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When I entered the field of allergy in the early 1970s, the standard textbook was a 
few hundred pages, and the specialty was so compact that texts were often authored 
entirely by a single individual and were never larger than one volume. Compare this 
with Allergy Frontiers: Epigenetics, Allergens, and Risk Factors, the present six-
volume text with well over 150 contributors from throughout the world. This book 
captures the explosive growth of our specialty since the single-author textbooks 
referred to above.

The unprecedented format of this work lies in its meticulous attention to detail 
yet comprehensive scope. For example, great detail is seen in manuscripts dealing 
with topics such as “Exosomes, naturally occurring minimal antigen presenting 
units” and “Neuropeptide S receptor 1 (NPSR1), an asthma susceptibility gene.” 
The scope is exemplified by the unique approach to disease entities normally dealt 
with in a single chapter in most texts. For example, anaphylaxis, a topic usually 
confined to one chapter in most textbooks, is given five chapters in Allergy 
Frontiers. This approach allows the text to employ multiple contributors for a single 
topic, giving the reader the advantage of being introduced to more than one view-
point regarding a single disease.

This broad scope is further illustrated in the way this text deals with the more 
frequently encountered disorder, asthma. There are no fewer than 26 chapters deal-
ing with various aspects of this disease. Previously, to obtain such a comprehensive 
approach to a single condition, one would have had to purchase a text devoted 
solely to that disease state.

In addition, the volume includes titles which to my knowledge have never been 
presented in an allergy text before. These include topics such as “NKT ligand con-
jugated immunotherapy,” “Hypersensitivity reactions to nano medicines: causative 
factors and optimization,” and “An environmental systems biology approach to the 
study of asthma.”

It is not hard to see that this textbook is unique, offering the reader a means of 
obtaining a detailed review of a single highly focused subject, such as the neu-
ropeptide S receptor, while also providing the ability to access a panoramic and 
remarkably in-depth view of a broader subject, such as asthma. Clearly it is 
intended primarily for the serious student of allergy and immunology, but can also 
serve as a resource text for those with an interest in medicine in general.
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vi Foreword

I find it most reassuring that even though we have surpassed the stage of the 
one-volume, single-author texts, because of the wonderful complexity of our specialty 
and its broadening scope that has evolved over the years, the reader can still obtain 
an all-inclusive and comprehensive review of allergy in a single source. It should 
become part of the canon of our specialty.

Phil Lieberman, M.D.



When I started immunology under Professor Kimishige Ishizaka in the early 1950s, 
allergy was a mere group of odd syndromes of almost unknown etiology. An immu-
nological origin was only suspected but not proven. The term “atopy,” originally 
from the Greek word à-topòs, represents the oddness of allergic diseases. I would 
call this era “stage 1,” or the primitive era of allergology.

Even in the 1950s, there was some doubt as to whether the antibody that causes 
an allergic reaction was really an antibody, and was thus called a “reagin,” and 
allergens were known as peculiar substances that caused allergy, differentiating 
them from other known antigens.

It was only in 1965 that reagin was proven to be an antibody having a light chain 
and a unique heavy chain, which was designated as IgE in 1967 with international 
consensus. The discovery of IgE opened up an entirely new era in the field of aller-
gology, and the mechanisms of the immediate type of allergic reaction was soon 
evaluated and described. At that point in time we believed that the nature of allergic 
diseases was a mere IgE-mediated inflammation, and that these could soon be 
cured by studying the IgE and the various mediators that induced the inflammation. 
This era I would like to call “stage 2,” or the classic era.

The classic belief that allergic diseases would be explained by a mere allergen-
IgE antibody reaction did not last long. People were dismayed by the complexity 
and diversity of allergic diseases that could not be explained by mere IgE-mediated 
inflammation. Scientists soon realized that the mechanisms involved in allergic 
diseases were far more complex and that they extended beyond the conventional 
idea of a pure IgE-mediated inflammation. A variety of cells and their products 
(cytokines/chemokines and other inflammatory molecules) have been found to 
interact in a more complex manner; they create a network of reactions via their 
receptors to produce various forms of inflammatory changes that could never be 
categorized as a single entity of inflammation. This opened a new era, which I 
would like to call the modern age of allergology or “stage 3.”

The modern era stage 3 coincided with the discovery that similar kinds of 
cytokines and cells are involved in the regulation of IgE production. When immu-
nologists investigated the cell types and cytokines that regulate IgE production, 
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viii Foreword

they found that two types of helper T cells, distinguishable by the profile of 
cytokines they produce, play important regulatory roles in not only IgE production 
but also in regulating allergic inflammation. The advancement of modern molecular 
technologies has enabled detailed analyses of molecules and genes involved in this 
extremely complex regulatory mechanism. Hence, there are a number of important 
discoveries in this area, which are still of major interest to allergologists, as can be 
seen in the six volumes of this book.

We realize that allergology has rapidly progressed during the last century, but 
mechanisms of allergic diseases are far more complex than we had expected. New 
discoveries have created new questions, and new facts have reminded us of old 
concepts. For example, the genetic disposition of allergic diseases was suspected 
even in the earlier, primitive era but is still only partially proven on a molecular 
basis. Even the molecular mechanisms of allergic inflammation continue to be a 
matter of debate and there is no single answer to explain the phenomenon. There is 
little doubt that the etiology of allergic diseases is far more varied and complex than 
we had expected. An immunological origin is not the only mechanism, and there 
are more unknown origins of similar reactions. Although therapeutic means have 
also progressed, we remain far from our goal to cure and prevent allergic 
diseases.

We have to admit that while we have more knowledge of the many intricate 
mechanisms that are involved in the various forms of allergic disease, we are still 
at the primitive stage of allergology in this respect. We are undoubtedly proceeding 
into a new stage, stage 4, that may be called the postmodern age of allergology and 
hope this era will bring us closer to finding a true solution for the enigma of allergy 
and allergic diseases.

We are happy that at this turning point the editors, Ruby Pawankar, Stephen 
Holgate, and Lanny Rosenwasser, are able to bring out such a comprehensive book 
which summarizes the most current knowledge on allergic diseases, from epidemi-
ology to mechanisms, the impact of environmental and genetic factors on allergy 
and asthma, clinical aspects, recent therapeutic and preventive strategies, as well as 
future perspectives. This comprehensive knowledge is a valuable resource and will 
give young investigators and clinicians new insights into modern allergology which 
is an ever-growing field.

Tomio Tada, M.D., Ph.D., D.Med.Sci.



Allergic diseases represent one of the major health problems in most modern socie-
ties. The increase in prevalence over the last decades is dramatic. The reasons for 
this increase are only partly known. While in former times allergy was regarded as 
a disease of the rich industrialized countries only, it has become clear that all over 
the world, even in marginal societies and in all geographic areas—north and south 
of the equator—allergy is a major global health problem.

The complexity and the interdisciplinary character of allergology, being the sci-
ence of allergic diseases, needs a concert of clinical disciplines (internal medicine, 
dermatology, pediatrics, pulmonology, otolaryngology, occupational medicine, 
etc.), basic sciences (immunology, molecular biology, botany, zoology, ecology), 
epidemiology, economics and social sciences, and psychology and psychosomatics, 
just to name a few. It is obvious that an undertaking like this book series must 
involve a multitude of authors; indeed, the wide spectrum of disciplines relevant to 
allergy is reflected by the excellent group of experts serving as authors who come 
from all over the world and from various fields of medicine and other sciences in a 
pooling of geographic, scientific, theoretical, and practical clinical diversity.

The first volume concentrates on the basics of etiology, namely, the causes of the 
many allergic diseases with epigenetics, allergens and risk factors. Here, the reader 
will find up-to-date information on the nature, distribution, and chemical structure 
of allergenic molecules, the genetic and epigenetic phenomena underlying the sus-
ceptibility of certain individuals to develop allergic diseases, and the manifold risk 
factors from the environment playing the role of modulators, both in enhancing and 
preventing the development of allergic reactions.

In times when economics plays an increasing role in medicine, it is important to 
reflect on this aspect and gather the available data which—as I modestly assume—
may be yet rather scarce. The big effort needed to undertake well-controlled studies 
to establish the socio-economic burden of the various allergic diseases is still 
mainly ahead of us. The Global Allergy and Asthma European Network (GA2LEN), 
a group of centers of excellence in the European Union, will start an initiative 
regarding this topic this year.

In volume 2, the pathomechanisms of various allergic diseases and their classi-
fication are given, including such important special aspects as allergy and the bone 
marrow, allergy and the nervous system, and allergy and mucosal immunology.
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x Foreword

Volume 3 deals with manifold clinical manifestations, from allergic rhinitis to 
drug allergy and allergic bronchopulmonary aspergillosis, as well as including 
other allergic reactions such as lactose and fructose intolerances.

Volume 4 deals with the practical aspects of diagnosis and differential diagnosis 
of allergic diseases and also reflects educational programs on asthma.

Volume 5 deals with therapy and prevention of allergies, including pharmacother-
apy, as well as allergen-specific immunotherapy with novel aspects and special con-
siderations for different groups such as children, the elderly, and pregnant women.

Volume 6 concludes the series with future perspectives, presenting a whole 
spectrum of exciting new approaches in allergy research possibly leading to new 
strategies in diagnosis, therapy, and prevention of allergic diseases.

The editors have accomplished an enormous task to first select and then motivate 
the many prominent authors. They and the authors have to be congratulated. The 
editors are masters in the field and come from different disciplines. Ruby Pawankar, 
from Asia, is one of the leaders in allergy who has contributed to the understanding 
of the cellular and immune mechanisms of allergic airway disease, in particular 
upper airway disease. Stephen Holgate, from the United Kingdom, has contributed 
enormously to the understanding of the pathophysiology of allergic airway reactions 
beyond the mere immune deviation, and focuses on the function of the epithelial 
barrier. He and Lanny Rosenwasser, who is from the United States, have contributed 
immensely to the elucidation of genetic factors in the susceptibility to allergy. All 
three editors are members of the Collegium Internationale Allergologicum (CIA) 
and serve on the Board of Directors of the World Allergy Organization (WAO).

I have had the pleasure of knowing them for many years and have cooperated with 
them at various levels in the endeavor to promote and advance clinical care, research, 
and education in allergy. Together with Lanny Rosenwasser as co-editor-in-chief, we 
have just started the new WAO Journal (electronic only), where the global representa-
tion in allergy research and education will be reflected on a continuous basis.

Finally, Springer, the publisher, has to be congratulated on their courage and 
enthusiasm with which they have launched this endeavor. Springer has a lot of 
experience in allergy—I think back to the series New Trends in Allergy, started in 
1985, as well as to my own book Allergy in Practice, to the Handbook of Atopic 
Eczema and many other excellent publications.

I wish this book and the whole series of Allergy Frontiers complete success! It 
should be on the shelves of every physician or researcher who is interested in 
allergy, clinical immunology, or related fields.

Johannes Ring, M.D., Ph.d.



Preface

Allergic diseases are increasing in prevalence worldwide, in industrialized as well 
as industrializing countries, affecting from 10%–50% of the global population with 
a marked impact on the quality of life of patients and with substantial costs. Thus, 
allergy can be rightfully considered an epidemic of the twenty-first century, a glo-
bal public health problem, and a socioeconomic burden. With the projected increase 
in the world’s population, especially in the rapidly growing economies, it is pre-
dicted to worsen as this century moves forward.

Allergies are also becoming more complex. Patients frequently have multiple 
allergic disorders that involve multiple allergens and a combination of organs 
through which allergic diseases manifest. Thus exposure to aeroallergens or 
ingested allergens frequently gives rise to a combination of upper and lower air-
ways disease, whereas direct contact or ingestion leads to atopic dermatitis with or 
without food allergy. Food allergy, allergic drug responses and anaphylaxis are 
often severe and can be life-threatening. However, even the less severe allergic 
diseases can have a major adverse effect on the health of hundreds of millions of 
patients and diminish quality of life and work productivity. The need of the hour to 
combat these issues is to promote a better understanding of the science of allergy 
and clinical immunology through research, training and dissemination of informa-
tion and evidence-based better practice parameters.

Allergy Frontiers is a comprehensive series comprising six volumes, with each 
volume dedicated to a specific aspect of allergic disease to reflect the multidiscipli-
nary character of the field and to capture the explosive growth of this specialty. The 
series summarizes the latest information about allergic diseases, ranging from epi-
demiology to the mechanisms and environmental and genetic factors that influence 
the development of allergy; clinical aspects of allergic diseases; recent therapeutic 
and preventive strategies; and future perspectives. The chapters of individual vol-
umes in the series highlight the roles of eosinophils, mast cells, lymphocytes, den-
dritic cells, epithelial cells, neutrophils and T cells, adhesion molecules, and 
cytokines/chemokines in the pathomechanisms of allergic diseases. Some specific 
new features are the impact of infection and innate immunity on allergy, and 
mucosal immunology of the various target organs and allergies, and the impact of 
the nervous system on allergies. The most recent, emerging therapeutic strategies 
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are discussed, including allergen-specific immunotherapy and anti-IgE treatment, 
while also covering future perspectives from immunostimulatory DNA-based 
therapies to probiotics and nanomedicine.

A unique feature of the series is that a single topic is addressed by multiple 
contributors from various fields and regions of the world, giving the reader the 
advantage of being introduced to more than one point of view and being provided 
with comprehensive knowledge about a single disease. The reader thus obtains a 
detailed review of a single, highly focused topic and at the same time has access to 
a panoramic, in-depth view of a broader subject such as asthma.

The chapters attest to the multidisciplinary character of component parts of the 
series: environmental, genetics, molecular, and cellular biology; allergy; otolaryn-
gology; pulmonology; dermatology; and others. Representing a collection of state-
of-the-art reviews by world-renowned scientists from the United Kingdom and 
other parts of Europe, North America, South America, Australia, Japan, and South 
Africa, the volumes in this comprehensive, up-to-date series contain more than 150 
chapters covering virtually all aspects of basic and clinical allergy. The publication 
of this extensive collection of reviews is being brought out within a span of two 
years and with the greatest precision to keep it as updated as possible. This six-
volume series will be followed up by yearly updates on the cutting-edge advances 
in any specific aspect of allergy.

The editors would like to sincerely thank all the authors for having agreed to 
contribute and who, despite their busy schedules, contributed to this monumental 
work. We also thank the editorial staff of Springer Japan for their assistance in the 
preparation of this series. We hope that the series will serve as a valuable informa-
tion tool for scientists and as a practical guide for clinicians and residents working 
and/or interested in the field of allergy, asthma, and immunology.

Ruby Pawankar, Stephen Holgate, and Lanny Rosenwasser
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The Allergy Epidemic: A Look into the Future

U. Wahn

Over the past decades, the increasing rates of allergic conditions among affluent 
societies have posed a heavy burden on healthcare systems. Cross-sectional studies 
such as the International Study of Asthma and Allergies in Childhood (ISAAC) 
have confirmed that atopic diseases such as atopic dermatitis, asthma, and seasonal 
allergic rhinoconjunctivitis represent major health problems in many countries, 
particularly in childhood [1].

During the past 2 decades, two general hypotheses have been proposed in the 
literature in connection with the observed increases of atopy and asthma in 
childhood:

New risk factors that were not known several decades ago might have become 
relevant in connection with nutrition, environmental exposure, and lifestyle.

Protective factors related to a more traditional lifestyles common in the past 
might have been lost, which could have led to increased susceptibility to atopic 
diseases.

The Atopic March

The term “atopic march” refers to the natural history of atopic manifestations, char-
acterized by the typical sequences of immunoglobulin E (IgE) antibody responses 
and clinical symptoms that appear during a certain age period, persist over years and 
decades, and often show a tendency for spontaneous remission with time [2].

Prospective cohort studies have shown that sensitization to food allergens occurs 
usually during the first months of life with the antibody response to cow’s milk and 
hen’s egg occurring most frequently. Sensitization against inhalant allergens usu-
ally develops after the first 2 years of life. Most of these children will develop IgE 
responses to a wide array of environmental allergens such as house dust mites, 
animal dander, and pollen [2–7].

R. Pawankar et al. (eds.) Allergy Frontiers: Epigenetics, Allergens and Risk Factors, 3
DOI: 10.1007/978-4-431-72802-3_1, © Springer 2009 
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Specific patterns of atopic sensitization are associated with certain atopic illnesses. 
Atopic eczema is primarily related to IgE responses to dietary allergen, while 
individuals with allergic rhinitis tend to become sensitized to seasonal outdoor 
allergens. Specific IgE responses in asthmatic children are usually directed against 
perennial and indoor allergen such as house dust mites. Several studies have shown 
that early sensitization during infancy is a predictor for the persistence of childhood 
asthma until adolescence [8].

In the German Multicenter Allergy Study, food sensitization before age 1 to 2 
years with or without concurrent inhalant sensitization was a strong predictor for the 
development of asthma and airway hyper-responsiveness until school age [9–11].

Our understanding of the determinants of the natural history of allergic diseases 
is limited. Although a strong genetic basis for atopy and asthma has been described 
and several genes have been identified, which are associated with different pheno-
types [12, 13], a variety of modifiable environmental and lifestyle factors have been 
discovered in the past, which might offer future options for primary prevention.

Allergen Exposure

Exposure to environmental allergens is the most extensively studied potential risk 
factor for sensitization and manifestation of atopy and asthma. From a number of 
cross-sectional studies performed in children and adults, it has become obvious that 
there is a close association between allergen exposure, particularly in the domestic 
environment, and sensitization to that specific allergen. Longitudinal studies such 
as the MAS (Multicenter Allergy Study) study in Germany have clearly demon-
strated that during the first years of life there is a dose–response relationship 
between indoor allergen exposure to dust mite and cat allergens and the risk of 
sensitization to cat and mites, respectively [14–20].

As far as the manifestation of atopic dermatitis and asthma are concerned, the 
situation is much less clear. Early studies performed by Sporik et al. [21] suggested 
that exposure of sensitized children to dust mite allergens determines not only the 
risk of asthma but also the time of the onset of the disease. More recent investigations 
by the same group, however, suggest that other factors besides allergen exposure 
are important in determining which children develop asthma.

In a comprehensive meta-analysis, Peat and Woolcock [22] and Peat et al. [23] 
evaluated several environmental factors said to be responsible for the incidence and 
severity of atopic diseases, particularly asthma. After comparing the strengths of 
the various effects, she concluded that on the basis of the literature, indoor allergen 
exposure is the environmental component with by far the strongest impact on the 
manifestation of asthma. In recent years, however, the paradigm that exposure 
induces asthma with airway inflammation via sensitization has been challenged. In 
several countries, the prevalence of asthma in children has been increasing independent 
of allergen exposure [22, 23].

Data sets obtained from the MAS birth cohort suggest that while domestic allergen 
exposure is a strong determinant for early sensitization in childhood, it cannot be 
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considered as a primary cause of airway hyper-responsiveness or asthmatic symptoms, 
since during the first 3 years of life the manifestation of wheeze is not related to 
elevated serum IgE levels or specific sensitization. Studies following up birth 
cohorts to adolescence have recently indicated that 90% of children with wheeze 
but without atopy lose their symptoms at school age and retain normal lung func-
tion in puberty (Fig. 1). By contrast, sensitization to perennial allergens (house dust 
mites, cats, and dogs) developing in the first 3 years of life was associated with a 
loss of lung function at school age. Concomitant exposure to high levels of peren-
nial allergens early in life aggravates this process. Such exposure also enhances the 
development of airway hyper-responsiveness in sensitized children with wheeze. 
From these data, it can be concluded that impairment of lung function during 
school age is determined by continuing allergic airway inflammation beginning in 
the first 3 years of life [9].

A number of intervention studies to examine the effects of indoor allergen 
elimination on the incidence of asthma are currently being performed in cohorts 
followed prospectively from birth [24]. The results will have a strong impact on 
public health policies because they will determine whether considering indoor 
allergen elimination as an important element of primary prevention of various 
atopic manifestations is meaningful. Even if the result is that other factors play 
major parts in determining whether an atopic child will develop asthma, so that 
allergen elimination as a measure of primary prevention is inefficient, reduction of 
allergen exposure will still remain as a very important element in secondary 
prevention.

Fig. 1 School age (5–7 years), stratified for atopy at school age. Of the 178 children with wheeze 
at school age, 153 had measurements of immunoglobulin E at school age. Prevalence of current 
wheeze from birth to age 13 years in children with any wheezing episode
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Pollutants and Tobacco Smoke

Other environmental factors have attracted the interest of epidemiologists and 
experimental researchers. Although they do not serve as allergens, these factors are 
capable of up-regulating existing IgE responses or leading to disease manifestation 
or aggravation of symptoms. Guinea pig and mouse experiments suggested an 
increase of allergic sensitization to ovalbumin after experimental exposure to traffic- 
or industry-related pollutants. A strong association between allergic rhinitis caused 
by cedar pollen allergy and exposure to heavy traffic was reported in Japan. 
Important sociodemographic confounders turned out to be problems in interpreting 
study results. Other investigators were unable to describe any relationship between 
traffic exposure and the prevalence of hay fever or asthma. The role of tobacco 
smoke, a complex mixture of various particles and organic compounds, was 
extensively studied.

Recent review studies consistently demonstrate that the risk of lower airway 
diseases such as bronchitis, recurrent wheezing in infants, and pneumonia is 
increased. Whether passive tobacco smoke exposure is causally related to the 
development of asthma is still disputed [25–28].

Until recently, data about the risk of sensitization have been lacking. The 
prospective birth cohort MAS in Germany suggests that an increased risk of sen-
sitization is found only in children whose mothers smoked up to the end of their 
pregnancies and continued to smoke after childbirth. In this subgroup of the 
cohort, a significantly increased sensitization rate of IgE antibodies to food 
proteins, particularly to hen’s egg and cow’s milk, was observed during infancy. 
The effect of environmental tobacco smoke exposure is particularly strong in 
families with susceptibility for atopy [25].

Lifestyle

Obviously, a long list of lifestyle-related factors possibly associated with the apparent 
allergy and asthma epidemic of the late twentieth and early twenty-first centuries 
may have relevance to the atopic march in children.

Taking into account that the risk of atopic sensitization and disease manifestation 
early in life is particularly high in industrialized Western countries [29], and that 
within these countries concomitant variations in the socioeconomic status and the 
prevalence of atopy are evident [30], the question arises as to what factor related to 
Western lifestyle may be responsible for increasing the susceptibility to atopic sen-
sitization? In a recent Swedish study, the prevalence of atopy in children from 
anthroposophic families was lower than in children from other types of families. 
This led the authors to the conclusion that lifestyle factors associated with anthro-
posophy (no vaccination, low exposure to antibodies, etc.) may lessen the risk of 
atopy in childhood [31].
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Several studies focusing on differences between the former socialist countries 
and Western European countries reported lower prevalence rates for atopy in the 
former East.

The differences were particularly striking in the areas with few genetic differences 
such as East and West Germany where it was found that the critical period during 
which lifestyle mainly influences the development of atopy is probably the first 
years of life [32, 33]. These observations point in the same direction as studies 
reporting lower prevalence rates for children born into families that have few 
siblings. Recent observations from Germany suggest that within the population of 
an industrialized country with a Western lifestyle, high socioeconomic status must 
be considered as a risk factor for early sensitization and the manifestations of atopic 
dermatitis and allergic airway disease [29]. Turkish migrants living in Germany 
exhibited higher prevalences of atopy and asthma after cultural assimilation [34].

Differences in the intestinal microflora as a major source of microbial stimulation 
of the immune system in early childhood has been proposed as a possible explana-
tion for this observation [35, 36]. The intestinal microflora have been shown to 
enhance Th1-type responses. The results of a comparative study of Estonian and 
Swedish children demonstrated differences in intestinal microflora. In Estonia, the 
typical microflora included more lactobacilli and fewer clostridia organisms that 
are associated with a lower presence of atopic disease. Intervention studies are 
needed to demonstrate the relevance of these findings and examine the effects of 
adding probiotics to infant formulas. In one study from Finland, which unfortu-
nately was not blinded, infants with milk allergy and atopic dermatitis exhibited 
milder symptoms and fewer markers of intestinal inflammation if they were fed 
lactobacilli-fortified milk formula [37].

Few reports have described an association between the use of antibiotics during 
the first 2 years of life and increased risks of asthma. It seems too early to draw final 
conclusions from these publications.

Immunizations against infectious diseases do not appear to influence the risk of 
early sensitization or development of atopy. Physicians should therefore support 
successful immunization programs such as those targeting measles.

Early Exposure to Infections or Microbial Products?

One hypothesis that has attracted considerable interest is that a decline in certain 
childhood infections or a lack of exposure to infectious agents during the first 
years of life associated with smaller families in the middle class environments of 
industrialized countries may be causal for the recent epidemic in atopic disease 
and asthma [38]. Although this hypothesis is obviously very complex, various 
sources of information appear to support it. Studies from several countries provide 
indirect evidence for the hypothesis that early exposure to viral infections, 
although triggering lower airway symptoms during early life, may exert long-lasting 
protective effects. Children born into families with several siblings, especially 
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older siblings, have been found to have reduced risk of allergic sensitization and 
asthma at school age. Studies in children who attended day-care centers during 
infancy support this concept. Infections are known to produce long-lasting non-
specific systemic effects on the nature of the immune response to antigens and 
allergens. For example, recovery from natural measles infection reduces the inci-
dence of atopy and allergic responses to house dust mites to half the rate found in 
vaccinated children [39–49].

Obviously, the fact that certain infections induce a systemic and nonspecific 
switch to Th1 cells may be responsible for inhibiting the development of atopy during 
childhood.

Observations from Japan suggesting that strong positive tuberculin responses in 
children predict a lower incidence of asthma, lower serum IgE levels, and cytokine 
profiles biased toward a Th1-type were supported by animal experiments demon-
strating that IgE responses to ovalbumin in mice could be down-regulated by a 
previous infection with bacillus Calmette-Guerin (BCG).

Unfortunately, cohort studies from Europe were unable to describe any protective 
effect of BCG vaccination [50–52].

Although these observations on the relationship of immune responses to infectious 
agents, atopic sensitization, and disease expression are stimulating and challenging, 
conclusions regarding the relevance of the atopic march should be drawn with care. 
In different parts of the world, completely different infectious agents have been 
addressed in different study settings. It appears to be fashionable to join Rook and 
Stanford [53] who, in a recent review article pleaded “Give us this day our daily 
germs”—but which germ, at what time, under which circumstances, and at what 
price?

Farming Environment

In farming environments where animals such as cattle, pigs, and poultry are kept, 
microbial products are particularly abundant. Accumulating evidence indicates that 
children growing up on traditional dairy farms have a significantly lower prevalence 
of atopic sensitization, hay fever, and asthma when compared with children from 
the same rural areas but not raised on farms. Interestingly, no protective effect of a 
farming environment was seen for the prevalence of atopic dermatitis.

Contact with livestock and poultry was found to explain much of the relation 
between farming and atopy. Exposure to the farm environment during the first 
year of life or even before birth, and the dose and duration of exposure from the 
first to the fifth years of life were crucial for this protective effect. Children 
exposed to animal stables or unpasteurized milk in the first year of life, in con-
trast to later exposure, had a significantly reduced prevalence of asthma, whereas 
continued exposure was relevant for the protection from atopy and hay fever 
[54–58].
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Endotoxin

Microbial exposures are abundant in these environments and microbial studies 
investigating stables report a large variety of gram-negative and gram-positive 
germs as well as a diversity of molds and fungi.

In addition, nonviable parts of microbes, such as endotoxin from the outer wall 
of gram-negative bacteria, are found in abundance in stables and also in elevated 
concentrations in indoor environments of adjacent farmhouses.

Endotoxins are a family of molecules called lipopolysaccharides (LPS) and are 
intrinsic parts of the outer membranes of gram-negative bacteria. LPS and other 
bacterial wall components are found in high concentrations in stables, where pigs, 
cattle, and poultry are kept engaged with antigen-presenting cells via CD14 ligation 
to induce strong interleukin (IL)-12 responses. IL-12, in turn, is regarded as an 
obligatory signal for the maturation of naive T cells into Th1-type cells. Endotoxin 
concentrations were recently found to be highest in stables of farming families and 
also in dust samples from kitchen floors and mattresses in rural areas in southern 
Germany and Switzerland. These findings support the hypothesis that environmen-
tal exposure to endotoxins and other bacterial wall components is an important 
protective determinant related to the development of atopic diseases. Indeed, endo-
toxin levels in samples of dust from children’s mattresses were found to be inversely 
related to the rate of occurrence of hay fever, atopic asthma, and atopic sensitization 
[59, 60].

On the other hand, high exposure to endotoxins may only be a surrogate marker 
for other bacterial products such as nonmethylated cytidine-guanosine, dinucle-
otides specific for prokaryotic DNA (CpG motifs). Cell wall components from 
atypical mycobacteria or gram-positive bacteria, such as lipoteichoic acid, are 
known to affect immune responses in ways similar to endotoxin.

Primary Prevention: The Challenge of the Future

In an attempt to reverse the observed epidemiological trend, primary prevention 
strategies for decades aimed at avoiding risk factors and inhibiting their mechanism 
of action. More recently, attempts were initiated to promote protecting factors and 
stimulate their mechanisms of action.

Alimentary Ways to Protect

For numerous reasons, breast-feeding is the preferred method of infant nutrition; 
however, there is still controversy as to whether breast-feeding protects against the 
development of allergic diseases.
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On the basis of the available data, an “Expert Group” of the “European Academy 
of Allergology and Clinical Immunology” recommends exclusively breast-feeding 
for 4 to 6 month irrespective of family history of atopy.

For a long time, primary prevention strategies for asthma were almost exclusively 
focused on allergen avoidance measures early in life, which were supposed to prevent 
primary sensitization to both food and inhalant allergens.

For several years, the use of hydrolyzed formula was recommended as an 
alternative for infants, for whom breast milk was not available and who were 
genetically predisposed to atopic diseases. Indeed, the German Infant Nutritional 
Intervention (GINI) Study demonstrated that extensively as well as certain partially 
hydrolyzed formulas compared to unhydrolyzed infant formulas resulted in a lower 
incidence of atopic eczema during the first 3 years of life. This study still represents 
the only large and well-designed trial when comparing different formulas in rela-
tion to primary prevention of atopic dermatitis and sensitization to food proteins 
[61–63].

More recently, new alimentary strategies to prevent allergic manifestations are 
being studied. These include supplementation with probiotics (e.g., lactobacilli) or 
prebiotics (oligosaccharides influencing the intestinal microflora). So far, the 
information from the initial studies on supplementation with probiotics is inconclu-
sive. It will be interesting to see the outcomes of well-designed intervention studies 
focused on the efficacy of this approach [64, 65].

The Avoidance Concept

Since indoor allergen exposure was shown to be associated with allergic sensitization, 
which on the other hand was associated with childhood asthma, it was understandable 
that the first intervention studies aiming at primary prevention of early sensitization 
and the development of allergic airway disease have concentrated on indoor allergen 
avoidance [66, 67].

The earliest trial, the Isle of Wight study, showed that children at the age of 8 
years tended to have less wheeze and a lower risk for mite sensitization following 
the avoidance of early house dust mite allergen contact [68]. In contrast, the Study 
of Prevention of Allergy in Children in Europe (SPACE) was not able to show a 
significant benefit in the intervention group (mattress covers) [69, 70]. In the 
Manchester Allergy and Asthma Study (MAAS), 291 infants—at high risk because 
both parents were atopic and there were pets in the home—were recruited, and a 
number of avoidance measures were instituted to decrease inhalant allergen expo-
sure [71, 72]. The group was able to demonstrate that the avoidance measures were 
capable of achieving and maintaining a low dust allergen environment during preg-
nancy and for the first 3 years of these children. At age 3 years, children in the 
active group had less wheeze and a lower airway resistance; however, the sensitization 
rate to mites was higher than that in the control group [73].



The Allergy Epidemic: A Look into the Future 11

In the Dutch Prevention of Incidence of Asthma and Mite Allergy (PIAMA) 
study, the intervention had a significant effect on mite allergen levels, but no effect 
was seen on respiratory symptoms, atopic dermatitis, or total and specific immu-
noglobulin E levels [74].

So far, we must admit that recommendations to families for primary prevention 
of asthma should be given with caution, as no single approach can definitively 
prevent children from developing asthma.

Perspectives

The challenge of primary and secondary prevention of atopy and asthma has stimulated 
a variety of prospective interventional trials that are currently ongoing all over the 
world (Table 1). Unfortunately, pharmacotherapeutic trials that aimed at long-term 
disease modification with an inhaled corticosteroid, or prevention of asthma in 
children with atopic dermatitis by giving an H

1
-antihistamine such as cetirizine or 

levocetirizine, have failed to provide more than symptomatic relief during treatment. 
A long-term prevention study with a calcineurin inhibitor is currently underway.

On the basis of encouraging animal studies, avoidance studies including 
elimination of alimentary proteins as well as indoor allergens or tobacco smoke, 
and intervention with oral application of endotoxin, or exposure to mycobacteria or 
parasites are being conducted. Finally, trials aimed at nonspecific or specific induction 
of tolerance have recently been initiated.

Allergy immunotherapy has been based on antigen-specific stimulation of the 
adaptive immune system (by subcutaneous or sublingual specific immunotherapy) 
for a century. However, the most recent evolution modified our immune system in 
such a way that allergy is no longer the rare exception but is becoming increasingly 
prevalent. Factors once abundant in our environment that normally stimulated our 
innate immune system to protect us from allergy development are now missing 
more and more often. Several categories of new intervention strategies for allergy 
prevention are based on this concept: induction of immune functions that are able 

Table 1 Possible preventative strategies under investigation in experimental animals 
and humans.

Avoidance of risks Exposure to alimentary proteins (breast-feeding, 
hydrolyzed formulas)

Exposure to indoor allergens
Exposure to tobacco smoke

Providing protection Exposure to endotoxin (LPS)
Exposure to microbacteria vaccae
Exposure to parasites/trichinosis suis

Nonspecific or specific induction 
of tolerance:

Modify intestinal flora

Mucosal tolerance induction to specific allergens

LPS, lipopolysaccharides.
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to down-regulate unwanted immune responses against allergens and suppress 
allergen-induced inflammation. These new preventive and therapeutic strategies are 
not limited to respiratory allergies, but involve food allergies as well.
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Is the Prevalence of Allergy Continuously 
Increasing?

Carlos E. Baena-Cagnani and R. Maximiliano Gómez

Health systems and investigators worldwide have been asking themselves for many 
years whether the prevalence of atopic illnesses has been increasing continuously. 
It is mandatory to consider studies using comparable methods to validate these 
results.

The Aberdeen study considered the presence of asthma diagnosis, wheezing, 
eczema, and rhinitis between the decades of 1960 and 1990, showing a significant 
increase in all of them, not attributable to a diagnosis fashion but to a truly change 
in prevalence, using the same methodology in two time points in 25 years [1]. In 
this population and throughout these years, the proportion of wheezing increased 
from 10% to almost double, diagnosis of asthma from 4% to 10%, rhinitis from 3% 
to almost four times, and eczema from 5% to more than double. All these variables 
increased particularly noticeable in boys.

Is the Prevalence of Asthma Continuously Increasing?

In Finnish young men, the incremental tendency of asthma diagnosis remained 
from 0.29% in 1966 to 1.79% in 1989. The possibility of confounding factors in the 
diagnosing is improbable, as the exemption of military service due to incapacitating 
asthma was correlated with the increase reported [2].

In another wider evaluation in the UK, from 1955 to 2004, several indicators of 
asthma such as primary care, prescriptions, hospitalizations, and mortality evi-
denced an increase until the 1990s, where the curve flattened and even decreased [3]. 
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The opposing evolution of these effects compared to the sale of inhaled corticoster-
oids (ICS) is one explanation, since the recognition of the inflammatory component 
of asthma began in the 1980s.

However, also in the UK, an evaluation of prevalence in schoolchildren between 
1991 and 2002 showed a significant increase in wheezing in the past 12 months, in 
severe speech-limiting episodes and night waking, but non-significant increase in 
medical visit because of wheezing. Here again, this last finding could be explained 
by the significant increase in steroids prophylactic treatment reported in this popu-
lation [4]. This explanation will be reconsidered ahead.

Another trend study also evidenced a significant increase from 1990 to 2003 in 
doctor-diagnosed asthma, more evident in females (7.3–14.6%) than in males 
(7.8–9.4%), in all age groups but larger in people aged 55 and older [5].

Is It the Same in Low- and Medium-Income Countries (LMIC) 
in the Planet?

Some years ago, Faniran et al. [6] compared the prevalence of asthma and atopy in 
children between an affluent versus a non-affluent country, having a smaller preva-
lence of wheeze and persistent cough in Nigeria when compared to Australia 
(10.2% and 5.1% compared to 21.9% and 9.6%, respectively).

Anyway, a recent report from Aït-Khaled et al. [7] evidenced a wide range of 
atopic disorders prevalent all over Africa, not only with the highest presence of 
current asthma in urban areas with higher standard of living (concordant with the 
hygiene hypothesis) but also with a representative prevalence in endemic parasite 
and tuberculosis zones (opposed to the hygiene hypothesis).

In Latin America, protective factors to avoid having asthma seem not to play a 
role, and the non-allergic factors like pollution are not conditioning a higher preva-
lence of respiratory symptoms. However, this prevalence is similar to industrialized 
countries [8]. In a recent survey of rural Asian children, 16.1% of wheezing preva-
lence in the past 12 months was found, not different from other developing regions 
of the planet [9].

The former reports, the International Study of Allergy and Asthma in Children 
(ISAAC), utilized the same methodology of evaluation, having strength enough to 
make conclusions and to compare different cultures and latitudes.

However, scarce tendency data are available from LMIC since the possibility of 
having these tools for evaluation has become recently available. An example is the 
ISAAC Phases I and III in comparison with Brazil, where nocturnal cough and 
wheezing slightly but significantly diminished [10]; however, the generalization of 
these results is improbable when considering previous references.

Taken all together, we could conclude that globally, the prevalence of asthma is 
high and still demonstrates a slight increasing tendency, even though there is a 
lessening of differences.
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What Is the Scenario of the Rest of Atopic Diseases?

Other than analyzing asthma, a European study (SCARPOL) that was conducted 
four times between 1992 and 2001, revealed evidence of stabilizing asthma and hay 
fever, but with a predominant increase in atopic eczema in girls that was stable in 
boys [11].

The same tendency was found in the Aberdeen evaluation when considered up 
to 2004 [12]. There, the three atopic illnesses demonstrated a stable prevalence that 
was a pattern in the past 10 years, with a continuous increase present in girls that 
makes no sex difference at the end (Fig. 1). As in the former study, when evaluating 
eczema, females were more prevalent.

However, an Italian evaluation demonstrated an increasing trend from 1994 to 
2002 in wheezing, allergic rhinoconjunctivitis and atopic eczema in both 6- to 
7-year-old and 13- to 14-year-old populations, except for wheezing in the last group 
(Fig. 2) [13].

A global time trend analysis of prevalence in rhinoconjunctivitis symptoms evi-
denced yet again a smooth increase, being more evident in LMIC and in the older 
age group, suggesting that environmental influences in the development of allergy 
may not be limited to early childhood [14].

Related to these asseverations, a recent evaluation in the tendency of aeroaller-
gen sensitization for 25 years (from 1976–1977 to 1999–2001) evidenced a signifi-
cant increase in the prevalence of sensitivity as well as in the mean age of allergic 
patients [15].

Fig. 1 Sex-specific prevalence rate for asthma reported by year of survey. (From [12], with 
permission.)



20 C.E. Baena-Cagnani and R.M. Gómez

Again, ISAAC is the option to have a global vision. A recent publication of a 
worldwide comparison of two phases in 6- to 7-year-old and 13- to 14-year-old 
populations, using the same methodology both times with a mean of 7 years of dif-
ference, allowed to evidence several projections of concern [16]: (a) In 6- to 7-year-
old, an incremental tendency in asthma, rhinoconjunctivitis, and eczema was 
observed in Asia-Pacific, India, North America, Eastern Mediterranean, and 
Western Europe. (b) In 13- to 14-year-old, this augmentation was evidenced in 
Africa, Asia-Pacific, India, Latin America, and Northern and Eastern Europe. (c) In 
asthma at 6- to 7-year-old, more centers reported increase of prevalence, while in 
the 13- to 14-year-old group, almost equal centers reported up and down tendency. 
Those having larger prevalence in the first phase tend to have a decrease in the third 
phase and vice versa. (d) For allergic rhinoconjunctivitis, most centers at both ages 

Fig. 2 Changes (delta) and 95% confidence interval in prevalence of wheezing, atopic rhinocon-
junctivitis, and atopic eczema in the past 12 months, reported by parents of children 6–7 years of 
age (left) and by adolescents 13–14 years of age (right) in six areas of Italy. (From [13], with 
permission.)
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reported an incremental variation between phases. (e) For atopic eczema, the 6- to 
7-year-old participants showed increased tendency in average, while in the 13- to 
14-year-old samples, such tendency was not that evident. (f) Taking all disorders 
together, the younger group had an increase from 0.8% to 1%, and the older one 
from 1.1% to 1.2%.

We can then preliminarily conclude that globally, there is still a growing preva-
lence of atopic disorders, predominantly in developing regions of the planet. 

Let us analyze the risk factors that could help to explain 
these phenomena: 

Sex

In childhood, male sex has been considered to be a risk factor for having atopic 
diseases and asthma. Some years ago, this predominance was partially explained by 
an increased sensitivity to inhalant allergens [17]. However, we mentioned earlier 
that the increasing prevalence among girls equalized the male to female ratio 
recently, even being more prevalent when considering eczema [11, 12].

By the age of 11, male sex is still stronger when considering current wheez-
ing [18]. As the age of the sample evaluated increases, the predominance 
reverses. In a cohort evaluation, male in childhood declined by adolescence and 
early adulthood, considering female sex as one of the major risk factors for 
having asthma [19]. It was also a predictive factor for persistence of asthma 
symptoms from childhood [20], but this conclusion needs to be reinforced in 
larger populations because the odds obtained revealed evidence of a wide con-
fidence interval.

Not only the former but also allergic rhinitis shows similar transition from male in 
childhood to female in adolescence. Having those repeated observations reinforced 
by evaluations in large population samples, the fact that estrogen has pro-inflamma-
tory and testosterone anti-inflammatory effects could explain this trend [21, 22].

Diet

Recently, Garcia-Marcos et al. [23] evaluated the relationship of the Mediterranean 
diet (vegetables, pulses, cereals, potatoes, pasta, and rice) with asthma and rhinoc-
onjunctivitis in more than 20,000 children, adjusting for exercise and obesity, find-
ing its protective effect against current severe asthma in girls. Also, seafood and 
fruit were protective against having rhinoconjunctivitis.

In the same direction, Wickens et al. [24] corroborated that fast food intake was 
related with asthma symptoms in a frequency-dependent manner. Takeaway con-
sumption greater than once a week showed an increased (although not significant) 
bronchial hyper-responsiveness, but had no effect on atopy.
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Not only animal fat consumption was implicated as a risk factor for atopic 
diseases expressions. Vegetable oils contain linoleic acid, an Omega 6 poly-
unsaturated fatty acid (PUFA) precursor of arachidonic acid and consequently of 
eicosanoid metabolites, promoting the Th2 imbalance while decreasing interferon 
g (IFNg); omega 3 PUFA found in fish oil inhibits PGE2 formation, modulating 
the production of immunoglobulin E (IgE) indirectly [25]. However, the clinical 
relevance of adding fish oil in pregnancy diet demonstrated just a decrease in the 
severity of eczema in infants at high risk of atopy [26].

Feeding habits in the UK over the last decades, where atopic expressions grew, 
evidenced diminished saturated fat consumption [27]. This growing could then be 
attributed to a reduction of antioxidants in the diet, since only the fatty acids 
deregulations could oversimplify the frame. Anyway, more studies are needed in 
this field as interventional strategies have been disappointing as of date.

Could Diet Effect Be Related to Overweight?

As atopy, asthma, and obesity increased in the last decades, it was reasonable to 
speculate that maybe they are linked. When evaluating the effect of the Mediterranean 
diet [23], it was reported that obesity was a risk factor for current severe asthma in 
girls. A practical measurement of total body fat is the estimation of body mass 
index (BMI)–weight/height ratio [28].

However, controversies about the relationship of BMI with the presence of atopy 
and asthma is shown by a report from Australia [29], which states that increased 
BMI was a risk factor for cough, ever wheezing and atopy (predominantly in girls), 
but not for diagnosed asthma or bronchial hyper-responsiveness. Without these last 
two conditions, it is difficult to be conclusive, as gastro-esophageal reflux, sleep 
disorders, being unfit, or altered mechanical ventilation could explain symptoms, 
and all are associated with overweight.

So some meta-analysis was required to elucidate the real impact of overweight 
in the incidence of asthma, and 1 with a sample larger than 300,000, evidenced a 
dose–response increasing odds for incident asthma: odds ratio (OR) 1.38 for nor-
mal versus overweight comparison, and OR 1.92 for obesity; none of them was 
affected by sex [30]. These odds have a huge impact on populations like the USA, 
where more than 60% of adults are overweight/obese, and in consequence at risk 
of developing asthma.

Also considering a meta-analysis in children, the same evidence was reported. 
The relative risk (RR) of high birth weight on developing asthma later was RR = 1.2 
(95% confidence interval (CI) 1.1–1.3), while the effect of overweight in middle 
childhood was RR = 1.5 (95% CI 1.2–1.8) [31]. Misclassification, diagnostic 
bias, and individual confounders are always doubts emerging from meta-analysis; 
however, the results from an enormous cohort study, from childhood to adulthood, 
are the only possibility to corroborate or contradict this evidence.
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What About Environmental Pollution and Work Exposure?

The effects of air pollution have been described some years ago as significantly 
harmful in children with elevated IgE and bronchial hyper-responsiveness. Airborne 
particulate of a size of less than 10 μm (PM10), sulfur dioxide, black smoke, and 
nitrogen dioxide provoked lower airways symptoms in these patients (wheezing 
and dyspnea), as well as a decrease in peak expiratory flow greater than 10% while 
particulate amounts increased [32].

PM10, nitrogen dioxide, and carbon monoxide showed a considerable correlation 
with emergency assistance in children, but not in adults [33]. In children under 5 
years, peak carbon monoxide level was predictive of hospitalization because of 
asthma attack [34].

Going from an epidemiological to a bio-immunological approach, one of the 
risk factors that could explain the increasing prevalence of atopic diseases in 
industrialized countries has been the exposure to diesel exhaust particles, recog-
nized as enhancer of IgE-dependent allergic inflammation, and the consequent 
symptoms of asthma and rhinitis [35]. Once again, a recent revision cannot be 
conclusive in considering these particles as a significant risk factor for having 
atopic diseases [36].

About indoor pollution, there is no doubt that tobacco smoke constitutes the key 
factor to be considered, since it has been implicated in the development of asthma 
in children and non-smoking adults exposed [37]. About those smoking actively, 
the RR for incidental asthma was reported as high as 3.9 (95% CI 1.7–8.5) [38].

Work Exposure

With an obvious gap in concentration, some same outdoor pollutants could be 
found at working places. But time and dose exposure could promote the starting of 
irritant asthma, like sulfite mill workers in whom sulfur dioxide established a risk 
of four to six times greater for new-onset medical-diagnosed asthma [39]. Not only 
pollutants are capable of inducing asthma, instruments and surface cleaners, adhe-
sives and latex particles have been implicated in that process within healthcare 
workers [40]. The list of demonstrated provoking agents, as well as mechanism 
involved, goes beyond the present analysis.

What About Infections and the Hygiene Hypothesis?

In 1989, Strachan [41] proposed that allergic diseases could be prevented by infec-
tions in early childhood, and the transmission of them by unhygienic contact with 
older siblings. Smaller family size, higher standard of living, and personal cleaning 
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reduced the chances of spreading “protective” infections, originating the hygiene 
hypothesis.

A recent comparison of two genetically related but cultural and socio-economic 
different populations (Russian and Finnish) evidenced higher specific IgE levels in 
Finnish but more total IgE and specific microbial antibodies in Russians. 
Enterovirus infection represented the strongest protective factor against allergen 
sensitization [42].

In this direction, farmers’ children from a rural environment were evaluated for 
atopic symptoms (by questionnaire) and atopy (by skin test), as well as endotoxin 
measurement. Compared to non-farmers’ children, they presented significantly 
fewer symptoms of current asthma (adjusted OR 0.67; 95% CI 0.49–0.91; P = 0.01) 
and rhinitis (OR 0.50; 95% CI 0.33–0.77; P = 0.002). If having unpasteurized milk 
also, a significant reduction of atopy (OR 0.24; 95% CI 0.10–0.53; P = 0.001) and 
current eczema symptoms were added (OR 0.59; 95% CI 0.40–0.87; P = 0.008), 
while reducing IgE (P < 0.001) and increasing IFNg (P = 0.02) [43]. Pasteurized 
milk, vaccinations, early use of antibiotics, and the westernized lifestyle with less 
exposure to infectious agents could contribute to this lack of stimulation, essential 
in the first years of life to change the initial Th2 profile toward a Th1 just not to 
favor atopy development.

Ten years ago the hygiene hypothesis was suggested, an extensive analysis 
was done to determine its current relevance, and the conclusions were [44]: (a) 
atopic diseases, but not necessarily asthma, are highly prevalent in smaller and 
more affluent families; (b) the postulate of protective infections against atopy is 
immunologically plausible; the reversal is inconclusive; (c) the modulating 
effects of antibiotic therapy and diet influencing intestinal flora need to be 
evaluated extensively; (d) The inverse association of family size and allergic 
sensitization could potentially help to discern underlying causes of the increasing 
prevalence of atopic diseases.

However, the Th1/Th2 paradigm and how it fits in the hygiene hypothesis must 
be analyzed. Table 1 considers how all these factors affect both Th2 and Th1 ill-
nesses, and its scheme outlines factors influencing immune system development at 
different time points [45].

In this context, genetically inheritance should be the beginning, while the 
attributable genetic risk ranges from 30% to 80% depending on the disease con-
sidered. Then, susceptibility to multiple exposures will determine if “western and 
industrialized world” affects the development of atopic diseases in these individu-
als. There, developing countries with the objective of reaching a better quality 
of life increase their risk as shown by the increased atopic prevalence in people 
who migrated to developed regions and in urban cities when compared to rural 
[7, 45, 46].

As a conclusion, we do not need to go back in evolution, we must maintain the 
control over infections, but need to clarify the role of each microbial stimulus 
(especially at the gastrointestinal tract), in parallel with genetic background and 
every co-factor. Large longitudinal birth cohort studies, getting representative 
biological and environmental samples, will help us in the future.
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Is Atopy Per Se a Risk Factor for Having Atopic Diseases?

Taking the former proposal to consider longitudinal studies, to elucidate the attrib-
utable risk of different exposures, a cohort of more than 1,000 children was evalu-
ated by their atopic status, and related to asthma, rhinitis, and eczema. Sensitization 
to dust mites was the strongest independent risk factor for having asthma (OR 8.07, 
CI 4.6–14.4), to grass pollen for having rhinitis (OR 5.02, CI 2.21–11.41), and to 
peanut for having eczema (OR 4.65, CI 1.02–21.34). Even though less than half of 
the original cohort was skin tested at the age of 4, some relevant tendencies were 
evident: the prevalence and severity of asthma correlated with allergen sensitiza-
tion, the risk of all allergic diseases increased with the number of positive prick 
tests, there was a predominance of male sex at this age, but they conclude that only 
30–40% of allergic diseases is attributable to atopy, and the rest to the affected 
organ or other factors [47]. A recent report suggests that asthma attributable to 
atopy could vary depending on allergen exposure and its modifications because of 
the environment such as climate [48].

But atopy alone does not explain much of the real life, where multiple factors 
could influence the development of atopic diseases, such as respiratory viral infec-
tions and the development of asthma. In a cohort of more than 2,000 children, 

Table 1 Discrimination of factors influencing Th1 and Th2 diseases; scheme 
below: factors that could manipulate immune system development, at different 
periods. (From [45], with permission.)

Atopic 
disease

Auto-immune 
disease

Epidemiological findings
Decreasing family size Ý Ý
Number of older siblings Ý Ý
High socio-economic status Ý Ý
Decreased day-care exposure Ý Ý
Evidence of cleaner houses Ý
Evidence of previous oro-fecal infection 

(as a marker for poor hygiene)
ß ?

Higher frequency of viral “cold” in early 
childhood (parentally reported)

ß Þ ?

Environmental measurements
High endotoxin exposure (e.g., on farms) ß ?

GI-flora
Decreased Lactobacilli, Bifidobacteria Ý ?
Supplementation with Lactobacillus CG ß ?
Increase in Clostridia (esp Costridium 

difficile)
Ý ?

GI-parasite infection ?
Active/chronic infection ß
Treatment of parasite infection Ý

GI, gastrointestinal.
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where the presence of current asthma at 6 years of life was correlated with atopy 
and respiratory tract infections in first year, concluded that both conditions were 
independently associated with a significant risk of having asthma by the age of 6 
[49]. Also, maternal feeding evidences a protective behavior.

Another longitudinal study demonstrated the association of infantile chest infec-
tions with wheezing and asthma, and the importance of early life atopic status for 
the presence of wheezing, asthma, and bronchial hyper-responsiveness at 10 years 
of life [50]. Other conditions such as familiar asthma, early passive smoking, and 
having eczema at the age of 4 were also significantly associated with asthma and 
wheezing but not with bronchial sensitivity.

We must preliminary conclude that atopy per se is not enough, neither to express 
atopic diseases nor to justify the increased incidence of them.

But What Is the Natural History of Asthma and Allergy?

A prevalence of positive skin test ranging from 8% to 30% in general asymptomatic 
population has been described; from them, one to two out of three will develop an 
atopic respiratory disorder in the future [51]. Multiple risk factors associated with 
the development of allergy and asthma have been detailed.

Genetic polymorphism and their environmental interaction, premature aeroal-
lergen sensitivity, exposure to tobacco smoke, presence of eczema and rhinitis, and 
lower respiratory viral infections are all risk factors for developing chronic asthma 
[50, 52]. Once asthma is present, several predictors have been detailed for persist-
ence and severity of the disease in children [53]: (a) severe wheezing in preschool 
age, (b) the onset at school age, (c) familiar history of asthma and allergy, (d) ele-
vated serum IgE levels, (e) early sensitization to aeroallergens, (f) early develop-
ment of bronchial hyper-responsiveness, (g) frequency of respiratory infections, (h) 
lack of contact with older children, (i) familiar discrepancies with psychological 
involvement. For persistence and severity in adults, predictors described are [53]: 
(a) constant exposure to sensitized allergens (including occupational), (b) older age 
of the onset, (c) aspirin intolerance, (d) socio-economic status, (e) smoking, (f) 
coexisting pulmonary diseases provoking COPD (like bronchiectasis or 
aspergillosis).

Some absolutely relevant cohort studies allowed to discriminate phenotypes of 
asthma that can be grouped in: (a) intermittent wheezers associated with respiratory 
infections, (b) transient or persistent wheezers (the latter associated with atopy), (c) 
atopic and intrinsic asthma (invariably persistent), (d) occupational or drug-induced 
asthma (mainly adults with prognosis related to severity) [53–56]. This differentia-
tion has important therapeutic implications as supposed.

Regarding the other atopic disorders, atopic march described that while in the 
first years of life the prevalence of food allergy and eczema is present but declines 
progressively, giving respiratory allergy the chance to persist [57, 58]. The first 
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atopic expressions being eczema and food allergy, maternal diet restrictions and 
food avoidance have both been recommended as primary prevention without con-
clusive and strong evidence [59, 60]. Indeed, a recent evaluation of the delay in 
solid food introduction could not demonstrate a protective effect against food or 
any allergen sensitization and/or eczema by the age of 2 [61].

Allergic rhinitis is undoubtedly an independent risk factor for having asthma; 
moreover, treating rhinitis with allergen immunotherapy reduced the risk of devel-
oping asthma [62]. Eczema (together with familiar history of asthma) was consid-
ered to be a major predictor for having asthma [63].

Has Any Therapeutic Intervention Been Demonstrated to Alter 
This Natural Course?

One of the most controversial issues to date is the use of ICS to alter the natural 
development of asthma, specifically when to begin its use and for how long. There is 
no doubt that persistent asthma must be treated chronically with ICS [64–66], and 
significant reduction in its impact is remarkable, in any case, considering hospitaliza-
tions or mortality [67, 68]. However, the convenience of early introduction of them in 
intermittent asthma and the regular versus intermittent use in mild persistent cases are 
not conclusive yet; robust evidence is needed to conclude that early introduction and 
permanent use of ICS prevent a significant decline in lung function in such a mild 
profile, with truly clinical relevance, and a strong risk–benefit ratio [69–74].

About primary prevention of atopic diseases, we mentioned that no concluding 
recommendations should be given regarding maternal diet and feeding of babies 
[59–61].

In clinically relevant aeroallergen sensitization, measures for avoidance of house 
dust mites may benefit in reducing symptoms only [75]. However, specific immuno-
therapy can prevent new sensitizations while maintaining an asymptomatic condition 
for many years; moreover, it has been demonstrated to prevent the onset of asthma in 
children with rhinitis [76–78]. Sublingual immunotherapy has an excellent safety 
profile while having same immunological effectiveness as subcutaneopus, emerging 
then as the only interventional option that can modify the natural course of allergic 
diseases [77, 78].

Concluding Remarks

1. The prevalence of allergic diseases is still slightly increasing, with different 
profiles in the developed world (stabilization) and the developing world (increas-
ing). The direct implication must be analyzed in the context of the regions where 
population is growing.
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2. Urgent global networks and programs must be implemented, to allow admission 
to all people for prevention, diagnosis, and treatment. This is the only possibility 
for reversing this trend.
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Allergy: A Burden for the Patient 
and for the Society

Erkka Valovirta

Introduction

Allergic diseases and asthma represent some of the most common chronic patho-
logical conditions prevalent all over the world [1, 2] that begin usually in infancy 
and persist throughout life [3]. They are most common in developed countries. 
Allergy may affect more than 50% of children. Moreover, the prevalence of allergic 
diseases and asthma has actually increased during the past three to four decades.

Asthma is the most frequent chronic disease in childhood, with increasing levels 
of morbidity in most of the countries worldwide [4]. Pediatric asthma represents a 
huge burden on the individual child, on the family, and on the society as a whole.

The incidence of food allergy is continuously increasing; it is potentially life 
threatening, and has a major impact on the lives of the sufferers [5]. Food allergy 
mainly affects children; however, more and more adults are also suffering from 
food allergies. Allergic diseases are also increasing in the developing countries [6].

The prevalence and severity of allergic diseases and asthma present a serious chal-
lenge to healthcare systems, the society, the patients, their care-givers, and families. 
Occupational allergy is another important medical and economical problem [7].

Allergic diseases and asthma seriously affect the social life of the patients. 
Asthma is a leading condition of school absenteeism and a major cause of work 
absenteeism [8]. Allergic diseases have also impact on cognitive functions [9]. 
Direct and indirect costs for allergic diseases and asthma have increased during the 
past 10 years [10].

In this chapter, the burden of allergies and asthma is evaluated on the basis of 
the current knowledge of the patient’s perspectives and attitudes toward the burden 
of these diseases.
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Allergic Rhinitis

Allergic rhinitis is probably allergic pathology with the highest prevalence among 
all allergic diseases [11], affecting an average of 24% of the population across 
Europe [12]. Its relationship with asthma and atopic dermatitis is relatively well 
established, with approximately 80% of asthma patients and 80% of children with 
atopic dermatitis [13] suffering from allergic rhinitis. In addition to high preva-
lence, many clinical trials have documented the severity of allergic rhinitis symp-
toms and their impact on quality of life [14]. Moreover, not long ago, a new 
classification of allergic rhinitis was proposed in the Allergic Rhinitis and its 
Impact on Asthma (ARIA) guidelines based on severity and duration rather than 
causality [2]. Complications of allergic rhinitis and concomitant diseases are also 
well documented. Poorly controlled allergic rhinitis may contribute to the develop-
ment of acute and chronic sinusitis, recurrence of nasal polyps, otitis media/otitis 
media with effusion, hearing impairment, abnormal craniofacial development, 
sleep apnea, aggravation of underlying asthma, and increased propensity to develop 
asthma [15]. Daytime fatigue, learning impairment, decreased overall cognitive 
functioning, and decreased long-term productivity have also been attributed to 
allergic rhinitis [9, 16].

Despite the plethora of data collected to date pointing to the fact that allergic rhini-
tis, especially in its persistent form (persistent allergic rhinitis), is a serious debilitat-
ing disease, there is still generally doubt as to how serious rhinitis is especially among 
regulatory agencies and health payers. The use of over-the-counter drugs is extremely 
common among allergy sufferers [17], which ultimately means that patients assume 
increased responsibility for diagnosing their condition, selecting appropriate drugs, 
and using these drugs properly. As costs are being shifted away from insurers to 
patients, the potential risk of denying patients access to optimally effective, compre-
hensive, and physician-supervised disease management, is growing.

Patients’ involvement in the management of allergic rhinitis becomes more 
important and frequent. The knowledge of patients’ perceptions of their own dis-
ease and its consequences are scarce. The impact of allergic rhinitis on the lives of 
allergy sufferers across Europe and the success of its management, both in terms of 
treatment and common preventive measures, was evaluated by Valovirta et al. [17]. 
Owing to the fact that many allergic rhinitis sufferers are undiagnosed and unaware 
of their diseases [18], Valovirta et al. chose to survey self-reported allergic rhinitis 
patients who are members of European allergy patient organizations. With their 
activities in the fields of allergy information, education, peer contact, and financial 
support, they provide a platform for members to exchange experiences and a frame-
work for education (http://www.efanet.org).

The results show that almost 50% of the responders reported symptoms lasting 
for more than a season. Persistent allergic rhinitis as defined by ARIA [2] was 
reported by 62% of the respondents. The triggers of persistent and intermittent 
rhinitis are largely similar. Preventive household adjustments are expensive, how-
ever, with little perceived benefit. Sleep and emotional life are considerably affected 
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by allergic rhinitis. The most distressing impact is the feeling of being worn-out and 
tired. Although most patients are satisfied with the current allergic rhinitis medica-
tions, at least one-fifth of them report dissatisfaction. Patients perceive that AR 
worsens other concomitant allergic diseases.

Considering the severity and persistence of allergic rhinitis, as well as its 
impact on daily life, the patients with allergic rhinitis deserve a long-term man-
agement with potent treatments such as medications, allergen-specific immuno-
therapy, proper avoidance of allergens inducing their symptoms whenever 
practical and possible, patient information, education and training, and a pro-
active follow-up [19].

Asthma

The prevalence of asthma continues to increase in many countries: the current esti-
mate of 300 million people with asthma worldwide is expected to increase by 33% 
to 400 million by 2025 [20]. In addition to the economic burden of asthma, which 
is considerable, there are physical, emotional, and social effects, leading to reduced 
quality of life of patients and their families [21].

International surveys have been valuable for understanding and managing 
asthma. The International Study of Asthma and Allergies in Childhood, the 
European Community Respiratory Health Survey, and other surveys have provided 
much needed information about the global patterns of asthma prevalence from 
childhood to adulthood, and have generated new hypotheses for further testing and 
validation [12, 22–24].

An understanding of the needs and behaviors of asthma patients is also impor-
tant in developing asthma-related healthcare policies. Holgate et al. [25] recently 
published a structured review of patient surveys on asthma. The primary objective 
of this structured review was to assess patient perspectives on key issues in asthma 
and its management, including diagnosis, treatment, control, and quality of life, as 
captured in patient surveys in Europe and in North America published between 
1997 and 2003. Twenty-four surveys, including a total of 66,450 subjects from a 
total of 24 countries, were reviewed. Of this number, 57,817 were patients (includ-
ing 11,875 children—generally classified as <16 years—and parents of children) 
and 8,633 were healthcare professionals. Table 1 summarizes the general findings 
from the survey review.

Findings of this structured review suggest that patients often understate their 
symptoms, tolerate poor symptom control, have low expectations of therapy, 
possess meager knowledge of correct drug usage, and display insufficient adher-
ence to therapy. Among healthcare professionals, there is evidence of an inade-
quate understanding of disease etiology and poor or unstructured communication 
with patients, resulting often in inaccurate assessment of disease severity. With 
the increasing incidence of asthma, it is important to address these issues as a 
matter of priority.



Table 1 Summary of key review findings from asthma out of control? A structured review. 
(Modified from Holgate et al. [25]).

Subthemes Core findings Key supporting data

Patient 
perceptions

Understanding 
of disease

In general patients (or 
caregiver) lack of 
knowledge of their 
asthma and its causes

Only 22% thought asthma 
therapy reduced 
inflammation

Patients are aware of 
asthma symptoms, 
but are often willing 
to tolerate poor 
control or are 
unaware of the risks

92% of patients experienced 
limitations of activities due 
to asthma, and 48% had 
difficulty with sleeping

Despite poor control, 
many patients still 
describe themselves 
as “well controlled”

>65% had symptoms during 
the last week although, 
>80% considered 
themselves 
to be “under control”

Symptom 
control

Inappropriate use of 
available drugs may 
contribute to poor 
control

21.3% and 26.4% of patients 
with “some” and “severe” 
control limitations, 
respectively, actually used 
anti-inflammatory drugs

More aggressive anti-
inflammatory 
treatment can 
improve control

Addition of a LTRA improved 
sleep (87% of patients), 
early waking (80%), daily 
functionality (85%), and 
need for rescue medication 
(77%)

Patients often do not 
realise asthma drugs 
have side effects

61% of parents of children 
with asthma did not realise 
ICSs had side effects

Patient 
satisfaction

Patient satisfaction with 
their treatment is low

In general, these figures are 
under-statements and 
inference gives higher pos-
sibilities

Patient satisfaction 
(and participation) 
with their manage-
ment is often low

28% of patients did not tell 
their doctor in consultation 
about troublesome cough-
ing, and 36% failed to men-
tion difficulty in sleeping

Admitted compliance 
with treatment is 
often poor, expressed 
both by lack of and 
by excessive use of 
prescribed treatment

45% of patients admitted using 
their medication exces-
sively

Compliance Patients cited steroid use 
as a major reason for 
lack of compliance

One-third of patients expressed 
dissatisfaction with 
long-term steroid treatment

(continued)
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Table 1 (continued)

Subthemes Core findings Key supporting data

Lifestyle issues 
for patients 
and family

Control Lack of control was 
mentioned as being 
associated with 
reduced QoL in a 
number of surveys

General comment

Disease severity Correlation between 
QoL and disease 
severity was sug-
gested

General comment

True impact The impact of asthma on 
QoL is often under-
stated

General comment

Lifestyle restric-
tions

Patients reported signifi-
cant lifestyle restric-
tions

Irrespective of disease severity, 
approximately 70% report 
significant lifestyle restric-
tions

Families The QoL of families 
of children with 
asthma is also clearly 
affected

20% of parents stated that 
their work attendance was 
affected, and 50% said their 
own lives were affected 
(20)

Child specific Management Generally children are 
better managed than 
adults despite some 
parental reservations 
about disease

Asthmatic children are signifi-
cantly greater consumers 
of resources than asthmatic 
adults, despite having better 
initial asthma control

Perceptions As in adult asthmatics, 
there is a marked dif-
ference between per-
ception and reality of 
symptom control in 
children (or by their 
caregivers)

65% of children with asthma 
or their carers considered 
their asthma to be well con-
trolled although 37% had 
breathing difficulty, 34% 
had nocturnal waking, 29% 
had dry cough, and the 
ability to talk was affected 
in 29%

Therapy under-
standing

Parental understand-
ing of their child’s 
medication (and 
compliance) can also 
be poor

33% of parents of asthmatic 
children did not understand 
the role of “controller” ver-
sus “preventer” therapies 
and only 38% of parents 
took their controller medi-
cation on a regular basis

Treatment needs There seems to be a 
particular demand for 
better treatments for 
children

70% of parents of asthmatic 
children were concerned 
about the effects of inhaled 
corticosteroids

(continued)
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Table 1 (continued)

Subthemes Core findings Key supporting data

Healthcare 
providers

Etiology Some HCPs do not fully 
understand some of 
the recent advances 
in the understanding 
of asthma etiology

59% of physicians questioned 
considered allergy to be 
the main cause of asthma, 
with only 35% (and only 
16% of pediatricians) cit-
ing the underlying inflam-
mation. However, in the 
same survey, 92% of 
physicians understood that 
leukotrienes were important 
mediators of inflammation 
in asthma, and 80% 
understood that LTRAs 
were anti-inflammatory 
agents

Treatment needs Some of the surveys 
examined physicians’ 
inconsistent use of 
anti-inflammatory 
agents in asthma 
among the subop-
timal numbers of 
patients actually 
being treated

92% of physicians consid-
ered anti-inflammatories 
“essential” in asthma 
care, although only 21% 
of patients were receiving 
these agents

Diagnosis There was practical 
support for the need 
for improved diagno-
sis of asthma leading 
to improved 
management

The utility of decision-making 
tools and self-reporting 
questionnaires for assessing 
disease severity and opti-
mizing therapy can meas-
ure and improve treatment 
compliance

Similarities and 
differences 
between HCPs 
and patients

Similarities In most relevant studies, 
patients and HCPs 
generally agreed that 
better treatments with 
fewer side effects 
would be desirable

General comment

Significant 
differences

HCPs and patients disa-
greed over symptom 
control

Only 1% of patients considered 
themselves symptom free 
when compared with 24% 
of their GPs

HCPs and patients disa-
greed over compli-
ance levels

HCPs believed that “all” their 
patients complied with 
treatment whereas only 
60% of patients actually 
did according to HCP 
definition

HCPs and patients disa-
greed over concern 
toward side effects

General comment
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One encouraging message from these observations is that within the currently 
available parameters for asthma management, there is ample scope for improving the 
standard of care. In particular, care could be significantly improved by improving the 
education of patients regarding the nature of the disease (as one primarily of inflam-
mation) and optimizing the use of existing medical systems and treatments. Such 
relatively simple measures would not require an enormous financial commitment, but 
would certainly improve the lives of many asthma patients and their families.

In Finland, the national asthma programme 1994–2004 succeeded by implementing 
new knowledge of asthma especially for primary care and educating patients for effec-
tive self-management to reduce the morbidity of asthma and its impact on individuals 
as well as on society [26]. When compensation for disability, drugs, hospital care, and 
outpatient doctor visits are taken into account, costs per patient have decreased 36% 
from €1611 to €1031 and, if related to the increase in gross national product, by 50% 
per year. In 1993, the total costs were €218 million which had fallen to €213.5 in 2003. 
Approximately 70% of all asthma in Finland is mild and may require only intermittent 
drug treatment. However, in both mild and moderate severe asthma, guided self-man-
agement is essential in preventing prolonged symptoms and exacerbations. Understanding 
and partnership are more important than compliance [27].

The Global Asthma Physician and Patient (GAPP) Survey [28] not only defines 
an unmet need in asthma treatment but also reveals that there is a direct relationship 
between the quality of physician–patient communication, the level of side effects, 
and the extent of patient compliance.

The limitations of severe asthma: the results of a European survey by Dockrell 
et al. [29] shows that severe asthma has a major impact on patients—restricting their 
activities, causing embarrassment, imparting fear—and is a major burden on health-
care systems. Despite studies indicating that severe asthma is still not adequately 
controlled, there continue to be inefficiencies in the management of this population; 
consequently, guideline objectives are not being achieved. Patient perceptions 
toward their asthma and expectations for the future management of asthma differ 
across Europe, and, understandably, many patients are not optimistic about the 
future for asthma management. On a positive note, patients are optimistic about the 
development of new medications to help control the debilitating symptoms of severe 
asthma. National healthcare investment in new strategies, improving surveillance 
across Europe, working with patients to understand their needs and the development 
of new treatments to facilitate the management of severe asthma will give patients 
the hope that they might one day live beyond the limitations of their asthma.

On 18 and 19 October 2006, leading asthma experts, EU policymakers, regula-
tors, and patient groups gathered at the European Parliament to discuss current 
concerns relating to asthma management. The meeting was chaired by Liz Lynne 
MEP, suffering from severe asthma herself, and Professor Stephen Holgate, 
University of Southampton, UK.

The Summit’s participants were challenged to the following: ensuring optimal 
safety and efficacy of treatment for patients; reviewing the data that together build 
a new evolved picture of asthma as a systemic inflammatory disease; agreeing with 
the urgent need for change in asthma management today and recognizing asthma as 
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an increasingly serious public health issue with human and economic impact; 
agreeing with the practical clinical and regulatory strategies to recognize current 
gaps in care, offer more options in primary care setting; and addressing future 
developments and catalyzing the process of change and immediate action.

The Summit culminated in the development and agreement of the Brussels 
Declaration (http://www.Summitforchange.eu), which outlines how and when 
changes need to be made to the way that asthma is managed in the European 
Union—ensuring optimum treatment for all patients.

As highlighted by the ARIA guidelines [2], asthma and allergic rhinitis are related 
conditions and should be considered together when treatment options are discussed 
with patients. The results of a recent survey [30] suggest that the worsening of allergic 
rhinitis symptoms in patients with asthma can be associated with worsening asthma 
symptoms, and that comorbid asthma and allergic rhinitis can cause substantial dis-
ruption in daily activities. Moreover, study respondents expressed concerns and dif-
ficulties with medications to treat asthma and allergic rhinitis.

Allergic rhinitis and asthma are most commonly managed in the primary care 
setting. Physicians treating patients with asthma or allergic rhinitis must remain 
vigilant to the possible presence of the other condition, must be aware of the risks 
posed by one condition for the development of the other, and must evaluate treat-
ment options for improving symptoms of both conditions when present concomi-
tantly. In addition, physicians must be aware of possible patient concerns about 
medications, particularly patient concerns about potential side effects of corticos-
teroids and using much medication for their asthma and allergies. More generally, 
there is a need to promote the use of combined therapies that are safe and effective 
for treating symptoms of both asthma and allergic rhinitis, and that address the 
inflammatory nature of these two conditions affecting the “one airway”.

A population-based study in the USA, assessed the impact of comorbid allergic 
rhinitis on medical costs in a cohort of 1,065 infants, children, and adults (below 65 
years of age) with asthma. The investigators compared the costs for medical serv-
ices (excluding medications) incurred after January 1987 by patients with versus 
those without concomitant allergic rhinitis. Data were available for 8,564 person–
years of follow-up. Total medical-care charges were 34% higher with comorbid 
allergic rhinitis and asthma than with asthma alone (P < 0.0001). Charges for the 
office care of children and young adults with these comorbid conditions were 46% 
higher than in this subset with asthma alone.

A retrospective analysis [31] showed that effective treatment of allergic rhinitis 
in asthma patients decreased the use asthma-related healthcare services by 61% in 
a population of 4,944 asthmatic of 12 to 60 years of age.

Food Allergy

Food allergy, whether clinically diagnosed or self-perceived, represents a major 
health issue in Western societies and may have a considerably greater impact on 
society than was believed. It has been estimated that in the general population 
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approximately 4–6% of children and 1–3% of adults experience food allergy. 
There is some evidence to suggest that the prevalence of food allergy has increased 
over the past 10 years [32]. This is demonstrated by the increase in emergency 
room visits due to food allergy in the UK, which have increased by a factor of 6 
over a decade, accompanied by an increase in the incidence of anaphylaxis caused 
by food allergy [33]. Another remarkable observation is that the prevalence of 
perceived food allergy seems to be much higher than verified food allergy, up to 
22% of the adult population [34]. This may be related to inadequate diagnosis of 
food allergy, in part reflecting the lack of adequate provision of relevant health 
services. The social functioning of individuals with a food allergy, or activities in 
families with an allergic child or a family member, may be seriously disrupted by 
the need for continuous vigilance to avoid foods to which they are (or believe to 
be) allergic [35]. In the case of individuals with self-diagnosed food allergy, 
majority may be restricting their diet unnecessarily and consequently running the 
risk of nutritionally compromising themselves or becoming deficient in certain 
nutrients [36]. Furthermore, such dietary management disrupts social and family 
life, and could be costly to implement in time and money. However, the effects of 
food allergy are not only limited to individuals or households. The food industry 
may also experience an extra-burden of costs due to food allergy; in fact, this may 
be the case with every step of the food chain, retailing and catering. This may, for 
example, result from legislative changes aimed at improving consumer protection 
such as the new European Union legislation on food labeling that came into force 
in November 2006 [37].

At present, the potential social impact and economic burden costs of food 
allergy on the individuals, families, health-related services, and food industry are 
not well understood.

The social impact of food allergy has not been systemically investigated using 
validated instruments. EuroPrevall, a European multicenter research project funded 
by the European Union, http://www.europrevall.org, combining the information 
from studies on health-related quality of life with epidemiological data on preva-
lence will ultimately give some indication of the magnitude of the social impact of 
food allergy in Europe [38]. New instruments to assess the socioeconomic impact 
of food allergy are being developed in this project and their application in the clini-
cal cohorts will allow, for the first time, an assessment to be made of the burden this 
disease places on allergy sufferers and their communities [39].

Communication, including the doctor–patient relationship and linking printed 
information with explanation, plays an important role in helping food allergic indi-
viduals manage their condition. Targeted information strategies may be the most 
resource-efficient way to effectively communicate to different stakeholders about 
food allergy. However, information channels best suited to a specific stakeholder 
needs remain to be investigated and explored [40]. Communication is also impor-
tant in dealing with psychological distress and helping allergic individuals adopt 
the necessary treatment regimens. As allergy sufferers at present have to avoid 
symptom-inducing foods, often for the rest of their life, there is also a need for oth-
ers involved in producing and serving safe food to become partners in the manage-
ment of food. The responsibility for not eating the allergenic food is primarily that 
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of the patient, but to fulfill this task the patient has to be able to rely on information 
provided by the food manufacturers, retailers or catering staff [39].

Food allergies, particularly in children, also require constant vigilance, which 
can be stressful [41]. Allergic individuals and their families need to recognize the 
signs of inadvertent ingestion, including anaphylaxis, and they may need to learn 
how to provide emergency treatment. Parents of food allergic children need to 
monitor their child’s diet and behavior more closely than parents of nonallergic 
children. Food allergy can sometimes impact on the family relationships. Meltzer 
[42] comments that siblings may be deprived of attention, which may lead to 
resentment toward the allergic brother or sister. Furthermore, parents may become 
anxious about, and overprotective of, the allergic child. They may feel even hostile 
toward the child, and subsequently feel guilty about those feelings.

Food allergies in children have a wider impact beyond the child, and extend to 
the child’s family, other carers, friends, and staff and pupils at schools and other day 
care centers [43]. It has been observed that many aspects of quality of life (includ-
ing daily activities, family relations, distress, and worry experienced by parents) 
can be impaired for the whole family [44]. In addition, in some countries children 
with severe allergies cannot stay at school for lunch and have to return home affect-
ing parents’ ability to work, while in others peanuts and nuts are banned from the 
school. It is evident that awareness in school of food allergies, in both teachers and 
catering staff, is often poor [45] and may compromise the safety of severely allergic 
children at school, adding to parental concerns and worries about their children 
when they are not in control. There are incidents of children suffering fatal reac-
tions while in daycare nurseries because of insufficient vigilance by staff. It is also 
emerging that teenagers are especially vulnerable, with some evidence that adoles-
cents and young adults are at greater risk of suffering fatal reactions [46]. In a 
recent review about food hypersensitivity and quality of life, Marklund et al. [47] 
reported that several domains of quality of life are affected, such as family and 
social activities, emotional issues, and family economy. Food allergic children are 
to a large extent limited in their autonomous social activities. Food allergic adoles-
cents absent themselves for more weeks from school when compared with a control 
group, and a relatively high percentage of food allergic young adults do not partici-
pate in the labor market. Comorbidity has to be taken into consideration when 
assessing the quality of life in food allergic individuals.

The Patient Needs

Recently, health professionals have raised the question, hat do patients need? 
Although the answer to the question is very important, it is also equally important 
to look at the reason why healthcare professionals are interested in the patients’ 
wants and needs [48].

Patients consult healthcare professionals, mostly physicians, because they want 
to become healthy again and continue their normal life. In chronic illness, such as 
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allergic diseases, this is not a realistic option and patients are aware of that. So, they 
will seek help to live as normal a life as possible [49]. Healthcare professionals 
want to cure the illness, or in the case of chronic illness, to diminish the complaints 
and symptoms as much as possible. They prescribe a treatment and communicate 
prescribed medication and lifestyle advice to the patient. Often they refer the 
patient to another healthcare professional or a patient group for further explanation 
or even education to ensure that the patient will understand and be compliant with 
the treatment advices.

A lot has been written about the communication between physicians and 
patients. Recently, more attention is given to the patient’s own role in self-manage-
ment, and the patient is considered to be an informed decision-maker.

It is now recognized that there are several distinct approaches to treatment deci-
sion making that doctors can use with their patients: the paternalistic, the shared, 
and the informed (or consumerist) approach. Each has different implications for the 
roles of doctors and patients in communicating information and for the type, 
amount and flow of information between the two.

In the paternalistic approach, doctors are unlikely to have much interest in dis-
cussing patient concerns expressed in the voice of the real world. They are more 
likely to want short descriptions of physical symptoms that they can translate into 
diagnostic categories. In the pure paternalistic type, doctors can make a treatment 
decision that they think is in their patients’ best interest without having to explore 
patient values and concerns.

In the informed approach, patients are accorded a more active role both in defin-
ing the problem for which they want help and in determining appropriate treatment. 
In the pure type of this approach, the doctor’s role is limited to providing relevant 
research information about treatment options and their benefits and risks so that the 
patient can make an informed decision.

Only in the shared approach do doctors commit themselves to an interactive 
relationship with patients in developing a treatment recommendation that is consist-
ent with patient values and preferences. To enable this to happen, the doctor needs 
to create an open atmosphere in which patients can communicate all their agenda 
items. In this approach, information exchange helps the doctor to understand the 
patient and ensures that the patient is informed of treatment options and their risks 
and benefits. It also allows patients to assess whether they feel that they can build 
a relationship of trust with their doctor [50].

Patients want and need to be taken seriously; a physician should look at his/
her patient as a person and not as a sum of symptoms or spare parts. Their illness 
influences their daily life and so do their symptoms. This cannot be treated by 
medical technical treatment alone. Patients come to consult the physician to dis-
cuss their entire problem, not only the organ concerned. This is especially impor-
tant in the allergic disorders. Patients need help in solving their problems; they 
need advice that takes into account their daily living patterns. In relation with 
therapy they want to choose between alternatives and to do so they need to be 
informed. And finally, they want their decision to be taken seriously [51]. Patients 
need to be a partner in care.
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Conclusion

Allergy is a growing global public health problem that greatly impacts on the day-to-day 
life of patients, and on their families, school, professional, and social life. Allergic 
diseases are a continuum from atopic eczema and allergic rhinitis to asthma; in certain 
cases food allergy is also a risk factor for the development of asthma. This “allergy 
march” is a challenge for healthcare systems because there is a need for continuous 
control of patients with these diseases and also of those at risk of developing them.

Institutions and public opinion are often unaware of the impact of these diseases 
on individuals and on society as a whole. Allergy is often underestimated, under-
diagnosed, and undertreated, despite its high prevalence and its effect on the quality 
of life of affected people, their families and caregivers. It is a chronic condition that 
accompanies the patient throughout life. Reactions vary from mild to severe and 
even fatal. The social and economic burden is very high for families and for social 
security and healthcare systems.

According to the World Health Organisation, allergy, defined as immunologically 
mediated hypersensitivity, is increasing and it is estimated that more than 20% of the 
world’s population suffer from IgE-mediated allergic diseases, such as allergic 
asthma, allergic rhinitis, allergic conjunctivitis, atopic eczema/atopic dermatitis, urti-
caria, angioedema, venom allergies and anaphylaxis. Allergy affects all age groups, 
from infancy to childhood, from adolescence to adulthood up to the elderly.

Scientific societies have drawn up international guidelines and position papers regard-
ing the diagnosis, treatment, and management of these common conditions. However, 
there is a need for more research in the different fields of allergy. Moreover, important 
new results are often slow in reaching healthcare professionals. Patients should be helped 
to understand their condition, to comply with their doctor’s prescriptions and recom-
mendations to improve their disease control and hence their quality of life.

Allergy knows no boundaries. Hence, there is a call for a global strategy for 
European and national programmes, as well as global, and actions aimed at translat-
ing into daily life the scientific data that will help counteract the increase of allergy.

Because of the extent of the problem, allergy should be a part of the national 
political agenda. The EFA, European Federation of Allergy and Airways Diseases 
Patients Associations, Allergy Manifesto http://www.efanet.org, urges the European 
and national institutions, healthcare professionals, and policy decision makers in 
Europe to work together to create the conditions for early diagnosis, correct treat-
ment, and control of allergic diseases as well as for the application of preventive 
measures including the elimination of social and environmental barriers.
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Epidemiology of Asthma and Allergic Rhinitis

Deborah Jarvis, Seif Shaheen, and Peter Burney

Introduction

Asthma and allergic rhinitis are common chronic conditions in children and adults 
in many parts of the world and the prevalence of both increased substantially during 
the twentieth century. Many people suffer from both asthma and allergic rhinitis 
and this is usually attributed to a shared link with IgE sensitisation to common 
environmental allergens. Despite extensive research into the environmental and 
lifestyle causes of asthma and allergic rhinitis no single factor has been identified to 
explain the marked geographical variation or the time trends in disease prevalence.

In this chapter, we will review the burden of both diseases, consider the risk factors 
that have been implicated in their aetiology and comment on the pattern of associa-
tion of the two conditions.

Definition of Disease

Asthma

Attempts were made to standardize the definition of asthma as long ago as 1958, 
when the CIBA Guest Symposium defined asthma as “the condition of subjects 
with widespread narrowing of the bronchial airways which changes in severity over 
short periods of time either spontaneously or under treatment” [1]. There has been 
little improvement on these definitions despite several further attempts [2–4].

In epidemiological studies, asthma has been identified by symptoms sugges-
tive of disease, by diagnosed disease and by physiological measures of airway 
responsiveness including the bronchial response to histamine, methacholine or 
exercise, serial measurement of peak flow and response to bronchodilators. 
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Two large international studies, the European Community Respiratory Health 
Survey (ECRHS) [5] and the International Study of Asthma and Allergy in 
Children (ISAAC) [6], have developed standardised questionnaires for the 
assessment of asthma and asthma-like symptoms. These questionnaires have 
been widely adopted by other groups. More recently there have been calls for 
greater recognition and better definition of the different patterns of disease 
(‘phenotypes’) and this may prompt  further work in the development of stand-
ardised questionnaires [7].

Despite recommendations for standardisation of bronchial reactivity [8, 9] 
 variations in protocols between studies are common [10]. The relationship of bron-
chial hyperresponsivenss (BR) to clinical disease may differ depending on the agent 
used [11] and BR to histamine and methacholine is not specific for asthma, being 
independently associated with age, atopy and smoking[12].

Rhinitis

Rhinitis is ‘inflammation of the nose’, which occurs in response to several agents 
including infection and environmental allergens. The Allergic Rhinitis and its 
Impact in Asthma (ARIA) initiative has defined allergic rhinitis clinically as ‘a 
symptomatic disorder of the nose induced by an IgE-mediated inflammation after 
allergen exposure of the membranes lining the nose’ with symptoms including 
rhinorrhea, nasal obstruction, nasal itching and sneezing [13]. Many epidemiologi-
cal surveys, however, ask directly whether subjects have ‘hay fever’ or ‘nasal aller-
gies’ or whether nasal symptoms are present ‘when you did not have a cold or the 
flu’, sometimes with questions on the seasonality of symptoms.

Prevalence of Disease and Geographical Variation

Asthma

There is no single figure that can be used to describe the prevalence of asthma. 
As suggested above, the figure will depend on the definition used but it will also 
depend on the year of the survey and the population under study.

The ECRHS has shown large geographical variations in reported asthma symp-
toms [14] and in bronchial reactivity [15] in adults. The magnitude of these varia-
tions can be seen in Table 1. Some other epidemiological studies have used a 
similar methodology to the ECRHS and geographical variation in the 12-month 
period prevalence of asthma has been presented in the Global Initiative for Asthma 
Burden of Disease report [16]. This confirms previous observations that the 
 prevalence of disease tends to be higher in countries in which English is the main 
language. It also shows a lower prevalence in the developing nations. The ISAAC 
study covers a much wider geographical area than ECRHS and also shows a higher 
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asthma prevalence in English-speaking countries with a lower prevalence in many 
parts of the developing world [17].

For some conditions, mapping variation in mortality can be a useful proxy for 
mapping variation in disease prevalence. The European Community Atlas of 
Avoidable Deaths 1985–1989 showed substantial variations in mortality from sev-
eral diseases, including asthma, across Europe. High asthma mortality was observed 
in northern Europe compared with the south [18]. Making these  comparisons is 
highly dependent on similar methods for deciding what conditions are entered on 
death certificates and also require that there is no significant variation in case-fatality 
rates. For asthma, these assumptions may not hold. In children and young adults, 
asthma as the primary cause of death on a death certificate is both sensitive and 
specific [19–21] for what clinicians would agree was fatal asthma, but in older 
adults, diagnostic preferences between chronic obstructive lung disease and asthma 
may influence what is written on the  certificate [22].

Health care utilisation data have also been used to describe the burden of asthma 
in communities and to consider geographical variation in disease prevalence. Such 
data are highly dependent on health-seeking behaviour, access to health care 
resources, the way in which health care services are organised and on the information 
technology used to capture events. Great Britain has good information on health 
service utilisation for asthma as health care services are state-run with general 
practitioners acting as gatekeepers to services. Less than one in ten asthmatics will 
ever be admitted to hospital for their disease and hospital admission rates are not 
interchangeable with prevalence of disease. However, variations in hospital admission 
rates in the UK may reflect variation in disease prevalence [23].

Rhinitis

Both ECRHS and ISAAC have shown substantial variations in the prevalence of 
‘hay fever and nasal allergies’ [14] (see Table 1) and allergic rhinoconjunctivitis 
[24, 25]. In general, higher levels of hay fever are observed in communities with 

Table 1 Variation in prevalence (%) of asthma, asthma-like symptoms and hay fever in the 
European Community Respiratory Health

Survey (conducted 1990–1992)

In the last 12 months No of centres Min
25th
Centile Median

75th 
Centile Max

Wheeze with breathlessness 46 1.4 7.7 9.8 13.9 16.3
Wheeze in the absence of a cold 46 2.0 9.3 12.7 16.2 21.6
Waking with breathlessness 47 1.5 4.7 7.3 8.9 11.4
Attack of asthma 48 1.3 2.6 3.1 4.5 9.7
Current treatment for asthma 47 0.6 2.4 3.5 5.0 9.8
Hayfever or nasal allergy 45 9.5 16.6 20.9 28.2 40.9
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higher levels of asthma but such a sweeping generalisation masks some important 
exceptions. For example, in ISAAC, the Nigerian sample of children had one of the 
highest prevalences of reported allergic rhinoconjunctivitis while the prevalence of 
reported asthma symptoms was relatively low.

In many countries, many people with rhinitis can be self-treated with over-
the-counter medications and do not seek medical consultation. Health care utili-
sation data for rhinitis are therefore of little or no value in assessing disease 
prevalence.

Time Trends

Asthma

From the middle of the twentieth century up to the mid-1990s, almost all studies 
that measured prevalence in the same population at different times showed an 
increasing prevalence of asthma and wheezy illness [26]. This amounted to an 
approximate doubling of disease every 14 years. There is some evidence that this 
trend may now be changing. The largest and most recent study of time trends in 
childhood asthma is the repeat ISAAC survey [27, 28]. This showed that over the 
previous decade the prevalence of asthma in 6–7- and in 13–14-year-olds had 
increased in some parts of the world and decreased in others. Furthermore, the pat-
tern of change in older children did not mirror the pattern of change in the younger 
children [27] (see Fig. 1). In the adult populations taking part in the ECRHS, the 
prevalence of asthma and treatment for asthma increased over an 8-year follow-up, 
although the prevalence of wheeze remained relatively stable [29].

Studies that examine change in objective, rather than subjective, markers of 
asthma are quite limited [30] but increases in exercise-induced bronchoconstric-
tion have been reported in South Wales in the late 1980s [31]. However, when the 
study was repeated in 1998, reported asthma symptoms had increased while there 
had been a decrease in exercise-induced bronchoconstriction [32]. This latter 
 observation might be explained by the more widespread use of inhaled corticos-
teroids amongst the children. Increases in BR have been noted in children living 
in New South Wales, Australia [33], but when adults living in a coastal area of 
Western Australia were surveyed in 1981 and 1990, the prevalence of wheeze 
increased (17.5–28.8%) without any associated increase in the prevalence of 
bronchial reactivity [34]. In Belgian conscripts, the prevalence of asthma at medical 
examination increased from 2.4% to 7.2% between 1978 and 1991, while the 
proportion of asthmatic individuals with measurable BR to methacholine 
remained constant, providing evidence that the increase in asthma had been 
 genuine and not related to increased reporting of symptoms or changes in label-
ling of disease [35].
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Fig. 1 World map showing direction of change in prevalence of asthma symptoms in children 
from 1995/6 -2002/3 as demonstrated in the International Study of Asthma and Allergies in 
Childhood. Reproduced with permission by Lancet

Further indirect evidence for increases in asthma comes from health service 
utilisation data. Hospital admission rates for asthma showed a steady increase during 
the 1980s [36–39] as did general practice consultations [40] although rates, at least 
in England, may have fallen over the last decade [41, 42].
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Rhinitis

Many of the large studies that have shown increases in asthma prevalence have also 
shown increases in hay fever [43, 44]. The ISAAC study has described these 
changes in many centres across the world in both 6–7-year-old children and 
13–14-year-old children [27]. In this latter age group, centres that had a higher rate 
of change for rhinitis symptoms tended to be the centres that ranked highly for 
changes in asthma symptoms prevalence.

Natural History

Asthma

Although it is a common cause of morbidity in adults, asthma is widely perceived 
as a disease of childhood. The incidence and period prevalence of wheeze and 
asthma is higher in children than adults [45–47] but this is, in part, because those 
born more recently have experienced a high incidence of disease, the so-called 
birth-cohort effect.

There are several studies showing that boys have more wheeze and asthma than 
girls, a difference that seems to become less apparent as the children get older, and 
which may even reverse after puberty [45]. This difference may be due to an 
increased incidence of asthma in girls during the adolescent years compared to 
boys, rather than an increased resolution of symptoms in boys with asthma [45, 48]. 
However, some caution should be exercised in the interpretation of these data, as 
wheeze in early childhood may be a manifestation of lung size, and boys may have 
smaller lungs than girls at birth [49].

The heterogeneity of wheezing in childhood and the different risk factors and 
prognosis associated with each has been reported. In the Tucson study, Martinez 
and colleagues proposed three patterns of wheeze in children up to the age of 6 
years: transient early childhood wheeze, wheeze starting after the age of 3 years 
and persistent wheeze [50]. Certainly not all wheezing children will go on to have 
asthma in adult life but remission of symptoms may not be permanent [51] and is 
unlikely after the age of 30 years [52]. Follow-up of the 1970 British birth cohort 
showed that, of those who had reported wheeze at the age of 5 years, only 15% 
had wheeze that persisted to 16 years [53]. In the 1958 British birth cohort, a 
quarter of those who had a history of asthma or wheezy bronchitis by the age of 
7 years reported wheeze in the past year at the age of 33 years. Recurrence of 
wheeze after prolonged remission was associated with the presence of other aller-
gic diseases and cigarette smoking [54]. However, loss of symptoms may not be 
permanent. In New Zealand, 12.4% of children with symptoms of wheeze at the 
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age of 9 years, which disappeared during early adolescence, had recurrence of 
symptoms by age 26 years. Risk factors for relapse following remission were 
sensitisation to house dust mite, bronchial reactivity and an earlier age of onset 
of symptoms in childhood [55].

There is limited evidence that people with asthma experience higher mortality 
rates than those without, the excess mainly being explained by excess deaths from 
respiratory disease [56]. In adults with asthma, poor lung function is associated 
with an increased mortality [57] as it is in the general population [58], but the influ-
ence of asthma on lung function development and decline is not well understood.

When assessed at the age of 35 years, subjects in the 1958 British Birth 
cohort with current wheeze had lower forced expiratory volume (FEV

1
) and 

forced expiratory capacity (FVC) than their non-wheezing peers, the difference 
persisted after inhalation of salbutamol and lung function measures were worse 
in those who wheezed earlier in life [59]. As no childhood measures of lung 
function were available for the cohort under study, it was not known whether this 
observation reflected failure to attain maximal lung function in those with 
asthma in childhood, or greater lung function decline in people with asthma dur-
ing adult life. However other work suggests that children with asthma have 
lower lung function [60,61] and that this persists during adolescence even 
though lung growth rates in those with and without asthma may be similar [62]. 
With the advent of widespread and prolonged use of inhaled steroids during 
childhood, there are reports that there are no differences in lung function in 
treated children with and without asthma [61, 63]. Whether post-bronchodilator 
lung function would remain similar in the two groups if those with asthma 
ceased taking their steroids is not known.

It is also possible that having achieved maximal lung function, people with 
asthma experience a more rapid decline in FEV

1
 [64, 65] of the order of 15 mL per 

year. Recent observational studies suggest that the decline in FEV
1
 in adults with 

asthma may be diminished by regular use of inhaled steroids [66] particularly in 
those with high total IgE [67].

Ideally, randomised controlled trials would be used to assess the effect of treat-
ment on lung function decline, but the duration of such trials is usually too short, 
with primary outcome measures being related to symptom control. Interpretation of 
data from observational studies may have to suffice.

Allergic Rhinitis

Hay fever is generally thought to be uncommon before the age of 5 years [68, 69] 
and from the limited information available, the peak incidence of rhinitis may 
be between 17 and 22 years [70]. Disease resolution may occur. In the 1958, 
British Birth Cohort less than 70% of those with hay fever at the age of 11 years 
or those with hay fever at the age of 16 years reported symptoms at the age of 
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23 years [71]. However, even though cross-sectional surveys show a higher 
prevalence in the younger population than the older population (see Fig. 2), 
the differences with age observed in cross-sectional studies is largely explained 
by cohort-related increases in disease prevalence, rather than disease resolution 
in those who are older. Although Broder et al. [46] reported more hay fever in 
boys than girls, others have found little difference between males and females 
[70].

Up to 70% of people reporting asthma who took part in the ECRHS also 
reported hay fever, and in all centres hay fever was strongly associated with having 
asthma [72]. This association existed even in those who had no serological markers 
of IgE to common allergens and in those with low total IgE.

When two conditions often coexist, have poorly defined time of onset and 
share risk factors, it is not easy to determine their precise relationship. However, 
some longitudinal studies have suggested that incident asthma is more common 
in those with a history of rhinitis, with greater risks seen in those with hay fever 
of the longest duration and greatest severity, and in those with both sinusitis and 
rhinitis [73]. Chronic sinusitis has also been associated with the onset of cough 
and wheeze [74].

Fig. 2 Lifetime prevalence of ‘hayfever or nasal allergies’ in England (n=16648) (Data from 
Health Survey for England 2001)
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Race

Asthma

There are inconsistent reports of racial differences in the prevalence of asthma, and 
where differences have been observed, it is difficult to determine whether they 
reflect differences in genetic predisposition, exposure to environmental risk factors 
or cultural attitude to disease [75]. Studies to examine racial differences have been 
conducted in the USA [76, 77], Africa [78], New Zealand [79], Australia [80, 81] 
and the UK [82].

Rhinitis

Less is known about ethnic and racial differences in the prevalence of hay fever 
although a large study in the USA showed Asians were at an almost 50% greater 
risk of reporting hay fever than the White population, but had a similar risk of 
asthma. The prevalence of asthma was similar and the prevalence of hay fever was 
slightly higher in the Black population compared to the white, but the Black popu-
lation was more likely to report ‘asthma without hay fever’ [83].

Socio-economic Status

Asthma

The prevalence of asthma in children is higher in wealthy countries [84], but in the 
West, the relation of social class (a marker of personal wealth, at least in the UK) 
to asthma appears to have changed over time, asthma having once been a disease 
of the more advantaged and becoming more a disease of the disadvantaged [85]. 
Socio-economic status may be important in disease aetiology, disease severity or 
labelling and treatment of disease [86].

Rhinitis

Rhinitis is also more common in wealthy countries but at an individual level its 
association with socio-economic status is not certain and, as for asthma, may be 
changing. In one British birth cohort, hay fever was more common in those from 
higher social classes but by adulthood was more related to father’s social class than 
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own social class [71]. Labelling and diagnosis of symptoms and signs suggestive of 
hay fever may vary between socio-economic groups [87, 88].

Family Structure

In 1989 Strachan reported a strong negative association of birth order with the 
prevalence of hay fever at ages 11 and 23, and proposed that exposure to older 
siblings led to an increased level of infections in early life, which in turn decreased 
the likelihood of allergic disease [89]. This hypothesis was termed the ‘hygiene 
hypothesis’. Studies published up to the year 2000 that examined the relationship 
of asthma and hay fever with family size have been included in a systematic review 
[90]. There is overwhelming evidence that hay fever is negatively associated with 
family size but the associations with asthma are less consistent, and when seen are 
not as strong [90, 91]. Older siblings or day care attendance may protect against 
later wheezing (generally thought to be associated with IgE sensitisation), but may 
increase the risk of early childhood wheeze, much of which is related to acute viral 
infections [92].

The hypothesis that the protection from hay fever by large sibships is due to 
infection is strengthened by the observation that children from small sibships, who 
attend child care facilities early in life, are similarly protected [93]. However, a 
possible alternative explanation has been proposed based on the observation that 
women who have had more children have less atopy [94]. Longitudinal studies to 
test this have produced conflicting results [95, 96] and studies assessing fertility in 
atopic women show no association of fertility with atopy [97,98]. Even if preg-
nancy does alter the maternal immune system, it cannot explain the observation that 
having younger siblings is also protective for hay fever, independently of older 
siblings [89–100].

Factors Linked to the Hygiene Hypothesis

Viral Infections in Infancy

The hygiene hypothesis initially proposed that children exposed to poor hygiene 
and increased infections in early life had lower levels of IgE sensitisation and aller-
gic disease. However, in a large study in Sheffield, England, no association of 
symptoms of neonatal infectious disease or infectious disease in the child’s family, 
and hay fever was observed [101].

Extensive work by Matricardi et al. suggested that orofaecal infections were of 
interest for protection against asthma and hay fever and IgE sensitisation, but he 
also showed that the virus herpes simplex 1 (which unlike herpes simplex 2 is 
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acquired in early life), was associated with lower levels of IgE sensitisation. 
Reported associations of less IgE sensitisation with measles in Guinea-Bissau, 
West Africa, may be explained by survivor bias, with fewer atopic children being 
likely to have survived severe infection [102].

Enteric Infections

Children and adults living in large families are likely to experience higher levels 
of oro-faecally transmitted infections, including hepatitis A. Italian military 
recruits who had evidence of previous hepatitis A infection had a lower preva-
lence of IgE sensitisation [103] and further work showed negative associations 
of ‘allergic asthma’ and allergic rhinitis with hepatitis A, Toxoplasma gondii and 
Helicobacter pylori [104].

The analysis was repeated using data from the National Health and Nutritional 
Examination Survey III conducted in the United States, and a lower prevalence of 
both hay fever and asthma were seen in those with serological evidence of past 
infection with T. gondii and Hepatitis A [104]. However, other studies in the UK 
have not replicated these observations [105, 106].

Bowel Flora

There has been some interest in the role of bowel flora in atopy and allergic disease 
[107]. Conduct of studies that require examination of multiple stool specimens is 
not easy and relatively few observational studies have been conducted. The pres-
ence of Clostridium difficile in stool samples collected at 1 month has been associ-
ated with recurrent wheeze at the age of 2 years and other markers of allergy 
(eczema and serum IgE) [108].

Randomised controlled trials of the use of probiotics to alter bowel flora and 
reduce allergic disease have shown a benefit for eczema but not for asthma or hay 
fever [109, 110]. Use of antibiotics, which is known to be associated with changes 
in bowel flora, has been linked to higher rates of asthma and hay fever in some 
studies [111]), but not others [112]. It seems likely that the link between antibiotic 
use and asthma reflects reverse causation, with atopic children possibly having 
more severe respiratory illness and being more likely to be prescribed antibiotics 
for repeated respiratory infections [113].

Anthroposophic Lifestyle

In Sweden, children following an anthroposophic lifestyle are likely to have a high 
intake of products containing lactobacilli. They also have lower rates of IgE 
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 sensitisation, asthma and hay fever [114].The differences in disease prevalence 
between Steiner and non-Steiner children was not so marked in the Prevention of 
Allergy Risk factors for Sensitisation in Farming and Anthroposophic Lifestyle 
(PARSIFAL) study and PARSIFAL suggested that a lower use of antibiotics and of 
paracetamol was associated with a decreased risk of IgE sensitisation [115]. 
Frequent paracetamol use has been associated with asthma in adults both cross-
sectionally [116, 117] and prospectively [118], and in a population-based birth 
cohort study, frequent use of paracetamol in late pregnancy was associated with an 
increased risk of asthma in the offspring [119]. The explanation for the low levels 
of asthma and hay fever in Steiner school children is therefore likely to be more 
complex than originally hypothesised.

Farming and Proximity to Animals

Animals harbour a range of infectious agents that may be passed to humans. Children 
who are brought up on farms have a lower prevalence of IgE sensitisation, wheeze, 
asthma and hay fever than those who are brought up in the countryside but not on farms 
[120, 121]. This association may, in some part, last into adult life [122].The association 
has been variably associated with regular drinking of unpasteurised milk [121, 123], 
going into animal sheds [121], exposure to pigs, feeding silage on the farm and the 
child’s involvement in hay making over prolonged periods [124], but as yet there is no 
evidence that one of these exposures, any microbial exposures or any other specific 
contaminants, explain the apparent protection afforded by growing up on a farm.

Vaccination and Tuberculin Sensitivity

Concerns have been raised that the increase in asthma is related to the current exten-
sive vaccination programmes. Observational studies in many parts of the world are 
complicated by the high population coverage of vaccination with a relatively small, 
highly selected proportion of individuals who have not received vaccinations. This 
leads to confounding by factors including family history of allergy or social class. The 
few randomised controlled trials that have been conducted show little evidence of an 
important effect [125] and the public should be reassured that vaccines are safe.

In contrast, there has been interest in the possible protective effect of early 
administration of BCG [126–128]. However, work conducted in Sweden [129], 
Greenland [130] and the UK [131] have not supported these observations.

Exacerbations due to Acute Viral Infections

Even though the hygiene hypothesis suggests infections in early life may be protec-
tive for disease, there is overwhelming evidence that viral upper respiratory tract 



Epidemiology of Asthma and Allergic Rhinitis 61

infections cause exacerbations of asthma in children [132], particularly at the 
beginning of school term [133], and in adults [134]. In children, infection is associ-
ated with wheeze, particularly in children with small lungs [50] and many first 
episodes of wheeze are associated with an acute infection [135] possibly due to 
‘unmasking’ of asthma in susceptible individuals rather than direct causation. 
Infection with rhinovirus in the first year of life has been associated with the onset 
of asthma by the age of 3 years and may induce inflammatory mediators that influ-
ence airway remodelling and adversely affect lung development [136]. There is 
some evidence that exposure to allergen may make asthma symptoms worse in the 
presence of infection [137, 138].

Parasites

Observations that asthma and allergic disorders are less common in rural African 
communities have led to investigations of the role of parasitic infection. A recent 
systematic review suggests that different parasites have different effects, concluding 
that Ascaris infection was associated with an increased risk of asthma, but the 
opposite was true for hookworm infestation [139]. A randomised controlled trial 
in which children were treated with albendazole showed no difference in IgE 
sensitisation or allergic diseases between the treatment and placebo groups after 
12 months [140] but the prevalence of hookworm infestation (A. duodenale), was 
relatively low in comparison to other infestations. Although Schistosoma haemato-
bium may influence the allergic response [141], there is no clear evidence that 
infection with Schistosoma is protective for asthma or hay fever.

Genetics

The current evidence regarding the inheritance of asthma and allergic rhinitis will 
be discussed in depth elsewhere in this book. Rapid advances in the technologies 
for genotyping mean that samples can be rapidly analysed and hundreds of thou-
sands of single nucleotide polymorphisms can be examined at once. Although 
several genes have been identified as being associated with disease, many initial 
findings for asthma have not been replicated [142].

If the function of a gene is known, and is considered likely to alter the body’s 
response to a particular lifestyle or environmental exposure, individuals with the rel-
evant genotype may be at substantially increased or decreased risk of disease com-
pared to others. Finding such gene–environment interactions can strengthen the 
evidence for inferring causal associations between environmental exposures and dis-
ease. For example, glutathione S-transferase polymorphisms may modify the effect of 
tobacco smoke exposure on risk of childhood asthma [143, 144] and the effects of 
antioxidant supplementation on lung function in asthmatic children [145].
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It seems likely that the genetics of asthma and related traits is complex, involving 
hundreds of genes, each with small effects (relative risks rarely exceeding 1.5). 
Adequately powered genetic epidemiologic studies with sample sizes of several 
thousand subjects are required to detect gene–gene and gene–environment interac-
tions and to avoid false-positive results.

Exposure to Allergen

Geographical Variation and Time Trends

There is marked geographical variation in exposure to common allergens such as 
house dust mite [146] and cat allergen [147] but relatively inconsistent evidence for 
whether these levels have increased over the past 30 years [148, 33]. The pollen 
season in London and its immediate surroundings has decreased in length and in 
severity during the late twentieth century [149] and in the UK, there is little evi-
dence that the number of pets has increased during the past 30 years [150]. 
However, features of modern-day living, with large proportions of time spent in the 
indoor environment, may have resulted in increased personal exposure to house 
dust mite and the allergens shed by indoor pets, even if there has been no measur-
able increase in allergen levels.

Asthma

Studies of exposure to house dust mite have suggested that exposure to high levels 
of allergen not only increases the risk of sensitisation but also increases the risk of 
clinical disease [148]. This is not seen in all studies [151–154], and two Cochrane 
Reviews of randomised controlled trials that attempted reductions in indoor aller-
gen exposure as a means of secondary prevention of asthma concluded that, as yet, 
there was no evidence for beneficial effects of reduction in house dust mite allergen 
[155] or cat allergen [156]. However, people with asthma often attribute their symp-
toms to exposure to allergen (see Table 2).

Exposure to outdoor allergen may be an important determinant of severity of 
disease in asthmatic individuals. Morbidity [157] and mortality [158, 159] from 
asthma in young adults increase in the pollen season in the UK (see Fig. 3) and the 
USA, a seasonal pattern that is not observed in older adults. In the USA, seasonal 
variation in attendance at a medical centre with asthma associated with specific IgE 
to rye grass [160] occurs, although sensitisation and exposure to other allergens are 
also important [161].

Epidemics of asthma have occurred in response to high levels of allergen in the 
air. In Barcelona, these followed the release of soybean particles during unloading 
of soybean cargo at the docks. Case–control studies showed that cases had an 
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increased risk of exposure to high levels of soybean [162] and appropriate changes 
to the unloading procedures resulted in cessation of epidemics [163]. Exposure to 
castor bean has also been implicated in asthma epidemics [164–166] and ‘thunder-
storm asthma’ is a well-documented phenomenon [167–169]. Exposure to 
Alternaria alternate in sensitised individuals has been associated with near fatal 
asthma [170].

Table 2 Proportion of people with asthma who report that exposure to the agent 
makes their asthma worse. (Health Survey for England 2001)

Agent: <16 16–45 46+

Dust 11.6 30.0 25.2
Pets 6.7 27.3 15.0
Feathers 1.8 10.5 8.8
Pollen 12.4 28.2 31.3
Grass 5.8 14.3 20.4
Any of the above 24.0 55.5 47.6
Infections 50.7 46.6 46.8
Excited or upset 9.8 13.9 15.6
Cold air 12.0 17.2 21.8
Exercise 24.4 21.4 10.8
Excited/cold air or exercise 37.3 41.2 36.7
Foods or drinks 3.1 5.5 4.7
Traffic fumes 2.7 10.5 18.4
Tobacco smoke 13.8 18.5 28.6

Deaths due to asthma 1958-91, by month of death and age
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Hay Fever

Although some studies have suggested that infants born at the time of the birch and 
grass pollen season in Finland [171–172] are more likely than those born at other 
times of the year to become sensitised to birch and grass, there are inconsistent 
reports that the prevalence of hay fever varies by birth month [173, 174] and other 
studies looking at early exposure to allergen do not consistently suggest that this 
leads to hay fever [175–177]. Health service utilisation data for hay fever show 
clear seasonal patterns with increases during the pollen season.

Diet

Observational studies, mainly cross-sectional, have suggested that a low intake of 
fruit and vegetables, fish, butter and dairy fat, antioxidants (vitamins C, E, beta-
carotene and selenium), magnesium, and n–3 fatty acids, and a high intake of 
sodium, margarine and n–6 fatty acids may be associated with increased risk of 
asthma, although evidence is conflicting [178]. However, n–3 fatty acid supplemen-
tation does not appear to benefit children or adults with established asthma [179], 
and recent trials in asthmatic adults of vitamin C plus magnesium, vitamin E, and 
selenium, have been disappointingly negative [180–182]

Nutrition in early life may be of importance in the inception of asthma [183] and 
birth cohort studies have suggested that low prenatal selenium status [184, 185] and 
low maternal intakes of vitamin E and zinc [186, 187], and vitamin D [188, 189],in 
pregnancy may increase the risk of wheezing in early childhood. No convincing 
association of maternal or cord blood n–3/n–6 fatty acid levels with early wheezing 
or eczema has been demonstrated [190].

The role of breastfeeding in atopic disease remains controversial, with some 
observational studies suggesting that it reduces the risk of asthma and others sug-
gesting that it may increase risk [191]. There is a paucity of data on diet and rhini-
tis, but there is some evidence that rhinitis may be associated with higher intakes of 
margarine [192] and oleic acid.

Smoking

Personal Smoking

There are several methodological problems in the identification of associations of 
smoking with asthma, including the ‘healthy smoker’ effect, the tendency for those 
with disease to avoid smoking [193]. Smoking has been associated with total IgE 
and IgE sensitisation to environmental [194] and occupational allergens [195–197]. 



Epidemiology of Asthma and Allergic Rhinitis 65

However, the association of specific IgE with smoking may depend on the allergen, 
with current smokers having more IgE to house dust mite and markedly less spe-
cific IgE to cat and to grass [194, 198]. Cross-sectional studies report lower levels 
of hay fever in those who smoke [199].

It is well established that smoking is related to chronic bronchitis and to fixed 
airways obstruction but whether smoking causes asthma remains highly controver-
sial, with some arguing that there is a non-causal association [200] and others argu-
ing that smoking causes increases in asthma severity rather than causing asthma to 
develop [201]. Adults who start to smoke or continue to smoke have greater 
increases in BR as they age [202].

Passive Smoking

In 1997, a systematic review and a series of meta-analyses were conducted to assess 
the health effects of passive smoking on children’s health [203]. There is a very 
consistent picture of increased respiratory illnesses and symptoms in the children 
of those who smoke, the risks being greater in young children than older children, 
probably because as children grow up they spend less time in the home with their 
mother. The associations with symptoms may in part be a consequence of in utero 
exposure to maternal smoking influencing lung growth and making a child more 
susceptible to wheeze with infection. As most mothers who smoke in pregnancy 
continue to smoke after the child has been born, this effect is difficult to disentangle 
from the effects of postnatal exposure to tobacco smoke.

Cross-sectional studies show that adults reporting more exposure to other peo-
ple’s tobacco smoke, particularly in the workplace, have more symptoms sugges-
tive of asthma and more bronchial reactivity [204].

Sex Hormones

The incidence and prevalence of asthma is higher in boys than in girls and this dif-
ference is less apparent, if not reversed, during the reproductive years [45]. While 
such differences might be related to different reporting, labelling and treatment of 
disease in men and women, other epidemiological observations suggest these dif-
ferences may be related to sex hormones. Asthma severity varies during the men-
strual cycle, in pregnancy and hormonal treatments have been associated with an 
increase in asthma in older women in cross-sectional and longitudinal studies. 
However none of the reported associations are consistent with a particular serum 
hormonal profile [205]. Although there is limited evidence that women with asthma 
have an increased prevalence of some forms of gynaecological disease [206], the 
explanation for this is uncertain, may not be related to sex hormone levels [205] and 
does not appear to influence fertility rates [97].
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Hormonal ‘rhinitis’, however, is a recognised condition in allergy clinics and 
changes in nasal congestion and markers of rhinitis have been reported with the 
menstrual cycle [207]. In a birth cohort of more than 30,000 women, those who had 
an early menarche had more allergic rhinitis than those who started menstruating 
after the age of 13 years [100].

Air Pollution

The prevalences of asthma and hay fever have increased during a period when air 
pollution has changed from that largely due to domestic coal burning to that related 
to vehicle emissions. Emissions from traffic may influence allergic responses [208]. 
However, relatively few studies have assessed objective measures of atopy and 
traffic-related air pollution at a high level of resolution, and the results so far are not 
wholly consistent [48, 209, 210] or suggest complex associations [211, 212]. Air 
pollution may also affect the airways, altering the expression of all forms of airway 
disease including asthma and it is not clear whether the symptoms are worse in 
those with atopy or atopic symptoms [210–214].

Time series studies of asthma mortality and admissions have shown associations 
with levels of pollution, though there is a great deal of uncertainty about the specific 
exposures that are important and there are important discrepancies in the evidence. In 
London, for instance, variations in ozone levels have been associated with daily gen-
eral physician (GP) consultations for asthma [215],visits to accident and emergency 
rooms with respiratory complaints [216], and admissions for asthma [217], as well as 
total respiratory mortality. However, neither of the two European multi-centre studies 
of acute air pollution effects using routine health data, Air Pollution and Health a 
European Approach (APHEA) I [218], nor APHEA II [219], found an association 
between hospital admissions from asthma and ozone levels. APHEA I found associa-
tions only with NO

2
 and APHEAII found associations with small particles. Panel 

studies have been even less convincing. The largest of these to date, the PEACE study, 
was a well-conducted international study that had good power to detect effects but 
was unable to do so [220]. Finally, there have been major episodes of air pollution 
that have been identified as having no clear effect on asthma, including the London 
smog of 1952 [221] and the last major smog epidemic in Europe [222].

The Southern California Children’s Health Study showed that exposure to some 
pollutants may influence lung growth [223, 224] but new diagnoses of asthma were 
associated with high pollutant areas only in children who played three or more team 
sports [225]. In spite of the inconsistency of the findings, there is some indication 
that the underlying mechanism relates to oxidative stress [145, 226, 227].

Given the strong biological plausibility that air pollution may affect both atopic 
disease and asthma, the question arises why the quantification of these effects is so 
problematic in epidemiological studies. This may be due to the effects being very 
small (but, given the almost universal exposure, none the less potentially i mportant), 
difficulties of assessing exposure of individuals accurately and the large potential 
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for confounding or effect modification. One specific confounder in the studies of 
short-term exposure is airborne allergen. This can have a very large effect, as has 
been shown in a number of epidemics of asthma associated with release of castor 
bean or soy bean allergen into the air [162, 164, 166]. Some studies have attempted 
to deal with this problem by adjusting results for pollens and moulds in the air, but 
this is at best only a partial solution to the problem.
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Introduction

Childhood asthma is one of the most common chronic respiratory disorders affecting 
up to 30% of school children in the developed world. Many epidemiology studies 
have consistently documented an increasing trend of asthma over the past three 
decades [1]. A few recent reports suggested that there is a plateau or even decline 
in the trend of asthma prevalence [2–4]. Due to the lack of precise definitions of 
asthma and validation of survey instruments, reliable comparison of reported preva-
lence studies from different regions are very difficult. A number of large multicentered 
epidemiological studies using standardized instruments have been performed 
revealing important information on the prevalence and burden of asthma around the 
world [5–7]. They have also provided a framework to investigate the possible deter-
minants of asthma. Studies in the rural areas have consistently showed a lower 
prevalence of asthma in children who have been brought up in a farming environment 
[8–11]. This chapter reviews the existing data on asthma epidemiology and summa-
rizes the recent important findings from studies of the environmental determinants 
of childhood asthma.

Asthma Epidemiology

Many published epidemiological studies of asthma used different methodologies 
such that meaningful comparisons between countries are extremely difficult. The 
increasing awareness of asthma is likely to affect the responses of the parents or the 
subjects. Studies of young children with asthma are even more problematic as there 
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are different phenotypes of wheezing disorders in young children, reflecting different 
etiologies and pathogenesis [12]. “Wheeze” is the most widely recognized symptom 
of asthma and different standardized questionnaires usually ask for the presence and 
the frequency of this symptom [5]. However, in some languages such as German and 
Chinese, there is no equivalent term for “wheeze” such that the true prevalence of 
wheezing will be underestimated by the translated questionnaires [13]. In addition, 
validation of the survey instrument is difficult because of the lack of a universally 
accepted “gold standard” of diagnosing asthma [14]. Therefore, depending on the 
subjects’ or the parents’ understanding of the disease, access to medical care, physi-
cians’ use of diagnostic labels, translations of the survey instrument, and cultural 
differences, the responses of the subjects or their parents will be affected.

In order to circumvent the linguistic problem of interpretation of the written 
questionnaire, the International Study of Asthma and Allergies in Childhood 
(ISAAC) includes a video questionnaire in addition to the written questionnaire. 
The video questionnaire shows children and adolescents with different asthma 
symptoms and asks the respondents whether they have similar symptoms and the 
frequencies of such symptoms. Some investigators have included additional “objective” 
markers of asthma to define asthma phenotype. Bronchial hyperresponsiveness 
(BHR) has been considered to be one of the best objective measures of asthma, but 
there has been a continuing debate of whether such measurement would have 
greater validity than symptom questionnaires alone [14,15]. Therefore, the interpre-
tation of any epidemiological study of asthma must take into account the case defi-
nition of asthma as well as the methodology used in data collection.

Prevalence of Childhood Asthma

The results of the ISAAC surveys, which used standardized methodologies, have 
been most interesting as they clearly showed dramatic variations of prevalence of 
asthma symptoms across different countries and racial background. The highest 
prevalence rates were found among the English-speaking countries such as British 
Isles, New Zealand, and Australia while lower rates were in Eastern Europe and some 
Asian countries [5]. The ISAAC study is the largest, epidemiological study of asthma 
and it has been carried out in different phases. ISAAC Phase One was carried out 
between 1994 and 1995 and to study the prevalence and severity of asthma in random 
samples of schoolchildren of two age groups (6–7 and 13–14 years) from 155 col-
laborating centers in 56 countries around the world [5]. The prevalence of reported 
wheeze in 13–14-year-old varies widely across different regions, with the highest 
prevalence of 32.2% in the UK and the lowest of 1.6% in Akola, India. Figure 1 
shows the 12-month prevalence of self-reported asthma symptoms of 13–14-year-old 
children in selected countries. Table 1 shows the prevalence of wheeze in the past 12 
months in the 13–14-year-old children as documented by the written and video ques-
tionnaires from ISAAC Phase One. Table 2 shows the 12-month prevalence of 
wheeze in the 6–7-year-old children from ISAAC Phase One and Three. ISAAC 
Phase Two was designed to assess the variation in the prevalence and severity of asthma 
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symptoms and objective markers [16]. Interestingly, the well-known association of 
atopic sensitization and wheeze was very strong in affluent Western countries but 
such association was much weaker in less developed countries like Brazil and 
Estonia. Further studies are needed to evaluate the role of atopy in the pathogenesis 
of asthma, especially in children from developing countries.

Secular Trends of Asthma Prevalence

Although many epidemiological studies have shown an increasing prevalence of 
asthma in Western countries, many of these studies used only questionnaire surveys 
in estimating the prevalence [1,17,18]. Increased community awareness of asthma 
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Fig. 1 Twelve-month prevalence of self-reported asthma symptoms from written questionnaires: 
ISAAC Phase One results in 13–14 year-old subjects
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Table 1 Twelve-month prevalence of asthma symptoms in 13–14-year-old children: ISAAC 
Phase One results

Location

Written questionnaire Video questionnaire

Wheeze

Wheeze 
disturbs 
sleep

Severe wheeze 
limiting speech Wheeze

Wheeze dis-
turbs sleep

Severe 
wheeze

New Zealand 30.2 3.2 8.0 18.4 11.7 12.4
Australia 29.4 3.0 8.3 17.6 11 18.7
Canada 28.1 2.1 8.1 12.0 6.5 8.5
USA 21.7 4.2 10.0 13.0 4.6 10.6
Kuwait 17.0 5.7 10.6 13.3 9.4 9.1
Finland 16.0 0.5 3.1 5.8 1.5 2.6
Germany 13.8 1.2 5.7 5.3 3.6 3.6
Japan 13.4 0.6 2.1 10.2 3.7 5.3
Hong Kong 12.4 0.5 2.4 10.1 3.8 6.9
France 12.0 1.5 2.6 8.3 4.4 4.6
Argentina 10.9 2.1 3.8 8.3 4.7 5.5
Poland 8.6 1.2 1.8 3.5 1.5 2.3
Malaysia 9.6 0.8 1.8 5.9 2.5 3.6
South Korea 7.7 0.2 2.7 3.7 0.5 1.9
India 6.0 1.1 3.0 2.9 2.3 2.5
Mainland China 4.2 0.3 0.7 2.0 0.6 1.2

Table 2 Comparison of ISAAC Phase One and Three results: 12-month 
prevalence of wheeze (written questionnaire) of 6–7-year-old children

Location Phase 1 Phase 3 Year between phases

Australia 27.2 20.0 9
New Zealand 23.6 22.2 9.5
Brazil 21.3 24.4 7
Japan 17.4 18.2 8
Canada 14.1 18.2 9
South Korea 12.4 5.6 5
Poland 10.9 13.6 6
Sweden 10.3 10.2 8
Taiwan 9.6 9.8 7
Estonia 9.3 9.6 7
Hong Kong 9.1 9.4 6
Mexico 8.6 8.4 8
Thailand 8.2 11.9 6
Austria 7.8 7.4 7
Italy 7.5 7.9 8
Spain 6.2 9.5 7
India 6.2 6.8 7.5
Iran 5.4 12.0 6
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is likely to contribute to the increase in disease prevalence documented by these 
questionnaire surveys. Some researchers have included the more “objective” markers 
of asthma such as the measurement of total IgE and specific IgE, skin-prick test, 
and measurement of BHR [19,20]. Burr et al. carried out two surveys using the 
same questionnaire along with exercise provocation test in schoolchildren from 
England in 1973 and 1988. The prevalence rates of asthma and BHR were found to 
have doubled over the study time period [21]. In another study conducted in primary 
schoolchildren in two Australian towns over the years 1982–1992, the prevalence 
of wheeze within the past 12 months has doubled while the prevalence of BHR has 
also increased by 1.4- to 2-fold [19]. In contrast, von Mutius et al. [20] performed 
two surveys 5 years apart in former East Germany using questionnaire assessment, 
skin-prick test, and measurement of BHR in 9–11-year-old children. The preva-
lence rates of symptoms of hay fever and atopic sensitization have increased by 
2- and 1.5-fold, but there was no significant change in the prevalence of asthma or 
BHR. The existing data do suggest that asthma prevalence would increase with 
increasing economic development and westernization. The challenge is to find out 
what are the factors responsible for the increase in asthma while the society is 
undergoing “modernization” or “westernization.”

Increasing trends of asthma prevalence have also been observed in Chinese and 
Japanese children [22–25]. The prevalence rates of asthma and wheeze have 
increased to 11.2% and 12.4% in 13–14-year-old children as shown by Phase One 
ISAAC study conducted in 1994–1995 [23]. Nishima studied children using the 
same Japanese translation of the American Thoracic Society (ATS) questionnaire 
to study and found that asthma prevalence has increased from 3.5% in 1982 to 4.6% 
in 1992 [22]. Migrant studies have also provided important insights into the pos-
sible environmental determinants important in the pathogenesis of asthma. Several 
large comparative studies in the Chinese population showed disparity of asthma 
prevalence within the same ethnic group [23–25]. The 12-month prevalence of 
wheeze in 13–14-year-old schoolchildren as identified by the ISAAC video ques-
tionnaire was 10.1% in Hong Kong, while the average rate in mainland China was 
only 2%, with the highest rate of 3.3% in Beijing and the lowest of 1.3% in 
Chongqing. Environmental exposure is likely to be the key in explaining the 
observed difference within the Chinese population. The ISAAC Phase Two protocol 
included “objective” markers of atopic disorder such as skin-prick test and bronchial 
challenge test [16,24]. Interestingly, the rate of allergic sensitization was significantly 
higher in Guangzhou (30.8%) than in Beijing (23.9%) but the prevalence of asthma 
and wheeze was similar in these two cities. Therefore, the difference in the preva-
lence rates of atopic sensitization among the three cities cannot explain the higher 
prevalence of asthma in Hong Kong. Factors other than those related to atopic sensi-
tization must also be important in the pathogenesis of childhood asthma.

The ISAAC Phase Three study was planned to evaluate time trends in the preva-
lence of asthma and related atopic disorders by repeating the cross-sectional study 
after at least 5 years. Almost half a million children in the two age groups have 
participated in the Phase Three studies. Interestingly, children of the younger age 
groups were more likely to show increasing prevalence of allergic rhinoconjunctivitis 
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and eczema but not asthma. The exact reasons for such pattern remained to be 
explored. Among the centers with relatively high prevalence as documented in 
Phase One, the data from Phase Three either showed a plateau or even a declined 
in asthma prevalence [26]. Recent data from England also showed a decrease of 
prevalence of current wheeze from 33.9% in 1995 to 27.5% in 2002 [3]. Similar 
findings were documented in Australia, Switzerland, and Hong Kong [2–4]. Further 
studies are necessary to reveal the possible factors responsible for the recent 
decrease in asthma prevalence in these countries.

“Hygiene Hypothesis” and Asthma

It has been almost 20 years since Strachan described the phenomenon that infection 
in early childhood, transmitted by unhygienic contact with older siblings or 
acquired prenatally from the mother by contact with her older children, may 
reduce the development of asthma and related atopic diseases [27]. As early 
exposure to various infections maybe an important factor, many studies have been 
conducted to investigate the role of early microbial exposure in the subsequent 
development of asthma. Early exposure to various infections may alter the 
cytokine response and Th-1 and Th-2 balance of an individual, thereby affecting 
the subsequent risk of asthma [28]. Furthermore, microbial exposure may also 
enhance the activity of T regulatory cells, resulting in immune suppression and a 
subsequent downregulation of both Th-2 and Th-1 immunity [29]. Therefore, 
frequent early infections or exposure to microbes or their components most likely 
program the immune system and reduce future development of asthma and 
related allergic diseases.

Farming Exposure and Asthma Epidemiology

In line with the “hygiene hypothesis,” children brought up in a farming environ-
ment have been found to have less asthma and allergies [8–11]. Brau-Fahrlander et 
al. reported a study of Swiss children aged 6–15 years showing farming as a paren-
tal occupation was significantly associated with lower rates of symptoms of allergic 
rhinitis and atopic sensitization [8]. In another large study of German children aged 
5–7 years, the prevalence rates of hay fever (OR 0.52; 95% CI 0.28–0.99) and 
wheeze in the past year (OR 0.55; 95% CI 0.36–0.86) were significantly lower in 
farmers’ children when compared with children not living in a rural farming envi-
ronment [9]. Several other studies performed in Canada, Austria, Finland, and the 
United States corroborated these findings [10,11].

A variety of microbial components have been tested to determine if there are 
the important factors associated with the protection against asthma and allergies in 
the rural setting. Perhaps one of the most extensively studied factors is endotoxin. 
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The results of the ALEX study showed that early exposure to stables and con-
sumption of unpasteurized farm milk were the two major factors associated with 
the lowest frequencies of asthma and atopic sensitization [30]. There was an 
inverse relationship between the levels of endotoxin level in the samples of dust 
from the subjects’ mattress and the prevalence of atopic asthma and atopic sensi-
tization. In addition, stimulated cytokines production of peripheral blood lym-
phocytes including tumor necrosis factor α and interleukin-10 showed an inverse 
relationship with endotoxin level. Therefore, exposure to high level of endotoxin 
may downregulate the immune response. The investigators also examined the 
relationship between allergies and the level of N-acetyl-muramic acid in the dust 
samples. N-acetyl-muramic acid is a major component of bacterial peptidoglycan 
found in the bacterial cell wall [31]. An inverse relationship of mattress dust 
muramic acid and prevalence of asthma was also found even after adjustment for 
the endotoxin concentration.

Risk Factors for Childhood Asthma

Allergens and Atopy

Allergen exposure is a well-known factor associated with sensitization while 
allergic sensitization is a strong risk factor for asthma [32]. Several birth cohort 
and intervention studies have been performed in the past decade to investigate the 
relationship of allergen exposure, allergic sensitization and subsequent develop-
ment of asthma [33–38]. The German multicenter allergy study (MAS) was a 
prospective birth cohort study from five German cities [33]. At 7 years of age, 
asthma and symptoms of wheezing were ascertained by parental questionnaire. 
Subjects found to have early and persistent sensitization were 10 times more 
likely to have asthma at 7 years of age when compared to those subjects who had 
never been sensitized. However, a persistent pattern of atopic sensitization was 
not associated with increased risk for asthma in the absence of family history of 
atopy or asthma. There was no relationship between the level of allergen exposure 
and subsequent development of wheezing or physician-diagnosed asthma or the 
degree of BHR. Clearly, these studies do not support the hypothesis that exposure 
to environmental allergens causes asthma, but rather that the ability to mount 
specific IgE responses whereas the development of asthma is controlled by other 
independent determinants. Another birth cohort of from UK was performed to 
evaluate the role of early allergen exposure and later development of asthma [37]. 
At 5 years of age, there was no relationship was between allergen exposure and 
subsequent sensitization and asthma.

Prospective intervention studies have also been designed to test whether 
reduction of allergen exposure might alter the subsequent risk of asthma [34,36]. 
The Manchester Asthma and Allergy Study is a prospective, prenatally randomized 



86 G.W.K. Wong

study to evaluate the development of asthma and atopy in a cohort of high-risk 
infants [34]. Subjects were randomized to a series of allergen avoidance measures 
or to a normal regime. At 3 years of age, symptoms suggestive of allergic disorders 
were generally lower in the active group, but the differences did not reach statistical 
significance. Paradoxically, the prevalence of atopic sensitization to at least one 
allergen was significantly higher in the active group (34.7% vs. 25.5%). The reason 
for this observation is unclear, but the stringent intervention might have reduced the 
exposure to a protective factor, such as endotoxin. Reassessment of the subjects at 
an older age will be needed to determine the true effects of the prescribed stringent 
measures of allergen avoidance at an early age. The Prevention and Incidence of 
Asthma and Mite Allergy (PIAMA) Study also did not find any effect of using 
mite-impermeable mattress on other respiratory symptoms, atopic dermatitis, or 
serum IgE level [36]. The major limitation of these intervention studies is the short 
duration of follow-up. Detailed evaluation of the subjects in these cohorts including 
lung function and BHR testing at school age will be needed to determine the 
possible long-term effects of such intervention. Summing up the current evidence, 
it appears that allergic sensitization is most likely is a marker rather than a 
causative factor for subsequent development of asthma. Allergen avoidance does 
not appear to be an effective primary preventive strategy. Nevertheless, objective 
and detailed assessment of the subjects from these cohort studies when they 
reach school age will shine more light on the relationship between allergen 
exposure and asthma.

Infection

Daycare attendance has been well documented to be associated with increased 
respiratory infections early in life [39]. In a cross-sectional study of German 
schoolchildren, children from small families (less than four members) who entered 
day nursery at age 6–11 months had significantly lower prevalence of atopic 
sensitization compared to those who entered at an older age [40]. The prospective 
Tucson children’s respiratory study also revealed that children who attended 
daycare during the first 6 months of life or had one or more older siblings had a 
lower risk of wheeze when they reached school age [41]. The inverse relationship 
between infections and allergic disorders has also been found in many studies. 
Among Italian military students, lifetime prevalence of asthma or allergic rhinitis 
was significantly lower in hepatitis A seropositive individuals when compared 
with seronegative subjects [42]. There were also studies showing a protective role 
for other infections including tuberculosis and measles [43,44]. Taken together, 
exposure to a variety of infections maybe an important contributing factor conferring 
protection against asthma in developing countries. However, the total load of 
microbial exposure is likely to be more important than a specific infection alone 
in modulating the immune system in early childhood such that future development 
of asthma maybe reduced.
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Summary

Epidemiological studies of childhood asthma performed in the past two decades 
have provided us important information with respect to the occurrence of asthma in 
different regions of the world. Multicentered surveys using standardized methodol-
ogy have provided accurate information of the trends of asthma prevalence. These 
studies have also generated several hypotheses relating to the development of 
asthma and associated allergic conditions. Comparative studies from different 
regions of the world have provided new information on the many possible genetic 
and environmental factors for asthma. The results from prospective and interven-
tion studies have challenged the role of allergen exposure as a causative factor for 
asthma while studies from the rural and farming environment have provided 
insights into the role of microbial exposure in modulating the young immune sys-
tem. Clear understanding of how various genes may interact with the protective 
determinants in the pathogenesis of asthma may lead to future development of 
primary preventive strategies for asthma.
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Epidemiology of Occupational Asthma

A. Newman Taylor and P. Cullinan

What is Occupational Asthma?

Occupational asthma is asthma induced by an agent inhaled at work. This definition 
implies that an agent inhaled at work has caused or initiated the process of airway 
inflammation, which is characteristic of asthma (desquamative eosinophilic bronchitis); 
it distinguishes agents which cause occupational asthma from those which provoke 
asthma, or cause exacerbations, in those with pre-existing disease. Inducers of 
occupational asthma can cause asthma [1] through direct injury to the airway epi-
thelium by a respiratory irritant inhaled in toxic concentration (irritant-induced 
asthma); or [2] as the outcome of an acquired specific hypersensitivity response to 
(a) an inhaled protein allergen or (b) low molecular weight chemical sensitiser 
(hypersensitivity-induced asthma).

What is Epidemiology?

Epidemiology is the study of the distribution of disease and its determinants in 
populations. Knowledge of the distribution of disease provides the building blocks 
for public health. Differences in the distribution of disease in different populations 
can form the basis for hypotheses about the determinants (or causation) of disease, 
which can be investigated in studies, which compare disease frequency in different 
populations or groups (e.g., within a workforce). Clinical epidemiology addresses 
the determinants of disease outcome.

A key characteristic of epidemiological study is the measurement of disease 
occurrence (numerator, e.g., the number of cases of asthma) in relation to an 
appropriate population at risk (denominator, e.g., a detergent factory workforce) to 
provide a measure of disease frequency. The essence of analytical epidemiology is 
well-designed observational studies, which compare “like with like” to test specific 
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hypotheses. These investigate questions not amenable to randomised controlled 
trials (RCT). While lacking the high internal validity of the RCT, the accumulation 
of consistent results from different studies, undertaken in different ways in different 
populations can provide strong evidence of cause and effect.

In principle, the ability of an agent inhaled at work to cause hypersensitivity-
induced asthma can be demonstrated in the individual case by an inhalation test with 
the specific causal agent. Exposure to allergens, such as enzymes and flour dust, or 
low molecular weight chemicals, such as isocyanates, will provoke an asthmatic 
response in sensitised cases. Similarly new onset asthma following an acute inhala-
tion accident, of sufficient severity for the individual to have sought medical attention 
in its immediate aftermath, is usually regarded as sufficient evidence to be consid-
ered causal. Although causation can be identified in the individual case for many of 
the causes of occupational asthma, population studies have identified previously 
unrecognised occupations (e.g., cleaners) as having a high prevalence of asthma.

Few diseases are the outcome of a single cause, such as isocyanate exposure, 
which, although necessary, is usually not sufficient to cause the disease; in the great 
majority, cases are the outcome of multiple causes. Epidemiological investigation 
of occupational asthma has investigated its important risk factors (both genetic and 
environmental), its outcome, and the determinants of this. Important information 
has come from reporting schemes, as well as from formal studies, of the relative 
importance of the different causes of the disease, of the circumstances in which 
exposure to these occur, and of the frequency of occupation as a cause of asthma in 
adult life. The primary purpose of such study is identification of the means to 
reduce the incidence of the disease.

Estimated Incidence of Occupational Asthma

Reporting Schemes

The incidence of occupational asthma in different occupations and the relative 
importance of the different agents responsible have been estimated in the UK since 
1989 by the Surveillance of Work and Occupational Respiratory Disease 
(SWORD) scheme. The scheme relies on reporting by specialist chest physicians 
in the UK of new cases of respiratory disease attributable to occupation. During 
the early years, the scheme achieved comprehensive coverage with reports from 
385 (90%) chest physicians in the UK. From 1992, reporters were divided into a 
core group of 32 chest physicians with a particular interest in occupational lung 
disease, who continued to report monthly, and other chest physicians (some 400), 
grouped into 12 random samples, who reported monthly. A similar number of 
occupational physicians (391) also reported monthly during the early years of the 
scheme, with monthly sampling introduced in 1996, by which time some 800 
occupational physicians were participating in a separate scheme, Occupational 
Physicians Reporting Activity (OPRA), reporting all types of work-related disease, 
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which included respiratory disease. Occupational physicians do not generally see 
patients after retirement and reported fewer occupational respiratory diseases of 
long latency (e.g., asbestos-related diseases) than chest physicians, but reported 
more cases of short latency conditions such as acute inhalation accidents and 
occupational asthma.

During the period of reporting (from 1989), the relative importance of the 
different agents identified as causes of occupational asthma and the estimated 
incidence of disease in different occupations has remained similar, with an overall 
decline in the estimated annual average number of cases reported from 703 in 1992 
to 559 in 2001. Organic agents, such as flour, wood dust and laboratory animals, 
account for one third of the reported agents and chemicals, such as isocyanates and 
glutaraldehyde, for a further one third. Metals including welding fumes and a mis-
cellaneous group, which includes epoxy resins, cutting oils, paints and glues, 
account for the majority of the remaining third. During the course of the 1990s, the 
number of cases reported as attributable to latex allergy rose and subsequently fell 
with the introduction and universal adoption of low protein non-powdered latex 
gloves by health care workers and others (Fig. 1).

The estimated incidence of occupational asthma by occupational group during 
the 1990s ranged from 1380/106/year in coach and other spray painters to 12/106/
year for transport and storage workers. All occupational groups with an estimated 
incidence of more than 100/106/year, with the exception of laboratory technicians 
and assistants, were employed in the manufacture or processing of chemicals, metals 
or organic materials such as foodstuffs and wood. The estimated annual incidence for 
high-risk occupations between 1992 and 1997 is shown in Fig. 2. The occupations 
associated with the most commonly reported agents are shown in Fig. 3. The incidence 
in the UK was consistently higher in the Midlands (over 60/106/year) than in the 
south (less than 30/106/year), probably reflecting the distribution of higher risk 
industries and occupations [3].

Fig. 1 Occupational asthma attributed to latex in the UK



94 A.N. Taylor and P. Cullinan

Reporting schemes are dependent upon cases being seen by reporters, they recognis-
ing and attributing the occupational cause and reporting the case. In general diseases of 
high specificity, such as mesothelioma, or diseases with specific features, such as 
asbestos-related pleural disease and occupational asthma, are more likely to be reported 
than diseases such as lung cancer and chronic obstructive pulmonary disorder (COPD), 
which are not specific to occupation, have no specific features and are overwhelmingly 
attributable to a single non-occupational cause (cigarette smoking). The high level of 
participation in SWORD and OPRA by both chest and occupational physicians has 
continued throughout the period of the schemes. While reported cases are based on 
clinical opinion, several validation exercises have confirmed the occupational attribu-
tion in most cases. The relative importance of the different agents and occupations in 
which they occur is probably provided accurately by these reporting schemes. What 
remains unclear is the proportion of all cases who come to the attention of specialist 
chest physicians in hospitals or occupational physicians (estimated to provide a service 
to only 12% UK workforce [4]). The best estimate at present would suggest that about 
one half to one third of new cases are being reported to these schemes.

Fig. 2 Estimated annual incidence of occupational asthma for high risk occupations 1989–1997, 
(From [3])

Occupation
Annual incidence 
(per 106 pa) 1992-97 (95% CI)

Laboratory technicians and assistants 207 (150-297)
Wood workers 139 (82-221)
Food processors (exc. bakers) 280 (171-141)
Bakers 951 (618-1415)
Plastics workers 380 (220-635)
Chemical processors 573 (357-898)
Welding, soldering, electronics
assembly

266 (181-389)

Metal treatment 567 (345-907)
Coach and other spray painters 1464 (968-2173)

Fig. 3 Occupations associated with most commonly reported agents (>100 reports) to SWORD 
(1992–1997), (From [3]) 

Agent Occupation No. of reports

Isocyanates Spray painter 286
Other metal or electrical processor 

maker or repairer
161

Flour and grain Baker 317
Wood Wood worker 251
Glutaraldehyde Nurse 189
Laboratory animals Laboratory technicians, 

scientists and assistants
184

Solder or colophony Welder, solderer or electronic assembler 161
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The patterns of disease reported by A SIMILAR reporting scheme in South 
Africa show the predominance of mining and associated disease (pneumoconiosis, 
tuberculosis (TB), COPD) in South Africa as compared to diseases associated with 
manufacturing and service industries in the UK (Fig. 4). The small proportion of 
mesothelioma cases seems likely to reflect low ascertainment of a rapidly fatal 
condition of long latency in a predominantly migrant workforce [5].

Population-based Studies

The incidence of occupational asthma has also been estimated in the population-
based European Community Respiratory Health Survey (ECRHS), which initially 
surveyed random samples from local residents aged between 20 and 44 years in 
1990–1995, in 28 centres in 13 countries. A follow-up survey of the population was 
undertaken in 1998–2003. This estimated the incidence of new cases of asthma in 
the population between these two periods and obtained information on all jobs done 
for at least 3 months. Acute inhalation accidents were also identified by questionnaire. 
Asthma was defined as either having an asthma attack or use of asthma treatment 
in the 12 months before interview. Airway hyperresponsiveness was also identified, 
by methacholine inhalation testing, in 4,438 participants. The risk of asthma, 
defined by asthma symptoms on questionnaire and airway hyperresponsiveness, 
was increased some 2.4 times in cases exposed at work to substances known to 
cause occupational asthma. A greater than two-fold increase in risk was found in 
nurses and greater than three-fold risk in cases who reported an acute symptomatic 
inhalation event, (e.g., chemical spills, mixing cleaning products and fire) [6]. 
The estimated population attributable risk for adult onset asthma for occupational 
exposures ranged from 10% to 25%, equivalent to an incidence of new onset occu-
pational asthma of 250–300 cases/106/year, closer to the Finnish estimate of some 
200 cases pa than the UK estimate of 20–30 cases per annum from SWORD. The 
population-attributable risk estimate in this study is consistent with that of the 
American Thoracic Society best estimate of 15% made from a systematic analysis 
of the relevant literature [7].

Fig. 4 Cases of lung disease reported to SWORD and SORDSA (From [5])

SWORD, % of 10477 cases reported between 
1996 and 1998

SORDSA, % of 3285 cases reported between 
October 1996 and October 1998

Asthma 29 Pneumoconiosis 62
Benign pleural thickening 21 Pneumoconiosis with TB  8
Mesothelioma 21 Pneumoconiosis with COPD  6.5
Pneumoconiosis  9 Asthma (with latency)  6
Inhalation accident  6 Inhalation accident  4.5
Lung cancer  3 TB (work related)  3
Infection  2 Benign pleural disease  2.5
Bronchitis/Emphysema  2 Mesothelioma  2
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Irritant-induced Asthma

Irritant-induced asthma is chronic asthma, which persists for more than 3 months 
after a single inhalation, usually of short duration, of an irritant chemical in toxic 
concentration. Unlike hypersensitivity-induced asthma, which only develops after 
an interval of weeks or months from initial exposure, the manifestations of irritant-
induced asthma, both symptomatic and functional (e.g., airway hyperresponsiveness), 
develop within hours of the inhalation accident. The majority of reports of irritant-
induced asthma have been case series. The earliest report described ten patients, 
none of whom has pre-existing asthma [8]. All developed chronic asthma following 
a single exposure to a variety of respiratory irritants, which in the majority was of 
a few minutes, but in one case of 12 hours. These included paint containing ammonia, 
heated acid and smoke. At the time of follow-up, respiratory symptoms had 
persisted between 1 and 12 years, all 10 had increased airway responsiveness to 
inhaled methacholine and 7 had airflow limitation. Subsequent case reports and 
series have identified many other different chemical causes of the same syndrome. 
These include sulphur dioxide and anhydrous ammonia fumes.

In general, case reports are highly selected: symptoms are sufficiently severe and 
of sufficient duration to have come to medical attention. In addition, there is rarely 
information about lung function prior to the accident. One study, of hospital staff 
exposed to a spill of 100% acetic acid in a hospital laboratory, overcame several of 
the problems associated with case reports [9]. The study was of a random sample 
of the work force exposed to the spill of glacial acetic acid. An exposure–response 
relationship was found between the estimated intensity of the exposure and the 
attack rate of acute respiratory symptoms and prevalence of airway hyperrespon-
siveness: the risk of developing irritant-induced asthma was some 23-fold greater 
in those most, as compared to least, exposed to acetic acid. Finally there was partial 
validation of respiratory health before the inhalation accident from pre-employment 
questionnaires.

An investigation of the outcome of 623 acute inhalation accidents reported to 
SWORD, between 1990 and 1993, suggested that symptoms persisted for more 
than 1 month in 142 of them, which included 50 new cases of asthma [10]. A sub-
sequent questionnaire in 1995 suggested that new asthma following an inhalation 
accident occurred in 34 of the original 50 cases, of whom 28 had continuing symptoms 
[11]. The most frequent attributable exposures were to chemical sensitizers, such as 
isocyanates, inhaled in toxic concentrations, sulphur dioxide, ammonia and chlorine. 
Failure to use respiratory protection and inappropriate procedures when mixing 
chemicals accounted for one third of the cases and spills leaks and faulty processes 
for a further one third.

The second European Community Respiratory Health Survey (ECRHS) follow-up 
study of 15,716 persons seen on average 9 years from the first study found an 
increased risk of new onset asthma in those who had reported a symptomatic acute 
inhalation event such as a fire, mixing cleaning products or chemical spills [6]. 
Among the cases of asthma in the survey, 3.8% had experienced a symptomatic acute 
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inhalation event, with a three-fold increased risk in those who had an asthma attack 
or were taking asthma treatment with evidence of airway hyperresponsiveness in the 
past year of having had a symptomatic inhalation event.

Hypersensitivity-induced Asthma

Hypersensitivity-induced asthma has been the subject of more study than has 
irritant-induced asthma, not least because of its greater frequency and impact. 
Indeed, recognition of the importance of occupational asthma stemmed from studies 
reported in the late 1960s and early 1970s of outbreaks of hypersensitivity-induced 
asthma worldwide among workforces engaged in the new technology of adding the 
Bacillus subtilis proteolytic enzyme to enhance the cleaning capacity of detergents, 
together with case reports of allergy to the protease among consumers.

Asthma caused by protease in workers employed in the detergent industry was 
first reported by Flindt in 1969 [12], with an accompanying report by Pepys et al. 
identifying specific IgE antibody and asthmatic reactions provoked by inhalation 
of protease [13]. Knowledge of the size of the problem was important and in 1970 
two cross-sectional studies of workforces were reported in the UK [14, 15] and 
subsequently in the USA [18]. Cross-sectional studies are subject to survivor 
bias, particularly of diseases characterised by an acute reaction to an identifiable 
exposure. This can lead to several of those affected leaving employment and, 
therefore, no longer available for study. Nonetheless, the studies reported a high 
frequency of respiratory symptoms and skin prick test responses to the protease. 
One study, for instance, found a prevalence of allergic symptoms in 47% of the 
workforce surveyed, with an association between skin prick test responses, allergic 
symptoms and atopy [14].

The emphasis on the importance of atopy as a determinant of risk of developing 
occupational asthma reflected the contemporary belief that the disease, with the asso-
ciated development of specific IgE, was a manifestation of an atopic predisposition 
and primarily the outcome of host susceptibility. By implication, reduction of disease 
incidence would primarily be achieved by the identification of the susceptible atopics, 
and excluding them from employment in occupations in which exposure to respira-
tory allergens and chemical sensitisers occurred. The enzyme detergent industry was 
only one, which included platinum refining, of a number of occupations in which, in 
the 1970s and 1980s, atopics were excluded from employment. A major advance 
during the 1990s was the provision of evidence that the major determinant of disease 
incidence in hypersensitivity-induced, as in irritant-induced asthma, was the intensity 
of exposure to the relevant allergen or chemical sensitiser.

The implication of this change was considerable: improved control of exposure, 
not the exclusion of a susceptible minority from employment, is seen as the more 
effective means to reduce disease incidence. Evidence to support this has come 
from several well-conducted cohort studies, which have investigated the relation-
ship between disease incidence and levels of exposure and also, in a few cases, 
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intervention studies investigating the effect on disease incidence of reduced levels 
of exposure to specific agents.

The well-recognised problem of survivor bias in cross-sectional studies is a 
particular problem for diseases such as occupational asthma in which an acute 
recurrent respiratory reaction (asthma) can readily be appreciated as related to 
exposures at work, which individuals endeavour to avoid, either by leaving work or 
by reducing their level of exposure; those who accumulate exposure are those who 
survive to do so. Exposure measurements in cross-sectional studies can provide 
similar problems. The levels of exposure measured at the time of the study may 
differ considerably from an earlier period when asthma developed. While cross-
sectional studies can provide an estimate of disease prevalence and its relationship 
to contemporary exposures, the potential for cases of asthma to leave work or relocate 
to areas of lower levels of exposure will tend to attenuate exposure–response 
relationships.

This effect was observed in an initial cross-sectional study of laboratory animal 
workers, undertaken at the start of a longitudinal cohort study, which included 
measurement of airborne rat urinary proteins [17]. The authors reported a gradient 
of increased prevalence of skin prick test responses to rat urine protein, steeper in 
atopics, with increasing levels of exposure to rat airborne urinary protein. However, 
no consistent relationship was observed between new work-related symptoms 
(chest, nose, eye or skin) and the level of exposure at the time of the survey. In 
contrast, a gradient of prevalence of new work related symptoms, particularly for 
contact urticaria, was reported with intensity of exposure at the time of symptom 
onset. This difference seems likely to reflect differential movement within and out 
of the workforce in relation to the development of acute symptoms. Consistent with 
this, the movement of employees after the onset of symptoms was more frequent 
and invariably to jobs with lower intensity of exposure: 24% of those with new 
work-related chest symptoms, 16% with new work-related eye and nose symptoms 
and 12% of those with new work-related skin symptoms had changed job. In contrast, 
only 4% of the workforce without symptoms had changed jobs, in many cases to 
work where the level of exposure to airborne urinary allergens was greater.

The findings of the subsequent 5-year cohort study of laboratory animal workers 
showed clear evidence of an exposure–response relationship [18]. Exposure 
intensity in different jobs was categorised into four levels of increasing exposure 
(1 to 4). The risk of developing any new work-related symptoms was more than five 
times greater in those working in category 3 than in category 1 level jobs. 
Exposure–response relationships were observed for new work-related chest, nose 
and eye and skin symptoms and for skin prick test responses to rat urine protein. 
The level of risk for those employed in category 3 exposure as compared to category 
1 exposure categories was twice as great as the risk overall to atopics in comparison 
to non-atopics.

A similar exposure–response relationship was also found in companion cohort 
studies, one of flour mill and bakery workers, exposed to flour proteins and to fungal 
α-amylase, the other of acid anhydride workers. In the bakery workers, those in the 
high-exposure group (category 3) were 7.7 times more likely to develop chest 
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symptoms than those in the low-exposure group (category 1). There was no evidence 
of an increased risk of developing chest symptoms among atopics as compared to 
non-atopics. The average level of exposure to flour in the high-exposure group was 
4.4 mg/m3, suggesting the development of asthma at levels of flour in air below the 
contemporary exposure limit of 10 mg/m3 [19].

A study of workforces exposed to acid anhydrides found a similar exposure–
response relationship for trimellitic anhydride (TMA), used in the manufacture of 
cushioned flooring [20]. The risk of developing new work-related chest symptoms 
and of a skin prick test response to TMA increased with increasing maximum full 
shift exposure to TMA, a relationship not modified by atopy or smoking. Eleven of 
the 12 cases of new work-related chest symptoms and 6 of the 8 with an immediate 
skin prick test response to TMA had worked in conditions where the estimated 
maximum full shift exposure was less than the contemporary occupational exposure 
limit in UK of 40 μg/m3.

These and other studies reported during the past 20 years have provided consistent 
evidence for an exposure–response relationship for occupational asthma. In recent 
years, measures intended to reduce the incidence of occupational asthma have 
focused on reducing the levels of exposure to its causes. In a few cases, the effectiveness 
of these interventions has been demonstrated in formal evaluative studies, the most 
powerful epidemiological evidence of cause and effect.

Reducing Disease Incidence: Evaluation of Intervention Studies

While the inference of exposure–response relationships is clear, the most powerful 
evidence of causation comes from well-designed studies, which evaluate the effec-
tiveness in reducing disease incidence of interventions designed to reduce levels of 
exposure to relevant agents in the workplace.

The number of studies of intervention in occupational asthma is small and the 
great majority report attack rates of disease following an intervention, usually without 
concurrent evaluation of otherwise comparable circumstances without intervention. 
For two causes of occupational asthma, latex in health care workers and enzymes 
in detergent worker, the accumulated evidence is very convincing. For two other 
agents, isocyanates and laboratory animal workers, the results of the studies 
reported are suggestive of cause and effect.

The outbreaks of occupational asthma in the detergent industry and reports of 
allergy to enzymes among consumers in the late 1960s and early 1970s, which fol-
lowed the introduction of powdered proteases into detergent manufacture, stimulated 
technological improvements and engineering controls designed to reduce airborne 
enzyme concentrations in the workplace and prevent exposure to consumers. Enzymes 
were encapsulated in granules, which would not remain airborne, and engineering 
controls introduced to reduce levels of airborne enzyme dust in the workplace.

Two studies the first published in 1977 [21], the second 20 years [22] later 
describe considerable reductions in the number of cases of enzyme-induced asthma 
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following the introduction of granulation and an associated reduction in the levels 
of airborne enzyme in the workplace. The first study reported a progressive reduction 
in sensitisation to enzymes and in the number of cases transferred out of the factory 
with respiratory symptoms in parallel with a fall in the peak levels of total dust in 
the packing area of the factory.

The second study published 20 years later reported a marked reduction in the 
number of cases of enzyme-induced asthma in the late 1960s (more than 100 
between 1969 and 1974) to cases occurring on average less frequently than 1 per 
year from 1980 onwards to 1993. This fall paralleled a reduction in the average 
levels of airborne protease from about 100 µg/m3 in the late 1960s to between 1 and 
10 μg/m3 from the mid-1970s (Fig. 5). Unfortunately, both studies reported case 
numbers, not disease incidence, leaving it unclear how much the reduction in the 
number of incident cases was due to a predominantly survivor’ workforce population, 
for a disease of which the majority of cases occur in the first 2 years of exposure. 
Nonetheless the two studies provide some of the best evidence that a once important 
occupational health problem can be effectively controlled by reducing levels of 
exposure to the causative allergens.

However, the maintenance of control requires eternal vigilance. An outbreak of 
occupational asthma of a similar magnitude to those reported in the late 1960s 
occurred in a UK workforce in the 1990s in a factory, which had only used granu-
lated enzymes [23]. More than 50 clinically diagnosed cases of enzyme-induced 
asthma occurred in a workforce of less than 350. Whilst not wholly explained, a 
plausible contributory factor to the outbreak may have been the inadvertent disruption 
of granules during the manufacturing process, leading to the generation of airborne 
enzyme dust of inhalable dimensions.

The second striking success of environmental control in virtually eliminating an 
international outbreak of occupational asthma is latex allergy. Several studies from 

Fig. 5 Decline in number of cases of enzyme induced asthma associated with falling concentration 
of airborne enzyme
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Europe and North America have documented the rise of latex allergy with the 
increasing use of powdered high-protein latex gloves in the early 1990s and the 
subsequent fall, following substitution by low-protein powder-free gloves. A large 
German study of the number of cases of latex allergy reported to an insurance com-
pany, which covered half the country’s hospitals, clearly demonstrated the number 
of cases of occupational asthma falling with a 2-year lag following the substitution 
of powdered by powder-free gloves [24] (Fig. 6). Similarly the number of allowed 
claims for latex-induced occupational asthma fell following the increasing uptake 
by hospitals of powder-free low protein latex gloves. Data from the SWORD 
scheme also documents the rise and fall of latex allergy in Great Britain during the 
1990s (Fig. 3).

Evidence for the effectiveness of improved control in reducing the incidence of 
occupational asthma in isocyanate and laboratory animal workers is limited to single 
studies. In Ontario, Canada, where isocyanates accounted for 50% of successful 
claims for occupational asthma, a multi-disciplinary programme to reduce isocyanate 
exposure to 8-hour concentrations to < 5 ppb and short-term exposure levels to 
< 20 ppb was introduced in 1983, together with mandatory health surveillance 
of isocyanate workers. No equivalent legislation was introduced for other recognised 
causes of occupational asthma. During the initial period of follow-up, the number 
of cases increased (Fig. 7) because of improved case identification. Subsequently 
from the late 1980s, the number of cases of isocyanate-induced asthma fell, while 
the number of cases caused by other agents remained essentially unchanged. 
Furthermore case identification occurred on average 1 year earlier (1.7 vs. 2.7 years) 
after the onset of symptoms, with an associated reduction in average case severity 
[25]. The only intervention study reported to date in laboratory animal workers is 

Fig. 6 The rise and fall of occupational asthma caused by allergy to latex in relation to the 
number of natural rubber latex (NRL) powdered and powder free gloves purchased, (From [24])
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from a major pharmaceutical company in the UK. In 1981, a new code of practice 
for working with laboratory animals was introduced by the company. Workers 
employed each year between 1979 and 1982 were followed for 3 years subse-
quently, those employed in 1983 for 2 years and in 1984 for 1 year. The incidence 
of laboratory animal allergy fell in each of the three cohorts employed after 1981 
(1982, 1983 and 1984), as compared to those employed in 1979, 1980 and 1981. 
No concurrent measurements of exposure were made during this period, but it 
seems likely the reducing incidence of laboratory animal allergy observed reflected 
a reduction in exposure to laboratory animal allergens [26].

Outcome of Occupational Asthma

The outcome of occupational asthma has been reported in several studies. While the 
majority have focussed on the long-term clinical consequences, some studies have 
also reported the social and financial consequences of the disease. The results of 
these studies need to be interpreted with some caution as the majority were based 
on follow-up of hospital patients whose referral was probably a reflection of more 
severe disease, among whom those with continuing symptoms may be overrepre-
sented because they are more likely to maintain contact with medical follow-up.

In four studies, one of snow crab workers [27], one of tetrachlorophthalic anhydride 
(TCPA) workers [28], one of azodicarbonamide workers [29] and a hospital-based 

Fig. 7 Reduction in number of compensated claims for occupational asthma caused by isocyanates 
(but not other causes of occupational asthma) in Ontario, Canada, following mandatory control of 
isocyanates in workplace (1983) with medical surveillance programme, (From [25])
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survey of isocyanate workers [30], 12 from one factory and thought to represent all 
incident cases in the factory, the cases of asthma were identified from survey of a 
factory population, not hospital referral. Follow-up was complete in all the four 
studies. Each study found evidence of continuing asthma with persistent respiratory 
symptoms, reduced FEV

1
 or increased airway responsiveness to inhaled histamine 

or methacholine in more than 50% of cases. Furthermore, in the snow crab [27] and 
TCPA workers [28], a progressive reduction in specific IgE during the period of 
follow-up was consistent with the avoidance of exposure to the specific cause.

The largest single follow-up survey of cases of occupational asthma was the 
attempt in 1994 to obtain information on all 1940 cases of occupational asthma 
reported to SWORD in 1989–1992 [31]. Although the questionnaires were returned 
for 1769 (91%), sufficient information for analysis was only returned by 1317 
(68%). It seems likely nonetheless that the findings were reasonably representative 
of the cases under study. Forty-five percent of patients reported by occupational 
physicians had recovered as opposed to only 14% of those reported by chest 
physicians (even after excluding cases seen for medicolegal reasons). This marked 
difference probably reflects a greater average severity of the cases referred to 
specialist physicians. Of the cases reported by chest physicians, 48% had remained 
with the same employer, 16% were with another employer, 6% had retired and 30% 
were unemployed or had been retired on medical grounds.

None of these studies, however, have included objective evidence of normal 
airway function, airway calibre (FEV

1
) or airway responsiveness, before the onset 

of symptoms. Nonetheless the findings of these studies suggest that occupational 
asthma, both respiratory symptoms and abnormal airway function, can persist for 
several years after avoidance of exposure to the cause. In addition to the findings of 
SWORD follow-up study, the wider social and financial consequences of occupa-
tional asthma have been reported in studies of hospital patients. Two studies found 
that between one half and three quarters had lost income, with one third unem-
ployed at the time of the study and 60% reporting difficulty in finding alternative 
employment [32, 33].

A recent systematic review of the outcome of occupational asthma  [34] found 
that the best estimate was that symptomatic recovery occurred 32% of cases, with 
the highest rate of recovery in patients with the shortest durations of exposure. 
Recovery rates were lower in older age groups and in clinic-based populations. On 
average, some three quarters of patients had evidence of continuing airway 
hyperresponsiveness.

Conclusion

The focus of attention of studies of occupational asthma in the past 30 years has 
shifted from reports of case series caused by novel agents to population-based studies 
estimating risk in relation to occupation and agent. The focus on individual suscep-
tibility, a consequence of the contemporary understanding of the implications of the 
underlying immunological mechanisms in the early case reports, has been replaced 
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by a recognition of the greater importance of the intensity of exposure at the popu-
lation level. In consequence, improving control of the levels of exposure is now 
seen as a more effective means to reduce disease incidence than pre-employment 
identification and exclusion of a ‘susceptible’ minority.

We know sufficient about the importance of the levels of exposure in determining 
the risk of occupational asthma to suggest that epidemiological studies of occupational 
asthma should now concentrate on evaluating the effectiveness of different means to 
reduce exposure levels and their effectiveness in reducing the incidence of the disease.
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Epidemiology of Asthma Mortality

Richard Beasley, Meme Wijesinghe, and Kyle Perrin

Introduction

In order to interpret data on long-term time trends in asthma mortality, it is neces-
sary to firstly review the key issues of the accuracy of death certification, disease 
classification and diagnostic fashion. As the diagnosis of asthma as the cause of 
death is firmly established in the 5–34-year age group [1–6], long-term trends in 
asthma mortality within countries and comparisons between countries are normally 
confined to this age group. Although most deaths occur in the older age group, the 
accuracy of asthma as the cause of death declines with increasing age due to 
 confounding with other respiratory disorders such as chronic obstructive pulmo-
nary disease (COPD) or the presence of intercurrent medical conditions.

Changes in disease classification coding are also relevant, with the 
International Classification of Diseases (ICD) implementing major revisions in 
the coding of asthma. The ICD revisions occur about every 10 years, usually 
involving the manner in which deaths due to asthma and bronchitis are coded. 
These revisions usually have minimal effect on the coding in the 5–34-year age 
group [7–11].

Changes in diagnostic fashion over time are more difficult to quantify, with 
comparison usually made with trends in other respiratory conditions, which might 
be confused with asthma [7, 9]. It is likely that changes in diagnostic fashion may 
influence gradual changes in asthma mortality rates over long periods of time, 
although it is generally accepted that the method of diagnosing asthma as the cause 
of death in children and young adults has probably remained essentially unchanged 
during the past 100 years [12].

There is evidence to suggest that some of the differences in asthma mortality 
rates between countries may be attributed to genuine differences in nosology 
between countries, as well as to the quality of death certification [13, 14]. As a 
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result, systematic differences in the way death certificates are completed in differ-
ent countries probably affect the reported national asthma mortality rates.

In this chapter, trends in country-specific asthma mortality rates and compari-
sons in asthma mortality rates between countries have primarily been undertaken in 
the 5–34-year age group.

Trends: Pre-1900

There is limited data on trends in asthma mortality prior to 1900. The only pub-
lished data that appears to be available is that from England and Wales where the 
death rate was relatively high in the second half of the nineteenth century, particu-
larly in males, a pattern attributed to their exposure to adverse industrial conditions 
[12]. These data do not support the belief that death from asthma was unknown 
around the turn of the century and contradicts the aphorism of William Osler that 
“the asthmatic pants into old age” [15].

Trends: 1900–1940

Asthma mortality data during this period is sparse, however, in a number of west-
ern countries the rates were low and stable. Indeed, the main feature of the trends 
in asthma mortality prior to 1940 is the relatively low rates, particularly in com-
parison with those later in the twentieth century [7, 10–12, 16] (Fig. 1).

Trends: 1940–1960

The intriguing feature of this time period is that there appeared to be a marked 
and sustained increase in asthma mortality between 1940 and 1955 in a number 
of western countries, which was apparently not recognised or studied at the time 
[7, 10–12]. As a result, there is limited data regarding the possible causes, 
although it does not appear to have been due to either coding artefact or changing 
diagnostic fashion [7, 10]. Due to the role of specific beta-agonists in the epidem-
ics of asthma mortality in the 1960s and 1980s, it is relevant to review the intro-
duction of new medications during this period. In this regard, it is interesting to 
note that isoprenaline first became available as an atomiser spray for use in 
asthma in the late 1940s, and may have contributed to the increase in death rates. 
A decline in asthma mortality in the late 1950s occurred in some, but not all, 
countries and has been attributed to the introduction of oral corticosteroids and 
their subsequent increased use.
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Trends: 1960–1975

The striking feature of the time trends during this decade was the dramatic 
increase in mortality that occurred in some, but not other western countries in the 
1960s [7, 10, 17–19] (Fig. 2). These ‘epidemics’ occurred in England and Wales, 
Scotland, Ireland, New Zealand, Australia and Norway, with mortality rates 
increasing two- to five-fold within a 5-year period. It was apparent that the epi-
demics were real and could not be attributed, changes in diagnostic coding, dis-
ease classification coding, diagnostic practice or a sudden increase in asthma 
prevalence. Initial investigations identified that it was likely to reflect a real 
increase in case fatality rates due to the introduction of pressurised beta-agonist 
metered dose inhalers (MDIs), which were available both on prescription and 
direct “over the counter” [17, 19].

The deaths were often sudden and unexplained and where information on drug 
use was available patients had often used excessive amounts in the situation of a 
severe attack [20, 21]. It was proposed that this overuse could increase the risk of 
death by resulting in temporary relief until patients were in a state in which they did 
not respond to further beta-agonist therapy, which inevitably led to a delay in seek-
ing medical help until such a life-threatening situation had occurred. Another 
potential mechanism was through cardiac toxicity resulting from high doses of 
potent non-selective beta-agonists in the situation of hypoxia. In this regard, it was 
shown that animals with normal blood gas tensions could tolerate large doses of 

Fig. 1 Asthma mortality (per 100,000) in persons aged 5 to 34 years in New Zealand, Australia, 
England and Wales and the USA, 1910–1960. (Reproduced with permission from Ref. [16])
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beta-agonist, yet much smaller doses caused fatal asystolic arrest in the situation of 
hypoxia or a high cardiac workload [22, 23]. The other possible mechanism was 
that the regular use of beta-agonists could lead to more severe asthma [24–26].

The major apparent anomaly was the presence of asthma mortality epidemics in 
some, but not all countries, despite similar apparent use of beta-agonist MDIs. This 
anomaly was resolved by Stolley and Schinnar [18, 27], who noted that the asthma 
mortality epidemics only occurred in countries in which a high-dose preparation of 
isoprenaline was marketed. This preparation, which was marketed as isoprenaline 
forte, contained five times the dose of isoprenaline as in the standard MDI. Six of 
the eight countries in which isoprenaline forte was marketed had mortality epidemics, 
which coincided with the introduction of the drug and in the other two countries, 
the preparation was introduced relatively late and sales volume were low. Asthma 
mortality epidemics were not recognised in any country in which isoprenaline forte 
was not available, although in some countries such as Denmark, West Germany and 
Japan, modest increases in mortality were observed. In Japan, this increase in mor-
tality, which was most marked in the 10- to 14-year age group, was closely associ-
ated with sales of bronchodilator aerosols [28].

Following recognition of the role of beta-agonists in mortality, warnings regarding 
their use, restriction to prescription only and reductions in their overall use, asthma 
mortality fell. The weight of evidence supported isoprenaline forte as being the 
major cause of the epidemic, and certainly there are no other credible alternative 
explanations proposed. A BMJ editorial entitled “Asthma deaths: a question 
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answered” concluded with the clinical recommendation that the dose of beta-agonist 
should not be increased in the absence of a normal response [29].

Trends: 1975 to Late 1980s

There were two distinctive trends in asthma mortality that occurred in the 1970s 
and 1980s. The first was a further asthma mortality epidemic, which was restricted 
to New Zealand, and was of greater magnitude and duration than the previous epi-
demic [9, 30, 31]. The other pattern was a gradual increase in asthma mortality in 
many other countries, which was progressive and resulted in substantial increases 
in the asthma death rate in some of these countries.

New Zealand Epidemic

This epidemic was essentially a repeat of that due to isporenaline forte in the 1960s, 
in that it was primarily due to the overuse of the high-dose forte preparation of the 
beta-agonist fenoterol [31, 32] (Table 1). Like isoprenaline forte, fenoterol was a 
poorly selective potent beta-agonist, with high intrinsic activity, marketed as a high-
dose preparation with effectively four times the bronchodilator dose of the more 
commonly used beta-agonist, salbutamol [33–35]. The main evidence incriminating 
fenoterol came from a series of three case–control studies in New Zealand [36–38], 
each with different designs, during different periods of the epidemic. These studies 
identified that the only medication associated with an increased risk of mortality was 
fenoterol, with the risk increasing up to ten-fold in patients with the most severe 
asthma. This pattern was important as it effectively ruled out confounding by severity 
as an explanation of the findings, and was consistent with data that fenoterol was not 
preferentially prescribed to patients with more severe asthma [39].

Table 1 The epidemiological evidence supporting the association between the epidemic of 
asthma deaths in New Zealand and fenoterol

Type of studies Cohort, case–control, clinical and ecological studies; no ran-
domised controlled trials

Strength of association Relative risk 1.5 to 13 (higher in severe subgroups)
Consistency Studies from NZ, Canada, Germany, Japan and South Africa
Biologically appropriate 

temporal  relationships
Yes

Dose-response Possible
Biological plausibility Acute and/or chronic pharmacological effects greater than 

other commonly used beta-agonist drugs
Analogy 1960s epidemic – isoprenaline forte
Ecological evidence NZ sales of fenoterol versus onset and end of the epidemic 

of deaths
Alternative explanation None
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The findings of the New Zealand case–control studies were subsequently con-
firmed by epidemiological studies from Canada [40, 41], and Japan [42, 43], which 
reported a similar increased risk of death with fenoterol compared with salbutamol. 
In addition, a cohort study based in Germany reported that in COPD, there was a 
ten-fold increased risk of death with fenoterol compared with salbutamol [44] and 
a case–control study in South Africa reported a six-fold risk of a life-threatening 
attack of asthma with fenoterol use [45].

The epidemics of asthma deaths was limited to New Zealand due to the very 
high sales of fenoterol in New Zealand, with by far the highest per capita use inter-
nationally [32]. In most other countries, fenoterol had a small market share and was 
not approved for use in the USA due to safety concerns. In 1989, the New Zealand 
Ministry of Health withdrew fenoterol from the market in New Zealand, which 
resulted in an end to the epidemic, with an immediate two-thirds reduction in 
asthma death rates [46].

A Gradual Increase During This Period

The other international trend in asthma mortality has been the progressive increase 
in rates in many countries worldwide [47] (Fig. 2) (Table 2). This pattern has been 
observed in countries in many different regions throughout the world, and although 
not of epidemic proportions, the magnitude of the increases has in some countries 
been substantial with mortality increasing at least two-fold. The causes of these trends 
have been difficult to determine, as death from asthma is a complex phenomenon 
and many potential causative factors have changed to differing degrees in different 
countries during this period.

Table 2 Asthma mortality (per 100,000) in persons aged 5 to 34 years in 16 countries 
between the mid-1970s and mid-1980s

Country 1975–1977 1985–1987 % change

Australia 0.86 1.42 65
Canada 0.33 0.47 42
Denmark 0.14 0.36 157
England and Wales 0.57 0.90 58
Finland 0.29 0.21 −28
France 0.24 0.51 113
Hong Kong 0.24 0.42 75
Israel 0.27 0.42 56
Italy 0.05 0.17 240
Japan 0.44 0.59 34
Netherlands 0.20 0.22 10
Singapore 0.75 0.88 17
Sweden 0.37 0.54 46
Switzerland 0.31 0.45 45
USA 0.19 0.40 111
West Germany 0.59 0.78 32
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The most important consideration is the potential role of a class effect of beta-
agonist drug therapy, the use of which increased markedly throughout this period. 
This issue is difficult to investigate through epidemiological studies, because 
almost all asthmatics use this class of drug, a situation which is analogous to a 
clinical trial with no placebo group [31, 48]. The previous studies of fenoterol and 
asthma mortality essentially involved a comparison of fenoterol with other drugs 
within the same class and could not accurately address the more difficult issue of 
a class effect of beta-agonists. It is debatable whether this question can ever be 
resolved by epidemiological studies and the one study which did attempt to do so 
[40] had major bias due to confounding by severity, particularly in the dose–
response analyses [31, 48, 49]. As a result, the association between increased 
beta-agonist use and asthma mortality in this study was predominantly due to beta-
agonist use being a marker of risk. However, it is likely that there is some degree 
of risk with other beta-agonists such as salbutamol or terbutaline, not least because 
the mechanisms associated with an increased risk of mortality associated with 
isoprenaline and fenoterol should also apply to other beta-agonists, although to a 
lesser extent. As a result, the balance of evidence would suggest that the progres-
sive increase in beta-agonist use in many countries throughout this period may 
have contributed to some extent to the gradual increase in asthma mortality 
observed. In some countries such as Australia, the marked increase in beta-agonist 
use related in part to their availability without prescription “over the counter” [50]. 
In some countries, such as Germany [32] and Japan [43, 51], a significant propor-
tion of the increase in mortality is likely to be due to fenoterol use, however, in 
other countries such as the USA, fenoterol had no role whatsoever as it was never 
approved for use.

Another consideration is whether the gradual increase in mortality may have 
been due to increasing baseline asthma prevalence. Asthma prevalence studies, 
which have been repeated during this period using standardised methods in the 
same population group, have demonstrated a consistent increase in the prevalence 
of asthma [52]. These increases have been observed in a wide range of countries 
with differing lifestyles and in some countries, the prevalence has been of consider-
able magnitude. As a result, it is likely that in many countries, this increase in the 
prevalence of asthma may have contributed to some extent to the mortality trends 
observed. Any increase in asthma prevalence will inevitably result in an increase in 
asthma mortality rate if the case fatality rate remains unchanged.

Trends: Late 1980s to 2000 and Beyond

Since the late 1980s, the predominant trend in asthma mortality in many countries in 
different regions worldwide has been that of a progressive reduction [10, 53–60] 
(Table 3). However, in some countries, this trend of decreasing asthma mortality has 
not been observed [61–63]. In the USA, the asthma mortality rate increased progres-
sively until 1997 when the trend reversed, with rates decreasing since that time [64].
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The most likely explanation for this widespread reduction in asthma mortality is 
that it is due to the international trends of increasing use of inhaled corticosteroid 
therapy, together with other improvements in asthma management. Inhaled corti-
costeroid therapy represents the only treatment associated with both a reduction in 
the risk of a life-threatening attack of asthma leading to hospital admission, and risk 
of death [65–69]. A dose–response relationship has been determined between 
inhaled corticosteroid use and asthma mortality, with most of the benefit achieved 
with low doses [65]. This is consistent with the clinical studies that have demon-
strated that most of the maximum benefit of inhaled corticosteroid therapy is 
achieved with daily doses of around 200 μg fluticasone or equivalent [70, 71].

The increase in inhaled corticosteroid use over recent decades has been substan-
tial in many countries, and is likely to have contributed to the reduction in hospital 
admission rates for asthma [72, 73], as well as mortality [56, 59, 60, 74–76]. For 
many countries, the increased use of inhaled corticosteroids represented part of a 
comprehensive public health programme to reduce the burden of asthma.

International Comparisons in Asthma Mortality

The traditional approach to the comparison of asthma mortality rates between coun-
tries has been to examine rates expressed as the number of deaths per 100,000 

Table 3 Asthma mortality (per 100,000) in persons aged 5 to 34 years in 20 
countries between the mid-1980s and mid-1990s

Country 1985–1987 1995–1997 % change

Argentina 0.85 0.25 −71
Australia 1.42 0.58 −59
Canada 0.47 0.38 −19
Denmark 0.36 0.22 −39
England and Wales 0.90 0.45 −50
Finland 0.21 0.10 −52
France 0.51 0.38 −25
Germany 0.78 0.31 −60
Hong Kong 0.42 0.57 36
Israel 0.42 0.23 −45
Italy 0.17 0.16 −6
Japan 0.59 0.57 −3
Netherlands 0.22 0.11 −50
New Zealand 2.22 0.60 −73
Singapore 0.88 0.62 −30
Sweden 0.54 0.16 −70
Switzerland 0.45 0.14 −69
Taiwan 0.34 0.31 −9
USA 0.40 0.54 35
Uruguay 0.50 0.29 −42

Taiwan and Korea mid-1980 rate based on 1986 and 1987 rate only. The mid-
1980s rate for Germany is restricted to West Germany
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population in the 5–34-year age group [7, 9, 11, 47]. This approach provides 
asthma mortality rates, which are determined to a large extent by the prevalence of 
asthma in the populations studied. It is evident that there is a wide variation in the 
reported asthma mortality rates globally [77] (Fig. 3).

An alternative approach is to examine case fatality rates, expressed as the number 
of deaths per 100,000 asthmatics in the 5–34-year age group [77]. This provides an 
estimate of the risk of a person with asthma dying, thereby controlling for the preva-
lence of asthma in each country, determined from the standardised international 
prevalence studies in adults and children [78, 79]. Utilising this method to determine 
case fatality rates, a different perspective of international differences in asthma mor-
tality rates is obtained [77] (Fig. 4). Wide variations in asthma case fatality rates are 
observed worldwide, which suggests that in addition to the prevalence of asthma, 
other factors also play a role. As management is a major determinant of case fatality 
rates, these comparative data provide a crude measure of the provision of, and stand-
ard of, asthma management in different countries. It is notable that a number of low 
and middle income countries have relatively high case-fatality rates. This may be 
due to limited access to medications required for the treatment of asthma, resulting 
in a barrier to effective management [80, 81].

In considering the trends in asthma mortality rates between countries, mention 
should also be made of the differences within countries, particularly in relation to 
specific disadvantaged population groups. This is illustrated by studies from the 
USA, in which asthma mortality rates are greater in disadvantaged populations 
such as African-Americans and Hispanics, those that are poorly educated, live in 
large cities or are poor [82–84]. In China, the asthma mortality rate in rural areas is 
about twice that recorded in urban areas, despite a higher prevalence of asthma in 
urban communities [77]. This difference is likely to be due to socioeconomic fac-
tors, including provision of medical care and access to essential medications. In 
Singapore, the death rate was five times higher in Malays than Chinese, a differ-
ence, which has been attributed to medical care factors in addition to genetic factors 
and environmental exposures [85].

One feature which is not evident from national mortality data is the occurrence 
of epidemics in discrete locations, associated with environmental exposures. 
Probably the best-studied example is that of the epidemics of fatal asthma in 
Barcelona in the 1980s, associated with environmental exposure to airborne soy-
bean dust [86]. Other examples include the Asian dust storms blown from the 
deserts in Mongolia and China, which result in increased respiratory mortality in 
South Korea [87], the Bhopal disaster in India [88, 89] and the effects of air pollu-
tion, which may result in regional differences in asthma mortality [90, 91]. These 
experiences suggest that environmental exposures can lead to recurrent episodes of 
life-threatening attacks of asthma in a community whenever exposure reaches a 
sufficient level.

Age-related seasonal trends in asthma mortality have been observed in a number 
of countries [76, 92–95]. In each of these countries, asthma mortality in the 5–34-
year age group is highest in the summer months, in contrast to older age groups, in 
which the peak occurs in the winter. This pattern in the younger age group is likely 
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Fig. 3 The ranking of asthma mortality per 100,000 persons aged 5 to 34 years. (Reproduced with 
permission from Ref. [77])
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Fig. 4 World map of asthma case fatality rates expressed as asthma deaths per 100,000 persons 
with asthma aged 5 to 34 years. (Reproduced with permission from Ref. [77])
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to be due to a reduced access to or availability of medical care during summer holi-
days, as reflected by the associated reduction in hospital admissions during this 
period. This pattern contrasts with the older age groups in which the increase in 
asthma mortality in winter is associated with a similar peak in hospitalisation rates. 
An alternative explanation is that exposure to outdoor aero-allergens may account 
for these trends in the younger age group [96].

Over recent decades, different patterns in the risk of asthma mortality in males 
and females have been observed in different countries. For example, in the UK, the 
death rate from asthma in the 5–34-year age group has been consistently higher in 
females than in males [12], whereas in Japan mortality rates have been higher in 
males [97], whereas in Australia, no gender differences have been observed [76]. 
In countries where higher female mortality rates have been observed, this is thought 
to relate to the higher prevalence of asthma in women after adolescence and the 
lack of access to or utilisation of medical care, whereas higher death rates in males 
have been attributed to occupational exposures.

Most asthma deaths occur in older adults with the risk of death increasing pro-
gressively with increasing age. In many countries the asthma death rate is over 10 
times higher in adults older than 65 years of age compared with the 5–34-year age 
group [76, 92, 94]. While there may be some misclassification due to deaths from 
concomitant chronic bronchitis and emphysema, it is unlikely to account for the 
marked differences observed.

In contrast to mortality rates, the hospital admission rates for asthma decrease 
progressively with increasing age. For example in New Zealand, the number of 
hospitalisations due to asthma per asthma death is 30 times higher in the 5–14-year 
age group than in the 45+ age group [94]. This suggests that there may be a lack of 
awareness of the risk of mortality in older subjects with asthma, with a reduced 
likelihood of referral to hospital in the situation of a life-threatening attack, a factor 
which may by itself increase the risk of mortality.
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Epidemiology of Anaphylaxis

David J. Chinn and Aziz Sheikh

Introduction

Epidemiology is the study of the distribution and determinants of health-related 
states or events in specified populations, and the application of this study to the 
control of health problems [1]. Epidemiological measures of interest for anaphylaxis 
include the incidence, incidence rate, lifetime prevalence of its occurrence and case 
fatality rate (Box 1). Other aspects of interest concern features of persons who 
experience it, temporal relationships, and the factors that lead to its development 
and recurrence. Anaphylaxis is a potentially life-threatening hypersensitivity reaction 
to a substance or set of factors to which the affected person is sensitive and people 
who experience an anaphylactic reaction remain at risk of further reactions. 
Accordingly, a description of its epidemiology is important to inform the development 
and evaluation of strategies to reduce its frequency of occurrence.

Anaphylaxis affects children and adults alike, but estimates of its incidence and 
lifetime prevalence vary across populations, with time in the same population, and 
with the data sources used to estimate them. One important reason for this imprecision 
relates to the great variability in clinical symptoms experienced [2]. An anaphylactic 
reaction can present with cutaneous, respiratory, cardiovascular or gastrointestinal 
symptoms that can be misinterpreted for other disorders [3]. The variety of physi-
ological responses experienced by patients and the failure to identify specific 
biomarkers present during all attacks contributes to the uncertainty of diagnosis [4]. 
Accordingly, agreement on a case definition has proved elusive and this has contributed 
to difficulties of conducting research into its epidemiology [5, 6].
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Box 1. Epidemiological Definitions Related to Anaphylaxis

Incidence: The number of incident events of anaphylaxis that occur during a 
given period in a defined population.
Incidence rate: The rate at which new events of anaphylaxis occur in a popu-
lation where the numerator is the number of new events that occur in a defined 
period and the denominator is the population at risk of experiencing the event 
during this period (sometimes expressed as person-time).
Lifetime prevalence: The proportion of a defined population known to have 
experienced anaphylaxis during their lifetime. Care is required in defining the 
appropriate denominator.
Occurrence: The frequency of anaphylaxis attacks in a defined population, 
without distinguishing between first-ever or recurrent events.
Case fatality rate: The proportion of cases of anaphylaxis that prove fatal 
(usually defined within a time period). This is also sometimes known as the 
case fatality ratio.
Source: Adapted from Ref. [1].

Box 2. Examples of Definitions of Anaphylaxis

American Academy of Pediatrics, 1990 [Source: Ref. 7]
“Anaphylaxis is a rapidly evolving generalised allergic reaction resulting in 
multi-system involvement with symptoms of airway tract obstruction 
(wheezing, stridor), skin rash (urticaria, angioedema), gastrointestinal 
involvement (nausea, vomiting, abdominal pain, diarrhoea), and cardiovas-
cular involvement (loss of consciousness).”

International Collaborative Study of Severe Anaphylaxis, 1998 
[Source: Ref. 8]
The authors adopted a two-stage approach to defining anaphylaxis occurring 
in hospital as a result of adverse medication reactions:

Stage 1: “An acute episode (usually evolving within one hour) of unexpected 
and substantial decrease in arterial blood pressure (defined as a systolic blood 
 pressure < 90 mm Hg, or < 100 mm Hg and a decrease of ≥30 mm Hg, or a 
decrease of ≥40 mm Hg) requiring treatment with sympathomimetic amines, 
parenterally administered corticosteroids, or volume replacement, or resulting in 
death, and excluding other clinical causes of shock (for example myocardial inf-
arction, pulmonary embolism, massive trauma, acute major haemorrhage, septi-
caemia, terminal uraemia, hepatic coma, and acute intravascular coagulation).”

(continued)



Epidemiology of Anaphylaxis 125

Defining Anaphylaxis

Several working definitions of anaphylaxis are in use for clinical applications 
(Box 2), but, with the exception of that adopted by the International Collaborative 
Study of Severe Anaphylaxis [8], these are of limited utility for epidemiological 

Stage 2: “An acute episode of unexpected laryngospasm, laryngeal oedema, or 
bronchospasm requiring treatment with sympathomimetic amines or parenterally 
administered corticosteroids, or resulting in death, and excluding those with 
chronic obstructive pulmonary disease or known active asthma defined as having 
had an asthmatic attack within two years, or being on current treatment with 
anti-asthmatic drugs.”

Additional exclusion criteria were:

• Episode occurred during surgery or as a direct result of a surgical procedure.
• Episode has an obvious mechanical cause.
• Patient is an intravenous drug abuser.
• Patient has grade IV heart failure.
• Patient has received an organ transplant in previous 12 months.

Australasian Society of Clinical Immunology and Allergy Inc. (ASCIA), 
2004 [Source: Ref. 9]
“Anaphylaxis is a rapidly evolving generalised multi-system allergic reaction 
characterised by one or more symptoms or signs of respiratory and/or cardio-
vascular involvement, and involvement of other systems such as the skin and/
or gastrointestinal tract.”

Joint Task Force on Practice Parameters; American Academy of Allergy, 
Asthma and Immunology; American College of Allergy, Asthma and 
Immunology; and Joint Council of Allergy, Asthma, and Immunology, 
2005. [Source: Ref. 10]
“Anaphylaxis is an acute systemic reaction caused by IgE-mediated immuno-
logical release of mediators from mast cells and basophils to allergenic triggers, 
such as food, insect venoms, latex and medications.”

National Institute of Allergy and Infectious Disease/Food Allergy and 
Anaphylaxis Network Symposium, 2006 [Source: Ref. 4]
“Anaphylaxis is a severe, potentially fatal, systemic allergic reaction that 
occurs suddenly after contact with an allergy-causing substance.”
The panel also proposed a simplified definition for the medical and lay com-
munity: “Anaphylaxis is a serious allergic reaction that is rapid in onset and 
may cause death.”

Box 2 (continued)
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studies where the presumption of exposure to a known trigger can substantially 
increase the likelihood of making the diagnosis. Hence, current estimates of inci-
dence and lifetime prevalence will be subject to uncertainty arising from use of 
different definitions of the event and its severity. For example, mild systemic 
allergic reactions that do not involve the respiratory or cardiovascular system may 
not be considered anaphylaxis by some authorities as they are unlikely to be life-
threatening [2].

Data Sources

Data sources include population surveys, health care records—primary care records, 
hospital activity statistics, community allergy service records, adrenaline (epinephrine) 
prescribing records—and mortality statistics. Considerations in use of different 
sources of data concern case ascertainment and diagnostic uncertainty whereby 
different definitions are used worldwide and in different health care settings where 
the availability of confirmatory tests will vary. Furthermore, the distribution of 
severity amongst cases recorded is likely to vary according to the source of data. 
For example, the most severe reactions are more likely to be dealt with in hospital 
emergency departments (EDs) where some may lead to an admission; milder cases 
are more likely to be dealt with only in primary care. Some cases, irrespective of 
severity, may not get to the attention of the health services if they resolve spontane-
ously or following appropriate patient-initiated treatment.

All data sources have their own strengths and limitations that should be 
considered when critically reviewing the results of epidemiological studies. 
Patient surveys using self-completed questionnaires are subject to response bias 
and to reporting and recall biases. Primary care data are subject to incomplete data 
capture and are likely to exclude those anaphylaxis cases that occur in hospital 
due, for example, to a reaction to an anaesthetic. Hospital in-patient data will be 
influenced by differences between hospitals in thresholds for admission and in 
health insurance coverage. Hospital ED statistics will not capture reactions man-
aged solely in the community. Mortality data can be incomplete whereby cause 
of some deaths due to anaphylaxis may be assigned to, for example, asthma [11]. 
Although all sources will have some utility the population-based studies are 
likely to be the most useful, provided they meet quality standards of research 
design and data capture.

One important issue affecting all epidemiological estimates is that of under-
reporting for which evidence of its presence is available for primary care data [12, 
13], hospital-based data [14–16] and mortality statistics [17]. Hence, deficiencies 
in capture of cases (numerators) and in estimates of the population at risk (denomi-
nators) contribute to the imprecision in epidemiological estimates.
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Epidemiology of Anaphylaxis

There have been a number of studies aiming to describe the epidemiology of ana-
phylaxis. A comprehensive review up to 2001 noted a large variation in estimates, 
with a significant risk of under-recording, and concluded that, “no exact incidence 
can be established based on available data” [18]. A more recent review by a 
Working Group of the American College of Allergy, Asthma and Immunology 
summarised the findings from some principal studies published in English. They 
concluded that the overall frequency of episodes of anaphylaxis using current data 
lies between 30 and 60 cases per 100,000 persons at the lower end and 950 cases 
per 100,000 persons at the higher end, with a lifetime prevalence between 50 and 
2000 episodes/100,000 persons or 0.05–2.0% [6]. However, the Working Group 
also considered that even the higher figure could be an underestimate due to under-
diagnosis and under-reporting.

Population-based Studies

An early population-based study of Danish hospital records between 1973 and 
1985 identified 20 cases with ‘anaphylactic shock’, for which the incidence, and its 
95% confidence interval (CI) was estimated as 3.2 (1.9 to 4.9)/100,000 inhabitants 
per year [16]. The patients were aged 29 to 77 years and the triggers were medica-
tions (10 cases), insect stings (8 cases) and foods (2 cases). All events were trig-
gered outside hospital and would not have included those arising from 
medication-induced responses amongst hospital in-patients. The authors noted that 
none of the 10 drug-induced reactions had been reported by hospital staff to the 
National Adverse Drug Reaction Board and that, for many cases, the hospital dis-
charge diagnosis was incorrect drawing attention to the risk of under-reporting of 
incident cases.

The lifetime prevalence of anaphylaxis in populations of school-aged children 
was determined in two surveys of school health records in Australia [19] and the 
UK [20]. Prevalence estimates were 600/100,000 children (95% CI 360 to 
820/100,000) and 430/100,000 children (95% CI 380 to 480/100,000), respectively 
(Table 1). In both studies, the authors considered their lifetime prevalence estimates 
to be a minimum.

Large-scale population-based studies of primary care medical records and hos-
pital episode statistics in the USA and UK have generated estimates of incidence 
rates in the range 6–21 cases per 100,000 person-years at risk and a lifetime preva-
lence of around 50–75 per 100,000 population [12, 15, 21–25] (Table 1). These 
may also be considered underestimates as some studies may not capture those cases 
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of anaphylaxis that occur in hospital [12] or those that occur amongst segments of 
the population with reduced or no health insurance as is the case in, for example, 
the USA [21, 25]. Hospital admission rates for anaphylaxis were estimated as 
3.8/100,000 persons in England in 2000/01 [22] and 2.8/100,000 persons in Florida, 
USA in 2001 [25] (Table 1).

Community Allergy Services

A study of patients referred to a community-based allergy service in Australia 
between 1995 and 2000 identified 179 incident cases yielding an incidence rate 
of 9.9/100,000 person-years [13]. The overall occurrence rate of anaphylaxis 
based upon 259 residents registered at the clinic was 12.9 episodes/100,000 per-
son-years.

Hospital Activity Statistics

During the 1990s, the number of anaphylaxis cases admitted to hospital expressed 
as a proportion of all hospital admissions was reported as 0.04% in Germany [26] 
and England [27], and 0.09% in USA [14]. A recent study using a state-wide hos-
pital database in Florida reported an admission rate of 0.02% (19.8/100,000 admis-
sions) [25]. The number of cases admitted as a proportion of emergency admissions 
in England was 0.02% (17.2/100,000) [28] (Table 2).

More recently, reviews of visits to hospital EDs have recorded consultation rates 
for anaphylaxis of 0.36% in Italy [29], 0.22% in Thailand [33], 0.23% in Australia 
[30] and 0.10% in an Australian paediatric unit [32] (Table 2).

Adrenaline Dispensing

Adrenaline prescribing may possibly be considered a reliable measure of demand 
for patients considered at risk of anaphylaxis as a history of anaphylaxis is the only 
approved indication for prescribing self-injectable adrenaline [35]. However, the 
decision to prescribe adrenaline raises many challenges for physicians [36]. 
Summary statistics are subject to a number of influences due, for example, to pre-
scribing behaviour, patient costs and limitations of the source data. Physicians may 
prescribe prophylactic adrenaline injectors to patients with newly diagnosed aller-
gies that may be considered to put them at risk of a severe adverse reaction, for 
example, food allergy. In some countries (for example, Canada), the patient is 
required to pay for the prescription whereas in other parts of the world (for exam-
ple, UK), the prescription is free to many patients. The information contained in the 
pharmaceutical databases cannot distinguish between a repeat prescription issued 
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to replace out-of-date stock or as a replacement for one used to treat an attack. 
Hence, the statistics should be viewed with caution.

The University of Manitoba Health Research Database, incorporating the Drug 
Programs Information Network (an administration claims pharmaceutical database 
for out-of-hospital prescriptions dispensed) in Canada, has been used to provide 
estimates of the population prevalence of anaphylaxis in children [37] and adults 
[35]. Between 1995 and 1999, self-injectable adrenaline pens were dispensed to 
3,340 children (59.5% boys) aged up to 17 years, or 1.2% of the paediatric popula-
tion [37]. These infants and children were considered to be at risk of an anaphylactic 
reaction, and therefore the number of prescriptions issued did not reflect the 

Table 2 Hospital activity statistics

Author, year, 
reference Country

Data source, time 
period. Findings

Summary 
statistic

Sheikh and Alves, 
2001 [28]

England Hospital admissions, 
1991–1995 for 
‘anaphylactic shock’ 
or ‘anaphylactic 
shock due to serum’. 
Denominator all 
emergency admis-
sions

2,323 admissions due 
to anaphylaxis from 
amongst 13.5 
million emergency 
admissions 
(12 deaths)

0.017% of 
emergency 
admissions

Pastorello et al., 2001 
[29]

Italy Hospital ED, 
retrospective case 
note review, 
1997–1998

140 patients with ana-
phylactic symptoms 
(13 severe with loss 
of consciousness) 
from 38,685 
attendances

0.36% ED 
attend-
ances

Brown et al., 2001 
[30]

Australia Hospital ED, 
retrospective case 
note review over 
1 year, 1998/99

142 adult patients aged 
13 years and older 
with anaphylaxis (60 
severe) from 62,361 
attendances (1 death)

0.23% of ED 
attend-
ances

Smit et al., 2005 [31] Hong 
Kong

Hospital ED, 
retrospective case 
note review, 
1999–2003

282 cases (number 
of attendances 
not specified). No 
deaths.

No summary 
stats

Braganza et al., 2006 
[32]

Australia Pediatric hospital ED, 
age < 16 years, 
retrospective case 
note review, 
1998–2001

57 children with ana-
phylaxis (28 severe) 
from amongst 
56,655 attendances. 
No deaths

0.1% of ED 
attend-
ances

Poachanukoon and 
Paopairochanakorn, 
2006 [33]

Thailand Hospital ED, retro-
spective case note 
review, 2003–2004

64 patients with 65 
episodes

0.22% of ED 
attend-
ances

Gupta et al., 2007 
[34]

England Hospital admis-
sions, 1990–2004 
for anaphylaxis. 
Denominator all 
admissions

Increase from 
0.5 to 3.6/100,000 
admissions 
1990–2004

0.0036% of 
all admis-
sions 
(2003/04)

ED emergency department.
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number of attacks. One disturbing aspect of the review was that up to 7.3% of 
dispensed pens may have been inappropriate for the age and weight of the child, 
leading to potential over-dosing (6.7%), or under-dosing (0.6%) if used.

A subsequent review of the database covering the period 1995–2000 was under-
taken for all 1.15 million residents of Manitoba [35]. Patients were counted if they 
had ever had a prescription for self-injectable adrenaline dispensed. Population 
estimates on 31 December 1999 were used as a denominator. Over the five years, 
10,949 persons had an adrenaline prescription issued (0.95% of the population). 
The proportions were 1.4% for those aged < 17 years, 0.9% for those aged 17–64 
years and 0.3% for those aged 65 years or older. The rate in those aged < 17 years 
was greater in boys than girls but the trend reversed in those aged 17–64 years and 
did not differ between the sexes in those aged 65 years or older [35].

In England, between 1991 and 2004, the number of prescriptions issued in 
primary care for self-injectable adrenaline (‘allergic emergencies’, British National 
Formulary 3.4.3) increased 12-fold to 124,000 [34].

Mortality Statistics and Death Registers

Registers of anaphylaxis deaths have been established in a number of countries, for 
example, the UK [11], the USA (American Academy of Allergy, Asthma and 
Immunology and The Food Allergy and Anaphylaxis Network) [38, 39] and France 
(French Allergy Vigilance Network) [40]. These important registers provide useful 
summary statistics and insights into the circumstances surrounding fatal episodes. 
For example, reviews of the deaths consistently show that many may have been 
avoided by timely and proper use of adrenaline [11, 40].

In the UK, with a population of 60.2 million [41] the death register suggests that 
there are about 20 deaths per year, but this is likely to be an underestimate as some 
anaphylaxis deaths are recorded as deaths from asthma [11]. Although rare, fatalities 
from anaphylaxis remain important because they are mostly avoidable and many 
occur in children and young adults so the potential years of life lost can be large. 
In the UK, about 25% of deaths are related to foods, 25% to venoms and 50% to 
adverse drug reactions (iatrogenic) [11]. Between January 2005 and June 2006, 
there were five out of 92 incidents of severe harm or death reported to the English 
National Patient Safety Agency in which a medicine had been administered to a 
patient known to be allergic to it [42]. Between 1992 and 2001, the peak age for 
deaths from anaphylaxis triggered by foods was 17–27 years, for stings 45–70 
years and for medications 60–75 years [43].

In the USA, the estimated number of annual deaths from anaphylaxis is 1,500, 
of which 1,300 will be iatrogenic, 100 will be due to foods and up to 100 due to 
stings [5]. However, a study using data from a register of anaphylaxis deaths due to 
foods extrapolated the number of fatalities could be as high as 150 per year, most 
of which will be in children and young adults [38].
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Fatalities due to Anaphylaxis

The case fatality rate was 5% in the study by Sørensen et al. [16], but this was based 
on only 20 cases giving a 95% confidence interval of 0.1% to 24.9%. More com-
monly, case fatality rates based on larger numbers of patients vary from 0% [15, 31, 
32] to less than 1% [21, 28, 30]. The case fatality rate was 1.3% amongst 226 Swiss 
patients with ‘severe’ anaphylaxis [23] and 1.7% amongst 229 French patients with 
severe food-mediated anaphylaxis [40]. In this latter series, two of 89 children 
died (case fatality rate 2.2%) and two of 140 adults died (case fatality rate 1.4%). 
The International Collaborative Study of Severe Anaphylaxis collected in-hospital 
data on medication-induced anaphylactic reactions from hospitals in Hungary, Spain 
and India and reported a case fatality rate of 1.6% [10]. Overall, the estimated number 
of deaths expected from anaphylaxis is 1–5.5 per million population per year [5, 40].

Risk Factors for Fatal Anaphylaxis

The majority of fatal anaphylactic episodes are unpredictable, particularly for those 
initiated by medications or insect venoms [44]. In comparison, for those whose 
fatal attack was initiated by a food, there was usually a history of previous allergic 
reaction and a history of asthma [11, 38, 44, 45]. Poorly controlled asthma has been 
described as a risk factor for death from anaphylaxis due to allergen immuno-
therapy, skin prick testing [46] and to foods [45].

Variation in Incidence of Anaphylaxis by Time, 
Place and Person

Time

Time trend studies may be confounded by change in coding conventions, for 
example following the change in the mid-1990s from Version 9 to Version 10 of 
the International Classifications of Diseases (ICD9 to ICD10). However, the 
impact of such change was judged minimal in a study of hospital admissions from 
England [47]. In the USA, Bohlke and colleagues considered the incidence of 
anaphylaxis in children and adolescents to be stable over the period 1991 to 1997 
[15]. However, in other studies, the incidence of anaphylaxis appears to be 
increasing over recent decades, including amongst children [34]. Gupta and col-
leagues studied hospital admission rates for anaphylaxis in England and noted an 
increase from 0.5 to 3.6 admissions per 100,000 between 1990 and 2004 (Fig. 1), 
an increase of 700% [34]. This may have been due partly to better awareness and 
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better recording though the figures are likely to at least in part reflect a true 
increase in incidence for which possible explanations are increases in allergies to 
foods in children [34] and drugs in adults [48].

The frequency of anaphylaxis attacks does not vary by season except for those 
caused by hymenoptera (insect venom from stings/bites), which exhibit a peak inci-
dence in summer months [12, 13, 21]. The attack rate does appear to vary according 
to the time of day, an influence possibly of exposure. Of 282 patients treated for 
anaphylaxis at a hospital ED in Hong Kong, 78% presented between 4 pm and 8 am 
(66% of the day) [31]. The authors argued this has important implications for staffing 
levels of EDs where, traditionally, less senior staff cover these hours.

Place

Until recently, geographic variations were considered unlikely, the variation in 
incidence of anaphylaxis being explained by deficiencies in the data sources used 
to estimate it and biological factors related to the population prevalence of allergic 
sensitisation. However, a study of hospital admission data from England revealed 
clear evidence of differences in incidence of anaphylaxis between rural (higher 
incidence) and urban areas, and in geographic location (greater incidence in the 
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South and West compared with the North and East) [28]. The authors speculated 
that environmental exposures such as differences in diet, hygiene, vaccination cov-
erage and childhood infections could be explanatory features, along with regional 
variations in thresholds for admission.

Person

Age

Emergency hospital admission rates for anaphylaxis in the UK average about 
17/100,000; they rise during childhood, plateau at about 25–35/100,000 in those 
aged 15–54 years and decline thereafter with increasing age [28]. In Canada, the 
prescription of self-injectable adrenaline pens for out-of-hospital use is proportionately 
higher in young, compared with older people [35] (see above). Susceptibility to 
triggers also varies by age group with children affected mostly by foods and adults 
affected predominantly by medications [25, 48].

Gender

Gender and age interact in the occurrence of anaphylaxis. Amongst children, the 
incidence of anaphylactic reactions is greater in boys than girls, but in most adult 
studies women are affected more than men [30, 32] (see Fig. 1). This relationship 
between age, gender and occurrence of anaphylaxis has been confirmed by comparing 
adrenaline prescribing rates (see above).

Amongst female patients, the rate ratio for those admitted to hospital with ana-
phylaxis in England was 1.19 [28] and for those attending a hospital ED, it was 1.5 
in Australia [30] and 2.4 in Italy [29]. However, this finding of adult female pre-
ponderance is not universal; in a study of 282 patients with anaphylaxis seen in a 
hospital ED in Hong Kong, only 41% were females (rate ratio 0.7) [31].

Socio-economic Position

Hospital admission rates across England for anaphylaxis were higher for persons 
resident in more affluent postcode areas (adjusted rate ratio for affluent residence 
1.32 (95%CI 1.19–1.46) [28]. Similarly, a study of UK general practitioner records 
revealed a higher prevalence rate of anaphylaxis in the most affluent quintile (1 in 
1,200 patients) compared with that in the most deprived quintile (1 in 1,640 
patients) [24]. Black et al. noted in an urban population (Manitoba) that self-inject-
able adrenaline pens were dispensed more frequently in higher income (1.3%) than 
in lower income (0.6%) quintiles [49].
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Ethnicity

There are only very limited data on anaphylaxis risk by ethnic group. In their study 
of 464 hospitalisations for anaphylaxis across Florida state, Mulla and Simon [25] 
noted that White non-Hispanic patients were twice as likely to be admitted for 
anaphylaxis due to insect venom than other ethnic groups (relative risk 2.2, 95% CI 
1.4–3.5 after adjustment for age, sex and health insurance provider).

Biological Susceptibility

Atopy appears to be an important risk factor for anaphylaxis attributed to food 
allergies [13, 50] and latex [51], but not apparently to medications or hymenoptera 
[13, 18, 50] though the evidence is not robust for either medications or venom [52]. 
However, atopy is common in the general population and only a minority develop 
anaphylaxis in response to an allergen to which they are sensitive [18].

Genetic factors associated with risk of developing anaphylaxis are emerging in, for 
example, studies of patients who have experienced severe reactions to non-steroidal 
anti-inflammatory drugs [53] and latex [54].

Recurrence Rates and Risk Factors

A recurrence rate of 15% was noted in a prospective study of 567 patients (70% 
aged < 16 years) with nut allergy referred to a specialist allergy service and 
followed up for a median of 21 months [55]. Seventy percent of the reactions 
were mild and these occurred mostly in children (median age 9 years). In com-
parison, those who experienced more severe reactions were significantly older 
(median age 18 years).

In another prospective study of 304 patients referred to a specialist service, 
Mullins [13] noted a recurrence rate of 43% (674 patient-years, maximum fol-
low-up 5.5 years). Of 386 episodes experienced by these patients, 59% were mild 
and only 18% serious. Risk factors for recurrence included gender (recurrence rates 
49% in females, 36% in males), exercise or unknown trigger (idiopathic), but not 
atopy. Of 45 patients who had a serious recurrence, all but one had had a previous 
serious reaction. Overall, the annual risk of a recurrence was estimated as approxi-
mately 1 in 12, of which a quarter of reactions are likely to be serious and the rest 
less severe than the original episode.

Although Mullins did not find atopy to be a significant risk factor for recur-
rence of anaphylaxis, this was not the case in a 7-year follow-up of 46 children 
in which 14 children (30%) experienced a recurrence and the risk of recurrence 
was greater in those with atopic dermatitis at initial presentation (64% vs. 34%, 
P = 0.04) [56].
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Triggers

The commonest triggers for anaphylaxis are foods, medications and diagnostic 
agents, and hymenoptera venom, though the relative proportions cited as causative 
agents can vary markedly between studies (Table 3). Some of the variation is 
accounted for by differences in the age distribution of the subjects studied as the 
susceptibility to triggers varies by age [48]. For example, anaphylaxis in children is 
mostly triggered by foods and that in adults mostly by medications or venom. Less 
common causes of anaphylaxis include exposures to biological and other material 
in occupational settings (e.g., latex).

Foods

Self-reported food allergies are common in Western societies with 1.1% (95%CI 1.0 
to 1.4) of the USA population reporting an allergy to nuts [60]. However, the general 
perception of food allergy amongst the general population is considerably greater 
than that confirmed by formal challenge testing, both in the USA [61] and in the UK 
amongst both teenagers [62] and parents of infants [63]. For example, amongst 
1,532 British teenagers, the prevalence of food sensitivity was 12% by self-report, 
but only 2.3% using an objective test with an open food challenge [62].

The commonest food triggers are seafood (particularly shellfish), peanuts and tree 
nuts (particularly so for children), milk, eggs, wheat, soya, vegetables/fruits and food 
additives. Exercise can be an important co-factor for anaphylaxis episodes triggered 
by foods and non-steroidal anti-inflammatory drugs in some individuals [13].

Medications

Antibiotics and non-steroidal anti-inflammatory drugs are responsible for the 
majority of drug-related anaphylactic reactions; additional agents include dextrans 
and radio-contrast media [18]. The International Collaborative Study of Severe 
Anaphylaxis has estimated the risk of anaphylaxis due to medications per million 
hospital admissions as 149 in Hungary, 150 in Spain and 200 in India (overall risk 
196) [10]. These figures included cases judged ‘definite’ or ‘probable’ using a defi-
nition of anaphylaxis that was independent of exposure in that the two physicians 
who reviewed each patient’s notes were unaware of the potential trigger.

Insect Venom (Hymenoptera)

The proportion of all anaphylactic reactions caused by insect venom was particu-
larly high in a report from Switzerland (Table 3). Although many people get stung each 
year, only a minority develop anaphylaxis. The number of hymenoptera-induced 
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anaphylaxis episodes may be markedly under-reported as less severe reactions are 
unlikely to get reported to any health care workers. Also, some patients with known 
insect venom allergy may manage an anaphylaxis attack successfully with self-
injectable adrenaline and therefore only the most severe, untreated reactions are 
likely to be seen by hospital staff.

Latex

Increased use of protective gloves by health care workers, and occupational groups 
generally, has exposed a large number to potential sensitisation against latex. 
The prevalence of latex allergy in health care workers is estimated as 8–17% and 
in the general population as 1–6% [5].

Implications for Health Care Policy and Delivery of Care

The epidemiological estimates of anaphylaxis derived from population sources depend 
on the quality of recording and coding conventions used in computerised medical 
records. There are deficiencies in current systems that limit the refinement of secondary 
analyses of hospital and primary care records of anaphylaxis episodes [58]. The College 
of American Pathologists’ Systematised Nomenclature of Medicine (SNOMED) 
improves the level of detail collected and should help with future epidemiological 
studies once codes have been agreed and the system is in widespread use [64]. In the 
meantime, when planning services, the current estimates of the epidemiology of anaphy-
laxis should be accepted as likely minimal estimates acknowledging the major issue of 
under-recording [13–15]. Given the relatively high number of children now deemed to 
be at risk, schools need to develop coherent policies for the prevention and management 
of anaphylaxis [19, 20]. Also, given the known relatively high risk of recurrence, there 
is a need to develop and evaluate policies for reducing the risk of further episodes in 
those with a previous history of anaphylaxis [65]. These interventions could, for example, 
focus on approaches to reducing the risk of iatrogenic harm from prescribing medica-
tions to those with a known allergy to medicines and a history of anaphylaxis [42, 66]. 
These data can also be useful when planning service provision.

Future Research

Anaphylaxis is a relatively uncommon event, but its occurrence can have a pro-
found effect on the quality of life of the sufferer and their family [67]. The risk of 
recurrence may be high and some attacks prove fatal, sometimes despite immedi-
ate, on-site treatment with adrenaline. Successfully identifying those at greatest risk 
of an initial attack, and a recurrence, could reduce morbidity, but this has proved 
difficult in practice using demographic and clinical markers. Genetic epidemiology 
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may have the potential to help fill this gap by identifying those at particularly high 
risk of severe reactions.

Secondary analyses of routine sources of data have proved invaluable in describing 
the epidemiology of anaphylaxis though the estimates generated would be considered 
more reliable if the data could be validated and linked across primary and secondary 
care sectors [68]. Such validation work needs to be prioritised.

Vigilance is needed as new drugs are introduced into our pharmaceutical arma-
mentarium. National reporting systems of adverse drug reactions associated with 
anaphylaxis may need reinforcing, perhaps through the use of prompts during patient 
consultations [42, 66]. Methods of improving alerts for potential adverse drug reactions 
are legitimate areas for the research agenda.

Conclusions

Population estimates of the incidence of anaphylaxis are unreliable being subject to 
biases from case ascertainment and other sources. However, though imprecise, any 
information about the burden of anaphylaxis is better than none and current estimates 
can be useful for health planning, for comparing populations and determining 
trends with time. Some summary statistics can be proposed though most are likely 
to be underestimates (Table 4).

From data available over recent decades, incidence appears to be increasing, partly 
reflected in greater awareness by medical and lay groups, and possibly due to 
increases in allergies to foods and adverse drug reactions. Evidence is emerging that 
incidence of anaphylaxis varies by age, gender, geography and socio-economic position. 
The usual, inverse relationship between prevalence of illness and income seems to be 
reversed with anaphylaxis. However, the evidence comes partly from Canada where 
it may be related to ability to pay for adrenaline prescriptions. Common triggers are 
foods in childhood and drugs and insect venom in adulthood. Annual recurrence rates 
may be as high as 8% despite vigilance on the part of sufferers. Death is infrequent, 
but should be mostly avoidable. Improved data capture in and across routine health 
databases is required if we are to obtain more accurate estimates of the burden of 
anaphylaxis. This may be obtained through agreement on an acceptable definition of 

Table 4 Summary of the epidemiology of anaphylaxis from selected population-based studies

 Incidence rate (population-based estimates)  
Sector (per million population per year) Sources

Mortality 1–5.5 [5, 40]
Hospital admissions 28–100 [15, 16, 22, 25]
Primary care records 70–84 [12, 24]
General population 80–210 [21, 23]
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anaphylaxis [69] and use of standard coding conventions (e.g., ICD10, SNOMED). 
At present, the best epidemiological estimates appear to come from the developed 
world, but more information is needed from developing countries.
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Epidemiology and Food Hypersensitivity

Morten Osterballe

Introduction and Definitions

Food hypersensitivity (FHS) has attracted much awareness over the last three 
decades and the general public perceives FHS as a major health problem. A revised 
nomenclature for allergy has recently been published as a position paper by the 
European Academy of Allergology and Clinical Immunology (EAACI) [1]. 
Generally, hypersensitivity causes objectively reproducible symptoms or signs, 
initiated by exposure to a defined stimulus at a dose tolerated by normal subjects 
[1]. Allergy is a hypersensitivity reaction initiated by immunologic mecha-
nisms, whereas sensitization just reflects presence of specific antibodies to an 
allergen. Allergens are antigens with the capacity to bind IgE (and IgG) anti-
bodies [1].

FHS is subdivided into toxic reactions and non-toxic reactions [2]. Toxic reactions 
typically reflect contamination (e.g., bacterial), whereas non-toxic reactions are 
subdivided into immune mediated and non-immune-mediated reactions [1, 2].

Immune-mediated reactions comprise IgE-mediated and non-IgE-mediated 
reactions. IgE-mediated (classical type I response) symptoms (e.g., acute urticaria) 
are mostly immediate reactions (≤ 2 hours after intake of culprit food), whereas 
non-IgE-mediated (classical type IV response) symptoms (e.g. eczema) are delayed 
reactions (>2 h after intake of culprit food) [2]. Non-immune-mediated reactions 
are pharmacological (e.g., tyramine in red wine), enzymatic (e.g. lactose deficiency) 
or undefined reactions (e.g., additives) [2].

Primary FHS is defined as hypersensitivity to foods independent of pollen 
sensitization, whereas secondary FHS is defined as reactions to pollen-related fruits 
and vegetables in pollen-sensitized individuals.
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Epidemiologic Population Studies of Primary Food 
Hypersensitivity in Adults

Epidemiologic studies have been performed all over the world with Europe and 
USA representing the major part. In general, there is a discrepancy between the 
prevalence of self-reported and confirmed FHS by oral challenge. The prevalence 
of FHS to specific food items all over the world is linked to different food cultures 
such as more consumption of rice in Asia and peanut in USA. The self-reported 
prevalence of FHS has been reported between 3.5% and 38.4% and the self-reported 
prevalence of FHS is high both in children and adults.

Table 1 lists the most important epidemiologic population studies about FHS in 
children and adults. One of the first population studies including ordinary unse-
lected families was conducted by Young et al. in the UK in 1994 and comprised 
about 7,500 households from the Wycombe Health Authority area and the same 
number of randomly selected households nationwide [3]. A questionnaire was 
handed out and returned by 10,552 individuals (52.7%) from the Wycombe Health 
Authority area and 8,328 (41.8%) nationwide. In the Wycombe Health Authority 
area, 19.9% suspected FHS and 20.4% of the nationwide sample complained FHS 
[3]. The prevalence of FHS was estimated between 1.4% and 1.8% in the participants 
[3]. The study by Young et al. [3] was one of the first studies focusing that the 
general public perceived FHS as a major health problem, and thereby limiting the 
daily living in thousands of ordinary families with different self-appointed elimina-
tions diets [3]. However, the estimated prevalence of FHS in the study by Young et al. 
[3] was correlated with bias. The true prevalence of FHS in the study by Young et 
al. [3] might be even higher as only eight different foods were selected for oral 
challenge representing only 50% of the reported reactions. Further, only about 50% 
returned the questionnaire in both groups, making the estimated prevalence of FHS 
uncertain. In the study by Young et al. [3], a major part of symptoms in oral chal-
lenges were subjective such as headache, behavioural symptoms and joint symptoms. 
The subjective symptoms, in the study by Young et al. [3], are previously reported 
with a doubtful correlation to FHS [2]. A recent paper by Briggs et al. statistically 
demonstrated that using subjective symptom as the only verifying symptom in posi-
tive oral food challenges should be followed up with three active and three placebo 
oral food challenges eliminating statistical uncertainty [4].

Few prevalence studies have been performed in adults. Jansen et al. investigated 
the prevalence of FHS in the Netherlands including adults by a door to door interview 
[5]. The response rate was 86% and comprised 1,483 adults [5]. The self-reported 
prevalence was 12.4% and the estimated prevalence of FHS was calculated to 2.4% 
[5]. The study by Jansen et al. also clearly demonstrated a gap between the self-
reported prevalence and confirmed by oral challenge [5]. In the study by Jansen et 
al. [5], a very surprising list of confirmed food items causing FHS was found such 
as pork, glucose, menthol, white wine and no one was allergic to peanut, hen’s egg 
or cow’s milk. The study by Jansen et al. could suggest that FHS in adults differ 
significantly from children [5].
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Although data are limited, it is well-known that FHS not always is a permanent 
affliction. A convincing study by Høst et al. [6] demonstrated development of 
tolerance to cow’s milk before 3 years of age in 87% of children with previously 
diagnosed cow’s milk allergy. Recent studies estimate that approximately 20% of 
young children with peanut allergy become tolerant to peanut over time [7, 8]. Ford 
and Taylor [9] reported that 44% of 25 egg allergic children became tolerant over 
time.

Zuberbier et al. examined the prevalence of FHS in a random sample of 13,300 
residents of Berlin by questionnaire followed by oral challenge if suspecting FHS 
[10]. The questionnaire was returned by 4,093 persons with a mean age of 41 years 
(range 18 to 79 years). The self-reported lifetime prevalence of FHS was 34.9% 
compared to point prevalence on 3.7% confirmed by oral food challenge [10]. The 
highest prevalence of IgE-mediated FHS was found in the age group between 20 
and 39 years with pollen-related food such as hazelnut and apple as the most com-
mon allergenic food [10]. The authors calculated with a response rate between 30% 
and 40% from a random sample on 15,000 with an expected prevalence rate of FHS 
on 2% and confidence interval from 1.5% to 2.5% [10]. However, the prevalence of 
FHS was 3.7%, making the response rate in study as a possible bias of the true 
prevalence of FHS. Further, although data is analysed weighting age, it is not clear 
how many participants included in specific age groups, thus some age groups could 
be overrepresented, making this a possible bias. The study by Zuberbier et al. [10] 
also demonstrates a discrepancy between the prevalence of self-reported FHS and 
confirmed FHS by oral challenge as previously reported by Jansen et al. [5] in a 
similar adult population. However, the culprit food in the study by Jansen et al. [5] 
differ significant from the culprit food in the study by Zuberbier et al. [10]

More studies have described the prevalence of FHS in adults, but without diag-
nosing FHS with oral food challenge. Schäfer et al. found the prevalence of self-
reported FHS in adults (mean age 50 years and range 25–74 years) at 20.8% based 
on questionnaires and interviews [11].

Epidemiologic Population Studies of Primary Food 
Hypersensitivity in Children and Adolescents

Roehr et al. investigated the prevalence of FHS in children and adolescents in 
Germany, Berlin, handing out questionnaires to a random sample including 2,354 
participants [12]. The response rate was 31.4% and confirmed FHS by oral food 
challenge was 4.2% with 3.5% representing an IgE-mediated reaction [12]. The 
most common allergenic foods were pollen-related such as apple, hazelnut, kiwi 
and carrot [12]. Roehr et al. subdivided the study group into two age groups, one 
between 0 to 14 years and the other one between 15 and 17 years of age [12]. There 
is no clear-cut explanation for this subdivision, and no clear-cut information about 
an equally age distribution of children, e.g., 0–1 years, 1–2 years, etc. The study by 
Roehr et al. [12] shows that pollen-related food is a major source for allergic reactions 



Epidemiology and Food Hypersensitivity 149

in children younger than 18 years, however, it is important to have in mind that 
allergic food ingredients differ in different age groups, i.e., cow’s milk allergy in 
small children and pollen-related food in adolescents following the natural allergic 
march with pollen allergy.

Venter et al. established a study population comprising 1,440 six-year-olds resi-
dent on the Isle of Wight in UK, and the final response rate was 798 children [13]. 
The self-reported prevalence of FHS was 11.8% and confirmed FHS was 1.6% 
confirmed by oral challenge [13]. The study by Venter et al. [13] clearly emphasize 
that a detailed case history is of vital importance as totally 94 children reported 
FHS, but only 28 were regarded as possible allergic. Sixty-six children were 
excluded from oral challenge mostly because of an inconsistent history eating the 
food frequently in a variety of forms without any reactions [13]. However, 12 chil-
dren refused oral food challenge because of variety of reasons [13]. Five children 
were previously diagnosed with FHS and 4 of 10 children with a positive open-
controlled oral food challenge (OCFC) declined double-blind, placebo-controlled 
food challenge (DBPCFC) [13]. Venter et al. included all five children with previ-
ously diagnosed FHS in the estimated prevalence of FHS, a possible bias as we 
have no information about sort of FHS and time of diagnosis. It is well-known that 
a significant number of cow’s milk allergic children become tolerant over time, 
whereas in peanut allergic children only 50% become tolerant over time. Cross-
reactivity between grass and wheat is well-known [14, 15], Venter et al. [13] 
reported 3.1% of the children sensitized to grass and wheat despite regular intake 
of wheat without any symptoms, thus asymptomatic cross-reactivity.

Pereira et al. investigated the prevalence of FHS among teenagers by establishing 
two cohorts comprising 1,636 eleven-year olds and 1,508 fifteen-year-olds in the 
UK with a final response rate on 47.4% (n = 757) and 50.2% (775), respectively 
[16]. Lack of interest was the main reason for not participating in a sample of non-
responders [16]. The prevalence of self-reported FHS among these cohorts was 
11.6% and 12.4% [16]. Cow’s milk and additives were the most common food 
ingredients reported in the 11-year-old children, whereas cow’s milk, hen’s egg and 
peanuts were the most frequently reported food ingredients in the 15-year-old 
cohort [16]. All children with self-reported FHS and all children with a positive 
skin prick test (SPT) never previously knowingly eaten a large amount of the food were 
included for oral challenge [16]. Of the 90 eleven-year-olds and 94 fifteen-year-olds 
reporting FHS 21 eleven-year-olds and 14 fifteen-year-olds underwent a total of 25 
and 17 open oral challenges, respectively [16]. A significant part of children was 
excluded for a variety of reasons, mainly because of an inconsistent history [16]. 
With DBPCFC as the end point, the calculated prevalence of FHS was 1.4% in 
11-year-olds and 2.1% in 15-year-olds, but altogether 18 children previously diag-
nosed as food allergic were also included in calculations. This may bias the esti-
mated prevalence, as there is no clear-cut information about time or type of 
previously diagnosed FHS. Further, it is not clear what sort of additives included in 
oral challenge.

Venter et al. investigated the incidence of parentally reported and clinically diag-
nosed FHS in the first year of life by establishing a birth cohort with 969 pregnant 
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women with a very high follow-up rate as 900 questionnaires were completed at 12 
months [17]. Adverse reactions to foods were reported by 14.2% at 3 months, 9.1% 
at 6 months, 5.5% at 9 months and 7.2% at 12 months [17]. Cumulative incidence 
of FHS by 12 months was 4% based on OCFC and 3.2% based on DBPCFC [17]. 
More than 90% of the parents consented to OCFC and 60% consented to DBPCFC 
at 12 months [17]. However, a major part of the children were not undergoing 
DBPCFC because of severity of reaction on OCFC, thus making the estimate of the 
cumulative incidence of FHS using OCFC more valid. Further, a recent position 
paper [18] from EAACI recommends OCFC as a standard procedure in children 
less than 3 years of age in case of objective symptoms during oral challenge. Venter 
et al. did not include children with possible allergy to peanut and sesame of ethical 
reasons, resulting in a possible underestimate of the cumulative incidence of FHS. 
The cumulative prevalence of cow’s milk allergy was 2.3% in OCFC and 1.0% in 
DBPCFC, and hen’s egg allergy 1.3% in OCFC and 0.8% in DBPCFC. Only one 
of ten infants with a positive DBPCFC to cow’s milk was positive in SPT to cow’s 
milk, whereas five of eight hen’s egg hypersensitive infants were positive in SPT to 
hen’s egg. The study by Venter et al. [17] shows that a major part of cow’s milk 
hypersensitivity in infants seems to be non-IgE-mediated compared to IgE-
mediated hen’s egg allergy in the major part of the infants. However, SPT was 
performed with commercial extracts of standard food, which could bias the result 
as the prick-prick technique using fresh food gives a higher sensitivity [19].

A major part of the clinical reactions were delayed symptoms over days (1–7 days) 
with cow’s milk as the most common allergenic food. Except two infants with 
delayed reactions, all other infants with delayed reactions were negative in SPT to 
the culprit food, whereas about 50% of infants with immediate reactions were positive 
in SPT and mostly to hen’s egg.

Bock enrolled 501 children and 480 (96%) children were finally included and 
followed prospectively from birth to their third birthdays [20]. In total, 28% thought 
to have symptoms produced during food ingestion, and in 8% were these reactions 
reproduced with cow’s milk as the most common allergenic food item [20]. Bock 
demonstrated that the cumulative prevalence of FHS the first 3 years of life was 8%, 
thus including previously diagnosed food-allergic children now tolerant to the culprit 
food during this period of life [20].

Epidemiologic Studies of Primary Food Hypersensitivity 
Including Specific Food Items

Table 2 lists prevalence studies of FHS to specific food items. In the last decades, 
an increased prevalence of peanut allergy has been reported. A study by Mortz et al. 
estimated the prevalence of peanut allergy to 0.5% in a cohort of unselected 
adolescents [21]. OCFC was performed in 27 of 61 adolescents with a positive SPT 
or specific IgE (CAP technique) combined with a positive case history [21]. 
Further, OCFC was negative in 22 cases with negative case history but positive SPT 
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or specific IgE to peanuts [21]. Mortz et al. estimated the prevalence of peanut 
allergy to 0.5% in adolescents [21]. The study by Mortz et al. also demonstrated a 
correlation between peanut and grass sensitization, emphasizing the importance of 
obtaining a detailed case history followed by oral challenge if still suspecting peanut 
allergy [22, 15].

Grundy et al. reported a prevalence of peanut allergy to 1.5% in small children. 
Unfortunately only 43% of the target population participated in the study, thus making 
the estimated prevalence of peanut allergy as a possible overestimate [23].

Kagan et al. estimated the prevalence of peanut allergy in Montreal, Canada, by 
administrating questionnaires to 7,768 children and 4,339 children responded with 
a mean age of 7.4 years [24]. SPT with peanut was performed in children reporting 
‘never-rarely ingest peanut’ or ‘uncertain history of peanut allergy’ and if a positive 
SPT measurement of peanut-specific IgE was undertaken and by levels greater than 
15 kU/l children were considered peanut allergic [24]. DBPCFC was performed in 
children with peanut specific IgE levels less than 15 kU/l [24]. Children with a 
convincing history of peanut allergy were considered peanut allergic without fur-
ther testing if a positive SPT to peanut [24]. The prevalence of peanut allergy was 
estimated to be 1.34%, a result that seems to be an overestimate as the authors 
criteria for peanut allergy included 1,737 children, all of them with a convincing 
history of peanut allergy combined with positive SPT without performing oral chal-
lenge [24]. Further, children with peanut-specific IgE level exceeding 15 kU/l were 
diagnosed peanut allergic without performing oral challenge [24]. Recent studies 
have demonstrated that the positive predictive value of a positive SPT is about 50% 
and diagnostic levels of specific IgE seems to vary between different centres [25–27].

Saarinen et al. demonstrated the prevalence of cow’s milk in unselected healthy 
full-term infants by initial including 15,400 mothers after delivery and 6,267 (41%) 
agreed to participate [28]. The infants were subdivided into three groups, group 1 
(n = 1,789) receiving CM formula, group 2 (n = 1,859) receiving pasteurized 
human milk and group 3 (n = 1,737) receiving whey hydrolysate formula [28]. 
Further, a comparison group (n = 824) exclusively breast-fed was also established 
[28]. The cumulative incidence of CMA in the infants fed with CM was 2.4% com-
pared with 1.7% in the pasteurized group and 1.5% in the whey hydrolysate group 
[28]. In the exclusively breast-fed group, CMA developed in 2.1% infants [28]. 
Saarinen et al. clearly showed that feeding of CM increases the risk of CMA, however, 
infants exclusive breast-fed CMA is still a health problem with a prevalence of 
2.1% [28].

In a prospective study by Høst et al. investigating the prevalence of CMA in 
unselected Danish infants (n = 1,749) during the first 3 years of life, Høst et al. 
diagnosed 39 infants with CMA [29]. Høst reported the prevalence of CMA to be 
2.2% with a peak in the first year of life [29]. Further, Høst clearly demonstrated 
that prognosis was good in CMA children as about 90% were tolerant to cow’s milk 
before 3 years of age [29].

Hen’s egg allergy seems to be a major allergic problem in small children. 
Eggesbø et al. estimated the prevalence of hen’s egg allergy to 1.6% in children 
aged 2½ years by investigating 3,289 children with a response rate on 83% [30].
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A Danish study investigated the prevalence of FHS in an unselected population 
of children and adults using a questionnaire, skin prick tests, determination of specific 
IgE and histamine release followed by oral challenge if suspecting FHS [31]. 
The study population comprised 486 children (probands) 3 years old, their siblings 
with 111 less than 3 years of age and 301 older than 3 years of age, and their 
parents (n = 936) with a mean age of 33.7 years [31]. In total, 698 cases of possible 
FHS were recorded in 304 (16.6%) participants [31]. The prevalence of FHS con-
firmed by oral challenge was 2.3% in the children 3 years of age, 1% in children 
older than 3 years of age and 3.2% in adults [31]. Although an unselected study 
population, there may be bias in the estimate of ‘the true prevalence’ of FHS such 
as participants with a history of FHS are likely to be overrepresented and this could 
overestimate the prevalence of FHS. The most common allergenic foods were hen’s 
egg affecting 1.6% of the children 3 years of age and peanut in 0.4% of the adults. 
In the adults, 0.2% were allergic to codfish and 0.3% to shrimp, whereas no chal-
lenges with codfish and shrimp were positive in the children. Surprising, the preva-
lence of primary FHS to fruits and vegetables in adults was 2.7%, thus without a 
positive SPT to pollen and without any allergic symptoms in pollen season. A relatively 
high proportion of clinical reactivity to fruits or vegetables in absence of pollen 
allergy is a common phenomenon in the Mediterranean area but has not been 
reported in the Scandinavian area. Previous studies from the Mediterranean area 
reported between 15% and 21% of subjects allergic to fruits and vegetables without 
pollen sensitization [32–34]. In the Mediterranean area, allergic reactions to a wide 
range of pathogenesis-related (PR) protein are reported. Most of the PR proteins are 
not found in pollen such as seed storage proteins, and this may be an explanation 
of this high number with primary FHS to fruits and vegetables found in this study. 
However, it cannot be excluded that food allergy proceeds to pollen sensitization, 
and the question of whether the numbers categorized as primary FHS to fresh fruits 
and vegetables will change into secondary FHS over time remains unsolved.

Additives comprise substances added to food products such as colourings, 
sweeteners, flavouring and preservatives. Although a large number of different 
additives are available on the market, a relatively small number are associated with 
hypersensitivity. Sulphites act as antioxidants that inhibit enzymatic browning of 
food such as fresh fruits and vegetables or in fermentation processes in wine pro-
duction [35]. Sulphites are reported as a mediator provoking exacerbation in asth-
matic patients [36]. Although several hypotheses are suggested in the sulphite 
response such as a cholinergic reflex, IgE involvement or a deficiency of sulphite 
oxidase, the exact mechanisms remain obscure [37–41].

Monosodium glutamate occurs naturally in many foods such as tomatoes, but is 
also used as flavour enhancers in foods, although the clinical relevance is divergent 
in different studies [42–45]. Convincing reactions to aspartame (sweetener) following 
DBPCFC have not been demonstrated [46].

Synthetic colorants such as tartrazine are often added to foods. Although several 
previous studies suggested a relationship between tartrazine and aspirin, Stevenson 
et al. [47] were unable to detect tartrazine-induced asthma in any of 150 consecutive 
aspirin-sensitive asthmatics patients.
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Natural dyes (e.g., annatto, carmine and copper chlorophyll) are reported, 
provoking urticaria, angioedema and even anaphylaxis, further, natural dyes contain 
proteins capable of inducing direct IgE-mediated response [48–50].

Fuglsang et al. examined the prevalence of intolerance to additives among 
unselected Danish school children aged 5–16 years based on a questionnaire 
returned by 4,274 (86%) school children from the local municipality [51]. If positive 
OCFC, DBPCFC was performed [51]. The children were challenged with a lemonade 
containing low concentration of additives and if negative, the next dose contained 
ten times as high concentration of additives as in the first one [51]. In total, the 
prevalence of intolerance to additives was estimated between 1% and 2% [51]. 
The estimated prevalence seems high compared to other studies [31, 52], however, 
Fuglsang et al. included a broad range of additives such as preservatives, synthetic 
colours, natural colours, acids and flavours in the challenge procedures. The 
amount of additives used in oral challenge was equivalent to the additive content in 
candy and soft drinks, making the results very convincing. The most common addi-
tives eliciting a clinical reaction during challenge were synthetic colours such as 
tartrazine, quinoline yellow, patent blue and sunset yellow followed by preserva-
tives (e.g., sulphites and sorbic acid). However, the study also demonstrated that 
oral challenge with additives is difficult and in daily practice a detailed case history 
is mandatory.

Young et al. reported an incidence between 0.01% and 0.23% of intolerance to 
additives [52]. The result seems to be an underestimate as 7.4% of 18,582 suspected 
hypersensitivity to additives but only a minor part were challenged (n = 81) [52].

Epidemiologic Studies of Secondary Food Hypersensitivity

Table 3 lists prevalence studies including secondary FHS. Relatively few studies 
(Table 3) have investigated the prevalence of secondary FHS confirmed by oral 
challenges. The prevalence of secondary FHS is correlated to prevalence of pollen 
sensitization, thus following the allergic march. The prevalence of pollen sensitization 
peaks in adults, thus secondary FHS is more common in adults compared to children. 

Table 3 Self-reported prevalence of secondary FHS in pollen allergic adults based on questionnaire, 
skin prick tests or oral food challenge

Author Year na Pollen Prevalence (%)

Bircher et al. [79] 1994 238 Birch, grass and mugwort 39b

Eriksson [80] 1978 1129 Birch 24b

Hannuksela et al. [81] 1977 388 Birch 36b

Ebner et al. [82] 1991 83 Birch 75.9b

Osterballe et al. [15] 2005 936 Birch, grass and mugwort 30

aNumber of participants
bNot challenged
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The correlation between pollen and fruits and vegetables is explained by the fact 
that pollen allergens are sharing homologous IgE-binding sites with certain fruits 
and vegetables allergens such as the major allergen of birch pollen (Bet v 1) cross-
reacting with homologous proteins in hazelnut, apple, soybean, bell pepper and 
celery [53–61].

A recent study from Denmark reported 30% of pollen-allergic (i.e., positive SPT 
to pollen and symptoms in pollen season) adults (mean age 33.7 years) with secondary 
FHS [15]. In adults with asymptomatic pollen sensitization (i.e., positive SPT to 
pollen and no symptoms in pollen season), 7% were diagnosed with secondary FHS 
confirmed by oral food challenge [15]. Overall, the odds ratio for a clinical 
reaction allergic reaction to pollen-related foods in symptomatic pollen-sensitized 
(positive SPT to respective pollen allergen) adults was 3.3 (p-value = 0.003) compared 
to asymptomatic pollen-sensitized adults [15]. The probability of a clinical reaction 
to pollen-related foods in different pollen-sensitized groups was significantly 
different, i.e., 24% if monosensitized to birch, 4% if monosensitized to grass, 10% 
if monosensitized to mugwort, 35% if sensitized to both birch and grass, 8% if 
sensitized to both grass and mugwort and 52% if sensitized to both birch, grass and 
mugwort [15]. The odds ratio of a clinical reaction to pollen-related fruits and 
vegetables in symptomatic pollen-sensitized adults was as high as four times (birch 
and grass), the odds ratio of a clinical reaction in asymptomatic pollen-sensitized 
adults [15]. The most common allergenic food in pollen-allergic adults was hazelnut, 
affecting 19.2% and followed by apple (16.7%), kiwi (13.3%), celery (7.6%) and 
brazil nut affecting 7% [15].

Conclusion

In conclusion, previous studies have clearly demonstrated that the general public 
perceives FHS as a major health problem. However, there is a significant discrepancy 
between the prevalence of self-reported FHS and the prevalence of FHS confirmed 
by oral food challenge. Thus, a detailed case history followed by oral food challenge 
according existing guidelines is mandatory in diagnosing FHS. In future, more 
epidemiological research is needed to investigate the course of both primary and 
secondary FHS in children and adults.
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Genetics of Asthma and Bronchial 
Hyperresponsiveness

Matthew J. Rose-Zerilli, John W. Holloway, and Stephen T. Holgate

Introduction

Asthma is a polygenic disease differentially modulated by heterogeneous gene–
environment and gene–gene interactions. For the last two decades, considerable 
effort has been made to identify the precise genetic factors that lead to susceptibility 
to this disease. Identification of these factors has advanced our understanding of 
this disease and has lead to targets for the development of novel therapies to treat 
patients. The benefits of genetic approaches to study disease mechanisms are exem-
plified by the recent advances in the understanding of the pathophysiology of other 
common diseases such as cardiovascular disease and diabetes [1–4] and which are 
now beginning to have an impact on patient treatment [5–7]. These studies give us 
insight into the likely outcome of recent and future studies of the genetic basis of 
asthma.

The recent advances in the understanding of the genetics of asthma and the 
related phenotype bronchial hyperresponsiveness (BHR) have been driven by suc-
cessful positional cloning and candidate gene association studies whose aim was to 
identify genetic factors that underpin inter-patient variability in susceptibility. Since 
the identification of the first genomic region on Chromosome (Chr) 11 with linkage 
to an asthma related phenotype by Cookson et al. [8] in 1989, there have been 
numerous asthma and BHR susceptibility loci found by these approaches [9]. 
The Online Mendelian Inheritance in Man website (www.ncbi.nlm.nih.gov) lists 
under the search term: Asthma, susceptibility to (#600807), loci on chromosomes 
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2, 4, 5, 6, 10, 11 and 13 and a search for BHR reveals additional reported linkage 
to regions on chromosomes 1, 2, 7, 14. All of these loci are likely to contain one or 
possibly more genes in which variation may play a small but important role in 
asthma susceptibility. As a consequence, diligent work to elucidate the precise 
genetic variations and how these variations contribute to the pathogenesis of this 
disease will be required. Furthermore this highlights the numerous challenges that 
researchers face in completely understanding the role of genetic variation in asthma. 
However, despite these difficulties, there has been considerable progress in the last 
5 years in identifying novel genes that underlie these peaks of linkage [10–12]. This 
progress is likely to be accelerated in the coming months and years as the novel 
approach of whole genome association (WGA) studies is applied to asthma [13].

A systematic review of all susceptibility genes identified to date for asthma and 
BHR is outside the scope of this chapter and the majority have already been com-
prehensively reviewed by Ober and Hoffjan [14,15]. However, this chapter will 
provide some examples of asthma and BHR genes discovered by positional cloning 
and candidate gene approaches to illustrate how these studies can aid in our under-
standing of the disease.

Evidence for Genes in Asthma and Bronchial 
Hyperresponsiveness

It has been recognised that asthma results from both inherited (familial factors) and 
environmental exposures for over 350 years (by Sennartus in 1650, cited in [16]; 
also [17, 18]). The existence of a genetic component to asthma and BHR has been 
confirmed in a plethora of more recent twin and family studies with current 
estimates of asthma heritability ranging from 50% to 90% [19–22]. The large range 
in asthma heritability estimates between studies are due to factors such as differences 
between the populations studied, age of onset of disease, the type of environment 
exposure and study design. In several twin studies, the consistent finding is that the 
non-shared environment between twin pairs is a more important risk factor than the 
shared environment and that the heritable asthma component may be higher in 
males (74%) than females (58%) [23, 24].

Approaches to Identify Genetic Factors Underlying 
Asthma and BHR

There are two well-established approaches to discovering the genomic location of 
disease susceptibility genes. Positional cloning of disease loci utilising families and 
the candidate gene approach in both family based and case–control cohorts have 
been the mainstay of genetic epidemiology for the last decade. However, in the last 
two years, recent technological advances have enabled researchers for the first time 
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to perform WGA analysis using hundreds of thousand or even millions of single 
nucleotide polymorphisms (SNP). In this chapter, we illustrate the differences 
between the various approaches to identify disease genes with examples of posi-
tional cloning and candidate gene analysis in asthma. We will also discuss important 
considerations in study designs and highlight the exciting novel approach of WGA 
analysis to identify new susceptibility genes for this complex disease.

Positional Cloning

Positional cloning is a family based co-inheritance analysis of genetic markers 
spread evenly throughout the genetic region of interest. The region of interest can 
be genome-wide or a region of a single chromosome. Micro-satellite polymor-
phisms are the marker of choice for positional cloning because they are highly 
polymorphic in the general population.

All members of the family group are genotyped and the increased transmission 
of a particular allele to disease affected individuals indicates genetic linkage with 
the unknown disease gene. Genetic linkage to a region occurs when the marker and 
unknown disease contributing gene are adjacent on the same chromosome and no 
recombination has occurred between them in each new generation. Large regions 
of chromosomes are inherited as a whole and any genetic polymorphism in that 
region are potential surrogate indicators of the presence of the disease contributing 
genes. Linkage is broken down by recombination, therefore in a family group, the 
resulting linkage region can be relatively large (1–2 Mb in length) as only one to 
two recombination events occur between generations.

A region of the genome identified as being linked to a disease phenotype will 
contain several to hundreds of potential disease contributing genes. Traditionally, 
DNA sequencing of the linkage region in individuals will identify new polymor-
phisms that may be closer to the gene of interest and can be used as further markers 
to narrow the linkage region in subsequent analysis. In the era of the Human 
Genome Project, researchers do not have to sequence large regions of a chromo-
some to find extra markers as a simple database search will provide a summary of 
all polymorphism previously identified in that region.

The positional cloning technique has been successful in identifying high pene-
trance, high-risk genes responsible for Mendelian inherited disorders, such as 
Huntingtons [25] and cystic fibrosis [26], but the technique does not have the same 
statistical power to identify low penetrance, low-medium risk genes involved in 
complex diseases [27, 28]. Linkage analysis has less power than an equivalently 
sized case–control study as association is only tested in the probands. 

In complex diseases, it is often difficult to define an appropriate disease pheno-
type [29]. There is variability in the severity of the disease in individuals and the 
age of disease onset may vary, leading to individuals being inaccurately identified 
as unaffected. Diagnosed individuals may also have apparently identical symp-
toms resulting from different aetiologies involving various biological pathways. 
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Researchers may also have difficulty in choosing the best population to study and 
studies may be confounded by population stratification. In spite of the limitations 
outlined above, positional cloning has resulted in the identification of several novel 
asthma and BHR susceptibility genes such as a ADAM33, DPP10, PHF11, HLA-G 
and IRAK-M [10, 12, 30–32].

At the whole-genome level, positional cloning is a hypothesis-independent 
approach; it has the potential to identify genes and biological pathways that were 
not previously implicated in the pathogenesis of the disease (See Table 1 for 
positional cloned asthma genes). With the advent of genome on a chip technology, 
researchers can rapidly investigate family or case–control studies for up to 
millions of SNPs spread over the genome for any associations. These high-density 
arrays provide greater genome coverage ensuring that the maximum amount of 
linkage information can be retrieved and the size of the critical linkage region 
reduced for further analysis. By using cohorts with environmental exposure vari-
ables, it may possible to define how genes interact with the environment to cause 
disease.

Examples of Positionally Cloned Asthma Genes

(i) ADAM33

ADAM33 (Gene ID: 80332; MIM: 607114) was positionally cloned from a genome-
wide linkage scan in 460 Caucasian USA and UK families (affected sib-pairs) in 
2002 and was the first asthma gene identified through this approach [12]. Strongest 
genetic linkage at 20p13 was seen with a combined asthma and BHR phenotype 
(LOD, 3.93) and the D20S482 microsatellite with a 35% in excess allele sharing. 
The linkage region contained 40 genes that were identified by cDNA cloning and 
sequencing. Twenty-three candidate genes were then investigated by selective 
genotyping of 135 SNPs in a case–control study with cases from the linkage cohort 
and hyper-normal controls (negative personal and familial history of atopy and 
allergic disease). Analysis of these polymorphisms revealed that the strongest asso-
ciation was in the region of a novel gene, ADAM33.

There have subsequently been numerous studies examining the association of 
ADAM33 polymorphism with asthma, BHR and related phenotypes in several dif-
ferent ethnic populations. While some studies have not been able to replicate asso-
ciation of asthma to ADAM33 [33–35], the majority of the studies have found 
significant association with ADAM33 polymorphisms, albeit with different SNPs 
or haplotypes [36–44]. Non-replication of ADAM33 association may be explained 
by differences in population and environmental exposures between studies. A 
recent meta-analysis of ADAM33 association data has shown that variation in this 
gene could account for 50,000 excess asthma cases in the UK alone [45].

ADAM33 is expressed in mesenchymal cells such as sub-epithelial fibroblasts and 
smooth muscle cells but not in respiratory epithelium or in cells of the immune system 
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[46]. It has been shown that ADAM33 is expressed in asthmatic airways and in human 
embryonic lungs [47] and a recent study has shown increasing expression of ADAM33 
and ADAM8 in mild to severe asthmatics [48]. Multiple slice variants of ADAM33 
mRNA transcripts have been described in primary cell fibroblasts and intronic SNPs 
found in the gene may potentially regulate alternative mRNA splicing [49].

ADAM33 is part of the ADAM gene family that is a sub-group of a super-family 
of zinc-dependant metalloproteinases. ADAM33 has a complex protein organisa-
tion of eight domains and is most closely related to ADAMs 12, 15, 19 and 
Xenopus ADAM13. These genes are a branch of the ADAM family that possess 
proteolytic activity [50]. Other known functions of ADAMs are to promote myo-
genic fusion and in the release of proliferative growth factors [51, 52] ADAM 
members have also been shown to have roles in fertilization, muscle development 
and neurogenesis [53–56].

In summary, ADAM33 genetic variation is associated with asthma, BHR and 
reduced lung function in early life (age 3 and 5 years) [57]; it also been shown to 
have a role in the decline in lung function in later life and in susceptibility to 
chronic obstructive pulmonary disease (COPD) [58, 59]. The slow progress to date 
in determining the function of ADAM33 illustrates the difficulties facing research 
after identifying a novel gene, but it also highlights new opportunities that arise 
from identifying a novel area of biology relevant to asthma. While the exact func-
tion of ADAM33 in both normal and diseased airways biology remains unclear, it 
is likely that progress will be seen soon.

(ii) GPRA

Recently, G-Protein coupled receptor for asthma susceptibility (GPRA; GeneID: 
387129, MIM: 608595) has been identified as an asthma susceptibility gene on 
chromosome 7p14.3 [60]. This region on chromosome 7 had previously shown 
linkage to asthma-related phenotypes in several populations (Finnish, Canadian and 
Australian families) [61–63]. Laitinen et al. [60] positionally cloned asthma candi-
dates on 7p using a hierarchical genotype design. leading to the identification of a 
133 Kb segment containing two genes; GPRA (also known as GPRA154 or 
Neuropeptide S receptor) and AAA1 (asthma-associated alternatively spliced gene 
1). While it is unclear if the AAA1 gene encodes a functional protein, the two main 
transcripts of GPRA (A and B) have alternative 3′ exons encoding proteins of 371 
and 377 amino acids, respectively (Genbank AY310326, AY310327) and expres-
sion of the two isoforms of GPRA was confirmed by Northern blot and immuno-
histochemistry analysis. Staining of the bronchus, gut and skin detected isoform A 
predominantly in smooth muscle cells and isoform B in epithelial cells. In bron-
chial biopsies, the isoform expression patterns were different between asthmatics 
and healthy controls, with strong expression of isoform B in asthmatic smooth 
muscle cells and no expression in healthy samples. GRPA isoform-B staining in 
epithelial cells was also consistently stronger in asthmatic samples but the expres-
sion in healthy controls was more varied. The A isoform showed no consistent 
differences in staining between the two groups and the authors concluded that one 
or more polymorphisms in the risk haplotypes might critically alter the balance 
between the GPRA isoforms. There was up-regulation of Gpra154 mRNA in 
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ovalbumin-sensitised mice, which is in agreement with the results from human 
asthma and in another ovalbumin sensitised mouse study. Gpra154 expression was 
up-regulated in alveolar macrophages from bronchoalveolar fluid [64].

However, studies of Gpra-deficient mice have provided some conflicting results 
with development of allergic lung disease in these mice being unaltered [65]. An 
alternative hypothesis has been suggested that GPRA may contribute to the asth-
matic phenotype by altering the activity of neurally mediated mechanisms. High 
levels of GRPA expression in the brain and its recent identification as the neuropep-
tide S receptor may support this alternative interpretation. Activation of the human 
GPRA A isoform by its ligand (Neuropeptide S) results in significant inhibition of 
cell growth [66] and monocytes/macrophages and eosinophils were identified as 
GPRA positive cells. In peripheral blood mononuclear cells, monocyte activation 
with lipopolysaccharide (LPS), but not T cell activation with anti-CD3/CD28 anti-
bodies resulted increased Neuropeptide S and GPRA expression [64].

There have been several attempts to replicate association between GPRA and 
asthma, and as with other asthma genes described in this chapter, they have pro-
vided varying results. In 2007, there was another linkage analysis study of 
Chromosome 7p; this time 117 Italian families demonstrated linkage to allergic 
asthma phenotypes and several GPRA SNPs were found to associated with elevated 
IgE levels (SNP 546333, P = 0.0046; rs740347, P = 0.006) [67]. A Korean case–
control study with 439 patients (atopic and non-atopy asthma) and 374 controls 
genotyped one haplotype tagging SNP 522363 G > C did not find any association 
with risk of asthma, atopy, serum IgE or log-transformed PC

20
 values [68]. 

Conversely, there are two studies in European populations that have provided evi-
dence for GPRA in asthma and atopy [69, 70]. Melen et al. identified an increased 
risk for asthma (OR 1.40) with SNP 546333 and this association was more evident 
in the joint asthma and BHR phenotype (OR 2.38) [70]. GPRA asthma susceptibility 
haplotypes have also been associated with respiratory distress syndrome and bron-
chopulmonary dysplasia in preterm infants [71]. The discovery of GPRA as a 
candidate asthma susceptibility gene is one of the most exciting recent discoveries 
as being a G-protein coupled receptor, it is a protein that can be easily targeted by 
novel small-molecule therapeutics [72].

Candidate Gene Association Analysis

Candidate gene analysis has been extensively utilised in the study of complex diseases 
and more than 500 studies have now examined the association of genetic variants 
in over 200 genes with atopic and allergic disease alone [14, 15, 73]. The tech-
nique is a hypothesis-dependant approach because rather than utilising a random 
selection of evenly spaced genetic markers, genes are chosen on the basis of a priori 
hypothesis about their role in a disease. The selection of a potential candidate gene is 
based on the involvement of the gene product in biological processes relevant to 
the disease in question. Evidence for candidate gene selection can be drawn from a 
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broad range of disciplines, for example, biological function, differential expression, 
involvement in other diseases with phenotypic overlap, affected tissues, cell type(s) 
involved and findings from animal models.

Case–control studies are commonly used in the candidate approach. They are 
essentially a population-based sample of affected and unaffected individuals. Any 
significant differences in genotype frequency found between the two groups are 
potentially associated with the disease or susceptibility phenotype. Case–control 
association studies have greater statistical power to detect genes of small effect than 
linkage based approaches [74]; this is highly relevant as it is assumed that polymor-
phisms of milder functional effect in multiple genes in the general population play 
a role in susceptibility to complex genetic disorders.

Genetic variants showing association with a disease are not necessarily causal 
because of the phenomenon of linkage disequilibrium (LD). LD is the non-random 
association of adjacent polymorphisms on a single strand of DNA in a population; 
the allele of one polymorphism in an LD block (haplotype) can predict the allele of 
adjacent polymorphisms (one of which will be the causal variant). The size of the 
LD blocks depends on the recombination rate in that region and the time since the 
first disease contributing variant arose in an ancestral individual in that 
population.

The candidate gene approach has been criticised for non-replication of findings, 
which may be due to poor study design, population stratification and different LD 
patterns between individuals of different ethnicities. Unfortunately, the genetic asso-
ciation approach can also be limited by under-powered studies and loose phenotype 
definitions [75]. Therefore it is important that due consideration is given to all 
aspects of genetic epidemiological study design to ensure that relevant conclusions 
can be drawn. Candidate gene study design considerations will be discussed later in 
this chapter. Below we illustrate some of the inherent complexities in the accurate 
assessment of the role of polymorphisms in a candidate gene in disease susceptibility 
through the examples provided by studies of the genes IL13 and CD14 in asthma.

Examples of Candidate Gene Studies in Asthma

(i) Interleukin-13

Interleukin-13 (IL-13; Gene ID: 3596, MIM: 147683) is a 12 kDa that has many 
roles in asthma and allergy [76, 77]. It is produced by activated T-cells to pro-
mote B-cell proliferation and IgE synthesis. It also down-regulates the produc-
tion of TNFα, increases expression of vascular cell adhesion molecule-1 
(VCAM-1) on endothelial cells, and enhances the induction of major histocom-
patibility complex (MHC) Class II and CD23 antigens on monocytes. IL-13 is 
a key cytokine in asthma not only because of its pro-allergic role but also due to its 
wide ranging effects on epithelial and fibroblast cells linked to airway wall remodel-
ling. Overexpression of IL-13 in the bronchial epithelium of transgenic mice causes 
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lymphocytic and eosinophilic infiltration, goblet cell metaplasia, sub-epithelial 
fibrosis and smooth muscle proliferation associated with marked BHR in humans 
[78–83]. Numerous positional cloning asthma studies have also demonstrated link-
age to chromosome 5q31–33, a region that contains a cluster of pro-inflammatory 
genes including IL-13, IL-3, IL-4, IL-5 and GM-CSF [84, 85], providing evidence 
for IL-13 as a positional, as well as a functional candidate gene. As a result, numer-
ous studies have now investigated IL-13 gene polymorphisms for association with 
a wide range of asthma and allergy phenotypes. A number of functional or poten-
tially functional polymorphisms have been identified in the IL-13 gene.

A polymorphic variant of human IL-13, G + 2044A, is found in approximately 
25% of the Caucasian population. This results in the positively charged arginine 
residue at 110 of the mature polypeptide being non-conservatively substituted 
with neutral glutamine (R110Q). This variant was first identified by Heinzmann 
et al. [86] who demonstrated association with asthma in case–control populations 
from Britain and Japan (Peak OR = 2.31, 95% CI 1.33–4.00); this variant also 
predicted asthma and higher serum IgE in a Japanese paediatric population. 
Computer modelling of the variant amino acid showed that it impacts ligand 
receptor interactions through enhanced charge attraction to IL-13 receptor mol-
ecule [86]. This variant amino acid was thought to enhance signalling with IL-13 
receptor and this has subsequently been confirmed by in vitro studies [87]. 
Subsequently, the work of Graves et al. [88], and several more recent studies, 
have shown strong associations between this IL-13 polymorphism and atopy and 
atopic diseases such as atopic dermatitis and rhinitis [86, 89–92]. Furthermore in 
all studies that examined association with total serum IgE levels, the 110Q allele 
is consistently associated with a phenotype group that includes eosinophilia, IgE 
and positive skin tests [93].

As well as the R110Q variant, Van der Pouw-Kraan et al. [94] identified a single 
base pair substitution in the promoter of IL-13 adjacent to a consensus NFAT binding 
site. Using a sample of 101 asthmatics and 107 controls, they observed an increased 
frequency of homozygotes in the asthmatic group (13/107 vs. 2/107; p = 0.002, OR 
= 8.3). In additional in vitro experiments, they demonstrated that the polymorphism 
was associated with less inhibition of IL13 production by CsA and increased bind-
ing of NFAT [94]. Further identification and association of IL-13 polymorphisms 
with asthma and atopy phenotypes in a Dutch population confirmed that IL-13 
plays a role in the disease [89]. In this study, it was reported that the −1111C/T 
promoter variant contributed to susceptibility of asthma and BHR but not to serum 
IgE levels. DNA resequencing of the IL-13 gene in the Dutch population discovered 
ten SNPs, four of which were novel polymorphisms. Howard et al. [89] con-
cluded that IL-13 is critical to the pathogenesis of allergen-induced asthma but 
operates through mechanisms independent of IgE and eosinophils. The authors also 
genotyped the R110Q SNP but did not replicate the previously observed association 
with asthma.

The studies of IL-13 polymorphism illustrate many of the difficulties of genetic 
analysis in complex disease. Replication is often not found between studies and this 
may be accounted for by the lack of power to detect small increases in disease risk 
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that is typical for susceptibility variants in complex disease. Differences in genetic 
make up [95, 96] in environmental exposure between study populations; and failure 
to ‘strictly replicate’ [75] in either phenotype (IgE and atopy vs. asthma and BHR) 
or genotype (different polymorphisms in the same gene) can all contribute to the 
lack of replication.

Furthermore, given the observation of association with asthma and several compo-
nents of the IL-4/IL-13 signalling pathway (IL-4, IL-13, IL-4RA, IL-13RA1 and 
STAT6), it is clear that even when an association is observed; its effect in context of 
other variation in the biological response pathway should be considered [97–99]. For 
IL13, strong associations have been shown between IL-13 polymorphisms and atopy-
related phenotypes in two studies of children [88, 90]; however neither of these stud-
ies examined associations with asthma. In contrast, in adults, IL-13 polymorphisms 
are associated with asthma but not IgE levels [86, 89]. It is possible that polymor-
phisms in IL-13 may confer susceptibility to airway remodelling in asthma, as well 
as to allergic inflammation in early life, showing that the age of subjects may also 
influence the degree of association observed. Furthermore, the case of IL13 also 
illustrates the difficulties in identifying the true casual variants in an associated gene 
given several possible candidates and extensive LD between SNPs.

(ii) CD14

The hygiene hypothesis postulates that increased microbial exposure in early life 
leads to decreased asthma and allergic disease by the promotion of Th1 over Th2 
inflammatory response, resulting in decreased IgE production [100, 101]. Monocyte 
differentiation antigen CD14 (GeneID: 929, MIM: 158120) is a cell surface mole-
cule preferentially expressed on monocytes/macrophages and functions as a critical 
pattern recognition molecule for the clearance of bacterial endotoxin (lipidpolysac-
caride [LPS]) [102]. Consequently, as CD14 plays a critical role in the LPS 
response pathway, polymorphism of the CD14 gene that alters expression or func-
tion of the protein might be expected to modulate individual response to microbial 
exposure and hence susceptibility to these conditions. The CD14 gene is located on 
Chr 5q31.1 and there are two known protein isoforms, a 50–55 kDa membrane 
bound (mCD14) and soluble protein (sCD14) lacking the membrane anchor that 
confers LPS sensitivity to cells lacking mCD14 [103]. mCD14 binds LPS and 
presents to TLR4 (TOLL-like receptor 4) initiating inflammatory gene expression 
through NF-kappa B and MAPK signaling [104].

In 1999, Baldini et al. [105] discovered a C > T SNP in the CD14 promoter at 
position -159 from the transcription start site; TT homozygotes had significantly 
higher levels of sCD14 and were associated with lower IgE serum levels in children 
that were skin-prick positive for local aeroallergens, although the mechanisms were 
not clear at the time [105]. There have been inconsistent findings of CD14 poly-
morphism association studies in asthma, indicating that the levels of environmental 
endotoxin exposure may alter the effect of CD14 polymorphism [106]. Recently, 
Nishimura et al. [107] performed a meta-analysis of ten published studies of CD14 
polymorphism and asthma and found no overall increased odds ratio risk; but they 
did conclude that the analysis may not have been sufficiently powered to detect the 
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modest gene effects expected from a common disease such as asthma [107]. 
However, another explanation should be considered to explain the variability in 
observed association between CD14 polymorphism and asthma, namely environ-
mental exposure.

Exposure to endotoxin is known to occur indoors from contact with house dust 
(HDE, house dust endotoxin). In a study of 327 asthmatic families from Barbados 
[108], the CD14 TT genotype was protective against asthma in families with low 
HDE exposure, but the TT genotype was associated with increased asthma risk in 
families with high HDE exposure. Similarly, in another study, higher house dust 
endotoxin exposure in children with the −159CC genotype was associated with 
reduced allergic sensitisation and eczema [109], although non-atopic wheezing, 
presumably in response to respiratory tract infection, was increased. Taken together, 
these studies provide support for an ‘endotoxin switch’, in which there is a dose-
dependent response to endotoxin exposure for specific risk genotypes [110]. 
Exposure to endotoxin is also encountered in occupational settings such as farming. 
Adults farmers with the CD14 −159TT and −1691GG genotypes have been shown 
to significantly lower lung function and increased wheezing, compared to other 
genotypes, possibly due to increased soluble CD14 levels interacting with inhaled 
endotoxin from the agricultural environment [111].

Animal exposure: The type of microbial exposure during immune system matu-
ration may influence the development of atopy and asthma. In children with the 
CD14 −159C allele who had regular contact with household pets, serum IgE levels 
have been shown to be higher than with the T allele [112]. The opposite occurred 
in children with regular contact with stable animals, where the C allele was associ-
ated with lower IgE levels. In another study, early life farm environment and the 
CD14 −159TT genotype combined to give the lowest risk of nasal allergies and 
atopy [113].

Environmental tobacco smoke: Exposure to environmental tobacco smoke 
(ETS) may increase the risk of asthma in susceptible individuals. Interactions 
between genetic factors in the chromosomal region containing the CD14 gene and 
BHR and asthma were first identified in 200 families with asthmatic parents from 
the Netherlands when exposed to ETS [114]. A subsequent study of Puerto Rican 
and Mexican families showed that asthmatics with CD14 + 1437GG or GC geno-
types exposed to ETS had mean FEV1 that was lower by 8.6% predicted, compared 
to non-exposed [115]. In addition, asthmatics with the CD14 −159TT genotype 
exposed to ETS had lower serum IgE levels. The mechanism for this interaction 
could involve exposure to endotoxin found in cigarettes or other ligands of the 
TLR4 pattern recognition receptor complex. Gender differences may also exist in 
response to tobacco smoke. Girls whose mothers had smoked during pregnancy or 
whose parents had asthma had lower mean soluble CD14 levels [116].

Gene–gene interactions: A recent study in 788 asthmatic Korean children 
reported significantly greater BHR in individuals with risk alleles of both TNFα 
(−308 G/A) and CD14 (−159 T/C) [117]. It is known that endotoxin-stimulated 
TNFα production can be modulated by the numbers of CD14+ cells and the level of 
CD14 expression on immune and inflammatory cells [118–120]. This data suggests 
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that there might be some synergistic effect between these two risk alleles on BHR 
and other genes (LTα genes) near TNFα may also be involved as there is extensive 
LD in that region [121]. Physiologically linked gene–gene interactions need to be 
considered when attempting to assess the role of any one genetic variant in disease 
pathogenesis.

Thus, the case of CD14 clearly illustrates that in addition to rigorous study 
design (adequate power, relevant genes in a pathway, haplotypes of polymorphisms 
within each gene and relevant phenotypes), genetic studies should ideally include 
environmental exposure measures to detect gene–environment interaction, and 
intermediate phenotypes to demonstrate the functionality of the polymorphisms in 
their population (Fig. 1). While the study of environmental exposure is equally 
important as genomics in understanding the pathogenesis of asthma, accurate meas-
urement of exposure is a relatively difficult task. Various approaches have 
employed, including self-reported exposure (e.g., to farm animals or ETS), 

Fig. 1 Approach to understanding gene–environment interaction in asthma and allergy. To under-
stand the biological importance of CD14 in asthma and allergy, studies should examine interac-
tions between gene and phenotype (genetic epidemiology), environment and phenotype 
(environmental epidemiology), and all three factors (global epidemiology). Supporting evidence 
from these studies would help to identify causal pathways that lead to the development of asthma 
and allergy, in genetically susceptible individuals exposed to environmental risk factors. (from 
Ref. [150], with permission)
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 correlation with epidemiological data (e.g., concurrent measurement of house dust 
 endotoxin) and controlled exposure in the laboratory (e.g., to air pollutants [122]). 
Many studies have observed positive associations of specific genetic polymor-
phisms with differential response to environmental factors in asthma and other 
respiratory phenotypes [106, 123]. More sophisticated measurements of the effects 
of environmental exposure are required to bring the environmental side of gene–
environment interaction ‘up to speed’ with advances in molecular profiling.

Combination Approaches: Positional Candidate 
and Expression Studies

A hybrid of the two approaches described previously is the selection of candi-
date genes based on their function and/or on their position within a genetic 
region previously linked to the disease. A good example of the ‘positional can-
didate’ approach is the identification of the SOCS5 gene as a potential candidate 
gene responsible for linkage to BHR susceptibility on chromosome 2p in 364 
asthmatic families[124].

A genome-wide scan of European, Australian and USA families with two asth-
matic siblings identified nine chromosomal regions with suggestive linkage to 
asthma and related traits. Further genotyping to refine three regions of linkage to 
BHR showed strong linkage (LOD score 4.58) to a region on chromosome 2p that 
overlapped with a marker (D2S2298) that was previously reported to be linked to 
BHR in a genome-wide scan of 97 German families [125, 126]. The region of link-
age was 12.2 Mb in size and contained approximately 75 genes; rather than continue 
with comprehensive analysis of the region, SOCS5 (suppressor of cytokine signal-
ling 5; GeneID: 9655, MIM: 607094) was selected as an interesting candidate 
because SOCS proteins are implicated in the control of the balance of Th1 and Th2 
cells [127] and SOCS5 is a specific inhibitor of IL-4 signalling [128]. As further 
supporting evidence for SOCS5 as a potential candidate gene, a transgenic murine 
model of allergic conjunctivitis has shown that with constitutive expression of 
SOCS5 there is reduced eosinophil infiltration [129]. The confirmation of SOCS5 
as an asthma susceptibility gene awaits further studies.

While this linkage study design is sound and a reasonable candidate gene 
choice has been made to reduce the considerable work required to narrow a large 
linkage region of DNA to one single gene to test for association with the disease. 
It clearly identifies the difficulties facing researchers in identifying the causal 
genes under a peak of linkage. Without further high-resolution association analy-
sis to further narrow the genetic region carrying the risk allele, researchers can 
only pursue potential candidate genes based on limited current knowledge rather 
than directly identifying the causal gene by hypothesis-independent approaches. 
With the advent of the first WGA studies in asthma, this combined approach may 
become less prevalent.
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Another combination approach is to select potential candidate genes on the basis 
of their differential expression in diseased versus normal tissue [130–132]. An 
excellent example of this is the gene encoding tenascin-C (TNC), located in a region 
of the genome previously linked with asthma [126] and those mRNA expression was 
found to be up-regulated in bronchial epithelial cells in a Th2 cytokine environment 
[133]. A subsequent case–control study by Matsuda et al. [134] has shown association 
of TNC polymorphisms with asthma susceptibility. It will not be uncommon in the 
near future to combine whole gene expression micro-array and WGA data sets in 
order to elucidate the roles of specific polymorphisms on gene expression in com-
plex disease states [135, 136].

Considerations for Candidate Gene Study Design

A genetic association study design should follow established epidemiological 
principles in order to have sufficient statistical power to successfully determine 
any genetic influence on a complex disease. Epidemiological study design 
can be defined by four terms: what is the biological plausibility of an associa-
tion, its consistency over different populations, the strength of the association 
across any sub-group analysis and the existence of a dose–response relation-
ship. The application and adaptation of these considerations to the field of 
genetic case–control studies have been extensively reviewed in the literature 
[29, 137–140].

It is crucial that study design strongly adheres to these adapted epidemiological 
principles to avoid association by random chance alone. The Bonferroni probability 
value adjustment for multiple independent tests corrects for the effect of performing 
multiple statistical comparisons that could generate false-positive associations. 
Approaches to control for multiple testing should be applied to all candidate gene 
association analyses as association with a single candidate SNP can involve numer-
ous comparisons with asthma-related phenotypes and hence inflate the probability 
of type I error.

A candidate gene is chosen by examining the evidence from its role in biological 
pathways relevant to the disease and from animal disease models. Paradoxically, 
this is also one of the limitations of the method. As gene choice is based on current 
knowledge and understanding of the disease, genes that are not considered relevant 
now may be found to be important by whole genome-wide association in the near 
future. Also, genetic association studies do not necessarily discover the causal locus 
but a significant association with a genetic variant will narrow the region to search 
for further understanding of disease pathogenesis or aetiology. Disease-associated 
genetic variants within genes discovered by genetic epidemiology can then be 
examined by molecular biological and biochemical experimentation to determine if 
that variant is the causal loci.

Mendelian disease studies have shown that variants with the highest risk are 
mostly coding variants (non-synonymous and premature stop codon) that have a 
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direct functional effect on the gene product. In prioritising polymorphism choice, 
researchers should consider the merits of intelligent SNP choice by covering 
regions that may have a possible role in the control of gene expression, splicing, 
protein function and RNA stability. Mapping haplotypes of the candidate gene 
with haplotype tagging SNPs (htSNPs) will reduce the practical costs of genotyp-
ing numerous SNPs in a region to mark for every possible haplotype and increase 
the strength of any potential association. In order for the htSNPs to be maximally 
informative, bio-informatical searches of haplotype data (such as HAPMAP 
[141], www.hapmap.org) and/or pilot genotyping studies are required to ascertain 
haplotype patterns in the study population. LD between SNPs in one haplotype 
may not be the same in different populations; replication of an association using 
htSNPs may require the genotyping of additional htSNPs to provide informative 
haplotypes across populations.

A case–control study design is generally used for candidate gene analysis. 
Retrospective case–control studies are more prevalent as the alternative pro-
spective collection of individuals is rather more time-consuming and therefore 
costly. Unfortunately, this outweighs the benefit of a more suitable control 
selection method that the prospective study design offers. There will be little or 
no population stratification due to control selection in a prospective control 
group as all the samples were collected at the same time before disease onset, 
followed up and then sub-divided at a specific time point. A retrospective con-
trol group may be ‘seeded’ with individuals that may go on to develop the 
disease, this potential heterogeneity within controls could mask any association 
with a disease-causing genetic variant. In candidate gene analysis, the control 
selection must be further defined by matching individuals to the cases and per-
forming qualitative and quantitative phenotype measurements to control for any 
confounding factors.

All case–control studies should have adequate statistical power to correctly 
detect a genuine association. If there is insufficient power in a study to detect an 
association, this will lead to a possible false-negative result (type II error). A priori, 
power calculations should be performed before starting a genetic association study 
and realistic power probabilities should be set (generally 80%). Statistical power 
calculations will estimate the required sample size to correctly reject the null 
hypothesis (i.e. no difference between cases and controls).

In a complex disease like asthma, it is important to carefully define the disease 
phenotype used in an association study. A binomial category such as “affected/
unaffected” may not be the most effective phenotype to test. Asthma is a broad 
spectrum disorder with a range of interactions including age of onset, severity, 
atopy, abnormal lung function and environment that contribute unequally and in 
combination to the full disease phenotype. Fortunately, most of these ‘intermedi-
ate’ phenotypes can be quantitatively measured, providing a more informative 
and statistically powerful measurement of disease status to test for association. 
Appropriate phenotype definition and standardisation can be considered to be the 
most critical stage in the design of complex disease candidate gene association 
studies.
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Whole-Genome Association Studies

The advances of the Human Genome Project and the International HapMap Project 
[141] in cataloguing and mapping the extent of human genetic variation and the 
availability of new genotyping methodologies providing high throughput with low 
cost per genotype call has given rise to the possibility of genome-wide association 
studies in complex genetic diseases. In these case-control studies, array-based tech-
nology is used to genotype SNPs or copy number variations across the genome. 
Recent results from large disease genetics consortia utilizing WGA Technology 
have provided exciting gene discovery results for genetic susceptibility to chronic 
diseases. For example, the Wellcome Trust Case Control Consortium studied 
∼2,000 cases in seven chronic diseases and a shared set of ∼3,000 controls, and 
discovered genes associated with bipolar disorder, coronary artery disease, Crohn’s 
disease, rheumatoid arthritis, and type I and type II diabetes mellitus, with p values 
< 5 × 10−7 [142] High-density SNP arrays scale up genetic association studies to the 
whole genome level and combine the advantages of association studies over posi-
tional cloning in families (greater statistical power for a given number of subjects, 
easier cohort recruitment) with a hypothesis-independent, whole genome approach. 
The examples provided by the WTCC study together with recent publications for 
obesity [143], diabetes [144, 145] and breast cancer [146, 147] demonstrate that 
this approach can be applied successfully to the identification of complex disease 
genes. The first WGA study of asthma has already identified a novel gene of 
unknown function; several SNPs were found to regulate ORMDL3 expression and 
contribute to the risk of childhood asthma [135] (see Table 2). The next few years 
will likely see the publication of landmark whole-genome association studies in the 
field of asthma.

Conclusions

The number of novel asthma genes being identified is increasing rapidly and is 
likely to accelerate with the advent of the whole-genome association study era. 
Polymorphism in genes such as ADAM33, GPRA and ORMDL3 results in 
increased disease susceptibility and points to a critical role for these gene’s prod-
ucts in the development of asthma. However, while genetic studies are undoubtedly 
increasing our basic understanding of asthma pathophysiology, it is only the begin-
ning. Validation and replication need to be addressed alongside further molecular 
genetic studies to help identify the precise genetic polymorphism that is modifying 
gene expression or function as opposed to those that are merely in LD with the 
causal SNOften the gene identified may be completely novel and cellular/molecular 
biology studies will be needed to understand the role the encoded protein plays in 
the disease and to define genotype/phenotype correlations. By using cohorts with 
information available on environmental exposures, it may be possible to define how 
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the genes product may interact with the environment to cause disease. Eventually, 
the knowledge of the gene’s role in disease pathogenesis may make the develop-
ment of novel therapeutics possible, the ultimate goal for research into the genetics 
of asthma. We wait with anticipation for the first genomics-derived novel therapy 
for asthma.
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Introduction

Atopic disorders, such as asthma, eczema and rhinitis, develop due to the interactions 
between genetic and environmental factors. Atopy is characterized by enhanced 
immunoglobulin E (IgE) responses to environmental antigens. There is much 
evidence to indicate that asthma and atopy are inheritable diseases. Many survey 
studies have suggested that certain genes are involved in onset of allergic diseases. 
Since the pathology of asthma and atopy is not simple, it is suggested that many 
genes are involved in the onset of asthma and atopy. There are two ways to identify 
causative genes for certain diseases, namely positional cloning and functional clon-
ing. Using these techniques, many genes such as the b-subunit of the high-affinity 
IgE receptor (FcεR1 β)-chain gene [1], interleukin-4 receptor α (IL-4Rα) chain-
gene [2, 3], IL-4 gene, IL-13 gene [4], β2 adrenergic receptor (ADR b 2) gene [5] 
and a disintegrin and metalloproteinase (ADAM33) gene [6] have been cloned as 
candidate causative genes for asthma and atopy.

In this chapter, we review the genetic predisposition and genes related to the 
development of asthma and atopy.

Genetic Predisposition to the Development 
of Asthma and Atopy

There is good evidence to indicate that asthma is a heritable disease. A number of 
studies have shown an increased prevalence of asthma and the phenotype associated 
with asthma among the offspring of subjects with asthma compared to the offspring 
of subjects without asthma [7].
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Numerous studies of twins have demonstrated that concordance rates for asthma, 
eczema and hay fever are all substantially higher for monozygotic than for dizy-
gotic twins, suggesting a strong genetic contribution. In population-based studies 
of twins, the estimated effect of genetic factors is about 35% to 70%, depending on 
the population and the design of the study [7].

In this chapter, we show two of our studies [8, 9] for genetic predisposition in 
the development of asthma and atopy. In the first study, a questionnaire was distrib-
uted in March 1991 to children younger than 16 years of age who were attending 
kindergarten, elementary or junior high school in two Japanese cities, namely Gifu, 
with a temperate climate, and Itoman (Okinawa), with a subtropical climate. The 

Table 1 Genetic and environmental factors in relation to any allergic diseases 
as analyzed by multiple logistic regression

Relative risk (95% confidence interval)

Independent Variables Gifu Itoman

Family history
No 1 1
Yes 3.58 (2.17–5.91)* 4.22 (2.91–6.12)*

Sex
Male 1 1
Female 0.93 (0.69–1.27) 0.60 (0.45–0.79)

Age (years)
0–3 1.72 (0.87–3.40) 0.70 (0.27–1.82)
4–6 1.47 (0.93–2.31) 0.80 (0.44–1.46)
7–9 1.30 (0.81–2.07) 1.10 (0.75–1.62)
10–12 1.15 (0.71–1.85) 1.06 (0.72–1.56)
13–15 1 1

Structure of house
Made of wood 1 1
Made of reinforced concrete 1.22 (0.87–1.72) 1.15 (0.75–1.78)
Apartment house 1.27 (0.66–2.42) 0.94 (0.60–1.48)

Flooring
Wooden floor 1 1
Tatami 0.98 (0.64–1.49) 1.91 (1.08–3.38)**

Carpet on tatami 1.17 (0.79–1.72) 1.65 (0.75–3.63)
Carpet on wooden floor 2.00 (1.17–3.42)** 1.71 (0.91–3.23)

Pets
No 1 1
Yes 0.88 (0.62–1.23) 0.81 (0.58–1.14)

*P< .01; 
**P< .05
n=1,243 (Gifu), 1,953 (Itoman)
Source: Ref [8]
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Table 2 Number of children with neither, one, or both parents atopic

Group of children Total

Parents atopic

Neither One Both One+both

Atopic children 256 54(21) 131(51) 71(28) 202(79)
Control children 222 130(59) 81(36) 11(5) 92(41)

Figures in parentheses represent percentage. X 2=72.3; p<0.01
Source: Ref. [9]

number of subjects analyzed was 1,243 in Gifu and 1,953 in Itoman. Multiple 
logistic regression analysis was performed using SAS (SAS Institute, Cary, NC, 
USA). Multiple logistic regression analysis showed that in both cities, children of 
families with a history of allergy had a significantly higher risk (relative risk, 3.58 
and 4.22 for Gifu and Itoman, respectively) of contracting an allergic disease (Table 1) 
and bronchial asthma (except in Gifu).

In the second study, 256 children who had allergic diseases, including asthma, 
allergic rhinitis and atopic dermatitis, aged 6 months to 15 years (mean 4.7 
years), were selected and they were studied along with their family members. As 
a control group, 222 children without allergic disease, aged 4 months to 15 years 
(mean 3.4 years) were similarly assessed. Of the 256 children who had allergic 
diseases, 202 (79%) were found to have a positive family history, in contrast with 
92 of 222 (41%) children without allergic disease (Table 2). There was a signifi-
cant difference between the atopic children and control children in terms of fam-
ily history.

These results show that there is a genetic accumulation in the development of 
allergic disorders and asthma. Therefore, the development of allergic disorders and 
asthma is correlated with some genes. We think that multiple causative genes, but 
not a single gene, are involved, because there are multiple pathogeneses of allergic 
reactions.

Genes Related to the Development of Asthma and Atopy

Many candidate genes related to the development of asthma and atopy have been 
reported, and different genes may be involved in different ethnic groups [7]. 
Among more than 100 genes by candidate gene association studies, 79 have 
been associated with an asthma or atopy-related phenotype in two or more inde-
pendent study samples (Fig. 1) [10]. This figure shows that the genes are associated 
with asthma or atopy phenotypes in at least one published study. Next, we 
review the several genes related to the development of asthma and atopy in 
accordance with the various stages of allergic reaction and development of 
asthma and atopy.
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Fig. 1 Genes associated with asthma or atopy phenotypes in at least one published study. Genes are 
ordered according to their location on the chromosomes. Genes that have been associated in only one 
population are separated into those without any replication studies reported in the literature and those 
with subsequent studies that did not replicate the association (numbers in parentheses denote the 
number of subsequent studies). Genes identified by positional cloning studies are underlined [10]
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HLA Genes and Asthma

The HLA genes have been reported to be associated with bronchial asthma [11]. 
Moreover, the relation between the severity of childhood asthma and HLA type has 
been reported [12].

Genetic Variation of the Cytokine Signalings in Atopy, 
Enhanced IgE Production

The production of IgE is upregulated by Th2 cytokines, in particular, IL-4, and is 
downregulated by Th1 cytokines, in particular, interferon-g (IFN-g). Interleukin 
-12 (IL-12) and IL-18 are the important cytokines that induce IFN-g and down-
regulate IgE production (Fig. 2) [13]. In this section, we review the genetic vari-
ation of the cytokine signalings in atopy and enhanced IgE production.

Fig. 2 The Th1 and Th2 lymphocyte balance and upregulation and downregulation of IgE pro-
duction. IL, interleukin; DH, delayed-type hypersensitivity; IFN, interferon; APC, antigen-pre-
senting cell; HLA, human leukocyte antigen; TCR,T cell receptor; Baso, basophils; Mast, Mast 
cells; Eo, eosinophils [13] 
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Genes Related to the Upregulation of IgE Production 
in Asthma and Atopy

Serum IgE levels of atopic children were plotted against serum IgE levels of their 
parents (Fig. 3) and a good correlation was found (p<0.016) [9]. Therefore, this indi-
cates that IgE production shows genetic accumulation. Several linkage analyses and 
mutations for candidate genes of atopy (i.e., enhanced IgE production) have been 
reported. In 1989, Cookson et al. [14] reported a linkage between IgE responses 
underlying asthma and rhinitis and chromosome 11q. Moreover, Shirakawa et al. 
(1994) [1] reported that a common variant of Fc e RI b on chromosome 11, Ile 181 
Leu within the 4th transmembrane domain, shows significant association with posi-
tive IgE responses. Several associations have been noted between atopy and genes on 
the chromosome 5 cytokine cluster, including IL-4.

IL-4 and IL-13 Signalings and Atopy

Human IL-4 operates through the IL-4R and thereby signal transducer and activator of 
transcription 6 (Stat6) activation. Mice deficient in Stat6 or the IL-4R a chain lack IgE 
production and Th2 inflammatory reactions. IL-4R a is therefore a crucial component 
required for IL-4 binding and signal transduction. An Ile50Val (numbering for mature 
peptide) variant of human IL-4R a has been identified. In 1998, Mitsuyasu et al. [3] 
reported that the Ile 50 Val variant of IL-4R a chain upregulates IgE synthesis and is 
associated with atopic asthma. Ile50 is associated with atopic asthma but not with non-
atopic asthma; Ile50 is specifically and significantly associated with raised total serum 
IgE levels and mite-specific IgE. The association with atopy was especially strong in 
children [3].The data from both the mouse and human cell lines strongly suggest that the 

Fig. 3 Relationship between serum total IgE levels of atopic children and the IgE levels of their 
parents (the highest IgE level of two spouses was used). Children older than 6 years were selected. 
P<0.016 [9]
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Ile50 variant of IL-4R a significantly upregulates receptor response to IL-4, with result-
ant increased activation of Stat6, and hence increased cell proliferation and increased IgE 
production. Moreover, Shirakawa et al. [4] noted genetic variants of IL-13.

Genes Related to the Downregulaion of IgE Production 
in Asthma and Atopy

In this section, the genetic defects in the downregulation (brake) of IgE production 
especially, in terms of IL-12 and IL-18 signalings, are discussed. We found that 
reduced IFN-g production by peripheral blood mononuclear cells (PBMC) following 
stimulation with IL-12 or IL-18 is associated with the heterozygous IL-12 receptor 
b 2 (IL-12R b 2) chain gene or IL-18 receptor a (IL-18R a) chain gene mutations 
in atopic subjects [15, 16].

IL-12 Signaling and Atopy

IL-12, which is produced by activated antigen-presenting cells, is a cytokine that 
consists of two disulfide-linked subunits, p35 and p40. IL-12 plays a central role in 
promoting Th1-type immune responses and thus cell-mediated immunity. IL-12 also 
induces IFN-g production by T lymphocytes and NK cells. The receptor for IL-12 
(IL-12R) is composed of two distinct subunits, b 1 and b 2 (Fig. 4) [13, 17, 18]. 
Although the b 2 chain of the IL-12R is expressed only in Th1 lymphocytes, the b 1 
chain is expressed in both Th1 and Th2 lymphocytes [19]. IL-12R b 1 chain does not 
contain any cytoplasmic tyrosine residues, whereas the cytoplasmic region of IL-12R 
b 2 chain contains three tyrosine residues. This suggests that the b 2 subunit plays an 

Fig. 4 Interleukin(IL)-12 signaling. TYK2, tyrosine kinase 2; JAK2, Janus Kinase 2; STAT4, 
signal transducers and activators of transcription 4; IFN, ineterferon [13]
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important role in IL-12 signal transduction. IL-12 induces activation of specific mem-
bers of the signal transducers and activators of transcription (Stat) family of transcrip-
tion factors and it has been shown that Stat4-deficient mice manifest impaired 
production of IFN-g and the phenotype of the IL-12-p40-deficient mouse is similar to 
that of the Stat4-deficient mouse [20, 21]. Therefore, Stat4 is particularly important. 
IL-12 induces rapid tyrosine phosphorylation of Stat4 and the formation of nuclear 
complexes capable of binding to DNA sequences, such as the Stat4-binding site [20, 
22]. Tyrosine kinase 2 (Tyk2) is a nonreceptor tyrosine kinase. It was also reported 
that homozygous Tyk2 mutation caused the hyper-IgE syndrome [23].

We examined the production of IFN-g in PBMC of atopic patients and healthy 
controls following stimulation with IL-12 or IL-18. [15, 16] The PBMC of nonat-
opic healthy controls showed adequate IFN-g production following stimulation with 
either IL-12 or IL-18. Although the concentrations of IFN-g in IL-18-stimulated 
PBMC were correlated with those of IL-12-stimulated PBMC in atopic patients, 
there were cases showing different responses to IL-12 and IL-18. The production of 
IFN-g following stimulation with IL-12 (or IL-18) was poor, but IL-18 (or IL-12) 
stimulation elicited detectable IFN-g production in some atopic patients. The discrep-
ancy in IFN-g production following stimulation of IL-12 or IL-18 suggests a disturbance 
in the IL-12 or IL-18 signal cascade in these patients.

It was shown that homozygous nonsense mutation of the IL-12R b 1 chain gene 
resulted in impairment of immunity against Salmonella and mycobacteria [24]. 
Moreover, IL-12R b 1 knockout mice showed impaired development of Th1 [25]. In a 
previous study [15], sequence analysis of the cDNA of IL-12R b 2 revealed three types 
of distinct genetic mutations (2496 del 91, 1577 A to G (R313G), 2799 A to G (H720R) ) 
in some atopic patients (Fig. 5) [18]. Reduced production of IFN-g by PBMC following 
stimulation with IL-12, but not IL-18, is associated with heterozygous IL-12R b 2 chain 
cDNA mutations in atopic subjects. In these atopic patients, a heterozygous IL-12R b 2 
chain cDNA mutation results in decreased tyrosine phosphorylation of Stat4 and subse-
quently reduced production of IFN-g following stimulation with IL-12. Such reduced 
production of IFN-g could cause insufficient suppression of accelerated IgE production 
in B lymphocytes by IL-4, resulting in the elevation of serum IgE levels. The 2496 del 
91 mutation of IL-12R b 2, which is found all over the transmembrane portion, causes 
premature termination. The heterozygous missense mutations, 1577 A to G (R313G) and 
2799 A to G (H720R), may lead to changes in the conformational structure. Moreover, 
these heterozygous mutations may play a role via a dominant negative effect. At least, 
these patients with heterozygous mutations of IL-12R b 2 chain cDNA have not 
exhibited impairment of immunity against Salmonella and mycobacteria.

The balance between IFN-g-producing Th1 lymphocytes and proallergic Th2 lym-
phocytes is important. Heterozyous mutations of IL-12 b 1 or b 2 may result in impair-
ment of the downregulation (brake) of IgE production, whereas homozygous mutations 
of IL-12 b 1 or b 2 may lead to an obvious impairment of Th1-type cell-mediated 
immunity in addition to impairment of the downregulation of IgE production. The 
results of our study [15] indicate that atopic diseases are caused, in part, by impairment 
of the IL-12 signal cascade, which downregulates IgE production, and that the muta-
tion of the IL-12 b 2 chain gene is one of the causative genes for atopy.
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IL-18 Signaling and Atopy

A variety of biological functions have been associated with human IL-18, including 
the induction of the proliferation of activated T lymphocytes, enhancement of NK 
cytotoxity, induction of the production of IFN-g and granulocyte-macrophage col-
ony stimulating factor (GM-CSF), and promotion of a Th1 response. The activity 
of IL-18 is via an IL–18R complex. This IL–18R complex is composed of a binding 
chain termed IL-18R a, a member of the IL-1R family previously identified as the 
IL-1R-related proteins, and a signaling chain, also a member of the IL-1R family. 
The IL–18R complex recruits the IL-1R-activating kinase and tumor necrosis factor 
(TNF)-associated factor 6, which phosphorylates nuclear factor (NF)-κB-inducing 
kinase, with subsequent activation of NF-κB [26–28].

The IL-18R a chain cDNA of atopic patients was sequenced [16]. We identified 
a three-base deletion of the IL-18R a chain cDNA (950delCAG), which was gener-
ated by alternative splicing, as determined on the basis of genomic sequence data 
for the IL-18R a chain gene (Fig. 6). PBMC with the predominant expression of 
950delCAG significantly showed reduced IFN-g production after IL-18 stimula-
tion. There was a significant difference in the expression pattern of the IL-18R a 
chain transcript between atopic patients and nonatopic controls. According to these 
results, the dominant expression of the 950delCAG transcript of IL-18R a chain 
cDNA, which was associated with reduced IFN-g production following IL-18 
stimulation and high serum IgE levels, is predisposed to some atopic diseases.

Fig. 5 Interleukin (IL)-12 signaling and mutations of IL-12 receptor β (IL-12Rβ) 2 chain gene. R, 
arginine; G, glycine; H, histidine; Y, tyrosine TYK2, tyrosine kinase 2, JAK2, Janus Kinase 2; 
STAT 4, signal transducers and activators of transcription 4. (2451 C to T : by RNA editing) [18]
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Fig. 6 Interleukin(IL)-18 signaling and 950delCAG in IL-18 receptor α (IL-18Rα) chain CDNA. 
IL-18Rα, IL-18Rβ ,IL-18 receptor α and β chains, respectively; lkk lκbα kinases; NF-κB, nuclear 
factor-κB; TRAF-6, tumor necrosis factor receptor-associated factor 6; IRAK, IL-1 receptor-
associated kinase
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IFN-gR1 Chain and Atopy

We identified a novel heterozygous single-nucleotide substitution 1400 T to C (Leu 
467 Pro) in the seventh exon of the IFN-g receptor 1 (IFN-g R1) chain gene [29]. 
This substitution was detected in six of the 89 allergic patients, but not in 72 nonal-
lergic subjects. There was a difference in the Leu 467 Pro frequency between aller-
gic and nonallergic subjects (p<0.05). Serum IgE levels of allergic patients with 
Leu 467 Pro were higher than those of nonallergic subjects (p<0.001). These results 
suggest that Leu 467 Pro in the IFN-g R1 chain gene is one of candidate susceptibil-
ity genes for atopic diseases.

Genetic Variation of the Mediators and Other Molecules 
in Asthma and Atopy

LTC4S and Asthma

The locus of leukotriene C4 synthase (LTC4S) is on chromosome 5q35 and has been 
associated with allergic diseases on the basis of a genome-wide search. Cysteiny1 
leukotrienes (cysLTs) play important roles in asthma and can mediate bronchial 
smooth muscle constriction and increase mucous secretion, vascular permeability, 
and cellular infiltration [30, 31]. LTC4S converts LTA4 to LTC4 by conjugation to 
reduced glutathione. A single-nucleotide promoter polymorphis (A-444C) in LTC4S 
has been associated with aspirin-sensitive asthma in Polish patients [32], although 
recent studies found no association between this promoter polymorphism and aspirin-
sensitive asthma [33]. Very recently, we reported that a novel single-nucleotide sub-
stitution 10G>A (Glu 4 Lys) in LTC4S was associated with asthma [34].

nNOS and Asthma

Nitric oxide (NO) is produced by a group of enzymes referred to as nitric oxide syn-
thase: endothelial (eNOS), neuronal (nNOS) and inducible NOS (iNOS). The associa-
tion of some nNOS marker with asthma or related phenotypes has been reported [35].

Genetic Defects in Target Organs in Asthma and Atopy

ADRb2 and Asthma

There was no relation between ADRβ2 polymorphisms and asthma prevalence, 
but the Gly-16 variant was apparently associated with a more severe form of 
asthma [5]. Subsequently, Turki et al. [36] reported that the Gly-16 allele was 
found more frequently among subjects with nocturnal asthma than among 
nonnocturnal asthmatics.
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ADAM33 and Asthma

Van Eerdewegh and Holgate et al. [6], performed a genome-wide scan on 460 
Caucasian families and identified a locus on chromosome 20p13 that was linked to 
asthma (log

10
 of the likelihood ratio (LOD), 2.94) and bronchial hyperresponsive-

ness (LOD, 3.93). A survey of 135 polymorphisms in 23 genes identified the 
ADAM33 gene as being significantly associated with asthma using case–control, 
transmission disequilibrium, and haplotype analyses (P=0.04–0.000003). ADAM 
proteins are membrane-anchored metalloproteases with diverse functions, which 
include the shedding of cell-surface proteins such as cytokines and cytokine receptors. 
The identification and characterization of ADAM33, a putative asthma susceptibility 
gene identified by positional cloning in an outbred population, should provide 
insights into the pathogenesis and natural history of this common disease.

Genetic Classification of Atopy

Based on many reports and our results, we present a new genetic classification of 
atopy on Table 3 [13]. There are four categories of genes that control the expression 
of allergic disorders, which include (i) antigen recognition, (ii) IgE production 
(downregulation = brake, and upregulation), (iii) the production and release of 
meditors, and (iv) events on target organs. In the near future, this genetic classification 
will facilitate the development of tailor-made (personalized) treatment.

Table 3 A new genetic classification of atopy and genes

Classification

(1) Antigen-presenting
HLA-Pep-TCR
CD14
IL-10
TGFβ1 etc

(2) IgE production
Downregulation (of IgE production)

IL-12Rβ2
IL-18Rα
IFN-γR1
TNF etc

Upregulation (of IgE production)
IL-4Rα
IL-4
IL-13
VDJ-Cε
FcεRIβ etc

(3) Mediators production
LTC4 synthase
TBXA2R

(4) Target organ
β2 adrenergic R
ADAM33 etc

Genes etc.
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Genetic and Molecular Regulation
of b2-Adrenergic Receptors

Ian Sayers and Ian P. Hall

Introduction

β
2
-adrenergic receptor agonists are bronchodilators used extensively in the treatment 

of asthma and other respiratory conditions associated with airflow limitation and 
obstruction. Both short-acting β

2
-adrenergic receptor agonists (SABA; e.g., salbuta-

mol) and long-acting β
2
-adrenergic receptor agonists (LABA; e.g., formoterol) have 

been developed for acute relief from disease exacerbation or maintenance therapy, 
respectively. 

The pharmacological target of β
2
-adrenergic receptor agonists is the β

2
-adrenergic 

receptor, a G-protein coupled receptor (GPCR) expressed on multiple cell types in 
the airways and systemically. In this chapter, we focus on the genetic and molecular 
mechanisms that regulate the expression and activity of this important drug target 
in the context of respiratory disease.

b2-Adrenergic Receptor Structure and Expression

The human β
2
-adrenergic receptor gene (ADRB2) has been localised to chromosome 

5q31–33 and cDNA sequencing identified a 413 amino acid protein with an approxi-
mate molecular weight of 46.5 kDa [1]. Analyses identified seven clusters of hydro-
phobic amino acids in concordance with the classical GPCR structure [1]. Like all 
GPCR proteins, the β

2
-adrenergic receptor has three extracellular loops with an 

amino-terminus and three intracellular loops with a carboxy-terminus (Fig. 1).
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The β
2
-adrenergic receptor is found on several important cell types in the 

airways including airway smooth muscle (ASM) cells, mast cells and epithelial 
cells [2–4]. Expression of β

2
-adrenergic receptors on peripheral blood mononu-

clear cells (PBMCs) has also been used as a marker of pulmonary β
2
-adrenergic 

receptor expression [5], however expression of the β
2
-adrenergic receptor on 

the PBMCs is ∼700–750 receptors/cell compared to 30,000–40,000 on human 
ASM cells.

In vivo measurements of pulmonary β
2
-adrenergic receptor expression using 

position emission topography (PET) have been completed [6,7]. These data 
demonstrated that the β

2
-adrenergic receptor density was 10.3±1.8 pmole/g tissue 

in an asthma group (n = 10) and 10.9±1.9 pmole/g tissue in the control group 
(n = 30) i.e., not different [6]. Interestingly there was also an inverse relationship 
between forced expiratory volume in 1 second (FEV

1
) and pulmonary β

2
-adrenergic 

receptor density in the asthma group [6]. These data suggest that pulmonary 
β

2
-adrenergic expression maybe directly related to lung function parameters of 

clinical relevance in asthma.

Cytoplasmic 

Extracellular 

NH2

NH2
R16G

Q27E

V34M

T164I

HOOC 

COOH
R19C

5’ leader cistron  

Fig. 1 The structure of the human β
2
-adrenergic receptor. Non-synonymous coding polymor-

phisms are shown in blue (see Table 1). The key amino acids involved in β
2
-adrenergic receptor 

agonist binding (residues Asp113, Ser203, Ser204, Ser207 and Asn293) [8–11] are shown in red. 
Putative sites of phosphorylation by protein kinase A (PKA) (orange) and β

2
-adrenergic receptor 

kinase (β
2
-ARK) (green) [15]. Glycosylation sites at residues 6, 15 and 187 are also illustrated 

[20] and the palmitylated residue Cys 341, which anchors the carboxy terminus to the membrane 
is shown (pink) [21]. The 5′ leader cistron including the Arg19Cys polymorphism is shown
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Agonist Interactions, Receptor Activation and Downstream 
Signaling Events

Site-directed mutagenesis studies have identified the key agonist contact residues 
within the β

2
-adrenergic receptor (Fig. 1, [8–11]) and these interactions have been 

modelled for multiple β
2
-adrenergic receptor agonists and antagonists [12]. The key 

amino acids involved in β
2
-adrenergic receptor agonist binding include residue 

Asp113 in the third transmembrane domain, which interacts with the amine group 
of agonists [8]. Serines 203, 204 and 207 in the fifth transmembrane domain have 
been shown to interact with the phenyl ring of catecholamines [9,10] and Asn 393 
in the six transmembrane domain interacts with the β-hydroxyl group of 
β

2
-adrenergic receptor agonists [11]. The positioning of the Asn 393 residue makes 

this contact only accessible to the R-enantiomers of agonists such as isoprenaline, 
explaining the stereoisomer-specific effects of R- vs. S-enantiomers of these com-
pounds. The manner in which a specific β

2
-adrenergic receptor agonist interacts 

with the receptor is dependent on the molecular structure of the agonist, e.g., short-
acting agonists including salbutamol access the active site of the receptor directly 
due to their hydrophilic properties whereas long-acting agonists including salme-
terol are taken into the cell membrane prior to interaction with the active site due 
to lipophilic properties. 

Following agonist binding, the receptor adopts a conformation that promotes 
coupling to heterotrimeric G proteins, particularly Gαs. While still not clearly 
defined, this is thought to involve the second intracellular loop, the third intracel-
lular loop and the cytoplasmic tail [13]. This coupling results in activation of ade-
nylyl cyclase and the generation of cyclic AMP (cAMP) from ATP. Elevated cAMP 
activates cAMP-dependent protein kinase A (PKA), which then phosphorylates 
various membrane and intracellular proteins that result in, for example, smooth 
muscle relaxation. Key proteins that are phosphorylated by PKA include Gαq-
coupled receptors, phospholipase C, inisitol 1,4,5-triphosphate receptor (IP

3
R) and 

myosin light chain kinase (MLCK). These events have the combined effect of 
diminishing the contractile responses of the cell. In addition to the initiation of 
cAMP-dependent pathways following β

2
-adrenergic receptor activation, other path-

ways including stimulation of the mitogen-activated protein (MAP) kinase pathway 
via a Gαi, non-receptor kinase cSRc and G protein RaS mechanism have been 
described [14].

b2-Adrenergic Receptor Desensitisation, Sequestration 
and Down-regulation

Following β
2
-adrenergic receptor activation, there is a mechanism of desensitisation, 

which acts to regulate the activity of the receptor. Several mechanisms contribute 
to this loss of receptor activity including uncoupling of the receptor from adenylyl 
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cyclase activity, internalisation of the receptor and phosphorylation of internalised 
receptors. Agonist-induced phosphorylation of the β

2
-adrenergic receptor occurs in 

the third intracellular loop, leading to decreased coupling of the receptor to Gαs 
and subsequent adenylyl cyclase activity and desensitisation. G-protein coupled 
receptor kinases (GRKs) phosphorylate several serine and threonine residues in the 
β

2
-adrenergic receptor cytoplasmic tail. The consensus β

2
-adrenergic receptor pro-

tein kinase phosphorlayion sites have been confirmed by site-directed mutagenesis 
(Fig. 1, [15]). Serines 261, 262, 345 and 346 were identified as the putative PKA 
phosphorlayion sites and mutation to Ala was associated with a reduced desensiti-
sation following agonist exposure [15]. Similarly, mutation of 11 serines and thre-
onines constituting the potential β

2
-adrenergic receptor kinase (β

2
-ARK) sites in the 

carboxy tail resulted in a similar phenotype to the PKA variants for the mutant cell 
line versus wild type although the magnitude of effect was greater (Fig. 1, [15]). 
More recently, it has been shown that the kinetics of PKA- and GRK-mediated 
phosphorylation of β

2
-adrenergic receptor residues 262 and 355, 356, respectively, 

are distinct and differentially affected by endocytosis [16]. It was also demonstrated 
that receptor dephosphorylation can occur at the plasma membrane or in internal 
compartments [16]. β-Arrestins bind to the phosphorylated receptor and mediate 
uncoupling by recruiting other proteins.

Following longer exposure to β
2
-adrenergic receptor agonist, receptors are 

internalised or sequestered and are then dephosphorylated [17]. Sequestration 
and receptor cycling takes longer to recover from than uncoupling and therefore 
may be a critical determinant of responsiveness to β

2
-adrenergic receptor agonists. 

Further exposure to β
2
-adrenergic receptor agonist results in the net loss of 

receptors, termed down-regulation, which occurs via mechanisms that are 
independent of receptor phosphorylation. Ubiquitination of the β

2
-adrenergic 

receptor via a β-arrestin/E3 ubiquitin ligase Mdm2 mechanism targets the recep-
tor for degradation and is thought to contribute to the net loss of surface receptor 
expression [18]. Multiple studies have demonstrated in vivo desensitisation 
of β

2
-adrenergic receptor agonist responses following prior administration of 

β
2
-adrenergic receptor agonist, e.g., in a study of eight normal subjects, Turki 

and colleagues demonstrated that prior in vivo administration of metaproternol 
led to a decrease in β

2
-adrenergic receptor expression (70% reduction) and 

decreased maximal cAMP responses to isoprenaline (48%) in ex vivo airway 
epithelium cells [19].

Other Post-translational Mechanisms Influencing Human 
b2-Adrenergic Receptor Function

The β
2
-adrenergic receptor is N-glycosylated at amino terminal residues 6, 15 and 

extracellular loop 2 residue 187 (Fig. 1, [20]). Using a recombinant Chinese 
Hamster Fibrobast (CHW) model, it was shown that residue 187 glycosylation is 
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essential for long-term agonist promoted down-regulation. Mutation of Asn 187 to 
Gln resulted in the failure of the β

2
-adrenergic receptor to enter the lysosomal 

degradation pathway [20]. Residue Cys 341 of the human β
2
-adrenergic receptor is 

palmitoylated and is thought to act as an anchor, attaching the carboxy terminus to 
the membrane forming a fourth intracellular loop (Fig. 1). Mutation of Cys 341 to 
Gly resulted in a non-palmitoylated form of the receptor expressed in CHW cells 
that had reduced Gαs coupling and adenylyl cyclase activity in response to isopre-
naline [21]. These data therefore demonstrate that post-translational modifications 
including glycosylation, palmitoylation and phosphorylation (see earlier) have key 
regulatory roles in β

2
-adrenergic receptor function.

The ADRB2 Promoter, the 5′ Leader Cistron 
and 3′-Untranslated Region

The human ADRB2 gene is located on chromosome 5q31–33 and is intronless [1, 22]. 
The 1,239-bp open reading frame (ORF) encodes for the 413 amino acids of the 
mature protein. Within the β

2
-adrenergic receptor mRNA, a 5′ leader cistron (5′LC) 

encoding a short 19 amino acid peptide has been identified (Fig. 1 and 2, [1]). 
Mutation of the initiation codon of this short ORF leads to an increase of the murine 
β

2
-adrenergic receptor expression by 1.9-fold in the absence of an increase in levels 

of mRNA in a COS-7 recombinant system [23]. Similarly, truncation of this inhibitory 
peptide leads to increased β

2
-adrenergic receptor expression and a synthetic peptide 

corresponding to the 5′LC was able to inhibit β
2
-adrenergic receptor translation 

[23]. These data demonstrate that the 5′ leader cistron is a key regulatory mechanism 
determining the translation level of the β

2
-adrenergic receptor.

The transcriptional initiation sites for the human ADRB2 gene have been mapped 
to between positions −150 to −172 in a human epidermoid carcinoma cell line, 
A431 (Fig. 2, [24]). We have previously confirmed this ADRB2 transcription initiation 
region in primary human ASM cells (Hall et al., unpublished). These data suggest 
that the human ADRB2 gene has transcription initiation close to the translation 
initiation codon, which in contrast to several other GPCRs, e.g., H1 histamine and 
CysLTR1 receptors, which we have investigated that have a complex series of 
5′-untranslated exons and distal transcription initiation site(s) [25,26]. In addition 
to the 5′LC, within the promoter region of the ADRB2 gene is a potential ORF that 
would generate a protein of 251 amino acid residues (Fig. 2). To date, the functional 
significance of this transcript has not been explored. Within the ADRB2 promoter 
are many consensus transcription factor binding sequences that suggest that tran-
scriptional regulation of the ADRB2 gene may have a key role in regulating 
β

2
-adrenergic receptor expression and function. In particular, consensus binding 

sites including cAMP response elements (CRE) and glucocorticoid receptor ele-
ments (GRE) have been identified (Fig. 2). Interestingly, the presence of the CRE 
binding sites suggests that the ADRB2 gene can auto-regulate expression of the 
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β
2
-adrenergic receptor via a transcriptional mechanism. It has been confirmed that 

cAMP can induce transcription of the β
2
-adrenergic receptor by three- to four-fold 

in response to 100 nM epinephrine for 30 min [27]. The level of β
2
-adrenergic 

receptor mRNA was dependent on agonist exposure time and correlated with surface 
receptor expression [27]. Using promoter–reporter constructs, this transcriptional 

Fig. 2 Representation of the human ADRB2 promoter region. Approximately 1,000 bp of the 
promoter region is shown, numbering represents bps relative to + 1 ATG. The position of the 
5′Leader cistron is shown, which encodes for a 19 amino acid peptide [1]. The intitiation codon 
and stop codon of a potential ORF are shown. Polymorphic variation in the region is shown in 
blue (see Table 1). The identified transcription initiation sites (orange), a potential glucocorticoid 
response element (GRE) site (WGTYCT, red) and TATA/CAAT box locations are also shown 
(from [24]). Additional putative transcriptional sites (CRE, AP-1, SP-1) were identified using 
TFSEARCH (http://www.cbrc.jp/research/db/TFSEARCH.html)
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regulation was shown to be contained within the first 300 bp of the promoter region 
and predicted to utilise the CRE site at −58 (relative to transcription initiation) [27]. 
Subsequent site-directed mutagenesis of the CRE site between −57 to −51 (relative 
to transcription) confirmed the role of this site in cAMP-mediated β

2
-adrenergic 

receptor transcription in response to forskolin, which directly activates adenylyl 
cyclase [28]. Similarly, it has been demonstrated that glucocorticoids can increase 
β

2
-adrenergic receptor transcription in human lung tissue [29]. Dexamethasone 

treatment of human lung tissue lead to an increase in β
2
-adrenergic receptor mRNA 

(detected at 15 min) and surface receptor expression (maximal between 17 and 24 h) 
[29]. These effects were shown to be glucocorticoid receptor (GR) dependent using 
the GR antagonist RU-38486 [29]. β

2
-Adrenergic receptor mRNA stability was not 

effected by dexamethasone, suggesting a transcriptional mechanism potentially 
utilising the GRE sites described (Fig. 2, [29]). The findings that β

2
-adrenergic 

receptor activation can auto-regulate the transcriptional activity of the ADRB2 gene 
and that glucocorticoids can increase ADRB2 gene transcription have clinical impli-
cations [30]. Combined therapy using corticosteroids and LABA has shown greater 
improvements in clinical outcome measures than monotherapy [31]. These obser-
vations may, at least in part, be explained by the synergistic effects of glucocorti-
coids preventing β

2
-adrenergic receptor down-regulation by increasing transcription 

of the ADRB2 gene as described. Additionally, it has been demonstrated that 
LABA, e.g., salmeterol, can increase GR nuclear translocation and GRE-mediated 
transcription in epithelial cells [32, 33].

mRNA stability has also been identified as a key regulatory mechanism for the 
expression of the β

2
-adrenergic receptor. Transfection experiments in HEK293 cells 

involving cDNA encoding human β
2
-adrenergic receptor with and without the 

5′UTR, 3′UTR or ORF suggested a key role for the 3′region in isoprenaline-mediated 
effects on mRNA expression [34]. Using gel shift assays, the key 3′ sequence 
(UAAUAUAUU) was identified at 329–337 in the UTR and fusion of this sequence 
to a the 3′ region of a β-globin gene construct led to agonist-induced destabilisation 
of β-globin mRNA [34]. Interestingly, it has also been shown that sequence motifs 
in the ADRB2 3′region influence β

2
-adrenergic receptor translation by targeting 

mRNA towards the non-polysomal fractions within the cell [35]. In a recombinant 
CHO transfection system, the 5′LC and 3′UTR of the β

2
-adrenergic receptor gene 

were shown to be additive in translational suppression of β
2
-adrenergic receptor 

expression [35].
Overall, these data demonstrate the molecular regulation of human β

2
-adrenergic 

receptor expression and function is complex and involves multiple mechanisms 
including transcription, mRNA stability, translation and post-translational control.

Polymorphic Variation in the ADRB2 Gene

The ADRB2 gene is intronless and therefore is thought to span ∼3 kb on chromo-
some 5q31–33. Initial mutation screening of DNA from 107 individuals (51 with 



212 I. Sayers and I.P. Hall

asthma, 56 controls) using a combination of temperature-gradient gel electrophoresis 
(TGGE) and direct sequencing identified nine polymorphisms within the ADRB2 
coding region [36]. These single nucleotide polymorphisms (SNPs) included four 
non-synonymous polymorphisms: Gly16Arg, Gln27Glu, Val34Met and Thr164Ile 
(Fig. 1, [36]). The frequency of the position 16 and 27 polymorphism was found 
to be Arg16/Gly (59)%, Gln27/Glu (29)% in the Caucasian population [36]. The 
Val34Met and Thr164Ile polymorphisms are rare, with approximate frequencies 
of <0.001% and 0.05%, respectively [36]. Multiple subsequent studies have iden-
tified further polymorphic variants in the ADRB2 gene including an Arg19Cys 
polymorphism in the 5′LC [37] and −20T/C, −47T/C, −367T/C, −468C/G, 
−654G/A, −1023G/A, −1343 and −1429T/A polymorphisms in the promoter 
region [38] (Fig. 2, Table 1). More recently, an extensive mutation screen of 
5.3 kbp of the ADRB2 region in both Caucasian (n = 419) and African American 
(n = 240) populations has been completed identifying 49 polymorphic variants 
[39]. In addition to the SNPs identified, a poly(C)

9–15
 simple sequence length 

polymorphism was also identified in the 3′-region of the ADRB2 gene [39], which 
may potentially have a role in determining mRNA transcript stability and/or 
translation (see earlier). It is noteworthy to comment that several of these poly-
morphisms have high frequencies (0.20–0.48) in the Caucasian and other popula-
tions and therefore may be expected to have a significant impact at the population 
level if functional (Table 1). Therefore the ADRB2 gene is highly polymorphic 
and polymorphism may be predicted to influence β

2
-adrenergic receptor expres-

sion and function (Table 1).

Functional Effect of b
2
-Adrenergic Receptor Gene 

Polymorphism In Vitro

Investigations have predominantly focussed on determining the effect of coding 
region polymorphism on β

2
-adrenergic receptor function using relevant in vitro 

outcome measures including surface receptor expression and cAMP production 
post β

2
-adrenergic receptor agonist stimulation (Table 2). Early work utilised a 

recombinant Chinese Hamster Fibroblast cell line expressing the human 
β

2
-adrenergic receptor variants [40, 41]. Cell lines expressing the position 16 

and 27 β
2
-adrenergic receptor variants demonstrated that these polymorphisms 

did not influence agonist binding or cAMP responses. However an enhanced 
agonist-mediated receptor down-regulation for the Gly16 variant and a resist-
ance to down-regulation for the Glu27 variant were observed [41]. Using the 
same recombinant system, the Thr164Ile variant receptor produced reduced 
adenylate cyclase activity and agonist binding [40]. These data were confirmed 
using a variety of agonists and a 50% reduction in duration of action for the 
LABA salmeterol was identified [42]. The authors interpreted these findings by 
suggesting that salmeterol shows reduced exocite binding in the Ile164 variant 
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receptor (Table 2, Fig. 1). Using a recombinant COS-7 system, it was shown 
that the Cys19Arg 5′LC resulted in reduced receptor expression in line with the 
previously identified role of the 5′LC in determining translation efficiency [37]. 
Most of the observations made in recombinant systems have now been repli-
cated using genotyped primary cells including human ASM cells (Table 2). 
However, a greater acute and chronic desensitisation was observed for the 
Glu27 in contrast to the recombinant data [43] and polymorphism at the posi-
tion 16, 27 and 5′LC 19 in PBMC appears to have little effect on β

2
-adrenergic 

receptor expression and cAMP production post β
2
-adrenergic receptor agonist 

[44]. The discrepancies observed for the recombinant expression systems ver-
sus primary cells are probably due to cell-specific effects and the investigation 
of SNPs in isolation rather than in haplotypes, i.e., combinations of SNPs span-
ning the gene (see later).

The ADRB2 promoter is highly polymorphic with 22 SNPs with a minor 
allele frequency (MAF) >0.05 in the first 4 kbp (Table 1). Transcriptional regu-
lation of β

2
-adrenergic receptor expression has been shown to have key role in 

determining basal and inducible receptor expression (see earlier); therefore it 
may be predicted that promoter polymorphism may influence this regulation. 
Preliminary analyses of a 549 bp ADRB2 promoter-luciferase construct 
 containing the −468G, −367C, −47C, −20C (GCCC) haplotype versus a “wild-
type” CTTT construct demonstrated a modest 17% reduction in luciferase 
activity for the mutant construct when transfected into COS-7 cells [38]. In 
agreement, a subsequent study demonstrated that the (−468G, −376C, −47C, 
−20T, GCCT) and CTCT haplotypes had a three-fold lower level of transcrip-
tion compared to the CTTT haplotype in HEK293 cells [45]. The −47 polymor-
phism (T > C) generates the variant 5′LC (Cys19 > Arg) (Table 1, [37]) and the 
C allele resulted in reduced luciferase activity [45] in excellent agreement with 
data suggesting that this allele resulted in reduced receptor expression [37]. 
Overall these promoter analyses suggested that the expression level was 
dependent on the promoter polymorphism haplotypes present but that the −47 
SNP had a prominent role in determining the level of expression [45]. 
Interestingly, it has been shown that the −47 Cys19Arg polymorphism also 
influences the ability of dexamethasone to reverse short-term and long-term 
desensitisation in primary Human ASM [46]. Recently, an alternative approach 
to understanding the potential functional role of ADRB2 promoter polymor-
phism has been completed by synthesising short oligonucleotides encompass-
ing the promoter SNP alleles and examining electrophoretic mobility shift 
profiles using ASM and epithelial cell (BEAS-2B) extracts [47]. In all, 19 poly-
morphisms were examined and allelic differences in nuclear extract binding 
suggested that many polymorphisms resulted in alterations in binding for both 
minor and major alleles. In ASM, 10 polymorphisms decreased, two increased 
and five showed no change in nuclear extract binding. Interestingly there was 
only ∼50% concordance in results obtained from ASM and epithelial cells dem-
onstrating that cell specific effects are of importance [47].
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Functional Effect of b
2
-Adrenergic Receptor Gene 

Polymorphism In Vivo

Due to the low frequency of the 34 and 164 coding region variants, most clinical 
studies of the effect of β

2
-adrenergic receptor polymorphism on β

2
-adrenergic 

receptor agonist responses have focussed on the position 16 and 27 polymor-
phisms (Table 2). In the vasculature, the Arg16 variant was associated with an 
enhanced isoprenaline-mediated desensitisation and enhanced isoprenaline-
induced venodilation in healthy subjects [48]. The Glu27 variant was associated 
with increased agonist-mediated responsiveness [48]. The enhanced response to 
β

2
-adrenergic receptor agonist in Arg16 carriers has also been observed in respi-

ratory disease. In a longitudinal study of 269 unselected children, the short-acting 
β-agonist salbutamol (180 μg) gave an enhanced acute response (>15.3% increase 
in predicted FEV

1
 considered a positive response) in individuals carrying the 

Arg16 genotype [49]. Individuals homozygous for Arg16 were 5.3 times more 
likely to show a positive response vs. homozygous Gly16 individuals. Heterozygous 
Gly/Arg individuals were 2.3 times more likely to show a positive response vs. 
homozygous Gly16 individuals [49]. The Arg16 variant was found to be in 97.8% 
linkage disequilibrium with the Gln27 polymorphism (inherited together on the 
same chromosome) prohibiting the identification of the true causative polymor-
phism [49]. Multiple subsequent studies have been completed correlating patient 
response to β

2
-adrenergic receptor agonists based on position 16 and 27 

β
2
-adrenergic receptor polymorphism genotypes [50–56]. Limited conclusions 

have been made due to the heterogeneity of subjects studied (e.g., asthma sever-
ity), the small numbers used in some studies, which were analysed retrospec-
tively, the use of different β

2
-adrenergic receptor agonists (SABA and LABA) and 

the potential confounding effect of examining SNPs in isolation. In a prospective 
study of mild asthma subjects recruited specifically for position 16 genotypes 
(Gly/Gly, n = 41; Arg/Arg, n = 37), the effect of genotype on clinical outcomes 
(primary outcome morning peak expiratory flow rate (PEFR) ) following regular 
scheduled or as needed salbutamol usage was assessed [57]. During the run-in 
period, when salbutamol was used at a minimal level, Arg/Arg had a significant 
increase in PEFR (23 l/min) whereas the Gly/Gly did not (2 l/min). During treat-
ment, subjects with the Gly/Gly genotype had an increase in PEFR following 
regular scheduled salbutamol versus placebo (14 l/min). Carriers of the Arg/Arg 
genotype had a lower PEFR during treatment versus the placebo arm of the study 
when salbutamol use was minimal (−10 l/min). These data suggested that carriers 
of Arg/Arg had increased response (PEFR) to low-level salbutamol during the 
run-in period, but regular salbutamol is detrimental to asthma control and led to 
a decrease in PEFR. The use of regular salbutamol led to a worsening of all clini-
cal endpoints including FEV

1
 symptoms and relief medication usage in the Arg/

Arg group [57]. Overall, the Arg16 variant has been associated with an enhanced 
acute response to β

2
-adrenergic receptor agonists [48,49,53]; decline of asthma 

control following prolonged use of agonist [54,55,57] and a subsensitivity of 
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response for bronchoprotection [56]. These findings remain controversial as other 
studies have not shown a genotype effect on asthma control or acute responses 
[51,52]. The Gly16 variant has been shown to increase agonist-mediated desen-
sitisation [50] and down-regulation [58] compared to the Arg16 variant. Data 
examining the position 27 polymorphism have shown no effect on acute responses 
to salbutamol [49] or asthma control [51] or formoterol-mediated protection from 
methacholine-induced bronchconstriction [52]. While most studies have exam-
ined the pharmacogenetic effect of β

2
-adrenergic receptor polymorphism on 

SABAs, more recently the effect on the LABA salmeterol has been explored [59]. 
This study used data from two trials. One trial examined the effect of taking 
LABA with inhaled corticosteroids (ICS) and the second trial the effect without 
ICS. In both datasets, individuals with the Arg/Arg polymorphism had a reduced 
therapeutic response compared to Gly/Gly individuals once salmeterol treatment 
was initiated, e.g., in the absence of ICS the PEFR was 51.4 l/min lower in the 
Arg/Arg (n = 13) vs. Gly/Gly (n = 13) groups [59]. These data confirm that regu-
lar use of β

2
-adrenergic receptor agonist (SABA and LABA) in Arg/Arg individu-

als may lead to reduced clinical benefit and potentially adverse effects in asthma 
control.

ADRB2 Linkage Disequilibrium and Allele Frequencies 
in Different Ethnic Groups

While analyses in vitro and in vivo using single SNP markers, e.g., Gly16Arg, have 
been informative, the polymorphic nature of the ADRB2 gene prohibits conclusions 
regarding the identification of the functional/causative SNPs as SNPs can occur on 
the same haplotype background. The human HapMap project has been established 
in order to determine the relationship between polymorphic variations spanning the 
genome and can be used as a tool to examine the relationship between SNPs span-
ning a specific gene, i.e., determine the extent to which these alleles are inherited 
together. Figure 3 shows a linkage disequilibrium (LD) plot of the ADRB2 region 
on chromosome 5 in the Caucasian population. These data illustrate that there is a 
high degree of LD spanning the ADRB2 gene and in particular the coding and 5′ 
regions (high red colour (D’/LOD) ). Therefore it may be expected that with the 
Gly16 > Arg variant, multiple promoter polymorphisms will also be inherited, sug-
gesting that it may be a combination of polymorphisms including the coding region 
and promoter that ultimately lead to the in vivo effects described previously. This 
high LD pattern is apparent by simply examining the allele frequency of the ADRB2 
promoter and coding region SNPs. It can be seen that predominantly in the 
Caucasian population, a MAF of ∼0.4–0.45 is observed (Table 1). In order to 
directly address this issue, Drysdale and colleagues completed a study of β-agonist 
responses stratified based on patient ADRB2 haplotypes [60]. Twelve haplotypes 
were identified using 13 SNP markers in the four main ethnic groups. There were 
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clear effects on acute responses (improvement in FEV
1
) to salbutamol based on 

haplotype, e.g., haplotype 2/2 had a greater acute response compared to haplotype 
4/4, although the number of individuals studied was small [60]. These two haplo-
types differ at eight of the 13 SNPs analysed, suggesting that identification of the 
causative mechanism for these altered responses will be a challenge. Interestingly, 
in PBMC, no effect of ADRB2 haplotypes (based on four SNPs, one promoter and 
three coding region) was apparent on basal β

2
 adrenergic receptor expression or 

coupling [44]. Studies examining the effect of promoter polymorphism have also 
used haplotype analyses (see earlier). Therefore, there is extensive evidence that 
polymorphism within the ADRB2 gene influences β

2
 adrenergic receptor responses, 

however the precise molecular basis of this phenomenon remains to be resolved.
While the majority of clinical studies to date examining the effect of β

2
 adrenergic 

receptor polymorphism on clinical responses to β
2
 adrenergic receptor agonists have 

used Caucasian subjects, it is increasingly apparent that key ADRB2 polymorphism 
allele (and haplotype) frequencies differ significantly between ethnic groups and 
therefore these groups may be expected to have different pharmacogenetic profiles. 
Allele frequencies for the common polymorphisms spanning the ADRB2 gene are 
shown for representative Caucasian, African and Asian populations (Table 1). These 
data illustrate that for several known functional polymorphisms, e.g., 5′LC 

Fig. 3 Linkage disequilibrium plot of the ADRB2 region in the Caucasian population. The figure 
represents chromosome 5:148,175,861–148,194,864 and was generated using Haploview 
Software (HapMap, Build 36). The intensity of shading represents D’/LOD (a measure of linkage 
disequilibrium). The location of the ADRB2 coding region is shown (Block 1) including the posi-
tion of non-synonymous polymorphism; rs1042713 (Gly16Arg), rs1042714 (Gln27Glu) and 
rs1800888 (Thr164Ile)
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Cys19Arg, there are significant differences in allele frequencies, i.e., 0.40, 0.12 and 
0.05 for Caucasian, African and Asian populations, respectively (Table 1). Recently, 
the outcomes of the Salmeterol Multicentre Asthma Research Trial (SMART) have 
been published, which involved the assessment of 26,355 subjects [61]. This study 
of salmeterol use for 28 weeks was a multi-centre, randomized, double blind, paral-
lel group, placebo-controlled design at 6,163 sites in the United States [61]. Interim 
analyses demonstrated that there was a significant increase in respiratory related 
deaths (24 vs. 11, relative risk (RR) 2.16 (95% confidence interval (CI) 1.06 to 4.41)) 
and asthma-related deaths (13 vs. 3, RR 4.37 (95% CI 1.25 to 15.34)) in the salm-
eterol versus placebo group. Of particular relevance was the finding that adverse 
effects were disproportionately high in the African American population, which at 
this time remains to be resolved but may at least in part be due to genetic factors.

Disease Association Studies

Polymorphism within the ADRB2 gene has been investigated extensively as disease 
severity and/or susceptibility markers. Diseases examined include asthma, chronic 
obstructive pulmonary disorder (COPD), obesity, atherosclerosis, Graves disease 
and hypertension with variable evidence for and against association. With respect 
to asthma susceptibility, there has now been two meta-analyses examining the 
contribution of the Gly16Arg and Gln27Glu polymorphism to asthma relative risk. 
In a meta-analysis including data from 28 previously published studies, it was 
shown that neither the β

2
 adrenergic receptor position 16 or 27 polymorphism 

contributes to asthma susceptibility per se, however there was an association 
between the Gly16 variant and nocturnal asthma Odds Ratio (OR 2.20) and with 
asthma severity (OR 1.42) [62]. No association was seen for the Glu27 allele and 
neither polymorphism showed an association with Bronchial Hyper Responsiveness 
BHR [62]. Interestingly, in an alternative meta-analysis, it was shown that the 
Gly16 polymorphism was protective for asthma in children (OR 0.53) and the Glu/
Glu genotype had a decreased risk of asthma (OR 0.60) [63]. We have recently 
completed a genetic association study of the key ADRB2 polymorphisms (includ-
ing Gly16Arg, Gln27Glu and Thr164Ile) in asthma using approximately 8,000 
subjects from the 1958 birth cohort [64]. These data suggested that it is unlikely 
that ADRB2 polymorphisms increase the risk of developing asthma; however, the 
Arg16 and Glu27 alleles may influence disease progression [64].

Summary

The importance of the β
2
 adrenergic receptor as a drug target for the treatment of 

respiratory conditions associated with airflow limitation and obstruction is likely 
to remain significant. Indeed a new generation of once daily, LABAs are currently 
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in development for the treatment of asthma and COPD, e.g., Indacaterol [65]. In 
this chapter, we have described the complexity of molecular mechanisms that 
regulate β

2
 adrenergic receptor expression and function and highlighted the many 

levels of regulation including transcriptional, translational and post-translational. 
Similarly, the β

2
 adrenergic receptor gene is highly polymorphic and data so far 

suggest that these polymorphisms add an additional level of regulation to these 
already complex molecular processes. A greater understanding of the molecular 
and genetic mechanisms regulating the ADRB2 locus will lead to the design of 
safer, more effective therapies that target the β

2
 adrenergic receptor for the treatment 

of respiratory disease.
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Genetics of Hypersensitivity

John W. Steinke

Introduction

Over 100 years have passed since it was first recognized that asthma and allergic 
diseases have a genetic component. The genetic involvement was suggested from 
observations that allergic subjects had a higher incidence of positive family histories 
of disease when compared to families without disease [1, 2]. More recent studies have 
shown that a child has a 33% chance of developing allergies if one parent has allergies 
and a 70% chance if both parents are allergic. Evidence for linkage to asthma is not 
as robust, as there is only a 15% chance of a child developing asthma if one parent 
has the disease. While the concept of allergic disorders having a familial predisposi-
tion has been recognized, defining the genetic mechanism has proven more challen-
ging. It is now accepted that allergies and asthma are not only complex genetic 
disorders, defined as disorders that have numerous contributing genes, each having 
variable degrees of involvement in any given individual, but also multi-factorial in 
origin, involving interaction of genetic and environmental factors. Environmental 
exposures include allergen exposure, second hand cigarette smoke, pollutants, low 
birth weight and infectious agents. This review will first discuss gene association 
studies and explore some of the problems associated with them. The focus will then 
shift towards the future of genetic studies in asthma and allergy including pharmaco-
genetics, gene-environmental interactions, gene–gene interactions and epigenetics.

Genome-Wide Screens, Association Studies and Candidate Genes

The classic genetic approach to identifying disease-causing genes involves linkage 
studies followed by positional cloning. Positional cloning makes use of the pres-
ence of highly polymorphic genetic markers whose position on a chromosome is 
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known. Markers close to the disease gene will be statistically co-inherited with the 
disease when multiple families are analyzed. This process is labor intensive even 
with the utilization of today’s molecular biology techniques. Completion of the 
human genome project has allowed access to the map of the human genome in an 
area where linkage has been established and a list of the genes localized to that 
chromosomal region obtained. The linkage analysis is repeated to determine 
whether mutations either in one of the genes in the adjacent regions contribute to 
the development of allergies and asthma. Often candidate genes can be identified 
within a linkage region; however, the function of many of the genes identified 
through the human genome project is not known. It is likely that these unknown 
genes may provide insight into the asthmatic and atopic disease processes, as they 
will focus attention on pathways not previously implicated in disease progression.

Over the past decade, more than 18 genome-wide screens utilizing a variety of 
intermediate phenotypes have been published [3–5]. One of the earliest genome-
wide searches for asthma genes was performed using linkage analyses on a very 
limited number of polymorphic DNA markers to allergen-specific IgE and high total 
serum IgE. Linkage to chromosome 11q was found in association with maternal – 
but not paternal – phenotype [6]. Though this study did not directly demonstrate this, 
analysis of 11q showed that this marker mapped close to the gene for the b chain of 
the high affinity IgE receptor. While the a and g chains of the high affinity IgE recep-
tor are sufficient for sending signals to the cell for activation, the b chain acts as an 
amplification mechanism for this signaling pathway and permits mast cell activation 
in the presence of fewer cross-linked IgE molecules. These authors have suggested 
that base exchanges in the cytoplasmic region of the b-chain may be the location of 
the disease-causing mutations. Significance of the linkage to chromosome 11 has 
been controversial, as it has been replicated in some studies, while several other 
groups have not been able to confirm this linkage. The National Heart, Lung, and 
Blood Institute funded a multi-center Collaborative Study on the Genetics of Asthma 
(CSGA). Their initial genome screen involved three racial groups (African-
Americans, Caucasians, and Hispanics) [7] and in follow-up studies, this group has 
reported information on individuals of Hutterite ancestry [4]. Together, these studies 
uncovered ~15 separate promising linkages, including some in previously unsus-
pected regions of the human genome. Several of these linkages have been confirmed 
by other investigators in separate populations. These include a locus on chromosome 
2 near the IL-1 cluster that contains the genes for CD28 and CTLA-4 and the major 
histocompatibility complex on chromosome 6. Not surprisingly, the chromosome 5 
cytokine gene cluster that includes the genes for IL-3, IL-4, IL-5, IL-9, IL-13, 
GM-CSF and leukotriene C4 synthase has been linked to allergies and asthma. 
Genome-wide searches have also supported the presence of potential allergy and 
asthma genes on chromosome 12 in association with interferon-g and stat-6.

To date, six genes have been identified using positional cloning. To illustrate the 
partial success of these studies we will consider the identification of ADAM33. 
A genome-wide scan, performed on 460 families, identified a relatively strong linkage 
of asthma and bronchial hyperresponsiveness to markers on chromosome 20p13. 
A subsequent survey of 135 polymorphisms in 23 genes within this region identified 
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the ADAM33 gene as being significantly associated with asthma using both asso-
ciation and transmission disequilibrium analyses [8]. This linkage was initially 
confirmed in two separate genome-screens in UK and US outbred populations [9, 
10] and a polymorphism within the gene has been associated specifically with an 
accelerated decline in lung function [11]. Now more than 10 separate studies have 
confirmed linkage of this gene to asthma though, as common in genetic studies, a 
few have failed to replicate this association. ADAM33 is a protease with multiple 
isoforms that is active at the cell surface and is part of the matrix metalloproteinase 
family. Its role in asthma is speculative but expression of this protein on airway 
fibroblasts, myofibroblasts and smooth muscle cells may alter the response of 
lymphocytes and inflammatory cells by proteolytic release of cytokines and 
chemokines from precursor molecules that influence cell migration. It might also 
alter growth factor expression and remodeling responses in the basement membrane 
to damaged epithelium and smooth muscle of the airway [12].

Whole genome screens are difficult to perform and can be difficult to interpret. 
As a result, many have adopted the approach of using candidate gene studies to look 
for the presence of association with asthma and atopy. Candidate genes include the 
numerous biochemical products known to be abnormally regulated or otherwise 
function inappropriately that lead to allergies and asthma or influence the severity of 
disease. Candidate gene studies are performed by aggressively studying a narrow 
region of the genome with numerous polymorphic markers which saturate the region 
of interest in a fashion that would not be practical with a genome wide scan [13].

Two examples of genes will be presented that have been replicated in many studies 
and represent the best examples of well-characterized genes involved in asthma. CD14 
is a receptor that has specificity for lipopolysaccharides and other bacterial wall-de-
rived components and it is constitutively expressed on the surface of monocytes, 
macrophages and neutrophils. CD14 can also exist as a soluble receptor via direct 
secretion or by enzymatic cleavage of the membrane anchored CD14. Engagement of 
CD14 is associated with strong IL-12 responses in antigen-presenting cells and is a 
necessary signal in the formation of Th1 cells from naïve T cells [14]. One hypothesis 
is that changes in CD14 levels could change the ratio of Th1- to Th2-type cells, alter-
ing IgE levels. A C-to-T transition at position –260 (initially incorrectly labeled as 
position –159) of the CD14 promoter in relation to the transcription start site was 
found. Individuals homozygous for the T allele were found to have higher sCD14 in 
the serum and lower total IgE levels in skin-prick test-positive children [15]. The functional 
role of this polymorphism was further investigated. Members of the Sp transcription 
factor family bound to the promoter and the affinity of binding was lower for promot-
ers containing the T allele. Using reporter assays, it was found that transcription from 
promoters containing the T allele was higher than constructs containing the C allele, 
and that was dependent on the ratio of Sp3 to Sp1 and Sp2 [16]. The IL-13 locus has 
been one of the most-replicated candidate genes in association with asthma and atopy, 
with more than 70 reported SNPs in the gene and promoter region [17]. IL-13 is 
homologous to IL-4 and shares many of the same biological activities on mononuclear 
phagocytic cells, endothelial cells, epithelial cells and B cells, but due to differential 
expression of the IL-13 receptors, IL-13 has unique properties distinct from IL-4. Like 
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IL-4, IL-13 can induce the IgE isotype switch and VCAM-1 expression. IL-13 can 
induce eosinophilic inflammation, and may be uniquely important in inducing mucus 
cell hypersecretion, airway fibrosis and airway hyperreactivity (reviewed in [18]). Two 
SNPs have consistently shown associations with disease in multiple studies: a C-to-T 
exchange at position –1112 of the promoter and a G-to-A at position + 2044 of the 
gene. In a Dutch family study, the –1112T allele was associated with asthma, bronchial 
hyperresponsiveness and skin-test reactivity [19]. Functional studies demonstrated that 
the C allele at –1112 displayed 30% higher transcriptional activity as compared to the 
T allele in nonpolarized CD4 + T cells. When primary CD4 + Th2 lymphocytes were 
examined promoters with the T allele had higher activity. Examination at the molecu-
lar level, found that the T allele created a YY1 transcription factor binding site that 
may function to relieve repression of the normal STAT6 activity on this promoter [20]. 
Several studies have shown an association of the + 2044A allele and increased IgE 
levels [21, 22]. The polymorphism results in a non-conservative replacement of the 
basic amino acid arginine (Arg)130 with a neutral amino acid glutamine (Gln) in the 
IL-13 protein. Using recombinant proteins, the two forms of the IL-13 protein did not 
differ in binding affinity to the IL-13Ra1 type receptor, but the Gln130 protein bound 
to the IL-13Ra2 with lower affinity and was more stable in the extracellular environ-
ment [23]. The increased stability may result in higher levels of circulating IL-13 levels 
in individuals with the Gln130 protein, leading to the observed associations of IL-13 
and asthma and atopy.

Pharmacogenetics

Pharmacogenetics is defined as the study of variation in drug response or efficacy 
due, in part, to genetic differences between individuals. It is hoped that genetic 
variations in drug target genes can be used to predict clinical responsiveness to 
treatment or the risk of adverse drug reactions in patients before treatment is 
started. Data from these types of studies are already being utilized for azathioprine 
therapy and tumor profiling in oncology. Pharmacogenetics represents the first 
area where genetic information concerning the allergic response will likely be 
used in the clinical setting. However, despite the promise, few pharmacogenetic 
studies have actually been performed in allergic disease. This is due to many 
reasons including an unwillingness on the part of pharmaceutical companies to 
pursue such studies, a lack of funding from the government and what is perceived 
as non-life-threatening responses to the current drugs. All new drug proposals 
should be required to include a section on pharmacogenetic analysis.

One of the first pharmacogenetic studies was performed by Malmstrom et al. 
who examined the response of individuals with asthma to the inhaled corticosteroid 
beclomethasone or the leukotriene modifier montelukast [24]. A wide spectrum 
of inter-individual responses to each drug was observed as measured by changes 
in FEV

1 
from baseline. Of the patients receiving beclomethasone, 22% failed to 

show improvement in FEV
1
, while 34% receiving montelukast failed to show 
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improvements in FEV
1
 [24]. Recent studies have offered some insight on the 

variable responses to inhaled corticosteroids. In three independent caucasian asth-
matic clinical trial populations (each with more than 300 participants), variation 
in the corticotropin-releasing hormone receptor 1 (CRHR1) gene was associated 
with increased response to inhaled corticosteroids [25]. Individuals homozygous 
for the GAT haplotype displayed a doubling to quadrupling of longitudinal FEV

1
 

response following treatment with corticosteroids as compared to individuals 
without the GAT haplotype [26]. An additive effect of the haplotype was observed 
as individuals heterozygous showed intermediate improvement compared to 
those homozygous with or without the GAT haplotype.

There have been numerous studies examining genes that are involved in arachidonic 
acid metabolism and cysteinyl leukotriene production that may explain the variation in 
response to leukotriene modifiers. Polymorphisms have been reported in the promoters 
of the 5-lipoxygenase (5-LO) and leukotriene C4 synthase (LTC

4
S) genes and the cod-

ing regions of the cysteinyl leukotriene receptor type (CysLT) 1 and 2 genes. In the 
5-LO promoter, there are variations in the number of binding sites for the transcription 
factors Sp1 and Egr-1 [27, 28]. The most common and active allele consists of five 
tandem Sp1-binding motifs with variants having deletions or additions to the number of 
Sp1-binding motifs [27]. In a controlled trial of the 5-LO inhibitor zileuton, patients 
with at least one allele containing five Sp1-binding motifs, had an 18.8% improvement 
in FEV

1
 compared to a 1.1% decline in FEV

1
 in individuals in whom neither allele 

contained the five repeats [29]. Despite the functional effect and changes in clinical 
responsiveness to a leukotriene modifier, the polymorphisms are present in 5% of asth-
matic patients and can only account for a small proportion of the variability in response 
to leukotriene modifier therapy. However, there is renewed interest in this polymor-
phism with the reintroduction of zileuton to the market for treatment of aspirin-sensitive 
asthmatics. An A-to-C transversion at position –444 within the LTC

4
S gene has been 

linked to aspirin-sensitive asthma in several studies. Unlike the rare 5-LO polymor-
phisms, the LTC

4
S C allele is found at a frequency of 23% in normal populations, up to 

44% in aspirin-intolerant populations and 31% in a population of individuals with 
chronic hyperplastic eosinophilic sinusitis [30, 31]. Stimulation of eosinophils from 
carriers of the C allele produced almost three times the levels of LTC

4
 as compared to 

eosinophils from individuals without the C allele [32]. It has also been shown that car-
riers of the C allele have decreased basal FEV

1
 levels and using the transmission 

disequilibrium test, an association between the C allele and bronchial hyperreactivity to 
methacholine was observed [33]. From this, one could hypothesize that carriers of the 
C allele would respond well to leukotriene modifier therapy. Support for this concept 
came from a small study in which asthmatic patients were given zafirlukast for two 
weeks. Those who had a C allele displayed a 9% improvement in FEV

1
, while those 

without a C allele had a 12% decrease in FEV
1
 [32]. Due to its size, this study needs to 

be replicated in a larger population. To date no pharmacogentic study has been per-
formed examining polymorphisms in the CysLT receptors. Only associations with 
asthma and atopy in several distinct populations have been suggested. Given that most 
of the leukotriene modifier therapy targets the CysLT1 receptor, this represents a likely 
candidate for pharmacogentic differences.
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The best-studied pharmacogenetic response in allergy has been the response of 
airways to β-agonists. At least 49 genetic variations within the β2-adrenergic receptor 
gene and surrounding DNA have been identified and grouped into haplotypes [34]. 
While none of these amino acid substitutions conclusively have been linked to the 
presence of asthma, they have been associated with response to β-agonists in multiple 
studies. Retrospective studies suggested that the presence of arginine at amino acid 
residue 16 (Arg16) was associated with the presence of corticosteroid-dependence, 
nocturnal symptoms, and loss of bronchodilator responsiveness with long-term admin-
istration of albuterol [35]. When studied prospectively, individuals homozygous for 
Arg16 had lower peak expiratory flow rates and lower FEV

1
 when treated with 

albuterol as compared to those homozygous for glycine at this position [36]. This 
result has been replicated in a Korean population [37]. In vitro, the Arg16 variant has 
enhanced agonist-promoted downregulation of receptor expression [38]. It should be 
noted that in the African-American population, there is an increase in the number of 
individuals homozygous for Arg16 and this may explain the reported increased mor-
bidity associated with long-term administration of β-agonists in this population [39]. 
Additionally, polymorphisms in one of the downstream effector molecules, adenylyl 
cyclase type 9, for the β2-adrenergic receptor have been implicated in albuterol 
responsiveness in the context of combined inhaled corticosteroid use. Individuals with 
a methionine at position 772 displayed improved lung function in response to albuterol 
if they were also on budesonide as compared to individuals with an isoleucine at posi-
tion 772 [40]. Together these studies suggest that the response to β-agonists is complex 
and likely involves the interaction of multiple haplotypes on different genes.

Genes and the Environment

As mentioned earlier, the environmental influence on the development of asthma 
accounts for approximately 50% of the risk. Some of the environmental factors 
that might contribute to the underlying genetic susceptibilities include endotoxin 
exposure, diesel exposure, tobacco smoke, inhalant aeroallergens, diet, exposure 
to viral infections and in utero factors during pregnancy. Incorporation of these 
risk factors into genetic studies is allowing the interplay between the gene and 
environment to be elucidated.

Many explanations have been proposed to account for the dramatic increase in 
asthma that has been observed over the past 20–30 years. One that has gained favor 
recently is termed the “hygiene hypothesis”. This states that the reduced exposure to 
childhood infections, or other immune stimuli such as farming and endotoxin expo-
sure, may explain the increased prevalence of allergic diseases in industrialized coun-
tries [41]. One component of the hygiene hypothesis is that decreased endotoxin 
exposure and reduced innate immune responses drive the increased sensitivity to 
allergens. Endotoxin functions through engagement of the toll-like receptor (TLR) 4 
and the costimulatory molecule CD14. As discussed above, polymorphisms have 
been found in the CD14 gene that lead to a functional change in the expression of the 
gene [15] and recently, associations of polymorphisms and asthma have been noted 
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in the TLR4 gene that alter response to endotoxin [42]. Studies examining the CD14 
C-260T polymorphism have provided insight into a partial explanation of this gene-
environmental interaction. Individuals homozygous for the T allele are protected 
against the development of asthma in houses with low endotoxin exposure; however, 
in houses with high endotoxin exposure this genotype was associated with a higher 
risk for asthma [43]. A similar observation has been found in the Childhood Onset of 
Asthma Study at three loci: NOS3, FCERB1 and IL4RA [44]. The influence of each 
gene on the development of asthma was dependent upon a child’s daycare attendance. 
A given genotype in the daycare setting was associated with the highest cytokine 
response and protection from development of asthma while the same genotype in a 
child not attending daycare was associated with the lowest cytokine response and 
protection from development of asthma. The presence of polymorphisms in other 
TLRs (including TLR 2, 3, 7 and 9) are also likely to have a role in causing (or pro-
tecting against) allergic sensitization in response to environmental stimuli. Supporting 
this is the finding that TLR2 has been identified as a major asthma gene in children 
of European farmers [45]. TLR2 is a ligand for peptidoglycans and lipoproteins. 
Associations of SNPs in this receptor are not observed in non-farmers since presum-
ably they do not have the same level of exposures. As industrialization has increased, 
exposure and infections due to helmiths, tuberculosis and others have decreased.

A major environmental change that has occurred in the past 50 years that might 
influence the expression of genetic polymorphisms is the increase in airborne diesel 
particulate matter due to motorized vehicles. These particles contain aryl-hydrocarbons 
that act on many pathways including the ability to increase production of reactive 
oxygen molecules. One recent study has shown that a variant of the glutathione-
S-transferase (GST) gene modifies the adjuvant effect of diesel particles on allergic 
inflammation [46]. GSTs can metabolize reactive oxygen species and detoxify 
xenobiotics present in diesel exhaust particles. Mutations in GSTs that inhibit this 
function could lead to increased inflammation and response to benign substances 
such as aeroallergens. These effects are observed in areas where concentrations of 
airborne diesel particulate matter are high, such as in large cities or areas within 150 
m of a freeway [47]. This complex interaction was recently demonstrated in a study 
from the Children’s Health Survey that found a protective effect from developing 
asthma if individuals were homozygous for the G allele at position –308 in the TNF 
promoter [48]. The protective effect was higher in communities with low ozone 
levels compared with communities with high ozone exposure. There was a further 
reduction in the protective effect of the GG –308 genotype in high ozone communi-
ties if individuals also carried either the GSTM1 null or GSTP1 Ile/Ile genotype.

Gene–Gene Interactions Studies

In addition to the environment influencing the expression of genes, it is possible for 
the expression of one gene to influence the expression of another gene. With studies 
enrolling larger numbers of subjects and the relative ease of genotyping large 
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numbers of genes, it has become possible to use statistical modeling to look for these 
interactions. All of the potential interactions will not be examined, but a few exam-
ples will be illustrated. From genetic association and functional studies, IL-13 has 
consistently been found to be associated with asthma and atopy. It is not surprising 
that an interaction between IL-13 and other genes has also been found to confer an 
increased risk for asthma. In a Dutch proband, it was confirmed that polymor-
phisms in the IL-4 receptor alpha gene, including the S478P change, associated 
with total serum IgE levels. Additionally, the IL-13 –1112 C/T promoter variant 
previously shown to be associated with bronchial hyperresponsiveness displayed a 
gene–gene interaction with the IL-4 receptor alpha S478P allele conveying a fivefold 
increased risk for developing asthma [49]. A different allele in the IL-4 receptor 
alpha gene (R130Q) and IL-13 gene (I50V) were found to interact and give an 
increased risk for asthma [50]. Whether the alleles on each gene in this study were 
part of a haplotype that included the alleles from the previous study is unclear. 
A haplotype containing the IL-13 –1112T allele in combination with an IL-13 
receptor alpha + 2044A allele was associated with increased total IgE in atopic 
children [51]. As discussed above, another gene that has been replicated in numer-
ous studies showing a link to asthma is the CD14 gene. In an asthmatic pedigree of 
African Caribbean individuals, an allele in the CD14 promoter region in association 
with a marker in the acyloxyacyl hydroxylase gene conferred an increased risk of 
asthma, IgE and cytokine levels in individuals who carried these alleles [52].

Epigenetic Mechanisms/Studies

Epigenetics can be broadly defined as changes in gene expression patterns that can be 
inherited and are independent of changes in the DNA sequence, but instead rely on 
post-translational modifications in the DNA and histone proteins. Epigenetics will 
influence not only the patterns of genes expressed in the progeny cells but also provides 
a mechanism for the selective expression of a specific allele from one chromosome 
while the allele present on the partner chromosome remains silenced. Alterations of the 
DNA can occur by adding methyl-groups to clusters of CpG residues. Modification of 
histone proteins can occur by acetylation, phosphorylation or methylation (reviewed in 
[53]). Together these different types of histone modifications comprise what Allis [54] 
has termed the “histone code”. This code may represent a mechanism that alters 
chromatin structure such that differences in the transcriptional on–off state or cell prolif-
eration/differentiation state can be inherited in daughter cells.

Few epigenetic studies have been performed in asthma and allergy. The best-
described example involves the differentiation of naïve CD4 + T lymphocytes into 
functional Th1 or Th2 cells. The cytokine genes in naïve T cells are contained within 
a condensed chromatin structure with extensive methylation. The first stage of Th 
lymphocyte differentiation involves chromatin and DNA remodeling into a relaxed 
state in which Th1- or Th2-associated cytokine genes may be readily transcribed. The 
factor critical for Th2-specific differentiation is GATA-3 [55], whereas T-bet is essential 
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for Th1-like lymphocyte differentiation [56]. For Th2 lymphocyte differentiation, 
the combination of antigen stimulation and engagement of the IL-4 receptor results 
in Stat6 activation [57]. Stat6 is responsible for specific demethylation of DNA 
around the chromosome 5q cytokine gene cluster, which includes the genes for IL-3, 
IL-4, IL-5, IL-9, IL-13, and GM-CSF. Stat6 activation also leads to elevation of 
GATA-3 transcription. Once translated, GATA-3 protein both stabilizes its own 
expression and leads to activation of the 5q gene cluster [58]. This ability of GATA-3 
to stimulate and thus perpetuate its own transcription is one mechanism for the 
largely irreversible nature of differentiation of Th2-like lymphocytes. Th1 differen-
tiation results from engagement of the antigen and IL-12 receptors. T-bet expression 
and the subsequent demethylation of the IFN-g locus on chromosome 12 are cont-
rolled by Stat1 [59]. Histones in the cytokine loci for Th1 cells are unacetylated in 
naïve T cells. In addition to demethylation of DNA, when signals are transmitted 
through the T cell receptor, histones H3 and H4 become rapidly acetylated. This 
acetylation is maintained by cytokine signaling and T-bet expression [60]. Similar to 
GATA-3 on Th2 lymphocytes, T-bet expression keeps the chromosome 12 cytokine 
locus in an open configuration accessible to the transcription machinery. In this 
example, the progenies are subsequent generations of T cells within an individual. 
However this does not explain the familial link to asthma and rise in incidence of the 
disease. Evidence for this type of phenomena has been provided by a study from Li 
et al. on the transgenerational link of smoking and asthma. It was found that there 
was an increased risk (odds ratio 2.1) of an unexposed child developing asthma if 
the grandmother smoked during the mother’s pregnancy [61]. They hypothesize that 
tobacco products alter the DNA methylation patterns in fetal oocytes and the 
changes in immune function and detoxification can be passed on to subsequent 
generations, increasing the risk for asthma. While interesting, much work is needed 
to verify this concept.

Conclusions

With a worldwide increase in the prevalence of asthma and allergic diseases and the 
soaring healthcare cost associated with treating affected individuals, further under-
standing of the factors associated with this disease is needed. Our initial attempts 
to characterize the genetic components of the disease relied on simple models of 
gene transmission. Despite a large amount of time and money, these studies have 
failed to provide answers in terms of cause of disease and treatment plans based on 
this genetic information. New models combining large populations and complex 
statistical analysis are beginning to unravel the subtle complexities of this disorder. 
Additionally, while often ignored, the influence of genes on response to treatment 
is now recognized as being of major importance and likely to be controlled by a few 
genes. We may now be able to see in the near future the promise of genetics deliv-
ered to the clinical setting with the ability to analyze a patient’s genetic repertoire 
and tailor a specific treatment regime for each patient.
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Functional Genomics of Allergic Diseases

Donata Vercelli

Introduction

Allergic inflammation and its most common phenotypes (asthma, allergy and 
atopic dermatitis) are one of the most eloquent examples of human complex dis-
eases, disorders caused by a constellation of genetic hits that are individually mild 
but lead to major phenotypic effects when they act on multiple steps along a mecha-
nistic pathway. The literature is rich in association and linkage studies pointing to 
candidate genes that might act as critical determinants of allergy/asthma suscepti-
bility. However, the abundance of single nucleotide polymorphisms (SNPs) in the 
human genome, and the complex patterns of linkage disequilibrium (LD) found at 
most genetic loci, prevent the tools of genetic epidemiology from deciphering the 
contribution of individual polymorphisms to increased disease risk. As a result, the 
mechanisms underlying the associations between patterns of genetic variation and 
disease phenotypes are in most cases unclear. Functional genomics studies provide 
a powerful tool to understand how genetic factors affect the pathogenesis of, and 
the susceptibility to, complex diseases such as allergic inflammation.

Functional genomics is still in its infancy. Indeed, as yet there is no universally 
accepted approach to defining the impact of genetic variants on gene expression 
and/or function. Interestingly, the more we experiment, the more we realize how 
subtle, even devious, the effects of genetic variants can be, and how lightly we must 
tread on the uncharted ground of functional genomics. Here we shall briefly review 
some of the results our group recently obtained studying the functional genomics 
of interleukin (IL)13, a major candidate gene for allergic inflammation [1, 2], and 
we shall discuss how our findings have contributed to advancing the field of 
functional genomics.
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IL13 Association Studies

Genetic epidemiology provides the questions functional genomics needs to answer. 
IL13 is no exception. For some years now, we have known the IL13 locus on chro-
mosome 5q31 contains a block of common SNPs that spans the third intron 
(+1923CT), the fourth exon (+2044GA) and the 3′ untranslated region (+2525GA, 
+2580CA and +2749CT) [3]. Two SNPs in the promoter (-1512AC and -1112CT) 
are also in strong, albeit not complete, LD with the downstream polymorphisms. In 
view of the central role IL-13 is known to play in the pathogenesis of allergic 
inflammation [1, 2], it is not surprising robust associations were found between 
genetic variation in IL13 and allergic/asthmatic phenotypes. In fact, IL13 is one of 
the most replicated genes in the asthma/allergy literature [4].

Association studies have focused mostly on IL13 + 2044GA in the coding region 
and IL13-1112CT in the promoter. IL13 + 2044GA is strongly associated with 
increased total serum IgE [3, 5–9], asthma [10], atopy [11], atopic dermatitis [5, 11, 
12] and a grouped phenotype including eosinophilia, IgE and positive skin tests [13]. 
IL13-1112CT (also known as -1055 and -1111) is associated with asthma, bronchial 
hyperresponsiveness (BHR) and skin test responsiveness [14, 15], total IgE [9, 16], 
sensitization to food and outdoor allergens [16, 17] and latex allergy [18]. Most of 
these associations were found in Caucasian and/or Asian populations. More recently, 
IL13-1112CT was found to be associated with asthma/atopy in a small African 
American population sample [19]. Interestingly, a significant gene–gene interaction 
was detected between an IL4RA coding variant (S478P) and IL13-1112CT. 
Individuals with the risk genotype for both genes had increased risk to develop 
asthma [20] and food sensitization [21] compared to individuals with both non-risk 
genotypes. Another study assessed the combined effect on asthma and IgE levels of 
allelic variants arrayed along the Th2-dependent pathway. Combining polymorphisms 
in all major genes (IL13-1112CT, IL4-589CT, IL4RA148AG and STAT62892CT) in a 
stepwise procedure, the risk for high serum IgE levels increased by 10.8-fold and the 
risk for the development of asthma increased by 16.8-fold compared with the maxi-
mum effect of any individual SNP [22]. Another study of Chinese asthmatic and 
control children revealed significant interactions between IL13 and IL4RA for asthma, 
and IL13 and the gene for thymus- and activation-regulated chemokine (TARC) for 
total plasma IgE [23]. Collectively, these studies reiterate the crucial role of IL13 and 
its variants in modifying the risk of allergic inflammation.

When Genetic Variation Affects Gene Function: 
Functional Studies of IL13 + 2044GA

IL13 + 2044GA (rs20541) is found in approximately 25% of the Caucasian 
population [3] and is expected to result in the non-conservative replacement of 
a positively charged arginine (R) with a neutral glutamine (Q) at position 130 
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(numbering including the signal peptide; also referred to as position 110 when 
numbering does not include the signal peptide [7, 10, 24, 25]). Since the R130Q 
substitution occurs in α-helix D, the region of IL-13 which is thought to interact 
with IL-4Rα/IL-13Rα1 heterodimers [26], IL13 + 2044GA has the potential to 
affect IL-13-dependent signaling events.

To examine the impact of IL13 + 2044GA on the functional properties of IL-13, 
we directly compared the activity of recombinant wild-type (WT) IL-13 and IL-13 
R130Q on primary human cells involved in the effector mechanisms of allergic 
inflammation [27]. We found that IL-13 R130Q was significantly more active than 
WT IL-13 when inducing STAT6 phosphorylation, CD23 expression in monocytes 
and IgE switching in B cells. Moreover, IL-13 R130Q was neutralized less effec-
tively than WT IL-13 by an IL-13Rα2 decoy, a property which could contribute to 
enhanced activity of the minor variant in vivo. It is important to note that neither 
IL-13 variant engaged T cells, suggesting increased allergic inflammation in carri-
ers of IL13 + 2044A depends on enhanced IL-13-mediated Th2 effector functions 
rather than increased Th2 differentiation [27]. Collectively our data indicate that 
natural variation in the coding region of IL13 may be an important genetic determinant 
of susceptibility to allergy.

Some Lessons We Learnt

Performing these functional studies taught us several important lessons. The first 
was that, when modeling naturally occurring protein variants with recombinant 
molecules, the system chosen to express the recombinant proteins is critical for the 
experimental outcome. Indeed, E. coli-expressed IL-13 was significantly less active 
than eukaryotic IL-13 at physiologic concentrations, and was prone to C-terminal 
truncation [27]. These problems likely reflected the lack of glycosylation typical of 
proteins expressed in bacteria and were particularly acute for IL-13, which is highly 
glycosylated in its native state [28]. As a result, all functional studies had to be 
performed using recombinant IL-13 variants expressed in eukaryotic cells, even 
though this approach was more cumbersome and time-consuming.

Another problem arose from the specificity of the anti-IL-13 antibodies required 
for detection and quantification of the cytokine variants. The R130Q substitution 
was found to affect the recognition of IL-13 epitopes, resulting in underestimation 
of the minor variant. Therefore, concentrations of eukaryotic IL-13 R130Q had to 
be adjusted using a correction factor developed through a combination of in vitro 
IL-13 translation and Western blotting analysis [27]. Other studies of protein vari-
ants generated by non-synonymous coding polymorphisms might encounter similar 
difficulties. Our experience suggests bacterially expressed recombinant proteins 
should be chosen for functional genomics experiments only if they fully recapitu-
late the activity of native molecules. Antibody-based detection methods also 
require validation of the antibodies’ ability to recognize distinct protein variants 
with comparable efficiency.
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These considerations may appear too technical, but they are useful because 
they provide a rationale for the discrepant results reported by different groups. 
For instance, Arima et al. recently compared the activities of WT IL-13 and IL-13 
R130Q [24] and found them to be indistinguishable. Of note, these investigators 
used recombinant IL-13 expressed in prokaryotes and a transfected B cell line 
overexpressing IL-13Rα1. The pitfalls of prokaryotic recombinant proteins are 
discussed above. Utilization of target cells overexpressing a receptor might mask 
subtle differences in the affinity of its ligand, because the overall strength of lig-
and–receptor interactions will be dictated more by the artificially increased number 
of receptors than the affinity of individual ligand-binding events. Reliance on 
eukaryotic IL-13 proteins and primary human cells therefore provides a more 
sensitive approach to detect subtle differences in the properties of natural protein 
variants.

Some Conclusions

SNPs in coding regions represent the majority of disease alleles in Mendelian disorders, 
and common disease variants are likely to show a similar trend [29]. Our results show 
IL-13 R130Q, a common variant encoded by IL13 + 2044A and associated with 
elevated serum IgE levels and other allergy-related phenotypes in individuals of mul-
tiple ethnic backgrounds [4], is significantly more active than WT IL-13 in enhancing 
essential effector pathways of allergic inflammation in primary human cells.

Structure/function analyses provide mechanistic insights into the increased 
activity of IL-13 R130Q. The replacement of R130 with a glutamine occurs in α 
helix D, a region of the molecule critical for its interactions with IL-13 receptors. 
Alanine-scanning mutagenesis recently revealed R130 to be important for IL-13 
binding to IL-13Rα2 [26], the decoy receptor expressed both as a cell-associated 
and a soluble protein, which binds IL-13 with high affinity but does not signal [30]. 
IL-13Rα2 is a key negative regulator of IL-13 responses in vivo [31] and its expres-
sion is strongly enhanced by IL-13 itself [32], pointing to the existence of complex 
feedback loops designed to tightly control IL-13-dependent events. Consistent with 
this scenario, IL-13 R130Q was neutralized by a soluble IL-13Rα2-Fc chimera 
much less effectively than WT IL-13 [27], suggesting the minor IL-13 variant 
might to some extent escape the dampening mechanisms, which normally restrain 
the activity of WT IL-13 in vivo.

In comparison with the often drastic effects obtained by genetic manipulation in 
animal models, the functional differences between the common and the minor 
IL-13 variant may appear too modest to influence disease susceptibility. Several 
considerations argue against this conclusion. Similar results were obtained in several 
other functional studies of human polymorphic genes such as CD14 [33], IL3 [34] 
and LTA [35], all of which show subtle effects of individual common risk alleles. 
Furthermore, functional differences between the IL-13 variants became manifest 
within a physiologically relevant concentration range. Finally, IL13 + 2044GA is in 
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partial LD with a promoter SNP, IL13-1112CT, which results in increased IL13 
transcription in CD4+ Th2 cells [36]. The transcriptional enhancement conferred 
by IL13-1112T is relatively modest as well, but the increase in IL-13 activity 
caused by the RQ replacement, combined with the concomitant increase in tran-
scription of the -1112T allele, might effectively synergize to amplify IL-13-
dependent events. The functional impact of SNP–SNP interactions within the same 
gene could be further amplified by gene–gene interactions along the same pathway, 
e.g., when IL-13 R130Q is expressed in carriers of gain-of-function variants in 
IL4RA [25] and/or STAT6 [22].

When Genetic Variation Affects Gene Expression: 
Functional Studies of IL13-1112CT

The human IL13 promoter harbors two common SNPs, IL13-1512AC (rs1881457) 
and IL13-1112CT (rs1800925, also referred to as -1055 and -1111) [3]. The IL13-1112TT 
genotype was found to be more prevalent in individuals with asthma and atopic 
dermatitis and has been associated with increased risk of sensitization to food and 
outdoor allergens in several studies [14, 15, 17, 21]. Associations between the 
IL13-1112T allele and allergic phenotypes, such as high IgE serum levels, BHR 
and positive skin tests, were also demonstrated [3, 14, 15].

While these results strongly suggest genetic dysregulation of IL13 expression 
and/or function may be a critical determinant of susceptibility to allergy and 
asthma, genetic epidemiology cannot define the contribution of the promoter SNPs 
to allergic inflammation susceptibility because these polymorphisms are highly 
linked to other SNPs in the locus, including IL13 + 2044GA. Stratified analysis of 
IL13 haplotypes in a large Caucasian population did suggest an effect of IL13-
1112CT on IgE levels independent of IL13 + 2044GA [16], but assessment of the 
impact of IL13-1112CT on the regulation of IL13 expression requires dedicated 
functional studies.

For this purpose, we used a combination of in vivo, in vitro and in silico 
approaches [36]. We started with a comparative analysis of the IL13 promoter. 
Genomic segments strongly conserved during evolution frequently exhibit regula-
tory properties [37], implying SNPs located in such regions are likely to be func-
tional. Although a human/mouse sequence alignment revealed poor conservation of 
the region containing IL13-1112CT, phylogenetic shadowing, a method recently 
developed to analyze sequence conservation profiles among closely related species 
[37], showed IL13-1112CT falls within a peak of high intra-primate conservation 
that spans approximately 80 bp and predicts the existence of a primate-specific cis-
regulatory element. Of note, this element maps to the vicinity of a region that exhib-
its constitutive DNA hypomethylation and hypersensitivity to DNase I digestion in 
human naïve, Th1 and Th2 CD4+ T cells [38], suggesting this region may be 
endowed with regulatory properties. These findings provide indirect but suggestive 
evidence for a potential role of IL13-1112CT in the regulation of IL13 expression.
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To examine more directly whether IL13-1112CT affects IL13 transcription, we 
generated luciferase reporter constructs driven by a 2.7 kb IL13 promoter fragment 
carrying either the major (C) or minor (T) allele at position -1112. Initially the -1112/
Luc reporter constructs were transfected into the Jurkat T cell line, a well-established 
model to study transcriptional regulation of cytokine genes. In this model, the allergy-
associated IL13-1112T allele was significantly less active than the major allele. 
However, this finding was inconsistent with the reported associations between the 
T allele and allergy/asthma susceptibility, which point towards increased IL13 activ-
ity. Therefore, we reassessed transcription of the IL13-1112 alleles in primary T cells 
using nucleofected CD4+ T cells freshly isolated from normal peripheral blood. 
Activation of CD4+ T cells upregulated transcription of both allelic variants to a 
comparable extent, a result that was again inconsistent with the association between 
IL13-1112T and increased susceptibility to Th2-dependent inflammation.

Faced with these puzzling results, we reasoned that the true transcriptional impact 
of the -1112 polymorphism might only become apparent within a polarized cytokine/
nuclear environment leading to high-level IL13 expression. Jurkat cells and non-
polarized CD4+ T cells upregulate IL13 mRNA levels in response to activation, but 
only a minority of these cells expresses detectable levels of intracellular IL-13 protein. 
Thus the majority of luciferase activity in non-polarized CD4+ T cells was generated 
from a nuclear environment inadequate to promote optimal IL13 expression.

Since IL13 is typically expressed by polarized CD4+ Th2 cells, and these cells 
play a critical effector role in human and experimental allergic inflammation, we 
examined the transcriptional effect of IL13-1112CT in two independent, primary 
Th2 cell models: human neonatal naïve CD4+ T cells differentiated in vitro under 
Th2-polarizing conditions and murine D10.G4.1 Th2 cells [39]. In both cases, 
nucleofection of Th2 cells with IL13-1112C and T reporter constructs led to signifi-
cantly higher activation-dependent transcriptional of the -1112T allele. Our results 
demonstrated that the nuclear environment dictates the transcriptional outcome of 
genetic variation. In the context of a Th2 milieu that drives high IL13 expression, 
but not within non-polarized CD4+ T cells, the -1112T allele conferred higher 
activity to the IL13 promoter, consistent with the reported association between this 
allele and increased susceptibility to allergic inflammation [40].

To identify the mechanisms underlying higher transcription of IL13-1112T in Th2 
cells, we used electromobility shift assays (EMSA) to compare and contrast patterns 
of DNA–protein interactions occurring at the IL13 -1112 promoter variants in distinct 
T cell nuclear environments. We reasoned that such comparisons could provide an 
indirect but powerful tool to tease out the interactions involved in increased transcrip-
tion of the -1112T allele.

Using oligonucleotides corresponding to the C or T allelic variants of IL13 pro-
moter, we demonstrated that both the C and the T allele-bound STAT6 and STAT1 
contained in nuclear extracts from activated primary Th2 cells (in which the -1112T 
allele was transcriptionally more active). However, the -1112T probe selectively 
bound an additional complex containing YY1. When we analyzed nuclear factor 
binding to the polymorphic IL13 promoter region using nuclear extracts from 
non-polarized primary CD4+ T cells (in which the T allele was transcribed less 
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actively), we found again equivalent interactions of the C and T alleles with STAT6 
and STAT1. Interestingly, in CD4+ T cell extracts the T allele selectively bound not 
only constitutively expressed YY1, but also NFAT2. Finally, nuclear extracts from 
Jurkat T cells (which, like fresh CD4+ T cells, supported weaker transcription of 
the -1112T allele) showed strong specific binding of STAT1 to both alleles and 
selective binding of YY1 and Oct-1 to -1112T. However, no STAT6-containing 
complex was detected, consistent with deficient STAT6 activity in Jurkat T cells [41]. 
Thus the higher activity of the IL13-1112T allele in Th2 cells correlated with a 
unique pattern of DNA–protein interactions marked by the combination of STAT6 
and YY1 (Fig. 1), providing a molecular rationale for the differential transcription 
of the -1112 alleles in distinct T cell nuclear environments.

Our next task was to define the mechanism(s) underlying the increased activity 
of the -1112T allele in Th2 cells. YY1 is a ubiquitously expressed nucleoprotein 
that can either activate or repress transcription [42]. Since the sequences flanking 
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Fig. 1 Distinct IL13 variants may synergize and increase allergy susceptibility. (Top) Common 
SNPs in IL13. (Middle). IL13-1112CT (rs1800925) in the IL13 promoter results in increased IL13 
transcription in Th2 cells, whereas IL13 + 2044GA (rs20541) is a non-synonymous SNP that leads 
to the expression of a gain-of-function variant, IL-13 Arg130Gln. (Bottom) Linkage disequilib-
rium at the IL13 locus is such that both SNPs are frequently, albeit not invariably, found in the 
same individuals. Co-occurrence of the rare alleles at -1112 (T) and + 2044 (A) is expected to 
result in overexpression of an overactive IL-13 variant, which may contribute to enhanced suscep-
tibility to allergic inflammation 
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the YY1 core motif (TCAT) vary, many promoters contain YY1 sites that overlap 
those for other transcriptional regulators [42]. This topology fosters interactions 
between YY1 and other factors, the outcome of which depends on the function of 
the proteins involved. In silico analysis of the IL13 promoter sequence and muta-
tional EMSA analysis by nucleotide transversions demonstrated that the YY1 motif 
created by -1112T overlaps the 3′ end of a STAT palindrome that is present on both 
alleles and binds STAT6 or STAT1 in Th2 cells. In view of the dual role of YY1 in 
transcriptional regulation, two models may explain the role of YY1 in the increased 
activity of the IL13-1112T allele in Th2 cells. Both YY1 and STAT proteins may act 
cooperatively as transcriptional activators. Alternatively, STAT binding to the IL13-
1112 region may repress transcription, as reported for the human IL4 promoter 
[41], and YY1 may relieve STAT-mediated repression by displacing STAT or 
recruiting STAT corepressors.

We reasoned that understanding the role played by YY1 in the increased activity 
of the IL13-1112T allele required the functional characterization of the STAT motif 
overlapping the YY1 site. A combination of independent approaches (mutation of 
the STAT site in reporter vectors, neutralization of STAT6-dependent signaling in 
Th2 cells, and STAT6 overexpression in Jurkat cells) clearly showed that the 
STAT6 motif upstream of the polymorphism plays a strong negative regulatory 
role in the context of the -1112C IL13 promoter. Binding of YY1 to the site created 
by IL13-1112T relieves STAT6-mediated repression, leading to increased activity 
of the -1112T allele in Th2 cells. Chromatin immunoprecipitation analysis con-
firmed that STAT6 and YY1 bind the endogenous IL13-1112 promoter region in 
primary human Th2 cells, further supporting a critical role of these factors in the 
transcriptional outcome of IL13-1112CT.

The last piece of the IL13-1112CT puzzle was provided by the analysis of the 
correlation between IL13-1112 genotypes and levels of IL-13 production in a large 
population sample. We assessed IL-13 secretion in subjects enrolled in the Tucson 
Infant Immune Study, a large prospective study of the development of immunologi-
cal markers of asthma risk [43]. We focused on 174 women at the third trimester of 
pregnancy, unselected for atopy and asthma. Mitogen-activated peripheral blood 
mononuclear cells from IL13-1112TT homozygotes secreted significantly higher 
levels of IL-13 compared to -1112CC and CT individuals. The effect was strength-
ened after adjusting for ethnicity and IL13+2044 genotype in a multivariate linear 
regression. These data strongly support the contribution of IL13-1112CT to 
increased IL13 expression in vivo.

Some Conclusions

Gene–environment interactions in the nucleus were the most unexpected and inter-
esting finding of our analysis of IL13-1112CT. This polymorphism enhances IL13 
promoter activity in primary human Th2 lymphocytes, cells programmed for high 
IL13 expression, but has opposite effects in non-polarized CD4+ T cells. Thus, the 
nuclear milieu can determine the functional outcome of genetic variation.
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Gene–environment interactions in the nucleus are a phenomenon we previously 
observed for CD14-159CT, a SNP which results in distinct patterns of CD14 pro-
moter activity in monocytes and hepatocytes depending on the Sp1/Sp3 ratio [33]. 
However, the data on IL13-1112CT are in a sense more remarkable because dif-
ferential IL13 expression was observed not in distinct cell types but in distinct CD4 
+ Th cell phenotypes expressing distinct transcriptional milieus. That the gain-of-
function associated with the IL13-1112T allele only emerged in differentiated Th2 
cells eloquently shows how subtle the functional impact of genetic variation can be, 
and how essential it is to choose experimental models able to capture it. Furthermore, 
these results suggest IL13-1112CT is likely to influence risk of allergy and/or 
asthma primarily in the context of an established Th2 response. Thus this polymor-
phism may contribute to the maintenance and/or exacerbation of allergic inflamma-
tion more than to its inception.

More generally, gene–environment interactions in the nucleus may offer a rationale 
for the common but disquieting finding that many published associations cannot be 
replicated [44–46]. If the functional outcome of genetic variation contributing to 
disease risk is determined not only by the genetic, but also by the biological context, 
as our data indicate, the conditions under which biological samples are collected for 
phenotyping may become critically important, and failing to account for gene–
environment interactions in the nucleus may hamper detection of susceptibility loci. 
Interestingly, there are now many examples of established associations with different 
functional variants within the same gene or with opposite alleles at the same SNP in 
different populations [40]. For example, IgE levels are associated with IL13-1112CT 
in some populations [7, 8], and with IL13 + 2044GA [3, 5, 7] or IL13-1512AC [9] 
in others. It is tempting to speculate that these seemingly contradictory results might 
represent an outcome of gene–environment interactions in the nucleus.

Similar to the results obtained for IL13 + 2044GA, the impact of IL13-1112CT on 
transcriptional activity was relatively modest. This reflects the nature of single nucle-
otide variations, subtle differences that alter fine-tuning or sensitivity thresholds of 
promoters and regulatory elements rather than impose the drastic effects of loss- or 
gain-of-function mutations seen in Mendelian disorders. Indeed, the magnitude of the 
effect was similar to other regulatory polymorphisms such as the SNP in SLC22A 
associated with rheumatoid arthritis and loss of transcriptional activity [47] and the 
variant CD14 and TGFB promoters [33, 48]. Since the functional effects of individual 
polymorphisms may be small, risk for complex diseases is substantially increased by 
synergism between multiple SNPs arrayed along a regulatory pathway.

Studying functional genomics in an evolutionary framework may deepen our 
understanding of the role a given gene and its variants play in physiology and dis-
ease. Comparative analysis of the IL13 promoter showed the IL13-1112T allele that 
increases risk for allergic disease is the ancestral allele. In contrast, the derived 
-1112C allele (the one currently most common among Caucasians) is protective. 
Furthermore, this analysis revealed the topology of STAT6 and YY1 motifs result-
ing in increased IL13 promoter activity has been fully conserved through at least 30 
million years of evolutionary history, and all the replacements found in the STAT 
motif in Old World and New World monkeys occurred within the 3 N spacer, not 
in the TTC/GAA palindrome critical for DNA–protein interactions. These findings 
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and their relevance to common diseases are best interpreted in the framework of the 
ancestral-susceptibility model [49], according to which ancestral alleles reflect 
ancient adaptations to the lifestyle of ancient human populations. In that context, 
derived alleles were deleterious. With the shift in environment and lifestyle that has 
occurred in modern populations, ancestral alleles can increase the risk of common 
diseases, as exemplified by variants involved in energy metabolism and sodium 
homeostasis [49]. An equivalent role of IL13-1112CT among immunity genes is 
suggested by its current associations with allergy and asthma susceptibility in 
Western environments [40] in the face of strong associations between IL13-1112T 
and protection from Schistosoma hematobium in Africa [50] and severe malaria in 
Thailand [51]. While it is unclear why IL13-1112C rose abruptly in frequency to 
become the common allele in most human populations, the IL13 locus shows sig-
natures of a recent selective sweep in the Caucasian and Chinese populations [52]. 
We speculate that a genetically determined propensity for high IL13 expression may 
have become detrimental through deleterious effects on reproduction. Indeed endome-
triosis, which increases the risk of infertility, has been associated with elevated IL13 
mRNA and protein expression within the ectopic endometrium [53]. IL13 may there-
fore be the first immunity gene that conforms to the ancestral-susceptibility model.

Final Comments

The lessons that emerged from the studies discussed above are somewhat sobering. 
Experimental strategies which are successful in classical immunology may not be 
readily applicable to functional genomics work, whose targets are inherently elu-
sive. When studying the effects of human genetic variation, we actually explore 
complex interactions between polymorphic genes (and their products) and the cel-
lular milieu. Both genes and environments need to be faithfully modeled, because 
the effects of genetic variation are likely to be context-dependent. Thus functional 
studies need to recreate as much as possible the biological conditions under which 
natural genetic variation exerts its subtle effects, and these conditions may be dif-
ferent for different polymorphisms. Therefore, even at this early stage of functional 
genomics studies, it is clear that unraveling the molecular mechanisms whereby natu-
ral genetic variation shapes the pathogenesis of complex diseases will require more 
adequate conceptual frameworks as well as novel experimental and analytical tools.
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Genetic Markers for Differentiating 
Aspirin-Hypersensitivity

Hae-Sim Park, Seung-Hyun Kim, Young-Min Ye, and Gyu-Young Hur

Introduction

The ingestion of acetylsalicylic acid (ASA) can induce allergic reactions such as 
ASA-intolerant asthma (AIA), ASA-induced acute or chronic urticaria/angioedema 
(AIAU or AICU), anaphylaxis, and, in rare cases, hypersensitivity pneumonitis [1, 
2]. Among these, AIA and AIU are most prevalent. Although the pathogenic 
mechanism of AIA is not completely understood, a chronic overproduction of 
cysteinyl leukotrienes (Cys-LTs) derived from cyclooxygenase (COX) inhibition 
has been consistently found to be associated with the condition [3, 4]. Although 
recent reports have suggested that an overproduction of Cys-LTs may play a role in 
AIU development [5, 6], knowledge about the pathogenic mechanism of AIU is 
limited. Here, we summarize recent data regarding the molecular genetic mecha-
nisms that govern AIA and AIU, with the objective of identifying genetic markers 
that can be used to differentiate between the two conditions.

Demographic Characteristics of AIA and AIU

Acetylsalicylic acid-intolerant asthma is a clinical syndrome, characterized by 
eosinophilic rhinosinusitis, nasal polyposis, ASA sensitivity, and a moderate to 
severe degree of asthmatic symptoms [7, 8]. This condition most commonly 
occurs in middle-aged female asthmatic patients with chronic rhinosinusitis and/
or nasal polyps [9]. The lysine-ASA bronchoprovocation test has been widely 
used to confirm the diagnosis of AIA in Europe and Asia [10, 11], whereas the 
oral provocation test has been more commonly applied in the USA.
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Acetylsalicylic acid ingestion can induce swelling and aggravate wheals in 
patients with acute and chronic urticaria. Patients experiencing acute ASA-
intolerant urticaria (AIAU) are defined as those showing urticaria and angioedema 
when exposed to ASA/non-steroidal anti-inflammatory drugs (NSAIDs). In chronic 
ASA-intolerant urticaria (AICU), chronic urticaria and/or angioedema symptoms 
are aggravated with exposure to ASA. AIU, which includes both AIAU and AICU, 
can be confirmed by an oral ASA challenge test. Chronic urticaria patients are clas-
sified into two groups: those exhibiting a positive response to oral ASA challenge 
(diagnosed as AICU), and those exhibiting a negative response, which is defined as 
ASA-tolerant chronic urticaria/angioedema (ATCU). The proportion of patients 
with chronic urticaria who develop exacerbation after ASA administration ranges 
from 20% to 30% [6]. Our recent study [12] demonstrated that AICU patients 
tended to be relatively young and to exhibit a high atopic rate as well as a high 
serum total immunoglobulin E (IgE) level. No significant differences in the preva-
lence of thyroid autoantibodies, the prevalence of anti-nuclear antibodies, or other 
clinical parameters were noted between AICU and ATCU patients.

A recent study reported that the prevalence of serum specific IgE to staphylococcal 
superantigens, particularly toxic shock syndrome toxin 1 (TSST-1), was significantly 
higher in AICU than in ATCU or normal controls, whereas the colonization rate of 
Staphylococcus aureus was similar between the two conditions. Moreover, patients 
with high specific IgE to these superantigens showed a higher serum total IgE level 
and atopy rate. These findings suggest that the Th2 immune response to these super-
antigens may be involved in the pathogenic mechanism of a subtype of AICU [13].

Differential Contributions of Genetic Polymorphisms 
to ASA Hypersensitivity

Genetic Studies of AIA

An association between the human leukocyte antigen (HLA) allele HLA-
DPB1*0301 and AIA was first reported in a Polish population [14] and was later 
recognized in a Korean population [15]. The frequency of DPB1*0301 was signifi-
cantly increased in AIA patients when compared with normal and asthmatic con-
trols, suggesting that the immune recognition of an unknown antigen may be part 
of the pathogenesis of AIA [15]. The patients with DPB1*0301 tended to be 
females, having lower forced expiratory volume at 1 s (FEV

1
) levels, but higher 

prevalence of rhinosinusitis and/or nasal polyps than those lacking DPB1*0301. 
Interestingly, these are also the typical clinical features of AIA [15]. Furthermore, 
the presence of DPB1*0301 was significantly associated with a requirement for a 
higher dose of leukotriene receptor antagonist in the long-term management of AIA 
[16]. When combined, these results suggest that HLA-DPB1*0301 may be an 
important genetic marker for the AIA phenotype. Furthermore, a genetic interaction 
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between tumor necrosis factor α (TNFα) −1031T>C (or −863C>A or −857C>A) 
and HLA-DPB1*0301 synergistically increased susceptibility to AIA, suggesting 
that a TNFα promoter polymorphism may significantly increase susceptibility to 
AIA via a genetic interaction with HLA-DPB1*0301 [17].

It is widely recognized that Cys-LT biosynthesis is associated with the develop-
ment and progression of AIA [3, 4]. The activity of leukotriene C4 synthase 
(LTC4S), a key enzyme for Cys-LT synthesis, may be genetically regulated in AIA 
pathogenesis. The LTC4S −444A>C polymorphism has been reported to be posi-
tively associated with the AIA phenotype in a Polish population [18, 19]. 
Specifically, patients carrying the C allele exhibited a higher risk for AIA develop-
ment by increased binding of the histone H4 transcription factor-2 to the promoter 
polymorphism, both in vitro and in vivo. However, this association has not been 
identified in other groups examined, including Japanese, American, and Korean 
populations [20–22].

Some reports have suggested a possible involvement of the 5-lipoxygenase gene 
(ALOX5) in AIA. For example, the Drazen research group reported an association 
between a promoter polymorphism of the ALOX5 gene, consisting of a variable 
number of tandem-repeated GC-rich motifs, and increased binding of Sp1 tran-
scription factors [23]. Subjects exhibiting the wild-type genotype (five repeats) 
showed a significantly higher capacity to produce Cys-LTs when compared with 
those showing the mutant genotype (three, four, or six repeats). Furthermore, the 
mutant genotype was reported to be positively associated with increased severity of 
airway hyper-responsiveness in a Korean population [24]. Specifically, AIA 
patients carrying a mutant genotype (n > 5 or n < 5 repeats) showed increased air-
way hyper-responsiveness when compared with AIA patients with the wild-type 
genotype.

In an earlier study, we screened a Korean population for ten single nucleotide 
polymorphisms (SNPs) of key enzymes involved in arachidonate metabolism; these 
included 5-lipoxygenase (ALOX5; −1708G>A, 21C>T, 270G>A, 1728G>A), 
ALOX5-activating protein (ALOX5AP; 218A>G), COX-2 (−162C>G, 10T>G, 
228G>A), LTC4S (−444A>C), and cysteinyl leukotriene receptor 1 (CysLTR1; 
927T>C). We reported a lack of association between ALOX5AP, COX-2, and 
CysLTR1 polymorphisms and the AIA phenotype; however, we suggested the pos-
sible involvement of ALOX5 haplotype 1 (G-C-G-A) in AIA development [22].

Recently, we reported a significant genetic association of two types of Cys-LT 
receptors, CysLTR1 and CysLTR2, in AIA patients [25, 26]. We found three SNPs 
of the CysLTR1 promoter (−634 C>T, −475A>C, and −336A>G) that were signifi-
cantly associated with the AIA phenotype, particularly in males. These promoter 
polymorphisms exhibited significantly higher capacity to increase promoter activ-
ity in epithelial and mononuclear cells. In addition, four SNPs of the CysLTR2 gene 
(c. −819T>G, c. 2078C>T, c. 2534A>G, and c. 2545+297A>G) were identified in 
a Korean population [26], and the rare alleles at these sites showed significant asso-
ciation with a greater percentage fall in FEV

1
 after ASA provocation, indicating 

greater ASA sensitivity.
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A case control study of 63 candidate genes in a Japanese population [27] showed 
that a functional SNP of the prostaglandin E2 (PGE2) receptor subtype 2 gene 
(EP2) was associated with increased risk of AIA. This may result from a reduction 
in the PGE2 braking mechanism in inflammation. Although a novel promoter poly-
morphism of COX-2 (−765G>C) was not associated with AIA, the CC homozygote 
of this polymorphism was associated with increased PGE2 production by creating 
an E2F transcription factor binding motif [28].

Using direct sequencing, we also screened for genetic variations in the prosta-
noid receptor genes PTGER1, PTGER2, PTGER3, PTGER4, PTGDR, PTGIR, 
PTGFR, and thromboxane A2 receptor gene (TBXA2R), and selected 32 tagging 
SNPs among the 77 polymorphisms with frequencies >0.02 on the basis of linkage 
disequilibrium for genotyping [29]. A haplotype analysis of each gene revealed that 
seven SNPs were significantly associated with the AIA phenotype: −616C>G and 
−166G>A in PTGER2, −1709T>A in PTGER3, −1254A>G in PTGER4, 1915T>C 
in PTGIR, and −4684C>T and 795T>C in TBXA2R. The frequency of PTGIR 
 haplotype 3 (G–G–C–C), which includes 1915T>C, differed significantly between 
the AIA and ATA patients. These findings suggest that genetic polymorphisms in 
PTGER2, PTGER3, PTGER4, PTGIR, and TBXA2R are important in the pathogen-
esis of AIA. Further studies are needed to clarify the hypothesis of COX-2 and 
prostaglandin imbalance in the pathogenic mechanisms of these conditions.

TBXA2R encodes a receptor for a potent bronchoconstrictor, thromboxane A2 
(TBXA2). A study conducted on a Korean population showed that the TBXA2R+795T>C 
polymorphism augmented the bronchoconstrictive response to inhaled ASA, which 
may contribute to AIA [30]. It is possible that oral ASA administration leads to the 
uncoupling of TBXA2-dependent negative feedback mechanisms and thus increases 
the production of Cys-LTs, explaining the effect of increased TBXA2 production on 
the pathogenesis of AIA [30]. TBXA2-dependent regulation of LTC4S activity may 
be an important pathophysiological mechanism of AIA.

There was no association between two common polymorphisms of FceR1b 
(−109T>C and E237G) and the AIA phenotype [31]. However, the FceR1b 
−109T>C polymorphism was significantly associated with IgE specific to 
Staphylococcal enterotoxin B [31], suggesting that this gene/environment interac-
tion may contribute to the development of AIA. This same study also reported that 
the FceR1b −109T>C polymorphism may increase FcεR1β expression in mast 
cells, leading to enhanced release of proinflammatory mediators in the asthmatic 
airway and thereby contributing to increased susceptibility to AIA.

TBX21 encodes the transcription factor T-bet (T-box expressed in T cells), which 
influences naive T lymphocyte development and has been implicated in asthma 
pathogenesis. The −1993T>C SNP in the TBX21 promoter was shown to be signifi-
cantly associated with increased risk of AIA owing to increased transcriptional activ-
ity [32]. This genetic variation can cause inappropriate Th1 responses in the airways, 
leading to severe airway inflammation in combination with antigen-specific Th2 
responses. Furthermore, the report suggested that the Th1 response may play as great 
a role in AIA pathogenesis as the Th2 response. Another study [33] reported that the 
TGFb1 −509C>T polymorphism was not significantly associated with the AIA 



Genetic Markers for Differentiating Aspirin-Hypersensitivity 257

 phenotype; however, a significant association with the prevalence of rhinosinusitis in 
AIA patients, but not in ATA patients, was observed. When augmented by the 
presence of rhinosinusitis, the frequency of carriers of the TGFb1 −509C>T T allele 
(CT and TT genotypes) was significantly higher in AIA patients than in ATA patients, 
with a significant difference in the serum TGFβ1 level.

The A-disintegrin and metalloprotease (ADAM) 33 gene was reported to be 
associated with the asthma phenotype and airway hyper-responsiveness in asth-
matic patients in various ethnic groups [34, 35]. In a Japanese population of AIA 
patients, sequence variations (ST + 7, V-1, and V5) in ADAM33 were associated 
with susceptibility to AIA [36]. Table 1 summarizes the current knowledge of 
genetic associations in AIA.

Genetic Studies of AIU

The first study suggesting an association between HLA and the AIU phenotype, 
which was conducted in a Korean population, demonstrated a strong association of 
two HLA alleles (HLA-DRB1*1302 and HLA-DQB1*0609) with AIU [37]. When 
clinical parameters were analyzed according to the presence of these two alleles, 
patients carrying HLA-DRB1*1302 or HLA-DQB1*0609 were found to be significantly 

Table 1 Summary of genetic association studies of AIA.

Gene Locus SNP Phenotype N
Year of 
publication

HLA 6p21.3 DPB1*0301 AIA 76 AIA 2004
PTGER2 14q22.1 uS5 AIA 396 AIA 2004
TBX21 17q21.32 −1993T>C AIA 72 AIA 2005
ALOX5 10q11.2 ht1(GCGA) AIA 93 AIA 2005

(GGGCGG)
4,6

AHR* 107 AIA 2006
FcεRIβ 11q12.1 −109T>C IgE to SEB 107 AIA 2006
TBXA2R 19q13.3 795T>C FEV1 fall by 

ASA-BPT
93 AIA 2006

CYSLTR1 Xq13.2–21.1 −634C>T AIA 105 AIA 2006
TNFα /HLA 6p21.3 TNFa −1031T>

C/DPB1*0301
AIA 163I AIA 2006

CYSLTR2 13q14.2–21.1 c. −819T>G, c. 
2078C>T, c. 
2534A>G

FEV1 fall by 
ASA-BPT

115 AIA 2006

PTGER2 14q22.1 −161C>G AIA 108 AIA 2007
166G>A AIA 108 AIA 2007

PTGER3 1q31.1 −1709T>A AIA 108 AIA 2007
PTGER4 5q13.1 −1254A>G AIA 108 AIA 2007
PTGIR 19q13.32 1915T>C AIA 108 AIA 2007
ADAM33 20p13 ST + 7, V-1, V5 AIA 102 AIA 2007
TGFβ1 19q13.2 −509C>T Rhinosinusitis 203 AIA 2007

HLA, human leukocyte antigen. AHR, airway hyperresponsiveness. ASA-BPT, acetylsalicylic 
acid-bronchoprovocation test.
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younger (by approximately 10 years) than those lacking either allele, indicating that 
patients with these alleles develop AIU at an earlier age. There were no significant 
differences in the other clinical parameters examined, including atopy, total serum 
IgE, and circulating autoantibodies, between these two groups. Moreover, recent 
data showed that the prevalence of serum specific IgE to staphylococcal superanti-
gens was significantly higher in AICU patients than in ATCU patients and normal 
controls, with specific IgE to TSST-1 being the most prevalent form in AICU 
patients (25.8% vs. 6.5% in controls and 13.7% in ATCU patients). Furthermore, 
significant associations were noted between the prevalence of specific IgE to the 
staphylococcal superantigens SEA and SEB and the DQB1*0609 and DRB1*1302 
HLA alleles in the AICU group [13]. This suggests that patients with either of these 
two HLA alleles may be more susceptible to developing Th2 immune responses to 
staphylococcal superantigens, which could contribute to the development of AICU. 
Thus, the HLA alleles DRB1*1303 and DQB1*0609 may be strong HLA markers 
for predicting the AICU phenotype in Asian populations. However, a study con-
ducted using a low-resolution technique in an Italian population reported the Class 
I allele (HLA-B44) as a risk factor for AICU, whereas HLA-Cw4 and Cw7 were 
associated with lower risk of AICU [38]. Further studies are needed to clarify the 
significance of HLA markers in AICU patients.

Leukotrienes are believed to participate in the pathogenesis of AIU. Immuno-
pharmacological studies demonstrated that mast cells and basophils are activated to 
a greater extent in patients with AIU [39]. Mastalerz et al. [40] showed that the 
overproduction of Cys-LTs was significantly associated with a polymorphism at 
−444A>C of the LTC4S gene in AICU patients, with the frequency of the C allele 
being significantly higher among AICU patients compared with ATCU patients. 
Moreover, AIU was aggregated in families carrying the LTC4S −444C allele [41]. 
However, no such association was found in a Spanish population [42]. We also 
investigated the genetic polymorphisms of candidate genes encoding enzymes 
involved in leukotriene synthesis in a Korean population. We examined nine SNPs 
of five leukotriene-related genes: 5-lipoxygenese (ALOX5; −1708G>A, 270G>A, 
and 1728G>A), 5-lipoxygenase-activating protein (ALOX5AP; 218A>G), cyclooxy-
genase 2 (PTGS2; −162C>G, 10T>G, and 228G>A), LTC4S (−444A>C), and 
CysLTR1 (−634C>T), showing that a polymorphism of ALOX5 (−1708G>A) and of 
CysLTR1 (−634C>T) had genotype frequencies that differed significantly between 
AICU and AIA patients [43]. The frequency of the ALOX5 −1708A allele was sig-
nificantly higher and that of the CysLTR1 −634 T allele was significantly lower in 
the AICU group compared with the normal control group. These findings were con-
firmed in vivo by a functional study showing that the CysLTR1 mRNA level signifi-
cantly increased after ASA challenge in AIA patients but did not change significantly 
in AIU patients [44]. These results suggest that ALOX5 and CysLTR1 play different 
roles in two major ASA-related conditions, namely, AICU and AIA.

Eleven known SNPs of the genes encoding high-affinity IgE receptor I 
[FcεRIβ; −109T>C, Rsal_Int2, I181L(A>C), E237G(A>G) Rsal_Ex7], 
histamine N-methyl transferase [HNMT; T105I(C>T)], histamine receptor 
H1 [HRH1; −17C>T, D349N(G>A)], and histamine receptor H2 (HRH2; 



Genetic Markers for Differentiating Aspirin-Hypersensitivity 259

543G>A, 826C>T) and their haplotypes were compared among AIU patients, 
patients exhibiting other drug allergies, and normal controls. No significant dif-
ferences in allele, genotype, or haplotype frequencies of any of the SNPs from 
FceRIb gene, HNMT, HRH1, and HRH2 were observed among the three groups, 
suggesting that the polymorphisms of the FceRIb gene and the three histamine-
related genes do not contribute to the development of the AIU phenotype [45]. 
We also investigated the functional variability of the HNMT gene according to 
genetic polymorphisms in AICU patients and found that the HNMT 939A>C 
polymorphism was significantly associated with AICU [46]. Moreover, an in 
vitro functional study demonstrated that an A-to-G conversion at position 939 in 
the 3′ UTR increased both mRNA stability and protein expression. Thus, genetic 
variants of the HNMT 939A>C polymorphism may affect mRNA stability and 
protein expression, resulting in altered histamine metabolism and thereby con-
tributing to the development of AICU. Given that the bioactive histamine level 
is also regulated by the synthesizing enzyme histamine decarboxylase (HDC), 
further investigation into the genetic contribution of HDC in association with 
HNMT is needed.

Recent studies demonstrated a significant association between two promoter 
polymorphisms of FceRIa (−334C>T and −95 T>C) and the AICU phenotype 
[12], although no such association was found in a similar study conducted on a 
Polish population [47]. FcεRIα is the first receptor to bind with IgE antibodies. The 
rare allele of the −344C>T polymorphism was significantly associated with higher 
serum total IgE in AICU patients when compared with other subjects [12]. 
Furthermore, in an in vitro functional study using a reporter plasmid carrying the 
−344T allele, this allele exhibited significantly higher promoter activity than the 
−344C allele in the rat mast cell line RBL-2H3. Specifically, the transcription factor 
myc-associated zinc finger protein (MAZ) preferentially bound to the −344C>T 
polymorphism. In addition, AICU patients carrying the T allele exhibited higher 
histamine releasing activity of IgE antibody than those with the homozygous CC 
genotype, whereas the two groups showed no significant differences in calcium 
ionophore-induced histamine releasing activity [12]. These findings suggest that 
the −344C>T polymorphism of the FceRIa promoter may be associated with 
increased expression of FcεRIα on mast cells and enhanced release of histamine, 
which in turn contributes to the development of AICU. Table 2 summarizes the 
current knowledge of genetic associations with AIU.

Table 2 Summary of genetic association studies in AIU.

     Year of 
Gene Locus SNP Phenotype N publication

HLA 6p21.3 DRB1*1302 AIU 188 AIU 2006
   DQB1*0609 AIU 188 AIU 
ALOX5 10q11 −1708G>A AIU 101 AIU 2005
FcεRIα 1q23 −344C>T AICU 95 AICU 2007
HNMT 2q22.1 939A>C AICU 110 AICU 2007
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Conclusion

Further information about genetic polymorphisms of candidate genes and support-
ing functional studies would help to elucidate the molecular mechanisms of the two 
major ASA-related conditions, namely, AIA and AIU. Such information would also 
aid in the identification of useful genetic markers for differentiating between AIA 
and AIU, which should lead to the development of new diagnostic markers and 
additional therapeutic targets on the basis of genetic information, as shown in Fig 1.
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Molecular Biology of Allergens: 
Structure and Immune Recognition

Martin D. Chapman, Anna Pomés, and Rob C. Aalberse

Introduction

Allergens are defined as environmental agents that induce IgE-mediated immediate 
hypersensitivity reactions following inhalation, ingestion or injection. In some 
texts, allergens are described as ‘innocuous’ or ‘harmless’, which is certainly true 
for the majority of non-sensitized individuals. However, for patients with hay fever, 
asthma or atopic dermatitis (AD), the majority of whom are sensitized to pollen or 
indoor allergens, exposure to allergens is far from harmless. Equally, local and sys-
temic anaphylactic reactions to insect venom or food allergens are serious, and 
potentially life-threatening, problems for allergic patients. Little is understood about 
why certain allergens are associated with specific allergic conditions: why pollens 
cause hay fever, why asthma is strongly associated with indoor allergens and why 
peanut is such a potent cause of anaphylaxis. From the immunological point of 
view, it is important to distinguish between complete (‘true’, sensitising) allergens 
and incomplete (non-sensitising) allergens. Non-sensitising allergens are able to 
interact with IgE antibodies (which may or may not result in allergic symptoms), but 
are unable to induce the production of IgE antibodies. Their role as allergens fully 
depends on their cross-reactivity with complete (or sensitising) allergens. A good 
example of a non-sensitizing would be the apple allergen, Mal d 1, which is strongly 
cross-reactive with birch pollen, Bet v 1, but does not itself cause sensitization. 
While non-sensitizing cross-reacting allergens are of interest both from the clinical 
as well as from the immunological point of view, we focus in this chapter on aller-
genicity, the process that results in allergen-specific IgE synthesis.
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Studies of allergen structure and function, exposure levels and aerodynamics 
have provided insights into features that predispose to allergenicity. Most inhaled 
allergens are 10–60-kDa proteins or glycoproteins that become airborne on parti-
cles, e.g., pollen grains, mite feces, animal dander that are 5–50 mm in diameter and 
contain ∼1 ng allergen per particle. Continued exposure to 1–2 mg/g of a major 
allergen in house dust will cause sensitisation for IgE responses in some, but not 
all, genetically predisposed (atopic) individuals [1]. House dust allergens comprise 
a significant proportion of the protein in house dust. One could predict that an 
entirely novel protein with similar properties to all those described above would 
ultimately cause sensitisation in atopic individuals.

Structural and molecular studies have revealed that allergens are a diverse group 
of proteins with different structures and biological functions [2–7]. Most common 
allergens have been cloned, sequenced and manufactured as recombinant proteins 
in high-level expression systems. Recombinant allergens provide essential tools for 
research and are increasingly being used to develop new allergy diagnostics and 
vaccines [5, 8–11]. There are now over 50 three-dimensional allergen structures in 
the Protein Database (PDB) and allergens are found in ∼150 protein families in the 
Pfam protein family database (www.sanger.ac.uk/Software/Pfam). Breiteneder has 
argued that this is a relatively small number, given that over 8,000 protein families 
reside in Pfam [12, 13]. However, the 150 allergen protein families that have been 
identified still represent a huge degree of diversity at both the structural and bio-
logical level. Such diversity precludes any common structural feature, e.g., amino 
acid sequence motif or protein structure, which makes an allergen an allergen. From 
the molecular standpoint, glycoproteins need special consideration because the 
glycan structure is determined largely by the host that is used for the expression of 
the glycoprotein. Expression of glycoproteins in yeast, molds, plants, invertebrates 
or vertebrates results in different glycoproteins with often strikingly different IgE 
reactivity [14].

The ability of diverse proteins to be allergens must relate to immunologic, envi-
ronmental and host factors that influence IgE responses, as well as adjuvant-like 
effects. Some of these factors have been widely investigated over the past 10 years. 
They include observations that the proteolytic enzyme activity of dust mite allergens 
can potentiate IgE responses [15, 16]. Mite cysteine and serine protease allergens 
can damage lung epithelia, cause production of pro-inflammatory cytokines and 
may act as gatekeepers to allow access of other non-enzymatic allergens to antigen-
presenting cells [17–19]. Recent studies suggest that mite feces contain other 
elements, including endotoxin, bacterial DNA and mite DNA that could also influence 
IgE responses and inflammation [20]. The effect of allergen dose on IgE responsive-
ness came to the fore following studies, which showed that children living with cats 
(and exposed to > 20 mg/g Fel d 1) had a lower prevalence of IgE antibody to cat [21, 
22]. This was associated with high levels of IgG4 antibody to Fel d 1, in what has 
been termed a modified Th2 response (i.e., a class switch to IgG4, but not to IgE). 
It is common to find individuals with high levels of IgG1 and IgG4 antibody to Fel 
d 1, without IgE, and, paradoxically, this form of IgE-selective tolerance is associ-
ated with high-level exposure to Fel d 1. To complicate matters even further, it has 
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recently been proposed that the degree of “foreignness” of the allergen relative to the 
human may also affect immune recognition. Cat and dog allergens are widely dis-
tributed in the environment, and have the expected aerodynamic properties of aller-
gens, and yet appear to be rather weak allergens. There are over 50 million cats (and 
dogs) in the USA and it is surprising given their prevalence and the ubiquitous dis-
tribution of these allergens in the environment that the rate of sensitization to these 
allergens is not higher. Many individuals may develop tolerance in response to the 
high-dose exposure. Another explanation is that because mammalian allergen 
sequences are more closely related phylogenetically to human sequences than, for 
example, mite or cockroach sequences, they are less ‘foreign’ and by inference less 
likely to stimulate the immune system [20].

In this chapter, we will explore some of these new ‘frontiers’ and use selected 
examples to illustrate that some allergens are more important than others. Major 
allergens have in the past been designated based on sensitization levels of > 50% in 
a panel of allergic patients with IgE antibody to the source material. Intuitively, one 
would expect that a major allergen is one that makes a difference. Objective evi-
dence can distinguish those allergens that make a difference from those that do not. 
Understanding which allergens are important influences decisions about allergen 
selection for immunodiagnostics and for new therapeutic strategies. Molecular 
biology has provided the tools for manipulating allergen genes and proteins. 
The new frontier is how to harness this exciting technology to better understand the 
sensitization process and to more effectively treat allergic disease.

Allergen Structure and Biologic Function

Molecular Biology

The molecular biology of allergens has followed a familiar path over the past 20 
years: (i) cloning and sequencing of allergens; (ii) high-level expression of recom-
binant allergens; (iii) determination of three-dimensional structures by X-ray crys-
tallography or nuclear magnetic resonance spectroscopy (NMR); (iv) generation of 
mutants or “hypoallergenic” variants with reduced IgE binding activity; and (v) 
clinical trials of recombinant allergen vaccines [5, 10, 23–28]. Additionally, epitope 
scans of overlapping linear peptides (usually 6–15 amino acids) derived from the 
amino acid sequence are often tested for IgE binding and/or T cell stimulatory 
activity. As a result, the sequences of over 500 allergens have been determined and 
more than 50 allergen structures have been deposited in the PDB (Table 1). Initially, 
most allergens were cloned by screening cDNA expression libraries with pooled 
IgE antibodies from selected allergic patients. Polymerase chain reaction (PCR) 
and, more recently, phage display techniques have also been used [29]. Subsequently, 
allergen homologues were identified using degenerate primers whose nucleotide 
sequence was derived from the previously cloned allergens. The first allergens to 
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be cloned were those for which the natural allergen had been purified and shown to 
be important, e.g., Der p 1, Der p 2, Bet v 1 and Amb a 1 [30–33]. Cloning identified 
many other allergens for which the natural counterpart had not been purified. 
The repertoire of 21 mite (Dermatophagoides pteronyssinus) allergens currently 
listed in the World Health Organization and International Union of Immunological 
Societies (WHO/IUIS) Allergen Nomenclature (www.allergen.org) includes many 
allergens that were defined based on the recombinant allergen sequences alone 
(similarly with other allergen sources) [7]. Cloning and/or PCR also defined a large 
number of isoallergens: multiple molecular forms of the same allergen that share 
extensive amino acid sequence homology (>67%) and IgE cross-reactivity [34, 35]. 
The 40 or more Bet v 1 sequences represent 31 isoallergens that show 73–98% 
sequence identity. This form of genetic variation appears to be a particular feature 
of the Group 1 tree pollen allergens. Polymorphic variants of the same allergen, 
termed isoforms, show > 90% amino acid sequence identity and are again highly 
prevalent in Birch pollen (42 isoforms of Bet v 1) and also dust mite (23 isoforms 
of Der p 1 and 13 isoforms of Der p 2) [7]. Because isoforms differ in only a few 
amino acid substitutions, analysis of immunoreactivity to isoforms can be useful in 
defining antibody binding sites and T cell epitopes on allergens [36].

Table 1 Protein database files for structures of common allergens

Allergen   PDB file number(s) 

Indoor    
Bla g 2 1YG9   
Bos d 2 1BJ7   
Der p 1 1XKG 2AS8  
Der p 2 1A9V 1KTJ  
Der f 2* 1AHK 1AHM 1WRF 1XWV
Fel d 1 1PUO 1ZKR 2EJN 
Mus m 1 1MUP   
Rat n 1 2A2G 2A2U  

Outdoor    
Bet v 1* 1B6F 1BTV 1BV1 1FM4
Bet v 2 1CQA   
CCD** 2MYR 1E6S 1FX5 1LTE
Jun a 1 1PXZ   
Ole e 6 1SS3   
Phl p 1 1N10   
Phl p 2 1BMW 1WHO  
Phl p 5 1L3P   
Phl p 6 1NLX   
Phl p 7 1K9U   
Che a 3 2OPO   

Foods    
Ara h 6 1W2Q   
Bos d 5 1BSO   
Prua v 1 1E09 1H2O  
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Recombinant allergens have been produced in high-level expression systems in 
Escherichia coli, Pichia pastoris, baculovirus and tobacco plants [23, 37–41]. Most 
allergens have been expressed in E. coli as the mature protein or as fusion proteins 
(with glutathione S-transferase or maltose binding proteins), or with histidine tags, 
to aid purification. Some allergens (for example, Phl p 1, see Fig. 1) are not prop-
erly folded in prokaryotic bacterial systems or are produced in inclusion bodies 
which require solubilisation in guanidine or urea and refolding prior to purification 
[42]. In these cases, eukaryotic systems such as yeast or baculovirus may be more 
suitable for high-level expression of allergens with correct folding. The yeast, 
P. pastoris, is especially useful for allergens that do not express in E. coli, such as 
the Group 1 mite allergens. The original P. pastoris vector used the AOX1 pro-
moter, which required feeding cultures with methanol to induce allergen expression 
[39, 40, 43, 44]. This can be avoided with the newer pGAPZ vectors in which the 
allergen is constitutively expressed into the culture medium. The advantages of the 
P. pastoris system are high-level expression (up to 100 mg/l) and that the protein of 
interest is the major protein secreted into the medium and is more easily purified. 
P. pastoris can also be used in fermentors and scaled up into bioprocessing systems 
that facilitate the production of gram quantities of protein.

Recombinant allergens have several advantages when compared with natural 
allergen extracts or purified natural allergens. Unlike natural allergenic products, 
recombinant allergens are homogeneous and do not contain non-allergenic pro-
teins. They are also less likely to contain endotoxin, bacterial products or viruses. 
To some extent, these advantages are shared by purified natural allergens. However, 
trace contamination with other allergens can occur in purified natural allergen 
preparations. One advantage of purified recombinant over natural allergens is the 

Fig. 1 Comparison of the three dimensional structures of Phl p 1 (with largely unfolded N terminal 
domain, PDB-code 1N10) and Zea m 1 (with a folded N-terminal domain) PDB-code 2HCZ [128]
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availability of the source material. Obtaining large quantities of natural source 
material on a consistent basis can pose problems for natural allergen purification, 
especially to obtain gram quantities of pure protein. In contrast, recombinant aller-
gen production can be scaled up to these levels and can be done under good manu-
facturing practice (GMP) conditions.

The other key advantage of recombinant allergens is that, unlike natural aller-
genic products, they can be precisely formulated into cocktails for diagnostic or 
therapeutic use at defined concentrations and dosage levels. It was recognized early 
on that a cocktail of two to four major allergens could be effectively used for diag-
nostic purposes either in vitro or in vivo [45]. Typically, formulations containing 
∼10 mg/ml each allergen could be used for skin prick testing and several studies 
showed good correlations between skin testing with purified natural and recom-
binant allergens [26, 46, 47]. However, the future of allergy diagnostics lies more 
in the use of purified allergens in in vitro diagnostics, rather than skin prick testing 
[5, 48, 49]. For example, a streptavidin-CAP assay has been developed using bioti-
nylated allergens that enable IgE antibodies to specific allergens to be routinely 
measured by fluorescent enzyme immunoassay (FEIA) [50]. As with other diag-
nostic tests, FEIA uses a separate test to measure each IgE response in procedures 
that use relatively large amounts of serum. Recently, static or suspension microarray 
systems have been developed that enable IgE antibodies to multiple allergens to be 
measured simultaneously. Microarrays provide a profile of IgE responses to specific 
allergens. One commercial test uses a static allergen array and can measure IgE 
antibodies in four sera to ∼75 purified allergens at the same time. Results obtained 
with the microarray correlate with FEIA using allergen extracts and the microarray 
uses only 30 ml serum [51] Similarly, fluorescent multiplex array technology has 
recently been developed which measures total IgE and specific IgE to ten purified 
allergens simultaneously using 20 ml serum [52]. Multiplex technologies are espe-
cially suited to large population surveys or birth cohorts for monitoring IgE responses 
to multiple allergens, and for pediatric studies where serum is often is short supply.

Structure and Function

Amino acid sequence homology searches allowed allergens to be assigned to different 
protein families based on their degree of sequence similarity and, in many cases, 
this allowed the biologic function of the allergen to be established. Thus Der p 1 
was identified as a cysteine protease through its homology to papain and actinidin, 
and Der p 3, Der p 6 and Der p 9 were identified as serine proteases [53–55]. 
Structural data were used to show that these allergens had the appropriate amino 
acid residues at the enzyme catalytic sites and biologic experiments were per-
formed to show that the purified allergens had the respective enzyme activity. The 
X-ray crystal structures of both the pro-enzyme and mature forms of Der p 1 have 
recently been determined at high resolution using P. pastoris expressed allergens 
[56, 57] (Fig. 2). The pro-enzyme has an 80 amino acid pro-peptide containing four 
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alpha helices, which appear to be unique among the C1 family of cysteine pro-
teases. The pro-peptide covers a large surface area of Der p 1 and inhibits binding 
of IgE antibodies [56, 58, 59]. Both structures also revealed that Der p 1 has a 
magnesium ion binding site, the function of which is not known. The crystal struc-
ture of mature Der p 1 suggests the possibility of dimer formation, which was 
proposed to stabilize the molecule and facilitate its persistence in the environment, 
even though natural Der p 1 is largely monomeric as assessed by size exclusion 
chromatography. The reversed situation was observed for the cat allergen Fel d 1. 
Natural Fel d 1 is a dimer of a heterodimer (chain 1 + chain 2). The first crystal 
structure (1PUO) was based on a recombinant protein in which the C terminus of 
chain 2 was linked to the N-terminus of chain 1. In this structure, only crystallo-
graphic contacts were observed rather than the expected stable interface. In a 
recently published structure (1EJN), which was based on a construct of chain 1 
linked to the N terminus of chain 2, a properly assembled structure of the expected 
size was found, i.e., corresponding to the natural four-chain structure (Fig. 3).

To some extent, allergens segregate among protein families that are according to 
whether they are indoor allergens, outdoor allergens, plant and animal food aller-
gens, or injected allergens:

● Indoor allergens (mite, animal allergens, cockroach, molds)

Proteolytic enzymes (serine and cysteine proteases), lipocalins (ligand-binding pro-
teins), tropomyosins, albumins, calcium binding proteins, protease inhibitors [5, 60]

● Outdoor allergens (grass, tree and weed pollens, mold spores)

Fig. 2 Tertiary structures of the pro-enzyme and mature forms of rDer p 1 expressed in Pichia 
pastoris. The pro-region of Der p 1 comprises 80 amino acids in three α-helices (left panel), which 
are cleaved to form the mature Der p 1 cysteine protease allergen (right panel) [56,57]
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Fig. 3 Cat allergen Fel d 1: new structure. Left panel: Fel d 1 structure 1PUO as initially resolved 
from allergen expressed as chain2-chain1-single-chain construct (improperly dimerized) [91]. 
Right panel: latest Fel d 1 structure 1EJN derived from Fel d 1expressed as a properly dimerized 
chain1-chain2-single-chain construct [92]

Plant pathogenesis-related (PR-10) proteins, pectate lyases, β-expansins, calcium-
binding proteins (polcalcins), defensin-like proteins, trypsin inhibitors [3, 13, 61, 62]

● Plant and animal food allergens (fruits, vegetables, nuts, milk, eggs, shellfish, fish)

Lipid transfer proteins, profilins, seed storage proteins, lactoglobulins, caseins, 
tropomyosins, parvalbumins [63–65]

● Injected allergens (insect venoms and some therapeutic proteins)

Phospholipases, hyaluronidases, pathogenesis-related proteins, asparaginase [66, 67].

Allergens belonging to these protein families are likely to have biologic functions 
that are important to the host. Proteolytic enzymes are involved in digestion, tropo-
myosins and parvalbumins in muscle contraction and profilins in actin polymeriza-
tion in plants. The mouse lipocalin allergen, Mus m 1, is produced in the liver of 
male mice, secreted in large amounts in the urine and serves to mark the territories 
of male mice [68]. The cockroach lipocalin allergen, Bla g 4, is produced in accessory 
glands of the male reproductive system and has an as yet unknown reproductive 
function [69, 70]. Crystallographic studies showed that Bet v 1, a plant pathogenesis-
related (PR-10) protein, contained a hydrophobic pocket that could bind brassinos-
teroids and functions as a plant steroid carrier. The PR-10 proteins are important in 
plant defense, plant growth and development [71].

In addition to biological function, the molecular biology of allergens has also 
explained the structural basis for clinical symptoms to apparently unrelated allergens, 
especially conditions such as oral allergy syndrome. Tree pollen allergic patients 
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frequently have oral symptoms (itching at the back of the throat) upon eating apples 
and other soft fruits. These patients are primarily sensitized to PR-10 allergens or 
profilins in the pollen and the response is mediated by the presence of structurally 
homologous allergens in fruits and vegetables. Mite allergic patients undergoing 
immunotherapy in Italy have experienced anaphylactic reactions on eating snails, 
which are thought to be due to cross-reactivity between tropomyosins [72, 73]. Bird 
fanciers may develop clinical sensitivity to chicken egg due to cross-reactivity 
between airborne allergens derived from the caged pet with proteins present in 
chicken egg yolk, which result in an atypical egg allergy: reactivity to egg yolk with 
little (if any) reactivity to egg white [74, 75].

Adjuvant Effects that Influence IgE Responses

One of the most important aspects of the biologic function of allergens is whether 
function can influence the ability of allergens to cause IgE responses or Th2 
responses and inflammation, in general. Over the past 10 years, a significant body 
of evidence has been gathered, which suggests that the cysteine and serine protease 
activity of mite allergens (Der p 1, Der p 3, Der p 6 and Der p 9) potentiates IgE 
production through cleavage of CD23 from activated B cells and CD25 from T cells 
[76, 77] (Table 2). The enzymatic activity of these allergens disrupts the lung epithelium 
through cleavage of tight junction membrane proteins (occludin and claudin-1), which 
increases bronchial permeability and enables access to sub-epithelial, dendritic 
antigen-presenting cells [18]. Der p 1 also causes release of pro-inflammatory 
cytokines from bronchial epithelial cells (IL-6, IL-8, GM-CSF), and Th2 cytokines 
from mast cells and basophils (IL-4, IL-13) (Table 2) [19, 78]. Cytokine release 
from epithelial cells by mite protease allergens is mediated by protease-activated 
receptor 2 (PAR-2) [17, 79, 80]. Most recently, animal experiments showed that 
production of total IgE and IgE anti-Der p 1 was significantly reduced in mice 
immunized with rDer p 1 that was inactivated using the cysteine protease inhibitor 
E-64 [76, 81]. The hypothesis that there are synergistic effects of mite allergens on 
IgE production, Th2 responses and inflammation is attractive because it provides 
an explanation for the strong epidemiological association between mite allergy and 
asthma [1, 82]. Deposition of mite fecal particles in the lung releases a package of 
enzymes that can contribute towards both the immediate and late phase reactions 
that characterize the asthmatic response.

This theory falls short in explaining why other asthma-associated allergens are 
not proteolytic enzymes. Cockroaches are an important cause of asthma in inner city 
populations in the USA and in other parts of the world [83–85]. However, none of 
the allergens that have been cloned from German or American cockroach are proteo-
lytic. The most important cockroach allergen in terms of IgE sensitization is Bla g 2, 
which elicits IgE responses in ∼60% of cockroach allergic patients. Although Bla g 
2 belongs to the aspartic protease family of enzymes, it has critical substitutions in 
the catalytic site and other parts of the molecule that render the protein inactive as 
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an enzyme. These substitutions are apparent in the X-ray crystal structure and the 
lack of enzyme activity has been confirmed in functional assays (Fig. 4) [86–88]. 
Bla g 2 belongs to a sub-group of inactive aspartic proteases, termed pregnancy-
associated glycoproteins (PAG), whose biologic function is unknown. Bla g 2 has a 
deep cleft within the molecule, which may serve to bind a ligand of some kind. Non-
enzymatic ligand-binding allergens associated with asthma do not conform to the 
protease theory. Other examples include Der p 2, which is a lipid binding protein, 
homologous to MD-2 and Niemann-Pick disease C2-type protein [89, 90], and 
mammalian allergens, which are predominantly lipocalins and albumins. Fel d 1, the 
major cat allergen belongs to the secretoglobin protein family, which suggests that 
its function is to control inflammation at mucosal surfaces (Fig. 3) [91, 92].

An obvious implication from the structure and function data is that we should 
look for other potential adjuvants, co-factors or biologic effects that may play a role 
in influencing IgE responses and/or asthma. Let’s take another look at the mite fecal 
particle. Platts-Mills and colleagues have recently shown that in addition to proteo-
lytic enzymes, mites feces also contain endotoxin, bacterial DNA and mite DNA, 
elements which are known to act a potential adjuvants [20]. Endotoxin binds to 
Toll-like receptor 4 (TLR-4) on antigen-presenting cells and low-dose endotoxin 
exposure favors the development of Th2 [93, 94]. Conversely, both bacterial DNA 
and mite DNA bind to antigen-presenting cells through TLR-9, are relatively 

Table 2 Immunobiologic effects of proteolytic enzyme allergens produced by dust mites

Der p 1:
• Cleaves CD23 from activated B cells
• Cleaves CD25 from T cells,
• Causes detachment of bronchial epithelial cells from lung segments
• Disrupts the architecture of bronchial epithelium by disruption of intercellular tight 
junctions

Mite proteinases (Der p 1, Der p 3, Der p 6 or Der p 9)
• Induce pulmonary epithelial cell detachment
• Induce production of proinflammatory cytokines

(IL-8, IL-6, MCP-1 and GM-CSF) in vitro
• Induce IgE-independent mast cell and basophil degranulation, and release of IL-4 and 
IL-13 in vitro

Foods    
Prua v 2 2AHN   
Pru p 3 2ALG 2B5S  
Ric c 3 1PSY   
Zea m 1 2HCZ   

Injected allergens    
Api g 1 2BK0   

Hyaluronidase 1FCQ 1FCU 1FCV 2J88
Ves v 2 2ATM   
Ves v 5 1QNX   

Additional structures are available for Der p 2 (2F08) and Bet v 1 (1FSK, 1LLT and 1QMR)
CCD complex carbohydrate determinant
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unmethylated and contain immunostimulatory motifs that favor Th1 responses [95]. 
The balance between these various adjuvants coupled with host immune response 
genes may determine whether or not an individual makes an IgE response. Accurate 
measurements of enzyme activity, endotoxin and DNA in mite feces have not yet 
been made, but estimates of the doses that can be delivered to the lung will be 
important in establishing the relevance of these adjuvants in generating local Th1 
or Th2 responses. In contrast to mite and cockroaches, DNA from animal allergens 
(cat, dog, rat, mouse) is fully methylated and these allergens are not enzymes. The 
evolutionary distance of these species from humans is much less than for mites, 
cockroaches, pollens and fungi and it has been proposed that evolutionary distance 
plays a role in determining immune responsiveness: these allergens are more 
closely related to human proteins and, therefore, inherently less immunogenic [20]. 
This may have credence with respect to IgE, but not necessarily with IgG antibody 
responses, which are common in humans who are persistently exposed to animal 
allergens. The weak immunogenicity of lipocalins has also been suggested to favor 
IgE induction [96]. At a structural level, mammalian lipocalin allergens are no more 
conserved than lipocalins from other species. The lipocalin family comprises over 
50 proteins that show only 20–25% amino acid sequence homology. Lipocalins 
have a conserved tertiary structure comprising a C-terminal α-helix and an eight 
stranded anti-parallel β-sheet barrel, with three structurally conserved regions that 
form the ligand-binding pocket. The amino acid residues in this pocket are conserved 
irrespective of the host species of the lipocalin [97, 98].

A further adjuvant that should be considered in relation to AD is staphylococcal 
enterotoxin B (SEB). Most AD patients have high levels of IgE antibody to mite 

Fig. 4 Crystal structure of cockroach allergen, Bla g 2, an inactive aspartic protease (1YG9). Left 
panel: Bla g 2 structure showing the region of the catalytic site (D215, D32), the zinc ion, disul-
phide bonds and N-glycosylation sites. Right upper panel: residues involved in zinc ion binding. 
Right lower panel: inter-atomic distances and aspartate positions of Bla g 2 (blue ribbon) and 
pepsin (yellow ribbon). Reprinted with permission from Ref. [88]
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and other inhaled allergens to which they are exposed. The patients also mount 
strong Th2 responses to allergen and have allergen specific T cells (CD4+ and 
CD8+) in the peripheral blood and in the skin. Application of mite allergen to 
abraded skin for 48 hours can reproduce eczematous lesions in patients with AD 
[99]. Recent studies using HLA Class II tetramer cell sorted populations to present 
a Der p 1 epitope to T cells have shown that SEB enhanced T cell responses to Der 
p 1. The SEB-promoted HLA class II expression on antigen presenting keratinoc-
ytes and amplified T cell cytokine production, principally IL-4 and IFN-γ [100]. 
The SEB acts as a potent adjuvant for allergen specific Th2 cells by promoting class 
II expression on epithelial cells (through IFN-γ) and by IL-4 mediated amplification 
of CD4+ T cells. Thus bacterial superantigens should also be considered as adjuvants 
in the immune response to allergens.

Surprisingly, the most relevant adjuvant for the production of IgE seems to be 
IgE itself. In the presence of IgE antibodies, the production of IgE antibodies to 
other epitopes is facilitated largely via mast cell induced local IgE production 
[101–104, 105]. Some of these newly induced IgE antibodies are directed to 
epitopes on the same allergen that the pre-existing IgE antibodies recognize. This is 
an example of classical epitope spreading, which does not require the involvement 
of new Th2 cells. However, based on the spectrum of proteins from a single allergen 
source material that is recognized by a typical allergic patient, the epitope spreading 
extends beyond this initial allergen and involves epitopes on other antigens that 
happen to be present in that microenvironment. In order to recruit Th2 help for this 
new specificity, new Th2 cells need to be involved. Since this process of extended 
epitope spreading seems to be common, we have to assume either that Th2 recruit-
ment is not a severely restrictive requirement, or, alternatively, that allergen-specific 
Th2 involvement is not required for this extended epitope spreading. Cells that are 
activated via an allergen–IgE interaction might provide the signals needed for iso-
type switching in the presence of pre-existing IgE.

Allergen-Specific Immune Responses

It is interesting to note how diverse (and occasionally contradictory) current ideas 
on the nature of allergenicity are. This obviously reflects our lack of critical infor-
mation, largely due to the absence of animal models that closely mimic human 
sensitization. As already alluded to, allergens have been proposed to special immu-
nogenic properties or carry a special “danger signal” [106]. On the other hand, 
allergens have been suggested to lack features that make other proteins strong 
immunogens.

In this section, we will give possible reasons why allergy is not simple. We will argue 
that the IgE isotype switch is not really exceptional and is not the only rate-limiting step 
towards IgE production. Furthermore, we will discuss why it is unlikely that allergens 
are an exclusive set of proteins with distinctive features, even if some features may 
enhance a protein’s allergenic potential.
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We have two indisputable facts. First, most immune responses do not induce a 
noticeable IgE antibody response. This is true for many common microbial patho-
gens. Second, the majority of the human population (possibly only a small majority, 
but it is still generally assumed to be more than 50%) does not develop an allergy 
and those who do develop an allergy do not become allergic to every antigen, not 
even to every allergen. The 1,000–10,000 lower plasma level of IgE compared to 
IgG and the equally lower relative incidence of IgE myelomas compared to IgG 
myelomas all indicate that the production of IgE antibodies is a rare event com-
pared to the production of IgG. Why is IgE production such a rare event? Most 
allergist/immunologists would argue that the requirements for a class switch to IgE 
are only rarely met. In this view, the isotype switch is the rate-limiting step that 
protects most of us from developing allergies. Since even patients with an allergy 
do not develop IgE antibodies to all antigens in their environment, the implication 
is that allergens are exceptional antigens that somehow overcome the barriers that 
usually prevent the IgE isotype switch.

However, if the class switch to IgE was an exceptional event and if allergens 
were exceptional antigens, allergy should be simple. It is not. Hundreds of different 
proteins have been found to be allergens. Moreover, an allergic patient will not 
produce a single IgE antibody to a single allergen molecule, but will typically react 
to several allergens from the allergenic source (which strongly argues against the 
notion that allergens are very exceptional proteins) and produce IgE to several 
epitopes per allergen. This implies that in a number of B cells the IgE isotype 
switch has been induced, rather than in a single clone that managed to pass the very 
restrictive switch requirements. This multi-clonal response is hard to reconcile with 
the concept of a heavy roadblock on an otherwise smooth the differentiation path-
way towards IgE that would only allow B cells to pass under exceptional conditions.

A hint regarding the nature of the second rate-limiting step (subsequent to the 
isotype switch) came from work by Brinkmann and Heusser, who showed that 
clones resulting from IgE-switched B cells are much smaller than clones resulting 
from IgG-switched B cells [107]. Another hint came from mouse experiments, in 
which IgE-switched memory B cells proved virtually undetectable following regu-
lar IgE induction protocols (but were easily detectable following administration of 
heterologous antibodies to IgD, a procedure known to induce high circulating IgE 
levels) [108]. An analogous observation has been observed in human peripheral 
blood: in this compartment IgE switched cells are not only rare, but the few that can 
be found prove to be pre-plasma cells rather than B memory cells [109]. Molecular 
biology also provided an intriguing anomaly that is relevant in this context. 
Karnowski et al. found that the IgE-switched B cell has a problem in producing 
membrane-anchored antibody, because of a structural defect in the mRNA [110]. 
This lack of membrane immunoglobulin expression is likely to compromise the 
proliferation and survival potential of the epsilon-switched B cell.

In addition to these indications that the route from naïve B cell to IgE-producing 
plasma cell contains (at least) two rate-limiting steps (not only a demanding isotype 
switch to epsilon, but also a compromised survival/proliferation potential of 
IgE-switched B cells), information is becoming available that indicates modulating 
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effects of the type and “matrix” of the allergen on the type of immune response 
upon allergen exposure. Best known is the “modified Th2 response” [21]. In the 
original description, this terminology was used to classify a subgroup in population 
studies: subjects with IgG4 antibodies to allergen (cat allergen, in this case), but 
without IgE antibodies. The rationale to use allergen-specific IgG4 as the readout 
was that IgG4 antibody production requires activation of allergen-specific Th2 cells 
(as does IgE). The authors drew attention to this subgroup of subjects, because it 
convincingly demonstrated that not all Th2 responses result in IgE synthesis. Two 
additional observations are relevant. First, subjects with a modified Th2 response 
were predominantly found in the sub-group with the highest allergen exposure. 
Previous experiments suggested that this effect was not due to a modulating effect 
of antigen dose on the Th1/Th2 balance [111] Second, no modified Th2 responses 
were found for mite allergens, suggesting that there was a dichotomy between 
allergens that induce modified Th2 responses and those that do not [112]. Or, more 
likely, allergens can be ranked according to their potential to induce a modified Th2 
response rather than a “non-modified” Th2 response, with cat at one side of the 
spectrum and mite at the other. An alternative description of these phenomena has 
been presented elsewhere in which the focus is on the classification of allergens 
(rather than on the classification of immune responses) [113]. Allergens that are 
likely to induce a ‘non-modified immune response’, such as the ‘classical’ atopic 
allergens from mites and pollen, are characterized by their low propensity to induce 
IgG4 (but also IgG1) antibodies in the absence of an IgE response. In contrast, 
allergens on the other side of the spectrum induce ‘regular’ immune responses, usu-
ally with IgG antibody in the absence of IgE. So, the original concept has been 
fine-tuned in two ways: firstly, the IgG response is not exclusively focused on IgG4, 
but includes IgG1 as well, and may even lack IgG4. It is important to stress that not 
all IgG assays are able to make this kind of distinction. In contrast to reports claim-
ing similar (or even increased) levels of IgG antibodies to pollen or mite allergens 
in the absence of IgE antibodies, reports that indicate a striking lack in IgG reactiv-
ity in the absence of IgE antibodies are based on high-affinity assays using fluid-
phase, radiolabeled purified major allergens [114, 115]. Secondly, IgE responses 
may occur occasionally with ‘modified Th2 allergens’. This description allows a 
statistical classification of allergens based on the relative prevalence of IgG anti-
bodies in the presence and absence of IgE antibodies to that allergen (in populations 
with similar levels of allergen exposure).

How could these differences in allergen-induced immune responses be explained? 
Our hypothesis is based on the additional observations (i) that IgE responses occur 
either via a direct isotype switch (i.e., from mu to epsilon) or via an indirect switch 
(from mu via an intermediate isotype, often gamma4 to epsilon; (ii) that mice show-
ing that a weak antigenic stimulus tend to result in a direct switch to epsilon, 
whereas upon a strong antigenic stimulus IgE production occurs mainly via an 
indirect switch [116]. According to our working hypothesis, classical atopic allergens 
(e.g. from pollen or mites) are weak antigens that fail to give B cell responses most 
of the time, but may occasionally induce a weak response in several (if not all) 
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isotypes including IgE, particularly in people with hyperreactive B cell system 
because of their genetic predisposition. Such immune responses do not result in 
active germinal centers, but may occur in extra-nodal tertiary lymphoidal struc-
tures, for example, in the airway mucosa [102–105, 117, 118]. Allergens at the 
other end of the spectrum are more likely to induce a brisk immune response, which 
results in a more selective and expansive immune response, involving active germi-
nal centres in secondary lymphoid tissues. In order to explain why there is so little 
IgE production, we assume that individuals are protected by the activity of the 
germinal centers for the removal of IgE-switched B cells. Some IgE may be pro-
duced in this situation, but mostly outside the germinal centers via allergen-specific 
IgG4-switched memory B cells.

Allergens That Make a Difference

Some allergens are more important than others. Previously, allergens have been 
classified as ‘major’ or ‘minor’ based on the prevalence of IgE sensitisation in a 
selected population of allergic patients (usually > 50% prevalence defines a major 
allergens and < 20% is minor). This criterion is dependent on the sensitivity of the 
IgE detection method. As the sensitivity of these assays has increased, so has the 
number of ‘major’ allergens. To be entered into the WHO/IUIS Allergen nomen-
clature, all that is needed is to show that the allergen elicits an IgE response in five 
patients (the objective of the nomenclature is to name allergens, not to assign their 
importance) [7, 34]. However, it is clear from many studies that some allergens play 
a pre-eminent role in causing immune responses in atopic individuals, are better 
marker proteins for immunologic, clinical and epidemiologic studies, and are usu-
ally considered to be high-profile targets for allergy diagnostics and therapeutics. 
Table 3 lists eight criteria for defining the properties of these ‘allergens that make 

Table 3 Eight criteria for defining allergens that make a difference

1. A sensitization rate of > 80% (>2 ng allergen specific IgE/ml) in a large panel of allergic 
patients

2. A significant proportion of total IgE (>10%) can be allergen-specific
3. Absorption of the allergen from the source material significantly reduces the potency of the 

extract
4. Absorption of serum with purified allergen significantly reduces specific IgE to the allergen 

extract
5. The allergen accounts for a significant proportion of the extractable protein in the source 

material
6. The allergen can be used as a marker for environmental exposure assessment
7. Both antibody and cellular responses to the allergen can be measured in a high proportion of 

allergic patients
8. The allergen has been shown to be effective as part of an allergy vaccine
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a difference’. Examples of allergens that we consider to fulfill most of these criteria 
are as follows:

Mite Group 1 and Group 2 (Dermatophagoides sp.) allergens
Animal Fel d 1, Mus m 1, Rat n 1
Tree pollen Bet v 1 (and structurally homologous allergens); Ole e 1
Grass pollen Phl p 1, Phl p 5
Weed pollen: Amb a 1
Peanut Ara h 1, Ara h 2
Shellfish Pen a 1 and other tropomyosins from shellfish
Insect allergens Api m 1 (and homologous insect venom allergens)

The mite Group 1 and Group 2 allergens cause sensitisation in > 80% of mite aller-
gic patients and absorption of these allergens from mite extracts can significantly 
reduce allergenic activity. They have been consistently used as markers of the 
immune response to mite in patients with rhinitis, asthma and AD and assays for 
Groups 1 and 2 are routinely used for environmental exposure assessment. IgE 
responses to Groups 1 and 2 can account for a significant proportion (10–20%) of 
total IgE. Similar data fulfilling our criteria has been obtained for Fel d 1. 
Absorption of Fel d 1 from cat extracts removes 60–90% of the allergenic activity. 
Fel d 1 has been used for exposure assessment and, because it is the most dominant 
allergen produced by cats, Fel d 1 has been used in clinical trials to develop new 
cat vaccines [11]. Rat n 1 and Mus m 1 are dominant rat and mouse allergens and 
are the allergens that are targeted in studies of occupational exposure. Can f 1 is not 
included in the list because even though this allergen has been useful for studies of 
dog allergy, it does not fulfill the criteria listed in Table 3 and development of a 
vaccine for dog would require more thorough evaluation of Can f 1 and other dog 
allergens. The same arguments apply to cockroach allergens. While ∼60% of cock-
roach allergic patients make IgE responses to Bla g 2, and the allergen appears to 
be potent based on exposure levels, it has been difficult to assess IgG responses and 
T cell responses to Bla g 2. Certainly, Bla g 2 appears to be the most important 
cockroach allergen identified to date, but more comprehensive data are needed.

Among pollen allergens, Bet v 1 is pre-eminent in importance: 95% of birch 
pollen allergic patients are sensitised to Bet v 1, there is a wealth of immunologic 
data about the allergen, and clinical trials to develop recombinant vaccines using 
Bet v 1 or Bet v 1 derivatives are underway. Recombinant Bet v 1 is almost indis-
tinguishable from the natural molecule and is produced under GMP conditions for 
therapeutic purposes. Amb a 1 has been used as a surrogate immunologic marker 
for ragweed since the classic studies of King, Norman and Lichtenstein in the 
1960s [119]. Gleich first demonstrated that IgE to Amb a 1 could account for a high 
proportion of total IgE [120]. Natural Amb a 1 has been produced under GMP and 
coupled to CpG nucleotides for use in immunotherapy trials [121]. The timothy 
grass pollen allergens, Phl p 1and Phl p 5, have sensitization rates of 60–90% 
among grass pollen allergic patients, have been produced under GMP conditions 
and were recently used in a successful trial of allergen immunotherapy [28]. Ara h 
1 and Ara h 2 comprise a high proportion of the extractable proteins in peanut 
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(10–15%) and cause sensitization in 60–90% of peanut allergic patients. They are 
the most extensively characterized peanut allergens and are being used in the 
formulation of an enteric vaccine [122].

The Final Frontier

From the perspective of an allergic patient, the end-game of molecular biology of aller-
gens should understandably be the development of safer and more effective allergy 
vaccines. This an exciting time because much progress has been made over the past 20 
years and, especially in Europe, new approaches to allergy vaccination are being tried 
and tested. In 2000–2004, the WHO/IUIS Allergen Standardization Committee, 
embarked on a program to develop new allergen standards based on purified allergens 
(the EU CREATE program) [123]. The aim was to develop international standards 
whose potency and purity could be verified worldwide using standard immunochemi-
cal and proteomic techniques. Purified natural and recombinant allergens were directly 
compared for allergenic activity and structural properties, and Enzyme-Linked 
ImmunoSorbent Assay (ELISA) systems for each allergen were validated. Not surpris-
ingly, the allergens selected for this study were ‘allergens that make a difference’: Der 
p 1, Der f 1, Der p 2, Der f 2, Bet v 1, Phl p 1, Phl p 5 and Ole e 1. Overall, there was 
a good correlation between allergenicity of recombinant and natural allergens and, as a 
result, two allergens (Bet v 1 and Phl p 5) were chosen for the production of a recom-
binant allergen standard. These standards are currently being prepared under the aus-
pices of the European Directorate for the Quality of Medicines (EDQM).

Purified allergen standards are essential to enable vaccine manufacturers to for-
mulate new products. Another essential pre-requisite is the production of allergens 
under GMP conditions, which to date includes recombinant Bet v 1, Phl p 1, Phl p 
2, Phl p 5, Phl p 6 and natural Amb a 1. Purified allergens, derivatives, hypoaller-
genic forms and peptides are now being tested in clinical trials. Perhaps the most 
promising were the results of a double-blind placebo controlled study using a cock-
tail of recombinant timothy pollen allergens in a conventional subcutaneous immu-
notherapy regimen. The treatment was designed to achieve a maintenance dose of 
5–10 mg each allergen and the clinical effect was striking: a 39% reduction in symp-
tom scores in the actively treated group, compared to placebo, which was accom-
panied by a 2–3 log increase in allergen-specific IgG1 and IgG4 levels [28]. 
Moreover, the prevalence of adverse reactions was low (10% active, 6% placebo) 
and limited to mild local reactions. Less striking were the results of trials using Bet 
v 1 fragments (E. coli expressed half-molecules) and trimers. Administration of 
these derivatives did not result in compelling changes in IgG or IgE antibody levels 
or in clinical efficacy [124]. The use of purified natural Amb a 1 coupled to immu-
nostimulatory sequences (AIC) offered great promise. The allergen conjugate 
masked cross-linking of IgE by Amb a 1 and triggered TLR-9 receptors on den-
dritic cells, thereby enhancing a shift from Th2 to Th1 responses. A pilot study 
showed that administration of a six-dose regimen of AIC, with a maintenance 
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dose of 12 mg, reduced symptoms in the subsequent ragweed season and that this 
symptomatic improvement was maintained for a second year following treatment 
[121, 125]. However, no significant differences were seen in nasal symptom scores 
in a multi-centre Phase III clinical trial comparing low or dose AIC (drug name 
TOLAMBA) with placebo. This, as yet unpublished, study involved approximately 
240 subjects in each group. The lack of an effective clinical outcome has been 
attributed to enrollment of allergic patients into the study who were only mildly 
sensitive to ragweed. Such are the vagaries of clinical trials.

Other vaccine products in the early stages of testing include tolerogenic T cell 
peptides, chimeric human Fc gamma/allergen proteins (which inhibit IgE cross-
linking on mast cells), molecular antigen translocating (MAT) molecules (target 
allergen to the major histocompatability complex [MHC]) and enteric vaccines 
using recombinant peanut allergens expressed in E. coli [11, 122, 126, 127]. Over 
the next 5 years, some of these vaccines will enter clinical trials and it is possible 
that in future the number of allergen-specific options therapeutic options available 
to allergic patients will increase. Already in Europe, there is a choice of subcutane-
ous immunotherapy or various sublingual immunotherapy products using natural 
allergens. Recombinant allergens offer greater sophistication in targeting specific 
allergens, more uniform dosing and a more strategic and mechanistic approach to 
treatment. Ultimately, this should result in vaccines with greater efficacy that will 
more closely resemble pharmaceuticals than biological products and which will 
significantly improve the treatment options for allergic patients.
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Role of Allergens in Airway Disease 
and Their Interaction with the Airway 
Epithelium

Irene Heijink and Henk F. Kauffman

Introduction and Background View

The epithelial surface of the airways is an ingenious system for exchange of gases, 
inhaled oxygen for exhaled carbon dioxide, and an important contact organ with 
inhaled bioorganic substances from the outside world. By a sensitive intercellular 
contact system, the epithelial cell layer carefully selects which (small) ions and 
bioorganic molecules are allowed to be transferred over the epithelial layer. Contact 
between the outside world and the lung tissue is critical for transfer of bioorganic 
molecules over the epithelial layer. Integrity of the epithelial cell layer is therefore 
one of the major hallmarks for a balanced ecology of the immune system. Disturbed 
interactions with inhaled bioorganic molecules from the outside world may finally 
lead to hyperresponsiveness of the airways to environmental factors in asthmatic 
patients. Generally, this bronchial hyperresponsiveness (BHR) in asthmatic reac-
tions maybe in part due to airway remodeling as a result of failure intercellular 
interactions that determine the integrity of the epithelial layer and/or disruption of 
integrity by (aggressive) components present in inhaled biological substances 
(antigens/allergens). When the epithelial barrier is disrupted, a repair response will 
be initiated, in which epithelial cells adopt a migratory phenotype to cover the area 
of damage. In addition, the epithelial cells will be activated with respect to secretion 
of growth factors and also proinflammatory cytokines in order to alarm the environ-
ment. Subsequently, cells will proliferate and finally redifferentiate to form a func-
tionally intact epithelial barrier. The repair response maybe aggravated by a 
genetically determined Th2-type immunological response. The release of growth 
factors and airway inflammation are basic to the airway remodeling as is seen in 
allergen-driven asthmatic reactions. In this chapter, we will describe the character-
istics of aeroallergens and their interaction with the airway epithelial cells of asthmatic 
individuals with emphasis on the vulnerability of the epithelial cell layer due to 
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integrity/connectivity, resulting in a continuous state of repair and remodeling of 
airways in asthmatic patients.

Integrity of the Epithelial Membrane; Environmental
Factors and Genetic Variations in Structural Cell 
Adhesion Molecules in Asthma

Epithelial integrity is maintained by intercellular contact formation, which 
decreases permeability and prevents environmental agents to pass the epithelial 
barrier. Cell–cell contact is mediated by homophilic interactions of the adhesion 
molecule E-cadherin in so-called adherens junctions. E-cadherin is linked to the 
cytoskeleton through its association with catenins (α-, β-, and p120-), which stabilizes 
cell–cell contacts. In addition to and more apical of the adherens junctions, tight 
junctions provide intercellular contact formation. Tight junctions are macromolecu-
lar assemblies of proteins that form contiguous rings at the apices of epithelial cells. 
Inhaled substances including diesel exhaust particles and allergens may act to disrupt 
the epithelial barrier by destruction of epithelial junctions. Generally, these harmful 
agents are effectively neutralized in healthy subjects. However, in asthmatic 
patients, it is increasingly recognized that epithelial cells behave abnormally, show-
ing structural aberrancies [1, 2]. Increased permeability of the bronchial epithelium 
to house dust mite allergen has been observed [3]. The airway epithelial barrier is 
often disrupted in asthma patients, with evidence for shedding of ciliated cells and 
downregulation of E-cadherin at the sites of epithelial detachment. In animal models, 
reduced E-cadherin-mediated intercellular contact during the asthmatic response 
was correlated with increased permeability and BHR [4–7]. Downregulation of 
E-cadherin is known to be an important component of epithelial-to-mesenchymal 
transition (EMT), a process involved in cell invasion/migration, tissue remodeling 
and repair. Whether EMT occurs in the asthmatic airways and contributes to the 
increased number of myofibroblasts and airway remodeling in asthma, however, is 
currently not known.

Furthermore, the basis of this abnormal phenotype of the airway epithelium in 
asthma is still undefined. Possibly, the bronchial epithelium lacks the ability to 
inactivate allergens due to genetic variance in the expression of protease inhibitors, 
e.g., serine protease inhibitor SPINK5 [8], although this has remained controversial 
[9]. Alternatively, the extent of epithelial damage in asthma maybe due to an 
increased vulnerability of the epithelium or an inadequate repair mechanism with 
inability to restore cell–cell contacts in response to damaging stimuli. This is sup-
ported by the increased expression of repair mediators, e.g., CD44, epidermal 
growth factor receptor (EGFR), and TGF-β at sites of ciliated cell detachment 
[10–12]. It is of interest to note that TGF-β can induce downregulation of 
E-cadherin and that a polymorphism in the TGF-β promoter region has been associ-
ated with the diagnosis of asthma [13]. Additional genetic studies have shown 
associations for structural cell adhesion molecules involved in epithelial integrity 
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and the underlying mesenchymal cell phenotype. One of the important candidates 
that is thought to play a role in both epithelial cell integrity and airway remodeling 
is the family of “a disintegrin and metalloproteinase” (ADAMs). This family of 
molecules serves to regulate formation of cell–to cell and cell–matrix contacts and 
have been shown to be important in the regulation of cell proliferation, cell survival, 
cell migration, and airway remodeling. Recently, it has been shown that several 
single-nucleotide polymorphisms (SNPs) in ADAM33 are strongly associated with 
asthma and BHR [14–19]. Furthermore, ADAM8 was shown to be important in the 
activation of airway inflammation by allergens and Aspergillus fumigatus in a 
mouse model of asthma [20]. Additional ADAMs of which variable gene expres-
sion may have implications for asthma are ADAM9 and 10. These ADAMs are of 
particular interest with respect to their regulation of E-cadherin. Studies in mouse 
keratinocytes and fibroblasts have demonstrated that ADAM10 is responsible for 
the shedding of E-cadherin [21]. Furthermore overexpression of ADAM9 enhances 
growth factor-mediated recycling of E-cadherin in human colon cancer cell line 
HT29 cells [22]. Besides ADAMs, metalloproteinases (MMPs) are determinant 
factors in epithelial integrity, repair, and invasiveness. They play a crucial role in 
remodeling of the extracellular matrix, induce release of growth factors, e.g., 
TGF-β and EGF, and have also been implicated in E-cadherin ectodomain shed-
ding. MMP-9 is the predominant MMP in asthma although MMP-2, -3, and -12 
are elevated as well. During acute asthma exacerbations, the ratio of MMP-9 
and its inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1), is increased, 
which may promote airway remodeling [23]. A polymorphism in MMP9 has 
been associated with childhood asthma [24] and an association between a poly-
morphism in the TIMP-1 gene and asthma has been observed in Australian 
women [25].

Together, interaction of environmental factors with the epithelial cell layer is 
determined by both the integrity of the epithelial cell structure, which is in part 
dependent on genetic heritance, and the characteristics of components present in 
the inhaled bioorganic substances.

Innate Defence to Allergens

Allergens are continuously inhaled generally as particulate materials, e.g. pollens, 
bacterial and fungal spores, fungal mycelium fragments, house dust mite fecal pellets, 
etc. Allergen-containing particles generally range from 50 μM (grass pollen, fungal 
(Alternaria) spores to 5 µM particles (spores of fungi and bacteria). Larger-sized 
particles predict deposition in both upper airways (nose) and the upper part of the 
lower airways, while the smaller particles become entrapped in smaller airways. 
Particles that are deposited on the mucosal surface will be eliminated by combined 
activities such as transportation, innate binding to soluble components in the 
mucosal layer, and innate recognition by immune- and nonimmune cells (tissue cells) 
of the airways [26].
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After deposition on the airway mucosal surface, particles are trapped in the 
mucus and eliminated by transportation to the oropharyngeal cavity by ciliary 
action and swallowed. Although ciliary clearance is apparently a passive mecha-
nism, the rate of transportation is influenced by factors released from the particles 
(enzymes, toxins) that may facilitate the ciliary movement. During this transport 
phase, the particles start to release their allergenic molecules. Most allergens are 
soluble components that are rapidly released from their particles, mainly glycopro-
teins and often different proteases, generally within minutes. Other particles, e.g., 
spores from fungi release their bioactive molecules at a low rate (several hours), 
generally during the phase of germination. Elimination of large quantities of inhaled 
allergens during peak exposure (e.g., spring time for tree pollen) is an energy-dependent 
process and may become a challenge for both patients with airway disease, e.g., 
asthma and maybe associated with respiratory mortality [27]. Furthermore, disturbed 
mucociliary clearance in asthma maybe derived from the hypersecretion of mucus 
that is observed in asthma patients in conjunction with the apparent shedding of 
ciliary cells.

The release of allergens and antigens may initiate a second innate defence reaction 
by components released by airway epithelial cells that actively neutralize nonself 
particles (microorganisms, pollens, house-dust mite fecal pellets, enzymes).

These components include molecules with antibacterial and antifungal properties 
(lysozyme, defensins, cathelicidins, secretory leukoprotease inhibitor (SLPI), and 
elafin) [28–30]. A second group of innate soluble components, the calcium-dependent 
collectins, are produced by epithelial type II cells and nonciliated bronchiolar cells 
such as the pulmonary surfactant proteins, SP-A, SP-D, and serum-derived man-
nose-binding protein (MBP). This group of molecules interact with a variety of 
carbohydrates, e.g., mannose, fucose, glucose, and inositol that are found at the 
surfaces of bacteria, fungi, and viruses [31–33]. The role of these defensive molecules 
and their role in diminishing the allergen-induced inflammatory reactions has been 
described recently [34]. The in vitro and in vivo data described in this latter review 
indicate that surfactant molecules may play an important role both in the elimina-
tion of allergens by direct binding to glycosylated moieties and by downregulating 
of inflammatory reactions by inhibition of different cell types.

Recognition of Allergens by Innate Receptors Expressed 
by Airway (Epithelial) Cells

Protease Versus Nonprotease Innate Recognition Systems

Inhaled air contains large quantities of allergen-containing particles such as grass- 
and tree pollen, excreta of insects and mites, and degraded plants products. In order 
to recognize these bioorganic particulates, airway epithelial cells, mast cells, and 
phagocytes (monocytes, macrophages, and dendritic cells) express groups of innate 
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receptor molecules. In vitro studies with different allergenic extracts have shown 
that epithelial cells can be activated by proteases present in different allergen 
extracts. However, activation with house dust mite extracts is also found under condi-
tions that are heat- and protease inhibitor-resistant, indicating activation by additional 
pathways [35, 36]. Both protease-dependent and protease-independent activation of 
airway epithelial cells may facilitate transport of allergens over the epithelial cell 
layer, by opening of tight junctions and/or loosening of cell to cell contacts.

Enzymatic activities have been proposed as factors that may facilitate sensitization 
to environmental allergens [37]. In vitro studies have shown morphological changes 
of cells in culture and production of cytokines, reflecting loss of cellular contacts 
and activation of epithelial cells. Similarly, fungal extracts showed both morphological 
changes, e.g., shrinking and/or shedding of epithelial cells, that were dependent on 
the serine proteinase activity [38, 39], which was dependent on the activity and 
quantity of the proteinases present in the fungal extracts [40]. Proteinases in house-
dust mite extracts induced the release of proinflammatory cytokines, changes in 
permeability, and damaging of epithelial cultures [37, 41]. Both serine proteinases 
(Der 3, Der p 6, Der p 9) and the cysteine proteinase (Der p 1) caused detachment 
and activation of epithelial cell cultures [42, 37, 43]. Der p 1 was shown to disrupt 
cellular contacts by degradation of tight junction molecules such as occludin and 
ZO-1 as well as adherens junction molecule E-cadherin, thereby augmenting 
mucosal permeability [44–46].

It maybe proposed that facilitation of allergen transport over the epithelium by 
proteolytic activity will result in enhanced IgE antibody formation to both the pro-
teinase molecules as well as to the nonprotease components in the allergenic 
source. This facilitating mechanism may explain why nonenzymatic components 
such as Der p 2 also can behave as major allergens in house dust mite extracts.

Clearance of these allergenic particles is actively guided by innate recognition, 
similarly to the mechanisms used for antimicrobial responses. For detection of 
these nonself substances, the innate immune system uses a wide variety of recep-
tors. The molecular structures detected by innate receptors were originally called 
pathogen-associated molecular structures (PAMPs) [47, 48]. Toll-like receptors 
(TLR) was firstly described as an important component against fungal infection 
[49], and described in humans 1 year later [48]. The TLRs 1, 2, 4–6 were shown to 
bind specific surface markers of microorganisms, e.g., lipopolysaccharide (LPS) 
and peptidoglycans, while TLR3, and TLR 7–9 detect viral RNA and hypomethyl-
ated CpG DNA motifs. Several other pattern recognition receptors were detected 
such as the nucleotide-binding oligomerization domain receptors (NOD1 and 
NOD2) scavenger receptors (SR-A, SR-B etc.) [50–52], C-type lectin receptors, 
e.g., the mannose receptor [53, 54], macrophage galactose-type lectin recognition 
receptors (MGL) [55], and dectin-type receptors [56–59]. Activation of TLRs gen-
erally results in the activation of intracellular signaling cascades that has been 
reviewed by different authors [60, 61]. Activation of these receptors by bacterial or 
fungal substances may result in a rapid antibacterial/antifungal responses and the 
induction of an inflammatory response by the release of different cytokines and 
chemokines. Recently it has even been shown that cadherins themselves may 
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become subject of attachment of different fungi and yeasts, thereby also inducing 
phagocytosis of fungal spores by airway epithelial cells [56]. Airway cells that bear 
TLRs and C-type lectin receptors are macrophages and monocytes, while also epi-
thelial cells generally showed expression of TLRs, dectins, and MR [53, 56, 62–64].

The hygiene hypothesis suggested the necessity of bacterial exposure (infection) 
in the prevention of atopic asthma [65, 66]. Many bacterial substances (LPS, CpG, 
peptidoglycans) apparently promote Th1-type immune development, leading to the 
concept of Type 1 pathogens activating PAMPs on dendritic cells, resulting in the 
release of IL-12 in an adaptor protein (My88)-dependent way [67, 68]. The devel-
opment of Th2-directed immune responses was seen either as a default pathway in 
the absence of bacterial substances (supporting the hygiene hypothesis) or to be 
specifically induced by Type 2 pathogens and allergens activating a group of 
unidentified Th2-type activating receptors [67]. The TLR molecule MyD88 appar-
ently plays an important role in the activation of Th1 development [69], while 
absence of MyD88 augmented the Th2-type responses [70, 71]. In contrast to a 
LPS/TLR-driven Th1 response, recent studies show that LPS can induce both a 
Th2- and a Th1-type response in a TLR4/ My88-dependent way. The effect of LPS 
was dose-dependent, facilitating a Th2-type response at lower concentrations and a 
Th1-type response at higher LPS dosages [72–75]. The release of Th2-cell attract-
ing chemokines, e.g., CCL17/thymus and activation-regulated chemokine (TARC) 
by dendritic cells and epithelial cells, may contribute to the allergen-induced Th2-
mediated inflammatory response in the asthmatic airways [76–80]. CCL17/TARC 
interacts with CCR4 receptors that are predominantly expressed by Th2 lym-
phocytes. This induces a chemotactic response and may also lead to β

2
-adrenergic 

unresponsiveness, leading a loss of negative control over Th2 cytokine production 
(e.g., IL-4, IL-5, and IL-13) [81, 82]. How and why these innate receptors on air-
way cells play a role in the development of asthma is not clear. Genetic studies 
show SNPs on different components of the innate recognition pathway that may in 
part explain susceptibility for atopy, BHR, and other determinants of atopic dis-
eases. Polymorphism for CD14 was shown to be associated with sCD14, total IgE, 
and skin tests [83–85]. Similarly, a polymorphism in the TLR gene (TLR2/-16934) 
was a major susceptibility gene for children living on farms [86]. Especially, poly-
morphisms of the intracellular NOD1 protein, which bind cell wall peptidoglycans 
of gram-negative bacteria, were shown to be associated with atopic eczema and 
asthma [87, 88]. These polymorphisms has recently been reviewed [89–91].

Role of Protease-Activated Receptors in Asthmatic 
Reactions to Allergens

A recognition system that may play an important role in allergen-driven asthmatic 
reactions are receptors able to detect proteolytic activities, the protease-activated 
receptors (PARs), detecting proteolytic activities present in the vicinity of airway 
cells. Proteases are often present in inhaled substances, e.g., excretion products of 
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bacteria, fungi, grass pollen, etc. but also from airway tissue cells (mast cells, 
inflammatory cells). This receptor family, PAR 1–4, is expressed by most cell types 
involved in asthma, connective tissue, epithelial and endothelial cells, smooth mus-
cle cells, monocytes and macrophages, mast cells, and inflammatory cells [92–95]. 
Primary cultures of epithelial cells also express all four PARs (PAR 1–4) [96, 97], 
epithelial cell lines may show different expression patterns, mainly PAR 1–3 with 
predominant expression of PAR-2 [98].

PARs are G-protein-coupled receptors (GPCR). Activation of the specific G 
proteins coupled to the PAR family can result in two major responses: (1) Induction 
of intracellular signaling pathways that are involved in production of proinflammatory 
cytokines, e.g., IL-8, MPC-1, IL-6 and growth factors [99–103] as well as production 
of the anti-inflammatory prostaglandin E2 (PGE2) [96, 104] with airway smooth 
muscle relaxation properties [95, 99, 105, 106]; (2) Transactivation of the EGF 
receptor through the activation of ADAMs [107, 108] and subsequent release of 
growth factors, thereby promoting airway remodeling and mucus hypersecretion. 
The proinflammatory role of PAR-2 has been supported by mouse, guinea pig, and 
human studies, showing eosinophilia and BHR with PAR-2 overexpression and 
lower levels of bronchial reactivity and IgE in the absence of PAR-2 [109, 110, 111, 
112]. In asthmatic patients, increased expression of PAR-2 has been observed on 
the bronchial epithelium [93], suggesting that there maybe a disequilibrium in 
asthmatic patients between pro- and anti-inflammatory activities that will favor the 
proinflammatory actions. The possible role of PAR receptors in allergic respiratory 
diseases has recently been reviewed by Reed and Kita [94].

The knowledge on environmental proteolytic activities is still limited. Extracts 
that are used in vitro are often derived from preparations used for skin-testing 
purposes that have lost their proteolytic activities during allergen preparation. 
Some inhaled allergens contain stable proteolytic activities such as house dust 
mite- and fungal extracts that show activation of airway epithelial cells with cor-
responding release of proinflammatory cytokines [35, 36, 40]. The house dust 
mite serine proteases Der p3 and Der p 9 have been shown to activate PAR-2 
receptors on airway epithelial cells [113], while Der p1 activated PAR-2 and 
inactivated the PAR-1 receptor [114]. Proteolytic activities of allergens may 
cause disruption of the epithelial cell layer either indirectly through activation of 
PARs and directly by destruction of adhesion molecules causing cell detachment 
[115] and/or opening of tight junctions [116–118], thereby facilitating allergens 
to pass the epithelial cell layer [46]. Recently, it has been described that activation 
of PAR-2 disrupted E-cadherin-mediated adhesion between cells and compromised 
the epithelial barrier [119] (Fig. 1).

In contrast to the stable proteases, pollen extracts contain more labile proteases 
that can only be detected in fresh pollen extracts, but these proteases show consid-
erable activity [120]. In addition to mites and pollen, several other aeroallergens, 
including cockroaches, cat, and fungi have been documented to contain protease 
activity [121–125]. The significance of proteases in allergens for the inflammatory 
responses in asthma still needs further investigation.
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Fig. 1 Schematic representation of allergen-induced injury and the interaction between the 
epithelium and immune cells in asthmatic airway inflammation

Role of Epithelial Damage in the Immunogenicity 
of the Airway Epithelium

The proteolytic activity of allergens maybe an important factor in their allergenicity 
and has been demonstrated to be essential to overcome airway tolerance. Allergens 
that lack protease activity (such as ovalbumin, OVA) induce tolerance in mouse 
models when inhaled without prior parenteral immunization. When OVA is deliv-
ered through the airways in the absence of prior immunization, a tolerogenic state 
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is induced. Interestingly, this can be overcome by the addition of proteases to the 
OVA. In contrast, allergens that do contain active proteases can induce airway 
hyperresponsiveness and airway inflammation in the absence of further immuniza-
tion protocols [126–129]. The mechanism of this protease-dependent enhancement 
of allergenicity is not fully understood. Since active proteases appeared not essen-
tial for allergen presentation [128], the mechanism maybe related to a more direct 
effect on the airway epithelium, including disruption of intercellular epithelial con-
tacts and the possibly related increase in activity. The group of Jordana has shown 
that the allergic asthma manifestations after intranasal HDM administration in 
BALB/c mice were partially mediated by production of GM-CSF, an important 
maturation factor for dendritic cells [130]. Moreover, they previously showed that 
GM-CSF transgene expression in airway epithelial cells switched the induction of 
inhalation tolerance to OVA to an allergic inflammatory response [131]. The airway 
epithelium is a well-known source of GM-CSF, as well as additional proallergic 
factors. For instance, the airway epithelium is known to express thymic stromal 
lymphopoietin (TSLP) and CCL17/TARC, two cytokines which are upregulated in 
the asthmatic airways [132]. TSLP has emerged as potential key player in the sen-
sitization phase toward environmental allergens and activates dendritic cells toward 
the induction of inflammatory T cells [133, 134, 135], while CCL17/TARC is a 
chemokine that preferentially attracts Th2-type cells. The exaggerated release of 
proinflammatory mediators by the airway epithelium in asthma maybe related to 
the loss of epithelial integrity induced by proteases. Proteases can disrupt epithelial 
integrity and concomitantly activate the airway epithelium to produce proinflam-
matory cytokines [96] through activation of the PARs, as described above. Indeed, 
in asthma patients, it has been demonstrated that increased permeability of the 
airway epithelium is accompanied by enhanced epithelial activity and increased 
expression of proinflammatory cytokines [3, 136, 137]. We have recently demon-
strated that human bronchial epithelial cells express TARC in response to house 
dust mite extract (Der p). In this case, the ADAM-dependent activation of EGFR 
and the downstream MAPK signalling pathways appeared to play a crucial role 
[76]. As described above, Der p 1 and activation of PAR-2 can induce in the down-
regulation of E-cadherin-mediated intercellular contacts. In addition to regulation 
of the canonical Wnt/β-catenin signaling pathway, E-cadherin has been shown to 
negatively regulate multiple signaling pathways, e.g., activity of receptor tyrosine 
kinase EGFR in kidney cells and MEK/ERK-1/2 signaling in squamous carcinoma 
cells [138, 139]. To study the contribution of E-cadherin downregulation on proal-
lergic activity of the bronchial epithelium, E-cadherin was downregulated by small-
interfering RNA (siRNA). We found that the downregulation of E-cadherin expression 
is associated with increased EGFR activation and downstream signaling, with a sub-
sequent increase in expression of Th2-attracting chemokine CCL17/TARC as well as 
TSLP [140]. Thus, disruption of the epithelial barrier by protease-containing aller-
gens may contribute to the development of Th2-mediated airway inflammation in 
asthma. This may, at least in part, be mediated by the loss of E-cadherin-mediated 
intercellular contacts, rendering the epithelium more activated with respect to produc-
tion of the proallergic factors, e.g., CCL17/TARC and TSLP (Fig.1).
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Epithelial Cells and Innate Recognition to Fungi

Epithelial cells have been recognized as PPR-bearing cells with activation profiles 
similar to monocytes, showing a rapid antimicrobial response, release of proinflam-
matory cytokines, and antigen presentation to lymphocytes. The antimicrobial role 
of this innate recognition is suggested by the release of antimicrobial peptides by 
tracheobronchial epithelial cells after activation of the TLR2 [141]. Furthermore, 
the release of the antibacterial and antifungal agent ALP/SLPI was shown to effec-
tively kill bacteria and spores and mycelium of Aspergillus fumigatus [28, 142, 143, 
144, 30]. The role of innate recognition of fungal particulates by airway cells has 
been explored for just a limited number of fungi and yeasts. Both spores and myc-
elium of A. fumigatus and Candida have been studied for their interaction with 
airway epithelial cells. Epithelial cells bind spores of A. fumigatus followed by 
phagocytosis [145, 146]. This binding to epithelial cells was enhanced by factors 
released by spores of Aspergillus and inhibited by SP-D [147]. Binding to epithelial 
cells followed by phagocytosis is possibly mediated by so-called adhesions of the 
Als family, showing binding of Als-3 to E-cadherin, which also induced the phago-
cytosis of Candida albicans and Saccharomyces cerevisiae to epithelial cells [56]. 
Recently, also the firm binding of A. fumigatus mycelium fragments to airway epi-
thelial cells (A549) has been demonstrated, indicating binding by innate receptors. 
Receptors involved in such binding of fungi may include TLRs, dectins, and or 
mannose-binding receptors. These receptors have been shown to be actively 
involved in fungal adherence and phagocytosis by macrophages [57, 148, 149]. 
mRNA expression for TLR 1–10 were demonstrated for airway epithelial cells 
(BEAS-2B and primary airway cells), while functional activity was shown for 
TLR2, TLR3, TLR4, and TLR5 [150–152]. Furthermore, expression of TLR3 pro-
tein was shown by FACS analyses [153, 150]. However, in contrast to the clear 
positive histological staining for TLR2 and TLR4 on alveolar macrophages, no 
such staining could be demonstrated for the A549 cells, suggesting lower expres-
sion of the TLRs on airway epithelial cells [154]. While binding of mycelium frag-
ments to A549 epithelial cells did not show morphological changes, primary 
epithelial cells showed gap formation at the binding sites of mycelium, suggesting 
activation and detachment of epithelial cells [155].

In summary, the interaction of allergens with the airway epithelial cell layer has 
most clearly been demonstrated for those allergens that contain proteases, while 
interactions based on innate nonprotease-based interactions are also clearly present 
but the receptors involved not yet clearly defined.

The proteases may act in two different, but interdependent action profiles:

1. Attack on epithelial integrity and disruption of the epithelial barrier. This may 
occur directly through proteolytic destruction of junctional proteins and indi-
rectly by activation of PAR-2, which may induce loss of E-cadherin-mediated 
cell to cell connectivity.

2. Induction of intracellular signaling pathways through PAR activation as well as 
loss of negative control by E-cadherin, which may result in increased activation 
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of the epithelium with respect to the expression of proallergic factors, e.g., 
GM-CSF, the Th2-attracting chemokine CCL17/TARC, and the Th2-differentiation 
promoting cytokine TSLP.

However, the importance of receptors that are involved in innate recognition is less 
clear. Studies of TLRs and epithelial cells indicate that a variety of receptors includ-
ing PARs, TLRs, are in part expressed on epithelial cells and able to react function-
ally to allergens, bacterial and fungal stimuli. Expression of mRNA has been shown 
for most of the TLRs and functional activity for TLR2–5. However, only TLR2 and 
TLR3 have been demonstrated as a protein on the epithelial surface. The impor-
tance of the role of TLRs or other innate receptors in detection of allergens, the 
significance for the cognate immune response, and their role in allergen- and fun-
gal-induced asthma is a subject of current research. However, studies for defining the 
specific role of epithelial cells and monocytes and dendritic cells in removing inhaled 
bioorganic materials and direction of the immune responses still need to be done.
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Sensitisation to Airborne Environmental 
Allergens: What Do We Know 
and What are the Problems?

W.R. Thomas, W. Smith, T.K. Heinrich, and B.J. Hales

Sources of Allergens

The most widely distributed sources of allergens are the pyroglyphid Dermato
phagoides pteronyssinus and Dermatophagoides farinae mites [1], temperate grass 
pollens [2] and cats [3]. Other important allergens with less global distributions 
are birch [4], olive [5], ragweed and mugwort pollens [6]. Cockroach allergy is 
important for inner-city dwellers in America [7]. Dog allergy has been more evi-
dent in regions with low exposure to other allergens but is also a frequent source 
of sensitisation elsewhere [8]. The glycyphagid mite Blomia tropicalis is impor-
tant in highly populated tropical and subtropical regions [9]. The conifers Japanese 
cedar in Japan and mountain cedar in USA and to a lesser degree cypress are 
regionally important [10]. Allergens from Aspergillus, Alternaria, Cladosporium 
and Penicillium moulds sensitise 5–10% of most populations and are associated 
with severe asthma [11]. Emerging sources of sensitisation are domestic exposure 
to mice in inner city environments, and pollens from the weeds Salsola kali 
(Russian thistle or tumble weed) and Chenopodium album (lambs quarter or 
goosefoot) [5]. The pollens occur worldwide but have attracted interest in areas of 
desertification.

Allergens and Dominant Allergens

Quantitatively the IgE binding to most sources of allergen is directed to a small 
number of dominant allergens. Birch pollen has the most dominant allergen with 80% 
of allergic people in Scandanavia producing 90% of their antibodies to Bet v 1 [12]. 
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Olive Ole e 1 has a similar dominance [5]. The group 1 and 5 (including the related 
group 6) grass pollen allergens collectively bind 80% of the IgE in 95% of sera [2]. 
Amb a 1 is the dominant allergen for ragweed accounting for 50% of IgE binding 
with a range of 25–85% [13]. The combination of the group 1 and 2 house dust mite 
allergens [14, 15] and Fel d 1 from the cat [16] constitute about 50% of the IgE 
binding to their corresponding extracts although the dander extract used for cat may 
not be the major source of all cat allergens [17]. Can f 1 constitutes 70% of the IgE 
binding to dog saliva and Can f 2 lesser binding but other important allergens may 
exist [18]. The cockroach group 2 and 5 allergens bind IgE with a prevalence of 
70% in highly allergic patients [19], constituting 50% of the IgE binding. Mouse 
allergy is considered to be directed to the urinary Mus m 1 but little attention has 
been given to other allergens. Dominant fungal allergens have not been well 
defined. IgE antibodies to Alt a 1 associate well with the ImmunoCAP scores 
(Phadia AB Sweden) to Alternaria extract [20] and similarly IgE to Asp f 1 for 
Aspergillus [21]. The group 5 and 8 allergens have also been shown to be promi-
nent for Alternaria and Cladosporium [22].

Spectrum of Anti-Allergen Responses

For Timothy grass, IgE binding to allergens other than Phl p 1 and Phl p 5/6 has a 
sporadic pattern. Binding to the EF-hand calcium-binding proteins (Phl p 7) and to 
profilin (Phl p 12) is of interest because antibodies to these proteins cross-react with 
homologues from disparate species. About 25% of sera had low-titre IgE to profilin 
while the EF calcium-binding allergens induced fewer but higher titres [23]. 
Multiple pollen sensitivity however was not associated with responses to these 
allergens but higher IgE titres to all the allergens [24]. The IgE binding to Bet v 1, 
2 and 4 has been compared [12, 25]. An almost monoreactivity of the IgE to Bet v 
1 was found in Scandinavian countries while people from central European and 
Mediterranean regions had more reactivity to the Bet v 2 and Bet v 4. In Italy, 11% 
of the patients did not have IgE binding to any of the allergens [25]. IgE binding to 
a panel of five cockroach allergens showed a broad and sporadic reactivity to aller-
gens other than Bla g 2 and 5 but some could induce high-titre IgE responses [19].

A distinct hierarchy of IgE binding was found to a 9-allergen panel of house dust 
mite allergens regardless of the total size of binding [15]. IgE to Der p 1 and 2 made 
up about 50% of the binding while collectively binding to Der p 4, 5 and 7 
accounted for 30%. Binding to Der p 3, 8, 10 and 20 were low. Comparison with 
other studies indicate that IgE antibody titres to Der p 6, 9, 13, 16 and 17 will also 
be very low [1]. Cross-reactive IgE binding might be expected from the conserved 
Der p 10 (tropomyosin) and Der p 20 (arginine kinase). Their low IgE binding 
indicates that this was insignificant in the study environment. It has however been 
demonstrated that a few people from environments that become sensitised to cock-
roach do make cross-reactive anti-Der p 10 antibodies [19]. Prevalent anti-group 
10 antibodies have been found in Japan and Africa but only in people with antibody 
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to the dominant mite allergens. A different pattern of anti-house dust mite antibodies 
was found in tropical Australia. Sera from skin-test-positive aboriginals had anti-
bodies to the amylase Der p 4 but not group 1 and 2 allergens [26].

Several cat allergens besides Fel d 1 bind IgE at high frequency and the salivary 
lipocalin Fel d 4, has been shown to bind IgE in 70% of cat allergic people and for 
half of these people the titres were higher than those to Fel d 1 [17]. The anti-Fel d 
4 titres were low but this now needs to be viewed in the knowledge that the IgE 
anti-Fel d 1 titres also can be low for most cat-allergic people [27].

IgE Antibody and Allergic Responses

The IgE titres to the dominant allergens of birch, grass and mite are about 50 ng/ml, 
20 ng/ml for Amb a 1 and 20 ng/ml for the cockroach Bla g 2 and 5. Many people 
have low levels around 5 ng/ml to Fel d 1 [17, 27] although some people have over 
100 ng/ml [16]. IgE to Mus m 1 is only about 1 ng/ml [28].

Nasal provocation and skin tests showed that the high-IgE-binding Phl p 1 had 
low responses [29] and the minor IgE-binding Phl p 2 high responses. Structural 
studies have now shown that a small region of Phl p 1 binds IgE so this could 
restrict cross-linking of IgE on mast cells [30]. Der p 1 [31], [32], Der p 2 [33] and 
Bet v 1 [34], however, have multiple IgE-binding regions. There could still be some 
limitation since although the VH gene usage for IgE is not restricted or lacks muta-
tion and VDJ diversification, the total size of the repertoire is small [35]. The for-
mation of multimers could increase cross-linking. Many dominant allergens are 
multimeric including Der p 1 [36], Bet v 1 [37], Fel d 1 [38], Phl p 5 [39], Alt a 1 
[40], Can f 1 and 2 [41] and Equ c 1 [42]. Combinations of allergens also induce 
more degranulation [43] but for mite [15, 44], cockroach [19] and grass pollen 
allergy [24], people sensitised to more allergens from the one source are not more 
symptomatic.

IgE antibody produced to carbohydrate determinants found on allergens of most 
is mostly directed to monovalent substitutions of N-linked glycans so cross-linking 
of IgE receptors would not be expected. Phl p 13, a grass pollen allergen that has 
multiple glycans, however induces mediator release [45]. Recently IgE antibodies 
to the carbohydrate on cat IgA and IgM were found in 40% of cat-allergic subjects 
but the ability to induce hypersensitivity reactions was not reported [46].

IgE in the Prediction of Allergic Disease

House dust mite allergic children with persistent asthma have high IgE antibody 
titres [47] but only about 20% of those with the high titres develop disease. 
Exacerbation of intermittent asthma is however a more frequent health problem, 
producing 75% of hospital admissions for asthma in children [48]. Many such 
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children with mite-allergy have quite low titres, less than 10 ng/ml [15]. An analysis 
that measured the asthma symptoms in relation to the summated anti-allergen IgE 
titres showed a 50% probability of current wheeze at 65 ng/ml [8] but reductions in 
lung function was a continuous variable down to 4.4 ng/ml. Even children with the 
highest titres only had a 60% probability of wheeze.

Mucosal Antibody

IgE is not only produced in the mucosa but this is a site for class switching to epsilon 
as demonstrated by recombinant switch circles. These can be induced by allergen 
challenge in pollen-sensitive people [49] and more switch circles are found in the 
pollen season. The initial sensitisation event probably occurs in the draining lymph 
nodes but the mucosal switching has a potential for local amplification. The VH5 
bias for epsilon antibody transcripts in the nasal mucosa of allergic rhinitis patients 
suggests that this occurs [50]. Switch circles could be an important measure for 
monitoring allergic disease. Mucosal IgA antibodies are only found in allergic 
people. IgA2 is up-regulated by TGF-β so it may be a marker for the action of this 
regulatory cytokine, as shown in immunotherapy [51].

IgG Antibody

For grass [52], ragweed [53], mite [15] and birch [54], IgG antibodies are only 
found in sera with IgE. Fel d 1 has, however, been reported to induce IgG antibodies 
in most people exposed to the allergens [55] possibly because the amount of aller-
gen in the inhalable air of homes with cats is 50–100-fold more than that found for 
mite and pollen and even ten-fold higher in homes without cats [56]. It has been 
proposed that this tolerises for IgE and while maintaining IgG production [55]. A 
recent study however found IgG antibodies to cat were ten-fold higher in people 
with IgE [57]. Dog allergens are also readily detected in undisturbed air [58] but 
although IgG antibodies to dog extract correlates with IgE antibody [59], IgG anti-
body production to the dominant allergen has not be measured. Mouse allergens 
have also been reported to induce IgG in non-allergic people in studies of occupa-
tional exposure [60] but data from domestic exposure showed a strong association 
with IgE. This may be related to the 50 times lower of amounts of Mus m 1 in the 
air compared to Fel d 1 [60].

The absence of IgG antibody to pollen and mite allergens in non-sensitised peo-
ple shows that they either do not make immune responses to the allergens or that 
their responses do not lead to significant antibody titres. Not all allergic people 
produce IgG. Hales et al. found IgG in 70% of mite-allergic children but only in 
40% of adults. Further, only 25% of children admitted to an emergency department 
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had IgG and these were low, indicating a relationship with susceptibility to 
exacerbation [15]. Jarvis et al. seemingly found the opposite for adults but the 
symptoms described were unlikely to require many visits to an emergency depart-
ment and probably just reflects the higher IgG found in sensitised subjects [57].

The hierarchy of IgG binding to mite allergens was similar to IgE being directed 
to the dominant Der p 1 and 2 allergens with lesser and less consistent binding by 
the mid-potency allergens and little to the weak IgE-binding proteins [15]. Low IgE 
binding is therefore not a deviation to an IgG response. Cockroach IgE and IgG 
binding had a slightly different relationship [19]. The dominant Bla g 5 bound the 
most IgG antibody but the minor Bla 4 and Bla g 7 allergens also had high IgG 
titres even in sera without IgE. Grass pollen allergens induce lower IgG antibody 
titres than mite and cockroach. For Timothy, the highest binding was to Phl p 5 with 
antibodies to Phl p 1 being low [61].

T-Cell Responses

Few studies have examined in vivo responses to purified allergens. Challenge with 
the Der p 1 and 2 induced late reactions and increased serum IL-5 [62]. Doses of 
house dust mite extract that induced a similar degree of early bronchoconstriction 
as the allergens induced more serum IL-5 and larger late responses, possibly indi-
cating the importance of other allergens.

The precursor frequencies of T cells responding to purified allergens have not 
been examined but pollen [63] and house dust mite extracts [64, 65] have. The 
reported frequencies were quite large, with 0.05–0.1% for allergic subjects and 
0.01–0.02% for non-allergic subjects. By comparison, unvaccinated people have 
frequencies in the region of 0.001% [66] for other antigens, and this rises to about 
0.02% after vaccination. Thus even non-allergic subjects show a considerable 
expansion. The allergen-responsive T cells of allergic subjects are mainly in the 
memory CD45RO + population [64] while non-allergic show both CD45RO + and 
CD45RA + cells [64].

T-cell responses to the dominant allergens from grass [67, 68], birch [69], weeds 
[70] mite [71] and cat [72] have been studied. Proliferative responses induced in the 
peripheral blood mononuclear cell (PBMC) from allergic people are generally better 
than those induced from non-allergic but with considerable overlap [71]. The induction 
of the Th2 cytokines IL-5 and IL-13 can be readily detected while measurement 
of IL-4 from primary cultures is best conducted with highly sensitive assays. 
The discovery that T cell lines cultured from PBMC of allergic people were Th2 
biased and that the clones from non-allergic subjects were Th1-biased was a mile-
stone in human immunology. It is likely that the investigators observed the polaris-
ing effects of culture milieu, especially the potent inhibitory activity of IL-4 on Th1 
responses. T-cell responses measured without extended culture show that cells from 
allergic and non-allergic subjects produce similar [73] or even increased IFN-γ 
from cells of allergic subjects [74–76]. It appears that Th2 polarisation is, however, 
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best found in the lungs and not the PBMC [77] and studies on thymic stromal lym-
phopoietin (TSLP) clearly show the need to study in situ responses [78]. TSLP, an 
epithelial cell product induced by tissue damage, is powerful inducer of Th2 
responses mediating both expansion and polarisation while maintaining the central 
T-cell memory. Recent studies have identified that TCR-activated T cells express 
the TSLP receptor, thus providing a marker for the allergy-mediating cells and 
evidence for a direct as well as a dendritic-cell-mediated effect [79].

The expansion of allergen-responsive T cells in vivo can be inferred from their 
chemokine receptors and chemokine production. Th2 cells preferentially express 
the receptors CCR3, CCR4 and CCR8, and migrate to their respective ligands, 
eotaxin (CCL11), monocyte-derived chemokine (MDC) (CCL22) and thymus- and 
activation-regulated chemokine (TARC) (CCL17). Bronchial lavages of unchal-
lenged lungs of asthmatics show the accumulation of CCR4 + CD4 + cells and their 
ligands TARC and MDC [80]. This can be enhanced by allergen challenge where 
endobronchial biopsies showed that virtually all T cells expressed CCR4 with some 
co-expression of CCR8 and the epithelial cells produced the T-cell chemotactic 
MDC and TARC [81]. The Th1-type IP-10 chemokine can also be produced in 
asthma, as shown following lung challenges with ragweed, house dust mite and cat 
extracts [82, 83]. Patients with late phase reactions to allergen challenge produce 
more of both the Th1 and Th2 chemokine [82].

PBMC have also been studied for chemokine bias. Stimulation with grass 
extract has increased the proliferation of CCR4 T cells in cultures from allergic but 
not non-allergic subjects in keeping with the Th2 phenotype of allergy [63]. CCR4 
could be detected on 40% of the responding T cells. T-cells from PBMC of allergic 
subjects also produce the Th2 chemoattractants TARC and MDC [84, 85] in greater 
quantity than PBMC from non-allergic people.

T-Cell Epitopes

For most allergens, T cells from both allergic and non-allergic people respond 
without preference for particular epitopes in keeping with the general absence of 
convincing MHC associations in allergy[1, 86]. There are nevertheless some inter-
esting exceptions. Responses to mugwort allergen Art v 1 show strong linkage to 
HLA-DRB1 *01 and T cells from patients recognise an immunodominant peptide 
presented by this allele [70]. Heavy O-glycosylation of Art v 1 may limit antigen-
processing and thus restrict the presentation. A region of Der p 1 is also immuno-
dominant. Peptides in the central loop are the most stimulatory [87–89] and the 
responding cells have a bias to the T-cell receptor Vbeta18.1 [89, 90]. Their 
responses are however not directed to one epitope and can restricted by DR, DP and 
DQ alleles [87]. A concordance between IL-10 production to Fel d 1 and the HLA-
DRB1 allele, *0701 has been reported. T cells responding to peptide 1–24 of chain 
2 presented by this allele made strong IL-10 responses [72]. These epitope-specific 
cytokine responses need to corroborated.
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T-Cell Regulatory Responses

Despite recent interest in regulatory T cells, the responses that regulate sensitisation are 
unknown. The evidence that IL-10 prevents allergy is yet to be convincing. Allergen-
stimulated PBMC from healthy subjects have most frequently been found to produce 
less IL-10 than cells from allergic subjects as shown for house dust mite [76, 91, 92], 
cat and pollen [93, 94]. Increased IL-10 mRNA has also been found in bronchial and 
skin challenge sites [95] and non-allergic and asymptomatic sensitised people produce 
less IL-10 to stimulation with grass and birch pollen [63]. A possible regulatory role for 
IL-10 was however indicated in two independently conducted studies of house dust 
mite. Allergen extract induced more IL-10 from the T-cells of allergic subjects, but there 
was a negative correlation between the IL-10 and the skin test reaction [76, 91].

Evidence for IL-10 regulation has been obtained by showing the addition of 
anti-IL-10 receptor antibodies to PBMC cultures of healthy people enhanced 
proliferative responses to Der p 1 [96] and subsequent experiments by these inves-
tigators showed that allergen-stimulated cultures from healthy people had more 
IL-10 producing T-cells. Perhaps importantly the cells were examined 12 hours 
after allergen stimulation [73] and in the absence of other cytokines lacked prolif-
erative activity. The lack of supporting cytokines may explain why other investigators 
find non-allergic subjects make less IL-10. The inhibitory effects of TGF-β are well 
documented and TGF-β is an absolute requirement for T regulatory cells. Allergic 
people however produce more TGF-β following challenge with allergen extracts 
[97] so its production does not appear to be a controlling factor.

Suppressive effects of CD4 + CD25 + T regulatory cells have been demonstrated 
on the proliferation responses of PBMC cultured with cat and pollen allergens. 
There was however no convincing difference in the activity of cells from allergic 
and non-allergic subjects [98, 99]. Indeed studies of atopic dermatitis showed that 
house dust mite extract stimulated more of the regulatory cell transcription factor 
FOXP3 from PBMC from HDM allergic subjects than PBMC from non-allergic 
subjects [100]. It is possible these effects are linked to increased IL-2 production 
by the higher responses of allergic subjects. The studies on induction of FOXP3 by 
allergen have only examined allergen extracts so it not known if allergens them-
selves induce the regulatory effects and how this relates to allergenicity. Recent 
studies have now shown that all T cells undergo a FOXP3 CD25 + differentiation 
phase and may not be permanently suppressive [101]. Better definition of the cells 
and the study of their action in an authentic environment is a research priority.

Allergen Exposure

Pollen exposure is required to induce allergy but the prevalence of sensitisation and 
disease are similar over a wide range of exposure even with a trend for reduced sen-
sitisation with high exposure. Comparisons of different geographical regions [7, 102] 
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also demonstrate a positive association of mite allergy exposure. Studies of homes 
in a region with low exposure found a relationship with sensitisation [103] but this 
has not been apparent, for sensitisation or symptoms, in regions with higher expo-
sure [7, 57, 104]. Attenuation of sensitisation with higher mite exposure has been 
found in some [105, 106] but not all studies [57]. When only sensitised subjects are 
analysed, however, the development of symptoms increases with exposure [107]. 
Exposure to cats in infancy has been observed to protect against cat allergy. This 
has been associated with the development of IgG4 antibodies without IgE [55] and 
when cat and mite allergy was examined in the same homes, the effect was specific 
for cat [108]. Other studies have not fully supported [109] these observations or 
have been contradictory [57], finding a strong association of IgE and IgG antibody 
that increased with exposure. A study of T-cell responses also failed to reveal a 
cytokine pattern that could be associated with selective IgG4 response [72]. Studies 
with cat allergies and cat ownership are complex with the need to consider factors 
such as exposure to microbial products associated with cat ownership and the atti-
tudes of high-risk families to keeping cats.

Conclusions

Only 60% of children with high IgE anti-allergen titres develop disease so there is 
considerable scope for discovering the important determinants for symptomatic 
sensitisation. The dominant allergens of most sources of allergens are now well 
characterised but it has not been conclusively demonstrated that they are the driving 
force for sensitisation. Evidence for this could lead to a wider use of allergens 
instead of extracts and therefore studies will produce quantitative and reproducible 
results. Examining the spectrum of the responses can however be highly informa-
tive, showing for example, that the specificity of responses is affected by geogra-
phy. This occurs for pollens in Europe but strikingly an Australian aboriginal 
populations classified as house dust mite allergic with extracts do not respond to the 
dominant allergens. The nature of their allergy would be expected to be quite dif-
ferent to that found in other populations. For cat, IgE antibody is thought to be 
mainly directed to Fel d 1 but studies showing that Fel d 1 titres are often low and 
lower than lipocalin suggest that re-evaluation is warranted. Allergy to moulds 
remains poorly characterised. In mite and pollen allergy non-sensitised people do 
not produce IgG antibodies and sensitised people do not produce IgG antibodies to 
poor allergens. The precursor frequency of allergen-responsive T cells is high even 
for non-allergic people so regulatory responses occur. Studies of T regulatory cells 
and IL-10 and TGF-β production have perhaps counter-intuitively usually found 
higher regulatory responses in allergic than healthy people so this is an unresolved 
area of investigation. Increased IL-10 mediated regulation has however been found 
studying responses early after allergen stimulation but this needs to be corroborated 
and the role of chemokines MDC, TARC and TSLP point to shortcomings in 
studying anti-allergen responses in simple tissue cultures systems. The preferential 
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partitioning of anti-allergen responses into those made by Th1 and Th2-type chem-
okine responsive cells provides an avenue for more meaningful ex vivo observa-
tions. The role of IFN-γ in allergy is uncertain with many studies showing similar 
or increased ex vivo release from cells from allergic subjects and that allergens 
induce high titres of the Th1-dependent IgG1 antibodies. The switching of IgE 
antibody production in the mucosa may provide a better measure of an active aller-
gic response and quantitative measures of IgG antibody to defined allergens may be 
markers for protection, as shown for mite allergy in children.
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The Immunological Basis of the Hygiene 
Hypothesis

Petra Ina Pfefferle, René Teich, and Harald Renz

Summary

The hygiene hypothesis has gained much attention as an explanatory model for 
increases in the incidence of allergic diseases. Since epidemiological evidence 
mainly comes from cross-sectional studies, which are not able to elucidate cause–
effect relationships, this concept is still in conflict with opposite results. The role of 
microbial compounds as important exogenous triggers of immuno-programming is 
central to the hygiene hypothesis. Several prototypical components from both 
gram-positive and gram-negative bacteria have been investigated under experimen-
tal and clinical conditions. These approaches clearly demonstrate that the route of 
exposure, the time of exposure, and the dose are critical variables, which determine 
the outcome of downstream immune responses. The innate immune system plays a 
central role in the initiation of effector responses, by signaling through pattern 
recognition receptors, particularly toll-like receptors (TLRs) and balancing the type 
of T-cell effector response, including TH-1, TH-2, and regulatory T cells. Recent 
studies focus on the role of microbiota and the commensal gut and skin flora as 
immuno-modulators. Most recently, Acinetobacter lwoffii and Lactococcus lactis 
have been identified in the environment of traditional farms further supporting the 
concept that environmental components play a decisive role in programming early 
immune responses.

The Facets of the Hygiene Hypothesis

As many other chronic diseases, allergic disorders seem to have their origin in a 
misleading interaction among the environment, lifestyle habits, and the genetic 
background of individuals. Regarding allergic diseases, neither the exogenous factors 
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nor the basic genetic conditions are completely elucidated, and the switch from a 
well to a misbalanced character of this interplay is still not well understood. The 
dramatic increase in the “allergy epidemic” observed in affluent countries throughout 
the last decades has given an impetus to the research in allergy initiation [1]. In 
coincidence with a dramatic decrease in infectious diseases, this scenario gave rise 
to suppose that these inverse trends are driven by the same force [2]. Summing up 
these observations, Strachan initially formulated the so-called hygiene hypothesis 
postulating that public health policies and Westernized lifestyle led to germless 
environments in developed societies [3]. Higher personal hygiene and improved 
living standards combined with the trend to a nuclear family type seem to be associ-
ated with the increase of allergies as a result of a diminished exposure to bacterial 
components and a degradation of the natural commensal saprophyte flora, stimuli 
that may act as a defense against the development of allergic diseases. So far, the 
hygiene hypothesis was merely based on epidemiological associations but failed to 
explain how this stimuli protect from allergies. The integration of the immunologi-
cal evidence that inflammatory allergic diseases are driven by a Th2-balanced 
immune response while inflammatory infectious processes are characterized by a 
Th1 cell response led Strachan et al. to an enhanced approach of the hypothesis: 
coming from a Th2-mediated prenatal environment, the naïve immune system of 
newborns needs to be stimulated by microbial compounds of a natural environment 
to boost Th1 responses. The lack of these exogenous stimuli results in a missing 
immune deviation from the Th2 to Th1 balance and shapes the immune system in 
a Th2-mediated direction with a higher tendency to develop allergic disorders [4] 
as shown in Fig. 1.

Fig. 1 Programming of the neonatal immune system by microbial agents of the environment. 
Coming from a Th2-mediated prenatal environment, the naïve immune system of newborns needs 
to be stimulated by microbial components of a natural environment to boost Th1 responses. The 
lack of these exogenous stimuli results in a missing immune deviation from the Th2 to Th1 bal-
ance and shapes the immune system in a Th2-mediated direction with a higher tendency to 
develop allergic disorders
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This dichotomous approach was modified by Wills-Karp et al. [5] to harmo-
nize the hypothesis with new epidemiological and immunological findings. 
Surveying world-wide epidemiological trends in infectious, allergic, and autoim-
mune diseases, Bach [6] concluded from his data, showing increasing prevalence 
rates in both allergic and autoimmune diseases, that Th2-driven diseases as well 
as Th1-mediated disorders burden the world’s health increasingly. Recognizing 
the innate immune system as an effective sensor system at the first line to the 
microbial environment and identifying T-regulatory cell populations as a potent 
tuning tool in the balancing of tolerance and susceptibility, the hygiene hypoth-
esis became more dynamic. Besides the dichotomous model of a missing immune 
deviation, a counter-regulatory model was designed postulating that the induction 
of an anti-inflammatory regulatory network by persistent immune stimuli may be 
necessary to induce tolerance against ubiquitous and common compounds and to 
establish defense against pathogens [7]. Support for this point of view came from 
research on parasitic infections. Th2-skewed worm infections, mainly caused by 
helminths, are not associated with allergy. More recently, elevations of anti-
inflammatory and regulatory cytokines, such as interleukin-10, that occur during 
long-term helminth infections, have been shown to be inversely correlated with 
allergy [8, 9].

The loss of the natural microbial environment as could be observed in postmodern 
societies may threaten the regulatory ability of the human immune system, a 
network that has been adapted to a wide range of compounds in a long-lasting 
phylogenetic co-evolutionary process. Being catapulted from the “stone age to the 
space age”, this system may not be able to adapt adequately to a changing scenario 
tumbling to the one or other extreme.

Evidence from Epidemiological Studies

One of the first observations leading to the hygiene hypothesis was reported by 
Strachan in 1989 [10]. Growing up in a large family with a number of siblings was 
inversely associated with hay fever. This sibling effect has contributed to a higher 
infection rate of children with several mainly older siblings. In accordance with 
these findings, day care attendance in the early childhood was found to be protec-
tive against asthma and recurrent wheezing [11–13]. Most recent studies provided 
divergent findings: the Glasgow Alumni Study, surveying students born before 
1980 confirmed an inverse association between family sibship size and allergic 
diseases for this age group [14], while a study from the Netherlands performed on 
families with children born between 1988– and 1990 provides evidence that birth 
order, and not sibship size, appeared to be associated with allergies. With regard to 
asthma this association failed to be significant [15].

In line with these findings, studies conducted in East and West Germany in the 
1990s comparing prevalence rates and potential risk factors of respiratory symptoms 
and allergies added further evidence to the hygiene hypothesis. The prevalence of 
asthma, wheezing, and allergic rhinitis was significantly lower in the East German 
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population when compared to those who had grown up in West Germany prior to 
the reunification in 1990 [16]. These differences disappeared in the following years. 
Studies conducted in children from East Germany born after 1990 reported increasing 
prevalence rates of asthma, hay fever, and atopic eczema. This changing scenario 
might have been caused by the anticipation of a Westernized lifestyle within the 
East German population, and consequently this might be the reason for the increasing 
prevalence rates of allergic diseases in the eastern part of Germany [17].

Another epidemiological observation indicates an association between the pet 
ownership and the development of allergic diseases. This “protective pet effect” has 
been suggested to result from a modified Th2-cell response, or alternatively caused 
by an increased microbial load in homes where pets are kept [18]. This assumption 
is supported by the results of the AIRALLERG study that aimed to determine and 
compare indoor exposures related to allergy in homes of three European countries 
[19]. The study results demonstrated significantly higher levels of endotoxin, a cell 
wall compound of gram-negative bacteria that acts as a stimulus on the Th1-immune 
response, in houses of cat owners than in homes where no cat is kept [20]. Several 
epidemiological surveys have shown that pet exposure in the first years of life is 
associated with lower prevalence rates of rhinitis and asthma. Additionally, it was 
shown that pet ownership may also act protective on pet-specific sensitization. At 
present, it must be stated that these associations are reported inconsistently with 
respect to the type of pet, the onset of exposure, and the atopic or allergic outcome 
[21–23]. A birth cohort study conducted by the Multicentre Allergy Study (MAS) 
group showed that the levels and the ratio of specific immunoglobulin E (IgE) and 
IgG released as a response to cat allergen exposure that influences the direction 
toward the development of an allergic reaction or a protection against it [24].

Three large surveys conducted in different European populations characterized 
by an “alternative lifestyle” revealed observations matching the major assumptions 
of the hygiene hypothesis. In families which are adapted to an anthroposophic life-
style, characterized by the avoidance of antibiotics and the preference of fresh or 
fermented probiotic and vegetable food, lower prevalence rates for allergies and 
asthma could be observed [25–27].

These results pointed out that epidemiological study designs should focus on 
comparisons between populations living in a traditional way and those characterized 
by modern lifestyles to elucidate the role of Westernization in the development of 
allergies and asthma. Thus, substantial support came from epidemiological stud-
ies exploring the traditional farming environment with regard to the allergic 
outcomes in farming families [28]. In contrast to the urban lifestyle farming and 
particularly the traditional way to raise livestock and to handle agriculture is 
characterized by higher contact rates of all family members to the microflora of 
stable animals containing a typical spectrum and a high amount of microbes and 
microbial compounds different to those from other environments, e.g., urban 
dwellings or rural settings with conventional farm units [29, 30]. Being raised on 
a traditional farm involves an early and a frequent exposure to these farm-related 
compounds. A number of studies comparing farming and non-farming environ-
ments affirmed the so-called farming effect, conveying that the early exposure to 
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farming inhalants and products is associated with a decreased risk of developing 
an allergic disease. The SCARPOL study conducted in Switzerland was one of 
the first studies to confirm the farming effect showing that children born and 
raised on farms have a 50% reduced risk of developing allergic diseases in con-
trast to children from non-farming environments [31]. Subsequently, studies in 
other rural regions focusing farming environments tighten these results by adding 
more knowledge about farming exposures and their consequences on allergic 
diseases [32–35].

The protective effect of the exposure to livestock was underlined by a study con-
ducted by von Ehrenstein et al. [36] in Bavarian rural regions. The cross-sectional 
ALEX study performed in Austria, Germany, and Switzerland gave new insights into 
the onset of allergy and asthma by pointing out that pre- and postnatal exposure to the 
farming environment is protective against allergic outcomes [37, 38]. These results 
may hint that a traditional farm environment is able to shape the immune system prob-
ably already in utero. These findings were supported by the results from the cross-
sectional Europe-wide PARSIFAL study comparing farm children, scholars from 
anthroposophic Steiner Schools and their reference groups concerning pre- and post-

Table 1 Segments of population associated with protection from allergies and asthma.

Segments of
population Findings Authors

Farm environment Reduced development of allergic disorders 
in children from farm environment

von Ehrenstein et al. [36]

Pre- and postnatal exposure to the farming 
environment is protective against allergic 
outcomes

Ege et al. [37], Riedler
et al. [38]

Not all farming but traditional farming envi-
ronments are protective against allergy

Ege et al. [39]

East and West 
Germany

Low prevalence of asthma among East as 
compared to West German children

Nowak et al. [16]

Increasing incidence of asthma in East 
Germany after reunification

Heinrich et al. [17]

Sibling effect–
birth order, day 
care attendance

Inversed association between family sibship 
size and allergic diseases in students born 
before 1980

Kinra et al. [14]

Birth order appeared to be associated with 
allergies

Bernsen et al. [13]

Day-care attendance was associated with a 
decreased risk of asthma

Celedon et al. [12]

Pet ownership High endotoxin levels in houses of pet owners Giovannangelo et al. [20]
Protective effects of cat or dog ownership 

on the sensitization and/or on allergic 
outcomes

Warmbolt et al. [21], 
Sandin et al. [22],
de Marco et al. [23]

Anthroposophic 
lifestyle

Use of antibiotics in the first years of life 
preceded the manifestation of wheeze

Kummeling et al. [25]

Dietary habits particularly the consumption of 
farm milk influence the risk of allergies

Waser et al. [41]
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natal exposure to population-specific environments [39, 40]. Besides a protective 
in utero effect by working in an animal shed during pregnancy, children’s risk to 
develop asthma was also significantly reduced by consuming unpasteurized unskimmed 
farm milk within the first year of life [41]. The results indicate that consumption of farm 
milk may offer protection against allergy and asthma. Selected studies on segments of 
population contributing evidence to the hygiene hypothesis are listed in Table 1.

Perkin and Strachan [42] provided data of pooled estimates in a meta-analysis 
based on a systematic review in MEDLINE (1966–2004) and EMBASE (1980–
2004), revealing highly significant overall odds ratios <1 for farming factors (being 
raised on a farm, early and frequent contact with livestock, and consumption of 
farm milk) and different allergic diseases.

Taking these findings together early exposure (pre- and postnatally) of protective 
agents against allergies may open a “window of opportunity” to shape the immune 
system into a non-allergic direction.

Focusing the onset of allergic diseases and the early lifetime interval to shape 
the immune system the question arose how long these effects may continue in life-
time and how to maintain the protective effect. Three studies emphasized the ques-
tion whether these protective impacts of farming environments continue into 
adulthood and which factors do support the maintenance of protection. A study 
from the Netherlands provided evidence that a farm childhood in combination with 
current livestock farming protects against allergic disorders [43]. Results from a 
cross-sectional survey nested in the European Community Respiratory Health 
Survey (ECRHS) indicate that environmental factors encountered in childhood may 
have a life-long protective effect against the development of allergies [44]. This 
result was confirmed by studies from Finland [45] and Germany [46].

So far, the majority of the epidemiological observations support the hygiene 
hypothesis, but a phenomenon called “inner-city asthma” that arose over the last 
decades in the USA seemed to contradict the hygiene hypothesis. Inner-city asthma 
is described as a high prevalence of asthma in inner-city children from Afro-
American and Hispanic-American families, living under poor hygienic conditions 
and being characterized by a low socio-economic status [47]. According to the 
hygiene hypothesis, these determinants should indicate a low prevalence of asthma 
but contrary to this expectation these populations have a high rate of asthma [48]. 
Several studies reported associations between the elevated prevalence of asthma in 
inner-city districts and different indoor contaminations in households and schools, 
e.g., cockroach and mouse infestations combined with use of illegal pesticides, 
molds, and airborne fungi releasing natural antibiotics and environmental tobacco 
smoke [49, 50]. But these findings provided no rationale toward the hygiene 
hypothesis until now. Matricardi et al. [51] analyzed the pattern of the increase in 
asthma, hay fever, and atopic sensitization in Europe and the USA to explain inner-
city asthma within the framework of the hygiene hypothesis. Therefore, they col-
lected historical descriptions of hay fever and asthma as well as the currently 
available related literature. As a result, they described the underlying process of 
Westernization as a historical phenomenon that first affected the wealthy popula-
tion at the end of the 1890s, expanded among the middle classes during the first half 
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of the twentieth century, and now cascaded down to affect the first-generation 
immigrants from Africa and Latin America. In conclusion, they defined inner-city 
asthma in line with the hygiene hypothesis as the final stage of a class-driven 
urbanization and Westernization in the USA.

The Role of Microbial Compounds in Allergy Protection

Recent results from the PARSIFAL study reported by Ege et al. [52] pointed out 
that the “farming effect” is based on a synergism of different farming activities and 
characteristics mainly frequent on traditional farms. The so-called farming effect 
includes the kind of livestock kept on the farm, the frequency, onset, and the time 
period of staying in the animal shed, involvement of children in haying, and the use 
of silage. Each of these factors attributing to the summing effect contributes to a 
wide spectrum of compounds derived from the commensal microbial flora of the 
livestock and crop and their processed products as well. One of these microbial 
compounds hypothesized to be involved in the interplay between farm environment 
and the human immune system is endotoxin (lipopolysaccharide, LPS) [53]. 
Endotoxins, cell wall components of gram-negative bacteria, can be detected in 
high amounts in farming environments. The ALEX study provided knowledge that 
endotoxin concentrations in stables and households of farmers are significantly 
higher than in houses of non-farmers [54]. Additionally, the tendency to develop an 
allergic disease is inversely associated with the exposed endotoxin concentration 
measured in the mattresses of farm children. Concurrent to these findings, blood 
cells of farm children protected from asthma and atopic sensitization are reported 
to produce high levels of CD14, the endotoxin/LPS receptor on human cells [55]. 
Furthermore, high endotoxin levels in the house dust were associated with higher 
levels of interferon (IFN)-g after mitogenic stimulation of peripheral blood cells in 
9- to 24-month-old children [56]. IFN-g as a Th1-associated cytokine is believed to 
counteract directly Th2-driven allergic diseases. To clarify the role of microbial 
compounds such as endotoxins, results from epidemiological studies needed to be 
proven under experimental conditions. Animal models are helpful tools in the 
assessment of cause–effect relationships and in the elucidation of the underlying 
mechanisms. A number of animal models aimed to verify the protective effect of 
endotoxin exposure but displayed the Janus-faced nature of this compound [57, 58]. 
The local as well as systemic administration of LPS before allergen challenge led 
to protection against sensitization accompanied by a suppression of the IgE-
production, a reduced airway eosinophilia and a suppressed Th2 response [59]. 
Delayre-Orthez et al. [60] could show that this effect is dose dependent: high-dose 
exposure led to an extended protection whereas low doses of LPS induced allergic 
inflammatory responses. A strong allergic inflammation could be observed when 
sensitized animals were treated with LPS after allergen challenge [61]. Blümer et 
al. [62] and Gerhold et al. [63] showed that LPS treatment of the mother has a 
reducing effect on allergic-airway inflammation of OVA-sensitized offspring in the 
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perinatal mouse model of asthma. These studies pointed out that a protective effect 
of endotoxins could be transmitted during pregnancy.

Summing up these results, Vercelli [64] proposed a functional model character-
ized by a bimodal course. Stimulated by low exposures of exogenous microbial 
agents the human immune system responses with a Th2-cytokine profile, while 
high bacterial concentrations provoke a Th1 bias. Sensing the environmental condi-
tions by pattern recognition receptor cells of the innate immune system recognizes 
potential pathogens by binding microbial components, e.g., endotoxins. In this 
model, endotoxins mediate between the environment and the immune system serv-
ing as a switch between the cytokine profiles at medium levels of the environmental 
microbial load (Fig. 2).

Meanwhile a number of microbial compounds derived from gram-negative as 
well as from gram-positive bacteria were shown to exert allergy-protective effects. 
Peptidoglycans, components building up the matrix of bacterial cell walls, were 
shown to have protective activity in animal models [65].

Protective Effects of Bacteria Derived from Stable
Dust and Probiotic Milieus

The evidence from epidemiological studies gave rise to analyses of the farming 
environment for the active principles causing these protective effects and to prove 
these effects in animal models of experimental allergy. In addition to the aforemen-
tioned bacterial compounds, the bacteria themselves may help to elucidate the 
character of their anti-allergic protection.

Peters et al. [66] observed anti-allergic effects of sodium chloride extracts from 
dust collected in stables of animal farms with a low prevalence of allergies and 

Fig. 2 The endotoxin switch (modified from Vercelli [64]). Low exposures of exogenous polarize 
Th-cell populations toward the Th2-direction. In the presence of a high exogenous microbial load 
Th-cells are primed toward a Th1-fate. Sensing the environmental conditions by pattern recogni-
tion receptors, cells at the interface to the environment recognize bacteria by binding bacterial 
components, e.g., endotoxins. In this model, endotoxins mediate between the environment and the 
immune system serving as a switch between the cytokine profiles at medium levels of the envi-
ronmental microbial load near the point of inflexion
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asthma in animal model of allergic asthma. Treatment of mice by inhalation of this 
extract during sensitization with ovalbumin (OVA) inhibited the development of 
airway hyper-responsiveness and airway eosinophilia on allergen challenge. 
Additionally, the production of interleukin (IL)-5 by stimulated splenocytes and 
antigen-specific IgG1− and IgE-levels were suppressed leading to the conclusion 
that stable dust may contain immune-modulating substances that can interfere with 
the development of both cellular and humoral immunity against allergens. Similar 
results were obtained by Debarry et al. [67] in an acute model of allergic asthma by 
intranasal application of bacterial isolates obtained from stable dust. By screening 
for prominent bacterial strains in cowshed dusts, they could isolate two species 
identified as A. lwoffii, a commensal gram-negative microbe frequent on mamma-
lian skin, and L. lactis, a probiotic gram-positive bacterium derived from fermenta-
tion processes of silage and milk. These bacteria were separately applied to mice 
before sensitization with OVA. Treated mice showed a strongly reduced allergic 
phenotype characterized by an improved airway hyper-responsiveness, decreased 
infiltration of eosinophils into the lung tissue, and reduced Th2-cytokine levels in 
bronchoalveolar lavage (BAL) as well as in stimulated splenocytes when compared 
to untreated OVA sensitized and challenged mice. In vitro experiments confirmed 
these findings underlining that both species induced Th1-directing features in den-
dritic cells (DCs, activation of IL-12 and upregulation of Th1 polarizing “notch-
ligand Delta-4 expression). In addition, activation of HEK293-cells through 
nucleotide-binding oligomerization domain (NOD)2 and TLR2 by L. lactis and 
TLR4 as well as NOD1 and NOD2 by A. lwoffii could be observed (see Fig. 3). 
Romagnani [68] confirmed these findings by reporting similar results from his 
laboratory concerning the maturation of human DCs and the polarization of 
T-helper cell populations. Taking together these data indicate that the missing 
immune deviation appears to be more convincing than the concept of a decreased 
immune suppression to explain the high incidences of allergic diseases in affluent 
countries.

Probiotic bacteria, food-additive microorganisms providing a benefit to the 
human health, were described to be helpful in the prevention of allergic diseases. 
Being a substantial part of a healthy gut microflora (microbiota), these bacteria are 
able to modulate intestinal immune functions and may also act as protective factors 
against atopy and asthma [69]. Thus, features of probiotic bacteria contribute to the 
underlying mechanisms of the hygiene hypothesis. The colonization of the neonatal 
gut by microbes from the neonate environment leads to a microbial stimulation of 
intestinal immune system toward a Th1-phenotype to compensate the Th2-bias 
established in utero to prevent rejection of the fetus [70]. Beside shaping the intes-
tinal immune system by modulation of human colonic dendrite cells toward Th1-
promoting activities, probiotic bacteria are involved in the stimulation of 
transforming growth factor (TGF)-b producing Th-cells. This cytokine acts on B 
cells inducing them to switch to IgA-production, a mode to reduce inflammation 
and to establish clinical tolerance against common antigens. The lack of the micro-
bial stimulus may lead to an elevated IgE-production by B cells with an increased 
risk of allergic reactions due to the subsequent activation of mast cells [71, 72].
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In line with these observations atopic infants, suffering from (mainly food-) 
allergies, show different patterns of colonization with intestinal microbiota when 
compared with healthy children [73]. In particular, the lack of the typical infant 
Bifidobacterium microbiota and the high number of Clostridia is obvious in atopic 
children [74]. Some authors reported a divergent composition pattern of the infant 
Bifidobacterium microbiota principally formed of Bifidobacterium adolescentis 
frequently found in adults [75]. Results of a case–control study reported by Murray 

Fig. 3 The role of dendritic cells in the programming of Th-cells by environmental stimuli accord-
ing to in vitro results from Debarry et al. [67] and Romagnani [68]. Strong activation of TLRs by 
PAMPs (pathogen-associated molecular pattern) leads to upregulation of Delta-4-ligand as well as 
IL-12 expression, thereby promoting Th1 response. As a result of missing TLR activation, Th2 
maturation is mediated by a Jagged-1/notch interaction and probable involvement of Il-4
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et al. [76] failed to confirm this observation in infants with allergic respiratory 
symptoms when compared to healthy children.

Another group of bacteria with probiotic properties is the genus Lactobacillus. 
These bacteria are able to colonize the human gastro-intestinal tract in the very 
early stages of life and to a large extent. When compared to Bifidobacteria these 
microorganisms are easy to grow and store in culture. Hence, Lactobacilli are the 
main probiotic bacteria of choice in studies of allergy therapy and prevention. In 
various studies and experimental approaches, Lactobacilli were shown to have 
immune-modulating capabilities by modifying the cytokine pattern of the host. 
Depending on the applied Lactobacillus species, the pre-conditions of the host as 
well as the time point of application modulate results in an up-regulation of either 
anti-inflammatory or inflammatory cytokines. Focusing on the early stages of life 
and the capacity of these species to prevent atopic disorders, a variety of epidemio-
logical and experimental data are listed in the literature [77]. However, the strongest 
evidence for the effectiveness of a bioactive agent in humans comes from a clinical 
trial. Reviewing clinical trials of the last decade with regard to preventive properties 
of Lactobacilli two clinical research groups provided contradictory results (see 
Table 2). While the group of Kalliomäki and Isolauri from Finland reported protec-
tive effects (RR < 1) on the development of atopic eczema in pre- and postnatally 
treated high-risk infants with maintained effects in follow-ups after 4 and 7 years 
[78–80], the group of Taylor et al. [81–83] from Australia did not verify any signifi-
cant findings, partially confirmed by Kukkonen et al. [84]. Another trial in which 
prebiotic substances were applied to high-risk neonates showed protective effects 
on atopic eczema [85].

This issue led to a controversy and a discussion on the body of clinical evidence 
and the lack of convincing and consistent results is still going on.

Experiments in acute and perinatal animal models of experimental allergic 
asthma revealed more consistent results [86]. In majority of the experiments, the 
treatment with Lactobacilli led to a shift toward non-allergic immune responses in 
most of the experiments mainly by decreasing Th2-cytokines, airway eosinophilia, 
and a reduction of IgE-levels when compared with the control group [87–91] (see 
Table 3). The feasible beneficial effects of pro- and prebiotics on the development 
of allergies mediated by the immuno-modulatory capability of the gut microbiota 
were summed up in the “microflora hypothesis” postulated by Noverr and 
Huffnagle [92], allocating this group of microorganisms and their products as 
potential protectives against allergies.

The Role of the Innate and the Adaptive Immune Response

Searching for a link at the interface between environment and the human immune 
system, cells of the innate immune system are in the focus to play a major role in 
the discrimination between potential pathogens and harmless components from the 
environment. Jeopardized by a range of pathogens a rapid detection of potential 
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pathogens at the first line of defense enables the immune system to activate 
subsequent and suitable steps to eliminate these agents.

The first response of an organism to a pathogen is mediated by antigen-presenting 
cells (APC) of the innate immune system. DCs, as the main APC population, have 
been shown to be critical for Th cell fate and subsequently for the development of 
asthma [93]. Depletion of CD11+–DCs leads to significant abrogation of characteristic 
features of experimental asthma indicating that these cells are necessary and sufficient 
for the induction of a Th2-driven inflammatory allergic response [94]. This effect 
is mostly attributed to myeloid DCs since allergen-presenting plasmacytoid DCs 
exert rather allergy-preventing effects [95], and other subsets of DCs, so-called 
regulatory DCs, may even induce the activation of regulatory T cells (Treg) [96].

In addition to the kind of origin particularly the activation status of DC plays an 
important role. Whereas IL-4 and IL-10 production by DCs is crucial for Th2 cell 
development, IL-12 and/or type-1 interferons shape naïve Th-cells toward a Th1-
direction. The expression profile of DCs is affected by the interaction of their so-
called pattern recognition receptors (PRR) with pathogen-associated molecular 
patterns (PAMPs) of viruses, bacteria, and fungi. PRRs, mainly the TLR family, are 
sensors situated at the outer membrane. The interaction between PAMPs and PRRs is 
in contrast to the high-specific recognition of antigens by T cell receptors (TCR) 
pathogen-unspecific and initiates different effector cascades, e.g., the release of anti-
microbial defensins and the signaling to the adaptive immune response [97, 98].

The family of the TLRs represents the best-characterized class of PRRs. So far, 
10 human (TLR-1–TLR-10) and 12 distinct murine (TLR-1–TLR-13, except 
TLR10) TLRs have been identified. TLRs are transmembrane spanning proteins 
with an “extracellular” domain containing leucine-rich repeats and a cytoplasmic 
toll/IL-1 receptor homology domain (TIR). They are principally specialized in the 
detection of several prototypic components of extracellular or intracellular PAMPs 
such as bacterial lipoteichoic acids (LTA) (TLR2), LPS (TLR4), flagellin from 
flagellate bacteria (TLR5), CpG DNA (TLR9), dsRNA (TLR3), or ssRNA (TLR7/8) 
[99]. Ligand binding on TLRs leads to an activation of several intracellular signaling 
pathways including the NF-kB pathway by direct or indirect interaction of TLR 
with MyD88 (except TLR3), TIR-containing adaptor protein (TIRAP), TIR-
containing adaptor inducing IFN-b (TRIF), or TRIF-related adaptor molecule 
(TRAM) [100]. As a result of successful TLR-mediated activation, expression of 
costimulatory molecules (CD80 and CD86) and proinflammatory cytokines (TNF-
a, type-1 interferons, IL-1, IL-6, IL-10, and IL-12) is induced [101]. Most of these 
cytokines favor Th1 differentiation [102] whereas mice lacking the master adapter 
protein MyD88 display an increased Th2 response [103].

Besides their function in the defense of infectious agents TLR responses are 
involved in the onset of immuno-modulated diseases such as allergies and asthma 
acting as a mediator toward the Th-cell response [104]. According to the hygiene 
hypothesis, TLRs need to be stimulated in the early period of life to balance the 
Th-cell populations from the in utero-shaped Th2-bias into a Th1-direction [105]. 
A number of studies and experiments on TLRs and their ligands concerning the 
initiation of allergic diseases highlight the role of TLR4 and its ligand LPS. On the 
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basis of epidemiological findings that an early exposure to LPS may protect against 
allergic disorders by stimulating the Th1-cell activity, animal models should provide 
more evidence regarding the role of TLR-signaling in the prevention of allergies 
and asthma. Surprisingly, some experiments, mainly animal models of experimental 
asthma, showed pronounced Th2 responses and elevated allergic parameters as a 
reaction on LPS application [106, 107] whereas the others reported reduced asthma 
phenotypes after LPS application [108, 109]. Delayre-Orthez et al. as well as 
Eisenbarth et al. [110, 111] demonstrated that these divergent results could be 
explained by dose-dependent effects as described earlier. While up-regulation of 
allergic inflammation seemed to be controlled by mast cells after their activation 
and modulation through TLR4-mediated induction of GATA1 and subsequent 
increase in Th2-cytokine production [105], the down-regulation of allergic inflam-
mations is in part mediated by nitric oxide synthase 2-activity [106]. Experiments 
with LPS preparations derived from different bacteria pointed out that the other 
factors than dose dependency may influence airway reactions. Pulendran et al. 
[112] administered different LPS to OVA-sensitized mice observing that these LPS 
preparations from different bacteria activate DC subsets to produce different 
cytokines, and induce distinct types of adaptive immunity in vivo.

In addition to TLR4, other toll-like receptors were shown to possess immuno-
modulatory features and could prevent allergic inflammation. Lauener et al. [113] 
reported from the ALEX study population that blood cells from farmers’ children 
expressed significantly higher amounts of toll-like receptor 2 than those from 
non-farmers’ children, indicating that these TLR might also be involved in the 
“farming effect”. TLR2 acts as a PRR mainly specific for gram-positive bacteria 
finding natural ligands in LTA, a cell wall component of gram-positive bacteria. 
Kitagaki et al. [114] demonstrated that application of TLR9 ligand CpG DNA prior 
to sensitization prevents Th2 inflammatory responses and effectively interferes 
with the development of atopic airway diseases in a murine model of experimental 
asthma. Moreover, when administered in combination with an experimental allergen, 
CpG promotes the reversal of established eosinophilic inflammation. Recently, we 
found that TLR3 or TLR7 activation by viral TLR ligands has both preventive as 
well as suppressive effects on experimental asthma which is mediated by the additive 
effects of IL-12 and IL-10 [115].

To sum up, TLRs may play a key role in the prevention in allergic disorders. 
Further evidence for this concept comes from epidemiological association studies 
pointing out that certain TLR gene polymorphisms are associated with an increased 
prevalence of allergic diseases [116]. For example, allergic diseases in farmer’s 
children could be contributed to a significantly elevated prevalence of a polymor-
phism found in the TLR2-coding gene [117]. Another TLR2 polymorphism seems 
to be associated with severe phenotype of atopic eczema [118]. Results from a 
Swedish study indicated that a polymorphism in the TLR4-gene is associated with 
asthma characterized by a decreased IL-12 production by APCs after LPS 
stimulation [119].

T-helper cells are essential components of the adaptive immune response, and 
meanwhile it is well established that Th2-skewing plays an important role in allergic 
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diseases with their characteristic cytokines IL-4, IL-5, IL-9, and IL-13. These char-
acteristic cytokines are responsible for major features of allergy such as, isotype 
switching toward IgE in B-cells, proliferation, differentiation, and survival of eosi-
nophils, and increased mucus production in airways or gut [120, 121]. Several types 
of T lymphocytes control these processes to balance the immune system adequately 
and to avoid Th2-driven responses to potentially allergenic agents. Th1 cells are the 
natural antagonists to Th2 cells producing IFN-g, a cytokine that promotes cell medi-
ated immune responses [122]. A recently published experiment concerning the role 
of the Th1-cell surface protein mucin domain-containing molecule (Tim-3) in the 
development of Th2-associated responses underlined the control function of Th1 on 
Th2 cells. By application of an anti-Tim-3 antibody in a mouse model of allergic 
asthma before each airway challenge with OVA a significantly reduced airway 
hyper-reactivity (AHR) and a decrease in eosinophils and Th2 cells in the lung 
could be observed. Additionally, IL-5 was significantly reduced in the BAL, 
whereas IFN-gamma levels were significantly increased by anti-Tim-3 antibody 
treatment [123].

Regulatory T cells mediate the balance between Th1 and Th2 and are crucial for 
the maintenance of (self)-tolerance. Within the Treg population, the CD4+CD25+ 
T-cell subset, which exhibits about 5–10% of all peripheral CD4+ cells, is one of the 
most emphasized topics in the research on allergic and autoimmune disorders 
[124]. The development and function of the CD4+CD25+ Treg subset is regulated 
by the expression of Foxp3, whereas deletion of this transcription factor leads to a 
loss of suppressive activity [125]. The immunosuppressive function of CD4+CD25+T-
cells is mediated by the release of inhibitory cytokines such as IL-10, TGF-b, and 
the expression of extracellular negative costimulatory molecules like CTLA4 and 
glucocorticoid-induced TNF receptor [126]. Due to their important role in the regu-
lation of Th2 responses, it seems to be obvious that a deficiency or the failure of 
Treg-mediated suppression of Th2 activation is one main reason for the develop-
ment of allergic diseases as postulated by the “regulatory approach” of the hygiene 
hypothesis [127, 128]. Indeed, it could be shown that allergen-specific CD4+CD25+ 
regulatory T cells suppress in vitro T cell proliferation as well as in vivo leukocyte 
and eosinophile recruitment and AHR. Transfer of OVA-specific Tregs into OVA-
sensitized mice further leads to a suppression of Th2 response. This effect is 
strongly IL-10 dependent whereas it is, interestingly, not produced by allergen-
specific CD4+CD25+ Tregs themselves [129].

Taking these results together immune deviating as well as regulatory mechanisms 
might be involved in the programming and balancing of the immune response and 
the development of allergic disorders.

Gene–Environment Interactions and the Hygiene Hypothesis

A strongly discussed issue is the impact of the CD14/-159-promotor polymorphism 
(C ® T) on the development of allergies. CD14 as crucial part of the LPS-binding 
TLR4-receptor complex plays an important role in the interaction between pathogens, 
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including endotoxin and the immune system [130]. The single nucleotide polymor-
phism (SNP) in the −159 locus of the promotor region next to the CD14 gene seems 
to be associated with decreased levels of total serum IgE in homozygous carriers as 
reported by Baldini et al. [131] and later on by Koppelman et al. [132]. Another 
association study conducted by Ober et al. [133] came to reversed findings, namely, 
higher IgE levels in the total serum and higher rates of allergies in association with 
the T-allele. Results reported from a large cross-sectional study by Kabesch et al. 
[134] showed no associations between the presence of the T-allele and the serum 
IgE or the prevalence of atopic diseases. Coming back to the “endotoxin switch 
hypothesis” as suggested by Vercelli in 2003 (as mentioned earlier) this conspicu-
ous divergence may be explained. Postulating that the amount of the environmental 
microbial load, sensed by the innate immune system via endotoxin-TLR4-signal-
ing, influences the programming of T-helper cells toward a Th1 or Th2-direction in 
a bimodal or multimodal course, the presence of the T-allele may shift these course 
from Th2 toward Th1 at a given microbial load. Thus, even low levels might be 
protective against a Th2 bias. In settings with a higher microbial burden, a second 
switch from Th1 to Th2 could explain the associations of the allele with the high-
burdened environment as found in the community of the Hutterites characterized by 
traditional farming lifestyle and a high number of individuals carrying the T-allele 
but suffering from allergies [131].

It has to be stated that the “endotoxin switch hypothesis” cannot explain the 
underlying immunological mechanisms and it cannot be answered how the poly-
morphism is linked to IgE (Fig. 4).

Further studies on gene by environment interactions may answer further 
unsolved questions concerning discrepancies coming up with hygiene 
hypothesis.

Fig. 4 Influence of CD14/-159-promotor polymorphism (C ® T) on the endotoxin switch 
(modified from Vercelli [64]). Shift of the bimodal course of Th-cell maturation in the presence 
of T-allele toward lower levels of environmental bacterial load. To explain higher prevalence of 
allergies in populations living in high loaded environments a second switch (Th1 ® Th2) has to 
be added
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Opening the “Window of Opportunity” Will Promote
Allergy Prevention

The hygiene hypothesis was originally postulated to explain the outbreak of the 
“allergy epidemic”. Epidemiological as well as experimental approaches aimed to 
verify or to rule out this hypothesis provide new insights into the underlying immu-
nological mechanisms that determine the onset of allergies. Causative factors coming 
from the genetic constitution, the environment and from lifestyle attitudes as well 
could be elucidated. Although critics of the hypothesis would not run dry, still there 
is no further idea to alternate the hygiene hypothesis. Moreover, the many scientific 
attempts clearly illustrate the importance of the pre- and early postnatal period of 
life and environmental effects on the development of allergies. The enlargement of 
knowledge with regard to this very early time of life may open the window of 
opportunity to develop new strategies in the prevention of allergy and asthma. As 
mentioned earlier, we found very promising results by application of stable-derived 
bacteria that reduces symptoms and immunological parameters of allergic asthma 
in an acute mouse model [67]. These bacteria might be the key to a new vaccine-like 
intervention strategy that may open the perinatal window to establish an effective 
management in allergy and asthma prevention. Experimental data obtained in our 
laboratory from a mother-to-child model using the probiotic Lactobacillus rhamno-
sus GG promised beneficial and preventive effects from oral maternal therapy 
[135]. Despite these therapeutic strategies, the research with regard to the hygiene 
hypothesis provides additional evidence to reconsider hygiene recommendations 
for the individual and homely environment particularly in view of high-risk 
groups.

New insights into the epidemiological, genetic, and immunological dimensions 
of the hygiene hypothesis and the protection against allergies may come from two 
presently running studies: the GABRIEL and the PASTURE/EFRAIM study [136], 
two Europe-wide studies emphasizing genetic and environmental causes of aller-
gies, and asthma.
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Early Sensitization and Development of Allergic 
Airway Disease—Risk Factors and Predictors: 
Is the Adult Responder Phenotype Determined 
during Early Childhood?

Susanne Halken and Arne Høst

Introduction

Allergic airway diseases, i.e., allergic asthma and allergic rhinoconjunctivitis represent 
a heavy burden in childhood. In a recent prospective population-based study [1], the 
prevalence of current asthma and rhinitis was 14.4% and 15.1%, respectively, in 
10-year-old unselected children, with a high degree of comorbidity as the prevalence 
of rhinitis was 42.5% in children with current asthma.

The allergens associated with allergic airway disease depend on the age, climatic, 
seasonal, and social factors, and housing conditions. In tempered and humid 
regions, allergy to house dust mites most often is associated with asthma followed 
by allergy to furred pets, whereas allergy to the fungus Alternaria spp. is important 
in arid climates in the USA and allergy to cockroach is important especially in 
urban communities in inner cities [2].

The prevalence and degree of sensitization to inhalant allergens has been shown 
to peak in young adults regardless of the allergen, and to diminish with adult age [3]. 
A strong association between indoor allergen sensitization and asthma has been 
confirmed, while exclusive sensitization to pollens is associated primarily with 
rhinitis [3].

The development and phenotypic expression of allergic disease depend on a 
complex interaction between genetic and several environmental factors such as 
environmental exposure to allergens, and nonspecific adjuvant factors (e.g., tobacco 
smoke). It is evident that environmental factors play a major role in the development 
of sensitization and allergic airway disease. It is also recognized that different 
phenotypes of, for example, asthma exists and that these may represent different 
long-term outcomes.
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Identification of factors that might predict or influence the risk for development of 
allergic diseases and its prognosis is important for initiating possible preventive meas-
ures. Due to recall bias and selection bias, retrospective studies or cross-sectional 
studies are not very useful for evaluation of predictive/risk factors. Only prospective 
studies including accepted well-defined diagnostic criteria/outcome measures, a suf-
ficient duration of follow-up, a sufficient follow-up rate, control for confounders, and 
a proper sample size for adequate statistical evaluation are useful for this purpose [4]. 
Regarding the few long-term follow-up studies from childhood to adulthood, changes 
over time of environmental factors, treatment modalities and diagnostic measures (e.g., 
for identification of sensitization) also may influence the results and conclusions.

The aim of this review is to evaluate possible predictors and risk factors as 
regards sensitization and development of allergic airway disease from childhood 
into adulthood focusing on asthma.

Definitions

There has been some controversy on definition of allergic diseases and use of different 
terms such as atopy/allergy and atopic/allergic. According to a recent, revised 
nomenclature [5, 6], allergic airway disease is defined as asthma and/rhinoconjunc-
tivitis initiated by immunologic mechanisms (defined or strongly suspected), 
whereas the term nonallergic has been proposed when immunologic mechanisms 
cannot be proven. Allergy can be antibody- or cell-mediated. In most patients, the 
antibody responsible for an allergic reaction belongs to the IgE isotype and these 
are defined as IgE-mediated allergy. In non-IgE-mediated allergy, different mecha-
nisms may be responsible (IgG, immune complexes, cell-mediated).

Sensitization is defined as the presence of a specific immune mechanism, most 
often as a positive skin prick test or detectable IgE antibodies directed towards a 
specific antigen. Sensitization does not necessarily imply an allergic inflammation, 
and especially a low degree sensitization [4] may be a normal and often transitory 
phenomenon especially in early childhood. The results of investigations of the 
prevalence of sensitization are highly influenced by methodological factors, such as 
the quality of extracts for skin prick test, assay for determination of specific IgE and 
the chosen cutoff level for positivity [4].

Natural Course of Allergic Diseases in Childhood

The expression of allergic diseases varies with age, and symptoms may disappear and be 
replaced by other symptoms. In infancy, the main atopic symptoms are atopic dermatitis, 
gastrointestinal symptoms and recurrent wheezing, whereas bronchial asthma and aller-
gic rhinoconjunctivitis are the main problems later in childhood. Likewise, allergic 
reactions to foods, mainly cow’s milk proteins are most common in the first years of 
life, whereas allergy to inhalant allergens mostly occurs later in childhood [7, 8].
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Characteristically, sensitization evolves in the order of exposure: food, indoor 
allergens, and outdoor allergens. Sensitization to milk and egg most frequently 
occurs during the first 2–3 years of life, while sensitization to inhalant allergens 
occurs later in childhood with increasing prevalence with age [7–9]. Sensitization 
to indoor airborne allergens (house dust mites and pets) often occurs at a lower age 
than sensitization to pollen (birch and grass) [3, 7].

Different Asthma Phenotypes in Childhood

Different wheezing phenotypes exist within the “asthma syndrome.” At least two 
different asthma phenotypes have been defined: one group of asthma children with a 
triggering or inducing of asthma and asthma symptoms through repeated early childhood 
infections (“infectious asthma”) and another group with “allergic asthma” [10, 11]. 
Nonallergic asthma seems to have a better prognosis than allergic asthma [10,11].

Some large prospective population-based cohort studies that followed children 
from birth into adulthood have identified at least three different phenotypes in children 
with asthma:

� Transient infant wheezing
� Nonatopic wheezing
� IgE-mediated wheezing

as described by Stein and Martinez [12]. Recently, a fourth phenotype, late-onset 
childhood asthma has been added to this list [13].

Table 1 shows the most important characteristics of these different phenotypes. 
Most children with virus-associated wheeze during infancy do not wheeze after the 

Table 1 Characterization of some different wheezing phenotypes in childhood

  Persistent  

 Transient early Nonatopic (40%) Atopic (60%) Late onset

Symptoms 0–3 (5) years + + + no
Symptoms 3 – 6 years No + + no
Symptoms 6–11 years No Decreasing + no
Symptoms in  No (+) + +
 adolescence/adulthood
IgE-sensitization No No + (+)
Family history of atopy No No + ?
Lung function in Lower level Normal Normal ?
 beginning of life
Lung function at 11 years Lower level normal/lower level Impaired ?
BHR No (+) + +
Remission rate — High Low Low

BHR bronchial hyperresponsiveness
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age of 3–5 years. A second group of children continues to wheeze beyond the third 
year of life; approximately 40% of these children are nonatopic and are more likely 
to develop airway obstruction in relation to viral infections. Meanwhile, studies 
have shown that up to 37% of early life wheezers still wheezed at the age of 10 
years [14, 15]. This persistent wheezing phenotype was associated with high levels 
of atopy [14, 15]. In adults, asthma persisting from childhood into adulthood should 
be distinguished from asthma starting in adulthood [13]. The phenotypes of adult-
onset asthma are still poorly defined [13]. Apart from the above proposals for 
asthma phenotypes, asthma may also be characterized by severity, lung function 
and bronchial hyperresponsiveness.

Development of Allergic Airway Disease: Predictors

In the evaluation of different predictive factors and risk factors, it is important to 
be aware of the different phenotypes. Especially, in infants and young children, the 
asthma diagnosis may be difficult, and in this age group, many children will have 
transient symptoms with wheezing episodes only associated with airway infections and 
a very good long-term prognosis. Thus, in evaluating the significance of sensitization 
and possible effect of exposure to allergens. it seems important to include allergic 
asthma, e.g., the so-called IgE-mediated wheezing, as an outcome measure.

Heredity

Although it is well-documented that atopic heredity is associated with an increased 
risk for development of allergic diseases [16–18], it has also been demonstrated that 
most children who develop possible “atopic symptoms,” often including viral 
induced recurrent wheezing, during the first years of life come from families without 
an atopic heredity. Thus, the majority of young children with recurrent wheezing/
asthma do not belong to high-risk groups for development of atopic disease [16], 
whereas a higher proportion of children with allergic airway disease, will have 
atopic heredity [19, 20]. In a large population birth cohort study, it was concluded 
that inheritance seems to be of prime significance of persistent childhood wheeze 
[21]. In another recent large prospective birth cohort study, it was found that infants 
born to atopic parents with a positive skin prick test to aeroallergens are at increased 
risk for aeroallergen sensitization during infancy, which persist to 2 years of age [22].

Infants with a pronounced atopic predisposition may have a primary immunoregu-
latory defect, which can be identified by various methods, e.g., elevated cord-blood 
IgE, low numbers of T cells, disturbed ratio of T-helper/T-suppressor cells and 
decreased function of T-suppressor cells [23]. Unfortunately, none of the tests are 
suitable for general allergy risk screening. However, elevated cord-blood IgE has 
been shown to be a better predictor of specific sensitization especially to inhalant 
allergens later in childhood than parental history [17, 24]. At present, the combination 
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of atopic heredity and elevated cord-blood IgE seems to result in the best predictive 
discrimination as regards development of allergic disease [16, 17, 24, 25].

Early Sensitization

Though transient sensation may be a normal phenomenon not necessarily associated 
with disease, many studies have demonstrated an association between sensitization 
in infancy and young childhood and development of allergic disease. These studies 
include unselected children, children with atopic heredity and children with early 
symptoms of a possible allergic disease, e.g., atopic eczema and recurrent wheeze.

Prospective studies have reported elevated serum IgE antibodies to hen’s egg 
proteins in asymptomatic infants predictive for subsequent sensitization to aeroal-
lergens and to the development of allergic airway symptoms [26, 27]. Sensitization 
to house dust mite allergens is found associated with an increased risk for early and 
late onset of asthma and persistence of asthmatic signs in children [28].

In a large prospective birth cohort study, persistent sensitization to any allergen 
from 1 to 7 years of age is found to be related to asthma at 7 years in children with 
a positive parental history of asthma [9]. In two other studies, atopic predisposition 
combined with sensitization to food allergens at 1 year of age resulted in the best 
prediction of sensitization to inhalant allergens at the age of 5 years [29]. In high-risk 
children, food-specific IgE in children before 24 months of age is found to be 
significantly associated with atopic disease (atopic eczema, food allergy and upper-
airway allergy) at 24 months of age, and inhalant-specific IgE before 24 months of 
age significantly associated with upper-airway allergy [30]. Also, a positive skin 
prick test to hen’s egg and/or cow’s milk in the first year of life was independently 
predictive of adult asthma in atopy-prone infants [31].

Likewise, in infants with atopic dermatitis and wheezing, early sensitization to 
house dust mites, egg or cow’s milk at 6 months of age was highly predictive of 
sensitization to house dust mites and persistent symptoms of asthma/atopic dermatitis 
at 5 years of age [32].

In large prospective observational whole-population birth cohort studies, atopic 
sensitization emerged as highly significant for wheeze, asthma and bronchial 
hyperresponsiveness at 10 years of age [20, 33].

Most studies on sensitization and development of asthma includes sensitization 
only as a dichotomous variable, i.e., individuals assigned as either sensitized or not, 
most often on basis of differing cutoff points. Often these, cutoff points have been 
low values, and probably the detection limit for the method used. Meanwhile, 
recent studies indicate that IgE quantification may be more useful for prediction of 
allergic disease. In a large Swedish prospective, population-based cohort study, 
positive IgE antibodies (ab) towards 14 common food and airborne allergens were 
found in 38% of the children with any allergic disease, whereas it was 17% among 
those without any allergic disease at 4 years of age [34]. Moreover, it was found 
that when the sum of IgE-ab levels was at least 34 kU

A
/l, or more than four tests 

were positive, there was a 75% likelihood of identifying the individuals with any 
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allergic disease at 4 years of age. To identify those with asthma, as well as those 
with suspected allergic rhinitis, a significant interaction was found for the combina-
tion of the sum of IgE-ab levels and the number of allergens positive at tests [34]. 
Another recent population-based birth cohort study showed that the risk of current 
wheeze at the age of 5 years increased significantly with increasing IgE to mite, cat, 
and dog [35]. When IgE levels to these three allergens were summed, the probabil-
ity of current wheeze increased 1.33-fold (95% CI, 1.21–1.47) per logarithmic unit 
increase, corresponding to an odds ratio of 3.1 at 10 and 4.25 at 30 kU

A
/l. Similarly, 

increasing sum of mite, cat, and dog IgE was associated with reduced lung function 
at 5 years. Among sensitized children the sum of mite, cat, and dog IgE was the 
strongest associate of current wheeze at 5 years of age [35]. In another birth cohort 
study including 131 children with atopic parents, airway hyperresponsiveness at 
age 7 years significantly correlated with sensitization to cat, house dust mite, cock-
roach, and ragweed. Also in this study, there seemed to be a positive dose–response 
relationship, as children with the greatest airway responsiveness were much more 
likely to be sensitized to four or more allergens [36].

Many prospective studies have demonstrated that infants with atopic eczema 
and/or cow’s milk allergy, especially in case of IgE-mediated reactions have an 
increased risk for the development of allergic airway disease during childhood [30, 
37–39].

Development of Allergic Airway Disease: Risk Factors

Dietary Factors

In prospective observational birth cohort studies, it has been demonstrated that 
exposure to cow’s milk proteins and introduction of solid foods before the age of 4 
months of age is associated with an increased risk of recurrent wheeze/asthma up 
to 6 years [40–43]. Meanwhile, contradictory results are available and in a recent 
large prospective study from three to 21 years of age, it is concluded that breast-
feeding for at least 4 weeks does not protect children against atopy and asthma and 
may even increase the risk [44]. Though interesting, the methods and data presented 
in that study do not seem to confirm the conclusion.

Because it is not possible or ethically acceptable to randomize to breastfeeding, 
the conclusions on the effect of breastfeeding are based on high-quality prospective 
birth cohort studies. Recent studies have shown that parent’s choice of breastfeed-
ing and the duration of breastfeeding are highly influenced by atopic heredity and 
early possible atopic symptoms, which may give rise to “disease-related modifica-
tion of exposure” and reverse causation [45–47].

A possible effect of lack of or short-term breastfeeding on the development of 
atopic diseases may be due to either lack of a protective effect of human milk or 
exposure to cow’s milk proteins. However, many other factors may contribute to 



Early Sensitization and Development of Allergic Airway Disease  357

this effect. Children with atopic predisposition are breastfed for a longer period and 
have solid foods introduced at a later age, as well as breastfed infants are less 
exposed to other environmental factors such as tobacco smoke and pets, belong to 
a higher socioeconomic group and attend to daycare at a later age than formula-fed 
infants [48].

Allergen Exposure

Airway hyperresponsiveness in children is often associated with allergic sensitization 
[28, 49]. There seems to be a dose-dependent relationship between exposure and 
sensitization [2, 50–53], as well as an association between sensitization and devel-
opment of asthma [2, 32, 50, 51, 54, 55]. A dose–response relationship between 
exposure to house dust mites and development and severity of asthma has been 
demonstrated [2, 54, 56]. In a recent longitudinal prospective study, cat allergen 
exposure in infancy was positively associated with sensitization at 2 years, but not 
at 6 years, as well as there was no association with allergic symptoms or disease at 
6 years [53]. Meanwhile, cumulative allergen exposure from cat ownership and 
regular cat contact increased the risk of cat sensitization up to age 6 years [53]. 
Other longitudinal studies have shown that sensitization to house dust mites and 
animal dander antedate are predictors/risk factors for development of asthma in 
children [9, 28, 32]. However, in a recent prospective observational study [55], no 
direct significant association between early exposure to indoor allergens (house 
dust mite and cat allergens) and asthma up to the age of 7 years was found. 
Although no direct association has been found between early exposure to indoor 
allergens and development of allergic/nonallergic asthma [55], an association 
between exposure to indoor allergens and development of allergic asthma cannot be 
ruled out [2, 32, 50, 54, 56]. An association between allergen exposure and asthma 
should only be expected regarding allergic asthma.

Data from recent cross-sectional and retrospective studies have suggested that 
early exposure to pets might provide an asthma-protective effect for children 
[51]. The association between exposure to pets and the risk of asthma has been 
difficult to evaluate because of different study design and selection bias, e.g., 
parents of atopic predisposed or asthmatic children are more likely to remove pets 
from the home, may explain this controversy [50, 51, 57]. Also the influence of 
community exposure should be taken into account, as it is well documented that 
allergens from pets, especially cats, can be measured also in homes without pets 
in concentrations sufficient for inducing sensitization [51, 58]. Recent prospective 
observational studies suggest that early pet exposure is associated with a reduced 
risk of developing asthma until 4 years of age [59, 60] but not allergic sensitiza-
tion until 4 years of age [60], and exposure to two or more cats in the first year 
of life may reduce subsequent risk of allergic sensitization against a panel of aller-
gens, though not to cats, until 7 years of age [61]. Meanwhile, in none of these 
studies selection bias can be excluded, most of the information is collected by 
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means of questionnaires and the analyses did not include sibling asthma/allergy, 
which might heavily influence the families’ choice of having pets. In one study, 
the follow-up rate was very low (57%), a very high percentage of parents had 
asthma (21%) and atopic heredity was not clearly defined [61]. Though two of 
these studies [59, 61] included allergen measurements in the methods, these 
values were not included in the analyses. A systematic review [50] concludes that 
exposure to pets appears to increase the risk of asthma and wheezing in children. 
Epidemiological studies suggest that in areas with low levels of allergens in 
homes, the prevalence of sensitization is low [51].

The apparent protective effect of exposure to pets may be due to avoidance 
behavior and “healthy pet keeper effect” [57, 62, 63]. A large cross-sectional study 
investigated the association between pet-keeping at time of birth and allergic 
symptoms in airways, nose, and skin among 14,077 young children (1–6 years) in 
Sweden [63]. They found that almost one-tenth of the population had got rid of 
pets because of allergy in the family, and 27.3% reported “avoidance” behavior 
toward pets. In a cross-sectional analysis, current pet-keeping was “protective.” 
possible due to the fact that people avoid exposing their child to something that 
they believe is a risk factor for allergies. Pet-keeping at the time of birth was asso-
ciated with wheezing, asthma, and rhinitis on pet-exposure later in life for children 
from families with an avoidance behavior, and was not “protective” for other children. 
There was also an indication of a dose–response relationship between the number 
of types of furred pets at time of birth and later symptoms in analyses adjusted for 
avoidance behavior or current pet-keeping. Thus, the distribution of pet-keeping in 
the population is largely explained by avoidance behavior, meaning that those who 
have pets mainly are those who can stand them, indicating a healthy pet-keeping 
effect [63].

The effect of exposure to indoor allergens seems to be most pronounced in 
children with atopic predisposition and with exposure during the first months/year 
of life [33].The German MAS (Multicentre Allergy Study) study showed that the 
dose–response relationship between early exposure to house dust mite allergen and 
cat allergen was most pronounced in children with atopic heredity [52, 55]. 
Another longitudinal study up to age 5 years demonstrated an association between 
early cat exposure and an increased risk of wheezing at or after the age of 3 years 
among children whose mothers had a history of asthma [64].

So far, a few prospective, randomized studies have investigated the efficacy of 
the avoidance of indoor allergens (house dust mites) [65–70] in infants with 
atopic predisposition or early atopic manifestations. Two of these studies with a 
follow-up to 7 [70] and 8 [69] years of age, respectively, have produced the first 
indication that a reduction in house-dust mite allergen levels in homes of high-
risk infants may reduce the prevalence of sensitization to house dust mites and 
recurrent wheezing [69, 70].

There seems to be a synergistic effect of several coexisting environmental fac-
tors [71]. In countries with a so-called Western life style, most people spend more 
than 95% of their time in well-insulated modern buildings with reduced ventilation. 
The indoor environment of homes has changed over the last decades and there is 
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evidence of an increase in concentration of indoor allergens (house dust mites and pets) 
[72] and air pollutants [73].

Allergic rhinitis is mostly associated with allergy against outdoor allergens, e.g., 
birch and grass, but in case of perennial symptoms also, indoor allergens is relevant 
[3]. Recent studies demonstrated that pollen exposure in the first months of life is 
a risk factor for development of seasonal allergic rhinitis and a positive dose–response 
was indicated [74–76].

It has been hypothesized that the airway inflammation in asthmatics might precede 
the development of sensitization to environmental allergens. This does not seem to 
be the normal course in development of atopy and asthma considering the course 
of the allergy march in high-risk infants and the documented predictive capacity of 
early sensitization to food and airborne allergens as regards development of allergic 
asthma [26, 28, 32, 37, 38, 43, 74, 75, 77]. Neither is there any convincing evidence 
of such a hypothesis in the group of so-called nonatopic asthmatics with asthma 
symptoms caused by viral infections as elucidated in recent studies [10]. 
Therefore, in future studies on asthma in childhood the clinical, immunological 
and inflammatory type of asthma as well as the genotype should be described when 
possible.

Tobacco Smoke

Several studies have shown a significant association between parental (particularly 
maternal) smoking and increased wheezing and asthma in children [15, 20, 78–80]. 
This association is strongest up to 6 years of age. The severity and frequency of 
symptoms were related to the extent of exposure in the home [78].

Furthermore, passive smoking has been associated with sensitization to indoor 
allergens in some studies [71, 81], but not in others [82]. Importantly, maternal smoking 
during pregnancy is significantly associated with reduced respiratory function in early 
infancy and recurrent wheezing during infancy and early childhood [80, 83].

Recent studies indicate that some individuals with the genetically determined 
deficiency of gluthathione-S-transferase GST M1 and GST T1 enzymes are more 
susceptible to exposure to tobacco smoking and development of asthma [84, 85]. 
In utero smoke exposure in GST T1-deficient children was associated with devel-
opment of recurrent wheeze/asthma and decrements in lung function [85].

Outdoor Pollution

There is convincing evidence of a cause–effect relationship between exposure to 
outdoor pollution and induction of atopic respiratory symptoms. As regards the pos-
sible relationship between outdoor air pollution and development of asthma/atopic 
airway disease, the findings of many studies are weak or contradictory [23, 86].
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Immune Modulation

Although viral respiratory infections frequently trigger acute exacerbations of 
asthma, the relationship between such infections and asthma is not clear, in part 
because of the difficulty in defining asthma in young children. There is evidence 
supporting two different but not mutually exclusive hypotheses: (a) predisposed 
children are susceptible to asthma and severe respiratory tract infections or (b) 
severe viral infections may have a long-lasting influence on the subsequent devel-
opment of asthma.

Recent studies indicate that early viral infections primarily are associated with 
so-called infectious type of asthma with a more favorable prognosis as regards 
recovery before 10–11 years of age [10, 11]. However, early viral infections do not 
seem to increase the risk of later atopic asthma [11].

Family size (number of siblings) has been hypothesized to be inversely related 
to the risk of atopy, but prospective studies have not been able to confirm this finding 
[49, 87–89]. The possible influence of different vaccines, e.g., tuberculosis, BCG 
(Bacille Calmette-Guerin) and pertussis vaccination on the development of atopic 
responses in children has been investigated; but at present, there is no evidence of 
a causal relationship [87, 90, 91]. It has been hypothesized that the intestinal 
microbial flora may influence the development of sensitization but no convincing 
evidence for this theory has been published [87, 92].

Persistence of Allergic Airway Disease: Predictors 
and Risk Factors

Atopic Heredity

Apart from being a predictor/risk factor for development of asthma, atopic heredity 
(first degree relative) is also shown to be associated with an increased risk for 
persistent asthma disease in children with diagnosed asthma [18, 20, 93, 94].

Sensitization

Chronic asthma is associated with sensitization to indoor allergens, which are more 
important than the outdoor allergens, probably because of time spent indoors [2]. 
Many studies indicate that sensitization in children with a wheezing syndrome are 
predictive of later childhood asthma [55, 93–96]. In a large population-based 
prospective birth cohort study with follow-up from birth to 10 years of age, chronic 
childhood sensitization (measured at 4 and 10 years) was significantly associated 
with significantly higher cord blood IgE, increased prevalence of aeroallergen 
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sensitization, persistent wheeze, eczema, rhinitis, and bronchial hyperresponsiveness 
at 10 years [97]. Sensitization to perennial allergens (e.g. house dust mites, cat, and 
dog) developing in the first 3 years of life was associated with chronic asthma and 
a loss of lung function at school age (13 years) [98]. Thus the remission rate of 
symptoms at 13 years was 90.2% among nonatopic wheezers versus 56.2% for 
atopic wheezers [98]. Moreover, it was found that concomitant exposure to high 
levels of perennial allergens early in life aggravated this process with loss of lung 
function and enhancing the development of bronchial hyperresponsiveness for 
those children who were sensitized [98]. Correspondingly, in the Manchester birth 
cohort, the combination of sensitization to indoor allergens and exposure to the 
sensitizing allergen also determined the level of lung function at 3 years [99]. 
Current sensitization to indoor allergens and also elevated cord blood IgE have been 
found to be determinants of impaired lung function in children with current wheeze 
at 7 years [93].

A recent population-based birth cohort study showed that, the sum of IgE to 
mite, cat and dog at age 3 years increased the risk of persistent wheeze by age 5 
years (2.15-fold/logarithmic unit increase in the specific IgE) in a dose-dependent 
manner [35]. Data from the Tucson Children’s Respiratory study with follow-up 
from birth to 16 years [96] showed that children with persistent or late onset 
wheeze were more atopic at age 6 years and they continued to be more atopic at age 
11 and 16 years than never and transient early wheezers [96]. The results from this 
study suggests that wheezing at age 6 years, regardless of whether the children 
wheezed previously, is associated with continued symptoms through age 16 years 
and that the increased prevalence of atopy, present in persistent and late-onset 
wheezers at age 6 years, continues though adolescence [96].

Also, long-term follow-up studies from childhood to middle adulthood indicate 
a significant association between sensitization and persistent asthma in adulthood. 
In one study, a significant association between a positive skin prick test and severe 
childhood asthma and severe asthma later on in adolescence and adulthood until 28 
years of age was found [100]. In another study from age 9 to 26 years, sensitization 
to house dust mites and cat allergens were strongly predictive for persistent or 
relapsing wheezing at age 26 years [101].

Severity, Lung Function, and Bronchial Hyperresponsiveness

Several studies indicate that severity of the asthma disease, lung function, and 
bronchial hyperresponsiveness may predict the persistence of the disease later in 
childhood and even into adolescence and adulthood [96, 100–102]. It has been 
shown that children with the early transient phenotype is not associated with 
impaired lung function later in childhood [12, 93, 102]. In a long-term follow-up 
study of a cohort of 378 asthmatic children from childhood (age 7 years) to middle 
adulthood (age 35 years), the presence of an atopic condition in childhood was 
found to increase the odds of more severe asthma in later life on in adolescence 
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and adulthood until 28 years of age [100]. Additionally, the odds of eczema and 
hay fever also increased with severity of asthma in childhood [100]. Another long-
term prospective study of a birth cohort with atopic predisposition with follow-up 
from birth to the age 22 years showed that remission of wheeze was common in 
children younger than 5 years of age and likely if wheezing occurred on less than 
two occasions, whereas wheeze at 11 years of age was likely to persist [103]. 
Thus, frequent wheezing before age 5 years was associated with adult asthma and 
bronchial hyperresponsiveness [103]. Also, a recent prospective study from New 
Zealand from age 9 to 26 years found that airway hyperresponsiveness and low 
lung function in childhood were strongly predictive for persistent or relapsing 
wheezing at age 26 years [101].

In a community-based cohort study 575 children aged 8–10 years were reassessed 
15–17 years later, it was shown that childhood characteristics that independently 
predicted asthma symptoms in adulthood were obstructive spirometry, airway 
responsiveness, atopy, recent wheeze and being a female. Children with all five 
characteristics had a likelihood ratio of 36.9 for asthma symptoms in adulthood [104].

Conclusion

Atopic airway diseases in children are mostly associated with allergic sensitization. 
Chronic asthma mostly is associated with sensitization to indoor allergens, whereas 
allergic rhinitis most often is associated with outdoor allergens. It is unlikely that 
one or few factors are responsible for an increasing prevalence of atopic diseases. 
Atopic heredity, elevated cord-blood IgE and early sensitization are well-docu-
mented predictors as regards allergic airway disease.

A clear association between exposure to indoor allergens (e.g. house dust mites, 
cats) and sensitization as well as a clear association between sensitization and 
development of asthma has been documented and several studies have shown that 
sensitization precedes and antedates development of allergic airway disease. 
Allergen exposure is a risk factor for sensitization and development of asthma later 
in childhood in high-risk infants and infants with early atopic manifestations (Fig. 1).

Different asthma phenotypes have been described such as early transient, early 
persistent and late onset as well as atopic versus nonatopic. It is now evident that 
early transient and nonatopic asthma is associated with a good long-term prognosis 
and a normal lung function. In contrast, early-onset persistent childhood asthma 
often is associated with persistent sensitization, loss of lung function and bronchial 
hyperresponsiveness. In children with allergic asthma, exposure to the relevant 
allergen is associated with an aggravation of this process and worsening of the 
prognosis. Also exposure to tobacco smoke is associated with persistence of symp-
toms. As shown in Table 2, predictive factors for persistence of asthma into adult-
hood are atopic heredity, sensitization to perennial allergens, severe disease, 
impaired lung function (obstructive), bronchial hyperresponsiveness and concomi-
tant presence of other allergic manifestations, e.g., rhinitis.
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Many children do not remit from their asthma; the more severe their asthma is, 
the less likely they are to remit. Data supports the tracking concept of the disease, 
mild disease remit or continue to be mild whereas severe disease more likely persist 
being severe into adulthood.

Allergen exposure 

Early sensitization 

Development of allergic airway disease 

Genetic predisposition 

Allergen exposure 
Persistent sensitization
High degree sensitization
Poly sensitization

+ +

Persistent allergic airway disease 

Allergen exposure 
Persistent sensitization
High degree-/poly sensitization
Severe disease

+ +

+

Fig. 1 Development of persistent allergic airway disease. Risk factors and predictors

Table 2 Predictors for development and persistence of allergic airway disease

Predictors for early sensitization and development of allergic airway disease
• Atopic heredity predicts atopic disease
• Elevated cord blood IgE predicts early sensitization
• Early sensitization to egg/CMP/HDM predicts later sensitization to aeroallergens and atopic 

disease, especially in children with atopic heredity or early atopic symptoms
• Persistent sensitization to any allergen predicts asthma in children with atopic heredity

Predictors for persistent allergic airway disease into adolescence / adulthood?
• Persistent sensitization
• High degree sensitization and polysensitization
• Early onset of persistent asthma
• Severe asthma disease
• Reduced lung function / bronchial hyperresponsiveness
• Presence of another atopic condition
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T Cell Responses to the Allergens 
and Association with Different Wheezing 
Phenotypes in Children

Peter N. Le Souëf

Introduction

In determining relationships between T cell responses to antigens and wheezing in 
infants and young children, the patterns of development of Th1 and Th2 responses 
in early life need to be considered as these are closely related to clinical wheezing 
phenotypes. In addition, factors affecting T cell responses are relevant, as in general, 
these factors are also associated with wheezing patterns in this age group.

The role of Th2 immune responses in nature is also important. Indeed, the need 
for these responses at any time of life is still not well understood. Evidence suggests 
that they are needed for protection from parasitic infections, particularly those due 
to helminths [1], but this is still not well established [2]. In contrast, much more is 
known about the role of the immune system in protection from viruses and bacteria. 
Over the last few years, an individual’s Th2 responses have been shown to be 
directly linked to their Th1 responses. Hence, the role of Th2 responses in nature is 
likely to be much more complex than is currently understood. Until there is a much 
better understanding of mechanisms, roles, and development of the various T cell 
responses, how these relate to wheezing in children may remain relatively obscure.

Ontogeny of T-Cell Responses to Allergens

Over the last decade, the pattern of T-cell responses in early life in humans has been 
elucidated. Although much knowledge has been gained about the pattern of 
observed changes in Th1 and Th2 immune responses, why these occur at the various 
stages of development has remained unclear.
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Effect of In Utero Environment on T-Cell Responses

The in utero environment appears to be important in influencing later T-cell allergen 
responses since these are already different between infants at birth [3]. The initial 
environment the fetus experiences is intra-uterine and this is Th2 skewed [4]. 
However, cord blood mononuclear cells (CBMC) Th2 responses are reduced in 
infants of atopic mothers [5–7], reflecting delayed maturation of Th2 responses in 
infants destined to develop atopy [8]. Whether the degree of delay in maturation can 
predict later atopy is still not clear [4], although both Th1 and Th2 cytokine levels 
were reduced in cord blood in infants who later developed doctor-diagnosed asthma 
[9]. Maternal regulation of infants’ antigen responses is unlikely to be due to trans-
placental transfer of allergen-specific IgG; a maternal influence on infants’ T cell 
production of interferon (IFN)-g is suggested as a more likely mechanism [10].

Determining the relative contribution of maternal or infants’ genotypes to the 
development of T cell responses would be complex as both would need to accurately 
documented and accounted for since 50% of the infant’s genetic makeup is maternal. 
Current epidemiological data suggest that the fetal environment, as determined by 
the mother’s genetic makeup, could contribute to the infant’s immune system’s pat-
tern of development. Development atopy in the offspring is more strongly related to 
maternal than paternal influence [11], but mechanisms for this are still unclear.

The in utero environment is also important for the first exposure of the fetus to 
allergens, as relatively large molecules can cross the placental from the mother to 
the infant [12]. Higher exposure to house dust mites (HDM) during pregnancy was 
associated with a lower percentage of IFN-g producing stimulated CD4(+) CBMC 
[13]. The extent to which transplacental antigens can prime the early immune system 
response is yet to be determined.

Delay in Maturation of T-cell Responses in High-Risk Neonates

As noted above, at birth, infants’ CBMC show variations in responses to stimu-
lation and individuals who will later develop atopy and asthma show a reduction 
in the levels of both Th1 and Th2 cytokines [14]. In infancy, subjects who do not 
go on to develop atopy show selective downregulation of their Th2 allergen-
specific responses, whereas those who develop atopy upregulate their Th2 
responses [14]. The probable time course of these events has been suggested by 
studies of vaccine responses, as the exposure to antigen in such studies is tightly 
controlled in both dose and timing. In a such a study, delay in IFN-g production 
accompanied the reduction Th2 cytokine responses to specific vaccine allergens 
[15]. The IFN responses recovered spontaneously around 12 to 18 months of age 
at the same time that Th2 cytokine responses became more prominent in at-risk 
infants [16]. By 5–6 years of age, Th2 responses to common allergens are 
enhanced in atopics [17].
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The reason for the marked delay in T cell responses in atopic children is obscure, 
as there would be little advantage with this, although a postponement in the onset of 
atopic symptoms from inhaled aeroallergens may have a minor survival advantage. 
The relative impairment in Th1 immune responses could be of much greater impor-
tance and the possible contribution this makes to the spectrum of wheezing in children 
through impaired protection from viruses will be discussed later in this chapter. 
However, with respect to survival advantage, this problem with Th1 responses and 
hence protection from viruses points to a possible reason for the observed situation. 
Future atopic individuals with impaired early Th1 responses could be expected to be 
at a disadvantage compared with nonatopic individuals and this could be the reason 
that pro-Th2 genotypes are less frequent particularly in Europeans compared with 
Africans [2, 18]. The rationale of this is that modern humans had their origins in Africa 
[19] where the harsh, tropical environment required strong Th2 defensive responses to 
protect from endemic helminthic infections [2]. When modern humans left Africa 
around 50,000 to 100,000 years ago [20], those moving to Europe would have encoun-
tered a much cooler climate that would have been less conducive to helminthic disease, 
since helminths thrive in a hot, wet environment [21]. The high frequency of pro-Th2 
genotypes found in people from tropical Africa [21] would not have been needed so 
much in a temperate climate and could be expected to have compromised Th1 
responses early in life, as described above. With the rise of agriculture, throughout 
western Asia and Europe, abundant food resources supported larger populations that 
no longer needed to live nomadically [22]. The move from small groups of individuals 
who moved frequently to follow food sources to large communities that did not move 
would have been ideal for the transmission of viruses. Additionally, the formation of 
stationary communities and domestication of several animal species would have 
allowed animal viruses that were new to humans to infect large numbers. Viruses 
would have become a major health issue in large communities as the viruses them-
selves could now survive and continue to circulate within a group. Since many viruses 
are eliminated within a few weeks [23, 24], jumping between nomadic groups would 
rarely have been possible so that viruses would not have been a major problem in 
small, mobile groups. One could therefore speculate that the reason that African popu-
lations have a high prevalence of Th2 responses [18] with their associated lack of 
adequate Th1 responses is that helminth infections were a major problem whereas 
viruses were not. We speculated that those who left Africa ended up in cooler climates 
with more densely populated communities. Viruses and other infectious diseases were 
encountered and survival favored those with stronger Th1 responses. However, the 
extent to which these factors might have operated has still to be established.

The delay in Th1 responses that accompanies the delay in Th2 responses in those 
at-risk of developing atopy has several important implications. Principally, those 
with impaired Th1 responses are likely to have an increase in prevalence and severity 
of respiratory viral infections. If viral infections themselves modulate the program-
ming of Th2 polarization, as has been suggested [25], the increase in viral infections 
could act to enhance immunologically mediated inflammation of the airways. 
However, a simpler and increasingly more plausible explanation is that the real 
problem in early life with respect to T cell function and wheezing is that atopy 
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is marker of a range of underlying immune system dysfunctional responses affecting 
both Th1 and Th2 responses but that the relative deficiency of Th1 responses is the 
main problem. The possibility that the impaired T cell responses, as characterized 
by the significantly lower IFN-g responses to T cell stimulation, could lead to prob-
lems with infection has been raised on several occasions [26], but was seen more in 
the context of the role of respiratory viruses as triggers of asthma or enhancers of 
Th2 responses rather than a primary problem in itself. How well the possibility that 
Th1 impairment is the main problem fits the available data will be discussed later in 
this chapter when genotypic and other associations are considered.

Environmental Influences on T Cell Responses 
to Allergens: Smoke Exposure

External environmental influences also affect the development of Th2 responses 
while the fetus while still in utero. The most powerful known influence is maternal 
smoking. Unlike passive environmental tobacco smoke (ETS) exposure at other 
ages, the fetus is subjected to the same full systemic levels of soluble toxic agents 
in cigarette smoke as an active smoker [27, 28]. This level of exposure may be 
why maternal smoking during pregnancy has a much greater effect than postnatal 
exposure on subsequent respiratory morbidity [29–32]. ETS exposure via the air 
during infancy is likely to be greater than at any other age [33] and may contribute 
to the in utero exposure. ETS has been associated with the risk of an offspring 
experiencing lower respiratory infections [29, 34], episodes of wheeze in infancy 
and the preschool years [31], reduced lung function in childhood [30, 32], 
increased airway responsiveness (AR) [35], and the prevalence of asthma [30, 
36]. The other possibility for the strong in utero effect of smoking is the timing 
of exposure and the susceptibility of the fetal immune system to the toxic prod-
ucts of tobacco prior to birth. Effects of maternal smoking on the fetus include 
increased fetal death [37], lower birth weight [28], reduced lung function, [38] 
and increased AR at birth [39].

Several recent studies have begun to outline the extent of the problem of the effect 
of parental smoking on the developing immune system. Strong evidence exists for the 
significance of this relationship. One important study used a genome-wide screen to 
demonstrate that the cytokine-rich area of chromosome 5 was susceptible to parental 
smoking, as in infants of smoking parents, linkage was demonstrated for asthma but 
was not present in those with nonsmoking parents [40]. This chromosomal region 
contains several of the most important genes that determine Th2 responses to allergens. 
Although the timing of exposure was not assessed [40], exposure during pregnancy 
would seem most probable due to the epidemiological studies as noted above. Another 
important study examined innate immune responses to a variety of toll-like receptor 
(TLR) ligands, including TLR2, TLR3, TLR4, and TLR9, in CBMC in newborns of 
smoking versus nonsmoking mothers. In this study, stimulated cells from infants of 
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smoking mothers produced reduced levels of several cytokines including tumor 
necrosis factor (TNF) a, interleukin-6 (IL-6), and IL-10 [41].

Environmental Influences on T Cell Responses to Allergens: 
Inhalant Allergens

In atopic children, the degree of responsiveness to allergens is related to the strength 
of the exposure to that allergen. In children from warm, humid areas, such as Belmont 
in New South Wales [42], HDM are ubiquitous and present in high numbers and 
strong skin prick test (SPT) to HDM are seen and serum-specific HDM IgE levels are 
high in atopic children. In hot dry locations, as found in inland New South Wales, 
HDM are much less common as the environment does not suit them and positive SPT 
to them are much less common, but SPT are positive to other antigens, such as alter-
naria [43]. However, the prevalence of wheezing and asthma has not been shown to 
be different in such situations [43], suggesting that the reactions exhibited to antigens 
reflect the antigens in the environment and not any causal relationship between aller-
gens and disease. Cat allergens are more difficult to understand. In an environment 
where both cat and HDM allergens were common, IgE levels to both mite and cat 
were strongly associated with wheezing (odds ratios, 5.2 and 6.5, respectively), but 
children who lived with a cat were less likely to show evidence of increased specific 
IgE to cat than those without a cat [44]. In contrast, cat ownership was not related to 
mite sensitization and those living with a cat had a lower prevalence of specific IgE 
to cat (28% vs. 66%, p < 0.001) than children not living with a cat [44]. How these 
interrelationships work is still not known.

Effect of Smoke Exposure on T Cell Responses: 
Genotype Specificity

Genetic studies have also begun to unravel the complexities of the early T cell 
immune responses related to smoking. In “at risk” (parental atopy) children recruited 
at birth, specific antibody responses to diphtheria and tetanus vaccine antigens were 
reduced with respect to levels of vaccine antigen-specific IgG levels and PBMC 
cytokine responses when the cells were stimulated by the vaccine antigen [45]. 
Positive results were detected for polymorphisms in IL-4, IL-4 receptor (IL-4R), and 
IL13, but only in those with a smoking parental [45]. For example, for the IL-4Ra 
551 QR/QQ genotypes, reductions were found in vaccine-specific responses with 
respect to both antigen-specific IgG levels (Fig. 1a) and PBMC responses (IFNg, 
p = 0.002; IL-10, p = 0.01; 1L-13, p = 0.01; IL-5, p = 0.06) to tetanus toxoid (Fig. 1b) 
and parallel reductions in polyclonal T-cell responses and innate immune responses in 
smoke-exposed infants [45]. The relevance of these data is that they suggest that exposure 



to ETS in fetal or early life impairs T cell immune responses and that these could 
contribute to increased susceptibility to infections that produce wheezing at this time. 
Intriguingly, the genotypes in this study associated with the greatest reductions in 
Th1-related antibody and T cell responses are the “pro-Th2” alleles that have been 
associated with the supposedly Th2-related diseases atopy and asthma [46]. These 
data, therefore, demonstrate that genes with an apparent Th2 focus have covert affects 
on Th1 immunity and major implications to disease etiology in early life.

Fig. 1 Relationship between IL-4Ra Q551R and vaccine responses. Log geometric mean (GM) and 
95% CI of levels are shown. All values corrected for time between last dose of vaccine and specimen 
collection. From [45] with permission. a Vaccine antigen-specific igg responses to diphtheria and 
tetanus toxoids for IL-4Ra Q551R in subjects exposed to parental smoking (PS) and unexposed (no 
PS) (*P < 0.05). Genotypes for PS exposed but not for non-PS exposed subjects with lower levels of 
igg being observed for the “pro-atopy” genotypes (grey bars). Numbers on the x axes = number of 
subjects per genotype group. b Tetanus toxoid–stimulated cytokine responses versus genotype in 
subjects exposed to PS (*P < 0.05). Cytokine levels lower for “pro-atopy” genotypes (gray bars)
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Th2 Genotype-Specific Associations with Responses to Antigens

The problem with pro-Th2 genotypes being associated with impaired specific IgG 
responses to antigens is also present in older children. In a Dutch study of children 
with recurrent otitis media, those with the “pro-Th2” allelic variants of CD14, IL-4, 
IL-4Ra, and IL-13 demonstrated reduced vaccine-specific specific IgG levels for 
each of the seven antigens of the pneumococcal vaccine employed in this study [47, 
48]. These findings therefore support the findings noted above in younger children 
and also have broad implications to susceptibility to infection. Again, the mecha-
nisms responsible for these findings are unclear. Linkage disequilibrium is not a 
likely explanation, as the relationships have been noted in several genes. Given that 
several genes are involved, a common and as yet unknown link between the mecha-
nisms that control immunoglobulin production would seem probable.

Allergic Phenotypes and Wheezing in Children

T cell responses are strongly associated with wheezing phenotypes in children 
who wheeze. In general, children who have developed strong Th2 responses to 
allergens are more likely to wheeze than children without such responses. The 
relationships between Th2 responses and wheeze are particularly strong in chil-
dren beyond the preschool age. These relationships are so strong that for many 
years the prevailing paradigm has been that asthma has been considered as an 
allergic disease and wheeze has been considered to be primarily an allergic phe-
nomenon. Indeed, in many countries, allergists treat wheezy children especially in 
North and South America.

In general, the association between allergy and wheeze has been taken as evi-
dence of causality although direct evidence for this has never been strong. In recent 
years, the assumption that allergy causes wheeze in the majority of children who 
wheeze has looked increasingly less convincing and as new evidence comes to light, 
the possibility that allergy has been overemphasized has been raised. Nonetheless, 
children who wheeze have a wide range of allergic phenotypes that vary with age, 
indoor and local environment, external environment, and ethnic group.

T Cell Phenotypes and Wheezing Phenotypes in Infants 
and Preschool Children

In infants, wheeze is much less likely to be associated with the presence of 
allergy [49]. There are several reasons why this might be so. Firstly and perhaps 
most importantly, in those destined to develop the enhanced Th2 responses that are 
common in older children with asthma, there is, as noted, an abnormality of the 
rate of development of the immune system. The lack of evidence that skewing 
toward Th2 responses is associated with wheeze in infants and preschool children 
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maybe one of the reasons that has led epidemiologists and others to determine 
that there is a different disease entity at this age and the term “transient viral-
induced wheeze of preschool children” was introduced some years ago to cover 
this condition [49, 50]. There are several reasons why this categorization is 
misleading. First, as will be discussed later in this chapter, viruses are the main 
inducers of wheeze at all ages, even in adults [51] and older people with chronic 
obstructive pulmonary disease [52], so a diagnosis of viral-induced wheeze as a 
separate entity for infants and preschool children makes no sense when this is true 
at all ages. Secondly, at the time of presentation with wheeze in infants, there is 
no accurate way to determine which children will continue to wheeze later in life 
[53]. Thirdly, in those destined to develop enhanced Th2 responses by the age of 
5 or 6 years, the abnormal ontogeny of the immune system in the preschool years 
means that there may be no sign of this happening in the early years of life and 
the known biomarkers of future allergic disease or atopy are not accurate in their 
predictions [3]. Finally, the transient nature of wheezing in response to viruses in 
many young children does not necessarily mean that the mechanisms producing 
wheeze are different from those in older children or that they have a different 
disease. Indeed, there is no evidence that the basic mechanisms by which viruses 
produce wheeze are age-related.

T Cell Phenotypes and Wheezing in Older Children

In older children, wheezing and T cell responses are more strongly related, and 
the majority of children demonstrate evidence of enhanced Th2 responses [54]. 
Why this is so in this age group has never been established, but the strong 
evidence of association between Th2 responses and allergy does not mean that 
either the measured Th2 responses or the allergic manifestations are the direct 
cause of wheeze. Furthermore, as mentioned above, the majority of wheezing 
exacerbations are associated with the presence of evidence of an acute respiratory 
viral infection.

A comprehensive study of T cell function was carried out in an unselected group 
of 147 11-year-old children who have been followed up from birth [55]. PBMC 
challenged with allergen showed responses dominated by IL-4, IL-5, IL-9, and 
IL-10 in those with atopy, whereas IL-10, TNF, and IFN g responses were common 
in both atopics and nonatopics. Such specificity of response was not detected when 
T cells were subjected to nonspecific stimulation. These distinct T cell response 
patterns underline the differences between atopics and nonatopics. The T cell 
responses in atopics are also likely to be related to wheeze, as they were also associ-
ated with increases in AR.

Associations between T cell phenotypes and wheezing with respect to parental 
smoking or subjects’ smoking is less clear in older children, although the relation-
ship between recent or current smoke exposure and asthma remains [56]. Part of the 
problem in demonstrating these relationships is that the association between atopy 



T Cell Responses to the Allergens 379

and asthma is so strong at this stage in life that determining whether the effect of 
smoke exposure works through affecting atopy is difficult to ascertain.

T Cell Phenotypes and Wheezing in Older Children: 
Genetic Factors

Age-specific relationships have been demonstrated between atopy and specific 
genotypes. Although only a few such relationships have been reported, this is 
more a reflection of the paucity of good long-term epidemiological longitudinal 
cohort studies than any lack of evidence or interest in this field [57]. Also, num-
bers in such studies are usually too small to allow the interrelationships to be 
worked out between T cell function, atopy, wheeze, and genotype. The CD14 
variant that has been associated with increased specific IgE in children [58] is 
also associated with an increased prevalence of atopy (as determined by SPT) in 
midchildhood and adolescence, but not in young adults [59]. Other studies that 
have shown age-specific effects are for a CCR5 polymorphism and asthma [60], 
an IL12 promoter polymorphism and reduced lung function in females aged 10 
and 14 years [61] and variations in the b-2 adrenoceptor gene and asthma [62] 
and asthma symptoms [49].

Many cross-sectional studies have shown relationships between genotypes in 
genes associated with T cell function and wheeze and the diagnosis of asthma. 
These studies are too numerous and there are too many genes to mention in detail 
here, but they have been summarized recently [63, 64]. As can be seen from Table 
1, in which the top ten genes are listed according to the number of reported studies 
with positive associations between a polymorphism or haplotype in that gene and 
an asthma-related phenotype, there is a strong presence of genes with Th2 activity 
among these genes, although this would have been determined to a degree by 
researchers choosing to investigate these genes due to their known relationship 
with Th2 responses. Of particular note is the presence of several genes with a 
central role in the generation of Th2 responses: IL4, IL4Ra, IL13, and CD14. Also 
of interest is the chromosomal location of four of these top ten genes in the region 
of 5q23–32. This region is known to be chromosomal area in the human genome 
that is richest in cytokines. This is highly relevant to the relationships between T 
cell function and wheezing for several reasons. First, many of the cytokines that 
control the production of IgE appear to be located in this area. Second, many 
genome-wide screening studies have found linkage to wheeze-associated pheno-
types in this region [63, 64]. Finally, as has been discussed previously in this 
chapter, the region has also been associated with parental smoking in a genome-
wide screening study and linkage was only significant for asthma when the popu-
lation was segregated according to the presence or absence of parental smoking 
[40]. These data fit well with epidemiological findings that have found highly 
consistent associations between parental smoking, especially maternal smoking, 
and wheezing in childhood [28, 65]. The cytokine region linkage data also emphasizes 
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Table 1 Top ten genes with variations with associations with asthma-related 
phenotypes in terms of number of positive reported studies.

Gene c’some +ve n

CD14 5q31 16 24
IL4 5q23 19 34
IL13 5q23 18 21
ADRβ2 5q32-24 33 44
HLA-DQB1 6p21 12 18
HLA-DRB1 6q21 34 40
TNFα 6q21 17 30
FCER1β 11q12 18 30
IL4Ra 16q12 24 38
ADAM33 20p13 11 13

Genes are listed according to chromosomal position. Note the strong presence of 
genes with Th2 activity
c’some chromosomal position, + ve positive reported studies, n total number of 
reported studies, CD14 monocyte differentiation antigen 14, adrb2 beta 2 adrenergic 
receptor, HLA human leukocyte antigen, TNFα tumour necrosis factor alpha, 
FCER β1 high-affinity IgE receptor beta chain; ADAM33 a disintegrin and metal-
loproteinase domain 33
Source: From Ref. [64] with permission

that genetic predisposition is only apparent if the environment reveals it. The lack 
of linkage found in many populations between this region and asthma phenotypes 
is almost certainly due to this.

T Cell Responses and Defense from Viral Respiratory Infections

The evidence that wheezing in humans is strongly related to acute viral respiratory 
infections has been increasing over recent years and includes epidemiological, 
immunological, and genetic data. In brief, the evidence suggests that in atopic indi-
viduals, along with their skewed Th2 responses to allergens, there are accompanying 
and significant decreases in Th1 immune responses that could account for the 
increased susceptibility of asthmatics to develop wheeze in response to acute viral 
respiratory infections. The data of the association between Th2 genotypes and 
reduced adaptive specific IgG and T cell immune responses was presented previ-
ously in this chapter [45, 47, 48]. Over the last five years or so, many other apparent 
defects in Th1 immune responses have been described. Relative impairment in 
responses have been shown to be present at birth, as CBMCs from infants with a 
family history of atopy produce less IFNg in response to phytohaemaglutinen 
stimulation than those without such a history [3]. A reduced level of IFNg has also 
been shown to be present at 3 months of age in those destined to have recurrent 
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wheezing by 1 year of age [66]. A reduced ability of PBMC to produce IFNg in 
response to an induced infection with rhinovirus 16 in adult asthmatics compared 
with nonasthmatics has also been reported, along with accompanying reductions in 
IL12 [67]. In another study of induced rhinovirus infection in adult volunteers, 
reduced production or IFN-lambdas by rhinovirus was demonstrated in asthmatic 
primary bronchial epithelial cells and alveolar macrophages, and these findings 
correlated with severity of the induced asthma exacerbation and virus load in 
experimentally infected human volunteers [68]. More direct evidence that asthmatics 
have problems in handling viruses was inferred by a study of rhinovirus 16 infection 
of adult airway epithelial cells in which the virus was shown to have a substantially 
higher replication rate in cells from asthmatics than from nonasthmatics [69]. In a 
study of 76 cohabitating couples, one of whom had asthma, natural rhinovirus 
infection was studied and asthmatics were shown to have a delayed clearance of the 
virus from their airway [70]. In summary of this evidence, therefore, asthmatics (or 
future asthmatics) show relative defects in Th1 responses from birth, and evidence 
for these continues into childhood and adulthood.

Role of Acute Respiratory Viral Infection in Acute 
Wheezing in Children

Given the strong evidence of potential problems in Th2-related but Th1-mediated 
antiviral defenses that are present from birth, the finding over the last few years that 
there is evidence of an acute viral respiratory infection in the great majority of those 
presenting with a wheezing illness is not unexpected. Indeed, this appears to be true 
for the whole of life in humans. In the first year of life, a community study has 
shown that viruses were detected in 69% of acute respiratory infections and the 
most common infective agents were rhinoviruses (48.5%) and respiratory syncytial 
virus (RSV) (10.9%) [71]. In infants admitted to hospital with bronchiolitis in the 
first year of life, the most common virus detected is RSV [72], suggesting that 
while rhinovirus is likely to be the most common virus causing wheezing in the 
community in the first year of life, the most severe cases of bronchiolitis are those 
caused by RSV. In children presenting to an emergency department with wheezing, 
rhinovirus is by far the most common virus detected, being found in 60% of chil-
dren in an Australian study [73]. Similar findings have been made in other studies 
[74–78]. The same is true in adult asthmatics, rhinovirus again being the most com-
mon virus isolated during acute episodes of wheezing being present in 60% of 
adults with acute asthma in a study from the UK [51]. In adults with chronic 
obstructive pulmonary disease, rhinovirus was again the most common infective 
agent detected, being present in 58.2% of those in whom an infective agent was 
found [51].

The above results pertaining to rhinovirus need to be interpreted in light of some 
new evidence related to rhinovirus detection [23, 24]. The first is that rhinovirus does 
not remain in the airway after more than 3 or 4 weeks even in asthmatic children who 
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have delayed clearance of this virus compared with nonasthmatics. This observation 
is important for two major reasons. First, it means that detection of rhinovirus in 
the airway in asymptomatic individuals is not evidence of a commensal infection, 
but rather evidence of an acute current asymptomatic infection [23]. Typically, in 
studies comparing patients with acute asthma versus controls, the control population 
has a relatively high frequency of rhinovirus detection. For example, in a study of 
asthmatic children presenting with acute asthma, rhinovirus was found in over 60% 
of the acute asthma group compared with 18.2% in asthmatic control subjects who 
were well at the time of testing [79]. Second, it suggests a mechanism for chronic 
asthma, since an infection that does not produce symptoms of a “cold” may still 
have the potential to produce an airway response that could contribute to chronic 
airway inflammation [80]. Rhinovirus has been shown to have a prolonged effect 
on increasing AR [81]. However, the most important observation of the new, more 
refined polymerase chain reaction (PCR)-based techniques used for detection of 
rhinovirus is that they were able to identify many new strains of rhinovirus in the 
known groups of A and B, but also a new group C, which was more likely to cause 
infection in younger children [23]. The strong implication of this is that all previous 
studies reporting rates of rhinovirus infection would have significantly underesti-
mated the true number of infections with this virus and need to be repeated using 
this newer approach.
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Indoor Air Pollution and Airway Disease

Sara Maio, Marzia Simoni, Sandra Baldacci, Duane Sherrill,
and Giovanni Viegi

A good quality of indoor environment (dwellings, workplaces, schools, day care cent-
ers, bars, and discotheques) is a very important environment and health target, in so 
far as subjects in industrialized countries spend over 90% of their time indoors [1].

The quality of indoor environments depends on the quality of the atmospheric 
air that penetrates from outdoors and on the presence of indoor air pollution 
sources. Modern dwellings are often thermally insulated and have a low ventilation 
rate, to improve energy efficiency [1], but these aspects can deteriorate the indoor 
air quality. Indeed, pollutants are less diluted indoors than outdoors, possibly reach-
ing higher concentrations. Moreover, the indoor environment is a result of the 
interaction between building system, construction techniques and materials, con-
taminant sources, and building occupants [2].

As regarding pollutants produced indoors, the most important are nitrogen dioxide 
(NO

2
), carbon monoxide (CO), environmental tobacco smoke (ETS), particulate 

matter (PM), volatile organic compounds (VOCs), and biological allergens. In devel-
oping countries, relevant sources of indoor pollution include biomass and coal burn-
ing for cooking and heating. Almost 3 billion people worldwide (around 50% of the 
world’s population) use biomass fuels as primary source for cooking, home heating, 
and light [3, 4]. A study on the global burden of disease attributable to major risk 
factors showed that, in 2000, over 1.6 million premature deaths, and about 3% of the 
global burden of disease, were attributable to indoor air pollution from solid fuels 
[5]. Moreover, in Africa, without systematic changes in the household biomass use, 
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8.1 million lower respiratory infections deaths among young children and 1.7 mil-
lion chronic obstructive pulmonary diseases (COPD) deaths of adult women were 
estimated by the year 2030 [6].

Recent studies showed clearly that the exposure to indoor air pollution is associ-
ated with increased respiratory symptoms/diseases, in particular with asthma and 
asthma-like symptoms [7–10].

The review in this chapter will cover the exposure to specific pollutants in indoor 
environments and their potential health effects.

Sources of Exposure to Indoor Air Pollution

To assess quantitatively the exposure to indoor air pollutants, several factors such as 
time spent at home, different sources of pollutants, household activities, presence of 
pets, indoor conditions suitable for mites, fungal and insect growth, infiltrations of 
outdoor pollutants, and presence of ventilation systems [2] have to be considered.

Indirect and direct methods for assessing indoor exposure have been used in 
epidemiological studies. Indirect methods, more widely used in population studies, 
include indoor source inventories, questionnaires, or time activity logs [11–13]. 
Direct methods include stationary passive or active sampling [7, 9, 14], biological 
monitoring (in blood, urine, or saliva) [15], or exhaled air [16].

Combustion Processes

The primary sources of indoor pollutants are combustion processes, such as cooking, 
heating with unvented gas or kerosene heaters, wood burning, and ETS. In developing 
countries, other principal sources of indoor pollutants are biomass-wood, crop 
residuals, animal dung and coal, used for heating and cooking [17].

The combustion process produces a mixture of pollutants, such as CO, NO
2
, 

sulfur dioxide, aldehydes, polycyclic aromatic hydrocarbons, and inhalable PM, 
which have been associated with respiratory troubles [17]. In particular, PM 
includes inorganic acids (e.g., sulfates or nitrates), smoke (containing polycyclic 
aromatic hydrocarbons), fine dust, and residues of lead and asbestos. PM with an 
aerodynamic diameter <10 mm (PM

10
) (i.e., inhalable particles) can be inhaled and 

accumulated in the respiratory system (trachea and large bronchi), and particles 
with aerodynamic diameter <2.5 mm (PM

2.5
) (i.e., fine respirable particles) may be 

deposited in the smaller airways and alveoli [18].

Cleaning and Washing Products

Cleaning constitutes a large field of activities involving the general population and 
a large fraction of the workforce worldwide. Recently, it has caused increasing 
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concern. The exposure can be quite substantial [19] and knowledge of the potential 
toxicity of consumer products is limited.

During the process of cleaning, which can be considered equivalent to a chemi-
cal reaction, individuals are exposed to gases (e.g., formaldehyde and VOCs) and 
dust. VOCs include aromatic hydrocarbons, aldehydes, aliphatic halogenated 
hydrocarbons, and terpenes. During a cleaning activity, the overall VOCs level 
increases, affecting the indoor air quality; only ventilation (opening a window, turn-
ing on a fan or air conditioner) can reduce the exposure levels.

Little is known about long-term exposure to VOCs at levels generally detected 
inside dwellings [14]. In Europe, levels of VOCs, in public buildings, range from 
21.7 mg/m3 in Arnhem (Holland), 63.8 mg/m3 in Catania (Italy), to 143.7 mg/m3 in 
Salonicco (Greece) [20].

Other sources of VOCs can be paints, building materials, floor/wall coverings, 
cosmetics, adhesives, pesticides, tobacco smoke, mobile homes, and office equip-
ment [14, 21, 22].

Indoor Allergens

Indoor allergens include domestic house dust mites, animal allergens, cockroach aller-
gen, and molds. Indoor allergens today have increased in developed countries where 
homes have been insulated for energy efficiency, carpeted, heated, cooled, and humidi-
fied; these changes have made homes the ideal habitats for indoor allergens [23].

House Dust Mites

House dust is composed of several organic and inorganic compounds, including fibers, 
mold spores, pollen grains, insects and insect feces, and mites and mite feces [23].

The principal domestic mite species, Dermatophagoides and Euroglyphus, are 
particularly abundant in mattresses, box springs, pillows, carpets, or fluffy toys 
[24]. Mites proliferate in warm (above 20°C) and humid conditions (80% or high-
errelative humidity) [24].

Pets

Cats and dogs are another important source of indoor allergens, released through 
secretions (saliva) and excretions (e.g., urine) [23]. The most studied cat allergen, 
Fel d1, is found in cat pelt (especially in the facial area), sebaceous secretions, and 
urine [25] and it may be airborne for many hours after emission. Dogs produce two 
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important allergenic proteins (Can f1 and Can f2): their characteristics (allergen-
carrying particles, ubiquity, etc.) are similar to those of cat allergens [23].

Cockroaches

In urban areas characterized by low-income status, cockroaches are a major indoor 
source of allergens. Most species of cockroaches live in tropical climates. The main 
allergens (Per a1, Bla g1, and Bla g2), produced by dead bodies and fecal matter, have 
been frequently found in floor dust, kitchen cabinets, bathrooms, and basements [21].

Mold/Damp

Domestic molds are very important allergens and are most common in humid areas. 
Microscopic fungi present in homes are capable of producing spores all year round 
and are responsible for persistent symptoms, especially in hot and humid dwellings. 
They can also grow in aeration and climatization ducts (central heating and air 
conditioning) and water pipes. They are particularly abundant in bathrooms and 
kitchens. Molds also grow on plants, which are watered frequently, or on animal or 
vegetable waste, furnishings, wallpaper, mattress dust, and fluffy toys [24].

Respiratory Health Effects of Indoor Air Pollution

There is epidemiological evidence on the relationship (cross-sectional studies) and 
the causality (longitudinal studies) between indoor air pollution and respiratory 
health. Women and children seem to be more susceptible to indoor air pollution 
than their male counterparts. It could result from the fact that they generally spend 
more time indoors, but the differences in susceptibility between females and males 
should not be neglected [26].

Nitrogen Dioxide and Carbon Monoxide

The presence of commonly known NO
2
 sources (i.e., gas appliances) is a risk factor 

for respiratory symptoms and asthma in children and in adults. Risks of having 
asthma, wheezing and bronchitis have been associated with an increase of 10 ppb 
(24 h average) of NO

2
 concentration, measured in a living room, in females [27] 

(Table 1). An association of NO
2
 exposure with acute respiratory illnesses (ARI) 

has also been found in adults living in a rural area of northern Italy and in an urban 
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area of central Italy [28] (Table 1). Taking into account only the sample of subjects 
living in the rural area, the authors showed a higher risk of having ARI for non-
smokers and an association of NO

2
 exposure with chronic bronchitis and/or asthmatic 

symptoms without fever and without ARI [29] (Table 1).
The association between an increase of 10 mg/m3 of indoor NO

2
 and current 

asthma, asthma attacks, and asthma medication was observed in 10 naturally ven-
tilated schools in Shanghai [7] (Table 1).

In addition, the exposure of asthmatic children to CO
2
 indoors was associated 

with an increased risk of wheezing attacks [30] (Table 1). Other symptoms linked 
to CO exposure were fatigue, headache, nausea, and vomiting. Moreover, people 
suffered from heart and pulmonary diseases; anemic subjects and pregnant women 
were the most susceptible subjects.

Table 1 Respiratory disorders caused by NO
2
, CO

2
, and particulate matter (OR, 95% CI).

Study Country (n, sample) Exposure Health outcome

Measures

(OR (95% CI)

Shima and 
Adachi [27]

Japan (842, females) NO
2
 (10 ppb = 

18.8 mg/m3 
increasing)

Bronchitis 1.42 (1.06–1.90)
1.90 (1.30–2.83)
1.63 (1.06–2.54)

Wheeze
Asthma

Simoni et al. 
[29]

Italy (383, general 
population) 
(291, never 
smoker)

NO
2

NO
2

PM
2.5

ARI
WFRI
ARI
WFRI
WFRI

2.18 (1.07–4.46)
1.77 (1.24–2.42)
2.47 (1.14–5.34)
1.51 (1.04–2.18)
1.83 (1.26–2.65)

Simoni et al. 
[28]

Italy (421, general 
population)

NO
2

ARI
ARI
WFRI

1.66 (1.08–2.57)
1.62 (1.04–2.51)
1.39 (1.17–1.66)

PM
2.5

Mi et al. [7] China (1,414,
children)

NO
2
 (10 mg/m3 

increasing)
Asthma attacks 1.50 (1.11–2.02)

1.45 (1.08–1.94)

1.51 (1.17–1.96)

Asthma
 medication
Current asthma

Rabinovitch 
et al. [31]

Colorado (73,
asthmatic
children)

PM
2.5

a

PM
2.5

b

Bronchodilator 
usage at school

Percentage 
increment 
(95% CI)

3.8% (0.2–7.4)
2.7% (0.1–5.4)

Kim et al. [30] Korea (26, asthmatic 
children)

CO
2
 (10 ppb 

increasing)
Wheezing attacks 1.12 (1.02–1.28)

OR, odds ratio; 95% CI, 95% confidence interval; NO
2
, nitrogen dioxide; PM

2.5
, particulate matter 

with aerodynamic diameter <2.5 mm; CO
2
, carbon dioxide; ARI, acute respiratory illnesses; 

FWRI, chronic bronchitis and/or asthmatic symptoms without fever and ARI.
a12 mg/m3 increasing of morning maximum.
b6 mg/m3 increasing of morning mean.
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Suspended Particulate Matter

Exposure to suspended PM has a negative effect on respiratory health in both chil-
dren and adults (Table 1). A relationship between PM

2.5
 exposure and ARI and 

bronchitic/asthmatic symptoms was reported from a general population study, in 
adults [28, 29].

In asthmatic children, an increase of one interquartile range in morning maximum 
(12 mg/m3) and in morning mean (6 mg/m3) outdoor fine particulate levels was associated 
with an increase in bronchodilator usage at school; the stronger association was found 
for children with severe asthma with respect to those with moderate/mild disease [31].

However, few studies assessed the effects of ultrafine particles (UFPs) indoors, 
despite the fact that many indoor sources had been identified. The potential respiratory 
effects of such exposure could be really important because these particles cause 
oxidative stress and inflammation in the lungs. Thus, indoor UFP exposures may 
contribute to the exacerbation of asthma symptoms in susceptible individuals [32].

Wood/Coal Smoke and ETS

Women and young children are exposed to high levels of indoor air pollution every 
day, likely resulting in a high prevalence of chronic airway diseases [3, 33, 34] 
(Table 2). Also the respiratory risks of ETS are well documented (Table 2).

A recent study has investigated the effects of indoor pollution exposure to 
tobacco and home-heating in children. The results showed that maternal smoking 
and home-heating coal increased the risk of lower respiratory illness in the first 3 
years of life, particularly in those non-breast-fed [12] (Table 2). A Chinese study 
showed that in children, the coal smoke was significantly associated with lower 
values of forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV

1
) 

[35]. The same study showed that adults exposed to the coal smoke had increased 
risks of persistent cough, persistent phlegm, cough with phlegm, and wheeze, when 
compared to those not exposed [35] (Table 2).

Wood/Coal Smoke and Environmental Tobacco Smoke (ETS) is linked to sev-
eral acute and long-term adverse respiratory effects, such as airway irritation, upper 
and lower respiratory tract infections, and respiratory symptoms or obstructive 
diseases in both children/adolescents and adults [36].

Women represent an important target of ETS exposure: living with smokers has 
been related to many respiratory symptoms/diseases, such as dyspnea, asthma, 
wheeze, asthma-like symptoms, obstructive lung diseases, current phlegm/cough, 
and rhinoconjunctivitis [8] (Table 2). Moreover, epidemiological data seem suffi-
ciently consistent to suggest that exposure to ETS is an important risk factor for 
childhood asthma [37, 38] (Table 2).

Recently, the association between ETS and disease-specific mortality was exam-
ined in two New Zealand non-smoking adult cohorts. Significantly higher mortality 
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risks for never smokers living in households with smokers were found for: cardio-
vascular disease, ischemic heart disease, in males and females (odds ratio, OR 1.25 
and 1.18 in males; OR 1.35 and 1.27 in females, respectively) and cerebrovascular 
disease, only in males (OR 1.82) [39].

Volatile Organic Compounds

Potential health effects of VOCs include respiratory tract irritation and infections, 
irritation to eyes, allergic skin reaction, bronchitis, dyspnea [22], asthma, and 
asthma symptoms in children and adults [9, 13, 40]. Continuous low exposure to 
VOCs (mainly aromatic compounds) has been related to diagnosed asthma and 
attacks of wheezing (OR 1.63, 95% CI 1.17–2.27; OR 1.68, 95% CI 1.08–2.61, 
respectively), in American adults [9].

Table 2 Respiratory disorders caused by wood/coal smoke and environmental tobacco smoke 
(ETS).

Study Country (n, sample) Exposure Health outcome

Measures

(OR (95% CI)

Ekici et al. [34] Turkey (596 
woman)

Biomass FEV
1
/FVC < 0.70 or 

chronic bronchitis
2.5 (1.5–4.0)

Qian et al. [35] China (2,360 
adults)

Heating coal 
smoke

Persistent cough
Persistent phlegm
Cough with phlegm
Wheeze

1.10 (1.00–1.21)
1.12 (1.01–1.24)
1.10 (0.99–1.22)
1.17 (1.00–1.37)

Baker et al. [12] Czech Republic 
(452, 0–3 years)

Coal home 
heat

ETS

Lower respiratory ill-
ness 2.77 (1.45–5.27)

2.52 (1.31–4.85)
Agabiti et al. [38] Italy (18,737, chil-

dren) (21,068, 
adolescents)

ETS Asthma
Wheeze

1.34 (1.11–1.62)
1.24 (1.07–1.44)

David et al. [36] China (35,000 
adults)

ETS Asthma diagnosis 1.32 (1.13–1.53)
2.87 (1.58–5.22)
2.38 (1.82–3.12)
2.80 (1.61–4.87)

Chronic bronchitis
Chronic phlegm
Chronic cough

Simoni et al. [8] Italy (2,195, 
women, never 
smoker)

ETS Dyspnea
Shortness of breath
Wheeze
Attacks of shortness of 

breath with wheeze

1.61 (1.20–2.16)
2.81 (1.83–4.30)
1.71 (1.04–2.82)
1.85 (1.05–3.26)

Asthma 1.50 (1.09–2.08)
Any OLD 2.24 (1.40–3.58)
Cough/phlegm 1.52 (1.07–2.15)
Rhinoconjunctivitis 1.48 (1.13–1.94)

OLD, obstructive lung diseases; FEV
1
, forced expiratory volume in one second; FVC, forced vital 

capacity; RR, relative risk.
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A recent Swedish study conducted in eight primary schools confirmed a signifi-
cantly elevated risk of having diagnosis of asthma and asthma-like symptoms for a 
change of 1 mg/m3 of VOCs concentration [13]. In particular, the study reported the 
following OR: 1.97 (95% CI 1.14–3.42) for asthma, 1.85 (95% CI 1.08–3.17) for 
wheeze, 2.39 (95% CI 1.15–4.96) for daytime breathlessness, and 5.71 (95% CI 
2.04–16.02) for nocturnal breathlessness [13].

Cleaning and Washing Products

There are numerous indications that the products of indoor chemistry can impact 
both comfort and health, but the magnitude of these effects and the frequency with 
which they occur remain unclear [41]. Cleaning products constitute a common 
cause of both specific and non-specific symptoms in different sites and organs (eye, 
skin, nose, low respiratory tract, deep lung, and alveoli) [41]. Moreover, there is 
evidence that inhaled oxidant pollutants produce oxidative stress and can damage 
lipids, protein and DNA [41]. These chemical agents can constitute a respiratory 
hazard, particularly when used in poorly ventilated areas [42].

A recent study suggested that cleaning and washing products could be sources 
of UFP in an indoor environment. UFP, as described earlier, might play an impor-
tant role in the exacerbation of asthma [32].

Domestic female cleaners with a recent history of asthma and/or chronic bron-
chitis, were assessed for short-term effects on respiratory symptoms. Elevated risks 
for lower respiratory tract symptoms were associated with exposure to diluted 
bleach (OR 4.4, 95% CI 1.8–11), diluted ammonia (OR 3.0, 95% CI 1.0–9.1), 
degreasing sprays/atomizers (OR 6.9, 95% CI 2.9–1.6), gas cleaning sprays/atom-
izers (OR 2.9, 95% CI 1.3–6.4), air fresheners sprays/atomizers (OR 7.8, 95% CI 
2.6–6.4) and decalcifiers (OR 3.6, 95% CI 1.6–8.4). Moreover, these symptoms 
were more common among those doing daily cleaning >8 h [43].

Domestic cleaning work has an important health impact, not only on profes-
sional cleaners but also on those undertaking cleaning tasks in the home [42].

The maternal use of chemical-based products in the prenatal period has been 
associated with airway problems among pre-school children, in particular with the 
presence of persistent wheezing (OR 1.06, 95% CI 1.03–1.09) [44]. Moreover, 
children whose mothers had high usage of chemical products were more than twice 
as likely to have persistent wheeze, in early childhood, than children whose moth-
ers had low usage of chemical products (OR 2.30, 95% CI 1.20–4.39) [44].

Indoor Allergens

At home, in public buildings and at school the most common allergens include 
mites, pets, cockroaches, and molds.
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In a study of subjects suffering from chronic rhinitis, the proportion of etiologi-
cal allergens identifiable by the skin prick test was evaluated; 63% of the patients 
had positive reaction to dust mites, 23% to cockroaches, 14% to cats, 5% to dogs, 
and 3% to molds. Comparing the medical history of patients who were positive and 
negative to any skin prick test, the former had the onset of symptoms at an earlier 
age with a likelihood of a history of eczema and asthma [45].

House Dust Mites

Sensitization to house dust mites has been epidemiologically associated with devel-
opment of asthma (in susceptible children), and with exacerbation of asthma [46]. 
Continuous exposure to house dust mites can contribute to chronic bronchial 
hyper-reactivity [1, 47] (Table 3).

Table 3 Respiratory disorders caused by house dust mites, mold, and cockroaches exposure.

Study Country (n, sample) Exposure Health outcome

Measures

(OR (95% CI)

Miraglia et al.
[46]

Italy (1,426, children) House dust 
mites

Asthma 4.84 (2.42–9.60)

Wong et al. [47] China (608, children) House dust 
mites

Bronchial 
hyper-
responsiveness

3.67 (1.93–6.97)

Davey et al. [10] Ethiopia (7,649, general 
population)

House dust 
mites

Wheeze
Asthma

1.21 (1.00–1.51)
4.09 (2.86–5.84)

Cockroach Wheeze 1.27 (1.00–1.62)
Salam et al. [57] California (691 

children)
Cockroach Asthma 2.03 (1.03–4.02)

Silva et al. [56] Brazil (73 young 
children)

Cockroach Wheeze 7.6 (1.4–41)

Simoni et al. [59] Italy (2,016 children 
13,266 adolescents)

Mold Wheeze
Current asthma
Rhinoconjunctivitis
Eczema
Current cough/

phlegm

1.98 (1.47–2.66)
1.39 (1.00–1.93)
1.46 (1.01–2.09)
1.44 (1.09–1.91)
1.86 (1.19–2.91)

Children
Adolescents

Early wheeze
Asthma
Rhinoconjunctivitis

1.56 (1.15–2.11)
1.62 (1.00–2.62)
1.78 (1.30–2.45)

Skorge et al. [49] Norway (2,401, adults) Mold Wheezing
Cough/phlegm
Chronic cough
Dyspnea (2° grade)

2.3 (1.46–3.47)
1.7 (1.08–2.64)
2.0 (1.17–2.48)
2.3 (1.35–3.85)



396 S. Maio et al.

A study of a general population sample of Ethiopian children and adults showed 
an elevated association between dust mites exposure and asthma and wheeze in the 
past year [10] (Table 3).

Data from the European Respiratory Community Health Survey (ECRHS) have 
indicated an association between pulmonary function and house dust mites: asth-
matic subjects, sensitized to mites, had a lower FEV

1
 and FEV

1
/FVC ratio than 

non-sensitized asthmatics [48].

Pets

There is sufficient evidence of a causal relationship between pet allergen exposure 
and asthma exacerbation, but not with asthma development [1]. The recent Allergic 
Rhinitis and Its Impact on Asthma (ARIA); guideline on allergic rhinitis reports 
that cats and dogs are major allergens triggers in asthma, rhinitis or rhinoconjunc-
tivitis, and cough [24].

A Swedish study on an adult population sample showed an association between 
keeping a cat or dog, in childhood, and grade 2 dyspnea, in adulthood, as well as 
between keeping a cat, in childhood, and attacks of dyspnea, in adulthood [49] (Fig. 1). 
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Fig. 1 Respiratory disorders caused by exposure to pets.
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In contrast, other scientific evidence seems to suggest that intensive exposure to 
cats in early childhood may have a protective effect for developing asthma [50, 51] 
and prevent allergen sensitization [52], while later exposure in childhood may have 
an opposite effect [53] (Fig. 1).

This health effect can vary according to the type of pet and to the individual’s 
allergic sensitization [15]. The ECRHS study showed that atopic subjects, 
exposed to cats in childhood, have a high risk of developing wheeze and other 
asthma-like symptoms. The same effects in non-atopic subjects were due to dog 
exposure [15] (Fig. 1).

The inconsistency of findings from several studies may be partly due to different 
study design (cohort, case–control, and cross-sectional studies), type of exposure 
(early or current pet ownership and allergen concentrations), health outcome (sen-
sitization, presence of wheeze, or asthma) [54], recall, or selection bias.

Cockroaches

Exposure and sensitization to cockroach allergens have been repeatedly associated 
with the onset of asthma or exacerbation in many countries [10, 55–57] (Table 3).

A study on a sample of 2- to 4-year-old children showed that the exposure to 
cockroach allergen in the kitchen was associated with three or more wheezing 
episodes in the past 12 months [56]. In the USA, children aged 2 months to 10 
years, not previously identified as atopic, were evaluated to assess the association 
between the prevalence of positive skin test to common allergens and the pres-
ence of wheezing. Although dust mite was the most common allergen to which 
the children were sensitized, only cockroach sensitivity showed a significant cor-
relation to wheezing [58].

Molds/Dampness

Epidemiological data seem to indicate that molds play an important role as a risk 
factor for respiratory symptoms/diseases, mainly asthma exacerbation [1].

Self-reported mold exposure was associated with an increased risk of cough 
with phlegm, chronic cough, dyspnea and wheezing, in adults [49] (Table 3).

Most studies have been performed among children and adolescents. The expo-
sure to molds was associated with wheezing, asthma, rhinoconjunctivitis, eczema, 
cough, and phlegm [59] (Table 3). This association seems more evident in children 
than in adolescents, and when the exposure occurs early in life. Moreover, the 
population attributable risk % (PAR) for mold exposure was computed. Avoiding 
early mold/dampness exposure would abate wheeze by 6%, asthma or cough/
phlegm by 7% and rhinoconjunctivitis by 4%, in children; in adolescents, asthma 
would be abated by 6% and wheeze by 4% [59].
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Conclusion

The American Thoracic Society (ATS) [60] and World Health Organization (WHO) 
[61] have suggested several options for achieving acceptable indoor air quality. 
Guidelines and recommendations on indoor air quality in dwellings are also 
reported in the EFA (European Federation of Allergy and Airways Diseases 
Patients Associations) final document of the THADE (Towards Healthy Air in 
Dwellings in Europe) project [2, 62].

Despite the presence of guidelines on indoor air quality, people cannot be 
obliged to respect them, as they have the right to live in their own homes as they 
wish. But it is important that people be aware of the health risk due to indoor pol-
lution, so that they can try to reduce it.

Recommended actions toward healthy air in dwellings are: improve ventilation, 
improve cleaning methods and housing hygiene, avoid wall-to-wall carpeting, con-
trol moisture to prevent accumulation of mold, control the sources of pollution 
(e.g., tobacco smoke and emissions from building and consumer products), carry 
out education and information campaigns [2, 63–65]. Most of these prevention 
strategies are valid regardless of cultural and climatic differences.

In conclusion, recent epidemiological studies have clearly shown that indoor 
pollution largely affects respiratory health worldwide and that preventative public 
health programs should be implemented. More research is needed about the long-
term effects of indoor environments, to elucidate the mechanisms by which pollut-
ants induce damage in exposed subjects, and on the cost-effectiveness of 
preventative and remedial measures related to indoor air quality.
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Impact of Tobacco Smoke on Asthma 
and Allergic Disease

Eric Livingston and Neil C. Thomson

The prevalence of asthma and other atopic diseases are rising. Genetic factors are 
unable to explain the increase in prevalence over the last few decades. It seems very 
likely that there is a strong environmental influence on the expression of allergic 
diseases [1]. These exposures may occur in childhood or adult life but environmen-
tal exposure during pregnancy may also dictate patterns of disease in later life. The 
risk factors that might have contributed to this increase include active and passive 
tobacco smoking, which are on the rise in certain age groups and in females. 
Allergic conditions share numerous characteristics including the production of IgE 
antibodies in response to allergens, an impaired balance between cytokines of the 
Th1 and Th2 lymphocytes, a positive family history of atopic diseases and some-
times the expression of several atopic conditions [1]. In this chapter, the effect of 
exposure to environmental tobacco smoke (ETS) and active smoking on the devel-
opment and clinical manifestations of asthma and other allergic conditions will be 
reviewed.

Cigarette Smoking

Cigarette smoking is common in the general population, but the prevalence varies 
between countries. The World Health Organisation has estimated that there are 1.25 
billion smokers worldwide, with approximately two-thirds living in developing coun-
tries. Prevalence figures for the USA in 2005 show rates of 23.9% in men and 18.1% in 
women [2]. In the UK, the prevalence rates in 2001 were reported as 28% in men and 
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26% in women [3]. In both the USA and UK, the prevalence in smoking has reduced 
since the 1970s [3, 4]. In the UK, however, the rate of decline slowed until it levelled 
out between 27% and 28% in the 1990s [3]. Prevalence rates of smoking are higher in 
countries with lower incomes, and among young adults, especially females [5].

When a cigarette is smoked, two types of cigarette smoke are produced. Smokers 
inhale mainstream cigarette smoke. When they are not inhaling, the smouldering 
end of the cigarette produces sidestream cigarette smoke [6]. ETS consists mainly 
of sidestream smoke with the addition of a smaller amount of mainstream exhaled 
smoke. Over 4,000 individual chemicals are found in tobacco smoke [7] although 
the biological activities of only a few hundred are known. Many of the constituents 
are carcinogens, of which some affect development of reproductive organs and others 
are neurotoxic [8]. Mainstream cigarette smoke differs both quantitatively and 
qualitatively from sidestream smoke. Some combustion products are enriched in 
sidestream smoke, however dilution by room air reduces markedly the concentrations 
that are subsequently inhaled [8].

Smoking and Airway Inflammation

A fundamental component of the pathophysiology of asthma is airway inflammation 
[9–11]. Increased inflammatory cells are seen within the central and peripheral 
airways [12, 13] as well as within the lung parenchyma [14]. Inflammation is 
present even in those with mild disease [15, 16], those with relatively few symptoms 
[17] and in newly diagnosed asthma [15]. Many cell types have been implicated in 
asthmatic inflammation, particularly eosinophils [18, 19], T lymphocytes [20, 21] 
and mast cells [22], but neutrophils and macrophages may also play a role [23].

Inflammation associated with asthma may be modified by cigarette smoking. 
However, there is limited data on the influence of active smoking on airway pathology. 
In non-asthmatic smokers without airflow obstruction, cigarette smoking induces airway 
inflammation [24–27], with increases in T-lymphocytes and macrophages within the 
airway wall and higher neutrophil numbers within the bronchial secretions. Eosinophil 
counts in induced sputum from heavy smokers with mild asthma are lower compared 
with non-smokers with mild asthma [28], although some studies have reported similar 
counts to those found in non-smokers with asthma [29–31]. The reason for the reduced 
counts is unknown, but could be explained by the exogenous nitric oxide in cigarette 
smoke increasing the apoptosis of activated eosinophils. Nicotine within tobacco 
smoke may have immunomodulatory effects on eosinophil function by inhibiting the 
release of proinflammatory cytokines from macrophages [32].

Reduced numbers of CD38 + ve mature dendritic cells and B lymphocytes have 
been found in bronchial biopsies from smokers with asthma compared to never 
smokers with asthma, although similar numbers of Langerhan’s cells have been 
found [33]. It has been speculated that an increase in the frequency of lower respiratory 
tract infections in asthmatic smokers may be a result of fewer dendritic cells and B 
lymphocytes in the bronchial mucosa with a resultant reduced Th-1 immunity [33]. 
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It has been suggested that smoking induces bronchial immune modulation at least 
in occupational asthma as smokers with occupational non-atopic asthma having 
reduced bronchial CD4 + T cell density and eosinophil numbers compared to non-
smokers with occupational asthma [34]. The airway longitudinal elastic fibre net-
work is increased in specimens obtained from smokers compared to non-smokers 
dying from causes other than asthma [35], suggesting that airway remodelling may 
be more severe in smokers with asthma. Smokers with asthma have an increase in 
the expression of arginase I in the airway epithelium and smooth muscle, which 
may explain the low levels of F

E
NO [36].

The effect of smoking cessation on airway inflammation in healthy smokers 
shows a dose-dependent relationship between smoking and airway inflammation 
[37]. In contrast to this, there was minimal change in airway inflammation in 
patients with chronic obstructive pulmonary disease after smoking cessation 
[38–40]. Recently, a study in asthmatic smokers have shown that smoking cessation 
was associated with a fall in neutrophil count in induced sputum at 6 weeks [41].

Active cigarette smoking also alters the cytokines and mediators in asthmatic 
subjects. Sputum interleukin (IL)-8 levels are increased in asthmatic smokers and the 
concentrations are positively correlated with smoking history in pack years and nega-
tively correlated with forced expiratory volume in 1 second (FEV

1
) % predicted [28]. 

This would suggest indirect evidence for an association between smoking, airway 
inflammation and reduced lung function in asthmatic smokers. IL-18 is a cytokine 
that is involved in the development of Th-1 lymphocyte responses and is thought to 
have a regulatory role in asthma by inhibiting Th-2 lymphocyte responses. Smoking 
is associated with a significant reduction in sputum IL-18 levels in both normal and 
asthmatic subjects compared with non-smokers, with the effect being more pro-
nounced in asthmatics than in normal subjects [42]. IL-18 mRNA expression was 
reduced in asthmatic smokers compared with non-smokers. These results suggest that 
cigarette smoking may in part, by altering the balance of Th-1/Th-2 cytokine secre-
tion, modify airway inflammation.

The combined inflammatory effects of asthma and cigarette smoking are likely 
to contribute to the airway pathology of smokers with asthma.

Active Smoking and Asthma

Causal Effect of Active Smoking on Development of Asthma

Active cigarette smoking has been associated with the development of asthma in some 
but not all studies. Little information is available on the effect of smoking in childhood. 
In asymptomatic teenagers, the development of asthma-like symptoms over a 6-year 
period was independently associated with active tobacco smoking with an odds ratio 
(OR) (95% CI) of 2.1 (1.2 to 3.8) as well as atopy and bronchial hyperresponsiveness 
to methacholine [43]. However, a cross-sectional study carried out in Hong Kong 
schoolchildren aged 12–15 years found no association between active smoking and 
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physician-diagnosed asthma. The prevalence of asthma was 8.6% among children who 
reported smoking six or more cigarettes per week compared with 8.1% among 
children who had never smoked giving an OR (95% CI) of 1.18 (0.76–1.83) [44]. 
In adults, studies have shown that active smoking is associated with an increased inci-
dence of adult-onset asthma in females but not in males [45]. Smoking has also been 
shown to be strongly associated with the development of asthma in non-atopic indi-
viduals [46] and a risk factor for the development of asthma in older adults [47].

Effect of Active Smoking on Established Asthma

Active smoking in asthma is common with the prevalence of smoking in the 
asthma population being between 17% and 35% [47–54]. Adults presenting to the 
hospital emergency departments with acute asthma had the highest rates [50]. 
A further 22% to 43% of asthmatics are former smokers [48, 49].

Smokers with asthma tend to have more severe respiratory symptoms such as 
cough, wheeze and dyspnoea compared to non-smoking asthmatics [29, 31, 51]. 
Global asthma-specific quality of life scores are similar in smokers and non-smokers, 
although specific domains for breathlessness and mood are worse in smokers [51]. 
Indices of asthma severity are higher in smokers with asthma [49]. Admission rates to 
hospital for asthma and hospital-based care are increased in smokers [51, 55], although 
this may not be the case in younger adults [43]. There is some conflicting evidence as 
to whether current smoking is a risk factor for fatal or near-fatal asthma [43, 56–58]. 
However, the 6-year mortality rate is higher for smokers than non-smokers following 
a near fatal asthma attack, with an age-adjusted OR (95% CI) of 3.6 (2–6.2) [59].

Active smoking causes an accelerated decline in lung function in asthmatic 
smokers [60–62]. This effect of smoking is additive to the decline in lung function 
already seen in asthmatic subjects. The Copenhagen City Heart Study included 
longitudinal measurement of FEV

1
 over a 15-year period, and found that the aver-

age decline in FEV
1
 was greater in asthmatic smokers than non-smokers [60]. A 

further study of 4,000 adults initially aged between 18 and 30 years, which was 
followed-up over 10 years, showed that the combination of asthma and smoking 15 
cigarettes per day had a synergistic effect on the decline in lung function [54].

Smoking and Asthma Therapy

It has been known for many years that smoking was a major cause of altered drug 
interactions [63]. Smoking has been shown to alter the pharmacokinetic and phar-
macodynamic properties of many drugs although the clinical significance of most 
of these interactions is not clear. The mechanism involved in most interactions 
between cigarette smoking and drugs is through the induction of several drug-
metabolising enzymes [4]. Smoking alters the effects of drugs used in a variety of 
conditions, including asthma [64].
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Corticosteroids are the most effective medication available for the treatment of 
asthma and international guidelines emphasise the importance of inhaled corticos-
teroids in the management of the disease [65]. Until recently, there has been little 
information on the effect of cigarette smoking on the response to asthma therapy as 
most studies have excluded asthmatics who smoke. Several studies now have sug-
gested that the efficacy of both inhaled and oral corticosteroids is reduced in asth-
matics who are active cigarette smokers [30, 66–69].

The first observation that smoking had an effect on the response to corticoster-
oids was made during a study investigating the long-term effects of inhaled corti-
costeroid therapy for asthma on selected blood markers of asthmatic inflammation 
[68]. Subsequent analysis of the results suggested an adverse effect of smoking on 
the response to inhaled corticosteroids, with the smoking group having no effect of 
low- or higher-dose budesonide on FEV

1
, histamine provocative concentration 

causing a 20% drop in FEV
1
 (PC20) or rescue medication use. However, this study 

was not placebo-controlled and the effect of smoking on the response to inhaled 
corticosteroid was an incidental finding and not the main aim of the study. Despite 
the study being long (9 months duration), there was no data available on asthma 
exacerbation rates; however, it did raise an important question regarding the effect 
of smoking on corticosteroid responsiveness.

The first randomised, controlled trial looking at this effect of smoking on the 
response to inhaled corticosteroids showed that asthmatic smokers had a reduced 
response compared with non-smoking asthmatics [67]. In this study using flutica-
sone propionate 1000 mg daily or placebo for 3 weeks, the asthmatic non-smokers 
showed a significant improvement in morning peak expiratory flow (PEF) (Fig. 1), 

Fig. 1 Mean (95% CI) peak expiratory flow (l/min) in non-smoking and smoking asthmatic 
patients following treatment with inhaled placebo or fluticasone propionate 1000 μg per day. *p = 0.016, 
greater than non-smokers after placebo; **p = 0.001, greater than smokers after fluticasone. 
Reproduced with permission from Ref. [67]
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FEV
1
, bronchial hyperreactivity and sputum eosinophil count, while no significant 

changes in these measurements were found in the smoking asthmatic group.
A further randomised double-blind, parallel study assessed the effect of inhaled 

corticosteroids in smoking and never-smoking asthmatics over a 12-week period 
[69]. They assessed the effect of low- and high-dose beclometasone on 95 asthmat-
ics. After 12 weeks of inhaled therapy, there was a considerable difference between 
the mean morning PEF measurements and numbers of exacerbations of smokers 
and never-smokers with asthma. The differences however were less marked in those 
receiving high-dose beclometasone. A large study of 83 asthmatics carried out in 
the USA using inhaled beclometasone for 8 weeks has confirmed a lack of respon-
siveness in a number of parameters in asthmatic smokers [30] (Fig. 2).

Even the efficacy of short-term oral corticosteroids is reduced in cigarette smokers 
with chronic stable asthma [66]. In this randomised, placebo-controlled cross-over 
study, the effect of oral prednisolone 40 mg daily or placebo for 2 weeks was studied 
in 50 asthmatic patients (smokers, never-smokers and former smokers). There were 
significant improvements in FEV

1
, morning PEF and asthma control score after oral 

Fig. 2 Effect of 8 weeks of double-blind treatment on a FEV
1
 and b PEF. Solid bars, nonsmokers; 

open bar, smokers. Reproduced with permission from Ref. [30]
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prednisolone compared with placebo in the non-smokers but no change in the 
smokers (Fig. 3). Of interest, the former smokers had significant improvements in 
morning and night-time PEF, suggesting that the effect of smoking in asthma may 
be partially reversible.

The mechanisms behind the reduced responsiveness to corticosteroids in asthma 
is not fully known [70], but may include one or more of the pathways implicated in 
asthmatic non-smokers and other inflammatory conditions including inflammatory 
bowel disease and rheumatoid arthritis [71–75] (Fig. 4). Despite cigarette smoke-
inducing enzymes involved in the metabolism various drugs, the metabolism of 
prednisolone, prednisone or dexamethasone is not affected by smoking [76]. 

Fig. 3 Mean difference (95% confidence interval) after placebo (closed circles) and after pred-
nisolone (open circles) in smokers with asthma, ex-smokers with asthma, and never-smokers with 
asthma for a change in FEV

1
, L and b asthma control score. A reduction in the score implies an 

improvement in asthma control. Reproduced with permission from Ref. [66]
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Fig. 4 The anti-inflammatory effects of corticosteroids are mediated by activation of cytoplasmic 
glucocorticoid receptors (grs) that act as ligand-activated transcription factors, which translocate 
into the nucleus to suppress or induce glucocorticoid target genes. GR-α acts by directly binding 
to DNA sequences (transactivation) or by interacting with pro-inflammatory transcription factors 
(transrepression). GR-β, which does not bind ligand, is predominately located in the nucleus and 
cannot transactivate glucocorticoid-sensitive genes. Potential pathways and mechanisms of corti-
costeroid resistance in asthmatic smokers include the following: (1) corticosteroid pharmacokinet-
ics, e.g. Increased airway mucosal permeability, increased bronchial secretions; (2) corticosteroid 
and β2-adrenergic receptor (β2AR) interactions, e.g. Down-regulation of b2ar function; 
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As mentioned above, cigarette smoke alters the number and function of airway 
inflammatory cells [77, 78], with some smokers with asthma having a reduced 
sputum eosinophil count and/or an elevated sputum neutrophil count. A reduction 
in sputum eosinophils or an elevation in airway neutrophils may be associated with 
a poor (but not absent) response to corticosteroids [79]. Corticosteroids require 
histone deacetylase (HDAC) activity for maximal suppression of cytokine induction 
[80]. It has been shown that oxidative stress in smokers results in reduced HDAC2 
activity, resulting in the potential for increased inflammatory gene expression [81] 
and reduced sensitivity to corticosteroids. There are two naturally occurring gluco-
corticoid receptor (GCR) isoforms: GCR-α (the functional GCR) and GCR-β 
(not ligand binding), which result from alternative splicing of exon 9 of the GCR 
gene [82]. It has been suggested that corticosteroid resistance is associated with an 
overexpression of GCRβ [83–85], a reduction in GCR-α numbers [86] or a reduction 
in the GCRα:GCRβ ratio [85, 87]. The expression of GCR-β is increased following 
exposure to pro-inflammatory cytokines and mediators such as IL-2 [84], IL-4 [84], 
IL-8 [88] and TNF-α [89], which are increased on exposure to cigarette smoke. 
Smoking-induced alterations in cytokine expression may alter the GCR binding 
affinity, thus altering response to corticosteroids. Corticosteroid-resistant asthmatic 
patients have a reversible defect in peripheral blood mononuclear cell GCR binding 
affinity, which may be sustained in vitro by the combination of IL-2 and IL-4 [90].

A recent study has examined the effect of the oral leukotriene receptor antago-
nist montelukast in asthmatic smokers [30]. Montelukast produced a statistically 
significant increase in morning PEF and a decrease in PEF variability in smokers 
with asthma. These changes were significantly greater than its effects seen in non-
smokers (Fig. 2). The authors explained this finding by enhanced leukotriene syn-
thesis or sensitivity in smokers [30]. Smoking has been found to increase urinary 
leukotriene E

4
 (LTE

4
) in patients with asthma, but not in normal subjects or patients 

with chronic obstructive pulmonary disorder (COPD) [91]. Urinary LTE
4
 excretion 

is closely correlated with the number of cigarettes smoked per day and urinary LTE
4
 

levels increase significantly in non-smokers who smoke 6 cigarettes in 12 hours 
[92]. It has been postulated that asthmatic smokers may have chronically elevated 
leukotriene levels that may render them responsive to treatment with leukotriene 
receptor antagonists such as montelukast [30].

The effect of smoking on theophyllines is well known. Smoking has been shown 
to cause a 58–100% increase in theophylline clearance, resulting in an almost two-fold 

Fig. 4  (continued) (3) inflammatory cell phenotypes, e.g., increased airway neutrophil or CD8z 
lymphocyte numbers, reduced airway eosinophil numbers; (4) cytokine and mediators levels, e.g., 
increased production of interleukin (IL)-4, IL-8, tumour necrosis factor-α, decreased production 
of IL-10, increased nitrosative stress; (5) grs, e.g., overexpression of GR-β, reduced expres-
sion of GR-α; (6) pro-inflammatory transcription factor activation, e.g. Nuclear factor-kb (NF-
kb), activator protein-1, signal transduction-activated factor; and (7) corticosteroid cell-signalling 
systems, e.g. Reduced histone deacetylase activity (HDAC), increased p38 mitogen-activated 
protein kinase activity. HAT: histone acetyltransferase. Reproduced with permission from Ref. [5]
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decrease in half-life compared with non-smokers [93, 94]. Problems can be encountered 
upon cessation of smoking, as within 7 days of stopping smoking, the clearance of 
theophylline falls by 35% [95].

With both national and international guidelines advocating the use of inhaled 
corticosteroids as the mainstay of asthma management, in view of the studies men-
tioned above, should corticosteroids still be used in asthmatic patients? The studies 
have assessed the effect of corticosteroids on lung function and symptoms, but 
corticosteroids may influence other important outcomes such as exacerbation rates 
or rate in decline of lung function [96]. Results from observational studies suggest 
that a decrease in lung function induced by smoking in asthma may be reduced by 
inhaled corticosteroids [97, 98], although this effect appears to be lost in heavy 
smokers [98]. The recent data on the benefits of montelukast in smokers with mild 
asthma is interesting [30], although the beneficial effects on morning PEF was not 
large. It is not known whether a similar effect would be seen in asthmatics with 
more severe disease. More research into drug treatment of smokers with asthma is 
undoubtedly warranted.

One important factor in the management of smokers with asthma is smoking 
cessation advice. In a recent study, former smokers gained considerable short-term 
improvement in lung function and a decline in sputum neutrophil count compared 
with those who continued to smoke [41] (Fig. 5). Smoking cessation is also associated 
with improved asthma control [41, 99].

Fig. 5 Mean (95% confidence interval) difference between quitters and control smokers in change 
in FEV

1
 (ml) compared with baseline. Reproduced with permission from Ref. [41]
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Environmental Tobacco Smoke and Asthma

ETS exposure can be assessed by a variety of methods. Questionnaires are 
fairly reliable but can be influenced recall bias. More objective means of 
assessing ETS exposure include cotinine measurements in the urine, serum and 
saliva or nicotine in hair or nicotine badges [100–102]. Exposure to ETS in the 
general population is high with the majority of exposure in homes and work-
places with a lesser extent in public places such as bars and restaurants [103], 
although this will reduce as bans on smoking in public places come into effect 
in increasing numbers of different countries. In the USA, the National Health 
and Nutrition Examination Survey in 2001–2002 reported that 43% of the non-
smoking general public was exposed to ETS on a regular basis [104]. Parents 
have been responsible for 90% of a child’s exposure to ETS and exposure is 
higher in lower income households [103, 105] and those with low education 
levels [103, 105, 106].

In asthmatics, there is less information on exposure to ETS. Data does however 
suggest significant exposure levels. Studies have indicated that between 17% and 
80% of non-smoking asthmatics are exposed to ETS [100, 105, 107–109], with 
those being admitted to hospital with acute asthma having higher rates of 
exposure.

Causal Effect of ETS on Development of Asthma

Children

In the 2006 Surgeon General’s Report on the Health Consequences of Involuntary 
Exposure to Tobacco Smoke, a systematic review of 41 relevant studies concluded 
that there was sufficient evidence to infer a causal relationship between parental 
smoking and ever having asthma among children of school age with an OR (95% CI) 
of 1.23 (1.14–1.33) [103]. Other meta-analyses have shown similar ORs 
[110–113]. Results from several studies not included in the Surgeon General’s 
report indicate that the strongest effect of ETS on the induction of asthma occurs 
in utero and during early life [114, 115]. A large UK study of 11,562 children 
between the ages of 4 and 6 years found that a larger number of active smokers in 
the home increased the likelihood of a child having wheezed in the last year with 
an OR (95% CI) of 1.2 (1.0–1.4) for one smoker and an OR (95% CI) of 1.4 
(1.2–1.4) for two smokers [116]. Based on these findings, the authors suggested 
that assuming a causal relationship, 8% of asthma in children aged 4–6 years could 
be attributable to ETS at home [116]. Smoking during pregnancy has been shown 
in a case–control study to increase the risk of asthma in the first 5 years of life with 
an OR (95% CI) of 1.6 (1.0–2.6) [117]. In the same study, mothers who stopped 
smoking before becoming pregnant were no longer at risk of the child developing 
asthma with an OR (95% CI) of 0.9 (0.5–1.5) [117].
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Adults

There appears to be conflicting evidence as to whether exposure to ETS causes the 
development of asthma. The 2006 Surgeon General’s Report concluded from 14 studies 
between 1988 and 2001 that evidence is suggestive but not sufficient to infer a causal 
relationship between exposure to ETS an development of asthma in adult life [103]. 
A further systematic review including studies between 1993 and 2004 concluded that 
there was sufficient evidence to support a causal relationship between ETS exposure 
and development of asthma in adolescents and adults [113]. Childhood exposure to 
ETS has interestingly been shown to be associated with an increased risk of developing 
asthma as an adult [118]. A Norwegian study of 15- to 70-year-old individuals over 
an 11-year period reported an increased risk of developing asthma if the mother 
smoked during childhood with an OR (95% CI) of 1.9 (1.6–3.2) [118].

Effect of ETS on Established Asthma

As with active cigarette smoking, exposure to ETS has been shown to have a number 
of adverse effects on asthma control and severity in children. In children with asthma, 
ETS exposure results in increased asthma symptom scores, exacerbation frequency, 
use of reliever medication, hospitalisation rates and number of life-threatening attacks 
[112]. In adults, the effect of ETS is still controversial. The Surgeon General’s Report 
in 2006 was suggestive but not sufficient to infer a causal effect between exposure to 
ETS and worsening asthma control [103]. However, another review of seven studies 
published between 1998 and 2002 concluded there was evidence to consider that ETS 
exposure is causally associated with exacerbations of asthma [113].

A recent study from Tayside, Scotland, looked at the effect of the ban of smoking 
cessation in public places on airway inflammation and quality of life in bar workers. 
Asthmatic bar workers had less airway inflammation with a reduction in exhaled 
nitric oxide from 34.3 ppb to 27.4 ppb 1 month after the ban (0.8-fold change; 95% 
CI, 0.67–0.96 ppb; P =.04), and Juniper quality-of-life scores increased from 80.2 to 
87.5 points (7.3 points; 95% CI, 0.1 to 14.6 points; P =.049) [119].

A clinical trial in children with mild persistent to severe asthma that compared 
the administration of drug treatment either at school or away from school con-
cluded that ETS is associated with reduced therapeutic response to inhaled corti-
costeroids. Improvements in the number of symptom-free days, need for rescue 
medication and quality of life score were evident among children who were not 
exposed to ETS, but not amongst the children exposed to ETS at home, although 
this was identified in a post hoc analysis [120].

ETS and Asthma Therapy

Very little information is available on the effect of ETS on asthma therapy. Some 
evidence is available on the effect of ETS on theophylline metabolism. Increased 
clearance of theophylline has been reported in patients chronically exposed to ETS 
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[121], although acute exposure to ETS has been shown to have no effect on 
theophylline clearance [122].

Smoking and Other Allergic Diseases

While total IgE is known to have a strong genetic component, it has been suggested 
that total IgE might also be influenced by the environment. A number of epidemio-
logical studies have shown that cigarette smoking is associated with elevated con-
centrations of total serum IgE [123–126]. Studies looking at the effect of ETS on 
IgE levels are conflicting. Some studies report significant relationship between ETS 
exposure and increased total IgE levels [127, 128] but other studies have been 
unable to show this relationship [129] or only been able to show the effect in a small 
subgroup [124].

Different hypotheses have been proposed to explain the relationship of smoking 
to IgE [124]. These include a direct effect on IgE regulation at the cellular level 
and an indirect action, which may lead to an increased airway permeability of 
airways to allergens [130]. IgE is controlled by the Th-2 interleukin IL-4, which 
has been shown to be elevated by cigarette smoking [131]. The permeability of 
bronchial epithelium is increased in smokers [132], thus facilitating penetration by 
small aeroallergens that may in turn sensitise the subject and stimulate IgE 
production.

Studies on the effects of smoking (both active smoking and exposure to ETS) in 
allergic disease have mainly focussed on the effects on asthma. There is however 
some, but limited, data on the effect of smoking on some of the other allergic dis-
eases including atopic eczema, allergic rhinitis and food allergy. The studies mainly 
look at the effect of maternal smoking in the development of the disease; however, 
the effect of active smoking on the development of allergic rhinitis has also been 
studied.

Active Smoking and Non-Asthmatic Allergic Disease

Other than the effect of active smoking on asthma, the data is limited. A large 
French study of over 15,000 adolescents found that active smoking was associated 
with an increase risk of having current rhinoconjunctivitis OR (95% CI) 2.1 
(1.5–2.0), lifetime hay fever OR (95% CI) 1.5 (1.1–2.2) and current eczema OR 
(95% CI) 1.8 (1.2–2.7) even after controlling for passive smoking [133] (Fig. 6). 
Previous observational studies have indicated that both allergic rhinitis and eczema 
are more commonly reported by current smokers among adolescents [134] and by 
former smokers among adults [135, 136]. In a large Swedish postal questionnaire 
survey, smoking was an independent risk factor for the development of hand 
eczema with an OR (95% CI) of 1.35 (1.04–1.75) [137]. However, a large Swiss 
study of over 8,000 subjects showed significantly higher prevalences of atopy and 
hay fever in non-smokers compared to smokers [138].
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Fig. 6 Relationships of active and passive smoking to asthma and allied diseases in adolescents 
after adjustment for potential confounding factors in France. Figures are odds ratio (OR) obtained 
with logistic models. The model predicting factors associated with passive smoking was adjusted 
for age, sex, region, active smoking (and familial history of allergy when appropriate) whereas the 
model predicting factors associated with active smoking was adjusted for age, sex, region, passive 
smoking (and familial history of allergy when appropriate), respectively. CA, current asthma; LA, 
lifetime asthma; CR, current rhinoconjonctivitis; LHF, lifetime hay fever; CE, current eczema. 
Reproduced with permission from Ref. [133]
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There is limited data on the effect of active smoking on the symptoms and severity 
of the other non-asthmatic allergic diseases mentioned above. One study did find 
that active smoking was highly associated not only with severe asthma but also with 
severe rhinoconjunctivitis [133]. Another study has concluded that active smoking 
can lead to exacerbations of eczema [139].

Environmental Tobacco Smoke and Non-Asthmatic 
Allergic Disease

Data are available on the effect of ETS on the development of allergic diseases 
other than asthma. This includes the effect of in utero exposure to cigarette smoke. 
Exposure to ETS has been associated with the development of atopic eczema [140, 141], 
allergic rhinitis [133] and food allergy [141–143].

A prospective observational study of 342 children in Germany showed that at 3 
years, children who were exposed to ETS in utero and postnatally had a signifi-
cantly higher risk of sensitisation to food allergens with an OR (95% CI) of 2.3 
(1.1–4.6) [142]. Interestingly, children who were only postnatally exposed by a 
smoking mother also had an increased risk with an OR (95% CI) of 2.2 (0.9–5.9), 
although this was not statistically significant. A further study of 678 German pre-
school children found that maternal smoking during pregnancy or lactation was 
associated with an increased risk of atopic eczema, with an OR (95% CI) of 2.3 
(1.3–3.1) [140]. Earlier studies have associated smoking during pregnancy to 

Fig. 7 Interaction of active cigarette smoking and asthma. Reproduced with permission from Ref. 
[70]



418 E. Livingston and N.C. Thomson

alterations in the child’s skin [144]. The cumulative incidence during the first 5 
years of life for hospitalisation for diseases of the skin was 22.5/1000 live births in 
the group of mothers who smoked during pregnancy (n = 1,821) and 8.2/1000 in 
the non-smoker group (n = 1,823; p < 0.0001). Eczema and urticaria were observed 
4.7 times more often in the smoker group [145].

Little is known about the effect of smoking on the therapeutics of these other 
allergic diseases. Corticosteroids remain the mainstay of treatment. It is likely that 
the altered response to corticosteroids in cigarette smokers is a systemic effect [31] 
and so it is possible that the systemic effects of treatment may also be impaired in 
smoking subjects. Further work in this area is required.

In conclusion, allergic disease is increasing and although there is a strong 
genetic predisposition, environmental factors, including smoking, may be respon-
sible for this increase. Good evidence is available for the detrimental effects of 
smoking on asthma morbidity and mortality [70] (Fig. 7). Reduced response to oral 
and inhaled corticosteroids is now well demonstrated, however, recent evidence 
suggests that this reduced responsiveness may be reversible on cessation of smoking 
[41]. Smoking cessation must therefore be an integral part of our management of 
these difficult patients.
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Socioeconomic Status and Asthma in Children

Social factors have long been suggested to contribute to childhood asthma, and 
recently research has begun to provide some intriguing empirical evidence to 
support this hypothesis. Characteristics of a child’s larger social environment, 
including neighborhoods with high levels of violence, occurrences of acute and 
chronic stress, and negative family environments have all been linked to asthma 
onset or morbidity in children [1–3]. These findings suggest that in addition to 
traditional risk factors such as genetics and environmental exposures, the social 
environment maybe an important component to a fuller understanding of asthma 
pathogenesis. For a graphical representation of how social contributors interact to 
shape asthma, see Fig. 1.

One broad social environment factor that maybe important to childhood asthma 
is socioeconomic status (SES). SES refers to a family’s position within a larger 
social hierarchy, and can be defined in terms of prestige (e.g., parent’s education or 
occupation) as well as resources (e.g., family income or assets) [4]. Across all 
social factors, SES exhibits one of the most robust and consistent associations with 
physical health outcomes. Individuals from lower SES families have poorer health 
than individuals from higher SES families. This relationship holds true across a 
variety of diseases, across many different countries, and throughout the life span [5, 6]. 
Despite this striking pattern, the relationship of SES with childhood asthma remains 
unclear. Asthma is one of the few diseases for which evidence of a reverse gradient 
(higher SES being associated with greater disease prevalence) has been presented. 
Thus the aims of the present chapter are to review evidence regarding the direction 
of association of SES with childhood asthma and to discuss plausible pathways 
between SES and asthma.
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Epidemiological Evidence for SES and Asthma Associations

In this chapter, we focus on childhood asthma and elaborate primarily on more 
recent articles discussing SES and asthma. We refer the reader to a previous review 
that discusses articles prior to 2000 in greater depth [6]. With respect to types of 
asthma outcomes, one important distinction is between morbidity outcomes in 
children with existing asthma versus the diagnosis of asthma found in community 
samples. Because the relationship of each with SES could differ, we present find-
ings separately for these outcomes.

Asthma Morbidity

Across numerous studies, there is quite consistent evidence that lower SES 
increases risk for poor asthma outcomes among those who are already diagnosed 
with asthma. For example, poor children with asthma and children from lower 

Fig. 1 Numerous social contributors interact to shape asthma
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income families are significantly more likely to be hospitalized for asthma, have 
greater asthma symptoms, and have more severe asthma episodes compared to 
nonpoor/higher income children with asthma [7–9]. Fewer years of parent educa-
tion also have been associated with greater risk of asthma hospitalizations and 
emergency department visits in children with asthma [10,11]. Longitudinal studies 
show similar patterns. For example over a 6-year follow-up period, children whose 
fathers had less prestigious occupations were more likely to be hospitalized due to 
asthma compared to those whose fathers had more prestigious occupations [12]. 
At the neighborhood level, neighborhoods with lower income levels and higher 
unemployment rates have been found to have higher rates of pediatric asthma 
hospitalizations [13–15]. Finally, some studies utilize population-based survey 
designs but include questions related to asthma morbidity (even though only a small 
proportion of children in the survey have asthma). These studies show that lower 
SES (as indicated by either parental education or neighborhood characteristics) 
is associated with greater risk of asthma emergency department visits, asthma 
hospitalizations, and more severe asthma in children [16,17]. Finally, the above 
studies are consistent with earlier studies that documented associations between 
low SES and greater morbidity and severity of asthma [6].

Asthma Prevalence

Although the patterns are not as consistent, there are a number of studies that docu-
ment that low SES is associated with an increased prevalence of asthma. For example, 
children whose parents have fewer years of education are more likely to have a 
physician diagnosis of asthma [17]. Children from poorer families are also more 
likely to have a diagnosis of asthma [7,9]. At the neighborhood level, children who 
live in inner city or low-income neighborhoods are more likely to have current 
asthma [14, 16, 18, 19]. Because many of these studies rely on parents to report 
diagnoses or symptoms, some studies have taken the approach of utilizing more 
objective measures of lung function. One such study found that lower parental 
occupation was associated with a greater likelihood of exercise induced bronchos-
pasm in school children [20]. Finally, our previous review documented that among 
earlier studies on SES and asthma prevalence, associations of low SES with higher 
prevalence rates of asthma were more likely in cohorts of children aged 9 years and 
younger [6].

In contrast, several studies have found no evidence for an association between 
SES and asthma prevalence. For example, neighborhood income showed null or 
weak associations with childhood asthma prevalence rates in two studies [21, 22]. 
Occasionally, studies have found higher SES groups to be more likely to have 
asthma, for example finding that school children who were not eligible for a federal 
free lunch program had higher rates of asthma than those who were eligible 
[23]. Earlier studies suggesting a reverse gradient typically focused on occupational 
status, finding that parents in nonmanual occupations were more likely to have a 
child with asthma than those in manual occupations [24].
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Overall, these studies suggest that the relationship between SES and asthma 
prevalence is much more mixed than relationships with asthma morbidity. One 
reason why this maybe is that there may be two distinct groups who are more likely 
to have a diagnosis of asthma. One would be the same group that is more likely to 
have adverse asthma outcomes; that is, low SES children, by virtue of being more 
likely to suffer from severe asthma, are also more likely to have a diagnosis of 
asthma. A second group maybe more likely to detect symptoms and seek treatment 
for their children, resulting in physician diagnoses of asthma. In this case, higher 
SES parents maybe more vigilant about monitoring symptoms, which may result in 
their children being more likely to be diagnosed with asthma, although in many 
cases, the asthma may be quite mild. Thus when prevalence (presence or absence 
of asthma) is the focus of study, both low and high SES groups may appear at risk; 
however, when considering severity, only low SES children are at risk. If true, the 
mixed patterns with respect to prevalence could be due to differences in the range 
of SES sampled in a particular study, leading to negative relationships in some stud-
ies, positive relationships in other studies, and perhaps no linear relationships in 
studies that span the entire SES spectrum.

Given these patterns, we focus the remainder of the chapter on explaining how 
SES might affect outcomes among those who have already been diagnosed with 
asthma. We first discuss possible biological pathways by which SES could get “under 
the skin” to affect clinical outcomes in a child with asthma, and then we address 
environmental and behavioral pathways that could affect these biological processes.

Effects of SES on Biological Processes

Asthma is an inflammatory disease of the airways, and certain cytokines have been 
hypothesized to be important for the orchestration of cellular events related to airway 
inflammation and hyperresponsiveness [25, 26]. These cytokines are produced by 
T helper (Th) cells, often in response to an external stimulus such as allergen exposure. 
Th cells have two phenotypes known as Th-1 and Th-2. Th-1 cells generally initiate 
and coordinate cellular immune responses by deploying cytokines such as IL-2 and 
IFN-γ. By contrast, Th-2 cells promote B cell proliferation and differentiation, which 
leads to a humoral response involving antibody synthesis. Th-2 cells release 
cytokines such as IL-4, IL-5, and IL-13. Th-2 cells have been implicated in asthma. 
For example, secretion of IL-4 and IL-13 induces B cells to produce IgE antibodies, 
which initiates an inflammatory cascade, leading to airway constriction and mucus 
production [27]. In addition, secretion of IL-5 has been found to increase eosinophil 
production, which also promotes airway inflammation and obstruction [28, 29].

Our research group has investigated whether SES is associated with cytokine 
production in two studies of children and adolescents diagnosed with asthma. In the 
first study, adolescents diagnosed with persistent asthma were recruited from either 
low-SES or high-SES neighborhoods (based on the percentage of people living 
below poverty in each neighborhood). Peripheral blood was drawn, and cells were 
stimulated with a combination of phorbol myristate acetate and ionomycin to 
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induce the production of cytokines. Adolescents with asthma from low-SES 
neighborhoods displayed significantly greater production of IL-5, and marginally 
greater production of IL-4 compared to adolescents with asthma from high-SES 
neighborhoods [30]. In a second study, children and adolescents diagnosed with 
asthma were recruited from a broad spectrum of SES backgrounds in order to test 
whether linear relationships between family SES and biological markers existed. 
This study found that SES was inversely and linearly associated with the production 
of IL-5 and IL-13, as well as with eosinophil counts [31]. Thus as family savings 
decreased, stimulated production of IL-5 and IL-13 increased in a linear fashion. In 
addition, as family savings decreased, children’s eosinophil counts increased in a lin-
ear fashion. These findings suggest that low-SES adolescents with asthma exhibit 
heightened inflammatory profiles, and that the specific nature of these immunologic 
responses is consistent with pathways to more severe exacerbations of asthma.

Given the few studies of immune variables in children with asthma, we also 
mention several relevant adult studies on this topic. In a cohort of women who 
either had asthma or allergic disease or whose spouse had asthma/allergies, one 
group of researchers investigated whether SES was related to IgE profiles. SES was 
categorized at the neighborhood level using census data based on the zip code in 
which each participant lived. Women who lived in neighborhoods with higher rates 
of poverty, lower household incomes, and less educated individuals had higher 
levels of total serum IgE [32]. Women who lived in higher poverty neighborhoods 
also had greater immunologic sensitivity to cockroach, cat, dog, and ragweed 
allergens [33]. Other studies of healthy adults have demonstrated that low SES is asso-
ciated with greater inflammatory profiles, as indicated by elevations in markers 
such as C-reactive protein, and cytokines such as IL-6 and TNF-α. These are 
reviewed in greater detail in Ref. [34].

Taken together, these patterns indicate that there is a socioeconomic patterning 
to immune profiles in children with asthma as well as in adult populations. The 
larger social environment appears to be able to get “under the skin” to alter immune 
function in a manner that has implications for asthma. In particular, low SES has 
been associated with greater stimulated production of Th-2 cytokines, higher 
eosinophil counts, and higher IgE levels. Among children already diagnosed with 
asthma, this type of profile would also be consistent with greater morbidity due to 
asthma, and hence could provide a biological explanation for how SES comes to 
affect clinical asthma outcomes in childhood.

The next question that arises is how SES comes to be associated with biological 
changes such as immune dysregulation. In the next section, we review more proximal 
causes of immune system alterations that could also be affected by SES.

Possible Pathways between SES and Immune Function

There are a number of pathways by which SES could alter biological profiles in 
children with asthma. In this chapter, we discuss three broad categories, including 
environmental exposures, psychological factors, and medical care characteristics.
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Environmental Exposures

One commonly proposed explanation for associations between SES and asthma is 
that living in a low SES neighborhood may mean greater exposure to both outdoor 
and indoor environmental triggers of asthma. These include smoking, allergen 
exposure, and air pollution, to name a few.

For example, lower family income, parent education, and parent occupational 
status are all associated with greater smoking in the homes of children with asthma 
[10, 35]. In turn, exposure to tobacco smoke can lead to wheezing and asthmatic 
symptoms in vulnerable individuals [36]. Furthermore, some researchers have 
argued that parental smoking largely accounts for SES differences in asthma mor-
bidity [10].

With respect to allergen exposure, cockroach allergen represents one type of 
exposure that has been linked to both asthma morbidity and low SES. Low SES is 
associated with both greater sensitivity and exposure to cockroach allergens [37, 
38]. In particular, inner-city homes, where rates of asthma are high, also frequently 
have high levels of cockroach exposure. For example, among inner-city children 
with asthma, 50% of homes had high levels of cockroach allergen in the bedroom. 
Furthermore, children who had high exposure and were allergic to cockroach aller-
gen were significantly more likely to be hospitalized, have unplanned medical visits 
for asthma, and have more asthma symptoms during a 1-year follow-up [39].

Finally, exposure to outdoor air pollutants such as nitrogen dioxide (NO
2
) and 

sulfur dioxide (SO
2
) can cause significant respiratory morbidity [40–43]. Previous 

research has found that children with asthma who live in multifamily houses (likely 
lower in SES) were exposed to greater amounts of NO

2
 compared to those who 

lived in single-family housing [44]. Moreover, the effects of exposure to NO
2
 (in 

males) and SO
2
 (in females) on asthma hospitalization frequency were significant 

only in a low SES group [45].
In sum, a number of indoor and outdoor asthma triggers have been linked to low 

SES, including greater exposure to smoke, cockroach allergen, and air pollution. In 
turn, these triggers are recognized by immune cells, which initiate a cascade of 
events leading to the aggravation of airway inflammation and asthma symptoms. 
Hence one pathway by which SES may come to affect immunologic profiles lies in 
the environmental exposures to which low SES children may be vulnerable.

Psychological Stress

A handful of research studies have evaluated whether stress amplifies the immune 
responses implicated in asthma. In a study of college students with asthma during 
periods of high stress (final examination period) and low stress (no major examina-
tion) [46], patients inhaled increasing dosages of allergens to which they were 
sensitized (ragweed, cat, or dust mite) until their pulmonary functioning declined 
by ≥20%. There was evidence of a greater immune response to challenge under 
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stressful conditions. During the session that occurred around final examinations, 
the allergen challenge elicited greater numbers of eosinophils in both sputum and 
blood. A parallel finding emerged for in vitro production of IL-5 in sputum treated 
with phytohemagglutinin. These findings provide support for the notion that stress 
changes the way in which the immune system responds to challenge, making the 
individual potentially more vulnerable to asthma exacerbations.

In another set of studies, high school students were tested before an examina-
tions (baseline period of low stress) and after examinations (high-stress period), and 
their peripheral blood cells were stimulated in vitro with various mitogen cocktails. 
In one study, students with asthma had greater production of IL-5 postexamination 
compared to students who were healthy. In contrast, there were no group differ-
ences in IL-5 production at baseline. This suggests that under conditions of low 
stress, individuals with asthma do not differ from healthy individuals in their 
responsiveness to mitogen, but that periods of stress heighten the responsiveness of 
Th-2 immune cells to mitogens specifically in individuals with asthma [47]. A 
second study from this group documented that examination stress was associated 
with reduced production of Th-1 cytokines (IFN-γ and IL-2) but increased produc-
tion of the proinflammatory cytokine IL-6 (argued to represent Th-2) across both a 
sample of students with asthma and healthy students [48].

In one of the few studies of young children, one group investigated 2-year-old 
children with a family history of asthma or allergy. Immune cells were stimulated 
in vitro with allergens (dust mite, cockroach) as well as phytohemagglutinin 
(PHA). Because of the age of the children, stress was assessed in their caregivers. 
Children whose caregivers appraised their lives as high in stress had greater stimu-
lated production of the proinflammatory cytokine TNF-α, and reduced production 
of the Th-1 cytokine IFN-γ [49]. Importantly, these effects were prospective, with 
stress temporally preceding immune response.

Finally, in our previous work in which we demonstrated that low SES was asso-
ciated with increased production of Th-2 cytokines and higher eosinophil counts in 
children with asthma, we also measured children’s chronic stress levels as well as 
their tendency to perceive ambiguous situations as stressful. When statistical analy-
ses were conducted to evaluate relationships among these processes, they showed 
that chronic stress and stress perception formed an indirect pathway between low 
SES and inflammatory responses [30, 31]. In other words, data were consistent 
with the notion that that low SES children experience more chronic stress and per-
ceive events in a more stressful manner, and that in turn these stress experiences 
amplify asthma inflammatory responses.

Collectively, these studies suggest that among patients suffering from asthma, 
stress can heighten the Th-2 cytokine response to asthma triggers and mitogen 
cocktails, and in some cases also blunt the release of Th-1 cytokines. In addition, 
psychological stress appears to form a significant pathway linking SES to asthma-
specific inflammatory responses. In turn, these stress-induced inflammatory pat-
terns may make children vulnerable to more frequent or severe asthma symptoms.

Interestingly, one additional study suggests that stress may interact with the 
physical environment to affect asthma. In this study, children with high levels of stress, 
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as defined by greater experiences with neighborhood violence, who were also 
exposed to high levels of NO

2
, were at elevated risk for a diagnosis of asthma [50], 

suggesting that it maybe important to consider environmental exposures in combination 
with psychological stress in understanding contributors to asthma.

Medical Characteristics

Another pathway by which low SES may affect asthma inflammatory responses 
relates to differences in medical care and in the management of asthma in low ver-
sus high SES families.

First, low SES children maybe less likely to receive a diagnosis of asthma. 
For example, enrollment in a federal free school lunch program was associated with 
a higher rate of undiagnosed frequent wheezing in adolescent schoolchildren [51]. 
Second, low SES children who have asthma are less likely to have a regular source 
of medical care [52]. Third, low SES children with asthma are prescribed medica-
tions differently from high SES children. Children who have been diagnosed with 
asthma but who come from lower income families are less likely to receive inhaled 
corticosteroid prescriptions, independent of asthma severity. Moreover, this was a 
sample of Canadian schoolchildren, where all children were insured through the 
same provincial drug plan [53]. Furthermore, a substantial proportion of inner-city 
children with asthma are undermedicated, as evidenced by the fact that over 50% 
of children who had been to the emergency room in the past 6 months were 
untreated or only on beta agonists for their asthma [54]. Finally, low SES children 
often receive different asthma treatment regimens from high SES children. Children 
who had been hospitalized for asthma and who came from lower income families 
or had less educated parents were less likely to have seen an asthma specialist, have 
had pulmonary function measured, or have been prescribed an anti-inflammatory 
agent posthospitalization compared to higher SES children who had also been 
hospitalized for asthma [52].

In addition, low SES families show differences in how they manage asthma 
compared to high SES families. First, low SES families utilize asthma medications 
differently from high SES families. Children with asthma from low SES families 
on Medicaid were less likely to have filled prescriptions for inhaled corticosteroids 
or mast cell stabilizers [55]. Children with asthma from lower income families also 
were less likely to be using an inhaled corticosteroid [38]. Second, low SES fami-
lies adhere to asthma medication regimens differently from high SES families. 
Among children aged 5–12 years, families that were lower in SES (receiving social 
assistance) were more likely to have a child who was nonadherent to national 
asthma guidelines for medications [56]. Similarly, among adults with asthma, lower 
levels of education were associated with a greater likelihood of nonadherence to 
national asthma guidelines [57], and lower levels of education and income were 
associated with poor adherence to daily inhaled corticosteroid medications, even 
when all patients were given prescriptions and medications without cost [58]. 
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Adults with lower income or less education also more frequently use short-acting 
beta agonists, independent of the severity of their asthma [59]. Finally, low SES 
families access medical care in different ways from high SES families. Children 
from lower SES families, as determined by Medicaid status, were more likely to 
receive care in the emergency department rather than through outpatient, nonurgent 
visits [55, 60].

In sum, differences are apparent in how low versus high SES families interact 
with and receive care from the medical system as well as how they manage asthma 
at home. These differences likely impact the ability of families to contain asthma-
related inflammation in their children, which in turn will have implications for 
clinical asthma outcomes. See Fig. 2 for the possible pathways that may lead from 
SES to asthma exacerbations.

Taken together, these findings suggest that SES may operate through a variety 
of pathways to affect immune function, and in turn, asthma morbidity. At the com-
munity or societal level, SES is associated with the health care that a patient has 
access to and receives. At the neighborhood level, SES is associated with the 
amount of exposure to various environmental pollutants. Finally, at the individual 
level, SES is associated with the psychological experiences of chronic stress and 
stress perception that a child has. Though each of these pathways is quite distinct, 
they all have implications for asthma inflammation, and provide plausible models 
for how SES gets “under the skin” of a child with asthma.

Fig. 2 Pathways linking socioeconomic status (SES) and asthma outcomes
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Conclusions and Future Directions

In this chapter, we reviewed evidence documenting that low SES is associated with 
poorer asthma outcomes, such as increased likelihood of hospitalization, among 
children already diagnosed with asthma. In contrast, the association between SES 
and incidence or prevalence of asthma is more mixed. It appears that both low SES 
and high SES children maybe at risk for a diagnosis of asthma. Low SES children 
maybe at greater risk for the same reasons that they are at greater risk for experienc-
ing greater asthma morbidity. High SES children maybe at greater risk by virtue of 
having parents who are more vigilant for symptoms and more proactive about seek-
ing medical attention for their child.

With respect to pathways, a number of studies have shown that low SES is asso-
ciated with inflammatory profiles that are detrimental for asthma. Specifically, low 
SES is linked to increased production of Th-2 cytokines, as well as to higher levels 
of IgE and eosinophil counts. These findings indicate that the larger social environ-
ment is able to affect biological systems in an individual child, thus providing a 
plausible explanation for how SES can shape physical health outcomes, and in 
particular, asthma pathogenesis. In addition, studies have shown that SES may exert 
its effects at a variety of levels. At the societal level, SES may affect the type and 
quality of health care a family has access to. At the neighborhood level, the type of 
house and neighborhood families can afford to live in will affect their degree of 
exposure to environmental pollutants and allergens. At the individual level, SES 
affects both psychosocial characteristics such as stress, as well as behaviors such as 
a child’s adherence to asthma medications. All of these factors in turn contribute to 
asthma inflammation and morbidity.

Now that research has begun to establish some of the factors through which the 
social environment comes to influence asthma, it would be important for future 
research to begin testing more comprehensive models. Future research that is able 
to simultaneously assess multiple levels of factors (health care characteristics, envi-
ronmental factors, psychosocial factors, biological markers) will be critical for 
developing a better understanding of the relative importance of each of these factors 
to childhood asthma. In addition, research that simultaneously assesses multiple 
factors will also allow researchers to determine whether there are interactive effects 
such that certain combinations of factors are most detrimental to asthma.

In addition, many of the studies described above were cross-sectional. It is 
important for future researchers to conduct longitudinal studies that are able to 
draw firmer conclusions about directionality. For example, what happens when 
families improve in SES? Which other factors change subsequent to movements in 
SES, and do these factors precede changes in clinical symptoms or functional out-
comes related to asthma? Finally, when possible, it would be important to conduct 
experimental investigations of SES and asthma. While it is not ethically possible to 
assign study participants to SES, it could be possible to take advantage of naturally 
occurring social experiments (e.g., welfare-to-work programs) and to assess the 
effects of SES manipulations on childhood asthma outcomes. These types of studies 
would permit firmer conclusions about causality.
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In sum, evidence points to the importance of the larger social environment, such 
as low SES, for childhood asthma. In addition to risk factors traditionally recog-
nized in asthma, such as the role of allergens and genetics, there is a need for 
incorporating social factors such as low SES and stress [61, 62] in order to develop 
more comprehensive models of the trajectory of asthma in childhood.
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