edge weights and node attributes. This has led to a large body of
work focusing on techniques specifically designed to cluster ppi networks.

3.1.3 Representative Clustering Measures

In this section, we briefly describe key measures that are used in the literature to
determine cluster memberships in ppi networks.

Clustering Coefficient. Informally, clustering coefficient represents the intercon-
nectivity of a vertex v’s neighbors. Let tv be the number of triangles that involve v
and kv be the degree of v. The clustering coefficient of v is defined as follows:

CC (v) = 2tv
kv × (kv − 1)

(3.3)

Density. The density of a subgraph or clusterC = (VC , EC ) is defined as the ratio
of the number of edges in C over the maximum number of possible edges in C :

Density (C) = 2|EC |
|VC | × (|VC | − 1)

(3.4)

As we shall see later, many clustering algorithms utilize cluster density to identify
topological modules—subgraphs with density that exceed a specific density thresh-
old. The density of a cluster can be weighted. In that case, the weighted density of C
is given by:

Weighted Densi ty (C) = 2
∑

e∈EC
ω(e)

|VC | × (|VC | − 1)
(3.5)

Cluster Cohesiveness. Cluster cohesiveness [19] measures how likely it is for a
group of proteins to form a protein complex. It is defined formally as follows. Let V
be a group of proteins. Let win(V ) be the aggregated weight of edges induced by V .
Since V is connected to the rest of the ppi network, let wbound(V ) be the aggregated
weight of edges Ew where for each (u, v) ∈ Ew, u ∈ V and v /∈ V . Then, the cluster
cohesiveness of V is given by:

f (V ) = win(V )

win(V ) + wbound(V ) + p|V | (3.6)
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The term p|V | in the above equation is a penalty term used to capture the uncertainty
associated with the ppi network as certain interactions may yet to be discovered due
to the limitations in the experimental procedures.

Conductance. Informally, conductance [17] refers to clusters that have many
edges within it and few edges going out of the clusters. The conductance of a set S
is given by:

ϒ(S) = σ(S)

min(vol(S), 2m − vol(S))
(3.7)

where σ(s) = |{(u, v)|u ∈ S, v /∈ S}|; vol(S) = ∑
v∈S kv and m = |E |. The volume

of S, vol(S), is also written as μ(S). The conductance of G is then given by:

ϒG = minS⊂Vϒ(S) (3.8)

Log Odd Score. This measure quantifies the association between a pair of proteins
that are indirectly related through shared neighbors—twoproteins are deemed highly
connected if they share most of their neighbors. Specifically, the log odd score ruv
of a protein pair (u, v) is given as follows [20]:

ruv = ln
P(suv|λ̂)

P(suv|λ̄)
(3.9)

where suv is the observed number of shared neighbors between the protein pair, λ̄

and λ̂ are the Poisson parameters of suv under the null and alternative hypothesis,
respectively. Note that the null hypothesis in this case is that the number of shared
neighbors between the protein pair from a random network whereas the alternative
hypothesis is the number of such pairs is greater than expected from a random
network.

Czeknowski-Dice Distance. It is a neighborhood-based similarity measure for
clustering ppi networks and is based on the intuition that vertices that have common
or shared neighbors may have some degree of similarity even if they do not have any
direct interaction. Formally, the Czeknowski-Dice distance [21, 22] of proteins vi
and v j is defined as

Sn(vi , v j ) = |I nt (i)ΔI nt ( j)|
|I nt (i) ∪ I nt ( j)| + |I nt (i) ∩ I nt ( j)| (3.10)

where I nt (i) is the adjacent list of protein i and Δ is the symmetric difference
between the sets.

Edge Betweenness. Betweenness centrality is widely recognized as an important
global metric for analyzing topological characteristics of many real-world networks.
Specifically, in the context of ppi networks, edge betweenness of an edge is the
number of shortest paths that pass through it normalized by the maximum number of
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shortest paths through an edge. Formally, edge betweenness of (vi , v j ) can be defined
as follows where SPi j and SPmax denote the number of shortest path through it and
maximum number of shortest paths, respectively [21]:

Seb(vi , v j ) = 1 − SPi j
SPmax

(3.11)

Variational InformationDistance. Thismeasure leverages annotations associated
with proteins to compute distance between clusters. Let C be a clustering on the
network G and D be a clustering of V by their mips annotation of the proteins. The
variational information distance [23] between two clusterings is defined as:

V I (C, D) = H(C) + H(D) − 2I (C, D) (3.12)

where H(C) and H(D) are the entropies of C and D, respectively; and I (C, D)

is the mutual information between C and D. Intuitively, the entropies measure the
amount of uncertainty or information in each clustering, while I (C, D) measures
how much information is shared among C and D. Thus, V I (C, D) measures how
much uncertainties are encoded in C given that D is known.

Modularity. Given a ppi network G and a clustering C , the modularity of C [24]
is defined as:

q(G,C) =
∑

u,v∈V

Iuv − d(u) × d(v)/2|E |
1 − xuv

(3.13)

where Iuv = 1 if (u, v) ∈ E or 0 otherwise; d(.) is the node degree; and xuv = 1 if
u and v belong to the same cluster and 0 otherwise. Note that the above objective
function rewards groups of proteins with strong co-connections when they are placed
in the same cluster.

3.1.4 Overview

Table3.1 presents an overview of techniques to address the ppi network clustering
problem. Specifically, we classify these efforts into the following categories to facil-
itate our discussion.

• Heuristic-based Algorithms
• Flow-based Algorithms
• Complete Enumeration Algorithms
• Random Walks and Message Passing Algorithms
• Graph-cut and Hierarchical Clustering Algorithms
• Multiple Clustering-based Algorithms
• Genomic Data-driven Clustering Algorithms
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Table 3.1 Overview of PPI network clustering techniques

Algorithms Description Datasets

Heuristic-based Algorithms

MCODE [25] Local neighborhood density
based

[26], mips, ypd [27], Y2H
exp. [28–32]

DPClus [33] Local density and periphery
based

dip [34], mips

IPCA [35] Local density and distance
based

mips

RNSC [36] Local search cost based Yeast [37], Fruitfly [38], C.
elegans [39], mips

Pei et al. [40] Subgraph refinement based [26], dip, Y2H
experiments [28–32]

ClusterONE [19] Cluster cohesiveness based [41–43], BioGRID

SPICi [44] Weighted density based BioGRID, string [45],
Bayesian network [46]

Flow-based Algorithms

TRIBE-MCL [47] Flow simulation InterPro, SwissProt

MLR-MCL [48] Flow simulation dip, BioGRID,
iRefIndex [49]

SR-MCL [50] Iterative flow simulation dip, BioGRID, wi- phi [51]

Pereira-Leal et al. [52] Flow simulation on line
graph

dip

Cho et al. [53] Flow simulation using
informative proteins

dip, mips, Stanford
Microarray Database

Cho et al. [54] Flow pattern mining mips, go

IQ-flow [55] Integrates functional flow
and quantum-behaved
Particle Swarm
Optimization (QPSO)

mips

Complete enumeration algorithms

spc and mc [56] Maximal clique based mips

CFinder [57] k-clique based dip

Zhang et al. [58] cpm based mips

Cui et al. [59] Quasi-clique based mips, [32], [29],
FunCat [60]

CMC [61] Maximal clique based [26], [32], [62], [42], [29],
mips, [63]

DME [64] Module density based dip, MPact [65], bind,
hprd, mint, IntAct [66],
[26, 42]

(continued)
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Table 3.1 (continued)

Algorithms Description Datasets

Random walks and message passing algorithms

Affinity Propagation
(AP)

[67] Based on availability and
responsibility

yeast network, [43]

Nibble [17] Random walk and
conductance based

BioGRID

RRW [68] Random walk with restart
based

mips, wi- phi [51]

Graph-cut and hierarchical clustering algorithms

Chen et al. [69] Edge betweenness based [29, 32, 37, 62], mips

MoNet [5] Hierarchical module based dip, Saccharomyces
Genome Database
(sgd) [70], go

Tree-Snipping [71] Annotation-driven
hierarchical clustering

go

VI-Cut [23] Variational information
based

IntAct, mips

SCAN [72] Structural clustering based
on common neighbors

sgd, go

NeMo [20] Based on shared
neighborhood

MiMI [73]

Multiple clustering-based algorithms

Asur et al. [21] Ensemble clustering based dip

Greene et al. [74] Ensemble clustering based [43], mips

MOD-ILP [24] Integer linear programming
based

Only signaling network data
is used

Genomic data-driven clustering algorithms

Segal et al. [75] Integrates gene expressions Gene expression data [76,
77], dip, go

Lu et al. [78] Hierarchical clustering with
expression data

Yeast network, subcellular
location data [79],
expression profile [80],mips

Maraziotis et al. [81] Density based [37, 82], yeast
expression [77], mips

Zheng et al. [83] Bayesian network based genomic features [84],
experimental
interaction [29, 32, 41, 62],
mRNA expression [85, 86],
mips, sgd, go

CEZANNE [87] Probabilistic model based
on minimum cut

Yeast expression
profile [88], [43], go, mips,
sgd

Shi et al. [89] Neural network based dips, BioGRID, mips, go
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Heuristic-based algorithms utilize a greedy heuristic to identify clusters. InFlow-
based algorithms, clustering is achieved by a series of flow “expansions” and “con-
tractions” to identify clusters with high intra-cluster flows and weak inter-cluster
flows. Complete Enumeration algorithms enumerate all possible subgraphs with
density exceeding a specified threshold. Random Walk-based methods model the
graph clustering problem as identifying the stationary distribution of a random walk
model. On the other hand, Graph-cut and Hierarchical Clustering algorithms uti-
lize graph theoretic properties to identify clusters. The Multiple Clustering-based
algorithms generate a set of clustering instead of a single clustering and combine
or investigate them to create the final clustering. Lastly, Genomic Data-driven Clus-
tering algorithms integrate genomic and ppi data to address the problem of noise in
ppi networks.

Table3.1 also presents the datasets used by these work. Observe that a wide
variety of ppi datasets are used by these algorithms to experimentally evaluate their
clustering quality. Among these, dip, BioGRID, and mips are widely used by several
techniques across these categories. Details related to these popular datasets are given
in [3]. On the other hand, several datasets (e.g., MPact [65], wi- phi [51]) are not so
popular among various techniques.

3.2 PPI Network Clustering Techniques

In this section we describe representative ppi clustering techniques of the aforemen-
tioned categories and discuss the features that distinguish them.

3.2.1 Heuristic-Based Algorithms

Heuristic-based algorithms find dense network regions by searching heuristically for
potential cluster regions using an iterative greedy seed and extend strategy. One of
the seminal efforts is MCODE [25], which identifies densely connected clusters based
on a seed and extend heuristic. In this approach, a weighing scheme is introduced that
searches for dense local neighborhood regions. Given a ppi networkG = (V, E), the
MCODE algorithm consists of three key phases as follows.

Phase 1: Vertex weighting. Let the 1-neighborhood of a protein u ∈ V be the sub-
graph N (u) = (Vu, Eu) induced by the vertex u and its immediate neighborhood. For
each v ∈ V , MCODE identifies the highest k − core number of the 1-neighborhood
of v. A k-core is a graph Gk = (Vk, Ek) such that for all vk ∈ Vk , d(vk) ≤ k where
d(vk) is the degree of vk . The highest k-core number of the 1-neighborhood of v is
then defined as the largest number k such that the subgraph is k-core. Furthermore,
MCODE determines for the 1-neighborhood of v its density, given by:
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(a) (b) (c)

Fig. 3.2 a and bdepict graphswith samedensity [33]. cOutput from theSCAN algorithmcontaining
two clusters, a hub G, and an outlier N [72]

σ(N (v)) = 2|Ev|
|V |(|V | + 1)

(3.14)

Given σ(N (v)) and the highest k-core number associated with v (denoted by k),
the weight of vertex v is assigned asw(v) = kσ(N (v)). This weight boosts neighbor-
hoods with high density and also rewards clusters that exhibit strong “clique-like”
structure.

Phase 2: Molecular complex prediction. Equipped with the vertex weights,
MCODE finds complexes in a greedy seed and extend manner. It starts with the
highest weighted vertices as seeds. Following that, the seed is expanded by includ-
ing neighbors having weight exceeding a user-specified threshold. This parameter is
known as the vertex weight percentage (vmp) parameter. The expansion stops once
no vertices satisfy the threshold parameter and the complex can no longer be grown.
The algorithm then proceeds with the next remaining highest weight vertex as new
seed.

Phase 3: Post-processing. In this step, complexes are pruned when they do not
have at least a 2-core. A ‘fluff’ operation is also introduced to increase the size
of complexes. The resulting complexes are then ranked and scored based on their
densities.

Clustering techniques that aim to generate clusters solely based on density (e.g.,
MCODE) may not be able to handle the impact of different graph topologies with
same density effectively. For example, consider the two graphs in Fig. 3.2. Observe
that the density of both graphs is 0.5. However, intuitively the graph in Fig. 3.2a
comprises of a single cluster whereas the one in Fig. 3.2b contains two clusters. Pure
density-based clusterings may fail to identify these clusters accurately.

Altaf-UI-Amin et al. [33] proposed an algorithm called DPClus to address the
aforementioned issue by leveraging on the notion of “periphery” to distinguish differ-
ent graph topologies having same densities. Given a density threshold σt and a cluster
property1 threshold cp, DPClus follows a seed and extend strategy to identify dense
subgraphs. Similar to MCODE, it first chooses the highest weighted vertex as a seed
which forms the initial cluster. The weight of a vertex u is computed by aggregating
the weights of the edges to u where an edge weight is measured by the number of

1Cluster property of a vertex v with respect to any cluster k of density σk and size |Vk | is the ratio of the total number
of edges between v and each of the vertices of k to σk × |Vk |.
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common neighbors of the associated proteins. In the case the highest node-weight
is zero, the highest degree vertex is considered as a seed. Next, this initial cluster
is grown gradually by adding the neighboring vertices that are not yet part of the
cluster one at a time sorted by their priorities. Given a cluster, a neighbor’s priority
to it is computed by aggregating the vertex weights in the cluster and the number
of the edges between the neighbor (not part of the cluster) and the cluster vertices.
During the sorting of neighbors, fine tuning may be performed under certain con-
ditions to allow formation of some sparse clusters by checking for periphery using
cp. DPClus only adds a vertex in a cluster if the density and cluster property of the
cluster are not lower than σt and cp, respectively, after its addition. The final cluster
is then removed from the network and the vertex weights of the remainder network
are recomputed to generate the next cluster based on the aforementioned steps. This
process continues until all edges of the network are exhausted.

The time complexity of DPClus is O(|V |3). Observe that due to recomputation
of the weights, the algorithm is expensive and also ignores biological information
associated with vertices due to removal of some vertices at each iteration. Addi-
tionally, due to removal of a cluster from the original network after each iteration,
DPClus cannot generate overlapping clusters directly. Hence, it generates overlap-
ping clusters by extending the non-overlapping ones through incorporation of their
neighbors in the original network.

Li et al. [35] proposedIPCA to address the aforementioned limitations of DPClus
by exploiting their observation that many protein complexes typically have small
diameter and average vertex distance. Hence, in contrast to DPClus, it searches for
subgraphs having small diameter and whose cluster property is above the interaction
probability threshold. The interaction probability of a vertex v to a subgraph S is
defined as the number of edges between v and S normalized by the total number of
vertices in S. Observe that it is very similar to cp in DPClus, differing by a factor of
σk . Similar to DPClus, IPCA also follows the seed and extend strategy. The vertex
weighting step is identical to DPClus except that it also sorts the vertices by their
weights in a decreasing order and store them in a queue. Similar to the aforementioned
seed-expansion techniques, the vertex with highest weight is selected as a seed and
is expanded based on the interaction probability of a neighboring vertex without
undertaking anyfine-tuning to sort the neighbors.Note that a vertexwhose interaction
probability or diameter is below the user-defined threshold will not be added in the
cluster. Once a cluster is generated, all vertices from this cluster is removed from the
queue (not from the original network) and the first vertex remaining in the queue is
selected for the generation of the subsequent cluster. This process goes on until the
queue is empty. Observe that since the vertices are not removed from the original
network, in contrast to DPClus, the vertex weight computation step is performed
only once and generates overlapping clusters directly. This ensures that IPCA has a
superior running time than DPClus.

Another greedy search method is the Restricted Neighborhood Search Clustering
algorithm (RNSC) [36], which deploys a cost-based partitioning algorithm. Specifi-
cally, a randomclustering is constructed.After that, itmoves vertices fromone cluster
to another iteratively in a randomized manner in order to improve a cost function.
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It uses two types of score: the naive score and the scaled score. The value of the
former, for a vertex i , is the sum between the number of neighbours that are not in the
same cluster of i , and the number of vertices that are not neighbours of i but belong to
the same cluster. The scaled score for a vertex i that belong to a cluster C is its naive
score normalized by the number of vertices in C and the number of neighbours of i .
Note that this algorithm requires as an input the number of clusters to be extracted.
Furthermore, even though it was designed specifically for ppi networks, it does not
support the detection of overlapping clusters and fails to handle edge weights.

Pei et al. [40] proposed a seed-refine algorithm to detect dense but small subgraphs
as clusters by exploiting a novel statistically meaningful subgraph quality measure
based on hypergeometric distribution. It iteratively finds a seed subgraph centred
on a seed edge and refines it until the quality of the refined subgraph cannot be
further improved. Specifically, an edge that is not part of previously detected refined
subgraphs is chosen as a seed edge and then seeding vertices (a seeding vertex
is connected to both the vertices in a seed edge) with respect to it are located to
generate candidate seed subgraphs. Then, the seed subgraph with largest number
of vertices is refined by adding or removing vertices until its quality cannot be
improved any further. The refinement process not only ensures removal of weakly
connected vertices in the subgraph but also controls the overlap between subgraphs
(clusters) in the following way. The edges in a refined subgraph are disallowed to
appear again in later seed subgraphs but the algorithm does not prevent inclusion of
edges in previously refined subgraphs during the refinement process. This ensures
the possibility of generating overlapping subgraphs in a controlled manner.

Given the growth of ppi data, it is imperative for clustering techniques to handle
large ppi networks in a scalable manner. The SPICimethod [44] aims to handle the
computation complexity of clustering large ppi networks. SPICi grows a module,
one at a time, from a seed comprising a pair of proteins. To identify a seed, it identifies
the node with the highest sum of edge weights connected to the node (support)
followed by a binned selection process that identifies the best pair of nodes as seed.
Following seed selection, a module is formed from the seed by greedily adding
an adjacent (unclustered) node with the highest support score. Nodes are added
so long the overall module density and/or remaining highest support exceeds their
respective density threshold. Once a module is identified, the subgraph is removed
from the ppi network and the process continues to identify remaining modules. The
SPICi method has a time complexity O(VlogV + E) and a space complexity
O(E), allowing it scale to large ppi networks.

The ClusterONE method [19] detects overlapping clusters in a ppi network
using a greedy seed and extend heuristic. The approach starts with a single protein
node and then greedily adds or removes nodes to find a new group of proteins that
shows greatest improvement in cluster cohesiveness (Eq.3.6). Following that, the
extent of overlap among the candidate clusters is evaluated, and cluster merging
is performed selectively. This approach demonstrated clustering superiority over a
variety ofmethods, includingpopularmethods such asRRW,RNSC,AP, andMCL [19].
An advantage of ClusterONE is the ability to not just find overlapping clusters,
but also clusters that may be contained in another cluster.
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All heuristic-based methods, however, have strong likelihood of converging to
a local minimum. On the other hand, these methods generally allow identification
of overlapping clusters that better reflect the moonlighting property of proteins (as
described in Sect. 3.1.2). These methods also rely purely on topological structure to
identify functional clusters. Apart from that, they generate clusterings that are partial
coverage. A partial coveragemethod finds a set of locally dense subgraphs ofG, and
this set of dense subgraphs does not cover the entire network. Among partial coverage
methods, it is generally advantageous to have one which achieves a high coverage
score. The advantages of partial coverage methods are similar to those enjoyed by
local sequence alignment methods. Clusters obtained are often significantly dense
subgraphs, and irrelevant clusters that do not meet the objective function are auto-
matically ignored. Hence, clusterings obtained using partial coverage methods are
more amenable to human interpretation.

3.2.2 Flow-Based Algorithms

One of the most widely used graph clustering algorithm is Markov Clustering
(MCL) [47]. This approach partitions a ppi network into subgraphs using a flow-
based approach. Given a ppi network G = (V, E) with a function f : E → R that
gives each pair of proteins their blast E-value scores, MCL first constructs a weight
transition matrix given by:

W [i, j] = I ((i, j)) f (i, j) (3.15)

where I (e) is the indicator function such that I (e) = 1 if e ∈ E and I (e) = 0 oth-
erwise. Given the weight transition matrix, normalization is performed to obtain the
column-wise transition probability matrix:

M[i, j] = W [i, j]∑
x W [i, x] (3.16)

The MCL clustering algorithm simulates the convergence and expansion of flows
by iteratively alternating the following two steps until convergence: (1) the expansion
operator and (2) the inflation operator. In the expansion operator, the transition
matrix M is raised to the power of m:

Mt [i, j] = (Mt−1[i, j])m (3.17)

Intuitively, this step can be thought of as transformingMt−1 to a transition probability
matrix of all random walks over m steps. In the inflation operator, the matrix takes
its Hadamard power over r > 1 followed by renormalization. This corresponds to
an entry-wise power and normalization:
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Γr Mt [i, j] = Mt−1[i, j]r∑
x Mt−1[i, x]r (3.18)

Since entry-wise transition probabilities are raised to a power of r > 1, entries with
high transition probabilities are favored (i.e., inflated) while entries with low transi-
tion probabilities are suppressed, thus favoring densely connected regions.

The MCL approach, however, may generate clusterings with imbalanced clusters,
where clusters may have significantly different sizes. The occurrence of singleton
clusters is one side-effect of having imbalanced clusters. To this end, the MLR-MCL
algorithm [48] is proposed to construct more balanced clusters by augmenting the
MCL method.

TheMCL approach is also a partitioning algorithm that constructs non-overlapping
clusters. Another extension of MCL addresses the non-overlapping nature of MCL
clusters by introducing a MCL-based clustering strategy that creates overlapping
clusters. Here, the authors propose the SR-MCL method [50] that extends the MCL
approach by iterative re-execution of the underlying MCL clustering while ensuring
the clusters are different. A post-processing is then applied to remove uninformative,
redundant clusters, and the final set of overlapping clusters is obtained.

Pereira-Leal et al. [52] preprocess the ppi network into a line graph where each
vertex represents an edge between a protein pair in the ppi network. These vertices
are then connected by edges representing the shared proteins. Figure3.3 depicts
an example of the line graph representation of a ppi network. The advantages of
using line graph is that it is more structured than the original network by taking into
account the higher–order local neighborhood of interactions. Each edge of the line
graph is weighted by averaging the weights of the original interactions. Then, the
MCL algorithm is applied on this transformed network to find functional modules.
Specifically, the discovered clusters on the line graph are transformed back to the
original ppi network.

Since essential proteins have a close connection to overlapping clusters [40], flow-
based approaches such as [53] exploit the notion of informative proteins for finding
overlapping clusters. Specifically, this approach assigns weights to the interactions in
a ppi network by quantifying functional relationships between the interacting proteins
using semantic similarity and semantic interactivity measures. These measures are
computed using the go annotations associated with the proteins. Then, the algorithm
selects a small number of informative proteins based on the weighted degree (sum of
theweights of the edges between a vertex and its neighbors) of the proteins, which are

Fig. 3.3 a A graph. b Line
graph of a [52]

(a) (b)
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then used as representatives of the functional modules. Next, from each informative
protein s it simulates information flow through the entire network to determine the
proteins that are functionally influenced by s. These proteins along with s form a
preliminary cluster. Lastly, functionally similar modules are merged to form the final
collection ofmodules. Observe that this approachmay generate overlappingmodules
as it is possible for a set of informative proteins to influence the same protein.

In [54], Cho et al. extended the informative protein-based approach by leveraging
the notion of functional flow pattern, which is a sequence of functional influence
of a source protein to a set of target proteins. Specifically, it discovers a set of
functional flow pattern for each module identified in the above steps. Next, a pattern-
based clustering algorithm [90] is exploited to identify final modules based on the
assumption that two source proteins are likely to have same functions if they have
similar functional flow patterns.

A limitation of [53, 54] is that the threshold for merging similar modules iter-
atively is set manually, which is subjective and needs to be modified according to
the underlying data set. IQ-flow [55] addresses this issue by integrating the flow-
based techniquewith quantum-behaved PSO (qpso) [91] so that appropriate merging
threshold can be automatically computed. Furthermore, it considers bridging nodes2

while generating the modules as their exclusion contribute towards more accurate
clustering results.

Flow-based clustering methods are full coverage. A limitation of these meth-
ods is their inability to utilize the rich information provided by annotations (except
for [53, 54]). These annotations can guide the clustering process to identify clusters
that are compatible with biological knowledge.

3.2.3 Complete Enumeration Algorithms

Complete enumeration algorithms aim to enumerate all possible subgraphs inG with
density exceeding a specified threshold. Several algorithms have been proposed that
leverage the notion of clique and its variants.

Spirin and Mirny [56] proposed three techniques for detecting protein complexes
and functional modules from ppi networks. The first approach finds cliques as mod-
ules by complete enumeration. It begins with k = 3 and continue finding cliques with
k > 3until nomore cliques can be found in the ppinetwork. Since the network consid-
ered by them is sparse, this approach can find clusters relatively quickly. The second
approach leverages the notion of superparamagnetic clustering (spc), which assigns
to each vertex a “spin” with several states. Since the spins of connected vertices inter-
act, the intuition behind this technique is to detect correlated spins as the fluctuation
of the spins of vertices in a dense cluster are highly correlated. Lastly, they proposed
a Monte Carlo optimization-based technique (mc) where finding highly connected

2A bridging node in this work refers to a node having less than 3 degree but is connected to nodes with more than 15
degree.
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set of vertices is formulated as an optimization problem. It begins with a randomly
selected connected vertices and proceeds by moving selected vertices (according
to Metropolis criteria) along the edges of the network to maximize the objective
function. The mc-based approach has better performance than spc for high density
networks, whereas spc excels in finding clusters that have sparse connections to the
network. The clusters discovered by the aforementioned techniques may further be
cleaned and merged based on their statistical significance.

The CFinder method [57] identifies a set of k-clique modules in a ppi network
where k-cliques correspond to k node complete subgraphs of G with a maximum
density of 1. It is based on a deterministic approach called the Clique Percolation
Method (cpm) [92], which generates overlapping clusters by finding k-clique per-
colation communities. The algorithm first generates a clique-clique overlap matrix
by extracting all cliques from the ppi network. This matrix is then used to identify
k-clique communities by setting to 0 all diagonal entries in the matrix with value
less than k and all off-diagonal entries with value less than k − 1. Following that,
connected components in the matrix are identified as a k-clique community.

Zhang et al. [58] also extended cpm by using a different rule to detect clusters.
Given a user-defined parameter S, first they generate initial clusters using k = 3.
After that they iteratively use k + 1 to separate clusters of size larger than S until all
modules having size less than S are obtained. However, a limitation of this approach
is the restrictive assumption that all modules have 3-clique topological property. This
may not be necessarily true for some modules (e.g., spoke-like modules).

More recently, Cui et al. [59] showed on the yeast ppi network that near-cliques
may reveal better quality functional modules compared to overlapping cliques.
Specifically, they consider three types of near-cliques as depicted in Fig. 3.4 and
proposed an efficient heuristic algorithm to identify them. First, it searches for the A
and C categories of near-cliques in G satisfying any one of the following properties:
(a) for each vertex x in a near-clique g′, the number of edges connecting x to other
vertices (i.e., indegree(x)) in g′ must be greater than or equal to the corresponding
number of edges connecting x to other vertices that are not in g′; (b) the indegree(x)
of a vertex x in g′ must at least be equal to half the number of vertices in g′. After that,
it assigns the clique index to every vertex in it and if necessary merges two cliques
into a near-clique of Type B category. If a vertex x is outside a clique and forms the
structure of Type A category, then the aforementioned conditions are checked for the
formation of Type A near-clique and x is assigned the corresponding clique index.
Similarly, near-cliques of Type C categories are formed when there is a common

(a) (b) (c)

Fig. 3.4 Types of near cliques. a Type A. b Type B. c Type C [59]
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protein, which is not a member of any clique, having two or more interactions with
two or more cliques. In this algorithm, the size of the near-cliques are controlled by
a user-defined parameter.

Extending the idea of clique enumeration to more general graphs, the DME
method [64] enumerates all subgraphs that satisfy a minimum density threshold
(i.e., modules). This approach models the search process using a tree. The root of the
tree is an empty set, while any children node in the tree is a superset of that node’s
parent, and for any path from the root to the leaf, the module density is monoton-
ically decreasing. Here, the module density refers to the average pairwise weights
of the edges in a module. By enforcing density guarantee in the search tree, the
DME method prunes all unnecessary explorations during the search process while
exhaustively enumerating all sufficiently dense modules. Although the DMEmethod
can find all dense modules, it is computationally expensive. As such, it is applicable
to only relatively small networks.

The Clustering-based on Maximal Cliques (CMC) [61] method assesses the prob-
ability that two proteins are in the same protein complex using an iterative scoring
algorithm followed by a maximal clique finding process. It first generates all maxi-
mal cliques of a ppi network; this is followed by a series of steps that merges highly
overlapping cliques. This approach yields a set of densely interacting cliques that are
fairly non-redundant. It is also shown to be less sensitive to parameters compared to
flow-based techniques such as MCL [47]. An weakness of CMC, however, is that it
identifies only clusters that correspond to a clique topology and cannot handle edge
weights.

A common theme among complete enumeration algorithms is exhaustive search.
While such search enables identification of all relevant modules within a ppi network,
it is computationally expensive. Therefore, their applications are limited to relatively
small ppi networks.

3.2.4 Random Walks and Message Passing Algorithms

A well-known strategy to cluster a ppi network is to model the graph as a random
walk model, and then after performing a series of random walks, identify a set of
clusters.

Nibble [93] is an approach that relies on a modified random walk strategy [17]
and finds clusters with low conductance (Eq.3.7). A strong advantage of this method
is its scalability—Nibble runs in nearly-linear time in the size of the cluster outputs.
Also, Nibble defines the following vectors defined on a vertex set S:

χS(u) =
{
1 for u ∈ S
0 otherwise

(3.19)

ϕS(u) =
{
ku/mu(S) for u ∈ S
0 otherwise

(3.20)
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Given a graph G, Nibble first constructs its adjacency matrix A:

A(u, v) =
⎧
⎨

⎩

1 if (u, v) ∈ E, u 
= v
k if u = v and u has k self loops
0 otherwise

(3.21)

The random walk matrix is defined as M = (AD−1 + I )/2 where D is the diagonal
matrix of node degrees. The distribution of the random walk given the start seed v
after t steps is then pt = Mtχv. Nibble also introduces the truncation operation
on pt given by:

[p]ε(u) =
{
p(u) if p(u) ≥ kuε
0 otherwise

(3.22)

which truncates every qt (u) less than d(u)ε to zero.
Nibble runs in iterations. Starting at a seed vertex v, at each iteration, a random

walk is performed followed by a truncation operation. After a few steps, the dis-
tribution of the truncated random walk [pt ]ε can be used to identify a cut with low
conductance. If a clustering with desirable clustering score occurs in one of the steps,
the algorithm terminates and the clustering is set as output. Otherwise, the iterative
procedure is continued until a predefined maximum number of steps is reached. In
this case, no desirable clustering is obtained.

The Repeated Random Walk (RRW) method [68] clusters ppi networks using a
random walk with restart methodology. The basic idea behind RRW is the following.
Given a cluster of nodes, the algorithm tries to expand it with the aim of including
proteins with high proximity to that cluster. An advantage of the RRW approach is
its ability to admit overlapping clusters. First, RRW constructs the transition matrix
P from G = (V, E) and edge weight function f : E → R. Then, for each v ∈ V , it
computes the stationary distribution vector associatedwith v as starting node, defined
by:

m[v] = αs + (1 − α)PTm[v] (3.23)

where s is the start vector such that v is the starting node; and α is the restart
probability parameter, which defines the probability that the walk restarts at the
starting vector s. Additionally, the stationary distribution xC of a set of proteins
C = {v1, v2, . . . , ck} is given by xC = ∑

v∈C m[v].
The RRW algorithm then proceeds as follows: (1) For each v ∈ V , set C = {v},

and expandC by identifying proteins that exhibit strong transition probabilities from
xC and adding them to C . The expansion terminates if the next added protein score
is below λ percentage of the previously added protein. (2) Given C for each v ∈ V ,
post-processing is performed to remove highly overlapping clusters.

An approach that is similar to random walk is the message-passing based Affinity
Propagation (AP) method [67]. Affinity Propagation aims to learn a set of centers
from the input network such that the sum of squared errors between each input
object and its nearest center is minimum. Specifically, these centers are referred to as
exemplars, which are representative proteins of clusters. First, every protein v ∈ V
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is flagged as exemplars. For every protein i ∈ V and an exemplar v ∈ V , let r(i, v)
be the responsibility of v given i . Intuitively, responsibility reflects how likely v is
the exemplar of i . It is defined as follows:

r(i, v) = s(i, v) − maxu 
=v{a(i, u) + s(i, u)} (3.24)

In the above equation, a(i, u) refers to availability and is defined as follows:

a(i, v) = min{r(v, v) +
∑

u∈{u|u /∈{i,v}}
r(u, v)} (3.25)

Initially, all availabilities are set to zero. Messages in form of availabilities and
responsibilities are then passed among neighbors and exemplars until convergence
is achieved. It has been shown that AP underperformed MCL in clustering of ppi net-
works [94].

While both AP and Nibble do not admit overlapping clusters, the RRW method
is one random walk-based method that allows overlapping clusters. Note that the
aforementioned techniques are purely topology-driven clustering methods. None of
these methods utilize the wealth of annotation data to compute important functional
clusters. Typically, randomwalk andmessage-passing based clusteringmethods con-
struct a partitioning on the ppi network, implying that the clustering is full coverage.

3.2.5 Graph-Cut and Hierarchical Clustering Algorithms

Hierarchical clustering is a popular technique for clustering ppi networks due tomod-
ular nature of such networks [8]. Intuitively, hierarchical clustering algorithms view
the inherent hierarchy of a network in the form of a tree. Hence, these algorithms
can be classified into the following two types based on the way the hierarchical
tree is constructed. The agglomerative algorithms take a top-down approach by first
constructing each vertex as a cluster (root) and then merge these vertices iteratively.
Specifically, it calculates a weight to measure how closely connected two groups
of vertices are and links are added iteratively between them in order of decreas-
ing weight. On the other hand, the divisive algorithms take a bottom-up approach
by recursively splitting the network into two or more subgraphs These algorithms
employ various heuristic rules (e.g., edge betweenness, minimum cut) to merge ver-
tices or divide networks. In this section, we discuss these representative techniques.

3.2.5.1 Betweenness-Based Clustering

Chen et al. [69] extended G-N algorithm [95] for clustering in weighted ppi net-
work. In this approach, edges of the network are weighted using microarray datasets
where an edge weight represents the dissimilarity between expression profiles of a
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pair of genes. The shortest paths are then computed based on these edge weights.
Furthermore, as the G-N algorithmmay generate unbalanced partitions under certain
scenario, the authors exploited a modified definition of edge betweenness (Eq.3.11)
to compute the clusters. Specifically, shortest paths with distinct end points are only
considered for computing edge betweenness and is implemented using theMaximum
Bipartite Matching algorithm.

Luo et al. [5] developed an agglomerative algorithm called MoNet that redefines
the concept of module by extending the notion of degrees from individual vertices
as proposed by [4] (Eqs. 3.1 and 3.2) to subgraphs. A subgraph of a ppi network is
considered a module if its modularity is greater than one. In contrast to the classical
notion of modularity (Eq.3.13), the authors define themodularity of a subgraph g′ as
the ratio of its indegree to outdegree where the indegree of g′ is the number of edges
within it and its outdegree is the number of edges which are connected to vertices
outside of g′. Based on this module definition, MoNet finds simple modules from
a ppi network. It first initializes each vertex in the network as a mergable singleton
subgraph with no edges. Then these clusters are merged iteratively into modules by
adding edges to the clusters in the reverse order of deletion as followed by the G-N
algorithm [95]. Note that the G-N algorithm orders the edges in descending order of
their edge betweenness values. Furthermore, lower the betweenness value of an edge
the more likely it is part of a module [95]. The merging is performed either between
two non-modules or between a module and a non-module. The time complexity of
this algorithm is O(|E |2|V |).

Due to the hierarchical nature of the betweenness-based clustering algorithms,
these techniques cannot be used to detect overlapping clusters. Furthermore, these
clustering approaches are computationally expensive as each edge needs to be repeat-
edly evaluated.

3.2.5.2 Shared Neighbor-Based Clustering

Betweenness-based clustering techniques are expensive especially for large ppi net-
works as they typically have quadratic running time. Mete et al. [72] aim to alleviate
this problem by proposing a linear time algorithm called SCAN that exploits the
notion of indirect connections for detecting modules as well as hubs and outliers in
ppi networks. The basic idea behind this algorithm is that the similarity between two
vertices can bemeasured by the number of neighbors they share. Then, verticeswhose
similarity is beyond certain threshold can be assigned to the same cluster. Observe
that this notion of indirect connections to determine cluster membership departs from
the traditional clustering strategies based on the number of edges within or outside
clusters (Eqs. 3.1 and 3.2). Given a similarity threshold ε and a cluster size threshold
μ, SCAN performs a single pass on G and classifies each vertex either a member of
a cluster or otherwise. For each unclassified vertex vi , it checks if it is a core. A core
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vertex has at least μ neighbors with structural similarity3 greater than or equal to ε.
In the case vi is a core, it is expanded to form a new cluster by adding ε-neighbors
of vi . If a vertex is not a core, then it is classified as a non-member. Lastly, among
non-member vertices, if a vertex has edges to two or more clusters, it is marked as a
hub. Otherwise, it is an outlier. Figure3.2c depicts an example of clusters, hub, and
outlier generated by SCAN on a toy network.

Similarly, the NeMo algorithm [20] predicts the association between a pair of
proteins based on the idea of shared neighbors—two proteins are deemed highly
connected if they share most of their neighbors. Specifically, it uses the log odds
scores of protein pairs (Eq.3.9) to this end. Given these scores, NeMo then pro-
ceeds to identify clusters using a hierarchical agglomerative clustering approach.
Both complete-linkage and single-linkage strategy are considered. Node pairs are
processed greedily based on their log odds scores. NeMo only groups pairs having
expected number of shared neighbors greater than by chance. The greater the fraction
of shared neighbors between two proteins a and b, the larger their log odd score.
A collapse procedure is also introduced to prune insignificant structures from the
result. Given the hierarchical tree T , any internal node p having children m and n
such that n is a leaf node andm is an internal node, NeMo collapses the edge between
p and m.

3.2.5.3 Annotation-Driven Clustering

Typically, a clustering is obtained from a hierarchical clustering tree by “cutting”
the tree at a particular level. For instance, given a binary tree of five levels with 25

leaf nodes, a clustering with 4 clusters can be obtained by grouping the leaf nodes
by their level 3 ancestors. The core idea of Tree-Sniping [71] is the following
proposition: rather than cutting at a single level, snip the tree at selected edges at
different levels. With the added flexibility, Tree-Sniping can pick and choose
snips that maximizes the compatibility of the clusters with its constituent proteins’
annotation.

Let T be the hierarchical clustering tree obtained from a graph clustering of G.
For each node v ∈ T and snips l and k, let minMis(v, l, k) be the minimal number
of misclassified leaves (protein label not compatible with cluster label) when v is
labeled as l and there are k snips in the subtree rooted at v. Also, letminNum(v, k) =
minl minMis(v, l, k). Then for each k and l, minMis is defined as the following
recursive function:

3The structural similarity of a pair of vertices is measured by normalizing the number of common neighbors with the
geometric mean of the two neighborhoods’ size.
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minMis(v, l, k) = min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minMis(le f t, l, r) + minMis(right, l, k − r)
0 ≤ r ≤ k

minMis(le f t, l, r) + minNum(right, k − r − 1)
0 ≤ r ≤ k − 1

minNum(le f t, r) + minMis(right, l, k − r − 1)
0 ≤ r ≤ k − 1

minNum(le f t, r) + minNum(right, k − r − 2)
0 ≤ r ≤ k − 2

(3.26)
To this end, the recursive function is solved via dynamic programming method

that traverses the tree in a bottom-up manner. The Tree-Sniping method does
not scale well with the dimensionality of the labels. Given the high dimensionality
of go annotations, the misclassified labels will dominate the scores and mask the
relatively fewer conserved labels. Experiments described in [71] are applied on one
to three labeled genes. For instance, only three go terms are manually selected for
the clustering experiments. Tree-Sniping also performs best when the anno-
tations largely form a partition. Consider for example the biological process go
term and a ppi network labeled with biological process-related go annotations. With
Tree-Sniping, no proteins are considered misclassified under this overarching
go term, and as such the single large cluster associated with a biological process is
considered the optimal solution.

Similar to Tree-Sniping, VI-Cut [23] is a tree-sniping approach that relies
on the variational information metric to generate clusters that “match” with mips
annotations of the proteins. Suppose one wishes to cluster a graph G = (V, E) with
annotations D. The VI-Cut algorithm first obtains a hierarchical clustering tree
T on G as input (this tree can be obtained using any hierarchical clustering tech-
niques). Given T , VI-Cut determines the cuts of the tree such that the variational
information distance measure V I (C, D) (Eq. 3.12) is minimized so that the gener-
ated clusters agree well with the proteins with go annotations in D. The authors
show that V I (C, D) is equivalent to:

V I (C, D) =
∑

x∈C
q(x) (3.27)

where q(x) = p(x) log p(x) − 2
∑

d∈D p(x, d) log p(x, d). Here, x denotes a node
in the hierarchical decomposition tree and p(x) is the probability that a protein
with an annotation belongs to x . Also, p(x, d) is the joint probability that protein
with an annotation belongs to x and has annotation d. Any cut that is made should
minimize V I (C, D). VI-Cut computes this via dynamic programming by solving
the following recursive problem:

CutDist (x) = min

{
q(x)∑

y∈Children(x) CutDist (y)
(3.28)
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(a) (b)

Fig. 3.5 The VI-Cut algorithm illustrated with a toy example [23]

Figure3.5 demonstrates theVI-Cut algorithm.Consider the network inFig. 3.5a.
learly, it consists of two dense subgraphs and most topology-based hierarchical clus-
tering approaches will identify them and generate a decomposition as depicted in the
right hand side of Fig. 3.5a. That is, proteins {1, 2, 3, 4, 5} and {6, 7, 8, 9} form two
separate clusters. However, if annotations associated with some of the proteins are
known (shown by symbols), then the cut {b, d} is not a good solution as it groups
proteins {1, 3} and {4, 5} having disparate annotations together. Starting from the
root of the hierarchical clustering tree (cluster of all proteins), the VI-Cut algo-
rithm incorporates this intuition by generating cuts that ensure the match between
the clusterings and the annotations are as close as possible. Consequently, it chooses
the cut {c, x, d} as the best solution, which induces clusters {1, 2, 3}, {4, 5}, and {6,
7, 8, 9} (Fig. 3.5b). However, this approach scales poorly with the dimensionality
of the annotations per protein, which makes it unsuitable for richly attributed go
annotation data.

A strength of hierarchical clustering methods is the potential of constructing a
hierarchy of clusterings imitating the hierarchical organization of ppi networks. This
allows analysis of clusterings at multiple levels of granularity. These methods are
also full coverage. However, as mentioned earlier such clustering does not admit
overlapping clusters naturally without further preprocessing. Furthermore, it is also
known that they are sensitive to the noisiness of ppi networks [53].

3.2.6 Multiple Clustering-Based Algorithms

Asur et al. [21] proposed ensemble clustering framework where a range of indepen-
dent clusterings are obtained and combined to construct a single consensus clustering.
The intuition of ensemble clustering is that the combined clustering may yield high
confidence clustering even in the presence of noise. In this approach, six base clus-
terings are first constructed based on three traditional graph partitioning algorithms
(repeated bisections, direct k-way partitioning, and multilevel k-way partitioning)
and two topology-driven distance metrics (based on clustering coefficient and edge
betweenness (Eqs. 3.3 and 3.11)). Then a PCA-based consensus method is deployed
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for dimension reduction of the ensemble clustering problem. They also adapted the
design to support soft ensemble clustering.

Greene et al. [74] proposed a non-negative matrix factorization-based (nmf)
ensemble framework for clustering ppi networks. Observe that since nmf can be
used to identify overlapping structures, this approach is particularly suitable for soft
clustering. In the generation phase, a collection of nmf factorizations is produced
as base clusterings. In the integration phase, these factorizations are combined using
the min-max hierarchical clustering technique to form a meta-clustering. Lastly, a
soft hierarchy is generated from the meta-clustering and redundant tree nodes are
recursively eliminated (if necessary).

TheMOD-ILP algorithm [24] casts the ppi network clustering as an Integer Linear
Program (ilp) problem. In MOD-ILP, themodularity of a subgraph ofG (Eq.3.13) is
proposed to measure the clustering objective score of a clustering. The ilp problem
is then posed as finding the clustering S that maximizes the modularity objective
function:

max
∑

u,v∈V

Iuv − kukv/2|E |
1 − xuv

(3.29)

s.t. xuv + xvw ≤ xuw ∀u, v, w ∈ V (3.30)

xuv ∈ {0, 1} (3.31)

The first constraint enforces the transitive property of cluster membership, while the
second constraint arises from the combinatorial nature of the problem. An interesting
novelty of MOD-ILP is its ability to general an ensemble of clusterings, as opposed
to other clustering methods that produce only a single clustering of G. The above
formulation, however, only admits one possible clustering of the network. Suppose
the first clustering obtained is S0. MOD-ILP iteratively generates a new clustering
St where t > 0 from the past clustering St−1 by imposing a “uniqueness” constraint,
which forces the next set of results to be different:

St−1 · (1 − St ) ≤ d0
merge (3.32)

(1 − St−1) · St ≤ d0
spli t (3.33)

where d0
merge and d

0
spli t are real-valued parameters that define the degree of difference

required. Using the above formulation, MOD-ILP constructs a set of clusterings that
can be seen as an ensemble of near-optimal solutions, and these ensembles were
utilized to study the robustness of the modularity landscape.
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3.2.7 Genomic Data-Driven Clustering Algorithms

The aforementioned techniques of ppi clustering mostly leverage graph theoretic
properties to find clusters and only depend on the ppi network. Unfortunately, recall
that ppi networks are noisy with both false positive and false negative interactions.
Hence, in order to generate robust clustering techniques it is imperative to improve the
reliability of the interaction data. A popular strategy adopted in the literature to tackle
this issue is by integrating genomic and proteomic data, go annotations, etc. with ppi.
We have already discussed how go annotations are leveraged in annotation-driven
hierarchical clustering techniques. In this section, we briefly introduce representative
efforts in integrating genomic or proteomic data to create robust clustering.

Segal et al. [75] introduced a unified probabilistic model to detect functional
modules from gene expression and ppi data based on the assumptions that (a) genes
in the same pathway display similar expression profiles and (b) protein products
of genes that work together to accomplish certain task often interact. They first
cluster the expression data to find pathways and then build a probabilistic model
by integrating Naive Bayes model of the gene expression component and Markov
random fields model of the interaction data. This unified model is trained using the
EM algorithm to learn the parameters of the model.

Since interacting proteins tend to be localized in the same subcellular component
and demonstrate similar expression profiles, Lu et al. [78] integrated ppi data with
subcellular localization and expression data to identify functional modules. Specifi-
cally, they devised a hierarchical clustering strategy that computes proximity between
two protein groups by leveraging spatial and temporal information from localization
and expression data, respectively, in addition to the interaction information. This
ensures that co-localized and co-expressed protein groups are clustered first during
hierarchical clustering tree construction.

Maraziotis et al. [81] proposed an algorithm called DMSP that also finds functional
modules by integrating gene expression and ppidata. Specifically, the gene expression
profiles are first clustered using the fuzzy c-means algorithm,which are used to assign
weights to the edges of the ppi network. Particularly, the centroids of the clusters of
the corresponding pair of genes associated with an interacting protein pair are used
to compute the weight of an interaction by aggregating the distance of each gene
from its centroid and the distance between the centroids. Then the algorithm unveils
the functional modules in two phases by expanding the kernel neighborhood from
a seed protein. In the first phase, a subset of the neighbors of a seed protein, which
is considered most “promising”, is selected as kernel neighborhood based on the
density of the kernel as well as its weighted internal and external degrees. In the
second phase, adjacent vertices are added iteratively to the selected kernel based on
certain criteria related to the number of neighbors of the specific protein and weights
of the edges.

Zheng et al. [83] combines seven genomic and four experimental interaction data
sets to construct a Bayesian network, which can be used for integrating information
from disparate sources. It is then used to compute for each protein pair a likelihood-
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ratio-based score. Given a threshold for this score, a set of high-confidence protein
pairs can be inferred to construct the ppi network. The protein complexes from this
inferred ppi network are detected by running MCL on it. However, as they employ
MCL, it suffers from the same limitations as discussed earlier.

Ulitsky and Shamir [87] reformulated the problem of finding modules with high
confidence connectivity as finding subgraphs satisfying a weight threshold of their
minimum cut. To this end, they proposed a probabilistic model and an algorithm
called CEZANNE to identify functionally coherent co-expressed gene sets by exploit-
ing expression profiles and confidence-scored protein interactions. The goal is to
identify q-connected modules having maximum co-expression score. Informally, a
set of vertices V ′ ⊆ V is q-connected if for all subset of vertices in V ′, the prob-
ability of at least one edge connecting it with a vertex set not in V ′ is at least q.
Given a ppi network, it first identifies a non-overlapping collection of initial seeds
using the MATISSE [96] methodology. Then, it assigns a confidence weight of
−log(1 − p(e)) to each edge e where p(e) is the probability that e exists. Next, it
identifies all disjoint q-connected seeds by finding the minimum cut having weight
greater than a threshold T recursively. This cut is used to split the initial seeds. Lastly,
the set of initial seeds are optimized (while maintaining the q-connectedness and the
threshold T ) by adding/removing vertices from a module, reassigning a vertex from
one module to another, or by merging two modules. Statistically significant modules
are then identified by filtering them based on their p-values.

More recently, Shi et al. [89] proposed a neural network-based semi-supervised
learning method that leverages proteomic features (protein length, polarity of amino
acids) of subgraphs in a weighted ppi network along with their topological features
(e.g., clustering coefficient, edge weight statistics, degree statistics) to generate pro-
tein complexes. Given a training set of protein complexes (from mips protein com-
plexes) and randomly generated non-protein complexes, it first uses a two-layers
feed-forward neural network model to train the parameters for the prediction model
by utilizing the topological and proteomic features of these complexes. The model is
then utilized to select protein complexes by using a seed-expansion strategy where
an initial set of seed nodes are expanded by adding neighboring proteins until no
more proteins can be added. These newly generated complexes are fed back to the
prediction model to recursively update the parameters and find new complexes.

3.3 Cluster Validation Measures

Biological validation of the clusters predicted by different clustering techniques is
paramount. This is more so because different algorithms may generate different
clusters from the same ppi network. Furthermore, a specific algorithm may generate
different clusters based on different parameter settings. Consequently, it is important
to biologically validate the outcome of a specific algorithm to determine its appropri-
ateness. In this section, we review representative measures for validating the output
of ppi clustering techniques.
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3.3.1 Functional Homogeneity-Based Validation

Since proteins in a cluster often have similar function, functional homogeneity of
proteins in a cluster can be compared with known function annotation (obtained
from mips or go) to measure the goodness of the predicted cluster. In the literature,
p-value, clustering score, and functional coherence are some of the key measures
used to quantify it. In this section, we briefly discuss these measures in turn.

P-value enables us to calculate the statistical and biological significance of a group
of proteins. Informally, it represents the chance of seeing the group of proteins and
is computed using hypergeometric distribution. Formally, it is defined as follows:

P(C) = 1 −
k−1∑

i=0

(|W |
i

)(|V |−|W |
|C |−i

)
(|V |
|C |

) (3.34)

In the above equation, the predicted cluster C consists of k proteins belonging to
the functional group W . Note that smaller the p-value, the more likely the predicted
cluster is not randomly formed and hence is biologically more significant.

Although the p-value in the above equation can quantify the quality of a sin-
gle cluster, it is insufficient to quantify the overall quality of all predicted clusters.
Hence, clustering score [21, 72] is often used to quantify the quality of all predicted
clusters. Let nS and nI denote the number of significant and insignificant clusters,
respectively,4 and min(pi ) be the smallest p-value of the significant clusters. Then,
clustering score is defined as follows.

Score = 1 −
∑nS

i=1 min(pi ) + (nI × cuto f f )

(nS + nI ) × cuto f f
(3.35)

Redundancy [52] is another measure for functional homogeneity and defined as
follows. Let n be the number of classes in the classification scheme and ps be the
relative frequency of the class in the predicted cluster. Then,

R = 1 −
[

− (∑n
s=1 ps log2 Ps

)

log2 n

]
(3.36)

Intuitively, clusters that have many proteins with highly consistent classifications
will tend to receive high redundancy scores. On the other hand, if clusters contain
many proteins with diverse classifications then they will have low R value.

In [93], the notion of functional coherence is used to quantify the functional
relatedness of proteins within a cluster and to other proteins in the ppi network. To
this end, two types of measures are proposed for a predicted cluster, namely, absolute
and relative functional coherence. The former measures the difference between the
average functional distance of a protein pair in the network and the average pairwise

4A cluster is considered significant if its min(pi ) < cuto f f . Otherwise, it is an insignificant cluster.
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functional distance of proteins in the predicted cluster C . Intuitively, the functional
distance of proteins u and v (denoted as f (u, v)) is the number of gene pairs with
common LCAs of these proteins in the go hierarchy. Hence, the absolute functional
coherence can be quantified by the following equation:

abs_coh(C) =
∑

u 
=v∈V d(u, v)

|V |(|V | − 1)
−

∑
u 
=v∈C d(u, v)

|C |(|C | − 1)
(3.37)

whered(u, v) = log10( f (u, v)). The relative functional coherence, on the other hand,
measures the difference in average functional distance of inter-community and intra-
community protein pairs:

rel_coh(C) =
∑

u∈C,v∈V−C d(u, v)

|C |(|V − C |) −
∑

u 
=v∈C d(u, v)

|C |(|C | − 1)
(3.38)

3.3.2 MIPS-based Validation

A popular strategy to quantify the quality of a predicted cluster is to compare it
with known complexes catalogued in the mips database. This is computed using
the overlap score O(Cp,Ck) [25, 33] between a predicted cluster Cp and a known
complex Ck :

O(Cp,Ck) = |Vp ∩ Vk |2
|Vp| × |Vk | (3.39)

Ck and Cp are considered a match if O(Cp,Ck) > δ. Based on this overlap score,
sensitivity and specificity measures [25] can be used to compute how the known
and predicted clusters are matched. In particular, sensitivitymeasures the fraction of
true-positive predictions out of all true predictions. On the other hand, specificity is
the fraction of true-positive predictions out of all positive predictions. Formally, let
T P be the number of the predicted clusters matched by the known complexes with
O(Cp,Ck) ≥ δ, FP denotes the total number of the predicted clusters excluding T P ,
and FN be the number of the known complexes that are not matched by the predicted
clusters. Then, sensitivity and specificity are computed as Sn = T P/(T P + FN )

and Sp = T P/(T P + FP), respectively. Note that these two measures can be com-
bined using F-measure. Apart from these, measures such as positive predictive value
(ppv), contingency table, accuracy, and separation are also proposed in the literature
to quantify the match between known complexes and predicted clusters [97].
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3.3.3 Other Measures

In addition to the above measures, the cluster quality can be measured using other
dimensions such as the Czekanowski-Dice distance (Eq. 3.10), degree of overlapping
clusters, coverage of the clusters, andmodularity (Eq. 3.13). For instance, the overlap
metric can be used to measure the average number of clusters a protein belongs to
and hence can be used to quantify the degree of overlap among the clusters. The
coverage metric can be used to evaluate the fraction of vertices in a ppi network
covered by the predicted clusters. It can be computed as the ratio of the total number
of proteins in the clusters over the total number of proteins in the ppi network. Clearly,
a clustering technique that generates clusters with high coverage is more desirable
than the one with low coverage as the former is more representative of the underlying
network. Lastly, topology-based metrics such as modularity can be used to evaluate
if the predicted clusters are clique-like. However, this measure cannot evaluate the
functional coherence of the proteins in a cluster as it ignores annotations associated
with vertices.

3.4 Comparative Summary

Table3.2 summarizes the aforementioned ppi network clustering approaches based
on the following properties:

• Weighted: It indicates whether the algorithm considers the weights of the edges
during clustering.

• Overlapping: It indicates whether the algorithm can identify overlapping modules
or otherwise.

• Scalability: It qualitatively suggests the algorithm’s capability to scale to larger
ppi networks.

• Exhaustive: It indicates whether the algorithm can identify all modules in a ppi net-
work that satisfy the clustering criteria specified by the algorithm.

• Complete Coverage: It identifies algorithms that can form clusters on all nodes in
a ppi network (i.e., full coverage).

• Annotation: It specifies whether an algorithm is annotation aware, that is, whether
the clustering process is guided by annotation information encoded within ppi net-
works.

It is generally desirable for a ppi network clustering algorithm to be exhaustive,
scalable, and annotation-aware. It should also admit overlapping clusters (while con-
trolling redundancies), consider edge weights, and admit clustering with complete
coverage. Unfortunately, observe that no single algorithm in the literature enjoys all
of the above strengths. However, it is worth noting that the performances of these
algorithms cannot be summarized by only considering these properties alone. Many
algorithms have their own unique characteristics and strengths as remarked earlier.
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Table 3.2 Summary of PPI network clustering techniques

Algorithms Weighted Overlapping Scalability Exhaustive Full
coverage

Annotation

MCODE [25] No Yes Medium No Low No

DPClus [33] No Yes Low No High No

IPCA [35] No Yes Medium No High No

RNSC [36] No No Medium No High No

Pei et al. [40] No Yes Medium No Low No

ClusterONE [19] No Yes Medium No No No

SPICi [44] Yes No High No Yes No

spc & mc [56] Yes No Medium Yes No No

CFinder [57] No Yes Low Yes No No

Zhang et al. [58] No Yes Low Yes No No

Cui et al. [59] No Yes Low Yes No No

CMC [61] No Yes Low No Yes No

DME [64] No Yes Low Yes No No

AP [67] No No Medium No Yes No

Nibble [17] No No High No Yes No

RRW [68] No Yes Medium No Yes No

TRIBE-MCL [47] Yes No Medium No Yes No

MLR-MCL [48] Yes No Medium No Yes No

SR-MCL [50] Yes Yes Medium No Yes No

Pereira-Leal et al. [52] Yes No Medium No Yes No

Cho et al. [53] Yes Yes Low No Yes Partially

Cho et al. [54] Yes Yes Low No Yes Partially

IQ-flow [55] Yes Yes Medium No Yes Partially

MoNet [5] No No Low No Yes No

Chen et al. [69] Yes No Low No Yes No

Tree-Snipping [71] No No Medium No Yes Yes

VI-Cut [23] No No Medium No Yes Yes

SCAN [72] No Yes Medium No No No

NeMo [20] No No Medium No No No

Asur et al. [21] No No Low No Yes No

Greene et al. [74] No Yes Low No Yes No

MOD-ILP [24] No No Medium No Yes No

Segal et al. [75] Yes No Low No No No

Lu et al. [78] Yes No Medium No Yes No

Maraziotis et al. [81] Yes No Low No No No

Zheng et al. [83] Yes No Low No Yes No

CEZANNE [87] Yes No Low No Yes No

Shi et al. [89] Yes Yes Low No Yes No
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For instance, the NeMo algorithm is notable for its ability to incorporate indirect
interaction information based on shared neighbors. ClusterONE is notable for
outperforming many well established methods in reconstructing known complexes.
CEZANNEwas designed to handle the noisiness of ppi networks by integrating addi-
tional data sources.

Additionally, another important limitation of most existing ppi network clustering
methods is the emphasis on cluster density in their clustering objective function.
For instance, MOD-ILP defines an objective function to maximize the structural
modularity of clusters. The MCL-based approaches utilize a sequence of expansion
and inflation steps that results in groups of densely connected regions. The MCODE
heuristic screens for clique-like structures in a given ppi network. ClusterONE,
SPICi and RNSC methods similarly find clusters satisfying high subgraph den-
sity/cohesiveness. CFinder and CMC enumerate clique structures, while DME enu-
merates all subgraphs exceeding a minimum density. The NeMo method aggregates
nodes having many shared neighbors. The Nibblemethod utilizes the conductance
objective function that is based on having many edges within clusters as opposed to
going out of clusters. The random walk-based methods (RRW and AP) similarly find
groups of densely connected subgraphs. Finally, graph-cut algorithms minimize the
edge cut between clusters. In general, the common objective among these methods
is to find dense network regions. These methods assume that a functional module
corresponds to a strongly connected subgraph. However, clusters in ppis are not
always topologically dense. For instance, proteins in signaling pathways are often
sparsely connected and may share important functions. Hence, such groups of pro-
teins should also be presented in clustering results as they have significant biological
implications. Techniques such as [89], VI-Cut and Tree-Sniping go beyond
using dense structure to identify functional modules. However, these methods either
cannot handle edge weights or fail to support high-dimensional go annotations in a
scalable manner.

3.5 Conclusions

In this chapter we have reviewed and classified some well known clustering tech-
niques for ppi networks. Our approach has been to emphasize the unique characteris-
tics of the network clustering problem in the context of ppi networks and discuss an
array of techniques highlighting their strengths and limitations. This analysis is fun-
damental in developing effective computational solutions toward comprehending the
organization and functioning of cells. Nevertheless, we do not claim completeness
of this review and acknowledge any omissions.
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Chapter 4
Functional Summarization

In the preceding chapter, we have discussed an array of techniques for ppi network
clustering. In this chapter, we explore recent work in ppi network summarization,
a problem that is closely related to clustering. Specifically, we focus on construct-
ing higher level functional summary that summarizes the underlying ppi network to
obtain a concise, interpretable representation of the network.We begin bymotivating
the need for ppi network summarization. Then, we highlight the limitations of afore-
mentioned clustering techniques to address the summarization problem effectively.
Finally, we present a recently proposed functional summarization technique called
FUSE [1] in addressing the information overload issue of analyzing large scale ppi
networks. We evaluate the performance of FUSE on several real-world ppis. We also
compare FUSE to state-of-the-art graph clustering methods with go term enrichment
by constructing the biological process landscape of the ppis. Our experimental results
demonstrate that FUSE is highly effective in constructing higher order functional
maps with superior accuracy and representativeness compared to these state-of-the-
art graph clustering methods. Using Alzheimer’s Disease network as our case study,
we further demonstrate the ability of FUSE to quickly summarize the network and
identify many different processes and complexes that regulate it. We analyze the
topological features of the functional landscape of human ppi that leads us to the
identification of functional hubs (clusters of proteins that act as hubs).

4.1 Motivation

Recall that with advances in high throughput experimental biology, the number of
large scale protein interaction networks (ppi) have grown rapidly. At the same time,
collaborative efforts to annotate proteins and genes using go annotations has gener-
ated detailed attributes that describe these entities. Knowledge-bases with go annota-
tions, such as UniprotKB [2], provide a wealth of annotation data at different levels
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of specificity. Recall from Chap.2 that go provides standardized annotations that
describe various attributes of a gene or protein, including localization attributes,
molecular function, and the biological processes it participates in. As proteins may
involve in multiple roles and functions, go attributes associated with a protein or a
gene can be high-dimensional.

As highlighted in Chap.1, the amount of information contained within large bio-
logical networks can often overwhelm researchers, making systems level analysis
of ppis a daunting task. As majority of function annotation and high throughput or
curated interaction data are encoded at protein or gene level, higher-order abstraction
maps such as complex-complex or process-process functional landscapes, are often
unavailable. However, availability of such information is invaluable as it not only
allows one to ask questions about the relationships among high-level modules, such
as processes and complexes, but also allows one to visualize higher order patterns
from a bird’s eye perspective.

For instance, consider the Alzheimer’s Disease (ad) related ppi in IntAct [3]. An
ad interaction network can be studied at different levels of organization, from broad-
level process-process interactions to in-depth complex-complex interactions. Such
maps would reveal higher-level patterns that otherwise would have been invisible.
The objective here is not to study a process associated with ad in isolation, but
instead focus on the interplay of related processes in tandem to identify the causative
mechanisms of ad. For example, one might ask the following questions: How do
signaling pathways implicated for ad associate with one another? How do proteins
related to transportation play a role in ad, and how are they associated with bioen-
ergetics? A bird’s-eye view of the functional landscape of ad network may provide
answers to these questions. An example is shown in Fig. 4.1 (detailed in Sect. 4.8).
Observe that the associations between signaling pathways (A28, A14, A18, A21, and
A16) are depicted in the summary. It is worth mentioning that it is extremely difficult
to answer the aforementioned questions by simply looking at a large ppi containing
a large number of proteins and interactions. This problem is further exacerbated by
the high-dimensional nature of ppi; each protein may have hundreds of annotation
attributes. It is therefore crucial to have some form of summarization that maps
higher-order information of the underlying ppi. Fortunately, the modular nature of
biological networks–either structurally or attribute wise–lends itself to the possibility
of building such a summary.

4.2 Limitations of PPI Clustering Techniques

Although tools to abstract high-level and functional information from gene lists
have been proven to be key to analyzing high throughput data [4], similar tools that
automatically abstract and summarize ppis at multiple resolutions to provide high
level views of functional landscape of ppis are still lacking. At first glance, it may
seem that state-of-the-art graph clustering techniques [5–9] that are discussed in
the preceding chapter can be used for generating high quality summaries of ppis
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Fig. 4.1 Functional summary (FSG) of the AD network for k = 30 (cluster size indicated in
brackets)

as these techniques have been successful in identification of novel protein function
and protein complexes. Intuitively, a biological network can be decomposed into
modules–groups of vertices sharing a common function–that are then collapsed into
a representative node to form a summary graph of the underlying network.Depending
on the granularity of the decomposition, summaries of various level of detail can be
formed.Despite the benefits of graph clustering in creating summary of a ppi network,
these techniques suffer from the following key weaknesses that make them less
suitable for building high quality higher order functional summaries of ppis.

Firstly, several existing graph clustering approaches [5–7, 10] overwhelmingly
emphasize structure cohesiveness over attribute coherence. However, in practical
applications of ppi summarization, attribute coherence is key to forming meaning-
ful, interpretable modules. In ppi, groups of proteins (vertices) that share a common
vertex property can form a meaningful cluster that represents a particular biological
function. Otherwise, clusters with inconsistent vertex properties, even if structurally
well-connected, may not simply summarize into one functionally interpretable clus-
ter. Secondly, majority of existing graph clustering techniques form non-overlapping
partitions [5, 7, 10]. Consequently they cannot be used to generate high-quality
summary as “interactors” in biological processes and pathways are likely to over-
lap [11]. Thirdly, these techniques typically focus on identifying dense subgraphs
from a graph. However, higher-level clusters in ppis are not always structurally dense.
Proteins in signaling pathways, for instance, are structurally loose, but share impor-
tant functions. Such groups of proteins often have significant biological implications
despite their loose structure, and should be present in any summary of the underlying



62 4 Functional Summarization

Fig. 4.2 FSG of the AD network (k = 10)

network. Finally, because the annotations that describe proteins and their functions
are high-dimensional, finding the right choice of attribute coherent groupings is
combinatorial and non-trivial (for example, Fig. 4.2).

Figure4.3 contains examples of both optimal and sub-optimal clustering-based
summarization of biological networks. In Fig. 4.3a, an optimal summarization
decomposes the graph into clusters A and B, both of which have consistent attributes
and cohesive structure. Although the underlying graph is a clique, choosing a cluster
that encompasses all vertices–as shown in Fig. 4.3b–would be sub-optimal, because
vertex attributes within the cluster would then be inconsistent. Consequently, one
could not extract a common, biologically meaningful function that represents the

Fig. 4.3 Structure and attribute considerations in network summarization



4.2 Limitations of PPI Clustering Techniques 63

cluster. Figure4.3c is also less optimal compared to Fig. 4.3a because despite having
attribute consistent clusters, intra-cluster cohesiveness of the vertices are weak.

Let us consider another scenario. Figure4.3d shows a graph that is partitioned
in clusters E and F. In the absence of dense structure and coherent attributes, it
may be partitioned based on its attributes. Finally, Fig. 4.3e shows an example of
poor summarization, as despite having consistent attributes, the clusterings have
inadequate coverage. This makes the subsequent summary less representative of the
underlying network.

4.3 Overview

We present a data-driven algorithm called FUSE (Functional Summary gEnerator)
that addresses the aforementioned challenges (Sects. 4.5 and 4.6). Given a ppi net-
work, it generates a k-node functional summary graph (fsg) that best represents the
higher-order abstraction of the ppi network by simultaneously evaluating interaction
and annotation data. We argue that a “good” functional summary of a network is
not merely a graph of all function-function relationships, but a graph that reduces
details of the original ppi network to form a subset of interconnected functional clus-
ters. A functional cluster represents a subnetwork of proteins that shares a common
function. In particular, the functional summary graph must simultaneously satisfy
the following requirements: (a) the summary is at a specific level (k nodes) of detail,
(b) the summary is representative of the original network, and (c) redundancies are
minimized. Specifically, FUSE exploits Minimum Description Length principle [12]
to generate the “best” summary by maximizing information gain while satisfying
the level of details constraint. Figures4.1 and 4.2 depict a 30-node and a 10-node
fsgs of the ad network, respectively, generated by FUSE.

The goal of FUSE is not only to generate a higher level functional summary that is
representative of the underlying ppi network, but also to generate a k-node functional
map whose visual complexity (determined by k) permits user analysis. With 30,000
or more terms in the go, interaction network of 30,000 functional modules will not
be a useful summary, as it is just as daunting as the original ppi network, if not more.
FUSE addresses this challenge by enabling generation of summaries that are small
and understandable.

4.4 Related Work

Functional landscape of an underlying protein interaction network has been explored
in [13]. The approach the authors used, however, rely on manual short listing of 229
biological processes for analysis. While this approach makes visualization permissi-
ble, it neither scales with the growing number of annotations, nor does it fully utilize
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the availability of large number of annotations. Additionally, the processes that are
relevant depend on the context of the network.

Traditionally, functions pertaining to a list of genes are extracted through func-
tional enrichment techniques, which identify statistically over-represented functions
within a set of proteins or genes [4]. Such approaches are designed to identify enriched
functions that describe the dataset aswhole. In contrast to FUSE, they do not utilize the
interaction data encoded within ppi, which is key to understanding how the processes
and complexes cooperate to govern a particular function.

As discussed in the preceding chapter, network clustering methods, on the other
hand, identify functional clusters based on the underlying assumption that the topol-
ogy of interacting proteins can bemined to identify protein clusters [5–7, 10]. Cluster
function can then be inferred and annotated by finding enriched annotations within
the cluster. While such methods have been proven effective for identification of
complexes, they are less suitable for identifying higher level functional clusters,
such as biological processes and pathways, where interactors within them are likely
to overlap [11, 14]. Interactions within a process are also not necessarily cohesive.
CFinder [15] locates overlapping communities based on structure of the network, but
ignores the wealth of functional knowledge already encoded in go annotation data.
While most graph clustering techniques rely solely on network topology, several
recent techniques utilize annotation information when clustering the networks [8, 9,
16, 17]. However, these techniques form non-overlapping partitions. Additionally,
with the growing amount of annotation data, the attribute space of the nodes in an
interaction network is high dimensional as a single protein may be linked to hun-
dreds of annotations. However, these state-of-the-art approaches are not designed
for clustering high-dimensional attributes of go annotated interaction networks. For
instance, in [8], a “semantic” distance function is used to measure semantic similar-
ities between nodes with multiple MIPS complex annotations. The curse of dimen-
sionality limits the applicability of such an approach on go annotations [18]. Note
that existing subspace clustering approaches that allow overlapping subspace clusters
typically produce a huge number of clusters that are difficult to interpret [19].

Lastly, the high dependency on interaction topology makes graph clustering inef-
fective for many context-specific networks. Although there are many networks asso-
ciated with diseases, there are few, if any, with complete interaction knowledge
available. The high probability of false positive interactions may also occur. This
hampers accurate identification of cohesive clusters.

Recently, there has been increasing research by the data mining community
towards generating effective summary of large graph-structured data [16, 20–22].
For instance, Tian et al. [16] focus on grouping nodes at different resolutions in a
large network based on user-selected node attributes and relationships. VoG [20]
finds a set of possibly overlapping subgraphs based on most important local struc-
tures such as cliques, bipartite cores, stars, and chains. However, these techniques
cannot be leveraged to summarize ppi networks because of the following key reasons.
First, approaches such as [16, 21, 22] focus on non-overlapping groups instead of
overlapping ones which are desirable in ppi networks. Second, similar to existing
graph clustering techniques, VoG [20] and GraSS [22] do not leverage annotations



4.4 Related Work 65

associated with nodes in ppi networks and hence may result in summaries that are not
biological meaningful for reasons discussed earlier. Furthermore, these techniques
do not attempt to construct summaries that maximally cover the input network while
minimizing redundancy among the summary subgraphs.

4.5 The Functional Summarization Problem

In this section, we formally introduce the functional summarization problem. We
begin by defining some terminology that we shall be using in the sequel. A list of
key notations used in this chapter is given in Table4.1.

Recall that a ppi network G = (V, E) contains a set of vertices V , representing
proteins, and a set of edges E , representing interactions. An edge has a positive
real weight ω that represents its interaction strength. Given a go directed acyclic
graph (dag), denoted as D, the ordered setΔ = 〈a1, a2, . . . , an〉 is a topological sort
of D, where ai represents a single go term. The term association vector of v ∈ V ,
denoted byΔv, is defined asΔv = 〈a1(v), a2(v), . . . , an(v)〉, ai (v) ∈ {0, 1}, such that
ai (v) = 1 if and only if the term ai or its descendants are associated with protein v.
Otherwise, ai (v) = 0. Note that Δv indicates go terms that are associated with v.

4.5.1 Functional Summary of PPI

Given a ppi networkG = (V, E), a functional summary graph (fsg) is an undirected
graphΘG = (S, F) that models the set of higher-order functional clusters S and their

Table 4.1 Notations

Symbols Description

G Input ppi graph

ΘG = (S, F) Functional summary graph where S and F are
sets of nodes and interactions, respectively

ω Edge weight

Δ Set of go terms

SΔ Set of functional clusters induced from Δ

C(u) Functional cluster representing the function u

φC(u) Structural information content of cluster C(u)

cC(u) Size deviation cost

k Summary complexity parameter

b Information budget parameter

d Redundancy penalizing parameter

β Significance cut-off parameter
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interactions F that underlie the ppi network. A functional cluster is a subgraph of G
that shares a particular function/role based on the structure and attribute properties of
the subgraph and its constituent proteins. Functional clustersmay include complexes,
processes, and signaling pathways. A pair of functional clusters may be connected
by a web of protein interactions. If the number of interactions are significantly large,
then we say that the pair of clusters are associated. An fsg ΘG thus captures higher
order modules that comprise the ppi and their interconnections. We now define these
concepts formally.

Definition 4.1 (Functional Cluster) Let V (ai ) ⊆ V denote the set of vertices in G
such that v ∈ V (ai ) if and only if Δv[ai (v)] = 1. The functional cluster of ai ∈ Δ,
denoted by C(ai ) ⊆ G, is the subgraph of G that is induced by V (ai ).

Note that V (ai ) represents the set of vertices of G that are associated with term
ai ∈ Δ. We treat C(ai ) as a vertex as well. We may also call a functional cluster as
functional subgraphwhenwewish to emphasize the fact that it is a graph. Figure4.4b
shows a subset of the possible functional clusters of the ppi in Fig. 4.4a. Every node in
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Fig. 4.4 a A toy example of ppi network. b A set of functional clusters of the network in (a). c
Suppose a 3-node summary is required (k = 3). FUSE explores the functional clusters of the ppi net-
work to identify the 3-node functional summary that best partition and represent the underlying
network. This functional summary graph (FSG) depicts the functional landscape of the ppi network
in 3 nodes. d A 5-node partition (k = 5) and its corresponding FSG
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metal ion 
binding

protease 
binding

p53 binding

p53 p53 p53

Fig. 4.5 Functional clusters associated with the p53 protein

a clustermust share a particular function or attribute. For instance, nodes in functional
cluster cytosol share the cytosol term.

Given that a protein could be annotated with multiple go terms, there are a mul-
titude of ways to form functional clusters. To illustrate this, let us restrict ourselves
to several go terms associated with the p53 protein, namely ‘p53 binding’,
‘metal ion binding’ and‘protease binding’ terms. Figure4.5 shows
a toy network of functional clusters formed using the ‘p53 binding’, ‘metal
ion binding’ and ‘protease binding’ terms, respectively. A ‘p53
binding’ functional cluster, for example, is constructed by first taking all pro-
teins sharing the ‘p53 binding’ term (indicated in the figure as shaded nodes).
Following that, the subgraph induced by these proteins forms the ‘p53 binding’
functional cluster.

The three functional clusters represent several alternative ways which proteins
can be grouped together based on their shared function. Recall from the previous
chapter, a good cluster exhibits significant clustering properties. For instance, pro-
teins in a cluster should be densely interacting. Using the same intuition, we assess
the clustering property of the three functional clusters using subgraph density. The
‘p53 binding’ subgraph is most suitable as a cluster, given that the induced
subgraph formed using proteins sharing this function has the highest subgraph den-
sity. Conversely, functional cluster formed using ‘metal ion binding’ has
the lowest subgraph density. This illustration demonstrates that although a gene or
protein could have multiple go term annotations, not all of these terms are useful
for forming a functional cluster. It is therefore important to identify and distinguish
terms that are suitable for forming functional clusters from those which are not. We
shall see later in the next section how a suitable set of functional clusters can be
selected to represent the entire ppi network.
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Definition 4.2 (Functional Summary Graph (FSG)) A functional summary graph
of the underlying protein interaction network G = (V, E), ΘG , is defined as ΘG =
(S, F, Pi , α), where S is a set of functional clusters and F is a set of edges that links
the functional clusters. Let ocuv be the number of interactions connecting proteins
in C(u) and C(v). Let Pi be the probability density function of observing ouv or
more number of interactions between C(u) and C(v). Let β be a significance cut-off
parameter (user-defined). Then, (C(u),C(v)) ∈ F if and only if Pi (X > ocuv) ≤
2β/|S|2. The bijection α : 1, 2, . . . ,m ↔ S is an ordering of S.

Observe that the aforementioned definition of functional summary includes addi-
tional constructs and rules for determining whether two functional clusters are asso-
ciated.We elaborate on this further. Given a ppiG = (V, E), the expected probability
of observing an interaction between two randomly drawn protein pair is given by
pi = 2|E |

|V |(|V |−1) . Let (C(u),C(v)) be a functional cluster pair such that members of
both clusters were randomly drawn from V . If proteins v1 and v2 are randomly drawn
from C(u) and C(v), respectively, then the expected probability of observing a pos-
itive interaction between them would also be pi . Let n = |C(u)||C(v)|. Based on
the independent and identically distributed variable (iid) assumption, we model the
probability of observing oc (the number of interactions between C(u) and C(v)) as
the probability of observing oc positive interactions after n iid trials, representing n
pairwise interaction trials between proteins inC(u) andC(v). Hence, the probability
of oc or more positive interactions between C(u) and C(v) can be modeled using a
binomial distribution:

Pi (X > oc) =
n∑

i=oc

(
n

i

)
pi

i (1 − pi )
n−i (4.1)

This p − value is used to assess the association significance between a pair
of functional clusters. Given a set containing k clusters, association significance
between 1

2k(k − 1) pairs of clusters would have to be tested. To this end, we applied
Bonferroni correction to account for multiple testing. Given the significance cut-off
β, a pair of functional clusters is significantly associated if

Pi (X > oc) ≤ 2β/k(k − 1) ≈ 2β/k2 (4.2)

Observe that although we have adopted a simple model to assess cluster-cluster
association, the aforementioned definition is general enough to encompass more
sophisticated association models.

Example 4.1 Figure4.4d shows an fsg consisting of five functional clusters. Any
edge between two functional clusters existswhen Pi (X > ocuv) ≤ 2β/|S|2, implying
that more edges connect proteins between the functional clusters than expected in
random.



4.5 The Functional Summarization Problem 69

4.5.2 Problem Statement

The functional summarization problem is the problem of finding ΘG that best rep-
resents the underlying ppi subject to a summary complexity constraint. To model
this problem, we propose a profit maximization model that aims to find ΘG =
(S, F, Pi , α) by maximizing information profit under a budget constraint. Every
protein i ∈ V is assigned a non-negative information budget b, which represents the
information it contains. Let SΔ be the set of functional clusters induced fromΔ. Every
functional clusterC(u) ∈ SΔ is assigned a non-negative structural information value
ψC(u) (to be defined later), which represents the amount of structural information
contained within the functional subgraph. When a functional cluster C(u) is added
to the summary, for every protein i ∈ V (u), a portion of b is taken out and added to
summary information gain. This represents new information added to the summary.
The amount to take depends on ψC(u).

Imposing information budget b limits the amount of information a protein can
provide. A parameter 0 ≤ d ≤ 10 is also introduced to penalize redundancy. By
doing so, repeated representation of a protein i yields reduced information gain,
modeling diminishing returns. Based on this profit model, we construct the set of
functional clusters that maximizes profit while satisfying the constraints.

Definition 4.3 (Functional Summarization Problem) Let Ki be a set of functional
clusters such that C(u) ∈ Ki if and only if i ∈ C(u). For every C(u) ∈ SΔ, let ψC(u)

be the structural information value of C(u). Given a ppi network G = (V, E) and
user-defined parameters b, d and k, the functional summarization problem constructs
a k-cluster fsgΘG = (S, F, Pi , α) that satisfies the following optimization problem:

maximize
∑

i∈V

|S|∑

j=1

p(i, j)

where

b(i,m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d
10 (b(i,m − 1) − p(i,m − 1)) if m > 1,

αS(m − 1) ∈ Ki
b(i,m − 1) if m > 1,

αS(m − 1) /∈ Ki
b if m = 1

and

p(i,m) =
⎧
⎨

⎩

ψαS (m) if b(i,m) ≥ ψαS (m) and αS(m) ∈ Ki

b(i,m) if b(i,m) < ψαS (m) and αS(m) ∈ Ki
0 αS(m) /∈ Ki

subject to
|S| = k
S ⊂ SΔ

(4.3)

Here, p(i, j) serves as a store of profit obtained each time protein i is selected
in one of the cluster at the j-th iteration. The map αS(m) serves as an index set
to assign the m-th iteration taken to its associated subgraph K of iteration m. The
function b(i,m), the remaining budgeted profit that can be taken per protein, and it
can be derived recursively from its preceding b(m − 1). We elaborate on how the
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structural information value ψC(u) is assigned. A functional cluster C(u) and its
protein constituents share a common function u. Thus, vertices in the subgraph are
considered homogeneous attribute wise. However, it does not imply that the func-
tional subgraph is structurally cohesive (dense). Proteins having common function u
may still be weakly interacting. This may be due to the fact that u itself may indicate
a general function (e.g., ‘protein binding’) which is a common attribute to
a large number of proteins that do not interact with each other. We argue that struc-
turally cohesive functional clusters contain more information than those which are
loosely interconnected. The argument for this is that clusters that have higher than
expected cohesiveness will have higher information content because of the lower
probability of observing a random cluster having the same cohesiveness. However,
we make the following exception – a functional cluster with lower than expected
cohesiveness is not deemed structurally informative.

Since the optimization problem must choose among a set of functional clusters,
we are not concerned about the actual p-value of observing a subgraph having such
interaction density. Instead, we only need a measure that allows us to compute the
relative ranking of the functional clusters by their information content. Such sim-
plification leads to much greater computation efficiency. We define the structural
information value of a functional cluster C(u) as follows.

Definition 4.4 (Structural Information Value) Letωi j be the edge weight of (i, j) ∈
E . The structural information value of a functional cluster C(u), denoted by ψC(u),
as ψC(u) = ρC(u) where

ρC(u) =
∑

i, j∈C(u) Ei j

|C(u)| (4.4)

At first glance, it may seem that the structural information value should be defined
as ψC(u) = ρC(u) − ρrandom where ρrandom is the expected structural density of a
random cluster. However, we ignore ρrandom for the following reason. ρC(u) is the
ratio association [23] score of C(u), a standard graph clustering objective we adopt
that indicates the structural density of C(u). In scale-free and Erdős–Rényi graphs,
the self-information − log P(ψC(u)) is a positive non-decreasing function of ψC(u)

for ψC(u) > 0. Hence, ψC(u) can be used to compare the self-information between
two functional clusters without having to determine the probability density function
of the interaction distribution of a subgraph. Given ai , a j ∈ Δ,C(ai ) is deemedmore
informative than C(a j ) if and only if ψC(a j ) > ψC(ai ) and ψC(a j ) > 0. If both ψC(a j )

and ψC(ai ) are negative, it does not matter whether one is more informative than the
other, since both have structural density less than that of random networks. As such,
for symmetry, we also deem that C(ai ) is more informative than C(a j ) if and only
if ψC(a j ) > ψC(ai ) for ψC(a j ) ≤ 0. Therefore, when comparing the structural density
between two clusters, ρrandom can be omitted from ψC(u) and ψC(u) is simply ρC(u).

Example 4.2 Suppose we wish to summarize the ppi in Fig. 4.4a into a 3-node sum-
mary (k = 3). If clusters apoptosis, receptors, and TGF-beta are chosen—
instead of the clusters in Fig. 4.4c—we can see that the profit obtained is suboptimal.
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Algorithm 1 Algorithm FUSE

Input: G, Δ, D, k, b, d, β
Output: Θmin

1: Let S = empty set
2: Let Bmap = set of pairs (i, b) for each i ∈ V
3: Assign ψC(u) and cC(u) for each C(u) ∈ SΔ

4: i = 0
5: while i < k do
6: (Cmin, Bmap) = MapProfit(SΔ, Bmap, d, |V |, k)
7: Remove Cmin from SΔ

8: Add Cmin to S
9: i = i + 1
10: end while
11: for C(i),C( j) ∈ S do
12: if C(i) �= C( j) and Pi (X > ocC(i)C( j)) ≤ 2β/|S|2 then
13: Add edge (C(i),C( j)) to F
14: end if
15: end for

Information budget for proteins b,c are depleted due to redundancy, while infor-
mation budget for proteins d,e,g,i are untapped. In contrast, functional summary
in Fig. 4.4c is relatively more optimal, as not only the set of clusters maximizes
profit through superior coverage and minimal redundancy, but it also maximizes
profit through higher structural information (e.g., the cluster transcription is
structurally dense compared to apoptosis).

4.6 The Algorithm FUSE

The profit maximization problem is a variation of the budgeted maximum coverage
problem [24], which is an np-hard problem. To permit a tractable solution, let us first
consider a straightforward greedy approach. The initial fsg is an empty graph. Given
the input ppi network G, ψC(u) for each functional cluster C(u) ∈ SΔ are computed.
The algorithm then iteratively selects the functional cluster that leads to greatest
increase in net profit of the summary. Each time a functional clusterC(u) is selected,
the fsg and budget information b(i) for every protein i ∈ V (u) is updated. Once k
clusters have been selected, the algorithm terminates by generating the fsg.

A major weakness of the aforementioned approach is that it tends to be “over-
enthusiastic” in selection of functional clusters during early iterations. Functional
clusters that are too large or too small may be selected at early iterations resulting
in very poor cluster choices at later iterations due to limited information budget
and summary size (k) constraint. Hence, our proposed algorithm adds a complexity
cost to each chosen cluster. Given graph size |V | and summary size k, the expected
cardinality of a functional cluster in the summary is defined by E[|C |] = |V |

k . Then
the size deviation cost, denoted as cC(u), is defined as the square of the deviation of
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Algorithm 2 The MapProfit procedure.
Input: SΔ, Bmap, d, |V |, k
Output: Cmin, Bmap

1: Let pmax = 0
2: for C(u) ∈ SΔ do
3: Let Btemp = Bmap
4: Let p = 0
5: for i ∈ V (u) do
6: Let (i, b(i)) ∈ Btemp and p(i) = b(i) − ψC(u)

7: if p(i) > 0 then
8: p = p + ψC(u)

9: b(i) = b(i) − ψC(u)

10: else
11: p = p + b(i)
12: b(i) = 0
13: end if
14: end for

15: cC(u) =
(
|V (u)| − |V |

k

)2

16: p = p − cC(u)

17: if pmax < p then
18: pmax = p
19: Cmin = C(u)

20: end if
21: end for
22: for i ∈ Vmin do
23: Let (i, b(i)) ∈ Bmap and p(i) = (d/10)(b(i) − ψC(u))

24: if p(i) > 0 then
25: b(i) = (d/10)(b(i) − ψC(u))

26: else
27: b(i) = 0
28: end if
29: end for
30: return ( Cmin, Bmap )

|C(u)| from E[|C |]. That is,

cC(u) =
(

|V (u)| − |V |
k

)2

Observe that the greater the difference between |V (u)| and E[|C |], the less likely
it is to be part of a summary of k-granularity. Clusters whose size deviate too much
from the expected cardinality are penalized and therefore less likely to be selected.
This reduces the chance of having too less or toomuch information budget remaining
during the later iterations of the greedy heuristic.

The aforementioned intuition is realized in FUSE as outlined in Algorithm 1. It
consists of three phases, namely, the initialization phase, the greedy iteration phase,
and the summary graph construction phase. In the initialization phase (Lines 1–3),
ψC(u) and cC(u) for each functional cluster C(u) ∈ SΔ are computed. The greedy
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iteration phase (Lines 4–10) involves iterative addition of functional clusters into S
in a greedy manner as described above. The best candidate functional cluster for the
current round (Cmin) is determined through the subroutineMapProfit (Line 6). This
step also maintains the information profit of S and the remaining information budget
of every v in G through a persistent profit map (Bmap). Cmin is then removed from the
candidate pool SΔ and added to the solution set S (Lines 7–8). Finally, the summary
graph construction phase (Lines 11–15) computes F to generate the fsg Θmin.

The MapProfit procedure is outlined in Algorithm 2. In order to identify the
best candidate cluster of the current iteration round, it evaluates every cluster in
the candidate pool by evaluating its profit gain potential (Lines 1–21). First, the
amount of information to extract from each protein’s information budget pool (b(i))
is computed (Lines 7–13). Next, the potential profit gain is adjusted to compensate for
the complexity cost (Lines 15–16). After Cmin is found, the profit map is recomputed
to commit the changes made to the information budget map due to the selection of
Cmin (Lines 21–29).

Theorem 4.1 Algorithm FUSE takes O(|SΔ|2|V |2) time in the worst case.
Proof In the initialization phase, ψC(u) for each C(u) ∈ SΔ has to be computed.
Each C(u) may contain up to |E | edges and |V | vertices. In Algorithm 1, ψC(u) for
each C(u) ∈ SΔ takes O(|E |) time. Thus, the total complexity for this procedure is
O(|E ||SΔ| + |V ||SΔ|) time.

In the greedy iteration phase, the MapProfit subroutine defined in Algorithm 2
is evaluated k times. In Algorithm 2, Lines 2–21 require O(|SΔ||V |). Lines 22–29
require O(|V |) time. Thus, Algorithm 2 takes O(|SΔ||V | + |V |) time. The iteration
phase, as such, takes O(k|SΔ||V | + k|V |) time in total.

Finally, the summary graph construction phase involves pairwise significance
evaluation of the resultant functional cluster set. This involves evaluation of all edges
between k-pairwise functional clusters of the summary. Each significance Pi (X >

ocuv) test requires a single-pass evaluation of edges connecting a pair of clusters. At
worst case, this takes O(|E |) time. The summary graph construction phase therefore
require O(k2|E |) time.

The FUSE algorithm, as whole, takes O(|E ||SΔ| + |V ||SΔ| + k|SΔ||V | + k|V | +
k2|E |) time. In theworst case scenario of |E | = |V |2 and k = |V |, the algorithm takes
O(|SΔ||V | + |SΔ||V |2 + |V |2 + |V |4) time, implying a polynomial time complexity
at worst case.

Example 4.3 Consider as an example the summarization of the ppi in Fig. 4.4a. Lines
1–3 inAlgorithm 1 construct the candidates shown in Fig. 4.4b and compute, for each
candidate C(u), its structural information valueψC(u) and cost cC(u). Following that,
themodifiedgreedy iterationphase selects k candidates byprofitmaximization (Lines
4–10 inAlgorithm1). Figures4.4c, d showexamples of functional subgraphs selected
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Fig. 4.6 Illustration of MapProfit procedure

following the greedy iteration phase. Finally, the edges depicted in Fig. 4.4c, d that
indicate the functional relationship between the functional subgraphs are computed
in Lines 11–15 in Algorithm 1.

Figure4.6 further illustrates theMapProfit procedure in Algorithm 2. Figure4.6a
shows a toy ppi network with each protein assigned an initial information budget of
b = 2. Figure4.6b shows the selection of the cell-cycle functional subgraph
with structural information value ψC(u) = 1. Observe that the information budget
remaining for each affected protein is updated accordingly. Figure4.6c shows the
remaining information budget when another functional subgraph (apoptosiswith
ψC(u) = 1) is selected. Finally, Fig. 4.6d depicts the summary of functional subgraphs
selected.

4.7 Experimental Results

FUSE is implemented in Scala and Java. We now present the experiments conducted
to evaluate the performance of FUSE and report the results obtained. The ppi datasets
employed in this study are shown in Table4.2. Biological Process (bp), Molecular
Function (mf), and Cellular Component (cc) go annotations are used. Unless spec-
ified otherwise, we set β = 0.01, b = 3, and d = 0 in order to balance coverage
and redundancy of the functional summaries. We assign all edge weights be 1.0. All
experiments were run on a 1.66GHz Intel Core 2 Duo T5450 machine, with 3GB
memory, and a 250GB SATA disk.
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Table 4.2 Summary of datasets used

Dataset #nodes #edges Source

H. sapiens 9181 34624 hprd [25]

S. cerevisiae 4768 177299 IntAct [3]

D. melanogaster 3114 6472 IntAct

Alzheimer’s disease (AD) 177 1038 IntAct

4.7.1 Evaluation Metrics

Coverage. We use the coverage metric to evaluate the fraction of the annotated
ppi network covered by a summary. A functional summary with high coverage is
desirable because it is more representative of the underlying interaction network
than a summary with low coverage. The coverage of a functional summary Θ is
defined as:

coverage(Θ) =
∣∣⋃

C(u)∈SΘ
V (u)

∣∣
∣∣⋃

C(u)∈SΔ
V (u)

∣∣ (4.5)

The coverage is the ratio of the total number annotated proteins in the summary over
the total number of annotated proteins in the protein interaction network.

Redundancy. The redundancy metric is the average number of functional clusters
each protein belongs to. This is an indicator of the amount of cluster overlap in the
summary. Redundancy of Θ is defined as:

redundancy(Θ) =

∑

C(u)∈SΘ

|V (u)|
∣∣∣∣∣

⋃
C(u)∈SΘ

V (u)

∣∣∣∣∣

(4.6)

A summary Θ with no overlapping clusters will have lowest possible redundancy
value of 1, where every protein is assigned to exactly one cluster. A summary with
high redundancy is undesirable, because a summary with many highly overlapping
clusters is less intuitive and more complicated.

Precision and Recall. The following well-known evaluation metrics are also used –
precision and recall. These are well known statistical measures to indicate accuracy
and completeness. As discussed earlier, precision, a measure of exactness, is defined
as:

precision = true posi tive

true posi tive + f alse posi tive
(4.7)
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Recall, a measure of completeness, is defined as:

recall = true posi tive

true posi tive + f alse negative
(4.8)

If a cluster C(i) is assigned with the function i , then any protein p ∈ C(i) that is
not annotated with i or its descendants is deemed a false positive. If p ∈ C(i) is
annotated with i or descendants, it is a true positive. Likewise, a protein p ∈ V that
is annotated with i but not in C(i) is deemed a false negative. Here, proteins without
annotations are not taken into consideration.

4.7.2 FUSE Versus Graph Clustering Methods

Dataset. Currently, there does not exist any gold standard to compare functional sum-
maries of ppis. Typically, biological graph clustering approaches use MIPS complex
annotations [26] as gold standard data for testing cluster quality. These annotations,
however, are limited to complexes and not for other functional clusters like pathways.
go annotation data is also used as gold standard for evaluating clustering algorithms.
As our approach utilizes attributes of go, using go annotations as gold standard eval-
uation may lead to results biased in favor of FUSE. Instead, we obtained a different
set of curated attributes as gold standard–themolecule class annotations from hprd–
which is distinct from go attributes. Note that these annotations are only available in
the H. sapiens dataset. Consequently, we use this dataset for the comparative study.
To create a gold standard reference summary, we generated a network from subgraphs
induced from thehprdnetwork using nodes groupedby theirmolecule class attribute,
signifying the molecular functional groups within the network. Subgraphs from five
functional groups corresponding to subgraphs of proteins classified as G protein
coupled receptor, Protease inhibitor, RNA binding protein,
Cytoskeletal associated protein, and Calcium binding pro-
tein are extracted and merged to form the reference summary network (747 nodes,
959 edges). FUSE and state-of-the-art graph clustering methods are then evaluated
on this network to determine whether the graph can be partitioned and summarized
to reconstruct the gold standard functional groups.

We compare the performance of FUSEwith four popular graph clustering methods
for life sciences applications, namely Markov clustering (MCL) [27], MCODE [5], and
NeMo [7]. We also compare FUSE with CSV [10], a cohesive subgraph visualization
method.Note that in order to obtain higher ordermodules of a ppi network, the current
approach is to first use an existing graph clusteringmethod on the network to generate
the clusters followed by function assignment. For example, in Krogan et al. [27], the
global yeast ppi network is first clustered using MCL to generate non-overlapping
clusters. Then, each cluster is compared against MIPS complex annotations [26] and
the complex annotation with the greatest overlap is assigned to represent the cluster.
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Cluster quality comparison. We first emphasize on the qualities of an ideal sum-
marization. First, the generated clusters have to be representative of the underlying
graph, which implies that coverage of the clustering should be sufficiently high.
Second, attribute purity [28] of the clusterings should correspond to the functional
groups that were merged apriori. This can be determined through the purity of the
molecule class attribute within the proteins in each cluster. Each functional
group should also be well-represented. We use precision, recall, and F-measure to
quantify these features. For each cluster,we determine themolecule class func-
tional group that best matches the cluster. The purity of that cluster is then defined
as the proportion of nodes in the cluster that belong to the best matching group. As a
functional group may be represented by several smaller clusters, we define recall for
each functional group as total coverage of the functional group among the clusters
that best matches that functional group. Then, the precision of a clustering is defined
as the average purity among all clusters. The recall of a clustering is defined as the
average recall among all functional groups. Lastly, the F-measure ( 2∗precision∗recall

precision+recall )
provides an overall measure of clustering quality.

Figures4.7, 4.8, 4.9 and 4.10 depict the results of summarization quality by F-
measure, precision and recall. Where applicable, we adjust relevant parameters to
vary the cluster granularity. As NeMo has no parameter to tweak, only a single set of
clusters can be obtained. In MCL, CSV, and MCODE, the inflation, ηmseen cutoff, and node
score cutoff parameters are adjusted, respectively, to vary the cluster sizes (denoted
as k in all figures). In FUSE, the parameter k directly affect the summary granularity.
Here, we use k to represent the number of clusters obtained by each method. Because
most methods indirectly affect this via parameters, it may not be possible to cover
the entire range of possible k values.

Observe that FUSE generates summary with significantly higher F-measure score
compared to the graph clustering-based approaches for all values of k. In other words,
FUSEmay generate summaries at multiple levels of complexity while remaining rep-
resentative of the underlying graph. Observe that, although NeMo, CSV, and MCODE

generate clusters with high precision, the recall scores are very low (< 0.2). This

Fig. 4.7 Cluster quality of
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Fig. 4.8 Cluster quality
of FUSE versus graph
clustering-based approaches
(recall)
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Fig. 4.9 Cluster quality
of FUSE versus graph
clustering-based approaches
(F-score)
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Fig. 4.10 Cluster quality
of FUSE versus graph
clustering-based approaches
(FUSE)
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is because these two approaches identify highly cohesive subgraphs, which tend
to be part of protein complexes. CSV in particular are limited to identification of
near-clique structures. Proteins in complexes belong to the same functional groups
and hence the high precision. However as mentioned earlier, biological networks
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are not comprised solely of complexes. Consequently, majority of the underlying
network is poorly represented by these approaches due to heavy bias towards com-
plexes. Specifically, most of the clustersmatch theRNA binding protein class
of proteins, leaving other groups barely represented. For instance, the Protease
inhibitor subgraph is not well represented because of its inherent loose struc-
ture. Although the recall score of MCL is relatively higher as this method is known
to perform very well in biological clustering applications, it is still below 0.4. Note
that the MCL approach failed to partition the underlying network into five clusters
representing the five functional groups. The CSV approach, on the other hand, were
not able to generate larger number of partitions.

Notice that these existing approaches indirectly affect the summary complexity
whereas FUSE allows direct adjustment of summary size, which explains why sum-
maries at any level of detail can be obtained by the latter. Figure4.10 shows that FUSE
generates summaries at different granularity without greatly affecting the precision
and recall of the clusterings. The peak F-measure score of 0.8 is obtained in FUSE

at k = 5, corresponding to the five gold standard functional groups that comprise
the dataset. Observe that the recall and precision scores are equally high. As clus-
ter granularity deviates from the underlying five functional groups, obviously the
F-measure score drops.

Function representativeness comparison. The accuracy and representativeness of
the function assigned to each cluster is key to generating high quality functional
maps. Here, we introduce measures that quantify the representativeness of functions
assigned to each clusters and compare FUSE to graph clustering methods in this
aspect.

To obtain the functional landscape of a ppi, graph clustering methods often assign
function to clusters through functional enrichment techniques. To this end, we com-
pute the statistical significance of association of the cluster with every go term based
on the hypergeometric distribution [4]. The term with the best p-value is assigned as
the representative function of the cluster. To evaluate the representativeness of this
assigned function, we reuse the precision and recall measures introduced earlier with
slight modification. Specifically, the representative purity of a cluster is defined as
the proportion of nodes in the cluster that are annotated with the representative func-
tion. We also define representative recall for each functional group as total coverage
of the functional group among the clusters that has the functional group assigned as
representative function. Then, the precision of the representative functions is defined
as the average representative purity among all clusters, and the recall of the represen-
tative functions is defined as the average representative recall among all functional
groups.

Figures4.11 and 4.12 depict the representativeness of the functional summaries
by different techniques. As FUSE is designed specifically to generate highly rep-
resentative maps, each cluster is perfectly representative of the biological function
assigned to it. Likewise, each function is well represented by its assigned cluster. In
graph clustering methods, however, the clusters do not represent their representative
function well, as indicated by the lower precision score. Hence, proteins within the
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Fig. 4.11 Function
representativeness
(precision)
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Fig. 4.12 Function
representativeness (recall)
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clusters exhibit less functional coherence. The lower recall scores in graph cluster-
ing methods imply that only a fraction of nodes annotated with the representative
function are included in the cluster. That is, FUSE summaries contain functional clus-
ters that are more representative of the assigned function, and thus provide more
meaningful and interpretable higher-order functional maps of the underlying ppi.
While clusters without attribute coherence may still reveal novel biological insights,
assigning a function to represent such cluster could be misleading.

Qualitative evaluation. Next, we qualitatively compare the summaries generated
by both approaches for the DNA S.cerevisiae dataset. We argue that functional sum-
maries are best evaluated qualitatively, partly because of the lack of a gold stan-
dard dataset for higher order function-function associations. We chose small and
functionally specific subnetwork rather than large global networks so that qualita-
tive comparison is feasible. To this end, we extracted the subnetwork containing
DNA replication related proteins of S.cerevisiae network in IntAct (n = 105) as
evaluation dataset. This dataset is obtained from the S.cerevisiae global network
by extracting the induced subgraph whose proteins share DNA-dependent DNA
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Fig. 4.13 Functional summarization of DNA S.cerevisiae. a Summary at k = 20 obtained through
FUSE. Nodes represent functional clusters. The size of a node correlates with the number of proteins
that constitute the functional cluster. Edges represent associations between functional clusters; the
stronger the association, the thicker the lines. b Underlying protein interaction networks of α-DNA
polymerase, ε-DNA polymerase, δ-DNA polymerase, and DNA replication factor C complex

replication function. Here, we compare our results qualitatively against the MCL
approach. Figure4.13a shows the FUSE generated functionalmap andTable4.3 shows
the MCL generated clusters. FUSE is able to partition the network into major compo-
nents of DNA replication. Critically, DNA polymerase complexes (α, δ, ε) –
key components in DNA replication – are obtained. MCL, on the other hand, is not
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Table 4.3 Summary of DNA S.cerevisiae obtained through Cluster+Enrich (9 single member
clusters are excluded)

Cluster Precision Recall

Replication fork protection complex 0.8 0.67

Postreplication repair 0.8 0.8

DNA recombination 0.77 0.53

Nuclear origin of replication recognition complex 0.86 1.0

GINS complex 0.43 0.75

Negative regulation of cell cycle process 0.6 0.75

Alcohol metabolic process 0.5 0.5

DNA replication factor C complex 0.22 1.0

rRNA metabolic process 1.0 0.5

able to obtain the polymerases. Deeper analysis reveals that many proteins in the
DNA replication factor C complex cluster of Cluster+Enrich actually belong to DNA
polymerases. This is a misrepresentation.

As shown in Fig. 4.13b, proteins in DNA polymerase complexes α and
ε and DNA replication factor C complex strongly interact with each
other, forming a tight clique (with exception of 2 proteins). Hence, they cannot be
separated via graph structure alone. In case of δ DNA polymerase complex,
however, the situation is reversed. As it contains incomplete interaction data, the
cluster does not appear to be densely interacting relative to other clusters. This could
explain why MCL, which is highly dependent on structural data, did not identify the
complex.

4.7.3 Effects of Different Parameters

Effect of parameter k. Recall that the user-defined parameter k controls the granu-
larity of the summary. Intuitively, as k increases the amount of information contained
within the summary as well as its complexity increase. Fig. 4.14 reports the effect
of k on the summaries of test datasets. As k increases, the summary information
content (sic), denoted by SIC(Θ), rises rapidly until it saturates to a peak value
before tapering off.

SIC(Θ) =
∑

C(u)∈SΘ

−ψC(u)|V (u)|logpV (u) (4.9)

where pV (u) is the probability that a protein in network is annotated with term u or its
descendants. Note that summary profit cannot be used for comparing summaries with
different k values because it does not make any assumption about the information
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Fig. 4.14 Effect of k on
summary sic
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Fig. 4.15 Effect of k on
summary coverage

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600

sc
or

e

k

S.cerevisiae
D.melanogaster

H.sapiens
Alzheimers

content of a go term attribute. In contrast, sicmeasure is summary profit with a twist
– small clusters are weighted higher than large clusters. This allows one to compare
information content of summaries with different k values. Other factors being equal,
a summarywithmany small clusterswill containmore information than a single large
cluster. The above results imply that k is useful up to a certain value, after which
increasing k only increases summary complexity while providing little information
gain.

Figure4.15 plots the effect of k on coverage of the summary. Observe that except
for low k values, it is relatively stable as k varies. In fact, the amount of information a
summary can provide is limited by the resolution and completeness of the interaction
and annotation data. This could explain why S. cerevisiae summaries have consis-
tently higher coverage and information content than D. melanogaster summaries.
The H. sapiens summary contains the largest number of nodes and edges, and even
at k = 600, information content is still increasing. The smaller ad network, however,
reaches a peak of information content at k = 20.

Effect of parameters b and d. We investigate the effect of user-defined parameters b
and d on summary coverage and redundancy. We use the global S. cerevisiae dataset
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Fig. 4.16 Effect of b and d

with k = 100. Figure4.16 shows that increasing b or decreasing d lowers overall
summary redundancy at the expense of lower summary coverage. On the other hand,
when d is increased or b is decreased, both summary redundancy and coverage
increases. An intuitive explanation of this phenomenon is that more cluster overlap
penalty means fewer combination of clusters to choose from, and therefore lower
likelihood of finding a combination of clusters with high coverage. Both parameters
allow users to control the coverage and redundancy trade-off, depending on whether
it is preferable to have more coverage or less redundancy (Fig. 4.17).

Statistical significance. We now evaluate the statistical significance of a fuse gener-
ated summary. Evaluation of graph clusters is not trivial because there is no analytic
solution for the exact p-value of a cluster. However, an upper bound can be computed
to detect if the density of a subgraph of a given size is statistically distinct compared
to one that is randomly constructed. Given the graph G, we utilize the following
upper bound derived from [29] as the p − value of a functional subgraph cluster:

P(Rρ1 ≥ (1 + ε) log n/κ(ρ1, ρ)) ≤ (1 − ρ)0.5

2πρ0.5

(1 + ε) log n

nε(1+ε) log n/κ(ρ1,ρ)
(4.10)

where:



4.7 Experimental Results 85

Fig. 4.17 Running times of
FUSE (in sec.)
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ε = r − log n/κ(ρ1, ρ)

log n/κ(ρ1, ρ)
(4.11)

κ(ρ1, ρ) = ρ log
ρ

ρ1
+ (1 − ρ) log

1 − ρ

1 − ρ1
(4.12)

where ρ is the expected probability of observing an edge between two nodes, Rρ is
the size of the maximum subset of vertices that induce a ρ-dense subgraph, r is the
subgraph size, and n is |V |.

Using the p − value above, we compute the p − value upper bound of a given
fuse cluster and the associated cluster size needed to satisfy the upper bound. In
Table4.4, we show the upper bounds of p − value significance of at most 0.05 and
the cluster size needed to satisfy the bound. Observe that all of the clusters we obtain
from fuse summary are at least as large as the required size. Thus, these clusters
have p − values that are significant. One weakness of the above formulation is
that not all clusters can be associated with a meaningful p − value upper bound
(there are bounds larger than 0.05, thus they cannot be used to meaningfully assess
significance).

Effect of annotation loss. Next, we evaluate the effect of loss of annotations on
fuse algorithm. We observe how a summary changes when annotations are grad-
ually removed from the ppi network. To achieve this, we first let Θ0 be the fuse
summary generated using the full annotation dataset. Next, we remove a fraction of
the annotations. Let the annotation loss rate be the fraction of annotations removed.
For example, the annotation loss rate of 0.5 implies that half of the annotations in
the ppi network has been removed. Given this measure, we compared fuse sum-
maries of annotation loss rate from 0.05 to 1.0 against Θ0 generated from the human
ppi network.

To measure the similarity of a pair of summaries, we employ the Jaccard index
(ji) [30] evaluation measure. Given two summaries Θi and Θ j , the Jaccard index
is defined as J (Θ0,Θ j ) = A

A+B+C , where A is the number of protein pairs that is
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Table 4.4 The p-value significance of fuse clusters

Cluster size Cluster size to satisfy p-value p-value

4 1.940572357 1.99E-06

5 2.381391052 1.83E-05

4 2.51869916 3.31E-05

4 2.51869916 3.31E-05

3 2.51869916 3.31E-05

3 2.51869916 3.31E-05

3 2.51869916 3.31E-05

3 2.51869916 3.31E-05

3 2.51869916 3.31E-05

3 2.51869916 3.31E-05

7 2.740737755 7.99E-05

9 2.781159841 9.31E-05

5 2.839581494 1.16E-04

5 2.839581494 1.16E-04

5 2.839581494 1.16E-04

5 3.485484996 9.72E-04

5 3.485484996 9.72E-04

14 3.810967312 0.002456578

10 3.97437195 0.003801536

6 4.467241236 0.012844867

8 4.557278228 0.015816221

Fig. 4.18 Effect of
annotation loss
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co-clustered in both Θi and Θ j , B is the number of protein pairs co-clustered in
Θi but not Θ j , and C is the number of protein pairs co-clustered in Θ j but not Θi .
J (Θi ,Θ j ) ∈ [0, 1] and J (Θi ,Θ j = 1 if the summaries are identical.

Figure4.18 shows the effect of annotation loss on fuse summaries. We observe
that the Jaccard index similarity betweenΘ0 and a summary with annotation loss rate
gradually decreases as more annotations are removed. The gradual drop in similarity
suggests that our approach is robust against loss of annotation.
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4.7.4 Runtime and Scalability

Figure4.17 plots the running times of FUSE over the real datasets for generation of
summaries ranging from k = 3 to k = 600. Observe that it increases almost linearly
with k. Specifically, summarization of the yeast interaction network (the largest
available network) completes within 40min for k = 600. For practical sizes of k = 3
to k = 100, a functional summary of a ppi can be generated within few minutes.
Disease networks such as ad network can be completed in less than 10s.

We now assess the scalability of FUSE with respect to network size and |SΔ|.
Note that the latter feature is important as it will continue to grow as more annotation
information becomes available. To assess the scalability with respect to network size,
we generated synthetic networks of vertex size |V | = 100 to |V | = 20000. Note that
the largest available ppi (human network) has only around 9000 vertices. For every
term t , a vertex has a 2% probability of being annotated with it. The number of terms
is |SΔ| = 2769. The edge density of the synthetic networks is such that the probability
that a pair of vertices interact is 0.0025, resulting in an average of 1 million edges
in a network of 20000 vertices. Summary granularity is set to k = 50. To measure
the effect of |SΔ| on running time, we generated synthetic networks by varying |SΔ|
ranging from |Δ| = 100 to |Δ| = 10000.

Figures4.19 and 4.20 depict the scalability ofFUSEwith respect to |V | and |SΔ|. As
the number of vertices increases, the execution time of FUSE increases in a quadratic
fashion. In fact, it appears to increase almost linearly for networks with |V | < 10000.
For larger networks, the ψC(u) component and the fsg generation component take
up the bulk of the execution time. Observe that in Fig. 4.20, the fsg generation
component takes up bulk of the computation time and is independent of |SΔ|. As |SΔ|
increases, ψC(u) computation and iterative cluster selection time increases in near
linear fashion, demonstrating ability of FUSE to handle high-dimensional annotation
data.

Fig. 4.19 Scalability of
FUSE versus annotation size
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Fig. 4.20 Scalability of
FUSE versus vertex size
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4.8 Case Study on AD Network

In this section, we construct a low and a high resolution functional summaries of the
ad network to illustrate the benefits of FUSE in providing a higher level functional
view of the underlying ppi. A low resolution summary delineates broad functional
overview of the processes related to the disease whereas a high resolution sum-
mary provides in-depth functional landscape of the disease, revealing associations
between processes related to the disease. Figure4.2 shows a low resolution summary
(k = 10) of the ad network. It indicates that the ad network is represented by an
interconnection of several key processes, include protein phosphorylation (B7), cell-
cell signaling (B2, B3), and microtubule-based transport and localization (B1, B5)
processes.

Figure4.1 depicts a high resolution functional summary for k = 30. Defective
transport mechanism has major implications in ad. Consequently, several transport
and cytoskeleton organization related cellular processes are represented in the sum-
mary (A11, A22, A24, A26). Disrupted transport mechanism affects, among others,
synapse organization and vesicle trafficking (A6, A8, A23). In the literature, several
lines of evidence explain disruption of transport and its related processes in ad.
Amyloid-β plaques may lead to hyperphosphorylation of tau proteins, sub-
sequently causing microtubule defects and axonal transport impairment [31]. More
strikingly, recent findings indicate that vesicle transport itself play a causative role in
pathogenesis of the disease [32]. Glucose metabolic processes (A20) is
closely linked to microtubule-based processes (A22, A24). The link between bioen-
ergetics and transport in ad has been discussed in [33].

At the center of the summary lies protein folding and calcium ion
homeostasis pathways (A15,A17). Protein misfolding is central to ad pathogen-
esis [34].Misfolded amyloid-β accumulation is shown to induce calciumoverload,
leading to a variety of structural and functional disruption in neurons [35]. The two
functional clusters are among the nodes with the highest degree in the summary. Cell
fate processes that trigger or inhibit differentiation and cell fate (A9, A10, A12) are
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also linked to ad [36]. It has been suggested that Wnt signaling dysregulation,
a key developmental pathway, leads to reduced synaptic plasticity and function in
ad [37]. Processes such as peptide cross-linking and negative regulation of angio-
genesis (A3, A4) imply vascular roles in ad pathogenesis [38].

From signaling regulation perspective, five major signaling pathways are impli-
cated – small GTPase (A28), Notch (A14), Wnt receptor (A18), glutamate
(A21), and G-protein coupled receptor signaling pathways (A16). Sev-
eral functional clusters connect withmultiple signaling pathways, indicating that sig-
naling pathways crosstalk in ad pathogenesis. For instance, the
serine/threonine kinase GSK-3β, a potential therapeutic target, is known
to be regulator of both the G-protein coupled receptor pathway and the
Wnt/β-catenin signaling pathway [39]. PS1may be involved in regulating both
Notch and Wnt pathways in ad [40].

The tight interplay of multiple pathways and processes in the aforementioned
functional summary of ad network highlights the complexity of the disease. The
disease remains poorly understood despite decades of research. While the summary
does not suggest causal relationships, in part because of the undirected nature of the
fsg, we hope that by having a global, big picture view of process-process interac-
tions, researchers can better identify the causative mechanisms of ad. Most studies
considered an aspect of the processes in isolation. An integrative study, however, may
lead to a more consistent view of the disease that addresses distinct, often competing
hypotheses (Table4.5).

Table 4.5 High-degree CC functional clusters in the H. sapiens summary (k = 400)

CC Functional Cluster Degree

Heterogeneous nuclear ribonucleoprotein complex 183

Cytosolic large ribosomal subunit 161

Cytosolic small ribosomal subunit 158

Coated pit 158

Mitochondrial nucleoid 149

Chaperonin-containing T-complex 148

CRD-mediated mRNA stability complex 141

NuA4 histone acetyltransferase complex 136

Actin filament 135

Actomyosin 134

Clathrin coat of coated pit 133

Nonhomologous end joining complex 124

Endocytic vesicle membrane 124

Nucleosome 124

Nuclear inner membrane 123
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4.9 Inferring Functional Cluster Hubs

Structural information provided by the summaries presents an opportunity to study
the topology and connectivity of higher order abstractions of the underlying ppi
network.Herewe analyze the association patterns of functional clusters in summaries
of the global H. sapiens ppi. To this end, we generate cellular component (cc) and
biological process (bp) summaries of the human network. For each summary type,
we vary the level of detail by setting k from 50 to 400.

Figure4.21 shows the frequency-degree plots of the functional clusters at different
k values. At the broadest level of abstraction (k = 50), long-tailed degree distribution
of functional clusters is not observed. As level of detail increases to k = 400, the
smaller and more specific clusters exhibit increasingly pronounced long-tailed dis-
tribution characteristics. We note that the cdf plots on a semi-log scale form straight
lines at higher k values (k = 200 and k = 400), implying exponential distribution of
the cluster degrees.

In light of heavy-tailed distribution of functional cluster degrees at higher k values,
we identify functional cluster hubs in the summary of the human network (k = 400)
(analogous to identification of protein hubs). While Patil and Nakamura defined hub
as proteins having degree of more than 6 [41], we chose a higher threshold such that
they correspond to the 15 most connected functional clusters. The list of functional
hubs is shown in Table4.6.

We observe that cc cluster hubs in S. cerevisiae can be categorized into several
major functional groups. A significant percentage of the cluster hubs –
such as cytosolic large ribosomal subunit, cytosolic small

Fig. 4.21 Connectivity of functional clusters inH. sapiens network. Functional cluster degree CDF
plots for BP and CC summaries at varying cluster granularity. Plots are on a semi-log scale
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Table 4.6 High-degree BP functional clusters in the H. sapiens summary (k = 400)

BP Functional Cluster Degree

Actin filament bundle assembly 208

Regulation of defense response to virus by virus 206

Negative regulation of catabolic process 204

Peptidyl-threonine phosphorylation 200

Signal complex assembly 189

Positive regulation of protein complex assembly 182

Regulation of nitric oxide biosynthetic process 181

Glial cell development 178

Cell killing 178

Regulation of cytokine-mediated signaling pathway 174

Protein stabilization 174

Actin filament capping 170

Activation of MAPKK activity 169

T cell receptor signaling pathway 164

Regulation of RNA splicing 164

ribosomal subunit, eukaryotic translation initiation
factor 4F complex, preribosome, small subunit precursor,
preribosome, large subunit precursor, and polysome– are core
to regulation and functioning of protein translation. It is unsurprising that these func-
tional clusters have high degree, since every protein must be translated or regulated
by these machinery. The complexity of this mechanism also suggests that it requires
many processes to regulate it.

Complexes involved in chromatin remodeling and transcription, including
nuclear nucleosome, Ino80 complex, replication fork
protection complex, ASTRA complex, and Swr1 complex, are also
highly represented. The functional cluster vacuolar proton-transporting
V-type ATPase complex is known to have diverse roles and is associated with
a wide array of processes [42].

Apart from that, we also observe the existence of several ‘currency structures’
– structures that may be acted upon by proteins from multiple processes. They are
generally not specific to a single biological process. We classify clusters nuclear
nucleosome, nuclear microtubule, cytoplasmic microtubule,
and extra-cellular region as such.

Next, we analyze the BP functional cluster hubs. From Table4.6, we found
many translation related processes (regulation of translational
initiation, translational elongation, translational
termination, tRNA aminoacy-lation for protein translation,
negative regulation of translation, positive regulation
of translation,ribosomal small subunit assembly,ribosomal
large subunit assembly). Chromatin assembly and remodeling processes
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(nucleosome assembly and nucleosome disassembly) also serve as
key process hubs. Finally, we found major post-translation protein modification and
transport processes, such as protein refolding, ATP synthesis
coupled proton transport, co-translational protein
targeting to membrane, and proteasome assembly, acting as hubs.

4.10 Conclusions

In this chapter, we present FUSE, a data-driven and generic algorithm for generating
functional summaries at multiple resolutions from a ppi to provide a high level view
of its functional landscape. It generates the “best” summary from both interaction
and annotation data by maximizing information gain for a specific resolution. Our
experimental study with real-world ppis revealed that FUSE is effective and have
higher accuracy compared to graph clustering techniques. It is also robust against
incomplete interaction knowledge (e.g.,ad network in IntAct).We note that the graph
clustering techniques have the ability to uncover novel complexes whereas FUSE

is designed to determine process-process, complex-complex, and process-complex
associations with higher confidence. In this aspect, network clustering and functional
summarization play complementary roles in addressing the information overload
problem.
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Chapter 5
Multi-faceted Functional Decomposition

In this chapter, we present a ppi decomposition algorithm called FACETS [1] in order
to make sense of the deluge of interaction data using go annotation data. A key
distinguishing feature of FACETS is that it finds not just a single functional decom-
position of the ppi network, but a multi-faceted atlas of functional decompositions
that portray alternative perspectives of the functional landscape of the underlying
ppi. Each facet in the atlas represents a distinct interpretation of how the network
can be functionally decomposed and organized. Specifically, the FACETS algorithm
maximizes interpretative value of the atlas by optimizing inter-facet orthogonality
and intra-facet cluster modularity.

5.1 Motivation

Recall that graph clustering algorithms [2–4] discover regions of dense connectivity
that represent protein complexes or functionally coherent processes. Unfortunately,
these methods output only a single optimal functional decomposition of the ppi net-
work. Consequently, a ppi network can only be decomposed and viewed from a single
perspective, whereas in reality there are often multiple different perspectives (decom-
positions) associated with the functional organization of the underlying network, all
of which are distinct and equally valid. We refer to each of these decompositions as
a facet because they visualize the organization of a ppi network from a unique view,
providing a distinct interpretation of the organization of the underlying network. For
example, consider the toy transcriptional regulatory network depicted in Fig. 5.1. A
typical decomposition, based on an existing graph clustering technique (e.g., MCODE
in [2]), identifies dense regions of the network, which correspond to the decompo-
sition of protein complexes as shown in Facet 1. However, this network can also be
viewed from other different perspectives. For instance, it can be organized by the
types of signaling pathways involved in it (Facet 2). Notice that the decomposition
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Fig. 5.1 Illustration of multi-faceted ppi network decomposition

from this perspective is markedly different from the complex-based decomposition.
Furthermore, different proteins in the network may undergo various modifications
such as acetylation, phosphorylation, and ubiquitination. Hence, yet another way
to decompose the network is by their modification effects as depicted in Facet 3.
Clearly, in larger real-world networks the possibility of uncovering multiple, distinct
functional decompositions is real.

At first glance, it may seem that we can tune the clustering parameters of existing
graph clustering techniques in order to generate multiple facets or decompositions.
Unfortunately, such tuning only generates an exponential number of slightly per-
turbed decompositions with incremental differences. In other words, such strategy
does not generate functionally unique decompositions. In contrast, it is imperative
to ensure that the decompositions or facets are distinctive, i.e., they are maximally
different from each other. This is because every facet should provide a fresh and
informative perspective to the organization of the network, rather than providing just
incremental differences with respect to other facets.

This chapter presents an algorithm called FACETS [1] that discovers an atlas of
functionally unique decompositions from a ppi network, portraying alternative views
of the functional landscape of the network (detailed in Sect. 5.3). Each decomposition
or facet represents a distinct interpretation of how the network can be functionally
decomposed and organized. Since a key objective is to obtain n unique facets that
are informative and orthogonal,1 the algorithm maximizes interpretative value of
the atlas by optimizing intra-facet cluster modularity and inter-facet orthogonality.
Intra-facet cluster modularity captures the aim of decomposing a ppi network G
based on a particular functional and/or structural view. For instance, based on com-
plexes and localized structures, G can be decomposed into protein complexes. If we
consider regulatory processes as a functional concept, thenG can be decomposed into
signaling and regulation pathways, an entirely different decomposition. Inter-facet
orthogonality, on the other hand, demands that the n facets are structurally distinc-
tive and functionally apart from each other. Hence an objective function is proposed
that models these intuitions and FACETS exploit it to discover a set of distinct facets.

1We use the term orthogonal to describe the idea of distinctive clusters, rather than its precise
mathematical meaning.
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Specifically, both the ppi graph structure and the rich functional information provided
by go annotations are exploited to guide facets construction.

5.2 Related Work

Multi-view clustering is a poorly studied problem in the data mining community [5].
Still, there are several work that have focused on multi-view clusterings in image and
text mining domain [6]. One approach projects data into an alternative subspace [7].
Another approach generates alternative clustering through the use of must-link and
cannot-link constraints [8]. In Meta-Clustering [9], a large number of clusters are
generated, and clusters which are truly different are selected. All of the aforemen-
tioned approaches, however, assume data points in the vector space that allow the
notion of metric distances in a Euclidean geometry. On the other hand, our problem
demands a multi-view clustering methodology on attributed graphs, which requires a
graph clustering paradigm on both structure and annotation. To the best of our knowl-
edge, multi-view clustering paradigm has not been applied in clustering biological
networks to identify pertinent functional modules from multiple perspectives.

Ensemble clustering methods generate an ensemble of near-optimal decomposi-
tions [10–12]. These methods have been used to increase the quality and confidence
of the decomposition and understand network dynamics. The near-optimal decompo-
sitions generated, however, have no notion of orthogonality that this work is seeking.
Instead, ensemble clusterings create a large number of perturbed solutions, mak-
ing them unsuitable as an atlas of functionally distinct decompositions. For instance,
in [13], a small network of 32 nodes generated at least 82 permutations of clusterings.

5.3 Problem Statement

In this section, we formally introduce the multi-faceted functional decomposition
problem. We begin by defining some terminology that we shall be using in the
subsequent discussion in this chapter. We use the network in Fig. 5.1 as running
example.

5.3.1 Terminology

A facet (decomposition or view) of G, denoted by F , is a set of functional modules
{C1, . . . ,Cm} representing a specific functional concept. Functional modules within a
facet F are allowed to overlap. In the sequel, the terms facet, view, and decomposition
are used interchangeably. A functional atlas (or atlas for brevity) of G, denoted by
A, is a set of facets {F1, F2, . . . , Fn} that represents distinctive functional landscapes
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of G. Figure 5.1 depicts an atlas of 3 facets, with each facet decomposing the network
into 3 functional modules.

Similar to FUSE, go annotations associated with proteins are utilized to define
the multi-faceted functional decomposition problem. Given a go directed acyclic
graph (dag) D = (Vgo, Ego), the ordered set Δ = 〈Δ1,Δ2, . . . , Δd〉 is a topolog-
ical sort of D, where Δi represents a single go term. Each vertex v ∈ V is asso-
ciated with a d-dimensional function association vector Δv ∈ {0, 1}d , such that
Δv = 〈Δv

1,Δ
v
2, . . . , Δ

v
d〉, Δv

i ∈ {0, 1} where Δv
i = 1 if and only if the term Δi ∈ D

or its descendants are associated with protein v, and Δv
i = 0 if otherwise.

A facet candidate bundle Bi = {G1,G2, . . . ,Gm} is a set of connected subnet-
works of G such that for every Gk ∈ Bi , there is a shared go term Δi within every
v ∈ Vk . Δi represents the common function of the candidate subnetwork. A facet can-
didate bundle Bi represents the superset of facet Fi , and it contains a large permutation
of subnetworks that satisfy a particular functional concept. Typically, |Fi | � |Bi |. A
function bundleωi = {Δ1,Δ2, . . . Δm} is the set of shared go annotations of Bi , i.e.,
ωi = ⋃

Gk∈Bi
ΔGk . To illustrate these concepts, consider the ppi network in Fig. 5.1.

Suppose that B1 is a facet candidate bundle with ω1 = {Δ1,Δ2}, where Δ1 repre-
sents the Swr1 complex go term and Δ2 the Histone term. In the subgraph
with ‘Swr1 complex’ label in Facet 1, every node in that subgraph is annotated
with Swr1 complex term. Thus, the subgraph is a valid member of B1. Any sub-
graph made up of ‘Swr1 complex’-labeled nodes is also a valid member of B1.
If B2 represents the facet candidate bundle with ω2 = {Δ3}, where Δ3 represents
cellular component, then the ‘Swr1 complex’-labeled subgraph is also
a valid member of B2 (Swr1 complex is a cellular component). Further-
more, every subgraph in Facet 1 whose nodes are labeled is a valid member of B2,
but not necessarily a valid member of B1. One can see that Bi contains a set of sub-
graphs that shares specific functional concepts depending on the functional terms in
ωi . We define the function f : P(Vgo) → A given by f (ωi ) = Fi to make explicit
the association between a functional bundle and its corresponding facet.

A function bundle partitionΩ = {ω1, ω2, . . . , ωn} is a set of function bundles that
forms a partition of all go terms Vgo, i.e.,

⋃
ωi∈Ω = Vgo. In the next section, further

constraints on facet candidate bundles and function bundles are imposed such that
the shared go terms of the subnetworks within each facet candidate bundle share
high functional commonality and the terms share in one facet are distinct from the
terms in another facet.

5.3.2 Multi-faceted Functional Decomposition Problem

The goal of multi-faceted functional decomposition problem is to identify an atlas of
n distinct facets of G that maximizes inter-facet orthogonality and intra-facet cluster
modularity. Each facet depicts a higher-order organization of modules of G. Recall
that inter-facet functional orthogonality demands that each of the n facets is based
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on an orthogonal functional concept – facets that are distinctive and functionally
apart from each other. Hence, two criteria are proposed that model the intra-facet
functional modularity and inter-facet orthogonality of an atlas solution. Next, an
objective function is introduced that models and scores an atlas of G.

Intra-facet cluster modularity. Intra-facet cluster modularity enables us to seek
clusters that are both structurally and functionally modular. Given ωi , Ω , and G,
ω-restricted decomposition procedure (denoted by gω) computes a decomposition
of G into Fi such that Fi satisfies the following criteria:

• Criterion 1. Every module C j ∈ Fi should be functionally bounded by ωi . Let
DCj = {Δ1,Δ2, . . . , Δm} be the set of shared terms in C j , i.e., for every v ∈ V j

c ,
v must be annotated with every Δi ∈ DCj . Then, the functional boundedness of
module C j by ωi is given by r(C j , ωi ) = DCj ∩ ωi . A cluster C j is bounded by ωi

if r(C j , ωi ) �= ∅. An ωi -restricted decomposition of a facet draws from a restricted
search space of subnetworks in G whose vertices share at least a term within ωi .
Intuitively, this means that for any subnetwork to be considered as a module, it
must first be sharing a term in ωi . Even if a subnetwork is dense, it must yield
to sparser subnetwork candidates if it is not enriched with terms within ωi . In
the example of Fig. 5.1, if ω1 is terms of protein complexes, then any subgraphs
enriched with complex terms is in the search space for Facet 1. In contrast, the
modules of Facet 2, enriched with signaling terms, would be invalid candidates
for Facet 1 decomposition. This restricted search space is modeled by facet bundle
Bi , where any valid candidate facet cluster C j of facet Fi must belong to Bi .

• Criterion 2. A facet Fi decomposes G by maximizing a clustering objective func-
tion o(Fi ) while satisfying the above criterion. o(Fi ) is determined by the specific
graph clustering algorithm that is adapted for creating a facet; for generality we
let this be the objective function o(Fi ) that has to be maximized by the graph
clustering algorithm. For instance, every module C j ∈ Fi has to be structurally
dense and/or functionally coherent (i.e., every node in a module shares a common
function), the coverage of Fi has to be high, and the amount of overlap between
modules should be low. For example, modules of Facet 2 maximize o(F2) while
satisfying the ω2 bound, despite not forming dense modules. This is because all
dense modules formed are enriched with complex terms, violating the ω2 bound.

Inter-facet orthogonality. Since we want every facet in the atlas to be functionally
and structurally distinct, modules within a facet, as whole, should be structurally
and functionally distinct from modules within another facet. We discuss two inde-
pendent distance measure between facets: functional orthogonality and structural
orthogonality.

Functional orthogonality is indirectly controllable by the function bundles
attached to facets, which determines the types of allowable modules through the
aforementioned restriction. By increasing inter-bundle functional orthogonality, we
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increase the functional distinctiveness of each facet. To impose functional orthogo-
nality, we introduce the following constraint: for every ωi , ω j ∈ Ω , ωi ∩ ω j = ∅
and

⋃
ωi∈Ω = Vgo. This requires that Ω actually partitions the terms of the go

dag. The functional distance measure between Δi and Δ j , denoted by d(Δi ,Δ j ),
measures the functional dissimilarity between the terms. Here, d(Δi ,Δ j ) is sim-
ply computed as the length of the shortest path between the terms: d f (Δi ,Δ j ) =
minΔr∈R|p(Δr ,Δi )| + |p(Δr ,Δ j )|, where R is the set of common ancestors of term
Δi and Δ j and |p(i, j)| is the length of the shortest path from node Δi to Δ j in D.
The candidate function specificity s(Δi ,Cu) is defined as

s(Δi ,Cu) = |{Δi ∈ Δv|v ∈ V u
c }|

|{Δi ∈ Δv|v ∈ V }|
In the above equation, s(Δi ,Cu) measures the specificity of a shared go term,

which we will later use to weigh the contribution of the term. For instance, a cluster
C j of 5 nodes that share the biological process go term in a network of 1000
biological process annotated nodes has a low specificity value of 0.005 with
respect to the term.

Likewise, we define structural orthogonality. The structural distance measure
between two clusters Cu and Cv is defined as

ds(Cu,Cv) = 1 − |Eu
C ∩ Ev

C |/|{(vi , v j )|vi ∈ V u
C ∩ V v

C , v j ∈ V u
C ∪ V v

C , (vi , v j ) ∈ Eu
C ∪ Ev

C }|
(5.1)

ds(Cu,Cv)measures difference between 1 and the ratio of the number shared edges
between Cu and Cv over the number of edges incident to V u

C ∩ V v
C . The distance is 0

if Cu and Cv shares all edges and 1 if Cu and Cv shares no edges.
Following that, we define t (Ω, A) as the linear combination of inter-facet func-

tional and structural orthogonality, as follows:

t (Ω, A) = γ
∑

ωi ,ω j∈Ω
i �= j

{
∑

Δ j∈DC j
C j∈ f (ω j )

∑

Δi∈DCi
Ci∈ f (ωi )

s(Δi ,Ci )s(Δ j ,C j )
d f (Δ j ,Δi )

|V j
p ||V i

p|
}

+(1 − γ )
∑

Δu∈DCu ,Cu∈Fi
Fi∈A

∑

Δv∈DCv ,Cv∈Fj
Fj∈A,i �= j

s(Δu,Cu)s(Δv,Cv)ds(Cu,Cv)
(5.2)

The parameter γ weighs the contribution of ds against d f , and is set to attain balanced
contribution from both terms. Note that t (Ω, A) quantifies the pairwise orthogonality
between two function bundles. The higher the score, the greater the orthogonality.
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5.3.3 Problem Definition

The multi-faceted functional decomposition ofG is defined as the problem of simulta-
neously constructing the atlas of decompositions A = {F1, . . . , Fn}, and the function
partition Ω = {ω1, . . . , ωn}, such that the following objective function is maximized:

max
A,Ω

λt (Ω, A) + (1 − λ)|A|−1
∑

Fi∈A

o(Fi )

subject to Cs ∈ Bi∀Cs ∈ Fi , 1 ≤ i ≤ n
(5.3)

The right half of the terms captures the cost function of decomposing G into A;
the left half, decomposing D into Ω . The parameter λ ∈ [0, 1] controls the weight
between the two terms. Observe that one has to optimize these criteria simultaneously
over the space of A and Ω . Otherwise, one may end up with a poor objective score.
For instance, if t (Ω, A) is high (meaning highly orthogonal partitioning), but Ω is
improperly partitioned such that one ends up with ωi that allow only poor decompo-
sitions, then the o(Fi ) score would be very low. Due to the interdependence of the
criteria, optimizing the aforementioned function is computationally expensive.

5.4 FACETS Algorithm

Generally, the problem of finding clusters that maximizes typical clustering objective
functions that relate to graph density is known to be NP-hard [14]. Hence the FACETS

algorithm is a heuristic implementation that attempts to find a local maximum of
the objective function. The heuristic deployed is a step-wise iterative approach that
incrementally optimizes Ω and A, one at a time. Intuitively, given an attributed
ppi network (e.g., Fig. 5.2a), Ω is incrementally updated by using each facet in A as
functional centroids, and then using the centroids to partition D. A is updated through
ω-restricted decomposition using the updated Ω . The FACETS algorithm consists of
two phases: the initialization phase (Fig. 5.2b), and the iteration phase (Fig. 5.2c, d).
We describe each of them in turn.

5.4.1 The Initialization Phase

This phase creates an initial set of decompositions for the second phase. It per-
forms graph clustering on G to obtain an initial set of modules. To this end, the
FUSE algorithm is utilized. Each module of this set is then randomly associated with
a facet, randomly distributing the modules over an initial set of facets. Following
that, we construct candidates subnetworks, which use subnetworks of G that sat-
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Fig. 5.2 Illustration of the FACETS algorithm. a go annotated ppi network is used as input. b The
set of candidate subnetworks are computed c An initial set of modules are randomly assigned to a
facet. Candidate subnetworks are then assigned to their nearest facet based on function and structure
distance. d For each facet, decomposition is performed to identify modules that are functionally
contained by the facet candidate bundle. e The candidate subnetworks are reassigned based on their
distance to the new set of modules identified. Convergence is achieved when the number of terms
reassigned to a different facet drops below the threshold parameter θ . Otherwise, steps d–e are
repeated

isfy ωi -restricted decomposition constraint. To generate candidates exhaustively is
prohibitively expensive. Instead, candidates for a facet Fi are generated as follows:
for every go term Δ ∈ ωi , we obtain the induced subnetwork in G whose nodes are
annotated with Δ or its descendants. The subnetwork is then decomposed into con-
nected components, each forming a candidate subnetwork G j . Let ΔC

j = Δ be the
term associated with this candidate. Candidates formed this way can vary greatly in
resolution of the annotation that its nodes share (for example, ΔC

j = biological
process), and can be highly overlapping.

5.4.2 The Iteration Phase

This phase – the actual optimization phase – is performed in rounds. Let i denote
the i-th iteration of the algorithm. At each round, the algorithm updates A and Ω

in two sequential steps. To evaluate algorithm convergence, we introduce functional
reassignment – the number of terms in Δ that is reassigned to a different function
bundle after step 1 of i-th iteration. This score measures the rate of change of Ω ,
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indicating how close the algorithm is to convergence. Observe that when Ω is fixed,
the algorithm reaches a steady state. The algorithm reaches convergence and termi-
nates when the functional reassignment at i-th iteration drops below convergence
threshold θ , a user-defined parameter.

Update Ω . In this step, we assume that A is a constant and update Ω to increase
t (Ω, A). For each Fi ∈ A, the enriched functional terms of the modules in Fi serve
as centroids for partitioning D into orthogonal concepts; these enriched terms as
whole form the centroid of ωi , which is associated with Fi . We then reassign every
candidate subnetwork to its nearest centroid to form a partition Ω . The convergence
properties of such centroid-based partitioning approaches (e.g., K-Means) has been
well studied [15]. For every G j ∈ Bi , 1 ≤ i ≤ n, we determine its closest centroid
by considering G j ’s average functional and structural distance to functional modules
within a facet. The facet that is closest to G j is indicated by:

dc(G j , Fk) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if
1

Z(Fk)

∑

Ci∈Fk
s(ΔC

i ,Ci )φ(Ci ,G j )

≤ 1

Z(Fk ′)

∑

Ci∈Fk′
s(ΔC

i ,Ci )φ(Ci ,G j )

k ′ �= k, where

φ(Ci ,C j ) = γ
d f (Δ

C
i ,ΔC

j )

|V j
p ||V i

p|
+ (1 − γ )ds(Ci ,C j )

Z(F) =
∑

Ci∈F
s(ΔC

i ,Ci )

0 otherwise

(5.4)

Following that, G j is reassigned to nearest facet candidate bundle Bk (superset of
Fk) and Ω is updated based on where every ΔC

j ∈ Vgo is assigned to. Each function
bundle ωi ∈ Ω represents functional terms that are most closely associated with Fi ,
and the decomposition of Fi in the following step will be bounded by the updated
ωi . Function partitioning depends on the atlas of decompositions because not every
partition of the go dag is capable of forming a modular decomposition of functional
modules.

Update A. In this step, we update A to maximize the objective function while fixing
Ω . To support ωi -restricted decomposition of Fi , we propose an algorithm that
employs profit maximization model (discussed below) and runs in iterations. At
each iteration, we score candidate subnetworks based on a profit maximization model
and greedily selects the best scoring candidate as member in Fi . An iteration runs
for every Fi ∈ A before moving to the next iteration. Every candidate considered
for Fi must satisfy the ωi -restricted decomposition constraint, i.e., the candidate
subnetwork must be enriched with terms in ωi . In other words, G j ∈ Bi .

We now describe the profit maximization model for scoring a candidate G j ∈ Bi .
Every v ∈ V is assigned an information budget. A candidate G j extracts, from each
v ∈ VG

j , some information revenue from the budget pool. The revenue extracted is
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Algorithm 3 Algorithm FACETS

Input: G, Δ, D, k, b, d, β, n, θ

Output: A
1: S = FUSE(G, Δ, D, k, b, d, β)
2: A = {F1, F2, . . . , Fn} where Fi = ∅
3: for C(u) ∈ S do
4: Fr = Fr ∪ C(u) where r is randomly 1 to n
5: end for
6: while reassignment (Ωold ,Ω) > θ do
7: Ωold = Ω

8: Ω = {B1, B2, . . . , Bn} where Bi = ∅
9: for Fi ∈ A do
10: for G j ∈ Bi , Bi ∈ Ωold do
11: Fmin = argminFi dc(Fi ,G j )

12: Bmin = Bmin ∪ G j
13: end for
14: end for
15: Ω = {B1, B2, . . . , Bn}
16: for Fi ∈ A do
17: Fi = FUSE(G, Δ, Bi , k, b, d, β)
18: end for
19: end while
20: for Fi ∈ A do
21: for C(i),C( j) ∈ Fi do
22: if C(i) �= C( j) and Pi (X > ocC(i)C( j)) ≤ 2β/|S|2 then
23: Add edge (C(i),C( j)) to F
24: end if
25: end for
26: end for

correlated to the edge density of the subnetwork, with modular candidates giving
high revenue. Each time a candidate is selected, revenue is removed from the budget
pool and a cost is incurred. A penalty cost is incurred for a candidate that is struc-
turally similar to selected clusters in other facets Fi ′ �= Fi . This penalty is modeled
by cost (G j ) =

∑

C ′∈Fi ′ ,i ′ �=i

ds(G j ,C
′), which utilizes the structural distance measure

ds described earlier. At each iteration, the candidate that contributes the highest infor-
mation profit (revenue minus cost) is selected. To summarize, a clustering in Fi that
yields high overall revenue have subgraphs with high facet modularity o(Fi ), while a
clustering with low overall cost yields high inter-facet orthogonality t (Ω, A). Given
a fixed Ω , the set of facets A with maximum overall profit maximizes the objective
function. The algorithm above approximates this through greedy heuristic.

Algorithm 3 shows the steps of the FACETS algorithm. We illustrate the algorithm
with the example shown in Fig. 5.2. The initialization step constructs a set of initial
candidate subnetworks and assigns them randomly to a facet (lines 1–5, Fig. 5.2b,
c). Following that, the update Ω and update A steps are performed iteratively until
convergence (lines 6–19, Fig. 5.2d, e). In the update Ω step, each candidate subnet-
work is assigned to its nearest facet (lines 7–15, Fig. 5.2d), while in the update A, a
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Table 5.1 Datasets used in FACETS

Dataset #nodes #edges Source

H. sapiens 9131 34362 IntAct [16]

S. cerevisiae 4768 40457 IntAct

D. melanogaster 3114 6472 IntAct

Human autophagy 1241 3555 IntAct

restricted FUSE profit maximization heuristic is performed to identify the best set of
subnetworks that represent a facet (lines 6–19, Fig. 5.2d). Finally, upon convergence,
the network for each facet is constructed (lines 20–26, Fig. 5.2e).

5.5 Experimental Study

The FACETS algorithm is implemented in Scala. We now present the experiments
conducted to study the performance of FACETS and report some of the results here.
All experiments were executed on a 1.66 GHz Intel Core 2 Duo T5450 machine with
3 GB memory.

5.5.1 Experiment Settings

We primarily used the global human ppi network from IntAct [16], as well as the yeast,
fruit fly, and human autophagy networks from IntAct (Table 5.1). In all experiments,
we set the convergence threshold θ = 5. The weight γ is set to 0.091 to balance the
contribution of structure and function (equal order of magnitude). We utilize only
the Cellular Process sub-domain of the Gene Ontology so that the facets are
created not merely based on different go domains, but created based on more subtle
functional differences.

To measure the similarity/dissimilarity between facets or decompositions, we
employed the Jaccard index (ji) [17] evaluation measure, which is widely used to
compare clusterings based on counting the agreement or disagreement of co-clustered
pairs of proteins. Given two decompositions (or facets) f1 and f2, the Jaccard index
is defined as

J ( f1, f2) = A

A + B + C

where A is the number of protein pairs that is co-clustered in both f1 and f2, B is
the number of protein pairs co-clustered in f1 but not f2, and C is the number of
protein pairs co-clustered in f2 but not f1. J ( f1, f2) ranges from 0 to 1 (for identical
clusterings).
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Table 5.2 Comparison between facets of the H. sapiens ppi network (n = 6)

JI score

Facet #Modules Coverage Fct 1 Fct 2 Fct 3 Fct 4 Fct 5 Fct 6

1 89 294 1.0 0.014 0.065 0.0050 0.0070 0.079

2 280 1079 0.014 1.0 0.0040 0.119 0.0050 0.0070

3 106 372 0.065 0.0040 1.0 0.0010 0.0 0.013

4 94 419 0.0050 0.119 0.0010 1.0 0.0 0.0080

5 114 390 0.0070 0.0050 0.0 0.0 1.0 0.0010

6 72 306 0.079 0.0070 0.013 0.0080 0.0010 1.0

Coverage overlap

Facet Fct 1 Fct 2 Fct 3 Fct 4 Fct 5 Fct 6

1 1.0 0.316 0.142 0.081 0.044 0.112

2 0.086 1.0 0.077 0.09 0.082 0.079

3 0.112 0.225 1.0 0.029 0.059 0.086

4 0.057 0.233 0.026 1.0 0.028 0.052

5 0.033 0.228 0.056 0.03 1.0 0.038

6 0.107 0.281 0.104 0.071 0.049 1.0

5.5.2 Results

Quantitative Assessment
Table 5.2 shows the quantitative comparison between facets. We measure the inter-
facet decomposition similarity using the ji score. The low clustering similarity scores
between facets show that they are decomposed distinctively. This reflects signifi-
cant organizational differences between modules of signaling pathways and protein
complexes. We measure the coverage of a facet and the extent of coverage overlap
between the facets. Let the coverage of a facet Fk be Cvg(Fk) = |⋃Vc∈Fk Vc|. Also,

let the extent of coverage overlap between Fi and Fj be Ext (Fi , Fj ) = |Vi∩Vj |
|Vi | , where

Vi = ⋃
Vc∈Fi Vc and Vj = ⋃

Vc∈Fj
Vc. The extent of overlap between facets reaches

up to 0.316. Consequently, the overlap is not insignificant, implying that the facets
are not partitions of G.

Validation on Real Data
In this experiment, we compare the FACETS atlases of the global human network to
gold standard functional modules. The gold standard datasets were constructed as
follows: (1) mips – We use the set of 571 human complexes (of more than 3 pro-
teins) from mips [18] to represent the decomposition of the human interactome into
complexes. (2) kegg-metabolic – To represent decomposition into metabolic
modules, we use 67 human metabolic networks from KEGG, each representing a
single functional module. (3) kegg-signaling – We use 23 human signal trans-
duction pathways from KEGG to represent decomposition into signaling pathways.
The gold standard decompositions were chosen such that each represents a distinct
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Fig. 5.3 Comparison between the decomposition similarities of FACETS, other methods, and gold
standard decompositions

functional organization of the human network. As such, we consider each gold stan-
dard dataset as a facet of the human network, and the set of these three datasets as the
gold standard atlas of the human network. We then compare these datasets against
the atlas of facets obtained through our algorithm and determine if there is a distinc-
tive one-to-one mapping between our facet and a gold standard facet. We set n = 6
and repeated the tests fifteen times under different starting conditions to account for
variability in FACETS output. We also compare the similarity scores against graph
clustering methods, namely Markov clustering (MCL) [3], MCODE [2], Nemo [19],
and FUSE [4]. These methods create a single decomposition of the human network.
We removed clusters with fewer than 3 proteins. We also compare against go term
enrichment (enrich) [20], which does not utilize structural information. Following
that, we measure the clustering similarities between the gold standard datasets and
the decompositions obtained. Figure 5.3 shows the clustering similarities between
modules in gold standard datasets and modules in facets as well as tested graph
clustering methods. The Jaccard index were used to measure the agreement between
pairs of decompositions. We normalize the scores so that the highest ji score obtained,
within each gold standard dataset, is adjusted to 1.

We consider the facet best associated with a gold standard decomposition by
comparing their relative scores. The gold standard datasets are uniquely mapped to a
distinct facet: kegg-metabolic is most similar to Facet 3, kegg-signaling
is most similar to Facet 2, and mips is most similar to Facet 1. This unique mapping
demonstrates that from a clustering perspective, the facets have significant functional
orthogonality such that they are uniquely associated with different functional orga-
nization maps. Facet 6 has poor similarity to the gold datasets, indicating a set of
clusters that could be functionally distinct from these datasets.

In contrast, the tested graph clustering methods share common similarity patterns.
Clusters are largely from a single dominant perspective – those of protein complexes
(mips). We argue that objective functions based on dense connectivity tend to favor
protein complex structures over other decompositions like metabolic pathways. go
term enrichment, on the other hand, generates output with little similarity to all gold
standard datasets, indicating that annotations alone are unable to specifically identify
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Fig. 5.4 Effect of noise on FACETS algorithm

important functional modules within a large ppi network. This is supported by the
fact that functional analysis of large networks often involve graph clustering prior to
term enrichment [3].

Robustness. To study the robustness of FACETS, we test the effect of annotation
perturbations and edge deletions of the input network on FACETS output. Random
edge deletion (edge noise) simulates the effect of removing false positive interactions
in high-throughput interaction datasets, while annotation perturbation (node noise)
simulates errors in curated annotations. Figures 5.4a–c show the effect of edge and
node noise on FACETS, varying from 0% noise to 100% noise. The figures show clus-
tering similarities (ji similarity) between the best scoring facets and gold standard
datasets under increasing noise perturbations. We repeat each test fifteen times with
different randomization seed. We observe that FACETS output quality drops gradually
under increasing edge and node noise conditions. This demonstrates that the algo-
rithm is robust to small noise perturbations. In case of edge noise, we note that the
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Fig. 5.5 Effect of initial starting point versus noise on FACETS algorithm

quality of output only drops rapidly past the 0.5 noise ratio. This is desirable given
that false positive rates in yeast two-hybrid and tap experiments range between 0.35
to 0.7 [21]. mips clusters, which consist densely interconnected clusters, are most
robust to edge noise effects. The effect of node noise is comparatively greater, but
quality degradation remains gradual.

Effect of initial starting point. Given that FACETS belongs to the class of hill-
climbing methods, the algorithm output is dependent on the initial starting point. To
this end, we study the effects of multiple random initial starting points. We compare
the variability in clustering output due to starting point versus variability due to noise
effects to give a sense of the magnitude of variability. We set a single facet output
as the reference output, and compared its ji similarity with outputs from different
starting points and increasing noise effects. The boxplots in Fig. 5.5a, b show the
effect of initial starting point versus noise on FACETS. At 0 noise rate, the variability
in ji similarity is due to initial starting point. Given the fact that high throughput
datasets are inherently noisy (as mentioned above), the variability due to starting
point is less significant. In addition, Fig. 5.4a–c show the effect of starting points
with respect to gold standard datasets when one observes the similarity at 0 noise
rate.

Convergence. Figures 5.6a, b show the functional reassignments after the i-th iter-
ation. We conduct the tests on varying types of datasets with n = 6. We also vary
the number of facets per atlas (n = 2 to 6) on the global human network. All tests
converge in less than 9 rounds, demonstrating FACETS’ ability to converge quickly
to a solution. Larger datasets such as the human network require more iterations to
complete. The number of iterations required also tends to increase with the number
of facets n.

Statistical significance of FACETS clusters. We utilize the p − value bounds
described in Chap. 4 to evaluate the statistical significance of facets clusters.
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Fig. 5.7 Running time of FACETS algorithm

Table 5.3 shows the most significant upper bound p − value scores and the
cluster size needed to satisfy the bound. We note that all of the clusters we obtain
from facets summary are at least as large as the required size needed to satisfy the
upper bound. This indicates that facets clusters are more siginificant than randomly
drawn subgraphs when assessed by their subgraph densities.

Running time. Figures 5.7a, b plot the running times of FACETSwith varying network
sizes |V | and facet count n. Observe that the running time of FACETS on the largest
network (human) is less than 3 min with n = 11 and less than a minute with n = 2.

Varying parameters of graph clustering methods yield delta differences. We
evaluate whether graph clustering approaches can generate functionally orthogo-
nal decompositions by varying their parameters. Figures 5.8a–c report the effect of
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Table 5.3 The p-value significance of facets clusters

Facet Cluster size Maximum size p-value

0 5 1.76612927 6.49E-07

2 5 1.76612927 6.49E-07

4 5 1.76612927 6.49E-07

5 5 1.76612927 6.49E-07

3 8 1.783769936 7.36E-07

0 4 1.940572357 1.99E-06

1 4 1.940572357 1.99E-06

1 4 1.940572357 1.99E-06

1 4 1.940572357 1.99E-06

1 4 1.940572357 1.99E-06

1 4 1.940572357 1.99E-06

1 4 1.940572357 1.99E-06

2 4 1.940572357 1.99E-06

2 4 1.940572357 1.99E-06

3 4 1.940572357 1.99E-06

3 4 1.940572357 1.99E-06

4 4 1.940572357 1.99E-06

4 4 1.940572357 1.99E-06

5 4 1.940572357 1.99E-06

5 4 1.940572357 1.99E-06

5 4 1.940572357 1.99E-06

5 4 1.940572357 1.99E-06

5 4 1.940572357 1.99E-06

5 4 1.940572357 1.99E-06

1 6 2.037508859 3.44E-06

1 5 2.037508859 3.44E-06

3 6 2.037508859 3.44E-06

3 5 2.037508859 3.44E-06

5 5 2.037508859 3.44E-06

5 5 2.037508859 3.44E-06

5 11 2.152382327 6.25E-06

1 5 2.381391052 1.83E-05

varying parameters on the ji similarity scores between the gold standard decompo-
sitions and the clustering output of the human network. Despite varying parameters
to generate different decompositions, the decompositions are still largely from a sin-
gle perspective – those of protein complexes. This is indicated by highest clustering
similarity to themipsdataset. We suggest that ignoring the clustering of protein com-
plexes, which are dense modules, causes significant drop in the objective function
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Fig. 5.8 Varying parameters of clustering methods

score of clustering methods. Weaker clusters of other decompositions are hidden
by the dominant complexes and are unlikely to be prioritized over complexes by
adjusting the clustering parameters.

Comparison with GO DAG. Finally, we evaluate whether fuse and facets gen-
erated summaries are superior to a baseline of simply taking go terms of a certain
level in the go dag. The baseline of go terms at Level 2, for instance, represent the
go terms that are located in level 2 of the go dag. We assume that by taking go
terms at a particular level and forming clusters using these terms, we could construct
a set of clusters that represent a functional summary of the ppi network. To evaluate
such baseline against fuse and facets summaries, we consider two measures that
evaluate the quality of clusters obtained. First, we use the average cluster coherence
score to measure the average structural density of a cluster. To this end, it is simply
the average of the ratio association [22] scores of clusters in a summary. The average
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Table 5.4 Comparing GO terms at a particular level in the GO DAG

Method #Clusters Distinctiveness Avg. cluster coherence

go Terms @ Level 2 34 0.155 0.006

go Terms @ Level 3 82 0.130 0.012

go Terms @ Level 4 290 0.119 0.027

go Terms @ Level 5 534 0.106 0.023

go Terms @ Level 6 797 0.121 0.029

facets 350 0.725 0.513

fuse 150 0.835 0.359

cluster coherence score is used to evaluate the modularity of clusters in a summary.
Distinctiveness (the inverse of the redundancy metric) measures the lack of cluster
overlap in the summary, and is defined as:

distinctiveness(Θ) =

∣
∣
∣
∣
∣

⋃

C(u)∈SΘ

V (u)

∣
∣
∣
∣
∣

∑

C(u)∈SΘ

|V (u)|
(5.5)

where distinctiveness(Θ) ∈ [0, 1]. A high distinctiveness score implies that few
overlap exists between clusters (i.e., more interpretable summary), while a very low
distinctivesness score implies that many of the clusters are significantly overlapping.

Table 5.4 presents our findings. Observe that both fuse and facets summaries
have significantly higher distinctiveness and average cluster coherence scores com-
pared to the baseline. The average cluster coherence is at least 10 times greater than
that obtained from the baseline (clusters of the summaries are strongly connected),
while the distinctiveness is almost 5 times greater (less overlap between clusters). In
general, summaries generated using our methods form modules or clusters that are
much more interpretable and structurally significant.

5.6 Case Study: Human Autophagy System

To illustrate the utility of multi-faceted decomposition, we analyze the functional
organization of human autophagy system. Autophagy is the process where proteins
and organelles are degraded [23]. Autophagosomal vesicles deliver such components
to the lysosome or vacoule, where they are degraded. The autophagy system thus
regulates the expression of proteins, as well as removing defective components.
Multiple diseases arise from the dysfunction of the autophagy system. It is thus
relevant to study the organization of such system. The functional map of this system
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Fig. 5.9 Multiple facets (subset) illustrating the functional organization of the human autophagy
network under different perspectives

was manually constructed in [24]. The authors found many genes are significantly
implicated in vesicle transport, GTPase signaling, proteolysism ubiquitination and
phosphorylation.

We generate the facets of the human autophagy network (n = 6), and a subset
of the results is shown in Fig. 5.9. The automatically generated facets show the
pertinent roles of vesicle transport and lipid membrane metabolism in autophagy,
which is consistent with the manually constructed map. For instance, we observe
that transport role is a key facet of the autophagy system. This correlates with the
finding in [24] that more than half of the proteins in the system are linked to vesicle
transport. The genes implicated in vesicle function include NEDD4, SQSTM1 and
FNBP1. NEDD4 has been implicated in endosomal protein degradation [25]. The
SQSTM1 has been previously found to be involved in recruitment of ubiquinated
cargo [25].

Additionally, the network can also be clustered from the perspective of cell cycle
and apoptosis regulation modules, which is not depicted in the manual map. The
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mTOR inhibition occurs in association with MAP1B. Meanwhile, the GABARAP
protein is an ortholog of the key autophagy associated protein ATG8, which is shown
to be implicated in cell growth related signaling [24]. Other genes are found to be
implicated in cell growth control, including STK3/MST2 and STK4/MST1 – the
components of the Hippo kinase complex.

In summary, having multiple perspectives allow explanation of the organization
of a network from several angles.

5.7 Conclusions

In this chapter, we describe a data-driven and generic algorithm called FACETS for
generating multi-faceted functional decompositions of a ppi network, providing mul-
tiple perspectives of the functional organization landscape of the network. Our experi-
mental validation with real-world ppi networks demonstrates effectiveness of FACETS
in generating functionally distinctive facets. These distinctive facets have higher rel-
evance to real life datasets compared to single decomposition-based graph clustering
techniques discussed in Chap. 3.
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Chapter 6
Differential Functional Summarization

In the preceding chapters, we have focused our discussions on clustering and sum-
marizing static biological networks. This limits the power to summarize the complex
behavior of a biological network as it is dynamic and responds to both environmen-
tal and genetic factors. The complexity associated with understanding the dynamic
behavior of biological systems iswell known, hence this is a challenging problem that
requires careful investigation. To this end, in this chapter we present DiffNet [1]
towards generating differential functional summary between two snapshots of a spe-
cific type of biological network under contrasting environmental conditions.

6.1 Background

High-throughput mapping of genetic interaction networks of a set of genes is an
important and emergent research problem [2]. The networks constructed with these
methods, however, only represent a static “snapshot” of the genetic interaction map
under a particular context or condition. Recent studies have shown that genetic inter-
action maps are in fact dynamic and context-dependent [3]. Consequently, there is a
growing interest in studying the system-wide responses of interaction networks fol-
lowing environmental or condition change [4, 5]. For instance, one may be interested
in elucidating the genetic interaction differences between cancer cells and normal
cells. Specifically, some interactions may appear or disappear in the disease state,
intensity of some interactions may alleviate or aggravate when in disease state com-
pared to healthy condition, and others may remain strong irrespective of the state.

One representative method that has been recently proposed for mapping the
genetic interaction responses following environment change is the dE-MAP
approach [6]. In this method, two static gene interaction networks [2] for each con-
dition are first obtained using the epistatic miniarray profile (E-MAP) approach [7],
which constructs a quantitative genetic interaction landscape of S. cerevisiae by first

© Springer International Publishing AG 2017
S.S. Bhowmick and B.-S. Seah, Summarizing Biological Networks,
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identifying a set of genes of interest. Double mutant strains of all pairwise genes
from this set of genes are then grown and their colony size measured. Genetic inter-
action occurs between a pair of mutant genes when one observes greater or lesser
than expected colony growth rate when compared to their respective single mutant
strains. When the growth rate is greater than expected, the interaction is deemed
positive (alleviating); when it is lesser, it is deemed negative (aggravating). Using
the two static E-MAP networks, a differential network (dE-MAP network) is then
computed that maps the interaction differences between the two static networks. For
example, in [6], S. cerevisiae E-MAP networks are obtained for cells grown under
two conditions: (a) cells which are treated with methyl methanesulfonate (MMS), a
well known DNA-damaging agent and (b) cells which are untreated. Large-scale
genetic interaction network among 418 yeast genes is quantitatively extracted using
the E-MAP method under the MMS-treated condition (stressed) and untreated con-
dition (unstressed) and the differential network that maps the genetic interaction
changes due to MMS challenge is computed. Figure6.1 depicts an example of a dif-
ferential network (partial view) that is obtained from two static E-MAP networks
under MMS-treated and untreated condition.

Naturally, it is important to analyze this differential network to investigate the
system-wide impact of the DNA-damaging agent on the functional roles of various
components. Consequently, the authors obtained physical protein-protein interac-
tions corresponding to these genes and performed graph clustering to find protein

Differential

Treated 
(static)

Untreated 
(static)

Fig. 6.1 The differential network that arises from two static E-MAP networks under different
conditions. Red interactions – positive differential; green interactions – negative differential
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complexes1 enriched with differential interactions. The functional identity of each
cluster is then manually2 determined. Particularly, the authors concluded that these
complexes tend to be stable across conditions and differential interactions largely
lie between complexes, rather than within complexes. Unfortunately, modules con-
structed in this manner poorly represent the functional responses of the differential
network. Hence, to find a functional response, the authors manually selected a subset
of 31 genes associated with DNA repair to test for differential interaction enrich-
ment, concluding that DNA repair is a pertinent functional response following
MMS-treatment.

6.2 Motivation and Overview

It is time-consuming, laborious and error-prone to perform large-scale analysis of
dE-MAP interactomes to map all pertinent functional responses. In this chapter, we
present a technique called DiffNet [1] that addresses this impediment by auto-
matically constructing a high quality differential summary of two E-MAP networks
under environmental change. Figure6.2 highlights some of these functional modules
that are differentially effected by the DNA-damaging agent.

At first glance, the aforementioned failure of traditional graph clustering tech-
niques to capture differential summaries in its modules may seem surprising. How-
ever, as we shall see in Sect. 6.6, these techniques are largely designed for static
networks and are less suitable for differential networks that contain both positive
and negative weights. Furthermore, since most methods rely solely on topology
of the network, there is also no guarantee that each cluster corresponds well to a
representative biological function response. In fact, as remarked earlier, in [6] the
functional identity of each cluster following graph clustering ismanually determined.
Furthermore, the authors failed to assign function to a significant number of these
clusters.

In fact, algorithms that perform genome-wide functional analysis of gene
responses under multiple conditions have been proposed in the literature [12–14].
Particularly, these approaches perform functional analysis based on the expression
levels of genes. In contrast, in our problem we focus on genome-wide functional
analysis of the gene interactions and their responses.

Given the differential network generated from dE-MAP interactions, DiffNet
greedily constructs a differential summary comprising of a set of skewed and coherent
functional subgraphs, representing significant functional responses following envi-
ronment or condition change. Specifically, it leverages go annotations to identify
these functional subgraphs, each of which represents a group of interactions corre-
sponding to a specific biological function. A key characteristic of these functional
subgraphs is that the interactions together respond significantly in one direction,

1The topology of the differential network can be mined to identify gene clusters using techniques such as [8–10].
2A function can also be associated with each cluster by leveraging a functional enrichment technique [11].
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Fig. 6.2 Differential functional summary of MMS-induced/untreated yeast de-MAP network in [6].
The color of the functional modules and gene interactions indicate either positive differential (red)
or negative differential (green). The thickness of the lines indicate the strength of the differential
response. Gene interaction subgraphs of selected functionalmodules are also shown. Edges between
functional modules depict differential interactions that occur between functional modules. The
thickness of these edges represent the skewness of the differential interactions between a pair of
functional modules. The most significant of such edges are shown

either positively or negatively, to the condition change. That is, unlike standard
graph clustering methods, DiffNet is specifically designed to handle differential
interactions, which can be positively or negatively weighted. Figure6.3 illustrates
the idea of the DiffNet algorithm.

6.3 Functional Subgraphs in a Differential Network

In this section, we define the notion of functional subgraphs in a differential network
instead of a static network. We begin by describing the process of constructing
differential networks.

6.3.1 Constructing Differential Networks

The set of genes of interest together with their genetic interactions can be modeled
as a gene-gene interaction network, denoted by G = (V, E,w), where V is a set
of genes selected for E-MAP study, E denotes the pairwise interactions between
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Fig. 6.3 Illustration of DiffNet. Red interactions are positive differential, while green interac-
tions are negative differential. a A functional subgraph represents interacting genes that share a
specific function (e.g., C1 represents gene interactions associated with DNA repair). A coherent
functional subgraph has differential interactions that mostly respond in one direction. We say that
a functional subgraph has high skew if the differential interaction weights have high magnitude; it
has high coherence when the interactions largely respond in one direction. A functional subgraph
with high coherence and skew represents a concerted, significant functional response due to the
condition change. b The DiffNet algorithm implements a greedy heuristic that selects, at each
iteration, the functional subgraph with highest coherence and skew from the remaining unselected
interactions. c The output of DiffNet is a decomposition that summarizes the relevant functional
responses due to condition change

genes, and w is a function that assigns each pairwise interaction e ∈ E a weight that
represents its interaction strength. In E-MAP studies, w(e) of e ∈ E is given by its
genetic interaction score S-score [7]. A positive S-score indicates the degree of
alleviating interaction between the two genes whereas a negative S-score indicates
the degree of aggravating interaction. Therefore, w(e) can be positive or negative.

Consider now two E-MAP networks Gt = (V, E,wt ) and Gc = (V, E,wc) that
represent two conditions: (a) the treated condition (Gt ) and (b) the untreated condition
(Gc). Observe thatGt andGc share the same set of vertices and pairwise interactions.
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Given Gt and Gc, the differential network of Gt and Gc is a graph Gd = (V, E,wd)

such that ∀e ∈ E :
wd(e) = (

1 + e− wt (e)−wc (e)
|wc (e)|

)−1 − 0.5 (6.1)

We apply the logistic function (1 + e−x )−1 (shifted by 0.5 to make it an odd
function) to “clip” potentially large magnitudes of differential responses. This is
inspired by a similar approach used in activation functions in neural networks to
bound the response of signals [15].

Intuitively, a differential network models gene interaction responses due to condi-
tion change. The differential weightwd(e) represents the normalized difference in S-
scores between the two conditions for a pair of genes represented by e.We callwd(e)
positive differential when wd(e) > 0, and negative differential when wd(e) < 0. A
positive (resp. negative) differential response indicates increased alleviating (resp.
aggravating) interaction between the two genes in treated condition compared to
untreated condition. The magnitude of wd(e) reflects the strength of interaction
response due to condition change. Figure6.4 shows a toy differential network of
positive (red) and negative (green) differential interactions. Grey colored interac-
tions do not respond to condition change (i.e., wd(e) ≈ 0). The interaction between
RAD52 and SIN3, for instance, has a positive differential response due to condition
change.

It is worth noting that the above definition of differential interaction w.r.t DNA
damage-induced dE-MAP network is consistent with the one in [6]. Specifically,
a positive differential interaction indicate DNA damage-induced lethality, while a
negative differential interaction indicate inducible epistasis or suppression. Impor-
tantly, the differential response does not distinguish, for example, one that goes from
negative to positive from one that goes from positive to more positive. Although the
former is arguably more interesting, the latter still is biologically significant because
it indicates a significant response due to treatment.

Although we now have a model of individual gene-gene interaction responses
due to condition change, it remains unclear how one automatically infers broader,
systemic functional responses from these detailed interactions. This issue is pertinent

Fig. 6.4 A toy differential
network of gene interactions
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in high-throughput experiments, which often generate thousands, even millions, of
interacting genes within a single experiment. Hence we present our approach to
model responses due to condition change from a functional perspective.

6.3.2 Functional Subgraphs

We begin by modeling a systemic functional response by a subgraph of functionally-
similar gene interactions (i.e., a set of genes of a specific function and their inter-
actions). Let Δ = {T1, T2, . . .} be a set of go terms in the Gene Ontology. This
represents the set of biological functions relevant to our study. Every gene v ∈ V is
annotated with zero or more biological functions in Δ. Then a functional subgraph,
denoted byCT = (VT , ET ), is a subgraph ofGd such that: (a)CT is a subgraph ofGd

induced by VT , and (b) every gene v ∈ VT shares a function T ∈ Δ. For instance, the
subgraphC1 in Fig. 6.3a is a functional subgraph of genes sharing the DNA repair
function. One can see that a functional subgraph models the interaction responses of
genes with a specific function as a whole.

We evaluate each functional subgraph CT with the skewness and coherencemea-
sures. We say that a functional subgraph is skewed if its interactions significantly
respond to condition change (i.e., the interactions in the subgraph are significantly
positive or negative differential). Analogous to individual gene interactions, we call a
subgraphCT = (VT , ET ) positively skewed if the sum of its edge weights, defined as
skew(CT ) = ∑

e∈ET
wd(e), is greater than 0; it is negatively skewed if the sum of its

edge weights is less than 0, i.e., skew(CT ) < 0. The greater the value of skew(CT ),
the more the interactions of CT respond to condition change.

We say that a functional subgraph is coherent if its interactions are largely skewed
in onedirection (either positive or negative differential). Figure6.3a depicts the coher-
ence of subgraphs of the toy network in Fig. 6.4. Consider the subgraph representing
DNA repair function. It is coherent because it consists of interactions that are
skewed towards positive differential in tandem. Intuitively, this would mean that the
DNA repair function, as a whole, has increased alleviating response due to the
condition change. Meanwhile, the subgraph representing transport has a mix of
positive and negative differential interactions. There is no clear indicationwhether the
transport function is positively or negatively affected by the condition change.
We now formally define the notion of subgraph coherence. Given a subgraph CT ,
coherence(CT ) ∈ [0, 1] is given by:

coherence(CT ) = max(|{e : wd(e) > 0}| , |{e : wd(e) < 0}|)
|ET | (6.2)

The greater the value of coherence(CT ), the more coherent is the subgraph. If
coherence(CT ) = 1 then it indicates that all interactions are exclusively positive
differential or exclusively negative differential.
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Figure6.3a depicts the skewness and coherence of several functional subgraphs.
Each bar graph associated with a functional subgraph depicts the differential weight
wd values of the interactions in the subgraph. A high coherence and high skew
subgraph has interactions with large wd values in one direction. On the other hand,
a low coherence and low skew subgraph has low wd values in diverging directions.
Consider the following two functional subgraphs: the subgraph of genes sharing the
DNA repair function (RAD5, RAD52, SIN3, ASH1), and subgraph of genes
sharing the transport function (MSN1, ASH1, MRC1, PPH3, PSY4, PSY2).
Observe that interactions in the former are positive differential and skewed in one
coherent direction, while the latter is not. We are more interested in the former type
of subgraphs because it represents a concerted and significant functional response
due to the condition change. Generally, functional subgraphs that are high skew and
high coherence are informative and represent significant functional responses due to
condition change. On the other hand, a subgraph with both low coherence and skew
represent function that remain relatively unchanged.

From a statistical point of view, a module constructed from interactions that are
unaffected by condition change will have similar interaction distributions, resulting
in a coherence score centered around 0 (zero coherence). A high coherence mod-
ule represents a module with significant change in interaction distribution profile,
thus representing a statistically significant module. Biologically, analogous to func-
tional enrichment in gene lists, the statistical significance of high entropy modules
means that the function associated with such module exhibit statistically significant
interaction response patterns compared to a random function.

Based on the above observation, if one can decompose Gd into a set of highly
coherent and skewed functional subgraphs, denoted by S = {CT 1 ,CT 2 , . . .CTk },
then one can meaningfully obtain a summary representing positive and negative
functional responses of Gd due to condition change. We shall later describe how one
quantifies the decomposition of Gd based on the coherence and skewness of its func-
tional subgraphs. Consider the decomposition depicted in Fig. 6.3b, c. The network
of differential interactions is summarized into a set of functional subgraphs represent-
ing the following functional responses – DNA repair (positive), response to
radiation (positive), DNA integrity checkpoint (negative) and
pseudohyphal growth (negative). Each subgraph is coherent and skewed
towards either positive or negative differential response.

At this point, it remains unclear how tooptimally decomposeGd into a set of coher-
ent and skewed functional subgraphs. To contrast with the previous example, suppose
we decompose Gd into S = {transport (MSN1, ASH1, MRC1, PPH3,
PSY4, PSY2), response to radiation (MRC1, PPH3, PSY4,
PSY2)}. This decomposition poorly summarizes the network in Fig. 6.4 because
a significant portion of differential interactions are not captured by the subgraphs in
S . The transport subgraph also has low coherence.
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6.4 Differential Summarization Problem

Given the existence of potentially many possible decompositions of Gd , the problem
of differential summarization is to identify the best decomposition that represents the
functional responses in Gd . Suppose we have a set containing all possible functional
subgraphs of Gd . Let us denote this set by the universe E . Clearly, some subgraphs
will represent meaningful functional responses, while others will be unaffected by
the condition change. One would like to choose a subset of E representing functional
responses inGd that are significantly affected by the condition change. To do this, we
must first identify summarization objectives that assess the quality of a decomposition
ofGd .We argue that a good decomposition ofGd should have the following desirable
summary objectives:

• Subgraph Coherence and Skewness. A decomposition S should comprise of
functional subgraphs that are significantly coherent and skewed. Recall that our
goal is to identify functional regions that significantly respond, either positively
or negatively, to condition change. This directly correlates to having coherent
and skewed functional subgraphs, and finding S that maximizes coherence and
skewness of its functional subgraphs is desirable. The differential score of CT

combines the skewness and coherence of the subgraph as follows:

di f f erential(CT ) = coherence(CT )α × skew(CT ) (6.3)

where α ≥ 0 is a parameter controlling the influence of coherence on the differ-
ential score. Note that 0 ≤ coherence(CT )α ≤ 1.

• Edge Coverage. A good decomposition of Gd should convey key information
regarding functional regions affected by condition change. It is natural to prefer
a decomposition that covers as much differential interactions in Gd as possible.
We introduce the edge coverage measure that reflects how well S represents the
differential interactions ofGd . Formally, the edge coverage ofS can be expressed
as:

coverage(S ) =
∣
∣⋃

Ci∈S Ei

∣
∣

|E | (6.4)

Intuitively, it indicates the percentage of interactions in Gd that is represented
by the subgraphs in S . The wider the coverage, the more representative is the
decomposition of the interactions in Gd .

• Distinctiveness. Intuitively, two functional subgraphs having disjoint differential
interactions are more informative than two redundant subgraphs with identical
interactions. Thus, one prefers a decomposition which cleanly partitions Gd into
distinctive sets of interactions. We quantify this objective with the distinctiveness
measure. It quantifies redundancy of functional subgraphs, such that the greater
the redundancy, the lower the distinctiveness value. Hence, distinctiveness of S
is 1 if its subgraphs are mutually disjoint. Formally, it is defined as:
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distinctiveness(S ) =
∣∣⋃

Ci∈S Ei

∣∣
∑

Ci∈S |Ei | (6.5)

We introduce an optimization model that selects functional subgraphs to maxi-
mally cover the set of differential interactions ofGd to maximize the above objective
scores. Because the set of possible functional subgraphs can be large, a naive ranking
approach of selecting the most significantly coherent and skewed subgraphs can be
suboptimal. There is no control on coverage and distinctiveness, leading to signifi-
cant redundancy in the results. Thus, we propose an optimization model to construct
a summary that satisfies all three desirable objective scores. This optimization model
can be posed as a weighted k-set cover problem [16] of choosing a subset S ⊆ E
and a set of remainder subgraphs R with cardinality constraint k that minimizes
the reciprocal of di f f erential(S ). A remainder subgraph R = (VR, ER) ∈ R is a
subgraph of G that is not part of the summary (i.e., R ∩ CT = ∅ for all CT ∈ S ).
We shall later introduce a penalty for having remainder subgraphs.

Definition 6.1 (Differential summarization problem) Let Gd be the differential net-
work of two gene interaction networks, Gc and Gt , under different conditions. Let
U = ⋃

CT ∈E ET be the universe of differential interactions in Gd where E is a set
of all possible functional subgraphs CT . The differential summarization problem
is to identify the differential decomposition S of functional subgraphs and R of
remainder subgraphs (representing unselected interactions) by solving the follow-
ing optimization problem:

arg min
S∪R

f (S ∪ R) = arg min
S

∑

CT ∈S
di f f erential−1(CT ) +

∑

R∈R
r(R)

subject to E =
⋃

CT ∈S
ET ∪

⋃

R∈R
ER

|S | + |R| ≤ k

where the di f f erential−1(CT ) – the reciprocal of the coherence and skewness of
CT – is the cost associated with each functional subgraph CT ∈ S , and r(R) =
(|ER| + 1)maxCT ∈E di f f erential−1(CT ) captures the penalty for not covering the
edges of the network.

It can be proven that there is at most one remainder subgraph that can be selected,
which is disjoint from all functional subgraphs inS .

Theorem 6.1 Suppose S0 ∪ R0 is an optimal solution. Then |R0| ≤ 1.

Proof We begin by assuming the contradiction that |R0| > 1.R0 covers
⋃

R∈R0
VR

with cost |R0|maxCT ∈E di f f erential−1(CT ) + (maxCT ∈E di f f erential−1(CT ))∑
R∈R0

|VR|. We can replace R0 with a single remainder subgraph with a lower
cost. LetR ′ = {⋃R∈R0

VR}. The single remainder subgraphR ′ covers the same set
of vertices with lower cost and set cover cardinality.



6.4 Differential Summarization Problem 127

Algorithm 4 DiffNet.
Input: Gt = (V, E,wt ), Gc = (V, E,wc), Δ, k
Output: S
1: Let pmax = 0
2: for e ∈ E do
3: wd (e) = (1 + e− wt (e)−wc (e)

|wc (e)| ) − 0.5
4: end for
5: Let Gd = (V, E,wd )

6: Let E = ∅
7: for T ∈ Δ do
8: E ← E ∪ {CT }
9: end for
10: Let S = ∅
11: repeat
12: mincost ← ∞
13: best ← ∅
14: for all CT = (VT , ET ) ∈ E \ S do
15: SelectedEdges ← ⋃

C∈S E
16: n ← ∣∣ET \ SelectedEdges

∣∣

17: f ← di f f erential−1(CT )/n
18: if f < mincost and n > 0 then
19: mincost ← f
20: best ← {CT }
21: end if
22: end for
23: S ← S ∪ best
24: until |S | > k
25: return S

Theorem 6.2 Suppose S0 ∪ R0 is an optimal solution. It holds that
⋃

CT ∈S0
VT ∩⋃

R∈R0
VR = ∅.

Proof Assume by contradiction that
⋃

CT ∈S0
VT ∩ ⋃

R∈R0
VR �= ∅. Let R ′ =

{⋃R∈R0
VR \ ⋃

CT ∈S0
VT }.S0 ∪ R ′ covers the same set of vertices with lower cost.

Note that because of r(R), the aforementioned formulation penalizes a summary
that provides low interaction coverage. Also, observe that in principle the above cost
function penalizes functional subgraphs with low coherence or skewness scores. The
decomposition S summarizes the key functional responses representing the differ-
ences between Gc and Gt . The cardinality constraint k controls the distinctiveness
and coverage of the decomposition.

6.5 The DiffNet Algorithm

Unfortunately, the differential summarization problem defined in the preceding
section is NP-hard because it is posed as a weighted k-set cover problem. Fur-
thermore, it cannot simply be solved by clustering positive and negative networks
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Fig. 6.5 Independently
clustering positive and
negative edges of differential
network

differential positive negative

+

independently. Figure 6.5 shows the separation of a toy differential network into a
positive network containing only positive differential edges and a negative network
containing only negative differential edges. When each of the positive or negative
network is clustered independently, the information about the other is lost. Conse-
quently, both networks independently show enriched positive and negative interac-
tions. When these interactions are put together, however, the differential interactions
of these genes have weak skewness and coherence due to the mixing of positive and
negative interactions.

Hence, we describe an algorithm called DiffNet that solves this problem heuris-
tically. Here, we adopt a greedy algorithm that admits a Hk-approximation algorithm
for the weighted minimum k-set cover problem [16], where Hk = ∑k

i=1
1
i . First, the

differential network Gd is computed. Following that, DiffNet finds the universe
of candidate functional subgraphs of Gd . The basic principle of DiffNet is to
select, at each iteration, the functional subgraph that gives the best differential score
contribution to the existing S . At each iteration, we choose a functional subgraph
that maximizes the total differential score. To achieve this, the algorithm maintains
a map of interactions of Gd that is represented by currently selected functional sub-
graphs. For every candidate functional subgraph evaluated for selection, we evaluate
its contribution to the remaining unselected interactions. The greedy algorithm then
chooses the candidate subgraph that adds the highest differential score to the current
summary. This process is iterated until k subgraphs have been selected. Because
the penalty of choosing a remainder subgraph is always higher than any functional
subgraphs, we let the remainder subgraph, if any, be the last subgraph. Algorithm 4
outlines the pseudocode of the above procedure. Given k passes and the worst case
of evaluating |E | edges per subgraph, the proposed algorithm has a worst case com-
plexity of O(k|Δ||E |).

6.6 Experimental Study

The DiffNet algorithm is implemented in Scala. We now present experimental
results of the performance of DiffNet. The experiments were conducted on a
1.66GHz Intel Core 2 Duo T5450 machine with 3GB memory. Unless specified
otherwise, we set k = 45 and α = 5.0.
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6.6.1 Functional Analysis of MMS-treated/untreated
dE-MAP Network

Using the two E-MAP networks in [6], we construct the differential functional sum-
mary associated with MMS treated/untreated genetic interactions. Figure6.2 shows
the differential functional summary of the yeast genetic interactome. We observe
significant positive differential functional subgraphs associated with DNA damage
and DNA integrity checkpoint. The chronological cell aging genes responsible for
stress-resistance – MSN2, MSN4, RIM15 [17] – also undergo significant genetic
interaction remodeling followingDNAdamage. This important and top-scoring func-
tional response is not identified using manual analysis in [6]. The reason why this
module could not be detected in [6] is due to their approach of performing cluster
analysis on ppi network rather than the differential interaction network itself. Thus,
the set of genes, which has less ppi interaction density compared to protein com-
plexes in the ppi network, was missed via conventional cluster analysis. Another
type of functional modules that demonstrate significant differential following MMS
treatment are pathways related to apoptosis and cell cycle, such as the G1 phase of
mitotic cell cycle and cell aging modules. More interestingly, we observe significant
negative differential responses in cell projection and cell wall biogenesis functions.
The manual functional enrichment study conducted in [6] did not uncover the neg-
ative shift of these less obvious groups of genes. The autophagy module, which is a
cellular catabolic process, is also seen to be positively activated [18]. Recently, DNA
damage has been shown to induce autophagy [18], although the mechanism that
triggers remains unclear. Apart from activating autophagy processes, DNA damage
is also found to induce actin and septin rearrangement [19]. This is discovered by the
differential functional summary, which finds positive activation of septin cytoskele-
ton organization module.

To contrast the differential functional summary, we also construct a summary
of functional subgraphs that shows subgraphs of genes whose genetic interactions
remain largely unaltered after MMS treatment. To this end, instead of constructing
the differential network Gd , we constructed an “inverse” differential network Gs =
(V, E,ws), such that ws = min((wd(e))−1, ε−1) where e ∈ E and ε represents a
pseudocount that prevents ws(e) → ∞. Observe that ws represents the inverse of
normalized S-score differences. We applied DiffNet on Gs to obtain a landscape
of “stable” functional subgraphs, that is, functional subgraphs that are neither strongly
positive differential nor strongly negative differential.

Figure6.6 shows the functional summary of Gs following MMS treatment. The
modules represented in this summary could be “housekeeping” processes and mod-
ules whose genetic interaction strength remain unaltered regardless of the DNA-
damage challenge [6]. For instance, the composition and interaction of the subunits
of the RNA polymerase enzyme, a critical module of the cell regardless of cellular
context, is unlikely to change. Thus, their genetic interactions should also remain
stable. One can make the same argument for preribosome.
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Fig. 6.6 Functional summary of stable modules

6.6.2 Comparison with Graph Clustering Algorithms

Since there is no existing technique that automatically generates differential func-
tional summaries, we are confined to compare DiffNet with several representa-
tive graph clustering methods such as MCL [20], Affinity Propagation (AP) [9], and
ClusterONE [10]. We use the dataset in [6] containing 418 genes (393 with anno-
tations). In particular, we chose the MCL and ClusterONE approaches as a recent
evaluation demonstrated that both these methods outperform other graph clustering
algorithms on biological networks [10]. Because MCL and ClusterONE do not
accept negative edge weights, they cannot be directly applied to differential net-
works. To this end, we construct two separate networks from a differential network
– (a) a positive network containing only positive differential edges and (b) a negative
network containing only negative differential edges. We assess whether individually
clustering both networks using general graph clustering methods, and then aggre-
gating the clusters into one list, could provide results similar to those generated by
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DiffNet. For all approaches, we discarded clusters with fewer than 3 genes and
selected the 25 best scoring clusters for cluster quality evaluation.

To quantitatively evaluate the quality of the clusters, we introduce several eval-
uation measures. Given a set of cluster subgraphs S , the average coherence and
average skewness are given by:

AvgCoherence(S ) = 1

|S |
∑

CT ∈S
coherence(CT ) (6.6)

AvgSkewness(S ) = 1

|S |
∑

CT ∈S
skew(CT ) (6.7)

To assess the functional relevance of each cluster, we use the annotation over-
representation analysis of the clusters [21]. To this end, the functional homogeneity
of S is given by:

FuncHomo(S ) = 1

|S |
∑

CT =(ET ,VT )∈S
−log(p − value(VT )) (6.8)

where p-value(VT ) is the most significant go term enrichment p-value score of the
genes in VT .

Figure6.7 plots the results of different approaches. Observe that DiffNet is
superior to the clustering techniques in the following ways. First, each subgraph in
DiffNet has a direct association with a biological function. Recall that functional
subgraphs have the constraint that every gene in a subgraph must share a specific
function. With graph clustering algorithms such as MCL, each subgraph cluster may
contain geneswith diverging functions. In that case, it is unclearwhat biological func-
tion the cluster represents. This is quantified by the superior functional homogeneity
score of DiffNet. Second, subgraphs in DiffNet have superior coherence com-
pared to other methods. Traditional graph clustering methods are not designed to
identify clusters of positive differential interactions and negative interactions. These
methods must cluster negative and positive edges independently, and the information
encoded in the mixture of positive and negative weights is lost. Third, our method
is the second best performer for skewness score. This shows that despite fulfilling
multiple summarization constraints, the clusters obtained have high skewness (i.e.,
high edge weights) scores comparable to general graph clustering methods. Fourth,
the ‘node-based’ decomposition in MCL does not admit overlapping genes. Consider
for instance the subgraph C3 in Fig. 6.3. If this subgraph is chosen as a cluster in
MCL, then the subgraph C4 cannot be another cluster because of gene overlap. The
‘edge-based’ decomposition of DiffNet, which we argue is a more natural way of
grouping interaction responses, does not suffer from this problem.
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Fig. 6.7 Comparison with general graph clustering algorithms

6.6.3 Effect of Various Parameters

Parameter k. Figures6.8a–d show the effect of k on summary coherence, skewness,
coverage and distinctiveness. We observe that k controls the trade-off of summary
coverage versus distinctiveness. The higher the value of k, the greater the coverage of
functional subgraphs in the summary. However, the increase in coverage reduces the
quality of the clusters (lower skewness, coherence and distinctiveness) due to the fact
that one must now include lower quality clusters to satisfy the coverage requirement.
Note that it is unrealistic to expect the majority of differential interactions to respond
significantly to condition change. Thus, full coverage of all interaction responses,
especially those that respond weakly, is typically not required in a differential
summary.

Parameter α. Figures6.9a–d show the effect of α on summary coherence, skew-
ness, coverage and distinctiveness. We observe that α directly controls the influence
of summary coherence. The higher the value of α, the greater the coherence of
functional subgraphs in the summary. The increased coherence, however, comes at a
cost. Coverage of the summary is reduced with greater α. This is because the increase
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Fig. 6.8 Effect of parameter k on DiffNet

penalty for choosing incoherent functional subgraphs reduces the exploration space
duringdecomposition selection.Distinctiveness is also slightly increasedwith greater
α.

Effect of MCL inflation parameter. Figures6.10a, b show the effect of mcl infla-
tion parameter on summary coherence and skewness. Here we use the recommended
range of 1.4–5.0. We observe that the coherence and skewness of functional sub-
graphs in the summary are stable with varying inflation values. There is, however, a
slight increase in coherence and a slight drop in skewness at higher inflation values.

6.6.4 Running Times

We generate synthetic networks by randomly adding nodes and edges to the [6]
dataset network until the desired size is obtained. Figures6.11a, b plot the run-
ning times of DiffNet of varying network sizes (viewed by number of nodes
and edges, respectively). We observe that DiffNet scales almost linearly with the
number of nodes and edges in the network. A differential network of 2500 nodes is
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Fig. 6.9 Effect of α on DiffNet
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Fig. 6.10 Effect of MCL inflation parameter

summarized in less than 3min. This shows that DiffNet constructs a summary
within a reasonable time frame.

We further evaluate the running time of DiffNet at varying network density.
Figure6.11c shows the running time on [6] dataset network from 10%density (0.1) to
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Fig. 6.11 Running time of DiffNet

full density (1.0). We artificially construct networks at varying density by randomly
removing network edges until the desired density is achieved. From the figure, run-
ning time of DiffNet grows almost linearly with the network density.

6.6.5 Effect of Interaction Noise

Given that interaction profiles are likely to be noisy, we evaluate the effect of interac-
tion noise on DiffNet summary construction. We assume the DiffNet summary
generated from the differential network in [6] is without interaction noise and use
it as the reference summary. We then simulate the effect of noise by perturbing the
interactions of the network by random rearrangement of its interactions. The amount
of perturbation is indicated by the interaction noise rate, which is the fraction of
the original interactions that have been randomly rearranged. Figure6.12a shows
the stability of of the DiffNet summary after interaction noise perturbation. At
each noise rate, we simulate 10 perturbed network samples. We compute the Jaccard
similarity of the functional subgraphs of a perturbed summary (S1) against the ref-
erence summary (S2). Specifically JaccardSimilari t y(S1,S2) = 1 if the gene
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Fig. 6.12 Effect of interaction noise and loss of annotations

set of each functional subgraph in S1 and S2 is identical. As expected, we observe
a steady decrease in similarity against the reference summary with increasing inter-
action noise rate.

6.6.6 Effect of Annotation Loss

As current gene annotations are likely to be incomplete, here we study the effect of
gradually removing gene annotations on DiffNet summary construction.

SupposeS0 is a referenceDiffNet summary of the [6] differential networkwith
complete gene annotations. We then construct DiffNet summaries of differential
networks with removed annotations and observe their similarities with the reference
summary.Given two summariesS1 andS2, the similarity of the functional subgraphs
between the summaries can be measured using the following:

Jaccard Index(S1,S2) = 1

|S1|
∑

C1∈S1

max
C2∈S2

|V1 ∩ V2|
|V1 ∪ V2| (6.9)

where Jaccard Index(S1,S2) = 1 if the gene set of each functional subgraph in
S1 andS2 is identical. We remove n% of the gene annotations from the differential
network and construct a new summarySn . We callSn a summary of the differential
network with n% annotation loss. Figure6.12b shows the Jaccard Index similar-
ities of summaries with varying annotation loss. We observe that annotation loss
creates a summary that is increasingly different from the reference summary. The
drop in Jaccard Index similarity is gradual, suggesting that DiffNet summary
construction is relatively robust to annotation noise. More importantly, as annota-
tions of genes are likely to increase with time, it will only lead to more improved
performance of DiffNet.
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6.7 Conclusions

In this chapter, we present DiffNet, a data-driven algorithm that automatically con-
structs summaries of differential functional responses of gene interaction networks
under environment or condition change. Specifically, it leverages combination of go
annotation information and underlying interaction data to greedily identify a set of
functional subgraphs that are highly skewed and coherent, representing significant
functional responses due to condition change. Experimental study with a real-world
network revealed that DiffNet can automatically generate high quality differential
functional summaries from the differential network including differential interactions
that [6] failed to identify. Furthermore, state-of-the-art graph clustering algorithms
cannot be adopted to generate such differential summaries. In fact, by incorporating
the notion of coherence and skewness, DiffNet is able identify key functions that
coherently respond to condition change whereas traditional clustering methods fail
to do so. Lastly, DiffNet is efficient and can generate differential summaries in
acceptable time.
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Chapter 7
The Road Ahead

In this chapter, we summarize the contributions of this book and establish several
lines of inquiry associated with clustering and summarizing biological networks for
future research.

7.1 Summary

The contributions of this book are summarized as follows:

• In Chap.3, we discussed efforts by the bioinformatics and data mining communi-
ties on summarizing the functional organization within a ppi network by network
clustering. Our approach has been to emphasis the unique characteristics of the
network clustering problem in the context of ppi networks and discuss an array
of techniques highlighting their strengths and limitations. This analysis is funda-
mental in developing effective computational solutions toward comprehending the
organization and functioning of cells.

• In Chap.4, we present a data-driven and generic ppi network summarization frame-
work called FUSE to generating functional summaries at multiple resolutions from
a ppi to provide a high level view of its functional landscape. It constructs higher
level functional summary that summarizes the underlying ppi network to obtain a
concise, interpretable representation of the network. It generates the “best” sum-
mary from both interaction and annotation data by maximizing information gain
for a specific resolution. We demonstrate the role of FUSE in addressing the infor-
mation overload issue of analyzing large scale ppi networks. We evaluate the
performance of FUSE on several real-world ppis. We also compare FUSE to state-
of-the-art graph clustering methods with go term enrichment by constructing the
biological process landscape of the ppis. Our experimental results demonstrate
that FUSE is highly effective in constructing higher order functional maps with
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superior accuracy and representativeness compared to these state-of-the-art graph
clustering methods. Using Alzheimer’s Disease network as our case study, we
further demonstrate the ability of FUSE to quickly summarize the network and
identify many different processes and complexes that regulate it. We analyze the
topological features of the functional landscape of human ppi that leads us to the
identification of functional hubs (clusters of proteins that act as hubs).

• In Chap.5, we present FACETS, a data-driven and generic algorithm for generat-
ing multi-faceted functional summarization of a ppi network, providing multiple
perspectives of the functional organization landscape of the network. Each per-
spective (facet) in the atlas represents a distinct interpretation of how the network
can be functionally summarized. Specifically, FACETS maximizes interpretative
value of the atlas by optimizing inter-facet orthogonality and intra-facet cluster
modularity. The performance of FACETS was extensively discussed with several
real-world ppi networks. We also performed a case study using human autophagy
system to illustrate the utility of this framework. In summary, the experimental
analysis demonstrates the effectiveness of FACETS in generating functionally dis-
tinctive facets. These distinctive facets have higher relevance to real life datasets
compared to single decomposition-based graph clustering techniques.

• Finally, in Chap.6 we present DiffNet, a data-driven technique that automati-
cally constructs summaries of differential functional responses of gene interaction
networks under environment or condition change. Specifically, it leverages com-
bination of go annotation information and underlying interaction data to greedily
identify a set of functional subgraphs that are highly skewed and coherent, rep-
resenting significant functional responses due to condition change. DiffNet is
one of the first step towards generating differential functional summary between
two snapshots of E-MAP networks under contrasting environmental conditions.
Our exhaustive experimental evaluation with real-world dataset demonstrates the
superiority of this technique to address the differential network summarization
problem.

7.2 Future Research

In general, network clustering and summarization approaches have largely been to
limited to static ppi networks. Where previously biologists have concentrated on
large scale static networks, there is now a surge of interest in constructing large scale
quantitative “omics” data, including quantitative ppi and gene interaction networks.
In light of this, we suggest several future research in this direction as follows.

Superior clustering techniques. Recall from Chap.3, a desirable ppi network clus-
tering algorithm needs to cover the entire network but at the same time ensure that
it is scalable, exhaustive, robust against noisy edges, admits overlapping clusters,
and leverages on annotations whenever possible. While existing techniques support
a subset of these features, realization of a clustering approach that supports all these



7.2 Future Research 141

features effectively remains an open research problem. Furthermore, how to accu-
rately measure the quality of predicted clusters in the presence of noisy edges is still
a challenging problem.

Enabling discovery of disease modules. Existing clustering techniques largely
focus on detecting topological and functional modules. Recent research have demon-
strated that a group of proteins involved in a disease demonstrates a high inclination
to interact with each other forming a disease module [1]. Note that a disease mod-
ule may not necessarily be same as a topological or functional module. However, it
may overlap with the latter modules. A disease module is defined in the context of a
specific disease and each disease is associated with a unique module. Knowledge of
these disease modules can pave way for network-based disease gene prediction dur-
ing drug development. Intuitively, if a few proteins of a disease module are unveiled,
then there is a high possibility that other disease-related proteins can be discovered
in their vicinity. This can play a pivotal role in drug discovery as many existing drugs
are palliative in nature (i.e., they target proteins in the network neighborhood of a
disease-related protein instead of the latter) [2]. It is interesting to explore how ppi
clustering techniques can enable us to discover these disease modules.

Comprehensive summarization techniques. As the network summarization tech-
niques discussed in this book rely on functional information, they are unable to
summarize regions without functional information. This could be important when
there is a species network with many proteins of unknown functions. To address this,
one direction of work is to extend these summarization algorithms to handle such
regions. Another direction will be to incorporate genomic and proteomic experimen-
tal data to enhance the quality and comprehensiveness of summaries.

Quantitative network summarization. In Chap.4, we discussed FUSE, an algo-
rithm for summarizing ppi networks. ppi networks are static and limited in its power
to model the complex behavior of the biological system. In fact, biological systems
cannot be accurately modeled as static networks; they are dynamic and respond
to both environmental and genetic factors. Therefore, quantitative models that can
incorporate the dynamic properties of biological systems are increasingly important.
Among existing quantitative models are ordinary differential equations (odes) and
partial differential equations (pdes) models. To this end, we presented the DiffNet
method as a first step towards quantitative network summarization (Chap.6). How-
ever, DiffNet is limited to binary snapshots of the network and cannot easily be
extend to systems that model a continuum of states (e.g., ode and pde models).
As part of future research, there is opportunity to extend the notion of quantitative
network summarization to more powerful ode and pde quantitative models. The
complexity associated with understanding ode and pde models is well known, and
extending network summarization to such quantitativemodelsmay enable us to better
visualize their dynamic behavior in a multi-perspective manner. This is a challenging
problem that requires careful investigation.
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