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Preface

In recent years the mathematical modeling of charge transport in semi-
conductors has become a thriving area in applied mathematics. The drift
diffusion equations, which constitute the most popular model for the simula-
tion of the electrical behavior of semiconductor devices, are by now mathe-
matically quite well understood. As a consequence numerical methods have
been developed, which allow for reasonably efficient computer simulations
in many cases of practical relevance. Nowadays, research on the drift diffu-
sion model is of a highly specialized nature. It concentrates on the explora-
tion of possibly more efficient discretization methods (e.g. mixed finite
elements, streamline diffusion), on the improvement of the performance of
nonlinear iteration and linear equation solvers, and on three dimensional
applications.

The ongoing miniaturization of semiconductor devices has prompted a shift
of the focus of the modeling research lately, since the drift diffusion model
does not account well for charge transport in ultra integrated devices.
Extensions of the drift diffusion model (so called hydrodynamic models) are
under investigation for the modeling of hot electron effects in submicron
MOS-transistors, and supercomputer technology has made it possible
to employ kinetic models (semiclassical Boltzmann-Poisson and Wigner-
Poisson equations) for the simulation of certain highly integrated devices.
The focus of this book is the presentation of the hierarchy of semiconductor
models ranging from kinetic transport equations to the drift diffusion equa-
tions. Particular emphasis is given to the derivation of the models and the
physical and mathematical assumptions used therefore. We do not go into
the mathematical technicalities necessary for a detailed analysis of the
models but rather sacrifice rigour for the sake of conveying the basic prop-
erties and features of the model equations. The mathematically interested
reader is encouraged to consult the references for in-depth investigations
of specific subjects.

We address applied mathematicians, electrical engineers and solid state phy-
sicists. The exposition is accessible to graduate students in each of the three
fields. In particular, we hope that this book will be useful as a text for
advanced graduate courses in this area and we urge students to work the



A o ety P Sy TN TP, |

vi Preface

problems, which can be found at the end of each chapter. for a deeper
penetration of the material.

We are grateful to our colleagues U. Ascher, J. Batt, F. Brezzi. P. Degond,
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dahl, D. Marini, H. Neunzert, F. Nier, R. O’'Malley, F. Poupaud. T. Seidman,
S. Selberherr, H. Steinriick, P. Szmolyan, and T. Taylor for many hours of
stimulating discussions. In particular we are indebted to A. Arnold, N.
Mauser, P. Pietra, and R. Weil} for reading large parts of the manuscript.
We thank U. Schweigler for skillfully typing a portion of the manuscript.
We are indebted to the Centre des Mathematiques Appliquées of the Ecole
Polytéchnique, Palaiseau, France, and to the Institut fiir Technische Elek-
tronik of the Technische Universitit Hamburg-Harburg where a part of the
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Introduction

Semiconductor device modeling spans a wide range of areas in solid state
physics, applied and computational mathematics. The involved topics range
from the most basic principles of kinetic transport in solids over statistical
mechanics to complicated bifurcation problems in the mathematical de-
scription of certain devices and to numerical methods for partial differential
equations.

This book tries to give an overview of the involved models and their
mathematical treatment. It addresses, on one hand, the engineer and the
physicist interested in the mathematical background of semiconductor device
modeling. On the other hand it can be used by the applied mathematician
to familiarize himself (herself) with a field which has immediate and techno-
logically relevant applications and gives rise to a whole variety of interesting
mathematical problems. The scope of semiconductor device modeling is
clearly interdisciplinary. Quantitative answers are needed to describe de-
vices and these answers can be obtained from a variety of different physical
models.

We start from the most basic physical principles for kinetic transport of
charged particles. Then we discuss a hierarchy of simplified model equations
culminating in the drift diffusion equations which are the most widely used
model today.

In order to make this book accessible to as wide a range of readers as
possible the emphasis has been placed on concepts, and mathematical details
have been replaced by references to the corresponding literature.

In the first Chapter the classical and quantum mechanical transport models
in ensemble phase space and single particle phase space are discussed.
Furthermore it is shown how the quantum mechanical models can be
incorporated into the classical transport picture via the so called semi-
classical models. The solution of transport equations in phase space is a very
complex task. Therefore, simplified equations for integral quantities, such
as particle and energy densities, are frequently used. These simplified equa-
tions are partial differential equations in position space only. The derivation
of these equations, i.e. the hydrodynamic models and finally the drift diffu-
sion equations, is the subject of Chapter 2. Chapter 3 is devoted to a
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mathematical discussion of the drift diffusion equations which are the under-
lying model for the bulk of the simulations performed today. Chapter 4 is
concerned with the analysis of specific device structures. Here the analytical
tools developed in Chapter 3, mainly asymptotic analysis, are used to
approximately calculate current flows and to study the qualitative be-
haviour of voltage-current characteristics. Each Chapter is self contained,
making it possible to use parts of the book as a text in seminars or courses.
At the ends of the Chapters we have collected selections of problems (refer-
enced in the text) which should make it easier for the student in such a course
to reflect on the presented material.



Kinetic Transport Models
for Semiconductors 1

1.1 Introduction

In this Chapter we shall derive and discuss transport equations, which model
the flow of charge carriers in semiconductors. The common feature of
these equations is that they describe the evolution of the phase space
(position-momentum space) density function of the ensemble of negatively
charged conduction electrons or, resp., positively charged holes, which are
responsible for the current flow in semiconductor crystals.

The kinetic equations are the starting point for the derivation of the drift
diffusion semiconductor model (often referred to as the Basic Semiconductor
Equations or the van Roosbroeck Equations), which, together with its
extensions (hydrodynamic models), constitutes the core of state-of-the-art
semiconductor device simulation programs. This already necessitates a close
scrutiny of kinetic transport models. Another reason is provided by the fact
that the mathematical assumptions, which allow the derivation of the drift
diffusion model from the kinetic models and which guarantee its validity,
are— particularly for highly integrated devices—not satisfied. Thus, kinetic
models must be used for the simulation of such devices. Until recently
this approach was generally not taken since the numerical solution of the
kinetic equations requires a lot of computing power in real life applications.
However, with the reduction of cost of supercomputer technology, which
was at least partly prompted by efficient VLSI-simulation, the numerical
treatment of kinetic models for semiconductors was facilitated for at least
some realistic applications. We expect the trend towards the kinetic equa-
tions to continue in the near future and, thus, we encourage simulation
oriented researchers to become acquainted with these models.

Principally. the kinetic equations split into quantum mechanical, semi-
classical and classical models. The quantum mechanical models are based
on the many-body Schrodinger equation or, equivalently, on the quantum
Liouville equation obtained from the Schrodinger equation by performing
the Wigner transformation. The starting point for the classical models is
the description of the motion of particle ensembles based on Newton's
second law. A probabilistic reformulation of these canonical equations of



4 1 Kinetic Transport Models for Semiconductors

motion immediately gives the classical Liouville equation, which describes
the evolution of the phase space distribution function of the particle en-
semble. The quantum Liouville equation is consistent with its classical
counterpart in the sense that in the (formal) classical limit h — 0, where h
denotes the Planck constant scaled by 27, the quantum Liouville equation
reduces to the classical Liouville equation.

The semi-classical Liouville equation can be regarded as a modification of
the classical Liouville equation, which incorporates the quantum effects of
the semiconductor crystal lattice via the band-diagram of the material.
The Liouville equations contain many-body effects in the sense that they
are posed on the usually high-dimensional ensemble phase-space, whose
coordinates are the position and momentum coordinates of all particles of
the ensemble. The interaction force field, which appears in these equations,
generally depends on all these coordinates. Thus, it is desirable (and, in fact,
necessary in order to facilitate a numerical solution) to reduce the dimension
of the Liouville equations.

The procedure for the reduction of the dimension of the Liouville equations
is based on postulating properties of the interaction force field. Two cases
are usually considered: When only long range forces (like the Coulomb force)
are considered. then the Vlasov or collisionless Boltzmann equation is
obtained in either the classical or semiclassical formulation and the quantum
Vlasov equation in the quantum mechanical case. These equations have the
form of single particle Liouville equations supplemented by an effective field
equation, which depends on the position space number density of the
particles. The effective field equation represents the (averaged) effect of the
many-body physics.

If, in addition to the long range forces, short range forces are included, then
the (semi-) classical and, resp., quantum Boltzmann equations are obtained.
These equations contain collision integrals, which model the short range
interactions (scatterings) of the particles with each other and/or with their
environment. The specific form of the kernel of the collision operator. which
is nonlocal in the momentum direction. is determined by the considered
short range interaction mechanisms.

In Section 1.2 we discuss the classical and semi-classical Liouville equations
and in Section 1.4 their quantum mechanical counterparts. Section 1.3 is
concerned with the classical Vlasov and Boltzmann equations and Section
1.5 with the corresponding quantum equations. In Section 1.6 we discuss
the applications of kinetic transport models to semiconductor physics and
modeling.

1.2 The (Semi-)Classical Liouville Equation
In this Section we shall derive the basic equation, which governs the motion

of an ensemble of charged particles under the action of a driving force
assuming that the particles obey the laws of classical mechanics. Since,
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1.2 The (Semi-)Classical Liouville Equation

usually, it is not possible to obtain enough data to determine the initial state
of the ensemble exactly, we shall take a probabilistic point of view and
reformulate the equations for the trajectory of the ensemble as a determin-
istic equation for the probability density of the ensemble in the position-
momentum space. This microscopic equation is referred to as classical
Liouville equation.

We start out by considering

Particle Trajectories

We shall at first analyze the motion of a single electron in a vacuum under
the action of an electric field E. We associate the position vector x € R* and
the velocity vector v € R*—both assumed to be functions of the time —with
the electron. Then, in the absence of a magnetic field, the force .7, which
acts on the electron, is given by

F = —qE (1:2.1)

(see, e.g., [1.31]). Here g(>0) denotes the elementary charge, i.e. the charge
of the electron is —g.
Newton’s second law reads:

F = mb, (1.2.2)

where m stands for the mass of the electron and ‘" denotes differentiation
with respect to the time ¢ (¢ is the acceleration vector). By inserting (1.2.1)
into (1.2.2) we obtain the system of ordinary differential equations

X=v (1.2.3)

TP (1.2.4)
m

for the trajectories of the electron in the position-velocity space. Together
with a given initial state

x(t=0)= %g, v(t=0)=1, (1.2.5)
the system (1.2.3), (1.2.4) constitutes an initial value problem for the trajec-
tory w(t; xq. o) = (x(t), v(t)), which passes through (x,. v,) at time t = 0.
Note that, generally, the electric field E depends on the position vector x
and on the time t, i.e. E = E(x, t).

A Potential Barrier
As an example and for future reference we consider the one-dimensional

motion of an electron across a thin and high potential barrier. The static
potential V is depicted in Fig. 1.2.1. The corresponding electric field
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Fig. 1.2.1 Potential barrier

Fig. 1.2.2 Phase portrait ¢ > 0
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E = —V,_is given by

(0, |x| > ¢
i <% =l
E(x)=ﬂ4 g’ cesx
s 1
il D<x<e
;

¢ is a small positive parameter. The equations (1.2.3), (1.2.4) for the trajec-
tories are easily integrated and we obtain the phase portrait shown in
Fig. 1.2.2. The two thickly drawn curves are ‘limiting’ characteristics. A
particle with velocity |v| < \/27r cannot cross the barrier, it is reflected. Only
particles with |v| > \/7? cross over. As ¢ —» 0+ the barrier becomes thinner
and higher, precisely speaking V =0 —(m/q)d(x).

The limiting phase portrait (¢ = 0) is depicted in Fig. 1.2.3. All particles, no
matter how big their velocity, are reflected. In Section 1.4 we shall consider
the corresponding quantum mechanical model, which behaves totally
different.

Fig. 1.2.3 Phase portraite =0
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The Transport Equation
Assume now that instead of the precise initial position x, and initial velocity

v, of the electron we are given the joint probability density f; = f;(x, v) of
the initial position and velocity of the electron. f; has the properties

filx,v) = 0, Jj_}‘}(x, v)dxdv=1, (1.2.6)

where the integration is performed over the whole (x, v)-space. Then

P(B) .= .[f fi(x, v) dx dv
B

is the probability to find the electron in the subset B of the (x, v)-space at
time t = 0. It is our goal now to derive a continuum equation for the
probability density f = f(x, v, 1), which evolves from f, = f(x, v, t = 0).

It is reasonable to postulate that f does not change along the trajectories
w, 1.e. we require

flw(t; x, v), 1) = fi(x, v) (1.2.7)
for all x, v and for all ¢t = 0. Differentiating (1.2.7) with respect to t gives
é,f + x-grad, f + d-grad, f =0 (1.2.8)

and we obtain from (1.2.3), (1.2.4):
6 f +v-grad, f — %E-gradrf =0, t>0. (1.2.9)

This equation is the famous Liouville (or transport) equation governing
the evolution of the position-velocity probability density f = f(x, v, t) of the
electron in the electric field E under the assumption that the electron moves
according to the laws of classical mechanics. The motion is assumed to take
place without interference from the environment (e.g. the semiconductor
crystal lattice) or, equivalently, the electron moves in a vacuum.

Particle Ensembles

In solid state physics one is usually not only concerned with the motion of
a single particle but of an ensemble of interacting particles. For the single
electron Liouville equation (1.2.9) the position vector x and the velocity
vector v are in R? (or in R%, d = 1 or 2, if the motion can be restricted to a
one- or resp., two-dimensional linear manifold). In the case of an ensemble
consisting of M particles, however, the position vector x and the velocity
vector v of the ensemble are 3M-dimensional vectors, i.e. x = (X, ..., Xy ),
v=(vy,..., Uy) wWhere x;, v; € R represent the position and, resp., veloc-
ity vector of the i-th particle of the ensemble. Also, the force field # =
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(#,, ..., Fy)is a 3M-dimensional vector, which in general depends on all

6M position and velocity coordinates and on the time (. %, = F/(x, v, 1)

denotes the force acting on the i-th particle.

If all the particles of the ensemble have equal mass m (which we shall

assume henceforth) then the trajectories of the ensemble satisfy the system

of ordinary differential equations in the 6 M-dimensional ensemble position-

velocity space:
=t (1.2.10)

1 i=1,...,M.
U, = — % (1.2.11)
n

As above, we denote the ensemble trajectory, which passes through the

initial state (x,, vg), by w(t; xq, vy) = (x(2), v(2)).

The classical (ensemble) Liouville equation

|
6,/ + v-grad, [ + a?-grad[,f: 0, (1.2.12)

now posed for x € R*™, v e R*M is derived from (1.2.10), (1.2.11) as in the
single electron case. Here f = f(x, v, t) denotes the joint position-velocity
probability density of the M-particle ensemble at time ¢, i.e.

Py(B,t) = .[ r f(x, v, t) dx dv
B

denotes the probability to find the particle ensemble in the subset B of
the 6M-dimensional ensemble position-velocity space at the time ¢ (the
preservation of the nonnegativity of f and the conservation of the integral
of f over R°™ will be shown below under appropriate assumptions on the
force field #).

The Liouville equation (1.2.12) is linear and hyperbolic, its characteristics
are the ensemble trajectories satisfying (1.2.10), (1.2.11). It has to be supple-
mented by the initial condition

f(x. v, t = 0) = fi(x, v). (1.2.13)

The Initial Value Problem

We consider the Liouville equation (1.2.12) subject to the initial condition
(1.2.13) for x € R* v e R*™. In order to distinguish between the position
and velocity spaces we shall in the sequel often write x € R3M, v e R2M.
From (1.2.7) we conlude f(x,v,t) =0, xe RM, ve RM for all t = 0 for
which a solution exists, if f;(x,v) = 0, x € R, v € R}, Thus, the non-
negativity of f is preserved by the evolution process generated by the
Liouville equation.

For the following we shall assume that the force field # is divergence-free

with respect to the velocity:
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div,# =0, x € RM, ve RM, t=0. (1.2.14)

We integrate (1.2.12) over R3M x R, assume that the solution decays to
zero sufficiently fast as | x| — oo, |[v| - 20 and calculate using (1.2.14):

J' F-grad, f dv = ——J fdiv,# dv = 0.
Ri\r

[R3m
3

We obtain

d
ﬁ_[ flx,v0,t)dvdx =0
dr ‘;q:_\r Ri\l
and conclude that the integral of f over the whole position-velocity space
1s conserved in time:

j J. f(x, v, t)dvdx = J Jilx,v)dvdx =1, t=20.
R3v JR3M R3M JR3M (1.2.15)

The preservation of the nonnegativity of f and the conservation of the
whole-space integral (1.2.15), both directly implied by the derivation of the
Liouville equation and by the assumption (1.2.14) on #, allow the full
probabilistic interpretation of the solution of the initial value problem for
the Liouville equation (cf. Liouville’s Theorem [1.13]).

For the [ollowing the moments of the probability density f with respect to
the velocity will be of importance. At this point we introduce the zeroth
order moment

Heass (X, 1) 1= j fx, v, t)ydv (1.2.16)
Ri\f
and the (negative) first order moment
Jopass(X, 1) 1= —¢q f vf (x, v, t) dv. (1.2.17)
R?—'“

The function n_,., = n...(X, 1) is the position probability density of the

particle ensemble, i.e.

R\-[.x(A, r) == j ”class(xa r} d-\’

A

class

is the probability to find the ensemble in the subset A of the position space
R3M at the time t. n is ‘called classical microscopic particle position
density.

J.. represents a flux density, it is called classical microscopic particle
current density.

The conservation property (1.2.15) can now be restated as

J Mepass (X, 1) dX = f Retass, 1(X) dX, t=0 (1.2.18)
R3M R3M

class

with ngy (X) = frav fi(x, v, 1) dv.
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By formally integrating the Liouville equation (1.2.12) over R’ we obtain
the conservation law

—div, J.

{](ﬁ, ”cluss x Yelass — 0* [1219)
which is referred to as macroscopic particle continuity equation.

The solvability of the initial value problem (1.2.12), (1.2.13) for the Liouville
equation is closely related to the global (in time) existence of the charac-
teristics w(t; x, v) for all (x, v) € R3™ x R3™, which in turn is related to the

regularity and growth properties of the force field .7. If the maps
w(t; -, *): RIM x RM  R3M x R3M, t=0 (1.2.20)

are sufficiently smooth and one-to-one, and if f; is sufficiently differentiable,
then the unique solution f of (1.2.12), (1.2.13) is given by

fx,v,)= fiiw™t; x,v)), xeRM, peR3¥M t=0. (1.2.21)

The invertibility requirement of the maps w(t; -, -) excludes the intersection
of trajectories (‘collisions’ of ensembles). Mathematically it prohibits certain
strong singularities of the force field % at finite x, v and t.

An L?*-semigroup analysis of the classical Liouville equation (1.2.12) for
v-independent, static gradient force fields can be found in [1.46].

The Classical Hamiltonian
We consider the motion of an electron ensemble under the action of a

velocity-independent force field % = % (x, t) and denote (as in the single
electron case) the negative force per particle charge by E:

1
E=——%F. (1.2:22)
q
Assuming that E = E(x, t) is a gradient field
E = —grad,V, (1.2.23)

we can write the total energy of the ensemble as sum of the kinetic and
potential energies

m|v|?
fror = Ty

4

—qVi(x,t). (1.2.24)

When the total energy &, is expressed in terms of the momentum vector
p=m, (1.2.25)
then we obtain the classical Hamiltonian of the ensemble

5 _pP?
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The equations (1.2.10), (1.2.11) for the ensemble trajectories are now equiva-
lent to the so-called canonical equations of motion (or Hamiltonian
equations):
x = grad , H (1.2.27)
p= —grad H (1.2.28)

(see,e.g.. [1.35]). Note that H = 0 holds along the trajectories for static fields
E = E(x). In the static case the energy (1.2.26) is conserved by the motion.
For time dependent fields E = E(x, t) we have H = ¢,H.

The Liouville equation expressed in the (x, p)-coordinates takes the form

of + 2 grad f — gE-grad,f =0, xeRM peRM >0.
" (1.2.29)
The 6 M-dimensional (x, p)-space is usually referred to as (ensemble) phase
space.

The Semi-Classical Liouville Equation

So far the particles were assumed to move without interference from their
environment, or equivalently, in a vacuum. In a semiconductor, however,
the ions in the crystal lattice induce a lattice-periodic potential, which has
a significant effect on the motion of the charged particles. Since the period
of the lattice potential is very small (typically of the order of magnitude
108 c¢m), it is necessary to use quantum mechanics to model its impact on
the transport of charged carriers. For precisely this reason the Liouville
equation, which has incorporated the quantum effects of the crystal lattice,
is referred to as semi-classical transport equation.

We start out with the mathematical set-up of the crystal lattice structure.
We denote the (infinite periodic) crystal lattice by

L = {iay, + jag, + lag)i,j, € Z}. (1.2.30)

dy), d(a). g3 are the primitive lattice vectors. The corresponding reciprocal
lattice is given by

L:= {iaV + ja? + la®i, j, 1 e Z}, (1.2.31)
where the rcc1proca] primitive lattice vectors a'', a'?, a'* € R? satisfy
ay - a¥ = 2ndy. (1.2.32)

A connected subset Z = R? is called a primitive cell of the lattice L, if it
satisfies the following two conditions:

(a) The volume of Z equals |a,)"(a.) * ag,)|. which is the volume of the
parallelepiped spanned by the primitive lattice vectors of L.

(b) R* = | )., T.Z, where T.Z denotes the translate of Z by the lattice
vector x. This means that the whole space R? is covered by the union of
translates of Z by the lattice vectors.

Primitive cells of the reciprocal lattice L are defined accordingly.
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Fig. 1.2.4

The (first) Brillouin zone B is defined as that primitive cell of the reciprocal
lattice L, which consists of those points, which are closer to the origin than
to any other point of L (see, e.g., [1.4], [1.31] for details). It is easy to show
that the Brillouin zone B is point symmetric to the origin,i.e. k € Biff —k ¢ B
holds.

Fig. 1.2.4 shows a two-dimensional lattice, its reciprocal lattice and the
Brillouin zone.

Consider now an electron whose motion is governed by the potential 1,
generated by the ions located at the points of the crystal lattice L. Clearly,
V, is L-periodic, i.e.

Viix+X)=V(x), xeR} XelL. (1.2.33)

The steady state energies ¢ of the electron are the spectral values of the
Schrodinger equation

Hpp =gy (1.2.34)
with the quantum mechanical Hamiltonian
hz
H; = —EA—q f (1.2.35)

(see Section 1.4 for details). Bloch’s Theorem (see, e.g., [1.4], [1.31]) asserts
that the bounded eigenstates y can be chosen to have the form of a plane
wave e®'* times a function with the periodicity of the lattice L:
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(x) = e™ *u(x), x e R3 (1.2.36)
u(x + X) = u(x), x e R3, XelL, (1.2.37)

where, principally, k is an arbitrary (wave) vector in R?. Inserting (1.2.36)
into (1.2.34) gives the eigenvalue equation
2

h ) h?
—ﬂ[Auk + 2ik-Vu,) + (2; |k|? — qV,jx)) U, = &l (1.2.38)
subject to the periodicity condition (1.2.37). For given k € R} the problem
(1.2.38), (1.2.37) constitutes a second order self-adjoint elliptic eigenvalue
problem posed on a primitive cell of the crystal lattice L. Thus, we may
expect an infinite sequence of eigenpairs & = &,(k), u,(x) = u, (x), [ € N. Note
that (1.2.36), (1.2.37) can be reformulated as

Y(x + X) = e™Xy(x), x € R3, X el

Sincee™ ¥ = 1 forallk € L, X e L we conclude that the set of wave functions
yr and the energies ¢ are identical for any two wave vectors which differ by
a reciprocal lattice vector. Thus, we can assign the indices [ € N in such a
way that the energy levels ¢(k) and the corresponding wave functions
. (x) = e *u,_(x) are periodic on the reciprocal lattice L:

gk + K)=¢(k), keB, KeL, leN (1.2.39)
Yesk:=Wer, keB, Kel, leN. (1.2.40)

Obviously, no information is lost when the wave-vector k is constrained to
the Brillouin zone B.

For a thorough mathematical analysis of the spectral properties of the
Schrodinger equation with a periodic potential we refer to [1.47].

The function ¢, = ¢,(k), continuous on the Brillouin zone B, is called [-th
energy band of the crystal. The corresponding mean electron velocity is
given by

vk) = %gradkc,(k) (1.2.41)

(see [1.4]).

In practice the lattice potential ¥, is not known exactly, and therefore
approximation methods have to be used to compute the band diagram
le/(k)|k € B}, n for a given material. For the technologically most impor-
tant semiconductors the band diagrams can be found in the literature (see
[1.31], [1.4]) and we shall henceforth assume that the energy bands and,
thus, the velocities (1.2.41) are known functions of k.

Consider now the motion of an electron ensemble, where all M electrons
are ‘located’ in the same energy band ¢, i.e. the wave-function y;, = ¥;(x, 1)
of the i-th electron is represented by a ‘linear combination’ of eigenstates
W.(x) over k € B:

Yix, t) = J. clk, Yy (x) dk, i=1,....,M.
B
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In the sequel we denote the wave-vector of the i-th electron by k; € R?,
k = (ky, ..., ky) € R*, andits position vector by x; € R3, x = (x,..., X)) €
R*M. Also, from now on we shall drop the band index [ assuming that we
are dealing with a specific band.

It is well known that in the presence of a driving force .# = 7 (x, k, t),
F =(#,,..., Fy), periodic in k; for i = 1, ..., M, the semi-classical equa-
tions of motion in the (x, k)-space read (see [1.31], [1.4]):

% = vlk,) (1.2.42)
) i=1,...,M.
hk, = 7, (1.2.43)

Note that band transitions are excluded since the band index 1s fixed in the
equations.

If the driving force is independent of the wave vector k, we again write
E= E(x, t) for the negative force per particle charge (see (1.2.22)). If, in
addition, the field E is a gradient field, then, using (1.2.23), we set up the
semi-classical electron ensemble Hamiltonian

M o2
Hix, p.t) = 3, a(};') —qV(x, 1), (1.2.44)
i=1
where we set p = (py, ..., py)- Here
p; = hk; (1.2.45)

denotes the crystal momentum vector of the i-th electron (see [1.4]). The
semi-classical equations of motion (1.2.42), (1.2.43) are then equivalent to
the Hamiltonian equations (1.2.27), (1.2.28) corresponding to the semi-
classical Hamiltonian function (1.2.44).

The semi-classical electron-ensemble Liouville equation reads:

M 1
af+ Y vlk,) grad, f + g,%"'-gradkf =, t>0, (1.2.46)

i=1
where x e R3M, k,e B for i=1, ..., M. We impose periodic boundary

conditions for k;,i=1,..., M:

.f\(_Y, k], iy k"., cray k‘\,f, I) :j'(x,kl,..., _kf1 ey kM’ f], klE f'\'B.
(1.2.47)

The definitions of the electron ensemble position density and of the electron
ensemble current density have to be modified:

%mﬂxn:f fix, k, 1) dk (1.2.48)
BM

Jclass.B(xv b= —q J‘ l.’(k)f(..‘(, k, [) dk “249,
BM

where we set v(k) := (v(ky), ..., v(ky)).
The periodicity of f in k; and the point-symmetry of the Brillouin zone B
imply that the conservation property (1.2.18) and the conservation law
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(1.2.19) also hold for the semi-classical Liouville equation, if the driving force

# is divergence-free with respect to k, i.e. if div,.# = 0 holds.

When the parabolic energy-wave vector relationship

h?|k|?
2m

e(k) = ke R (1.2.50)
for electrons in a vacuum is used, then we obtain v = p/m = hk/m and the
semi-classical Liouville equation reduces to its classical counterpart (1.2.12).

Magnetic Fields

A further extension of the Liouville equation is concerned with the inclusion
of magnetic field effects. Consider a single classical electron, which moves
under the action of an electric field E and of a magnetic field with induction
vector B, ;. The magnetic field generates a contribution to the driving force
# , which is now given by (see [1.4]):

F = —q(E + v x B,). (1.2.51)

The corresponding classical single-electron Liouville equation reads:
of+vgrad f—L(E+0vxB.,)grad,f, >0, (1252
m

where [ = f(x, v, 1), x € R}, v € R2. In the semi-classical case we obtain

0f + v(k) grad f —(E + v(k) x Bg) grady/ =0, 1>0
(1.2.53)

with f = f(x, k, 1), x € R, k € B, subject to periodic boundary conditions on
JB.

1.3 The Boltzmann Equation

For an ensemble of many interacting particles there are two fundamental
difficulties connected with the Liouville equation:

o Models for the driving force, which comprise short range and long range
interactions, are not readily available,

o The dimension of the M-particle ensemble phase space is 6 M, which is
very large in practical applications.

Even disregarding the problem of constructing appropriate driving forces,
the high dimensionality of the Liouville equation, when employed as a
semiconductor transport model, is prohibitive for numerical simulations.
Consider a VLSI-device with 10* conduction electrons in the active region.
Then the Liouville equation for the electron ensemble is posed on the
6 x 10*-dimensonal phase space!
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The main goal of the subsequent analysis will be a reduction of the dimen-
sion of the Liouville equation. This will be accomplished as follows. At first
we shall derive a system of equations for the position-velocity densities of
subensembles consisting of d electrons with d ranging from 1 to M. This
system, called the BBGKY-hierarchy (from the names Bogoliubov [1.9],
Born and Green [1.10], Kirkwood [1.30] and Yvon [1.64]), is obtained by
assuming a certain structure of the interaction field (weak two-particle
interactions) and by integrating the Liouville equation with respect to the
position and velocity coordinates of M — d particles ford = 1,..., M. Then
the formal limit M — oo is carried out and a particular solution of the
hierarchy, determined by a single function of three position, three velocity
coordinates and time, is constructed. This particular solution, based on the
assumption that the particles of a small subensemble move independently
of each other, represents the electron number density in the physical phase
space R} x R, It is the solution of the so-called Vlasov equation, which
can be considered as an ‘aggregated’ one-particle Liouville equation supple-
mented by a self-consistent (mean) field relation. The Vlasov equation is a
macroscopic equation describing the motion of a weakly interacting large
particle ensemble. Usually, it is employed to model the Coulomb interaction
caused by a typical (weak) long range force.

However, when charge transport in a semiconductor is considered on a
sufficiently large time scale, then the motion of the particles is decisively
influenced by strong short range forces, so-called scatterings, or in a fully
classical picture, collisions of particles. For the accurate description of
charge transport in semiconductors the short range interactions of the
particles with their environment (crystal lattice) are usually more important
than short range forces between particles, which only play a significant role
when the particle density is very large. In order to account for these effects,
we shall extend the Vlasov equation and obtain the Boltzmann equation for
semiconductors.

The Boltzmann equation was derived by L. Boltzmann in 1872 as a model
for the kinetics of gases. Its most distinguished feature is the appearance
of a nonlinear and nonlocal ‘collision operator’, which is responsible for
formidable mathematical difficulties in the analytical and numerical treat-
ment. We shall discuss a modification of the collision operator, which allows
a proper description of the motion of charged particles in semiconductors.

The Vlasov Equation

We consider an ensemble of M electrons with equal mass, denote—as in the
previous Section—the position vector of the ensemble by x = (x,, ..., xy)
and the velocity vector by v = (v, ..., ty), where x; € R2, v, e R? are the
position and velocity coordinates, resp., of the i-th electron.

We make the following assumptions:
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(i) the electrons move in a vacuum, or equivalently, the impact of the
semiconductor crystal lattice on the motion is neglected,
(i1) the force field % acting on the ensemble is independent of the velocity
vector, in particular magnetic field effects are ignored,
(iii) the motion is governed by an external electric field and by two-particle
interaction forces.

The first two assumptions are for simplicity’s sake only, they will be dis-

carded of later on. The third is crucial for the derivation of the Vlasov

equation.

We denote the force field per electron charge by E = E(x, 1) (see (1.2.22)),
=(E,,..., Ey), where E; € I3 is the field exerted on the i-th electron (per

unit charge) and set:

M
Ei(x, 1) = Equ(xis t) + 3, Ejn(x;s; X;)- (1.3.1)
o
E.,, denotes the external electric field and E,, the two-particle interaction
field. The ansatz (1.3.1) means that the force exerted on the i-th electron is
the sum of the electric field acting on the i-th electron and of the sum of the
M — 1 two-body forces exerted on the i-th electron by the other electrons
of the ensemble. Moreover, we suppose that the electrons are indistinguish-
able in the sense that the interaction force E,,,, = E,, (x, v) is independent of
the electron indices. Also, by the action-reaction law, the force exerted by
the i-th electron on the j-th electron is equal to the negative force exerted
by the j-th electron on the i-th electron:

Eiixs %) = — Ei(x;5 %), x;, xj € R}, (1.3.2)

For notational convenience we set E, (x, x) = 0 (we shall later on consider
forces E,, (x, v) with singularities at x = y).
The Liouville equation for the joint position-velocity density f = f(x,, ...,
Xags Ups ooy Uy, t) Of the ensemble then reads:

M

Z gradr,fv o Z Eexl(xn t) grdd f

43 T :
_T Z Z Eini(x;, xj)'gradv,f = 0. (1.3.3)

Note that the assumption (1.3.2) implies that the density f is independent
of the numbering of the particles for all times if it is initially, i.c.

Sy ooy X, Vgy ooy Uans 1) = S(Xngtys -5 Xuipgys Unays + -2 Uagarys s
x; € R3, v,e R} (1.3.4)
holds for all permutations m of {1,..., M} and for all times ¢, if it holds for
the initial datum f; = f(¢t = 0), which we shall assume henceforth.

We now set up the joint position-velocity density [ of a subensemble
consisting of d electrons:
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TN s Xty D vmg gy

= Ty o s Xt Biawies Dis 1)
R - g3 -d

X dXgy ooodXpp dvgey ... dvy, (1.3.5)

with 1 <d < M — 1. An equation for /@ is obtained by integrating the
Liouville equation (1.3.3) with respect to 3 (M — d) position and velocity
coordinates and by assuming that f decays to zero sufficiently fast as
|x¢;| = o0, |v;] — o0

d d
S+ Y vograd, SO — 1Y E (1) grad, £
i=1 m =

d d
Z Z ml H - _;' grad f(d) M d)

X div,.f(f J Bl % YO dx, dv )
i=1 Rﬁ* [ra;lr*
=0, (1.3.6)

where we denoted £ = fU"V(x ;L .. Xy Xy Uys o Uy, U, 1) InOXder to
derive (1.3.6) observe that the terms with index i = d + lin lhe sum involv-
ing the outer field E,,, vanish by the divergence theorem. The same holds
true for the terms with i = d + 1 in the sum involving the spatial derivatives
and for the terms with i = d + 1 in the double sum involving the interaction
field E;,,. By (1.3.4) each term with 1 < i < d gives an identical contribution
for each j = d represented by the last sum in (1.3.6).

The equations (1.3.6) for | <d < M — 1 constitute the so-called Bogoliubov-
Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for the classical Liouville
equation (see [1.13]). In general this system of equations cannot be solved
explicitly, however it is accessible to an asymptotic analysis for M large
compared to d, i.e. in the case of small subensembles of a large particle
ensemble. This is particularly interesting for us since in semiconductor phys-
ics one is usually concerned with extremely large charge carrier ensembles.
In order to be able to carry out the limit M — oo at least formally, we
assume that |E, | is of the order of magnitude 1/M for M large. which very
reasonably implies that the total field strength | E,| exerted on each electron
remains finite as M — oo.

For a fixed subensemble size d the equation (1.3.6) then becomes in the limit
M — oo

d d
ﬁr.[(d) it Z Uj .gradxi‘f.(d) - g Z Eex!(xi’ I) .gradr,-f(d)

d
- r; Z IVll(f f MISHIE (5%, %, )dx, dv*)
=0.

g 3 L»D

(1.3.7)
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Intuitively, it is reasonable to assume that the electrons of a subensemble,
which is small compared to the total number of electrons, move indepen-
dently of each other. In terms of the subensemble probability density f
this implies the ansatz:

d
f““(x,, v gy Bpcnmies Uiy B) = n P(x;, v, 1). (1.3.8)
=1

The one-particle density P = f!is obtained from (1.3.7) withd = 1 by using
(1.3.8) withd = 2:

o,P + v-grad P — %Ee"(x, t)-grad, P = 0,

t >0, x e R2, veR}, (1.39)
with
Eeff(x’ t) = Eex[{xs f)

+ f J MP(x .t OEs(x; x,) dv, dx,,
R;‘ uag‘

t =0, xeR:. (1.3.10)

A simple calculation shows that (1.3.8) is a particular solution of (1.3.7) for
arbitrary d € N if P solves (1.3.9), (1.3.10). Equivalently, the solution f,
d € N, of the BBGK Y-hierarchy (1.3.7) can be factored according to (1.3.8),
if the initial data f®(t = 0), d € N, admit such a factorization.

We define:

F(x,v,t)= MP(x, v, t) (1.3.11)
nix, t) = I F(x,v,t)dv. (1.3.12)
R?

The quantities F and n represent the expected electron number densities in
phase space and in position space resp., i.e. F(x, v, ) is the number of
electrons per unit volume in an infinitesimal neighbourhood of (x, v) at time
t and n(x, t) is the number of electrons per unit volume in an infinitesimal
neighbourhood of x at time ¢.

We multiply (1.3.9) by M and obtain the so-called Vlasov equation [1.13],
[1.33]:

o,F + v-grad F — %Ee”'gradv}" =),

x € R, veR3, t >0, (1.3.13)

RJ

X

Eeff(xv [,) = Ecxt(xs t) + J H(X*, t)Einl{xs x*) dx*‘

xeR}, t>0. (13.14)
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The macroscopic electron current density is given by

J = —qJ. oF dv. (1.3.15)

J“,;

The equation (1.3.13) has the form of a single particle Liouville equation.
Many-body physics enters only through the effective field E . which in
turn depends on the number density n (self-consistent ficld modeling). The
characteristics

Fesn D= = En 1) (1.3.16)
m

are the trajectories of electrons moving in the field E_;;. They are the limiting
(x;, v;)-trajectories of the Liouville equation (1.3.3) as M — .

The Pauli principle of solid state physics states that two electrons cannot
occupy the same state (x, v) at the same time ¢ (see, e.g., [1.34], [1.31]). Since
F(x, v, 1) can also be interpreted as the existence probability of a particle at
the state (x, v) at time ¢, we expect

0< Fix,v,1) <1, x e R2, ve R3, >0 (1.3.17)

to hold. It is easy to show by using the characteristics (1.3.16) that upper
and lower bounds of solutions of the Vlasov equation are conserved in time.
Thus, if we require

0< Flx,pi=0<1, x e R3, veR?, (1.3.18)

then (1.3.17) holds and the Vlasov equation satisfies the Pauli principle (an
existence probability F(x, v, f) larger than 1 can formally be interpreted as
a multiple occupancy of the state (x, v) at the time t).

The Vlasov equation is nonlinear with a nonlocal nonlinearity of quadratic
type. It provides a macroscopic description of the motion of many-body
systems under the assumption of a weak interaction caused by a long range
force (see [1.13], [1.31]7, [1.4] for various applications). In particular, it does
not account for scatterings of particles generated by strong short range
forces and, thus, it only represents a useful model on a time scale much
shorter than the mean time between two consecutive scattering events.

The Poisson Equation

The most important long range force acting between two electrons is the
Coulomb force modeling the mass-action law (see, e.g. [1.4]). It is repre-
sented by the interaction field

Eiml(X, ) = —7— |T—1—|3 x,yeR,  x#y. (1.3.19)

The permittivity & accounts for the dispersive effect of the considered host
material.
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We obtain the corresponding effective field from (1.3.14)

X —X

Bz )= Eu(a1) — ey _La; n(x,, r)mg dx, - (1.3.20)
A simple computation shows

div Eyp = div E . — In (1.3.21)

SS

and

rot Eg,=rot E.. (1.3.22)
If the exterior field is vortex-free

rot E,,, =0, (1.3.23)

then the effective field is vortex-free, too, and there are potential functions
Viies Ve such that

E ¢ = —grad, Vy, (1.3.24)

Eext — gradx Vexl (1325)
hold. Then (1.3.21) can be rewritten as

— AV = —AVm—gn- (1.3.26)

The effective potential satisfies a Poisson equation with a right hand side
which depends linearly on the electron number density n.

Assume now that the external field is generated by ions of charge + g, which
are present in the material. Then, again by Coulomb’s law we have

X —X
Eexl(xa I) = 4:8 J\RJ C(x*s t) [;T*lf dx* 5 (1327)
sJRY, Xy

where C(x, t)is the number density of the background ions (in position space
at the time t). We calculate

div E,,, = Fic (1.3.28)
and
. (1.3.29)
&

s

follows. By inserting into (1.3.26) we obtain the well-known form of the
Poisson equation

— AV =p (1.3.30)

where
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p=g(C—n) (1.3.31)
is the charge density of the system consisting of conduction electrons and
positively charged background ions.

The Vlasov equation with the Coulomb interaction field is usually referred
to as Vlasov-Poisson equation.

The Whole Space Vlasov Problem

We consider the Vlasov equation (1.3.12), (1.3.13), (1.3.14) on the whole
position-velocity space R; x R supplemented by the initial condition

F(x, v, t = 0) = F;(x, v), x € R, ve R3. (1.3.32)
By integrating (1.3.13) over R; we obtain the macroscopic conservation law
gon —divJ =0 (1.3.33)

assuming that F decays sufficiently fast to zero as |v| — oc. Integration over
=7 gives the conservation of the total number of particles

J nix, t)dx = J‘ ny(x) dx, t>0 (1.3.34)
R3 R
if J - 0 as |x| » oo. We denoted
ny(x):= .[ Fi(x, v) dv.
LH

Note that the macroscopic electron continuity equation (1.3.33) and the
Poisson equation (1.3.30), (1.3.31) do not constitute a ‘closed’ system of
partial differential equations, since a relation for the current density J in
terms of the potential V. and the number density n is not available yet.
The derivation of such an equation, which describes the current flow in
semiconductors, is the subject of Chapter 2.

A rigorous mathematical analysis (existence, uniqueness and regularity of
solutions) of the Vlasov equation is beyond the scope of this book. We refer
the interested reader to the references [1.21], [1.14], [1.62], [1.5]. Here
we only mention the basic decoupling approach to the construction of a
solution:

(i) Given F'9 = F'%(x, v, 1), compute the number density n'® = n'”(x, 1)
from (1.3.12) and the effective field E'Q} = E'Q}(x, t) from (1.3.14).

(ii) Set E.; = EY} in (1.3.13) and solve the so obtained linear hyperbolic
equation subject to the initial condition (1.3.32). This is done by using
that the solution F'" = F)(x, v, t) is constant along the characteristics

xX=1

: q
U = = Ei?g(xs r)‘
m
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For appropriate initial data the sequence F', obtained by iterating (i), (ii),
can be shown to converge to a limit function, which is a solution of the initial
value problem for the Vlasov equation. The mathematical sophistication
goes into proving bounds for (derivatives of) F and E{; which are uniform
in [ and which allow the passage to the limit as [ — oc. Details can be found
in [1.14], [1.62], [1.5].

Bounded Position Domains

In semiconductor simulation transport equations are usually solved on
bounded position domains, which represent the device geometry. We now
consider the Vlasov-Poisson problem (1.3.12), (1.3.13), (1.3.30), (1.3.31) for
x €, where Q = R? is a bounded convex domain. The velocity variable v
is still assumed to vary in all R?.

Obviously, a boundary condition for (1.3.13) has to be imposed on those
subsets of dQ x R} at which the x-characteristics point into €. These
so-called inflow boundaries are given by

I = {(x,v)|x € 3Q, v e R, v(x) v < 0}, (1.3.35)

where v(x) denotes the unit outward normal vector to dQ at x € Q. The
outflow segments are

I, = {(x,v)|xe dQ veR), v(x)-v>0}. (1.3.36)

Most simply, Dirichlet boundary conditions for the Vlasov equation are
imposed on the inflow segments:

F(x,v, t) = Fp(x, v, t), (x,v)el_, t>0 (1.3.37)

with 0 < Fj, < 1 given.

Clearly, the solution of the one-particle Liouville equation (1.3.13) then still
satisfies the bounds (1.3.17), i.e. the Pauli principle also holds for the initial
boundary value problem for the Vlasov equation. Moreover, the electron
continuity equation (1.3.33) is still valid, however, instead of (1.3.34) we now
obtain by employing the divergence theorem

dj n(x, t) dx —J Fp|v(x)-v|ds(x) dv —'[ Flv(x)-v|ds(x) dv,
dt Jo I I (1.3.38)

where s(x) denotes the surface measure on ¢€). Thus, the total number of
particles is generally not conserved, its rate of change is the difference of the
incoming and the outgoing fluxes. By integrating (1.3.38) with respect to t
and using F = 0 we obtain the estimate:

'[ nix, t) dx SJ n,(x)dx +J J. Fplv(x)-vlds(x) dvdt. (1.3.39)
Q Q I

0
The right-hand side represents a bound for the growth of the total number
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of electrons caused by the inflow which i1s determined by the boundary
condition (1.3.37).

Also, boundary conditions for the Poisson equation (1.3.30) are required.
Usually. mixed Neumann-Dirichlet conditions are imposed. Therefore, we
split the boundary ¢Q into Dirichlet segments ¢Q; and Neumann segments
Q. with 6Qp, 0 0Qy = 0Q, 0Q, N dQy = ¢. We impose

E.c-v=Ey,v onadQy (1.3.40)
Ve = Vo on cQp, (1.3.41)

¢

where E, is a given vector field on ¢Q, and ¥} a given real-valued function
on ¢Q,,.

Neumann segments model insulating device boundaries, artificial bound-
ary segments introduced in order to separate the considered device from
neighboring devices in a VLSI-chip and semiconductor-oxide interfaces
in MOS-devices (see [1.37],[1.51] and Chapter 4 for details). Dirichlet
boundaries represent contact segments on which a bias is applied to the
device.

We remark that the inflow Dirichlet boundary condition (1.3.37) is—from
a physical point of view—not fully compatible with the mixed Neumann-
Dirichlet conditions (1.3.40), (1.3.41) for the Poisson equation. Actually,
Dirichlet inflow conditions should only be prescribed at the ‘Dirichlet inflow
segments’ I'_ N (3Q, x R?) and reflecting boundary conditions on the
‘Neumann inflow segments’ I'_ N (6Qy x R2):

F(x, v, 1) = F(x, v — 2v(x) (v(x) - v), t), (x,v)eI_ N(0Qy x R3)

We refer the interested reader to [ 1.13] for details. An LP-semigroup analysis
of transport operators on bounded position domains can be found in [ 1.15].

The Semi-Classical Vlasov Equation
Instead of taking the classical Liouville equation as basis for the derivation
of the Vlasov equation we can also start out from the semi-classical formula-

tion (1.2.46). When the above assumptions on the external and internal fields
are made, we obtain by proceeding as in the classical case:

O F + v(k)-grad, F — %Ee”- grad, F = 0,

x € R2, k € B, t>0, (1.3.42)

R3

Xx

E..(x,t) = E,.(x, t} + J‘ n(x,, OE;(x, x,) dx,,

xeR:  t>0 (1.343)

with the electron number density
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n(x, r) = j F(x, k, t)dk. (1.3.44)
B

As before, B denotes the Brillouin zone of the semiconductor crystal and
v(k) the electron velocity corresponding to a specific energy band.

The position-wave vector number density F is assumed to satisfy periodic
boundary conditions in k:

F(x, k, t)= F(x, —k, 1), xe R, k € B, t>0. (1345

The distinguished feature of the semi-classical Vlasov equation is that it
takes into account the (quantum) effects of the lattice periodic potential
generated by the ions of the semiconductor crystal lattice.
The (semi-classical) electron current density is defined by

J(x, )= —q I v(k)F(x, k, 1) dk. (1.3.46)
B
Clearly, the semi-classical Vlasov-Poisson equation can also be posed on a

bounded position domain Q. The Dirichlet boundary condition on the
inflow segments then reads:

F(x, k, t) = Fp(x, k, t), (x,kyel_, t>0 (1.3.47)
with F}, given and
I = {(x, k)|x € dQ, ke B, v(x) v(k) < 0}. (1.3.48)

The current continuity equation and the conservation of the total number
of particles (see the case Q = R2) holds as in the classical case. Also, the
Pauli principle is satisfied for all times, if it is satisflied initially and on the
inflow boundaries.

Magnetic Fields— The Maxwell Equations

So far we neglected the effects of magnetic fields in the derivation of the
classical and semi-classical Vlasov equations. Assume now that a magnetic
field with effective induction vector By = B.;(x, t) € R? exerts influence on
the motion of the electron ensemble, too. Then, by setting B,,, = B in the
classical Liouville equation (1.2.53) we obtain the Vlasov equation

&F + v-grad F — %(Ee,-,- + v x By)-grad,F =0, (1.3.49)

supplemented by the effective field equation (1.3.14).

The clectric and magnetic field quantities are not independent, their relation-
ship is governed by the Maxwell equations (see, [1.26], [1.51]), which for
an arbitrary medium read:
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divD =p (1.3.50)

div B, =0 (1.3.51)

rot E= —d,B (1.3.52)

rot H =06,D + J, (1.3.53)
supplemented by the material equations

D= E (1.3.54)

Bi.,=uH. (1.3.55)

The three-dimensional field quantities have the following meaning:
D: electric displacement vector
B,,,: magnetic induction vector
E:  electric field vector
H: magnetic field vector
J; total current density vector

ot*

1 denotes the permeability of the medium and, as before, &, the permittivity.
We assume that the medium is isotropic and homogeneous and, thus, ¢ and
¢, are constant positive scalars.

We insert (1.3.54) into (1.3.50) and set E = E

godiv Ep = p- (1.3.56)
Setting B,,4 = B gives

div By =0 (1.3.57)

rot Ey; = —0,Begs (1.3.58)
and by inserting (1.3.55), (1.3.54) into (1.3.53) we obtain

Lrot Be = 8,6, Ee + Jisy- (1.3.59)

Assume now that the external field is generated by positively charged ions.
Then the equations (1.3.49), (1.3.56)—(1.3.59) constitute a ‘closed’ system of
partial differential equations when supplemented by (1.3.31), (1.3.12) and by

Jo=ill s (1.3.60)

..» denotes the current density caused by
the flux of the positively charged ions with the number density C = C(x, 1).
A mathematical analysis of the so-called Vlasov-Maxwell system can be
found in [1.22].

We remark that a semi-classical Vlasov-Maxwell system can easily be de-
rived by combining the ‘ansitze’ of this and of the previous paragraph.

where J is given by (1.3.15) and J,
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Collisions— The Boltzmann Equation

The Vlasov equation accounts for long range interactions of particles. Short
range interactions, which occur in the form of ‘collisions’ of the particles
with other particles of the ensemble and with their environment. were
neglected so far. These collisions have the effect that the particles are
instantaneously scattered from one state to another in such a way that
their velocity vector and, consequently, their momentum and wave vectors,
change extremely fast, while the change of the position vector takes place
slowly.

The goal of the following considerations is to derive an extension of the
Vlasov equation, which includes a description of the long range interactions
and a statistical account of the scattering events. The starting point for
a phenomenological derivation of this equation, formulated first by L.
Boltzmann in 1872 for the description of nonequilibrium phenomena in
dilute gases, is the observation that the rate of change of the number density
F = F(x, v, t) of the ensemble due to the convection caused by the effective
field E.; vanishes along the characteristics (1.3.16) when collisions are
neglected:

dF
(I)mm = 0. (1.3.61)

It is reasonable to postulate that the rate of change of F due to convection
and the rate of change of F due to collisions balance:

dF dF
dt SN ) 1.3.62
(dr )conv (dt )coll ( 3 )

Explicitly, (1.3.62) reads:

&.F + v-grad F — LE . -grad,F = (d—F) . (1.3.63)
m dt =

where the effective field E g satisfies (1.3.14).
The rate P(x, v" — v, t) of a particle with position vector x, at the time ¢, to
change its velocity vector v’ into v due to a scattering event is assumed to
be proportional to the occupation probability F(x, v', t) of the state (x, v')
at time t. Also, in order to account for the Pauli principle, it is assumed to
be proportional to 1 — F(x, v, t), which is the probability that the state (x, v)
is not occupied at the time ¢.-We thus set

P(x,v' = v t)=s(x, v, v)F(x, v, t)(1 — F(x, v, 1)), (1.3.64)

where s is the so-called scattering rate. More precisely speaking, s(x, v', v) dv’
is the transition rate for an electron with position vector x to change its
velocity vector v’ belonging to the volume element dv’ (around ¢’) to v.
Clearly, the scattering rate is determined by the physics of the considered
scattering mechanism. Those scattering mechanisms, which are important
in semiconductor physics, will be discussed below.
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The rate of change of the number density F due to collisions at (x, v, t) is
given by the ‘sum’ of the rates of particles being scattered from all possible
states (x, v') into the state (x, v) at the time ¢t minus the sum of the rates of
the particles being scattered from the state (x, v) into any possible state (x, v')
at the time ¢:

(ﬁ) mm”:f [P(x,v' = v, t) — P(x,v— v, 0)] dv.
dt Jeon B3 (1.3.65)

We insert (1.3.64) into (1.3.65), set

dFr
Q(F] i (I)mn (1.3.66)

and obtain

Q(F)(x, v, t) = J [s(x, v, v)F'(1 — F) — s(x, v, v")F(1 — F')] dv’,
R (1.3.67)

where we denoted:
F = F(x, v, 1), F' =F(x,v,1). (1.3.68)

Q is called collision operator and Q(F) collision integral.
The Boltzmann equation (1.3.63) then can be written in the form

aF+ugm¢F—%£mgm¢F=Qm1

xe R, ve R}, t>0 (1.3.69)

supplemented by the effective field equation (1.3.14). When the Coulomb
force is used to model the long range interaction, then (1.3.69), (1.3.14),
(1.3.12) is often referred to as Boltzmann-Poisson problem.

We remark that the presented derivation of the Boltzmann equation is
purely phenomenological. A more rigorous approach for gas-dynamics can
be found in [1.13].

In addition to the nonlinearity caused by the self-consistent field, the colli-
sion integral Q(F) introduces another quadratic nonlinearity, which is non-
local in the velocity direction. A rigorous mathematical analysis of the
Boltzmann equation—even with a given electric field—is extremely com-
plicated and by far beyond the scope of this book. Below, we shall only
sketch an existence proof and discuss some qualitative properties, in par-
ticular those which are important for the derivation of the drift diffusion
approximation (see Chapter 2). We refer the reader to the book [1.13] for
a wealth of information on the (gas-dynamical) Boltzmann equation and for
a huge collection of references. Also, for the mathematically oriented reader,
we mention the recent paper [1.23], where existence, globally in time, of
solutions of the (gas-dynamical) Boltzmann equation in the field-free case
E. = 01s shown.
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The Semi-Classical Boltzmann Equation

For the modeling of transport in semiconductors the Boltzmann equation
in the semi-classical formulation is usually employed in order to incorporate
the quantum effects of the semiconductor crystal lattice as discussed in
Section 1.2. Therefore, we start out with the semi-classical Vlasov equation
(1.3.42), (1.3.43) and include the collision effects as above. We obtain:

¢, F + v(k) grad F — gEL.ff-gradkF = Q(F),
x e R2, keB, t>0, (1.3.70)
where the collision integral Q(F) is given by

Q(F)(x, k. t)

= f [s(x, k', K)F'(1 — F) — s(x, k, k) F(1 — F)]1dk'.  (1.3.71)
B

We denoted
F = F(x, k, 1), F'=F{(x, k1) (1.3.72)

Clearly, the periodic boundary condition (1.3.45) has to be imposed.

Also, the (semi-)classical Boltzmann-Poisson problem can be posed on a
bounded position domain Q = R2. The boundary conditions on 6 are the
same as for the Vlasov-Poisson equation.

We impose the initial condition

F(x, kit =0) = Fi(x, k), (1.3.73)
which is assumed to obey the Pauli principle, i.e.
0 Fiix, k<1 (1.3.74)

holds. In the bounded position domain case the inflow datum F,, also has
to be between 0 and 1.

We shall now sketch the existence and uniqueness proof for the Boltzmann-
Poisson problem in the whole space case as presented in [1.44]. The proof
proceeds by a decoupling iterative approach similar to the existence proof
for the Vlasov-Poisson problem. Only the collision integral has to be taken
care of accordingly.

We set F”) = 0 and construct a sequence of approximations {F"},_;, as
follows. Given F", we compute the number density

n® _j FO dk
B

and the effective field EY; by inserting '’ into (1.3.14) using the Poission
kernel (1.3.19). Then we have
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q
h
= Quin(F'™Y, FV) (1.3.75)

subject to the initial condition (1.3.73) and the periodic boundary condition
on ¢B, where

Qi (PR, Fy

& F"*Y 4 p(k)- grad FU*V — 2 EW. - grad, FU*1

:f [s(x, k', )FO'(1 — FO*V) — s(x, k, k')FO*1(1 — FO')] dk’.
B (1.3.76)

We used the obvious notation
FY = FO(x, k', 1).
Clearly. Qy;, can be written as
Q1in(F“+1" F‘“) — Am(l _ FU’+1)) — BW pu+1) (1_3_77]
where
AD = f s(x, k', k)F" dk’,
g (1.3.78)
B = J. s(x, k, k')(1 — F") dk’.
B

The problem (1.3.75) is a linear transport equation, which can be solved by
the method of characteristics or by semigroup theory.
The characteristic form of (1.3.75) reads

(1+1)
cﬁir g (A”’ 4 B(Il)FtHll — A‘” (‘1_3"]9)
¢

along the characteristics determined by E(:
%x=uv(k),  hk= —qE%. (1.3.80)
Since s > 0 we conclude A" = 0 from (1.3.78) if F’ = 0. Integration of
(1.3.79) gives F*'V = 0. For G"'V := | — F'*! we obtain from (1.3.79)
dG(f+l]
dt

If F'" < 1 we obtain B” = 0 and G"*V = 0 follows by integrating (1.3.81).
Thus, if the initial datum F, satisfies the Pauli principle, all iterates F'" satisfy
the Pauli principle for all times ¢ > 0 and, by passing to the limit [ - w0, we
conclude that the Boltzmann equation conserves the upper bound 1 and the
lower bound 0, i.e. the solution F satisfies

0< F(x, k1) < 1, t=0. (1.3.82)

+ (4D 4+ BY)GU+D = BO, (1.3.81)

It was actually shown in [1.44] that the sequence {F"}, . converges to the
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unique solution of the Boltzmann-Poisson problem if the transition rate s
is sufficiently regular and positive.

Conservation and Relaxation

We integrate the collision integral (1.3.71) with respect to the wave-vector k
and obtain

j O(F) dk _J j [s(x, k', k)F'(1 — F)
B BJB
— s(x, k, k')F(1 — F')] dk’ dk = 0. (1.3.83)

This implies the conservation law (1.3.33) and—for the whole space prob-
lem—the conservation of the total number of electrons (1.3.34). Collision
processes neither destroy nor generate particles.

Another important property of the collision operator is related to the
relaxation of the state of the ensemble towards local thermodynamical
equilibrium. The so-called principle of detailed balance asserts that the
local scattering probabilities vanish for all states (x, k), (x, k') in thermal
equilibrium (see[1.4], [1.8]), i.e.

s(x, k', k)F,(1 — F,} = s(x, k, k')F,(1 — E}) (1.3.84)

holds, where F, denotes the equilibrium number density. It follows from
standard statistical mechanics that F, is given by the Fermi-Dirac statistics

F(k)=F, (‘“’1}%) (1.3.85)

where ¢(k) is the considered energy band of the semiconductor, ¢, denotes

the Fermi-energy, kg the Boltzmann constant, T the lattice temperature and
1

14 e"

Fplu) = (1.3.86)

(see [1.31]).
From (1.3.84) we obtain the following property of the scattering rate s by a
simple calculation:

k') — e(k
It was shown in [1.44] that the condition (1.3.87) on s is sufficient and
necessary to guarantee that the null manifold of the collision operator Q
consists of Fermi-Dirac distributions, i.e.

Q(F)=0, O0<F<l (1.3.88)

implies that F is of the form (1.3.85) for some Fermi-energy —oo < & =
ep(x, 1) < oo 1f (1.3.87) holds.

)s(x, k', k). (1.3.87)
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The quantity
A0, ) = j s(x, k. k') dk’ (1.3.89)
B

is called collision frequency. It measures the strength of the interaction at
the state (x, k) corresponding to the transition rate s. Its reciprocal
1
Alx, k)
is the relaxation time describing the average time between two consecutive

collisions at (x, k). We shall see below that 7 represents the time scale on
which the density F relaxes towards an equilibrium state (1.3.85).

(X%, K= (1.3.90)

Low Density Approximation
In many semiconductor device applications the particle density F is small,
1.e.

0 Flo K, tyzc] (1.3.91)

holds. Very often the quadratic terms in the collision operator are ignored
(set to zero) in these cases. Then the so obtained simplified linear collision
operator is given by

Q. F)(x, k1) = j [s(x, k', k)F' — s(x, k, k")F] dk’. (1.3.92)
B
Obviously, Q, also satisfies the conservation property
J Q. (F)dk = 0. (1.3.93)
B

The principle of detailed balance now gives
s(x, k', k)F. = s(x, k, k')F,. (1.3.94)

In the context of the low density approximation the Fermi-Dirac distribu-
tion is usually approximated by the Maxwellian distribution, which reads

| _ -
M(k)=N*exp(_%>, 5 e (J exp(—;(k])r)dk) |
B & 5

(1.3.95)
With F, = M(k) we obtain from (1.3.94)
s(x, k', KYM(K") = s(x, k, kK')M(k), (1.3.96)

which is equivalent to the condition (1.3.87) obtained for the nonlinear
collision operator under the assumption of the Fermi-Dirac equilibrium
distribution.
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We easily conclude that the scattering rate s can now be written as

s(x, k, k') = o(x. k', k)M (k') (1.3.97)
where ¢ is symmetric with respect to k and k”:
o(x, k k') = p(x, k', k). (1.3.98)

The function ¢ is called collision cross-section.
[t is now ecasy to show that the null-space of the low-density collision
operator Q, is spanned by the Maxwellian:

Q. F)=0e F(x, k. t) = n(x, t) M (k). (1.3.99)

By using (1.3.97) and (1.3.98) we can now write Q, in the form

0,(F)(x, k, r):j dx, k', k) [M(K)F' — M(K')F]dk'.  (1.3.100)
B

The Relaxation Time Approximation

It is particularly interesting to investigate whether the solutions of the
Boltzmann equation converge to an equilibrium state as t — oc. Since this
analysis is very complicated for the nonlinear collision operator Q as well
as for the low density approximation Q, we shall carry out another simplifi-
cation of the collision integral. When the initial datum F, is close to a
multiple of the Maxwellian it is natural (and mathematically convenient) to
approximate F’' in (1.3.100) by n(x, t)M(k’). By using the definition of the
relaxation time 7 given by (1.3.90) we obtain

1
5 — _ : A 3
QulF) (% ks 1) = = (FOx, ) = MUK)n(x, 1), (1.3.101)

Note that the so-called relaxation time approximation collision operator Qp
is linear and local in the wave vector k. When the characteristics x = x(1),
k = k(t), which satisfy

x = v(k), x(t=0)=xq
hk = —qE . kit =0) = ko

are introduced, then the Boltzmann equation with the collision operator Q,
takes the form

d 1
—F = ——(F — Mn) (1.3.102)
dt T
along (x(1), k(1)). By straightforward integration we obtain !
t

F(x(t), k(t), 1) = e_”’(F,(xo, ko) + :_J n(x(s), s)yM(k(s))e*® ds) ,
’ (1.3.103)
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where —for the sake of simplicity— we assumed the relaxation time 7 to be
constant. Also, the electron density n = [ F dk is assumed to be known in
(1.3.103). It is now an easy exercise to show that

F(x(t), k(t), t) — n(x(t), )M (k(t)) ~ e ", t— (1.3.104)

holds, ie. the relaxation time t is the scale on which F returns to the
equilibrium density from the perturbed state F; along the characteristics.
In the collisionless case (Vlasov equation) there is no mechanism, which
forces the state of the particle ensemble to relax towards thermodynamical
equilibrium in the large time limit. This is also expressed by the fact that
the Vlasov equation is time reversible for static exterior fields while the
Boltzmann equation is not. The relaxation behaviour of the solutions of the
Boltzmann equation is precisely caused by the effect of collisions. This is
represented mathematically by the famous H-Theorem (see [1.13] for the
gas-dynamics case and [1.44] for the semiconductor case).

Polar Optical Scattering

Typically, the transition rates, determined by the physics of the considered
scattering process in the semiconductor crystal are highly nonsmooth func-
tions of k, k' (more precisely speaking they are, in general, distributions).
As a typical example we present the transition rate for the polar optical
scattering process modeling collisions of electrons with phonons, which are
quantized vibrations of the semiconductor crystal lattice (see [1.31] for
details on the physics). It is of the following form (see [ 1.43]):

Spolk, k') = ﬁiL;(,lz((No + 1)d(e(k’) — e(k) + hw,)
+ Nyo(elk') — e(k) — hwg)), (1.3.105)

where ha,, is the (constant) energy of a polar optical phonon, N, is the
phonon occupation number given by the Bose-Einstein statistics

t —1
N, = (exp (:%) e 1) (1.3.106)
B

2hapy (11
Sonn =£‘”—”(———). (1.3.107)

2 .
8n hey \e, &

and

Here ¢, denotes the vacuum permittivity, &, the high frequency relative
permittivity and &, the low frequency relative permittivity of the semi-
conductor. é stands for the Dirac distribution.
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Particle-Particle Interaction

The transition rate s, which models particle-particle scatterings depends on
the density F itself (see [ 1.28]) and, consequently, this scattering mechanism
introduces another nonlinearity into the Boltzmann equation. The corres-
ponding model is of the form

spplF10x, k, k')
:J 'f H(lk — K'|, |ko — ko) Fo(1 — Fo)é, 0, dkj dko, (1.3.108)
BJB

where H is nonnegative, Fy = F(x, kg, 1), Fy = F(x, kg, t),
O, = Olko + k' — kg — k), 0, = 0le(ky) + e(k") — elky) — e(k)).

When s,,[F] is inserted into the collision integral, it becomes apparent that
the corresponding collision operator is nonlinear of fourth order. Particle-
particle scattering is only relevant for very high local densities. It is neglected
in most practical situations.

We remark that there are various other scattering mechanisms which play
a role in semiconductor physics (see [1.48]). For a particular practical
application the relevant mechanisms have to be identified, the corresponding
scattering rates then have to be added to obtain the total scattering rate
modeling all the considered interactions.

1.4 The Quantum Liouville Equation

In ultra-integrated semiconductor devices the characteristic length of the
active region is usually under 1 um. Very often these devices are operated
at large applied voltages, which leads to extremely high local electric field
strengths. With today’s technology electric field peaks of 10° V/cm are
usually reached. It is well-known that potential variations of this order of
magnitude lead to quantum effects, which cannot be properly described by
the so far presented classical or semi-classical transport models. On the
other hand, there is a group of semiconductor devices, whose performance
explicitly relies on a quantum mechanical phenomenon, namely the tunneling
effect (e.g. the so-called tunnel diode, see [ 1.57]).

For these reasons and, in particular, since tomorrow’s semiconductor tech-
nology promises an even higher degree of miniaturization and integration,
it is of great importance to devise transport models capable of describing
quantum phenomena, which are still sufficiently simple to allow for reason-
ably efficient numerical simulation. In this Section we shall consider a
quantum transport model based on Wigner functions. Introduced by E.
Wigner in 1932 as quantum equivalent of classical particle distribution
functions, Wigner functions were closely scrutinized by theoretical physicists
but only recently their value for semiconductor simulation was discovered.
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We start the presentation with the basic quantum mechanical equation of
molion.

The Schrodinger Equation
In a quantum mechanical set-up the meotion of an electron is described by
the Schrodinger equation:

ihc,y = Hy, (1:4.1)

where the quantum Hamiltonian operator H for a single particle in a
potential field

E(x,t) = —grad, V(x, 1) (1.4.2)
is given by
hz
H=——A —qV(x,1) (1.4.3)
2m

(see, e.g. [1.34], [1.25]).
Note that the quantum Hamiltonian is obtained from the classical Hamil-
tonian function (1.2.26) by inserting the momentum operator

p = —ihgrad,. (1.44)

A solution ¥y = (x, t) of the Schrédinger equation is called a wave function.
The square of its modulus

Nquan *= Ilfllz (145)

represents the quantum mechanical probability density for the position of
the electron, i.e. the number

j [P (x, 1)|* dx (1.4.6)

is the probability of finding the electron in the subset 4 of the position space
=7 at the time t.
Note that [ [i|* dx is_conserved by the motion. Multiplying (1.4.1) by
the complex conjugate y of the wave function v, integrating over R; and
taking imaginary parts gives:
1
Z| Wwrdx=o0 (1.4.7)
dt R2
zssuming that the potential V is real valued (as we shall do henceforth) and
that s decays sufficiently fast to zero as [x| — co. Thus,

~

. Rguan(Xs 1) dx = J Pasn, (%) %, a1 = [y | (1.4.8)
; R:

o 1y
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follows, where i, is the initial datum for the Schrodinger equation
Yr(x, 1 =0)=yr(x). (1.4.9)

Clearly, (1.4.8) is the quantum equivalent of (1.2.18) in the single electron
case.
We calculate the rate of change of the probability (1.4.6):

1 j [ e = f Wab + Fag) dx
- %f (WHY — HY) dx
ih = e
g —ML (VAP — Y AY) dx

(bars denote complex conjugation).
Since YAy — Yy Ay = div, (¢ grad, .y —  grad, ) we obtain

d 1 .

EJ‘AWP d..\'—aj; div J ., dx (1.4.10)
with

ihg ,

Jquun = ZT;(lp gradxw - l/’ gradxlab)' (141 1)
By the divergence theorem

ij [ |2 d.\':lj Jquan " V4 ds (1.4.12)

dt ) 4 qJ)éea

holds, where v, is the outer unit normal to 0 A. Thus, the vector J,,,, is called
quantum mechanical electron current density. From (1.4.10) we obtain the

conservation law for the one-electron case:
—div J =10, (1.4.13)

which is analogous to the classical equation (1.2.19).
The eigenvalue problem for the Schrodinger equation
hz

— Ay —qV(x)\ =¢ 4.
o AW — gV (x)y = &y (1.4.14)
is obtained by looking for time-periodic solutions of the form exp[ — (i/h)&t]
¥ (x). The spectral values ¢ of (1.4.14) are the possible energies of the electron
(cf. Section 1.2).

~
q(r”quan quan

Tunneling

We shall now present the maybe most simple, explicitly solvable model for
the tunneling of a particle through a potential barrier. Therefore we consider
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the one-dimensional steady state Schrodinger equation (1.4.14) with Vi(x) =
—(m/qg)o(x). 1.e. we assume that the potential barrier is infinitely high and
infinitely thin. In Section 1.2 we analyzed the motion of classical electrons
in the same potential field and showed that they are reflected at the barrier
x = 0 no matter how large their velocity. As we shall see now their quantum
mechanical behaviour is entirely different.

We remark that we proceed analogously to [1.6] in this paragraph. i
The equation of motion for electrons with the energy ¢ now reads:

glﬁm — o) = —ey, —00 < X< (1.4.15)

L

. h ; .
with u = f ¢ > 0. It can be shown that (1.4.15) is equivalent to
1

2
E+ap =0, x#0 (1.4.16)
Y(0—)=y¢(0+) (1.4.17)
2
L 04) — Y, (0-)) = ¥(0) (1.4.18)

(see Problem 1.20).
By solving (1.4.16) we obtain:

/2¢ /2¢
a exp (fi\"uz—bx) + b exp (r\fvc) x<0

/2¢ 2 '
e cxp(—i\‘fx) + d exp (i\/g.\‘), x>0

U
We now assume that a monoenergetic beam of particles, represented by a
right moving wave of the form exp(—iy/2¢x/p), is aimed at x = 0 from
x = —oo. We then expect a reflected left-moving wave for x <0 and a
transmitted right-moving wave for x > 0. This givesa = 1 and d = 0:

exp(ﬁi _vc)+hexp (i\.\‘). x<0
{

W(x) = (1.4.19)

K H

cexp(—f\/zax), x>0
It

The interface conditions (1.4.17), (1.4.18) give

,u\/%f—l (_:,11,/28{;1,/21:+i) (1421)

ute+1 7 2ute + 1

W(x) = (1.4.20)

R :=|bh|? is the probability that a particle of energy ¢ is reflected at the
barrier, it is therefore called reflection coefficent. T = |¢|? is the probability
that the particle is transmitted through the barrier, it is called transmission
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coefficient. We calculate
1 2%
R=a s = 217 :
2ute + 1 2pte 4+ 1

Obviously R + T=1holds. AlsoR=1,T=0fore=0and R=0,T =1
for & = oo. Thus, a particle with zero energy (corresponding to zero velocity)
is reflected and a particle with infinite energy (infinite velocity) is transmitted.
These are the only energy values for which the classical and the quantum
cases agree. For all energy values 0 < & < oo there is a nonzero reflection
probability and a nonzero transmission probability. Also, note that in the
classical limit # — 0, which implies ¢ — 0, we obtain R = 1l and T = 0.

(1.4.22)

Particle Ensembles and Density Matrices

The motion of a particle ensemble consisting of M electrons is described by
the Schrodinger equation (1.4.1) with the M-body Hamiltonian

h? M
H = ﬁ—z A, —qV(xy, ..., Xp 1), (1.4.23)
2mi=

where x; € R} denotes the position vector of the i-th electron.

As in the classical case we shall in the sequel denote the position vector of
the ensemble by x = (x,,..., x;) € R2™. Then the quantum probability
ensemble position density n,,,, and the quantum ensemble current density
J quan are defined as in (1.4.5) and (1.4.11) resp. The conservation law (1.4.13)
also holds true for the electron ensemble. In the conservation property (1.4.8)
the integration has to be stretched over R2™.

For future reference we introduce the density matrix p, corresponding to the
wave function  of the M-electron ensemble, which is defined by

plr, s, ) =y(r, OY(s, 1), r,seRM, (1.4.24)
The diagonal elements represent the ensemble position density

P(X, X, 1) = Ngaa(x, 1) (1.4.25)
and the ensemble current density is given by

Jquan(X, 1) = Z%(grads — grad,)p(-, *, t)],=s=x - (1.4.26)
Differentiating (1.4.24) with respect to ¢ and using the Schrodinger equation
(1.4.1) gives the evolution equation for the density matrix p:

ihd,p = (H, — H,)p, (1.4.27)

where H,, H, stand for the Hamiltonian acting on the s and, resp., r
variable. With the M-body Hamiltonian (1.4.23) the equation (1.4.27) reads
explicitly
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o h?
op= " 2m

(Asp — Ap) — q(V(s, t) = Vir, t)p. (1.4.28)

This equation is the Heisenberg equation of motion.

We refer those readers, who have a deeper interest in quantum mechanics
to the textbooks [1.25], [1.34]. For the mathematically oriented reader
interested in analytical results on the Schrodinger equation (which has been
the subject for an intensive mathematical scrutiny), we recommend [ 1.46].

Wigner Functions

We shall now reformulate the quantum equations of motion in Kinetic form.
Therefore we introduce the change of coordinates

h
N .. 5 e 1.4.29
1 \c+2mn_ S=X Zrnn ( )
in the density matrix p and set
h h
u(x, n, r}—p(x+2mn,x2mn, I). (1.4.30)

In the sequel we shall often consider Fourier transforms of functions which
depend on 5. Since (fi/2m)n has the dimension of length, we conclude that 5
has the dimension of inverse velocity, and, thus, the dual variable of # has
the dimension of velocity. Therefore, we denote it by v and define the Fourier
transform

Fg(n) = f g(v)e ™" dv (1.4.31)
m3M

of a function g = g(v), g: R*™ - C. The inverse Fourier transform of a
function h = h(n), h: R;™ — C reads

1 ,
F thv) = TE)WJ hin)e™ " dy. (1.4.32)
R3v

The Wigner function w, which corresponds to the wave function  (or,
equivalently, to the density matrix p given by (1.4.24)) is defined as the
inverse Fourier transform of u with respect to »:

w:i=%F lu (1.4.33)

or, explicitly:

1 h h o
wix, v, 1) = WL&;" p(x + ﬂn, x— ﬂn. t)e "tdn.  (1.4.34)

It was introduced by E. Wigner in 1932 (see [1.63]) and, as we shall see
below. its construction constitutes a major break-through in the quest for a
kinetic formulation of quantum transport.
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Using (1.4.25) we immediately derive that the mean value of the Wigner
function w with respect to the velocity v is the quantum electron ensemble
position density

Hganlts 1) = J w(x, v, t)dv, (1.4.35)

since u(x,n = 0,1) = Fw(x,n =0,1) = p(x, x, 1) holds. Also, we obtain from
(1.4.26), (1.4.29):

Jyuan = —q grad, pl,—, . (1.4.36)

quan

By taking the gradient of (1.4.31) with respect on 5 we conclude
grad, #g(n) = —iF (vg)(n). Thus,

Jyuan(X. 1) = —¢q J vw(x, v, t) dv (1.4.37)
B3

follows. The first order moment of the Wigner function w with respect to
the velocity v, multiplied by —g¢. is the quantum current density of the
electron ensemble. Thus, as far as the zeroth and first order moments are
concerned, the Wigner function behaves as the classical particle distribution.
However, as will be demonstrated later on, the Wigner function does not
necessarily stay nonnegative in its evolution process. Unlike in the classical
case, it can therefore not be interpreted as a probability density. In the
literature it is often referred to as ‘quasi-distribution’ of particles. For
precisely this reason Wigner functions were not employed for practical
simulations until recently, when they were rediscovered as the maybe only
quantum transport model for semiconductors which is accessible to numer-
ical simulations. On a theoretical physics level, however, Wigner functions
have been intensively scrutinized (see [1.58], [1.12]. [1.20]).

The Quantum Transport Equation

The evolution equation for the Wigner functions is obtained by transform-
ing the Heisenberg equation (1.4.28) for the density matrix p to the (x, )-

coordinates given by (1.4.29):
h h
V[x+— —V{x—-n,
(Y tom™ r) (\ 2m'! r)
u=>0

h

Gu + idiv,(grad, u) + ig
(1.4.38)

and by Fourier transformation
- (I
w4 v-grad. w+ =0,[V]w=0,
m

x € RM, ve RM, t>0. (1439
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The operator 0,[ V] is defined by
(F0,LVIwW)(x,n, 1)

V( e t) y ( h r)
X =N — X — 1,
: 2
2m . m (Fw)(x, 1. 1) (1.4.40)

=im

or, explicitly:
(O,[VIw)(x, v, 1)

h
im J‘ J' ( ’1 r) V(x “om™ [)
“1\1 L*Hl

~ RnpM h
x e dp' dp. (1.4.41)

An operator, whose Fourier transform acts as a multiplication operator on
the Fourier transform of the function, is called a linear pseudo-differential
operator and the multiplicator is called the symbol of the pseudo-differential
operator. For the mathematical analysis of this type of operators we refer
the reader to [1.52], [1.59], [1.60]. [1.61].

Thus, 6,[ V] is a pseudo-differential operator with the symbol

h h
V .\‘+2—?r;r,l — .\‘—,)—m-q,t
. m_ - (1.4.42)

h

and the quantum Liouville equation (1.4.39) is a linear pseudo-differential
equation.

The local term ¢,w + v-grad, w describes the motion of free electrons just
as in the classical case, the nonlocal term (g/m) 0,[ V' ]w, which generally
couples all velocities and frequencies, models the acceleration by the field

E(x,t) = —grad, V(x,1). (1.4.43)

It is the quantum analogue of the term g/m grad, V- grad, f. which appears
in the classical Liouville equation (1.2.12). Formally, the symbol satisfies

(8V), =i grad, V-n (1.4.44)
and in the formal limit # — 0 the equation (1.4.38) reduces to

wix, v, 1)

(OV)(x, n, t):=im

cu + idiv,(grad, u) + i%gradr V-nu=20, (1.4.45)
which is the Fourier transformed Liouville equation

dw + v-grad, w + %grad_, V-grad,w=20 (1.4.46)

since # ~(inu) = grad, (F 'u).



44 1 Kinetic Transport Models for Semiconductors

Thus, the quantum Liouville equation becomes the classical Liouville equa-
tion when the so-called classical limit 7 — 0 is carried out formally. Later
on we shall make this statement mathematically precise.

By the above derivation the quantum Liouville equation follows directly
from the Schrodinger equation. Many-body physics enters through the
number of coordinates (3M position and 3M velocity coordinates for an
M-clectron ensemble) and through the form of the many-body potential
V. Thus, the quantum Liouville equation is by no means simpler than
the many-body Schrodinger equation, actually, the number of coordinates
doubled. As we shall see in the next Section, its advantage is the kinetic form,
which is accessible to a one-body approximation in which many-body
physics only enters through an averaged potential. Also, the kinetic equation
allows a formulation on bounded position domains, subject to (more or less)
physically reasonable boundary conditions. This is of particular importance
for the numerical simulation of semiconductor devices.

Very often, the following generic notation for pseudo-differential operators
is used: For the operator

1 .
A )= 2 iflv=v')'n 5!
(A9)©) = 55w L;-« _f s a(mg(v')e dv' dn (1.4.47)
with the symbol a = a(n), one writes
a (: gradl.) g:= Ag. (1.4.48)

Then, the convection operator ,[ V] can be expressed as

h grad, h grad,
¥ gr“.‘.r)_v(x_‘graar)

2mi 2mi

va

V(x
) o i
0,[V]=im "

= (8V), (_.\',I‘grad,_., t) (1.4.49)
1

and the quantum Liouville equation (1.4.39) takes the form

h grad, h grad,
Vix+ —, 11— V]x - —,t
2mi 2mi
~w=0,

ow+ v-grad, w + ig—— p

(1.4.50)

Pure and Mixed States

We consider the whole space problem for the 3M-dimensional quantum
Liouville equation (1.4.50) subject to the initial condition

w(x, v, t = 0) = wy(x, v), xR, ve RM, (1.4.51)
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The solution of this initial value problem is the Wigner function

w(x, v, t)

1 h h .
= . - _ iven 4.
27 M _L,}w ¥ (-“ T m” f) 1 (x om T r) e dn (1452

for all times t = 0 if and only if the initial datum w; satisfies

1 h ho\
} (V) = ——— _— = P—— LU
wi(x, v) ™ JR;W 17 (x + i n) i,b,(x i n)e dn (1.4.53)

for some function , = ,(x), which is the initial wave function of the state
. (1.4.53) is equivalent to the following conditions on the initial density
matrix:

22

(@ ——Inp(r.s)=0, (b) pr.s)=ps7). (1.4.54)
ords

where we set
or(r, 8) == Fwi(x, n) (1.4.55)

evoking the coordinate transformation (1.4.29). Note that (1.4.54) (b) is
equivalent to w; being real valued.

If(1.4.52) holds, then the quantum state of the electron is fully described by
the single wave function 1y = (x, t). In quantum physics this is referred to
as a pure quantum state.

Clearly, for initial data w,, which do not satisfy (1.4.54), the solution w of
the quantum Liouville equation is not of the pure state form (1.4.52), and,
thus, a more general solution representation has to be sought.

Let ¢ = yV(x, 1), y'* = ¥ (x, 1) be two solutions of the Schrédinger
equation. By a simple computation it is immediately verified that the product
w'H(r, 1) (s, 1) solves the Heisenberg equation (1.4.27) and by linearity we
conclude that all linear combinations of such products of the form

e 5.0 = Z p,j!,b‘“{r, Oy (s, 1) (1.4.56)
i

are solutions of (1.4.27), too. A solution of the quantum Liouville equation
is then obtained by setting r = x + (h/2m)n, s = x — (h/2m)n and by inverse
Fourier transformation. To solve the initial value problem (1.4.50), (1.4.51),
the coefficients p;; and the wave functions " at t = 0 have to be adapted
to the initial function w;. We must require

py(r, s) = !Z, Pr,jl/’}“(")!)b}'ﬂ(s)- (1.4.57)
]

This gives a clear indication on how an L*-theory for the quantum Liouville
equation should be set up. For the following we assume

wy € LH(RM x RM) (1.4.58)
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and choose a complete orthonormed system of L*(R*)-functions

}“},g .- Then {Y(r)yi(s)}, je~ is a complete orthonormed system in
L (RM x R3M) (see, e.g., [1. 46]). We compute the initial density matrix p;
from the initial datum w; by using (1.4.55) and expand p, into the Fourier
serics (1.4.57). We oblain the Fourier coefficients p;;:

Py = J“w N i, WP (s) dr ds. (1.4.59)
The next step is to solve the Schrodinger equations

ihor = —%% Ay — gVi(x, ), x € R3M, t>0 (1.4.60)

Wix, t = 0) = YiP(x), xeR*M (1.4.61)

for = y/"(x, 1) and I € N. Then the solution of the initial value problem
for the quantum Liouville equation is obtained by employing the coordinate
transformation (1.4.29) and by Fourier transformation:

1 h . h
Ax. v — . n S— 0 S
w(x, v, t) B UEEN i L}“ 1/} (x -+ m ", t) s (x o ", r)

e dy. (1.4.62)

This solution w exists for all t = 0 (as convergent series in L2(R3M x R3M))
if the Schrodinger equation (1.4.60) has a solution globally in time for all
initial data in L*(R**). Conditions on the potential V, which guarantee the
global existence of L? wave-functions for L? initial data can be found in
[1.46]. [1.29].

It 1s casy to show that the solution w remains real valued for all t > 0, il 1t
is real valued initially (which we shall assume henceforth). For such initial
data a more convenient solution representation can be obtained. By a simple
functional analytic argument (see {] 38]) we conclude the existence of a

complete orthonormal system of L?(R*™) functions {¢* |, _+, such that
py(r, s) Z () M (s) (1.4.63)
holds with
Ay = J. pi(r, )g®(r)g®(s) dr ds. (1.4.64)
B3 x B3N

By proceeding as above we obtain the diagonal representation of the density
matrix

prys, t)= 3 Lo®(r )¢¥(s, 1) (1.4.65)

ken

and of the solution of the quantum Liouville equation
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h
wix, v, t (k) (x 4 —, r)
( )= 3M kez'N ,[Hq ¢ 2m i
h :
k v
x ¢ ’(x - !)e 'dn,  (1.4.66)

4

where ¢ = ¢®)(x, t) denotes the solution of the Schrodinger equation
(1.4.60) with initial datum ¢® = ¢*(x).

We conclude from (1.4.66) that the general L2-solution of the initial value
problem for the quantum Liouville equation can be written as an infinite
sum of Wigner-functions. Thus, the quantum Liouville equation is capable
of describing arbitrary mixed quantum states, which cannot be represented
by a single wave function.

It is an easy exercise to show that initially orthonormal wave functions
remain orthonormal for all times. Since the functions ¢*(x) are orthonormal
in L2(R3M), the wave functions ¢*(x, t) are orthonormal for ¢ > 0 and we
obtain from Parseval’s inequality

oy -5 Dl z@zv xmavy = |01l L2@zm x vavys t>0. (1.4.67)
Since for every function g € L*(R2M)

| F gl L2y = 21)*M2 [ gl L2gmzw) (1.4.68)
holds (see [1.46]), we conclude from (1.4.66), (1.4.67):

Iw(-, *, Oll L2mam xmavy = Wyl L2gav < mam), t>0. (1.4.69)

The L?-norm of the solution of the quantum Liouville equation is time-
invariant.

An analysis of the steady states of the quantum Liouville equation, also
based on the representation (1.4.62), can be found in [1.18].

We now formally integrate (1.4.66) term by term over R}™, use

J g(v)dv = (Fg)(n = 0)
R3M

and obtain
Nguan(X, 1) = J‘R w(x, v, t) dv = kz Al ®(x, 1)]*. (1.4.70)
3m €N
Another formal term by term integration, now over R}, gives
J Rpuan(X ) dx = Y, A :J Biysian, 1(%)-@%. (1.4.71)
]'"3"’ keN R3M

Here we used [psw [¢(x, 1)|* dx = 1.(1.4.71) establishes the conservation of
the integral of the quantum ensemble position density for mixed states.
We remark that the main ingredient for the existence of n,,,, and for the

mathematical justification of the performed term by term integrations is the
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assumption /4, = 0, Vk € N, which by (1.4.70) guarantees the nonnegativity
of the position density n,,, (see also [1.38]). We shall come back to this
point later on.

Il the potential V' is continuous in x and if w decays sufficiently fast as
|x| — o0, |v| — oo, we obtain from (1.4.42):

j O, [Viwde = 0V (Fw)x,n=0,1)=0. (1.4.72)
R3M

Thus, integrating the quantum Liouville equation with respect to v gives the
conservation law

qo,n —div J, ., =0 (1.4.73)

quan guan
for the quantum current density.
We refer the mathematically oriented reader to the reference [1.38] for a
rigorous presentation of the results of this paragraph based on a functional
analytic framework for the Schrodinger and the quantum Liouville equa-
tions. A different approach for bounded potentials can be found in [1.39].

The Classical Limit

We consider a quadratic potential of the form
Vix,t) = 5xTA@t)x + b(t)- x + c(1), (1.4.74)

where A(r)is a realvalued symmetric 3M x 3M-matrix, b(t) a real 3M-vector
and ¢(t) € R. The superscript ‘T denotes transposition. Evaluation of the
symbol (8 V), defined in (1.4.42) gives

(OV)(x, n, t) = i(A(t)x + b(t)) n (1.4.75)
and the quantum Liouville equation becomes
ow+ v-grad, w + %(A(l)x + b(t))-grad, w = 0. (1.4.76)

Thus, in the case of a quadratic potential (linear field) the quantum Liouville
equation and the classical Liouville equation are identical. Clearly, this does
not hold true for more general potentials.

However, since (1.4.44) holds for sufficiently smooth potentials, we are led
to the conjecture that limits as i — 0 of solutions of the quantum Liouville
equation are solutions of the classical Liouville equation, if the potential V
is sufficiently smooth. Results of this type were proven in [1.38], [1.39] by
employing functional analytic methods. Here we shall present a more basic
technique based on asymptotic expansions. We shall proceed somewhat
formally, but a justification of the expansion method is possible even without
much mathematical sophistication.

For the sake of simplicity we consider the one-dimensional motion of an
clectron in a static potential ¥ = V/(x), which is assumed to be infinitely
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differentiable. Then, by formal power series expansion, we obtain

) 2k+1 2k+1
i e N (it o P
SV )(x, ) ~ i , _ 2k 1.4.77
OV ~1 Y wor s 1y et M L
where we set u = h/m. We are therefore motivated to expand the solution
w = w" in powers of u?, too. We make the ansatz

Q0

u'(x,m, 1) ~ Y ug(x, . typ?t (1.4.78)

for the Fourier transform 1" = % w". The coefflicients u,, are as yet unknown.
In order to keep matters as simple as possible we assume that the initial
datum w; and, consequently, u, = % w, are independent of A.
We insert the expansions (1.4.77), (1.4.78) into the Fourier transformed
quantum Liouville equation (1.4.38) and obtain by equating coefficients of
equal powers of u*:

E'uo .qdV

Bl S =0,
Qg + i——— 5% B + lm Ty (x)nug

uo{x': ", = 0) = u[(xa 77)
fork =0and

(1.4.79)

Cllyy q dVv
U“ZkWLIFt( T ;Td‘( )t

q k 'TZHI d_zHlV(x)
T m& ARI+ 1) dxE
uy(x,n, t =0) =

for k > 0. We set wy, = # 'u,, and obtain equations for the coefficients w,,
of the expansion

o (1.4.80)

wh(x, v, t) ~ Wy, v, Hu* (1.4.81)

i

by inverse Fourier transformation of (1.4.79), (1.4.80). The leading term w,
satisfies the classical Liouville equation

q dV(x)
Wy + V0,Wy + — .

Wo(x, 1, t = 0) = wy(x, v)

d,wy =0,
(1.4.82)

and the higher order coefficients solve inhomogeneous versions of the class-
ical equation:

dV
Wy, + 00, Wy, + :r Ta(:}( Wa, = Ry,
' (1.4.83)

Wor(x, 0, t =0) =
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where the right-hand side R,, depends on v-derivatives of wy, ..., w,,_, and
on x-derivatives of V.

The presented expansion procedure is only formal. It was shown in [1.53]
that approximations of arbitrary high order, say O(u*") for r € N, are obtained
by cutting the expansion (1.4.81) at the index k = r — 1, if the potential and
the initial datum are sufficiently smooth. This approximation result can
casily be extended to more dimensions. For weaker convergence results
(under less stringent regularity assumptions) we refer to [ 1.38], [1.39].

So far, the theory for the classical limit of the quantum Liouville equation
in the case of nonsmooth potentials is not well developed. However, an
asymptotic analysis for a highly irregular potential, namely the one-
dimensional barrier V(x) = —(m/q)d(x) discussed in the Paragraph on tunnel-
ing, was presented in [ 1.53]. It is shown that the solutions of the correspond-
ing quantum Liouville equation tend to the classical limit (total reflection,
see Section 1.2). The quantum corrections, e.g. the tunneling current, are of
order f%.

To get a feeling for the “actual size’ of A, the quantum Liouville equation has
to be scaled appropriately (see Problem 1.29 and Section 1.6). Then it
becomes apparent that the ‘scaled Planck constant’ is indirectly proportional
to the square of the characteristic device length. Quantum effects become
more pronounced as the active device length decreases.

Nonnegativity of Wigner Functions

At first we consider a pure quantum state with wave function (-, 1) €
L*(R}") and Wigner function w = w, given by

H'.n,l‘f(x- U, f)

1 h h ;
= s = s w-n
(2m)*M _La"w l,b(x i m'" {)w(x m'" r)e . {1484)

A well-known result (see [ 1.27]) asserts that w,, is nonnegative everywhere
if and only if either y = 0 or if { is the exponential of a quadratic in x, i.e.

fr(x, 1) = exp(—leA(r)x —a(t) x + B(t)) . xeR*™, >0,
2 (1.4.85)

where A(t) is a complex 3M x 3M-matrix with a positive definite symmetric
real part, o(r) is an arbitrary complex 3M-vector and f3(t) € C. Since the proof
of this result is instructive we shall present it here for the one-dimensional
case.

Theorem 1.4.1: Let

1 h h .
wy(X, v) = ZTJR Y (x 2 Zm'?) Y (-\‘ = Zmn) e dn,

xeR, veR, (1486
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be the Wigner function of the state y € L*(R). Then
wy(x, v) = 0, xeR,, ve R, (1.4.87)

holds if and only if either there are complex coefficients 2, o,y with Re 4 > 0
such that \r is given by

“

(a) W(x)=exp ( —i.\‘z —otx + )') : xelR (1.4.88)
OF
(b) ¥ =0. (1.4.88)

Proof: At first note that iy = 0 if and only if wy, = 0. Now let iy =y, , | be
given by (1.4.88) (a). Using the well-known formula

iyl += 2‘1{ z2i2 4 - Eﬂ-’ r
e AR s 5 “4, ReiA>0, Re [— >0 (1.4.89)
iF] L A

for z e C, we can easily compute the Wigner function wy, =:w; , . from
(1.4.86). It is of the form

Wi 505, D) = €450 2 ), (1.4.90)

where p, is a real polynomial of degree two in x and v.
To establish the necessity of (1.4.88) we assume w, = 0, yy # 0. A simple
argument shows that

J J wy(x, V)W, o(x, v) dx dv

1 o
— o J (X)W 2 0(x) dx
T

holds for z e C. Since w,, = 0, w,, # 0 and since w, . , is of the form (1.4.90),
the left hand side of (1.4.91) is positive. Thus, the right hand side is nonzero
for z € C and, consequently, the entire function

F(z) = J Pr(x)e” 57 iy (1.4.92)
R

(1.4.91)

has no zeros in C. We estimate (1.4.92) using (1.4.89).

IF(2)? < W] 2amys/me™e ™ (1.4.93)

and conclude from Hadamard’s Theorem (see, e.g., [ 1.50]) that F is of the
form

F(z) = g®="tbete, (1.4.94)

We set z = —iy and obtain from (1.4.92) that F(iy) = e ° ¢ is the
Fourier transform of ¥(x)e *". Since the only class of functions whose
Fourier transforms are exponentials of quadratic polynomials are of that
tvpe themselves (see, e.g. [1.46]), we conclude (1.4.88) (a). []
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The class of potentials V, which generate wave functions of the type (1.4.85)
can easily be determined by inserting (1.4.85) into the Schrodinger equation.
A simple computation shows that V(x, t) is quadratic in x, i.e. it is of the
form (1.4.74). As we already know, the quantum Liouville equation reduces
to the classical Liouville equation for such potentials and the preserva-
tion of the nonnegativity for arbitrary initial data is immediate. The more
interesting—and quite striking—part of the result, however, is the necessity
of (1.4.88) and, consequently, of the class of quadratic potentials for the
nonnegativity of the Wigner function of a pure state.

The situation for mixed quantum states, ie. for arbitrary initial data
wy e L2(RIM x R3M) for the quantum Liouville equation is more compli-
cated and a necessary condition for the nonnegativity of the solution w has
not been obtained yet.

A sufficient condition for the nonnegativity of the electron position density
Nguans NOWever, can easily be obtained from the representations (1.4.66) and
(1.4.70). At first we remark that the coefficients 4, are the eigenvalues of the
operator R;: L*(R*™) —» L*(R*™) defined by

(R, f)(r) = J

R3

py(r, s)f(s) ds (1.4.95)

(see [1.38]). The function p,;, which is the initial density matrix of the mixed
state, is called positive semi-definite, if the integral operator R, is positive
semi-definite, i.e. il 4, = 0, Vk e N.

By (1.4.70) the positive semi-definiteness of p, is sufficient to guarantee the
nonnegativity of the electron density ng,,, for x e R}™, t = 0.

For potentials more general than the quadratic (1.4.74) we cannot expect an
initially nonnegative solution of the quantum Liouville equation to remain
nonnegative for all time, ¢t = 0. In spite of the nonnegativity of the electron
position density for positive semi-definite initial density matrices a fully
probabilistic interpretation of the quantum Liouville equation is therefore
not possible. This fact was quite a deterrent for the practical use of Wigner
functions. Only recently they were employed for semiconductor device
simulations out of sheer need of a quantum transport model, which is
simple enough to allow a reasonably efficient numerical solution. The results
obtained are very convincing (see [ 1.497], [ 1.32]) and further research on the
quantum Liouville equation is ongoing.

An Energy-Band Version of the Quantum Liouville Equation

So far the presented quantum transport model does not account for the effect
of the crystal lattice on the motion of the electrons. For semiconductor
simulation it is desirable to employ a transport model, which is capable
of describing quantum effects like tunneling and which also contains a
description of the crystal lattice structure like the semi-classical Liouville
equation of Section 1.2. The model presented below was introduced in [1.1].
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We consider a single electron in the (fixed) energy band & = «(k), defined
for k in the first Brillouin zone B of the semiconductor (and extended
periodically to B7). Then the semi-classical Hamiltonian is given by

H(x, k, t) = (k) — qV(x, t). (1.4.96)

Note that the position vector x and the crystal momentum vector p = hk
are canonically conjugate.

By the correspondence principle of quantum mechanics (see, e.g., [1.40])
the quantum mechanical Hamiltonian operator in wave vector formulation
is obtained by substituting the position operator i grad, for the posi-
tion variable x in the Hamiltonian function (1.4.96). The corresponding
Schrodinger equation (in wave vector formulation) then reads formally:

ih o) = [e(k) — qV(igrad,) 1, ¥ = ik, t). (1.4.97)

The pseudo-differential operator V(i gradk} will be defined below. We as-
sume that the wave function  is periodic in k with the periodicity of the
reciprocal crystal lattice L. Clearly, the reason for this assumption is the
periodicity of the energy band & = g(k).

Therefore, we can expand ¢ into a Fourier series and, hence, its Fourier
transform is a discretely defined function on the direct lattice L:

Yk,) =Y Yix.)e™*  keB (1.4.98)
xelL

WX, z)zlj bk, e * dk,  xel. (1.4.99)
|B| |

Here, | B| denotes the volume of the Brillouin zone.
We now define the potential operator V(i grad,) by

A

(V(i grad,)f) (k) = Y V(x)f(k')ex &%) gk’ (1.4.100)

|B| B xeL

for / = f(k), k e B.
The Schrodinger equation in space representation is obtained by Fourier
transforming (1.4.97) using (1.4.98), (1.4.99):

ih ¢ = [e(—igrad,) — gV(x, t) ]y, Yo=(x. 1), (1.4.101)
where we denoted
(e(—1 grad,)f)(x) = L Y e(k)f(x")e™ =) dk (1.4.102)
|B| B xelL

for f = f(x), x € L.
In order to define the corresponding Wigner function we set up the density
matrix

plr, s, t) = yr(r, (s, t), (r,s)e L x L, (1.4.103)

which satisfies the Heisenberg equation
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ih é,p = [e(—i grad,) — e(—i grad,)

—qVi(s,t) + qV(r.t)]p, (r.s)e L x L. (1.4.104)
Similarly to the vacuum case we introduce the coordinate transformation
Y v
r:x+5, s=_\'-§ (1.4.105)
and define the function
Vv Vv
X Vs t)i= pil Xihimg X = B 1.4.10
u(x, v, t) p(\+2r > ) ( 6)

for x € 1 L and for all v which can be represented as a difference of two points
in L. Since the grid, on which u lives, is not rectangular in the (x, v)-space,
it is convenient to introduce additional gridpoints such that (x, v)e L x L
and to set u = 0 on these (artificially introduced) points initially. We remark
that this only simplifies the notation. It has no effect on the solution since
u remains zero on the additional gridpoints for all times if it is zero there
initially.

The Wigner function is then defined as the Fourier transform of u with
respect to v:

: 1
wix, k, )= Y u(x,v)e™", xesL, keB. (1.4.107)
vel

It satisfies the following pseudo-differential equation

i 1
oW+ k+ grdd —& k—l, grad, |+qV x+L, grad,
h 2i 2i

|
—qV(x—%gradk)]w=0. XEEL' ke B, (1.4.108)

which, in explicit notation, reads:

1 ; M
ot i g [ B (64 ) o (5-5)
i 1))

x e hywix k') dk' | = 0.

(1.4.109)

The solution w of (1.4.109) subject to an initial condition w(t = 0) = w, is
the quasi-distribution of the electron in the phase space 5L x B. As usual,
the electron position density is given by

n(x, ) = j wi(x, k, t) dk, X € ;L (1.4.110)
B
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and the electron current density
J(x, )= —q j v(kyw(x, k, t) dk. (1.4.111)
B

The band-diagram quantum Liouville equation (1.4.108) has two properties,
which are different from the vacuum quantum Liouville equation (1.4.50).
Firstly, the admissible values of the position vector x are discrete (more
precisely, they are restricted to 5 times the crystal lattice L) and the k-vector
is restricted to the first Brillouin zone B of the crystal. Secondly, the equation
(1.4.108) is nonlocal in the position vector x as well as in the wave vector k.
The nonlocality in x is introduced by the band-diagram & = &(k).

We remark that the derivation of the band diagram quantum Liouville
equation is based on the Hamiltonian operator

Hy = ¢(—igrad, ) — gV(x, t),

obtained formally from the semi-classical Hamiltonian function
e(k) — gV(x, t) by employing the correspondence principle. It can be shown
that Hpg is an approximation for the ‘full’ quantum Hamiltonian H; — gV,
where H,, given by (1.2.35), represents the quantum effects of the periodic
lattice potential. The approximation quality deteriorates if the motion of
the electron is not confined to the given band & ([1.56]).

Obviously, it does not make sense to carry out the classical limit 4 — 0 in
(1.4.108). In order to analyze the relationship of the full quantum band
diagram transport model (1.4.108) to the semi-classical single electron
Liouville equation

of+ % grad, ¢(k)-grad, f + g grad, V-grad, f =0,

xeR3, ke B, (14.112)

which is subject to periodic boundary conditions on B, both equations have
to be appropriately scaled first. Following [1.1] we introduce the scaling
dpe iy el Ay Lmdll,  Beof
Xg to Xg
| , (1.4.113)
“s(ks) = 78(]{)! Vs(xs) S V(Y)
&g Vo
where we denoted scaled quantities by the index ‘s’. x, is the length of the
active region of the considered semiconductor device and [1is a characteristic
lattice spacing of L (for the sake of simplicity we assume that the grid-point
distances of L in all three directions are of equal order of magnitude,
otherwise we would have to scale the three components of k separately).
Note that the volume of the Brillouin zone is of the order of magnitude 1/1°.
The scaling factors t,, V;, &, stand for a characteristic observation time,
characteristic potential value and maximal value of ¢ on B resp.
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With this scaling the equation (1.4.108) reads (after dropping the index ‘s’):

i o o
w, + x[ae (k + 2 gradx) — ae (k — 5 gradx) (1.4.114)
o a
+ bV | x+ —grad, | — bV | x — - grad, ) |[w=0,
2i 2i
where the dimensionless constants are given by
: Voto!
a=t, g=folel gy Vofol (14.115)
Xo hx, hx,

For comparison, the scaled semi-classical Liouville equation (1.4.112) is of
the form

f. + a grad, e(k)- grad, f + b grad, V-grad, f = 0. (1.4.116)
For a typical tunneling diode the following scaling factors may be chosen
%5 = 104, [=10"""m, g =10""4&, (1.4.117)
qVy = 10718 ], s = W7,
Then the constants o, a, b are
x =~ 0.01, axl1, bx~0.1. (1.4.118)

Usually, o is small while a and b are constants of the order of magnitude 1.
Physically, a small value of « means that the characteristic device length is
large compared to the crystal lattice spacing. Thus it makes sense to consider
the limit of the scaled equation (1.4.114) as o — 0 while the constants a, b
are kept fixed. We remember that the equation (1.4.114)is posed on the phase
space

xeL =oaL,, keB (1.4.119)

where the scaled Brillouin zone B has a volume which is of the order of
magnitude 1 and L, is the crystal lattice scaled by 2I. Thus, the lattice
spacing of L, is of the order of magnitude 1.

It is apparent now that three different limits have to be carried out simulta-
neously in (1.4.114) in order to obtain the scaled semiclassical transport
equation (1.4.116):

(i) «— 0 ‘in the lattice’. The lattice oL, becomes finer as o — 0 and we
expect the discretely defined Wigner functions w to converge to a
function defined on R} x B.

(ii) o — 0 ‘in the band operator’

ai o o
;[a (k + 5 gradx) — E(I\ % grddx):l,

which tends formally to the differential operator a grad, &(k)- grad,.
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(111) 2 — 0 in the potential operator

bi ;
o V{x+ —2—_ grad, | — V| x — i grad, ) |,
o 2i 2i

which tends formally to the differential operator b grad, V(x)- grad, .

For sufficiently smooth energy bands and potentials we then expect the
solutions w = w* of (1.4.114) to converge to the solution of (1.4.116). A
rigorous mathematical treatment of the one-dimensional case can be found
in [1.54].

For numerical simulations it is desirable to derive an energy band quantum
transport model, which is simpler than (1.4.114) but still capable of modeling
quantum effects like tunneling. The maybe most intriguing way to achieve
this is to perform the limits (i) and (ii) but to leave the potential energy term
unchanged. The transport equation obtained in this way then reads

bi
w, + a grad, e(k)-grad, w + _II:V(X + ;gradk)
o i
- V(xA;,,gradk)]w=0, xeR:, keB. (1.4.120)

We remark that the equation (1.4.120) is—even for pure quantum states—
not equivalent to the Schrodinger equation.

For a mathematical analysis of (1.4.120) (coupled with a self-consistent
potential model, see Sections 1.3 and 1.5) we refer to [1.16], [1.17].

A many-body version of the energy band quantum transport model can
ecasily be derived by starting out from the many-body Hamiltonian (1.2.44).
Since the derivation does not give new insights we do not present the details
here.

We conclude this Section with the remark that—similarly to the classical
case—magnetic field effects (and spin effects) can also be taken into account
in setting up the quantum Liouville equation. Since the models are highly
complicated (particularly when the spin is included) and since they are not
employed in practical semiconductor device simulations we only refer to
[1.3] for the derivation and mathematical analysis of the electromagnetic
gquantum Liouville equation for electrons with spin.

1.5 The Quantum Boltzmann Equation

The application of the quantum Liouville equation, which is the quantum
analogue of the classical Liouville equation, to the modeling of many-body
systems involves the same problems as in the classical case. Firstly, realistic
models for the many-body potential, which comprise long range and short
range interactions, are generally not available. Secondly, the dimension of
the phase space on which the M-particle quantum Liouville equation is
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posed, equals 6M, which is by far too large for numerical simulations in
practically relevant applications.

In this Section we shall derive single particle approximations of the quantum
Liouville equation, which contain a self-consistent potential equation to
account for the many-body effects. Just as in the classical case presented in
Section 1.3 we shall at first consider long range forces only and derive the
corresponding quantum Vlasov equation. It has the form of a single particle
quantum Liouville equation supplemented by a Poisson equation for the
effective potential, when the particle interaction is modeled by the Coulomb
force. Then we shall discuss short range interactions (scattering events),
which lead to the quantum Boltzmann equation.

For the derivation of the quantum Vlasov equation we shall proceed simi-
larly to the classical case. We shall set up the quantum analogue of the
BBGK Y-hierarchy and use the Hartreec approximation to obtain an equa-
tion for the one-body density matrix whose Fourier transform with respect
to the dual velocity variable is the quantum Vlasov equation. Short range
interactions will be incorporated as in the classical case, namely by a
collision integral operator, which appears on the right-hand side of the
quantum Boltzmann equation.

Subensemble Density Matrices

We consider an ensemble of M electrons of equal mass m, whose motion is
governed by the Schrédinger equation (1.4.1) with the M-body Hamiltonian
(1.4.23). The ensemble density matrix p is defined by

DAY vy Bigpy Sipy 1B L)
=Y O san 0)s s € R (1.5.1)

where  is the wave function of the ensemble. We recall that p satisfies the
Heisenberg equation (1.4.27). For the following we shall assume that the
electrons of the ensemble are indistinguishable in the sense that the density
matrix remains invariant under any permutation of the - and s-arguments,
i

BT 5505 T Bt v S B} = Plicnys v s Py St =5 Srpnys L)
(1.5.2)
holds for any permutation 7 of the set {1,..., M} and for all r,, s, € R* t = 0.
The condition (1.5.2) is satisfied if either the wave function ¥ is antisymmetric
Y(Xygy ooy Xpgs t) = SEN(RIW (X rc1ys -+ 5 Xganys B Yu, Vx, t=0
{1.5.3)

or if it is symmetric

Yx g, oo Xag 1) = Y (Xpigys - - - s Xeanys 1) Vm, Vx;, t=0.
(1.5.4)



1.5 The Quantum Boltzmann Equation 59

The property (1.5.3) holds for ensembles of Fermions and (1.5.4) for en-
scmbles of Bosons (see [1.34]). The former represents the Pauli principle of
gquantum mechanics mentioned in Section 1.3, which prohibits the double
occupancy of states, 1.c. the wave functions of Fermions satisfy

W01 pevns Xpfat) = O if X=X for i, (1.5.5)

J

Since the particles considered in this book (electrons and holes) are Fer-
mions, we shall assume (1.5.3) and, consequently. (1.5.2) to hold henceforth.
Note that, by the Schrodinger equation, the potential V has to satisfy = °

V%15 o os Xaga 1) = VXppqys o0 5 Xugys 1) Ve, ¥Yx, t=0
(1.5.6)

for an ensemble of Fermions. It is easy to show that the anti-symmetry of
i and consequently (1.5.2) are conserved in the evolution process if (1.5.6)
holds.

To model the motion of subensembles we shall now introduce subensemble
density matrices.

The density matrix corresponding to a subensemble consisting of d particles
is obtained by cvaluating the cnsemble density matrix p at r,=s; for
i=d+1,..., M and by integrating with respect to these coordinates:

Py oy Mo sasliysit])

I_J\ p(rl,...,!‘d, ud+1,..., LIM, Sl’ ..... S d.ud+1,...,uM, l)
R3M - d
X dugyqy ..o, diy. (1.5.7)

The trace of p represents the quantum electron position density of the
d-particle subensemble:

AN K mmies Bigo) = PR bty 2w T T sowme KoL) (1.5.8)

quan

The subensemble quantum electron current density is given by

J(dl

quan(xl!"'! Xd,[}

if
— %(gradsm - grad,,nm)p(d)( feeg e aas t)l,(dnzstda:xldl (1_5.9)

where we set r' = (ry, ..., 1), 89 = (51,...,8;) and x¥ = (x4, ..., X,).
Clearly, the indistinguishability property (1.5.2) is inherited by the sub-
ensemble density matrices, i.e.

() — i)
PP 000 s Fas BisinnnnSan 8) = P Fgtaysooon Taiiys Bui)s +vvs Sopdje

(1.5.10)

holds for all permutations ¢ of {1,...,d} and all r,, s, € R*, t > 0.
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The Quantum Vlasov Equation

As in the classical case we assume now that the potential V is the sum ol an
external potential and an internal potential stemming from two-particle
interactions:

M 1 .
ViXps oo s Xggs ) = ¥ ol 8) + = Z Z Vi (X015 X;), (1.5.11)
= /

<=1 j=1

where V,_, is symmetric

Vi (X0 X;5) = Vin(x5. X)), L=l weilN (1.5.12)

The factor § in (1.5.11) is necessary since each particle pair is counted twice
in the sum representing the accumulated two-particle interactions.

The Heisenberg equation of motion for the ensemble density matrix p then
reads:

f’l"' M M
ih atp =T Z (As;p Arlp) — 4 Z exl(gh t) — ctl(rl* t])p
=1
q M M
_E,Z Z a5t 5;) — Vi 1)) (1.5.13)

We remark that the ensemble is assumed to move in a vacuum and that
magnetic field effects are ignored at this point.

We set u, = 5= r, for I=d+ 1, ..., M in the equation (1.5.13) and inte-
grateover R} x -+ x R . Assummg that p decays to zero sufficiently fast
as || — oo, Ia,l — o0, We obtam by using the definition of the subensemble
density matrix p'¥ given by (1.5.7) and the indistinguishability property
(1.5.10y:

h2 L
Iﬁ (:?Ilo(d) — =l Z (As;p(d) - Afgf)(d))
- Z ( xt(“" ” ext(rh r))p{d)

d
—gq(M — d) Z J [V,
=1 R3

Vol u Xl ™ dis,, (1.5.14)
for1 <d <M — 1, where we denoted

@) — G B s Sis e e San Uy D). (1.5.15)

Px

The system of equations (1.5.14) constitutes the quantum equivalent of the
BBGKY-hierarchy presented in Section 1.3. As in the classical case, it is not
possible to solve the system exactly for finite M, therefore we shall again
consider the limit M — oo for small subensembles. Then, at least a particular
solution can be obtained. Clearly, this limiting procedure is reasonable since
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we are interested in a single particle type approximation (d = I) of the
quantum Liouville equation for large electron ensembles.

Analogously to the classical case, we assume that the two-body interaction
potential ¥, is of the order of magnitude 1/M as M — oo which implies that
the total potential generated by each particle

V;.mt‘.xl' vy va t) - Z mt(‘(l! Lo + V;xt(\h I) 1 “<\ lg M

remains finite as M — 0.
For a fixed subensemble size d we obtain by going to the limit M — 20 in
(1.5.14),

2 d
ih 8,p® = *;m Y (Ap = A0 — g Z (Vexas1: 1)
ext(rfﬁ (d)
—q Z J — Vipelry, u ) Mp Y du,, . (1.5.16)

As in the classical case we now assume that the particles in the subensemble
move independently from each other (which, again, is reasonable for small
subensembles). This is reflected by the so-called Hartree ansatz (see [1.7]):

d
PN, ooos Biu8is 2oen 83 =[] Rl 55.9). (1.5.17)
i=1

We obtain an equation for the one-particle density matrix R := p'') by
setting d = 1 in (1.5.16) and by employing the ansatz (1.5.17) ford = 2:
hz

ih ¢,R = __ZE(ASR — A,R) — q(Vege(s, 1) — Vege(r, )R,

7, 5 R3, t>0 (1.5.18)

with the effective potential relation
Ve, 1) = Vo, 1) j MR(x y D) Vi, x, ) dx, . (1.5.19)

It is now an easy exercise to show that a particular solution of (1.5.16) for
arbitrary d is given by (1.5.17), if R satisfies (1.5.18), (1.5.19).

We multiply (1.5.18) by the total number of particles M, introduce the
coordinate transformation

h h
-y — 1.5.20
r—x+2 N, 5§ =X 5 ( )

and obtain
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h h
Vere x‘*'zn;’?»f — Veer -"—z—m'?,f
=1,

h
xe R, nemr,, >0, (1.521)

¢, U + idiv,(grad, U) + ig

where we set
U(x,n,t) = MR(r, s, t). (1.5.22)

Inverse Fourier transformation of (1.5.21) with respect to n gives

oW +v-grad, W+ L0, [V IW=0, xeR}, veR3, t>0,
" (1.5.23)

where the velocity v is the dual variable of n and W := % ~'U. The pseudo-
differential operator 0, is defined in (1.4.41).
We have

MR(x, x,t) = U(x,n =0,1) = f Wi(x, v, t) dv
R
and, thus, the effective potential equation (1.5.19) can be rewritten as
Veelx, t) = Vo (x, 1) + f n(Xy, t) Vind(x, x,.) dx,
R2,

xeR), t>0, (1.524)

where
n(x, t) = J W(x, v, t)dv, xeR2, t>0 (1.5.25)
&

denotes the quantum electron number density. The macroscopic quantum
current density is given by

Jix, ) = ﬁqJ. vWi(x, v, t) dv, xeR2, t> 0 (1.5.26)
®3

The equation (1.5.23) supplemented by the effective potential relation (1.5.24)
i1s called quantum (or nuclear) Vlasov equation (see [ 1.41]). Analogously to
the classical case it has the form of a single-particle quantum Liouville
equation. Many-body effects only come in by the equation (1.5.24) for the
effective potential, in which the electron number density n enters.

The quantum Vlasov equation is a nonlinear pseudo-differential equation.

The symbol
h h
Vet’f(x 5 om" I) = V;rr(-\' “om f)

Woeeehn(X, 1, 1) = im—
(OVere)n(x, 1, 1) = im I




1.5 The Quantum Boltzmann Equation 63

depends on n by (1.5.24) and, thus, on the solution W itself. The nonlinearity
0,[ Ve JW is of quadratic nonlocal nature.

Since (1.5.23) is a single-particle quantum Liouville equation, the analysis
of Section 1.4 applies to the linear problem with V,; given. In particular,
contrary to the classical Vlasov equation, the quantum Vlasov equation
does not preserve the non-negativity of the solution W. The number density
n, however, remains non-negative for all times, if the initial single-particle
density matrix R(t = 0) is positive semi-definite (see Section 1.4). Also, the
quantum Vlasov equation formally converges to the classical Vlasov equa-
tion with E_ = —grad, Vas h— 0.

The quantum Vlasov equation models the quantum mechanical motion of
a large particle ensemble moving in a vacuum under the influence of an
exterior potential field taking into account weak, long range interactions of
particles. Thus, as the classical Vlasov equation, it is a transport model useful
on a time-scale much shorter than the mean time between two consecutive
scattering events. Contrary to the classical Vlasov equation, the quantum
Vlasov equation is capable of modeling the tunneling effect, which makes it
particularly attractive as a tool for the numerical simulation of ultra-
integrated semiconductor devices.

The Poisson Equation

To account for the Coulomb interaction we set

q 1

V. X, ))= — 4
Inl[\_}) 4?-[55'_‘("*'_\"

x,yeR3, x#y. (1.5.28)

Again, ¢, denotes the permittivity of the semiconductor. Obviously

= —Ens X#Yy (1.5.29)
holds, where E.

ine 18 the Coulomb interaction field (1.3.19). ¥}, is up to the
factor g/e, the normalized fundamental solution of the Laplace equation.
The self-consistent potential equation (1.5.24) then reads

grad, V,

int

q (X, 1)
Velx,t)= V. . (x, t) — 1x 1.5.3
d‘f(\ I) “,(X I) 4?1'55 J‘Ré |'\_ — '\.*| (¢ \* { 0)

and the Poisson equation
—e, AV = —&, AV — gn, xeR?2, t>0 (1.5.31)

holds. If the external potential field V,,, is generated by ions of charge +g¢
present in the material, then (1.3.27) follows, where C = C(x, t) denotes the
number density of the background ions. In this case we obtain (1.3.29) and,
consequently, (1.3.30), (1.3.31).

We remark that different effective potential equations, which also include
local values of the number density n, exist in the literature, too. They can be

seen as attempts to describe medium range particle interactions. Since these
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models are not used in semiconductor simulations, we shall not discuss them
here in detail. The interested reader is referred to [1.7], [1.41].

We supplement the Vlasov equation (1.5.23), (1.5.24), (1.5.25) by the initial
condition

Wi(x,v,t = 0) = W(x, 1), xeR2, ve R2. (1.5.32)

The main difficulty in the mathematical analysis of the quantum Vlasov
equation lies in the fact that—contrary to the classical case—an L'-theory
for the linear quantum Liouville equation, which would guarantee the exis-
tence of the number density n, does not exist yet for a sufficiently broad class
of potentials. Clearly, the L2-theory is not sufficient since w(-, -, 1) €
L*(R? x R?) does not imply that n is well-defined. Recently, the existence
and uniqueness of a solution, globally defined in t, was proven in the
one- and three-dimensional cases by reformulating the quantum Vlasov
equation as system of countably many Schrodinger equations coupled to
the self-consistent Newtonian potential relation (see [1.55] for the one-
dimensional and [1.11] for the three-dimensional case). This reformulation
is based on the equivalence of the linear quantum Liouville equation to a
system ol countably many Schrédinger equations presented in Section 1.4,
The quantum Vlasov equation (1.5.23), (1.5.24), (1.5.25), (1.5.32) can be
written as

h?
hoo® = ——_Ad® — gV...¢® 3
n r¢ 2"’1 ¢ qet’t’@j ’ VER.\‘ I>0 kEN
pP(x, t = 0) = ¢¥(x), xeR?
X il
Vere = Ve d J. e dx
R

- X,
4nes Jmy, |x — Xl

where n is given by (1.4.70):
n(x, 1) = Y Ale®(x, ).
k=1

In the one-dimensional case the Green's function —1/(4n|x — x,|) has
to be substituted by —|x — x|.

Note that the scalars 4, and the initial data ¢*(x) only depend on the initial
Wigner function Wj(x, v) (see Section 1.4 for details).

This Schrodinger-Poisson system can be analyzed under reasonable as-
sumptions on 4, and ¢*(x) in a more straightforward way than the pseudo-
differential equation form of the quantum Vlasov-Poisson system.

An analysis of the one-dimensional steady state Schrodinger-Poisson prob-
lem, posed on a bounded interval, was presented in [1.19].

An existence and uniqueness result for the one-dimensional quantum
Vlasov-Poisson problem with periodic boundary conditions in x can be
found in [1.2]. The spectral properties of the linearized equation are also
discussed in that paper and the convergence of the solution to the solution
of the corresponding classical problem as # — 0 was proven, too.
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By integrating the quantum Vlasov equation with respect to the velocity v
and by proceeding as for the quantum Liouville equation in Section 1.4 we
obtain the conservation law:

gé,n — divJ = 0. (1.5.33)

Also, if W is sufficiently regular, then the conservation of the total number
of particles follows by integrating (1.5.33) with respect to x:

J nix, t)dx = f n,(x) dx, t>0, (1.5.34)
R} )

L%

where we set n;(x) = jm W,(x, v) dv.

The Quantum Vlasov Equation on a Bounded Position Domain

As its classical analogue, the quantum Vlasov equation can also be posed
on a bounded position domain which, in semiconductor device modeling,
represents the device geometry. Given the bounded convex domain Q < R,
the inflow boundary condition

Wi(x, v, t) = Wp(x, v, 1), (x,v)el_, t>0, (1.5.35)

where the inflow segment I"_ is defined in (1.3.35), can be imposed. Then the
Poisson equation (1.5.31) is also posed on Q and supplemented by Dirichlet
or mixed Dirichlet-Neumann boundary conditions for V. on Q.
However, due to the nonlocal character of the pseudo-differential operator
t,[ V.gr ] the potential Vi still has to be defined on the whole position space
73, Thus, the solution of the Poisson equation has to be extended from
Q to R} in order to be used as an input for the Vlasov equation. The problem
of determining physically reasonable extensions has not been solved satis-
factorily yet. In one-dimensional simulations a piecewise constant con-
tinuous extension is normally used.

A disadvantage of the inflow boundary conditions is that they do not exclude
the reflection of incoming waves. Absorbing boundary conditions, which
provide a better model for Ohmic contacts, were derived in [1.24] by means
of the theory of pseudo-differential operators.

Analytical results for the linear quantum transport equation (with given
bounded potential) subject to inflow boundary conditions can be found in

[1.39];

The Energy-Band Version of the Quantum Vlasov Equation

The quantum Vlasov equation presented above does not take into account
the impact of the semiconductor crystal lattice on the motion of the particles.
In order to do this the (multi-particle version of the) energy-band quantum
Liouville equation (1.4.108) has to be taken as starting point for the quantum
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BBGKY-hierarchy. Since the involved calculations are along the lines of the
vacuum problem presented above, we do not give them here, but merely
state the result. The quantum Vlasov equation on the Brillouin zone B is
Just the single particle energy band quantum Liouville equation (1.4.108)

% i 1 [ , L
oW+ P l:ﬁ (k + o7 gradx> —e (k 5 grdd_t> +q Vi (.\ + 5 grﬁld,()

| 1
—qlfe”(x—?gradk)JW—O, xe__—)L, keB., (>0,
! & (1.5.36)

where L denotes the crystal lattice and ¢ = ¢(k) the considered energy band
of the semiconductor. Note that the (quasi) distribution W = W(x, k. 1) is
defined for x € L, k € B and t > 0. The equation for the effective potential
is obtained by replacing the integration in (1.5.24) by a sum over x € 1 L:
Vol B = Voo lmfl 4 Y alon, 0 (n.),
x,eiL
X, #x

xetL, t>0. (1537

Clearly, the number density n is the integral of W over the Brillouin
zone B

nix, t) = J;} Wi(x, k, t) dk, X € %L, t>0 (1.5.38)
and the current density is given by

J(x, 1) = —q L v(k)W(x, k, 1) dk, X e %L. =0 (1.5.39)
with the velocity

v(k) = % grad, e(k). (1.5.40)

We now scale the equations (1.5.36), (1.5.37), (1.5.38) by using (1.4.113) and,
additionaly

, ) !
W(x, k, t) = ’—3ws(i, Ik, i), n(x, 1) = -%ns(; i)-

X0 Xo to Xp \Xo Ip

(1.5.41)
Then, after dropping the index ‘s, (1.5.36) reads

. i o X
oW + El:ae (k + 2 gradx> —ae (k ~ 5 gradx)

¥ chff(x + % gradk) — bV (\ - % gradk):' W=0,

xeal,, ke B, t>0. (1.542)



1.5 The Quantum Boltzmann Equation 67

The constants a, b and « are given in (1.4.115). When the Coulomb interac-
tion potential (1.5.28) is taken, then the scaled discrete effective potential

relation (1.5.37) takes the form:
1

l/::ff('\-- f) - chl(-\-« t, — Z OC:’H(X*, ” —————
x,ealg |.\‘ = X*I
X#Xg
xeal,, 1 >0, (1.5.43)

with

_q (1.5.44)

‘ dne.xq Vo
When the typical numerical values (1.4.117) are taken, then ¢ is of the order
of magnitude 1. The scaled number density n is obtained by integrating W
over the scaled Brillouin zone B.
An existence and uniqueness result for the initial value problem (1.5.42),
(1.5.43), (1.5.38) can be found in [1.16]. We remark that, due to the
boundedness of the Brillouin zone B, an L?-theory for (1.5.42) is sufficient
to guarantee the existence of n, since W(x, -, t) € L?(B) implies that n(x, t)
is well-defined.
As discussed in Section 1.4 the formal limit of (1.5.42) as o — 0 is the scaled
semi-classical Liouville equation (1.4.116) (with V' substituted by V). Ob-
viously, in the limit « — 0 the sum in (1.5.43) has to be replaced by the integral
and the discrete effective potential relation (1.5.43) becomes (the scaled
version of) (1.5.30). A mathematical justification of this semi-classical limit
in the one-dimensional case can be found in [1.54].
In many applications the exterior potential V,,, has locally large gradients
or even jump-discontinuities. Then the tunneling effect becomes important
and the semi-classical Vlasov equation does not give realistic results. Since,
however, the energy band ¢ is a smooth function of k it is even in these cases
reasonable to carry out the partial limits ‘x — 0 in the grid’ and ‘x — 0 in the
pseudo-differential operator involving ¢ and to leave the potential energy
pseudo-differential operator unchanged. Then the model equation (1.4.120)
(with V replaced by V,,) supplemented by the ‘continuous’ effective potential
equation (1.5.24) is obtained. A mathematical analysis of this model (with a
justification of the partial limit procedure) can be found in [1.16], [1.17].
We believe that this quantum transport model is highly appropriate for the
simulation of ballistic phenomena in ultra-integrated semiconductor devices
since it allows for a description of the band structure of the crystal and for
the modeling of tunneling. Also, from the numerical point of view, it is
significantly simpler than the “discrete-x” problem (1.5.36), (1.5.37), (1.5.38).

Collisions

Just as its classical counterpart, the quantum Vlasov equation is time rever-
sible (for static exterior fields), i.e. it does not contain a mechanism which




68 1 Kinetic Transport Models for Semiconductors

forces the ensemble to relax towards thermodynamical equilibrium in the
large time limit t — co. In order to achieve this relaxation property we have
to include the effects of short range interactions modeled by scattering events
of particles. This, however, cannot be achieved by the purely phenomeno-
logical approach presented in Section 1.3 for the (semi-) classical case, since
the notion of characteristics does not make sense for the quantum Vlasov
equation. Principally, two different approaches are used for the derivation
of the quantum Boltzmann equation. The first is based on Green’s function
techniques (see [1.28]) and the second on the Wigner formalism combined
with a modification of the Hartree ansatz (see [ 1.12]). Since both approaches
are highly complicated, we shall not present them here, but merely state the
result, which is intuitive when one 1s familiar with the semi-classical Boltz-
mann equation.

The quantum Boltzmann equation has the form of an inhomogeneous
quantum Vlasov equation, where the inhomogeneity represents the quan-
tum collision integral

oW + v grad, W+ LO,[V 1W = QuW),

xeR2, ve R}, t>0. (1.545)

The quantum collision operator @, is nonlocal in the velocity direction
and, except when particle-particle interactions are considered, quadratically
nonlinear. The particle-particle scattering quantum collision operator is
nonlinear of fourth order in W (see [ 1.28]).

We remark that quantum scattering operators, which are nonlocal in the
time direction, can also be found in the literature (see [1.36]).

The equation (1.5.45) is supplemented by an effective potential relation of
the form (1.5.24) and by the initial condition (1.5.32).

As in the classical case the collision operator satisfies the conservation

property
J 0,(W)dv =0. (1.5.406)
K3

Its precise form depends on the considered scattering processes, however,
to our knowledge, simulation of semiconductor devices with physically
realistic quantum scattering operators have not been performed due to the
enormous numerical complexity involved. For a numerical study of tun-
neling devices using the relaxation time approximation for the scattering
operator we refer to [1.32].

1.6 Applications and Extensions

In this Section we shall discuss specific applications of kinetic transport
equations to the modeling of semiconductors. In the course of this we shall
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extend the transport models derived in the previous Sections to cover the
particular requirements of semiconductor device physics.

At first we will present a multi-valley semi-classical transport model, which
is of particular importance for the simulation of GaAs (Gallium-Arsenide)
devices. Then we proceed to discuss bipolar semi-classical models, which
constitute the basis for the derivation of the hydrodynamic and drift diffu-
sion models in Chapter 2. Finally, we shall summarize the state-of-the-art
of quantum modeling of ultra-integrated semiconductor devices.

Multi-Valley Models

It is well-known that the energy-wave vector function ¢ = ¢(k) has several
minima for, e.g., the semiconductor GaAs. These minima, also termed
energy-valleys, are separated by energy-shifts and, very often, the band
diagram &(k) is approximated by a parabola in the neighbourhood of each
valley. For GaAs three types of valleys have to be distinguished: the low
energy I'-valley and the higher energetic L- and X-valleys with energy
shifts each of the order of magnitude 0.4 eV (see [ 1.48] for precise data). For
the sake of simplicity we shall for the following neglect the X-valley and
only consider a model, which comprises the I'- and the L-valleys. This
approximation is justified by the fact that the highest energy X-valley can
only be occupied at very high electric field strengths.

Also we remark that, due to the symmetry properties of the Brillouin
zone, several L- (and X-) valleys exist. In the sequel we shall treat them
as equivalent.

A parabolic band approximation for the energy-wave vector relation in the
['-valley reads

h?
e k) = o (K3 + k3 fmy + K3 my), k= (ky ko k)

where the origin of the k-space has been placed at the location of the band
minimum and a suitable rotation has been performed. The parameters m,,
m,, my are called effective masses. This is motivated by a comparison of the
velocity

1
pplk) = 5 grad, er(k) = h(k,/m,, ky/my, ky/m;)"

with the velocity-wave vector relation v = hk/m for electrons in a vacuum.
Formally, the parabolic band approximation can be obtained by a scaling
of the wave vector which magnifies the vicinity of the band minimum.
Accordingly, the boundary of the Brillouin zone is moved towards infinity
and, as an approximation, B is replaced by R®. Apart from that, we shall
us¢ the common, although not rigorously justified, assumption that the
effective masses in the different directions are equal:

e ————————————————————

e
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= = M =M

With analogous assumptions for the L-valleys we obtain

h2|k|2
2my

er(k) = gk)=A+——, (1.6.1)
where m, is the effective mass of an electron in the L-valley and A is the
energy difference between the bottoms of the two valleys.

It is convenient to split the electron distribution function F into a part
corresponding to the I'-valley and a part corresponding to the L-valley since
the electrons move within each valley even under low field strengths, while
the transfer from the lower valley into a ‘higher’ one requires the presence
of high electric fields. Taking into account the multiplicity of the L-valleys
we set:

F(x, k,t) = Fr(x,k, t} + N F.(% k, t), (1.6.2)

where N, denotes the number of L-valleys.
Each of the distribution functions F;-, F, is assumed to satisfy a Boltzmann
equation:

O Fr + vp(k)- grad, Fr — %Ecrr -grad, Fy- = Qp(Fy) + Op (Fy, Fp),

(1.6.3)
o Fy + vy (k)-grad, Fj — %chr'gfadk Fp = Q,(F) + Oy r(Fy, FL%14
(1.6.4)

where vi-(k) = 1/h grad, &p(k), v, (k) = 1/h grad, ¢, (k) denote the velocities of
electrons in the I'- and L-valleys, resp. Q- and Q, are the intravalley collision
operators. They are both of the form (1.3.67) (with appropriate I'- and
L-valley collision rates s and s;, resp.). The Boltzmann equations (1.6.3),
(1.6.4) are coupled by the intervalley collision integrals Q; (F, F,) and
QOr.  (Fr. Fp), which, in the low density approximation, are given by:

Or .(Fp, Fy) = J (s, r(x, k', k)F}, — s (x, k, k') Fr)N, dk’,
s (1.6.5)

Qp.r(fr, F;_)=j (sp.p(x, k's K)F- — s; p(x, k, kK')F, )N, dk’, (1.6.6)
R3

where s, (x, k, k") and s, (x, k, k") denote the transition rates from the state
(x, k) of the I'-valley into a state (x, k') of one of the L-valleys and, resp., vice
versa.

The effective field E,; is related to the electron number density

n=ny+ Nyn, N = j Frdk, ny = J F; dk (1.6.7)
B3 R3

by the equation (1.3.14).
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The intervalley transition rates sy ;, s; - can be expressed in terms of the
Maxwellian

Mp(k) = Nﬁ‘exp(—ﬁr—(k)—), M, (k) = Nfexp(—w). (1.6.8a)

kgT kg T
er(k ~3 ek 4
Nf= (J‘Haexp(—’t}}) dk) , Nf= (L3 exp(—](%g) dk) ,
(1.6.8b)
by introducing the inter-valley cross-sections o ; and g,
seolx, k k') = o (x, k, K'YM(k'), (1.6.9)
sp.r(x, k, k') = ap r(x, k, K" )YMp(k"). (1.6.10)

Clearly, oy, and o, - are nonnegative. If, in addition, they satisfy
oLk k) =or (% b k) Vx kK, (1.6.11)
then the property

h
Txm
(1.6.12)

holds, i.e. the kernel of the inter-valley collision operator is spanned by the
Maxwellians and we are led to expect the pair of distributions (Fp, ) to
relax towards an element of this kernel in the large time limit t — .

For the precise structure of the cross-sections o ; and ¢, ;-and for numerical
results of the two-valley model for GaAs we refer to [ 1.43].

Qr.L(Fr- Fp)= QL.T(FP FL) =0 (F, F) =

Bipolar Model

In a typical semiconductor the conduction band is rather scarcely populated.
For the technologically most relevant semiconductor silicon the intrinsic
carrier concentration n; at room-temperature is of the order of magnitude
10'*/em®. Most of the electrons are valence electrons, i.e. they are respon-
sible for the chemical compound of the semiconductor crystal. When the
crystal is electrically neutral, then to each conduction electron there corre-
sponds a ‘hole’ in the valence band, to which the positive charge + ¢ can be
assigned. Since the gap between the valence and the conduction band
(usually referred to as the bandgap) is significantly large for semiconductors,
quite a lot of energy is necessary to transfer electrons from the valence band
to the conduction band. This process is called generation of electron-hole
pairs, i.e. an electron is generated in the conduction band and a hole in the
valence band. The inverse process, that is the transfer of a conduction
electron into the lower energetic valence band, is termed recombination
of electron-hole pairs. Obviously, the somewhat artificial introduction of
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positively charged holes in semiconductor physics gives a simple way of
accounting for the valence electrons, whose motion renders a contribution
to the current flow in the crystal (hole current). For more information on
the basic physical properties of semiconductors we refer to [1.51], [1.57].
In the sequel we shall equip quantities, which correspond to electrons, with
the index n and quantities which correspond to holes, with the index p. FFor
example, F, now stands for the electron distribution and F, for the hole
distribution. We denote the number densities by

”=J' F, dk, p—J dek (1.6.14)
B B
and the current densities
d==q J v, (k) F, dk, = qJ v,(k)F, dk, (1.6.15)
B B

where v, and v, denote the electron and hole velocities resp. related to the
electron and hole band diagrams by v, = (1/h)V,e,, v, = —(1/h)V,e,,.

The temporal evolution of the distribution functions F, and F, is—in
the semi-classical framework—governed by the system of Boltzmann
equations:

E"an 2 Un(k)'gradx Fn - %Eeﬂ‘gradk Fn = Qn(Fn) =+ In(Fri' Fp)!
(1.6.16)

8,F, + v,(k)- grad, F, + gchf'gradk F, = Q,(F,) + L(F,, FP(}i 6.17)

Q, and Q, stand for the electron and, resp., hole collision operators. They
are supposed to model the short range interactions of the corresponding
type of particles with their environment, i.e. with crystal impurities, phonons
etc. Mathematically, they are of the form (1.3.67) with transition rates s, and
s, resp., determined by the physics of the considered collision processes.
Most importantly, they satisfy

5,(x, k, k') = exp ("”‘%“—’) s,(x, k', k) (1.6.18)
B
e, (k') — &,(k)

T )s,,(x,k,k), (1.6.19)

sp(x, k. k') = exp(
which leads to the relaxation properties of Q,. Q.
The operators I,, 1, model a recombination and generation process of
electron-hole pairs. They are given by:

L(Fy Fy) = J [g(x, K\ K)(L — F)(1 — F}) — r(x, k, k')F,F,] dk’
i (1.6.20)
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I(F,, F,) = f [9(x, k, k) (1 — F)(1 — F,) — r(x, K", FF,] dk’,
B (1.6.21)

where g(x, k. k') represents the rate of generation of an electron at the state
(x, k) and of a hole at the state (x, k'). r(x, k, k') 1s the analogous local
recombination rate. The expressions (1.6.20), (1.6.21) are derived by ac-
counting procedures similar to the derivation of the single particle scattering
integral presented in Section 1.3,

The nonnegative functions g and r are related by:

ea(k) — £,(k')

rix, k, k') = exp( T
B

)g(x, k' k). (1.6.22)
This equation guarantees that the null-manifold of I, I, consists solely of
pairs of Fermi-Dirac distributions with the same Fermi level (see [1.44]).
Recombination and generation of carriers balance in thermal equilibrium.
The effective field E . enters in both Boltzmann equations (1.6.16), (1.6.17).
The sign of E in the hole transport equation (1.6.17) is reversed due to the
opposite flow direction of the positively charged holes in the electric field
Eg.

Obviously, both electrons and holes contribute to the space charge density
p. Also, for practically all semiconductor devices, ionized impurities, which
mainly determine the performance of the device under consideration are
present in the semiconductor crystal. These impurities are implanted into
the semiconductor crystal in the fabrication of the device by a techno-
logically highly complicated process (see [1.51]).

We shall denote the so-called impurity (or doping) profile by C. It is given
by the difference of the number densities of positively charged donor ions
and negatively charged acceptor ions. For the following we shall exclude
mobile impurities, i.e. we shall assume that C is a function of the position
variable x only, i.e. C = C(x).

By simply adding up the charges, we obtain the total charge density

p=—q{n—p—C). (1.6.23)

When the Coulomb interaction is accounted for, we have the following
effective field equation:
1 B~y
Ear = Ewit g J.ua-:. Plxe P dx, , (1.6.24)
where E,,, represents an exterior electric field acting on the semiconductor
device.
A mathematical analysis, which gives a global (in t > 0) existence and
uniqueness result for the electron-hole Boltzmann-Poisson system (1.6.16),
(1.6.17), (1.6.24) subject to initial conditions and periodic boundary condi-
tions on ¢B, can be found in [ 1.44]. It is based on an iteration method, which
is in spirit similar to the single particle Boltzmann equation method pre-
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sented in Section 1.3. We remark that the bipolar problem still preserves
the upper bound 1 and the lower bound 0 for F, and F,, ie. 0 < F, < 1,
0 < F, < 1 holds for all times ¢ > 0 if it holds initially (Pauli principle).
For real-life simulations of semiconductor devices the bipolar Boltzmann-
Poisson problem has to be formulated on a bounded position domain
Q < R? representing the geometry of the semiconductor device. Then,
boundary conditions for the distribution functions F,, F, have to be pre-
scribed on the inflow segments as discussed in the previous Sections and the
effective field equation (1.6.24) is replaced by the Poisson equation

subject to Neumann-Dirichlet boundary conditions on ¢Q. The exterior field
then originates from the Dirichlet boundary condition for V., which repre-
sents voltages externally applied to the device.

The occurance of recombination-generation of carriers modifies the con-
servation laws for the current and for the number of carriers. By integrating
the Boltzmann equations (1.6.16), (1.6.17) over the Brillouin zone B we obtain

gin —divJ, = —gR (1.6.26)
qé,p + divJ,= —¢R, (1.6.27)

where R is the recombination-generation rate, which, expressed in terms of
the distribution functions F,, F,, reads:

R——ngjpﬂ_—fiwfwk (1.6.28)
B

Note that the conservation laws (1.6.26), (1.6.27) are nonlinearly coupled due
to recombination-generation processes.

The total number of each type of particles is not conserved anymore. Sub-
tracting (1.6.26) from (1.6.27) and using the definition of the charge density
(1.6.23) gives the conservation law for the total current density J defined as
the sum of the electron and hole current densities:

J=Jd,+J, (1.6.29a)

This conservation law reads:
Gp +divJ =0. (1.6.29b)
Note that we used the assumption 6,C = 0.

For the whole space case we obtain the conservation of the charge by
integrating (1.6.29b) over R?:

J p(x, t)dx = I p(x,t =0)dx, Vi>0. (1.6.30)
"3 R2

The modification of (1.6.30) for the bounded x-domain case is obvious.
A low density approximation of the electron-hole Boltzmann system can be
obtained by assuming

0<F,«1, 0<F,«l1 (1.6.31)
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and by setting all quadratic terms in F,. F,, which appear in the collision
and recombination-generation integrals, equal to zero. Also, in many ap-
plications, the generation and recombination relaxation times

-1
Talx k)= (J glx, k, k) dk') :
! (1.6.32)

-1
Pl = (j rix, k, k") dk’)
R

are large compared to the collision relaxation time. In these cases the
recombination-generation integrals /,, I, are usually neglected, which leads
to a significantly weaker coupling of the two Boltzmann equations.
This approach is physically meaningful in close-to-thermal-equilibrium
conditions.

Tunneling Devices

Charge transport in semiconductors is collision dominated when the ob-
servation time period is significantly larger than the collision relaxa-
tion time. Thus, the simulation of low and medium [requency devices (like
MOSFETs, bipolar transistors and thyristors) must be based on mathe-
matical models, which stem from the Boltzmann equation. For extremely
high frequency devices. however, the interesting time-scale for simulations
is usually short and, consequently, the charge transport is mainly ballistic,
i.e. collisionsless models can be used. Such devices are very small (the width
of the active region may be of the order of magnitude 20 nm) and they
operate under high electric field strengths (very thin potential barriers with
height 0.3 eV often occur). Therefore, the device operation is driven by
quantum effects and simulations based on a (semi-) classical Vlasov model
give totally unrealistic results. For such situations the quantum Vlasov
equation, which models the collisionless quantum transport of clectrons, is
well suited.

As a typical example we consider the resonant tunneling diode depicted in
Fig. 1.6.1. The device has two AlGaAs (aluminium-gallium arsenide) quan-

0 wi
S— GaAs g4 |9 |q GaAs I
o |4 | @
ol8le .
c=10'8cm™3 < g C=10"%cm™
=60 M — ——— -

Fig. 1.6.1




76 1 Kinetic Transport Models for Semiconductors

Vext

l-0.3 eV

— l=60nm —

Fig. 1.6.2

tum barriers of thickness 5 nm separated by a GaAs quantum well, which
has the thickness 5 nm. The barrier and the well are undoped, while the bulk
regions outside the barriers are doped with donors of concentration 10'#
c¢m ?, ie. the doping profile C = 10'"® cm ? in the bulk regions and C = 0
in the barriers and in the well. The quantum barriers are 0.3 eV high (sece
Fig. 1.6.2) and both bulk regions are contacted.

The (already somewhat simplified) device geometry suggests a one-
dimensional quantum Vlasov-Poisson model (see Section 1.5):

E',W+1r-gradxW+%0,,[Vm]W=O, O<x<l!, veR, t>0

(1.6.33)
Wix, v, t =0)= Wix, ), 0<x<l, re R, (1.6.34)
supplemented by
div(e,(x) grad V) = g(n — C(x)), < x < (1.6.35)
V(0,1) = V,, Vil,t)y= V1, (1.6.36)
where n denotes the quantum number density
n= L Wdv. (1.6.37)
R,

Note that the permittivity & now appears ‘inside’ the divergence operator
since it is position dependent due to the two different materials of which
the device is made up. The boundary data V,, V, determine the biasing
condition.
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The effective potential V,;, is obtained by adding the material potential V,,,
of Fig. 1.6.2 to the solution V of the Poisson problem (1.6.35), (1.6.36) and
by extending to R,:

Vas x<0
V(e t) = 3 Vix, t) + Vx), 0<x<]l.
Vi, X5

Also, we have to define boundary conditions for the quantum Vlasov
equation at x = 0 and x = . As discussed in Section 1.5 the simplest choice
is to take inflow Dirichlet data

W(0, v, t) = Wy(v, t), v>0, t>0 (1.6.39)
Wil, v, t) = Wy(uv, t), v<0, t>0. (1.6.40)

For the simulation of ideal contacts it is more appropriate to choose non-
reflecting boundary conditions (see [ 1.24] and the discussion in Section 1.5).
For appropriate choices of the initial and boundary data and for numerical
results of simulations of the resonant tunneling diode we refer to [1.32].
These results clearly demonstrate the power of the quantum Vlasov-Poisson
problem in modeling ultra-integrated semiconductor devices on sufficiently
short time-scales. Due to the ongoing miniaturization of VLSI structures
we expect this research area to become extremely important in the near
future. In particular the inclusion of physically realistic quantum scattering
models, which will allow simulations on significantly larger time scales, and
the band diagram Wigner-Poisson model presented in Section 1.5, which
incorporates the crystal structure of the semiconductor, are going to play a
major role soon.

Problems

1.1 Solve the initial value problem (1.2.9), (1.2.13) for a constant electric field E. Draw the
(x, v)-phase portrait of the characteristics in the one-dimensional case.

1.2 Show that the L”-norms, 1 € p < oo of non-negative solutions of the Liouville equation
(1.2.9), (1.2.13) are conserved in the evolution process.
Remark: The LP-norm of f is defined by:

1/p
f||u.:=(f J U‘V’dxdr) , 1<p<o
R} Jma

[fllLe = sup [ f(x, v)] .
Hint: Multiply (1.2.9) by /77! and integrate over R} x R? assuming that the solution
decays sufficiently fast as |x| — =, || = 0.

1.3 Draw the phase portrait of the characteristic equations (1.2.3), (1.2.4) for the one-
dimensional potential barrier given by
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1.4

1.13

1.14

1.15
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0, x<0
" 0
Vix)=—< —x, D<x<e, >0, VeR.
q | ¢

| xX=¢
Discuss the cases V, > 0, ¥, < 0 and consider the limits ¢ = 0, ¥, = —o0, ¥, = =,

Let H = H(x, p. 1) be a general Hamiltonian function. Derive the Liouville equation
corresponding to the equations of motion (1.2.27), (1.2.28). Show that the I.*-norm of
the solution of the corresponding initial value problem is preserved in time.

Solve the three-dimensional Liouville equation (1.2.52) (subject to an initial condition)
for constant electric and magnetic fields.

a) Are the conservation laws (1.2.18), (1.2.19) valid for the ‘magnetic field problem’
(1.2.52)?
b) Is nonnegativity preserved by (1.2.52)?

Definition: A map w: R” — R™ is called volume preserving, if vol(A4) = vol(w(A)) for all
measurable subsets 4 € R™.

Prove that the characteristic map wi(r, -, -): R®*™ — R® defined by (1.2.20). (1.2.10),
(1.2.11) is volume preserving for all ¢+ = 0 if (1.2.14) holds. Prove the analogous result
for the case of a non-vanishing magnetic field.

The flow associated with a volume-preserving map is called imcompressible. Conclude
the conservation of the LP-norms of the solutions of the Liouville equation from the
incompressibility of the flow defined by the characteristic map.

Let fy(x, v) = 8(x — x4, v — vg), Xo € R¥M v, € R be the initial datum for the Liouville
equation. Show that the solution of the initial value problem is given by fix, v, 1) =
(x — x(t; x4, Ug), v — V(15 Xg, Uy))-

Show that the Liouville equation is time-reversible for static force-fields, i.e. if a solution
exists for t > 0, then it also exists for r < 0 and the solution for t < 0 can be constructed
from 1ts values for t > 0.

Verify that the function ¥ given by (1.3.8) with P satisfying (1.3.9), (1.3.10) is a solution
of (1.3.7).

Linearize the Vlasov equation (1.3.13), (1.3.14) at the equilibrium solution F = F,(¢),
E.;=0. The so obtained problem is called random phase approximation. Which
physical situation does it model?

Consider the one-dimensional equation (1.3.13) (x € R,,ve R,) with E = E(x)
given. Show that F = F(x, v) is a steady state solution if and only if F is a function of
the Hamiltonian, i.e. if and only if there is a function ¢: R — R such that F(x, v) =
G(H(x, v)), H(x, v) = mv?/2 — qV.(x), holds with d/dx V. = — E .

Remark: This is used to construct steady state solutions of the coupled Vlasov-Poisson
problem (see [1.42]).

Consider the Vlasov equation (1.3.13), (1.3.14) with a smooth interaction field E;,,
(which may be obtained by smoothing the Coulomb field (1.3.19) about x = y). Take
F(x,v,1 =0) = d(x — x4, v — Uy). Show that the solution F(x, v, t) has the form of a
d-function centered at a point (x(1), v(t)) € R} x R}. Derive the initial value problem for
(x(r), v(1))-

Carry out the calculations to derive the property (1.3.87) of the transition rate s from

the principle of detailed balance (1.3.84) by using the Fermi-Dirac statistics (1.3.85),
(1.3.86).

Solve the relaxation time approximation (1.3.101) for a given constant effective ficld
I = E, a constant relaxation time 7 and n(x, 1) = 1.
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1.16

1.17

1.18

1.19

1.20

1.24

Hint: Use the representation (1.3.102) and invert the characteristic map (x,, ky) —
(x(z), k(r)).
Formulate the Boltzmann equation with a magnetic field and the Boltzmann-Maxwell

system. Solve the corresponding relaxation time approximation for given constant
electric and magnetic fields assuming n = 1.

Prove that initially orthogonal wave functions remain orthogonal for all times, i.e.
conclude

'[ UiV (x) dx =0 —»j W x, Y Px, 1) dx =0, t>0,
R3M

Rju
where ", 1/ are solutions of the M-particle Schrédinger equation with initial data
it and i resp.

Let the one-dimensional static potential be given by

0, x<0,x>a
V(x) = a>0.
Vs 0<x<a,

Solve the eigenvalue problem (1.4.14) for the Schrodinger equation, ie. find ¢ € R and
iy = y(x) e L*(R) such that (1.4.14) holds. Consider the cases V, > 0, ¥, < 0 and the
Iimits ¥, — o0, ¥y = —o0.

Compute the density matrices for the eigenstates of Problem 1.18. Calculate the Wigner
functions for the limiting cases ¥V, — oo, ¥y = —c0.

Prove that (1.4.15) is equivalent to (1.4.16), (1.4.17), (1.4.18).
Hint: Multiply (1.4.15) by a C*-test function ¢ with compact support, integrate by parts
and use

J. 3(x)y(x)p(x) dx = Y(0)e(0)
R

if i is continuous at x = 0. Then perform the reverse integration by parts separately
for x <fand x > 0.

Compute the L?(R)-eigenstates of (1.4.15), their density matrices, Wigner functions,
particle and current densities.

Let the one-dimensional static potential be given by

Vix) Piys x>0
x) =
0, <0

Compute the reflection and transmission coefficients for a monoenergetic beam of
clectrons represented by a right-moving wave.

Derive the quantum Liouville equation for V(x) = —(m/q)d(x), x € R. Simplify the
operator f,[ V] as much as possible. Write down the Fourier transformed equation and
formulate it without é-functions.

Hint: Derive interface conditions at the lines x = (h/2m)n, x = —(h/2m)y similarly to
Problem 1.20.

Let &y, &; be eigenvalues of the Schridinger equation (1.4.14) with corresponding

eigenfunctions y,, ¥, € L*(R*M). Prove that i(s, — ¢, )/his an eigenvalue of the quantum
Liouville equation with eigenfunction

N ho\ .
J W (x + ;’f) iy (x ——n)e“"’dn.
] zm 2m

Remark: Tt is shown in [1.38] that the spectrum of the quantum transport operator

Tuan = v-grad, + (g/m)th,[V ] is the closure of the set consisting of the values i(x — f)/h,
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1.26

1.27
1.28

1.29

1 Kinetic Transport Models for Semiconductors

where 2, ff are spectral values of the corresponding Hamiltonian operator. This result,
together with a more detailed analysis of the structure of the spectrum was used in [1.18]
to characterize the steady states of the quantum Liouville equation.

Show that 0,[ V] maps real valued functions into real valued functions, if V' is real valued.

Let V = V(x) € R hold. Show that the pseudo-differential operator 6,[ V] is formally
skew-adjoint on L3(R3M x R3M), ie. prove

J. J ./‘Un[V]ydvdx=—Jv f g0,[V1f dv dx.
R3M JRaM RiM JRAM

Compute the potential, which corresponds to the wave function (1.4.85).

Consider the initial value problem for the quantum Liouville equation (1.4.39) with
initial datum wy(x, v) = 5(x — x,, v — vy) for fixed points x, e R, v, e R}Y. What
are the conditions on the potential such that the solution is given by w(x, v, 1) =
d(x — x(1), v — v(1)), where (x(t), v(t)) is a curve in the (x, v)-space with initial value
(x4, 10)? Is the given d-initial datum quantum mechanically admissible (uncertainty
principle)?

Consider the quantum Liouville equation (1.4.39) as model for an ultra-integrated
semiconductor device of characteristic length [ = 107® m. In a typical operation mode
the potential is of the order of magnitude V' = 0.5 eV and a typical simulation time
scale is T = 10 '* s, Use these values and m = 0.6 x 107! kg to scale the quantum
Liouville equation by introducing dimensionless variables. Identify the parameter,
which plays the role of & in the scaled equation. Is it small (compared to 1)?
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From Kinetic to Fluid
Dynamical Models 2

2.1 Introduction

Different approaches to the solution of the kinetic transport models dis-
cussed in Chapter | are possible. Although several promising attempts
towards a numerical solution have been undertaken in the recent past (we
only mention particle methods [2.10] and spectral methods [2.13]), the
application of numerical methods remains to be a formidable task in general.
Apart from that, solutions of the kinetic equations contain in many cases
(e.g. close to equilibrium) a good deal of redundant information.

In this Chapter fluid dynamical models for semiconductors will be intro-
duced. They represent a reasonable compromise between the contradictory
requirements of physical accuracy and computational efficiency. Their com-
mon feature is the fact that the number of independent variables is reduced
from seven (3 space + 3 velocity coordinates + time) to four (3 space coor-
dinates + time). The dependent variables can usually be interpreted as
averages (moments) of the phase space number density with respect to the
velocity.

Two different approaches for the derivation of fluid dynamical models from
kinetic equations exist. They will be presented in the Sections 2.2 and 2.3,
respectively. The first is a perturbation argument. It exploits the smallness
of a dimensionless parameter, namely the scaled mean free path, which
appears in an appropriately scaled version of the Boltzmann equation. For
the Boltzmann equation of gas dynamics an expansion of the solution in
powers of the mean free path has been introduced by Hilbert [2.9] and,
accordingly, bears his name. In the context of semiconductors, the Hilbert
expansion has been recently carried out and thoroughly analyzed by Pou-
paud [2.11]. The method is presented in Section 2.2 for a standard bipolar
model with the assumptions of low densities and small electric field. In this
case the leading terms in the expansion are governed by the standard drift
diffusion equations for semiconductors which have been derived by van
Roosbroeck [2.18] for the first time.

A second way for obtaining fluid dynamical models are moment methods.
Compared to the Hilbert expansion, their application requires a good deal
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of physical intuition or a-priori-knowledge about the solution of the Boltz-
mann equation. Also, the authors are not aware of any rigorous mathe-
matical justification. The main ingredient of a moment method is an ansatz
for the phase space density which prescribes the dependence on the velocity
and which contains several parameters depending on position and time.
After inserting the ansatz, the Boltzmann equation is multiplied by a number
of linearly independent functions of velocity and integrated over the velocity
space. The result are differential equations for the time and space dependent
parameters. In some cases not all integrations can be carried out explicitely.
Then the terms in question are usually replaced by phenomenological
models. Two different moment methods are presented in Section 2.3. In
the first one, the ansatz for the phase space density is motivated by the
results of Section 2.2, It leads to a system which can be reduced to the drift
diffusion equations by a perturbation argument. Because of the choice of
the ansatz all the integrations can be carried out explicitely in this case.
The second ansatz [2.2], usually called shifted Maxwellian, is motivated
by the collision term of the Boltzmann equation for monatomic gases (see
[2.3]). It leads to a modified version of the Euler equations of gas dy-
namics for a gas of charged particles in an electric field. The difference
to the Euler equations is the appearance of relaxation terms. In general,
these cannot be evaluated explicitely. They are usually replaced by relaxa-
tion time approximations. The resulting system (possibly including an
extra heat conduction term) is referred to as the hydrodynamic model for
semiconductors.

The main assumptions in the derivation of the drift diffusion equations are
low carrier densities and small fields. The first assumption can be discarded
of if a nonlinear collision term is used in the Boltzmann equation. This is
necessary when the position space number density is large, which in turn is
to be expected for large doping concentrations. The Hilbert expansion
[2.11], which differs considerably from that of Section 2.2, is carried out in
Section 2.4.

The hydrodynamic model is usually employed to give an appropriate
description of high field phenomena. A different approach for the modeling
of high field effects is presented in Section 2.5. A Hilbert expansion for a
rescaled Boltzmann equation [2.12] leads to a hyperbolic drift equation
(compare to Section 3.11). Unfortunately, the mobility coefficient in the drift
term, which depends on the electric field, cannot be evaluated explicitely.
However, very accurate data from measurements are available which can
be used for fitting the coefficients in an ansatz describing the qualitative
behaviour.

The recombination-generation terms (1.6.20), (1.6.21) describe direct band-
band recombination caused by photon transitions. In practical situations
several other recombination-generation mechanisms are important. In
Section 2.6 models for band-trap capture and emission, Auger recombina-
tion, and impact ionization are presented.
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2.2 Small Mean Free Path— The Hilbert Expansion

We consider the bipolar model derived in Section 1.6:

n*<p

o,F, + v,(k)-grad, F, — ngradkF;Q,,FH—I(F F,)
(2.2.1)
F, + v,(k)-grad, F, +

1E-grad, F, = Q,(F,) + I,(F,, F,)
with the low density approximations (1.3.92):
£

h
o L KD £a(k) ,
Qn(h)ﬁj. Pulx, k,k)(CXp(kBT)F p(kBT)F)dk

2K\ &p(k) /
o Lot ofon 40 on 40
(2.2.2)

for the collision terms and with the models

I(F,, F,) = —J g(x, k,k')(exp(‘g"(k)k—_;ﬂ@)F,,F;— l)dk'
B B

L(F, F,) = _J g(x, k. k') (exp (C(k’)(—?f‘fy‘—)) FF, — 1) dk’
B B
(223)

for the recombination-generation rates. Note that denotes evaluation at
k' as in Chapter 1. If we assume that the conduction electrons are located
close to the conduction band minimum and the holes close to the valence
band maximum a parabolic band approximation for the energy-wave vector
relations can be used. It reads (see Section 1.6)

wrm

hz
En(k) = Er + |k|25
h; (2.2.4)
- 2
&,(k) = E, m |k|®,

P

where E. denotes the conduction band minimum, E, the valence band
maximum and m, and m, the effective masses of resp. electrons and holes.
This gives the velocities

1 h
v,(k) = - grad, g, (k) = —k,
h m,
(2.2:5)
1 . h
v,(k) = = grad, ¢,(k) = o~ k.
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If the effective masses of electrons and holes are of the same order of
magnitude, the exponential terms in (2.2.2) and (2.2.3) suggest the introduc-
tion of the reference velocity © = , /kp T/m,. For the following the equations
(2.2.1) will be written in terms of the scaled wave vector and velocities

m

vmj(k.s) =k, 1 vps(ks) = _—nks ¢
mp

An appropriate scaling of the collision and recombination-generation terms

shows that they are proportional to the reciprocals of characteristic time

constants, which can be interpreted as average relaxation times. With the

average velocity v, the relaxation times 7. and 7, corresponding to collisions

and recombination-generation respectively, can be written as

Te = 1/, Tr = Ig/T,

where i and 15 denote the mean free paths between two consecutive scatter-
ing and, respectively, recombination-generation events.

Itis a well known fact (see e.g. [2.11]) that the relaxation times correspond-
ing to the collision terms (~ 10 !? s) are much smaller than those of the
recombination-generation terms (~107° s). Thus,

1€ 1
holds. We denote the ratio 1../ig by « and introduce a reference length ¢, by

o = I('/Io.

Then « can be interpreted as a scaled version of the mean free path between
two scattering events.

The choices of the reference time 7, and the reference field strength Ur/tq
complete the scaling. Here the reference voltage Uy = k;zT/q is the so called
thermal voltage. At room temperature the reference field strength is of the
order of 10? V/cm. In VLSI applications, electric fields can be much larger.
This shows that the analysis given below does not appropriately account
for commonly occurring high field effects.

The scaled version of (2.2.1) is given by

a*9,F, + a{v,(k)-grad, F, — E-grad, F,} = Q,(F,) + «*I(F,, F,)
«?d,F, + a{v,(k)-grad, F, + E-grad, F Q,(F,) + &*L,(F,, F,),

n’

(2.2.6)

where the index in the scaled quantities is now omitted for reasons of
notational convenience. The scaled collision and recombination-generation
terms have the same form as the unscaled versions (2.2.2) and (2.2.3) with
the integration taken over R* and the exponential terms

P5_

n L
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ex w and ex _—F’Lk)
PA\k,T PART

replaced by
exp(E, + |k|*/2) and exp (— E, + g-:f |k2/2) :
P

respectively, where E_. and E, are the scaled (by kzT) conduction band
minimum and valence band maximum, respectively.

The Hilbert expansion is an expansion of solutions of (2.2.6) in terms of
powers of the scaled mean free path «

Fn=FnO+anl ity
F,=F,o+aF, +

Equations for the coefficients in this ansatz are obtained by substitution into
(2.2.6) and equating coefficients of equal powers of . The equations for the
leading order terms

QH(FHO) = Qp(FpO) =0
have the solutions
Fo = n(x, DM, (k),  F,o = p(x, )M, (K),

n

where M,, M, denote the the scaled Maxwellians (see (1.3.95))

1
M, (k) = ﬁexp(—lklzm,

1 m, )
M, (k) = N, exp(—m—p|k}2/2) .
The constants

3/2
]Vr = (27[)3{‘2 ’ N" - (2nmp)
m

n

are chosen such that the integrals of the Maxwellians over the k-space are
equal to one. This implies that the as yet unspecified quantities n(x, t),
p(x, t) are scaled position space number densities of electrons and holes,
respectively.

Equating coefficients of « in (2.2.6) leads to

M,v, (grad, n + nE) = Q,(F,;),
M,v,-(grad, p — pE) = Q,(F,,).

The analysis of these equations is facilitated by the following result. In its
statement, several technical assumptions concerning the collision cross sec-
tions ¢, and ¢, are omitted.

(2.2.7)
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Lemma (Poupaud [2.11]): A) A necessary and sufficient condition for the
solvability of an equation of the form

Quplf) =g (2.2.8)

v[ gdk=0. (2.2.9)
33

If (2.2.9) holds, (2.2.8) has a one dimensional linear manifold of solutions of
the form f = f,. + q,,M,, where f, denotes a particular solution and gq,,, is
a parameter.

B) The equations

0,(h,)=M,v,, Qp(hp) = M,v,

have solutions h,(x, k), h,(x, h) € R which satisfy

np

J v, ®h,dk = —p,(x)I; <0,
. (2.2.10)

J. v, ®h,dk = —pu,(x)I; <0,
3
where 1 is the three dimensional unity matrix and a ® b = ab”, for a, b € R®,

denotes the tensor product. Furthermore, the j-th component of h,, is an odd
function of the j-th component of k and has the form

B, j(k) = h(k;, | Pik]),
where | P;k| denotes the Euclidian norm of the projection of k onto the plane
perpendicular to the ki-direction.
In terms of the scaled current densities
J(x,t) = u,(grad, n + nE),
Jy(x.1) = —p,(grad, p — pE)
the solution of (2.2.7) is given by
Foy = Jy b/ + 4, M,

Fyy = —=Jdy ity + ¢ M,

(2.2.11)

where g,(x, 1) and g,(x, 1) are as yet unspecified.
Equating coefficients of o/, j = 2, in (2.2.6) gives

O.F, -3+ - grad, F, i — B-grad, F, ;4
=Qu(Fy) + L(Fs 4 2s Fy -2

6,F,; ,+v, grad, F, ;, , + E-grad, F, ;_,
= Q,(Fy) + I(F, j_2, Fp ;-2)-
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Assuming that we know the terms up to the order j — 1, these are equations
of the form (2.2.8) for F,; and F,;. The solvability condition (2.2.9) for j = 2
implies

n—div,J, = —R,

X ; (2.2.12)
op +div, J,= —R,

where the position space recombination-generation rate R is given by
R = A(x)(np — n}). (2.2.13)
The quantities n; and A(x) are defined by

n = NN, exp(—E,/2), Alx)= ""_ZUW . g(x, k, k') dk dk’

where £, = E, — E, denotes the scaled bandgap of the semiconductor. The
recombination-generation term R has the form of a mass action law with
the reaction rate A(x) and the scaled intrinsic number n;.

Unscaled versions of (2.2.11) and (2.2.12) are given by the system of partial
differential equations

J, = qu,(Ur grad n + nE), qgé,n —divJ, = —¢gR,

, (2.2.14)
J, = —qu,(Ur grad p + pE),  qé,p + divJ, = —¢R,

called the drift diffusion equations of semiconductors. This name originates
from the type of dependence of the current densities on the carrier densities
and the electric field. The current densities are the sums of drift terms (with
the mobilities y, and p,) and diffusion terms (with the diffusivities D, = u, Uy
and D, = u,Uy). The equations

D,/u, = D,/u, = Ur (2:2.13)

are known as the Einstein relations.

As before, the unscaled quantities in (2.2.14) are denoted by the same
symbols as their scaled counterparts. In particular, the scaling introduced
above implies the reference value (k;Tm,)**/h” for number densities.
Accordingly, the unscaled recombination-generation rate R has the form
(2.2.13) with the unscaled intrinsic number given by

"2k T,/ m,m m )3" ( —E,
""‘( o "p(u T

Another result of the scaling procedure is that the mobilities are inversely
prOpOI'thl]dl to the square roots of the effective masses. The fact that heavy
carriers are slower than light ones is responsible for the Gunn effect dis-
cussed in Section 4.8.

For a self consistent treatment of the electric field, (2.2.14) has to be supple-
mented by the Poisson equation (1.6.23), (1.6.25). The resulting system,
originally due to van Roosbroeck [2.18], is called the basic semiconductor
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device equations. 1t has been the subject of an intensive mathematical,
numerical as well as physical scrutiny. A presentation of the most important
results is the subject of the Chapters 3 and 4.

Obviously, the leading terms in the Hilbert expansion cannot satisfy general
initial and boundary conditions for the Boltzmann equation. If the pre-
scribed data do not have the form of Maxwellians, initial and boundary
layers have to be introduced for the construction of a complete formal
approximation of the solution. This has been carried out by Poupaud [2.11],
who also gave a justification for the formal approximation procedure
presented above.

2.3 Moment Methods—The Hydrodynamic Model

A second way for the derivation of fluid dynamical models from the Boltz-
mann equation are moment methods. As mentioned in the introduction they
consist of an ansatz for the distribution function and a system of necessary
conditions for solutions of the Boltzmann equation. How “close to suffi-
ciency” these conditions are, can in general only be judged by physical
reasoning.

In this Section we consider the classical Boltzmann equaticn for one type
of charge carrier (say electrons):

&F + v-grad, F — %E -grad, F = Q(F) (2.3.1)
with a low density collision term:

Q(F) = J.m P(x, v, v")(MF' — M'F) dv’,
where the Maxwellian is given by

=l
= \2nk,T) P\ 2k, T )

The j-th order moment of the distribution function F is defined as the tensor
M"Y of rank j, whose components, which depend on position and time, are
given by

(X 1) = J Ui, ---v,-jF(x. v, 1) dv for j=1,
R3

MO(x, t) = j F(x, v, t)dv.

R

The relevance of the moments is due to the fact that they are related to
physical quantities in a simple way. Examples are:
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M© n  position space number density,

—gM'" J  current density,
m " ;
?tr(M' ") & energy density,

where tr denotes the trace (of a matrix).

Equations for the moments can be derived by multiplying the Boltzmann
equation by powers of v and by integrating over the velocity space. This
leads to the infinite hierarchy

(‘JIM(()] i di\’x MO — 0,

oMM + div, M + j%M‘O’E = j vQ(F) dv,
B3

(2.3.3)
v® v Q(F)dv,

oM? 4 div, M® 4 29 M @ E = J

m B
According to the physical interpretation of the moments these equations
represent conservation laws. The first one—already discussed in Chapter
1 —represents the conservation of charges. The practical use of the hierarchy
(2.3.3) is limited on one hand by the fact that all the moments are coupled,
such that truncation of the hierarchy does not give a closed system for a
finite number of the moments. On the other hand, the terms originating from
the collision integral do not depend on the moments in a simple way in
general. These difficulties are overcome by making an ansatz for the distri-
bution function which a priorily fixes its dependence on the velocity.
This usually introduces position and time dependent parameters which then
are determined by a truncated version of (2.3.3).

Derivation of the Drift Diffusion Model

The first moment method presented here is motivated by the results of the

Hilbert expansion. With the particular solution h(x, v) of the equation
Q(h) =M,

whose properties are given in the Lemma of the preceding Section, we make

the ansatz

F(x,v,t) =n(x, )M (v) + TJ(x, t)-hix,v), (2.3.4)

3
p(x)kg

where p(x) satisfies

J. v ® hix,v)de = —pu(x)Us15.
w3
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Straightforward integration gives the relations for the moments of (2.3.4)

kyT
M%=n, —qMW=J, MP=n——I,

and a comparison with (2.3.2) shows that the choice of the symbols n and J
in (2.3.4) is justified. The energy density is given by

3
& = ikBTn.

The first two equations in (2.3.3) imply
gdn —div, J =0,

2.35
—% 0,J + qu(Uygrad, n + nE) = J. ( )

The factor um/q multiplying the time derivative of the current density is the
current density relaxation time. It is usually assumed that this relaxation
time is small compared to characteristic time constants in the drift diffusion
approximation (2.2.14) (see [2.16]). Thus, the term —(um/q)d,J in (2.3.5) is
neglected and a unipolar drift diffusion model is obtained from (2.3.5).

The H ydrodynamic Model

A different ansatz for the distribution function is motivated by the collision
term for a dilute gas of rigid spheres (see [2.3]). For this case the null
manifold of the collision term is five dimensional and its elements can be
written as

m 3/2 o y o 372
F(x, v, t)= n("nk T) exp (Lﬂt]ﬁ—tl) : (2.3.6)
L B e «hple

where n, T, and the three components of v are the free parameters (see [2.3,
pp. 78ff]). A distribution function of the form (2.3.6) is called displaced (or
shifted) Maxwellian. Here, (2.3.6) can be used as an ansatz for a moment
method with the parameters depending on position and time. n, T,, and ©
can be interpreted as number density, effective temperature, and mean
velocity, respectively. Since an effective temperature different from the lattice
temperature is allowed, it is plausible that certain high field effects are taken
into account by (2.3.6). For the moments of (2.3.6) we have

_ kyT,
MO = p, MY =y, M“’*’—n(5®1‘1+ =
m

which implies that the energy density can be written as the sum of a kinetic
and a thermal contribution:

m|o]* 3
(g = n( B} +§kﬂ?;)

&
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For the determination of the unknowns the first two equations and the trace
of the third equation in (2.3.3) are used. Straightforward but lengthy com-
putations lead to the system, usually referred to as the hydrodynamic
semiconductor model:

& n + div(nr) = 0,

: k
a0 + (v-grad) + —= grad(nT,) + S (6,7),,
mn m

(2.3.7)
2 .
aT, + 3 T.divt+7-grad T, = (3, T,).,
where we denoted
( d)" 7(7174_7 (“'!74_7 ar 5= (B, By, Ba)
vrgrad)t =1 v Uy—, 0 = (Byq; Ugsi D)
g l(;\xl 2[".\'2 3 ﬂxa 1 2 3

If the terms on the right-hand sides, stemming from the collision terms, are
omitted, then (2.3.7) are the Euler equations of gas dynamics for a gas of
charged particles in an electric field. A weakness of the ansatz, when applied
to the semiconductor problem, is displayed by exactly these terms. They are
given by

(G,0), —1J. vQ(F) dv,
n Jps

2m
3kgn

OT) e j 1012Q(F) dv — rj vQ(F) dv.
R3 B3

3kgn
In general, it is impossible to obtain the dependence of the integrals on the
parameters explicitely. For the purpose of simulation the collision terms are
often replaced by relaxation time approximations. We refer the reader to
[2.1] for a model which seems to meet with approval in the literature.
The problems at the end of this section shed light on the mathematical
properties of the hydrodynamic semiconductor model.
In [2.2], where the model (2.3.7) in the context of semiconductors has been
introduced, an additional heat conduction term

9)

s

 3kgn

was added to the left hand side of the temperature continuity equation. Here,
» denotes the heat conductivity of the electron gas.

The type of the differential equations in (2.3.7) changes at the transition from
subsonic flow to supersonic flow. In the supersonic regime the occurance of
electron shock waves is possible. The interested reader can find a brief
discussion of the nonlinear wave structure in [2.5].

A different model with an account for energy flow has been proposed in
[2.7]. In [2.8] a simplified version has been derived by a perturbation
argument, which can be interpreted as a modification of the drift diffusion
model. Its special appeal lies in the fact that high field effects are modelled
in a way compatible with experiment.

div(x grad T,)
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2.4 Heavy Doping Effects—Fermi-Dirac Distributions

In this Section we consider cases where the distribution function is not
necessarily small compared to one. Therefore a nonlinear collision term has
to be used in the Boltzmann equation. A scaled version of the classical
unipolar model (2.3.1) reads

o?0,F + a(v-grad, F — E-grad, F) = Q(F), (24.1)

where the collision integral is given by
Q(F) = '[ d(x, v, ') (MF'(1 — F)— M'F(1 — F')) dv’
i E)

(see Section 1.3) with the Maxwellian
M(v) = (2r) %2 exp(—|v|*/2).

As in Section 2.2, o denotes the scaled mean free path and we introduce a
power series expansion of F in terms of o:

F=F,+aF +--.

The equation
Q(F,) =0

implies [2.11] that the leading term is a Fermi-Dirac distribution:
Fy = Fp(|v]*/2 — @),

where

1
1 + e"

holds and ® = ®(x, 1) is the Fermi energy (see Chapter 1). Equating coeffi-
cients of « in (2.4.1) gives

Fo(1 — Fy)v-(grad, @ + E) = L(®)F,, (24.2)
where L(®) is the Frechet derivative of Q evaluated at Fj:

L(®)f = f ¢(x, v, v )M(f'(1 — Fy) — Fo f)

R

Fplu) =

— M'(f(1 = F5) — Fo f")) dv".

A result [2.11], which is in the spirit of the Lemma in Section 2.2, states that
an equation of the form

L®)f =g (24.3)
has a solution if and only if
J gdv=20 (2.4.4)
R3
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holds and that the null space of L(®) is spanned by F,(1 — Fy). In [2.11] it
is shown that the equation

L(D)h = vF,(1 — F,)

has a solution with the property that the matrix
(D) = —j v®@ hdv
RS

is positive definite. The solution of (2.4.2) can be written as
F, = (grad, ® + E)-h + q(x, ) Fo(1 — Fy).

Equating coefficients of «? in (2.4.1) gives an equation of the form (2.4.3) for
F,. The solvability condition (2.4.4) implies

on—divJ =0, (2.4.5)

where the scaled electron density and current density are given by
n(®) = J F, dv, J = I1(®)(grad ® + E).
R3

Equation (2.4.5) is a nonlinear parabolic equation for the Fermi energy ®.
Since the electric field can be expressed in terms of the electrostatic potential
as E = —grad Vthe current density is proportional to the gradient of the
quasi-Fermi potential ¢, = ® — V. The continuity equation in terms of the
quasi-Fermi potential reads

anlg, + V) —div(Il(e, + V) grad ¢,) = 0.

The perturbation argument leading to the fluid dynamical model (2.4.5) has
been justified in [2.11]. A practical application would be facilitated by some,
at least qualitative, knowledge of the dependence of the matrix IT on its
argument. At present, the authors are not aware of results in that direction.

2.5 High Field Effects—Mobility Models

As mentioned in Section 2.2 the validity of the Hilbert expansions presented
so far is restricted to the case of small electric fields. A totally new situation
occurs if the scaled electric field is large, say of the order of magnitude of
»~'. The appropriately rescaled Boltzmann equation then reads

w0, F + av-grad, F — E-grad, F = Q(F), (2.5.1)

where we also introduced a time scale faster than the one used in Section
2.2. For the collision term we choose a (linear) low density approximation.
The leading term of the Hilbert expansion satisfies

—E-grad, F, = Q(F;). (2.5.2)

This equation does not only occur in the context of the Hilbert expansion
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but is, by itself, of physical interest as a model for stationary, homogeneous
situations. It is well known that it does not have an integrable solution in
general, which would be necessary for the definition of the position space
number density n. The nonexistence of such a solution is called runaway
phenomenon. For a mathematical analysis of related questions we refer the
reader to [2.4]. The occurance of runaway depends on the collision frequency

Alp) = j @, v )M(v')dv'.
w3

The following result can be found in [2.12]:
Lemma: A necessary condition for the existence of a positive, integrable
solution of (2.5.2) is

J A(SE)ds = oo,

[}

i.e. the collision frequency does not decay too fast in the direction of the electric
field.
For the following we make the assumption that (2.5.2) has a positive solution
M (v) which satisfies

| Mg(v)dv=1.
w3
Then the leading term in the Hilbert expansion has the form
Ey = n(x, ) Mg(v).
Equating coefficients of o in (2.5.1) gives
0 (nMg) + div(vMgn) — E-grad, F;, = Q(F,).
Integration in the v-direction implies
on + div(v(Eyn) =0,
with the average velocity defined by

v(E) = j oM dv.
3

(2.5.3) is a hyperbolic equation for n. Thus, n might have discontinuities. A
similar situation occurs in gas dynamics where the Euler equations allow
for shocks. These shocks are eliminated by introducing viscosity terms and,
thus, considering the Navier Stokes equations, which can be derived from
the Boltzmann equation of gas dynamics by the Chapman-Enskog method.
A similar approach [2.12] leads to a diffusion term of order « in the present
situation:

é,n + div(t(E)n — aD(E) grad n) = 0,
where D(E) is the (positive definite) diffusivity tensor.
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It is easy to see that
v(0) =0, grad; v(0) = —pyl; <0 (2.54)

holds for the average velocity, where the low field mobility p, can be
computed as in Section 2.2. Unfortunately, it is impossible to obtain the
dependence of © on the field explicitely. For simulation purposes it is com-
mon to use an ansatz fitted to experimental results. As a first step, it is
certainly reasonable to write v in the form

U(E) = —u(|E|)E

with u(0) = u,. Here (2.5.4) is taken into account and it is assumed that the
direction of the average velocity is given by the direction of the field.
Experiments show the effect of velocity saturation at large electric fields:

lim [O(E)| = g -

|E|—*ac
A model for the mobility which shows this behaviour has been derived in
[2.7] and [2.8]:

2u
H(E|) = Lo . (2.5.5)
1+ /1 + Quol El/v,al)

Several other models which are similar to the above are used (see [2.16] for
an overview and references). In numerical simulations it is common to use
a drift diffusion model with a mobility like in (2.5.5) and to compute the
diffusivity from the Einstein relations (2.2.15). However, it is likely that in
reality the Einstein relations are violated for high electric fields. In particular,
the diffusivity cannot be expected to decay for large electric fields.

The transferred electron effect in two-valley semiconductors (e.g. GaAs) with
large effective mass of the electrons in the upper valley leads to a nonmono-
tone velocity-field relation (see Fig. 2.5.1). It has already been mentioned

E E

a) b)

Fig. 2.5.1 Velocity vs. field for (a) Si, (b) GaAs
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that large effective mass means low mobility. This explains the effect on the
velocity-field relation because for higher electric fields the electron density
in the upper band increases (see [2.17] for details). In these cases (2.5.5),
which is an acceptable model for Si and Ge, has to be changed accordingly.

2.6 Recombination-Generation Models

The recombination-generation rate
R = A(np — n})

derived in Section 2.2 is a model for direct band-band recombination caused
by photon transitions. It is well known that other recombination-generation
mechanisms are much more important in semiconductor devices. In this
Section we discuss three such mechanisms which are usually taken into
account in semiconductor device modelling. This will, however, not be done
on the level of the Boltzmann equation. Instead, models will be presented
which can be used directly in the fluid dynamical equations.

The first mechanism to be considered is Auger recombination. Two different
processes are shown schematically in Fig. 2.6.1:

a) Electron capture: An electron moves [rom the conduction band to the
valence band and recombines with an hole there. Its energy is transferred
to another electron in the conduction band.

b) Hole capture: An electron moves from the conduction band to the valence
band and recombines with an hole there. Its energy is transferred to another
hole in the valence band.

The processes acting in the opposite directions:

¢) electron emission,
d) hole emission

are also possible. The rates of these processes in position space are modelled
by mass action laws. With the low density assumption they are given by

conduction band

] 'f valence band

a) b)

Fig. 2.6.1 Auger recombination
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| conduction band

[

i trap level

-

1 Aviale-n_ce band
a) b)

Fig. 2.6.2 Band-trap capture

a) C,n’p,
b) C;np*,
e) C,n,
d) C,p.

The principle of detailed balance (see Section 1.3) states that each process
balances its counterpart in thermal equilibrium. The thermal equilibrium
condition np = n? derived in Section 2.2 implies

~

C,=niC,, C,=niC,.
The total Auger recombination-generation rate can then be written as
Ry = (C,n + C,p)(np — n}). (2.6.1)

Next we consider band-trap capture and emission. These are important in
the presence of impurities which generate additional energy (trap) levels in
the forbidden band. The processes shown in Fig. 2.6.2 are

a) Electron capture: An electron moves from the conduction band to an
unoccupied trap.

b) Hole capture: An electron moves from an occupied trap to the valence
band. An hole disappears.

Again, the processes in the opposite direction are also possible. The rates
are given by

a) Ca”(Nlr - ntr}’

b) Cypn,,,

¢) C.ny,.

d) Cy(N, — ),

where N,, denotes the density of traps and n,, the density of occupied traps.
The densities n, p, and n,, satisfy the differential equations

1 ..
on ——div J, = Cn, — C,n(N,, — n,),
q

1
o,p — - div J, = Ci(N,, — n,) — Cypny,, (2.6.2)

ﬁf"lr = Can(Nlr - "lr) - Ccnlr T Cbpntr - Cd(Nu - ”lr)'
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Since the impurities are assumed to have fixed positions, the trapped elec-
trons do not contribute to the current flow.

In the classical theory of band-trap transitions, due to Shockley, Read
[2.15], and Hall [2.6], it was assumed that the relaxation of n,, towards
equilibrium happens much faster than the relaxation of n and p. Although
the authors are not aware of a rigorous justification of this assumption it
will be adopted here because the resulting recombination-generation model
has been generally accepted. If a moderate time scale 1s considered, this
assumption justifies setting é,n,, = 0 in (2.6.2). From the resulting algebraic
equation n,, can be computed:

N G465
"Cn+C.+Cp+Cy

Ry =
This implies for the Shockley-Read-Hall (SRH) recombination-generation
rate:

np —n;py -
t(n+ny) + 1,(p+py)°

Rgpn =

where the densities n, and p, are given by
iy =CHE, Py = GG,

and the carrier life times 7, and 7, by
£ =(C. N2, T, =(Cy Ny

The requirement that the recombination-generation rate vanishes in ther-
mal equilibrium implies n, p, = n}. A more detailed analysis shows that n,
and p, depend on the location of the trap level [2.17]. In particular,

Ry =Dy = H;

holds if the trap level is in the middle of the forbidden band.

Strictly speaking, the above considerations for Auger and SRH recombina-
tion are only valid close to thermal equilibrium and for small electric fields.
This observation is of particular importance for the generation process
corresponding to Auger recombination at high electric fields. An effect called
impact ionization which cannot be modelled by (2.6.1) is observed. A pheno-
menological description is provided by the commonly used model (see
[2.16])

Ry = —o,|hl/q — 2|1/, (2.6.4)

where the ionization rates o, and o, are strongly ficld dependent. A simple
choice is the so called lucky drift model [2.14]:

a, = ay exp(—E;/|E|),  a, = oy exp(—E;"/|E]), (2.6.5)
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where «* and & are maximal ionization rates, and E{™ and Ef,’“ are critical
field strengths.

r

Problems

2.1

2.2

[
[

24

Derive the following equation for the rate of change of the energy:

y
‘-j e‘fdx—J J-de—TJ J |o|>Q(F) dv dx
dt Jgy EH 2 JaJm

from (2.3.2), (2.3.3). Assume that M'® vanishes as |x| — .

Definition: A flow is called irrotational if its velocity vector satisfies curl v = 0.

Simplify the velocity equation of the hydrodynamic model (2.3.7) assuming that the flow
of the electron gas is irrotational.

Hint: Prove (v-grad)v = 1 grad (|v|?) — 7 x curl 0.

Definition: A flow is called incompressible if its velocity vector satisfies div v = 0.
Simplify the hydrodynamic model (2.3.7) assuming that the flow of the electron gas is
incompressible.
Take the relaxation model for the temperature:
.- T
@T). = *M,
Ly
where T > 0 denotes the (constant) lattice temperature and 7, > 0 the (constant) tem-
perature relaxation time. Solve the electron continuity equation and the temperature
equation (in terms of the velocity field v) with the initial data

nix, t =0) = nyx), x € R3,
T.(x,t = 0) = Ty(x), xe R3.

Consider the steady state hydrodynamic model (2.3.7), i.e. set ¢n =0, 6,0 = 0, ¢, T, = 0.
Assume infinitely fast temperature relaxation (¢, T,), = 0. Prove that T, = Kn*?, where
K > 01is an arbitrary constant, is a solution of the temperature equation.

Remark: p = kgnT,is called pressure of the electron gas and a relation of the form p = p(n)
is called equation of state. Thus, under the above assumptions, the electron gas has the
equation of state p = Kkyn“3.

Consider the one-dimensional steady state hydrodynamic model (2.3.7) with an equation
of state p = p(n) (see Problem 2.4) and with the velocity relaxation term

§ v
@20), = —,
T;
where the velocity relaxation time 7, is positive. Prove that the nonlinear current
dependent drift-diffusion equation

mJ: 1 ,
J=qu |:(‘ — 4+ 7p(u)) + nL:|
qg- n q =

holds with the electron mobility u = t;g/m.

Hint: Note that J = const. holds in the one-dimensional steady state case!

Remark: We conclude that the “classical” drift-diffusion model (2.2.14) is obtained from
the hydrodynamic model (at least in the steady state one-dimensional case with velocity
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relaxation) by neglecting terms of order J2 (small current limit) and using the equation
of state p(n) = (Upg)n (linear pressure-density relationship).

2.6 Definition: (i) A flow is called subsonic, if its velocity field satisfies

o] < /' (n)/m.

</ P'(n) is called soundspeed of the flow.
(i) Let

F: R* > R, F = F(r, q. u, x)

be a function. The equation

Ft,, te, 4, X) =0

is called (everywhere) elliptic if 6F/dr > 0 on R*.

Prove that the drift-diffusion equation of Problem 2.5 together with the conservation
equation J, = 0 leads to an elliptic equation for the density n if and only if the flow is
subsonic.

References

[2.1]
[2.2]
[2.3]
[2.4]

[2.7]
[2.8]

[2.9]
[2.10]

[2.11]
[2.12]

[2.13]
[2.14]

[2.15]

G. Baccarani, M. R. Wordeman: An Investigation of Steady-State Velocity Overshoot
Effects in Si and GaAs Devices. Solid State Electr. 28, 407416 (1985).

K. Blotekjer: Transport Equations for Electrons in Two-Valley Semiconductors.
IEEE Trans. Electron. Devices ED-17, 38-47 (1970).

C. Cercignani: The Boltzmann Equation and Its Applications. Springer-Verlag, New
York (1988).

G. Frosali: Functional-Analytic Techniques in the Study of Time-Dependent Electron
Swarms in Weakly Ionized Gases. Preprint, Istituto di Matematica, Universita di
Ancona (1988).

C. L. Gardner, J. W. Jerome, D. J. Rose: Numerical Methods for the Hydrodynamic
Device Model: Subsonic Flow. Presented at the meeting on Mathematische Model-
lierung und Simulation elektrischer Schaltungen, Oberwolfach (1988).

R. N. Hall: Electron-Hole Recombination in Germanium. Physical Review 87, 387
(1952).

W. Hinsch, M. Miura-Mattausch: The Hot-Electron Problem in Small Semi-
conductor Devices. J. Appl. Phys. 80, 650-656 (1986).

W. Hiinsch, C. Schmeiser: Hot Electron Transport in Semiconductors. ZAMP 40,
440455 (1989).

D. Hilbert: Math. Ann. 72, 562 (1912).

B. Niclot, P. Degond, F. Poupaud: Deterministic Particle Simulations of the Boltz-
mann Transport Equation of Semiconductors. J. Comp. Phys. 78, 313350 (1988).
F. Poupaud: Etude Mathematique et Simulations Numeriques de Quelques Equa-
tions de Boltzmann. Thesis, Univ. Paris 6 (1988).

F. Poupaud: Runaway Phenomena and Fluid Approximation Under Strong Electric
Field in Semiconductor Theory. Manuscript, Laboratoire de Mathématiques,
Université de Nice (1988).

C. A.Ringhofer: A Spectral Method for Numerical Simulation of Quantum Tunneling
Phenomena. SIAM J. Numer. Anal. (1989) (to appear).

W. Shockley: Problems Related to p-n Junctions in Silicon. Solid State Electr. 2,
35-67 (1961).

W. Shockley, W. T. Read: Statistics of the Recombinations of Holes and Electrons.
Physical Review 87, 835-842 (1952).




References 103

[2.16] S. Selberherr: Analysis and Simulation of Semiconductor Devices. Springer-Verlag,
Wien-New York (1984).

[2.17] S. M. Sze: Physics of Semiconductor Devices, 2nd edn. John Wiley & Sons, New York
(1981).

[2.18] W. V. van Roosbroeck: Theory of Flow of Electrons and Holes in Germanium and
Other Semiconductors. Bell Syst. Techn. J. 29, 560-607 (1950).



3 The Drift Diffusion Equations

3.1 Introduction

The drift diffusion equations are the most widely used model to describe
semiconductor devices today. The bulk of the literature on mathematical
models for device simulation is concerned with this nonlinear system of
partial differential equations and numerical software for its solution is
commonplace at practically every research facility in the field. From an
engineering point of view, the interest in the drift diffusion model is to replace
as much laboratory testing as possible by numerical simulation in order to
minimize costs. To this end, it is important that computations can be
performed in a reasonable amount of time. This implies that the involved
mathematical models cannot be too complicated, such as, for instance, the
higher dimensional transport equations described in Chapter 1. For the
current state of technology the drift diffusion equations seem to represent a
reasonable compromise between computational efficiency and an accurate
description of the underlying device physics. Therefore transport equations
are used mainly to compute data for the model parameters in the drift
diffusion equations in the engineering environment. It should be pointed
out, however, that, with the increased miniaturization of semiconductor
devices, one comes closer and closer to the limits of validity of the drift
diffusion equations, even in an industrial environment. The reason for this
is, on one hand, that in ever smaller devices the assumption that the free
carriers can be modelled as a continuum becomes invalid. On the other hand
the driit diffusion equations are derived through a limit process where the
mean free path of a particle tends to zero. Through miniaturization and the
use of materials other than silicon this mean free path becomes larger and
larger in comparison to the size of the device. In addition, quantum mech-
anical effects start to play a more and more important role in novel device
structures. For these reasons, and because of the rapid increase in available
computing power, transport equations will be used more and more in device
simulation in the [uture. But even then the drift diffusion equations will
remain an important tool since the microscopic effects not described by them
occur only locally. Thus, the most likely approach will be to use more
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sophisticated models only locally, for instance in the channel of a MOS-
transistor (see Chapter 4). and to use the drift diffusion equations in the parts
of the device where they suffice to describe the physics.

In this Chapter we will discuss the analytical properties of the drift diffusion
equations. We will mainly be interested in the structure of their solutions.
Of course this structure will strongly depend on the underlying geometry:
1.e. on the device under consideration. We will, however, not discuss specific
devices in this Chapter but leave their discussion to Chapter 4. So, we will
consider only P-N junctions and will not concern ourselves with how
different types of devices can be made up by configurations of these P-N
junctions.

We consider the system of partial differential equations

a) div(e grad V)=¢g(n — p — C)

b) div J, = g(d,n + R)

¢) divJ,=q(—6p — R) (3.1.1)
d) J, = q(D, grad n — p,n grad V)

e) J,=q(—D,grad p — p,p grad V),

where V denotes the electric potential (— grad V is the electric field.), n and
p are the concentrations of [ree carriers of negative and positive charge,
called electrons and holes, and J, and J, are the densities of the electron and
the hole current respectively. D,, D,, u, and p, are the diffusion coefficients
and mobilities of electrons and holes respectively. ¢ is the permittivity con-
stant whose approximate value in silicon is 107 As V™! cm™. g is the
elementary charge whose value is approximately 10 '? As. We assume the
device geometry to be given by a domain Q < R? with d =1, 2 or 3.
Physically d = 3 holds, of course. For many devices, however, it suffices to
consider two dimensional models (d = 2) since their extension in one dimen-
sion is much larger than in the other two. Even one dimensional models are
sometimes used today. The boundary @Q of the domain Q is assumed to
consist of a Dirichlet part 6Q,, and a Neumann part ¢Q,:

0 = 0Q, L Qy, Q=4 }: (3.1.2)
The Dirichlet part éQj, of the boundary corresponds to Ohmic contacts.
There the potential V and the concentrations n and p are prescribed. The
boundary values are derived from the following considerations. At Ohmic

contacts the space charge, given by the right-hand side of (3.1.1)a) vanishes.
So

n—p—C=0 for x € 08}, (3.1.3)

holds. Furthermore the system is in thermal equilibrium there, which is
expressed by the relation

np = n} for xedQp. (3.1.4)
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n; is the intrinsic density (= 10'® ¢cm™ in silicon at room temperature).
Moreover, the quasi Fermi levels ¢, and ¢,. given by

), b) ¢p—V+U-,-ln(£—), (3.1.5)

n
! i

a) ¢,=V—U;ln (1
assume the values of the applied voltage at Ohmic contacts. Here U; denotes
the thermal voltage which, at room temperature, is roughly 0.025 V. From
the conditions (3.1.3)-(3.1.5) the boundary values for V, n and p can be
uniquely determined. Inserting (3.1.4) into (3.1.3) gives one quadratic equa-
tion for n and p each, which have unique positive solutions given by

a) n(x, 1) = np(x) = HC(x) + \/’akﬁcﬁ)éi}f»’nﬁf’j
b) plx, 1) = pp(x) = 1(— C(x) + /C(x)* + 4n?)
for xedQ,.
(3.1.5) gives the boundary values for the potential V: r (3.1.6)
c) Vix,t)= Vplx,t)=Ul(x, 1) + V,(x)

np(x)

VE,,—(.Y] = UT ln( "

) for x e dQ,.
U(x, 1) denotes the applied potential. So, differences in U(x, t) between
different segments of éQ, correspond to the applied bias between these
contacts. Note, that (3.1.4) immediately implies that ¢, equals ¢, at Ohmic
contacts. The Neumann parts €y of the boundary model insulating or
artificial surfaces. Thus a zero current flow and a zero electric field in the

normal direction are prescribed.

oV
a) (__ (x,t)(=grad V-v)=0
ov
by J/(x,1)-v=0, (3.1.7)

c) J(x, 1) v=0 for x € 0Qy.

In this Chapter v will always denote the unit outward normal vector on the
boundary ¢€. In addition the concentrations of the free carriers n and p at
time ¢ = 0 are prescribed.

n(x, 0) = n'(x), p(x,0) = pl(x) for xeQ (3.1.8)

holds and the complete initial boundary value problem is given by the
equations (3.1.1), the boundary conditions (3.1.6), (3.1.7) and the initial
conditions (3.1.8).

This setting is not sufficient to describe devices like MOS transistors which,
in addition, contain an oxide layer attached to the semiconductor. In the
oxide a different set of equations holds and interface conditions are given at
the semiconductor oxide interface. We will leave the discussion of this case
to Chapter 4.
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Various models for the recombination rate R in (3.1.1)b)¢) can be found in
the literature (see [3.34]). In this Chapter we will, for the sake of simplicity,
only consider the Shockley Read Hall term which is of the form

R= ol . (3.1.9)

T(n+n)+1,(p+n)

Here, again, n; denotes the intrinsinc density. 7, and 1, are the lifetimes of
electrons and holes respectively. Other models, such as the Auger- or the
impact ionization model can be found in Chapter 2. We will always assume
the mobilities and the diffusion coefficients to satisfy the Einstein relations

D, = u,Us, D, = pu,Ur, (3.1.10)
where U, (= 0.025 V) is the thermal voltage. There is a variety of models
for the mobilities y, and u,. They can be grouped into two different cate-
gories which have to be treated in different ways analytically. In one case
they are simply functions of position. In the other case they are modelled as
dependent on the electric field —grad V in order to represent so called
velocity saturation effects. The field dependent mobility models will be
discussed in detail in the corresponding Section of this Chapter. We refer
the reader to [3.34] for a discussion of different mobility models.
In this Chapter we will restrict ourselves to the analysis of P-N junctions.
The term P-N junction refers to the sign change of the doping concentration
C(x) in (3.1.1)a). This doping concentration is produced by diffusion of
different materials into the silicon crystal and by implantation with an ion
beam. This produces a preconcentration of ions in the crystal which is
modelled by the function C{x). So C(x) = C,(x) — C_(x) holds where C.
and C, are the concentrations of negative and positive ions respectively.
Where the preconcentration of negative ions predominates in Q, C(x) <0
holds and these subregions of Q are called P-regions. Similarly, in the
N-region, where the preconcentration of positive ions dominates, C(x) > 0
holds. The boundaries between the N- and the P-regions, i.e. the manifolds
where C(x) changes its sign, are called P-N junctions. For the simplest P-N
junction device, the P-N diode, the geometrical configuration in the two-
dimensional case is depicted in Fig. 3.1.1.

D.O.D| | NN
P
90N a0y
N
—
9Qp;

Fig. 3.1.1 P-N diode
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The function of a P-N junction diode is, roughly speaking, that of a valve.
If a potential difference of an appropriate sign. that means a difference in
the values of U(x, 1) in (3.1.6)c) between the Dirichlet boundary parts 7€,
and ¢Q,,, in Fig. 3.1.1 1s applied to the P-N junction, a so called depletion
region will form around the P-N junction. There, very few [ree carriers will
exist and n = 0 and p = 0 will hold in (3.1.1), inside the depletion region.
The depletion region will effectively act as an insulator and no, or very little,
current will flow. If the potential difference is applied the other way around
the depletion region will vanish and current will flow. This is the simplest
type of semiconductor device and will be used in this Chapter to explain the
analytical features of the drift diffusion equations.

The main difficultics in the treatment of the drift diffusion equations are, on
one hand, their nonlinear nature and, on the other hand, the extreme
differences in the magnitude of the involved quantities. These differences
lead to an almost singular type of behaviour of solutions of the drift diffusion
equations. Solutions of the drift diffusion equations will exhibit an extreme
layer behaviour in the spatial as well as in the time direction and will,
therefore, be amenable to singular perturbation analysis. In this Chapter we
will analyze the drift diffusion equations by means of such an asymptotic
analysis. This will provide an understanding of the types of mechanisms
which are important in different subregions of the device domain Q and on
different time scales. Different approaches have to be used depending on the
biasing conditions and the geometries under consideration. We will keep
the discussion in rather broad terms in order for the results to be applicable
to as wide a range of geometrical configurations, and therefore as wide a
range ol devices, as possible. Excerpts of the analytical machinery developed
in this Chapter will be used to treat specific devices in Chapter 4.

3.2 The Stationary Drift Diffusion Equations

The majority of the analytical and computational work on the drift diffusion
cquations so far has been concerned with the stationary problem. This
means that the drift diffusion equations (3.1.1) are considered at a steady
state and that the time derivatives é,n and ¢,p in (3.1.1)b)c) are neglected. So
we consider the problem

a) div(egrad V)=qn—p— C)

b) divJ,=¢gR

¢) divJ,= —¢gR (3.2.1)
d) J,=q(D,grad n — u,n grad V)

e) J,=q(—D,grad p— pu,p grad V),

together with the boundary conditions
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a) n(x) = np(x) = HC(x) + /C(x)* + 4n?)
b)  p(x) = pp(x) = 3~ C(x) + /C(x)* + 4n)
Q) V(x) = Vy(x) = UX) + Vii(x)

np(x)

Viilx) = ln( ) for x € dQ, (3.2.2)

oV
-~
av

e} J(X):vi= 0 f)y J(x)-v=0 for x € 0Qy.

i

d) (x)(:=grad V-v)=0

From a practical point of view, the interest in the stationary drift diffusion
equations lies in the dependence of the current densities J, and J, on the
applied bias, the doping concentration C(x) and the geometry. For instance,
one tries, through variation of these parameters, to minimize the so called
leakage current. That is the small current still flowing through a reverse
biased P-N junction. While the tools to treat such a complicated problem,
as the drift diffusion equations in higher dimensions, have to be computa-
tional, a great deal of insight can be gained by analysis. The development
of numerical methods for the drift diffusion equations benefits greatly from
the analytical understanding of the solutions, and might even be impossible
without it. In the following Sections we are interested in four basic questions
about the stationary drift diffusion equations:

1. Does a solution exist, and, if yes, how smooth is it?

2. What is the structure of solutions of the stationary drift diffusion
equations?

3. What are the stability properties of these solutions?

Question 1 is of a general mathematical interest. It turns out that solutions
exist and lie in the function spaces one would expect them to. Question 2
is of extreme importance for the development of numerical methods. As
mentioned earlier, solutions of the drift diffusion equations exhibit layer
structure. That means that they have large gradients locally, usually near
the P-N junctions. The performance of numerical methods can be improved
a great deal if they are adapted to this layer behaviour. As had to be expected.
the structure of solutions to the drift diffusion equations looks quite differ-
ently for forward and reverse biased P-N junctions. Thus, these two cases are
treated separately in the subsequent Sections. The stability properties of the
stationary drift diffusion equations are extremely dependent on the geo-
metry and not analyzed satisfactorily at this point. We will present the
available results in Section 3.6. There it turns out that the conditioning of
the drift diffusion equations is acceptable if every N- and P-region contains
a contact. If this is not the case, i.e. if so called floating regions are present,
the stability properties can worsen drastically.
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3.3 Existence and Uniqueness for the Stationary Drift
Diffusion Equations

Before analyzing the structure and the properties of solutions to the equa-
tions obtained by the steady state drift diffusion approximation in the
subsequent Chapters, we will first briefly discuss the existence of these
solutions. From a practical point of view one would prefer existence results
based on the implicit function theorem. Such results would provide infor-
mation about the norm of the inverse of the linearized problem. They would
show the existence of an isolated solution and, more importantly, give an
indication of the conditioning of the problem and of the convergence prop-
erties of Newton’s method. The conditioning of the steady state drift diffu-
sion equations has been investigated in [3.3] and various papers in the
literature ([3.57, [3.17],[3.28], [ 3.29]) deal with the convergence of iterative
methods. However, they do not treat the whole coupled system of equations
or they assume the existence of a suitable a priori bound on the inverse of
the linearization. At the end of this Section we will briefly discuss these
results. The only existence results available for the coupled problem and
arbitrarily large bias are not constructive since the arguments are based on
the Schauder Fixed Point Theorem in one way or the other. In this Chapter
we will give an example for an existence theorem for a simplified case
(Theorem (3.3.16)) in order to outline the basic approach. We refer the reader
to the literature ([3.4], [3.10], [3.19], [3.24]) for results in more general
cases.

Since the scaling is of no particular importance for the purposes of this
Section we will treat the drift diffusion equations in an unscaled form for
the moment. So we consider the system

a) ¢AV=gqn—p— C(x))
b) divJ, = gR, ¢) J,=q(D,grad n — p,n grad V) (3.3.1)
d) divJ,= —qR, e) J,=q(—D,grad p— p,pgrad V).

Equations (3.3.1) have the disadvantage of containing the convection terms
—n grad Vand —p grad V which prohibit the use of the maximum principle
in a simple way. If the Einstein relations

D, = Uz, . D, = Urpu, (3.3.2)

can be assumed, with U, the thermal voltage (see [3.35]), it is beneficial to
change from the concentrations n and p to the so called Slotboom variables
u and v given by

a) n=ne""u, b) p=ne "y, (3.3.3)
The current relations then become

a) J, = qUrn;p,e’Vr grad u,

b) J

r

i 334
= —qUrn;p,e V'V grad v. ( )
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After inserting the current densities J, and J, into the continuity equations
(3.3.1)b)d) one obtains the elliptic system

a) e AV = gnie""Vu — e V) — qC(x)

b) Upn, div(u,e"" grad u) = R (3.3.5)

¢) Upn;div(u,e” """ grad v) = R.
In this form the continuity equations (3.3.5)b)c) are self adjoint. In the
Slotboom variables u and v the boundary conditions (3.2.2)d)e)f) at artificial
or insulating surfaces become pure Neumann conditions

oV

A
v

ov

)
- -0, (3.3.6)

Qy

ey OV, OV

For Ohmic contacts we obtain from (3.2.2)a)b)c)
VL‘Q,, = VDL'ﬂln “L‘n,, = ul)'("ﬂ,. s U]F‘ﬂ,, = PDI:".Q,, , (3.3.7)

with uy, = n; e "»Ym, and vy = n;'e"»Vrp,. We remark that, since n and
p represent physical concentrations, the Slotboom variables u and v have to
remain positive.

Existence theorems for the problem (3.3.5)-(3.3.7) usually employ the
Schauder Fixed Point Theorem. The construction of the fixed point map
depends on the form of the recombination rate, the mobilities, the geometry
and so on. To outline the basic idea we will give an existence proof following
the approach in [3.19] but we will use some simplifying assumptions. We
will consider the Shockley Read Hall recombination term only. So after
changing variables to (V, u, v) the recombination rate R in (3.3.5) is of
the form

uv — 1

R =n. - e :
‘(e 4+ 1) + 1, (e + 1)

(3.3.8)

We assume that the mobilities pu, and y, are uniformly bounded functions
of position only and that

0 < p, < pu(x) < J1y, 0 < pp, < p(x)< i, VxeQ (3.39)

hold. Furthermore we will take the boundary Q) and the boundary data
Vp, up, and vy, in (3.3.7) to be as smooth as necessary.

We reiterate that existence results for more general situations can be found
in the literature (see [3.19, Chapter 3]). For instance the form of the recom-
bination rate can be taken so as to include the Auger recombination term
without any additional problems. The boundedness of the mobilities away
from zero is a more severe restriction. It excludes the field dependent
mobilities used to model velocity saturation effects. A condition of the form
(3.3.9) is necessary, however, to guarantee the uniform ellipticity of the
continuity equations. Therefore most existence proofs do assume an a priori
bound on the mobilities even when modeling them as dependent on the
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field —grad V. On the other hand the inclusion of an oxide layer, where
Laplace’s equation has to be solved for V, does not pose a major problem.
The fixed point map is constructed such that its evaluation only involves
the solution of semilinear or linear scalar boundary value problems. Let G
be given by G(u,, vy) = (u,, v;), where (u,, v,) is computed from (u,, v,) as
follows.

Step 1: Solve Poisson’s equation
—e AV + gne"Pruy — e VPrpy) — qC(x) = 0

ov| (3.3.10)
=) Viea, = Vbloa,

-

v |og,
for V =V,.
Step 2: Solve

a) — Uy div(p,e’'r grad u)

uvy, — 1

- T = 3.3.11
e g 1)+ 1y Ty 1 1) 33.11)
du
b) == =0, “|r~nu = uDlFﬂD
OV |aq,
foru=u,.
Step 3: Solve
a) — U, div(u,e "V grad v)
ugt — 1
+ V.U —V, U =0
(" Tug 4 1) (e oo+ 1)
P ’ ’ (3.3.12)
ov ‘
b) =, =0, Vlag, = l’DL?Q,,
oV o,

forv =v,.

By solving the boundary value problems (3.3.10)—(3.3.12) we mean a solution
in the usual weak sense (see [3.12]). Obviously a fixed point of the nonlinear
operator G is a weak solution of the coupled problem (3.3.5)—(3.3.7). The
existence of such a fixed point is established by showing that the map G is
completely continuous and by applying the Schauder Fixed Point Theorem.
Of course, for this approach one has to choose an appropriate space for
defining G. We will leave this question for later (for Theorem (3.3.16)) and
first convince ourselves that the map G is well defined; that means that the
involved boundary value problems are uniquely solvable. All three problems
(3.3.10)—(3.3.12) can be written in the general form

—div(a(x) grad w) + f(x, w) =0, xeQ

aw | (3.3.13)
T = 0, “‘lf"ﬂu = ‘WD‘RQD .
v filo
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where w takes the place of V, u and v respectively. The coefficient a(x) in
(3.3.13) is either the constant ¢ or equal to p,e”“r or u,e "7 In any case
itis uniformly bounded away from zero if u, and y, are and if ¥ is bounded,
which makes the semilinear equation (3.3.13) uniformly elliptic. f(x,w)is a
monotone increasing function of w in all three cases (3.3.10)—(3.3.12) if u,
and v, are positive. In (3.3.11) and (3.3.12) f is linear in w. The existence of
a unique solution of semilinear partial differential equations of the type as
in (3.3.13) is, under certain assumptions, a standard result in the theory of
elliptic partial differential equations. We will state in Lemma 3.3.14 such a
result in a form suitable for our purposes and refer the reader to [3.19] for
the proof. The result of Lemma 3.3.14 requires that the coefficient a(x) in
(3.3.13) is in the space L™ (), i.e. that a(x) is bounded uniformly in Q. The
solution w(x) will lie in the intersection of the spaces L™ (Q2) and H'(Q). H'(Q))
is the space of functions which are square integrable and whose gradient is
square integrable as well. So

J (w(x)? + |[Vw(x)|*) dx <
Q

holds.

Lemma 3.3.14: Let the following assumptions hold:

Al) The function f(x, w) is monotonically increasing in w for all x € Q.

A2) a(x)e L™ (Q) and a(x) = a > 0 holds for some constant a.

A3) There exist functions g(w) and g(w) such that g(w) < f(x, w) < g(w)
hold ¥ x € Q, V w. N N

A4) There exist solutions w and w of g(Ww) = 0 and g(w) = 0.

Then there exists a unique solution w of the problem(3.3.13) in H*(Q) n L™ (Q).

This solution satisfies

W< wx) < w

w = min {inf Wp, 3'}, W = max {snp Wp, ﬁ»} : (3.3.15)
o,

J L 082y

The proof can be found in [3.19].

Using Lemma 3.3.14 we can now, by showing that the map G is well defined
and completely continuous, employ the Schauder theorem to establish the
existence of a weak solution to (3.3.5).

Theorem 3.3.16: Let K = 1 be a constant satisfying

|
X < up(x), vp(x) < K VxedQ,.

Then the problem
a) eAV = gn,(e""Vru — e VW) — qC(x)

b) Uypn; div(p,e”Vr grad u) = R
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¢) Upn;div(p,e V"7 grad v) = R

av cu o
d) — = = =i =0
OV leq, OVieg, OV|eg,
e) Vg, = Volea, Uloq, = Uplia, - [‘lf-sz,, = Uplea,

has a solution (V*, u*, v*)e(H'(Q)n L™ (Q))* which satisfies the L*-
estimate
1
— < u(x), v(x) £ K in Q,
K u(x), v(x) n

" 1 S
min| inf Vp, UpIn| ——(C + {c" 4 4nf)2) | | £ ¥i(x)
o0, 2K”i

(3.3.19)

K — — 7 2 12 -
V(x) < max (sup Vi Uy It [ZH (C + (C* + 4n})! “)]) inQ
oy i

where C < C(x) < C holds.

Proof: First we choose an appropriate space for the fixed point map G. Let
A" be defined by

1
N = {{u, v) e L3(Q): = <uv<Kae. in Q}, (3.3.20)

where L*(Q) is the space of square integrable functions; i.e. the space of
functions (u, v) for which

J l(u(x), v(x))|* dx < o0
Q
holds. We show that G maps 1" into itself and is completely continuous.

Given (ug, vy) € .17, by virtue of Lemma 3.3.14, there exists a solution V; of
(3.3.10). g and g can be chosen as

l I I =
g(vV)=ngq (Ke”’ — Ke'”‘?) = gC (3.3.21)

I
g(v)=nyq (Ke“‘f ——e ”1) —qC.
K
Solving g(V) = 0 and g(¥) = 0 gives

V=U;In [;(C +(C* + 4n,~2)”2)] (3.3.22)

-2 I .
V="U- —(C 2 2y1/2 .
T n[an,.(CHC + 4n}) )]
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Applying Lemma 3.3.14 to equation (3.3.11) we use

_(; ¥it; ) e - l_"-"l"'r :
T+ 1) + r,,(--k—~+ 1)

where V' < V,(x) < V holds, and obtain u = 1/K. Analogously we obtain
i = K which implies

glu) =

— K uilx) £ K. (3.3.24)

In the same way we obtain 1/K < v,(x) < K. Thus, G maps ./ into itself.
The continuity of .47 is a simple consequence of the well posedness of
uniformly elliptic boundary value problems. On the other hand the con-
tinuous dependence of u, and v, on the data of the corresponding boundary
value problems implies

luilly. 2.0 + 1v1ll1,2.0 € Fllltoll 2,05 Ivoll2.0 ltplly, 2.0, Itpll1,2.0)

(3.3.25)

for some positive and continuous function F. Here, the symbols |- |, , and
||, 2.q denote the norms in L*(Q) and H'(Q). So

1,2
1fll2.0= (J |f(x)]? d.\‘) :
0

1112, = (J (LFEP + VA1) dX)
Q

1/2

holds. Thus, |lu,|l; ,.o + [lv1ll1.2.0 < const holds for all (u,, vy) in .4". The
Rellich Kondrachov Theorem (see [3.1]) now assures that G(.4") is pre-
compact in (L?(Q))*. This, together with the continuity of G, gives complete
continuity and the Schauder Fixed Point Theorem (see [3.12]) assures the
existence of a fixed point of G which is a solution of (3.3.5)—(3.3.7). [J

Theorem 3.3.16 serves as a typical example of an existence result for
the steady state drift diffusion problem. Various other results of this
type treat more complicated geometries or parameter models, which affects
the structure of the fixed point map and introduces additional technical
complications. Such results can be found in [3.16], [3.10], [3.18] or
[3.19].

Global uniqueness of the solution of (3.3.5)-(3.3.7) cannot be expected in
the general case since there are devices, such as thyristors, whose per-
formance is based explicitely on the existence of multiple solutions (see
Chapter 4). One can, however, obtain a uniqueness result in the case that
the applied bias, and therefore the current densities J, and J,,, are sufficiently
small. In the case of thermal equilibrium (no voltage applied, J, = J, = 0)
the system (3.3.5) reduces to the scalar problem
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& AV = ngleVVrup — e VVryp) — qC(x)
Vel

. =0, VE'FQ,, = D|ﬂn,, d
oV |aq,

(3.3.26)

where up = up and v = vy, are constant. One can show easily the isolated-
ness of the solution V; of (3.3.26) and estimate the norm of the inverse of the
linearization of (3.3.5) at the solution (¥, ug, vg). The implicit function
theorem then implies a unique solution of (3.3.5)—(3.3.7) for sufficiently small
voltages and (consequently) current densities.

3.4 Forward Biased P-N Junctions

We now turn to analyzing the structure and the quantitative properties of
solutions of the drift diffusion equations (3.2.1). The main tool for this
analysis is singular perturbation theory. It is well known that the solutions
of the drift diffusion equations behave differently in different subregions of
the device. For instance, steep gradients occur locally across P-N junctions
and in narrow regions underneath semiconductor-oxide interfaces, i.e. in
the channel of a MOS transistor (see Chapter 4). The basic idea of singular
perturbation analysis is to replace the Basic Semiconductor Equations
locally, in different regions of the device, by simpler problems whose solu-
tions contain all the essential qualitative features of the original solution.
These approximations are then used to gain insights into the behaviour of
the solution which could not be achieved by looking at the structurally more
complicated original system. Since we restrict ourselves in this Chapter to
simple P-N junctions, and leave more complicated devices with more than
one junction to Chapter 4, we only have to distinguish between two basic
situations. In the case of a reverse biased P-N junction one observes the
formation of a depletion region with no, or very few, free carriers. so
n=p=0in(3.2.1)a) holds. This region acts effectively as an insulator and
only a very small current, the so called leakage current, flows. If the potential
difference is applied the other way around, i.e. if a forward bias is applied,
the depletion region vanishes. The free carriers tend to neutralize the doping
concentration and current flows. So p —n+ C = 0 will hold except in
narrow layers around the P-N junctions where large electric fields and
concentration gradients will occur. These two situations require two differ-
ent types of perturbation analysis. In this Section we will concentrate on the
forward bias case where, except in the above mentioned layer regions, the
space charge g(p — n + C) is very small.

We start by bringing the drift diffusion equations (3.2.1) into an appropriate
scaled and dimensionless form. Suppose the geometry under consideration
has a characteristic length scale (for instance the diameter) L. We use the
scaling

x = Lx, (34.1)
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for the position variable x. x,. the scaled position variable, is then at most
of order O(1) and dimensionless. For the dependent variables in (3.2.1) we
use the following scaling which has turned out to be the most useful for the
singular perturbation analysis of forward biased P-N junctions (see [3.21],
[3.18])

a) V=UV, b n=Cn, ¢ p=Cp,

U.Cii il (3.4.2)
d) J"IC_I_'LJJW e) JP:QULCH 5.

where the subscript s denotes the scaled and dimensionless variable. U, in
(3.4.2) 1s the thermal voltage which, at room temperature, has a value of
0.0259 V and C is the maximal absolute value of the doping concentration
C(x). For VLSI applications typical values of € range from 10'% cm 3 to
102" em 3. jiin (3.4.2)d)e) is a characteristic value for the mobilities y, and
u, and is, for silicon, usually of the order of 1000 cm* V' s '. We will
only consider situations in this Section where we can assume the Einstein
relations

Dn = UT“PI" Dp = UTJ“p (343)
to hold. Thus we set

Un = ftn,, =g, , Dy=Upiu,, D,=Urjp, .
(3.4.4)

Using this scaling, the drift diffusion equations (3.2.1) become
a) A2AV,=n,—p,— C/(x)
b) divJ, =R, ¢) J, =u, (grad n;— n,grad V) (3.4.5)
d) divJ, = —R,, e) J, = u, (—grad p;— p,grad V)

with C(x) = CC,(x). R, in (3.4.5)b)d) is the appropriately scaled recombina-
tion rate. If the Shockley Read Hall term is taken as a model for the
recombination rate, R, is of the form

Rgpg — 54
AT 7) 346
* o, 4 6%) + 1, (p + 67) (3.4.6)

The boundary conditions (3.2.2) read in scaled form
a) l/:(\'): I/D (\-)= U“"‘*’ be(\‘)

) = I S (G + /45 |
b)  nyx) = mpy (x) = HC(x) + /Cx)* + 40%)
) px) = pp(x) = H—C(x) + /C,(x)* + 46*) for xedQp

d) —[—(r 0, Jp (x) v =0,
v

J (x)v=0 for x € 0Qy . (3.4.7)
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From here on we will omit the subscript s for notational convenience. The
parameters / in (3.4.5)a) and ¢ in (3.4.7) are

: elly {1 AP
| = i=|=) - 3.4.8
’ (qCLZ) ’ (C) B

/.is the scaled minimal normed Debye length of the device (see [3.35]). £ will
act as a singular perturbation parameter in the forward bias case as well as
in the reverse bias case in the next Section. However, for reasons that will be
explained in the corresponding Section, a different form of scaling has to be
used for P-N junctions under extreme reverse biasing conditions.

The Equilibrium Case

The derivation of an approximation to the solution of a given problem via
singular perturbation analysis follows a certain recipe. The steps in this
recipe become technically more involved the more structurally complex the
original problem is. As a matter of fact, for a nonlinear system of partial
differential equations, such as the drift diffusion equations, we will in general
not be able to carry out some of these steps. So it is for instance still an open
problem to show that the asymptotic expansion derived in the next Section
actually approximates the solution of (3.4.5) except in some special cases.
This does not diminish the value of the singular perturbation approach since
one can always resort to numerical computations to ‘convince’ oneself of the
validity of the expansions. In order to demonstrate the basic techniques
involved in singular perturbation analysis, and to give a flavor of the type
of results obtained, we will consider the case of a P-N junction in thermal
equilibrium first, using the scaling (3.4.2) for the forward bias case. This has
the advantage that parts of the system (3.4.5) can be integrated exactly and
(3.4.5) reduces to a nonlinear Poisson equation for the potential V. We will
also restrict ourselves to the two dimensional case. So we assume that the
device occupies a region Q = R? with a Dirichlet boundary éQ,, and a
Neumann boundary 6Q, (0Q = dQ, u dQy, éQ, N dQy = { }). The drift
diffusion equations can be reduced to a nonlinear Poisson equation with a
certain set of boundary data corresponding to zero applied bias. This set is
given by

a) V(x)=V,=In [;?(C(x) +/C(x)* + 4(54)}

b) n(x) = np(x) = 3H(C(x) + /C(x)* + 46*)
¢) p(x)=pp(x) = 3(—C(x) + /C(x)* + 46*)  for x € 8QY
d) f’_]/(x) = (It J(x)-v=0,

av

Jy(x)-v=0 for x€0Qy. (3.4.9)
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So U = 01in (3.4.7) holds. Here, again Q denotes the domain of the device
and éQ, and éQy, denote the Dirichlet and Neumann parts of the boundary.
v 1s the unit outward normal vector on the domain boundary Q.

A solution n, p, J, and J, of the continuity equations and current
relations (3.4.5)b)—e) is given by

n=de", p=2~de", L=, J,=0. (3.4.10)

(3.4.10) is a solution of the continuity equations as long as there is no
generation-recombination in thermal equilibrium, i.e. as long as R = 0 holds
whenever np = 4*. This condition is satisfied for the Shockley Read Hall
term (3.4.6). The Poisson equation then reduces to

a) A2AV=2456%e" —e ) - C(x)

b) Vi, = Vi(¥)leq, = In [2152(“)() + /Ol + 454)}

v

) i
oy Qy

o0,

c) =0. (3.4.11)
To keep matters simple, we will take Q to be a rectangle with 6Q, consisting
of the two vertical sides and dQ, of the two horizontal sides. The P-N
junction shall be given by a curve I' = {(x, y) = (X(s), Y(s))} which intersects
Q, in the two points (X (s,), Y(s,)) and (X (s,), Y(s,)). The situation is
depicted schematically in Fig. 3.4.1.

We assume the P-N junction to be abrupt. So C(x) has a jump discontinuity
at I' and is as smooth as we like (say constant) away from I". We can assume
without any loss of generality that the tangent vector (dX/ds, dY/ds) =:
(X, Y) on I is normalized. Also, to avoid technical difficulties, we assume
that I" intersects 0Qy in a right angle and without curvature. So

X(s)?+ Y@ =1 Vs

. . (3.4.12)
X(s;) = X(s) = ¥(s) =0, i=1,2

holds.

a0p 90lp

a0y

Fig. 3.4.1 Simplified geometry
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/. in (3.4.11)a) will be very small in practice. So, for instance, for L = 10" * c¢m
and € = 10" em *in(3.4.2) 2 = O(10 %) holds. If the term AV in (3.4.11)a)
is of moderate size this implies that the right hand side of (3.4.11)a). the space
charge. is small (of order 2?). If the scaling (3.4.2) was correct AV will not
be large except, mayvbe. in small subregions (layers) where V' has a steep
gradient. It is therefore reasonable to assume that, away from these layers.
17 will be approximated by V. the solution of the zero space charge
approximation

0 = 282 sinh(V,) — C(x). (3.4.13)

(3.4.13)is a simple problem since the differential equation (3.4.11)a) has been
reduced to an algebraic relation. In the language of singular perturbation
theory (3.4.13) is called the reduced problem and V, is called the outer, or
reduced, solution (see [ 3.25]). We use the index 0 for the outer solution since
V, will be the zeroth order term of an asymptotic expansion in powers of 4
at the end of this Section. Solving (3.4.13) we obtain

(3.4.14)

Vo(x) = In [C(l) AR Cj(,” h 40} :
20°

V,(x) also satisfies the boundary conditions (3.4.11)b)c) assuming that
0C/dr|ag, = 0 holds. On the other hand, since the doping profile C(x) is
discontinuous at I', so is V,,. Because of the regularizing effect of the Laplace
operator we would expect the solution V to be continuous, and so ¥ is
probably not a good approximation to V in the vicinitv of I'. The reason
for this is that our original premise. namely that div(grad V') is of moderate
size, is not valid there. In order to investigate the solution in a neighbour-
hood of I' we employ a local coordinate transformation. For a point (x, y)
close to I' let s denote the parameter value of the nearest curve point
(X (s), Y(s)) and ¢ the perpendicular distance of (x, y) to I" divided by 4 as
shown in Fig. 3.4.2 (£ > 0 on one side of I' and £ < 0 on the other side).
Using the normalized tangent and normal vectors (X, Y) and (Y, — X), the
transformation (x, y) <« (<, s) is given by

x = X(s) + AE Y(s)
) (3.4.15)
y = Y(s) — A& X(s).

This coordinate transformation is one to one as long as [4<| is sufficiently
small, i.e. in a neighborhood of I'. In the (¢, s) variables (3.4.11)a) reads

02V = 26% sinh(V) — C + O(4). (3.4.16)

In order to obtain an approximation to ¥, which is valid in a neighbourhood
of I as well, we will derive the layer term ¥, which is a function of the
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(x,y)

Fig. 3.4.2 Local coordinates

transformed variables (&, s). So we approximate V by V,(¢, s) inside the
layer.
So, letting 4 go to zero, we obtain

02Vo(¢&, 5) = 287 sinh(Fy(&, 5)) — C(X () F, Y(5) F). (3.4.17)

C(X(s) F. Y(s) ¥)in (3.4.17) means the corresponding onesided limit of the
function C at the P-N junction I'. Equation (3.4.17) is called the layer
equation in the language of singular perturbation theory and Vj, is called
the inner solution (see [3.25]). The layer equation is now also simpler than
the original equation since it is only a family of ordinary differential equa-
tions in & parameterized by s. For ¢ — Foo the layer term V, should match
with the outer solution V. So we require that

Vo(oo, s) = V(X(s)+, Y(s)+), Vo(—o0, 5) = V(X(s)—, Y(s)—)
(3.4.18)

holds. Let us first check whether ¥, can be really used as a layer term in
(3.4. 16) i.e. whether there is a soluuvc V, of (3.4.19) which converges to V,
for ¢ to +oo. Equation (3.4.17) can be integrated in terms of the inverse of
a monotone function. Multiplying both sides of (3.4.17) by ¢; .V, and inte-
grating once gives
30:Vo(&, 5)* = 207 cosh(V, (&, 5))
— C(X()—. Y(s)—)Vo(&s) — A_(s), for &<0
10, Vo(&, s)* = 207 cosh(T,(Z, 5))
— C(X(s5)+, Y(s)+)l7{,(§, s)— A,(s), for ¢>0.
(3.4.19)

If V, converges to V, for & to +x, Vy(F0,s) = Vo(X(s)+, Y(s) %),
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0:Vo(+00, s) = 0 holds. This gives for A_(s) and A4, (s) in (3.4.19)
A, (s) = 26% cosh(Vy(X (s)+, Y(s)+)
—C(X(s)+, Y()+) V(X (s)+, Y(s)+)
A_(s) = 262 cosh(Vy(X(s)—, Y(s)—)
—C(X(s)—, Y(5) =) Vo(X(s)—, Y(5)—).

Moreover, the sign of the jump discontinuity of V, determines the sign o of
c:Vy.

(3.4.20)

a(s) := sign(d: V, (&, 5)) = sign[Vo(X (s)+. Y(s)+)
— Vo(X(s5)—, Y(5)—)] (3.4.21)
holds. So by taking square roots we obtain
\/ZJ(S = 0, Vo(&, 5) {262 cosh(V, Jo(&, 5))
— C(X(s)+, Y(s) 1) Vp(&,5) — A, (s)} 12, (3.4.22)
Integrating (3.4.22) with respect to & now gives
a) F. (170(&, s),s) =/20¢  for  &>0
b) F_(Vp(é, ), s)= /206  for  £<0 (3.4.23)
z dy
% Falnd= L(sp /26 cosh(y) — Czy — Az (s)
Ai(s) — A_(s)
C(X(s)—, Y(s)—) — C(X(s)+, Y(s)+)’

where ¥, and C: denote the onesided limits at I". B(s) in (3.4.23)d) has
been computed by setting & = 0 in (3.4.19). Since the integrand in (3.4.23)c)
is positive F=(z, s) is a monotone function of z and therefore the equations
(3.4.23)a)b) are solvable for all £. So the layer problem (3.4.17) has a solution
V, which converges exponentially towards ¥, for & to Foo. To obtain a
uniform O(2) approximation of the solution V' we define the composite
expansion V; (see [3.25]) by

Volx, ) + [Vo(&, s) — Vo(X(s)+. Y(s)+)]14(/A)
for ¢>0
Volx, ¥) + [Vo(&, ) — Vo(X(s)—, Y(5)—)18(/2L)
for £>0.

In order to not having to deal with exponentially small terms at the bound-
ary ¢Q the function ¢ serves to eliminate the layer term away from I'. It
satisfies

peC”, ¢pr)=1 for |rl <1, o(r)=0 for |r|l = 2.
(3.4.25)

d) B(s) = V,(0,s) =

Vs = (3.4.24)
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The composite zero order approximation Vj then satisfies the differential
equations together with the boundary conditions up to terms of order O(~)
(see Problem 3.4).

So far we have only derived necessary conditions for the terms in our
asymptotic approximation. The question which arises is of course whether,
and if yes in what sense, the composite approximation V; does approximate
the solution V. In this simple case this question can be answered precisely
by using the maximum principle (see [3.12]). If we define the remainder Q,
by

Qo=V -1, (3.4.26)
we derive the following remainder equation for Q,
A2AQ, = F(x, ¥, Q) — AG(x, y) (3.4.27)
5
Qolia, =0, ? =0 (3.4.28)
cv FIon

F(x, y, Q) = 26% sinh(V{(x, y) + Qy) — 26% sinh(V§(x, ). (3.4.29)

The function G(x, y) in (3.4.27) is of a complicated form involving the lower
order partial derivatives of ¥, w.r.t. £ and s which arise from the coordinate
transformation (x, y) < (&, s). However, G(x, y) is a bounded function (see
Problem 3.1). (3.4.27) implies that the derived approximation, at least, solves
the differential equation up to terms of order O(4). Since F(x, y, Q) is
monotonically increasing in Q,, it follows from the maximum principle, that
the point (X, ¥), where Q,, attains its maximum Q, either lies on the Dirichlet
boundary dQ,, or that

F(X,7,0) — iG(X, ¥) <0 (3.4.30)
holds. Since F is monotone in Q,, Q < 0 holds, where  is the solution of
F(x, v, 0) — AG(x,y) = 0. (3.4.31)

Thus maxyQ(x, y) = O(4) holds. In the same way one shows
ming Q(x, y) = O(4) and thus

max |Qy(x, y)| = 0(4) (3.4.32)
Q

holds and Vj is an O(4) approximation to V. Since the remainder term Q, is
of order O(4) it is reasonable to assume that, for A = 10~ for instance, which
corresponds to a device diameter of 1y in silicon and a maximal doping C
of roughly 10'? cm ?, ¥ is a good approximation to the solution V. If even
better approximations are desired these can be obtained by further expan-
sion in powers of 4. We set, formally,

V= V(x,y 4~ io Ve(x, y)it (3.4.33)

(3.4.33) is an asymptotic expansion and the sum on the right hand side will
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in general not converge. If the sum is truncated after the Nth term the
remainder Qy will be of order O(A¥). V§, V,, V, and Q,, were already derived
above. The higher order terms are determined by inserting (3.4.33) into the
equation (3.4.11)a) and expanding in powers of 4. This gives

a) V=0

b) AV, Z—ZOZCOSh( )V, + F(Vy, ..., V., 1) n=273

¢) 02V, =26%cosh(Vy)V, + G,(Vy, ..., ¥, Vi, ... V._)

n=12,...

Vox, 1) + [V(E 5) = V(X(9)+, Y(9)+)]9(/28)
for £>0

d W=4_ B - e
Va(x, y) + [V(&, 8) — Va(X(s)—, Y(s)—)]¢(y/ AE)
for £>0.

(3.4.34)

and so on. So, approximations of any order could be obtained theoretically.
Note, however, that ¥, in (3.4.34)b) is a function of AV, _,. Thus, with each
additional term in the CXdeSlOﬂ regularity is lost dependmg on the geom-
etry of Q and T. If ¥, is smooth enough so that V,, ..., V, are reasonably
well defined, it can be shown by using the same maximum principle argu-
ment as above that the remainder term Qy is of order 2" in the L™-norm.
If we reconsider the procedure to obtain an asymptotic expansion of the
solution of the equilibrium problem (3.4.11), the steps involved are

A) Determine the reduced equation by setting 4 equal to zero.

B) Check which parts of the problem (i.e. boundary conditions, continuity
requirements etc.) can be satisfied with the outer solution obtained in
Step A.

C) Add a layer correction term to the outer solution where the outer
solution is apparently insufficient (in this case in the vicinity of the P-N
junction I').

D) Show that the so derived reduced problem and the layer problem
actually have solutions with the desired properties (regularity, decay
etc.).

E) Show, that the composite expansion actually is an asymptotic approx-
imation to the solution.

In the case of the equilibrium problem, when everything can be reduced to
a single differential equation, we could actually carry out all the five steps
above. However, when currents are present, and one has to deal with the
whole coupled system (3.4.5), this will in general not be the case. One can
always set the perturbation parameter to zero and obtain a reduced equa-
tion. So Steps A and B above are usually no problem. Also the derivation
of the layer equations in Step C is possible if one finds the right coordinate
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transformation. In the case of the steady state Basic Semiconductor Equa-
tions this is no problem either. To find the solution of the reduced problem
is more tricky. In the equilibrium case the reduced problem consists of the
transcendental equation (3.4.13) which obviously had a unique solution. In
the non equilibrium case the reduced problem is still a system of nonlinear
partial differential equations. The layer equations usually degencrate into
ordinary differential equations, and so finding solutions to them is easier.
To show in Step E that the derived expansion actually is an asymptotic
approximation of the solution is generally a very difficult task for systems
of nonlinear partial differential equations. Since the whole approach consists
of finding an approximate solution which satisfies the boundary value
problem up to small terms, Step E involves the estimation of the inverse of
the involved nonlinear differential operator. Using the implicit function
theorem this task can be reduced to estimating the inverse of the lineariza-
tion at the solution. However, even to show that this linearization has an
inverse whose norm is bounded uniformly in the perturbation parameter
/4, 15 usually impossible for complicated systems of partial differential equa-
tions, except in special cases.

The Non-Equilibrium Case

When the boundary data V), in (3.4.9) are not given by the built-in-potential
J,; the densities n and p in (3.4.10) do not satisfy the boundary conditions
and therefore do not constitute a solution of the boundary value problem.
So, since we cannot simply integrate out the continuity equations and the
current relations, the singular perturbation analysis has to be carried out
on the whole coupled system (3.4.5). As pointed out before, the derivation
of the reduced equations and the layer equations is straightforward if one
follows the Steps A-C above. To prove that the asymptotic expansions
actually constitute an approximation of the solution is not possible in
general except in special cases such as in one dimension. The approximation
property has been verified, however, numerically (see [3.21]).

As it already was the case for the existence and uniqueness results in Section
3.3, it is more convenient to write the drift diffusion equations in the
Slotboom variables V, u and v of (3.3.3). Using the scaling introduced at the
beginning of this Section, they are given by

u=20ne’", v=20 2pe¥. (3.4.35)
The transformed problem now reads

a) A2AV =6%*(e"u—e V) — C(x)

b) divJ, =R, J, = e’ grad u

c) divJ,= —R, J,= —pu,e”" grad v

d) Vlsa, = Volaa, » Ulan, = up|ﬁnn . Vleq, = Uplag, s (3.4.36)



126 3 The Drift Diffusion Equations

v u dv
oV |ea, OVig, OVla,
l" “D(-\.) = e—[&.\')q d) l,D(_\:) - e("(x!

g) Vp(x)=U(x)+ In [2(152(C(.\') bl \/"—C_(x)z + 4(545J

= U(x) + V,(x), x € 0Q,.

Again U(x) denotes the applied potential at the contacts. Note, that u(x) =
v(x) = 1 holds in the equilibrium case discussed above. In the non equilib-
rium case the form of the mobilities y, and u, impacts the form of the
asymptotic expansions significantly. The two basic cases to be distinguished
are the presence and the absence of velocity saturation effects. If, in the
presence of velocity saturation, u, and u, behave like 1/|grad V| for large
values of the electric field —grad V this implies that inside the layers the
mobilities are of order O(4). We will leave this case for later on and consider
the absence of velocity saturation first. So we simply assume for the moment
that y, and u, depend on the position x only (and not on 4). Since we will
not derive the higher order terms in the asymptotic expansion we will drop
the subscript 0 for the zero order term from now on.

So, for 1 — 0, the reduced problem for the outer solution w = (V, &, @, J,, J,)
is given by

a) 0=20%e"u—eVp)— C(x)
b) divJ, =R, J,=p,e” gradii

v | — R - “V srad s
¢) divJ,= —R, J,= —pye " grad v (3.4.37)
d) Vlfn,, = Vn|.‘-n[,s Elﬂnn = ”n|r-gu s l_‘|r-g,. = Uplaq,
i oo =
cV on av
av ‘_ﬂ\* av !'-ﬂ\_ av ‘ﬁns

and it is understood that w = (V,u,v,J, fp} denotes the zero order term of
the outer solution. R in (3.4.37)b)c) denotes the recombination rate evalu-
ated at the reduced solution w. (The form of the recombination term is not
important for the moment.) Firstly we observe that we have three boundary
conditions at each part of the boundary while we have only two second
order differential equations (3.4.37)b) and (3.4.37)c). However, since the
boundary conditions at Ohmic contacts are derived from the condition of
vanishing space charge, they are consistent with the zero space charge
approximation (3.4.37)a). In other words, if we solve (3.4.37)a) for V and
insert into (3.4.37)b) and (3.4.37)c), we obtain the boundary value problem

a) divJ, =R, J = e’ %" grad u

b) divJ,= —R, = —upe"?“‘"j'“ grad ©

P
C) E'It"Q,, = uDL“!I,, 4 ?E'ﬁﬂu = UDL"Q,,- (3438)
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ou ov
0V an,  OV|aq,

Y. j——

o Vix o) =1ln |:C(!c) + \/C ) 2445 uv}
26%u

for wand v. V = V(x, u, v) then satisfies the boundary condition (3.4.37)d)e)
automatically if dC/év|.q, = 0 holds. (3.4.38) constitutes the reduced prob-
lem. Again, as in the equilibrium case, the necessity for a layer term arises
from the fact that V, defined by (3.4.38)¢), is discontinuous at the P-N
junction I' because of the discontinuity of C(x) there. Performing the same
local coordinate transformalion (3.4.15) as in the equilibrium case, we derive
the layer term w = (V, i, b, g p) which is a function of the layer variables
¢ and s in (3.4.15). Again we change from the (x, y) variables to the (¢, s)
variables. This yields, for 4 — 0,

a) aéz _ ()Z[QW-, sl* 5 S) _ V-'[é.sl" C ] _ C;(S)

b) &J, =0, 0=, (s)e"420,a(s) (3.4.39)
¢ &J,% =40, 0= —u, (s)e V&7 LB(E, ).

Here 7 = (Y(s), — X (s))" denotes the normal vector on the P-N junction I".
In (3.4.39) f~(s) denotes the appropriate one sided limit of the function f at
I. So f,(s) = f(X(s)+, Y(s)+) for £ > 0 and [ (s) = f(X(s)—, Y(s)—) for
¢ < 0 holds. Since the layer terms have to match the outer solution w at
¢ = 40, we immediately obtain

a) a(¢s)=a(X(s), Y(s), (s
b) J.(E ) H(s) = J(X(s), Y(s) (s

)i (3.4.40)
) J (& 5) Ti(s) = J(X(s), Y(s))-Ti(s).

A layer term occurs in the potential V and in the tangential components of
the current densities J, and J, only, while &, 7, J, - 1 and J, - n are continuous
across I'. The layer equation is given by

a) 0= 82[e"u(s) — e VEIT(s5)] — for E>0
b) 82V = &*[eV“Vu(s) — e V¢ Iu(s)] — C- (s) for ¢<0,
(3.4.41)

where ii(s) stands for it(X (s). Y(s)) and so on. As in the equilibrium problem
we require V to match the outer solution V at ¢ = Foc. So we require

Voo, s) = V(X (s)+, Y(s)+), V(—o0, 5) = V(X(s)—, Y(s)—).
(3.4.42)

After solving the reduced problem and the layer problem (3.4.41)-(3.4.42)
the tangential components of the layer current densities are given by
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a) J = _I'(S),u,,:(s)e‘;ﬁsﬁ(s)
b) J,= — (). (s)e Vao(s),  t(s) = (X(s), Y(s)".

Since the layer problem (3.4.41)—(3.4.42) around the P-N junction is of the
same form as in the equilibrium case the same technique can be applied to
show that (3.4.41)(3.4.42) has a solution ¥ which converges monotonically
towards the one sided limit of the outer solution V for £ to +o0. I no velocity
saturation effects are considered, and the mobilities u, and p, are simply
functions of position, bounded uniformly away from zero, the same ap-
proach as in Section 3.3 can be used to show the existence of a solution of
the reduced problem (3.4.38). If the recombination rate is given by the scaled
Shockley Read Hall term

(3.4.43)

R— uv — 1
Cefu+ )+ u+ 1)’

then the corresponding fixed point map G is given by G(ug, vy) = (U, vy)
where u, and v, satisfy the linear boundary value problems

(3.4.44)

u vy — 1
1,(e"uy + 1) + t,(e7 vy + 1)

a) div[p,e* gradu,] =

uli‘,’]_ == 1
ey + 1)+ 1,e Mg + 1)

b) div[p,e " gradv,] = -

C) Uylag, = Uplig, - v1log, = Uplog, (3.4.45)
d) iu_‘ = (ﬁf“l =0.
oy oQy ov 20,
\ V=1 C(x) + \/C(x)z + 46%uyv,
¢ o= 26%u,
CIx) g C(x)?* + 40*u, v,
N ln|: 26%u, '

We refer the reader to [3.19] for a more detailed existence proof for the
reduced problem. As in the equilibrium case (3.4.24), the zero order com-
posite expansion is given by

W, )+ DW(E s) — WX (9)+, Y(9)+)1(/28)

e = for & >~.0: (3.4.46)
w(x, ¥) + [W(E, s) — w(X(s)—, Y(s)—)]o(/A)
for &<0,

where the vector wdenotes (V, u, v, J,, J,). The derivation of the higher order
terms in the asymptotic expansion is again straightforward (sece Problem
3.5).
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Asymptotic Validity in the One-Dimensional Case

To show that the obtained approximation is asymptotically valid, i.e. to
show that the solution of (3.4.36) converges in some sense to wj for 4 — 0,
is, in full generality, a yet unresolved problem. Ideally, one would like
an explicit estimate of the difference between the exact solution and the
asymptotic approximation obtained above. Unfortunately, such estimates
are available only in special cases (no generation terms, one dimensional
problems etc.). In more than one dimension it has been established that the
solution of the full problem (3.4.36) converges to w}, as 4 tends to zero, in
the absence of recombination and generation terms (see [3.15]). However,
this result says nothing about the rate of convergence, and therefore about
the approximation quality for finite 4. Results which do also provide con-
vergence rates are only available in the one dimensional case. They can be
found in c.f. [3.2] and [3.23].

If we consider the one dimensional model of a P-N junction the system
(3.4.36) reduces to

dv .
a) A2——=0d%e"u—e"v)— C(x)
dx
d ydu
L - i 3.447
b) ix J, = R, Iy = yge ix ( )
d _odv
c) EJP:_R’ dy = — i e VE’
where x is the position variable which varies, after scaling, between x = —1

and x = 1. The boundary conditions in the one dimensional case are of the
form

U(x)
1 e e T T
557(C0x) + /CC” + 4@4)] (3.4.48)

= U(x) + Vy(x), for x=—1 and x=1.

—U(x)
3

ux)=-e vix)=-e

V(x) = Vp(x) = Ulx) + ln|:

In [3.23] an abrupt P-N junction in the center of the device is assumed. So
C(x) in (3.4.47)a) has a jump discontinuity at x = 0 and C(x) > 0 for x > 0
and C(x) < 0for x < 0 holds. Also the absence of recombination-generation
effects is assumed; so R = 0 holds. The authors show that if the boundary
potential V}, varies within a certain range then

max |V — V§| + max |u — ug| + max |v — vg|
[—1.1] [-1.1] [-1.1]

< const 482 | Vp(1) — Vp(—1) + 1203 ==y (3.4.49)

holds. Sinice the proof is technically quite involved it will be omitted here.
[t should be pointed out, however, that the proof makes explicit use of the
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fact, that in the one dimensional case J, and J, are constant in the absence
of recombination-generation. Thus it is unlikely that it can easily be gene-
ralized to higher dimensions. Although this is unsatisfactory for practical
purposes, the result contains an interesting feature. If we choose typical
values for the device parameters, say 10 * cm for the length L of the device
and 10'? ¢cm? for the maximum doping concentration, and calculate the
resulting values for 2 and § in silicon, the bounds on the applied potential
difference, which have to be assumed in order for the estimate (3.4.49) to be
valid imply that the applied bias satisfies

—~08 V g Us[U() — U(—1)] <02 V. (3.4.50)

In this setting a negative potential difference corresponds to forward bias
and a positive one to reverse bias. For such a diode —0.8 V represents quite
a large forward bias. On the other hand one would expect the drift diffusion
equations to give a reasonable description of the device for reverse bias
values of up to a couple of volts. So this is consistent with the original
premise of this Section to give an asymptotic analysis for forward biased
P-N junctions. It also 1s an indication that in general the validity of the
above derived approximations will break down for some moderate values
of the reverse bias. Thus, the reverse bias case will be treated by a different
kind of asymptotic analysis in Section 3.5.

Velocity Saturation Effects—Field Dependent Mobilities

It is a well known fact of device physics, that the proportionality of the drift
velocities u, grad V and —pu, grad V to the electric field —grad V' only
holds at moderate field strengths. Due to carrier heating, the velocities
saturate for high electric fields, i.e.
lim |u,grad V| =v, and lim |u,grad V| =v,
|lgrad V|—w |lgrad V|—w

(3.4.51)
holds, where v, and v, are the saturation velocities. In order to reflect this
property, the mobilities s, and y, are modeled as dependent on the electric
ficld such that the saturation relation (3.4.51) holds. One way to do this is
to choose the mobilities as

PR .. .. W == Uk
" v, + I,lgrad V|’ PP v, + mlgrad V|
(3.4.52)
where 4, and ji, are field independent, mobility models (see [3.34]). If

the original drift velocities p, , grad V are small compared to v, , (3.4.52)
represents only a small perturbation of the original model and

o~ e By~ I (34.53)
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holds. On the other hand the new drift velocities u; grad V' and
—u; grad V satisfy the saturation relation (3.4.51). Of course there is a
multitude of possible formulas for u; and u;, which would do the same job.
We refer the reader to [3.34] for other formulas used in practice. It should
be pointed out, however, that the form of x, and y; is based on no other
physical consideration than the saturation relation (3.4.51), and different
models are obtained only by fitting experimental data. If we use the scaling
of this Section together with (3.4.52) we obtain

a) A2AV =6*(e"u—e V) — C(x)
b) divJ, =R, J, = e’ grad u

; (3.4.54)
¢) divJ,=—R, J,=—pje " gradv
o, Pl o, U
d 5 _ n . s _ pp s
)b a, + p,lgrad V| He a, + p,lgrad V|
with a, ,, the scaled saturation velocities, given by
l 1l
% =1 =P (3.4.55)

o &, = .
Hp UT ? nup UT

Inside the layer, where grad V will be large (= O(1/4)), this will obviously
change the structure of the solution and of the singular perturbation appro-
ximation. In addition, as we will see, the different layer behaviour also
impacts the reduced problem and therefore the total current flow through
the P-N junction. The reduced equations remain the same, however, with
t, and p, in (3.4.37) replaced by u, and y,. Following the expansion proce-
dure gives, for the layer equations

a) 2V =82[e"CVa(E, 5) — e TEVH(E, 5)] — C(s)

b) 0:J(E 9)Ti(s) =0, 8, 5)Ti(s) =0 (3.4.56)
T i — an If(‘_ v,-) a A
¢) Jon IF;VI (S, s)
5 o
d) J-7n= ﬁ‘le““s’(t(g s)
* |6: V|
with 7i(s) = (Y(s), —X(s)) as the normalized normal vector on the P-N
junction I'. Again, we obtain
a) J n=J(X i
) ) 7( (s), Y(s)) " (3.4.57)
b) J,-7n = J,(X(s), Y(5)) 7.

The difference to the unsaturated case comes from the current relations
(3.4.56)c)d). From (3.4.56)c) we obtain
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a) Odi= e’f[f,,(s)-?f(s}]_igﬁél?

b) du = e LJy(s) HS)] 00,7 (8428}
: 2,
¢) o =sign[d. V(& )]

Here J,(s) denotes J, (X (s), Y(s)). If 7 is monotone in ¢ for fixed s then o is
independent of ¢ and (3.4.58) can be integrated. This gives

f=—e ¥ [L(s)-ﬁ'{s)]%a(s) + A (5]

| (3.4.59)
5= _eﬁ[j;(s)-ﬁ(s)]——a(.?) = AP{S)
4

P

with integration constants A4, and A,. Because of the matching conditions
i(+00) = w(X(s)+, Y(s)%), 6(+o0) = v(X(s)+, Y(s)+) the integration
constants are given by

a)  A(s) = W, (5) + - (Juls) Ti(s)e™"

(Jo(s) - Fi(s)e™" @
(3.4.60)
(J(5) - T(s))e”-

6_(s) + —(J,(5) " 7(5))e”-.
Cxp

Here u . (s) denote the onesided limits u(X (s)+, Y(s)+) and so on. So the
layer problem is given by (3.4.56)a) together with the boundary conditions
V(, s) = V(X(s)+, Y(s)+), V(—a0,s) = V(X(s)—, Y(s)—).
(3.4.61)
One can again show, as in the equilibrium case, that the solution V exists
and is indeed monotone for fixed s. So ¢ in (3.4.58) is really independent of
&. The difference in the reduced problem comes from the fact that now a
layer term arises in the u and v variables as well. This implies that V', u and
v will be discontinuous across the P-N junction I'. Thus the reduced problem
can not be formulated as in (3.4.38) but in addition interface conditions have
to be applied for u, v across I'. From (3.4.60) we obtain that the functions

a(s)

a) u+e "(J,-7(s)
N (34.62)
b) v+ e”(J,-7i(s) als)

Xp
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remain continuous. Thus the reduced problem is of the form
a) div J_ﬂ = R-’ J_" = “;eﬂx.ﬁ.ﬂ grad m

b) divl,=—R, J = —pule V=09 gradp

=

o Poutn 14/ CT L]

for (x, y) € Q together with the boundary conditions

=|

d) #lag, = uplo, - Tlag, = Uplag, »
il o ' (3.4.63)
T av

e) . — = — 0
Vg, OV,

on @€, and the interface conditions which say that the terms

o)

fy @+e Y(J,-7ls) — a(s) = sign(V, — V.)
g) ©+ e?(fp-?i(s})@
a!’
h) J,-7i(s)
I) jpﬁ(ﬂ J

remain continuous across I'.

Since the reduced problem has a different form, the effect of the field
dependent mobilities is not only noticable locally, inside the layers, but also
globally in the outer solution. It will therefore influence the current flow
through the P-N junction although g, and p;, will be close to ji, and ji, for
the outer solution. Note, that, since the effect of the field dependent mobili-
ties on the outer solution occurs through the interface conditions (3.4.63)[) g).
this effect will be the stronger the larger the jump in V at the P-N junction
I',and therefore 0. V. is. So the locally large electric fields at the P-N junctions
influence the solution globally.

3.5 Reverse Biased P-N Junctions

We now turn to the study of P-N junctions under reverse biasing conditions.
In the reverse bias case the singular perturbation scaling, introduced in the
previous Section, describes the solution of the drift diffusion equations only
up to a moderate value of the reverse bias. The reason for this is that, if a
potential difference of the appropriate sign is applied to the P-N junction,
one observes the formation of a depletion region in the semiconductor where
no free carriers are present. This region acts as an insulator and, ideally, no
current flows. In Section 3.4 equation (3.4.5) implied that the space charge
p = —n+ p+ C(x)is of order A? except in narrow layer regions. Therefore,
if that scaling is used, the depletion region has to lie entirely within the P-N
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junction layer. On the other hand the limits of validity of this asymptotic
analysis which we have briefly discussed in the previous Paragraph (see
(3.4.50)), indicate that the approximation breaks down anyway for large
reverse bias values. Thus, for large reverse bias, the layer region becomes so
bloated that the scaling (3.4.2) has to be modified. We will at first analyze
the formation of the depletion region for moderate reverse bias values, using
the scaling (3.4.2). This can be done by an additional asymptotic analysis of
the layer term V in (3.4.41) for 6 — 0.

Moderately Reverse Biased P-N Junctions

If we compute the layer term V in (3.4.41) in the same way as in the
equilibrium case, we obtain ¥ in terms of the inverse of a monotone function.

a) F,(V(&5s),s )—ﬁa: for ¢&=0
b) F (V(&s),s)=/26¢ for 0 (3.5.1)

Tty
AN

dz
bl = jwm \/(5 (e*u(s) + e *v(s)) — Cz(s)z — Az (s)
d) As(s) = 6* eV u(s) + e V55(s)) — Cx(s) Vz(s)
A_{5)= A+(S)
Ci(s)—C_(s)°
For fixed V # V, and  » 0, F; (V. s) will tend to F;D{V, s), given by

c)

e) V()=

” dz
F; (V,s)= J ..... (3.5.2)
) V(0) \/C (Vs —
Solving F+(V, s) = \/50'5 yields
L 1 oé - A
Fe= Ve =] Copm— C—(V:—V(O)):] ; (3.5.3)
Cs [ V2 ?

which gives 62V =~ — C and therefore # = p = 0 inside the ldyer

The limit 6 — 0 in F- is not uniform for Vclose to V- . This raises the general
question whether performmg an additional asymptotic analysis for small 6
in the layer equations is exact, i.e. whether the two limits A - 0 and 6 - 0
commute. We will leave the discussion of the interdependence of these two
limits to Chapter 4. At this point the precise transition mechanism between
the forward bias case and the situation under extreme reverse biasing
conditions, treated in the next Section, is not understood completely.

P-N Junctions Under Extreme Reverse Bias Conditions

If we increase the reverse bias further, the depletion region, and with it the
P-N junction layer, will cover a significant part of the device and the approx-
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imation, derived in the previous Section, breaks down. For P-N junctions
under extreme reverse biasing conditions an asymptotic analysis based on
a different scaling can be performed. This scaling was first introduced in
[3.6] and is given by

L*C . "
P 2 — Fes n=Cn,, p=Cp,
- (3.54)
gji U;C g Uy C
‘]n = L J".‘ 5 ‘]p — TJP" é

The scaled boundary value problem then becomes
a) AV;:ns—ps_Cs

b) divJ, =R, A*J,. = m,(A* grad n, — n, grad V})
¢) divJ, = —R,, A*J, = p,(—A*grad p, — p, grad V)
d) Vslnn,, = U + Vbislz"ﬂp- ”s|ﬂn,, = nDAIFQD , Ps|ng,, = stlf'Q,,
V. . .
&) 2| = Uy Tl = Jp T, = 0 (3.5.5)
v |aq, '
f) n,=3Cix) + /Ci(x)* + 45%),
ps = $(—Cy(x) + /Ci(x)* + 40*
U(x)ed?
g Up(x)= i
Upd2e . [ Ci(x) + /Ci(x)? + 45*
V . {2 = ] s S
(%) qL*n; nI: 262

. Use n;
hy 4= |—=; 6% =—=.
) A= we c

In this scaling the depletion region, i.e. the region where AV =~ —C holds,
is not necessarily small. So, in particular so called punch through effects can
be considered. (3.5.5) is, however, a scaling for very large bias values, since
in order to keep U (x) in (3.5.5)d) of order O(1), the unscaled bias U(x) has
to grow with the maximal doping concentration C. The analysis of the
drift diffusion equations in the scaling (3.5.4) leads to the solution of free
boundary problems with the edges of the depletion region as the free
boundaries. We will first treat the one dimensional case, where these edges
are just points, and leave the discussion of the results known for the higher
dimensional cases for later on.

The One-Dimensional Problem

The asymptotic analysis for extreme reverse bias is technically more
complicated than for the forward bias case. The solution of the reduced
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problem behaves differently in different subregions of the device, namely
inside the depletion region and outside. The layers occur now not directly
at the P-N junction but at the edges of the depletion region. So, in addition
to finding the reduced solution, one has to determine the location of these
edges. In general this will result in the reduced problem becoming a free
boundary problem. We will consider the one dimensional case first. In this
case, the determination of the boundary of the depletion region becomes
particularly simple since it consists only of two points. Aside from being
a free boundary problem the reduced problem is also structurally more
complex since, as we will see, setting the perturbation parameter / to zero
in (3.5.5) yields an underdetermined problem. In the language of singular
perturbation theory (3.5.5) is called a ‘singular’ singular perturbation
problem (see [3.31]). In the one dimensional case we assume that, after
scaling, the semiconductor is positioned in the interval [0, 1]. The one
dimensional equivalent to (3.5.5) is then of the form

a) Vi=n—p-—C(x)
b J=R, 2L =u (s —nl) for xe[0,1]
¢ J,=—R, 2*J,=pu,(—A*p—pV)
d) V(x)= Vp(x) = U(x) + V;(x), n(x) = np(x),
p(x) = pp(x) for x=0 and x=1

e) np=4HC+./C*+45%);, p,=H—-C4+./C*+ 45%).
Here ' denotes differentiation with respect to x. The location of the P-N
junction is at some point y € (0, 1). So, again employing the simplification
of an abrupt P-N junction, we assume that C(x) has a jump discontinuity
at x = y and is as smooth as we like elsewhere. Since this analysis shall hold
for large reverse bias, we have to agree on a sign convention for the doping
profile C and the bias. So we assume that

sign(C(x)) = sign(x — ) (3.5.7)

holds. A large reverse bias then corresponds to V(1) — V,(0) > 0. Letting
/. g0 to zero in (3.5.6) gives the reduced problem

a) V=a—p— C(x)

b) J'=R, 0= —pu,aV’ for xe[0,1]
¢ J,=—R, 0= —ppV

d) V(x) = Vp(x), a(x) = np(x),

p(x) = pplx) for x=0 and x=1.

(3.5.6)

(3.5.8)

The equations (3.5.8) allow two possible solutions:
Case 1: V' £0, n=0, p=0.
Case 2 V' =0.
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In the first case, inside the depletion region, V" = — C(x) will hold. In the
second case i and p cannot be determined immediately from the equations
(3.5.8). Since 1 = p = 0 contradicts the boundary conditions, and we do not
expect the depletion region to form at the contact, we derive the following
problem for V

V=0 for 0sxgx;
V'(x) = —C(x) for Xy £XKE X, (3.5.9)
V=0 for Xy X €1,

where x, and x,, the endpoints of the depletion region, have yet to be
determined. If the concentrations n and p stay bounded for 4 — 0, then so
do the derivatives of V and no zeroth order layer term can form in the
potential variable. Thus, the reduced potential V and its derivative have to
remain continuous across x, and x,. Since V' = 0 holds for 0 < x < x,, we
have

V(x,) = Vp(0), Fix) =0, (3.5.10)
Inside the depletion region V is then given by
V(x) = Vy(0) —J f C(n) dn dC. (3.5.11)

Since V' = 0 holds in [x,, 1] we have
Vix,) = Vp(1), Vix,)=0. (3.5.12)
Matching (3.5.11) with the condition (3.5.12) yields

a) Vn<0)—vn{1)=Jlf Cln) d dC,

(3.5.13)
b) OZJ Cn) dn.

Let us first convince ourselves that (3.5.13) has a solution (x,, x,). A family
of solutions (x,(t), x,(t)) of (3.5.13)b) alone, which depends continuously
differentiably on the parameter r, has to satisfy

C(x,(1)%,(t) — C(x,(1))%,(t) = 0. (3.5.14)

If we add the equation X, = 1 and the initial conditions x,(0) = x,(0) =y
to (3.5.14) we obtain a system of ordinary differential equations whose
solution satisfies (3.5.13)b). Moreover X, < 0 and x, = 0 holds and so x,
stays to the left of the P-N junction y and x, stays to the right of y. If we
define f(t) by

x2(1)

fl) = '[ C(n) dn dC, (3.5.15)
xq(t)

x (1)

then f(0) = 0 holds and we have to solve f(t) = V,(0) — V(1) in order to
obtain a solution of (3.5.13). Differentiating f, we see that
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fit)= —Clx,)x (x; — x1) = —C(x;)(x; — xy). (3.5.16)

Since, because of (3.5.14), x, — X, = 1, and therefore x, — x,; = t holds, we
obtain

f(t) £ —t min {C(x)}. (3.5.17)
So f{(t) is monotone from (—o0, 0] onto (—2c, 0] and for reverse bias, that
means for V;(0) — V(1) <0, (3.5.13) will have a unique solution. After
finding x, and x,, the reduced potential V is uniquely determined by
equation (3.5.9) together with the boundary conditions (3.5.6)d) and the
requirement that V" and the reduced field V' remain continuous. So far, n,
p. J, and J, are known only within the depletion region [x,, x, | where,
because of (3.5.8),

a) nAx)=px)=0

b) J(x)=J(x;) + J. Ry () d¢, (3.5.18)
Jo(x) = Tz, )~ J R,($) dC for X S x X X
X1
holds. Here R (x) denotes the recombination rate R evaluated atn = p = 0.
Outside the depletion region, where V' = 0, the reduced equations are
insufficient to determine # and p. The only information about the reduced
carrier concentrations is given by the condition of vanishing space charge

n—p—C=0 for x e [0, x,)u(x,, 1]. (3.5.19)

In this sense (3.5.6) is a singular singular perturbation problem (see [3.31]).
The standard approach to deal with such a situation is to find a transforma-
tion of the dependent variables which reduces the problem to a regular
singular perturbation problem. In our case such a transformation has been
given in [3.30] and is of the form (n, p) <> (p, w),

a p=n-—p, w = np

- (3.5.20)
b) n=%p+pP+aw), p=3—p+p?+4w).
In the transformed variables the equations (3.5.6) read
a) V'=p—C
b) J, =R, J;=—R
1 ,mi—l:J,, J ] 1 [J J :|
) w==/p*+dw| L —L|—cp|—=+-L (3.5.21)
i TR R L RS
72 T L A T 2| Jp
d) /.;J=ﬁ+4wV + A=+ -+ for xe(0,1)
My o Hp

e) p(x)= C(x), w(x) = 6*, V(x) = Vp(x)

for x=0 and x=1.
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Outside the depletion region, where ¥’ = 0 holds, the reduced equations in
the transformed variables are given by

a) = ),

V!
‘]_"r

b) p=C

T=—K

(3.5.22)

C) E,

I =l ] [ 167 A
d w=-/p?+4w| - —-L|——p|"+-L
Sl L LG Hp] 2’)[1“" ﬂj

for xe[0, x;)u(x,, 1]
subject to the boundary conditions
wx)=0* V(x)="Vp(x) for x=0 and x=1. (3.5.23)

Since the right-hand side of (3.5.22) stays bounded, w cannot exhibit layer
behaviour. This gives the conditions on the reduced solution at x = x; and
X = .\‘2.

a) w(x,)=wx,)=0

b)  Ju(xy) = Ju(x,) + f R, ({) dC, (3.5.24)
Jp(-‘(z) = Jy(xy) + J Ro({) dC.

For 6 = 0 the problem (3.5.22)(3.5.24) has the trivial solution. One can
show with a perturbation argument around this trivial solution that for ¢
sufficiently small (3.5.22)-(3.5.24) has a unique solution (see [3.30]).

Thus we have completely determined the solution of the reduced problem
and can now turn to the calculation of the layer terms. Under strong reverse
bias conditions the layers do not occur at the P-N junction y, as in the
forward bias case, but at x, and x,, the edges of the depletion region. From
(3.5.20) we calculate

() = {%(C(x) +/Cx)? +4w)  for xe[0,x)u(x, 1],
0 for xe(x;,x,),
SR (3.5.25)
B(x) = {%(LC(.\-) +/C(x)* +4w)  for xe[0,x;)u(x, 1],
0 for xe(x,,x,).

Since w(x,) = w(x,) = 0 holds, 7 is discontinuous at x = x,, where C > 0
holds, and p is discontinuous at x = x,, where C < 0 holds and the corre-
sponding layer terms are needed at the boundaries of the depletion region.
The layer equations involve the higher order terms in the expansion. At the
right edge of the depletion region (x = x,) we introduce the fast layer
variable & = (x — x,)/4. Expanding the Poisson equation we see that, close
to x = x,, the potential V is of the form

V(E) = V(x, + 28) + 224(8) + O(2%), (3.5.26)
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where ¢5 denotes the second order layer term. (3.5.26) 1rnpllcs that, close to
X = X,, the field 1/)) I/ is given by [V'(x, + A&) + A0; ¢(L}] Expanding
V'(x, + 4&) around 4 = 0 gives

é:V( (3.5.27)

i

e AP[—EC(x,) + 8:4(8)] + O(A%) for & <0,
T 226.4(E) + 0(22) for &>0.

Inserting this into the equations and letting 4 go to zero while keeping &
fixed gives the following layer equations and matching conditions:

» i — p f <0
N .
n—p—C(x,) for £>0

b 8J=0, &J =0

L. fA[—EC(x,) + 8:4]  for E<0

c) G = {ﬁﬁgé for &0 (3.5.28)
L. [P[—EC(xy) + 0.4]  for £<0

&) "’p_{—paqﬁ for &>0

&) f(oo)=¢(—0)=0, A(w)=C(xy), A(—o0)=0,

p(f)—p{—oc) 0.

Again, the equations for the carrier concentrations can be integrated exactly
and we obtain

4 A= C(x,)e &2 for £ <
a C[.\'z)(’é for £€>0 (3.5.29)
b) p=0.

Thus the only boundary value problem to solve for the layer terms is the
equation (3.5.28)a) together with the boundary conditions (3.5.28)e). Using
the same methods as in the previous Section, one can show that this
boundary value problem has a unique solution (see Problem 3.6). A similar
expansion has to be performed around the left edge of the depletion region,
where p has a layer term p(n) which depends on the layer variable n =
(x — x,)/4. This layer problem is of the form

pe p for n>0
3) ¢ { p—Cl(xq) for <0
g (3.5.30)
B R —C(x,)e 1 DCxy) for >0
b P= —Cl(x,)e ? for n<0.

In order to obtain a uniform O(4) approximation of the solution one can

again derive the composite expansion (V<, n®, p, J;, J;) given by
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a) Ve=V+0(1?), J=J+00), J=J+0@)

14 p
b) nf= f_f(x) + ’j(f) + O‘(A) for 0<x<x, (3.5.31)
(x) + A(g) — C(x,) + 0(4) for x<x, <1
< X <Xy

¢) p-=

p(x)+ p(n) + C(x,) + O(4) for 0
plx) + pln) + O(4) for x;, €£x= 1,

The derivation of higher order approximations is straight forward and
is left to the reader (see Problem 3.7). The asymptotic validity of (3.5.31) can
again be shown in special cases. However the known results here are of a
different flavor than in the forward bias case (see [3.6], [3.7], [3.8]. [3.9]).
They are based on compactness arguments and do not give any convergence
rates. So they only say that, for 4 — 0, the solutions converge to the reduced
solution (V, i, p, J,, J,) derived above. Since the one-dimensional case is in
no way particular, as far as asymptotic validity is concerned, we will defer
discussion of these results to the next paragraph, where we will deal with
the two-dimensional case.

The Two-Dimensional Case

In more than one dimension the approach to finding an asymptotic appro-
ximation of the solution follows the same pattern as in the one dimensional
case. However, the solution of the resulting free boundary problem is
much more difficult since the boundary of the depletion region is a curve in
the two dimensional case and a surface in the three-dimensional case. For
the sake of simplicity we will restrict ourselves to the case of two dimensions
and leave generalizations to the three-dimensional case to the reader. (They
are straight forward.) We will use the same assumptions on the device
geometry as in the forward biased case. So the device occupies again a region
Q < R? with a boundary ¢Q = ¢Q,, U éQ, where the boundary conditions

a) Vi, = Vplea,- Nleq, = Npleq, Plea, = Pplea,
av

OV aq,

{3.5.32)

b] = Jﬂ' V‘f!h = ‘]p' \'Er'ﬂ\ = 0

hold. Setting 4 to zero in the equations (3.5.5) gives the reduced problem
a) AV=n—-p—-C
b) 0= grad V, c) 0= —pgrad V (3.5.33)
d) divJ, =R, e) divJ,= —R.

J, and J, have to be determined from the higher order terms in the expan-
sion. (3.5.33) suggests that the device domain Q splits into a region where
grad V = 0 (V = constant) holds, and the depletion region wheren = p =0
holds (see Fig. 3.5.1).

je]
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2Ny

a0p

Fig. 3.5.1 Depletion layer

In Q... i.e. in the depletion region, the solution is given by
AR=p=0, AF==C for %eQ (3.5.34)

and outside the reduced solution is given by

a) grad V=0, b) n=14C+./C?+ 4w),
c) p=3H—-C+ . /C*+ 4w), 142 Yo

where W is the transformed variable according to (3.5.20). W is then given as
the solution of the two-dimensional equivalent of (3.5.22) (see Problem 3.8).
In order for this approach to be feasible, we have to assume that the
boundary data V), are piecewise constant on ¢Q, so as not to contradict
(3.5.35)a). So we assume

Vp=U, for xedQ,, Vp=U, for xedQ,,. (3.5.36)

For the same reason as in the one-dimensional case the approximation to
the potential ¥ does not have a zero order layer term, and so V and grad V
are continuous across X, and X,, the boundaries of the depletion region.
This gives the reduced problem for V:

a) AV=-C for xe8ps,

(3.5.35)

b) Vi, = U, grad V-v |y, =0, (3.5.37)
Vi, =1, grad 17-1'2\3.2 =0
) V=U, for xeQ, V=U, for xeQ,,

where v, and v, are the unit normal vectors on X, and X, respectively. The
asymptotic validity of the derived approximation has been shown in [3.7]
and [3.8] for the one-dimensional case and in [3.9] for two and three
dimensions. At least for the higher-dimensional cases the available results
are of a very weak type. They only say, that the solutions of the full problem
(3.5.5) converge to the solution of the reduced problem (3.5.34)—(3.5.37) in
the L” weak star sense. This means, that for any test function ¢ € L'(Q)
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f Vgﬁd.r—»J Vi dx, J. n¢dx—>J. ng dx ,
Q Q o Q

J pé dx —>J po dx

holds. In [3.9] this result has been shown for a one carrier model (that means
C(x) < 0 everywhere and n = 0 everywhere) and for the special case 0 = 0.
In this case the smooth variable w vanishes identically and p = 1 holds
outside the depletion region.

(3.5.38)

3.6 Stability and Conditioning for the Stationary Problem

When solving any kind of equation one of the most important questions
from a practical point of view is that of stability and conditioning. These
terms refer to the sensitivity of the computed solution on the data. In our
case the input data are given by the boundary data on the Dirichlet part of
the boundary, the doping concentration and the geometry of the device. The
question of stability and conditioning becomes particularly important when
the drift diffusion equations are solved numerically. Errors, introduced by
a numerical solution, can usually be analyzed by regarding the computed
solution as the exact solution of a perturbed problem. Stability hinges on
an estimate of the inverse of the linearization of the involved differential
operator. As pointed out earlier such an estimate, which is independent of
the perturbation parameter 4, is not available in the general case. In this
Paragraph we will give estimates of approximations to the inverse of the
linearized operator and briefly sketch how the performance of iterative
solution methods for the nonlinear problem can be influenced by using
different sets of dependent variables.

If we formulate the problem to be solved as

F(z)=g, (3.6.1)

where z is the solution and ¢ denotes the data. we consider the perturbed
problem

F(z')=g¢g'. (3.6.2)

The terms stability and conditioning now refer to the absolute and relative
effect of the perturbation in g on the solution z. So one looks for constants
K, and K, such that

a) |z—-7'l < Kllg—4l

) } (3.6.3)
b) lz—2’|| chHg—g |
Iz lgll
holds, where ||| is some suitable norm. K_ is called the condition number

and K, the stability bound. Even if the data of the problem are known
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precisely the stability and conditioning of a problem are of great signifi-
cance since errors made in numerical computations can usually be esti-
mated through backward error analysis (see [3.38]). If we solve (3.6.1)
numerically the operator F is replaced by some approximate, discrete opera-
tor F and

F(:‘] = (3(‘!4)

is solved instead. (Usually F also includes the effect of roundoff errors.)
The concept of backward error analysis now implies that Z, the solution of
the discretized equation with the exact data, can be interpreted as the
solution of the exact equation with perturbed data. That means that there
exists a small perturbation dg of the data g, such that

F(2)=g + dy (3.6.5)

holds. So errors in numerically obtained solutions can be measured in terms
of the stability bounds. In turn it can be said that problems. where K, and
K,. are too large, are practically very difficult to solve. They are called ill
posed problems. Stability and conditioning are, by virtue of the mean value
theorem, closely related to the linearization F' of F since

dg = F'(2)(Z—2) + o(|Z — z)) (3.6.6)

holds. On the other hand the conditioning of the linearized operator F' is
also of great importance for the performance of iterative methods for the
solution of the drift diffusion equations since they are usually based on a
linearization technique. The most prominent of these methods is Newton's
method, which is of the form

a) we, = w, + dw

(3.6.7)
b) F'(w,)dw = —F(w,),

where w, and w, ,, denote the old and the new iterates and (3.6.7)b) has to
be solved for the increment dw in each iteration. If we apply Newton’s
method to the drift diffusion equations we obtain the system

—A%A* 1 —1\ [aV 1
a5 dy,  OR/Ap| |dn |=1 1, ], (3.6.8)
iy 0R/cn dzy ‘dI’J \f3

a,, = div(u,n, grad =), ay; = div(—p,p, grad *),
; (R

as, = div[p,(—grad = + = grad V)] + (67
. OR

ayy = div[p,(—grad x — % grad V)] + a’

where = is a placeholder symbol. We have used the forward bias scaling of
Section 3.4 here since it is of greater practical significance (because it is
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relevant for a much larger bias range). Also, for the sake of simplicity, it is
assumed that the mobilities p, and i, do not depend on V, n and p and that
the recombination rate R does not depend on V. The current densities J,
and J, have been eliminated by inserting them into the continuity equations.
Of course (3.6.8) 1s the linearization of the continuous problem and has to
be replaced by the jacobian of the corresponding difference operator when
solving the drift diffusion equations numerically. Reasonable stability
bounds (which are independent of A) for the coupled system (3.6.8) are not
available yet. One can however, in lieu of such a rigorous approach, carry
out a ‘decoupled’ analysis along the lines of [3.3]. For this purpose it
is beneficial to perform a variable transformation in (3.6.8). This transfor-
mation is given by

dav dV 1 0 0
dn |=T| y |. T=|n 1 0]. (3.6.9)
dp 4 —p 0 1

Note, that the transformation (3.6.9) is the linearization of the nonlinear
transformation to the Slotboom variables n = e'u, p = ¢ "v. The trans-
formed equations then read

dv 1 gy 1 =1
Iy |=1J3ls J=|a,y ay, dR/op|, (3.6.10)
z /3 ay, OR/on as;y
ay, = —A2A x + (n + py) *,
. JR R
ay; = div(—J, *)+ (""ﬁn - p"ﬁ_p) *

; J0R CR
azy =div(—J,, *)+|pi5-—n *

ap ton
; R *
a,, = div[p,(—grad = + % grad V)] + prat
OR

a3 = div[p,(—grad * — * grad V)] + 5

and the update is given by the formula
Voo = Vo + dV, My =1 +dV)n + y. (3:6.11)
Peir =1 +dV)p, + z.

Note, that, if the drift diffusion equations are written in the Slotboom
variables (V, u, v) and Newton's method is applied to the system (3.4.36), up
to a transformation the same linear system has to be solved for the incre-
ments (dV, du, dv). In this case (dV, du, dv) are related to (dV. y, z) via

y = eY du, z=e " dp. (3.6.12)

Thus the difference between applying Newton’s method to the system (3.4.5)
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and (3.4.36) is only in the updating strategies, which are of the form
a) y=W+dV, Moy =01 +dV)n, + y,
ey =1 —dV)p, + z _
funt o (3.6.13)
b) Vi =V, +dV, ey, = e (e ru, + v),
e Vi, = e (e Y, + 2),

respectively (see Problem 3.2). In practice the matrix J in (3.6.10) is frequently
replaced by a. in some sense, simpler matrix in what is called approximate
Newton methods (see [3.5]). The most widely used approximate Newton
method consists of neglecting the subdiagonal terms in (3.6.10) and solving
the system

dV
G|y

o a1 =i
= fz > G= 0 s, Rp (3.6.14)
fs, 0 0 ESY

in each iteration, where the diagonal blocks a;; are the same as in (3.6.10). If
this approach is used together with the update (3.6.13)b) one obtains a
version of the so called Gummel method (see [3.14]). Clearly, neglecting the
subdiagonal terms in (3.6.10) assumes small currents and recombination
rates. We refer the reader to [3.5],[3.17],[3.28] and [3.29] for a convergence
analysis and various acceleration techniques for Gummel type methods. The
iteration (3.6.14) has the advantage that only three scalar linear differential
equations have to be solved at each step instead of a coupled system. For
each of these separate equations stability bounds are easily obtainable. So,
for instance, for the (1, 1) block of (3.6.14) a boundary value problem of the
form

a) —AAdV+(n+pdV=f
i‘fi_l/

av

3.6.15
—0 ( )

(‘Q‘

b) dVl]sg, =0,

has to be solved. (Without loss of generality we can assume that the last
iterate satisfies the boundary conditions and therefore the boundary condi-
tions for the increment are homogeneous.) Dividing (3.6.15)a) by (n + p) and
applying the maximum principle yields

n+p

(3.6.16)

max |dV| < max
Q O

which suggests a row scaling of the first row of the Newton equation (3.6.10)
by (n + p). After this row scaling the stability bound for (3.6.15) equals one.
So the Poisson equation is generally well conditioned.

The conditioning of the linearized continuity equations is a more subtle
problem since here the stability bounds depend on the type of the device. If
we consider the (2, 2) block of (3.6.14) in the case R = 0, a boundary value
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problem of the form
div[py,(—grad y + ygrad V)] = ¢
, (3.6.17)
Vleg, = 0, (—grad y + y grad V) v|pq, =0
has to be solved. Employing the transformation y = ¢"* du, we obtain
a) —div(u,e* grad du) = g

ddu _0 (3.6.18)

b) dulsx, =0,

v |oq,
Application of the maximum principle (see [3.12]) gives that

max |du| < Ke™¥ max |g|. V:=min V, (3.6.19)
Q Q Q

holds, where the constant K depends only on the geometry of Q and the
minimum value of u, (see Problem 3.3). Transforming back into the y
variable yields
max |y| < Ke* Y max |g|, V:=maxV,. (3.6.20)
o Q 0

So the stability bound for the linearized electron continuity equation de-
pends exponentially on the potential difference. Remember that, at Ohmic
contacts,

(3.6.21)

C +./C? + 45*
262

holds. If we consider, for instance a device with a contacted n- and a
contacted p- region and a piecewise constant doping profile (C = C, > 0in

Vg, = U + ln(

‘Q D

the n-region and C = —C_ < 0 in the p- region), where a potential of U,
and U, is applied, respectively, we obtain
eV Y 2 4% UC,C_. (3.6.22)

If we use scaling factors corresponding to a 1u device geometry and a
maximal doping concentration of 10'? the right-hand side of (3.6.22) is of
the order of 10'® in thermal equilibrium (U, = U,) and becomes even larger
in the reverse bias case. The question which arises immediately is whether
the bound (3.6.20) on the stability constant is sharp. Such high stability
bounds are actually observed for complicated devices in numerical calcula-
tions (see [3.19]), but not for a simple P-N junction diode. Generally it can
be said that the bound (3.6.20) is attained in the presence of so called floating
regions. These are p- or n-regions without an Ohmic contact (see [3.34]).
One can, at least in the one-dimensional case. show that a stability estimate
of the form

(3.6.23)

y
< K max g

max |[—
n Q n

Q

holds with a moderate constant K, if every p- and n- region is contacted.



148 3 The Drift Diffusion Equations

We refer the reader to [3.3] for further details on the conditioning and
stability of the drift diffusion equations and of its effect on the performance
of iterative methods.

3.7 The Transient Problem

The remaining part of this Chapter is concerned with the analysis of the
transient drift diffusion equations. So, we consider the problem

a) divegrad V)=¢qn —p— C)

b) divJ, = q(dn + R), ¢) divJ,=q(—ép—R)

d) J,=q(D, grad n — u,n grad V)

e) J,=q(—D,grad p— p,pgrad V) for xeQ,t>0
) n(x,00=n'(x), p(x,0)=p'(x)

g Vix,0)="Vplx, 1),  nlx1)=np(x1),

(3.7.1)

Pl 1) = pplX: T} for X € 0Qp
v

-

cv

h) (x,1)=0, I vi=0 J-v=20 for x e dQy,
where the coefficients ¢ and g etc. have the same meaning as in the stationary
case.

From a practical point of view the interest in the transient drift diffusion
equations is of a different nature than that in the steady state problem. In
the steady state problem one is interested primarily in the voltage current
characteristics, that is in the current flow as a function of the applied
potential difference. When considering the transient problem one is in-
terested in the time required by the solution to reach a steady state. As far
as numerical simulations are concerned, it is also of interest to calculate the
transient response of several coupled devices constituing, say, a Flip-Flop.
The structure of the transient solution is obviously more complex because
of the additional dimension time. Numerical calculations are more expen-
sive for the same reason. On the other hand, the transient problem is,
in some sense, easier to deal with analytically. For instance, while the steady
state problem admits multiple solutions, a feature which is exploited tech-
nically in c.. a thyristor (see Chapter 4), the solution to the transient problem
will, in general, be unique. Existence results for the steady state drift diffusion
equations have to rely on the Schauder fixed point principle, while those for
the transient problem can employ contraction arguments, at least locally in
time.

Generally speaking, there are two types of transient analysis, one “close’ to
a steady state and one “far’ from it. In the first case one is interested in what
happens. if a small perturbation is introduced in a stationary initial state.
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Thus. one considers the problem
6w = F(w), w(t =0) = w* + ¢, (3.7.2)

where F, in our case, stands for the nonlinear differential operator corre-
sponding to the steady state problem and w = (n, p). w* is the solution of
the stationary problem, so F(w*) = 0 holds. ¢f is a small perturbation, so f
is some function and ¢ is a small parameter. If we set w = w* + ¢z, z satisfies

6,z = F'(w*)z + Ofg), ze=0)=f. (3.7.3)

Thus, in first order, the behaviour of the solution w can be determined by
analyzing the linearized problem

8,3 =F(w¥)3, 3t=0)=f. (3.7.4)

In particular. it can be deduced that, if the solution Z of (3.7.4) decays to zero
ast — o, w¥ is a dynamically stable steady state. We will treat the linearized
problem (3.7.4) in the next Paragraph.

Of course, this approach is only valid if the perturbation & is sufficiently
small and, in this sense, is rather an extension of the steady state analysis.
If the behaviour of transient solutions is of interest over longer periods of
time, in particular if a P-N junction is switched from forward to reverse bias,
the full, nonlinear problem (3.7.1) has to be dealt with. Here the analysis
follows the same pattern as in the stationary case. Once again, the main
instrument to understand the behaviour of the solution of (3.7.1) will be
asymptotic analysis.

3.8 The Linearization of the Transient Problem

If we employ the forward bias scaling of Section 3.4 we obtain the system

a) A2AV=n—p-C (3.8.1)
L.?
b) —én=divJ,— R, c¢) J,=u,(gradn— ngrad V)
Urpi
LZ
d) U—ﬂi‘,p = —divJ,— R, ) J,=up,(—grad p—pgrad V).
5

Although the scaling is of no particular importance for the purpose of this
Section we use the scaling of the stationary forward bias case for the time
being. ¢ in (3.8.1) is the unscaled time. (3.8.1) suggests the scaling
L2
t=——1,, (3.8.2)
Ui
where t, is the scaled time variable. Since i is the scaling factor of the electron
and hole mobilities y, and y,, and D, , = Uy, , holds, the timescale given
by (3.8.2) corresponds to the diffusion timescale of carriers. With this scaling
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(3.8.1) reads
a) P2AV=n—p—C
b) 6.n=divJ, — R, ¢) J,=p,(gradn —ngrad V) (3.8.3)
d) ¢ p=—divJ,—R, e) J,=p,(—grad p— grad V).

From here on we will omit the subscript s.

If we linearize the operator F in (3.7.2), corresponding to the steady state
problem, around any solution w = (n, p) along the direction z = (u, v) we
obtain the linearized operator

divl, — R,u— R,v

F'(w)z = ,
%) {—dl\f I; — R — R,v

(3.84)
I, = ,(grad u — u grad V — n grad ¢)
I, = p,(—grad v — v grad V — p grad ¢),
where V and ¢ satisfy
AV=n—-—p-—-C
(3.8.5)

MPAb=u—v

together with homogeneous boundary conditions for ¢. There arc four main
questions which are of interest in connection with the transient linearized
problem

1. Does the linearized problem (3.7.4) have a unique solution?
2. Is the linearization stable; i.e. if we consider the initial boundary value
problem

dz=FWwz+g, z(t=0) =/, (3.8.6)

can z be bounded in terms of f and ¢?

3. Does the solution z of (3.8.6) with a homogeneous right-hand side g = 0
tend to zero for t — o0?

4. Do the eigenvalues ol F’ have negative real parts?

Clearly questions 3 and 4 have to do with the dynamic stability of a steady
state, if w is chosen as the stationary solution of F(w) = 0. The answers to
questions 1 and 2 tell whether linearization is justified at all. Of course we
cannot expect an unqualified ‘yes’ as the answer to questions 3 and 4 since
we know that there exist dynamically unstable steady states to the drift
diffusion equations (see Chapter 4). We will, however show that steady
states, up to a certain amount of current flow and recombination, are
stable. The answer to all four questions is based on an energy estimate; i.c.
an estimate of the form

{z, F'(w)z) € K{z, 2>, (3.8.7)

where (-, - > denotes a suitable scalar product. This scalar product is ol a
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problem specific form and has been used in [3.24] for the linearization
around equilibrium (J, = J, = 0) and in [3.22] for the linearization around
a general solution of the transient or steady state problem. Since, in order
to deal with the eigenvalue problem, we will have to consider complex
valued eigenfunctions we will define the scalar product for complex valued
functions.

Definition 3.8.8: Letz, = (u,, v,)and z, = (u,, v,) be complex valued func-
tions. Then we define the scalar product ¢+, - > and the norm ||‘| in the
following way. First we solve

A2 Apy = uy — v, (3.8.9)

together with the boundary conditions
by(x) = 0 brxeﬁ%,ihu—ﬂ for xedQy. (38.10)

Then {z,, z, > is given by

(21, 22) =J i, (ﬁ—m) + 7, (”—2+¢2) dx. (38.11)
Q n P

Note that the bars denote complex conjugation here.
We leave it to the reader to show that (-, -} really constitutes a scalar
product (see Problem (3.9)). The energy estimate is now given by

Lemma 3.8.12: Let z = (u, v) be a complex valued function. Then

Re(z, F'(w)z) < —¢ J uynlgrad af® + p,plgrad B> dx  (3.8.13)
Q

1
holds for all ¢ € [0, 1) with a, B, K, and Ky given by

-+ (—%K, - KR> (.2

gt o, B ded (3.8.14)
n P
l( A Jp )
K; = 2| max + max
2\ o |n a | P

P

n

|
Kp=-max |np + 1| max [— —
2 a 0

and ¢ the solution of A* A¢ = u — v together with the homogeneous boundary
conditions (3.8.10).

The proof of this energy estimate is technically quite complicated and can
be found in [3.22]. We will omit the proof here and instead discuss its
implications on the questions 1-4 above.
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The estimate (3.8.13) immediately implies the stability of (3.8.6). If we define
the norm | z|| by

lz(B)] = /<z(1), z(1) ) , (3.8.15)
and take z = (u, v) to be real, we obtain
1
G llzll = T2l Re{z, F'(w)z + g). (3.8.16)

Using the energy estimate (3.8.13) and the Cauchy-Schwartz inequality, this
gives

O llz(0)l < (Ky 4+ Kgp)lz(0)] + [lg(@)] (3.8.17)

and, by Gronwall’s inequality

lz(t)] < e”"l“‘“”(lfl - j

0

t

e KRS g(s)] dS)-
To show that the solution z decays for sufficiently small current flow and

recombination rate and homogeneous g = 0 we estimate {z, z) in terms of
fo(p,nlgrad a|? + u,plgrad f|?) dx. Rewriting (z, z), one obtains

2, :>=j um+1=ﬁdx=J nla+@*+plf—¢|*+(v—u)p dx
Q Q
:J nlo+ B2 +plf— |2 + 22|grad ¢| dx (3.8.18)
Q

< const(lloclfzm, + |ﬁ|12.2m)+f (n+p)|@|* + 4*|grad? ¢| dx).
Q

Rewriting the Poisson equation in terms of « and f we obtain

/2 Ap = (n+ p)¢ + nx — pp. (3.8.19)
Multiplying both sides by ¢, integrating by parts and again applying the
Cauchy-Schwartz inequality yields

J‘ (2*|grad ¢|* + (n + p)¢?) dx < const(||a]| 2oy + 18] 2 191l L2
Q

H¢HL2(Q] < ConSt(HﬁfHle) + Al r.l(m)- (3.8.20)
Combining (3.8.18)—(3.8.20) gives
£z 20 % COHSt{H“HL?-lm =+ Hﬁ“:}m;)z- (3.8.21)

Since the L2-norm of a function can be bounded in terms of the L*-norm of
its gradient if the function is sufficiently smooth.-and vanishes on at least a
part of the domain boundary ¢Q (see [3.1]), there exists a constant K such
that

{z,z) £ K j (uqn|grad of* + p,plgrad f?) dx (3.8.22)
Q
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holds. Thus, it can be deduced from (3.8.13) that

Re {z, F'(w)z) < ((KR + LKJ) K — E) (3.8.23)

1 —&

X J. (unnlgrad af® + p,plgrad p|*) dx
Q

holds. If K, and K, are sufficiently small the right hand side can be made
negative by an appropriate choice of ¢ and, using the same argument as
above, lim, . ||z(1)|| = 0 holds for g = 0.

To estimate the eigenvalues of F'(w), (3.8.13) can be used immediately. If a
complex eigenfunction z satisfies

wz = F'(w)z (3.8.24)
multiplication by z yields
(Rew){z, z) = Re{z, F'(w)z). (3.8.25)

Setting ¢ = 01n (3.8.13), we obtain Rew < K, + K. Again, using the same
argument as before, the real parts of all eigenvalues of F'(w) are negative if
K ;and K are sufficiently small. In [3.22] a version of Lemma 3.8.12 is used
to show that the operator F'(w) generates an analytic semigroup on L*(Q)
equipped with the norm | - ||. Thus the existence of a solution to the problem
(3.8.6) is guaranteed.

So the answer to all four questions asked in the beginning is a conditional
‘ves’. There exists a solution to the linearized problem (3.7.4). This solution
is stable in the sense of the estimate (3.8.17). The solution of the linearized
problem with homogeneous boundary conditions tends to zero for t —» oo
for sufficiently small current flow and recombination.

3.9 Existence for the Nonlinear Problem

In this Section we will show the existence of a solution to the transient drift
diffusion equations (3.8.3). As mentioned previously, the existence of a
solution can, at least for a sulficiently small time interval, be established
by a contraction argument. There are various papers in the literature estab-
lishing existence for various models for the mobilities and the recombination
rates (see c.f. [3.11], [3.32], [3.33]). It should be noted that the presence of
velocity saturation effects complicates existence proofs considerably if the
Einstein relations

(@) D,=Upp,, (b) D,=Uru, (3.9.1)

b
are kept. In this case the differential operator loses its uniform parabolicity
for large values of the electric field — grad V and the fixed point map used
below will not necessarily be well defined.

The existence proof for the transient problem consists essentially of two
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steps. First, short time existence is established by a contraction argument.
Then a priori estimates are used to show that this solution can be continued
arbitrarily in time. Other approaches, treating more sophisticated models
(1.e. avalanche generation), use a Schauder type fixed point argument directly
(see c.f. [3.32]).

We will follow the lines of [3.11] but, for the sake ol simplicity, we will not
consider velocity saturation effects. Let us first consider the existence of a
solution for a sufficiently short time interval. We define the fixed point map
F by F(n, p) = (u, v) in the following way.

Step 1: Given n and p solve the Poisson equation
AAV=n—p—C(x)

oV 39.2
i _0 (3.9.2)

V[f'!!;, = VD ’

)

0V |aq,
for V.
Step 2: Solve
a) du = div[p,(grad u — n grad V)] — R(n, p) te(0,T)
b) 6v=div[pu,(grad v + p grad V)] — R(n, p)

A
ou

c) u(t=0)=n!, ulag, = Np, —| =0 (3.9.3)
0V |aq,
7 aov
d) ee=0=p', vlg,=pp, | =0
v |aq,

for v and v.

For the fixed point argument we will use the following norm:

(n, p)I| = [m'dx {0 + 1P 2}

o<r<T

T 1/2
+j f|n(s)|f,,(m+|p(s)|f’,,(9,dsj| . (3.9.4)
0

If |[(n, p)|| is finite then standard existence results (see [3.37]) for linear
parabolic partial differential equations imply that (3.9.3) has a unique solu-
tion (u, v). We now show that the map F is contractive for a sufficiently small
time interval (0, T) on the set

M, = {(n, p): ll(n, p)|| < a}. (3.9.5)
For the difference
(du, ov) = F(ny, p;) — F(n,, p,) (3.9.6)

we obtain the initial boundary value problem
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a) 0,0u = div[u,(grad éu — n, grad V; + n, grad V;)] — oR
b) ¢v=div[pu,(grad év + p, grad V|, — p, grad V;)] — oR

. - 00
¢) du(t=0)=0, ()ui{.,QD =), (‘r-\—u = () (3.9.7)
v |sa,
0ov
d) out=0)=0, Ovlg,=0, S| =0
av 0

e) OR:= R(n,;,p,;)— R(ny, py).

Multiplying (3.9.7)a) by du, integrating by parts with respect to x and
integrating with respect to ¢ from t = 0 to t = T yields
T

1 R "
5 18Ul 201 + J Hallgrad Su(s)||z(q) ds
0 (3.9.8)

T
= j J [u,(n, grad V|, — n, grad V,)-grad du — dRou] dx ds.
0 Q
We estimate the right-hand side of (3.9.8) by

T

11—
S 16u(®) 22y + j || grad du(s) 2 q) ds

0

T
< const‘[ [(llon grad V, | p2q) + 7y grad 6V 2q)

0
|| grad 5“”:,2(9) +( Hfs"”.r,z(n, + |!5P”L2(g))”5“||1.2(m] ds, (3.9.9)

where dn denotes (n, — n,) etc. The right-hand side of (3.9.9) can be estimated
further using the definition of M,, the Sobolev imbedding theorem and the
Gagliardo-Nirenberg inequality (see c.f. [3.37])

191l Ly < const [[gll Lz 191l @)
< c@)glliza + lgllmi@ (3.9.10)

forany ¢ > 0,r = 2 and any H'(Q) function g with s = d(3 — 1) and d being
the dimension of the problem. We obtain

[on grad V; |2 + 0y grad V| 2q, (3.9.11)
< consta([on] ) + 10p] g + (2]l 20y + P21l L20)
“(c(e)]on] L2q) + &lon] i) ] grad dull 2 q,
< cla, &)([10n]| L2y + 10p]720)) + &([10n]| 5140
+ 18Pl Fysqy + 160l 7 q))-
Inserting (3.9.11) into (3.9.9) and using the inequality

1 .
lab{sﬂaz +%b2, a,beeR, >0 (3.9.12)
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yields
1 N 4
3 H()u“iz“” + L I, | grad 5u(s}||i2‘m ds (3.9.13)
r~t
s constJ (c(a, s]{H(‘InIIfth, + |5p|\f_zm,]
0

+ e([16nl fsqy + 10171y + 110Ul 71 ) ds
t
< max{Tc(a, &), &} |(5n, dp)||* + & J | Su(s) | 71 ds-
0

A similar inequality holds for v and, by choosing ¢ and T sufficiently small,
F can be made contractive in M,; i.e.

H((Su, 5”)” s%”((sns 5P)||: V(n]‘ pl)s(”Zapl)EMa (39']4)

holds. Because of the Banach fixed point theorem there exists exactly one
fixed point (n*, p*) with (n*, p*) = F(n*, p*) in M,. This fixed point is the
unique, weak solution of (3.8.3) in (0, T').
In order to show the existence of a global solution for arbitrary time intervals
[0, T, it is necessary to show, in addition, an a priori estimate on the
solution of the form

4

@) L2y + 1P L2y + J. (In(s) | gy + [1PS) [ 111 2) ds < c(t)
0 (3.9.15)

for the solution (n, p), where ¢(t) is a bounded function. The proof of this a
priori bound involves a quite complicated argument based on a problem
specific Lyapunov function. We refer the reader to [3.11] for the details.
Using (3.9.15), the existence of a solution can then be established for arbi-
trarily large time intervals.

Asymptotic Expansions for the Transient Drift Diffusion Equations

As in the steady state case, a great deal of insight into the structure of the
solutions of the transient problem can be gained by asymptotic analysis.
The structure of solutions of the transient drift diffusion equations is quite
a bit more complicated than that of stationary equations. In addition to all
the structural complexities already present in the steady state case, one
is confronted with different time scales whose occurence depends on the
form of the initial data. In this Section we will first derive an asymptotic
approximation (for small i*) on the time scale given by the scaling
(3.8.2). We will refer to this time scale as the ‘slow” or diffusion time
scale in the future. There we will observe the same spatial structure as in the
stationary problem; i.e. layers around the P-N junctions etc. However, for
this approximation to be valid, it will be necessary that the initial and
boundary data satisfy certain conditions. If a steady state solution is taken
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as initial datum, which usually is the case, and if the applied boundary
potential varies only on the diffusion time scale, then we can conclude from
the results of Section 3.4 that these conditions are satisfied. So the fast time
scale only occurs because of perturbations in steady state initial conditions
or because of rapid changes in the externally applied bias. Perturbations in
the initial conditions have to be considered as soon as the transient drift
diffusion equations are solved numerically. It turns out that the structure of
the temporal layer solutions depends strongly on the type of perturbation
introduced.

3.10 Asymptotic Expansions on the Diffusion Time Scale

We will first derive the zero order term of the asymptotic expansion of the
solution of the transient drift diffusion equations on the time scale given by
(3.8.2). This time scale corresponds to the diffusion of carriers since the
diffusion coefficients D, and D, in (3.7.1) have been scaled to order O(1). As
we will see, the structure of the zero order term on this time scale is
not essentially different from that of the stationary problem in the sense
that the reduced problem (3.4.37) now simply evolves in time. The spatial
layers remain located at the P-N junctions and will only widen or narrow
according to the applied bias.

Existence of a solution to the transient reduced problem could, in principle,
be shown by the same methods as for the full problem in Section 3.9.
However, we will sketch a different type of existence proof at the end of this
Section in order to reflect on the structure of the solution of the transient
reduced problem. This will express the fact that, for certain types of devices
such as diodes or bipolar transistors, the free electrons will actually mainly
populate the N-region and the holes will populate the P-region under
moderate biasing conditions.

Setting the perturbation parameter A = 0 in (3.8.3) we obtain the reduced
equations

a) 0=n—p—C(x)

b) gn=divJ,—R

¢) 4p=—divJ,—R (3.10.1)
d) J,= —u,lgrad p + p grad V)

e) J,=p,(grad n — it grad V),

which imply vanishing space charge everywhere. Again, as in the stationary
case, (3.10.1)a) is consistent with the Dirichlet boundary conditions since, if
only Ohmic contacts are present,

np—pp—C(x)=0 for x€edQ (3.10.2)
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holds. The reduced equations (3.10.1) have the following interpretation.
While the full transient drift diffusion equations state the conservation of
the total current

J=J,+ J,— A* grad(9,V), (3.10.3)
the displacement current — A* grad(é, V) can be neglected away from spatial

and temporal layers, and only the drift diffusion current J, + J,is conserved.

The spatial layers on the slow time scale occur near the P-N junction where,
because of steep gradients or discontinuities in the doping profile C(x), the
reduced concentrations n and p are discontinuous. The spatial layer terms,
and the corresponding layer equations, are of the same form as for the
stationary problem. For instance in two space dimensions the layer terms
are functions of the form

w=weE, s, w=WAapJ,J), (3.10.4)

where (£, s) are again given by the same local coordinate transformation
near the P-N junction as in the stationary case. s is the curve parameter of
the P-N junction and ¢ is the perpendicular distance of the point (x, y) to
the P-N junction divided by A. Carrying out this variable transformation
and inserting the layer term (3.10.4) into the equations gives

a) 02V =h—p—Cls)+ 0(2)
b) 0.4 —Ad.V =0(), ¢ &J,-n)=0() (3.10.5)
d) a:p+pa:V=0(), e &, n)=0().

Letting 4 go to zero, and after integration of the current relations and the
continuity equations, one obtains, similar to the stationary case

a) A& s, 1) = A,(s, e’ &0
b) P& s, t) = A, t)e &=
) IG5, )= eMen0D (3.10.6)
d) J(&s,1)=J,e"” Vigsn+¥)
e) PfV:n_p_C!

where 4, and A, are given by
a) A(st) = (X (s), Y(s), )™ THERTEND
b) A4,(s 1) = p(X(s), Y(s), e XY,

and the interface conditions at the P-N junction are given again by the
requirement that

ne V., pe¥, Jom, JowW (3.10.8)
are continuous across the P-N junction. Equations (3.10.1) can be refor-

mulated as a system of one elliptic coupled to one parabolic equation.
Differentiating (3.10.1)a) with respect to time and inserting f{rom

_— g

(3.10.7)
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(3.10.1)b).c) gives
div(J, + J,) = 0. (3.10.9)
So the system (3.10.1) can be rewritten as
a) div(J,+ J,)=0
b) ap= —dle —R (3.10.10)
¢) J,=p,[grad(p + C) — (p + C) grad V]
d) J,=p,[—grad p— p grad V].

After inserting for J, and J, from (3.10.10)c).d) (3.10.10)a) is an elliptic
equation for ¥ while (3.10. lO)b} is a parabolic equation for p. Thus, the
reduced problem is given by the equations (3.10.10) together with boundary
conditions

a) plx,t)=pp(x), V(x,t)=Vp(x,t) for xedQ,, t>0

op 1% 3.10.11
b) = ( f)= i;—‘:(x,r):o, for xedQy, r>0,[ )

the interface conditions (3.10.8) and an initial condition for p. #i(x, t) is then
given a posteriori by

A(x, 1) = p(x, 1) + C(x) (3.10.12)
and satisfies automatically the boundary conditions

i(x, t) = fip(x) (=ppx)+ C(x)) for xeodQ,, t>0.
(3.10.13)

One feature of the solutions of the drift diffusion equations, that has not yet
been expressed through our asymptotic analysis, is that, away from P-N
junctions, the carrier densities n and p will be quite small in the P- and
N-region, respectively (see [3.35]. In the case, when an N-region is adjacent
only to P-regions, and when all the N- and P-regions are contacted this fact
can be explained by an asymptotic analysis using the built in potential. This
additional asymptotic analysis has been used in [3.26], [3.27] to show the
existence of a solution to the reduced problem (3.10.10), (3.10.11), (3.10.8).
We assume that the device domain Q is the disjoint union of K P- and
N-regions whose boundary contains exactly one contact each.
K
a) Q=) Q

'j o
=1

b) sign(C(x)) = const inQ;, i = Lm0

E’QJQ(”QD?&{ }. ]=1..K
(3.10.14)

Using the form of the boundary data V}, and p, (see [3.19] or Section 3.1)
in our scaling, we have
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a) Vplx, ) =Vn) + Vylx)  for  xedQ;ndQ,

2 4
b) %i{x)_ln((.‘(x)-l—\/(‘(.\) +45)

262
¢) pplx) = 6% exp(— V,(x)), x e dQ,
d) np(x)= pp(x) + C(x).

Here V; is the externally applied potential, so the difference between the V;
is the applied bias and V,; is the so called built in potential, which is due
only to the doping (see [3.19]). Note that ¥,; = 0 holds in the case of an

undoped semiconductor. ¢ in (3.10.15) is given by

f2=— 0 3.10.
max |C(x}| (3.1016)
xeQ)

and will be quite small in practice. We have neglected the effect of o, so far,
since it appears only logarithmically in the boundary conditions (3.10.11)
and V,; will be of moderate size, even for small é. In order to analyze the
structure of solutions of the reduced problem, we employ the variable
transformation ¥V — ¢, p — u, it — C(x) + u, given by

a) V(x.1) = 8*b(x, 1) + Vy(x) + V(1) for xeQ
b) plx, 1) = *u(x, t) + 6* exp(— Vyi(x)) for xeQ (3.10.17)
g L=, o J=#L.

Note, that this transformation implies automatically n — p — C = 0 every-
where. Inserting (3.10.17) into the equations (3.10.1) yields

a) div(l,+1,)=0
b) du=—divl,—S

(3.10.15)

g) I, =u, [grad u — u(grad V,; + 6* grad ¢)

_ ) 7
B 4 O .. grad¢] (3.10.18)

2

d) 1, = i‘p[—gmd u — u(grad V,; + 6% grad ¢)

= gL\’in‘_ grad ¢:|

S in (3.10.18)b) is the transformed recombination rate. If R is given by the
Shockley Read Hall recombination term, we have

i . (5"#, b S = ‘u\/CTZ ﬂ.—émz -
n+p+20° 26%u + \/C* + 45* + 267
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The boundary conditions (3.10.11) become
a) u(x,t)=0 for xedQp,
b) So(x,0)=0 for xedQy
ov

(3.10.20)
c) ¢(x,1)=0 for xedQp,

d) (;—d)(x, )=0 for xedQy,
v

and for the interface conditions we obtain that the functions
a) [u(C + /C? + 45%) + 2] exp(V, + 6*¢)
b) [u(—C + /C* + 45%) + 2] exp(—V; — 6*¢) (3.10.21)
c) I- and d I,-n

L P

=)

are continuous across P-N junctions. In (3.10.21) V] takes on different values
on different sides of the P-N junction (in the different subdomains ;). If we
now assume that (like c.f. in a MOSFET, see Chapter 4) an N-region is
adjacent only to P-regions, and vice versa, the problem degenerates into a
linear problem as é — 0. This linear problem is given by

a) div(l} +17)=0

b) Su’= —divl; —S° (3.10.22)

c) I = pu,[grad u® — u® grad V,; — ((—C + |C|)/2) grad ¢°]

d) I) = pu,[—grad u® — u° grad V,; — ((C + |C])/2) grad ¢°]
together with the boundary conditions (3.10.20). The interface conditions
then become the conditions that
a) I,n, b) I, n (3.10.23)
are continuous across P-N junctions and that

a) u’(x, 1)C(x) + 1 = exp(V (1) — V(1))

for xedQ;ndQ, if Cx)>0 in Q
or (3.10.24)
b) —u(x, 1)C(x) + 1 = exp(Vj(t) — V(1))
for xecdQ;nadQ, if C(x)<0 in
holds. Here u°(x, t) and C(x) are to be understood as the one sided limits of
u’ and C in ; at the P-N junction ¢Q; n ¢éQ, (see Problem 3.10).
Note, that the problem (3.10.22), (3.10.23), (3.10.24) is linear. Standard argu-

ments can be applied to establish the existence of a solution (see [3.26],
[3.27]). If the appropriate spaces are chosen (see [3.26]) the existence of a
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solution to the reduced problem (3.10.10)—(3.10.11) can be established by a
perturbation argument for small 4.

3.11 Fast Time Scale Expansions

The slow time scale expansions, derived in the previous paragraph, imply
that certain conditions for the inner and outer solution hold for all time.
These are given by

a) div(J,(x. 1) + J,(x. 1)) = 0, Yi>0

5 - (3.11.1)
b) Ai=ne¥ ¥, c) p=pe¥v.

Therefore, in order for the approximation derived in the previous paragraph
to hold, the initial data n” and p” have to be such that (3.11.1) is satisfied at
t = 0. As we have seen in Section 3.4, this is the case when n' and p' are
solutions of the stationary problem. In this and in the next paragraph we
will analyze the structure of the solutions if this is not the case. The motiva-
tion for this analysis is twofold and we will distinguish between two principal
cases. Firstly we are interested in steep, or in the extreme case discontinuous,
changes in the applied bias. So n’ and p’ will be solutions of the steady state
problem

a) AAVSS=nl—pl—C
b) divJ®¥ =R
¢) divJ®=—R
d) I = plgrad nf = n' grad V%) (3.112)
e) Jp¥ = p,(—grad p' — p' grad V)
) VS0 =V, (%)= npx),
pl(x)=pplx) for  xedfd,
avss on' ép'

=0, =0,

av v ov

g) =0 for X € Qy.

We then solve the transient initial value problem (3.7.1) together with the
boundary conditions
Vix,2) = ¥Vp(x; 1) for x€ 80y, (3.11.3)

where Vj(x, 0) # V5%(x) holds. Obviously, in this case, V(x, 0) will not equal
V55(x) because of the different boundary values at the Dirichlet boundary
Q. Therefore

div(J, + J,) =0 (3.11.4)

will also not hold at t = 0.
In the second case we will consider the solution of the transient problem for
general initial functions n’ and p'. The fundamental difference between the
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two cases is that in the first case V. J, and J, stay bounded at t = 0 for £ — 0,
while in the second case V(x,t =0)= i A~ '(n! — p! — C) will be uni-
formly of order 4 *, and so will be J, and J, at t = 0. This case can be
interpreted as a random perturbation of the mitial data caused by either
external radiation or roundoff errors introduced by a numerical solution.
An alternative interpretation would be to regard, after a rescaling of the
potential V, the resulting problem as the transient drift diffusion equations
under extreme reverse biasing conditions.

The Case of a Bounded Initial Potential

We will first consider the case when the initial data n’ and p’ are such that
the potential ¥ and the current densities J, and J, stay bounded for £ — 0.
So, again restricting ourselves to the two-dimensional case, we assume the
same configuration as for the steady state problem in Section 3.4

a) n'=n'(x,y) + A& s) + O(A)
b) p'=p'(x,y)+p'(& )+ 00,

where (x, y)«> (&, s) denotes again the local coordinate transformation
around the P-N junction. Furthermore n’ and p’ shall be such that V', given
by

(3.11.5)

a) o AVE=pf -p"—C

b) VI(x)= Vp(x,0) for xedQp, (3.11.6)
Arsl
p;i (x)=0 for xedQy

and J, and J/, given by
a) J! = p,(grad n' — n’ grad V') GALT)
b) J} = p,(—grad p’ — p' grad V') o

stay bounded as 2 goes to zero. Now J; and J; will, in general, not satisfy
(3.11.4) which makes a correction on a faster time scale necessary. In [3.26]
it has been shown that the only possible time scale, in the absence of velocity
saturation effects, is of the form

T = tf1? (3.11.8)
(see also Problem 3.11). Performing this change of variables, we obtain

a) A2AV=i—p—

b) 0.4 = A*(divJ, — R)

b) é.p=4*(—div],—R) (3.11.9)

d) J, = p,(grad i — i grad V)

0

~

P

e) = p,(—grad p— p grad V),
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where *™ denotes the dependent variables on the fast time scale. Since J, and
J, stay bounded as 4 — 0 we obtain

ilx, , ) =n(x, ),  plx, y,7)=pl(x,y). (3.11.10)

The fast time scale equation for the potential ¥ is obtained by differentiating
(3.11.9)a) with respect to 7. This yields

& AV =div(J, + T), (3.11.11)

where J, and .Tp are now given by (3.11.9) with the concentrations 7 and p
replaced by n! and p’. The fast time scale equation is of the form

6, AV=—div[(u,n"+p,p") grad V] +div(y, grad n' —u, grad p').
(3.11.12)

Thus, V can satisfy the initial conditions and the boundary conditions
a) V(x,0)=V(x)
b) V(x,7)=Vy(x,t) for xedQ,,
ev
v
In [3.26] it is shown that the fast time scale problem (3.11.12) (3.11.13) has
a unique solution V. A simple energy estimate (see again [3.26]) shows that
the fast time scale potential decays towards a steady state solution V'™, J.*,
J, satisfying
a) div(Jr +J7)=0
b) J* = u,(grad n' — n' grad V)
¢) J¥=p,(—grad p' — p’ grad V*).

(3.11.13)
(x,7)=0 for xedQy.

(3.11.14)

The corresponding current densities J* and j; now satisfy the condition
(3.11.4) and so the fast time scale solution can be matched to the slow time
solution, derived in (3.10.1)—(3.10.6), in the usual way (see [3.25]).

So, in the case of a bounded initial potential, the only correction on a faster
time scale takes place in the potential V. The physical reason for this is that
the timescale given by (3.11.8) corresponds to the dielectric relaxation time.
By definition this is the time scale on which the electric potential V adjusts
to a new charge distribution. The carriers move on a much slower time scale
and therefore i = n’ and p = p’ holds in (3.11.10).

The above analysis can be used to describe the effect of rapid changes in the
applied bias. If we start from a steady state solution, given by (3.11.2), and
change the applied bias at Ohmic contacts on the dielectric relaxation time
scale, L.e. if

t
Vix, ) = T, (x, ;2) for X e 0Q, (3.11.15)

v

holds, we can describe the behaviour of the solution on the fast time scale
by corrections in the potential and in the drift current densities alone. We set
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a) Vix.t)= V5(x) + ¢(x, 1)
b) J,(x, 1) = J3(x) — p,n’(x) grad ¢(x, 1) (3.11.16)
¢) Jy(x, 1) = J33(x) + p,p'(x) grad ¢(x, 1)

with t = 1/4% and V%, J3® and J;® given by (3.11.2). §(x, 7) then satisfies the
initial-boundary value problem

a) ¢, A¢ = —div[(p,n" + p,p") grad ¢]
b) @(x, 1) = Vy(x, 1) — Vp(x, 0) for x € Q)

(3.11.17)
O
¢) —(x,7)=0 for X € 0Qy
v
d) ¢(x.0)=0.

In this way the effect of, for instance, a steep ramp in the applied bias can
be easily described (see Problem 3.13).

The situation is somewhat more complicated if velocity saturation effects
are considered; i.e. if the mobilities 1, and p, in (3.11.9) depend on the electric
field —grad V as well. In this case an intermediate time scale of the form
o = t/+1s present on which also the concentrations n and p can evolve inside
the spatial layer regions. The presence of this intermediate time scale has,
however, no effect on the over-all picture; that means on the solutions away
from spatial layer regions. We refer the reader to [3.27] for a detailed
analysis.

Fast Time Scale Solutions for General Initial Data

Il arbitrary functions are prescribed as initial data for n” and p’ in (3.1.1)
severe complications are introduced into the preceeding asymptotic
analysis. Most notably, the resulting potential at time ¢t = 0, which satisfies

a) 2AV=n'-p'-C
b) V(x,0)= Vp(x,0) for xecQp,

ud
((_\T(x. 0)=0 for xecQy

(3.11.18)

will become of order O(4™?), uniformly in €. as / tends to zero and so will
the current densities J, and J, at ¢t = 0. One would hope that, after initially
being very large, V, J, and J, would settle down to O(1), so that they can be
matched to the diffusion time scale solution derived before. Unfortunately,
no general results, which are valid in more than on space dimension, are
available to this end. As we will see, the resulting fast time scale equations
are of mixed elliptic-hyperbolic type and this makes the analysis of their
behaviour for large t highly complicated. It could be argued that this
complication is somewhat artificial. It arises from the fact that n’ and p’ in
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(3.1.1) are regarded as initial data and V(x, 0) is given a posteriori by the
solution of the Poisson equation. If one would regard the initial potential
and one carrier density as initial datum instead, the fast time scale expansion
derived in the previous paragraph would completely suffice. The results of
this paragraph actually suggest that one should proceed in this manner,
when solving the transient drift diffusion equations numerically since other-
wise the resulting equation represent a differential algebraic system of index
2 (see [3.13] for the definition of the index of a differential algebraic system).
The case of large (O(4?)) initial potential is, however, of additional interest
since it will also describe the transient behaviour of the drift diffusion
equations under extremely large bias.

Inserting the potential V, given by (3.11.18), and the initial functions n’ and
p' into the continuity equations and current relations (3.8.3)b)¢) at time
t = 0 shows that the time derivatives of n and p are of order O(42™%)at t = 0.
This implies again the fast time scale variable to be of the form

s

Also, because of the size of the potential at time ¢ = 0, V, J, and J, have to
be rescaled. We set

T

Vix, 1) = “”j{; il (3.11.19)
(% 1) = I”(;; T), Ju(x, 1) = I"(;z’ i

This yields the equations
a) Apg=n—p—-C
b) &4 =div(l,) — A*R, ¢) &= —div(l,) — A’R

(3.11.20)
¢) I, = u,(A* grad ii — 7 grad ¢)
d) I,=p,(—A*grad p — p grad ¢)
subject to the initial and boundary conditions
a) Ailx,0)=n(x), b)) p(x,0)=p(x)
c) @(x, 1) = A2 Vp(x, A1) for x € Q) (3.11.21)

¢

d) E(x. ) =0 for X €0Qy.

Because of the rescaling the small parameter A* does not appear in the
Poisson equation anymore, it appears as small diffusion coefficient in the
current relations. Also, by (3.11.20)a) the effect of recombination-generation
is 0(4?) on the dielectric relaxation time scale.

Note, that the problem (3.11.20)—(3.11.21) is the transient equivalent of the
steady state problem (3.5.5) under extreme reverse biasing conditions. Thus,
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the problem (3.11.20)—(3.11.21) has two interpretations. It can ecither be
interpreted as the transient problem under moderate biasing conditions with
general initial data n’ and p’. In this case @(x, 1) will be of order O(4?) at
the Dirichlet boundary dQ,. Or it can be interpreted as the transient
problem under extreme reverse biasing conditions, in which case ¢(x, ) will
be of order O(1) at ¢Q,,. For 4 — 0(zero diffusion limit in (3.11.20)) we obtain
the mixed elliptic-hyperbolic system

a) Ap°=a’—p°—-C
b) &.i° = —div(i° grad ¢°), (3.11.22)
c) &,p° = div(p° grad ¢°)
subject to the initial and boundary conditions
a) iA’(x,0=n(x), b P 0 =p(x)

c) ¢°x, 1) = ¢p(x) for x € 0Q, (3.11.23)
A0
d) ("a—v(x, 7)=10 for x € 0Qy

with ¢9(x) = lim,_, A2V, (x, A1), i.e. ¢p(x) = 0 holds for moderate biasing
conditions and ¢p(x) = O(1) holds for extreme biasing conditions. An addi-
tional boundary condition has to be imposed on 7i° whenever the charac-
teristic directions of (3.11.22)b) point inward from the boundary, ie.
wherever

grad ¢°-v <0 (3.11.24)

holds. (Here, as always, v denotes the unit outward normal vector on the
boundary ¢Q.) Similarly, a boundary condition has to be used for p° wher-
ever grad ¢°-v > 0 holds. For the one dimensional case, a proof that the
solution (¢, fi, p) of the fast time scale problem actually converges to the
solution of (3.11.22)—(3.11.23) in the weak sense as 4 — 0, can be found in
[3.20].

To analyze the solution of (3.11.22)—(3.11.23) is extremely tricky since the
parts of the domain boundary #Q, where a boundary condition on the
concentrations i° and p° is required, will depend on the solution ¢° itself.
Several special cases have been investigated in [3.36] and we will present
here only the simplest one of them in order to give the reader some idea of
the situation.

A standard device to reduce the drift diffusion equations to the simplest
possible case is to assume a one-dimensional semiconductor with a piecewise
constant and antisymmetric doping concentration (see [3.21]). In this case
(3.11.20) reduces to

b) =0, — iR, ¢ &p=—éld,— iR (3.11.25)
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(For the sake of simplicity we have taken the mobilities to be constant, and
therefore scaled to 1, here.) The semiconductor occupies the region Q =
(— 1. 1). The piecewise constant doping concentration C(x) satisfies

—1 for —1<x<0,
() = 2
C(x) { 1 for 0<x<l1. 2

Thus, the P-N junction is located at x = 0. This setting allows the reduction
of the drift diffusion equations via the symmetry (see [3.21])

a) n(—x,17)=plx, 1)), b Ll—x,7)=d,(X, %),
c) P(—x,1)= —o(x for xe(0,1)

(see also Problem 3.14). To mmpllfy matters even further Szmolyan in [3.36]
assumes that the hole concentration p is neglegibly small in the N-region;
1.e. he assumes that

pix, 1) =0 for xe(0.1) (3.11.28)
holds. For 4 — 0, this leads to the unipolar problem

a) 02¢°=n"—-1

b) . = —d.(i°0,.4°) for xe(0,1)
¢) A%x, 0) = nl(x),
d) #°0,7)=0, e) A%l 1)=1

f) ¢°0,0=0, g ¢°(l,7)=4gp.

The boundary conditions (3.11.29)d) and [) arise {rom the symmetry as-
sumption (3.11.27). ¢; = 0 would hold if the transient problem is considered
under ‘moderate’ biasing conditions. If an extreme bias is applied in the sense
of Section 3.5 (V, = O(4 ?) in (3.11.21)c)) a value ¢ # 0 is possible. We
introduce the electric field

E(x,t) = —8,.6%x, 1) (3.11.30)

as a new variable. Differentiating (3.11.29)a) with respect to t and integration
gives

(3.11.27)

(3.11.29)

a) ¢,E—E6.E=—E+ A(1)
b) 0,A° — Ed,A° = A1 — i) (3.11.31)
¢) A(r)= E(1,7)+ ¢,E(1, 7).
Both equations (3.11.31)a)and (3.11.31)b), have now the same characteristics
X(x, s, ) satisfying
a) 0. X(x,s, 1) = —E(%,5)
(B211.32)
bl R ) =%
If we denote by 7i and E the values of i° and E along these characteristics; i.e.
a) E(x,s, 1) = E(%(x, s, 1), 5)

(3.11.33)
b) dilx, s 1) = A%(%(x, s, 1), 5),
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x(0,0,7) %(1,0,7)

Fig. 3.11.1

we obtain
a) 0,E= —E + A(s)
b) a4 = Al — 7).

The values of E(x, t) and 7i°(x, 7) at the starting point of the characteristic
curve are the initial values for the ordinary differential equations (3.11.34).
In particular, the values of i° and E at t = 0 and the values of i° at inflow
boundaries are known. If we assume that there is no flux of holes from the
P-region into the N-region at the initial time t = 0, this means (see [3.36])

a) E(,0)>0, b) E(1,0) <0. (3.11.35)

The assumption (3.11.35) implies that the characteristic curves (0, s, 0) and
X(1, s, 0), starting at time 7 = 0 at the boundaries x = 0 and x = 1, point
inward. Consequently boundary values for A°(0, t) and 7°(1, t) are pre-
scribed initially. So, the situation is as depicted in Fig. 3.11.1.

The characteristics X(0. s, 0) and x(1. s, 0) split the domain (0, 1) x (0, 7) in
the three subdomains G,, G, and G. It follows from the equation (3.11.34)b)
that the boundary values are transported into the domain in G, and G,.
Therefore /i = 0 holds in G, and /i” = 1 holds in G, . This fact, and equation
(3.11.29)a) imply

(3.11.34)

(E@©, 1) + x for (x.7)eG,,
E(l, 1) for (x,7)eG,.
Using the differentiated version of Poisson’s equation once more, one easily
obtains

a) E0,7)=E(l;7)+ y(r) +«

E(x, 1) = { (3.11.36)

T (3.11.37)
b) y(r)= J E(l, s)ds, ¢) o= E(0,0)— E(,1).

0



170 3 The Drift Diffusion Equations

The solution E and 7% in the middle subdomain G can now be determined
by straightforward integration along the characteristics. One obtains

a) X(x,s0)=x4(E(1,0)— E(x,0))(1 —e ®)— y(s)

ny(x) _
n(x)(l —e*)+e*

c) E(x,s0)=(E(x,0)— E(1,0))e * + E(1, s)
with y(s) defined as in (3.11.37)b).
In [3.36] it is shown that, if the applied potential ¢ satisfies ¢ < 2?/2, the

characteristics X(0, s, 0) and x(1, s, 0) remain in the interval (0, 1)forall s > 0,
and that the function y(t)in (3.11.37)b) has a limit for t — .

lim y(t) = y(o0) = —at — /269 (3.11.39)

T—+oC

holds. Thus, using (3.11.38)a), we obtain
a) lim (0, s, 0) = ./2¢p

§—a

b) i(x, s 0) = (3.11.38)

)il
lim 2(1,50) =1+ o + /265 (3.11.40)

b) §—a
Using (3.11.38)b)c), we obtain the steady state solution for E and i".
0 for 0<x<./2¢,

1 for 29, <x<1

-

a) #%x, o) = {

(3.11.41

X —/2¢ for 0<x<./2¢,, :
b) E(x, o) = ! — V"
0 for \/2¢, <x<1.

For a moderate value of the applied bias, that means for ¢ = 0, /i has a
jump discontinuity at x = 0, the P-N junction, and the boundary x =0
becomes a characteristic. In any event #” and E (and therefore also ¢)
converge to a steady state solution satisfying

a) #%x, %) —C(x)=0, b) oI, =0. (3.11.42)

This steady state solution can then be matched to the slow (diffusion-) time
scale solution derived before. For a large value of the applied bias (V) =
0(27?)in (3.11.18)b)), which implies ¢p, # 0, the layer moves away from the
P-N junction towards the edge of the depletion region at x = /2¢p. At least
for this simple model problem, the corresponding limit solution for 1 — o«
is identical to the stationary solution derived for extremely large reverse bias
values in Section 3.5 (see Problem 3.16).

Unfortunately, this type of analysis breaks down if more than one carrier is
present since it heavily relies on the fact that the equations for the field E
and the concentration ii° have the same characteristics (see Problem 3.15).
The above example, and the other special cases analyzed in [3.36], lead one
to expect that the solutions of the fast time scale problem under extreme
biasing conditions in general tends to a solution of the corresponding
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stationary problem for the fast time variable t — oc, as it is the case for
moderate biasing conditions. Note, that, if (3.11.29) is regarded as the
transient problem with general initial data but under moderate biasing
conditions (i.e. ¢p = 0), the limiting solution ¢(x, t = =) vanishes iden-
tically. This suggests that, for large 7, the scaling (3.11.19) has to be reversed
again and the fast time scale solution could be matched to the slow time
scale solution derived before. The precise mechanism for this transition from
the fast to the slow time scale is, however, not known yet.

So, as for the stationary problem, the asymptotic analysis of the drift
diffusion equations in the reverse bias case is much more complicated than
in the forward bias case. The reason is that in the reverse bias case the
reduced problem is of mixed elliptic-hyperbolic type, leading to a free
boundary value problem in the stationary case. In general, it can be said
that a great deal of additional analysis is needed for the drift diffusion
equations in the extreme reverse bias scaling. It should be pointed out,
however, that the value of singular perturbation analysis lies in the general
understanding of the qualitative behaviour of solutions of the drift diffusion
equations and that singular perturbation analysis cannot replace numerical
calculations techniques. For particular applications the asymptotics has to
be adjusted to the device geometry, the models for the mobilities and the
recombination rate etc., all of which will influence the actual solution signi-
ficantly. Therefore it does not seem reasonable to analyze the general drift
diffusion equations in too much detail without specifying the geometry and
the model parameters. Fori this reason we will, in the next Chapter, turn to
the study of particular devices where we apply the tools and results devel-
oped in this Chapter for the general problem.

Problems

3.1 Derive the remainder term G(x, y)in (3.4.27) and show that it is of order O(/) uniformly
in Q.

3.2 Suppose F(w) = 0is solved by Newton's method. Show that if the variable transforma-
tion w = G(s) is used and Newton’s method is applied to the transformed equation the
linearization of the new updating strategy coincides with the old strategy. What does
this mean for the local convergence rates?

3.3 Use the maximum principle to show (3.6.19).

34 Show that V{ in (3.4.24) satisfies the Neumann boundary conditions at ¢Q, if (3.4.12)
holds.

3.5 Derive the boundary value problems defining the first-order approximation in (3.4.46).

3.6 Show that the boundary value problem consisting of the equation (3.5.28)a) and the
boundary conditions (3.5.28)e) has a solution.
Hint: Use the same approach as used when showing the existence of a solution to the
drift diffusion equations in Section 3.3: i.e. find an appropriate fixed point map.

3.7 Derive the O(4) and the O(4%) terms in the asymptotic expansion for the strongly reverse
biased one dimensional case (3.5.31).
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Derive the boundary value problem for the smooth variable w, given by the transforma-
tion (3.5.20) in the two dimensional case. Under what conditions is this boundary value
problem uniformly elliptic?

Show that the product defined in (3.8.11) satisfies all the requirements of a scalar
product.

How do the terms (i,(1) — (1)) in (3.10.24) behave for 6 — 0. What does this mean for
forward and reverse biased P-N junctions?

Show that away from spatial layers (that means when the spatial derivatives stay
bounded) the only fast time scale, which does not yield a trivial solution, is of the form
(3.11.8).

2 Derive the O(4) and O(4%) terms in the asymptotic expansion of the fast time scale

equation (3.11.9).

Assume a one dimensional P-N diode model with a piecewise constant antisymmetric
doping concentration, where after scaling the diode is located in the interval [—1, 1]
(like in (3.11.25)—(3.11.27)). Assume the applied bias is varied linearly from 0 V to
—0.5 V forward bias in the scaled time interval from ¢ = 0 to t = A%, Use the approach
in (3.11.16)-(3.11.17) to compute the current at the end of the switching period
approximately.

Verify that the symmetry “ansatz’ (3.11.27) is consistent with the boundary conditions
(3.11.21).

Derive the characteristic equations corresponding to (3.11.32) and (3.11.34) in the
bipolar case. That means when p # 0in (3.11.29)a).

Verify that the solution (3.5.18), (3.5.25) of the stationary problem under extreme reverse
biasing conditions reduces to the limit solution (3.11.41), for 7 — oo, of the transient
problem if a unipolar one dimensional device with antisymmetric doping is considered.
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Devices 4

4.1 Introduction

Depending on the semiconductor material, the doping profile and on the
geometry, semiconductor devices show a variety of different kinds of elec-
trical behaviour. This Chapter is concerned with an analysis of the perfor-
mance of the practically most important devices.

The starting point is a mathematical model which is general enough to
include the considered physical effects. Obviously there is not only one
choice, and it is tempting to take a model which is as simple as possible.
However, this involves the danger of neglecting important detail. On the
other hand, a very complex model which represents a detailed picture of the
physical world, possibly contains a good deal of superfluous information.
Examples of such complicated models are the transport equations in Chap-
ter 1 if the mean free path is very small compared to the length of the active
region of a device. Methods for the systematic simplification of these models
belong to the basic parts of the tool kit of the applied mathematician [4.7].
When the model has been chosen, an appropriate scaling is carried out and
the relevant dimensionless parameters are identified (such as the scaled mean
free path). After these preparatory steps, the formal machinery of perturba-
tion theory is a tool for the systematic simplification of the problem. For
the examples given in this Chapter the simplification goes far enough such
that information about the relations between a few observable quantities
can be obtained by analytical methods.

This systematic approach leads to mathematically justified results which in
many cases confirm established text book formulas [4.22]. In the original
derivation of these formulas the necessary simplifications are justified by
physical arguments. The power of the formal approach is demonstrated by
the fact that some of the results go significantly beyond the classical analysis.
Striking examples can be found in the Sections 4.3 and 4.5 on the bipolar
transistor and the thyristor.

For all the devices considered here, the smallness of the scaled mean free
path is a valid assumption. The analvsis will therefore be based on the
drift diffusion equations with the appropriate models for the mobilities and
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the recombination-generation rate. A second assumption which holds
throughout this Chapter is that the scaled minimal Debye length « and the
scaled intrinsic number 6% are small. These parameters have been defined
in Chapter 3, where the role of the singular perturbation parameter 4 is
analyzed in detail. This analysis sheds light on the solution structure but
does not simplify the problem sufficiently to obtain explicit information.
Since we still have the small parameter 6 at our disposal, additional
simplifications are possible.

In a complete mathematical model for a semiconductor device, boundary
conditions reflect the interaction of the device with the circuit which it is
imbedded in. In the following we shall mostly be interested in dc operating
conditions. This means that the times between two switching events are long
enough for quasi steady states to be reached. In this case most of the impor-
tant information is contained in the static voltage-current characteristics, i.e.
the relation between contact voltages and currents through the contacts
under steady conditions. Only in one case (the Gunn diode, Section 4.8) a
time dependent problem will be considered. This is due to a lack of maturity
of the theory of those semiconductor devices, whose performance is based
on dynamic effects. A unified account of a variety of the possible dynamic
behaviour of semiconductors can be found in [4.16].

Static Voltage-Current Characteristics

Suppose that Q < R*, k = 1,2 or 3, represents the geometry of a semiconduc-
tor device and that a stationary operating point is described by the drift-
diffusion equations

AV=n—p-—C,

J, = p,(grad n — n grad V), divJ, =R, (4.1.1)
J, = —u,(grad p + p grad V), divJ,= —R

p

for x e Q. Note that (4.1.1) is already in scaled form. For the scaling see
Section 3.4.

We assume that the device has m Ohmic contacts I, ..., I, ;and [+ 1 — m
oxide regions I,,, ..., I attached to its boundary dQ (I; € 0Q,i =0, ...,1).
At the Ohmic contacts we have the boundary conditions

n—p—C=0, np=2d* V=V,-U, (4.1.2)

1

at I i=0...,m—1,

1
where the built-in potential V}; is given by
V,; = areasinh(C/242).
Since we are free to choose a reference point for the potential we take U, = 0.
Without going into the details of the description of the oxide regions at the

moment we only mention that they lead to the additional applied voltages
U,, ..., U, and that current flow into the oxide is not possible. Thus, the
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solutions of (4.1.1) depend on [ applied voltages U,, ..., U,. The current I,
leaving the device through the contact I is given by

If—j (J; + J;) v ds, =0, ..sm—1,
I;
where v denotes the unit outward normal and s the (k — 1)-dimensional
Lebesgue measure. A static voltage-current characteristic is given by an
equation of the form

F(I,U,,...,U)=0 (4.1.3)

representing an [-dimensional surface in the (I + 1)-dimensional (1, U,, ...,
U,)-space. Since the solution of the voltage driven problem (prescribed U,
j=1,..., 1) cannot be expected to be unique in general (see e.g. Section 4.5),
it might be impossible to solve (4.1.3) for I;. A complete description of the
stationary behaviour is given by an [-dimensional surface in the (/ + m — 1)-
dimensional (I, ..., I, , U, ..., U)-space. Since the total current density
J, + J, is divergence free no information is lost by not considering I, which
can be computed from

m—1

Y L =0.

i=0

As a first step in the analysis of voltage-current characteristics we consider
the situation close to thermal equilibrium. This means that the applied
voltages and, therefore, also the currents through the contacts are small
in absolute value. Our approach is a perturbation analysis which takes
into account the smallness of both dimensionless parameters 4 and 4.
As in Section 3.4 we introduce the Slotboom variables [4.19] by the
transformation

n=6%"u, p=06%""p.

The variables u and v are related to the (scaled) quasi Fermi levels ¢, and
@, by
H=e 9, v =%,
The Ohmic contact boundary conditions (4.1.2) in terms of u and v read
L, V=V,—U

Since in thermal equilibrium u = v = | holds (see Section 3.4), u and v are
well scaled as long as the applied voltages are not large compared to the
thermal voltage (which is our reference quantity for voltages).

Close to thermal equilibrium large electric fields are only expected in small
parts of the device. Thus, position dependent mobility models and the
Shockley-Read-Hall recombination-generation term

B np — &*
T r,(n+ 0%) + 1,(p + 6%)

u=e%, p=eY atl;, i=0,....m—1.

i

are certainly sufficient for describing the relevant effects (see Chapter 2).
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From the formula for the built-in potential we see that V' is of the order
of magnitude of In 672 The (in practice not very restrictive) assumption
- 2 w_z - L . - - .

+=1In 0~ = « 1 justifies the use of the zero space charge approximation which
amounts to replacing A* by zero in (4.1.1). If the zero space charge assump-
tion is written in terms of the Slotboom variables it can be used to compute
the potential in terms of u and v. Thus, it remains to consider the equations

C +4/C% 4 40%up
Jn = i, + ,\/,_7M+ _k‘i‘y_ grad u, div J" s R,
*C‘;\/CZ+454L¢U Gl
Jp =~y 5 gradv, divJ,= —R.

As discussed in Chapter 3 there is an important difference between the
Slotboom variables and the carrier densities. In the terminology of singular
perturbation theory, u and v are slow variables whereas n and p are fast
variables. This means that the derivatives of n and p are locally unbounded
as 4 — (0 and that they converge pointwise to discontinuous functions. On
the other hand, the derivatives of u and v are uniformly bounded as A — 0.
This implies that their limits are continuous.

The above expressions contain the approximations

< C?* + 46*uv - < CF . 4g*
:C-I-WC2+ buiq b= CH+./C+ uv (4.1.5)

2

n

for the carrier densities. For small values of & they imply
n=C+ 05, p = 0(%) in n-regions (C > 0)

and (4.1.6)
p=—C+ 0(5*%), n = 0(6%) in p-regions (C < 0).

Remark: Strictly speaking, the Landau order symbols O and o (sec e.g. [4.1]
for a definition) in (4.1.6) require the supplement “as 6 — 0. Here and in the
following the meaning of the order symbols is determined by phrases like
“for small values of 8" instead. Note that the conclusion (4.1.6) relies on the
assumption that the scaling of u and v is correct (i.e. u, v = O(1)), which is
not justified a priorily. Nevertheless, this type of argument will be used
repeatedly in this Chapter. If it leads to consistent approximations of solu-
tions, this is considered as an—at least heuristic—justification.

(4.1.4) and (4.1.6) imply that J, is O(6*) in p-regions and J, is O(6*) in
n-regions. Disregarding situations where an n- or p-region has more than
one contact we conclude that the current densities are O(6*) throughout Q.
This is motivated by the following argument: Consider an n-region with
one Ohmic contact. Then the electron current through the adjacent PN-
junctions is O(é*). The same holds for the recombination-generation rate
and, by the divergence theorem, for the current through the Ohmic contact.
This implies that the electron current density is O(6*) throughout the n-
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region. The same argument with the obvious changes holds for the hole
current density in p-regions.
Appropriately scaled current densities are introduced by

J, =84 J, = 0%, (4.1.7)

With these assumptions we are left with the problem, now expressed in terms
of the rescaled current densities

. \/2—4,
54 C+ ./C*+ 46*m aradu,

n = Hn

2u
uv — 1
div J, =
" orn+ %)+ 1,(p + 6%)
’ ) “: )4 (4.1.8)
R} 7 46%uv
o, = —u, e . grad v,
2v
. uv — 1
Ay = _Tp(n + 82) + 1,(p + 62)
subject to the boundary conditions
u=_el, v=e Ui at I, i=0,....,m—1
A A - (4.1.9)
du v P
a—é—;—— at GQN—OQ\!L:_)O rl‘-

In (4.1.8) we dropped the index s of the rescaled current densities.
Now we make use of the smallness of 6. Solutions of (4.1.8), (4.1.9) are
approximated by letting o tend to zero which gives

. j— 1 . .
grad u = 0, div ' gradv | = = in n-regions
C T,

p

and (4.1.10)

grad v = 0, div ( grad u) = in p-regions.

Our approximation amounts to replacing the quasi Fermi level of the
majority carriers by a constant. Then the other quasi Fermi level can be
computed by solving a linear elliptic equation.

Consider the problem of determining ¢ in an n-region Q,. Assuming the
constant value of u as given we observe that v — 1/u solves a homoge-
neous linear equation. The boundary of Q. splits into Neumann segments
Q. N Qy and Dirichlet segments S, ..., S, which consist of PN-junctions
adjacent to Q, and (possibly) a contact. The boundary conditions at Ohmic
contacts and the fact that v is constant in p-regions imply that v takes
constant values v,, ..., v, along §,. .... §,. respectively. Introducing the
functions ¢, ..., ¢, by solving
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div ('%” grad (pj) = ﬁ,
! ] (4.1.11)

. oQ;

qojlsi = ‘Sfj-, i=1 ..y 12 —4

av

Q. oy

we can determine v in terms of the ¢;’s:

e,
"= =\ u) ¥

As a consequence we obtain

J,==3 #pltt; — 1) grad ¢; .
= C

Since the ¢; do not depend on the applied voltages they only have to be
computed once for a given device. In the same way formulas for v and J, in
p-regions can be obtained.

These ideas will be used in the following Sections for the computation of
voltage-current characteristics. They will lead to explicit formulas if the
functions g; for all n- and p-regions of the device are assumed to be known.

4.2 P-N Diode

The importance of understanding the electrical behaviour of P-N junctions
1s twofold. On one hand the P-N junction diode itself is a device with a wide
variety of applications and on the other hand the performance of more
complicated devices (such as the bipolar transistor and the thyristor) is based
on the interaction of P-N junctions.

In this Section we consider steady states of a P-N diode with Ohmic contacts.
The mathematical model consists of the steady state drift diffusion equa-
tions (4.1.1). The choice of models for the mobilities and the recombination-
generation rate R will depend on the effects we want to take into account.
We consider (4.1.1) in the domain Q < R*, k = 1, 2 or 3 which is the disjoint
union of the p-region Q_ (C < 0), the n-region Q, (C > 0), and the P-N
junction I (see Fig. 4.2.1). For simplification we assume an abrupt P-N
junction, ie. the doping profile C has jump discontinuities along I". At
the contacts I, € QN dQ_ and I}, € 6Q n @Q, the boundary conditions
(4.1.2) are satisfied with U, = 0 and U, = U where U is the applied voltage.
Along the insulating (or artificial) part of the boundary éQ, = ¢Q\(I', U I})
homogeneous Neumann boundary conditions for ¥, n and p are prescribed.
In this Section the singular perturbation analysis of the Sections 3.4 and 3.5
is extended by further simplifications of the approximating reduced and
layer problems. These additional simplifications are carried out by exploit-
ing the smallness of the scaled intrinsic number 62 = n;/C. The solution of
the simplified problems allows to obtain explicit information on the geome-
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el

Fig. 4.2.1 Two-dimensional cross section of a P-N diode

try of the depletion region and on the voltage-current characteristics close to
thermal equilibrium.

Additional information on the voltage-current characteristics in high injec-
tion and large reverse bias situations (in particular the critical voltages
causing punch-through and avalanche breakdown) will be obtained by con-
sidering the simplified one-dimensional model

Q=(0,1), I = {0}, I = {1}, I ={xo} (4.2.1)
with constant mobilities and a piecewise constant doping profile
C(x’)={_c_<0 for wxy,

4.2.
CiL=1 for x> x4- (=5

The Depletion Region in Thermal Equilibrium

If the potential drop across a P-N junction is large compared to the thermal
voltage a certain region around the P-N junction is depleted of charge
carriers. As discussed in Section 3.5 this effect is especially important for
reverse biased P-N junctions. In thermal equilibrium a depletion region oc-
curs if the built-in potential is large enough which always is the case if a
significantly large doping concentration is assumed.

Recalling the results from Section 3.4 for the thermal equilibrium problem

J2AV=25%sinh V— C.
(4.2.3)

(1 — I/;n')ll"l,url = 0,

S -
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the solution is approximated by the solution
V(x) = Vylx)
of the reduced equation
0=28%sinh ¥V — C
away from I" whereas close to I' it can be approximated by a layer solution

V(s, £) = lim V(s, A&). (4.2.4)

A=0

In (4.2.4), V is written in terms of the local coordinates (s,r) € R*™! x Ralong
I" with the tangential components s and the normal component r (r > 0 in
Q. ). & =r/iis afast variable and V is a solution of the layer problem

02V = 267 sinh F—C
V(s, —0) = Vy(5,0—),  V(s,0) = V,(s,0+),
where the notation
Cls. &) = {—C_(s)z C(s,0—) for & <0,
C,.(s)=C(s,04) for >0

(4.2.5)

was introduced. A detailed discussion of the formalism leading to (4.2.5) is
given in Section 3.4.

Since the tangential component s only appears as a parameter, (4.2.5) is
essentially a one-dimensional problem. An approximate solution can be
obtained by exploiting the smallness of 6% for significantly large doping
concentrations. We rewrite the boundary conditions at £ = + oo as

V(s,o0)=Ind 2 +1nC, + 0(5%),
R ) (4.2.6)
V(s, —o0) = —In 6 2 —In C_ + O(5*).

This shows that ¥ is badly scaled because its boundary values at + o
become unbounded as 4% — 0. Instead of 6* we introduce the small param-

eter 7 = (In 5 %) ! and the scaling
W = }'17
of the dependent variable. The new reference value
Up/y = Up In(C/my)
for voltages is of the order of magnitude of the built-in voltage. For small
values of y it is large compared to the thermal voltage. After substitution of

W in (4.2.5) the factor 1/y appears in front of the second derivative. It can
be eliminated by the rescaling

n==&Jy

of the independent variable. The resulting problem reads
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W —1 —W—1 .
SR LS W CTZIV P
/ Y
W(xw)=1+yInC, + TST, (4.2.8)
W(—x)=—1—7InC_ + TST, (4.2.9)

where TST stands for transcendentally small terms, i.c. terms which are
O(e™ ") with a positive constant ¢. In general, the symbol “TST” denotes
terms which are small compared to any power of the small parameter
considered.

Since the derivative of the right-hand side of (4.2.7) with respect to W is
positive, the maximum principle (see [4.13]) can be applied. Lemma 3.3.14
implies the estimates

—1+0()<W<I1+0(@)

which in turn imply the boundedness of the carrier densities exp[ (W — 1)/y]
and exp[(— W — 1)/y] uniformly in j. By the differential equation (4.2.7)
8,,1 W 1s also uniformly bounded, which can be used for a justification of the
limiting process y — 0 in (4.2.7), (4.2.8), (4.2.9) (see [4.2]). Going to the limit
we obviously have

—1<sW<l, W—ow)=-1, Ww)=1,
GW+C<0 for W<, (4.2.10)
GW+C=0 for W> -1,

and W is continuously differentiable by the boundedness of &; W. The
problem (4.2.10) is a standard double obstacle problem. This term originates
from an interpretation of W as the displacement of a string under the action
of a lateral load € which lies between two obstacles represented by the
bounds 1 and — 1 in our situation. It can be shown that (4.2.10) has a unique
solution by rewriting it as a variational inequality [4.2]. The above treat-
ment outlines the proof of a convergence result which is well known, because
(4.2.7),(4.2.8), (4.2.9) is a standard penalisation of (4.2.10) (see [4.2]).

The solution of (4.2.10) splits Q into three subdomains: the coincidence sets
where W = + | holds and the noncoincidence set where —1 < W < 1 and
GFW + C = 0 holds. Leaving the solution of (4.2.10) to the reader (see
Problem 4.2) we only state the result that the noncoincidence set is given by
the n-interval

(—2//C_(C_/C, +1),2/,/C(C./C_ + 1)) (4.2.11)

with the length 2./1/C, + 1/C_.
Note that the limiting carrier densities

; W—1 , —-w-1
lim exp - \ limexp| ——— )
70 Y y=0 7 /

vanish in the noncoincidence set of (4.2.10) which means that the noncoin-
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1

Fig. 42.2 The depletion region in thermal equilibrium

cidence set is depleted of charge carriers. An interval of the form (4.2.11) is
obtained for every point along the P-N junction I'. The depletion region is.
thus, given by the union of the y-intervals (4.2.11) taken along the values of
the tangential coordinate s along I' (see Fig. 4.2.2).
With the approximation U,; = 2U;/y of the unscaled built-in voltage, the
unscaled width of the depletion region is given by

>
\/% U, (1/C, +1/C_).

Remark: Here and in the sequel was denote scaled and unscaled quantities
by the same symbols. Formulas in terms of unscaled quantities are expli-
citely announced in the text in order to avoid misinterpretations.

The above expression for the width of the depletion region can be found in
textbooks on semiconductor device physics (see e.g. [4.22]). There it is
obtained by the a priori assumption that a depleted region exists, and that
zero space charge prevails in the rest of the device.

We conclude this Paragraph with a mathematical remark. The results have
been obtained by the limiting process 4 — 0 followed by 4 — 0 applied
to the thermal equilibrium problem (4.2.3). We point out that the limits
commute. By introducing W in (4.2.3) and letting § — 0 we arrive at a multi-
dimensional double obstacle problem which contains the singular perturba-
tion parameter /‘./\/?. An analysis of this singularly perturbed obstacle
problem can be found in [4.15]. There it is shown that its solution can be
approximated by solving the one-dimensional obstacle problem (4.2.10) in
the junction layer. Apart from these two approaches an analysis where 4
and o tend to zero simultaneously is also possible (see [4.11]).
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Strongly Asymmetric Junctions

The performance of most semiconductor devices relies on the interaction of
strongly asymmetric P-N junctions, i.. junctions with doping levels of
different orders of magnitude in the n- and p-regions. In this Paragraph an
analysis of the junction layer problem (4.2.7), (4.2.8), (4.2.9) for strongly
asymmetric junctions is given. The presentation is based on the work of
Ward [4.25] who also pointed out the similarity of the problem to a MIS
diode (see Section 4.6) in strong inversion. In this paragraph, advanced
concepts of singular perturbation theory are introduced. They are also
important for the analysis in the Sections 4.6 and 4.7 on the MIS diode and
the MOSFET.

In the case of an N™ P junction C, >» C_ holds. The depletion region (4.2.11)
obtained in the preceding Paragraph spreads mostly into the p-region.
Concentrating on the potential in the p-region, we assume that the doping
concentration in the p-region has been chosen as reference value in the
scaling. This implies C_ = 1. Note that this is in contrast to the scaling
philosophy adopted in the biggest part of this book where the doping profile
is scaled to the maximal value 1. It is now justified since the main interest
lies in an analysis of the region with lower doping. The problem (4.2.7),
(4.2.8),(4.2.9) will again be analyzed by letting y tend to zero. The asymmetry
of the junction is taken into account by keeping the quantity

A=yInC,

fixed as y - 0 (A doping concentration of 10'®/cm? in the n-region and
10** cm? in the p-region for Si at room temperature leads to A ~ 1).

The first step is the computation of the value of the potential at the junction
n = 0. Multiplication of (4.2.7) by ¢, W and integration gives

W— —W—-1 2
@,W)* /2=y exp( = 1) +y exp(f>— CW +k
i/ / i

(4.2.12)
with
- {e"‘-"'(A +1—19)+ TST for n>0,
1 —y+ TST for 5 <O.

The values of k have been determined from (4.2.12) evaluated at n = + oo
and (4.2.8), (4.2.9). Requiring continuity of the derivative of W at n = 0, the
value of W at the junction

W(0)=A+1—y+TST (4.2.13)

can be computed. Since this value is equal to W(=c) up to O(y), most of the
variation of the potential takes place in the p-region as expected. There,
(4.2.12) can be rewritten as
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oW/ /2

W—1 =W —=1\ '
=\/;-exp( M>+;'exp(—:f )+W+1—;‘+TST.
) ) (4.2.14)

Since the initial value (4.2.13) is larger than 1, the derivative of W at n = 0
becomes unbounded as 7 — 0, and (4.2.14) is singularly perturbed. The
asymptotic analysis below will show that the solution has multiple layers.
A very thin initial layer is followed by a transition layer describing the
behaviour of the solution close to W = 1. This transition layer connects the
initial layer to a depletion region where W is between — 1 and 1. The edge
of the depletion region is a free boundary where W takes the value — 1 which
is asymptotically equal to its value at n = — 0.

Initially, the solution is expected to vary fast. An approximation depends
on a layer variable

n
0=
o(y)

where 0(y) = o(1) holds. A differential equation for the approximation is
obtained by letting y — 0 in the transformed differential equation (4.2.14).
However, for nonlinear equations the limit in general depends on the values
which the solution takes. For (4.2.14) in particular, the relative orders of
magnitude of the terms under the square root depend on the value of W. It
is, for example, possible to generate different situations by choosing different
values W, in

W =W, +yy (4.2.15)

where the new variable y has been introduced. The choices of d(y) and of
W, are governed by an heuristic principle: The limiting equation should
contain as many terms as possible. A limiting equation which satisfies this
requirement is called a significant degeneration (see [4.1], sometimes also
distinguished limit [4.5]).

The initial condition (4.2.13) requires the choice W, = A + 1 and, thus,

Wa(e)=A+ 1+ yy(o)

for the initial approximation W,,. With this choice, the heuristic principle
implies o(y) = \ﬂ exp(— A/2y). With the fast variable

n A2y

we obtain the degeneration

&,y =22,  y0)=—1 (4.2.16)

with the solution

y=—2 ln{\/z — a/’ﬁ)‘
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The approximation (4.2.16) has been obtained by dropping all the terms
under the square root in (4.2.14) except the first. Obviously, this term only
dominates as long as W is larger than one. The transition of W through
values close to 1 is governed by a significant degeneration of (4.2.14), ob-
tained by setting

Wt)=1+7yIny ™ + yz(z), T=1n/y
and letting y tend to zero:
8.z =./2(e* + 2). (4.2.17)

The independent variable 7 is fast compared to the original variable » but
slow compared to the initial layer variable o. The solutions of (4.2.17) are
given by

z = —In (} sinh? (z + ¢)), (4.2.18)

where ¢ is a constant of integration. This constant is determined by a

procedure called matching, which has already been introduced in Section

3.4. The underlying idea is that the domains of validity of the approxima-

tions W, and W, overlap. In its simplest form, matching would amount to

equating the limit of W}, as ¢ - — oc to the value of W, at t = 0. However,

the limit of W, does not exist and we have to proceed differently. Rewriting
. In terms of the slower variable t gives

W, (t/7e4?) ~ 1 + yIn 3y~ — y In(z%/2). (4.2.19)

Obviously, this coincides with W, for small values of 7 if we set ¢ = 0 in
(4.2.18).

The transistion layer approximation W, takes W from values larger than 1
to values smaller than 1. For W between 1 and — 1, the carrier densities
vanish as y — 0. The approximation W,,,(n) satisfies the limiting equation

8y Waeps = ~/2(Wyep + 1) (4.2.20)

dep depl

\/

with the general solution W, = —1 + (q,:‘\/i + ¢)*. The free constant ¢
can again be computed by matching. A straightforward computation gives

lim W, (n/y) =1+ 2n. (4.2.21)
=0

This agrees for small n with W, if we set ¢ = 2. Thus, W, 1S given by

Wyept = —1 + (7 + 2)%/2.

Since the solution of (4.2.14) is obviously monotone., W, looses its validity
at the point n = — 2, which represents the edge of the depletion region. The
monotonicity also implies that for y < —2 the potential can be approxi-
mated by the constant value —1. This is a continuously differentiable
extension of the depletion layer solution W, and a singular solution of the
differential equation (4.2.20).

For the carrier densities we obtain that in a thin region adjacent to the P-N
junction the electron density is much larger than the hole density. This thin

ep
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layer is followed by a depletion region with a sharp edge. Outside the
depletion region the hole density is approximately equal to the doping
concentration and the electron density is much smaller (compare to (4.1.6)).

The Voltage-Current Characteristic Close to Thermal Equilibrium

The ideal diode operates like a perfect valve. The total current through the
device is zero in reverse bias (i.e. for negative values of applied voltage U)
and grows with the applied voltage in forward bias (see Fig. 4.2.3). In this
Paragraph we shall demonstrate that—at least close to thermal equilibrium
—the P-N diode approximately exhibits this behaviour.

For the P-N diode problem, (4.1.10) implies

ulg, =e?, vlp. =1, (4.2.22)

o i u—1 : g
div| —gradu | = —— in Q_, ulp,=1, ulp=e",
(|C| ¢ ) ICl : "

(4.2.23)
v My ev —1 ) v
e div ?grad = t,C in Q, vlp=1, vl,=e€".
(4.2.24)
The solutions of (4.2.23) and (4.2.24) are given by
ulg = (¥ — e, +1, Llg. = (¥ — l)l‘[éfl grad ¢, ,
g, = (1 —e Y)p, + 7Y, Jla, =11 — e“)%” grad @,,

where the functions ¢, and ¢, are the unique solutions of the problems

1

Fig. 4.2.3 Ideal diode characteristic
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. P4 s
div grad ¢ ) = m Q_,
(ICI 4 le]
op
(P:\n,=0- Pilr =1, 'Tl =0
oV |z, né0
and
. H P, ,
div | -2 grad =—= Q,,;
v (C gra (pz) %,C n g
dop
¢lr =1, @2lr, =0, 12 = ().
OV a0, n 0.

The current I through the device in the direction from I, to I} is obtained
by computing the current across the P-N junction I'. If v denotes the unit
normal vector along I” oriented into Q. , we have

- f (I, +)vds
I

= (eV — I)J (wl grad ¢, ——C—grad q)z)-v ds.

The first term on the right-hand side can be rewritten as

" 1 ( s qﬂl)
ds = 1, |grad ¢, | dx
j ?ic) L o7\ Mlgrad enl® o

using integration by parts. An analogous computation for the second term
finally leads to a voltage-current characteristic of the form

I=1IL("—1), (4.2.25)

which approximately exhibits the behaviour described at the beginning of
this Paragraph. Under reverse bias (U < 0) the current does not vanish but
it is bounded below by the leakage current

1 2
I = d ¢, |? L Y
. L il (u \grad ¢, |? r,,) X

1 fﬂz)
+ (| grad = dx
L,ICI(‘[ | grad o, | ~

(see Fig. 4.2.4).
Our result (4.2.25) is a scaled version of the famous Shockley equation [4.18]
which in terms of unscaled variables reads

I = 1Y% —1).

In the simplified one-dimensional case (4.2.1), (4.2.2) the problems for ¢, and
@, can be solved explicitely (see Problem 4.4) and the unscaled saturation
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Fig. 424 Voltage-current characteristic

current is then given by

| ] X
b= St —— 2ot ——
s q Tn( (C_ T" co ( /_;'unrn Ur)

PRy e (—L ) )) , (42.26)

Ciy % v BpTpUr

where L denotes the unscaled length of the device. For devices, where the
lengths x, and L — x,, of the p- and n-regions are large compared to the
diffusion lengths /u,7, Uy and /p,7,Ur, the coth-terms can be replaced
by 1 which leads to the saturation current of the classical Shockley equation.
In the case of a very short device (i.e. the arguments of the coth-terms are
small) (4.2.26) reduces to

o u
1, =qUyn{ + E
=t (xOC (L—xo)a)

for the unscaled saturation current. This formula shows that for very short
devices the characteristic close to thermal equilibrium is essentially indepen-
dent of recombination-generation effects.

In the derivation of the Shockley equation we used the assumptions that the
zero space charge approximation holds (with the exception of a thin layer)
and that the error made in the approximation (4.2.22), (4.2.23), (4.2.24)
remains small. The first assumption is violated in strong reverse bias when
the width of the depletion region is not small compared to the length of the
device. The second assumption is satisfied as long as the (scaled) applied
voltage U is small enough for ¢V to be small compared to 6 %, i.e. if U is
small compared to the built-in potential. If this is not the case the assumption
that the charge carrier densities are close to their equilibrium values does
not hold any more. This situation is called high injection.
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High Injection-—A Model Problem

In [4.10] the solution of the zero space charge problem for a simple model
device, the one-dimensional symmetric diode, was computed explicitely. As
no further approximations are necessary in this case the resulting current-
voltage characteristic remains valid in high injection. The necessary com-
putations are outlined below.

Suppose that the center of the device is represented by the point x = 0, that
the doping profile is piecewise constant and an odd function. We take
constant mobilities and neglect the effects of recombination-generation.
Symmetry arguments allow the ansatz

V(—x)=V(x), n(—x)=p(x),
Julttn = Jpftty = It + pp) =11,

which in turn allows to compute the solution by considering only half of the
device (say, the n-region). Thus, the problem is posed on the scaled n-region
(0, 1) and the boundary conditions

V0)=0,  n(0)=p(0)

at x = 0 follow from the symmetry ansatz. As expected the solution of the
resulting problem has a boundary layer at zero and the solution of the zero
space charge approximation satisfies

O=n—p—1,
I=n"—nV", (4.2.27)
I=—=p"—p¥

subject to the boundary conditions
V(0) — In n(0) = — V(0) — In p(0),
(©) (0) (0) p(0) R (4.2.28)
V)= V(1) —=U/2, p(l)=3—1+/1+ 4%,

where the constant 1 in the reduced Poisson equation is the scaled doping
concentration and

V(1) = areasinh(1/26?)

holds. The boundary condition at x = 0 can be interpreted as the symmetry
condition ¢,(0) = —¢,(0) for the reduced quasi Fermi potentials.
After integration of (4.2.27) subject to the boundary conditions at x = 1 the
carrier densities and the potential can be expressed in terms of I:

n=p+1=41+./1+46*+4I(1—x)),
V="Vy— U2+ 1 +45* +41(1 —x) — /1 + 46*.

(4.2.29)

The voltage-current characteristic in implicit form is obtained by substitu-
tion of (4.2.29) into the boundary condition at x = 0:
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Inl

Fig. 42.5 Forward bias characteristic (logarithmic scale)

L4 1+ 40 + 41 i :
U2=V,—In  N_FT2 TN, AT+ al- T+ 4.

48* + 41 (4.2.30)

With I = 0(d%) this equation includes the Shockley equation as the limiting
case * — 0. In a high injection situation it predicts a quadratic dependence
of the current on the applied voltage which, in unscaled variables, takes the
form

_aC(u + 1)
LU,

This equation illustrates the result that the growth of the voltage-current
characteristic slows down in high injection, which is well know from experi-
ments and numerical computations (see Fig. 4.2.5). The solution (4.2.29) also
shows that the charge carrier densities grow linearly with the applied bias
and that a significant potential drop takes place throughout the device as
opposed to low injection.

J U2.

Large Reverse Bias

The Shockley equation looses its validity as soon as the depletion region
covers a significant part of the device. This is the case if the scaled reverse
bias — U is O(A™%). As discussed in Chapter 3 a scaling different from that
in (4.1.1) has to be used in this situation. In order to be able to obtain
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explicit information on the voltage-current characteristic we restrict our-
selves to the one-dimensional situation (4.2.1), (4.2.2).
With the transformation

@ = A2V — Vy(0)

(4.1.1) becomes

(P” e p _ C,
A2 = p(APn" — ne'), J.=R, (4.2.31)
A2J, = —u,(A*p' + pg’), J,=—R

subject to the boundary conditions
e0) =0,  o(l)= 0,
n(0) — p(0) + C_ = n(l) — p(1) — C, =0, (4.2.32)
n(0)p(0) = n(1)p(1) = &%,

where ¢, = 22(V,,(1) — ¥,;(0) — U) > 0 holds. For R we take the Shockley-
Read-Hall term

B np — &%

o+ 8%+ 1,(p + 6%

As in Section 3.5 an approximate solution is obtained by going to the limit
A—01n (4.2.31), (4.2.32). The reduced equations

(p"=n—p—C,
ne'=pe' =0

imply that the device splits into a depletion region (n = p = 0) and a zero
space charge region (n — p — C = 0). The reduced potential ¢ is a solution
of the double obstacle problem

0< o <o, @(0) =0, o(l) = o,,
<0 for o<, (4.2.33)
"+ C=0 for @ >0

with the noncoincidence set (see Problem 4.6)

ooy 2¢, ; / 2¢4
(xx,) = (x” \/C_u +C/C) P TGO+ )
(4.2.34)

which represents the depletion region. It has the length
X, — x;=+/20,(1/C; + 1/C_). (4.2.35)
The limiting problem in (0, x;) U (x,, 1) is completed by (see Chapter 3)
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=n—p—_C,
J J

(np) =—p—-Ln, (4.2.36)
TR

7 np — o*
Pt (n+ 8%) + 1,(p + 6%)

subject to the auxiliary conditions
(np)(0) = (np)(1) = 0%, (np)(x)) = (np)(x,) = 0,
52
T, + T;
2

Ju(x,) = J(x) = — V20,(1/C, +1/C), (4.237)

Jo(x,) — Jp(x) = J20,(1/C, +1/C_).

P

n Tp
The fact that np is a slow variable, which does not have a jump across the
edges of the depletion region, explains the equations for np at x, and x,. The
right hand sides of the last two equations are caused by generation effects
in the depletion region and can be obtained by integrating the differential
equations of the current densities.
For é* = 0(4.2.36),(4.2.37) obviously has the solution np = J, = J, = 0. This
motivates the rescaling 6°w = np, 6°I, = J,, 6°1, = J,. The transformed
problem is approximated by going to the limit 6 — 0 which implies for the
charge carrier densities:
n = max(0, C), p = max(0, —C) in (0, x,)u(x,,1).
The variables w, 1. I, solve the problem
F oo { InC—/#n in (0, xl)s
—LCy/its in (x, 1),
e —p - w/t,C_ in (0, x,),
" P w/t,Cy i [ 1)
subject to the auxiliary conditions
w(0) = w(x,) = w(x,) =w(l) =0,
1
R

L(x,) = L(x) = — J20,(1/C, +1/C),

L(x,) — L,(x)) =

P

JV20,(1/C, +1/C_).

n P
The solution of this problem only involves the integration of linear differ-
ential equations with constant coefficients and is left to the reader. A typical
charge carrier distribution is depicted in Fig. 4.2.6.
The only source of current flow is generation in the depletion region and
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Fig. 4.2.6 Charge carrier distribution in strong reverse bias

the approximate current-voltage characteristic reads

52
J=—"__/2¢,(1/C, + 1/C.). (4.2.38)

T, + 1,

In terms of unscaled quantities this gives

n;
J = \/2840/C, + 1/C)(=U),

T )

which is a standard textbook formula [4.22]. It states that the leakage
current caused by generation in the depletion region is proportional to the
width of the depletion region and, thus, to the square root of the applied bias.

Avalanche Breakdown

In large reverse bias impact ionization might cause junction breakdown.
This phenomenon can be explained by analysing (4.2.31), (4.2.32) with the
generation term

iE, JE
R= —a exp (_W) |J,| — o, exp (—M’) IEL:

This is a scaled version of the impact ionization model (2.6.4), (2.6.5). The
factor 4 in the scaled critical field strengths ZE,. AE, has been introduced
because ZE, and AE , are of the order of magnitude of the scaled Debye length
/4 in typical cases. The dimensionless parameters E, . %, , are assumed to
take moderate values.

For 4 — 0 the reduced potential is that of the preceding Paragraph and,
obviously, the depletion region is the same, too. Introducing

w= lim (npé~*), I,= lim (J,6 %), I, = lim (J,67%)
840 d4—=0 a4—=0
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the problem in the zero space charge regions (0, x;) and (x,, 1) becomes

o { I"C_/,!t" ln (0! xi)':
_lpC+/1up in (X,., 1),

I,=1,=0, (4.2.39)
w(0)=w(l)=1, w(x;) = w(x,) = 0.
From (4.2.39) we obtain
fin T
Llg.xg = —— I DI - S
nI(O..\,p .\',C, Plix.—-l} - x,)C+

Whereas the ionization rates vanish in the zero space charge regions as
4 — 0, they take their maximal values «, and o, within the depletion region.
As long as the current densities I, and I, remain negative the differential
equations

l,=—1,=o,l, +a,,

hold in the depletion region (x;, x,). When subjected to the boundary
conditions

oy H

Lix) = — N

=T 1—x,)C,

this system can be solved explicitely giving the following equation for the
current I = I, + I,:

I(x,) = —

(Ipexl(xp"fln’ _ anexr‘zp_an)) I
o — o,
= _ M ey M xepan (4.2.40)
0 (1—x,)C,

The current blows up when the term in the brackets on the left hand side of
(4.2.40) vanishes. This occurs for

X, — X, = In(et,/a,). (4.2.41)

r n
From (4.2.41) and the formula (4.2.35) for the length of the depletion region
the breakdown voltage

1 1 ’ 2
o=+ I/C_)(ocp 4, 1“‘%/%’) (4.242)

can be computed. In terms of unscaled variables this gives

q 1 ]
Uy = In(a /) ) -
b7 26(1/C, + 1/C_}(a; —ap M/ ))

Note that in the case a, = o, = « the condition (4.2.41) becomes
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alx, — x)=1,

which is a special case of the classical condition [4.22]: Breakdown occurs
as soon as the integral of the ionization rate over the depletion region takes
the value 1.

Equation (4.2.40) shows that the current also becomes unbounded if one of
the boundaries of the depletion region reaches a contact, ie. if x, =0 or
x, = 1 holds. The results of the preceding Paragraph show that this happens
for the critical voltages

ix3C_(1+C_/C,) or (1 —xx)*C.(1+C,/C)

respectively. This effect is called punch through.

There are three possible reasons for junction breakdown: Avalanche genera-
tion and punch through at the left or right contact. Breakdown occurs as
soon as one of the two critical voltages given above or the avalanche
breakdown voltage (4.2.42) is exceeded. Naturally, only the smallest of the
three values is of practical interest.

An existence result by Markowich [4.8] for (4.2.31),(4.2.32) with a simplified
version of the ionization rates shows that for every value of the applied
potential a stationary solution with finite current exists. Thus, the fact that
the current obtained by our analysis tends to infinity at a critical voltage
does not necessarily mean that the same holds for the solution of the full
problem (4.2.31), (4.2.32). It only tells us that we reached the limit of the
validity of our asymptotic analysis. The following Paragraph will show that,
by rescaling and carrying out a different perturbation procedure, the con-
tinuation of the current-voltage characteristic after punch through can be
computed.

In reality, however, the sharp increase in the current causes thermal effects
which are not taken into account by our model and which might very well
be the actual reason for breakdown.

Punch Through

For simplicity we consider the model problem which we dealt with in the
Paragraph on high injection. As we are interested in the situation after punch
through, we introduce the rescaled current density

I =220/, + 1)

as suggested above. With the scaling for large reverse bias the problem now
reads

¢"=n—p—1,
I =A*n — no', (4.2.43)
I=—7°p" —py’
subject to the boundary conditions
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@0 =0,  n(0) = p(0), (4.2.44)
p() =@,  n(l)=p(l)+ 1 =41+ /1 + 45*).

The analysis of the Paragraph * ‘Large reverse bias™ implies that the part of
the depletion region on the n-side is given by the interval (0, chpI) Thus,
punch through occurs at the applied bias ¢, = § and, lherefore we assume
¢, > & for the following. By multiplying the Poisson equation by ¢" and
by substituting the reduced current relations into (4.2.43), the differential
equation

¢le"+1)=0
for the reduced potential follows. Since ¢ is a slow variable it is expected to
satisfy the original boundary conditions after going to the limit 2 — 0. Thus,
we obtain
x(1 — x)
B
The reduced charge carrier densities are given by
n=p=—I/¢'= —1f(¢, + 3 —x).

The stability of boundary layer equations at x = 1 for n and p depend on
the sign of ¢'(1). Since ¢'(1) > 0 holds, the layer equation for n is stable while
that for p is unstable. This means that p cannot have a boundary layer at
x = 1. The requirement that p takes the prescribed boundary value at x = 1
gives the approximate voltage-current characteristic

I'= —(p; = PH—1+ /1 +46%) ~ —6*p, — }).

After punch through, the characteristic can be extended linearly. The order

of magnitude of the currents is larger than before by the factor 272, In terms
of unscaled quantities the above equation reads

nq qLZC)
2L.C s

The punch through voltage is given by U, = —qL*CJe, and the above
approximation for the characteristic is valid for U < U,,.

Q=@ X+

J=

—=f,+ B )(U +

4.3 Bipolar Transistor

The bipolar transistor is a device whose performance is based on the
interaction of two P-N junctions. Thus, there are two possibilities: A PNP-
and an NPN-configuration. We restrict our discussion to PNP-transistors
because the resulting theory carries over to the NPN-case with the obvious
changes.

Each of the three differently doped regions has an Ohmic contact. This
means that an appropriate model has to be at least two-dimensional. Thus,
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Fig. 43.1 Two-dimensional cross section of a bipolar transistor

the device is represented by a domain Q = R* with k = 2 or 3. The middle
(in our case n-) region is usually called base region (Qg) whereas the two
outer (p-) regions are the emitter and resp. collector regions (Qg and Q). The
contacts corresponding to these regions are denoted by I, = dQ, 1 7Q,
¢ = B, E, C, the emitter junction by Iy, and the collector junction by I
(see Fig. 4.3.1).
For a three terminal device the possible steady states constitute a two param-
eter manifold (see Section 4.1). An appropriate choice of parameters which
depends on the circuit configuration permits a convenient interpretation
of the results. Here we concentrate on the so called common-emitter con-
figuration where usually the current through the base contact and the
collector-emitter voltage are prescribed. The relevant output quantity in this
situation is the collector current.
In the common-emitter configuration the transistor acts as an amplifier. For
significant values of the collector-emitter voltage the common-emitter current
gain
i {QIC

dlyg

is large. Here I is the collector current and [, the base current leaving the
device.

Current Gain Close to Thermal Equilibrium

We consider the drift-diffusion equations (4.1.1) subject to the boundary
conditions
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(1’1 === C)ll'gul',,u['c = 05 npll"gu]“sur{- = 54,
(¥ — Vm)|rt =0, (¥ Vbi)ln, = = UBEs
(V' — Vbz’)ll‘( = —Ucg

where Uy, and U, denote the base-emitter and collector-emitter voltages,
respectively.

The simplified equations (4.1.10) imply the following representations for the
Slotboom variables:

U v
emitter (eVsr — 1), + 1 :
base el?nz (l _ e—UBE)[pl + (e'[;‘i - E_U”)q?_] Ly e_[,ru
collector (f"U“ — el E)py + eler o Ve
where the functions ¢,, ..., @, are the solutions of boundary value prob-

lems of the form (4.1.11) with boundary conditions which are depicted in
Fig. 4.3.2.

Now we are able to compute the currents across the emitter and collector
junctions which are obviously equal to the currents through the emitter and
collector contacts:

Ip = j (J, + J,) vds
rER

! Hy K
= (eV= —1) LEB (lCE| grad @, — C—’; grad qoz)'v ds

— (eYmler — 1) j %ﬂ grad @, v ds
| B B
for the emitter current and
=

©;7p3=0

pg=1 P20

=
€= =0 3=

P =1

Fig. 4.3.2 Boundary conditions for the ¢;
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- J. (J, + ) v ds
Ly

= —(el» — I)f Hp L grad ¢, vds
| CB

—(eYre Ve — I)J (C grad @, — |C | ' grad (p4> ' ds
Iy

for the collector current. In the above equations Cyp = Clg, and similar
definitions for Cy; and C,. hold. v denotes the unit normal vector along the
junctions pointing in the direction from the emitter to the collector. The
base current is given as the difference I, = I, — I

In the common emitter configuration we are interested in prescribing U,
and I instead of Ug,. Fortunately the above formula for I turns out to be
a one-to-one relation between I, and Uy,. The output characteristic is
obtained by computing Ug in terms of I and substitution in the equation
for I,

a A
I.=1 ! = 2 (4.3.1
¢ B(a3 + (14 EXp(—UCI,_) a3 exp{UCE) + 04) )
as + ay
—a; +a, + (a, —a, exp(— U,
1 2 a4y 2 exp( (E))a3+a4 exp(— Ugp)
and
Ip+a,+a
Ugg = In -3 _ 4 ) (4.3.2
o (aa + a, exp(— Ugg) )

with the parameters
L
ay = —J Lo grad ¢, v ds,
ae CB

@y i= rad — —= grad “vds,
2 jrm (CB g 3 ICc| g (P-t)

o [ My
as = grad @, v ds,
’ J |Cel r, Ca
iy = f i grad ¢, vds — J Z grad @5 v ds.
rye | Cel Cp ™

Since the dependence of I on I is linear, the common-emitter current gain
only depends on the collector-emitter voltage, i.e. f = {Ugg). For collector-
emitter voltages which are significantly larger than the thermal voltage
(which is our reference quantity for voltages). it can be approximated by

flx) = a,/a,. (4.3.3)

An application of the maximum principle implies that 0 < ¢; < 1 holds in
the interior of the respective n- and p-regions where the ¢; are defined. This
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property is sufficient for determining the signs of the normal derivatives
along the contacts and PN-junctions. If this knowledge is taken into ac-
count, it turns out that all the parameters a; are sums of positive quantities.
Thus, fi(oc) i1s large as long as both terms which sum up to a; are small
compared to a,. For the first term this certainly holds if the doping in the
emitter region is large compared to that in the base region.

The second requirement

—J ii—” grad ¢, vds « —J % grad ¢, vds (4.3.4)
r U i B

essentially refers to the flow of minority carriers in the base region of the
device. In the simplified case of a constant doping profile in Qg, the above
condition only depends on the geometry of the base region. The function ¢,
describes a situation where a certain current carried by minority carriers (in
our case holes) is injected into the base region through the emitter junction.
It is required that this current leaves the base region essentially through the
collector junction without causing a significant minority carrier current
through the base contact.

The classical analysis of bipolar transistors uses a one-dimensional model.
This obviously raises the question of how to model the influence of the base
contact. Since the usual Ohmic contact boundary conditions cannot be
applied in this situation, simplifying assumptions have to be made. The
major assumption turns out to be that the current through the base contact
is entirely caused be majority carriers. The one-dimensional analysis can
therefore only produce reliable results for devices which satisfy the require-
ment (4.3.4).

The formula (4.3.2) shows that Uy, tends to a positive limiting value as
Uqr — oc. This shows that the emitter junction is forward biased with a
voltage which remains bounded as Uz — o whereas the collector junction
is reverse biased with a voltage growing with U... As in the case of the
PN-diode we expect a depletion region of significant width around I
which has not been taken into account by the above analysis. The influence
of the widening of the depletion region on the output characteristics of
bipolar transistors is usually referred to as the Early effect in the literature
(see e.g. [4.22]). Similarly to the case of a reverse biased diode it can be
shown that the collector current does not saturate for large collector-
emitter voltages as opposed to the above result (4.3.1).

A second limitation for the above theory are high injection situations where
the collector current becomes large enough for our scaling to be invalid.
This leads to a decrease of the current gain which is commonly referred to
as the Webster effect (see [4.22]).

4.4 PIN-Diode

The PIN-diode is a device where an n- and a p-region are separated by
an intrinsic region (i-region) with a very low concentration of ionized im-
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purities. It behaves essentially like a P-N diode but has some peculiar
additional features. Its practical importance is due to a higher conductivity
in the forward bias regime and a larger breakdown voltage compared to
PN-diodes. The first of these properties will discussed below, for the second
we refer to the literature (see e.g. [4.12]).

Thermal Equilibrium

If the PIN-diode is represented by the domain Q < R*, k = 1, 2 or 3, the
doping profile satisfies

<0 in Q_,
C{\') =10 n Qg )
=10 in Q.,

where Q_, Q.. Q. are disjoint, simply connected subdomains of Q with
Q uQuQ. =qQ, Q nQ.={}.
We consider the idealized situation of a vanishing doping concentration in

the i-region Q,. The doping profile is supposed to have jumps along the pi-
and ni-junctions and the p- and n-regions have Ohmic contacts

I_cdQnod_, I, =60 09,
(see Fig. 4.4.1).

C
n
00
|
QQ
el

Fig. 44.1 Cross section of the PIN-diode
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We consider the thermal equilibrium problem
APAV =28%sinh V — C in Q,
oV

(q\' oQy =

(V= Vlr or. =0, 0,

where 0Qy = éQ\(I'"_ u I',) and V}, = areasinh(C/24?) holds.

As in the case of the P-N diode approximations of the solution can be
obtained by exploiting the smallness of 4 and é. Introducing the small
parameter 7 = (In 67%)! and the rescaled variable W = 3V we expect W to
be uniformly bounded in 4 and . The new problem reads (compare to (4.2.7),
(4.2.8),4.2.9))

. W—1 s
g AW=exp( - )—exp(7>—C. (4.4.1)
. .

/

ow

ov

Wir

—1+0(@), W, =1+0(@),

0y — 0

with the new parameter 1 = /l/\/}i' which we also assume to be small. For
P-N diodes we noted that the limits 4 — 0 and y — 0 in the problem cor-
responding to (4.4.1) commute. This statement is wrong for the PIN-diode.
Letting 4 — 0 in (4.4.1) we obtain the reduced solution

— 1+ O(y) in Q_,
W=yV, = 0 in Q,,
1 + O(y) in Q..

It has jump discontinuities at the junctions which are smoothed by appro-
priate layer terms. The layer equation in the i-region reads

. W —1 {1
F-’El W =exp (ﬁw) — exp () ,
7 7

where ¢ is the fast variable. An estimate for the thickness of the layer can
be obtained from the linearization of this equation at the stationary point
W = 0. The result is the characteristic length /7 exp(1/2y) in terms of the
variable &. If we return to the original length scale the layer thickness is of
the order of magnitude of

> . . 1 [eUs

/.\/,' exp(l/2y) = 4/6 = Tl un,”
which can be interpreted as the scaled intrinsic Debye length. Our approach
is justified if the layer thickness is small which is equivalent to smallness
of the intrinsic Debye length compared to the width of the i-region or,
equivalently, to the relation
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A< O

in terms of our original parameters.

If on the other hand é « 4 holds (PIN-diode with short i-region) we approxi-
mate the solution of (4.4.1) by first letting y tend to zero. Arguments as in
the case of the PN-diode show that the result is the double obstacle problem

—1<W<l1, Wi = —1, Wi, =1,
<0 for W= 1, (4.4.2)
PAW+C=0 for W>-—1
which can be rewritten as the following singularly perturbed variational
inequality: Find We K with
A2 J grad W-grad(p — W)dx = J C(x)(p — W)dx, Voelk,
Q Q (4.4.3)
where
K={peH'(Q): 0| = —-l,o =1,-1<p<1}
is a closed, convex subset of the space H'(Q) of square integrable functions
with a square integrable gradient. Since the doping profile vanishes in the
i-region, the formal limit of the variational inequality as £ — 0 only consists

of contributions from the p- and n-regions. The formal limiting problem
does not have a unique solution. The set of solutions is given by

1=1{peH (Q:plg = —1Lolp =1L -1<p<I}.
We expect the limit of W as 4 — 0 to be an element of 7.
For iy € y the limiting variational inequality

0= j C(x)(p — ) dx, Yoelk, (4.4.4)
Q

holds. Replacing ¢ by  in (4.4.3) and by W in (4.4.4) and adding up the
resulting inequalities gives

J grad W-grad(y — W)dx =0, Yiey. (4.4.5)
Q

Since we require W to be an element of y in the limit 4 — 0 the limiting
solution can be determined uniquely from the variational inequality (4.4.5).
A justification of this formal procedure can be found [4.6].

The solution of (4.4.5) satisfies

Wo =—1, Wg =1, AW=0 in Q (4.4.6)

which differs strongly from the limiting solution W for the case A <« o
above. For a short PIN-diode the zero space charge approximation does
not hold within the i-region.
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Behaviour Close to Thermal Equilibrium

We cannot apply the considerations from the beginning of this Chapter to
the PIN-diode because the i-region requires special care. For simplicity we
restrict our attention to a one-dimensional PIN-diode with long i-region
(/4 <« 6) and constant mobilities. The geometry is given by

Q=0,1, Q. =(0x), Q5 =(x,]1) (4.4.7)

with 0<xy<x;<1.

The zero space charge approximation (4 = 0in (4.1.1)) leads to the following
relations between the carrier densities and the Slotboom variables v and v
in the i-region:

n=p=d*jup in (x,,x,).

For the Shockley-Read-Hall recombination-generation term this implies

20 ) .
R—_ o (uv — 1) - _ o°(uv — 1) B Loy
rp{\/@ + 1)+ r,,(\/uv + 1) T+ T,

Within the i-region R is O(3%) which is in contrast to n- or p-regions where
R is O(6*). This implies that properly rescaled current densities are intro-
duced by

Jy=0%,,  J,=8,

instead of (4.1.7) where a factor §* was used instead of 6%. This fact demon-
strates the higher conductivity of the PIN-diode mentioned in the introduc-
tion of this Section. After substitution of the rescaled current densities in
(4.1.4) we let & — 0 and obtain

v’ =0, J,=0 in the p-region (0, x,),
u' =0, J,=0 in the n-region (x,, 1),
Jrl = ,H”\/-!‘_/;u’, Jp = —Hp\/%b”’

Jo=—J,= \{_:‘:__Tp] in the i-region (x,, x,).

With U denoting the applied voltage we have the boundary conditions
w(O=v0)=1, u(l) = e, v(l)=eY,

which imply
v =1 in (0, x,)

and
u=-eY in (x,,1).

With w := /uv a straightforward computation gives
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w' = J. [, — J/i, m (xg x;)
and, thus,
w—1 . . o
w’ = in (x,,x,) with L= |——F2—,
Li ( ' ? \/1,“‘[1" + lfﬂp
(4.4.8)

where L, denotes the ambipolar diffusion length (see [4.22]). The solution of
(4.4.8) 1s

\mh(rz \)/

sinh(x, — x, )/L
sinh(x — x,)/L,
sinh(x, — x,)/L,

and the values of the Slotboom-variables at the junctions are

w=1+4 (w(x,;)—1)

(4.4.9)

+ (wlxy) = 1)

u(x,) = w(x,)?, v(x,;) = w(x,;)%e Y.
A system of algebraic equations for w(x,) and w(x,) is obtained by noting
that

o, v,
TR v W

u
=
holds. Integrating these equations gives

21nwix,)— U = J JWIdsdx,
W

21nw(‘(2)—U——j — fz ¥ emd ds dx.

2 Hp'w x Tn a5 Tp

Although the integrations on the right hand sides can be carried out expli-
citely the above system does not allow for an explicit solution for w(x,) and
w(x,). However, it is amenable to an asymptotic analysis as U — + =« which
shows that
lim w(x;)= lim w(x,)=0
U——o U—=—o

holds and that w(x,) and w(x,)are O(e"*)as U — = . Since the total current
density is given by

X2 71
J=Jn(IZ)=J ;“:d\

o |
we arrive at the conclusion that the voltage-current characteristic of the
PIN-diode has the same qualitative behaviour as that of the P-N-diode. The
reverse bias saturation current can be computed by substituting w(x,) =
w(x;) = 01in (4.4.9) and evaluating the above integral. In the forward bias
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situation we have the result
J = 0(e"?).

Remark: Compare this result to the P-N-diode where the current grows like

ev.

4.5 Thyristor

Thyristors are devices with four differently doped regions. Their practical
importance is due to the existence of multiple steady state solutions under
certain biasing conditions. In particular it is possible to switch between an
OFF state with very low current and a conducting ON state.

In this Section we discuss the static voltage-current characteristic of a two
terminal device, the so called Shockley-diode (Fig. 4.5.1a). The S-shaped
forward bias characteristic is depicted qualitatively in Figure 4.5.1b. It
consists of three parts which are separated by the critical points correspond-
ing to the holding voltage U, and the break over voltage U,,. The currents on
the lowest ( forward blocking) branch are small leakage currents. The points
on the middle branch between U,, and U, correspond to solutions which are
dynamically unstable in the voltage driven case. Solutions on the upper
(conduction) branch are characterized by significant current flow. Note, that
for all applied voltages between U, and U, two dynamically stable steady
state solutions exist.

The qualitative behaviour of the characteristic has traditionally been anal-
yzed by replacing the thyristor by two bipolar transistors where the base
region of one transistor is identified with the collector region of the other,
and vice versa. Only quite recently Rubinstein [4.14] and Steinriick [4.20],
[4.21] explained the structure of the characteristic by applying perturbation
methods and bifurcation theory to the drift-diffusion model.

a) b)

Fig. 4.5.1 (a) Cross section of the Shockley diode, (b) voltage-current characteristic
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a)l b)

Fig. 4.5.2 Thyristor characteristic for (a) small voltage scaling (b) large voltage scaling

The key to the analysis is the observation that different scalings have to be
used for obtaining different parts of the characteristic in order to single out
the dominant effects. Two observations are important in this context. First-
ly, the currents on the blocking branch are several orders smaller than on
the middle branch. Second, the break over voltage usually assumes very
large values compared to the holding voltage which is of the order of
magnitude of the built-in voltage. This leads to the conclusion that a
small-voltage-scaling might result in an approximation of the characteristic
which has two saturation currents corresponding to the blocking and the
middle branch (Fig. 4.5.2 a). Since the currents on these two branches have
different orders of magnitude, they are obtained separately by considering
different scalings. Finally, the situation close to the break over voltage can
be analyzed by considering the large-voltage-scaling which was already used
for P-N-diodes under large reverse bias. This should provide a piece of the
characteristic which connects the two parts discussed above (Fig. 4.5.2 b).
In the following Paragraph the lower branch for small voltages is considered
which can be analyzed for a multi-dimensional model. Here the same ideas
which have been used in the Sections on diodes and bipolar transistors for
the situation close to thermal equilibrium are applied. Since a four layer
device can be obtained by a small perturbation of the doping profile of a
PIN-diode, it is clear that not every four layer device has a characteristic
like that depicted in Fig. 4.5.1 b. It will be demonstrated that there are two
possibilities. In one case the behaviour expected of a thyristor is obtained:
An approximation for the lower branch of the characteristic saturates for
large voltages. In the second case the characteristic grows exponentially like
that of a diode. Only in the former situation the device has a chance to show
the performance which we expect of a thyristor. The distinction between
the two cases is determined by the sign of a parameter which depends on
the geometry, the doping profile and the recombination-generation rate.
For discussing the situation along the middle and conducting branches we
rescale the currents and restrict ourselves to a one-dimensional model. If the
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above mentioned parameter takes small values and has the appropriate sign
the existence of a saturation current corresponding to the middle branch
can be shown if an additional condition on the device parameters is satified.
It will also be demonstrated how the critical point at the holding voltage
can be computed in this case.

The part of the characteristic connecting the lower and middle branches is
essentially governed by two physical effects. One is the widening of the
depleton region around the middle P-N-junction on the characteristic, the
second is impact ionization. Only the first effect 1s taken into account in the
final Paragraph of this Section where an approximation for the break over
voltage is computed. This result can in general only be expected to be
qualitatively correct because there is strong evidence that the influence of
impact ionization on the value of the break over voltage cannot be neglected
(see [4.22]).

Characteristic Close to Thermal Equilibrium

The aim of this Paragraph is to derive an approximation of the lower branch
of the characteristic of a thyristor close to thermal equilibrium. The equa-
tions (4.1.10) for the Slotboom variables will be used with the simplifying
assumption of vanishing recombination-generation effects. It does not cause
mathematical problems to include Shockley-Read-Hall recombination, only
the resulting calculations would be much more involved (see Problem 4.9).
We denote the differently doped regions of the device by Q,, ..., Q, and
assume Q; and Q; to be p-regions and Q, and Q, to be n-regions. The
junction separating Q; and Q,_, 1s denoted by I'.. The regions Q, and Q,
have the Ohmic contacts I'y and I',, respectively (see Fig. 4.5.1 a).

By the approximate equations (4.1.10) the Slotboom variable u correspond-
ing to electrons is constant in Q, and Q, whereas v is constant in Q, and Q:

W ulg, = eV (4.5.1)

vlg, = 1, Ulp, = ev, l"im =g

holds, where U denotes the applied voltage and the values of the constants
Vand W are as yet unknown. The Slotboom variables corresponding to the
minority carriers can be expressed in terms of the functions ¢, i = 1,.... 4
defined on €, as solutions of problems of the form (4.1.11) with

‘ler, e 0, (Pi|r, = 1.

If V and W are considered as given u and v are completely determined by
(4.5.1) and
Ulg =1+ (" —1 g V. =1+ (" — 1)o,,
ln, . ( | ), |nz M - (Piw (4.5.2)
ulg, =¥ + (e¥ —e¥)g,, vlg,=e " +(eV—e¥)g,.

The simplicity of these formulas is due to the assumption of vanishing
recombination-generation.
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[t remains to determine the values of ¥ and W. Note that the current through
the device is equal to the current across any of the surfaces I';. By the zero
recombination assumption the same holds for the electron and hole currents
taken separately. The conditions that the electron current across I'; is equal
to that across I'y and that the hole current across I, is equal to that across
I', lead to the equations

(" — i, =e "(e¥ —e")xk;,

(4.5.3)

U

2 e = K, = VeV — e ik,

where the x; are given by
K= J tuip/IC| grad ¢;- v ds, i=1..4
I;

with v being the unit normal vector along I'; pointing outward of Q,. The
maximum principle implies that ¢, takes its maximal value 1 along I'; which
in turn implies that x; is positive. k; can be interpreted as a measure for the
conductivity of Q, for minority carriers. The total current through the device
is given by

I=(" = Dr, + (™" - x,.

Elimination of e* from (4.5.3) leads to a quadratic equation for ¢~" which
has a unique positive solution. The asymptotic behaviour as U tends to
infinity depends on the sign of the parameter

A=Kk — KyK3. (4.5.4)

For negative values of A, W tends to a positive limiting value as U — o«
whereas V grows like U. Thus, the current grows as e" in this situation which
is not what we expect from a thyristor. A possible reason for 4 < 0 is low
doping in the middle regions compared to the outer regions which corre-
sponds to a device which is close to a PIN-diode. If 4 is positive W grows
as U and V tends to a limiting value as U — oo. The current saturates in
this case and we are led to the conclusion that A > 0 is a necessary condition
fora four layer device having a thyristor characteristic. Our results also show
that the potential drops across the (forward biased) outer junctions I'; and
I'; remain bounded whereas that across the (reversed biased) juncton I',
grows as U.

The reverse bias characteristic is analyzed by considering the asymptotic
behaviour of the solution as U — — . It turns out that the current saturates
at a negative value. Again the voltage drop is concentrated to one P-N-
junction. If the parameter

B:: h’le — K3K4

is positive ¥ and W tend to negative limiting values as U — —oo. This
implies that the voltage drop across the junction I'y grows with U. For
negative values of B both V and W tend to — ¢ linearly in U. In this case
the biggest part of the voltage drop takes place at I',.
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Forward Conduction

In this Paragraph an approximation of the voltage current characteristic of
a thyristor in a neighbourhood of the holding current will be derived. A
one-dimensional model with vanishing recombination-generation rate is
considered for simplicity, but recombination rates of the Shockley-Read-
Hall as well as Auger type could be easily included (see [4.20]).

Our approach is based on an observation concerning the current controlled
problem. From Fig. 4.5.2 we conclude that this problem is quite ill condi-
tioned. However, the analysis below will show that only the determination
of the potential is critical, whereas the carrier densities depend on the current
in a smooth way. It is possible to take advantage of this fact by decoupling
the current controlled problem and using Taylor expansions in terms of the
current for approximating the carrier densities. In a second step the potential
will be computed leading to an approximation of the voltage-current charac-
teristic in the form U = U(I). Under the assumption that the parameter A,
which has been defined in the preceding Paragraph, is positive and an
additional condition on the device is satisfied, U(I) has the expected behav-
iour. It is defined for I > I, which is the saturation current of the middle
branch of the characteristic, and takes its minimum at [ = I, which is the
holding current.

In order to keep the calculations as simple as possible, the doping profile is
assumed to be piecewise constant and the mobilities are assumed to be
constant. The domain Q of the preceding Paragraph corresponds to the

interval (0, 1), and the surfaces I, ..., I, to the points
D= = - gy =1, (4.5.5)
The doping profile is given by
- in (xg, Xq),
Clx) = < " i 2y (4.5.6)
—C;4 in (% %g),
7y i (% Xy

The zero space charge approximation reads
O=n—p—-2C,
J,=u,(n" —nV’), (4.5.7)
Jy = —p,(p' + pV’)

with the jump conditions
[Vl =[nnl, = —[npl,. i=L23

which can be interpreted as the condition that the quasi Fermi levels do not
have jumps across the junctions. Replacing §* in the Ohmic contact bound-
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ary conditions by zero the minority carrier densities vanish in thermal
equilibrium. This motivates the introduction of a new variable w by setting

np = Iw
where I = J, + J, is the total current. This leads to the representation
n=4C+ /C*+4lw), p=4-C+./C*+4Iw)

for the carrier densities. The current densities are rescaled by replacing J,
and J, by IJ, and ], respectively. By elimination of the potential from (4.5.7)
the problem
W= (—C 4 JCTFAIw) — 2o (C+ JCTF AIw).,  (458)
2u, v 2u, . ' o

w(0) = w(l) =0, J,+J,=1
for w is obtained. Note that the trivial solution corresponding to I = 0 has

been eliminated by our choice of scaling. The problem for the determination
of the potential reads

J i J
V’:—IM for X £ Xy i=1,23,
7 C? + 41w
V() = V,(0), [V],, =[In(C+./C*+4Iw)],, i=123.
(4.5.9)
The fact that w and V can be computed consecutively from (4.5.8), (4.5.9) is
the decoupling mentioned above. The solution of (4.5.8) can be approxi-
mated by Taylor expansion in terms of I. For the leading terms wy,. J,0. J,0
the differential equation in (4.5.8) reduces to
“‘, o —JBOC/,U,, for C < 0..
& —J,0C/u, for C>0.
The solution can be written in terms of the quantities «; defined in the
preceding Paragraph which are given by

. Hy P Hp

PG (% — %) 2 ey~ %)
i Hy B g i ¢

3 CA(X:)‘ = .\'2) ’ E C4(.‘f4 - xa) )

in the one-dimensional case. w;, is piecewise linear and takes the values
Wolxq) = K3(K, + K4)/Z,
Wyl(x,) = —A/Z, (4.5.10)
Wolx3) = K,k + K3)/Z

at the junctions. A is defined in the preceding Paragraph and
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Z =K KKy + K KoKy + K K3Ky + KoK Ky
holds. The leading coefficients for the current densities are
Joo = K1K3(k; + K )/E, Jpo = KoKk (K + K3)/Z. (4.5.11)

With the assumption that A4 is positive (which has been found to be necessary
for a thyristor) wy(x,) is negative which obviously is unacceptable for an
approximation of the product of the carrier densities. For w taking negative
values the problem (4.5.9) for the potential does not have a solution.

Let us reconsider the result we are aiming at. The problem is expected not
to have a solution for values of the current between the saturation currents
of the middle and the blocking branch. Since the saturation current of the
blocking branch is 0(3*) and the approximation é* = 0 was used in this
Paragraph, the blocking branch reduces to I = 0. Thus, it is to be expected
that there is no solution for currents below a certain threshold. This is in
agreement with our results so far.

A further analysis requires the computation of higher order terms in the
Taylor expansion of w. The first order term w, solves a linear problem just
as w,, but with different inhomogeneities. In the following only its value
w, (x,) at the middle junction will be used. Our second assumption on the
device (besides A > 0) is that this value is positive. The approximation

w(x,)~wyl(x,) + Iw (x,) (4.5.12)
implies that the problem has a solution if
I'> 1, = —wolxy)/wi(x;)

holds. This argument is justified as long as I,, is small enough for the Taylor
polynomial (4.5.12) to be a good approximation at I = [,,. This condition
is satisfied if the parameter A4 is sufficiently small, i.e. if the device is close
to the critical case A = 0 where the shape of the characteristic changes
qualitatively.

With the boundary condition

V(1) = V(1) = U
for the potential at the right contact the voltage current characteristic is
obtained by integrating (4.5.9):
Lo J / 3 e
I = Uy, 4 IJ whn T o/by gy — Y [In(C + /C7 + AIW)],,
0 &/ C? + 4w i=1

where U,; = V(1) — V};(0) denotes the built-in voltage. Using the Taylor
expansions computed above this equation can be simplified considerably.
The integral will be replaced by

1
‘= f (ho/ta + Jpo/1t,)| ] dx
0

and the arguments of the logarithms by
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2C for G = 0,
21w, /|C| for C<0 and i=1,3,
21(wy + Iw,)/|C| for C<0 and i=2.
The resulting approximation for the voltage-current characteristic reads

1 Wo (X )Wo(x3)
U=al +In + Uy + In =203
wolxz) + Iw,(x,) b CiC

This formula shows that I, can be interpreted as the saturation current on
the middle branch. In the limit I — I,, the voltage tends to infinity. The
expression

I, = (—owy(x,) + \/azwo(x;,_)z — dawy(x,)w, (x5))/ 20w, (x,)
for the holding current can be found by solving the equation

oU

T, (LY=0.
The above procedure can be justified a posteriori if the computed approxi-
mation for the holding current is small. A mathematical justification by
means of bifurcation theory can be found in [4.20]. For larger values of the
current the full problem (4.5.8), (4.5.9) has to be solved. In [4.14] it was
shown that the differential equations in (4.5.8), (4.5.9) can be integrated
explicitely reducing the problem to a set of algebraic equations. For a more
general model including recombination-generation effects the problem was
solved numerically in [4.20] resulting in very satisfactory approximations
of the characteristics.

Break Over Voltage

The aim of this Paragraph is to show the existence and to compute an
approximation of a break over voltage. A branch of the characteristic which
connects the two branches discussed in the preceding Paragraphs will be
constructed. As mentioned above the break over voltage is large compared
to the thermal voltage (the reference voltage used until now). Thus, the
potential has to be rescaled. Since the main part of the potential drop occurs
at the middle junction, a depletion region of significant width around that
junction is to be expected. As in the case of the reverse biased diode the edges
of this depletion region can be obtained by solving a free boundary problem,
arising as a singular limit of the rescaled drift diffusion equations.

We consider a one-dimensional device for which the drift-diffusion model
with a rescaled potential @ = A*(V — V¥,,(0)) reads

o"=n—p—C,
22J, = p(A%n' — ng),

).ZJP = u,up(}.lp' + po’)
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where ¢ satisfies the boundary conditions
9(0)=0, ¢(1)= —@, = 22Uy — U).

For the discussion of the limit 4 — 0 we refer to the Paragraph on reverse
biased diodes. In this limit the device splits into depletion and zero space
charge regions. The analysis above suggests that a depletion region occurs
around x,. A more rigorous justification of this proposition by the method
of matched asymptotic expansions can be found in [4.21]. A straightforward
computation leads to a limiting potential which varies quadratically within
the depletion region (x,, x,) and is piecewise constant outside of this interval.
The edges of the depletion region are given by

2G50, 2C, ¢y
—_— X=Xy + [—————.
G (C, + Cy) 2 Ci(C, + Gy)

This result can be justified by the method of matched asymptotic expansions
as long as x; > x; and x, < x, holds, i.e. for voltages small enough such that
punch through does not occur.

For the computation of the carrier densities we introduce the variable w as
above. Since w vanishes within the depletion region it solves the problem

J ;
—C + /C? + 4Iw) — ﬁ(c + /C* + 4lw)
P

in (0 1) \ X X,), (4.5.13)
w(0) =w(1) =0, w(x,;) = w(x,), J,+J,=1
subject to
w(x;) = 0. (4.5.14)

The reason for separating the condition (4.5.14) from the rest of the problem
is that (4.5.13) is a modified version of (4.5.8). It reduces to (4.5.8) for ¢, = 0.
For given current I and voltage ¢, the problem (4.5.13) can be solved. Then
the voltage-current characteristic is obtained by substituting the result in
(4.5.14). As above, the solution of (4.5.13) can be approximated by Taylor
expansion in powers of I. The leading term evaluated at x, has a representa-
tion similar to wy(x,) above:

wo(x,) = —A/E,
where A and in Z are defined like 4 and X with the parameters x, and x
replaced by
. B
Cy(x — xy)’

Since in the preceding Paragraph the first order term evaluated at x, was
assumed to be positive, w,(x;) is positive if ¢, is not too large. As an
approximation of the characteristic, (4.5.14) yields

Hn

e Calxs — x,)

Ky =
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I'= —wy(x))/wy(x). (4.5.15)

By setting 6* = 0 the blocking branch of the characteristic was reduced to
I = 0. This solution was eliminated from (4.5.13) by the specific scaling used.
Thus, (4.5.15) can only be an approximation of the middle branch. For
¢, = 0 the current takes the value I, of the saturation current of the middle
branch as expected. The break-over voltage is determined by the intersec-
tion point of the middle branch (4.5.15) and the lower branch I = 0 of
the characteristic. Consequently, the break over voltage ¢,, satisfies the
equation

A(‘Plb) = 0’
which can be rewritten as
o2 (“p + Ez)z IR, . W . B) (4.5.16)

where z = C,(x, — x;) = C5(x, — x,) holds. An expression for the break
over voltage is given by

@1p = 2%(C, + C3)/2C, Cs.

The variable z is proportional to the width of the depletion region which
implies that punch through does not occur as long as

7
z < min 't—”,&
Ky K3

holds. The smaller solution of (4.5.16) is given by

1 2
z:-(ﬁﬂg_\/(%_&a) H%)
2\K, K, K, Ky KKy

P

Fig. 4.5.3 Approximate voltage-current characteristic
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which can be estimated from above:

1 .
Z<_(&+ﬁ_ &_Ea)mm{ﬁ,&}_
2\Ks K K, Kj

Ky K3
By combining our results an approximation of the characteristic is given by
the segments of (4.5.15) and I = 0 which lie between ¢, = 0 and ¢, = ¢,,.
Again the results can only be expected to be quantitatively correct if the
involved currents are not too large. Otherwise the problem (4.5.13), (4.5.14)
has to be solved exactly.

4.6 MIS Diode

The MIS (Metal Insulator Semiconductor) diode has applications as a
capacitor with voltage dependent capacitance. In the context of this book
an understanding of the performance of this device is an important prepara-
tory step for the analysis of the MOSFET (see the following Section).

The MIS diode consists of a uniformly doped piece of semiconductor coated
with a thin layer of insulating material which carries a metal contact called
the gate (see Fig. 4.6.1). The semiconductor which has an Ohmic contact, is
assumed to be of p-type (The analysis of this Section also applies to MIS
diodes with n-type semiconductor after the obvious changes).

In order to simplify the presentation we assume that the insulator is free of
charges and that no trapped charges at the interface between the semicon-
ductor and the insulator occur (See [4.22] for a justification of these assump-
tions). Because of the simple device geometry a one-dimensional model is
certainly sufficient for the analysis of the relevant effects. Since no current
flow through the insulator is possible the MIS diode is always in thermal
equilibrium.

gatel

/nsulator /

N or P

Fig. 4.6.1 Cross section of a MIS diode
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The uniform concentration of acceptors in the semiconductor is introduced
as a reference value for the scaling of the doping profile and the thickness
of the semiconductor as the reference length. Thus, the Poisson equation for
the scaled potential V

APV =8%Y — eV + 1
holds in the interval (0, 1) representing the semiconductor part of the device.

At the bottom of the device we impose the Ohmic contact boundary
condition

1
V(1)=V,,,-=—ln(]_+\’l+45 )

252

The insulator is located in the interval (—d, 0) where d denotes the scaled
thickness of the insulating layer. Since no charges are present in the insulator
the Laplace equation

=0

holds in (—d, 0). At the interface between semiconductor and insulator
continuity of the potential and the electric displacement is required:

V{0+) = V({0—), &V'(0+4) = g, V'(0—),

where ¢, and &,,, denote the permittivities of the semiconductor and the
insulator, respectively. At the gate contact the potential is prescribed by

V(—d)=Vy,+ U.

In the case of an ideal MIS diode the contact voltage is given by U. An ideal
MIS diode is characterized by a vanishing metal-semiconductor work-
function difference ¢, (see [4.22] for details). In realistic cases the contact
voltage is given by U + ¢,
The first step in the analysis is the computation of the potential and the
electric field in the insulator:

V(x) = V(0) + (V(0) — V,; — U)x/d,
V'(x)=(V(0)— Vy; — O)yd  in (—d,0).
This result is substituted in the interface conditions at x = 0:

4 0y = V(0) - W — O,

ins

which reduces the problem to a boundary value problem on the interval
(0, 1) with a mixed boundary condition at x = 0.
By introducing the change of variables

W=9yV, &=x,v/A

—wherey = (In 6 %)!is a small parameter—the problem is transformed to
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W—1 —W -1
0 W = exp (T) — exp (—7‘)) +1 in (0, \/}-'//'.),
aBW(O) = WO) —yVy— U,  W(/3/2) = V. (4.6.1)
The new parameters in (4.6.1) are defined by

gy ~

., U=y0.
irls)“ }U

In Section 4.2 it was shown that the scaled width of the depletion region of
a P-N-junction in thermal equilibrium is O(A/ﬂ). If the thickness of the
insulator is of that order of magnitude and the semiconductor is much
thicker, )./ﬁ is a small parameter but « is O(1). For significant doping levels,
y is also a small parameter. The scaling of the potential has been chosen
such that the scaled built-in potential is O(1):

V= —1 4+ TST.

It will be assumed that U is also O(1) which means that the applied voltage
is of the order of magnitude of the built-in potential.

The solution of (4.6.1) will be approximated by letting /1/\/}_* tend to zero.
The approximating problem is posed on the infinite interval (0, o0). After
multiplication by ¢;W the differential equation can be integrated, which
gives

&

Ww—1 —W—1
(@s W)2/2 =y exp (—/——) + y exp (T) + W4k, (46.2)
where the constant of integration k is computed by evaluating (4.6.2) at
¢ = oo (where, obviously, ;W = 0 holds):
k=1—1vy+TST.

Since for U = 0 the solution is constant and equal to the value yV,; pre-
scribed at infinity, we expect the solution to be decreasing (increasing) for
U > 0(U < 0). This observation determines the sign when taking the square
root of (4.6.2):

W —1 W -1
c?gl/V/\ﬁ: sign(U)\/}‘ exp (—;——)-#—yexp ( " )+ W+ k.
(4.6.3)

Evaluation of (4.6.3) at £ = 0 and substitution for 6 W(0) (by using the initial
condition) leads to the equation

(W(0) — yVy; — U)ay/2

— —W(0)—1
= —sign(U}\/}' exp (@)—1—) + 7 exp (—L) + W(0)+k
Y i)
(4.6.4)

for W(0). It is easy to show that this equation is uniquely solvable (see [4.9]).
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This reduces the problem to an initial value problem for the first order
equation (4.6.3). Because of the similarity of the differential equations (4.6.3)
and (4.2.14) parts of the analysis below are very similar to that of the
Paragraph “Strongly asymmetric junctions” of Section 4.2. In particular, we
refer the reader to the detailed explanation of the methods of singular
perturbation theory there.

The aim of our analysis is to obtain an approximation for the charge

Q=jl(n—p—C)dx
0

in the semiconductor, where the integrand (the space charge) is given by the
right hand side of (4.6.1). The capacitance of the MIS diode is defined by
C = 0Q/dU. The case U = 0, where the potential W is constant and equal
to the built-in potential (~ — 1), is commonly referred to as flat band condi-
tion. The charge Q vanishes in this situation. The density of the majority
carriers, i.e. the holes, is approximately equal to the doping concentration
and the electron density is much smaller.

For negative U the potential is smaller than in the flat band case in the
vicinity of the interface and, accordingly, an accumulation of holes occurs.
The situation where U is positive but small enough for W(0) to be between
— 1 and 0, is called depletion because both carrier densities are so small that
the space charge is essentially equal to the density of the fixed charges. This
is also true for W(0) between 0 and 1 but in this case the additional
phenomenon occurs that the minority carrier density at the interface is larger
than the majority carrier density. Therefore this situation is called weak
inversion. Finally, the case W(0) > 1 is referred to as strong inversion.

Accumulation

The equation (4.6.4) cannot be solved explicitely, but it is amenable to an
asymptotic analysis as y — 0. For the case of accumulation we make the
ansatz

W=—-1—yhny!+yy.
Substitution in (4.6.4) and letting y — 0 gives an equation for y(0) with the
solution:

y(0) = In(22%/U?).

Similarly an initial layer equation for y in terms of the fast variable t = £/y
is determined from (4.6.3):

6.y = /27"

The solution y = 2 ln(r;"ﬂ — oc\/E/U) of the initial value problem can be
used to compute an approximation for the charge by noting that in the initial
layer the space charge is dominated by the hole density
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p =exp (—JV}—_I) = Tl'e'-“ = %(T/ﬁ — & /2/U)72,
: : .

A simple integration yields
A
Q T
Vr
In terms of unscaled variables this can be written as

Q == SinsU/d

which implies that in the case of accumulation the (unscaled) capacitance
can be approximated by the insulator capacitance

Cins = ‘f':ins/dI .

The approximation of the potential computed above does not converge to
the equilibrium value as the fast variable 7 tends to infinity. This disturbing
situation can be eliminated by introducing a transition layer for values of
W close to — 1 (see Problem 4.11). The transition layer solution tends to — 1
as the corresponding layer variable tends to infinity and it can be matched
to the inner layer solution. The contribution of the transition layer to the
charge is small compared to the computed approximation, and therfore
neglected.

Ula.

Depletion— Weak Inversion

When W(0) e (—1, 1) holds, both exponential terms (4.6.4) can be neglected.
The resulting equation has the solution

W)= —1 + (/a? + 2U — a)?/2
which is in (— 1, 1) if
Ue(0,2+ 2x).

The upper bound marks the limit between weak and strong inversion. In
terms of unscaled variables it is given by

U =2V + 2/ Ut Viis

where U, = £,gC/C2, is a reference voltage and C denotes the concentra-
tion of acceptors used for scaling the doping profile. The built-in potential
is approximated by V,; = U;/y = Uy In(C/n;) in the above equation.
Returning to scaled variables, the onset of weak inversion is determined by
requiring W(0) = 0, which leads to the voltage

U=1+a,2.

Since W can be expected to be between — 1 and 1, the problem (4.6.1) reduces
to a double obstacle problem in the limit y — 0 (compare to the thermal
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equilibrium problem (4.2.7), (4.2.8), (4.2.9) for the P-N diode). The limiting
solution is given by

o e &)*2  for
—1 for

Mg

vV A

I v
-9

(=9

where the width of the depletion region is
&i=/a* +2U —u.
For later reference we note that the depletion width at the onset of strong
inversion (for U = 2 + 2a) is 2.
The computation of the charge reduces to the multiplication of the acceptor

concentration by the depletion width. In terms of unscaled variables it is
given by

Q = CinsUref{\n‘ 1+ 2U/Uref - 1)
The capacitance depends on the voltage in this regime and is given by

C = Cins/\f 1 aF 2U/Uref1

which reduces to the insulator capacitance for U = 0.

Strong Inversion

For analyzing the case of strong inversion we make the ansatz
W,=1+yIny1+9yz
for the potential in an inversion layer. An equation for z(0) is obtained by
going to the limit y — 0 in (4.6.4). It has the solution
(IF — 2 — 2a){t] — 2 + 20)
20

Obviously, we only consider voltages larger than the above obtained thresh-
old 2 + 2« for strong inversion. With the fast variable t = £/}, the layer
equation

0,z = —+/2(e° + 2)

is obtained from (4.6.3). The solution of the initial value problem for z is
given by

z(0) = In

. : 1. U—-2+ 2
z=In(2sinh 3 (t+¢) with c¢= 5 In T 5"
Since the solution decreases rapidly (as a function of the fast variable 1),
strong inversion only takes place within an inversion layer of thickness O(y).
Outside this layer, there is a depletion region where the potential satisfies
the reduced equation
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B Wy = 1.

dep

The general solution
VVdepl =a+ b‘: o 53/2

can be matched to the inversion layer solution W, , by expressing W, in
terms of the slow variable ¢:

Wiay = 1 — 2€ + 0(1).
Matching by equating coefficients implies a = 1, b = —2 and, thus,
I"Vdcpl = —1+ (‘: - 2)2/2

Similarly to above this solution is valid until W, takes the valuc —1 at
¢ = 2 which is the depletion width. For ¢ > 2, W is approximately equal to
— 1. Note that the depletion width is equal to its maximal value obtained
in the case of weak inversion and does not depend on the applied voltage
any more.
For the computation of the charge, the contributions from the depletion and
inversion layers have to be added. Within the inversion layer the electron
concentration

n = exp (W’“"l) = lez = % sinh™2(t + ¢)

4 b2 b4

dominates and integration gives the inversion layer contribution Q,,, of the
total charge:

A

Oy = 44/ /70> — 1)t = (U — 2 — 2a).

o/ Y
Adding the depletion layer charge we end up with the unscaled total charge
0 = G,(U — 2V,).

As in the case of accumulation, this is a linear relation between the voltage
and the charge which means that the capacitance is independent of the
voltage and equal to the insulator capacitance C,,..

Our results are summarized in Fig. 4.6.2. Depending on the value of U
different cases occur. We have

accumulation for U<0,
depletion for 0= <14 0:\/5,
weak inversion for 1+ 1\/5 < U<2+4 24,

strong inversion ~ for 242z < U.

We have seen that the capacitance of the MIS-diode depends on the voltage.
In the accumulation and strong inversion regimes it is approximately con-
stant and equal to the insulator capacitance. In depletion and weak inver-



47 MOSFET 225

E—

2420 U

a) b)

Fig. 4.6.2 (a) Charge and (b) capacitance vs. voltage

sion it is a decreasing function of U and takes its minimum value close 1o
the threshold voltage separating weak and strong inversion. The jump
discontinuity in the computed approximated for the capacitance indicates
fast variation close to U = 2 + 2a, which we have not analyzed in detail.

47 MOSFET

The MOSFET (Mectal Oxide Semiconductor Field Effect Transistor) is one
of the most important semiconductor devices. In general, it is used as a
switch. Its importance is due to the fact that no power is consumed by the
switching (as opposed to the bipolar transistor). The MOSFET is a unipolar
device, 1.e. charge transport is due to only one type of charge carrier. Since
the mobility of the electrons is usually higher than that of the holes, most
MOSFETs are so called n-channel devices (this term will be explained
below). Although the following discussion will be restricted to this group of
devices the results carry over to p-channel devices after obvious changes.
Like the bipolar transistor, the MOSFET is a three layer device with two
highly doped n-regions called source and drain and a p-region called bulk
with lower doping. Source and drain always have Ohmic contacts whereas
the bulk might be a floating region (no contact), e.g. in the case of SOI
(Silicon On Insulator) technology. Between the source and drain contacts
the semiconductor material is coated with a thin layer of oxide with a metal
contact, the so called gate (see Fig. 4.7.1).

The analysis of the preceding Section applies to the situation close to the
semiconductor oxide interface BC away from the endpoints B and C. Appli-
cation of a sufficiently large voltage at the gate generates an inversion layer
in the so-called channel. 1.e. the part of the bulk region close to the interface.
The fact that the clectron density dominates the hole density in this region
has led to the term n-channel. This n-channel is able to carry a significant
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Fig. 4.7.1 Cross section of a simplified MOSFET geometry

current from source to drain as soon as there is a potential difference between
these two contacts. Thus, the source-drain current can be switched on and
off by applying different voltages to the gate.

An important parameter for the performance of the MOSFET is the
channel length L (the length of the segment BC). Long channel devices are
characterized by the requirement that the Debye length in the channel is
significantly smaller than the channel length. This implies that the depletion
layers corresponding to the source and drain junctions are well separated,
and perturbation arguments lead to locally one-dimensional problems.
Analytic formulas for the static characteristics of long channel MOSFETs
have been obtained by models of different degrees of sophistication (see
[4.22] for an overview). Recently, Ward [4.25] analyzed long channel
MOSFETs by using methods of asymptotic analysis. The following pre-
sentation 1s based on his work ([4.25], [4.26]). We point out that no com-
parable results for short channel devices are available because they are
intrinsically dominated by two-dimensional behaviour.

Our mathematical model is a two-dimensional version of the scaled station-
ary drift-diffusion equations written in terms of the quasi Fermi potentials:

APAV = 5%V — §2e? 7V — C,

J, = —u,6%" 9ngrad ¢,, divJ, =0, (4.7.1)

n

J, = —p,0%? " grad ¢,, div.J, = 0.
These equations are posed on the rectangle AEFD (see Fig. 4.7.1) and a
coordinate system with the origin in the point B has been introduced. The
validity of the two-dimensional model is restricted to devices with sufficient
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channel width, i.e. the width of the active region of the device in the direction
perpendicular to the x-y-plane.

In (4.7.1) the effects of recombination and generation are neglected and the
mobilities are assumed to be constant. Although these assumptions cannot
be justified in general the simplified model produces qualitatively correct
voltage-current characteristics. In the scaling, the channel length L (the
length of the segment BC in Fig. 4.7.1) has been chosen as the characteristic
length. The doping concentration has been scaled by the doping in the bulk
region which we assume to be constant. This is a rather stringent assumption
which does not hold for many practical situations. However, as demon-
strated in [4.25] the principal ideas of the analysis of this Section can be
carried over to the case of a doping profile which varies in the x-direction
(see Fig. 4.7.1). The analysis below will show that the performance of the
MOSFET can be explained by concentrating on the p-region. This has
motivated our choice of the scaling where the maximal doping concentration
is not scaled to 1 as usual. The parameter 4 denotes the scaled Debye length.
In the following, smallness of 4 will be assumed which means, that we are
dealing with long channel devices.

The rectangle BCJI represents the oxide which we asume to be free of
charges such that the Laplace equation

AV=0

holds there.
The quasi Fermi potentials satisfy Dirichlet boundary conditions along the
contact segments AB, CD, and EF. We have

Pp=10,=0 on AB,
(p,,:(pp:fJD on CD,
Oy = Q,= U on EF.

The voltages are referenced with respect to the source, i.e. Uy, is the drain-
source voltage and Uy the bulk-source voltage. Along the artificial bound-
aries AE and DF and along the interface BC homogeneous Neumann
conditions for the quasi Fermi potentials hold. So currents can leave or enter
the rectangle under consideration AEFD only through the source, drain,
and bulk contacts.

The potential satisfies the usual Ohmic contact boundary conditions at
source, bulk, and drain as well as homogeneous Neumann conditions along
the artificial boundary segments AE, DF, BI, and CJ. Along the interface,
continuity of the potential and the vertical component of the electric dis-
placement are required:

VO—,»)=V(0+,y), &,0V(0—,y) =¢0,V(0+,y),

where ¢, and ¢, are the permittivities of the oxide and the semiconductor,

respectively. At the gate contact IJ the boundary condition
V(—d, y) = V,(0, y) + Ug
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holds, where d denotes the oxide thickness and Uj; is related to the gate-
source voltage as explained in the preceding Section.

Derivation of a Simplified Model

The aim of this Paragraph is to reduce the model to a boundary value
problem posed on the smaller rectangle BGHC by introducing several
simplifying assumptions.

A singular perturbation analysis with 4 — 0 combined with the arguments
from the beginning of this Chapter leads to approximations of the quasi
Fermi level corresponding to the majority carriers by a constant, in each p-
and n-region. Thus, as a first simplification we set

0, =0 in the source region,
¢,= U,  in the drain region, (4.7.2)
Oy = Uy in the bulk region.

Next we consider the potential in the oxide, and assume that the oxide
thickness is small compared to the channel length, i.e. d <« 1. By introducing
the independent variable ¢ = x/d the insulator region is transformed to a
square and the potential satisfies

02V + d*olv = 0.

In the limit d — 0 the potential in the insulator is the solution of a one-
dimensional problem. The resulting approximation for the potential violates
the Neumann conditions at the artificial boundary segments. However, it is
easy to see that O(d)-boundary layer correctors are sufficient as a remedy.
Thus, the approximation obtained by solving the one-dimensional equation
@V = 0 is uniformly valid in the oxide region. As in the case of the MIS
diode it leads to a mixed boundary condition at the interface:
ed =

“toV=V-V,—0, a BC

EOX

Finally, the problem is reduced to the rectangle BGHC. Since the hole quasi
Fermi potential is assumed to be constant in this region we only consider
the Poisson equation and the electron continuity equation. With the re-
scaled variables

W =7V, D, = 70,, & =x/d (A =A4//7)

we have
2 T2A2 W‘q)n—l g = W= 1
;W + A*0; W = exp (i) — exp (37) +1,

7 )
/ i

2 W — (Dui ] -~ A Wﬁd)ni ]
Og| pexp| ——— )00, | + 476, | pyexp| —————— | 6,®, | =0,
/ i

(4.7.3)
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where Uy and, in the sequel, U, and U, denote rescaled versions of the
applied voltages. Note that the approximate built-in potential Ug/y =
U, In(C/n,) is the scaling factor for voltages in (4.7.3).

By restricting our attention to the smaller rectangle BGHC we ignore the
electron current in the rest of the device and totally ignore the hole current.
The critique of the simplified model given below also applies to these
simplifications.

The problem is completed by prescribing boundary conditions. In terms of
the rescaled quantities the mixed boundary condition at the interface BC
reads

oW =W — W, — Ug at BC (4.7.4)
where o is defined as in the preceding Section by
ed
6 =—.
Egy

The analysis below will show that the values of the potential along the
pn-junctions BG and CH do not alfect the results, and so we leave them
unspecified. In order to avoid nonuniformities along the artificial boundary
GH, zero space charge is required there:

I i, — Op— 32
W:1+U3g;'lns(]+\/1+4exp( = —")) at GH

(4.7.5)

Recalling the results for the MIS diode, this condition is satisfactory as long
as the edge of the depletion region stays away from GH. A quantitative
formulation of this requirement will be given below.

Prescribing boundary conditions for the electron quasi Fermi level is a more
subtle problem. Starting with the easy parts, we pose a homogeneous
Neumann condition along the interface and the following Dirichlet condi-
tions at the pn-junctions:

®, =0 at BG, ¢, =U, at CH, (4.7.6)

n

which are motivated by (4.7.2).

The previous discussion fails to give a handle on the behavior of @, at the
artificial boundary GH. Therefore a boundary condition is used which
reflects favourable operating conditions. The above description of the device
behaviour raises the expectation that current flow only takes place in the
direction tangential to the interface. This motivates the assumption that no
current flow occurs across GH, resulting in the boundary condition

:®,=0 at BC and GH. (4.7.7)

The results of numerical simulations [4.17, Chap. 9]. Show that these as-
sumptions are not necessarily justified. In [4.17] a parasitic effect is analyzed
which can be explained by interpreting the MOSFET as a bipolar transistor
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where the source, bulk, and drain are identified with emitter, base, and
collector, respectively. Depending on the details of the geometry and the
doping profile a small bulk current can be the reason for a significant current
from source to drain without an inversion layer being present. As the
numerical results show, this current might very well have a significant
component in the direction perpendicular to GH. According to these obser-
vations, certain parasitic effects are a priorily precluded by the conditions
(4.7.7). Nonetheless, the model (4.7.3)—(4.7.7) will be sufficient for the com-
putation of qualitatively correct device characteristics. The total current
from source to drain will be approximated by the electron current across
the P-N junction BG (or CH).

A Quasi One-Dimensional Model

In this Paragraph the smallness of the parameter A will be exploited for a
further simplification of the model (4.7.3)-(4.7.7). As ~— 0 the Poisson
equation reduces to the ordinary differential equation

w—o,—1 W, =W =1
02 W = exp (—")_exp (”—>+ 1. (4.7.8)

LY LY

¥ /

Assuming @, to be given, this equation subject to the boundary conditions
(4.7.4), (4.7.5) constitutes a one-dimensional boundary value problem for
each value of y, which has a unique solution. As mentioned above the
approximation of W computed in this way is independent of the boundary
values at the P-N junctions. Since layer corrections along BG and CH do
not significantly affect the final results for the current, they will not be
considered here.

The asymptotic analysis of the continuity equation is less straightforward.
The reduced problem consisting of the differential equation

2 (#" exp (W__(E) 5,503,,) =0
/

and homogeneous Neumann conditions does not have a unique solution.
It only allows the conclusion that the quasi Fermi level is independent of ¢,
ie. ®, = @,(y). A singular perturbation problem of this kind has been dealt
with in [4.5, Section 4.3] where a formal approximation of the solution is
derived. A justification for the formal approach can be found in [4.3].
Additional information on the limiting solution can be obtained by integrat-
ing the original differential equation in (4.7.3) in the &-direction. Using the
boundary conditions, the result is

j 7 E’J,(,u,, exp (&M) Q.@,,) dé=0
0 P

where &* denotes the &-value corresponding to the boundary GH. Denoting
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the solution of (4.7.8) for given ®, by W(®,), we introduce the one-
dimensional electron density

N<<D,,)=J‘* exp(W{mn);¢,,— 1>d:_

0 /

Since. in the limit 4 — 0, ®, only depends on y, the limit of the above equation
can be written as

2,1, N(®,)0,®,) = 0.

Subject to (4.7.6), this is a one-dimensional boundary value problem in the
y-direction. Since its formulation involves the solution of a problem in the
¢-direction it might be called quasi one-dimensional.

The current from source to drain is equal to the current across an arbitrary
vertical cross section of the rectangle BGHC and is given by

I =pu,N®,)od,. (4.7.9)

Since the only y-dependence in the problem for the potential originates from
®,, the one-dimensional electron density does not depend on y explicitely.
Therefore the above equation can be integrated from y = 0 to I:

Us
I = ,u,,j N(®D,) dD,. (4.7.10)

0

Computation of the One-Dimensional Electron Density

Noting the similarity of the one-dimensional problem for the potential to
the MIS diode problem, we expect that the results for the MIS diode
essentially carry over to the present situation. The only difference between
the two problems is the occurence of the parameters @, and Uy in (4.7.8).
Leaving the computational details to the reader, we only summarize the
results.

In general, MOSFETs are not operated in the accumulation regime. Thus,
we restrict ourselves to the case U; > Ug. Depletion or weak inversion
occurs for values of Uy in the interval

[Us,2 4+ @, + 2,/22 + @, — Ug)]. (4.7.11)
The condition Uy < 2 which is necessary for the validity of this analysis
corresponds to requiring that a not too large forward bias is applied to the
source-bulk junction. The onset of strong inversion corresponds to the right
end of the above interval or to the condition W(0) = 1 + ®,.

The approximate solution in the case of depletion or weak inversion is
determined by

W)= Us; — 1 + o2 — a/a? + 2(Ug — Uy),
14Ut @2 for ¢
B —14 UB for L;:

W e (4.7.12)

Mg
vV A
e e
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where the depletion width is given by
£y = /02 + 2(Ug — Up) — «.

Note that the potential is independent of the electron quasi Fermi level in
this case. The maximal depletion width, occurring at the onset of strong

inversion, is /2(2 + ®, — Up).
In strong inversion the potential in the inversion layer is approximated by

mnv:1+q}n+hf’1n?71+?2

with

z=In ((2+cp — Uy) sinh~ (\/1 + (D, —UB/Z 4
(4.7.13)
and the constant of integration ¢ being determined from the initial condition
z2(0) = In((2 + @, — Ug)*/20* — 2 — @, + Up).

In the depletion layer the potential is given by (4.7.12) with the depletion
width &, replaced by the maximal depletion width given above. Assuming
the channel close to the drain to be in the strong inversion regime, we arrive
at the condition

S22+ Up—U,) < E*

for the validity of our analysis. This inequality means that the maximal
depletion width along the channel is smaller than the depth of the source
and drain regions.

In the depletion/weak inversion regime the electron density is given by

(W(O) =, — 3 — Loy 52/2)
n = exp E ’

H
/

An approximation of N(®,) can be computed by dropping the quadratic
term and replacing ¢* by oo in the integration:

exp (M—_l> . (4.7.14)

In strong inversion N(®,) is the sum of contributions from the inversion
layer and the depletion region. The electron density in the inversion layer is

T
Riny =7 €

with z given in (4.7.13). Integrating this and adding the depletion layer
contribution gives

N®,)=Us—2—-0,)/n0— /212 + D, — Up)
i :'/\/T(Z + @, — Uy). (4.7.15)

N(@,) =

J‘m|-.)
= 4
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Computation of the Current
Depending on the biasing situation, different cases occur. If the gate voltage
Us 1s below the threshold voltage

Uy=2+4 a,/2(2 — Up)

depletion/weak inversion prevails throughout the channel. For the compu-
tation of the current the one-dimensional electron density given by (4.7.14)
can be used:

l=g, :_ exp (W{O) )(1 e~ Unl?y,

d /

In this so called subthreshold region the current saturates for large drain-
source voltages at a value which is transcendentally small in terms of y. The
threshold voltage and the subthreshold characteristic in terms of unscaled
quantities are given by
Ur == ZVH + \/ZUref(ZVbi - UB)!
peUin,.
LCx,

=

(1 e e_Um“UT)’

where U, is defined as in the preceding Section,

1
R, = N; EXP (U_(UG - Vbi i Uref - \/Uref{Urcf + 2UG - ZUB)))
T

denotes the surface electron concentration close to the source and
Xg = \/Es,‘/(qé)(\/ Urcf + 2UG - 2b’5 - \/Urcf)

is the depletion width. Note that U; = U, implies n, = C, i.e. the threshold
voltage marks the onset of strong inversion close to the source.
For U, > U, two different possibilities have to be accounted for. In the case

5 2+ U+ 020 % Us— g (4.7.16)

called non-saturation region, the whole channel is in strong inversion. Thus,
the formula (4.7.15) for N(®,) applies and the current is given by

I=g, (E(UG — 2 — Up/2)Up — %\B_ﬁ(z + Uy — B2
2, /2 o2
_7(2_ UB +”\/2(2+UD UB)—‘})\/Z(z_Uﬂ)
(4.7.17)

which—1n terms of unscaled variables—reads



234 4 Devices

= %Cnx(UG — 2V, — Up/2)Up
f” / 2 f/.i ) 2 .ﬂf’i |
= %\/*‘:sq& (\:;(2 Vi + Up — U)? — \T (2V4: — Ug)¥?

— Upy/2(2Vy; + Up — Up) + Up /2(2V},; — UB)).

Considering the dependence of the current on the drain voltage for a fixed
gate voltage U, > U, the formula (4.7.17) holds as long as

2 f g 2
UD < U.Dsal o= U(I —2+a°— Dt\//‘:)t + 2U(: - 2UB

is satisfied. The saturation voltage is determined by assuming equality in
(4.7.16). For larger values of U, a phenomenon called pinch-off occurs. A
transition from strong inversion to weak inversion takes place at the pinch-
off point where the quasi Fermi level takes the value U,,.,,. In this case the
one-dimensional electron density is given by (4.7.15) for 0 < @, < U,,,, and
by (4.7.14) for Up,,, < ®, < U,. The current is given by

92 Ww(0) — 1 _ L
I = Isal + P!HL exP ( ( -‘) )((.’LD‘W'T - e_L‘n«‘:')

I

which is essentially equal to the saturation current I, obtained by substitut-
ing Uy = Up,,, 1n (4.7.17). Due to this behavior of the characteristic the set
of operating points defined by

- — -

Up

Figure 4.7.2 Current vs. drain voltage for different U,
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U, <2+ Up+ ﬁ\,.-"m

is called the saturation region.
An approximation of the pinch-off point y* can be computed from (4.7.9)
by integration from y = 0 to y = y*

i =d il

sat/

Since in the saturation region the current is only insignificantly larger than
I,,, we obtain

sat

I —y*« 1.

The distance of the pinch-off point to the drain is very small compared to
the channel length.

4.8 Gunn Diode

The Gunn diode is an important microwave device. Its performance is based
on the transferred-electron effect described in Chapter 2 which is responsible
for a nonmonotonic velocity-field relation. A typical device consists of a
homogeneously doped piece of a semiconductor whose energy-band struc-
ture supports the transferred-electron effect (e.g. gallium arsenide (GaAs) or
indium phosphide (InP)). This Section is concerned with an explanation of
the Gunn effect [4.4]: A microwave output can be generated by applying a
large enough constant voltage to an n-type piece of GaAs or InP. The
presentation will mostly be based on the work of Szmolyan [4.23], [4.24]
who put the classical analysis (see [4.22] for references) on a mathematically
sound basis. The results of the final Paragraph are new.

Consider a homogeneously doped piece of semiconductor of length L with
constant donor concentration C. A one-dimensional unipolar model is given
by the differential equations

e,0.E = q(n — C),

on = ¢ (Dd.n — nug v(E/E L)),

where E denotes the negative electric field, D is the diffusivity and the
qualitative behaviour of the velocity v, v(E/E ) is given in Fig. 4.8.1 b which
also explains the meaning of the saturation velocity v, and the threshold
field E,. The graph of the scaled function v goes through the origin. has a
maximum at 1 and saturates at v = 1 for large arguments. For negative
values of the argument, v is defined by odd extension. The differential
equations hold for x in the interval (0, L), representing the device.

Since large fields are to be expected, the Einstein relation between the
diffusivity and the mobility is dropped here (see Chapter 2). In addition the
field dependence of the diffusivity will be ignored for simplicity. However,
most of the arguments below go through if the field dependence is such that
the diffusivity is bounded from above and away from zero (see [4.23],
[4.24]), although the computations are more involved.

sat
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Fig. 4.8.1 Velocity vs. field for (a) Si and (b) GaAs

Ohmic contacts are modelled by the boundary conditions
n0)=n(L)=C

and the application of a voltage U is described by an integral condition for
the field:

L
J. Edx="U.

0

The problem formulation would have to be completed by imposing initial
conditions for the electron density. However, our main interest will lie in
the study of special solutions of the differential equations rather than in the
general initial value problem.

A scaling is introduced where the device length L and the characteristic time
L/v,,, are the reference quantities for length and time. Carrier densities,
electric fields, and voltages are scaled by C, E,, and E L, respectively. The
scaled problem reads

0. E=n—1,

on = d,(yd.n — no(E)),

1
n(0)=n(l) =1, J Edx="U, (4.8.1)
0
where
2 &Er . D
S Bl

are the square of the scaled Debye length and the relative strength of diffusive
and convective terms. Note, that the same symbols have been used for scaled
and unscaled quantities.

Considering typical values for the material dependent parameters (see
[4.22]), a device with a length of 10 pm or more, and a doping concentration
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of about 10'> ¢m *, both 2% and 7 are small parameters of the same order
of magnitude. Assuming the ratio x = 7/ to take moderate values, only
one small parameter appears in the differential equations:

MO E=n—1,

n = i (A*ad.n — no(E)).

(4.8.2)

In the following two important properties of the system (4.8.1), (4.8.2) are
discussed: The loss of stability of homogencous steady states due to bulk
negative differential conductivity (NDC) and the existence of traveling wave
solutions. A combination of these properties will be used for the asymptotic
analysis of the Gunn effect.

Bulk Negative Differential Conductivity

Consider a piece of semiconductor with homogeneous carrier density. In
this case the current density is given by

J = nv(E)
and the bulk differential conductivity by
dJ/6E = nv'(E).

Whereas in Si ¢J/0F is always positive, bulk NDC occurs in GaAs and InP.
Apart from the transferred-electron effect, other physical mechanisms can
be responsible for bulk NDC. We only mention impact ionization induced
bulk NDC which is used in another microwave device, the IMPATT (impact
ionization avalanche transit time) diode (see [4.22]). For a detailed discus-
sion of bulk NDC-effects caused by recombination-generation we refer to
[4.16]. Note that a global form of NDC has been observed in Section 4.5 in
connection with the middle branch of the voltage-current characteristic of
a thyristor. As opposed to bulk NDC, which is due to microscopic material
properties, this effect is caused by the interaction of P-N junctions.
Carrying out the differentiation in the right hand side of the continuity
equation leads to

. o5 e . vrpn 1 — 1

n = 2*xéin — o,.me(E) — nv (b)_)z—-
which shows (by the smallness of 4%) that for values of n away from the
equilibrium value 1, the dynamics of the system are dominated by the
ordinary differential equation

=1
dn= —nv (E)—’ﬁ

Obviously the stability of the equilibrium solution n = 1 is determined by
the sign of ¢'( E) with stability for »"(E) > 0. This heuristic argument has been
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made rigorous in [4.24]. A stationary solution of (4.8.1), (4.8.2) is given by
=1, E=U

which is called the trivial solution from now on. The stability of this solution
was examined in [4.24] by linearization. It can be shown that for U > 1
(which implies v'(U) < 0) and A2 small enough the trivial solution is unstable
whereas it is stable for U < 1. Furthermore a stable nontrivial solution
bifurcates from the trivial solution at the critical voltage where the trivial
solution looses its stability.

Traveling Waves

An important property of the equations (4.8.2) is the existence of traveling
wave solutions, i.e. solutions which only depend on x — v,t where v, denotes
the velocity of the wave. These solutions are strictly valid only for an
idealized device of infinite length. However, since the active region of the
solutions will be shown to be very small with fast decay at + oo, they can
be used in the singular perturbation analysis of the following Paragraph as
layer terms in a moving internal layer.

The smallness of the active region is reflected in the choice of the variable

X — vgt

§ =t
e

Assuming n and E to be functions of s only, the differential equations can

be written as

GE=n—1, (4.8.3)
— vy 0sn = Gy(dn — nv(E)).

Only solutions which converge as s — + oo can be used as layer terms,
Besides, it will be shown in the following Paragraph that the limits of E as
s — + o have to be equal. Thus, integration of the second equation gives

ad.n = n(v(E) — vg) + vg — v(E ) (4.8.4)

where E , is the common limit of E as s tends to + oo. The further analysis
proceeds by studying the phase portraits of (4.8.3), (4.8.4) for various choices
of v, and E . The above requirements imply that we are looking for a
homoclinic orbit of the system with respect to a stationary point (n, E) =
(1, E,). In[4.23] it is shown that such a solution can only exist if v, = v(E )
holds, which means that the velocity of the wave is equal to the drift velocity

of the electrons at infinity. With this assumption the equations read
GE=n—-1,
) (4.8.5)
ad.n = n(v(E) — vg)-

The number of stationary points of (4.8.5) is equal to the number of solutions
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Fig. 4.8.2 Phase portrait

of the equation v(E) = v,. For v, < 1 there is only one stationary point
which implies that a homoclinic orbit cannot exist. Therefore we assume
that v, lies between 1 and v(1) from now on. In this case there are two
stationary solutions E; < 1 < E,. A stability analysis shows that the point
(1, E,) is a saddle and that the eigenvalues of the Jacobian of the right hand
side of (4.8.5) evaluated at (1, E,) are imaginary.

Separation of variables and integration gives

E
an—Inn—1)= f (v(y) — vo) dy (4.8.6)
E

which can be used for drawing a picture of the phase portrait of (4.8.5), Fig.
4.8.2.

For E ;= E,, (4.8.6) describes the stable and unstable manifolds of the
stationary point (1, E,). It is easily seen that the part of the curve with E > E,
is closed which means that the stable and unstable manifolds meet and a
homoclinic orbit exists. On this orbit the maximal value E_,, of the field
satisfies the equation

Epas
f (v(y) — vg)dy =0
E;

which is known under the name equal area rule (see Fig. 4.8.3).

For E,  between E, and E ., (4.8.6) is the equation of a closed curve around
(1, E,) corresponding to a periodic solution. Thus, the stationary point
(1, E,) is a center.

The homoclinic orbit is the traveling wave solution we have been looking
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Vo - . 7o v

Fig. 4.8.3 Equal area rule

for. The qualitive shape of the wave can be determined from Fig. 4.8.2. The
field has the form of a single pulse whereas the electron density forms a dipole
with a depleted region (n < 1) followed by a region of accumulation (n > 1).

The Gunn Effect

It was observed in [4.4] that for sufficiently large applied voltages small
perturbations of the homogeneous steady state grow, until a stable config-
uration (called domain) is reached which then travels through the semicon-
ductor without changing its form. The electric field outside the domain is
lower than the threshold field E; but it takes values in the region of bulk
NDC inside the domain. As soon as the domain leaves the device the electric
field grows to a value above E; throughout the device and a new domain
is built. The aim of this Paragraph is to relate the shape and velocity of the
domain to the applied voltage.

Applying the methods of singular perturbation theory to (4.8.2), we try to
obtain a solution which can be approximated by a solution of the reduced
equations

n—1=0, Ju(E)=0

away from layers. We are interested in the case that the only layer is given
by a traveling wave. The above equations would allow for a jump of E
across the wave if the values at the left and at the right give the same velocity.
This would imply that the integral of E changes with time because the
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integral of E changes as the wave travels through the device and the integral
of the contribution from the wave is constant. This contradicts the integral
condition in (4.8.1). Thus, E has to be constant and the travelling wave is
given by the homoclinic orbit constructed above. E lies between E, and 1
where v(E,) = 1 holds (see Fig. 4.8.1 b). _

The integral condition on the field implies E = U because the width of the
domain is O(4?). Since we are interested in applied voltages larger than 1
this would make a domain solution impossible. The reason for this problem
is that the contribution of the domain to the integral of E is too small.
Therefore we shall try to construct a wider domain with larger values of the
electric field. By the equal area rule large values of the maximal field imply
that the velocity of the wave is close to the saturation velocity (see Fig. 4.8.3).
This in turn implies that E is close to E,. These observations motivate the
following transformations in the traveling wave problem:

E=E_+ ¢/l E.=E,;+ Ae, o= /8,
where ¢ and e remain to be determined. Substitution in (4.8.6) gives

1 E_ +elA
n—Ilnn—1n~- '{ (v(y) —1— Av'(Ep)e) dy

% JE

~1J (v(y)— 1)dy — 1v’(J’io)Ee = A — Bee,
% Jg, o
where we assumed that the improper integral on the right-hand side con-
verges. This is an assumption on the speed of convergence of the velocity to
its saturation value as the field tends to infinity. Assuming knowledge of ¢
the rescaled field e in the domain can be computed in terms of n:

e=—(Be) !(n—Inn—1— A)
and takes the maximal value A(Be)™'. Obviously this equation is valid as
long as e remains positive which holds for n between the zeros 0 < n, < 1 <
n, of the right-hand side.
Introducing the transformation in the differential equation for n implies
ixin ~n(w(E,, +e/i) — 1 — iv'(Eg)e) ~ n(o(L) — Av'(Eg)e).
In the limit A — 0 we obtain
c,n = — Ben
with the solution
n = exp(— Bea),

where a different choice for the constant of integration corresponds to a shift
in the g-direction which obviously does not change the results. This solution
is valid for ¢ between the values ¢, and ¢, where n takes the values n, and
n,, respectively. The construction of the asymptotic form of the traveling
wave solution would be completed by considering layers in neighbourhoods
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of ¢, and ¢, which smooth the jumps in the electron density from 1 to n,
and from n, to 1, respectively.

It remains to determine the value of e from the integral condition on the
electric field. Asymptotically the integral is given by

a2
E0+f edo = E, + k/e?

a3

with

1
K= BZ(M2 —n;—1In n_z(_ In(nyn,) + A + 1))
n, \2

Since e has to be positive, we obtain
e = /k/(U — Ey).

Summarizing the results of this Paragraph we note that the dipole formed

by the electrons has sharp boundaries represented by ¢, and a,. The velocity

of the wave is close to the saturation velocity and, thus, together with the

microwave frequency essentially independent from the applied voltage.

Problems

4.1 Instead of the SRH-term consider a more general recombination-generation model of
the form

R = Q(n, p, x)(np — &%) with 0>0

in (4.1.4). This includes the band-band recombination term (2.2.13) and the Auger term
(2.6.1). Carry over the discussion of the close-to-equilibrium case to this model.

4.2 Solve the double obstacle problem (4.2.10) by patching together solution pieces with
W=—1,0W+ C=0and W = 1, respectively, such that W is continuously differ-
entiable. Convince yourself that the solution is unique. Verify (4.2.11).

43 a) Verify the results in the Paragraph “Strongly asymmetric junctions” of Section 4.2.
b) Singular perturbation theory leads to different approximations of a function in
different regions. Here these approximations are W, (¢), W, (1) and W,,, (). The question
arises if an approximation can be found which is uniformly valid in the full region of
interest. In general the answer is positive. Consider the example

f(x, &) = cos(e " + x) with e,
Away from the boundary layer at x = 0 the approximation
fi(x) = cos x
is valid. whereas
- F B
Si&)=cos(e™), E==
£
approximates { within the layer. The matching condition

f(0) = lim f(&) = 1

o
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4.4

4.6

4.7

48

49

4.10
4.11

holds. A uniformly valid approximation for f can be obtained by adding the individual
approximations / and fand subtracting their “*common part™ which is 1 in our example.
Thus, we have

f(x, &) ~ cose™™*) + cos x — 1.

Use these ideas and the common parts (4.2.19). (4.2.21) for obtaining an approximation
of W which 1s uniformly valid in the y-interval [ —2. 0].

a) Verify the formula (4.2.26) for the saturation current by explicitely solving the
problems for ¢, and ¢, in the one-dimensional case (4.2.1). (4.2.2).
b) Extend this result to the recombination-generation model of Problem 4.1.

a) Verify (4.2.29). N
b) Rescale the current in (4.2.30) by I = é*I. Obtain the Shockley equation by letting
&* = 0 in the equation for I.

a) Solve the double obstacle problem (4.2.33) and obtain the noncoincidence set (4.2.34).
b) Compute w, I, and [, and verify the formula (4.2.38) for the characteristic.

Compute the common-emitter current gain (4.3.3) of a bipolar transistor under the

following, simplifying assumptions:

a) According to (4.3.4), the second term in the formula for a; can be neglected.

b) In the computation of ¢, and ¢, the emitter and base regions are represented by
intervals whose lengths are the distance between the emitter contact and the emitter
junction and between the emitter and the collector junctions, respectively.

¢) In the computation of ¢, the base contact can be ignored.

d) The mobilities are constant and the doping profile is piecewise constant.

Solve the double obstacle problem (4.4.2) for a short PIN-diode in thermal equilibrium
in the one-dimensional case (4.4.7) and with the assumption of a piecewise constant
doping profile. Verify that (4.4.6) holds in the limiting case £ — 0.

a) Analyze the thyristor close to thermal equilibrium considering the Shockley-Read-
Hall term for recombination-generation.

b) In the case of the one-dimensional model (4.5.5), (4.5.6) compute the constant A in
(4.5.4).

Verify (4.5.10), (4.5.11) by solving the problem for wy, J,. J

pO-

For the MIS diode problem (4.6.3), (4.6.4) in the accumulation regime an approximation
of the potential has been obtained in Section 4.6. However, this approximation cannot
be uniformly valid because it does not converge as & — .

a) Introduce a transition layer solution of the form

Wiwnslo) = —1 +32(0),  o6=—¢
V7
which connects the initial approximation to the prescribed value for Wat & = «.
b) Construct a uniformly valid approximation for the potential by the method intro-
duced in Problem 4.3.
¢) Show that the contribution of W, to the total charge is small compared to the

approximation (4.6.5).
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Appendix

Physical Constants

Quantity Symbol Value

Boltzmann constant kg 1.38 x 10723 VAs/K
Electron rest mass m 091 x 107*% kg

Electron volt eV 1.6 x 10719 VAs
Elementary charge q 1.6 x 107'7 As
Permittivity in vacuum Eo 8.85 x 1071* AsV~' cm™!
Reduced Planck constant h 1.05 x 1073* VAs?

Properties of Si at Room Temperature

Permittivity: ¢, = 11.9¢,
Bandgap: E, = 1.12 ¢V
Low field mobilities: g, = 1500 cm?* V7' s™', py, =450 cm? V157!
Typical values for recombination-generation parameters:
C,=28 x 107 ecm®/s, C,=9.9 x 10722 cm®/s
£, =10 7,=10%
o = 10%em™, &y =2 x 10° em™
E" =1.66 x 10° V/em, E3" =2 x 10°V/cm
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