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Preface 
This book has been written because of the continuing rapid growth and 

development of the field of receptor modeling. When I finished writing the first 

integrated book on this field in 1984, I knew it would require revision and 

updating, but as the time came to do that, it was also clear that I did not want to 

try to cover the whole subject alone. Thus, a new book using contributions from 

a number of people who have been active in the development of the field seemed 

to be a more appropriate approach. Particularly, because of the explicit 

incorporation of receptor modeling into the guidance documents that have been 

developed to accompany the new airborne particulate matter air quality standard, I 

wanted to incorporate the viewpoints of both state/local air quality agencies that 

have to actually develop the air quality management plans as well as the federal 

viewpoint where these management strategies are reviewed. Thus, I believe that 

together we have been able to bring together a useful compendium of material 

including source and ambient sampling and analysis methods, statistical analysis 

of data, receptor model study planning, and several expanding areas of 

application including airborne organic compounds and automated electron 

microscopy. We hope that such a book will be both a useful introduction to the 

field and will contain enough depth of information that it will allow those who wish 

to pursue the subject beyond straightforward applications to do so. It also serves 

an another benchmark on where receptor modeling is in its development and 

maturation as a part of the field of air resources management. 

this venture and I particularly wish to thank Dr. Houck for joining the project in its 

late stages and writing an excellent chapter in a very short time. I also wish to 

thank Annette Green for all her help in assembling this volume into a coherent 

whole. 

I wish to express my deep thanks to the chapter authors for participating in 

Potsdam, New York 

Philip K. Hopke 

xi 



D ED I CAT I 0  N 

During the final stages in the preparation of this volume, Dr. Thomas G. Dzubay 

succumbed to the cancer he had been fighting for some time. Tom was a fine 

scientist who had been an integral part of the development of receptor modeling 

during the past 15 years as well as a good friend and he will be missed. Thus, 

the rest of us who participated in preparing this volume would like to dedicate it to 

Dr. Thomas G. Dzubay. 
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Chapter 1 

AN INTRODUCTION TO RECEPTOR MODELING 

Philip K. Hopke 
Department of Chemistry 

Clarkson University 
Potsdam, N.Y. 13699-5810 

1. INTRODUCTION 

The management of ambient air quality is a difficult but important problem. 

In general, it involves the identification of the sources of materials emitted into the 

air, the quantitative estimation of the emission rates of the pollutants, the 

understanding of the transport of the substances from the sources to downwind 

locations, and the knowledge of the physical and chemical transformation 

processes that can occur during that transport. All of those elements can then be 

put together into a mathematical model that can be used to estimate the changes 

in observable airborne concentrations that might be expected to occur if various 

actions are taken. Such actions could include the initiation of new sources as new 

industries are built and begin to function and the imposition of emission controls 

of existing facilities in order to reduce the pollutant concentrations. 

However, the atmosphere is a very complex system, and it is necessary to 

greatly simplify the descriptions of reality in order to produce a mathematical 

model capable of being calculated on even the largest and fastest computers. 

Thus, although significant improvements have been made over the past twenty 

years in the mathematical modeling of dispersion of pollutants in the atmosphere, 

there are still many instances when the models are insufficient to permit the full 

development of effective and efficient air quality management strategies. Thus, it 

is necessary to have alternative methods available to assist in the identification of 

sources and the apportionment of the observed pollutant concentrations to those 

sources. Such methods are called receptor-oriented or receptor models since 

they are focussed on the behavior of the ambient environment at the point of 

impact as opposed to the source-oriented dispersion models that focus on the 
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transport, dilution, and transformations that begin at the source and then follow 

the pollutants to the sampling or receptor site. 

2. PRINCIPLE OF MASS CONSERVATION 

All of the currently used receptor models are based on the assumption of 

mass conservation and the use of a mass balance analysis. For example, let us 

assume that the total airborne particulate lead concentration (ng/m3) measured at 

a site can be considered to be the sum of contributions from independent source 

types such as motor vehicles, incinerators, smelters, etc. 

However, a motor vehicle burning leaded gasoline emits particles containing 

materials other than lead. Therefore, the atmospheric concentration of lead from 

automobiles in ng/m3, PbAuto, can be considered to be the product of two 

cofactors; the gravimetric concentration (ng/mg) of lead in automotive particulate 

emissions, aPb,Auto, and the mass concentration (mg/m3) of automotive particles in 

the atmosphere, fAuto. 

The normal approach to obtaining a data set for receptor modeling is to determine 

a large number of chemical constituents such as elemental concentrations in a 

number of samples. The mass balance equation can thus be extended to 

account for all m elements in the n samples as contributions from the p 

independent sources 

where xii is the ith elemental concentration measured in the jth sample (nm/m3), 

aik is the gravimetric concentration of the ith element in material from the kth 

source (ng/mg), and fkj is the airborne mass concentration of material from the 
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kth source contributing to the jth sample (mg/m3). There are several different 

approaches to receptor model analysis that have been successfully applied 

including chemical mass balance (CMB) and multivariate receptor models. 

Recently, the use of single particle data obtained using computer-controlled 

scanning electron microscopy has proven to be a valuable tool in providing more 

information about the airborne particle samples and thereby improve the resolution 

and precision of the source apportionment. This book covers the air sampling, 

chemical analysis, and mathematical procedures necessary to perform a receptor 

modeling study. The following section will provide an introduction to these various 

receptor models and an introduction to the organization of this volume. 

3. OVERVlEW 

3.1 Chemical Mass Balance 

Receptor models date back to the late 1960’s when both mass balance 

analysis and multivariate statistical methods were first applied to air quality data. 

The concept of a atmospheric mass balance model was suggested independently 

by Miller et a/. (1972) and by Winchester and Nifong (1971). In these initial 

models, specific elements were associated with particular source types to develop 

a mass balance for airborne particles. Subsequently, more chemical species than 

sources were used in a least-squares fit to provide estimates of the mass 

contributions of the sources (Friedlander, 1973). 

There were a number of these early application of the mass balance analysis 

including Ghent, Belgium (Heindryckx and Dams, 1974), Heidelberg, Germany 

(Bogen, 1973), and Chicago, Illinois (Gatz, 1975). Several major research efforts 

have subsequently resulted in substantially better source data. The source 

emission studies led to much improved resolution of the particle sources in 

Washington, D.C. (1978; 1982). In the first of these studies, Kowalczyk et a/. 

(1978) used a weighted least-squares regression analysis to fit six sources with 

eight elements for ten ambient samples. 

Subsequently, Kowalczyk eta/. (1982) examined 130 samples using 7 

sources with 28 elements included in the fit. They obtained an excellent fit of the 
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ambient concentration data and a quite good understanding of the major sources 

of airborne particles in the Washington, D.C. area. 

Mayrsohn and Crabtree (1976) presented the use of an iterative least- 

squares approach to apportion six sources of airborne hydrocarbon compounds 

in the Los Angeles basin. The sources were automotive exhaust, volatilization of 

gasoline and release of gasoline vapor, commercial natural gas, geological natural 

gas, and liquified petroleum gas. They performed the least-squares fit to the 

hydrocarbon compound concentrations using gas chromatography to determine 

the concentrations of eight compounds. Their ordinary least-squares source 

reconciliation algorithm recognized that not all sources may contribute to every 

sample, and, if negative contributions were obtained, a different configuration of 

sources was employed with certain qualifying assumptions. Each possible 

configuration with positive coefficients was considered and the one with the lowest 

standard error was chosen as the optimum solution. On the average, automotive 

exhaust was the source of almost 50% of observed hydrocarbons. Gasoline and 

its vapor contributed 30 to 30% by weight and the balance resulted from 

commercial and geological natural gas. Thus, automobiles and other highway 

related sources were responsible for the majority of these hydrocarbons. 

A similar study utilizing this mass balance approach for resolving 

hydrocarbon sources has been made by Nelson et a/. (1983) in Sydney, Australia. 

Thus, it is possible to identify the impact of emission sources on gaseous as well 

as particulate pollutants. 

In 1979, Watson (1979) and Dunker (1979) independently suggested a 

mathematical formalism called effective variance weighting that included the 

uncertainty in the measurement of the source composition profiles as well as the 

uncertainties in the ambient concentrations. As part of this analysis, a method 

was also developed to permit the calculation of the uncertainties in the mass 

contributions. Effective-variance least squares has been incorporated into the 

standard personal computer software developed by the U.S. EPA for receptor 

modeling. The most extensive use of effective-variance fitting has been made by 

Watson and colleagues in their work on data from Portland, OR (Watson, 1979; 
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Cooper et a/., 1984). Since that study, a number of other applications of this 

approach have been made in a wide variety of locations and extensive libraries of 

compositional profiles of emission sources have been developed to be used in the 

mass balance models. These models are described in detail in the chapter by 

Watson et a/. 

3.2 Multivariate Methods 

Actually, the first type of receptor modeling analysis reported in the literature 

was factor analysis using eigenvector methods that had been developed in the 

social sciences for interpreting large data sets. Blifford and Meeker (1967) used a 

principal component analysis with several types of axis rotations to examine 

particle composition data collected by the National Air Sampling Network (NASN) 

during 1957-61 in 30 U.S. cities. They were generally not able to extract much 

interpretable information from their data. Since there are a very wide variety of 

particle sources among these 30 cities and only 13 elements were measured, it is 

not surprising that they were not able to provide much specificity to their factors. 

Prinz and Stratmann (1 967) examined both the aromatic hydrocarbon content of 

the air in 12 West German cities and data from Colucci and Begeman (1965) on 

the air quality of Detroit using factor analysis methods. In both cases, they found 

solutions that yielded readily interpretable results. 

However, there was not further use of factor analysis until it was 

reintroduced in the mid-1970’s by Hopke et a/. (1976) and Gaarenstroom et a/. 

(1977) in their analyses of particle composition data from Boston, MA and Tucson, 

AZ, respectively. In the Boston data for 90 samples at a variety of sites, six 

common factors were identified that were interpreted as soil, sea salt, oil-fired 

power plants, motor vehicles, refuse incineration and an unknown manganese- 

selenium source. In the study of Tucson (Gaarenstroom et a/. 1977), whole filter 

data were analyzed separately at each site. They find factors that are identified as 

soil, automotive, several secondary aerosol materials such as (NH,),SO, and 

several unknown factors. They also discovered a factor that represented the 

variation of elemental composition in their aliquots of their neutron activation 
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standard containing Na, Ca, K, Fe, Zn, And Mg. This finding illustrates one of the 

important uses of factor analysis; screening the data for noisy variables or 

analytical artifacts. The value of this type of analysis in screening large data sets 

to identify errors was demonstrated by Roscoe et a/. (1982). With the use of 

atomic and nuclear methods to analyze environmental samples for a multitude of 

elements, very large data sets have been generated. Because of the ease in 

obtaining these results with computerized systems, the elemental data acquired 

are not always as thoroughly checked as they should be, leading to some, if not 

many, bad data points. It is advantageous to have an efficient and effective 

method to identify problems with a data set before it is used for further studies. 

Eigenvector analysis described later in this book in the chapter by Henry can 

provide useful insight into several possible problems that may exist in a data set 

including incorrect single values and some types of systematic errors. 

Gatz (1 977) used a principal components analysis of aerosol composition 

and meteorological data for St. Louis, MO. In addition to the 20 elements 

analyzed in the filter samples by Particle Induced X-ray Excitation (PIXE), Gatz 

introduced additional parameters in his analysis including day of the week, mean 

wind speed, percent of time with the wind from NE, SE, SW, or NW quadrants or 
variable, ventilation rate, rain amount and duration. At several sites the inclusion 

of wind data permitted the extraction of additional factors that allowed identification 

of motor vehicle emissions in the presence of specific point sources of lead such 

as a secondary copper smelter. 

A problem that exists with these forms of factor analysis is that they do not 

permit quantitative source apportionment of particle mass or of specific elemental 

concentrations. In an effort to find alternative methods that would provide 

information on source contributions when only the ambient particulate analytical 

results are available, various investigators (lhurson and Spengler, 1985; Hopke, 

1988; Henry and Kim, 1989) have developed alternative methods based on 

eigenvector methods. In these analyses, resolution similar to that obtained from a 

CMB analysis can be obtained. However, a CMB analysis can be made on a 

single sample if the source data is known while multivariate methods requires a 



7 

series of samples with varying impacts by the same sources, but does not require 

a priori knowledge of the source characteristics. These methods are also 

described in the chapter on multivariate methods. These methods provide a 

useful parallel analysis with CMB to help insure that the profiles used are 

reasonable representations of the sources contributing to a given set of samples. 

3.3 Sampling and Analysis Methods 

based on the chemical species that are determined in samples of particulate 

matter. Elemental analysis methods are described in the chapter by Dzubay and 

Stevens along with a review of ambient sampling methods. Source sampling is 

review by Houck. However, even with the best of sampling and analysis methods, 

only a limited number of elements are generally available for the receptor 

modeling analysis. Thus, in a complex airshed, the resolution and precision of the 

analysis may be limited by the number of chemical species on which the 

mathematical analysis is based. 

For both mass balance models and multivariate methods, the analysis is 

To provide additional information on particle samples in an effort to improve 

the identification of specific emission sources, automated single particle analysis 

methods have been developed (Casuccio et a/., 1983). These methods provide a 

large base of data that needs to be analyzed to produce quantitative mass 

apportionment results. Both the analytical and mathematical methods that have 

been developed to make automated electron microscopy a practical receptor 

modeling technique are presented in the chapter by Hopke and Casuccio. 

Although a mass balance approach has been previously applied to gaseous 

hydrocarbons as discussed previously, there has been considerable recent work 

to extend the sampling, analysis, and mathematical methods to examine the 

problem of source apportionment of volatile organic compounds (VOCs). With the 

increased interest in airborne toxic compounds from industry and waste sites, 

these methods described in the chapter by Scheff and Wadden are likely to 

become much more widely used in the near term future. 
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3.4 Air Quality Management Using Receptor Modeling 

modeling to air quality planning, receptor modeling was explicitly approved as an 

acceptable part of the development of State Implementation Plans for Particulate 

Matter 10 pm (PM10) (EPA, 1986). Thus, receptor modeling can be an effective 

part of the development of air quality management strategies. To illustrate how 

this is done, this volume includes the view of a state air quality manager who has 

extensively used receptor models in developing the management plans for the 

state of Oregon. The chapter by Core provides his perspective on the 

development and use of these tools from the viewpoint of the state that has the 

most extensive experience in' employing them. In the chapter by Pace, the 

perspective of an air quality manager in the US. Environmental Protection Agency 

toward the use of these methods is presented. Thus, we have the ideas of 

individuals who are involved in both the preparation and the review of air quality 

management plans. 

On the basis of the results of these studies showing the value of receptor 

4. SUMMARY 

Thus, a variety of topics related to the management of air quality through the 

use of receptor models are presented in this volume. It was planned as a 

practical guide to persons who may be given the task of implementing receptor 

modeling as a part of some air quality management problem and it is the intention 

of all of the chapter authors that this volume provide both the basic information 

needed to begin doing receptor modeling as well as some insight into some of the 

problems related to the use of these models. These tools like any others used in 

solving complex technological problems are not a panacea, but do represent 

powerful aides in data analysis that can lead to insights as to how an airshed 

functions and thus, to effective and efficient air quality management strategies. 
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Chapter 2 

SAMPLING AND ANALYSIS METHODS FOR 
AMBIENT PM-10 AEROSOL 

Thomas G. Dzubay and Robert K. Stevens 
Atmospheric Research and Exposure Assessment Laboratory 

U. S. Environmental Protection Agency 
Research Triangle Park, NC 2771 1 

1. INTRODUCTION 

In an early application of receptor models, Friedlander (1973) used data on 

atmospheric concentrations of Na, Mg, Al, K, Ca, V and Pb to apportion mass 

concentrations into components related to five different types of emission sources. 

Improvements in measurement technology enable many more species to be 

measured, and this can improve the accuracy and resolution of receptor model 

results. This chapter is intended to provide information for designing a 

measurement program to obtain ambient aerosol data for use in receptor models. 

Other chapters in this book show how receptor models are used in air quality 

management and how species concentrations are used in receptor models. 

Primary emphasis in this chapter is given to particles in the PM-10 size range 

(aerodynamic equivalent diameter less than 10 ,, m). Characteristics of PM-10 

sampling devices and filter media are presented, and the laboratory methods 

listed in Table 1 are described. 

It is shown that some combinations of filter medium, air sampler and analysis 

method are incompatible. Information presented here will enable one to avoid 

incompatibility and to devise optimum measurement strategies. Measurement 

artifacts that can alter ionic species concentrations in particles are described, and 

an annular denuder system for avoiding such artifacts and for measuring gaseous 

species is described. 
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Table 1. Laboratory Methods to Measure Aerosol Composition. 

Method Abbrev- Species 
iation Measureda 

X-Ray Fluorescence XRF 

XRF with Energy-Dispersive Detector EDXRF 

XRF with Wavelength Dispersive Detector WDXRF 

Particle-Induced X-ray Emission PlXE 

Instrumental Neutron Activation Analysis INAA 

Atomic Absorption AA 

Inductively Coupled Plasma ICP 

Pyrolysis in Helium 

Pyrolysis in Helium with Oxygen 

Accelerator Mass Spectrometry AMS 

Ion Chromatography 

Colorimetw 

Elements with Z > 12 

Elements with 2 > 12 

Elements with Z > 12 

Elements with Z > 12 

More than 25 
Elements 

One Element per 
Lamp 

More than 12 
Elements 

Volatilizable Carbon 

Total Carbon 

13C and 14C 

Ions in Solution 

Ions in Solution 

aThe symbol Z represents atomic number. 

2. AIR SAMPLING 

The monitoring requirements for determining attainment of the U. S. 

Environmental Protection Agency (EPA) National Ambient Air Quality Standard for 

PM-10 are defined so that sampling devices that meet certain performance 

specifications can be designated as reference methods (Purdue, 1988). By 1987, 

PM-10 high volume (hi vol) sampling systems made by Wedding and Associates, 

Inc. (Fort Collins, CO) and Andersen Samplers, Inc. (Atlanta, GA) had been 

designated as reference methods (Purdue, 1988). In 1989, the dichotomous 
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sampler made by Andersen Samplers, Inc., was designated as a PM-10 reference 

method (EPA, 1989). Table 2 shows some of the characteristics of these 

reference methods and indicates that the devices differ in inlet type and flow rate. 

A feature unique to the dichotomous sampler is the use of a virtual impactor to 

collect particles in fine (0 to 2.5 m) and coarse (2.5 to 10 I( m aerodynamic 

diameter) fractions. 

Several field studies have been conducted to compare performances of the 

samplers shown in Table 2 (Rodes et a/., 1985; Purdue et a/., 1986; Hoffman et 

a/., 1988). John (1988) evaluated data from Phoenix, AZ (Purdue et a/., 1986) and 

found that measured PM-10 mass concentrations can be ranked by sampler as 

follows: 

Wedding Hi Vol c Dichotomous Sampler < Andersen Hi Vol (1 1 

with deviations from dichotomous sampler results being as large as 30%. John 

(1988) attributed the higher Andersen values to bounce and reentrainment of 

particles in the impactor inlet - 

was coated with oil. He attributed the lower Wedding values to blocking of the 

airflow by buildup of collected particles in the cyclone - 

when cyclone surfaces were cleaned daily. Two models of dichotomous samplers 

gave equivalent PM-10 values (fine and coarse fraction data were summed). 

an effect that diminished when the impactor plate 

an effect that diminished 

Table 2. Characteristics of PM-10 reference method samplers. 

Sampler Size Ranges Inlet Type Flow Filter Size 
G m) Rate 

k m - 9  

Wedding PM-10 < 10 cyclone 1133 203 x 254 

Andersen PM-10 < 10 impactor 1133 203 x 254 

Andersen Dichotomous < 2.5 and impactor 16.7 37 mm 
2.5-10 diameter 
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When an oiled Andersen PM-10 hi vol and a daily-cleaned Wedding PM-10 hi vol 

were compared with a dichotomous sampler, the ranking in Equation (1) still 

applied, but average deviations were less than 13% (John, 1988; Hoffman et a/., 

1988). Consequently, oiling and cleaning of hi vol inlets have become a 

necessary part of the PM-10 measurement process (Purdue, 1988). 

The dichotomous sampler's ability to collect particles in the fine and coarse 

fractions is useful in receptor modeling because such size separation 

discriminates between particles generated by combustion and mechanical 

processes. Although it may seem that the flow rate in a dichotomous sampler is 

too low to collect sufficient sample for analysis, this is generally not the case 

because many analytical methods do not require large samples, and high-purity 

Teflon filters work best in a low-flow-rate sampler. 

An automated device named "SCISAS" has been designed to collect up to 

six samples of particles in two size ranges for applications of receptor models to 

visual air quality in western United States (Rogers et a/., 1988). Another sampler 

is the "Streaker", which collects a time-sequence of I-mm by 8-mm samples on a 

strip of Nuclepore filter for element analysis by PlXE (Nelson, 1977); this sampler 

can be equipped with an impactor to remove particles larger than 10 Ir m. 

3. FILTER MEDIA 

Filter media must be compatible with requirements of both the air sampler 

and analysis method. The characteristics of filter media commonly used in air 

sampling are shown in Table 3, and their compatibility with various air samplers 

and analysis methods is described in Table 4. 

Because thin Teflon membrane is difficult to handle, it is either mounted on 

annular polymethylpentene rings and sold as Teflo, or it is mounted on porous 

Teflon mat and sold as Zefluor (Gelman Sciences, Ann Arbor, MI). Despite the 2- 

P m pore size, the efficiency is very high for particles as small as 0.03 m (Liu et 

a/., 1983). Ring-mounted Teflon filters are excellent for XRF because their low 

mass per unit area and high purity enable good detection limits to be obtained. 

An exception is Lot 225, which is contaminated with Pb (Cooper, 1988). Teflon 
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Table 3. Characteristics of several filter media used in aerosol sampling. 

0.3-,,m 2 a m  2 p m  Quartz Quartz 
Nuclepore Ringed Teflon Type QMA Microquartz 

Teflon Zefluor (Whatman) (Gelman) 

Face Velocitya 10.6 64.1 86.7 41.6 

Mass/Areab, mg/cm2 1 .O 0.6 10.8 8.4 8.7 

E(0.035 ,, m)', % 99.3 99.9 94.6 99.9 

E(O.l ,,m)', % 98.6 >99.9 99.0 99.7 

E(0.3 % >99.9 >99.9 99.9 >99.9 

aNuclepore sometimes contains troublesome amounts of Si and Br. 

bZefluor is fair for XRF only if sample is collected on the membrane side. 

'Quartz is good for gravimetric analysis when RH is properly controlled. 

filters are not very good for PlXE because of a y-ray background due to 

interactions between the proton beam and the fluorine in the Teflon. 

The Teflon mat in Zefluor can cause problems for XRF and wet chemical 

analysis. The mat adds to the total mass per unit area, which increases X-ray 

blank levels and raises the minimum detection limits by about a factor of 3. Also, 

if particles are sampled on the mat side, they are collected deep within its 

structure, which attenuates soft X rays from light elements such as Al, Si, S and K 

and causes a large, difficult to determine bias. The membrane side of Zefluor is 

not easily discerned at first, but personnel can locate it with training and a 

magnifying glass. Postsampling validation by examination with a light microscope 

(100 to 400X) is needed to verify that the deposits are on the proper side. 

Another reason to require that particles be collected on the membrane side is that 

some wet extraction procedures do not efficiently extract particles imbedded in the 

Teflon mat. 

Zefluor filters are available that will fit in hi vol samplers, and Table 3 

indicates that they have low flow resistance when clean. However, the Teflon 
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Table 4. Compatibility of Filter Media with Sampling and Analysis Methods. 

0.3 r m  Ringed 
Nuclepore Teflon Zefluor Quartz 

Sampling 

PM-10 Hi Vol 

Dichotomous 

Resistance to Clogging 

Analysis 

Gravimetric 

XRF 

PlXE 

I NAA 

ICP 

Pyrolysis 

poor none fair 

excellent excellent excellent 

poor fair fair 

good good good 

gooda excellent poor-fairb 

excellent fair poor 

good excellent excellent 

good excellent excellent 

none none none 

excellent 

excellent 

excellent 

fair-goodc 

poor 

poor 

difficult 

good 

fair- 

goodd 

aNuclepore sometimes contains troublesome amounts of Si and Br. 

bZefluor is fair for XRF only if sample is collected on the membrane side. 

‘Quartz is good for gravimetric analysis when RH is properly controlled. 

dBecause quartz filters adsorb carbon vapor, quartz filters are good for 
particulate carbon only if an appropriate correction is made for adsorbed carbon. 

membrane in Zefluor clogs so quickly that after a few hours of sampling, the 

pump in a typical hi vol cannot maintain a steady flow rate. Clogging is less of a 

problem with Teflon membrane in a dichotomous sampler, because its pump can 

deliver a low but constant flow rate for fine particle loadings up to 150 g/cm2 on 

a dry weight basis. However, higher fine particle mass concentrations in humid air 

can cause the flow-rate controller in a dichotomous sampler to fail to maintain 

constant flow. Quartz filters are much less prone to clogging than Teflon and are 
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therefore best to use in hi vol samplers. However, quartz filters have high 

concentrations of Si, Ca, Fe and other elements and are not good for XRF and 

INAA. A further complication for XRF is that a quartz filter collects particles within 

its volume, which causes soft X rays from light elements to be attenuated by 

amounts that are difficult to determine. Quartz filters are best analyzed for trace 

elements by extracting the sample in strong acids. However, an extraction 

procedure designed not to dissolve the quartz filter may not be efficient for 

elements in silicate minerals (Al, Si, Ti and Fe). 

Whatman 41 is a type of cellulose filter that has high loading capacity, works 

well in a hi vol sampler, and has very low blank values (Dams et a/., 1972). 

Laboratory tests show that these filters have efficiencies of 43, 52 and 92% for 

0.03, 0.1 - and 0.3-pm-diameter particles, respectively (Liu et a/., 1983). Although 

such low efficiencies exclude this filter for monitoring to meet the U. S. PM-10 

standard, Lowenthal and Rahn (1987) demonstrate that the efficiency of Whatman 

41 filters exceeds 90% for 24-hour atmospheric samples. 

4. MASS AND ELEMENTAL ANALYSIS METHODS 

4.1 Sample Handling and Transport 

When quartz filters are folded, they splinter, and their tare masses change. 

To maintain stable tare masses and avoid particle loss, quartz filters should be 

transported from sampling site to laboratory in cassettes oriented deposit-side-up. 

After mass measurements are completed, quartz filters may be folded to avoid 

particle loss during further shipment or storage. 

Ring-mounted Teflon filters are held in circular cassettes in a dichotomous 

sampler and may be stored in those cassettes in petri dishes before and after 

sampling. To avoid particle loss, samples should be deposit-side-up during 

transport from field to laboratory. When filters are shipped by mail, one has little 

control over orientation, but losses can be greatly reduced by applying a thin layer 

of mineral oil (25 pg/cm2) to coarse fraction filters in the laboratory before 

sampling (Dzubay and Barber, 1983). No oil is needed for fine particles. 

Accurate gravimetric analysis is possible if the mineral oil is applied before tare 



18 

mass is determined. Small amounts of mineral oil do not interfere with XRF 

analyses. 

4.2 Gravimetric Analysis 

Mass is determined by weighing each filter before and after sampling. Filters 

are stored in an atmosphere of 20 to 45% relative humidity (RH) for 24 hours 

before each mass measurement. Because the mass of a quartz filter is sensitive 

to relative humidity, RH must be constant to *5% between tare and final mass 

determinations. Ring-mounted Teflon filters require a microbalance with 1 -pg 

precision. Electrostatic charge, which accumulates on Teflon filters, must be 

removed by exposing each side of a filter for a few seconds to alpha particle 

radiation from a 210Po source (Model 2U500 Staticmaster, Nuclear Products Co., 

El Monte, CA). If a wire balance pan is used a 210Po source can be mounted 

below the pan so that charge neutralization occurs while each filter is weighed. 

Because the half-life of *''Po is 138 days, the source should be replaced at least 

every 12 months. 

4.3 X-Ray Fluorescence Spectrometers and Sample Requirements 

to emit characteristic X rays, which are detected by a solid state detector or a 

crystal spectrometer. The X-ray source may be direct emissions from an X-ray 

tube, or it may be the nearly monochromatic X rays from a secondary target 

irradiated by an X-ray tube. 

In XRF analysis a beam of X rays irradiates the sample and causes elements 

Figure 1 shows an X-ray spectrum for fine particles on a Teflon filter 

irradiated by a Mo secondary target. The detector is a silicon diode (1-cm diam, 

0.3-cm thick) containing small amounts of lithium. The detector and related 

electronic components constitute an EDXRF spectrometer, which enables several 

elements to be determined simultaneously (Jaklevic et a/., 1981). Optimum 

detection limits for a wide range of elements are obtained when several different 

secondary targets and X-ray tube voltages are used to analyze each sample. In 

WDXRF analysis, a crystal spectrometer is used to measure elements sequentially 

(Wagman et a/., 1977). In PlXE analysis, a beam of protons or alpha particles 
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Figure 1. 
secondary target. X rays above channel 450 are due to the Mo target. 

excites the sample (Nelson, 1977). 

EDXRF spectrum of fine particle sample using excitation by a Mo 

Table 5 compares element concentrations measured in Camden, NJ, and 

Great Smoky Mountains with 2u measurement precision for EDXRF, WDXRF, and 

PIXE. The units for 2u in Table 5 are ng/cm2 and are equivalent to ng\m3 for a 7- 

hour sample collected at 16 L/min on a 6.5-cm2 area in a dichotomous sampler. 

The 20 data pertain to analysis of low element concentrations on a blank filter and 

include propagation of error due to statistical fluctuations in the X-ray background 

of element measured and interfering elements. Much of the background is due to 

X-ray scattering by the filter. 

In EDXRF analysis Cd, Sn, Sb and Ba are best determined by their K, X 

rays, which are free of interferences, but the lower energy L, and Lp X rays from 

those elements interfere with the K, and K, X rays measured for K, Ca, Ti and V. 
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Table 5. Typical atmospheric concentrations and 20 measurement precision. 

Concentrations, ng/m3 

Camden, NJb Elkmont, TN' ~~ 

20 measurement precisiona in ng/cm2 

EDXRFd EDXRF' WDXRF' PIXEg 
Fine Coarse Fine Coarse DRI EPA EPA EAC 

Al 53 
Si 103 
S 4200 
CI 3 
K 101 
Ca 40 
Ti 15 
v 13 
Cr 2 
Mn 6 
Fe 91 
Ni 11 
Zn 82 
As 1 
Se 2 
Br 29 
Cd 2 
Sn 5 
Sb 79 
Ba <30 
Pb 249 

550 
1610 
230 
69 
151 
360 
65 
7 
3 
11 

490 
4 

30 
0 
0 
15 
0 
1 

181 
< 30 

20 
38 
3700 
< 10 
40 
16 
<2 
<2 

28 
1 
2 
2 
2 
18 

195 
580 
200 
7 
110 
190 
<2 
<2 

120 
2 
<1 
<1 
<1 
5 

13 
6 
3 
7 
4 (3) 
4 (3) 
18 (2) 
7 (1) 
2 
1 
1 
1 
1 
2 
1 
1 
9 
14 
16 
59 

54 97 14 3 

101 
36 
13 
10 
8 (5) 
10 (5) 
14 (3) 
5 (3) 
2 
2 
3 
2 
1 
2 
1 
1 
9 
16 
14 
33 
3 

4 
7 
5 

26 
13 
2 
2 
8 

26 
23 
9 
9 
11 
13 
16 
38 
2 

11 
5 
7 

94 

24 
20 
15 
14 

(10) 
(9) 
(7) 
(6) 

2 
2 
1 
1 
1 
1 
1 
3 

46 
75 
99 

4 
(24) 

aFilter medium is 2-pm pore size ringed Teflon for XRF and Nuclepore for PIXE. Data in 
parentheses represent assumption of no interferences between K, X rays from K. Ca, Ti and V 
and L, and Lg X rays from Cd. Sn, Sb and Ba. 
bonemonth average for summer 1982 (Dzubay et a/., 1988). 
'Data for September 1978 in Great Smoky Mountains (Stevens eta/., 1980). 
dDesert Research Institute (DRI) excitation conditions (and X-ray tube voltage) are cellulose- 
filtered direct excitation (8 kV) for Al - S; Ti secondary target (30 kV) for CI - Ca; Ge secondary 
target (30 kV) for Ti - Zn; Rh-filtered direct excitation (35 kV) for As - Mo and Pb; Mo-filtered 
direct excitation (60 kV) for Pd - La. Analysis time is 18 min. (Frazier. 1989). 
'Secondary targets (and X-ray tube voltages) are Ti (41 kV) for Al - Ca; Co (41 kV) for S - Mn; 
Mo (50 kV) for Fe - Sr and Pb; Sm (66 kV) for Sr - Ba. Analysis time is 14 min. (Kellogg. 1989). 
'Excitation by Cr X-ray tube operated at 54 kV and 44 mA; Al, Si, P, S, CI. K. Br, Sr, Mo, Cd and 
Pb are determined simultaneously in 100 seconds using fixed channels. All other listed elements 
are determined sequentially by scanning the X-ray spectrum for 20 sec per element. (Kellogg, 

gProton beam energy is 3.2 MeV; analysis time is 6 rnin. Data are from brochure by Element 
Analysis Corporation (EAC), Tallahassee, FL. 

1 989). 
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In most EDXRF analyses the needed interference corrections are based on Cd, 

Sn, Sb and Ba concentrations, which are measured poorly by XRF, and this 

causes the interference corrections to have poor precision. Table 5 shows two 

sets of precision data for K, Ca, Ti and V. The larger values are more realistic, for 

they include the precision with which the interference corrections can be made. 

The smaller values (in parentheses) are based on the assumption that interfering 

elements are absent. 

Although XRF is considered to be nondestructive, this is not strictly true. 

During XRF analysis, the sample must be in vacuum or in helium to eliminate air 

and argon, which attenuate and interfere with X rays from light elements. If a 

sulfuric acid sample is analyzed in vacuum, loss by volatilization may occur. Also, 

during WDXRF analysis a sample receives a large radiation dose, which makes 

the filter brittle and may volatilize Br and GI. Radiation damage during EDXRF 

analysis is negligible. Data in Table 5 suggest that detection limits can be 

improved if a sample is first analyzed by EDXRF for all elements and then by 

WDXRF for Al, Ti, Cd, Sn, Sb and Ba. By limiting WDXRF to those few elements, 

precision can be improved by using longer counting time per element while total 

radiation dose is reduced. The precision of XRF varies inversely as the square 

root of counting time, so precision improves by a factor of 2 for every factor of 4 

increase in counting time. 

The sensitivity profile for a typical XRF analyzer is nonuniform across a 

sample’s diameter. For such an instrument, quantitative analysis is possible only if 

the standards and samples have identical deposit profiles. This requirement is 

satisfied most easily if both sample and standards have uniform deposit profiles. 

Thus, most cascade impactor samples, which are nonuniform, are unsuitable for 

XRF. An exception is the micro orifice impactor, which deposits size-fractionated 

particles uniformly on surfaces (Hasan and Dzubay, 1987). Uniformity of deposit 

profile is less a concern for PlXE because the proton beam used by that method 

can be made small and uniform. 
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4.4 Quantitative XRF analysis 

In an X-ray spectrum such as the one shown in Figure 1, peak areas are 

proportional to the concentrations of the elements they represent. One method to 

determine peak areas in a multielement spectrum is to use a least squares fitting 

method to represent the spectrum as a superposition of spectra for pure element 

standards and a blank filter (Arinc et a/., 1977). This method automatically 

determines the peak area for each element in the presence of background and 

interferences, and it provides a good way to estimate measurement precision. 

Another method is to sum the spectrum over specified intervals to determine peak 

areas and background; arithmetic corrections are made to account for 

interferences. 

A practical way to relate spectral peak areas to element concentrations is to 

use thin, single element standards and make mathematical correction for 

attenuation of X rays within unknown samples (Dzubay et a/., 1987). A single 

concentration is needed for each element if it is in the instrument’s linear range 

and if background is subtracted appropriately. A seemingly good alternative is to 

use multielement standards that exactly duplicate the attenuation effects of all 

unknown samples, but such standards do not exist. Reliable single element 

standards are made by Micromatter Co. (Deer Harbor, WA) by vacuum deposition 

of pure metals or compounds onto Nuclepore filters. Deposit masses are 

determined gravimetrically and range typically from 20 to 80 pg/cm2. Another 

type of standard that is rugged and reliable is polymer film with known amounts of 

organometallic compounds; element concentrations range from 2 to 12 pg/cm2 in 

the polymer (Dzubay et a/., 1987). The substrates for standards and samples 

need not be identical if background is properly subtracted from the spectra for 

standards and unknowns. 

Because no standard has perfect accuracy, one should not rely on any single 

standard. We use a semiempirical model to derive a calibration constant for each 

element based on data for all standards and all elements. This approach not only 

improves the calibration for elements that have accurate standards, but it provides 

accurate calibration by interpolation for P, Ga, As, Se and Br, which have poor 
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standards because of volatility or uncertain stoichiometry. Results are plotted in 

Figure 2. 

The National Institute of Standards (NIST, formerly NBS) has developed 

standard reference materials (SRMs) for XRF which are thin, uniform glass 

deposits on Nuclepore filters. Certified elements in SRM 1832 are Al, Si, Ca,V, 

Mn, Co and Cu; certified elements in SRM 1833 are Si, K, Ti, Fe, Zn and Pb. We 

use these standards to validate the calibration constants derived from thin film 

standards and to provide daily quality control checks on accuracy of EDXRF data. 

Fine particles are typically collected as layers of particles on the surface of a 

membrane filter (Loo et a/., 1977), and reliable corrections for attenuation can be 

made assuming a uniform deposit. The correction for fine particles is usually 

small since the membrane filter will clog before enough mass is collected to cause 

large attenuation. 

In a dichotomous sampler, coarse particles are collected mainly as a 

monolayer, and the correction for attenuation is made by assuming that each 

particle is a sphere (Dzubay and Nelson, 1975). Such corrections are uncertain 

when size distributions and compositions of individual coarse particles are 

unknown. Thus, we base the attenuation correction on the range of results 

calculated for a wide variety of compositions and size distributions. Table 6 

shows attenuation correction factors calculated for excitation by Ti, Co and Mo 

secondary targets. Uncertainty is largest for At, Si and P, which emit soft X rays 

that are easily absorbed within each particle. The attenuation correction factor for 

A1 excited by Ti X rays is 0.56 f 0.15 and represents the diverse values 0.41, 0.58 

and 0.70 for almandine, muscovite and kaolinite, respectively. For samples 

collected by using a PM-10 inlet, the dependence on size distribution is not large. 

For example, the attenuation factors for muscovite are 0.58 and 0.54 for a size 

distribution with geometric standard deviation of 2 and mass median aerodynamic 

diameters of 10 and 15 I( m, respectively. 

When XRF data are reported, both concentrations and uncertainties should be 

reported. Measurement uncertainty due to the random nature of counting X rays 

can be derived from Poisson statistics and should include count rates due to 
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Figure 2. XRF calibration constants based on semiempirical model applied to 203 
different polymer film and evaporated film standards. (Many data points close to the 
fitted line overlap each other and are therefore not seen.) 

Table 6. Attenuation correction factors for XRF analysis of coarse particlesa 

Element Ti target Co target Mo target 
Analyzed 4.5-keV excitation 7-keV excitation 18-keV excitation 

Al 0.56 + 0.15 0.59 + 0.16 
Si 0.57 i 0.13 0.61 i 0.12 
P 0.65 i 0.20 0.68 i 0.19 
S 0.81 + 0.13 0.85 f 0.10 
CI 0.81 i 0.10 0.84 i 0.09 

K 
Ca 
Ti 
V 
Cr 

Mn 
Fe 
Ni 
Zn 

0.84 * 0.10 0.88 i 0.08 0.90 f 0.08 
0.81 i 0.05 0.88 + 0.04 0.91 f 0.04 

0.81 f 0.08 0.90 + 0.06 
0.87 + 0.08 0.92 f 0.05 
0.87 f 0.08 0.93 i 0.05 

0.87 * 0.08 0.94 i 0.05 
0.95 + 0.04 
0.93 i 0.05 
0.93 i 0.05 

aSize range is 2.5- to 10- lm aerodynamic equivalent diameter. 
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background and interfering elements as well as the element itself. Some 

investigators also include systematic error. If the true concentration is zero, 

negative and positive values are equally probable because background, which has 

random error, is subtracted to obtain a final value. Thus, -1.1 * 0.8 ng/m3 is a 

valid result that is not significantly different from zero and does not imply a 

meaningless negative concentration. It is common to replace negative values with 

zero or a positive number, but that introduces bias that complicates use of the 

data to compute statistical parameters. 

4.5 Instrumental Neutron Activation Analysis 

In INAA a sample absorbs thermal neutrons in a nuclear reactor and 

undergoes nuclear transitions that result in y-ray emissions characteristic of nuclei 

in the sample (Zoller and Gordon, 1970; Dams et a/., 1972; Ondov et a/., 1975). 

After samples are withdrawn from the reactor, they are allowed to "cool" to 

diminish activities of short-lived interfering isotopes, and y-ray spectra are 

obtained with lithium-drifted or intrinsic germanium detectors. Near optimal results 

are obtained when irradiation, cooling and counting periods are about equal to the 

half life of the isotope measured. Because half-lives of isotopes of interest range 

from 2 min to more than 12 years, it is not practical to satisfy such criteria for 

every element, but very good results can be obtained for more than 25 elements if 

two irradiation periods and four counting periods are used as shown in Table 7. 

Gordon et a/. (1984) compare detection limits for INAA with typical ranges of 

element concentrations in the atmosphere in order to predict which elements can 

be measured. Gordon et a/. also characterize INAA by noting whether an element 

was measured strongly or moderately in aerosol samples collected in St. Louis, 

and their results are summarized in Table 7. The results are based on the NBS 

heavy water moderated reactor at Gaithersburg, MD. The neutron flux was 2 to 5 

x IOl3 cm2/sec. These results illustrate what can be measured by INAA, but they 

may not generally apply to other laboratories, because each laboratory optimizes 

its measurement system in a different way. For example, there are fewer 

interferences among elements if a heavy water reactor is used, but Ni can be 
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Table 7. Typical INAA Analysis Conditions and Performancea 

Group 1 Group 2 Group 3 Grouo 4 

Product half-life c12 min 12-1440 min 1-3 d 23 d 
Irradiation time 5 min 5 mln 4 h  4 h  
Cooling time 3 8  min 15 min 2-5 d 
Counting time 6 min 30 min 1-4 h 2-24 h 

, 20-30 d 

+ + +sc ( 46sc) 
t + t C r ' ( 5 1 ~ r )  
t + +Fe ( 59Fe) 
+ + +co (%o) 

Ni ( %o) 
+ + +Zn ( 6 5 ~ n )  
t + t Se ( 7 5 ~ e )  

++Fib (%b) 
+Zr ( 9 5 ~ r )  
t Ag (' IomAg) 

+ + +Sb (124Sb) 
+ t cs (134Cs) 
t Ba (13'Ba) 

+ + t c e  (14ke) 
+ t E u  (152Eu) 

tTb  ('@Tb) 
tYb  (16'Yb) 

+ t Hf (18'Hf) 

+ tTa (lE2Ta) 
+ tTh (233Pa) 

+ t Lu (177Lu) 

'The isotope measured for each element is shown in parentheses. Performance, based on results 
of Gordon eta/.  (1984) for analysis of St. Louis samples, is represented as follows: 

+ Mg (27Ms) 
t t Al (28Al) 

+ s (37s) 
+ t Ca (49~a)  
+ t Ti (51Ti) 

t + t v (52v) 

,+ c u  ("CU) 

t + t Na ( 24Na) 

+ t t K  (42K) 
+ + +Mn (%Mn) 

+Ga ( 72Ga) 
+ + Br ( 8oBr) 

+ Br (BomBr) 
+ Sr (87m~r) 
+in ('lsrnln) 

t t l  (1281) 
+Ba f3Ba) 
+ DY ('=DY) 

+ t w ('87W ) 

+ + tCI (%I) 
+ + t As ( 76As) 

+Mo ( wMo) 

+Sb (lZ2Sb) 

t t t Sm ( '53~m) 

+Au (l%Au) 

+ +Br ( 

+ tcd (l151n) 

t + t La (''?-a) 

+ + w ('87w) 

+ + + elements strongly measured in f i n e d  coarse fractions. 
t t elements strongly measured in fineql coarse fraction. 
+ elements moderately measured in fine or coarse fraction. 

detected only if a light water reactor is used (Gordon eta/., 1984) 

4.6 Element Analysis by Optical Spectroscopy 

Elements extracted from filters can be measured by AA or ICP. A typical AA 

instrument can analyze only one element at a time, although newer instruments 

can analyze two or even four elements simultaneously. The ICP system used by 

EPA to determine trace elements in hi vol samples analyzes 48 elements per 

sample simultaneously (Cummings et a/., 1984). Harper eta/. (1983) have 
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developed an optimized method that extracts more of the particulate matter and 

less of the contaminants in a glass fiber filter than was possible with an earlier 

EPA method. In the optimized method, a 2.5- x 20-cm portion of filter is extracted 

in a heated ultrasonic bath in 2.2 M HCI and 1 M HNO, (Harper et a/., 1983). 

Table 8 compares ICP results for 195 hi vol samples extracted by the 

optimized and earlier extraction methods. In every case the optimized method 

has equal or improved extraction efficiency. Several elements (Ti, V, Mn, Fe, Cu, 

Zn and Pb) were detected in almost all of the samples, but concentrations of other 

elements (Cr, Co, Ni, As, Mo, Cd and Ba) were significantly greater than the blank 

Table 8. Performance of ICP for analysis of ambient samples and standard reference 
materiala. 

Optimized vs earlier extraction 
method for 195 hi vol samples 

Extraction efficiency for NBS 
SRM 1648 (Urban particulate 
matter standard) 

Number Slopeb Correlation Mean Relative Standard 
Detected Coefficient Recovery Deviation (%) 

Ti 192 0.33 0.87 12 5.0 
V 138 0.91 1 .oo 79 1.9 
Cr 27 0.95 0.93 23 1.4 
Mn 195 0.91 0.98 88 1.6 
Fe 175 0.34 0.87 68 1.4 

c o  0 96 5.4 
Ni 33 0.88 0.98 90 9.0 
c u  194 0.92 0.99 100 1.4 
Zn 170 1.13 0.73 97 3.8 
As 15 1 .oo 0.99 130 2.2 

Mo 14 0.88 0.95 
Cd 19 0.95 1 .oo 114 8.5 
Ba 51 0.17 0.49 80 0.8 
Pb 192 1 .oo 1 .oo 95 1.1 

aResults reported by Harper et a/. (1983). 

bRegression results for: earlier method = intercept + slope x optimized method. 
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in less than 30% of the samples. Newer, more sensitive ICP instruments applied 

to purer quartz filters may yield better detection for more elements. 

Table 8 also shows extraction efficiencies for elements in a standard 

reference material for urban particulate matter. Extraction is quantitative for 10 

elements, but Ti and Cr are not extracted efficiently. The acids used in the 

extraction are not expected to provide quantitative recovery of elements in silicate 

minerals. Thus, if ICP is used to provide data for receptor models, it may be 

necessary also to use INAA to determine elements that are difficult to extract. 

Although the Na in glass fiber filters causes high background that impairs INAA 

performance, Lambert and Wilshire (1979) were able to obtain reliable INAA 

results for several elements. 

Table 9 shows typical 20 detection limits for a modern ICP instrument. Data 

in Tables 5 and 9 indicate that ICP is superior to XRF for Li, Be, 6, Na, Mg, Ca, Ti, 

V, Mn, Sr, Y, Zr, Ag, Cd and Ba collected in a dichotomous sampler. However, to 

take full advantage of the capabilities of ICP for analyzing Teflon filters, it will be 

necessary to develop an extraction procedure that does not introduce 

contamination and is quantitative for all elements. 

Table 9. Limits of Detection for ICP Instrument in ng/mL of Sample Extractamb. 

Li 
Be 
B 
Na 
Mg 
Al 
Si 
P 
S 
K 

0.8 
0.13 
1.1 
5.0 
0.07 
4.7 
3.3 
13. 
20. 
20. 

Ca 0.07 
Ti 0.4 
V 0.8 
Cr 1 .o 
Mn 0.2 
Fe 1 .o 
cu 0.9 
Ni 2.7 
Zn 0.5 
As 7.4 

Se 14. 
Sr 0.07 
Y 0.5 
Zr 2.5 

Cd 0.6 
Sn 6.7 
Sb 7.4 
Ba 0.7 
Pb 10. 

Ag 1.2 

aModel JY 70 Plus by Instruments S. A. Inc., Optical Systems Div., Edison, NJ. 

bThe tabulated data are equivalent to ng/m3 for 10-hour air samples collected 
in a dichotomous sampler at 16.7 L/min and extracted in 10 mL of solution. 
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4.7 Carbon Analysis 

can be determined by pyrolysis. To remove carbon contamination before 

sampling, quartz filters are heated in air at 7OOOC for several hours and stored in 

aluminum-foil-lined petri dishes. During analysis, C, is determined first by heating 

the sample to temperature T, in pure helium and measuring volatilized carbon as 

CO, by infrared spectroscopy after oxidation or as methane by flame ionization 

after reduction. Then, C,, is determined by heating the sample to temperature T2 

in a helium-oxygen mixture and measuring oxidized carbon. Pyrolysis 

temperatures used by various laboratories are in the ranges 350 < T, < 950°C 

and 600 < T, < 95OOC (Hering et a/., 1990). To account for charring so that C, 

and C,, can be related to organic and elemental carbon, some investigators 

measure light absorption as samples are heated during pyrolysis (Johnson et a/. 

1981). 

Volatilizable carbon (C,) and nonvolatilizable carbon (C,,) on quartz filters 

Several laboratories participated in a field study to compare methods for 

measuring carbon (Hering et a/., 1990). When participants analyzed identical 

samples, excellent agreement was obtained for total carbon (C, + C,,), but results 

were variable for C,,, which comprised about 25% of total carbon (Hering et a/., 

1990). Larger variability for both C, and C,, was obtained when both sampling 

and analysis methods were compared. Some of the variability was attributed to 

adsorption of organic vapors by quartz filters. 

A correction for adsorption of organic vapors can be made if carbon is 

analyzed on two quartz filters that have been sampled in series. One approach is 

to use two quartz filters in series in the same airstream. Another approach is to 

collect carbon on quartz filters in two parallel sampling streams where quartz is 

preceded by a Teflon filter in one of the streams. With either approach, particulate 

carbon is calculated as the difference between amounts of carbon on the two 

quartz filters. Field study results showed that quartz behind quartz collected less 

organic carbon vapor than quartz behind Teflon (Hering eta/., 1990), which 

indicates that quartz collects more organic carbon vapors than Teflon. Until it 

becomes known which approach is best, data for C, and C,, should be used with 
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caution. If one must use such data in a chemical mass balance, some of the 

ambiguity can be avoided if the same sampling protocol and laboratory are used 

to analyze all source signature and ambient aerosol samples. That may preclude 

the use of carbon data in source signature libraries. 

4.8 ''C Analysis 

produce 14C, a radioactive isotope with 5730-year half-life. Carbon atoms 

containing this isotope are oxidized in the atmosphere to form CO, that becomes 

incorporated into living matter. Although fossil fuel originated as living matter, its 

14C has completely decayed away, and it contains only stable isotopes 12C and 

13C. Thus, through measurement of the 14C/13C ratio, fossil fuel combustion 

products can be distinguished from modern carbon-containing particles such as 

pollen and combustion products of wood and paper. In past years, 14C in aerosol 

samples was measured by oxidizing the sample to CO, and incorporating it into a 

gas-filled radiation counting tube (Currie, 1979). About 5 mg of carbon was 

needed for analysis, an amount easily collected in a hi vol sampler. Cooper et a/. 

(1981) determined 14C in <2.5-pm particles collected in a hi vol equipped with an 

impactor inlet and were able to estimate contributions due to slash burning and 

field burning. Lewis et a/. (1988) collected <2.5-pm particles during winter in 

Albuquerque and demonstrated that 14C in extractable organic matter was 

proportional to the amount of wood smoke. 

An AMS instrument consists of a sample ionizer, a tandem Van de Graaff that 

accelerates carbon ions to an energy of 12 MeV, a magnetic separator that 

selects mass 13 and 14 ions, and a particle detector that identifies and counts 13C 

and 14C ions. Verkouteren et a/. (1987) have developed a sample preparation 

technique that enables 14C to be determined by AMS in samples that have 10 to 

800 kg of carbon. This technique is sensitive enough to analyze 24-hour samples 

collected in a dichotomous sampler. Because there is a limited number of 

Cosmic rays continuously bombard atoms in the upper atmosphere and 

Accelerator mass spectrometry enables 14C atoms to be measured directly. 
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laboratories capable of AMS analysis, there are large backlogs, and it is difficult to 

obtain timely analysis. 

5. IONIC ANALYSIS OF PARTICLES COLLECTED ON FILTERS 

5.1 Extraction 

Analysis of ionic species collected on a filter requires extraction of the ions 

into an aqueous solution. Quantitative extraction of soluble ions on Teflon filters 

requires the use of ethanol to overcome the hydrophobic nature of Teflon. The 

following procedure has been developed for 37- and 47-mm Teflon filters and is 

similar to one used by Koutrakis eta/. (1988a): Immediately after sampling, a filter 

is placed in an extraction vial (vial diameter must exceed filter diameter) containing 

10 mL of extraction solution and stored in the dark at 5OC to retard bacteria 

growth until time of analysis. When ready for analysis, the filter is removed from 

its vial, and 100 pL of ethanol is pipetted onto the filter to wet it uniformly. The 

filter is immersed again in the vial and agitated in an ultrasonic bath for 15 min. If 

Ht is to be measured, the extraction solution should be l o 4  M HCIO,, which 

keeps CO, and weak acids from disassociating. Otherwise, the extraction solution 

may be either deionized water or the eluent solution used in ion chromatography. 

5.2 Ion Chromatography 

Ion chromatography is a technique for separation and automatic 

measurement of ions in solution (Mulik and Sawicki, 1979; Gjerde and Fritz, 

1987). Measurement consists of injecting a sample into an eluent that passes 

through an ion exchange column followed by a suppressor unit and a conductivity 

detector. For anion analysis, the eluent typically consists of a mixture of 2.8 mM 

NaHCO, and 2.2 mM Na,CO, (Gjerde and Fritz, 1987). The ion exchange column 

retards the flow of sample by a different amount of time for each ion, and the 

conductivity detector responds linearly to each anion. The suppressor unit 

eliminates the high conductivity of the eluent by converting it to H,CO,. The 

separation characteristics of the ion exchange column can be optimized for certain 

ions by adjusting the ratio of NaHCO, to Na,CO, in the eluent (Speitel et a/., 
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1979). Ion chromatography can also be used to measure cations (Gjerde and 

Fritz, 1987). 

Analytical detection limits below 1 pg/mL are obtained routinely by using an 

instrument made by Dionex Corp. (Sunnyvale, CA). This corresponds to detection 

limits below 0.5 pg/m3 for a 24-hour fine particle sample collected at 15 L/min and 

extracted in 10 mL. Anions routinely measured in aerosol samples include sulfate 

and nitrate. Additional anions seen in some samples include bromide, chloride, 

nitrite, sulfite, formate and acetate. An automated ion chromatograph can analyze 

three to five samples per hour. Ethanol, which serves as a wetting agent in the 

extraction, is unlikely to damage the IC column. Reasonably long life for the ion 

exchange column can be obtained if an upstream filter is used to remove bacteria 

in the eluent and if a relatively fresh "guard column" is used upstream to remove 

polyvalent metals that might contaminate the main column (Gjerde and Fritz, 

1987). 

5.3 Ion Analysis by Colorimetry 

Sulfate, nitrite, nitrate and ammonium in sample extracts can be analyzed 

rapidly by colorimetry. Sulfate is determined by measuring absorbance at 460 nm 

in a sample processed as follows: (1) passage through a cation exchange 

column to remove interferences, (2) reaction with barium chloride in acidic solution 

to form barium sulfate, (3) reaction of excess barium with methylthymol blue in 

alkaline solution to form a blue chelate. Nitrite is determined by adding an acid 

and sulfanilamide to the extraction solution to form a soluble dye that is measured 

by absorbance at 520 nm. Nitrate is determined similarly after it is reduced by a 

copper catalyst to nitrite in an alkaline solution of hydrazine sulfate. Ammonium is 

determined by measuring absorbance at 660 nm of a blue dye formed by reaction 

of ammonium with sodium phenoxide followed by addition of sodium hypochlorite. 

Interfering calcium and magnesium ions are removed by complexing with EDTA. 

An automated "TRAACS" colorimetric instrument by Technicon Industries can 

analyze up to 40 unknowns plus 30 standards per hour, which is considerably 

faster than the 3 to 5 per hour capability of an ion chromatograph. 
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5.4 Hydrogen Ion Measurement 

Stevens et a/. (1978) describe a Gran titration procedure by which Ht from 

strong acid is determined from a plot of pH vs amount of NaOH titrant. As 

explained in Section 5.1, the extraction solution should contain HCIO,, but the 

portion analyzed for Ht should also contain 0.04 M of KCI in order to increase the 

ionic strength and speed the response of the pH meter. Koutrakis et a/. (1988a) 

deduce Ht concentration from a single pH measurement without the need for a 

Gran titration. Such measurements determine strong acid because the HCIO, 

prevents disassociation of weak acids. 

5.5 Artifacts in Measurement of Ionic Species 

Although techniques described above are useful for determining ions 

collected in a PM-10 sampler, three types of artifacts can cause measured ions 

not to represent atmospheric particles: (1) filter artifacts, (2) reactions between 

gases and particles, and (3) reactions among particles. 

Alkalinity of glass fiber filters can cause gaseous sulfur and nitrogen 

compounds to react and produce sulfate and nitrate artifacts. Such filter artifacts 

are minimal for Teflon filters or the low-alkalinity quartz filters required for PM-10 

sampling. 

Two kinds of reactions between gases and particles can alter the aerosol 

composition. (a) Acidic gases can react with alkaline particles, and (b) ammonia 

gas can react with acidic particles. Such reactions can occur in the atmosphere 

or on the filter. Examples are 

2HN0, + CaCO, + Ca(NOJ, + H,O + CO, t (2) 

2HCI + MgCO, + MgCI, + H,O + CO, t (3) 

HNO, + NaCl -* NaNO, + HCI t (4) 

NH, + NH,HSO,+ (NHJ2S04 (5) 

Reaction (2) can explain the occurrence in Camden, NJ, of nitrate in coarse 

particles, which contain calcium carbonate (Dzubay et a/., 1988). Reaction (5) can 

cause hydrogen ion collected on a filter to be neutralized by ambient ammonia 

during sampling and analysis. Stevens et a/. (1 978) prevented neutralization by 
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ammonia during sampling by using a diffusion denuder to remove ammonia 

upstream of the filter, and Koutrakis eta/. (1988a) developed a procedure for 

preventing neutralization in the laboratory during storage and analysis. 

Particles collected on a filter can also react with each other. This is especially 

true for fine particles, which can liquify and coalesce if they are hygroscopic and 

the relative humidity is high (Mamane and Dzubay, 1990). If both acid sulfate and 

anions of volatile acids are present, reactions such as the following can occur: 

H,SO, + 2NH,NO,+ (NHJ,SO, + 2HN0, t (6) 

NH,HSO, + NH,NO, -. (NHJ,SO, t HNO, t (7) 

NH,HSO, t NaNO, -* NH,NaSO, t HNO, t (8) 

NH,HSO, t NaCl -. NH,NaSO, t HCI t (9) 

NH,HSO, t CH,COONa+ NH,NaSO, + CH,COOH t (1 0) 

NH,NO, + NH, + HNO,t (11) 

Because acidic sulfate is abundant in many parts of United States (Stevens et 

a/., 1978; Stevens et a/., 1980; Koutrakis et a/., 1988a), reactions (7-1 1) can 

cause loss of hydrogen ion, nitrate, halides and salts of organic acids. Reaction 

(6) was observed in laboratory studies (Harker et a/., 1977), and Stater et a/. 

(1989) demonstrated significant loss of Ht on ambient samples collected during 

winter in eastern United States. Reaction (1 1) expresses the fact that ammonium 

nitrate can decompose. All of these reactions indicate that, except for sulfate and 

metallic ions, ions measured on a filter may not represent the ionic composition of 

atmospheric particles. 

5.6 Diffusion Denuder Systems for Measuring Gases and Particles 

The artifacts described in Section 5.5 may be minimized through the use of 

diffusion denuders and a filter pack for collecting the various vapors released 

from a filter. A filter pack consists of two or more filters in series. A typical 

diffusion denuder is a chemically coated cylindrical tube that removes gases that 

diffuse to the walls and react with the coating. Particles are not removed because 

their diffusion coefficients are too low to cause significant diffusion to the tube 

walls. After sampling, the denuders can be extracted and analyzed for their ionic 
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content. In past years, denuders were made with hollow tubes whose gas 

collection efficiencies are large only at very low flow rates. To obtain both high 

collection efficiency and high flow rate with hollow tube denuders, it is necessary 

to operate several denuder tubes in parallel (Stevens et a/., 1978). 

Possanzini et a/. (1983) made a substantial improvement in denuder 

performance by using an annular denuder which collects gaseous pollutants by 

moving air through an annular space between two concentric glass cylinders 

coated with an appropriate chemical substrate. The cylinder walls are etched by 

sand blasting to increase their capacity to support the denuding chemical 

substrate. Collection efficiency E, for a hollow tube denuder of length L is 

E,, = 0.82exp[-3.66(nDL/F)] 

and efficiency E, for an annular denuder of length L is 

where D = species diffusion coefficient; d, = internal diameter of tube; d, = 

diameter of internal cylinder; F = flow rate (Possanzini et a/., 1983). For a given 

tube length, an annular denuder can operate at 20 times the flow rate and yet 

have the same efficiency as a hollow tube. Moreover, laminar flow conditions are 

maintained up to fairly high flow rate in an annular denuder (Possanzini et a/., 

1983). 

Figure 3 and Table 10 represent an annular denuder system and filter pack 

that can measure a variety of gaseous and particulate species. The system has a 

cyclone on the inlet to remove coarse (>2.5 Ic m) particles. Three chemically 

treated denuders are used for selectively collecting the gases listed in Table 10. 

Denuders 1, 2 and 3 are quantitative for HNO,, HNO, and NH,, respectively, and 

the collection of SO, occurs on denuders 1 and 2. The filter pack consists of 

three filters in series. Vapors that volatilize from the first filter via reactions (6-1 1) 

are collected on filters 2 and 3 and enable the original ionic content of the sample 
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Figure 3. Schematic Description of Annular Denuder System with Filter Pack. 

to be deduced (Slater et a/., 1989). Earlier systems did not use the first NaCI- 

coated denuder and attempted to distinguish HNO, from HNO, on the basis of the 

nitrite/nitrate ratio (vossler et a/., 1988; Koutrakis et a/., 1988b), but this is 

unreliable because the collected nitrite can oxidize to nitrate during sampling. 
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Table 10. Annular Denuder and Filter Pack System for Collecting Particulate and 
Gaseous Ionic Species. 

~~ 

Stage Substrate Species Species Analyzed by 
Collected Ion Chromatography 

Denuder 1 NaCl t glycerine HNO,, SO, NO,', SO,' 

Denuder 2 CaCO, + glycerine HNO,, SO, NO;, NO,, SO,= 

Denuder 3 Citric acid + glycerine NH, NH,' 

Filter 1 Ringed Teflon filter particles H', NH,+, NO,, SO,= 

Filter 2 Na,CO, on glass filter volatilized HNO, NO,' 

Filter 3 Citric acid on glass volatilized NH, NH,' 

Ionic species in denuder and filter extracts are determined by techniques 

described in sections 5.2 - 5.4. Analysis of SO, is simplified if any collected sulfite 

is oxidized to sulfate by adding 50 P L of 0.3% fresh H,O, to each 2.5 mL of 

denuder extract before it is analyzed by ion chromatography. 

The system described in Table 10 provides a reliable means to obtain 

concentrations of both gaseous and particulate species for use in receptor 

models. For example, such a system is useful for obtaining simultaneous SO, and 

SO,= data in studies to determine the origins and age of sulfate aerosol. Also, 

such a system enables particulate and gas phase nitrate to be measured without 

bias due to nitrate evaporation in studies to determine contributions of particulate 

nitrate to visibility degradation. 

6. CONCLUSIONS 

6.1 Analysis of Quartz Filters from PM-10 Hi Vol Samplers 

If the only available samples were collected on quartz filters, optical 

spectroscopy is the preferred method for determining element concentrations. 

The extraction and ICP methods developed by Harper et a/. (1983) provide 

quantitative data for V, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Ba and Pb. Such data 
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can be used in receptor models to determine many sources, but additional data 

for Al and perhaps Ca and Sc are needed to determine soil. It is difficult to extract 

the Al from soil particles on a quartz filter, but Al can be measured on quartz by 

INAA with 5-min activation time. A portion of the quartz filter can be extracted in 

deionized water and analyzed by ion chromatography for sulfate and nitrate. 

Carbon can be determined by pyrolysis. Although sampling artifacts may cause 

the collected carbon and nitrate not to represent true atmospheric concentrations, 

the analyses will determine those components as they are represented in the 

measured PM-10 mass concentration. 

6.2 Analysis of Filters from Dichotomous Samplers 

The use of dichotomous samplers may be preferred for collecting particles on 

Teflon filters since they can be analyzed inexpensively by XRF. Usually Al, Si, S, 

K, Ca, Ti, Mn, Fe, Zn, Br and Pb can be determined by EDXRF. Depending on 

the airshed and XRF procedure, CI, V, Cr, Ni, Cu, Se, Sr, Cd, Sb and Ba can 

often be determined. Excellent precision for V can be obtained by EDXRF if 

precise data for Ba are available so that the Ba - V interference correction can be 

made algebraically. Such Ba data can be obtained by WDXRF. If better precision 

and additional elements are needed, WDXRF can be used to determine Al, Ti, Cd, 

Sn and Sb, and INAA can be used to determine Na, Al, Sc, V, Cr, Mn, Co, As, Se, 

Mo, Sb, La, Sm and Ce. Gordon et a/. (1984) suggest that the cost of INAA can 

be reduced by using only a single 5-min irradiation, which can determine most of 

the elements in Groups 1, 2 and 3 in Table 7. Because this strategy does not 

determine Ce, which is emitted by refineries and automobile catalysts, selected 

samples could also be analyzed for elements in Group 4 by the more expensive 4- 

hour INAA irradiation (see Table 7). 

It is not always necessary to measure sulfate because XRF data for S have 

been shown to be equivalent to ion chromatography data for sulfate in many 

airsheds (Stevens et a/., 1978; Dzubay et a/., 1988). Ion analysis is needed to 

determine nitrate, ammonium and hydrogen ion, but sampling artifacts can cause 

filter samples not to represent atmospheric concentrations of those ions. Use of 
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an annular denuder system with a filter pack will enable those ions to be 

measured quantitatively, along with SO,, HNO,, and HNO, gases. If carbon data 

are needed, additional samples need to be collected on quartz filters. However, 

measurement uncertainty due to adsorption of organic vapors on quartz filters and 

ambiguity in measuring the CJC, ratio discourages the use of carbon data in.the 

chemical mass balance receptor model. 

6.3 Quality Assurance 

To establish the precision and accuracy of the data, several of the following 

steps should be included in any measurement program: (1) Determine overall 

precision by analyzing samples collected in simultaneously operated duplicate 

samplers. (2) Determine XRF precision by reanalysis of 5 to 10% of the samples. 

Precision for ICP or INAA can be established by splitting samples and analyzing 

both portions. To avoid bias, the samples can be given new identification 

numbers known only to the one conducting the evaluation. (3) Determine the 

standard deviation for several blanks to provide an estimate of precision for 

elements with low concentration. Some of the blanks could be filters that were 

installed in a sampler that was not operated. (4) Analyze a subset of samples by 

two separate methods such as EDXRF and WDXRF or EDXRF and INAA to 

assess accuracy. (5) Determine accuracy by analyzing standard reference 

materials by a procedure identical to the one used for unknown samples. 

6.4 Selection of Analytical Laboratories 

When one lacks equipment or expertise to perform all needed analyses, 

assistance from another laboratory is required. Because receptor models require 

data with known precision and accuracy, the selected laboratory must be able to 

validate its results for air samples. Attention to the following criteria can be helpful 

in selecting a laboratory: (1) The laboratory has experience in successfully 

analyzing your kind of samples. (2) Measurement uncertainty is routinely reported 

with each reported datum. (3) Effects of interferences are included in all 

uncertainty estimates. (4) Measurement uncertainties have been previously 



40 

validated by a quality assurance program like the one described in Section 6.3. 

(5) Adequate precision and accuracy have been demonstrated for your type of 

sample. 
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Chapter 3 

SOURCE SAMPLING FOR RECEPTOR MODELING 

James E. Houck 
OMNl Environmental Services, Inc. 
10950 S.W. Fifth Street, Suite 160 

Beaverton, Oregon 97005 

1. INTRODUCTION 

The receptor modeling scientific community is in agreement that one of the 

largest impediments to receptor modeling today is the dearth of accurate, precise, 

and comparable chemical profiles (“fingerprints”) for major particulate emitters 

(Javitz et al., 1988). These source profiles are needed quantitatively as input for 

the chemical mass balance (CMB) receptor model, and they are needed 

qualitatively by the principal components and multiple linear regression receptor 

models. Receptor models for particulate source apportionment require compatible 

ambient and source data sets. While techniques for ambient sampling and 

subsequent analyses have been well established and are nearly routine, sampling 

and analysis of particulate sources require customized procedures for nearly every 

source type and, in some cases, are virtually source-specific. In an effort to 

improve the quality of source data sets and hence the overall quality of receptor 

modeling results, the requirements of receptor modeling have been reviewed and, 

in response to these requirements, source sampling instruments, protocols, and 

analyses have been developed (Core and Houck, 1987; Houck eta/., 1989a; 

Watson et a/., 1988). 

Particulate sources can be categorized into four groups for the purposes of 

sampling: (1) high-temperature point sources, (2) low-temperature point sources, 

(3) process fugitive sources, and (4) passive fugitive sources. High-temperature 

point sources include industrial-type ‘smoke-stacks” and can include such 

sources as vehicular exhaust and woodstoves which are often considered area 

sources in emission inventories. Low-temperature sources are, as the name 

implies, simply ducted sources which have temperatures within a few tens of 
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degrees of ambient temperature. The process fugitive category covers a wide 

range of industrial, agricultural, forestry, and area sources. Examples of process 

fugitive emission sources include field-burning, slag-pouring, unducted industrial 

roof-top emissions, construction and demolition activities, stockyards, ore 

crushing, and forest fires. The passive fugitive category includes wind-blown dust 

from roadways, parking lots, agricultural fields, dry lake beds, desert regions, and 

industrial storage piles. The passive fugitive category also includes dust 

suspended by vehicular traffic simply because sampling procedures used for its 

collection are similar to those used for wind-blown dust. 

A number of methods have been used to obtain samples with chemical and 

physical properties similar to those found at a receptor (Core and Houck, 1987). 

Inherent in these methods is the requirement that the samples be collected on 

substrates that are compatible with ambient (albeit modified) methods of chemical 

analyses. Figure 1 is a flow diagram of the most appropriate source sampling 

techniques for the major particulate source categories. For high-temperature point 

sources, either sampling with a dilution/cooling system (a plume simulator) or 

plume sampling are the state-of-the-art techniques. For low-temperature point 

sources, source sampling is much simpler and size-categorization is generally the 

only principal concern. Both ground-based and airborne samplers are appropriate 

for process fugitive emissions. A major subdivision in the process fugitive 

category is between sources with continuous or near-continuous emissions and 

those which are intermittent. A variety of specially designed fugitive samplers as 

well as commercially available ambient samplers have been successfully used for 

collecting samples from process fugitive sources. The key considerations for 

sample collection are sampler siting, sampling duration, composting emissions 

variability, and sample contamination by other nearby sources. The final source 

category, passive fugitive emissions, does not require sophisticated 

instrumentation to obtain sample material. However, a key and often complex 

consideration in passive fugitive source sampling is the selection of appropriate 

samples and compositing schemes to produce chemical profiles representative of 

the material impacting the receptor sites. 
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Descriptions of source sampling strategies, instrumentation, protocols, and 

data management procedures are provided in this chapter. In addition, 

representative source profiles from selected sources are presented. 

2. HIGH-TEMPERATURE POINT SOURCES - DILUTION SAMPLING 

High-temperature point source emissions represent a special problem for 

chemical receptor model source sampling. Condensation, vaporization, 

agglomeration, and secondary chemical reactions can all alter particulate 

chemistry and size distribution when emissions cool and mix with ambient air. 

These alterations in chemistry and size reduce the validity of using source profiles 

obtained from in-stack samplers or from more traditional U.S. Environmental 

Protection Agency (EPA) compliance sampling equipment (e.g., U.S. EPA Method 

5). The desire to obtain samples of particles in the form that they will have after 

they are emitted into the atmosphere has stimulated research into the 

development of dilution/cooling systems (Houck et a/., 1982a; Pan, 1986). 

The principal objective of dilution sampling is to obtain chemical data 

representative of particulate emissions after mixing and cooling with the 

atmosphere has occurred. Unlike more traditional source sampling, in-stack 

gravimetric emission rates are only of secondary importance. This fundamental 

difference in objectives requires modification of criteria which are typically 

considered most important for obtaining "good" stack test data. 

Dilution samplers draw hot exhaust gases into a chamber where they are 

mixed with filtered ambient air. After an aging period, the particles are drawn 

through a size-selective inlet and onto the filter substrates for subsequent analysis. 

Particulate material on multiple substrates for different chemical analyses can be 

obtained simultaneously or through sequential sampling of the same gas stream. 

Houck eta/. (1982a) have developed a dilution system which draws the diluted 

sample through an impactor or virtual impactor to provide particle size 

fractionation. McCain and Williamson (1984) performed tests on this sampler 

which showed losses of large particles owing to inertial impaction and electrostatic 

charging. They recommended design changes to minimize these losses and 
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these changes have been implemented in the more recent design presented here 

(Houck eta/., 1989a; Watson eta/., 1988). Harris (1986), Huynh eta/. (1984), 

Heinsohn et a/. (1980), Stiles (1983), and Cooke et a/., (1984) offer variations of 

the dilution sampler approach. 

Figure 2 is a schematic of a dilution source sampling system that has been 

used extensively (Goulet etal., 1989a, 1989b; Houck etal., 1981, 1982b, 1989a, 

1990; Olmez et a/., 1988; Watson et a/., 1988). Its actual physical appearance 

varies, as several different dilution chamber and inlet geometries are necessary to 

position the sampler adjacent to each specific source since it is desirable to 

minimize the inlet probe length. It has been found that the principal point of 

particle loss is within the sampling probe and inlet line (McCain and Williamson, 

I t  
1 t f  

Figurc 2. Schcrnatic of a Dilution/Cooling System. 
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1984). The system was designed to be "broken down" to be easily transported 

and cleaned in the field. The system also has interchangeable dilution chamber 

lengths and 'elbows", as well as various diameters and lengths of inlet probes, 

so that the system can be used under various spatial restrictions. The dilution 

chamber components are constructed of light gauge stainless steel to minimize 

sample contamination and weight. 

Characteristic temperatures, flow rates, particulate concentration, and water 

vapor content (condensed water is deleterious to sample collection) vary 

dramatically with source type; consequently, the dilution ratio is adjustable 

(approximately 10: 1 to 1OO:l) for general application. Additionally, because the 

sampler is often inherently in an area of high ambient particulate concentration, 

and because of the high ambient air/sample ratio, the dilution air needs to be well 

filtered to prevent sample contamination. Inlet air is filtered with a standard high- 

volume 8-by-10-inch filter. The dilution ratio is adjustable at any reasonable inlet 

flow by the combined control of an inlet blower and outlet vacuum pump. Both 

can be controlled by variable transformers. The dilution ratio can be set at any 

predetermined value, since the inlet airflow rate is monitored with a thermal 

anemometer and the pressure difference between the interior of the dilution 

chamber and the source is monitored with a pressure gauge or manometer. The 

flow-versus-pressure difference relationship is determined in the laboratory prior to 

field deployment. The dilution chamber temperature is monitored to ensure that 

the chamber temperature is a few degrees within ambient, and for documentation 

of the aerosol sampling environment. One or more size-categorization samplers 

withdraw samples from the dilution chamber; if two are used, generally one is for 

Teflon filters and one is for quartz filters. (Teflon membrane filters are well-suited 

for elemental analyses. Quartz filters are appropriate for organic compound, 

elemental carbon, and wet chemical analyses.) The diameter of the inlets of the 

collimating tubes can be restricted to achieve isokinetic sampling conditions. This 

is generally not essential, since the majority of the particles originating from most 

high-temperature sources are less than 5p in aerodynamic diameter. Similarly, the 

flow in the inlet to the dilution chamber can be adjusted to remove the aerosol 
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from the source isokinetically, although as mentioned, it is not critical for most 

high-temperature sources. Table 1 is a summary of dilution sampler design and 

operation parameters. 

The transfer of particulate-bearing stack gases through the heated probe to 

the dilution chamber is accomplished by maintaining a pressure differential 

between the dilution chamber and the interior of the stack. From Bernoulli’s 

equation of continuity, it can be shown that the linear velocity of gas entering the 

inlet is dependent only on the pressure drop (AP) and the density of the source 

gas (PI, i.e., 

Bernoulli’s equation is only strictly applicable to idealized fluids but is 

illustrative for design considerations. Since the inlet will collect gas parallel with 

the direction of flow, the pressure value used to calculate AP in Equation 1 must 

take into account the effect of velocity pressure, i.e., 

2 AP = [Ps,s + 0.5psVs] - 

where Ps,s is the static pressure within the source; 

ps is the density of gas within the source; 

V, is the linear velocity of gas within the source; and 

P,,, is the static pressure within the dilution chamber 

Measurement of AP can be accomplished with a manometer or Magnehelie 

gauge. 

Reduced pressure and flow within the dilution chamber is produced by an 

outlet vacuum pump (blower). If the inlet blower is removed, each flow rate 

across the 8-by-I 0-inch inlet filter has a corresponding pressure drop associated 

with it which is determined by the filter medium and the outlet vacuum pump. The 

addition of a variable inlet blower reduces the pressure drop and permits a wide 

range of combinations of dilution chamber pressure and flow rate. For example, if 
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Parameter Explanation 

Variable dilution ratio 

Hcatcd inlct 

lsokinctic sampling 

Stack gas physio-chemical 
measurements 

Response to variable temperature, water content, and I particulate concentration 

Prevent condensation of particulate niatcrial and water 
vapor before reaching dilution chamber 

Accurate size representation 

Gas composition, water vapor contcnt, gas velocity, 
particulate concentrations. 

Size-categorized samples 1 PM,,, PM,,, TSP 

Filtered ambient air High ambient air to stack gas ratio, ambient air, with 
high Darticulate concentration 

Multiple simultaneous samples Multiple size ranges, multiple filter suhstratcs for 
diffcrcnt analytical tcchniqucs 

Batch proccss: ability to slow sampling rate or I intermittently sample 
Integration of emission variability 

Material compatibility I High-temperature corrosive gases, wcight of sampler 

Variable chamber geometry and ease of 
disassembly/asscmbly 

Spatial restrictions, field clcaning 

a high dilution flow rate (i.e., high dilution ratio) and a low pressure drop (low 

linear velocity in the sampling inlet) are desired, the vacuum pump would be 

operated at near-maximum power and the inlet blower would be adjusted until the 

pressure drop across the high-volume filter was lowered to the point where low 

inlet velocities were obtained. 

Some limited source data are generally collected prior to sample collection. 

Stack flow rate, temperature, water vapor content, and particulate concentration 

are helpful in estimating appropriate dilution ratios, for selection of inlets, and in 

estimating the duration of sample collection. Adequate data are frequently 

obtained from records of previous compliance tests or typical characteristics of 

the source type. Sampling periods are generally between 15 minutes and 2 

hours. Sampling periods as short as five minutes have been encountered (coal- 

fired power plant operating without emission controls), and in some cases periods 

as long as 14 hours (efficient baghouses) have been necessary. In most cases 



53 

the proper mass loading on the filters (approximately 0.4 to 2 mg for XRF, carbon, 

and IC analyses) dictates the length of the sampling period required. However, in 

some cases a long sampling duration has been required because a very high 

dilution ratio was needed to prevent water condensation from occurring. 

Besides direct in-field sampling, dilution sampling lends itself to laboratory 

simulations of emissions from individual sources. Dynamometer simulations of 

motor vehicle driving with exhaust sampled from a dilution tunnel can provide 

examples of aggregate emissions from a large number of separate vehicles. 

Similarly, wood stoves and fireplaces can be operated under different conditions 

with emissions sampled from a dilution tunnel. Because of their ubiquity and the 

magnitude of particulate contribution to many airsheds, the chemical quantification 

of the particulate emissions from residential wood combustion (RWC) and vehicles 

has been and will continue to be necessary for receptor modeling. 

3. RESIDENTIAL WOOD COMBUSTION 

Residential wood combustion appliances present special problems for 

dilution sampling, and producing representative source profiles is a complex task 

due to the inherent number of variables associated with them. Notable among 

these are (1) appliance types and installation factors, (2) fuels, (3) fueling 

practices, and (4) burn conditions. Table 2 summarizes these and other variables. 

To further complicate the development of representative source profiles, 

woodburning appliances are difficult to sample because (1) the emissions are tar- 

like, (2) the average stack gas velocity is low, (3) the average concentration of 

particulate material in the stack gas is very high, (4) there is a high water vapor 

content in the stack gas, and (5) emission rates and gas velocities are very 

variable. In addition, the difference between particulate (solid and liquid) 

emissions and gaseous emissions is a matter of definition, since many of the 

chemical compounds contained in wood smoke are semi-volatile. Woodburning 

appliances are also pragmatically difficult to sample as their stacks obviously have 

no sampling ports and in-field sampling requires the positioning of heavy, 

cumbersome, and noisy sampling equipment in private residences. 
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Tablc 2. Residential Wood Combustion Appliancc Variables. 

Source Type 

Appliance types and 
installation factors 

Fuels 

Fueling practice 

~ ~ 

Burn conditions 

Kcy Variables 
~ ~~ ~ ~ 

Woodstove, fireplaces, pcllct stovcs 
Woodstove firebox size 
Modcl (fundamental design) 
Woodstove technology typc (catalyst versus noncatalyst) 
Dainpcr (draft) control (excess air) 
Airlight versus non-airtighf woodstovc (excess air) 
Chimney systcm (draft) 

Spccics 
Moisture content 
Scasoncd versus non-seasoncd 
Size of fuel pieces 
Dcnsily 
Extent of decomposition 

~ ~~ ~ 

Burn rate 
Burn duration (all day VCISUS evenings only) 
Fucl load amount 
Frequency of fueling 
Kindling (start-up) procedure 
IIouschold trash 

Kindling phasc 
Main burn (dampcrcd-down cool burn versus hot burn with 
excess air) 
Charcoal phase (end of burn) 
Damper (draft) setting\ 

Due to the inherent variability among woodburning appliances and the 

difficulty of obtaining samples in the field from a meaningful number of appliances, 

a laboratory sampling methodology has been developed (Houck et a/., 1989a, 

1989d; Watson et a/., 1988). The approach entails (1) determination of the most 

abundant cordwood type(s), burn rates, appliance types, and burn cycles for a 

given geographical area from existing literature, surveys, or from other studies; 

and (2) long-term, in-laboratory sampling of emissions from the most 

representative woodburning appliance types, operating under the mean burn rate 

and most common cycles, and using the most abundant wood type(s). 

Since particulate emission rates, stack velocities, and apparently the 

chemical character of particles, vary dramatically over the course of a normal burn 

cycle (Burnet et a/., 1986; Shelton and Gay, 1986), the dilution sampler System 
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used for industrial sampling is not appropriate for residential woodburning 

appliance application. Rapid changes in velocity and particulate loading levels 

over short time periods would be nearly impossible to follow in a proportionate 

manner with the industrial dilution sampler. In addition, the very high particulate 

concentration characteristic of residential wood combustion as compared to most 

controlled industrial sources makes the direct use of the industrial dilution sampler 

less than ideal. 

To rectify these problems, a modified U.S. EPA reference Method 5G dilution 

tunnel system (US. Environmental Protection Agency, 1987) has been used to 

dilute the entire appliance emissions with ambient air. From the diluted stream a 

fixed-flow aliquot can be removed and passed through a size-categorizing 

sampler. Figure 3 is a schematic of the tunnel system. The most significant 

modification made in the Method 5G protocol is the increase in flow rates when 

fireplaces are tested to compensate for increased stack gas volumes 

Chimnq Cap 

1 
Wixd Rurning 

Appliance 

Sampling 

sampler 
Control 

Units 

0 

F.:.*hiiu*l 

Figurc 3. Schcmatic of Modified Mcthod 5G Dilution tunnel Interfaced with a Size-Categorizing 
Sampler. 
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characteristic of residential fireplaces as compared to woodstoves (Shelton and 

Gay, 1987). Since unfiltered ambient air is used for dilution/cooling, particulate 

samples of the dilution air need to be taken simultaneously with the source tests 

so that the contribution of the dilution air can be accounted for in the chemical 

composition of the samples collected. Ground-based size-categorizing samplers 

can be used to sample the dilution air. 

The moisture content of the cordwood should be measured with a 

commercial moisture meter. A spring scale can be used to pre-weigh appropriate 

amounts of each species of wood prior to the beginning of a test. Wood addition 

(target and actual), wood moisture content, wood species, and draft control/door 

positions should be taken into consideration in the test design. 

4. HIGH-TEMPERATURE POINT SOURCES - PLUME SAMPLING 

For some high-temperature point sources it is possible to collect plume 

samples which, in effect, permit dilution and cooling to occur naturally. An 

inherent problem associated with this approach is the presence of background 

pollutants in the ambient air. It must be confirmed that the impact of background 

air for all chemical species of interest is negligible compared to the concentrations 

originating from the point source. For large area sources and stacks, airborne 

sampling is required. Source sampling from airborne platforms to characterize the 

chemical and physical properties of emissions has been performed from airplanes 

(Small eta/., 1981; Richards et a/., 1981, 1985), tethered balloons (Armstrong et 

a/., 1981; Shah et a/., 1988) and helicopters. It has also been proposed that 

model airplanes be used to carry ultra-light sampling payloads. Sampling 

components of appropriate weight and packaging are elevated above the 

emissions, usually on the order of 100 to 500 meters, to draw samples of the 

effluent. Airborne sampling is not practical in most cases, due to its high cost and 

unproven techniques. Plume sampling is more appropriate for small industrial 

stacks and sources such as residential wood combustion and diesel train exhaust 

(Houck eta/., 1987). 



57 

5. LOW-TEMPERATURE POINT SOURCES SAMPLING REQUIREMENTS 

Emissions from point sources which are near ambient temperature generally 

do not require dilution sampling, as condensation of particles is not an issue and 

low temperatures permit direct collection onto ambient filter media. Sampling of 

low-temperature point sources is relatively simple compared to high-temperature 

sources. In some cases, however, a dilution sampling system still needs to be 

used with low-temperature point sources due to a high condensed water droplet 

content which can be deleterious to samples collected on filter substrates. The 

ambient air introduced by the dilution system permits the water droplets to 

evaporate prior to sample collection. 

For collection of particulate samples from low-temperature point sources, a 

size-categorizing device is positioned into the flow stream; isokinetic sampling is 

approximated (generally by inlet diameter, since size-categorizing devices require 

a fixed flow); and a flow collimating tube (30 cm or longer) is used with an inlet 

diameter that is the same size as the exposed face of standard filters (e.g., 37- or 

47-mm diameter) which are being employed. This ensures even loading across 

the face of the filter, which is necessary for most analytical techniques in which a 

small portion of the filter is analyzed and assumed to be representative of the 

entire filter surface. Figure 4 is a schematic of an example low-temperature point 

source sampler. Integration of process variability can be accomplished with a 

cycle timer. 

6. MOBILE SOURCES 

Mobile source particulate emissions are difficult to measure with respect to 

emission rate and chemical composition. This difficulty arises from (1) the large 

number of mobile source types (passenger cars, light duty trucks, diesel trucks, 

diesel buses, trains, aircraft, motorcycles, etc.); (2) a large number of individual 

emitters within each types; (3) changing fuel characteristics; (4) a large variety of 

undefined (and probably undefinable) operating conditions; (4) a variety of 

emission points on each vehicle (e.g., tail pipe, resuspended dust, evaporation, 

tire wear, brake wear); and (6) a large fraction of emissions which are semi-volatile 
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or are secondary particulate precursors. This discussion will focus primarily on 

primary particulate emissions from the engine exhausts. Emissions from overall 

vehicle activities can best be sampled in tunnel-like studies using techniques 

discussed for process fugitive emissions (section 7) .  

The most widely used source profile for apportioning ambient particulate. 

matter concentrations to motor vehicles is an emissions inventory-weighted 

composite of chemical compositions in different vehicle categories (Core, 1986). 

This profile is becoming of limited utility owing to great reductions in the lead 

content of leaded fuels and to the preponderance of vehicles which operate on 

unleaded fuels. In additional, elevation and ambient temperatures have been 

shown to significantly impact emissions requiring area-specific source profiles to 

be developed. 

Vehicles must be grouped into categories both for source characterization 

purposes and in order to composite source profiles which are too similar to allow 

their source compositions to be resolved. For example, in a recent study in the 

Denver, Colorado area (Watson et a/., 1988), the categories were divided into (1) 

leaded gasoline, (2) unleaded, non-oxygenated gasoline with oxidation and three- 

way catalysts, (3) unleaded oxygenated gasoline with oxidation and three-way 

Figure 4. Schematic of Low-Tempcrature Point Sourcc Sampler. 



59 

catalysts, (4) diesel passenger cars, (5) heavy duty diesel trucks, and (6) heavy 

duty diesel buses. 

Even through the lead emitted by vehicles using leaded gasoline is much 

lower than it was previously, and even though the percentage of the entire fleet 

they occupy is much lower, they still provide the best indicator of overall motor 

vehicle contributions since they are the major source of lead in urban atmosphere. 

Though the number of leaded vehicles is lower than the number of unleaded 

vehicles, these older vehicles have fewer emission controls and higher particle 

emission rates. 

Diesel trucks generally have four stroke engines, while diesel buses used for 

urban transportation have two stroke engines. The two stroke engines have 

higher mass and organic emissions and have ratios of other chemical species 

which differ from those of four stroke engines. Motorcycles have two stroke 

engines, but their population is generally low when compared to other vehicles. 

Any tests of motor vehicle emissions should provide a sampling of vehicles 

from each of these categories. Naturally, large variations are expected based on 

vehicle age, maintenance, model, and many other differences between individual 

vehicles. 

The most important fuel characteristic with respect to exhaust emissions is 

its chemical composition. Lubricating oils are included with diesel fuel and 

gasoline in this discussion. Fuels of the same type differ in composition because 

of (1) different refining techniques, (2) cross-contamination among fuels in storage 

and transport, and (3) different additives. 

A National Petroleum products survey is published twice a year for gasoline 

and once a year for diesel fuel. This survey identifies the additives reported by 

different refiners by geographical area. While this is a good guide, it may not 

reflect the actual composition of the fuel. The best approach to fuel 

characterization is to use the survey as a guide to differences among fuels sold in 

an area for the period of time closest to ambient sampling for receptor modeling. 

Samples from different gas stations should be taken and analyzed for elemental 

and organic content to determine what species might be present. 
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Both the quantity and chemical character of motor vehicle exhaust emissions 

change with different operating conditions. This is further complicated by the fact 

that emissions at a given operating condition are often functions of pervious 

operating conditions. 

On catalyst-equipped cars, emission rates are highest and have their largest 

organic content when the car is first started. In modern spark ignition passenger 

vehicles, hydrocarbons are not properly converted until the temperature of the 

catalyst reaches its specified operating condition. In some catalytic converters, 

the aluminum oxide absorbs sulfur (as SO,) at low speeds, only to release it at 

higher speeds. Several thousand miles of emissions can be stored with low- 

speed driving, only to be emitted rapidly under fast highway driving Conditions. 

Lead emissions increase with vehicle speed, both because more lead is 

being burned and because the higher exhaust velocities sweep deposited lead out 

of the exhaust system. For diesel systems, particulate emission rates increase 

substantially when the vehicles accelerate and the proportion of organic carbon 

decreases. 

Changing operating conditions are generally handled in source tests through 

a driving cycle of starting, stopping, accelerating, cruising at various velocities, 

and idling. A large number of driving cycles are simulated in dynamometer 

studies. For example, the LA cycle simulates congested freeway driving. The 

New York City cycle simulates east/west stop-and-go driving in Manhattan. The 

Federal Test Procedure (FET), Sulfate Emissions Test, Highway Fuel Economy 

Test (HWFW, Motor Vehicle Manufacturers Association (MVMA) Test, and 

various steady state driving cycles have also been devised. None of these cycles 

fully represents changes in emissions characteristics. They do, however, have the 

advantage of providing a reproducible testing method. 

Dilution and ground-based sampling have been appjied to motor vehicle 

source characterization. Each of these methods has distinct advantages and 

disadvantages, and they are more complementary than exclusive of each other. 

Dynamometer tests are conducted in a controlled laboratory setting. Each 

vehicle tested is run through a series of different operating conditions which are 
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intended to simulate different types of driving. The exhaust from these vehicles is 

generally diluted prior to sampling. Detailed procedures have been established for 

NO,, CO, hydrocarbon, and particulate mass measurements on dynamometers. 

Detailed chemical and size speciation of particles and their precursors have been 

accomplished by a number of different procedures. The common elements of 

successful dynamometer chemical measurements are: 

0 All of the exhaust is diluted prior to sampling. The volumetric flow of 
exhaust varies throughout the cycle, but the flow of diluted exhaust 
(i.e., exhaust plus dilution air) is maintained constant. 

Dilution ratios are around ten to one. This generally cools the exhaust 
to approximately 370 C, which is still higher than normal ambient 
temperature. 

0 

0 Two tests on each vehicle are run and compared for equivalency prior 
to validating the data. 

0 Dilution tubes are usually made of stainless steel. It is good practice to 
employ separate dilution tubes for diesel and spark-ignition vehicles to 
avoid cross-contamination (e.g., the elemental carbon from diesel 
exhaust may deposit in the dilution tube and adsorb other species). 

In the ideal case, every motor vehicle would be tested under every possible 

driving cycle. Source profiles would then be constructed from weighted averages 

of these individual profiles. The weights would be derived from the emissions per 

mile times the miles travelled by each vehicle and the frequency distribution of the 

different operating cycles. This is not a practice approach. A smaller number of 

vehicles which is statistically representative of a larger population needs to be 

selected. The number of vehicle tests which are needed to represent an entire 

fleet is a question that is difficult to answer, and is generally controlled by budget 

rather than technical considerations. 

' 

The advantages of dynamometer testing are: 

0 A number of different vehicle types and defined operating conditions 
can be tested; and 
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Motor vehicle exhaust can be separated from other motor vehicle 
emissions. 

The disadvantages are: 

Dilution ratios are relatively small and ambient temperatures are not 
achieved. 

Residence times are on the order of only a few seconds and chemical 
reactions may not have taken place. 

Driving cycles are not necessarily representative of actual operating 
conditions. 

There is no oPportunity for interaction among different exhausts or with 
the ambient aerosol. 

These tests are generally expensive. 

The worst-rnaintained vehicles (which are generally the highest 
pollutant emitters) are rarely available for such tests. 

A large number of test results are necessary to form a composite 
source profile. 

Ground-based measurements of motor vehicle emissions are generally 

acquired from tunnels, major highways, and chase-car sampling. Other ground- 

based sampling settings have included truck weigh-stations, bus parking lots, 

underground bus transfer stations, and underground parking garages (Houck et 

a/.,  1989a; Watson et a/., 1988). The most commonly used source profiles in 

CMB calculations are traceable to tunnel samples, especially those performed by 

Pierson and Brachaczek (1976, 1983). Pierson et a/. (1978) devised a linear 

regression technique which separates emission rates and compositions into two 

categories, usually gasoline- and diesel-powered vehicles. A series of chemical 

concentration measurements and vehicle counts are required. 

Each tunnel study must be designed specifically for the tunnel which is used. 

Desirable tunnel characteristics include (1) greater than 1000 m length, (2) two 

lanes or wider, (3) a place to mount sampling instruments, (4) ventilation and 

exhaust systems, and (5) minimal changes in driving patterns for periods which 
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exceed minimum sample durations. Vehicle characterization using a tunnel should 

contain the following elements: 

0 Air flow rates into and out of the tunnel are measured at all points. 
Wind speed traverses can be measured just inside the entrance and 
exit portals to determine homogeneity. Intake and exhaust flow rates 
are generally well specified and monitored. 

Traffic volume is counted for each sampling period within the classes 
of diesel trucks, diesel buses, diesel passenger cars, gasoline trucks, 
and gasoline passenger cars. It is difficult to distinguish among 
leaded, unleaded, and different catalyst categories, through such a 
division would be desirable if it were practical. 

0 

0 

0 

Approximate vehicle speed is estimated. 

Geological material is sampled from roads, shoulders, and soils at the 
tunnel entrance and exit, and inside the tunnel. These compositions 
are used to determine soil entrainment contributions from motor vehicle 
movements. Brake-shoe and tire residue are obtained from a selection 
of vehicles to estimate these compositions. Semi-metal brake linings 
are suspected of being a source of several metals found in the 
Sepulveda tunnel in the South Coast Air Basin (Cooper et a/., 1987). 

Air at the intake fans and/or entrance portals is sampled to obtain 
ambient concentrations for subtraction. 

0 

0 Sampling periods are chosen to represent different proportions of 
vehicle categories (e.g., diesel trucks often comprise a larger fraction 
on weekdays than they do at night or on weekends). 

0 Species and size fractions are chosen to correspond to those of the 
ambient particulate data. This assures that the source profile is 
compatible with receptor measurements in CMB analysis. 

The advantages of tunnel measurements are: 

0 A tunnel presents the closes approximation to the real world in a 
controlled environment. 

0 The dilution of exhaust and the temperatures obtained are realistic. 
Condensible species will be measured as particulate matter. 

Exhausts from different vehicles are mixed so that fast chemical 
reactions (several minutes) can take place. 

0 
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0 All motor vehicle emissions, not just motor vehicle exhaust, can be 
estimated. 

0 A mixture of vehicles which is somewhat similar to the entire fleet is 
obtained. Since a significant number of these vehicles is probably 
badly maintained, or may have had their emissions controls 
disengaged, the mix is more realistic than that obtained from 
'randomly" sampling cars in laboratory tests. 

0 Measurement programs are relatively inexpensive compared to other 
alternatives. 

The disadvantages of tunnel sampling are: 

0 The driving cdnditions, when they can be meaningfully defined at all, 
are generally limited to a high speed, steady state condition. Many 
operating variables are not represented by this condition. 

The distribution of vehicles may not be the same as that which is 
contributing most heavily at the receptors. 

0 

Roadside sampling is nearly identical to tunnel sampling, but in a less 

controlled environment. Typically, ambient sampling equipment is placed in an 

area highly dominated by traffic and samples are taken during periods when 

contributions from other sources are presumed to be at a minimum. Local 

geological material is sampled and analyzed to account for resuspended dust. 

This method is probably less expensive than a tunnel study, but it is also much 

less accurate. This method has not been adequately developed or evaluated for 

the measurement of receptor model source profiles. Dzubay et a/. (1979) provide 

an example of this method in Southern California. 

In chase car sampling, a sampling device is located on a vehicle which 

follows the vehicle being tested. The inlet to the sampler and the distance 

between cars is adjusted to maximize the quantity of exhaust collected and to 

minimize contamination from other sources. A "self-chasing'' sampler has been 

developed at the Warren Springs Laboratory which can be located in the truck on 

a car and takes samples from the exhaust of the same car. The chase car 

methods have not been adequately developed or evaluated for the measurement 

of receptor model source profiles. 
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While both ground-based sampling and dilution sampling using a 

dynamometer have their limitations, a carefully designed study can develop 

adequate mobile source profiles using either approach. Because they are 

complementary in many ways, state-of-the-art profiles have been developed using 

a combination of both techniques. In a recent study conducted in Denver, 

Colorado, results of source sampling with a dilution tunnel using a dynamometer 

were combined with ground-based sampling results from an Interstate Highway 

tunnel, three underground apartment garages (to obtain cold-start profiles), and 

from a municipal bus transfer station tunnel (Watson eta/., 1988, 1990). 

7.  PROCESS FUGITIVE EMISSIONS 

Process fugitive emissions are defined for the purposes of sample collection 

techniques as those emissions which are produced by active processes, in 

contrast to passive fugitive emissions, which are produced by wind or vehicular 

traffic. There is generally enough localization to most process fugitive emissions 

sources so that their particles can be sampled near their point of entry into the 

atmosphere. Examples of constant process fugitive sources are industrial roof 

vents, material handling areas, milling and grinding operations, open agricultural or 

forestry burning, stockyard dust, slag pouring, and construction and demolition 

activities. Process fugitive emissions sources can be sub-categorized into those 

which have continuous or near-continuous emissions and those with intermittent 

emissions. 

Typically, the most appropriate technique for the sampling of continuous 

process fugitive sources is to utilize a ground-based sampler. In some cases, 

ultra-lightweight samplers tethered to helium balloons have been used (Armstrong 

et a/., 1981; Shah et a/., 1988), as have aircraft. With several exceptions, ground- 

based fugitive source samples are collected in an analogous fashion to ambient 

samples and in general the strategy for ground-based sampling is relatively 

simple. The positioning of the ground-based sampler inlet in the plume or path of 

source particles is often accomplished with custom-made brackets, extension 

tubes, or platforms. In some cases, simply situating the samplers on a roof top or 
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on a topographic high point is adequate. In each case, the samplers are situated 

in the aerosol plume, with care being taken to minimize contamination from other 

sources by carefully selecting the sampling location and time. If no power is 

available at the sampling site, as may be the case on a moving crane platform 

over an active work area of near a vegetative burning area, battery-powered 

stacked filter units (Cahill ef a/., 1979; Houck and Pritchett, 1985) or battery- 

powered impactor systems (Shah et a/., 1988) can be used to collected size- 

categorized samples, or a portable generator with heavy-gauge extension cords 

can be used to operate standard AC-powered samplers. Conversion of 

generators to use propane fuel reduces their emissions, and hence reduces the 

possibility of exhaust contaminating the aerosol samples. A long run of heavy 

gauge power cord can also be used to position the generator at a distance down- 

wind of the sampling area. 

A major difference which is encountered between sampling ambient air and 

fugitive emissions is the heavier particulate concentrations near the emission 

sources. To achieve optimal filter loading, a shorter sampling duration is required. 

Consequently, to obtain the integrated character of an emission source, a number 

of short-duration samples can be taken and analyzed, followed by the 

mathematical averaging of analytical data. Cycle timers can also be used to 

integrate process variability. In practice, fugitive sampling times have generally 

varied from 15 minutes to four hours. 

Ground-based sampling has been successfully used for mobile sources 

(Section 6), a variety of industrial sources (Houck eta/., 1982b), and agricultural 

and forestry burning sources (Houck et a/., 1989a, 1989c; Ward, 1983; Ward and 

Core, 1984; Ward and Hardy, 1988; Ward eta/., 1979, 1982). Agricultural burning 

of crop residues has been successfully sampled with ground-based instruments 

with particulate inlets located 2 to 5 meters above ground level. For forestry 

burning, samplers have been located 10 to 15 meters above the fuel. 

Measurements for TSP and PM,, have typically shown great variability, even when 

fuels are relatively evenly distributed such as in fields of cereal stubble. Raising 

the sampling inlet allows dilution and mixing of emissions from various locations in 
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the fuel bed, thus providing a cooler and more representative sample. The 

variability in emissions has also resulted in the use of multiple samplers at various 

sampling points and other integration techniques in attempts to ensure that 

representative samples are collected from these large, non-homogeneous 

sources. Ward and Hardy (1988) developed regional forestry burning profiles by 

combining profiles for individual forest species, burn types, and seasons. 

A review of agricultural crop census data, and forest and rangeland wildfire 

and prescribed burn records is needed to determine the largest open-burning 

sources affecting critical receptor areas. Freeburn (1985) found that much of the 

emissions from agricultural sources was from the burning of non-crop wastes and 

land-clearing debris which were not routinely monitored. It is suggested that these 

sources be investigated through interviews with fire officials and extension agents 

in the affected areas prior to developing a sampling strategy. 

Some important process fugitive emissions are episodic and of short 

duration, e.g., slag pouring, dynamite explosions, furnace upsets, etc. To collect 

an adequate sample for analyses, usually a number of emission episodes are 

collected onto a single filter set by turning the sampler on at the beginning of an 

emission period and turning if off again immediately thereafter. Slag pouring and 

blast furnace upset profiles developed by Houck et a/. (1982b) are examples of 

profiles produced by the analyses of samples comprised of repetitive sampling of 

a series of short-term episodes. 

Dust from agricultural tillage and wind-blown urban unpaved areas can either 

be sampled by ground-based sampling or by grab bulk sampling followed by 

laboratory resuspension, and the decision on which procedure to follow should be 

made on a case-by-case basis. The advantages of ground-based sampling are 

that a more integrated fingerprint is likely to be obtained, particularly for sources 

like dust from wind-blown urban unpaved areas where many small chemically non- 

homogenous areas may contribute to the source profile. Ground-based sampling 

may also provide slightly more representative size distribution than would grab 

sampling followed by resuspension. A major disadvantage of ground-based 

sampling is that fingerprint contamination may occur from other sources in the 
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airshed. A discussion on grab-sampling of these sources is presented in the 

following section. 

8. PASSIVE FUGITIVE EMISSIONS 

Passive fugitive sources are defined, for the purposes of sampling strategy, 

as those sources where wind or vehicular activities produce dust from exposed 

surfaces. Road dust, wind-blown raw materials, agricultural soil dust from tilling, 

and wind-blown desert soil fit into this category. In addition to ground-based 

sampling as described in the preceding section, two types of sampling techniques 

have been used to sample passive fugitive sources. These are grab sampling and 

vacuum sampling. Once a sample is collected by either technique, laboratory 

drying, sieving, and resuspension are conducted. 

Grab sampling, followed by laboratory sieving and resuspension, has been 

used to characterize ambient particles originating from a variety of passive fugitive 

sources (e.g., Houck and Pritchett, 1985, 1988; Houck et a/., 1981, 1982b, 1989a, 

1989b, 1989c, 1990; Watson et a/., 1988). The collection of representative grab 

samples from friable industrial storage piles, from unpaved roads, and from 

exposed soil surfaces such as agricultural fields generally produces many more 

samples than can analyzed within the scope of a given project. To reduce the 

total number of individual samples, bulk samples are often composited. Two 

approaches to compositing have been taken. For very large storage or waste 

piles, a transect sampling plan is developed and a large number of samples are 

collected, composited to form an integrated sample representative of the material 

as a whole, then sieved and resuspended. If, on the other hand, a number of 

samples are collected from various locations which cannot be assumed a priori to 

be similar in composition (such as soil samples collected from different fields), the 

samples are first sieved to less than 38r and a semi-quantitative XRF scan is then 

conducted on the bulk samples. Based on the similarities or dissimilarities 

detected by the XRF scan, the similar samples are composited before 

resuspension and before detailed analyses are conducted. 
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While the field and laboratory procedures for collection and resuspension of 

the grab sample material are relatively simple, less simple is the selection of the 

location and number of samples needed to adequately represent material, e.g., 

soils, from a large area. Selection of locations within a several-kilometer radius of 

the receptor site is one consideration, since dust transport drops off rapidly with 

distance. Another consideration is the soil type and usage. Soils vary chemically 

due to their geological origin and addition of agricultural amendments. Local US. 

Department of Agriculture Soil Conservation Service and Extension Service officials 

and maps need to be consulted to ensure that major soil types are identified. 

Once they are identified, a transect-like grid similar to what might be used on a 

smaller scale with industrial storage areas needs to be established and bulk 

surface samples should be collected from selected grids. Only the top 1 or 2 cm 

should be collected, since this constitutes the wind-blown material and may be 

chemically different from deeper material. In some cases, multiple samples should 

be resuspended and analyzed to assess the chemical variability of the source. In 

most cases, the bulk samples will be composited prior to laboratory preparation, 

resuspension, and analysis. When sampling unpaved roads, multiple samples 

should be collected. Each grab sample from unpaved roads should consist of 

portions removed across the road from shoulder to shoulder at predetermined 

intervals to obtain the multiple samples that, as with the soil samples, can be 

analyzed individually to assess source variability, or can be composited to 

produce an average source fingerprint. 

The suspension of road dust by vehicular traffic has been shown to be a 

major source of coarse particles (>2.5&) and a minor source of respirable 

particles (<2 .5 )  in numerous studies. Road dust is particularly important in and 

around industrial complexes and urban areas due to the increased vehicular traffic 

and track-out of commercial materials. The characteristic chemistry and 

morphology of resuspended road dust originating from commercial materials and 

from areas heavily impacted by traffic is typically quite distinct as compared to 

surrounding native soils. The sampling strategy for road dust collection usually 

entails collection of samples from each road type (e.g., industrial haul roads, 
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employee parking lots, urban streets, highways, and rural roads) near the 

receptor. 

samples (Houck eta/., 1989a; Watson et a/., 1988). Using the high-volume 

sampler, samples have been collected from parking lots, paved roads, unpaved 

and oiled roads which have well-packed substrates, coarse gravel roads, and 

railroads. As with bulk grab samples, once road dust samples have been 

collected, the samples are sieved and resuspended in the laboratory onto size- 

categorizing samplers. Commercial high-volume 8x10-inch filters make excellent 

particulate traps and their. particle penetration efficiencies are well defined. 

Typically about one centimeter of material is collected onto the filter. This material 

is easily shaken off the filters for the laboratory work-up. 

A high-volume “vacuum” sampler has been used to collect road dust 

The sampling of dust from paved surfaces is relatively simple. The vacuum 

sampling device, rather than simple grab sampling, is frequently required due to 

the fact that a relatively small amount of dust often remains on the pavement 

surface, which makes it physically impossible to collect a grab sample. Each road 

dust sample is comprised of material captured by numerous traverses across the 

pavement until an adequate sample is obtained. The criteria for road selection for 

sampling includes proximity to receptor sites, traffic patterns, industrial activity, 

wintertime sanding or salting, and the chemical composition of the surrounding 

soils, road-fills and cuts, and shoulder gravel characteristics. Figure 5 is a 

schematic of the road dust sampling system. 

9. PROFILE DEVELOPMENT 

Source profiles, in the simplest of terms, consist of (1) mass fractions of 

selected chemical species and (2) estimates of the variabilities of these fractions. 

Compilations of such source profiles have been prepared for use with receptor 

models (U.S. Environmental Protection Agency, 1984, 1988). The chemical 

species which have comprised source profiles are those which are routinely 

measured by standard analytical methods used with ambient samples, as there is 

little value in terms of receptor modeling in quantifying chemical species not in the 



71 

Flcxihlr Tubing 

Figure 5. Schematic of a High Volume Road Dust Sampler. 

ambient data set. Traditionally, most source profiles have consisted of 35 to 40 

elements measured by x-ray fluorescence spectrometry (XRF), common ions 

measured by ion chromatography (IC) or wet chemical techniques, and total 

organic carbon, elemental carbon, and carbonate carbon determined by 

thermal/optical methods. Uncertainties associated with each chemical species are 

impacted both by analytical uncertainties and by the variability in the source 

emissions. Variability in source emissions are in turn dependent on both the 

inherent variability in emissions in a given source and the mathematical grouping 

or compositing which is conducted for a given modeling program. 

Compositing is an important aspect of developing source profiles, as the 

objective of source profile development is to obtain profiles that are representative 

of the material that reaches the ambient (receptor) monitoring site. The 

apportionment of a given category of particles improves when an accurate 

representation of the chemical composition of that given category is used. The 

apportionment of other categories of particles also improves because the relative 
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contributions calculated for each source category are not independent of each 

other in the CMB receptor model. For example, while it may be of no great 

concern if road dust from a nearby street impacts a receptor, the contribution of 

an industrial point source which may be of great concern will be more accurately 

determined if the chemical composition of the road dust is well characterized. 

Composite source profiles are also of value for operational reasons. For 

example, if two coal-fired boilers contribute to a receptor, a single coal-fired boiler 

contribution, rather than two individual contributions, may be more desirable to 

calculate. In addition, frequently, two or more source contributions cannot be 

separated by the CMB mDdel due to the similarity of their profiles (this similarity is 

termed collinearity) and a composite profile is desirable. The more dissimilar the 

sources included into the composite, the greater the uncertainties associated with 

the composite profile. 

Figure 6 illustrates the source profile compositing process. The first level in 

the compositing hierarchy is the averaging of replicates taken from the same 

source to produce a mean value and standard deviation for each chemical 

species. The next level is to calculate weighted averages of these specific source 

profiles to produce the composite source category profile. A final composite, as 

shown in Figure 6, is an overall general composite. The weighting factors for the 

individual sub-types are derived from relative emission rates for the different sub- 

types or from applying parametrically weighted composite profiles in a source- 

dominated environment. 

To provide the source profile data with the greatest degree of credibility, a 

quality assurance/quality control (QA/QC) program should be followed during the 

source sampling activities. The QA/QC program should be, to the extent 

applicable, consistent with established environmental QA/QC guidelines (U.S. 

Environmental Protection Agency, 1976, 1977, 1980). These guidelines establish 

criteria for documenting (1) project organization and responsibilities; (2) data 

precision, accuracy, completeness, representativeness, and comparability; (3) 

sampling procedures; (4) sample custody; (5) calibration procedures and 

frequency; (6) analytical procedures; (7) data reduction, validation, and reporting 
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Replicate 3 
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Figure 6. Source Profile Cornpositing Procedure. 

procedures; and (8) a variety of QC checks, audits, maintenance, and corrective 

action activities. 

Once quality source profiles are developed, they need to be formatted in 

such a fashion as to be useful to the modeler. Example source profiles are 

illustrated in Table 3 for a municipal waste incinerator, for urban road dust, and for 

woodstove emissions. As can be seen, the profiles consist of concentrations of 
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chemical species and associated uncertainties, both in units of weight percent. 

The concentration value for each chemical species in each profile is the mean 

value of three replicate samples. The uncertainties are either the standard 

deviation around the mean value or the root mean square propagated analytical 

uncertainty as determined for each sample. Whichever value was greater is used 

as the uncertainty and and is used in the CMB model. Generally the source 

profiles, such as are listed in Table 3, are compiled on magnetic disks for direct 

entry into CMB receptor modeling programs. 

Histograms, both linear and logarithmic, have been used to effectively 

illustrate source profiles. Figure 7 is an example set of histograms for a wood- 

fired boiler. As can be seen, the combined use of both linear and logarithmic 

histograms permits an intuitive understanding of the key features of each source 

profile, particularly when they are compared to other profiles which may be 

present in a given airshed. The linear histograms permit the major chemical 

species characteristic of a given source to be clearly identified, while the 

logarithmic histogram permits all chemical species which might be useful in the 

modeling process to be displayed. 

In summary, methods for developing source profiles for use in receptor 

models have been standardized and data generated by the methods have been 

successfully used in numerous receptor model studies. The sampling methods 

have been widely published, as have compilations of source profiles. By using 

appropriate existing literature source profiles for more generic sources combined 

with source profiles produced by direct measurement for sources with unique, 

unusual, or unknown emission chemistry, state-of-the-art receptor modeling 

results can be obtained. 
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Table 3. ExamDle Source Profiles 

Chemical 
Species 

Na' 
Al 
Si 
P 
S 

CI 
K 

K+ 

Ca 
Ti 
v 
Cr 
Mn 
Fe 
c o  
Ni 
c u  
Zn 
Ga 
As 
Se 

so: 

Municipal Waste 
Incinerator, c lop 

Conc. 
("w 

1.3959 
0.6420 
2.3597 
0.1040 
3.2080 
10.6065 
20.7463 
0.8485 
1.0019 
3.4652 
0.1053 
0.0137 
0.0435 
0.0348 
1.5420 
0.0027 
0.0137 
0.0368 
0.4675 
0.0023 
0.0023 
0.0028 

Uncert. 
("/I 

2.0533 
1.1119 

2.621 1 
0.1296 
0.7365 
6.6965 
17.6659 
0.1221 
0.1134 
0.9417 
0.0922 
0.0516 
0.0227 
0.021 2 
0.4428 

0.0252 
0.0061 
0.0136 
0.1961 
0.0162 
0.0342 
0.0068 

Urban Road Dust 
Bakersfield, CA, 

< 2.5~ 

Conc. 
("/.I 

0.2161 
9.2228 
21.5503 
0.4161 

0.5725 
0.5037 
0.1945 
1.9560 
0.3342 
3.2958 
0.5191 
0.0290 
0.0346 
0.1228 
6.1414 

0.0056 
0.01 26 
0.0248 
0.2373 
0.0001 
0.0034 
0.0003 

Uncert. 
("/.I 

0.0857 
1.0496 
2.4520 
0.0526 
0.0894 
0.6581 
0.0222 
0.2223 
0.1279 
0.3745 
0.0590 
0.0076 
0.0039 
0.01 40 
0.6985 
0.0872 
0.0014 
0.0020 
0.0176 
0.0054 
0.0563 
0.0020 

Woodstove Profile 
Mammoth Lakes, CA, 

<1P 

Conc. 
("/.I 

0.01 55 
0.0023 
0.0056 
0.0000 
0.0955 
0.1986 
0.1261 
0.2366 
0.2366 
0.0293 
0.0000 
0.0000 
0.0000 
0.0003 
0.0050 
0.0002 
0.0001 
0.0001 
0.0344 
0.0000 
0.0000 
0.0000 

Uncert. 
("/I 

0.0067 
0.0069 
0.0079 
0.0041 
0.0069 
0.0443 
0.0100 
0.1032 
0.1032 
0.0390 
0.0071 
0.0030 
0.0007 
0.0004 
0.0055 
0.0003 
0.0003 
0.0004 
0.0074 
0.0010 
0.0009 
0.0005 
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Table 3 (cor 

Chemical 
Species 

Br 
Rb 
Sr 
Y 
Zr 
Mo 
Pd 

Ag 
Cd 
In 
Sn 
Sb 
Ba 
La 

Hg 
Pb 
NO, 
NH: 
OCt 
ECt 
CCt 

Sum 

,. Example Source Profiles 

Municipal Waste 
Incinerator, <lop 

Conc. 
(“w 

1.0095 
0.0007 
0.0273 
0.0047 
0.0020 
0.0101 
0.0106 
0.0316 
0.0146 
0.0242 
0.0629 
0.0174 
0.0000 
0.0266 
1.1194 
0.1627 

4.0169 
20.0459 
15.4843 
3.5533 
0.0277 

80.6893 

Uncert. 
(“4 

0.9717 
0.0623 
0.0084 
0.0148 
0.0143 
0.0267 
0.0477 
0.0597 
0.0588 
0.071 1 

0.0979 
0.1116 
0.4014 
0.4475 
1.0169 
0.0454 

3.5789 
15.7942 
2.4766 
2.1 192 
0.2167 

24.5242 

Urban Road Dust 
Bakersfield, CA, 

< 2.5~ 

Conc. 
(“w 

D.O1O1 
D.0125 
0.0848 
0.0028 
0.0092 
0.0007 
0.0000 
0.0012 
0.0045 
0.0020 
0.0239 
0.0064 
0.1151 
0.0059 
0.0035 
0.3571 

0.0000 
0.0278 
16.7761 
2.1172 
0.1517 

64.2676 

Uncert. 
(“w 

D.0013 
D.0012 
0.0087 
0.0041 
0.0018 
0.0052 
0.0107 
0.01 26 
0.0134 
0.01 57 
0.0191 
0.0240 
0.0575 
0.0935 
0.0064 
0.0267 

0.3622 
0.0482 
5.0945 
1 .2366 
0.2383 

5.9593 

Woodstove Profile 
Mammoth Lakes, CA, 

<1/L 

Conc. 
(“w 

0.0009 
0.0003 
0.0001 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 

0.0008 
0.0000 
0.0003 
0.0049 
0.0099 
0.0106 
0.0000 

0.0000 
0.0293 
0.0262 
63.8978 
11.6959 
0.0000 

76.2280 

Uncert. 
(“w 

0.0002 
0.0005 

0.0006 
0.0007 
0.0009 
0.0014 
0.0026 
0.0030 
0.0033 
0.0038 
0.0051 
0.0060 
0.0209 
0.0234 
0.0016 
0.0013 

0.0081 
0.0052 
8.4425 
2.2468 
0.0219 

8.7372 

tOC = organic carbon 
EC = elemental carbon 
CC = carbonate carbon 
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and 

Thompson G. Pace 
U.S. Environmental Protection Agency 
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1. INTRODUCTION 

The Chemical Mass Balance (CMB) receptor model uses the chemical and 

physical characteristics of gases and particles measured at source and receptor 

to both identify the presence of and to quantify source contributions to pollutants 

measured at the receptor. These chemical and physical characteristics must be 

such that: 1) they are present in different proportions in different source 

emissions; 2) these proportions remain relatively constant for each source type; 

and 3) changes in these proportions between source and receptor are negligible 

or can be approximated. The chemical mass balance (CMB) is the fundamental 

receptor model, and the derivation of the Principal Component Analysis (PCA) and 

Multiple Linear Regression (MLR) receptor models from fundamental physical 

principles begins with the CMB (Watson, 1984). The CMB was first proposed by 

Hidy and Friedlander (1972), Kneip et a/. (1972), and Winchester and Nifong 

(1971). Applications of the CMB and other receptor models are summarized by 

Hopke and Dattner (1982), Pace (1986), Watson (1989), Gordon (1980, 1988), 

and Hopke (1985). 

The objectives of this presentation are: 

0 To derive the CMB receptor model, to state its assumptions, and to 
summarize the effects of potential deviations from these assumptions. 
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0 To present a procedure for applying and validating the CMB receptor 
model for PM,, source apportionment. 

2. CMB MATHEMATICS 

The chemical mass balance consists of a least squares solution to a set of 

linear equations which expresses each receptor concentration of a chemical 

species as a linear sum of products of source compositions and source 

contributions. Source compositions (i.e., the fractional amount of the species in 

the emissions from each source-type) and the receptor concentrations, with 

appropriate uncertainty estimates, serve as input data to the CMB model. The 

output consists of the amount contributed by each source-type to each chemical 

species. The model calculates values for the contributions from each source and 

the uncertainties of those values. Input data uncertainties are used both to weight 

the importance of input data values in the solution and to calculate the 

uncertainties of the source contributions. 

The concentration measured at a receptor during a sampling period of 

length T due to a source j with constant emission rate E, is 

S, = D,.Ej 

where 

T 

is a dispersion factor depending on wind velocity (u), atmospheric stability (u), 

and the location of source j with respect to the receptor (x,). All parameters in 

Equation 2 vary with time, so the instantaneous dispersion factor, d, must be an 

integral over time period T. 

Various forms for d have been proposed (e.9. Pasquill, 1974; Seinfeld, 1986), 

some including provisions for chemical reactions, removal, and specialized 

topography. None are completely adequate to describe the complicated, random 
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nature of dispersion in the atmosphere. The advantage of receptor models in 

general, and the CMB in particular, is that an exact knowledge of Di is 

unnecessary. 

emissions to cause mass removal, the total mass measured at the receptor, C, will 

be a linear sum of the contributions from the individual sources. 

If a number of sources, J, exists and there is no interaction between their 

J J 

Similarly, the concentration of elemental component i, Ci will be 

where Fij is the fraction of source contribution Si composed of element i. 

The number of chemical species (I) must be greater than or equal to the number 

of sources (J) for a unique solution to these equations. 

Solutions to the CMB equations consist of: 1) a tracer solution; 2) a linear 

programming solution; 3) an ordinary weighted least squares solution ; 4) a ridge 

regression weighted least squares solution; and 5 )  an effective variance least 

squares solution. Variations on these methods constrain solutions to positive 

values and/or add a non-zero constant intercept term. An estimate of the 

uncertainty associated with the source contributions is an integral part of the 

weighted least squares methods. 

Weighted linear least squares solutions are preferable to the tracer and linear 

programming solutions because: 1) theoretically they yield the most likely solution 

to the CMB equations, providing model assumptions are met; 2) they can make 

use of all available chemical measurements, not just the so-called tracer species; 

3) they are capable of analytically estimating the uncertainty of the source 

contributions; and 4) there is, in practice, no such thing as a "tracer," since most 

species are found in multiple sources. 
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CMB software in current use (Watson et a/., 1990) applies the effective 

variance solution developed and tested by Watson et a/. (1984) because this 

solution: 1) provides realistic estimates of the uncertainties of the source 

contributions (owing to its incorporation of both source profile and receptor data 

uncertainties); and 2) gives greater influence to chemical species with higher 

precisions in both the source and receptor measurements than to species with 

lower precisions. 

The effective variance solution is derived by minimizing the weighted sums of 

the squares of the differences between the measured and calculated values of Ci 

and Fii (Britt and Luecke, 1973). The solution algorithm is an iterative procedure 

which calculates a new set of Sj based on the Si estimated from the previous 

iteration. It is carried out by the following steps expressed in matrix notation. A 

superscript k is used to designate the value of a variable at the kth iteration. 

1. Set initial estimate of the source contributions equal to zero. 

2. Calculate the diagonal components of the effective variance matrix, V,. 
All off-diagonal components of this matrix are equal to zero. 

k 2  VB, = u q  + U ( S l k ) 2 . U , #  

3. Calculate the k+  1 value of Sj 

Sk+l = (FT(  Vek) - I  F T  1 ( v/-l c (7) 

4. Test the (k+ 1)th iteration of the Sj against the kth iteration. If any one 
differs by more than 1 percent, then perform the next iteration. If all 
differ by less than 1 percent, then terminate the algorithm. 
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5. Assign the (k+ 1)th iteration to Si and aq. All other calculations are 
performed with these final values. 

0 =I = [ F T( v ; + y  F),,]-1'2 (9) 

where C 

S 

F 

= (C l...C,)T, a column vector with Ci as the ith component, 

= (S l...SJ)T, a column vector with Si as the jth component, 

= An I x J matrix of Fij, the source composition matrix, 

= One standard deviation precision of the C, measurement, 
a c, 

= One standard deviation precision of the Fii measurement, 
61 

V, = Diagonal matrix of effective variances 

The effective variance represents a simplification of an exact method derived 

by Britt and Luecke (1973) which has also been termed "structured regression" 

(White, 1989), and it is used in the CMB owing to its computational efficiency. 

Tests by Britt and Luecke (1973) show that under most practical circumstances, 

the differences between the structured regression and effective variance methods 

are small. The effective variance solution algorithm is very general, and it reduces 

to most of the solutions cited above with the following modifications: 

0 When the uF,, are set equal to zero, the solution reduces to the 

ordinary weighted least squares solution. 

0 When the uF,, are set equal to the same constant value, the solution 

reduces to the unweighted least squares solution. 

0 When a column is added to the Fij matrix with all values equal to 1, an 
intercept term is computed for the variable corresponding to this 
column. 
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0 When the number of source profiles equals the number of species 
(I = J), and if the selected species are present only in a single, exclusive 
source profile, the solution reduces to the tracer solution. 

0 When the matrix 

(FT( V,”)-’ F )  

is re-written as 

with 4 equal to some non-zero number, known as the smoothing 
parameter, and I equal to the identity matrix, the solution becomes the 
ridge regression solution (Williamson and DuBose, 1983). 

Only the effective variance method, or the more exact method of Britt and 

Luecke (1973), are applicable to solving the CMB equations because the 

uncertainties of the source compositions are generally much larger than the 

uncertainties in the ambient concentrations. 

3. CMB MODEL ASSUMPTIONS 

The CMB model assumptions are: 

1. Compositions of source emissions are constant over the period of 
ambient and source sampling. 

2. 

3. 

Chemical species do not react with each other, i.e., they add linearly. 

All sources with a potential for significantly contributing to the receptor 
have been identified and have had their emissions characterized. 

4. The source compositions are linearly independent of each other. 

5. The number of sources or source categories is less than or equal to 
the number of chemical species. 

6. Measurement uncertainties are random, uncorrelated, and normally 
distributed. 
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Assumptions 1 through 6 for the CMB model are fairly restrictive and will 

never be totally complied with in actual practice. Fortunately, the CMB model can 

tolerate deviations from these assumptions, though these deviations increase the 

stated uncertainties of the source contribution estimates. 

The CMB model has been subjected to a number of tests to determine its 

abilities to tolerate deviations from model assumptions (Watson, 1979; Gordon et 

a/., 1981; Henry, 1982; Currie et a/., 1984; Dzubay eta/., 1984; Watson and 

Robinson, 1984; DeCesar et a/., 1985; Javitz et a/.,1988a&b). These studies all 

point to the same basic conclusions regarding deviations from the above-stated 

assumptions. 

With regard to Assumption 1, source compositions, as seen at the receptor, 

are known to vary substantially among sources, and even within a single source 

over an extended period of time. These variations are both systematic and 

random and are caused by three phenomena: 1) transformation and deposition 

between the emissions point and the receptor; 2) differences in fuel type and 

operating processes between similar sources or the same source in time; and 3) 

uncertainties or differences between source profile measurement methods. 

Evaluation studies have generally compared CMB results from several tests using 

randomly perturbed input data and from substitutions of different source profiles 

for the same source type. 

The general conclusions drawn from these tests are: 1) the error in the 

estimated source contributions due to biases in all of the elements of a source 

profile is in direct proportion to the magnitude of the biases; and 2) for random 

errors, the magnitude of the source contribution errors decreases as the 

difference between the number of species and sources increases. 

The most recent and systematic tests are those of Javitz et a/. (1988a) which 

apply to a simple 4-source urban airshed and a complex 10-source urban airshed. 

These tests with 17 commonly measured chemical species showed that primary 

mobile, geological, coal-fired power plant, and vegetative burning source-types 

can be apportioned with uncertainties of approximately 30% when coefficients of 

variation in the source profiles are as high as 50%. This performance was 
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demonstrated even without the presence of unique "tracer" species such as 

selenium for coal-fired power plants or soluble potassium for vegetative burning. 

In a complex urban airshed, which added residual oil combustion, marine aerosol, 

steel production, lead smelting, municipal incineration, and a continental 

background aerosol, it was found that the geological, coal-fired power plant, and 

background source profiles were collinear with the measured species. At 

coefficients of variation in the source profiles as low as 25%, average absolute 

errors were on the order of 60%, 50%, and 130% for the geological, coal-burning, 

and background sources, respectively. All other sources were apportioned with 

average absolute errors of approximately 30% even when coefficients of variation 

in the source profiles reached 50%. Once again, these tests were performed with 

commonly measured chemical species, and results would improve with a greater 

number of species which are uniquely emitted by the different source types. 

With regard to the nonlinear summation of species, Assumption 2, no studies 

have been performed to evaluate deviations from this assumption. While these 

deviations are generally assumed to be small, conversion of gases to particles 

and reactions between particles are not inherently linear processes. This 

assumption is especially applicable to the end products of photochemical 

reactions and their apportionment to the sources of the precursors. Further 

model evaluation is necessary to determine the tolerance of the CMB model to 

deviations from this assumption. The current practice is to apportion the primary 

material which has not changed between source and receptor. The remaining 

quantities of reactive species such as ammonium, nitrate, sulfate, and elemental 

carbon are then apportioned to chemical compounds rather than directly to 

sources. While this approach is not as satisfying as a direct apportionment, it at 

least separates primary from secondary emitters and the types of compounds 

apportioned give some insight into the chemical pathways which formed them. As 

chemical reaction mechanisms and rates, deposition velocities, atmospheric 

equilibrium, and methods to estimate transport and aging time become better 

developed, it may be possible to produce "fractionated" source profiles which will 
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allow this direct attribution of reactive species to sources. Such apportionment will 

require measurements of gaseous as well as particulate species at receptor sites. 

A major challenge to the application of the CMB is the identification of the 

primary contributing sources for inclusion in the model, Assumption 3. Watson 

(1979) systematically increased the number of sources contributing to his 

simulated data from four to eight contributors while solving the CMB equations 

assuming only four sources. He also included more sources in the least squares 

solutions than those which were actually contributors, with the following results: 

0 Underestimating the number of sources had little effect on the 
calculated source contributions if the prominent species contributed by 
the missing sources were excluded from the solution. 

0 When the number of sources was underestimated, and when 
prominent species of the omitted sources were included in the 
calculation of source contributions, the contributions of sources with 
properties in common with the omitted sources were overestimated. 

When source-types actually present were excluded from the solution, 
ratios of calculated to measured concentrations were often outside of 
the 0.5 to 2.0 range, and the sum of the source contributions was 
much less than the total measured mass. The low 
calculated/measured ratios indicated which source compositions 
should be included. 

0 

0 When the number of sources was overestimated, the sources not 
actually present yielded contributions less than their standard errors if 
their source profiles were significantly distinct from those of other 
sources. The over-specification of sources decreased the standard 
errors of the source contribution estimates. 

The linear independence of source compositions required by Assumption 4 

has become a subject of considerable interest since the publication of Henry’s 

(1982) singular value decomposition (SVD) analysis. As previously noted, this 

analysis provides quantitative measures of collinearity and the sensitivity of C M B  

results to specific receptor concentrations. These measures can be calculated 

analytically in each application. Henry (1982) also proposed an optimal linear 

combination of source contributions that have been determined to be collinear. 
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Other "regression diagnostics" have been summarized by Belsley et a/. (1 980) 

and have been applied to the CMB by DeCesar et a/. (1985). Kim and Henry 

(1989) show that most of these diagnostics are useless because they are based 

on the assumption of zero uncertainty in the source profiles. Kim and Henry 

demonstrate, through the examination of randomly perturbed model input data, 

that the values for these diagnostics vary substantially with typical random 

changes in the source profiles. 

Tests performed on simulated data with obviously collinear source 

compositions typically result in positive and negative values for the collinear 

source types as well as large standard errors in the collinear source contribution 

estimates. Unless the source compositions are nearly identical, the sum of these 

large positive and negative values very closely approximates the sum of the true 

contributions. 

With most commonly measured species (e.g., ions, elements, and carbon) 

and source-types (e.g., motor vehicle, geological, residual oil, sea salt, steel 

production, wood burning, and various industrial processes), from five to seven 

sources are linearly independent of each other in most cases (Javitz et a/., 1988a). 

Gordon et a/. (1981) found instabilities in the ordinary weighted least square 

solutions to the CMB equations when species presumed to be "unique" to a 

certain source type were removed from the solution. Using simulated data with 

known perturbations ranging from 0 to 20%, Watson (1979) found: "In the 

presence of likely uncertainties, sources such as urban dust and continental 

background dust cannot be adequately resolved by least squares fitting, even 

though their compositions are not identical. Several nearly unique ratios must 

exist for good separation." 

With regard to Assumption 5, the true number of individual sources 

contributing to receptor concentrations is generally much larger than the number 

of species that can be measured. It is therefore necessary to group sources into 

source-types of similar compositions so that this assumption is met. For the most 

commonly measured species, meeting Assumption 4 practically defines these 

groupings. 
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With respect to Assumption 6 (the randomness, normality, and the 

uncorrelated nature of measurement uncertainties), there are no results available 

from verification or evaluation studies. Every least squares solution to the CMB 

equations requires this assumption, as demonstrated by the derivation of Watson 

et a/. (1984). In reality, very little is known about the distribution of errors for the 

source compositions and the ambient concentrations. If anything, the distribution 

probably follows a log-normal rather than a normal distribution. Ambient 

concentrations can never be negative, and a normal distribution allows a 

substantial proportion of negative values, while a log-normal distribution allows no 

negative values. For small errors (e.g., less than 20%), the actual distribution may 

not be important, but for large errors it probably is important. A symmetric 

distribution becomes less probable as the coefficient of variation of the 

measurement increases. This is one of the most important assumptions of the 

solution method that requires testing. 

4. CMB INPUT AND OUTPUT DATA 

The ambient concentrations of these species, Ci, and their fractional amount 

in each source-type emission (source profiles), Fii, are the measured quantities 

which serve as CMB model input data. These values require uncertainty 

estimates, aCi and aFij, which are also input data. Input data uncertainties are used 

both to weight the importance of input data values in the solution and to calculate 

the uncertainties of the source contributions. The output consists of: 1) the source 

contribution estimates (Si) of each source-type; 2) the standard errors of these 

source contribution estimates; and 3) the amount contributed by each source-type 

to each chemical species. 

Figure 1 shows examples of ambient fine particle concentrations and source 

profiles which serve as input data for CMB modeling. For simplicity, only 23 

species are shown, though forty or more species in both the gaseous and 

particulate phases are commonly used to distinguish one source from another. 

Many more species are available from typical measurements of volatile and 

particulate organic species. 
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Figure 1. Examples of Ambient Concentration Measurements and Source Profiles from the Potland Aerosol 
Characterization Study (Watson, 1979). 
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Emissions inventories are examined to determine the types of sources which 

are most likely to influence a receptor. Principal components analysis applied to a 

time series of chemical measurements is also a useful method of determining the 

number and types of sources. After these sources have been identified, profiles 

acquired from similar sources are examined to select the chemical species to be 

measured. Watson (1979) demonstrates that the more species measured, the 

better the precision of the CMB apportionment. 

The ambient values are acquired from chemical measurements of samples 

from the atmospheres. To quantify particle chemistry, air is drawn through size 

selective inlets onto filter substrates. These particle deposits can be submitted to 

a variety of analyses, such as photon or proton induced x-ray fluorescence 

analysis, instrumental neutron activation analysis, ion chromatography, atomic 

absorption spectrometry, automated colorimetry, and organic/elemental carbon 

analysis. Samples from sources are generally acquired by similar sampling 

through inlets onto substrates by resuspending sieved soil samples, by extracting 

and diluting with cool air the effluents from an emissions duct, or by sampling 

ambient air in an area dominated by emissions from a single source. 

The ambient sample in the first panel of Figure 1 shows significant 

concentrations of most chemical species, while each of the source profiles shows 

a few species which tend to differentiate its composition from that of other 

sources. Organic (OC) and elemental (EC) carbon dominate the composition of 

vegetative burning and motor vehicle exhaust, though they are present in different 

proportions in the two profiles. Carbonaceous material is not so abundant in 

urban dust, which contains crustal elements such as aluminum, silicon, iron, 

calcium and titanium in their oxide forms. Lead and bromine stand out in the 

motor vehicle exhaust profile shown in Figure 1, which was determined by 

sampling vehicles in use prior to 1978. The abundance of lead and bromine in 

1990 motor vehicle exhaust (e.9. Watson et a/., 1988 and Cooper et a/., 1987) is 

significantly reduced owing to a larger number of unleaded vehicles and lower 

lead contents in fuels. The vegetative burning profile contains potassium and 
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chlorine at proportions which are substantially higher than the proportions on 

other profiles shown in Figure 1. 

Differences in chemical composition also exist for particulate matter emitted 

by sources which are not illustrated in Figure 1. For example, coal combustion 

contains significant amounts of selenium, copper smelter emissions contain 

copper, zinc and lead, and steel mill blast furnaces contain large proportions of 

iron and manganese. It is these differences in the proportions of chemical 

species which allow the contributions from different sources to be separated by 

the CMB receptor model. 

The ambient data shown in the first panel of Figure 1 also contains significant 

amounts of sulfate and nitrate which are not found in the source profiles. Sulfates 

and nitrates (which are usually found in the atmosphere as ammonium sulfate, 

ammonium bisulfate, sulfuric acid, and ammonium nitrate) are commonly the 

product of atmospheric reactions which convert gases directly emitted by sources 

into particles over time periods ranging from hours to days. Particles which are 

directly emitted by sources and which undergo few changes between source and 

receptor are termed primary particles. For regulatory purposes, the CMB is 

currently used to: 1) separate primary contributors from secondary contributors; 

2) assign particulate matter of primary origin to source types (e.g. geological, 

motor vehicle, vegetative burning); and 3) assign secondary particles to their 

chemical forms (e.g. sulfuric acid, ammonium nitrate). It is an active area of 

receptor modeling research to develop models which can approximate source 

profiles after they have aged and interacted with emissions from other sources. 

When such models have been developed and validated, the CMB model may also 

be used to apportion secondary particles to the emitters of their precursors. 

One of the original objections to receptor modeling for PM,, source 

assessment was that source profile and ambient data were not available. These 

objections are no longer valid, since a large number of data bases of both source 

and receptor measurements have been acquired in the United States for use in 

these models over the past decade. These data bases are widely dispersed, 

however, and are not generally available for study or evaluation. This situation is 
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unfortunate because: 1) these existing particulate data bases might alleviate the 

need to acquire new data bases; 2) their potential for receptor model application 

and testing is untapped; 3) they provide models for success and failure which can 

enhance the design of new data acquisition projects; and 4) they provide a 

comprehensive view of particulate levels, concentrations, and source contributions 

for major parts of the United States. The ideal particulate matter data base for 

source and receptor measurements has the following characteristics: 

0 A large number of chemically and size classified concentrations. Mass, 
elements, ions, and carbon have been found to be the most easily 
measured and useful species while PM,, and PM,,, are the most useful 
size ranges. 

0 Comprehensive coverage with respect to time, space, and in the case 
of source samples, operating conditions. Simultaneous receptor 
samples taken at locations affected by different source types are useful 
in the verification of receptor model source apportionments. Similarly, 
receptor samples taken in different seasons are affected by different 
emissions sources and meteorological conditions. Source samples 
need to represent the full range of profiles from a given source 
category so that uncertainties can be estimated for input to receptor 
models. 

0 Documentation of measurement methods, locations, and sampling 
times. Written records of the entire experimental program which 
acquired the data base are essential to its extended use. In the case 
of source characterization, this information should include the fuels, 
operating cycle, type of facility, location, and time of test. 

0 Quality control and quality audits. Replicates, field blanks, and 
independent verifications of field monitoring and laboratory operations 
are needed to assure that the stated procedures were actually 
complied with. 

0 Precision and accuracy estimates. State-of-the-art receptor modeling 
treats measurement uncertainties as part of the input data and returns 
uncertainties on source contribution estimates derived from those 
inputs. The quality control and quality audit data should be processed 
to quantify these uncertainties. 
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0 Validation summaries or flags. Validation criteria should have been 
applied to every sample, and the results of that validation should be 
reported with the data. 

0 Availability in computerized formats. For research purposes, data 
cannot be proprietary or secret. If it is not in some computerized and 
documented form, preferably accessible by personal computers, the 
expense of putting it into such form usually outweighs the potential 
benefits derived from examining the data. 

The EPA source composition library (Shareef eta/., 1989; US EPA, 1988) 

contains a large number of sources, but its current contents for motor vehicles 

and residential wood combustion are dated and do not reflect the compositions 

from modern vehicles, stoves, and fuels. The more recent source libraries 

(Cooper era/., 1987; Ahuja eta/., 1989; Houck et a/., 1989; Core er a/., 1989; 

Watson eta/., 1988, 1989) contain profiles which are more applicable to data 

bases acquired today for PM,, source assessment. The historical value of source 

libraries from the Portland Aerosol Characterization Study (Watson, 1979) and the 

wide range of profiles reported by Hopke (1985) are still of value because of their 

comprehensiveness and applicability to receptor data taken in an earlier era. 

Sheffield and Gordon (1986) present the most complete compilation of emissions 

characteristics from coal- and oil-fired power plants, and this is an excellent 

resource for studying pollution in areas with these source types 

Most of the collections of source profiles listed in Table 1 contain soil and 

road dust compositions, and it is unlikely that these profiles change over long 

periods of time. The Pacific Northwest Source Composition Library (Core, 1989) 

is one of the first to acquire speciation of the organic carbon fraction of source 

samples. The measurement of these additional species will allow them to be 

evaluated in receptor model applications to particulate matter. 

Several major ambient particulate studies, and the exJent to which they meet 

the above-stated criteria, are summarized by Lioy et a/. (1980) and Chow and 

Watson (1989). The data bases cited in these references are fairly major studies 

which were initiated for the purpose of applying receptor models, and several of 

these studies include the results of the modeling. Hopke (1985) identifies a 
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Table 1. Example of CMB Output 

SOURCE CONTRIBUTION ESTIMATES - SITE. PACSl DATE: 08/13/77 VERSION: 7.0 
SAMPLE DURATION 24 START HOUR 0 SIZE: FINE 

R SQUARE .98 PERCENT MASS 98.7 
CHI SQUARE 1.12 DF 13 

SOURCE 
* TYPE SCE(UG/M3) STD ERR TSTA'I 

1 MARIN 
3 UDUST 
4 AUTPB 
5 RDOIL 
8 KRAFT 
11 ALPRO 
12 STEEL 
13 FERMN 

12.3889 
9.5917 
10.0835 
11.0603 
4.6896 
10.6023 
8.6729 
11.8754 

2.2457 
1.3876 
1.4942 
1.9239 
5.0467 
3.5896 
1.3771 
1,8321 

5.5167 Marine Aerosol 
6.9127 Urban Dust 
6.7486 Leaded Motor Vehicle Exhaust 
5.7490 Residual 011 Combustion 
,9292 Kraft Recovery Boiler 

2.9536 Aluminum Pat Line 
6.2979 Steel Blast Furnace 
6 . 4 8 2 0  Ferromanganese Furnace 

MEASURED CONCENTRATION FINE/COARSE/TOTAL. 
80 .0+-  8.0/ 80.0+- 8 . 0 1  160.0+- 11.3 

UNCERTAINTY/SIMILARITY CLUSTERS VERSION: 7 0 SUM OF CLUSTER SOURCES 

1 8  17.078+- 4.241 
1 5 8  28.139+- 3 . 8 3 3  

............................................................................... 

SPECIES CONCENTRATIONS - SITE: PACSl DATE. 08/13/77 VERSION: 7.0 
SAMPLE DURATION 24 START HOUR 0 SIZE: FINE 

R SQUARE .98 PERCENT MASS 98.7 
CHI SQUARE 1.12  DF 13 

C1 
c9 
C11 
c12 
C13 
C14 
C16 
C17 
c19 
c20 
c22 
C23 
C24 
C25 
C26 
C28 
c29 
C30 
c35 
C82 
c201 
c202 
C203 

TOT 
F 
NA 
m; 
AL 
SI 
S 
CL 
K 
CA 
TI 
V 
CR 
MN 
FE 
NI 
cu 
ZN 
BR 
PB 
M: 
EC 
SO4 

T 80.00000+- 
.88300+- 

6.93000+- 
.43000+- 

4.66000+- 
3.02000+- 
2.95000+- 
5 .  g5000+- 
1.64000+- 
1.78000+- 
.08300+- 
.37200+- 
.31500+- 

2.99000+- 
4.53000+- 
.76500+- 
.04400+-  
.22500+- 
.41900+- 

2.53000+- 
7 54000t- 
1,42000+- 
10.30000+- 

8.00000 
,08800 
,69300 
,04300 
,46600 
.30200 
29500 
59500 
,16400 
,17800 
.00800 
,03700 
,03200 
.29900 
,45300 
,07700 
,00400 
,02300 
, 0 4 2 0 0  
,25300 
,75400 
,14200 

1,03400 

78.96461+- 
,67644+- 

6.97025+- 
1.60951+- 
4.02418+- 
2.92212+- 
3.02466+- 
5.6!3381+- 
1 73084+- 
1.43537+- 

.10088+- 

.39757+- 

.20976+- 
2.02844t- 
4.24446t- 

.68246+- 

.05274+- 

.26786+- 

.56133+- 
2.1374W 
8.50978+- 
1.33579+- 
9.78819+- 

4.82449 
,24792 
,56446 
,62627 
,88919 
,13329 
,31807 

1.24836 
46411 
,11366 
,01630 
,08308 
,12151 
,14115 
,33269 
,13428 
.00510 
.03966 
,17386 
,30300 

1.35632 
,34012 

1 47514 

99+- 
.77+- 

1,01+- 
3.74+- 

86+- 
.97+- 

1.03+- 
.96+- 

1.06+- 
. E l + -  

1,22+- 
1.07+- 
.67+- 
.95+- 
94+- 
.89+- 

1.20+- 
1.19+- 
1.34t- 

. 8 4 f -  
1.13+- 
.94+- 
95+- 

12 
.29 
.13 

1 . 5 0  
. 2 1  
.ll 
.15 
. 2 3  
.30 
.10 
.23 
. 2 5  
.39 
.ll 
. 1 2  
. 2 0  
16 

. 2 1  

. 4 4  

. 1 5  

. 2 1  

. 2 6  

.17 
C 2 0 4  NO3 * 63800+- 06400  .88402+-  35938 1.39+- . 5 8  

-.l 
-.8 

.o 
1.9 
-.6 
-.3 

. 2  
- . 2  

. 2  
-1.6 
1.0 

. 3  
- . 8  
- . 5  
- . 5  
- . 5  
1.3 
.9 
. 8  

-1.0 
.6 

- . 2  
- . 3  
.7 
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number of additional studies which provide data bases of shorter duration. Hopke 

and Dattner (1982), Pace (1985), Mathai and Stonefield (1988) and Watson (1989) 

also report the existence of particulate and gaseous data bases suitable for 

receptor modeling. 

5. USING THE CMB MODEL 

Every air quality model is a simplification of reality, and the CMB model is no 

exception. There are some situations under which this simplification is a good 

approximation, and other situations under which it is not. In is incumbent on the 

model user to apply the model correctly and to test its validity every time he uses 

it. To facilitate this process, an applications and validation protocol has been 

developed for PM,, modeling (US EPA, 1987a), and this protocol can be 

generalized for applications to other types of pollutants. The protocol consists of 

seven steps which are described in the following sub-sections. The software 

needed to implement this protocol is available free of charge from the United 

States Environmental Protection Agency. Familiarity with this software will provide 

a perspective for the use of this protocol. 

5.1 Step 1: Determine the Applicability of the CMB to the Situation 
Being Studied 

The following conditions must be met for the CMB to be applicable: 

0 A sufficient number of receptor samples have been taken with an 
accepted sampling method to represent the range of concentrations 
expected at the receptor. 

0 Samples are amenable to or have been analyzed for a variety of 
chemical species. 

0 The potential source contributors can be identified and grouped into 
source types of distinct chemical compositions with respect to the 
species measured at the receptor. 

0 Profiles for the source types are obtainable which represent the 
composition of emissions as they would appear at the receptor. 
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Unless all five of these requirements are fulfilled, the CMB receptor model is 

The number of source types is less than the number of chemical 
species measured at the receptor. 

not applicable to the situation under study. These are necessary, but not 

sufficient requirements. Even if they are met, it may still be found that the 

precision and validity of CMB results are not adequate to justify pollution control 

decisions. The remaining steps in the applications and validation protocol must 

be taken to arrive at this conclusion. 

5.2 Step 2: Set Up the Model and Perform an Initial Solution 

This step requires the selection of receptor chemical species measurements 

and source profiles appropriate for the area being studied. CMB modeling 

software is interactive and allows any subset of chemical species and source 

profiles to be used in a calculation of source contribution estimates. With most 

computer memory configurations, more than one hundred source profiles and 

chemical species can be accommodated. 

The chemical species must be present in both the source profiles and in the 

receptor data sets. A default value of zero with a standard deviation equal to an 

analytical detection limit may be assigned to a species in a source profile if that 

species has not been reported but is known to be absent in emissions from that 

source type. Species with values which are commonly below detection limits in 

receptor samples, but which are found at detectable levels in source profiles, 

should not be discarded. Their uncertainty can be set to the analytical detection 

limit in the receptor data base. When these species are included in the 

calculations of source contribution estimates, the standard error places an upper 

limit on the contributions from source types in which these species are present. 

Source profiles are selected to represent those which those source types 

which are known to be operating in a study area. Ubiquitous area sources, such 

as motor vehicle exhaust, resuspended road dust, and wood combustion should 

always be included since they are present in nearly all populated areas. Natural 

sources, such as sea salt and windblown dust, need to be added if the receptor is 
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likely to be affected by such sources. Industrial sources (e.g. steel mills, power 

plants, smelters) are usually identifiable from emissions inventories. Profiles for 

secondary particles can be constructed from the stoichiometric ratios of their 

molecular components. Common secondary profiles include sulfuric acid, 

ammonium sulfate, ammonium nitrate, and sodium nitrate. 

Some profiles may be too similar in composition to allow resolution by the 

CMB model. If this is the case, these profiles can be combined in different 

proportions to create a "composite" source profile. This compositing is often 

needed for leaded, unleaded, and diesel exhaust profiles and for different fugitive 

dust profiles. 

Several profiles for the same source type can be included in the input data 

files to represent different compositions which might occur for different samples. 

For example, Watson et a/. (1988) used composite motor vehicle profiles which 

contained 50%, 75%, and 85% diesel exhaust to apportion fine particles in 

wintertime Denver, CO. In general, the 50% diesel profiles best accounted for the 

receptor concentrations during daytime, while the 75% and 85% diesel profiles 

best accounted for the receptor concentrations in nighttime samples. This was 

consistent with the larger proportion of diesel traffic through Denver at night when 

compared to the daytime traffic. 

A few samples from each site are selected for initial CMB testing. A subset of 

source profiles and chemical species is selected to calculate source contribution 

estimates and the model outputs, statistics, and diagnostics are examined to 

determine how well these profiles explain the measured concentrations. This 

subset is selected after examination of these statistics for several trials in which 

different profiles are substituted for the same source type. 
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5.3 Step 3: Examine Outputs, Statistics and Diagnostics 

A typical CMB model output is shown in Table 1. The following information 

is presented in this output: 

0 Source Contribution Estimate (SCE). This is the contribution of each 

source type to the pollutant being apportioned, which is mass 

concentration in the case of particulate matter. Each of the SCE 

should be greater than zero and none should exceed the total mass 

concentration. 

0 Standard Error (STDERR). This is an indicator of the precision or 

certainty of each SCE. Its magnitude is a function of the uncertainties 

in the input data and the amount of collinearity among source profiles. 

It is desirable to have this value be much less than the source 

contribution estimate. 

0 t-Statistic flSTAT). This is the ratio of the source contribution estimate 

to the standard error. A high value for TSTAT, at least greater than 

2.0, shows that the relative precision of the source contribution 

estimate is high and that the contribution is significant. A low TSTAT 

value (<2.0) means that a source contribution is not present at a level 

which exceeds two times the STDERR. Twice the STDERR is a 

reasonable estimate of the upper limit for a source contribution when 

TSTAT <2.0. 

0 R-Square (R SQUARE) and Chi-square (CHI SQUARE). The R 

SQUARE statistics measures the variance in the receptor 

concentrations which is explained by the calculated species 

concentrations. The CHI SQUARE statistic is the sum of the squares 

of differences between calculated and measured species 

concentrations divided by the effective variance and the degrees of 

freedom (DF). A low R SQUARE (<0.8) indicates that the selected 
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source profiles have not accounted for the variance in the selected 

receptor concentrations. A large CHI SQUARE (>4.0) means that one 

or more or the calculated species concentrations differs from the 

measured concentrations by several uncertainty intervals. The values 

for these statistics exceed their targets when: 1) contributing sources 

have been omitted from the CMB calculation; 2) one or more source 

profiles have been selected which do not represent the contributing 

source types; 3) precisions of receptor or source profile data are 

underestimated; and/or 4) source or receptor data are inaccurate. 

0 Percent of Mass Accounted For (PERCENT MASS). This is the ratio of 

the sum of the source contributions to the measured mass for 

particulate samples. For volatile organic compounds it could also be 

the ratio of the sum of the contributors to total organics measured in a 

gaseous sample. The target value is loo%, with a reasonable range of 

80 to 120%. Percent mass values are outside of this range result 

when: 1) source profiles have been incorrectly specified; 2) 

contributing source types have been omitted from the calculation; 3) 

mass or chemical species measurements are inaccurate; 4) mass 

measurements are less than 10 pg/m3 and within a few precision 

intervals of the measurements. 

Uncertaintv/Similaritv Clusters (U/S CLUSTERS). This display shows 

the results of a singular value decomposition analysis of collinearity. 

When source profiles are similar in composition, the CMB model does 

not accurately apportion species to the source types which they 

represent. This is often the case for geological sources, different types 

of vegetative burning, and motor vehicle exhaust. These clusters 

summarize the results of a singular value decomposition analysis of the 

receptor concentrations, source profiles and their uncertainties. 

Source identifiers on the same line show the potential for different 
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sources to be collinear. For example, the U/S CLUSTERS in Table 1 

show that the marine aerosol and the kraft recovery boiler may be 

collinear (sources 1 and 8 are on the same line). These sources may 

also appear in the U/S CLUSTERS when the uncertainties in the 

source profiles are very high. The SUM OF CLUSTER SOURCES 

which appears with each cluster can be examined to determine 

whether collinearity or large input data uncertainties create the cluster. 

0 Sum of Combined Sources (SUM OF CLUSTER SOURCES). This 

value is the sum of the source contributions in the cluster coupled with 

the standard error of that sum. The standard error is not a simple 

square root of the sum of the squares of the standard errors of the 

source contributions in the cluster--it contains cross-product terms to 

account for correlated errors resulting from collinearity. When the 

relative standard error for this sum is much less than the relative 

standard errors of any or all of the contributions from sources in the 

cluster, the standard errors of source contribution estimates can 

probably be reduced by creating a composite profile for the sources in 

the cluster. This uncertainty reduction comes at the expense of 

resolving the collinear source contribution estimates from one another. 

0 Ratio of Residual to Its Standard Error (RATIO R/U). This column 

contains the ratio of the signed difference between the calculated and 

measured concentration (the residual) divided by the uncertainty of that 

residual (square root of the sum of the squares of the uncertainty in 

the calculated and measured concentrations). The R/U ratio specifies 

the number of uncertainty intervals by which the calculated and 

measured concentrations differ. When the absolute value of the R/U 

ratio exceeds 2, the residual is significant. If it is positive, then one or 

more of the profiles is contributing too much to that species. If it is 

negative, then there is an insufficient contribution to that species and a 
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source may be missing. The sum of the squared R/U for fitting 

species divided by the degrees of freedom yields the chi square. The 

highest R/U values for fitting species are the cause of high chi square 

values. 

0 Ratio of Calculated to Measured SDecies (RATIO C/M). The column 

entitled RATIO C/M shows the ratio of calculated to measured 

concentration and the standard error of that ratio for every chemical 

species with measured data. The ratios should be near 1.00 if the 

model has accurately explained the measured concentrations. Ratios 

which deviate from unity by more than two uncertainty intervals indicate 

that an inorrect set of profiles is being used to explain the measured 

concentrations. 

0 Source SDec ies Concentrations (SSCONT). Table 2 shows the 

fractional contribution of each source to each species. This 

information is used to identify potentially incorrect profiles which might 

be responsible for a RATIO R/U which exceeds the target range. For 

example, MG in Table 1 shows a RATIO C/M of 3.74 r 1.50 and a 

RATIO R/U of 1.9. Table 2 shows that both MARINE and STEEL 

profiles contribute more than 100% of the measured magnesium 

concentrations. Either the ambient or source profile Mg data should 

be examined for accuracy in this case. 

0 Modified Pseudo-Inverse Matrix fMPIN). The MPlN is shown in Table 3 

for the example of Table 1. This matrix shows the species which are 

most influential on the source contribution estimates. Absolute values 

greater than 0.5 show that a species is very influential, while values 

between 0.3 and 0.5 show that it is moderately influential. For 

example, Table 3 shows that chloride and sodium are extremely 

influential in the MARINE source contribution, as expected. The sulfate 
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is also influential for this species, which is not so obvious from a 

cursory examination of the source profile. 

5.4 Step 4: Identify Significant Deviations from Model Assumptions 

The source contribution estimates and the diagnostics cited in Section 5.3 

can be identified to determine the extent to which the assumptions stated in 

Section 3 have been complied with. If source profiles have reacted with one 

another and changed between source and receptor, if contributing sources have 

been omitted, or if input data have been improperly validated, the CHI SQUARE 

and R/U RATIOS will not be within target ranges. If the number of sources 

exceeds the number of fitting species used in the calculation, no solution will be 

returned and the DF will be less than zero. If profiles are collinear, source 

contribution estimates will have large standard errors and U/S CLUSTERS will be 

found. 

5.5 Step 5: Adjust Model Inputs to Comply with Assumptions 

The ambient data, source data, and combination of species and profiles can 

be changed to bring the CMB diagnostics into acceptable target ranges. The 

accuracy and validity of ambient and source data are examined first. If the 

concentration of one species is suspect for analytical reasons or because it may 

be contributed by an unknown source type, this species can be removed from the 

source apportionment calculation. If the suspect species influential in the 

calculation process, as shown by the MPlN diagnostic, then it a re-analysis of that 

sample might be desirable. 
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Table 2. Example of SSCONT Display 

SPECIES(PER SOURCE) 
INDIVIDUAL RATIO = __._____.___._____________ 

MEAS SPECIES(ALL SOURCES) 

SOURCE NAME 
SPECIES MAKIN UDUST AUTPB RDOIL KRAFT ALPRO STEEL F E W  

TOT , 1 5 5  ,120 ,126 ,138 ,059 ,133 ,108 .148 
F ,000 ,000 ,000 ,007 ,000  ,720 . O O O  .039 
NA ,715 ,017 ,000 ,056 , 086  ,063 ,016 . 053  
MG 1.383 ,290 ,000 ,000 .069 ,690 1.311 ,000 
AL .OOO ,182 ,024 ,013 .003 ,614 ,012 ,016 
S I  ,000 .708 ,027 ,035 .002 ,012 ,144 ,039 
S ,139 ,012 ,014 .499 ,186 .050 .058 .068 
CL ,833 ,000 ,051 ,000 ,014 ,024 .027 .008 
K .lo6 ,060 .004 ,019 ,043 .014 ,049 .760 
CA .097 .131 ,071 ,098 , 000  ,020 ,302 ,087 
T I  ,000 ,740 ,000  ,147 ,003 ,051 ,209 ,066 
V ,000 .006 ,000 1.023 .OOO ,018 ,014 ,008 
CR ,000 ,014 ,000 ,017 ,042 ,000 ,578 ,016 
MN ,000 ,004 ,000 ,002 , 000  ,000 ,252 ,687 
FE ,000 ,127 ,047 .073 ,012 ,011 ,613 , 0 5 5  
N I  ,000 .001 ,002 . 7 7 5  ,008 .026 .079 ,000 
cu ,000 ,065 ,167 ,189 ,022 ,106 ,552 ,097 
zn ,000 ,047 ,157 ,197 ,014 ,007 ,463 ,306 
BR ,059 ,005 1 . 2 0 3  ,003  ,015 ,009 ,000 ,045 
PB ,000 ,014 ,797 ,005  ,000 , 0 0 1  , 0 2 6  , 0 0 2  
oc ,000 , 1 5 0  .669 ,103 ,011 , 0 5 5  ,000 ,142 
EC .OOO .125 ,270 ,241 ,007 ,172 ,000 , 1 2 5  
S O 4  ,120 ,004 .013 ,517 ,182 ,045 , 0 2 1  ,048 
NO3 ,000 ,000 ,144 .113 .OOO ,068 .OOO 1.061 
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Large negative residuals indicate that a source is needed which will supply a 

larger quantity of that species. Source profiles which are not in the solution are 

examined to determine which ones would supply sufficient quantities of the 

missing concentrations if they were added to the solution set. The CMB is applied 

as many times as necessary to determine which source types and profiles best 

explain the underestimated receptor concentrations. A source type should 

not be included just because it explains the data. There must be a physical 

justification for its inclusion. For example, a marine profile may explain the high 

chloride concentrations observed in wintertime Denver, but the profile is probably 

more closely associated with road sanding material than it is with sea salt. 

Non-contributing source types, or better stated, source types with 

contributions lower than the standard errors of the source contribution estimates, 

are identified by a t-statistic less than 2. Table 1 shows that the Kraft Recovery 

Table 3. Modified Psuedo Inverse Matrix (MPIN) 

TRANSPOSE OF SENSITIVITY MATRIX 

SOURCE N M E  
SPECIES MARIN UDUST AUTPB RDOIL KRAFT ALPRO STEEL F E W  
NA .99 .Ol -.03 - . 0 9  .14 .01 - . 0 6  . 01  
MG .21 - . 0 5  - . 0 4  - . 0 4  - . 0 7  .13 .18 - . 0 8  
AL - . 1 7  -.03 - . l o  -.11 - . 0 5  1.00 - . 14  .01 
SI -.02 1.00 - . 0 5  - . 0 5  .04 - . 1 4  -.19 .02 
CL 1 . 0 0  - . 0 2  .04 .12 -.36 - . 0 4  .01 -.02 
K - . 0 4  .05 -.03 - . 0 5  .11 -.01 -.22 . 4 6  
CA .28 .02 .03 .12 -.19 -.03 .39 - . 0 6  
TI . O O  .49 - . 0 7  .08 -.03 -.02 - . 07  .02 
V .23 - . 0 4  - . 0 6  1.00 - . 4 0  - . 0 4  - . 1 9  .04 
CR - . l o  - . 0 7  -.03 - . 1 2  .13 - .02 .33 -.12 
MN -.02 - . 0 7  - . l o  - . 0 4  - . 0 7  -.03 - . 0 5  1 . 0 0  
FE - . O 8  -.12 - . 0 5  - . 1 4  .07 - .06  1.00 -.31 
NI . 1 7  - . 0 6  - . 0 6  . 8 7  -.32 - . 0 2  - . 0 9  - . O O  
cu - .  12 - .19 .09 .02 .05 . 1 7  . 67  - .  18 
ZN -.02 - . 0 9  .07 . 0 9  -.02 - . 05  .31 .10 
BR . O 1  -.O2 .55 - . 0 5  .03 - . 0 4  - .07  -.01 
PB .OO - . 0 4  1.00 -.06 .OO - . 07  - . 0 8  - . 0 5  
oc - . O h  .09 .61 .04 .01 .02 -.22 .11 
EC - . O 1  .03 . 1 6  . 1 7  - . 0 7  .20 -.16 .09 
SO4 - . 6 6  .01 - . 0 4  .04 1 . 0 0  - . 04  -.16 -.01 
NO 3 - .OO .01 , 0 3  .06 - .  04 .04 - .19 . 3 5  
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Boiler contribution meets this criterion. Such source types may be omitted from 

the calculation, or they may be retained to provide an upper limit on their 

contributions if they are not so collinear with other source profiles that they elevate 

the standard errors of other source contribution estimates. 

The most difficult assumption to attain in practice is that of linear 

independence of the source profiles. As described above, the UC/CLUSTERS 

can be used to identify potentially collinear source profiles. If this collinearity 

causes excessive standard errors in source contribution estimates, the following 

steps can be taken in an attempt to better comply with this CMB assumption: 1) 

measure additional species which are better markers for the collinear source 

types; 2) combine profiles for the collinear source types into a composite source 

profile; 3) use the sum of collinear source contributions presented in the cluster; 

or 4) reduce the uncertainties in the source profiles by better measurement 

methods. 

5.6 Step 6: Verify the Consistency/Stability of Model Results 

There may be more than one solution to the CMB equations which meets the 

diagnostic criteria equally well. The source contribution estimates may also be 

very sensitive to small changes in the concentrations of a small number of 

species. The user must explore these possibilities by performing sensitivity 

studies on selected samples which are representative of the entire data set. 

These sensitivity tests are conducted by: 1) adding and removing species in 

the calculation; and 2) substituting different profiles for the same source type. For 

example, lead or bromine can be removed from the solution to test the stability 

with respect to these species. When elemental and organic carbon are part of the 

data set, it is often found that the motor vehicle exhaust contribution does not 

change by more than one standard error, even though the MPlN diagnostic 

shows that these are very influential species for this source. Watson et a/. (1988) 

performed sensitivity tests using source profiles in which the lead content of motor 

vehicle exhaust varied by a factor of two. They found that the source contribution 
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for this source did not change by more than 25%, which was within one standard 

error of the source contribution estimates. 

5.7 Step 7: Evaluate and Reconcile CMB Source Apportionments 

The source contribution estimates calculated by the CMB are not necessarily 

correct just because all of the diagnostic targets have been achieved. Source 

contributions for samples from several receptors and for several periods need to 

be examined to determine whether or not the source contributions make sense. 

For example, contributions from residential wood combustion are expected to be 

higher during winter than during summer, and the CMB apportionments should 

reflect this. Samples taken upwind of a point source should show lower 

contributions from that source than samples taken downwind. Samples taken 

during rush hour are expected to show larger motor vehicle contributions than 

samples taken during off-peak driving periods. 

It is especially useful to use the CMB model in conjunction with other models. 

Chow (1985) describes a composite modeling approach which combines Principal 

Component Analysis (PCA), CMB, and ISC-ST gaussian plume modeling to 

apportion suspended particulate matter to coal-fired power plants. Freeman et a/. 

(1989) describe a software package which allows this application of multiple 

models to be easily carried out. US EPA (1987b) provides a procedure for the 

reconciliation of source apportionments obtained independently from source and 

receptor models. 

6. SUMMARY 

The derivation and basic assumptions of the Chemical Mass Balance receptor 

model have been presented, and a protocol for its application and validation has 

been described. This protocol is being followed in many states for the justification 

of state implementation plans for meeting PM,o standards. Both the regulating and 

the regulated communities have used the model and this protocol to come into 

agreement on cost-effective emissions reductions strategies. 
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The potential for using the CMB framework for the source apportionment of 

ambient air pollutants other than suspended particulate matter, indoor and 

workplace air pollutants, and toxic species found in landfills and water is being 

actively explored, but has no regulatory status at this time. 

Like any other model, the CMB must be used within the confines of its 

limitations. Both the software and the applications and validation protocol have 

been constructed to make the user aware of those limitations and to force 

recognition of them. 

The CMB has always been intended for use with other source and receptor 

models. Using these models together provides a greater ability to apportion 

pollutants to individual emitters. It also provides a check on the results of each of 

the modeling systems being used. 
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Chapter 5 

MULTIVARIATE RECEPTOR MODELS 

Ronald C. Henry 
Environmental Engineering Program 

Civil Engineering Department 
University of Southern California 

University Park 
Los Angeles, Californai 90089-0231 

1. INTRODUCTION 

1.1 The Need for Multivariate Receptor Models 

Chemical mass balance models given by: 

P 

C, = + background + errors 
/= 1 

require that the composition of all the contributing source types be known. In 

many cases this information is not easily obtained either because the emissions 

are difficult to sample or because the source class consists of many small sources 

with widely varying compositions. Examples of the first problem are fugitive 

emissions of particulate matter from roadways or coal storage piles and the 

emissions of hydrocarbon gases from leaking valves in a refinery. On the other 

hand, vehicle emissions are a good example of many sources with a great variety 

of emissions profiles. 

Another more technical problem which often occurs in CMB modeling is the 

disparity between the species determined in the sample and the species given in 

published lists of source compositions. Many times the published source 

compositions do not contain all the species that were determined in the sample. 

As a result, these species cannot be used for the CMB fitting. Volatile organic 

compounds, trace elements, and toxic species often cannot be included in the 

CMB for this reason. 
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As regulatory action is increasingly directed towards nontraditional sources 

of particles, toxics, and volatile organic compounds, there is a need for receptor 

modeling techniques that can overcome these problems. 

Multivariate receptor models seek to surmount these problems of ordinary 

CMB by using the data to estimate not only the source contributions but the 

source compositions as well. They do this by using the information contained in 

the correlations between the observed species. The basic idea is that species 

from the same source will be correlated and that these correlations can be used 

to estimate the composition of the source. 

1.2 Challenges to Multivariate Receptor Modeling 

All multivariate receptor models have two fundamental difficulties which must 

be appreciated if they are to be applied in an intelligent manner. First, the 

problem of deducing the source compositions and contributions using only the 

data and natural, physical constraints can be shown to be mathematically 

indeterminate, i.e., there is no unique solution. Secondly, observed correlations 

between species which are assumed to bear source composition information may 

instead the result of the mutual effects of meteorology and coincident source 

location. 

Concentrations of air pollutants are determined primarily by the ability of the 

atmosphere to disperse the contaminants. Generally, concentrations of all species 

tend to rise and fall together with changing meteorological conditions. Also, some 

sources are coincident in space and time, making it impossible to separate them 

by multivariate means alone. For example, direct vehicle roadway emissions are 

virtually perfectly correlated with resuspended road dust. Thus, the basic 

information utilized by multivariate models may be misleading. 

These fundamental difficulties do not have simple solutions. The non- 

uniqueness problem can only be addressed by adding additional constraints, 

physical or mathematical, on the possible solutions. Likewise, the problem of 

coincident sources can only be overcome with additional assumptions or 

information, such as particle size and shape (Hopke and Casuccio, 1991). 
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1.3 Outline of the Chapter 

This chapter will review the major multivariate methods which have been 

applied to receptor modeling. The Source Apportionment by Factors with Explicit 

Restrictions (SAFER) model is discussed in greater detail than other models 

because all the others suffer from the fundamental mathematical indeterminacy 

discussed above. The other models continue to be important as semi-quantitative 

methods to estimate composition of sources from the data alone. Of course, all 

the multivariate methods can be extremely valuable in identifying the existence of 

unsuspected sources. 

In the next sections the concepts basic to multivariate receptor models are 

introduced. This is followed by a more detailed description of the SAFER model 

and its application to Los Angeles PM-10 data. 

2. MULTIVARIATE MODEL FUNDAMENTALS 

The mathematical fundamental of receptor models in general and multivariate 

models in particular are reviewed in Henry et a/. 1984. All these models are based 

at least implicitly on the singular value decomposition of the data. 

Several multivariate statistical models have been applied to air pollution 

studies: principal component analysis (Gatz, 1978; Henry and Hidy, 1979, 1982), 

factor analysis (Blifford and Meeker, 1967; Hopke eta/., 1976; Gaarenstroom et 

a/., 1977; Henry, 1978; Heidam, 1984; Thurston and Spengler, 1985; Keiding et 

a/., 1986; Keiding and Sorensen, 1987), target transformation factor analysis 

(Alpert and Hopke, 1980, 1981; Hopke et a/., 1980, 1983), factor analysis followed 

by multiple linear regression (Kleinmann et a/., 1980a, 1980b), and self-modeling 

curve resolution (Henry and Kim, 1989, 1990; Kim, 1989). 

The mathematical foundation of all these techniques, whether used explicitly 

or not, is singular value decomposition. 
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2.1 Singular Value Decomposition (SVD), Principal Component Analysis 

(PCA) 

Almost all multivariate receptor models begin, implicitly or explicitly, with a 

PCA of the data, which has usually been transformed in some manner. After the 

PCA, most models transform the principal components. Once transformed, the 

principal components are known as factors and the model is a factor analysis 

model. PCA is best understood in terms of SVD, as described below. 

2.1.1 Sinaular Value Decomposition 

The singular value decomposition theorem (Lawson and Hanson, 1974; 

Dillon and Goldstein, 1984) states that any matrix C can be written uniquely as 

C = UDVT. (2) 

In this application, C is a data matrix of m rows of species and n observations 

arranged in columns. V is the n x n eigenvectors of CTC, U is the m x m 

eigenvectors of CCT, and D is an m x n diagonal matrix made up of the singular 

values, i.e, the square roots of the corresponding eigenvalues. Several 

mathematical properties of the SVD are useful: the eigenvalues of CTC and CCT 

are always equal; the matrices U and V are orthogonal, i.e., UTU = UUT = VTV = 

WT = I, the identity matrix. 

2.1.2 Principal Component Analvsis 

The principal component solution can be obtained from the singular value 

decomposition of the data matrix (Jolliffe, 1986). In equation 2, let L = UD and F 

= VT, then, 

c = LF. (3) 

In PCA, L is called the component loading matrix, and F is called the matrix of 

component scores. 

It is also possible to define L=U and F=DVT. This is called Q-mode analysis 

while the former approach is known as R-mode analysis. Applications of PCA in 
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physical sciences usually use R-mode while Q-mode is the rule in the social 

sciences. A major advantage of the SVD formalism is that it avoids this pedantic 

and often unnecessary confusion over terminology. The SVD theorem makes 

clear that PCA is essentially unique and which mode to use depends mostly on 

the form of the underlying physical model. 

The basic purpose of PCA is to reduce the dimensionality of a data set of 

interrelated variables so that a minimum number of factors can explain the 

maximum variance of the interrelated data. The principal components are 

extracted so that the first component accounts for the largest amount of the total 

variation in the data, the second principal component accounts for the maximum 

amount of the remaining total variation not already accounted for by the first 

principal component, and so on. This is accomplished by orthogonally 

transforming the correlated data into a new set of uncorrelated variables. 

Mathematically, this procedure is equivalent to an eigenanalysis, which produces 

eigenvalues and corresponding eigenvectors. 

PCA has been used as a technical tool to reduce the dimensionality of a 

large highly collinear data set or as a qualitative tool to describe the 

interrelationships among such data. However, it can form the basis for predictive 

physical models. These are known as factor analysis models and their derivation 

is given next. 

2.2 Factor Analysis 

The classical factor analysis model (Harman, 1976) is expressed as 

C =  L F +  U, (4) 

where C is the data matrix as defined above, L is the n by p matrix of factor 

loadings, F is the p by m matrix of factor scores, and U is the n by m unique 

factor matrix. The reduces to the PCA if the unique factor term is not included in 

the analysis, and L is the matrix of eigenvectors of CCT and F is the matrix of 

eigenvectors of CTC multiplied by the singular values. 
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The main differences between factor analysis and PCA stems from the 

explicit inclusion of unique factors and the fact that the factors need not be unique 

or even orthogonal as in the case of PCA. Detailed explanations of the 

differences between these two methods are made by Jolliffe (1986), and Dillon 

and Goldstein (1984). 

The application of factor analysis models to source apportionment is based 

on the fact that the factor analysis model as given in Equation 4 has exactly the 

same mathematical form as the CMB equation, 

C = A S + E ,  (5) 

where C is the n x m data matrix, A is source composition matrix of n species by 

p sources, S is a p x m source contribution matrix, and E is a n x m matrix of 

random observational errors. In the following, the effects of errors E is not 

considered. The reader is referred to the statistical literature on this subject. In 

particular, the estimation of communalities in factor analysis. Generally, this has 

little impact on source apportionment calculations. 

2.2.1 Transformations and Factor Analvsis Models 

Eigenvectors V and U contain the information regarding the source 

composition and source apportionment. However, U and V are not necessarily 

equal to the actual source composition and apportionment matrices. The abstract 

mathematical solution of the eigenvectors V has to be transformed to a solution 

having physical meaning as source composition vectors. Mathematically, this is 

equivalent to finding the appropriate transformation matrix, T, that satisfies the 

equation 

C = (UT-’XTDVT) = AS. (6) 

The transformation matrix in receptor modeling serves as a mathematical 

bridge between the eigenvectors and the source compositions. Theoretically, an 

infinite number of transformation matrices could explain the ambient data equally 

well. Therefore, the ultimate objective of the model is to determine one unique 
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transformation matrix, T. The question is how to find such a transformation 

matrix. 

There are several different transformation methods, such as orthogonal 

transformations which preserve the statistical independence of the factors 

(VARIMAX, QUARTIMAX, PROMAX), and oblique transformations which allow the 

factors to be dependent (OBLIMIN, target transformation). However, as Henry 

(1987) and Lowenthal and Rahn (1987) pointed out, these transformation methods 

cannot be relied upon to produce results consistent with physical reality. They 

transform the abstract eigenvectors to other abstract solutions that do not 

guarantee the transformed results are physically meaningful. For example, the 

transformed results often give negative source compositions which are difficult to 

interpret physically. 

Physical constraints cannot be easily incorporated into factor analysis 

receptor models through the formalism of transformations as presented above. 

However, there is a geometrical interpretation of the SVD which is exceptionally 

well suited to this task. It is introduced in the next section. 

2.3 Self-Modeling Curve Resolution 

In analytical chemistry, identifying the components in samples that consist of 

mixtures of unknown amounts of an unknown number of unknown compounds is 

entirely analogous to the factor analysis receptor model problem. Self Modeling 

Curve Resolution (SMCR), as proposed by Lawton and Sylvestre (1971), is a way 

of imposing physical constraints on the mixture problem. 

They pointed out that any source composition vector that is consistent with 

the observed data must be in the space spanned by the columns of the U matrix 

in equation 2. By similar reasoning, each vector of observed concentrations in a 

sample can also be written as a linear combination of the columns of U. 

Mathematically this is expressed as 
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where 

n 
aik = C U  - C ciluIk. 

1 -  I - ,  

Geometrically, this means that the true source composition vectors and the 

data vectors can be represented as points in the space spanned by the columns 

of U. In the above, the ith data point is plotted at coordinates aik, k = l  ...p. The 

geometric relationship between the data points and the source composition points 

is easy to see. Because the data points are non-negative linear combinations of 

the source composition points, the data points must lie inside the convex hull 

formed by the source composition points and the origin. This geometrical 

interpretation is very useful a way of representing physical constraints as well be 

discussed in a later section. 

2.4 Scaling the Data 

Statistical applications of multivariate analysis usually work with scaled data 

rather than the raw data as in the above discussion. The most common 

transformations are centering to the mean and scaling to the standard deviation: 

where is the average of species i and 0, is the standard deviation. 

If the data are not centered on the mean, then the first principle component 

is basically the average. Centering on the average removes this source of 

variability. If the data are not centered, this is called centering on the origin. 

The main reason for scaling to the data to the standard deviation is to 

compensate for the wide range of concentrations of different species. Since SVD 

or PCA explains the variability in the data, species with large concentrations will 

dominate. By scaling as above all the species have a standard deviation of 1. In 
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this way a trace species is given as much weight as a major component. 

Sometimes this is desirable, however, if the measurement of the trace species has 

a large error, this scaling could amplify the noise in the measurement. 

Scaling is the responsible for the difference between Q and R mode factor 

analysis in that one may scale according to row or column means and standard 

deviations which will generally be different. 

Statisticians universally recommend that the data be centered and scaled as 

above. However, statisticians are usually not interested in building a physical 

model. In the application of multivariate methods to source apportionment, 

scaling causes several pEoblems. By centering on the mean, the average of all 

the variables becomes zero. Thus, the average source apportionment is similarly 

equal to zero. A result of little regulatory interest. Thus, if the data are centered, 

some means must be found to un-center the results. Thurston and Spengler 

(1985) presents one method which is straightforward but lacks fundamental 

theoretical support. A generally acceptable solution to this problem has yet to be 

developed for models that use centered data. Perhaps the best approach is 

simply not to center the data. 

Undoing the effects of scaling to the standard deviations is also a problem. 

In this case, the source apportionments (factor scores) must have a standard 

deviation of one. Henry (1978) proposed a method to unscale a factor analysis 

model which required that each source have a unique tracer species. 

Theoretically, the effects of scaling on the model results typically are easily 

determined so that the results by be presented in unscaled terms which are 

necessary for physical models. 

2.5 Target Transformation Factor Analysis 

Target transformation was originally applied to chemeometrics by Malinowski 

and coworkers (Weiner, 1970; Malinowski, 1980). Hopke and coworkers have 

further refined and applied it to source apportionment of the ambient aerosol 

(Hopke, 1980; Alpert, 1980, 1981). The current state-of-the-art in receptor 

modeling application of TTFA reviewed in Hopke (1988). 
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The target transformation method transforms the V eigenvectors to minimize 

the difference between the transformed vector and a target vector. Mathematically 

the problem is stated as: 

P 2 

minimize C b, - C vlktk, 
tki 1-1 " ( k-1 ] 

where the parenthetical expression is a component of the transformed vector and 

bii is a component of the target composition vector for the jth source. The least 

squares estimate of the hest Ti is 

T, = ( VrV)- l  Vrbi 

In this form, target transformation begs the question, since it requires a fairly 

accurate idea of the composition of the source, the lack of which is the main 

reason for applying factor analysis. In an attempt to get around this problem 

TTFA can be applied in an iterative manner (Hopke et a/, 1983). The process 

starts with a unique test vector in which a tracer element is assigned an initial 

value of 1.0 and all other elements are assigned a value of zero. Using the unique 

test vector, a new value of test vector, bj', is estimated as 

P 

b/; = c "lkfki 
k- 1 

This predicted test vector is then used as input for Equation 12 to find a new Ti. 

Any negative values that occur in the predicted test vector are replaced with small 

positive ones. This process is repeated until the average percent changes in the 

values in b' and b are less than or some other acceptable value. In this way, 

the test vector is refined iteratively to the source composition profiles and the CMB 

model is used to estimate the source contributions from each source. 

The iterative V F A  described above often converges on a reasonable source 

composition. However, there is no theoretical reason why it should converge on 
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the true source composition, even in the absence of random error in the data. 

Thus, lTFA is a useful screening tool to get an idea of possible source 

compositions, but it cannot be relied upon to produce a physically meaningful 

model. 

2.6 Multiple Linear Regression 

The Factor Analysis followed by Multiple Linear Regression (FA/MLR) 

approach was proposed by Kleinman and coworkers (Kleinmann et a/. 1980a, 

1980b; Kneip et a/., 1983, Morandi et a/., 1987) to apportion total suspended 

particulates (TSP) in the New York City area. This approach was developed to 

avoid the difficulties in transforming the eigenvectors. It starts with a FA with a 

VARIMAX rotation to identify sources and to determine tracers for each source. 

Then a multiple linear regression analysis of TSP against the tracers is used to 

apportion the sources, as follows 

where TSP, = observed TSP on k-the day 

bi = regression coefficient for tracer i 

Ti, = observed concentration of tracer i on k-the day 

b, = unexplained background concentration 

E = random error 

Once bi is determined, the source contribution to TSP is obtained from the 

product of bi and Ti,. This approach is appropriate when impacting sources are 

known but source compositions are not available or not reliable because the 

source apportionment can be made without knowing source compositions. 

However, this method requires tracer elements for each source that are highly 

correlated with the source and statistically independent of other tracers. 
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2.7 Required Number of Samples and the Effect of Errors 

By definition, multivariate analysis requires several observations, the more 

the better. If there are too few samples, the results of a multivariate model are not 

likely to be reliable. But how few are too few? Experience has shown that 100 

samples or more is generally acceptable and that 20 or 30 is usually too few. A 

quantitative rule-of-thumb is derived in this section to provide guidance on this 

issue. A brief discussion of error in multivariate models will also be given. 

Much of the power of statistics derives from the fact that certain statistics 

derived from a large set of data are more reliable than the individual data points 

themselves. Errors tend to average out, so the average of 100 numbers is more 

reliable than the average of 10 numbers. For averages, this is proven by the 

Central Limit Theorem. A similar theorem does not exist for singular value 

decomposition, yet the eigenvalues and eigenvectors of a 100 observations must 

be more trustworthy than those from a set of 10 observations. 

A simple rule-of-thumb was developed by Henry and reported in Henry et a/. 

(1984). The idea is to calculate the degrees of freedom per variable in the 

analysis. For example, an average of N observation of 1 variables has N-1 

degrees of freedom per variable since the average itself constitutes 1 relationship 

between the observations. To put it another way, all the data can be 

reconstructed if one knows N-I data points and the mean. In the same way, the 

standard deviation of N observations of 1 variable has N-2 degrees of freedom per 

variable, because, in addition to the mean, one also has a relationship which 

defines the standard deviation. Each statistic used in the analysis is a relationship 

between the observations and reduces the degrees of freedom in the analysis by 

1. 

In a typical multivariate receptor model with N observations of V variables, 

there will be V means and V(V-1)/2 variances and correlations. The total number 

of degrees of freedom in the data set is NV. Thus, the degrees of freedom are 

reduced to NV - V - V(V-1)/2. This is now divided by V to get the number of 

degrees of freedom per variable in the analysis: 
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v- 1 N-1- -  
2 .  

Experience has 

greater. 

shown that this number should be at least 30 and preferably 60 or 

Admittedly, there is no theoretical support for this approach. However, the 

author (Henry) has found it to be very useful. A systematic evaluation of the 

effects of sample size on a multivariate receptor model have been reported in Ito 

et a/. (1986). They evaluated the rule-of-thumb as given above and verified that 

their model results were unreliable if the degrees of freedom per variable were less 

than 30. 

Another rule-of-thumb that the author has found to be generally accurate 

stems from the fact that the eigenvalues of a correlation matrix are essentially the 

signal-to-noise ratios for the associated eigenvector, or principal component. In 

determining the number of factors to include in a multivariate receptor model, one 

can be guided by this fact. Generally, eigenvectors with eigenvalues greater than 

1 are more signal than noise and should be kept in the model. Those 

eigenvectors with eigenvalues less than 0.5 have more than twice as much noise 

as signal and should be eliminated from the model. For eigenvalues between 1 

and 0.5, the associated eigenvectors are more noise than signal, but they may be 

important enough to keep in the model. Few of this class of eigenvectors should 

be kept as is consistent with formulating a physically reasonable model. 

Finally, estimates of the errors in the source compositions and source 

apportionments from a multivariate receptor model are needed if the results are to 

have any credibility. Unfortunately, an error analysis for multivariate models has 

not been possible since the effects of errors on the singular value decomposition 

are not yet been characterized mathematically. The only approaches available are 

computationally intensive methods using resampling or Monte Carlo methods. In 

the later, simulated error free data are produced so that the "true" source 

compositions and apportionments are known. The data, and perhaps the source 

compositions, are corrupted by known amounts of error. The effects of the error 
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on the multivariate methods can then be estimated if the model is applied a large 

number of simulated data sets are which differ only in random errors. An early 

example of the simulated data approach is found in Currie et a/. (1984). 

3. Multivariate Factor Analysis as Applied to Los Angeles Particulate 

Composition Observations 

Los Angeles is justly famous for its intractable air pollution problem. Even 

the strictest emission controls in the nation have been unable to cope with the 

combination of explosive growth and poor air pollution meteorology found in the 

Los Angeles area. While ozone levels are the worst violators of health standards, 

the concentrations of airborne particles less than 10 ,urn, known as PM-10, also 

constitute a health risk to the general population much of the time. 

In this section describes the application of an advanced multivariate receptor 

model to an exceptionally complete set of PM-10 composition data from several 

sites in the L.A. area. The model used is the Source Apportionment by Factors 

with Explicit Restrictions (SAFER) model developed by Henry and coworkers. A 

full description of the model can be found in Kim (1989), and Henry and Kim 

(1 990). 

The basic concepts of the model will be described next. This is followed by 

a brief description of the data and the model results. 

3.1 The SAFER Model 

The SAFER model is based on self-modeling curve resolution as described 

in Section 2.3. To recapitulate, the method starts with the singular value 

decomposition of the data expressed as a matrix C: 

C = UDV',  

where the columns of U are the eigenvectors of CC', the columns of V are the 

eigenvectors of C'C, and D is a diagonal matrix of the corresponding singular 

values (square roots of the eigenvalues). Further, assuming that there are p 

sources and that n is greater than p, only p of the singular values will be different 
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from zero, assuming there are no random errors. The effects of random errors on 

our method will be considered later. 

As pointed out in section 2.3, if a source’s composition is written as a p- 

dimensional vector, then every possible source composition consistent with the 

observed data can be written as a linear combination of the eigenvectors that 

make up the columns of the V matrix. The same is true for the n m-dimensional 

vectors made up of the observations of m elements at the receptor. Thus, each 

source composition vector and vector of observations can be thought of as a 

point in the eigenvector space spanned by the columns of V. As such, physical 

constraints on the source compositions and contributions can be expressed as 

linear equality or inequality constraints in the V-space. The constraints are divided 

into two groups, natural physical constraints which must be satisfied by all 

physically meaningful models and additional physical constraints which apply only 

to a specific source. These two classes of constraints are considered next. 

3.1.1 Natural Phvsical Constraints 

The fundamental, natural physical constraints that must be obeyed by any 

source composition vector are: 

1) The orginal data must be reproduced by the model; the model must 
explain the observations. 

2) The predicted source compositions must be non-negative; a source 
cannot have a negative percentage of an element. 

The predicted source contributions to the aerosol must all be non- 
negative; a source cannot emit negative mass. 

3) 

4) The sum of the predicted elemental mass fractions for each source 
must be less than or equal to 1; the whole is greater than or equal to 
the sum of its parts. 

These natural physical constraints can be expressed as linear inequality 

constraints defined by hyperplanes in the eigenvector space spanned by the 

columns of V. The intersection of the half-spaces of all the non-redundant 

hyperplanes defines the basic feasible reaion, which must contain the points 

corresponding to the composition of the true sources. Geometrically, the basic 
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feasible region takes a predictable form, as shown for the three source case in 

Figure 1. The non-negativity constraints on the source compositions define the 

interior of an irregular pyramid with apex at the origin with the first principal 

component as the axis. A second pyramid, interior to the first, is defined by the 

non-negativity constraint on predicted source contributions. The feasible points 

must lie outside this pyramid. Finally, the condition that the sum of the source 

composition vectors be less than or equal to one defines a hyperplane not 

passing through the origin which forms the base of the pyramids that define the 

feasible region. The feasible region is the area between this plane and the origin, 

as shown in Figure 1. 

3.1.2 Additional Phvsical Constraints 

Generally, the major source categories in an area are easily identified. While 

the exact composition of these emissions is not well known, the major species in 

specific sources can usually be assumed to lie in some fairly narrow range. In a 

source dominated by crustal material, silicon composition can be safely assumed 

to lie between 15 and 25%, for example. 

Constraints such as these are easily expressed as linear constraints in the V- 

space. Like the natural physical constraints, these constraints take a predictable 

geometrical form. Using the example given above, silicon must lie between two 

hyperplanes neither of passes through the origin. Of course, the true crustal 

source must also satisfy the natural physical constraints. Thus, it must lie in the 

intersection of the basic feasible region and the region between the two 

hyperplanes. 

As more additional physical constraints are added, the region in V-space 

where point corresponding to the true source cornposition must lie is further 

restricted. If a sufficient number of tight constraints can be assumed, then the 

true composition of the source can be estimated as the centroid of the feasible 

region and the range of possible source compositions calculated from the vertices 

of the feasible region. 
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Figure 1. Typical form of the basic feasible region in eigenvector space. Any point 
inside Outbound and outside Inbound will describe a completely non-negative source 
composition vector with non-negative source contributions. 

Linear programming is the natural method for attacking multidimensional 

problems with linear constraints. However, linear programming applies only to 

convex regions, and the feasible region described above may not be convex 

because of the inner boundary constraints. The problem of determining the 

region of physically feasible factor models must, therefore, be broken down into a 

number of separate linear programming problems, as described in Kim (1989). 

3.2 Description of the Los Angeles Data 

The California Institute of Technology’s Environmental Quality Laboratory 

conducted 24-hr PMlO aerosol sampling every six days from January 1986 to 

December 1986 in the Los Angeles area of the South Coast Air Basin at nine 

sampling sites: Burbank, Long Beach, Lennox, Rubidoux, Anaheim, San Nicolas 
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Island, Downtown L.A., Upland, and Tanbark Flats. Their locations are shown in 

Figure 2. 

PM10 particulate matter was sampled at all the sites and PM-2.5 at 

Downtown Los Angeles only. Total mass and 41 species (Al, Si, P, S, CI, K, Ca, 

Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, As, Se, Br, Rb, Sr, Y, Zr, Mo, Pd, Ag, Cd, In, Sn, 

Sb, Ba, La, Hg, Pb, Na, Mg, OC (Organic Carbon), EC (Elemental Carbon), NO,, 

SO,, NH,) were analyzed. A more detailed description of the monitoring site, 

sampling schedule, and sample analysis can be found in Solomon et a/. (1989). 

Secondary particles formed by chemical reactions in the atmosphere are a 

major component of L.A. ,PM-10. Chemical mass balance models, multivariate or 

otherwise, cannot directly apportion the secondary particles to sources of 

precursors. The approach taken in this study was to assume that the chemical 

reactions in the atmosphere constitute a "secondary source" which appears to be 

the source of this material at a given site. 

In this model application, CO and 0, gas data have been included with the 

PMlO data because CO and 0, should be unique tracers for the motor vehicle 

source and secondary source, respectively. Therefore, the use of these two 

gaseous species in additional physical constraints (APCs) should improve the 

Figure 2. Map of the Los Angeles Basin Showing the Location of the Sampling Sites. 
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ability of the model to estimate these sources from the data. Mixing particle 

composition data and gaseous data in this way very difficult for other receptor 

models, but turns out to be a simple but important aspect of the SAFER model 

approach. 

Lennox, and Upland. These data are, however, available from sites at Hawthorne 

and Ontario, which are within a few miles of Lennox and Upland. Therefore, the 

Hawthorne and Ontario data are used for the Lennox and Upland sites, 

respectively. As a result, two coastal sites, Long Beach (LB) and Lennox (LEX), 

and five inland sites, Downtown Los Angeles (DIA), Burbank (BUR), Anaheim 

(ANA), Upland (UP) and Rubidoux (RUB), have been selected for SAFER 

modeling. 

Data for CO and 0, are not available from Tanbark Flats, San Nicolas Island, 

3.3 SAFER Modeling of Los Angeles PM-10 

The number of contributing sources to each site can be estimated from the 

number of eigenvalues of the correlation matrix of the ambient data that are 

greater than 0.5. The number of probable sources identified at each site are: six 

for RUB; seven for DIA, LB, UP; eight for LEX and ANA; and nine for BUR. 

source categories: roadway emissions, secondary particle formation, marine 

particles, and crustal material not associated with roadways. 

At each site, estimates of the source composition were made for the major 

A unique feature of the SAFER modeling of this data is the use of physical 

constraints on secondary particles based on the stoichiometric relations among 

species, as described below. 

3.3.1 Additional Phvsical Constraints for Los Anaeles 

As indicated above, setting up additional physical constraints is essential to 

the SAFER model. The starting point for setting up the appropriate additional 

physical constraints for each source is the selection of species and reasonable 

ranges for them. Major species or species which are found in only one or two 

sources are the best candidates for APCs. The acceptable range can be 
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determined either from values in the literature or from source sampling. Both 

methods were used in this study. 

Stoichiometric relations among species are used as APCs to sharpen the 

feasible ranges of the model predictions of source compositions. Water-soluble 

ionic species, such as NH,, NO,, SO,, Na, and CI, are present as a chemical 

compounds. For example, NH,, NO,, and SO, may exist as the compounds 

NH,NO,, (NH,)2S0,, and NH,HSO,. These three compounds, less any primary 

sulfate, and including secondary organic species, constitute most of the mass of 

the secondary source. The stoichiometric constraints are developed next. 

Let the fractions of each compound in the secondary source be assumed as 

follows: 

oc : f,, 

NH,NO, : f2, 

(NH4)2S04 : f,, 

NH,HSO, : f,. 

Then the source compositions of OC (aoc), NH, (aNH4), NO, (aNo,), and SO, (aso4) 

in the secondary source can be expressed as the sum of the fraction of each 

compound fi, 

a,, = 0.769 f, 

aNH4 = 0.225 f, t 0.273 f, t 0.157 f, 

aN03 = 0.775 f2 

aS04 = 0.727 f, t 0.835 f,. 

These expressions are solved for fi and the following constraints applied: 

f i 2 0 ,  

0.91 c f , L  1.0, for i = 1, ... , 4. 
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where the fi are expressed as linear combinations in the V-space. These physical 

constraints, derived from the stoichiometric relation among the species, turn out to 

be very strict in the sense of restricting the feasible region. 

The stoichiometric constraint for the secondary source has been explained 

above. This concept of using stoichiometry among species as APCs can be 

extended to the marine and roadway sources. For the marine source, it is well 

known that NaCl is attacked by acids such as HNO, and H,SO, to form NaNO,, 

Na,SO,, and HCI (Hidy, et a/. 1974; Hitchcock, 1980). As before, fractions of each 

compound of NaCI, NaNO,, Na,SO,, and SO, are assumed as fi, and APCs for fi 

are set up. For the roadway source, fractions of each compound of NH,N03, 

(NH,),SO,, and NH,HSO, are used to set up APCs to estimate the amount of 

primary sulfate and nitrate that may be associated with roadway emissions. 

3.3.2 Additional Phvsical Constraints for Roadwav Source 

The motor vehicles resuspend road dust as they move. Thus, these two 

source categories are spatially correlated and will almost always affect the 

receptor site at the same time. Because vehicle exhaust emissions are so closely 

correlated with resuspended road dust both in time and space, these two sources 

appear to multivariate factor models as a single composite roadway source. 

Setting up APCs for this composite roadway source is not a easy problem 

because the composite profile depends on how much of the motor vehicle and 

crustal sources are mixed together and this will differ from site to site. The 

composite roadway source profiles were obtained at three different sites (DlA, 

LEX, and RUB) by minimizing the difference between the linear combination of the 

target source compositions and those predicted. The predicted source 

compositions were obtained from the linear combination of the eigenvectors of the 

CCT of the ambient data matrix, C. The complete methodology of obtaining the 

roadway composite profiles is discussed in Henry and Kim (1988). Si and Pb 

were selected for setting up APCs and their ranges were taken from results of the 

above study. The actual APCs used for each site are listed in Table 1. 
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Table 1. Additional Physical Constraints Used for Roadway Source for Each 
Site. 

Stoichiometry among NH,NO,, 

DLA 

LB 

BUR 

LEX 

ANA 

RUB 

UP 

(NH,),SO,, and NH,HSO, 

.04 3 S i s  .07 
,004 1. P b s  .008 

.048 S i s  .088 
,007 I P b s  .018 

.04 5 S i s  .07 
,004 5 P b L  .008 

,048 5 S i s  ,088 
,007 1. P b L  ,018 

.06 1. S i s  .12 
,002 5 P b L  ,005 
,026 3 A l s  ,049 

.06 s S i 3 . 1 2  
,035 3 P b s  ,006 

.06 I S i s  .12 
,035 L P b s  ,006 

.o 1.0,s .001 

.o 5 0,s .001 

.o 50,s .001 

.o s0,z ,001 

The stoichiometric constraints have also been used as APCs. Although the 

exact fractions of compounds NH,NO,, (NH,),SO,, and NH,HSO, in the roadway 

source are not known, it is obvious that their sum must be a small fraction. For all 

sites, the sum of these three compounds is assumed to be less than 10 percent, 

i.e., 

0.0 5 E fi 5 0.1 . (23) 

After APCs for each source category were set up, the model was applied to 

predict the source compositions of these source categories, and source 

apportionments were made from the CMB model using these compositions. The 

model’s results for each site are summarized in the next section. 
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3.4 SAFER Los Angeles Results and Discussion 

The estimated roadway source compositions for each site are shown in 

Table 2. The reasonableness of these profiles is examined below by checking 

some important elemental ratios. Key elemental ratios, especially for elements not 

used as APCs, of the predicted source compositions should be consistent from 

site to site. These elemental ratios are compared to the ratios expected from 

source compositions found in the literature. 

3.4.1 Predicted roadwav composite source comDosition Drofile 

Key species including those that come mainly from the roadway source, 

have been selected to examine the elemental ratios of the predicted roadway 

source compositions. The elemental ratios of these species for each site are 

summarized in Table 3. These elemental ratios are compared with those found by 

other investigators and source compositions (or profiles) found by source 

sampling. 

Three profiles have been taken from the SoCAB source composition library 

(Library No. 1-05, 1-39, and 1-43), Cooper et a/. (1987), and one profile is taken 

from Cass and McRae (1983). Two profiles taken from SoCAB Library No. 1-05 

and Cass are composite profiles of several different types of motor vehicles, tire 

tread and brake linings. SoCAB Library No. 1-39 and 1-43 are the profile 

composite of the paved road dust and the soil profile composite, respectively. 

The predicted roadway profile is a composite profile of motor vehicles and 

resuspended road dust. Therefore, predicted roadway source compositions 

cannot be directly compared with composite profiles of motor vehicles or soil, 

separately. The ratios of some elements that come primarily from the motor 

vehicle or soil sources are compared with those of the model estimated roadway 

profiles. 

The Si/AI ratio is similar at all the sites: it ranges from 2.05 at ANA to 2.82 at 

DIA. This ratio is close to the ratios of 2.72 and 2.10 for the SoCAB road dust 

and SoCAB soil profiles, respectively. The Si/AI ratio for average rock ranges from 

3.41 to 4.02 and for clay material from 1.04 to 2.07 (Rahn, 1976). 
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Table 2. Predicted roadway source compositions and standard deviations at each 
site. 

DIA BUR LB LEX 

oc 
EC 

NH4 

NO3 

SO4 

Na 

Mg 

Al 

Si 

P 

CI 

K 

Ca 

Ti 

v 
Cr 
Mn 

Fe 

Ni 

cu 
Zn 

Br 
Sr 

Pb 

,27987 (.08930) 

,15622 (.03290) 

,01532 (.00992) 

,00990 (.02440) 

,04723 (.03527) 

,00732 (.01182) 

,00227 (.00116) 

.01953 (.00490) 

,05498 (.01465) 

,00093 (.00065) 

,01347 (.01472) 

,00786 (.00155) 

.02122 (.00442) 

,00352 (.00062) 

.00034 (.00004) 

.00034 (.00005) 

,00124 (00014) 

,03437 (.00476) 

.OW29 (.00005) 

,00939 (.00319) 

,01028 (.00246) 

.00101 (.00024) 

,00038 (.00004) 

.00613 (.00079) 

,30504 (.08448) 

,09135 (.06294) 

,01564 (.01007) 

.Olio7 (.02550) 

.04575 (.03549) 

,00710 (.01091) 

,00202 (.00116) 

,02045 (.00449) 

,05390 (.01447) 

,00168 (.00083) 

,01095 (.01133) 

,00862 (.00160) 

,01758 (.00510) 

,00328 (.00103) 

,00034 (.00004) 

,00043 (.00008) 

.00098 (.00018) 

,02399 (.00630) 

,00031 (.00008) 

,00562 (.00629) 

,00525 (.00340) 

.00098 (.00024) 

,00024 (.00008) 

,00552 (.00076) 

,34090 (.03474) 

.I2835 (.00821) 

,01517 (.01005) 

.01034 (.02536) 

,04566 (.03776) 

,00474 (.00886) 

,00182 (.00106) 

,021 55 (.00424) 

,05374 (.01068) 

.00095 (.00010) 

,02463 (.01354) 

.01014 (.00117) 

,01987 (.00283) 

,00286 (.00056) 

,00031 (.00006) 

,00031 (.00004) 

,001 13 (.00010) 

,02724 (.00414) 

.00023 (.00005) 

,00870 (.00291) 

,01397 (.00144) 

.00141 (.00015) 

,00033 (.00003) 

,00741 (.00063) 

,31869 (.05928) 

,13735 (.02081) 

.ooooo (.00000) 

.ooooo (.00000) 

.ooooo (.00000) 

,00485 (.00813) 

,00246 (.00075) 

,02642 (.00644) 

.06518 (.01831) 

.00135 (.00037) 

,02661 (.01182) 

.00937 (.00166) 

,01834 (.00425) 

.00334 (.00065) 

,00038 (.00004) 

,00039 (.00003) 

,00139 (.00014) 

.03375 (.00607) 

.00007 (.00002) 

,00526 (.00069) 

.00590 (.00050) 

.00195 (.00032) 

,00039 (.00003) 

,00812 (.00133) 

The Pb/Br ratio is also quite similar at all the sites. It ranges from 4.16 at 

LEX to 6.07 at DLA. This ratio has been compared to the ratios of the SoCAB and 
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Table 2 (cont). Predicted roadway source compositions and standard deviations at 
each site. 

ANA RUB UP 

oc 
EC 

N H4 

NO3 

SO4 

Na 

Mg 

Al 

Si 

P 

CI 

K 

Ca 

Ti 

v 
Cr 

Mn 

Fe 

Ni 

c u  

Zn 

Br 

Sr 

Pb 

.23750 (.04501) 

.08866 (.01480) 
,01555 (.00563) 

,00546 (.01510) 

.06417 (.02236) 

.00358 (.00742) 

.00197 (.00079) 

.03983 (.00938) 

.08166 (.02469) 

.00115 (.00025) 

.00949 (.01245) 

.01525 (.00317) 
,02630 (.00401) 

.00471 (.OOlOO) 

.00038 (.00006) 

,00033 (.00004) 

.00125 (.00015) 

,04035 (.00869) 
.00022 (.00004) 

.00650 (.00464) 

.00557 (.00337) 

,00089 (.00015) 

,00037 (.00005) 

,00450 (.00068) 

,26424 (.03736) 

.08716 (.01098) 

.01184 (.01075) 

.01871 (.03039) 

,02045 (.02661) 

.00955 (.01034) 

,00423 (.00153) 

.03615 (.00720) 

,09045 (.02932) 

.00141 (.00114) 

,00755 (.00692) 

.01693 (.00437) 

.04281 (.04464) 

,00414 (.00071) 

,00032 (.00006) 

.00023 (.00004) 

,00129 (.00018) 

.03851 (.00748) 

.00015 (.00003) 

.00557 (.00220) 

.00543 (.00186) 

.00081 (.00009) 

,00034 (.00006) 

,00366 (.00037) 

.29961 (.04085) 

.I0938 (.01290) 

.01563 (.00273) 

.00292 (.00834) 

.07434 (.01183) 

.01652 (.00454) 

,00351 (.00044) 

,02652 (.00407) 

,06570 (.01076) 

.00004 (.00008) 

.01076 (.00386) 

.01094 (.00125) 

.02275 (.00321) 

.00357 (.00039) 

.00027 (.00002) 

.00027 (.00002) 

.00107 (.00009) 

.02986 (.00397) 

.00026 (.00002) 

.00821 (.00173) 

.00762 (.00117) 

.00074 (.00007) 

,00026 (.00003) 

,00379 (.00032) 

Cass composite motor vehicle profiles and the SoCAB road dust profile. The 

ratios predicted by the SAFER model are always larger than the ratios of the two 
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Table 3. Elemental ratios of the predicted roadway source compositions at each site 
and the comparison with the other profiles. 

Si/Al 

DLA 
BUR 
LB 
LEX 
ANA 
RUB 
UP 

2.82 
2.64 
2.49 
2.47 
2.05 
2.50 
2.48 

Pb/Br 

6.07 
5.63 
5.26 
4.16 
5.06 
4.52 
5.12 

Si/Ca Si/Pb 

2.59 
3.07 
2.70 
3.55 
3.10 
2.1 1 
2.89 

8.97 
9.76 
7.25 
8.03 

18.15 
24.71 
17.34 

Pb/OC 
(XIOO) 

2.19 
1.81 
2.17 
2.55 
1.89 
1 3 9  
1.26 

Si/OC S i p  

0.196 
0.177 
0.158 
0.205 
0.344 
0.342 
0.219 

0.126 
0.136 
0.1 15 
0.143 
0.250 
0.257 
0.161 

Pb/TC 
(XI 00) 

1.41 
1.39 
1.58 
1.78 
1.38 
1.04 
0.93 

SoCAB Road’ 2.72 31.60 4.08 52.97 1.91 1.012 0.953 1.80 

SOCAB soil3 2.10 9.65 
cass4 2.57 22.78 
‘ SoCAB source composition library no. 1-39 Cooper et a/.. 1987) 

SoCAB source composition library no. 1-05 !Cooper ef a/., 1987) 
SoCAB source composition library no. 1-43 (Cooper et a/., 1987) 
Cass and McRae (1983) 

SoCAB Auto* 3.93 2.95 1.28 

composite motor vehicle profiles given by Cass. This fact could be explained by 

loss of Br. 

The roadway composite profiles show spatial variations according to how 

much of the motor vehicle source is mixed with the resuspended road dust. 

However, the roadway composite source compositions do fall into certain ranges. 

Some of them are shown below. 

,238 I OC I ,341 

.087 5 EC 5 ,156 

.020 Al 1. ,040 

,054 5 Si 5 .090 

,018 5 Ca 5 .043 

.024 I Fe 5 .040 

.0007< Br I ,0020 

.00371 Pb 5 ,0081 

Simulation studies have been conducted to test the model’s performance 

and to determine the random error effects both in the source compositions and 
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the ambient concentrations on the predicted source composition profiles. It has 

been shown that the SAFER model can estimate source compositions with 

acceptable error and bias. The maximum percentage uncertainties in the predicted 

compositions of the roadway are less than 10 percent for most of the major 

species, except EC which is 20 percent (Kim, 1989). 

3.4.2 Los Anaeles Sou rce Appor t ionm 

A summary of the source apportionment estimated by the CMB model for all 

the sites is shown in Table 4. The source contribution from the roadway source 

ranges from 20 pg/m3 to 34 pg/m3. The minimum contribution of 19.597 bg/m3 is 

found at LEX and the maximum contribution of 34.202 pg/m3 at RUB. However, 

except for these two extreme values, the roadway contribution is about the same 

for all the sites. The large roadway contribution at the RUB site might be related 

to the large fraction of the crustal source in the roadway composite profile at this 

inland, arid site. Similarly, the small roadway contribution at the LEX site could be 

explained by a large motor vehicle fraction in the composite profile. 

Table 4. Summary of Source Apportionment Results. 

DIA LB LEX ANA RUB UP 

Roadway 26.987 25.106 19.597 28.911 34.202 25.433 
Secondary 20.825 17.750 22.540 19.416 31.396 20.351 
Marine 1.671 1.513 2.498 2.230 --- _ _ _  

-__ 8.127 6.575 Crustal 6.001 4.060 _-- 

Unexplained 4.774 1.404 0.493 2.109 14.058 5.604 

Total Mass 60.257 49.892 45.128 52.666 87.783 57.963 

Sum 55.483 48.428 44.635 50.557 73.725 ~2.359 
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4. CONCLUSIONS 

It can be seen from the review of multivariate techniques and the example 

presented above that a considerable amount of insight into the sources of 

airborne particles can be obtained directly from the ambient concentration data. 

These methods provide the ability to screen the data to bigin to determine the 

possible structure and then to perform detailed source apportionment without 

initial input of specific source profiles. These techniques are thus a useful 

complement to the Chemical Mass Balance model. 
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1. INTRODUCTION 

Chemical receptor methods as described in this volume have employed 

various statistical techniques to quantitatively apportion the ambient aerosol mass 

based on bulk sample analyses. However, there are has limitations on 

apportioning pollutant sources because of limited number of measurable features 

in source profiles. Because of the combination of collinearity and measurement 

imprecision, it is generally not possible to resolve more that 6 to 7 sources for any 

given sample. Alternatively, microscopic methods have been used for specific 

source identification studies based on particle-by-particle analyses (Crutcher, 

1982). However, these methods are laborious and expensive when full 

quantitative analysis is required. In this chapter, an alternative approach will be 

present. Computer controlled scanning electron microscopy (CCSEM) coupled 

with advanced pattern recognition methods, permits improved quantitative 

apportionment with high source specificity. 

Ever since the first scanning electron microscope (SEM) became available 

commercially in 1965, the SEM has gained increasing acceptance as a powerful 

research tool. With the development of the energy dispersive detector for x-ray 

analysis, the SEM has moved from an instrument which could only produce 
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images of small portions of matter (micrographs) to an extremely versatile 

analytical instrument. The ability of the SEM/XRF system to perform elemental 

analysis of extremely small volumes of materials is very useful for the 

characterization of individual particles and the identification and quantitative mass 

apportionment of those particles to sources. Individual particles can be analyzed 

for their elemental constituents as well as mophological information that aide in 

determining the processes by which the particle was formed. 

With improvements in computers, the scanning and image analysis can be 

done in close to real time under computer control so that size, shape, and 

elemental composition can be obtained for a large number of particles in a 

reasonable length of time. Recent advances now permit the automatic capture of 

a high quality image of each particle as well as the results of the image and x-ray 

analysis. Thus, computer-controlled scanning electron microscopy (CCSEM) 

represents a powerful tool for the identification and classification of particles. The 

development of CCSEM has overcome the limitations on the number of particles 

that can be analyses in a practical manner. Coupled with intensive data analysis 

methods, computer-controlled scanning electron microscopy has a very 

substantial capability for resolving a larger number of sources and providing more 

accurate source apportionments. 

2. SCANNING ELECTRON MICROSCOPE 

2.1 General Configuration 

CCSEM combines several analytical tools including the scanning electron 

microscope, the energy dispersive x-ray analyzer, and the digital scan generator 

for image processing. It can quantitatively provide size as well as chemical 

compositional information in a short analysis time. Free electrons are obtained by 

thermionic emission from the heated tungsten filament in an evacuated chamber. 

The electrons are accelerated through a high voltage. The resulting beam of 

energetic electrons is focussed onto the sample surface by electromagnetic 

lenses. The lenses are used to demagnify the electron source (-4-6 mils in 

diameter) to a diameter of about 10.0 nm. The electron beam can be scanned 
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over the specimen in a rectangular raster. 

Several forms of emission result from the interaction of these energetic 

electrons with the particle surface. One type of emission resulting from the 

complex beam-matter interaction is secondary electrons. These are low energy 

electrons ejected from the sample by the primary electron beam and are collected 

by a scintillation counter. The output of the scintillation counter is connected to a 

cathode ray display. The deflection of the electron beam over the specimen and 

the deflection in the cathode ray display are synchronized by connecting the two 

sets of scanning coils to the same X-Y generator. In this way an image of the 

specimen appears on the display. Image contrast arises from the differences in 

the efficiency of producing secondary electrons from different regions of the 

specimen. This efficiency is dependent on the topography of the sample so that 

the morphology of the specimen is displayed. 

Alternatively, electrons from the microscope beam that are directly scattered 

by the particle can be used for particle imaging. The energy of these 

backscattered electrons is sensitive to the average atomic number in the particle. 

This variation in energy helps to distinguish particles from the background or to 

distinguish among different types of particles. The backscattered electron intensity 

is also affected by the particle morphology, but does not provide the same high 

level of detail in the surface as secondary electrons. 

The major development that has made the use of S E M  practical for 

quantitative receptor modeling is the coupling of computers to the S E M  (Kelly et 

a/., 1980; Lee and Kelly, 1980). The computer is used both to control the electron 

beam and automatically process the image produced by the sample. The 

computer directs a digital beam-control for a real-time point by point analysis with 

up to 4096 by 4096 points. 

2.2 Imaging System 

in a step-wise fashion across the sample. The spacing between the points 

examined determines the minimum particle size that will be observed with 

In the automated mode, the beam-control system moves the electron beam 
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certainty. For the system typically used, this minimum particle size is around 0.2 

pm. The intensity of the signal, backscattered or secondary electron, is compared 

to a threshold that is established for the particular sample backing material. If the 

signal level is below the threshold, it assumes no particle is present at that 

location. If the signal is above the threshold, then a secondary beam control 

system drives the beam in a preset pattern to determine the size and shape of the 

entity or feature that is causing the increased reflectance. 

The preset pattern consists of pairs of diagonals across the particle where 

the lengths are determined by the points where the signal drops below the 

threshold values. The pattern is repeated twice. The first pattern is used to locate 

the feature and the second provides the lengths of the diagonals through the 

centroid. It is also possible to move the beam around the end of the particle 

storing the locations of its perimeter. The maximum, minimum and average 

diameter are calculated and stored as well as the centroid of each particle. The 

measurement of the particle dimensions is made more accurate by using a closer 

spaced point array once the particle is located. The stored centroid locations are 

compared to the currently examined particle to insure that particles are not 

counted twice. 

Once the parameters have been stored, the beam is returned to the centroid 

of the particle and the x-ray spectrum is recorded in a multichannel analyzer. In 

other approaches, the beam is rastered across the particle within the previously 

measured perimeter. A density can be estimated on the basis of the chemical 

composition and the mass calculated assuming that the particle is a spheroid of 

revolution. The process takes as little as 1.5 seconds per particle depending on 

the time needed to obtain a statistically acceptable x-ray spectrum. The system 

then returns to the search mode to find additional particles. Thus, it is possible to 

measure the characteristics of up to a thousand particles an hour depending on 

the length of time chosen to accumulate the fluoresced x-ray spectrum. 

The image analysis system provides a reasonable estimate of the particle 

size. However, only a rough idea of the shape of the particle is obtained. The 

instrument does provide an image of the particle that can be captured 
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photographically, but it has not been available for further computer analytical 

study. Thus, we are currently not taking full advantage of the information available 

from the instrument. Major improvements in automated particle imaging by the RJ 

Lee Group now make it possible to store the particle image directly. Automatic 

capture of single particle images (256 gray level, 256 pixel by 256 pixel) now 

permits the accumulation of a large number of particle images for more detailed 

off-line analyses of shape and particle texture. This large amount of data can be 

stored on a write-once, read many (WORM) optical disk storage system with a 

disk capacity of 800 Mbytes of data. These images may provide clearer 

indications of the particle:s origin and what processing it has undergone in transit 

in the atmosphere. 

To illustrate the qualitative information that is available from the imaging 

process, four single particles are displayed in Figures 1 to 4. These figures show 

the secondary electron image and the x-ray spectrum taken with the electron 

beam focussed on the particle center. Figure 1 is a quartz particle whose x-ray 

spectrum shows only Si and 0. The diatom shown in Figure 2 has an identical x- 

ray spectrum, but displays a very different shape and texture. A similar distinction 

can be seen between the fly ash particle in Figure 3 and the clay mineral particle 

in Figure 4 where the spherical shape of the fly ash particle clearly suggests its 

origins. It can be seen from these figures that both shape and composition can 

be useful in identifying particle types. 

2.3 X-Ray Fluorescence System 

The incident electron beam can also cause emission of x-rays which are 

generated from a sample volume of about 1-3 pm3. Because the cross-sections 

for excitation of atomic electrons by electrons are much smaller than those for 

heavy charged particles or x-rays as described elsewhere in this volume by 

Dzubay and Stevens, the sensitivity of the x-ray fluorescence analysis within the 

microscope is much lower than for photoninduced XRF or PIXE. The fluoresced 

x-rays are collected and analyzed by an x-ray spectrometer system. The x-ray 

detector is a lithium drifted, silicon diode is similar to those used in other x-ray 
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Figure 1 .  X-Ray Fluorescence Spectrum and Secondary Electron Image of a Quartz Particle 
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Figure 2. X-Ray Fluorescence Spectrum and Secondary Electron Image of a Diatom Particle. 
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Figure 3.. X-Ray Fluorescence Spectrum and Secondary Electron Image of a Clay Mineral Particle. 



3 
3 
u 

ENERGY keV 

Figure 4.. X-Ray Fluorescence Spectrum and Secondary Electron Image of a Fly Ash Particle. 
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fluorescence methods. However, because a vacuum is maintained on both sides 

of the entrance window of the detector, it is possible to make the window 

sufficiently thin that even low energy x-rays from the lightest elements can 

penetrate to the detector. These detectors are called "windowless" even though 

that is not fully true. 

It is generally difficult to obtain a precise quantitative analysis of the elemental 

composition of the particle. However, it is possible to obtain relative 

concentrations of elements present at 2 0.1 atomic percent in the particle. 

Janossy et a/. (1979) describe a method for obtaining accurate atomic weight 

ratios for ultrathin samples. The elements that can typically be observed include 

Na, Mg, Al, Si, P, S, CI, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Zn, Pb, and Br. 

Additional elements could be sought but are generally below detection limits 

except in unusual samples. It is possible to observe the lighter elements because 

of the fact that the sample is in a vacuum. In many of the earlier applications of 

CCSEM, a particle that is observed but for which there are not observable x-rays 

was generally assigned to be a carbonaceous particle. Carbonaceous particles 

can be imaged and information can be obtained on the possible particle sources 

from the particle morphologies (Griffin and Goldberg, 1979). The improved 

"windowless" detectors have become available that permit the detection of x rays 

down to carbon. Thus, now in addition to the elements listed above, C, N, and 0 

can be observed directly (Kim et a/., 1989). However, the analysis time per 

particle needs to be 15 to 20 seconds in order to obtain useful spectra. 

There have been several recent improvements in the assignment of 

observed x-ray spectral lines to elements and quantitation of elemental 

concentrations in individual particles. Janssens et a/. (1988 a & b) have 

developed an expert system for the automated interpretation of large numbers of 

single particle x-ray spectra. The x-ray data are often not extensively processed 

on-line, but are stored for subsequent off-line analysis. Each particle is 

characterized by a series of peaks in the spectrum for which an energy and a net 

peak intensity are stored. The expert system uses a data base of x-ray energies 

and measured relative intensities to determine which elements are present, identify 
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spectral interferences, and determine the net intensity assignable to each specific 

x-ray line. 

The x-ray intensities can then be converted into elemental concentrations. 

Methods for the quantitative analysis of particles have been recently reviewed by 

Markowicz et a/. (1986). However, many of the methods are not applicable to the 

analysis of single particles. Van Borm (1989) has adapted a standardless ZAF 
correction method initially developed by Raeymaekets (1986) based on the work 

of Wernisch (1985, 1986). The program, QUANTA, incorporates theoretical 

expressions for the efficiency of an Si(Li) detector, an atomic number correction 

(Z), an absorption correction (A) based on the quadrilateral model of Sewell et a/. 

(1 9854, and the fluorescence correction (F) for the increased fluorescence caused 

by secondary fluorescence excitation. With this approach, quantitative estimation 

of elemental concentrations can be calculated for each particle. 

Van Borm (1989) has tested this approach with bulk alloys, bulk mineral 

particles, and microscopic mineral particles. The analyses of the bulk alloys 

provided results within 5% of the known values. For the bulk minerals, there was 

a consistent underestimation of low2 elements such as Na, Mg, and Al, but within 

the range of 1 to 100 weight % the standard errors were within 10% for all 

elements. For the microscopic mineral particles a similar result was obtained in 

that there were significant underestimations for the low-2 elements and more 

variability because the particles are not spherical. Relative standard errors of up 

to 40% were found for low-Z elements present in low concentration. Elements 

present at greater than 10% weight percent were analyzed with much lower errors 

including oxygen. For Z > 14, accuracies of better than 10% can be obtained. 

It is possible to utilize the concentration measurements made on individual 

particles to estimate the average bulk concentration values for the collection of 

particles. Casuccio et a/. (1983a) and Energy Technology Consultants (1983) 

have described a detailed intercomparison study that compares the results of 

scanning electron microscopy with bulk chemical analysis for several high volume 

sampler filters taken in El Paso, TX. The chemical methods include x-ray 

fluorescence, both photon- and proton-induced, atomic absorption spectrometry 
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and ion chromatography. The results generally show good agreement between 

methods. The lead values were in reasonable agreement although the CCSEM 

value for some cases is low possibly because of the inability to remove deeply 

penetrating, fine particles. In general these results from Casuccio et a/. (1983a) 

do show that a reasonable representation of the bulk concentration values can be 

obtained from the microscopic results. However, the value of the SEM analysis is 

the characterization of particles on an individual basis and the ability to also obtain 

a reasonable estimate of the bulk average concentration is an additional bonus. 

3. SAMPLE PREPARATION 

The nature of the sample preparation method depends on the type of 

sample to be analyzed. Ideally the particles should be uniformly distributed as a 

monolayer with particles separated from one another on a relatively smooth 

background with a uniform atomic number lower than that of any particle to be 

identified. The primary emphasis of SEM receptor studies has been on airborne 

particulate matter collected on filter media. If the particles have been collected on 

a fibrous material such as glass fiber, quartz fiber, or paper filters, the particles are 

distributed within the volume of the filter and cannot be directly analyzed. 

Under these conditions, it is necessary to remove the particles from the filter 

and redeposit them on an appropriate material. There are serious problems 

associated with any method to transfer particles. It is difficult to insure 

representative removal of particles since there will be differential penetration of 

particles into the fibrous filter pad depending on particle size. Thus, more of the 

large particles may be removed from the surface layer than smaller particles from 

the deeper regions of the filter. If the primary interest is in particle mass, this loss 

of some small particles may not be a problem. However, if respirable particles or 

specific toxic element apportionment is the objective of the study, particle transfer 

may lead to a biased result. 

Another problem with redeposition is that the solvent used to remove the 

particles from the filter may dissolve some particles or leach materials from others. 

The results of a study of particles in El Paso, TX (Janocko eta/., 1982) indicated 
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that the CCSEM results of the average aerosol composition were similar to those 

of other methods indicating that it may be possible to transfer a representative 

sample of TSP samples. A punch of material from the glass fiber filter was 

sonicated such that acetone was forced through the filter. The acetone flush may 

be performed in each direction using clean solvent for each. The process was 

repeated six times and the particulate matter was then redeposited on a 0.2 p m  

pore Nuclepore filter. For a paper filter, a less rigorous procedure was used. In 

this case, 50 ml and a punch were ultrasonically agitated for 5 minutes. The piece 

of filter was removed from the solvent and washed with a stream of filtered 

acetone. The material was again redeposited on a 0.2 p m  pore Nuclepore filter. 

A reasonable level of precision is obtained between replicate depositions, 

and it appears that a reproducible sample can be removed from the original filter. 

SEM results for samples taken in El Paso, TX were compared with optical 

microscopy with generally reasonable agreement (Energy Technology 

Consultants, 1983). In both of these analyses, particles were removed from the 

original filter medium and it appears that sufficiently representative samples can be 

obtained for such analyses. 

Collection on membrane type filters can directly provide an acceptable 

sample if the particle loading is not too high. In this case, it is fairly simple to 

obtain a sample. Often optical microscopic examination is made to find locations 

on the filter for taking SEM samples. Small sections are then removed from the 

filter and mounted on an aluminum stub attached with a dispersion of amorphous 

graphite in butanol. If an impactor is being used, it may be possible to use a 

metal disk or a SEM stub as the collection surface. In this case, beryllium can be 

used to provide a very low atomic number background that permits a better 

identification of carbonaceous particles. Alternatively particles removed from a 

filter could also be deposited on an SEM stub by drying a droplet of solvent in 

which the particles are suspended directly on the stub surface. However, this 

approach can lead to artifacts as described above. In order to be able to easily 

distinguish carbonaceous particles from the background scattering from a carbon- 

based filter medium, it can be useful to redeposit a sample onto a beryllium stub. 
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By examining both the original filter and the particles on the Be stub, it is possible 

to ascertain if the redeposited material reflects the same types and distribution of 

particles in the original samples. 

In order to prevent the accumulation of charge on the insulating particles 

that would distort the image, the sample needs to be coated with a conducting 

material. For the best imaging, gold has been used as the conducting material. 

However, gold makes the x-ray fluorescence analysis impossible. The usual 

method is then to evaporatively deposit a thin coating of carbon on the sample. 

This coating process does subject the sample to a moderate vacuum potentially 

resulting in evaporative loss of particles (Leong et a/., 1983). This evaporative loss 

will particularly affect nitrogen compounds (HNO,, NH,NO,) because of their high 

vapor pressures. The sample is then available for analysis. 

4. DATA ANALYSIS 

4.1 Size Distributions 

One of the advantages of scanning electron microscopy is the direct 

determination of the physical sizes of the particles in the sample. Thus, more 

detailed information can be obtained on particle sizes than would be available 

from the aerodynamic sorting provided by a sampling device. Even a cascade 

impactor only separates particles into a few categories. As discussed by Dzubay 

and Stevens, there are often problems of particle bounce in cascade impactors or 

fine particles in the coarse particle mode sample in dichotomous samplers. Thus, 

there are uncertainties in the actual size distribution measured by indirect means. 

Automated SEM makes the direct measurement of the size distribution feasible 

because of the ability to examine a sufficiently large number of particles. 

It is possible to estimate the aerodynamic size distribution from the physical 

size and estimated density (Casuccio et a/., 1983b). It is not possible to precisely 

convert a measured physical diameter to an equivalent aerodynamic value for 

non-spherical particles. The approximate aerodynamic diameter is given by 

d, = xdpp’’2 
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where d, is the aerodynamic diameter, d, is the measured physical diameter, x is 

a shape factor, and p is the density as estimated from the chemical composition. 

The shape factor is included to correct for the non-spherical shape of the 

particles. Values of x are obtained from Dallavalle (1948). An aerodynamic size 

particle number distribution of an ambient aerosol sample taken near a major 

highway outside of San Antonio, TX is shown in Figure 5. The number distribution 

shows two size modes with peaks at 0.8 pm and at 4 pm. A mass weighted 

distribution would shift these peaks to larger aerodynamic diameters. SEM is the 

only way that the complete physical size distribution of the actual sample can be 

determined. 

5. PARTICLE CLASSIFICATION 

5.1 Empirical Classification 

The CCSEM analysis process described above provides a substantial 

amount of information characterizing each individual particle. The question then 

arises as to how to utilize these data to provide an understanding of the system 

under study. There are several approaches that have been applied to utilize these 

data in receptor models. The general approach that has been employed in the 

interpretation of the microscopic analytical data has been to assign each particle 

to one of a number of empirically defined particle categories (Johnson et a/., 1981; 

Casuccio et a/., 1982; Lee and Fisher, 1980) with an assigned density. For 

example, a particle that is rich in iron must be placed in one of the particle type 

categories containing significant iron concentrations. These types include iron- 

rich, spherical iron, chlorite, pyrite, calcium ferrites, etc. If there were no other 

major elements observed besides the iron, the particle would be assigned as iron- 

rich unless the aspect ratio (length to width) is less than 1.33:l. For such a 

situation, the particle should be classified as spherical iron. For a particle with 

approximately twice the sulfur as iron, the classification would be pyrite. The 

criteria for these category assignments have been developed and verified by 

analyzing a large number of reference materials with known characteristics (Lee 

and Fisher, 1980). 
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Smelter Sample T220. 

The particles that do not fit into any of the predefined categories are 

assigned to an "unknown" class. These particles can be examined to determine if 

there are enough similar characteristic particles to permit the definition of a new 

particle class. It is possible to determine the number of particles of a given size 

range within a given particle characteristic class. These number of particles in 

each of the particle size/chemistry categories become the variables that are used 

in the further analysis. 

Kim et a/. (1987) tested the quality of the empirical classification scheme 

using supervised pattern recognition methods. These methods permit quantitative 

assessment of the classification efficiently. They found that there were a number 

of empirical categories had substantial overlapping regions where the assignment 

of a particle to a specific particle class was ambiguous. Thus, it appears that an 
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objective classification scheme could provide better assignment of particles to 

classes and thus provide the basis for a subsequent mass apportionment. 

There is a need to sort the particles into groups of particles that have similar 

chemical and physical properties. The fractions of mass assigned to each particle 

class will become the analogous values to the elemental concentrations measured 

in the bulk sample. Since many particle classes can be identified, a mass balance 

analysis similar to a chemical mass balance can be performed. This particle class 

balance (PCB) then is the basis for source apportionment for SEM analysis. The 

critical step in this analysis is the identification of the types of particles present in 

source or ambient samples (particle classes) and the accurate assignment of 

particles to the identified classes. Thus, this section will be devoted to the 

problem of particle classification. 

5.2 Example Data Base 

methodologies, illustrative examples will be taken in a data sets obtained from a 

study of El Paso, Tx. The City of El Paso is located at the tip of western Texas, 

with the state of New Mexico to the west. The Rio Grande River, the boundary 

between the United States and Mexico, flows south of the city as shown in Figure 

6. The city of Ciudad Juarez lies just to the south in Mexico across the river. El 

Paso also has the Franklin Mountains intruding from the north. Wiersema et a/. 

(1984) indicated that based on XRF data, aluminum, arsenic, lead, and 

manganese levels are significantly higher in El Paso than the statewide average for 

these elements. Particularly, five-year average lead concentrations in the years 

from 1978 to 1982 in El Paso were three to four times the five-year average lead 

levels measured statewide. Therefore, the Texas Air Control Board initiated the El 

Paso Quantitative Microscopic Study in 1982 to identify the sources of TSP and 

lead in the air. 

In order to illustrate particle classification and to test alternative 

Detailed descriptions of the analytical methods and the data in El Paso has 

been previously reported (Janocko et a/., 1982; Casuccio et a/., 1983a&b; Dattner 

et a/., 1983; and ETC, 1983). CCSEM was selected as the primary analytical 
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Figure 6. Map of El Paso, Texas showing Sites for Source and Ambient Sampling. 

method with several other bulk analysis methods like atomic absorption, ion 

chromatography, low temperature ashing, and proton induced x-ray emission, 

used to provide more information and to verify the CCSEM data. 

A total of 110 samples including source and ambient samples were collected 

to analyze a set of TSP filters previously collected by high-volume samplers in El 

Paso. The hi-vol ambient samples were collected on both cellulose and glass 

fiber filters. The particles were removed from the filter with acetone using 

sonication. The particles were then redeposited on a Nuclepore filter for the 

CCSEM analysis. Although this procedure has the potential for differential removal 

of particles depending on particle size and for dissolution of some particles into 

the acetone, the comparison of the CCSEM elemental analysis of a series of test 

samples showed very good agreement with the bulk analyses performed on the 

same samples using the conventional methods listed above (Casuccio et a/., 

1983b). 

Source samples were collected from major sources of particulate matter. 
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For ducted emission, an EPA Method Five sampling protocol was used so the 

particles were collected on a glass fiber filter. The fugitive emissions samples 

were collected using a RADER sampler. This sampler consists of an in-line filter 

holder containing a standard 8" by 10" filter. Both cellulose and glass fiber filters 

were used. Two inch diameter aluminum pipe were used for the inlet and outlet 

air flows. Thus, the source sample particles also required removal from fiber 

filters. This removal was accomplished in the same fashion as the ambient 

sample. It is hoped any bias in the ambient sample in size and solubility would 

also apply to the source samples in an identical manner. For studies where it is 

possible to do so, it is recommended to design a sampling protocol that will 

collect the particles on a medium that can be used directly in the SEM. 

For each sample more than 700 particles are measured. Each particle is 

characterized by 25 variables including 6 physical descriptive variables (maximum 

and minimum diameter, ratio of minimum to maximum diameter, mass, 

aerodynamic diameter, and effective mass) as well as 19 average elemental x-ray 

intensities (Na, Mg, Al, Si, S, CI, K, Ca, Ti, Fe, Cr, Mn, Cu, Pb, V, Cu, Zn, Br, and 

Ni). These samples were analyzed before the ultrathin window x-ray detectors 

were available and therefore C, N, and 0 data were not obtained. The effective 

mass is the particle mass per unit area of the filter surface. The particle mass is 

estimated from the aerodynamic diameter which in turn is derived from equation 1 

using the physical size, shape factor, and estimated density. From the observed 

elemental x-rays, the particle is assigned a density. From the projected area, the 

volume is estimated as a spheroid of revolution and the mass is obtained by 

multiplying this volume by the density. The reproducibility and the precision and 

accuracy of this method is described by Casuccio eta/. (1983b). For the 

classification study, the 21 source samples listed in Table 1 were used to provide 

the examples of particle classes needed to development of a classification 

scheme. Ambient samples were then tested and classified using the same 

scheme. 
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Table 1. Reference Source Samples Collected in the El Paso and Used for the 
Classification Study. 

Process Stack Samples 

SamDle ID TACB ID DescriDtion 

T235 #26 ASARCO Zinc Baghouse 
T236 #27 ASARCO Copper Reverberatory Furnace 
T237 # 28 ASARCO Converter Baghouse 
T238 #30 ASARCO Zinc Plant Baghouse 
T270 #43 ASARCO Sinter Plant 
T271 #44 ASARCO Lead Sinter Plant 

ASARCO: The American Smelting and Refining Company 

Process Fugitive Emission Samples 

Sample ID TACB ID Description 

T220 # 6  American Minerals Sample (Mn Smelter) 
T234 # 2  El Paso Rock Quarry 
T240 # 9  ASARCO Lead Blast Furnace 
T248 #39 Parker Brothers (Slag Crushing Operation) 
T263 #32 ASARCO Coke Storage Hoppers 
T264 #33 ASARCO Sinter Plant (Front) 
T273 #I0 Southwest Portland Cement 

Fuqitive Soil Emission Samples 

Sample ID TACB ID Description 

T219 # 5  UTEP (Soil near Monitor) 
T239 # 8  IB & WC (near Monitor) 
T242 # 3  Dirt Road, Ascarate/Valencia 
T256 #41 Dixie Ethyl Refinery (Old Gas Refinery) 
T266 #35 Newell Salvage (Salvage Yard) 
T268 #37 IB & WC (near Monitor) 
T272 #45 Phelps Dodge (Copper Refinery) 

Miscellaneous Samples 

Sample ID TACB ID Description 

T221 # 7  Hiahwav Emission (San Antonio) 
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5.3 Data Screening and Transformation 

distribution of values and statistics of the raw data set. As one of the advantages 

of CCSEM, the frequency distribution for aerodynamic diameter can be directly 

obtained from the measured physical size and estimated density. The distribution 

was always positively skewed and bimodal in shape. Figure 7 gives the 

distribution of manganese x-ray intensities for the manganese smelter source 

sample T220. It can be seen that a bimodal distribution was observed with a 

minimum occurring around 3 pm and that the distribution is strongly positively 

skewed. Because this is a particle number distribution, the accumulation mode 

contains the larger fraction of the particles although the coarse mode would 

represent the greater mass. 

To begin the analysis, a simple univariate analysis was made to look at the 

There were several data treatment steps to begin the CCSEM data analysis 

such as the selection of variables, the noise reduction of cases, and the 

transformation of their values. The first step is to select proper variables out of 

the 25 physical and chemical variables. The 6 size related variables (length, width, 

its aspect ratio, mass, aerodynamic diameter and effective mass) were strongly 

correlated with other elemental concentration variables. This type of mixed 

variables is difficult to use in cluster analysis, especially when Euclidian distance is 

used. The Euclidian distance is invariant under orthogonal rotation of the pattern 

space so that variables should be orthogonal or uncorrelated. Otherwise high 

correlated variables may cause an incorrect classification. Thus, the first 

technique to screen the raw data was to use only the 19 chemical variables. 

elemental x-ray intensities. The x-ray fluorescence peaks are obtained as a result 

of a photon counting process having a Poisson distribution. There are observed 

"peaks" in the spectrum that arise from the statistical fluctuation in the detector 

background in the particular energy region characteristic of that element. Thus, it 

is necessary to eliminate those peaks that do not have sufficient intensity to be 

considered real. If the x-ray count for an element was less than two times the 

square root of the total number of x-ray counts in the spectrum for this particle, 

the count was set to zero. It was observed that the cluster pattern gave a much 

The second data treatment to be employed will be noise reduction in the 
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Figure 7. Frequency distribution of the number of manganese x-ray counts in the 
manganese smelter source sample T220. 

more reasonable classification of the particles after the noise reduction scheme. 

Finally, a logarithmic transformation of the data was used to compress the 

distributions. Since many x-ray intensities, xi, have a value of zero or are set to 

zero by the noise reduction scheme, a logarithmic transformation can not be 

made directly. A log (1 +xi) transformation avoids the difficulty with zero values. 

The addition of a single count makes an insignificant perturbation to the total 

count values since total x-ray counts were used. The frequency distribution of 

manganese x-ray intensities for source sample T220 is given again after 

logarithmic transformation in Figure 8. As can be seen, the distribution has been 

compressed by the transformation and made more symmetric compared to Figure 

7. In the case of the manganese x-ray intensities, there is really a bimodal 

distribution with peaks occurring around 1.8 and 3.3 (63 and 1,000 of x-ray count) 
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Figure 8. Frequency distribution of the number of manganese x-ray counts after the 
noise reduction and the logarithmic transformation in the manganese 
smelter source sample T220. 

when excluding the peak of x-ray intensities of zero. After the noise reduction and 

the logarithmic transformation for the same source sample T220, this bimodal 

distribution was changed into the reasonable looking symmetric shape with a peak 

occurring around 3.3, shown in Figure 8, and thus became a more amenable 

shape for clustering. Finally, the log transformed data were autoscaled to have 

zero mean and unit variance. This transformation insures that all variables have 

equal weight in determining the similarity between any given pair of objects 

(particles). 
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5.4 Statistical Classification 

5.4.1 Cluster Analvsis 

Cluster analysis is used to find meaningful aggregations (clusters) of objects 

(individuals, entities, patterns or cases) with little or no a priori information and 

identify useful patterns within a large data set. Mathematically a cluster is a 

subset of a set of objects. 

The basic concept of classification is to identify each object that is similar in 

a pattern space based on a measure of distance or dissimilarity. Hence, if the 

distance (dissimilarity) between the two objects is small, they are considered to be 

in the same cluster. Thece are many quantitative definitions of dissimilarity and 

distance measures in the literature to solve cluster problems (Hopke, 1983; 1985). 

A commonly used measure of distance or dissimilarity is the squared 

Euclidean distance. If there are two points in an m dimensional space where m is 

the number of measured variables (such as x-ray intensities), then the squared 

Euclidean Distance (SED) is defined as 

m 
SfDu = C (xk-xA2 

k= 1 

where Xi, is the value of the kth variable for the ith datum point (particle) and Xik is 

the value of the kth variable for the jth datum point (another particle). Alternatively 

the Euclidean distance can be calculated by taking the square root of equation 2. 

Before using various cluster programs, the proper data treatment is needed. 

Since the cluster analysis is dependent on the data treatment scheme, care must 

be taken in interpreting the results. It is also important to determine the 

appropriate measure of dissimilarity or distance. Euclidean distance has been 

advocated empirically in biological taxonomy since the early 1960’s (Sneath and 

Sokal, 1963). Squared Euclidean distance has been found to be a reasonable 

measure of distance for environmental data (Hopke, 1983). When Euclidean 

distance is used as a measure of distance, highly correlated variables should be 

eliminated prior to the analysis, otherwise it may lead to distorted classifications. 
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Since the calculation of distance depends on the scale of the data, normalizing 

variables by dividing by its standard deviation over the total objects is 

recommended (Massart and Kaufman, 1983). 

5.4.2 Applications of Cluster Analvsis 

Hierarchical and non-hierarchical clustering methods were used to identify 

the initial classes in the data set. These pattern recognition approaches were 

applied to extensively explore the auto emission source data set T221, one of the 

source samples from the El Paso study (Kim et a/., 1987). Three clustering 

methods, including an agglomerative hierarchical program AGCLUS (Oliver, 1973), 

the k-median program MASLOC (Kaufman and Massart, 1983), and the BMDP 

(Biomedical Computer Programs) k-means program (1985), were applied to these 

data to compare the computational efficiency and the ability to isolate clusters. 

The agglomerative hierarchical algorithm AGCLUS was first tested for the 

classification of the CCSEM data. The agglomerative method starts from the 

individual objects each in a separate cluster and ends with a single cluster 

containing all of the objects. Larger clusters are constructed by merging smaller 

clusters. This method requires that once an assignment of objects to a cluster is 

made, those objects will remain together at higher and higher clustering levels. 

Thus, errors made early in the clustering cannot be repaired at higher levels when 

the clusters are larger and better defined. 

Hierarchical clustering can be represented in the form of tree-shaped 

dendrograms such as shown in Figure 9. The horizontal distance between 

clusters is a representation of their dissimilarity. In this hierarchical method, 

difficulties exist in choosing significant clusters from the dendrogram. The choice 

of how dissimilar objects can be while still belonging to the same group is then 

made by defining the distance from the left side of each segment where a vertical 

line would separate the figure into possible classes. 

Several large classes of very similar particles can be seen in the example 

shown in Figure 9 as well as some particles that are not likely to be assigned to 

any well defined particle class for this sample. However, it must be noted that the 
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Figure 9. Portion of a Agglomerative, Hierarchical Dendrogram Showing Initial 
Assignment of Particles to Classes 
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hierarchical method is simple in terms of computational scheme, and is flexible in 

terms of decision on the assignment to significant clusters by simply shifting the 

clustering level in the same dendrogram. 

A non-hierarchical method is generally performed in three steps: 1) 

choosing a specific number of clusters, k; 2) initially allocating objects to these 

clusters; and 3) reallocating some of the objects to other clusters until an "optimal" 

solution is obtained. As the initial step, a number of clusters, say k, can be 

chosen empirically or estimated by the computer simulations (Begovich and Kane, 

1982). However, it is generally difficult to decide the specific number of clusters 

that provides the optimal partitioning for a given data set. There are no 

comprehensive, generally accepted criteria for choosing the proper number of 

clusters. Empirical decisions by the investigator are generally needed to solve this 

problem because the definition of the term cluster and the optimal clustering 

criterion are dependent on the types of variables and objects in a particular study. 

As non-hierarchical methods, MASLOC and BMDP-KM computer programs 

were applied to the same auto emission source sample T221. The MASLOC 

program used Euclidean distance as the dissimilarity measure and provided an 

option for using the algorithm on sequentially increasing values of k. The most 
significant feature in MASLOC is a determination of significant clusters (robust 

clusters) that identify the strong relationships that exist in the data. A robust 

cluster is one in which the objects never aggregate with objects of any other 

cluster upon increasing the values of k. 

In the BMDP-KM program, the Euclidean distance is also used to measure 

the distance between each object and the center of each cluster, where the center 

becomes the mean of objects in the cluster. Once a specific number of clusters is 

chosen, the program places all the data into one cluster and splits one cluster into 

two clusters step by step until the requested number of clusters is reached. Then 

objects are reallocated into the cluster whose center is nearest. 

The results of MASLOC and BMDP for 60 clusters (k=60) clearly identified 

the isolated clusters where the intracluster distances are small compared to any 

intercluster value; and the result of AGCLUS at a slightly lower level was similar to 
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them. The computation time to obtain these results differed by orders of 

magnitude between three algorithms. MASLOC required substantially greater 

computer time such that it would not be practical to run it for all of the source 

samples. AGCLUS uses only a short execution time. However, MASLOC 

performed much better with small clusters with distinctive elemental patterns such 

as showing high heavy metal concentration groups, in auto emission source 

sample (Kim et a/., 1987) than did AGCLUS. 

AGCLUS was run for each of the 21 source samples on a microcomputer 

coprocessor board that employed a National Semiconductor NS32032 CPU 

(Hopke, 1986) after the data treatment mentioned above. With the 19 chemical 

variables for each particle, the dendrograms produced suggest distinct particle 

classes at the lowest level of the clustering pattern. All the particle groups of 

more than 4 particles at this level were initially chosen as potential homogeneous 

classes. Generally as the number of classes created for each source sample 

increases, the number of particles assigned to each class decreases. 

5.4.3 Homoaeneous Particle Classes a nd Outliers 

The particles can be characterized by physical and chemical parameters. 

Although shape may be useful in classification, the other physical parameters such 

as size, density, and mass are either of not high discriminating power (size) or are 

strongly dependent on the identification of the chemical composition (density and 

mass). For example, to assign a density to a particle, the observed x-ray 

spectrum must be used to estimate the chemical compounds present. Such an 

assignment will be rather imprecise. Mass and aerodynamic diameter depend on 

further assumptions regarding the volume as a function of the projected area and 

the estimated density. Thus, the initial classification efforts were based entirely on 

the x-ray intensity data. 

In the study of classification for particle classes based on their x-ray 

intensities, an important consideration is the definition of the term "homogeneous 

particle classes." A homogeneous class is one in which all of the objects have 

similar characteristics. In this case a similar pattern of x-ray intensities. When 
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implementing various clustering methods to classify the objects into homogeneous 

particle classes, the clustering methods could only provide tentatively 

homogeneous classes. A possible group of particles chosen from cluster analysis 

can often have chemically different particles assigned to it. These particles are 

considered to be outliers. Thus, a class is determined to be homogeneous only 

when all particles in a class show only the same elements. A particle in Al-Si-Fe 

class will show only Al, Si, and Fe x-ray intensities. In the sense of this concept, 

all particles initially clustered together from cluster analysis can be examined, and 

thus it is possible to remove outlier particles for each class. Those particles in 

the class after deleting outliers can be potential "representative" examples for the 

expert system. 

With the 19 chemical compositions as variables, the 2" - 1 combinations of 

particle classes can occur without replacement of the elements. For example, 

when there are only three elements, Al, Si, and Fe, the possible particle classes 

can be observed as one of the seven particle classes (AI, Si, Fe, AI-Si, AI-Fe, Si- 

Fe, and Al-Si-Fe). However, because of possible isomorphous substitutions of 

elements in terms of geochemistry of formation of the material, the sequential 

order of elements in the class name is not related to the relative x-ray intensities 

for particle classes having more than two elements. With two elements, it is likely 

that a change from one being the major x-ray intensity to the other being 

dominant reflects a change from one particle type to another. Thus, Si-AI and AI- 

Si classes are different from each other. However, since there is the possibility of 

composite particles as well as substitutions, the Si-Al-Fe, AI-Si-Fe, and Fe-Si-Al 

classes are considered to be of the same homogeneous class. 

The total number of possible particle classes is then (2" - 1) + C(19,2), 

where the second term explains the number of combinations with replacement of 

the element when considering only two elements. The objective is to have a 

precise enough classification method to obtain sufficient resolution of one source 

material from another. There are practical limitations to how fine the classification 

can be. As the class definitions become more specific, more particles must be 

examined so that the mass fraction that class represents can be determined with 
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reasonable precision. Thus, it is possible to provide more classes if needed at the 

cost of analyzing enough particles to insure each class mass fraction is well 

determined. 

5.4.4 ExDert Svstems 

Expert systems, a class of high performance computer programs in the area 

of artificial intelligence, are applied as knowledge-engineering tools in any field to 

interpret, predict, diagnose, design, plan, monitor, and control systems. An 

expert system is dependent on obtaining the knowledge in fully concrete terms. 

Mittal and Dym (1985) warned of potential mismatch because a single domain 

expert in complex and varied domains like applied science can only provide 

information on a small subset of the tasks in the domain. Thus, a system 

attempting to expand beyond that subset may provide poor or misleading 

guidance. In general, to draw a conclusion about scientific evidence it is 

necessary to collect all the possible evidence or examples characterized by 

various variables and then analyze them systematically. Recent trends to reach 

this task are to analyze data statistically and develop experimental design to 

collect data easily analyzed by expert systems. Gale and Pregibon (1985) 

reviewed a project applying artificial intelligence methods in statistics. 

5.4.5 EX-TRAN 7 

EX-TRAN 7 (Hassan eta/., 1985) is a series of programs designed to 

generate a set of rules in the form of a decision tree based on examples for which 

various attributes (variables) are known and which have known outcomes 

(classes). It then produces a self-contained FORTRAN program that can 

implement these rules. The rule-generator program is called the Analog Concept 

Learning Translator (ACLTRAN). It can use numerical or logical variables as 

attributes for the objects in the known classes. ACLTRAN uses an extension of 

Quinlan's ID3 algorithm (Quinlan, 1983). 

The program searches the features one at a time to identify the one for 

which it can "best" separate one class from the others. The choice of attribute is 
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based on the maximum decrease in the entropy derived from information theory 

between the undivided and the split classes. The information theoretical approach 

used to determine the entropy of each state is described by Hunt et a/. (1966). 

For a given variable, the entropy of the whole and divided states are calculated, 

and the separation is made based on the maximum entropy decrease obtained. 

The decision rule is then formulated for the attribute with the largest entropy 

change. The rule splits the data such that an attribute value greater than or equal 

to the value midway between the closest points of two data sets are assigned to 

one group and those less than that critical value are assigned to the other class. 

The program systematically divides the data set until all of the objects are 

separated into single class subsets. Thus, EX-TRAN is a sequential univariate 

classification system. 

The ID3 algorithm is an iterative procedure that forms a succession of 

decision trees. The trees increase in their accuracy in classifying the objects until 

each rule has no contradictory examples. It does so by selecting a subset of 

objects and developing rules for them. It then adds objects that represent 

exceptions to the existing rules and develops a new decision tree. The process is 

repeated until all objects can be properly classified. This procedure will always 

work as long as no two objects have identical attribute values and different 

assigned classifications. However, the number of rules may become rather large 

to accommodate overlapping classes (Derde et a/., 1987). The algorithm was 

tested for a data set of 2000 objects and 14 attributes (Quinlan, 1979) and was 

found that the algorithm converged rapidly; decision rules could be developed 

using only a small fraction of the total data set; the initial subset size was not a 

critical factor; and the computation time is a linear function of the product of the 

number of examples, the number of attributes and the number of nodes in the 

decision tree. 

Although EX-TRAN is a one attribute at a time approach, it does take some 

of the correlation between variables into consideration since the splitting of the 

data set based on one of perfectly correlated variables will be identical to that 

obtained for any of the others. The system always splits the data along directions 
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orthogonal to the variable axes and thus cannot directly determine diagonal class 

boundaries, but rather would approximate it by a series of orthogonal rules. EX- 

TRAN does provide the derived decision tree directly as well as its implementation 

as a FORTRAN code or compilable subroutine. This subroutine can then be 

linked with the DRIVER program of the EX-TRAN system to provide an executable 

program to classify other objects based on their attribute values and the existing 

set of rules. 

5.4.6 EX-TRAN lmdementation 

This rule-building expert system was used to build a decision tree from 

examples of particle classes following classification studies. To perform this study, 

it was necessary to find a set of "representative" examples of the "homogeneous" 

particle classes. 

Initially the agglomerative hierarchical clustering algorithm, AGCLUS, was 

used to obtain the potential number of the homogeneous particle classes. Distinct 

particle classes at the lowest level of the dendrogram in cluster analysis were 

selected when the class contained more than four particles. The initial classes 

were not perfectly homogeneous and, therefore, the outlier particles were 

removed. Some classes were split into smaller classes to obtain homogeneity. 

Each data set representing one of twenty-one source samples was split into 23 to 

67 homogeneous particle classes. A total of 11,294 (73%) out of 15,499 particles 

(80% of total mass) were placed into one of the homogeneous classes so that 

they could be used as examples for expert system implementation. Table 2 

shows the total number of particles, the total number of particles placed in 

homogeneous classes, and the number of homogeneous classes for each source 

data set. 

It is important to note that the remaining particles (27%), including both 

particles not selected from the cluster analysis and outlier particles removed from 

the potential homogeneous classes, were placed into a miscellaneous class that 

was not active in the EX-TRAN 7 algorithm. As described above, Since there are 

many possible combinations for homogeneous classes, in order for the 
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Table 2. Number of Particles, Number of Classified Particles, and Number of Classes 
for Each Ambient Sample Identified by the Classification Rule 

Sample ID No. of Particles No. of Classified No. of Classes 
Particles 

A21 8 735 582 115 
A222 645 459 90 
A223 735 539 136 
A224 735 530 129 
A225 735 471 122 
A228 735 61 1 104 
A250 735 518 84 

A253 735 578 99 

Total 6,525 4,738 

A251 735 450 9a 

miscellaneous class to be active in the EX-TRAN 7, a corresponding number of 

examples would be needed to build a rule for the universal particle classification. 

This limitation could be overcome by simple set theory. 

Let the totality of particles be the universal set, S; the homogeneous classes 

be a subset, H; and the miscellaneous class be a subset, M. Further, let P be 

the probability of belonging to any given set. Then P(H) is the probability of the 

event H, so that the following properties are satisfied: 

, 

i) 

ii) 
iii) 

iv) 

P(H) > 0 and P(M) > O  

P(H) + P(M) = P(S) = 1 

P(H n M) = 0 

If H,, H,, ... H, are the sub-sub sets of sub set H, then 

P(H, u H, u... u H,) = 

= P(H) 

P(H,) + P(H,) +... + P(H,) 

for each positive integer k. 

H,, H2, ... Hk are independent from one another; therefore H, n HI = 0, 

i # j. In particular, if k = (2" - 1) + C(19,2), then P(M) = 0 and P(H) = P(S) = 1. 

Since H is the complement of M, even though subset M is not active in the expert 

system study, this problem can be solved after obtaining a perfect subset H. 
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In order to create a classification rule from the expert system, it is necessary 

to find a set of “representative” examples. For this study, 283 homogeneous 

particle classes from the 21 source data sets were created after deleting outlier 

particles. Table 3 shows a portion of the homogeneous classes, all the sodium- 

containing particle classes observed in the 21 source samples. As can be seen, 

some classes were unique, i.e., observed for only one particular source, and other 

classes were observed in two or more sources. Among all 283 classes, some 

classes such as Na-AI-Si-Ca, Mg-AI-Si-Ca, Mg-Si-Ca, AI-Si-K, AI-Si-K-Ca, AI-Si-K- 

Ca-Fe, Al-Si-Ca, Al-Si-Ca-Fe, Si, Si-AI, Si-S-Ca, Ca, and Ca-Si were frequently 

observed in more than twelve sources. Particularly, the AI-Si-K class was the 

most commonly observed class being found in 17 of the 21 sources. 

It must be noted that all of 11,294 particles assigned to one of the 283 

classes cannot be used directly as the representative examples since the 

maximum number of examples that can be used by EX-TRAN is 300. To select 

300 representative particles from the 11,294, various techniques have been tested 

to provide the best set from which to induce an accurate rule tree. EX-TRAN sets 

its decision value at the midpoint value between the variable values of the two 

closest points between the groups of particles being separated (Derde et a/., 

1987). Thus, an example which has minimum or maximum value for an attribute 

(variable) in a given class can be considered as a representative example. For 

instance, the Si-AI-K particle class observed from the 17 sources consisted of 434 

particles. A particular particle is then selected as a representative example which 

has the maximurn value of the Si x-ray intensity among all the particles in the 

class. Next, a particle with the minimum value of Si is selected. The Al and the K 

x-ray intensities are also considered in the same manner. Then 6 particles can be 

chosen to represent this class among the 434. If a class consists of 10 attributes, 

at most 20 particles are needed. For all the 283 classes,the same treatments 

were used. However, the 283 classes were more than enough to exceed the 

limitation of the 300 examples. The next technique used to solve this problem was 

to make subsets such as HI,, H’2,....H’,, and then S > H > H’, > Hi, where iJ = 

integer. To do this, the first subset H’, was defined as a set of all the Na- 
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Table 3. Homogeneous Particle Classes and Those Number of Particles for Each 
Source Sample. 

Particle Type ID Number of Particles for Each Sourca Sample 

Na-Mg-Al-Si- KO-Fe 2 T242( 2) T268( 5) 
Na-Mg-Al-Si-Ca 3 T239( 8) T242( 4) T268( 2) 
Na-hQ-Si-SK 4 T263( 4) 
Na-Mg-Si- K-Ca 5 T234( 2) 
Na-MQ-Si-h 6 T219( 4) T234( 2) T239( 4) T242( 2) 
Na-MgSi-Ca-Pb 7 T270( 2) 
Na-Mg-Si-Pb 8 T263( 4) T264( 7) T270( 8) T n l (  11) 
Na-Mg-Ca 9 T234( 8) 
Na-Mg-Pb 10 T2M( 5) T270( 7) T271( 8) 
Na-Al-Si 11 T219( 7) T220( 5) T239( 10) T242( 6) T248( 4) 

T256( 6) TZ68( 9) T272( 10) 
Na-Al-Si- S 12 T266( 8) 
Na-Al-Si- S K-Fe 13 T266( 4) 
Na-Al-SI- SCa 14 T221( 7) T266( 2) 
Na-Al-Si- SCa-Fe 15 T266( 5) 
Na-Al-Si- SFe 16 T266( 6) 
Na-Al-Si- K 17 T219( 4) T220( 5) T221( 2) T234( 9) T239( 11) 

T242( 13) T248( 4) T256( 8) T266( 7) T268( 9) 
T272( 14) 

Na-Al-Si- K-Ca 18 T219( 7) T239( 11) T242( 6) T256( 4) T268( 8) 
T272( 8) T273( 5) 

Na-Al-Si- K-Ca-Fe 19 T221( 3) T239( 7) T242( 7) T248( 4) T268( 3) 
T272( 6) 

Na-Al-Si- K-Fe 20 T221( 5) T239( 10) T242( 7) T256( 8) T268( 3) 
T272( 3) 

Na-Al-Si- K-Mn 21 T220( 2) 
Na-Al-Si-Ca 22 T219( 19) T220( 4) T221( 4) T234( 6) TW9( 16) 

T242( 15) T248( 6) T256( 3) T266( 4) T268( 13) 
T272( 15) T273( 8) 

Na-Al-Si-Ca-Fe 23 T219( 3) T239( 4) T242( 2) T248( 3) T256( 5) 
T273( 4) 

Na-Al-Si-Ca-Mn 24 T220( 2) 
Na-Al-Si-Fe 25 T239( 6) T256( 5) T266( 2) 
Na-Al-SI-Fe-Mn 25 T220( 3) 
Na-Al-Si-Pb 27 T221( 3) T271( 5) 
Na-Si- S 28 T236( 6) T263( 4) 
Na-Si- S K-Ca 29 T270( 4) 
Na-Si- SCa 30 T242( 3) T256( 4) T263( 4) T266( 6) T272( 3) 
Na-Si- K-Ca 31 T234( 2) 
Na-Si- K-Pb 32 T235( 5) TZ'O( 3) 
Na-Si-Ca 33 T219( 12) T221( 4) T234( 17) T239( 15) T256( 2) 

T272( 4) T273( 4) 
Na-Si-Ca-Fe 34 T248( 9) 
Na-Si-Ca-Fe-Mn 35 T220( 3) 
Na-Si-Fe-Mn 36 T220( 5) 
Na-Si-Pb 37 T236( 5) T237( 4) T263( 7) T264! 4) T=( 3) 

Na- SCa 38 T263( 10) T266( 10) T271( 5) 
Na- SFe 39 T263( 2) 
Na- K-Pb 40 T235( 8) 
Na-Fe-Mn 41 T220( 2) 
Na-Fe-Pb 42 T263( 2) 

Na-MQ-Al-Si-SFe 1 T266( 3) 

T270( 10) T271( 8) 
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containing classes; the second subset, H’, as a set of the Mg-containing classes 

except objects in HI,; and the third subset, H’, as a set of Al-containing classes 

except objects in H’, and HI2, and so on. 

5.4.7 Buildina and Testina a Classification Rule 

Initially the transformation of log (1 +x) was made for the x-ray intensities 

following the setting of sufficiently small values to zero. Thus, an example file for 

subset H’, was prepared for ACLTRAN. Each example is characterized by the 19 

elemental x-ray intensities as attributes and labeled with a homogeneous class 

type. ACLTRAN generates induced classification rules in several different forms 

such as a decision tree, a standard FORTRAN-77 code, and a FORTRAN-77 

subroutine to be compiled and linked with the Driver program. All the source 

samples were used to build the rule tree, test the rules and correct examples. 

Figure 10 shows an example of a tree from the decision rule, and its 

corresponding standard FORTRAN-77 code is listed in Figure 11. In Figure 10, 

the decision tree shows the assignment of particles containing sodium into these 

classes. For example, if the transformed Ca value is less than 1.0205, the particle 

will go into classes, C1, C4, C8, or C10 depending on the variables S, Si, and Al. 

For particles with Ca greater or equal to 1.0205, they will be assigned to classes 

C2, C3, C5, C6, C7, or C9 depending on the values of Al, Si, and K. The names 

given to each class are listed in the box below the figure. The FORTRAN routine 

listed in Figure 11 implements this decision tree where the Ca value is the first 

point of separation and the same class assignments are made. 

The decision rules for all the subsets were determined in an identical 

manner, and then each FORTRAN code was incorporated into a complete 

universal classification code. Since the FORTRAN-77 subroutine for the Driver 

program is designed for the diagnosis of one sample at a time, it will be time 

consuming to use and thus was not employed. The FORTRAN code was 

compiled and linked so that the rules could be executed as a program on an IBM 

or compatible microcomputer. 

In the beginning of the test step, a decision rule obtained from the 21 source 
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[Ca ] : 
< 1.0205 : [S ] : 

< 1.00 : [Si ] : 
< 0.8265 : c10 
> =0.8265 : c8 

] : 
< 1.145 : c4 
> =1.145 : CI 

] : 

> = 1.00 : [Al 

> = 1.0205 : [Al ] : 
< 1.00 : [Si 

< 2.1125 : [Si ] : 
< 1.0395:c9 
> = 1.0395 : ~7 

>=2.1125 : [K ] : 
< 1.057 : c6 
> =1.057 : ~5 

>=1.0000 : [K ] : 
< 1.0395 : c3 
> =1.0395 : ~2 

Class c l  ...... Na-Mg-AI-Si- S-Fe Particle Type 
Class c2.. . . . . Na-Mg-AI-Si- K-Ca-Fe Particle Type 
Class c3.. . .. . Na-Mg-AM-Ca Particle Type 
Class c4 ...... Na-Mg-Si- S- K Particle Type 
Class c5 ...... Na-Mg-Si- K-Ca Particle Type 
Class 6.. . . . . Na-Mg-Si-Ca Particle Type 
Class c7.. . . . . Na-Mg-Si-Ca-Pb Particle Type 
Class c8.. . . . . Na-Mg-Si-Pb Particle Type 
Class cS...... Na-Mg-Ca Particle Type 
Class clO ..... Na-Mg-Pb Particle Type 

Figure 10. Example of a Tree from the Decision Rule. 

samples was examined sequentially for each source data set for all 15,499 

particles. For this test, each raw source data set was screened and transformed 

as described above and its particles were labeled with one of the 284 classes, 

including the miscellaneous class. Thus, the test was performed like a supervised 

pattern recognition analysis. Only two (0.01%) out of the previously assigned 

particles were misclassified by the final routine. These misclassifications occurred 

when the number of representative examples in a class was much less than that 

of the active attributes. Thus, the frequency of the misclassification was small and 
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CHARACTER*8 decisn 
REAL na .mg .al ,si ,s $1 .k 
REAL ca ,ti ,fe ,mn ,zn ,cr ,pb 
REALv ,cu ,p ,br ,ni 

IF(ca .LT. 1.0205)THEN 
IF(s .LT. 1.00)THEN 

decisn = 'c10' 

decisn = 'c8' 

IF(sl .LT. 0.8265)THEN 

ELSE 

END IF 

IF(al .LT. 1.145)THEN 

ELSE 

END IF 

ELSE 

decisn = 'c4' 

decisn='cl' 

END IF 

IF(al .LT. 1.0000)THEN 
ELSE 

IF(si .LT. 2.1 125)THEN 
IF(s1 .LT. 1.0395)THEN 

decisn = 'c9' 
ELSE 

decisn = 'c7' 
END IF 

IF(k .LT. 1.057)THEN 
decisn = 'c6' 

ELSE 
decisn ='c5' 

END IF 

ELSE 

END IF 

IF(k .LT. 1.0395)THEN 

ELSE 

END IF 

ELSE 

decisn = 'c3' 

decisn = 'c2' 

END IF 
END IF 

END 

Figure 11. Standard FORTRAN-77 Code for the Decision Rule. 

acceptable. From the results of testing all particles, it was found that the universal 

decision rule could also detect the misclassification by the hierarchical cluster 

analysis. In sample T240 from Table 2, 501 of 735 particles were assigned to one 

of the identified homogeneous classes. However, three events in the 
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miscellaneous set were found to belong to one of the homogeneous classes. In 

this manner, a total 48 particles from the 21 source samples were misclassified by 

the hierarchical cluster analysis. The misclassified examples were reassigned to a 

homogeneous particle class, and the mass fraction values for each homogeneous 

class were corrected. It is an important step to correct the mass fractions of each 

class since they will be used as source profiles in a subsequent source 

apportionment study. 

It is also noted that the decision rule could classify miscellaneous particles in 

a sample into one of homogeneous classes, where that class does not appear to 

be in the source sample. Again, in sample T240 from Table 2, 52 of 234 particles 

in the miscellaneous set were assigned to one of homogeneous classes other 

than the 33 homogeneous classes originally created for the sample T240. 1,367 

(8.8% of the total particles) from the 21 sources could be relabeled in this manner. 

6. PARTICLE CLASS BALANCE 

To use the individual particle data, the particle class balance (PCB) was first 

proposed by Johnson and Mclntyre (1982). They used this approach to 

determine the source contributions at the receptor site in Syracuse, N.Y. based on 

the particle-by-particle information. 

In this section, we will examine the use of PCB analysis using carefully 

classified particles and through this analysis provide the contributions to the 

ambient aerosol mass in El Paso, Texas. Using the 21 source profiles developed 

from the homogeneous particle classes described above, the PCB method was 

used to identify and quantify the major TSP sources in El Paso. By examining 

samples from 2 sources, 283 particle classes were defined and the fraction of 

mass in each class were calculated. The full set of source profiles and their 

estimated uncertainties are available (Kim, 1987). 

The starting point of the PCB is the mass conservation principle and the 

resulting mass balance. The measured particle mass in a given particle class at 

the receptor is assumed to be the sum of the contributions of the sources to 

those classes. Mathematically, the model is expressed as 
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i=1 ,  mclasses 
C c ~ G  j = 1 ,  nsamples 
P 

k= 1 

where xii is the mass of particles of ith class for the jth sample, cik is the mass 

fraction of ith class from the kth source, and fki is the mass contribution of kth 

source for the jth sample. The commonly used chemical mass balance (CMB) is 

expressed analogously with the PCB except in a CMB analysis, xii is the ith 

elemental concentration measured in the jth sample, cik is the gravimetric 

concentration of the ith element from the kth source, and f, is the airborne mass 

concentration of kth source for the jth sample. The collection of the class mass 

fractions or gravimetric concentration for all sources, the C matrix, is referred to as 

the source profile matrix. 

Watson (1982) presented the assumptions and the limitations of chemical 

receptor methods as follows: 1) composition of source emissions are constant, 2) 

components do not react with each other, and 3) only identified sources 

contribute to the receptor. Especially for the chemical mass balance approach, he 

provided two additional assumptions: 4) the number of sources is less than or 

equal to that of the components, and 5) the compositions of all sources are 

linearly independent of each other. Among the above assumptions, the problem 

of collinearity described in item 5) lead to serious degradation of precision 

intensity in the CMB analysis. At the Mathematical and Empirical Receptor Models 

Workshop (Quail Roost II), Stevens et a/. (1984) noted that additional species 

characterization is needed to resolve similar sources. The PCB is constrained by 

assumptions 1) to 3) since it is a linear receptor-oriented measurement model, but 

it can potentially overcome the mathematical limitations of 4) and 5) by greatly 

increasing the number of variables in the fit. 

6.1 Diagnostics for the Source Profile Matrix 

Before solving for the unknown mass fractions by multiple linear regression, 

it is necessary to determine if the C matrix contains collinearity. When some of 
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the explanatory variables ( ia ,  some of the source profiles) are collinear, the least 

square solutions for the regression coefficient may yield poor solutions and the 

solutions obtained have poor precision (Cheng and Hopke, 1989). Weisberg 

(1 985) suggested that deletion of predictor variables (sources) from a regression 

model could reduce apparent collinearity. 

Belsley et a/. (1980) developed methods for detecting and identifying the 

presence of collinear relations among explanatory variables. According to them, 

collinearity has to do with specific characteristics of the source profile matrix C 

and not the statistical aspects of the linear regression model 

X =  c f +  e (4) 

where e is a vector containing the observed fitting residuals, x is the vector of 

class mass fractions, f is the vector of mass contributions, and C is the matrix of 

source mass fraction profiles. 

To test the degree of collinearity for El Paso source profiles obtained from 

the universal classification rule, a singular value decomposition (SVD) approach 

was used (Henry, 1982). The source profile matrix C can be decomposed as 

C = UDVT 

where U is an n class by n orthogonal matrix, V is a p source by p orthogonal 

matrix, and D is an n by p diagonal matrix. In matrix D, its diagonal elements d,, 

k = l ,  . . .p, are known as the singular values of matrix C. The singular-value 

decomposition is related to the eigenvalue and eigenvector concepts since the 

diagonal elements of D are the square roots of the eigenvalues of CTC. Generally 

small singular values, d,, demonstrate the existence of collinearity, and lead to 

problems in the regression analysis. Belsley et a/. (1980) suggested an empirical 

criterion to decide the degree of linear dependencies by introducing a condition 

index, C.I., as the relative ratio of singular values. 

C.I. = d d d k  k= l ,  ...p 

where p in this case is 21. Weak dependencies are associated with condition 
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indexes around 5 to 10, whereas moderate to strong relations are associated with 

condition indexes of 30 to 100. 

Further, they introduced the variance-decomposition proportion to identify 

the collinear vectors. The variance-covariance matrix of the least-square 

estimator, f, is 

= o ~ V D - ~ V ~  (7) 

where t? is the common variance of the components of e in the linear model, x = 

Cf + e. Then, kth component of the variance-covariance matrix becomes 

where di and vkj can be obtained from Equation 4. For a small singular value, i.e., 

a small denominator in the equation, the variance component will be large 

compared to the others. The variance-decomposition proportions can be 

calculated as follows. 

Then, the variance-decomposition proportions are 

Belsley eta/. (1980) suggested that this concept be used for the case of near 

dependencies after using the SVD information. When there is a condition index 

larger than 5, the existence of a variance-decomposition proportion larger than 0.5 

for two or more components of the source matrix indicate collinear vectors. 

Condition indexes and variance-decomposition proportions for the source 

matrix were calculated for the source profile matrix to check for potential 

collinearity. As recommended by Belsley et a/. (1980), all source profiles were 

scaled to unit column length. Table 4 shows the condition indexes and Table 5 
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gives the values for the pi-matrix for the scaled profiles. Since the matrix 

decomposed by the singular value decomposition had 21 columns, there are 21 

singular values numbered 1 to 21 and 21 values of the condition index. The 

column on the left is this index of the singular values. All the condition indexes 

are less than 5,  and thus it shows excellent independence among source 

samples. Although there are some pi values greater than 0.5 (or 5000 in the 

scaled table), they are not significant because the condition index for that singular 

value is sufficiently small. Therefore, the C matrix in Equation 3 can be used in a 

regression model without deletion of any source profile to reduce collinearity and it 

will not degrade the precision of the estimation for the regression coefficients. 

6.2 Source Apportionment of Ambient Aerosols in El Pas0 

Nineteen ambient samples were chosen from the El Paso airshed and 

examined for source apportionment. All of the ambient samples were initially 

screened and transformed as described by Kim and Hopke (1988). After the 

universal classification rule was executed, each particle was assigned to one of 

the 283 possible homogeneous classes identified in the source samples. 

Approximately 100 homogeneous particle classes were observed in each ambient 

sample as shown in Table 6. 

Mass fractions and their uncertainties were calculated in the same manner 

as those of the source samples. For examples, Table 7 shows mass fractions 

and their uncertainties for ambient sample A224. From the classification of 

ambient particles in the 19 samples, it was observed that 76% of the total particles 

were assigned into the homogeneous classes in terms of number fraction, and 

83% of the total mass in terms of mass fraction. Complete results for all of the 

samples are given by Kim (1987). Thus, the ambient mass fractions, x, and the 

source profiles, C, are available to solve for the source contributions, f ,  in 

Equation 3. 

the program LSCODE (Cheng, 1986). The program was developed for solving 

CMB source apportionment models and provides options for various weighting 

For the El Paso apportionment study, regression analysis was performed by 



Table 4. Condition Indexes and Pi Matrix (Variance-Decomposition Profiles) for Unscaled Source Profile. 

ID S.I. T219 T220 T221 T234 T235 T236 T237 T238 T239 T240 T242 T248 T256 T263 T264 T266 T268 T270 T271 T272 T273 

T219 1.00 ,0086 .0024 ,2146 .0376 ,0099 ,2038 ,1497 ,0355 ,9690 ,0001 ,0100 ,0007 ,0023 ,0199 ,0124 .0767 .1535 .OM8 ,0023 .0171 .ooo3 
T220 1.08 .oO90 ,0005 ,0001 ,0796 .ooo6 ,0022 ,021 1 .ooo6 ,0001 .oooO .oooO ,0001 .oooO .ooo6 .OOO4 .oooO .oooO ,0108 .oooO .ooo6 .oooO 
T221 1.46 ,0054 ,0043 ,0210 .oooO ,0104 ,0001 ,0677 ,0091 .OOO9 .ooo2 .oooO ,021 2 .oooO .oooO ,0062 .oooO ,0098 ,0556 ,001 1 ,001 1 .oooO 
T234 1.56 ,0181 .oooO ,0032 .oooO .0024 ,0042 ,001 8 .oooO .oooO .oooO .0089 .oooO .oooO ,6029 ,0001 ,0025 .oooO ,0030 .oooO .oooO .oooO 
T235 1.64 ,0142 ,0001 ,0032 ,0174 ,0973 ,0027 ,0057 ,0001 ,0002 .oooO .oooO ,0077 .oooO .OOO2 ,0002 ,0057 .0058 ,0097 .0001 .0066 .oooO 
T236 1.75 ,2443 .ooo4 ,0503 .0304 ,6301 ,0319 ,0688 .7168 .0045 .oooO ,0012 ,0065 .oooO ,1087 ,0032 ,0865 ,0871 .oooO .oooO ,0003 .NO0 
T237 1.82 ,0003 .oooO ,0388 .oooO .oooO ,0013 ,0017 .0067 .oooO ,0001 ,0001 ,0001 .oooO ,0001 ,0022 ,0026 ,0115 ,0007 .ooo4 ,0003 .oooO 
T238 1.85 ,0042 .oooO ,0148 ,0001 ,0034 .0005 ,0007 .0080 .oooO .oooO ,0056 ,0002 .oooO .oooO .oooO ,0013 ,5432 .oooO .oooO ,0034 .oooO 
T239 1.88 ,1107 ,0002 .0021 ,3157 ,0001 ,0274 ,0018 ,0003 .oooO .oooO .oooO ,0001 .oooO ,2090 ,0035 .OOO2 .OOO8 .OW0 .OOO4 .ooo2 .oooO 
T240 1.92 .oooO ,0003 ,001 7 ,0125 .oooO .0003 .0384 .0555 .0160 .oooO .oooO ,0096 .oooO .oooO ,0181 ,0063 ,0027 ,6093 ,0089 .oooO .oooO 
T242 2.06 ,0175 .ooo4 ,2259 ,0221 ,0041 ,001 5 .0007 .0042 .oooO .MOO ,0029 .OM8 .ooo2 ,0001 .0019 ,0174 ,0046 ,0012 .oooO .ooo3 .oooO 
T248 2.26 .ooo2 .oooO ,1127 ,0001 .OM5 ,0087 .oooO .oooO .ooo8 .oooO .0046 .0001 .oooO .oooO ,0023 ,0001 .oooO .ooo5 ,0012 .ooo8 .oooO 
T256 2.40 ,0001 .oooO ,0253 ,0063 ,2075 ,0322 ,001 6 ,0003 ,0001 .oooO ,001 0 .oooO .oooO .oooO .0184 .oooO .OOO4 .OOO2 ,0196 ,0191 .oooO 
T263 2.63 ,0156 ,0115 ,0489 .0016 ,0088 .oooO ,0225 .ooo6 ,0002 .oooO ,0007 ,001 6 .oooO ,0003 ,0001 ,0086 ,0083 .ooo5 .oooO .oooO .oooO 
T264 2.93 .oooO ,0001 .oooO ,0001 ,0001 ,0025 ,0301 ,0015 .oooO .ooo4 .oooO ,001 1 .oooO ,0001 ,0001 ,3546 ,1213 ,0055 .ooo3 ,0076 .oooO 
T266 5.09 ,0335 ,0001 ,0159 ,0061 ,0010 ,6015 .oooO .oooO .oooO .oooO ,6308 ,0021 .oooO .2158 .oooO ,1586 .0018 ,0001 .0007 ,0184 .oooO 
T268 4.55 ,0016 .oooO .1883 ,0407 ,0018 .0001 ,0201 ,0022 .oooO ,0016 .oooO .ooo2 .oooO ,1824 ,0032 ,0102 ,0422 ,0176 ,9620 ,8579 ,9993 
T270 4.13 ,3039 ,9796 .0014 ,3060 ,0169 ,0315 ,5675 .1584 .O080 ,9974 ,3341 ,9381 ,9974 ,2512 .9260 ,2438 .0033 ,0490 ,0019 .OOO3 .Ooar! 
T271 3.21 ,2039 .oooO .0255 ,0318 ,0003 .0409 .oooO .oooO .0001 .oooO .oooO ,0039 .oooO ,0072 .oooO ,0168 ,0329 ,1636 .OOO9 ,0657 .OW2 
T272 3.32 .oO90 .oooO ,0064 .0918 ,0027 ,0069 .oooO ,0002 ,0001 .oooO ,0000 ,0040 .oooO ,0015 ,001 7 ,0079 ,0007 ,0007 .oooO .ooo4 .oooO 
T273 3.53 .oooO .oooO .oooO .oooO .oooO .oooO .oooO .oooO .oooO .oooO .0000 .oooO .oooO .oooO .oooO .oooO .oooO 0690 .oooO .oooO .oooO 



Table 5. Condition Indexes and Pi Matrix (Variance-Decomposition Profiles) for Scaled Source Profile. 

ID S.I. T219 T220 T22l T234 T235 T236 T237 T238 T239 T240 T242 T248 T256 T263 T264 T266 T268 T270 T271 T272 T273 

T219 1.00 
T220 1.15 
T221 1.18 
T234 1.23 
T235 2.59 
T236 2.44 
T237 1.29 
T238 2.06 
T239 1.95 
T240 1.89 
T242 1.41 
T248 1.46 
T256 1.45 
T263 1.44 
T261 1.53 
T266 1.79 
T268 1.65 
T270 1.69 
T271 1.71 
T272 1.59 
T273 1.60 

,0240 3579 ,1583 ,0039 ,0270 ,1581 ,1381 ,0506 ,4982 ,0052 ,0353 ,0110 ,0852 ,0717 ,1475 ,0987 ,0729 ,0240 .4998 ,0612 ,4107 
,0014 ,0364 ,0049 .6931 ,3046 ,0132 ,0092 ,0021 ,0041 ,0129 ,0001 ,0005 .M)o ,0041 ,0042 .oooO ,0001 DO71 .oooO ,0188 .XI03 
.0012 ,0944 ,0087 ,0003 ,0035 .oooO ,1677 ,0053 .ooo9 ,0686 ,0001 ,061 8 .oooO .oooO ,0152 ,0001 ,0055 ,0335 .M74 ,0046 ,0002 
,0022 .oooO ,0007 .oooO .oooO ,0097 .0016 ,0020 .ooo2 ,0003 ,0048 .oooO .oooO ,0024 ,0029 .oooO ,0001 ,0132 ,0001 .oooO 
,0103 ,0061 .oooO ,0024 ,2788 ,0019 ,0048 ,0010 ,0043 .GO74 ,0001 ,0053 .oooO ,0018 .oooO .0011 ,0130 ,0193 ,0036 ,1128 ,2266 
,0835 ,2590 ,0087 ,2304 5756 ,0223 ,2932 . 1 203 ,0793 . 1 594 ,0023 ,0033 ,0024 ,2234 .OOO9 ,0023 ,0458 .0007 ,0036 ,5069 .0001 
.ooo9 ,0001 ,1772 .oooO .W ,0178 ,0100 ,0520 ,3396 ,3621 ,0001 ,0020 .oooO ,0003 .0003 ,0001 ,001 1 ,0083 .OOO6 ,0112 ,0115 
.0010 ,0056 .OOO6 ,0134 .M)68 .oooO ,0023 ,0127 ,0028 .ooo9 .OW0 .oooO .oooO .oooO .OOO4 .OOO2 ,5076 ,0072 ,0063 ,0330 ,2127 
,0257 ,0010 ,4728 ,0150 .W ,0268 ,0013 ,0002 .oooO .001 4 ,0055 .ooo3 ,0001 ,2504 .0146 ,0001 .OOO4 ,0007 ,0896 ,0134 ,0169 
,0123 ,0612 ,0722 ,0007 ,0028 ,0396 ,0951 ,0340 ,3127 .0002 .oooO .0112 ,0186 .oooO ,0825 ,0105 ,0015 ,2708 ,0724 .0517 ,0152 
,2053 ,0145 ,0051 ,0002 .001 0 .oooO ,0042 ,0005 ,3302 .oooO .OOO4 .oooO .0010 .0002 .OOO2 ,0002 .WZ .OOO4 ,0030 ,0669 ,0020 
.OOO4 ,0298 ,0255 ,0078 ,0150 ,0008 .oooO ,0005 ,001 2 .OOO9 ,0069 ,0022 ,0026 ,0002 ,0001 ,0032 .0018 ,0002 .oooO .0245 ,0001 
.0007 ,0019 .0290 ,0005 ,0109 .0261 .0045 ,001 1 .oooO .o200 ,0620 ,0002 ,0027 ,0005 ,0065 ,0061 ,0040 .OOO4 ,0819 .0014 ,0248 
.oooO . 1 173 ,0074 ,0149 ,0022 .0001 .0141 .oooO ,0046 ,0266 .oooO .0013 ,0001 ,0047 .oooO ,0003 .oooO .oooO .OOO6 .oooO ,0001 
,0001 .GO50 ,0001 ,0003 ,0093 ,0030 ,0035 .oooO ,0093 .GO76 ,0001 .ooM .oooO .0002 ,0076 ,1428 ,0490 .OOO4 .0069 ,0039 .oooO 
,0110 ,0032 .oooO .0030 .ooo6 ,1728 .oooO .OOO2 ,0001 ,0013 ,0441 ,0047 .oooO .0055 ,0003 ,1091 .ooo6 ,0001 ,0356 ,0216 ,0042 
.0001 ,0061 ,0112 .oooO .0001 ,0001 .0003 .oooO ,0169 ,0014 .5043 ,0122 ,2400 .4203 ,6148 ,5677 ,2879 ,4947 ,0181 ,0108 ,0268 
,5174 ,0002 ,0056 ,0001 ,0599 ,4708 ,2501 ,7158 . O M  ,3236 ,3334 ,8797 ,6455 ,0119 ,0910 ,0396 ,0043 ,1238 ,0087 ,0104 ,0298 
,0996 .GOO2 ,0008 ,0059 .OW2 ,0112 .oooO ,0010 .ooo9 .OOO4 ,0002 .0026 ,0014 .OOO4 ,0061 ,0168 .0021 ,0007 ,1252 ,0271 ,0179 
,0029 ,0002 .0111 .O080 ,0018 ,0256 .oooO .ooo6 .oooO .oooO ,0001 ,0015 ,0004 .0018 ,0048 ,001 1 .Mx)3 ,0012 ,0035 ,0199 ,0003 
.oooo .m .m .oooO .m .oooO .m .m .oooO .oooo .oooO .oooO .m .oooO .m .m .oooO ,0063 .m .m .oooO 
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Table 6. Mass Fractions and their Uncertainties for Ambient Sample A218. 

Class Mass Uncer- 
Particle Tvoe ID Fraction tainty 

Na-Mg-4-Si- K-Ca-Fe 
Na-Mg-N-Si-Ca 
Na-Mg-Si- S- K 
Na-Mg-Si-Ca 
Na-Mg-Si-Pb 
Na-Mg-Ca 
Na-Mg-Pb 
Na-Al-Si 
Na-Al-Si- S 
Na-Al-Si- K 
Na-Al-Si- K-Ca 
Na-A-Si- K-Ca-Fe 
Na-Al-Si- K-Fe 
Na-Al-Si-Ca 
Na-Al-Si-Ca-Fe 
Na-Al-Si-Fe 
Na-Si- S 
Na-Si- S-Ca 
Na-Si- K-Pb 
Na-Si-Ca 
Na-Si-Ca-Fe 
Na-Si-Pb 
Na- S-Ca 
Mg-AI-Si- S-Ca 
Mg-A-Si- K 
Mg-Al-Si- K-Ca 
Mg-Al-Si- K-CaFe 
Mg-AI-Si- K-Fe 
Mg-Al-Si-Ca 
Mg-A-Si-Ca-Fe 
Mg-Al-Si-Fe 
Mg-Si- SCa 
Mg-Si-Ca 
Mg-Si-Ca-Fe 
Mg-Si-Ca-Fe-Mn 
Mg-Si-Ca-Mn 
Mg-Si-Ca-Pb 
Mg-Si-Fe 
Mg-Si-Fe-Zn-Pb 
Mg-Si-Zn-Pb 
Mg-Si-Pb 
Mg- S K 
Mg- S-Ca 
Mg- K-Zn-Pb 
Mg-Ca 
Mg-Fe-Pb 
N-Si- S 
Al-Si- S-Ca 
A-Si- S-Ca-Fe 
N-Si- SZn 
N-Si- K 
AI-Si- K-Ca 
Al-SI- K-Ca-Fe 
A-Si- K-Fe 
N-Si- K-Mn 

c 2  
c 3  
c 4  
C 6  
C 8  
c 9  
c 10 
c 11 
c 12 
C 17 
c 18 
c 19 
C20 
C22 
C 23 
C 25 
c 28 
C30 
C 32 
C33 
C34 
c 37 
C38 
C104 
C1W 
C l W  
c110 
C l l l  
c112 
C113 
C116 
C126 
c136 
C137 
c138 
C139 
C141 
C142 
C144 
C147 
C149 
C152 
c154 
C162 
c164 
c166 
c203 
C206 
C207 
c210 
c212 
C213 
C214 
C217 
C219 
C223 

,00253 
.00605 
.w208 
.woo2 
.woo9 
. m 7  
.00028 
.m 
.ma3 
,01391 
.o0802 
,30461 
,00446 
,02715 
.00118 
,00094 
.ooO42 
.cam9 
.m 
,01661 
,00117 
,00124 
.so258 
,00238 
.00420 
,01272 
,02525 
,02110 
,02875 
,02526 
,00187 
.lo673 
,02361 
.ooo61 
.woo5 
.m 
,00492 
,00267 
m 5 2 9  
.00028 
. m 1 4  
,00004 
.00455 
.oooo3 
,00004 
,00529 
.00110 
. m 2  
.M)954 
m238 
.a3381 
.02340 
,03320 
,02095 
.woo3 
,06201 

.XI253 

.a0129 

.00208 

.woo2 

.m 

.woo7 

.00028 

.w265 

.sox3 
,00213 
,00114 
,00117 
.00206 
,33473 
. m 7  
.00047 
.ooo42 
. m 5  
.oooO9 
.XI348 
,00117 
. m 2  
.00129 
.w529 
,00037 
.00210 
,00315 
,00462 
,00372 
.00549 
,01523 
.00055 
,00121 
.00435 
. m 1  
.woo5 
.woo5 
,00492 
.XI127 
,00529 
.SKI014 
.00004 
,00004 
,00233 
,00003 
.oooW 
.w110 
,00148 
.00183 
.0023a 
.00591 
,00415 
,00495 
.lo282 
.00003 
,00527 Al-Si-Ca 

N-Si-Ca-Fe C224 
I-Si-Ca-Mn C226 .oooO3 ,00003 

,02398 

Class Mass Uncer- 
'article TYW ID Fraction talnw 

91-Si-Ca-Pb 
U-Si-Fe 
41-Si-Br 
91-Pb-Br 
Si 
Si-Na 
Si-Mg 
3-A 
Si- SCa 
Si- SCa-Fa 
SI- SZn 
Si- K-Ca 
Si- K-Ca-Fa 
Si-Ca 
Si-Ca-Fe 
Si-Ca-Fe-Pb 
Si-Ca-Zn-Pb 
Si-Ca-Pb 
Si-Fe 
Si-Fe-Zn-Pb 
Si-Fe-Pb 
Si-Zn-Pb 
Si-Zn-Pb-Br 
S 
S-Na 
SCa-Fe 
S-Fe-Zn 
SFe-Cu 
SZn 
sm- v 
K-Ca-Zn-Pb 
ca 
Ca-Na 
Ca-Mg 
Ca-AI 
Ca-Si 
Ca- S 
Ca-CI 
Ca-BI 
Ca-Zn-Pb 
Ca-Zn-Pb-Bc 
Fe 
Fe-Si 
Fe- S 
Zn-Ca 
&-Fe 
Zn-Cr-Pb 
Zn-Pb 
Zn-Pb- V 
Pb 
Pb-Na 
Pb-Mg 
Pb-Si 
Pb- K 
Pb-Ca 
Pb-Zn 

C228 .00110 
c229 .a0359 
c240 .ooo68 
C247 ,00004 
c301 ,02500 
c302 .a0775 
c303 . m 9 1  
c305 . m 7 3  
a 1 3  ,01293 
C314 ,00136 
c322 . m 2  
W27 ,00552 
C328 .W117 
c334 . m 5  
c335 . m 3 9  
c338 . m 1 1  
c340 . m 3  
C342 ,01255 
C344 .00185 
c347 .00155 
c348 ,00238 
c350 ,00055 
C352 .ooo61 
c401 .00102 
c402 ,00008 
C409 ,00076 
C414 ,00299 
0115 .oM)83 
C417 ,00193 
C419 .ooO19 
c501 .00042 
c520 .m58 
C521 ,00472 
C522 ,02564 
'2523 .00020 
C524 ,06316 
C525 ,01078 
C526 .00006 
C527 .oooO7 
C528 . m 2 7  
c529 . m 5  
C570 ,00216 
C571 ,00454 
C572 ,33416 
c656 .00529 
c657 ,00234 
c660 .00012 
c662 . m 1 9  
c663 . m 4  
C750 ,03624 
C751 .I0138 
C752 .XI0106 
c753 .00189 
C754 .00014 
c755 .01134 
c757 .a0333 

Pb-Br c759 .ooo38 
Others C999 ,13557 ,01354 

.w110 
,00179 
.ooo68 
.00004 
.00465 
.00184 
.w83 
.XI248 
.lo283 
.00136 
.ooo41 
,00276 
,00117 
.00218 
,00216 
.oooll 
.m 
.lo699 
.00185 
.W155 
.XI238 
.oooo4 
.coo61 
.00102 
.m 
,00076 
.00299 
.ooo83 
.ooo96 
.oooO7 
,00042 
,00721 
,00207 
,00414 
.ooo10 
,00765 
,00312 
,00006 
. m 3  
,00027 
,00045 
,00216 
.w54 
,03416 
.lo529 
.00234 
.n012 
.m 
.0x04 
,01274 
.Mx)96 
.w106 
.00058 
.ooO14 
,01134 
.XI158 
.00019 
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methods such as unweighted, ordinary weighting, and effective-variance weighting 

techniques. The program has an iterative feature for subset analysis by deleting a 

source at a time from matrix C. Sources are eliminated until both the values of all 

of the regression coefficients are nonnegative and the smallest t-statistic is 

greater than a predetermined value. The t-statistic is defined as the ratio of the 

regression coefficient (estimated source contribution) to its estimated standard 

error. 

6.2.1 Rearession Analvsis for Source Apportionment 

It was decided to remove the source sample of salvage yard soil from the 

source profile matrix because the material was collected after extensive 

disturbance of the oiled soil layer. Thus, only 20 source profiles were retained in 

the source matrix. The number of variables used in the regression analysis of a 

sample was the number of homogeneous classes observed in that ambient 

sample. Thus, of the 283 classes, only those classes observed in the ambient 

sample were used. For instance, in ambient sample A218 shown in Table 6, 129 

homogeneous classes were identified. The other 154 classes were removed from 

the original 20 x 283 source matrix. 

Since uncertainties are available for both the ambient concentrations and the 

source profiles, weighted least squares methods could be employed and it must 

be determined which weighting mode, if any, is appropriate for estimating the 

source contributions. Although ordinary weighting and effective-variance 

weighting provide generally acceptable results for source apportionment using the 

CMB model, these weighting schemes not be ideal for the PCB model. For CMB, 

the average elemental concentrations may vary over many orders of magnitude 

from major to trace elements. Thus, weighting is essential to bring the elemental 

concentration variables to a similar metric. However, in PCB, all of the variables 

are on the same metric. Thus, weighting is not as theoretically important as in a 

CMB analysis. Also the uncertainty-based weights may actually distort the 

analysis. The uncertainty was estimated by the jackknife method, and it 

increases with decreasing numbers of particles in a homogeneous class. There 
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are many classes in the ambient samples that contain only one or two particles. 

For those classes, 100% of the mass fraction has been arbitrarily assigned as their 

uncertainties. Kim (1987) has examined ordinary weighted least squares fitting 

and found that it provided poorer quality fits compared to an unweighted analysis. 

Thus, PCB model source apportionment study will use unweighted least-squares 

for the 19 ambient samples. 

Ambient sample A218 is used as an example. Initially, Studentized residuals 

(Belsely et a/., 1980) for each variable (class mass fraction) were calculated. The 

Studentized residual is defined as 

where e, is the ordinary residual from Equation 4, and s(i)2 is the variance in the fit 

with class mass fraction i eliminated from the fit, and hi are the diagonal elements 

of the C(CTC)-'CT matrix (Cheng and Hopke, 1989). The Studentized residuals 

provide a good way to examine the data since they have equal variances and 

should be distributed as t-distribution with n-p-1 degrees of freedom. The 

residuals can be plotted against each class number. Figure 12 shows the 

Studentized residuals plot for ambient sample A218. The points are generally 

symmetrically distributed near the zero line. 

Table 7 shows the final results obtained from the multiple regression 

analyses for the 19 ambient samples collected at the 5 different monitor sites. The 

table includes source identification, its corresponding contributions, the TSP 

collected, and statistical information such as the correlation coefficient, the 

degrees of freedom, and the residual sum of squares for the individual ambient 

samples. When a t-statistic was negative, the source profile was discarded from 

the source matrix. The regression analysis was then repeated. In addition, when 

a t-statistic was less than a preset value, its corresponding source profile was 

deleted and the sample was reanalyzed in order to obtain a statistically significant 

solution. For the regression of the El Paso data, using the PCB model, 0.5 was 
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Figure 12. Plot of Studentized residuals against class number for 

ambient sample A218. 

empirically used as a cut-off point of t-value since at this level, samples from co- 

located samplers yielded very similar results (Kim, 1987). The 70th percentile 

value of the t-distribution with 100 degrees of freedom is approximately 0.5. The 

results of the source apportionment in El Paso are discussed in the following 

section. 

6.2.2 Results and Discussion for Apportionment Study 

One of the limitation of receptor modeling is that source samples are 

assumed to be representative particulate emissions during all ambient sampling 

periods. To understand the El Paso source apportionment better, it is useful to 

briefly review the source sampling methods. First of all, highway emissions were 

considered to incorporate both the coarse particle road dust emissions generated 



Table 7. Results Obtained from the Particle Class Balance Analysis for the 19 Ambient Samples Collected at the 5 
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by motor vehicles as well as the direct fine particle exhaust since the source 

sample (T221) was collected near a highway, not from the direct auto exhaust 

(Kim eta/., 1987). 

Six urban soil samples were used in this source apportionment study. Each 

soil sample was collected over a period of ten minutes by a portable sampler 

using an electric powered air pump. The soil was slightly disturbed by a sampling 

effort to simulate the reentrainment by the wind. The six soil samples were 

collected near the TSP monitors, near the smelter that was suspected of 

substantially contributing to the measured TSP, and from a dirt road. Among 

these samples, the dirt road sample (T242) collected in the Ascarate Park area 

may be the most representative surface-soil sample along the river valley in the 

city of El Paso since it will have the least contamination from industrial activities. 

The fugitive sampling procedure was similar to the soil sampling except that the 

inlet was held horizontally near the center of the fugitive source. Thus, the 

industrial fugitive emission samples include a large portion of the crustal classes. 

The process fugitive emission samples were quite different from the process stack 

samples. The stack samples were collected isokinetically using EPA Method 5. 

As shown in Table 6, 10 to 20% of the mass fraction in each ambient sample 

was due to unclassified particles. The table also includes the unknown mass 

fraction estimated from the sum of mass fraction times the unclassified fractions of 

corresponding source samples. In the ideal case, the observed and the estimated 

unclassified fractions should be the same. In general the estimated values agree 

closely with the observed values. However, samples A051, A052, and A060 were 

highly overestimated, and sample A048 was underestimated. Although there may 

be potential TSP contributors to El Paso, no source samples were collected in 

Mexico. TSP from unidentified sources in Mexico and elsewhere in the airshed 

may be the cause of the poor results for some samples in the source 

apportionment study. 

The Tillman monitor is located in the southern part of El Paso near the 

Mexican border. The identified sources contributed ambient aerosol mass to the 

receptor with multiple correlation coefficients (R) greater than 0.9. Figure 13 
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shows source apportionment pie diagrams for Tillman monitor samples A222 and 

A223 taken on two different days. Samples from co-located samplers were useful 

not only to assure the sampling quality, but also to assure the statistical reliability 

of the analyses. Each pair of samples show relatively good agreement with each 

other. For example, Figure 14 shows bar diagrams for the samples A222 and 

A225 with similar major peaks. The Tillman monitor was impacted by highway 

emissions, rock quarrying, and various urban soil sources including T219 (soil 

from UTEP), T239 (IB & WC soil source), and T242 (Ascarate Park soil). Industrial 

fugitive samples, T234 and T248, impacted persistently on this monitor, and T263 

(fugitive emission source from a coke storage) was frequently observed. 

Two ambient samples were from the Ascarate Park monitor located in the 

southeast of El Paso. The TSP concentration at this monitor was always lower 

than at the other monitors. The multiple correlation coefficient (R) for the PCB 

estimations was also lower at this site. The site was impacted mainly by highway 

emissions and the dirt road. No industrial stack sources were detected. 

The Zack White School monitor was located northwest of the main area of 

industrial activity. Ambient sample A048 was apportioned mainly by T256 (soil 

source from old gas refinery) and by T263 (fugitive emission source from coke 

storage hoppers). The other samples, A061 and A062, were affected by mostly 

industrial stack and fugitive emission sources. Compared to the other sites, the 

residual sums of squares in the regression analysis were relatively high. This 

sampling site may be affected by sources other than those included in this study, 

and high residuals suggest this possibility. Without local meteorological data in 

this complex valley system, a definitive analysis of these results is not possible. 

The IB & WC monitor was also located near the ASARCO plant. As 

expected, the monitor was affected by industrial sources. Sample A051 (Table 6) 

had the highest TSP concentration and was principally soil. For the ambient 

sample A060, 71 5% was estimated to be from the manganese smelter (source 

T220). 

Three samples from the lvanhoe Fire Station monitor were examined. The 

monitor was located east of El Paso near the International Airport. Physically 
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Figure 13. Pie charts for source apportionment of ambient samples A222 
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Figure 14. Bar charts for source apportionment of co-located ambient 

samples A222 and A225. 

unreasonable results were obtained for all of the samples. The soil sources, like 

T242 (dirt road), and the copper refinery (T272) near the monitor, were expected 

to be the major contributors. In sample A048, more than 40% of the mass fraction 

was apportioned to the fugitive emissions from the manganese smelter (T220) 

located in far west El Paso. In sample A053, approximately 80% of the mass 

fraction was attributed to soil sources T256 and T268 collected on the opposite 

side of the city. Thus, previously discarded soil sample T266 was reintroduced in 

the source profile matrix, and the regression analysis repeated. However, there 

was very little change in the results. Once a small amount of T266 was included, 

sources T220 (fugitive emission sample from a Mn smelter) and T256 (soil sample 

from an old gas refinery) were observed as the main contributors to ambient 
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samples A048 and A053, respectively. It appears that there are unidentified 

sources that are being aliased by the included sources. In a retrospective 

reanalysis such as this study, it is not possible to re-sample and improve the 

analysis. 

As a whole, the slag crushing source (l248) was most frequently observed 

throughout the city for all seasons, even though it was not a major mass 

contributor. Highway emissions, dirt road emissions, emissions from the rock 

quarry, and from the coke storage hoppers were the principal contributors of TSP 

in El Paso. Generally, the stack emission sources were not observed frequently 

since its portion of mass near the source is lower than that from the other 

sources. The stack emissions are presumed to pass over the nearby ground level 

monitors. When TSP concentration in an ambient sample is lower than 50 g / m  

or higher than 400 g / m  ’, the multiple correlation coefficients in the regression 

analyses were relatively low. Finally, samples from co-located samplers provided 

a useful basis for assuring statistical reliability. 

6.3 Conclusions of the El Paso Study 

receptor model. In this study, 20 identified sources were fitted to ambient 

samples taken in El Paso, Texas. The large number of homogeneous classes 

provide potentially better resolution in a PCB analysis than the limited number of 

elemental concentrations can yield in a CMB analysis. Less than 20% of mass 

was unclassified using the PCB model. Thirdly, similar sources like various soil 

sources can be used in PCB source profiles without needing to eliminate any 

source due to collinearity. The increased number of variables breaks the 

collinearity problem in regression analyses. 

The particle class balance (PCB) model has been shown to be a useful 

Several potential problems do exist with the particle class balance analysis 

method. First, lead-containing particles have been used as one of the major 

tracers of motor vehicle emissions. With the phase-out of lead in gasoline, this 

tracer is eliminated. However, improvements in x-ray detectors now permit 

detection of carbon and oxygen. Thus, the carbonaceous particles emitted by 
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motor vehicles can be detected. These particle are coemitted with reintrained 

road dust again giving a suite of particle classes that permit resolution of motor 

vehicles in the ambient samples. 

Second, there is the problem of secondary sulfate particles. As in any mass 

balance problem, there is generally no simple manner to assign this mass to 

sources. Other information is required to make this assignment whether using a 

chemical mass balance or a particle class balance. Without other tracers that 

have not yet been found, it will be difficult for the PCB analysis to do any more 

than a CMB analysis. 

Finally, there is a prpblem of volatility of material in the high vacuum of a 

scanning electron microscope. Various particle materials including organic 

carbon, nitric acid and ammonium nitrate will be readily lost and thus unaccounted 

for in both source and ambient samples. If such materials represent a large 

fraction of the actual particle mass, a biased analysis would be obtained using 

these techniques. 

This methodology has been applied to several other problems. Kim eta/. 

(1989) have used CCSEM data to compare upwind and downwind samples taken 

in the vicinity of a large coal-fired power plant. A helicoptor was used to collect 

samples that were then sectioned and analyzed. Distinct differences in the types 

of particles and the mass fractions in the identified particle classes were observed 

between the upwind and in-plume samples. 

Subsequently a much more extensive sampling campaign was made in the 

vicinity of the same power plant. In-plume samples were obtained using a 

specially built high volume sampler mounted under a helicopter. Upwind samples 

were obtained using a fixed wing aircraft while stack samples were obtained with a 

dilution sampler similar to the one described in the chapter in this volume by 

Houck and with an EPA Method 5 particle sampling train modified by Battelle 

Columbus Laboratories (Battelle, 1988). The samples were again characterized 

using CCSEM with a light element detector that provides C, N, and 0 x-ray 

intensities and analyzed using the methods described above. Hopke and Mi 

(1990) provide the detailed description of the results. The general conclusions 
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were that the samples from the dilution sampler could be distinguished from those 

obtained by the in-plume sampler. Thus, the dilution sampler was not able to fully 

mimic the processes that occur in the ambient atmosphere after the plume has left 

the stack and begun to dilute and cool. The samples from the same sampler 

were found to be quite similar from sampling interval to sampling interval, but the 

samples from each sampler were distinguishable from one another. With the 

small size of the samples that could be obtained using aircraft, CCSEM coupled 

with advanced data analysis methods provide a powerful means for characterizing 

an aerosol and comparing it with the aerosol found at other times and in other 

locations. 

7. OTHER APPROACHES TO DATA ANALYSIS 

The approach described above is one that we have found to be effective in 

the cases to which it has been applied. However, other studies have been 

performed by other investigators to make use of the information available from 

electron microscopic analysis of particle samples. Dzubay and Mamane have 

used manual microscopy in a number of cases to identify and quantify the impact 

of specific source types. Mamane and Dzubay (1988) were able to distinguish the 

presence of coal fly ash in samples from Philadelphia, PA where the samples also 

contain substantial amounts of clay minerals. As can be observed in Figures 3 

and 4, these two particle types have very similar chemistry and it is the visual 

morphology of the particles that permit them to distinguish one type of particle 

from the other. Coarse fraction crustal matter estimated from x-ray fluorescence 

elemental data agreed well with that based on electron microscopy. Mamane 

(1988) has also estimated the contribution of municipal refuse incinerators to the 

airborne particle mass. 

In a more extensive investigation of the same Philadelphia samples, Dzubay 

and Mamane (1989) have apportioned the mass concentrations attributed to 

botanical, coal fly ash, mineral (soil), and incinerator sources. Again these results 

are in good agreement with those obtained using a chemical element balance 

analysis obtained with the bulk sample XRF data. These results show that very 
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intensive manual analysis can succeed, but the analyses required considerable 

time and effort. 

Saucy et a/. (1987) have also found cluster analysis to be a useful technique 

for the identification and characterization of atmospheric aerosol particles. They 

have developed methods to analyze a large number of samples in order to 

intercompare one sample with another. They began using Euclidean distance and 

a modified chi-square measure and found that the cluster analysis did not provide 

a good separation as judged by a manual inspection of the cluster results. They 

then use a new dissimilarity measure, the angle between the vectors drawn from 

the origin to the points representing the particles in the multivariate space. They 

find that this measure provided a better cluster pattern. 

In addition to the work that has been done at the University of Antwerp on 

the chemical analysis of particles described earlier, they have also examined data 

analysis methods. Van Borm and Adams (1988) and Van Borm (1989) have used 

cluster analysis to examine the resuspension of soil particles in the vicinity of a 

zinc smelter. They also use hierarchical clustering to identify groups of similar 

particles. They examined a number of clustering criteria similar to those described 

by Hopke (1983) and found that Ward’s error sum method performed the best. 

8. CONCLUSIONS 

The scanning electron microscope under computer control and with 

automated image analysis represents a powerful method for obtaining a great deal 

of information on individual particles. It is possible to combine these individual 

particle results to obtain a reasonable approximation to the bulk concentration of 

the collection of particles. The advantages and disadvantages of this 

methodology have been summarized by Casuccio et a/. (1983b) as follows: 

Advantages 

Physically measures particles within a broad size range, from 0.2 to 300 pm. 

Elemental chemistry is obtained from every particle. 
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Each particle is classified by size and composition. 

Distributions are obtained for each particle class as a function of size. 

Both geometric (optical) and aerodynamic size distributions are calculated. 

Size and x-ray data are stored for future retrieval. 

Analysis time averages less than 1.5 seconds per particle, including sizing 
and chemical analysis. 

Data acquisition is designed so that size and weight distributions have an 
absolute uncertainty, independent of the size range selected. 

The analysis is compatible with most sampling methods. 

Effects of operator bias, fatigue and subjectivity, inherent in manual 
microscopic techniques, have been minimized. 

Results are reproducible. 

Disadvantages 

All samples must be prepared for the SEM. Most samples must be 
redeposited. 

The nature of dichotomous fine fraction samples presents special sample 
preparation problems. 

Species with an average atomic number close to that of the substrate are 
difficult to detect. 

Particle volume is inferred from projected area. 

Calculated particle mass assumes that the density is known for each particle 
type. 

Chemical inhomogeneities within a particle may not be recognized. 

The software sorting algorithm must be modified if a significant fraction of 
undefined particles is encountered. 
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These advantages and disadvantages must be given strong consideration 

when formulating a receptor modeling study. As with other analytical methods, 

CCSEM may not, by itself, provide all the desired information. However, it seems 

likely that there will be an increasing role for such a methodology in future 

receptor modeling studies. 

9. REFERENCES 

Battelle, Biological Effect of Plume Fly Ash, Final Report of EPRl Project PR2482-5, 
Battelle Columbus Laboratories, Columbus, OH (1988). 

Begovich, C.L. and V.E. Kane, Estimating the Number of Groups and Group 
Membership Using Simulation Cluster Analysis, Pattern Recog. 15:335-342 (1 982). 

Belsley, D.A., E. Kuh, and R.E. Welsch, Regression Diagnostics, John Wiley 8, 
Sons, Inc., New York (1980). 

BMDP, BMDP Statistical Software, University of California Press, Berkeley, CA 
(1985). 

Casuccio, G.S., P.B. Janocko, R.J. Lee, and J.F. Kelly, The Role of Computer 
Controlled Scanning Electron Microscopy in Receptor Modeling, Paper No. 82- 
21.4, Air Pollution Control Association, Pittsburgh, PA (1982). 

Casuccio, G.S., P.B. Janocko, S.L. Dattner, J.S. Mgebroff, and J.L. Zalar, 
Measurement of Ambient Hi-Vol Filters by Microscopic and Bulk Chemistry 
Methods, Paper No. 83-17.1, Air Pollution Control Association, Pittsburgh, PA 
(1 983a). 

Casuccio, G.S., P.B. Janocko, R.J. Lee, J.F. Kelly, S.L. Dattner, and J.S. Mgebroff, 
The Use of Computer Controlled Scanning Electron Microscopy in Environmental 
Studies, J. Air Pollut. Control Assoc. 33:937-943 (1983b). 

Cheng, M.D., A Unified Theory for Aerosol Source Apportionment Models, Ph.D 
Thesis, University of Illinois at Urbana-Champaign (1986). 

Cheng, M.D., and P.K. Hopke, Identification of Markers for Chemical Mass 
Balance Receptor Model, Atmospheric Environment 23:1373-1384 (1989). 

Crutcher, E.R., Light Microscopy as an Analytical Approach to receptor Modeling, 
in Receptor Models Applied to Contemporary Pollution Problems, S.L. Dattner and 
P.K. Hopke, eds, Proceedings No SP-48, Air Pollution Control Association, 
Pittsburgh, PA, 266-284 (1982). 



209 

Dallavalle, J.M., Micromeritics, the Technology of Fine Particles, 2nd 
Edition, Pitman Publishing Corporation, New York (1948). 

Dattner, S., S. Mgebroff, G. Casuccio, and P. Janocko, Identifying the Sources of 
TSP and Lead in El Paso Using Microscopy and Receptor Models, Paper No. 83- 
49.3, Air Pollution Control Association, Pittsburgh, PA (1983). 

Derde, M.P., L. Buydens, C. Guns, D.L. Massart, and P.K. Hopke, Comparison of 
Rule-Building Expert Systems with Pattern Recognition for the Classification of 
Analytical Data, Anal. Chem. 59:1868-1871 (1987). 

Dzubay, T.G. and Y. Mamane, Use of ELectron Microscopy Data in Receptor 
Models for PM-10, Atmospheric fnviron. 23:467-476 (1 989) 

ETC, Identification of the-Sources of TSP and Particulate Lead in the El Paso Area 
by Quantitative Microscopic Analysis, Vol. I and Vol. II, Final Report Prepared for 
the Texas Air Control Board, Austin, TX, Energy Technology Consultants, 
Monroeville, PA (1983). 

Gale, W.A. and D. Pregibon, Artificial Intelligence Research in Statistics, A/ 
Magazine, Winter:72-75 (1985). 

Griffin, J.J. and E.D. Goldberg, Morphologies and Origin of Elemental Carbon in 
the Environment, Science 206:563-565 (1979). 

Hassan, T., M.A. Rauak, D. Michie, and R. Pettipher, EX-TRAN-7: A Different 
Approach for an Expert System Generator, presented at the 5th International 
Workshop for Expert Systems and Their Applications, Avignon, France (1985). 

Henry, R.C., Stability Analysis of Receptor Models that Use Least Squares Fitting, 
in Receptor Models Applied to Contemporary Pollution Problems, S.L. Dattner and 
P.K. Hopke, eds, Proceedings No SP-48, Air Pollution Control Association, 
Pittsburgh, PA, 141-157 (1982). 

Hopke, P.K., An Introduction to Multivariate Analysis of Environmental Data, in 
Analytical Aspects of Environmental Chemistry, D.F.S. Natusch and P.K. Hopke, 
eds., John Wiley & Sons, Inc., New York, 219-262 (1983). 

Hopke, P.K., Receptor Modeling in Environmental Chemistry, John Wiley & Sons, 
Inc., New York (1985). 

Hopke, P.K., Super Micro Computing with the DSI-32 Board, Trends in Anal. 
Chem. 5:204-205 (1986). 

Hopke, P.K. and Y. Mi, The Use of a Rule Building Expert System for Analyzing 
Electron Microscopy Data, in Data Handling in Science and Technology, E. 



210 

Kajalainen, ed., Elsevier Science Publishers, Amsterdam, (in press 1990). 

Hunt, E.B., J. Marin, and P.T. Stone, Experiments in Induction, Academic Press, 
Inc., New York (1966). 

Janocko, P.B., G.S. Casuccio, S.L. Dattner, D.L. Johnson, and E.R. Crutcher, The 
El Paso Airshed: Source Apportionment Using Complementary Analyses and 
Receptor Models, in Receptor Models Applied to Contemporary Pollution 
Problems, S.L. Dattner and P.K. Hopke, eds, Proceedings No SP-48, Air Pollution 
Control Association, Pittsburgh, PA, 249-265 (1982). 

Janossy, A.G.S., K. Kovacs, and I. Toth, Parameters for the Ratio Method by X-ray 
Microanalysis, Anal. Chem. 51 :491-495 (1979). 

Janssens, K., W. Dorrine; and P. Van Espen, The Development Process of an 
Expert System for the Automated Interpretation of Large EPMA Data Sets, 
Chemometrics and Intelligent Laboratory Systems 4: 147-1 61 (1 988a). 

Janssens, K., W. Van Borm, and P. Van Espen, Increased Accuracy in the 
Automated Interpretation of Large EPMA Data Sets by the User of an Expert 
System, J. Research N.B.S. 93:260-264 (1988b). 

Johnson, D.L., B. Mclntyre, R. Fortmann, R.K. Stevens, and R.B. Hanna, A 
Chemical Element Comparison of Individual Particle Analysis and Bulk Analysis 
Methods, Scanning Electron Microscopy 1 :469-476 (1981). 

Johnson, D.L., and B.L. Mclntyre, A Particle Class Balance Receptor Model for 
Aerosol Apportionment in Syracuse, N.Y., Receptor Models Applied to 
Contemporary Pollution Problems, S.L. Dattner and P.K. Hopke, eds, Proceedings 
No SP-48, Air Pollution Control Association, PA, 238-247 (1982). 

Kaufman, L. and D.L. Massart, MASLOC User's Guide, Version 1.2, Vrije 
Universiteit Brussel, Belgium (1983). 

Kelly, J.F., R.J. Lee, and S. Lentz, Automated Characteristics of Fine Particulates, 
Scanning Electron Microscopy 1 :311-322 (1980). 

Kim, D.S., Particle Class Balance for Apportioning Aerosol Mass, Ph.D Thesis, 
University of Illinois at Urbana-Champaign (1987). 

Kim, D.S., P.K. Hopke, D.L. Massart, L. Kaufman, and G.S. Casuccio, Multivariate 
Analysis of CCSEM Auto Emission Data, Sci. Total Environ. 59:141-155 (1987). 

Kim, D.S. and P.K. Hopke, The Classification of Individual Particles Based on 
Computer-Controlled Scanning Electron Microscopy Data, Aerosol Sci. Technol. 
9: 133-1 51 (1 988). 



21 1 

Kim, D.S. and P.K. Hopke, Source Apportionment of the El Paso Aerosol by 
Particle Class Balance Analysis, Aerosol Sci. Technol. 9:221-235 (1 988). 

Kim, D.S., P.K. Hopke, G.S. Casuccio, R.J. Lee, S.E. Miller, G.M. Sverdrup, and 
R.W. Garber, Comparison of Particles Taken from the ESP and Plume of a Coal- 
Fired Power Plant with Background Aerosol Particles, Atmospheric Environ. 2381 - 
84 (1989). 

Lee, R.J. and R.M. Fisher, Quantitative Characterization of Particulates by 
Scanning and High Voltage Electron Microscopy, National Bureau of Standards 
Publication 533, pp. 63-83 (1980). 

Lee, R.J. and J.F. Kelly, Overview of SEM-Based Automated Image Analysis, 
Scanning Nectron Microscopy 1 :303-310 (1 980). 

Leong, K.H., P.K. Hopke, and J.J. Stukel, Evaporative Mass Losses From Particle 
Samples, J. Aerosol Sci. 14:611-613 (1983). 

Mamane, Y., Estimate of Municipal Refuse Incinerator Contribution to Philadelphia 
Aerosol, Atmospheric Environ. 22:2411-2418 (1988). 

Mamane, Y. and T.G. Dzubay, Fly Ash Concentrations in Philadelphia Aerosol 
Determined by Electron Microscopy, Water, Air, and Soil Pollution 37389-405 
(1 988). 

Markowicz, A,, B. Raeymaekers, R. Van Grieken, and F. Adams, Physical and 
Chemical Characterization of Individual Particles, Ellis Horwood Ltd., Chichester, 
U.K (1986). 

Massart, D.L. and L. Kaufman, The Interpretation of Analytical Chemical Data by 
the Use of Cluster Analysis, John Wiley & Sons, Inc., New York (1983). 

Mittal, S. and C.L. Dym, Knowledge Acquisition from Multiple Expert, A1 Magazine, 
Summer:32-36 (1985). 

Oliver, D.C., Aggregative Hierarchical Clustering Program Write-up, Preliminary 
Version, National Bureau of Economic Research, Cambridge, MA (1973). 

Quinlan, J.R., Induction over Large Data Bases, Technical Report No. HPP-79-14, 
Heuristic Programming Project, Stanford University, Palo Alto, CA (1979). 

Quinlan, J.R., Learning Efficient Classification Procedures and their Application to 
Chess End Games, in Machine Learning, An Artificial Intelligence Approach, R.S. 
Michalski, J.G. Carbonell, and T.M. Mitchell, eds., Tioga Publishing Company, Palo 
Alto, CA, 463-482 (1983). 



21 2 

Raeymaekers, B., Characterization of Particles by Automated Electron Probe 
Microanalysis, Ph.D. Thesis, University of Antwerp (UIA), Belgium (1986). 

Saucy, D.A., J.R. Anderson, and P.R. Buseck, Cluster Analysis Applied to 
Atmospheric Aerosol Samples from the Norwegian Arctic, Atmospheric Environ. 
2111649-1657 (1987). 

Sewell, D.A., G. Love, and V.D. Scott, Universal Correction Procedure for Electron- 
Probe Microanalysis: II. The Absorption Correction, J. Phys. D. 18:1245-1267 
(1 985). 

Sneath, P.H.A. and R.R. Sokal, Principles of Numerical Taxonomy, W.H. Freeman 
& Co., San Francisco (1963). 

Stevens, R.K., and T.G. Pace, Overview of the Mathematical and Empirical 
Receptor Models Workshop (Quail Roost II), Atmospheric Environ. 18:1499-1506 
(1 984). 

Van Borm, W.A., and F.C. Adams, Cluster Analysis of Electron Microscopy 
Analysis Data of Individual Particles for the Source Apportionment of Air Particulate 
Matter, Atmospheric Environ. 22:2297-2307 (1988). 

Van Borm, W., Source Apportionment of Atmospheric Particles by Electron Probe 
X-ray Microanalysis and Receptor Models, Ph. D. Thesis, University of Antwerp 
(UIA), Belgium (1989). 

Watson, J.G. (1982). Overview of Receptor Model Principles, in Receptor Models 
Applied to Contemporary Pollution Problems, S.L. Dattner and P.K. Hopke, eds, 
Proceedings No SP-48, Air Pollution Control Association, PA, 6-17 (1982). 

Weisberg, S., Applied Linear Regression, 2nd Ed., John Wiley & sons, Inc., New 
York (1985). 

Wernisch, J., Quantitative Electron Microprobe Analysis without Standard 
Samples, X-Ray Spectrometry 14:109-119 (1985). 

Wernisch, J., Application of Different 4(pz)-Distributions in Quantitative Electron 
Probe Microanalysis with Standard Samples, Radex-Rundschau 2/3: 11 0-1 13 
(1986). 

Wiersema, J.M., L. Wright, B. Rogers, R. Barta, L. Haeuser, and J.H. Price, 
Human Exposure to Potentially Toxic Elements through Ambient Air in Texas, 
Paper No. 84-1.2, Air Pollution Control Association, Pittsburgh, PA (1984). 



RECEPTOR MODELING FOR VOLATILE ORGANIC COMPOUNDS 

Peter A. Scheff and Richard A. Wadden 
Environmental and Occupational Health Sciences 

University of Illinois at Chicago 
Box 6998 

Chicago, IL 60680 

1. INTRODUCTION 

The Chemical Mass Balance (CMB) source reconciliation model has been 

found to be a useful tool for the evaluation of ambient speciated volatile organic 

compound (VOC) concentration data. The method has been applied in a 

simplified form to evaluate total hydrocarbon concentrations (THC) in Los Angeles, 

California (Mayrshon and Crabtree, 1976; and Feigley and Jeffries, 1979) and 

Sidney, Australia (Nelson et a/., 1983). (THC was defined as the sum of specified 

"unreactive" hydrocarbons in the atmosphere.) Mayrshon and Crabtree used 

ethane, acetylene, propane, i-butane, n-butane, i-pentane, and n-pentane as tracer 

compounds for automobile exhaust, gasoline and gas vapor, commercial natural 

gas, and geogenic natural gas. Feigley and Jeffries added methane and hexane 

to these 7 tracers and concluded that 93 % of the total NMHC in the air came 

from emissions related to vehicles. The Australian researchers expanded the list 

of tracer compounds to include hexane, toluene, ethylbenzene and the xylene 

isomers in an attempt to distinguish the area solvent contributions. 

We have evaluated source contributions to the total non-methane 

hydrocarbon concentration (NMHC) in Tokyo, Japan (Wadden et a/., 1986), 

Newark and Linden, New Jersey (Scheff and Klevs, 1987), and Chicago, Illinois 

(O'Shea and Scheff, 1988) and to the total non-methane organic concentration 

(NMOC) in Chicago, Illinois (Aronian et a/., 1988; Hegberg eta/., 1989). The 

Tokyo evaluation used 17 hydrocarbons to estimate ambient contributions to 192 

samples collected aloft from four sources (vehicles, gas vapor, petroleum 

refineries and paint solvents). The study in New Jersey used 24 hydrocarbons to 
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quantify contributions from five sources (vehicles, gas vapor, petroleum refineries, 

paint solvents and petrochemical industries). The most recent Chicago 

evaluations used a group of 23 organics and NO, to estimate contributions from 

eight source categories (vehicles, gas vapor, petroleum refineries, printing 

solvents, architectural coatings, vapor degreasing, wastewater treatment and 

drycleaning). These studies demonstrate the practical application of the CMB 

method in quantifying source contributions to ambient measurements. Details on 

the development of fingerprints for VOC modeling applications and descriptions of 

the Tokyo and Chicago CMB studies are presented in the following sections on 

Source Fingerprints and Applications. 

A number of unique aspects of CMB modeling of VOCs are worth noting. 

For our studies in Tokyo, New Jersey and Chicago, the tracer compounds 

comprise the majority of the mass of the categorical pollutant (NMHC or NMOC) 

modeled. This is in contrast to studies of particulate matter where the elemental 

tracers used in the CMB calculations comprise a small fraction of the total mass 

evaluated (e.g. see Miller et a/., 1972; Kowalczyk et a/., 1982; Scheff et a/., 1984; 

and Dzubay et a/., 1988). 

The modes of generation of VOC's are also significantly different from 

sources of particulate matter. While the elemental signatures of particulate matter 

sources are directly related to raw material composition (and this is frequently 

related to the earth's crust), the composition of VOC sources is based on the 

physical and chemical processes that consume or modify the raw material. For 

example, all petroleum refineries process hydrocarbons with similar unit 

operations, the emissions of which are not strongly a function of crude-oil 

composition. As a result, we have observed remarkable similarity in the 

composition of emissions from this source from studies across the US. and 

Japan (Scheff et a/., 1989a). 

As with elemental source compositions, collinearities between specific VOC 

categories cause statistical problems and limit source resolution by the CMB 

method. Our experience to date suggests that the sources we have examined fall 

into three major groups with respect to collinearity: 1) vehicles, gas vapor and 
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refineries (all major sources of the C2 to C6 hydrocarbons); 2) solvent and 

coating sources including architectural coatings, printing inks, and auto painting 

(all major sources of toluene and other aromatic compounds); and 3) sources of 

chlorinated organics including vapor degreasing, drycleaning and wastewater 

treatment (Aronian eta/., 1988; Hegberg eta/., 1989). The approaches to 

handling the collinearity problem are the same as used for particulate matter 

models. Singular value decomposition and associated methods of regression 

diagnostics can be used to evaluate the causes of collinearity (DeCesar ef a/., 

1986; Belsley eta/., 1980; and Cheng and Hopke, 1989). Sources should only be 

included in the CMB calculation for a specific sample if they are known to 

contribute. For example, vehicle exhaust and gas vapor is always present in 

urban air and these sources will always need to be included in the model. In 

contrast, petroleum refineries (if present in the air shed) will only contribute when 

they are up-wind of the receptor. Wind direction or trajectory information can be 

used to determine if this source should be included in the model (O’Shea and 

Scheff, 1988). Collinear categories can also be estimated as a lumped category 

as is done with the USEPA CMB software (USEPA, 1987). 

the criteria pollutants (e.g. particulate matter, CO, SO,, and NO,). These 

uncertainties have proved to be a difficult obstacle to accurate photochemical 

modeling. There is, therefore, a clear need for a source reconciliation technique 

to evaluate and validate VOC emission inventories developed by traditional survey 

methods. The CMB model can help to fill this need. In addition to accurate VOC 

inputs, photochemical models need information on the total reactivity of the VOC 

source inventory. The source fingerprints combined with CMB source calculations 

provides the first step in developing source/reactivity contributions. And by 

extending the fingerprints to include highly reactive compounds (materials that 

may be too reactive to be used as tracer species), source contributions to total 

reactivity can also be calculated. 

In general, uncertainties in emissions inventories are greater for VOCs than 

The reactivity of the organic tracer fitting compounds may also affect the 

model. One underlying assumption of the CMB receptor model is the 
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conservation of mass of the tracer species relative to the total emission. While 

this is not completely true for any categorical pollutant, the conservation 

assumption poses special problems when the tracers are all reactive 

hydrocarbons (in varying degrees). This problem, along with discussions of 

emission inventory, validation, modeling un-identified sources and the use of 

extended fingerprints are all examined in the Evaluation section of the chapter. 

2. SOURCE FINGERPRINTS 

Source fingerprints are an essential input for CMB receptor model 

calculations. We have found that ambient measurements, downwind plume 

characterization studies, data from source tests, product usage information, as 

well as product composition information are all useful for the development of 

fingerprints for sources of VOC. Examples showing how these types of 

information are evaluated is presented in this section. 

We have identified a set of 23 compounds that can be used as fitting 

compounds for CMB mass balance calculations. These compounds are listed in 

Tables 1 through 4 and were selected for a variety of reasons including: 1) they 

are ubiquitous and, because they are usually above minimum detectable levels in 

urban environments, relatively easy to measure; 2) a number have been identified 

as toxic organics (benzene, ethylbenzene, the xylenes, 1, l  ,I-trichloroethane, 

trichloroethylene, tetrachloroethylene, carbon tetrachloride, and chloroform); 3) 

they make up the majority of the NMOC mass emissions from most of the sources 

studied; 4) the emission data for these materials are generally consistent from 

study to study; 5)  except for propylene (which is highly reactive) and ethane, 

acetylene and benzene (which have low reactivities), the hydrocarbons have 

similar hydroxyl radical reaction rate coefficients (kOH) (all within an order of 

magnitude of each other); and 6) the non-chlorinated hydrocarbon fitting 

compounds have been applied in CMB modeling studies with reasonable success 

in Japan (Wadden et a/., 1986), New Jersey (Scheff and Klevs, 1987) and Chicago 

(O’Shea and Scheff, 1988; Aronian et a/., 1988). 
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Table 1. Vehicle Emissions Source Fingerprint (Scheff et a/., 1989a). 

(ppbcf (wW 

408.7 9.39 

122.4 2.80 
160.7 3.43 
76.4 1.81 
198.1 4.69 
305.8 7.18 
145.9 3.44 

73.8 1.73 
74.8 1.76 
68.9 1.61 

202.2 4.29 
303.4 6.50 

162.7 3.53 
74.3 1.61 

2378.1 53.77 

1678.1 39.6 
940.3 21.6 
1516.4 32.8 

161.0 6.0 
4295.8 100.0 

15600. 715.2 
2416. 118.6 

Compound 

Ethane 
Ethylene 
Propane 
Propylene 
Acetylene 
i-Butane 
n-Butane 
i-Pentane 
n-Pentane 
2-Methylpentane 
3-methyl pentaw 
n-Hexane 
2,4-Dimethylpentane 
Benzene 
Toluene 
Ethylbenzene 
p-Xylene/m-Xylene 
o-Xylene 
Sub-total 

Total paraffins 
Total olefins 
Total aromatics 
Unknown 
Compounds 
Unexplained 
Total NMOC 
Total Aldehydes 
Carbon Monoxide 
Oxides of Nitrogen 

(M%) W04 

1.61 1.57 
6.22 4.37 
3.16 
2.91 1.62 
2.85 0.83 
2.38 1.89 
7.77 10.57 
5.39 7.28 
3.11 3.21 
1.97 1.95 
1.19 
2.28 0.97 

0.64 
2.90 3.1 1 
5.44 5.72 
0.83 0.85 
1.24 2 84 
0.57 1.73 

51.81 50.54 

23.30 
11.15 

100.00 

Dynamomete? 

(a/mile) ( w w  

0.0272 1.68 
0.1592 9.84 
0.0589 3.64 

0.0683 4.22 
0.0104 0.64 
0.0790 4.88 
0.0628 3.88 
0.0282 1.74 
0.0253 1.56 
0.0165 1.02 
0.0120 0.74 
0.0101 0.62 
0.0580 3.58 
0.1238 7.65 
0.0176 1.09 
0.0568 3.51 
0.0343 2.12 
0.8484 52.43 

0.6910 42.70 
0.3686 22.78 
0.4867 30.08 
0.0719 4.44 

1.6182 100.00 
0.0425 2.6264 
16.28 1006.06 
2.18 134.72 

Roadwag 

(lls/m3) ( W W  

9.24 1.77 
36.72 7.03 
4.41 0.84 
13.12 2.51 
29.88 5.72 

16.42 3.14 
31.55 6.04 
15.11 2.89 

15.49 2.96 
31.76 6.08 
6.43 1.23 

21.65 4.14 
6.88 1.32 

238.67 45.67 

214.25 41.02 
95.37 18.26 
146.30 28.01 
36.93 7.07 
29.46 5.64 

522.30 100.00 
9.66 1.85 

4211.0 806.7 
343.0 65.7 

Tunnel' Species 
Jaoand Manuale 

I 

a Based on average emissions from FfP driving cycle test for 46 in-service 
vehicles (Sigsby et a/., 1987). 

From upwind-downwind sampling (Zweidinger et a/., 1988). 
From NMOC measurements in the Lincoln Tunnel (Lonneman and Sella, 

1986). 
* From ambient monitoring in Kanagawa Prefecture (Wadden et a/., 1986; 
Wakamatsu et a/., 1984). Wt % of the 17 measured components adjusted to 
total % for same components in dynamometer average. 

Composite (USEPA, 1988). 
parts per billion carbon for hydrocarbons, parts per billion for CO and NO,. 
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Table 2. Vapor Degreasing and Drycleaning Source Fingerprints (Scheff et 
a/. , 1989a). 

~~ 

Vaeor deareasina" Drycleaningb 
Compound (I 03tons) (Wt"W (Mg/yr) 

Chloroform 0.00 0.00 
1,1,1 -Trichloroethane 113.6 49.65 0.00 
Carbon Tetrachloride 0.00 0.00 
Trichloroethylene 68.8 30.07 0.00 
Perchloroethylene 23.9 10.45 55,000 
Methylene Chloride 22.5 9.83 0.00 

Sub-total 228.8 100.00 63. % 

Other C8 to C12 Hydrocarbons 0.00 31,700 

Total 100.00 86,700 

a Derived from 1985 total usage data of 228,800 metric tons of 
chlorinated solvent used for vapor degreasing (Storck, 1987). 

55,000 Mg/yr of perchloroethylene used for drycleaning in 1984 
(estimated) (USEPA, 1980). 31,000 Mg/yr of petroleum solvents 
used for drycleaning (USEPA, 1982). The solvents are similar to 
kerosene and are primarily used by large drycleaning operations 
for industrial, commercial, and institutional customers. 

Tables 1 through 4 summarize selected information on source fingerprints. 

Included in the tables are data expressed in the original units of measurement and 

as a weight % of the total fitting compounds or total non-methane organic 

compounds (NMOC). An entry of zero represents a quantitative estimate of 

source composition for a specific compound. In contrast, a blank entry 

represents the case when the compound was not measured and the actual value 

in unknown. For modeling purposes, unknown values should be taken as zero. 

Table I shows a summary of the most recent and complete data sets on the 

hydrocarbon emissions from motor vehicles. The table lists data collected using a 

wide variety of methods. For example, the dynamometer data represent the 

average tail-pipe emissions (source test data) from the FTP driving cycle test for 

46 in-service vehicles collected under laboratory conditions (note that the vehicles 
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Table 3. Architectural Coatings Source Fingerprint (Scheff et a/, 1989a). 

Solvent Thinning Water Coating 
Compounds Coatinga Solventsb Coating' Composited 

Percentage of VOC emissions 64% 11% 25% 100% 
contributing to totald 

2-Methylpentane 
3-Methylpentane 
n-Hexane 
2,4-Dimethylpentane 
Benzene 
Toluene 
Ethyl benzene 
p-Xylene/m-Xylene 
o-Xylene 

1.70 1.09 
0.36 0.09 

37.86 15.21 25.90 
0.54 0.93 0.45 
3.70 2.72 2.67 
4.47 2.86 

Sub-total 48.27 18.86 0.36 33.06 

n-Heptane 2.94 3.07 
n-Butylalcohol 20.09 
Acetone 1.27 
Methyl-ethyl-ketone 0.54 4.06 
Methyl-isobutyl-ketone 0.36 

Other Paraffins 
Other Olefins 
Other Aromatics 
Other Alcohols 
Other Ketones 
Other Esters 
Glycols 
Chlorinated Organic 

22.28 39.21 1.33 
0.15 9.44 
0.31 

4.91 4.03 
4.58 1.99 1.04 
19.28 9.27 56.03 

2.01 
1.22 9.52 

Sub-total 51.71 73.17 94.05 

Other Compounds 0.02 7.97 5.59 

Total NMOC 100.00 100.00 100.00 

a Composite of profiles for lacquer, primer and enamel in proportion to usage in southern 
California (USEPA, 1988). 
Composite based on sales volume from nine solvents used with architectural coatings 
(USEPA, 1988). 
Composite of seven coatings in proportion to 1980 California sales figures (USEPA, 
I 988). 
Percentage of VOC emissions from 1984 survey of New York major metropolitan area 
and entire state of New Jersey (Leone et a/., 1987). Composite calculated by applying 
these percentages to compositions in each category and summing contributions from 
all categories. 

C 
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Table 4. Source Profiles Normalized to Fitting Compounds (wt %)”. 
Fitting Vehicle Gas Vapor Refinery Arch. Waste- GraDhic De- Drv Auto Pelro- 
Compounds Winter Summer Coatings water Arts greasing Cleaning Paint 

Ethane 3 12 
Ethylene 18.18 
Propane 6.72 
Propylene 3.16 
Acetylene 7.77 
i-Butane 1.17 
n-Butane 9.02 
LPentane 7.19 
n-Pentane 3.20 
2-Methylpentane 2.89 
3-Methylpentane 1.87 
n-Hexane 1.37 
2.4-Dimethylpentane 1.15 

Benzene 6.64 
Toluene 14.16 

p-Xylene/m-Xylene 6.64 
o-Xylene 3.90 

Chloroform 
1.1 ,I-Trichloroethane 
Carbon Tetrachloride 
Trichloroethylene 
Perchloroethylene 

Total fitting 

Ethylbenzene 2 01 

__ 

000 000 
000 000 
166  039  
000 000 
000 000  

1846 1339 
4168 3024 
2022 31 43 
851  1321 
289  495 
148  254  
115 197 
036  031  

128  054  
132  0 9 3  
036  004  
037  004  
0 1 9  004  

~- 

4 81 
0 73 

21 29 
0 79 
0 11 
4 73 

1 7 6 0  
1685 
7 32 
7 22 
4 32 
3 60 
1 66 

1 39 
4 68 
058 
1 44 
0 84 

- 
compounds 100 00 100 00 10000 100 00 

THC” as % of NMOC 52 43 78 22 91 26 80 47 

NO. (wt % o f  THC) 257 29 0 00 000 0 9 8  

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

3.30 

0.27 
78.34 

1.36 
8.08 
8.65 

~ 

100.00 

33.06 

0.00 

0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.00 
0.00 0.w 
0.00 0.00 

2.33 
6.17 93.09 
1.26 

6.91 

12.98 
28.43 
12.79 
16.35 
19.69 

- - 
100.00 100.00 

62.50 11.90 

0.00 0.00 

000  
000  
000 
0 00 
000 
0 00 
000 
0 00 
0 00 
0 00 
0 00 
0 00 
0 00 

000 
000  
0 00 
0 00 
0 00 

000 
55 06 
0 00 

33 35 
11 59 

- 

100 00 

90 17 

OW 

000 
0 00 
000 
0 00 
OW 
0 00 
000 
0 00 
0 00 
000 0 9 9  
000 0 9 5  
000 177  
0 00 

0 00 
000 6742 
000 6 2 4  
000 1710 
000 5 5 4  

0 00 
0 00 
0 00 
0 00 

100 00 

~- 

10000 10000 

63 00 

0 00 

Chem 

3 0  
500 
4 3  
3 9  
1 8  
2 6  
5 5  
4 0  
2 8  
1 5  
1 1  
4 3  

3 4  
7 7  
1 6  
1 4  
1 1  

- 
100 00 

a From Scheff et a/., 1989a; Hegberg eta/., 1989. 
THC = sum of 23 organic fitting compounds. 
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were tested without any modifications or engine tuning) (Sigsby et a/., 1987); the 

roadway data represent ambient measurements collected downwind and up-wind 

of a busy intersection (Zweidinger et a/., 1988); the tunnel data are derived from 

NMOC measurements in the Lincoln Tunnel (Lonneman and Sella, 1986); the 

Japanese fingerprint is based on ambient roadside monitoring over a 36 month 

period in Kanagawa Prefecture (Wadden et al., 1986; Wakamatsu et al., 1984); 

and the VOC Species Manual values are a composite from the recent update of 

that document (USEPA, 1988). Despite the different sampling methodologies, the 

data in Table 1 are remarkably consistent. For example, the weight fractions for 

benzene range from 2.90 to 4.29 %, from 1.57 to 1.77 % for ethane, and from 

45.67 to 53.77 % for the fitting compound fraction of the total NMOC . Given the 

close agreement between the laboratory dynamometer data and the ambient 

roadway, tunnel and Japanese data, we believe that the dynamometer data are 

most representative of the actual motor vehicle tail-pipe contributions and suggest 

that these be used as a fingerprint for CMB modeling. Also included in Table 1 

are data on total paraffins, olefins, aromatics, aldehydes, carbon monoxide, and 

oxides of nitrogen. NO, (i.e. NO + NO,) can also be used as a fitting compound. 

The architectural coatings fingerprint (Table 2) is based on an extensive 

survey of product-type consumption in the New York City-state of New Jersey 

region (Leone et a/., 1987). The consumption data are shown as the % of VOC 

emissions contributing to the total. These data are in excellent agreement with 

previously reported nation-wide per capita NMOC emissions from architectural 

coatings (USEPA, 1985). Profiles for the three product types shown are 

composites based on sales in California (derived from product composition 

information). For example, the solvent-based coatings include contributions from 

lacquer, primer and enamel in proportion to use in Southern California, the 

thinning and cleanup solvent fingerprint is based on sales volume from 9 solvents 

used with architectural coatings, and the water-based coating is a combination of 

7 coatings in proportion to 1980 California sales figures (USEPA, 1988). The 

composite is then calculated by applying these percentages to compositions in 

each category and summing the contributions from all categories. Note that the 
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fitting compounds only represent 33.06 % of the total emission for this source. 

Non-fitting compounds make up most of the NMOC emissions from this category 

and include alcohols, ketones, esters, glycols, and other chlorinated organics. 

The fingerprint for vapor degreasing (Table 3) is based on a 1985 nation- 

wide chlorinated solvent consumption estimate of 228,800 metric tons for this 

application; and the individual fractions attributed to trichloroethylene, 1 , I  , I  - 
trichloroethane, perchloroethylene and methylene chloride (product usage 

information from the Halogenated Solvents Industry Alliance) (Storck, 1987). The 

total vapor degreasing usage for these four solvents was about the same as that 

reported from a 1974 suwey (USEPA, 1979), although the more recent data reflect 

significant reductions in trichloroethylene and perchloroethylene, and 

corresponding increases in 1 , I  , I  4richloroethane. Note that this fingerprint is only 

representative of vapor degreasing since no contributions were included from 

maintenance and manufacturing cold cleaning. 

The data for drycleaners (Table 3) is based on total solvent usage by 

perchloroethylene cleaners (55,000 Mg/yr estimated for 1984) (USEPA, 1980a) 

and petroleum based cleaners (31,000 Mg/yr) (USEPA, 1982). The petroleum 

solvents used are composed of C8 to C12 hydrocarbons and do not significantly 

contribute to the fitting compounds. 

Table 4 is a summary of 10 source profiles normalized to 100 % of the fitting 

compounds (Scheff et a/., 1989a). Included in the table is the fitting compounds 

as a percent of the total NMOC emission. The vehicle emission fingerprint is 

based on the dynamometer test from Table 1, gasoline vapor from vapor-space 

analyses of unleaded winter and summer blends, refinery emissions from a plume 

study downwind of a large modern petroleum refinery, architectural coatings and 

printing inks are composite fingerprints combining product consumption and 

composition information, wastewater processing is from the average of two 

ambient measurement and two mass transfer modeling studies, auto painting and 

petrochemical from downwind ambient measurement studies, and vapor 

degreasing and drycleaning from solvent usage data. When used with the CMB 

model, the profiles in Table 4 generate source contributions to ambient 
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concentrations of the 23 fitting compounds. Leaving the profiles normalized to the 

total NMOC emissions would produce estimates of source contributions to the 

total of volatile organics. 

The consistency in the data for vehicles, gasoline vapor and petroleum 

refineries suggests that the profiles for these sources can be applied to a variety 

of settings without modification (Scheff et a/., 1989a). This is in contrast to our 

experience with profiles for sources of particulate matter (Scheff et a/., 1984). The 

reason for the difference is in the physical basis of the profile. For the particulate 

matter case, profiles (typically based on elemental composition) are a function of 

the composition of the raw materials used in the process. For example, the profile 

for a coal-fired power plant is largely controlled by the elemental composition of 

the coal burned and the profile of a soil dust is based on an area’s geology. In 

contrast, the profiles for sources of NMOC are controlled by the physical and 

chemical processes that consume or modify the raw material. For example, all 

petroleum refineries process hydrocarbons with similar unit operations, the 

emissions of which are not strongly a function of crude-oil composition. It is, 

therefore, not surprising that different profiles which represent a wide variety of 

refineries around the world are all so similar. 

3. APPLICATIONS 

3.1. Tokyo, Japan 

hydrocarbons, was collected over Tokyo, July 16-17, 1981. Weighted least- 

squares fitting of the hydrocarbons was used to estimate ambient contributions 

from four source categories: petroleum refineries, vehicle exhaust, gasoline 

storage, and paint solvents (Wadden et a/., 1986). The samples were obtained as 

part of a series of summertime aircraft surveys of photochemical pollutants carried 

out by the National Institute for Environmental Studies (NIES) to develop a better 

understanding of photochemical smog formation over Tokyo (Wakamatsu et a/. , 
1983; Uno eta/., 1984; Uno eta/., 1985a). 

A data set consisting of 192 samples of ambient air, speciated for 17 
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Six runs (flights of 1-15 h), using two instrumented aircraft, were spaced 

throughout each day starting with sun-up and continuing through about 9:30 p.m. 

The number of samples/run varied between 11 and 23. In general, most runs 

followed nearly the same flight pattern, and consequently run-averaged 

compositions constituted a chemical "snapshot" of the air over the Tokyo 

Metropolitan Area. Most of the observation data were collected between altitudes 

of 350 and 700 m although occasional samples were collected up to 1500 m. The 

study-average 0, concentration aloft over all runs was 118 ppb, and the maximum 

run-averaged value was 188 ppb. There were numerous hourly 0, excursions 

above 120 ppb at ground level stations in the study area during the two days of 

monitoring. 

The vertical wind profile was also monitored at about 20 sites by using pilot- 

balloon observations. Wind data were collected at each 100-m interval up to 

3000 m. These were subsequently integrated to determine the areal wind profile 

for subsequent trajectory estimation. Back-trajectories at an altitude of 350 m are 

shown for three of the runs in Figures 1 to 3. For both days, trajectories entering 

the sampling area in the forenoon came from the northeast and passed over 

Tokyo Bay. In addition on both days, parcels entering the sampling area later in 

the day passed over Tokyo Bay in early morning but then were advected over 

Sagami Bay for a number of hours before being returned by a southwest ocean 

breeze. The 13:OO trajectory in Figure 2 shows the beginning of this pattern which 

became more pronounced through the afternoon and evening (i.e., more hours 

over water as displayed in Figure 3). 

Hydrocarbons were analyzed with a 99% confidence interval corresponding 

to a precision of t 5% of the mean value of repeated analyses for C&, and t 10% 

of the mean for C, and heavier. These values corresponded to ./X of 0.019 and 

0.039 for C,-C, and C,', respectively, which were used to determine the weighting 

function in the least-squares fit. Other details of the chemical and data-reduction 

procedures are given in Wadden et a/. (1986). 

Coefficients for each of the four source categories were determined for each 

sample using the weighted least squares technique and 17 of the 18 
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Figure 1. Wind trajectories and flight path for run 11, 529-7:16 JST, July 16, 
1981 (Wadden et a/., 1986). 

Figure 2. Wind trajectories and flight path for run 13, 11:55-13:08 JST, July 16, 
1981 (Wadden et a/., 1986). 
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Figure 3. Wind trajectories and flight path for run 15, 17:21-18:31 JST, July 16, 
1981 (Wadden eta/., 1986). 

hydrocarbons listed in Tables 1 and 4 (excluding 2,4-dimethylpentane). The 

source fingerprints for refineries, gas vapor, and vehicles were determined from 

monitoring data in the Tokyo area. The vehicle exhaust composition is given in 

Table 1, and the refinery and gas vapor fingerprints were quite similar to those 

listed in Table 4. The paint solvents fingerprint consisted of 25.7% toluene, 32.5% 

ethylbenzene, 30.3% p,m-xylene and 11.5% o-xylene. This composition is a 

weighted value based on the usage amounts for all of Japan and the specific 

composition of each of the following categories: varnish; enamel; and, "veneer, 

epoxy, urethane, polyester, anticorrosive and other paints." 

The average coefficients are given for each run and for all 192 samples in 

Table 5. The unexplained source contribution is determined by difference 

between the total hydrocarbon concentration for the 17 components and the 

amounts allocated by the model to the other four sources. This category contains 

contributions from uncharacterized sources, such as printing solvents, and 

experimental error in source and receptor compositions. While the other 
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Table 5. Mean Source Coefficients for Tokyo Application (Wadden et a/., 1986). 

Coefficients. m/m3 
Total 

Flight Number Vehicle Gasoline Petroleum Paint Hydro- 
Run Period of samles Exhaust Vaoor Refinerv So lvent U nexolained carbon 

Julv 16. 1981 
11 5:29- 7116 23 

12 8:52-10:37 18 

13 11:55-13.08 19 

14 14:35-15143 12 

15 17:21-18:31 11 

16 20:10-21:27 12 

Julv 17. 1981 
21 5:20- 6153 23 

22 824- 9 ~ 5 5  20 

23 11:31-12:41 20 

24 14:20-15:31 12 

25 17:18-18:18 11 

26 20:08-21:07 11 

Overall 
192 

1.9 

2.6 

7.1 

4.4 

2.0 

0.8 

8.8 

4.6 

7.2 

4.3 

1.1 

1.4 

4.0 

0.6 

4.7 

12.9 

12.6 

5.6 

4.2 

5.2 

4.7 

20.2 

9.5 

2.2 

2.4 

6.4 

2.7 

16.4 

31.7 

20.7 

17.9 

9.6 

29.0 

18.1 

41.5 

28.4 

16.3 

11.5 

20.3 

14.1 

22.2 

34.5 

31.9 

12.5 

25.0 

26.1 

15.5 

31.3 

21.5 

7.5 

7.0 

23.3 

20.4 

31.8 

67.4 

31.9 

32.0 

5.5 

53.6 

33.7 

62.6 

23.5 

20.1 

29.7 

37.3 

39.7 

77.7 

153.6 

101.5 

70.0 

45.9 

123.5 

76.6 

162.8 

87.2 

47.2 

52.0 

91.3 



228 

coefficients are constrained to be ;? 0, this restriction was not placed on the 

unexplained contribution. However, as a measure of the consistency of the data 

and the modeling approach, negative contributions for this category were 

calculated for fewer than 10% of all the sample compositions. 

The vehicle exhaust coefficient varies from 2 to 7% (overall 4%) and refinery 

sources contributed from 7 to 35% of the total hydrocarbons (overall 22%). On 

the basis of an emission inventory for the Tokyo Metropolitan area (consisting of 

Tokyo and the six surrounding prefectures), vehicle emissions would be expected 

to contribute about 27% and refineries 5% of the 17 fitting hydrocarbon 

compounds. The emission inventory reflects an evaluation of annual use and 

emission data, but is not necessarily representative of short-term emission 

patterns. This apparent inconsistency between inventory and source-reconciliation 

values can be at least partly resolved when wind trajectory and traffic frequency 

are included in the evaluation. 

From the trajectory analysis it became clear that most of the air sampled 

during any run had advected over the Tokyo Bay industrial areas in early morning 

but during its daytime history had not passed over other land areas with 

substantial hydrocarbon emissions. As indicated in Figures 1-3, the major refinery 

sources are located on the east and west shores of Tokyo Bay. This trajectory- 

source interaction suggests the reason for the relatively high refinery source 

coefficients. In addition, the vehicle use pattern in early morning is significantly 

different from the 24-hr average (which is reflected in the emission inventory). The 

period from 21:OO to 7:OO only contributes about 20% of the total vehicular traffic. 

So if the air sampled during each run actually represents only early morning 

conditions (because of the changeover from land breeze to ocean breeze), a 

reduced vehicular contribution would be expected. The average paint solvent 

contribution is less likely to be strongly affected by wind direction, and the average 

coefficient of 26% was in reasonable agreement with the inventory usage value of 

32%. The gasoline vapor contribution for major urban areas is also not usually 

dependent on direction and the average contribution of 7% compares well with the 
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annual emission value of 4%. In addition since maximum ground-level 

temperatures on both days were above 30- C, the gasoline vaporization from 

storage would be expected to be greater than the average. 

3.2 Chicago, Illinois 

organic compounds (VOC) in Chicago (Aronian et a/., 1988; Hegberg et a/., 1989). 

The study included a four-month winter sampling program and a three-month 

summer sampling program at three sites in the Chicago Metropolitan Area; a 

suburban background location approximately 50 miles north of downtown Chicago 

(SUB), an inner-city urban site at the University of Illinois at Chicago located one 

mile west of downtown Chicago (URB), and an industrial location on Chicago's 

southeast side (IND). The sites are roughly located on a north-south line and are 

21 km and 55 km apart, from IND to URB to SUB, respectively. Four-hour 

samples (8:OO am to 12:OO pm) were collected simultaneously at all three sites. A 

twenty-hour sample (12:OO pm to 8:OO am) was also collected at the central city 

location for each sampling session. This sampling strategy, therefore, allowed for 

the evaluation of the impact of major point sources of Non-Methane Organic 

Compounds (NMOC) at three widely varying receptor locations as well as the 

evaluation of the long-term average impact at the central location. For example, 

since all four refineries in the Chicago area are located in the southern portion of 

the study area, each receptor location will view the refineries with a different 

emission-to-collection transport time when the wind is from the south. 

We have tested the CMB model for ambient measurements of volatile 

A total of twenty-six winter-time, and 55 summer-time whole air samples 

were collected at the three sites and analyzed for the compounds listed in Table 4. 

In addition to the 23 organics, NO, was measured at the URB receptor location 

during the winter, and at all three locations during the summer monitoring 

program and included as a fitting compound. The average temperatures ranged 

between -15.OoC and 4.4OC for the winter, and between 16.8OC and 28.8OC for the 

summer samples. Each ambient sample was evaluated for the contribution from 

eight sources of VOCs in the Chicago region; vehicles, gasoline vapor, petroleum 
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refineries, architectural coatings, graphic arts, vapor degreasing, drycleaning, and 

wastewater treatment. These sources were selected because they are known to 

emit significant quantities of NMOC in the Chicago area and are sources for which 

reasonable fingerprints could be developed (IEPA, 1987; Scheff et a/., 1989). 

Details of the environmental sampling and analytical procedures have been 

presented (Aronian et a/., 1988). 

Weighted least squares solutions of the CMB model were calculated for each 

of the 81 ambient samples. This procedure weights the regression analysis by the 

ambient measurement error. The calculations were performed on a personal 

computer using the SYSTAT statistical package (SYSTAT Inc., Evanston, IL). The 

standard deviations of the measurements (measurement error for the weighted 

least squares calculations) for the alkanes and alkenes were developed from an 

analysis of ten duplicate samples. The measurement error was calculated as the 

maximum difference between the replicate analyses divided by the student’s t with 

9 degrees of freedom at the 95 YO confidence level. (Note that this calculation 

assumes that the maximum difference between the 10 replicate analyses 

represents the 95 % confidence interval.) The measurement errors for the 

aromatic and chlorinated compounds were calculated as the standard deviation of 

repeated analyses of a laboratory calibration standard. 

The source profiles used in the CMB model are shown in Table 4. The 

profiles are normalized to 100 % of the 23 organics studied. Therefore, the 

predicted source coefficients represent contributions at the receptor sites for the 

specific 23 fitting compounds studied. Note that the profile for gasoline vapor 

reflects the change in fuel volatility for the summer and winter periods (USEPA, 

1980b; USEPA, 1988). Both profiles for gasoline vapor are based only on un- 

leaded fuels which comprise more than 80 % of gasoline usage in the Chicago 

area. 

CMB source coefficients for each complete sample were developed. The 81 

sets of coefficients averaged by receptor location, sample duration and season 

are shown in Table 6. The coefficients in this table were calculated from source 

profiles normalized to the sum of the 23 organic fitting compounds. The 
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Table 6. Mean Source Coefficients for Chicago Application (Hegberg et 
a/., 1989). 

Coefficients. ua/m3 

Location Duration No. VEH GV REF AC GA WAS VDG DCL Other THC 
(hrs) samples 

WINTER 

Industrial 

Urban 

Urban 

Suburban 

SUMMER 

Industrial 

Urban 

Urban 

Suburban 

4 5 45.34 20.09 33.28 2.47 2.00 3.23 3.39 0.74 46.6 157.1 

4 7 70.25 4.79 27.76 3.54 4.78 4.76 4.78 1.05 32.9 153.2 

20 7 56.96 16.01 39.51 3.23 2.34 4.30 4.31 0.90 64.0 191.5 

4 7 43.43 10.53 10.28 0.24 0.32 1.75 2.17 0.29 43.2 112.1 

4 14 44.69 22.99 16.89 2.31 1.81 8.42 8.10 0.35 120.5 226.1 

4 15 37.40 12.34 11.48 2.54 1.81 6.48 5.14 0.84 101.1 179.2 

20 13 44.96 5.98 14.86 1.91 1.52 6.92 6.12 0.49 105.4 188.1 

4 13 22.42 9.66 9.94 1.95 1.57 5.03 4.76 0.19 67.2 122.7 

GV =Gasoline Vapor, REF = petroleum refinery, AC =architectural coatings, 
WAS =wastewater treatment, VEH =vehicles, GA=graphic arts, VDG =vapor 
degreasing, DCL= drycleaning, Other =sum of residual organic, THC =fitting 
compounds. 
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unexplained fraction shown in the table is defined as the difference between 

measured organics and the sum of the source coefficients. In this way, the 

"other" category represents contributions to the organics measured from all 

sources which were not included in the model. Note that the other category was 

positive for 24 of 26 winter samples, and positive for all 55 summer samples. 

Regression diagnostics of the CMB model with all eight sources in the 

equation identified two problems with collinearity. For a typical run, two of the 

eight eigenvectors had condition indices greater than 10. (Condition index is a 

measure of collinearity and a value greater than 10 is an indication of a major 

collinearity (Belsley et a/.,, 1980)). An examination of the source profile matrix 

shows the cause of the collinearities. The largest condition index (representing 

the smallest eigenvalue) is associated with large variance proportions for 

architectural coatings and graphic arts. This collinearity can be seen in Table 4 as 

these two sources are primarily composed of toluene. Because of this collinearity, 

it is generally not possible to simultaneously solve for both of the toluene sources. 

This problem was handled by solving the CMB model with either architectural 

coatings or graphic arts in the model and averaging the two solutions. Although 

the results for these sources are shown separately in Table 6, we interpret the 

sum of the two as the combined impact of printing and architectural coating 

solvents. The exact split between the two sources is less certain. 

The second highest condition index is associated with a very large variance 

proportions for wastewater treatment, vapor degreasing and drycleaning. This 

collinearity can be seen in Table 4 as these are the three sources of chlorinated 

organics. As was the case for the solvent sources, the sources of chlorinated 

organic were estimated separately and the three solutions averaged to give the 

result in Table 6; and the sum of the three sources represents their combined 

impact. The model was usually able to resolve the vehicle, gas vapor, and 

refinery sources without problems of negative coefficients. 

As shown in Table 6, contributions from vehicles and gasoline vapor were 

approximately equal for summer and winter samples at the industrial and urban 

sites. In contrast, the contribution from vehicles at the suburban site was lower in 
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the summer than winter. Two of the sources of chlorinated organic, vapor 

degreasing and wastewater treatment were higher during the summer at all sites 

suggesting increased releases for chlorinated solvents during warm conditions. 

Also note that the mass concentration of unexplained hydrocarbon is higher in the 

summer compared to winter results. 

The average refinery source coefficients are highest for the industrial, and 

lowest for the suburban receptor during both winter and summer sampling 

periods. This is also consistent with source-receptor geometry as all of the 

region’s refinery point sources are located in the southern suburbs closest to the 

industrial site and furthest from the study’s suburban site which is located 55 km 

north of the city. Table 6 further shows that the suburban location had the 

smallest impacts from architectural coatings, wastewater treatment, graphic arts 

solvents, vapor degreasing and drycleaning. Since most of the major printing, 

industrial, and wastewater sources are located far south of the site (and much 

closer to the inner-city and industrial sites), lower values for these sources are 

expected. 

4. EVALUATION 

4.1 Estimation of Emission Inventories from CMB Predictions 

One of the most promising applications of the CMB model for ambient 

organic concentration data is the evaluation of the VOC emission inventory. A 

comparison of CMB source allocations to emission inventory data for Chicago is 

shown in Table 7 (IEPA, 1987). The emission inventory data in the table is 

expressed as kg day-’ and weight percent of the total VOC emission and is 

representative of a typical summer day. The inventory includes 61 VOC emission 

source types representing 800,509 kg day”. Note that the inventory does not 

include specific halogenated compounds (including 1 ,I , I  -trichloroethane and 

freon) and this will affect the comparison for degreasers as this source contains a 

significant mass fraction of l,l,l-trichloroethane. The CMB data is taken from the 

Chicago application described in the previous section. 
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Table 7. Comparison of Emission Inventory Data to CMB Source 
Coefficients (Hegberg et a/., 1989). 

Vehicles 286.155 33.5 54.0 35.2 34.6 37.4 20.9 33.8 

Gasoline Vapor 61,179 7.6 12.8 8.4 5.4 12.7 7.1 6.4 

Petroleum Refineries 10,749 1.3 27.7 18.0 11.3 13.3 7.4 7.6 

Architectural 
Coatings 44,230 5.5 2.4 1.5 2.3 2.2 1.2 3.1 

Graphic Arts 78,268 9.8 2.0 1.3 5.6 1.7 1.0 6.6 

Vapor Degreasing 25,078 3.1 3.7 2.4 1.3 6.0 3.4 3.1 

0.3 0.4 Dry Cleaning 758 0.1 0.7 0.5 0.4 0.5 

Other 312,092 39.0 50.2 32.7 105.2 58.7 

Total 
Hydrocarbons 800,509 100.0 153.5 100.0 179.0 100.0 

aAverage of the CMB coefficients from the four combinations of site and sampling 
duration normalized to the 23 fitting compounds. 

bWeight %, determined from the average CMB coefficients, normalized to NMOC. 
The sum of the seven source categories is assumed = 61 %, which is the sum of 
the contributions from these categories to the emission inventory. 
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Generally, the emission inventory results are in reasonable agreement with 

the average winter and summer CMB coefficients. When the CMB coefficients are 

normalized to the fitting compounds, the inventory estimates of vehicle emission, 

gasoline vapor and vapor degreasers are very close to the CMB estimates. In 

contrast, the average graphic arts contribution of 1.3 % and 1 .O % (winter and 

summer, respectively) is much smaller than predicted by the emission inventory 

(9.8%). Note, however, that because the CMB estimate for graphic arts is based 

on a small fraction of the total emission (1 1.9 %) it is under-represented in the 

results normalized to the fitting compounds. This was also true for architectural 

coatings. Normalizing the CMB coefficients in terms of the total NMOC emissions 

by using extended fingerprints, brings these predictions much closer together for 

both winter and summer average coefficients (Scheff et a/., 1989a). 

Table 7 also shows the average CMB coefficients normalized to the total 

NMOC. The NMOC coefficients were calculated by dividing the average CMB 

coefficients by the THC as a fraction of NMOC (see Table 4). Since we do not 

have a % of NMOC factor for the "other" sources category, the coefficients are 

expressed as a % of NMOC such that the emission inventory percent of the seven 

categories in Table 7 (61%) equals the sum of the normalized CMB estimates. 

The comparison between the emission inventory as weight % and NMOC 

normalized CMB estimates for vehicles, gasoline vapor, architectural coatings, 

graphic arts, vapor degreasing, and dry cleaning is very reasonable for both 

summer and winter samples. It is interesting to note that these similarities exist 

despite the fact that average daily temperatures for the winter-time samples varied 

between -15.0 and 4.4OC while those in the summer were between 16.8 and 

28.8OC. This agreement, despite considerable temperature variation suggests in a 

general way that reactivity in the atmosphere does not greatly distort the 

fingerprints nor interfere with the CMB analysis. 

The largest difference between the emission inventory and CMB predictions 

is seen with refinery contributions. We suspect this results from under-estimation 

of the emission inventory values. A previous study in the Chicago area indicated 

good agreement between calculated refinery coefficients and refinery contributions 
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determined from wind trajectories and refinery capacity (with refinery capacity 

used as a surrogate for emission); but poor agreement when estimates of 

emissions were substituted for capacity (O’Shea and Scheff, 1988). The inventory 

values also do not include the contributions from Northeast Indiana refineries and 

other sources. 

It is encouraging to note that the emission inventory and CMB model’s 

estimate of “other” sources are very close. This suggests that the calculations do 

not over-predict the modeled sources nor under-predict the sources not included 

in the model. 

4.2 Validation 

Calculated source coefficients are most useful if they can be validated, or at 

least are consistent, with other independently observed source and meteorological 

characteristics. As a simple example, if a receptor location is directly downwind of 

a large auto paint plant, the paint solvent source coefficient should be higher than 

when the wind is blowing in the opposite direction. Consideration of prevailing 

meteorological patterns is particularly important for understanding coefficients 

calculated from single short-term samples, (i.e, 1-4 hours). As discussed in the 

previous section, comparison of emission inventory values with the average 

coefficients, determined from many samples, constitutes another type of validation 

over longer time intervals. 

Two examples of short-term validation come from studies in Tokyo (Wadden 

et a/., 1986) and Chicago (O’Shea and Scheff, 1988). Both are for refinery 

contributions to ambient samples. In the Tokyo study (Figure 4), back-trajectories 

were determined for each sample from the point in the flight path at which 

sampling began. If the trajectory for a particular sample intersected a refinery 

location, the sample was given a score equal to the annual emission rate. The 

average refinery emission score per sample was computed for each run and 

compared with the petroleum refinery coefficient calculated from the run-averaged 

composition. Use of the run-averaging approach was appropriate because each 

sample consisted of air collected over 3-4 km and some imprecision was 
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Figure 4. Refinery contributions to ambient concentrations of total hydrocarbons 
vs refinery emissions at the receptor point (Wadden et a/., 1986). 
(Average time of sampling flight given on plot.) 

associated with the trajectories. Comparison of average refinery sample score 

and average refinery coefficient for the 10 runs for which trajectories could be 

developed gave an 3 = 0.70. 

What was not reflected in this relationship was the effect of travel time on the 

contribution of the petroleum refinery sources to the run-averaged composition. 

Usually receptor and source are separated by a fixed distance. In this case there 

is a fixed sampling location because the flight path was essentially repeated and 

most samples were collected within altitudes of 350-700 m, and the locations of 

major refineries were known. However, because of the trajectory pattern, some 

refinery emissions in early morning subsequently entered the sampling zone in late 

afternoon and were aloft for much longer periods than those that intersected the 

zone earlier in the day. Both dilution and reaction can have an effect on the 

amount and composition coming from a specific source which is ultimately 



238 

measured. At this point we will limit our discussion to the effect of dilution and 

return to reactivity in a later section. 

When the Gaussian plume model is used, the receptor concentration, C, due 

to a particular elevated source is 

where Qj is the emission rate from a particular source, u is the wind velocity, u y  

and u Z  are the dispersion coefficients in the vertical (z) and horizontal (y) direction, 

and H is the source plume rise. For large downwind distances (typically 10-70 km 

from the trajectories) and elevated sampling (z 5 500 m), the plume rise will no 

longer be a factor. This is particularly the case for refineries, where leaks are 

major emission sources. Back trajectories from each sample were based on 

plume centerlines (i.e, intersection with the refinery site) so y = 0. 

For many conditions the dispersion coefficients can be approximated by 

u = Ax" and 

G, " ,  and y are empirically determined. For long downwind distances, the 

exponential terms in Equation 1 will become -1.0. If in addition we assume that u 

is relatively constant, then we find from Equation 1 that 

= Gx', where x is the downwind distance (or travel time) and A, 
Y 

where 1 5 u + y 5 2. Consequently, if a + y = 1 the concentration should be 

proportional to the emission rate divided by the downwind distance from source to 

receptor (or alternatively, the travel time). And the total concentration allocated to 

all sources in a particular category will be the sum of each of the emission 

contributions adjusted for its upwind distance. 

Figure 4 shows the relationship between the total run-averaged 

concentration of 17 fitting components at the receptor point predicted from the 

CMB model to be due to petroleum refinery emissions and the corresponding 
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value of emission rate adjusted for travel distance from refinery sources. For 

these points the refinery coefficient was determined from the run-averaged 

composition. The Q/x values were determined by drawing back-trajectories from 

each sample location in a run and averaging the resulting scores. Points in Figure 

4 with low values of Q/x represent runs during which the air sampled followed 

trajectories that infrequently passed over refinery sites or were far removed in time 

from such sites. The point at Q/x = 0 represents a run during which none of the 

sampled air had trajectories intersecting refinery locations. The positive predicted 

refinery contribution to ambient concentration for this run is consistent with the 

fact that part of the refinery emissions are contributed by storage of petroleum 

materials. Storage depots are located throughout the Tokyo area, but only those 

at refineries were included in the analysis. Therefore, some refinery emissions 

are expected for samples from air parcels not advected over refinery sites. 

The value of 12 = 0.90. When a + y = 2, 2 = 0.52. While we have no way 

of further discriminating individual values of a + y, the results shown in Figure 4 

are consistent with limits on u 1  due to inversions over the ocean surface and aloft 

and with the observation that u y  may be proportional to the square root of travel 

time for long downwind distances (Gifford, 1982). The association reemphasizes 

that the petroleum refinery coefficients do specifically reflect the impact of refinery 

emissions. 

A similar approach was used to evaluate refinery contributions in a Chicago 

study (O’Shea and Scheff, 1988). Twenty l-hour samples were collected from 

noon to 1:00 pm during September and October, 1985. Nine hydrocarbon 

components were used as fitting compounds to determine contributions from 

three source categories: vehicle exhaust, gasoline vapor, and petroleum 

refineries. Figure 5 shows typical back-trajectories to the refinery locations. 

Pasquill-Gifford definitions of u y  were used and were corrected to hourly values for 

downwind distances greater than 10 km (Mueller and Reisinger, 1986). On the 

particular day shown, since the receptor location was within 20 of the centerlines 

from refineries 16 and 25, these sources, but not refineries 13 and 20, were 

expected to affect the ambient measurement. Figure 6 compares the CMB- 



240 

0 RECEPTOR 
0 METEOWYOCII 

Figure 5. Location of the receptor, refineries and meteorological stations (O'Shea 
and Scheff, 1988). (Trajectory of surface wind shown for September 
24, 1985.) 

predicted refinery contributions to the sum of the nine measured hydrocarbons 

with an emissions score similar to Equation 2. Since the measurements were 

made on different days a windspeed adjustment was also incorporated into the 

emission estimate, i.e., 

4 
CI OC 

(3) 

As indicated in Table 8 the association was not strong (3 = 0.20). However, 

since there were some inconsistencies in the reported refinery inventory 

emissions, refinery capacity was substituted as a surrogate for 0. Figure 7 shows 

this comparison and displays a much stronger association with refinery score (r' 
= 0.64). In addition we would expect the correlation of the CMB prediction to 

progressively increase when compared with Q, O/x, and Q/ux, since each of 

these forms of scoring incorporates an additional physical aspect. As shown in 
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Figure 6. Refinery contributions to ambient concentrations of total hydrocarbons 
vs refinery emissions adjusted for distance and wind speed (O'Shea 
and Scheff, 1988). (Ambient temperature during sampling periods 
indicated on the plot.) 

Table 8, the strength of the correlation does improve when using refinery capacity, 

but not with emissions. These observations indicate that the CMB correctly 

allocated mass to the refinery source category, and suggest caution in interpreting 

the emission inventory values. 

4.3 Non-Identified Sources 

At this stage of CMB organic modeling, not all major NMOC source 

categories have been included in the models. Consequently, a fraction of the sum 

of the fitting compounds ('THC) in the ambient sample(s) is not predicted. We 

have interpreted this fraction as being primarily from sources not included in the 

model rather than from experimental error or variability in source fingerprints or 

ambient composition. For the Chicago study approximately 33% (winter) and 59% 

(summer) of the average THC was not explained by the 8 specified sources 

(Hegberg et a/., 1989). About 40% of the ambient THC was not explained by the 
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Table 8. Comparison of CMB and Dispersion Model Predictions for Refineries 
(O’Shea and Scheff, 1988). 

Components r 12 
CMB vs. emissions 0.45 0.20 

CMB vs. capacity 0.74 0.54 

CMB vs. emissions/x 0.34 0.1 1 

CMB vs. capacitylx 0.79 0.62 

CMB vs. emissions/u x 0.45 0.20 

CMB vs. capacitylu x 0.80 0.64 

4 source types in the Tokyo study (Wadden et a/., 1986). The earlier Chicago 

study which only included 3 source categories resulted in 18% unexplained of the 

9 hydrocarbons measured. In all of these cases the unexplained difference for 

individual samples was usually positive although this was not a constraint of the 

model. This fact suggests that the CMB method does not overestimate emissions 

from modeled sources by mis-allocating residual mass to the estimated 

coefficients. The seasonal consistency of source contributions to NMOC (Table 7) 

despite considerably different unexplained source contributions also supports this 

premise. We believe that the residual mass source category represents actual 

sources of VOC and has physical meaning. This observation is also consistent 

with previous work with particulate matter (Scheff and Wadden, 1986). 

Additionally, the residual composition is a first estimate of the speciated 

contribution from a mix of non-modeled sources. Such data provide information 

for further CMB or tracer evaluation, which has been found to be useful for some 

recent evaluations of ambient particulate (Scheff, 1989; Scheff et a/.,  1989b; 

Dzubay eta / . ,  1988). 
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Figure 7. Refinery contributions to ambient concentrations of total hydrocarbons 
vs refinery capacity adjusted for distance and wind speed (O'Shea and 
Scheff, 1988). (Ambient temperature during sampling periods indicated 
on the plot.) 
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4.4 Extended Fingerprints 

Table 4 summarizes the organic composition for 23 fitting components for 10 

source fingerprints. The choice of these fitting compounds has been discussed 

under Source Fingerprints. However, as is evident in Tables 1 to 3, the fitting 

organics only comprise a fraction of the total NMOC. These fractions are also 

given in Table 4. Table 9 shows a typical component distribution for non-fitting 

materials for the graphic arts source category (Scheff et a/., 1989a). Many of 

these materials are too reactive to be measured at ambient concentration levels 

representative of their emission contribution. However, the information is useful in 

several other ways. These fingerprints can be used directly, without reference to 

the CMB evaluation, to speciate source emissions required as input for 

photochemical smog modeling. Alternatively, since we have shown earlier that 

source coefficients averaged over a representative number of ambient samples 

reflect the source distribution of emissions, these non-fitting component data can 

be used in conjunction with average source coefficients to estimate actual 

o g .  ' >  " ' 
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Table 9. Composite Non-fitting Component Fingerprint for Graphic 
Arts (Scheff et a/., 1989a). 

Component Weiaht % 

Fittina comoounds 

Toluene 11.05 
p-Xylene/m-Xylene 0.82 

Non-fittina COmDOUndS 

VM&P Naphtha 
C,-C, paraffins 
C,-C8 aromatics 
93-1 27- C Cut 

Acetone 
Methyl-ethyl-ketone 
Methyl-isobutyl-ketone 
Ethyl Alcohol 
Ethyl Acetate 
lsopropyl Acetate 
Petroleum Distillate 

A -  

16.19 

3.18 
7.06 
1.92 
8.04 
2.50 
3.24 
46.00 

~12-%€l  
243-370' C Cut 

Total 100.00 

speciated emissions. If we let Wfi be the average fraction, over a distribution of 

samples, of the sum of the fitting compounds allocated to source category j, and 

Rj be the ratio of the sum of the fitting compounds to total NMOC in source j 

emissions, then the fractional contribution, wi,i of non-fitting component i from 

source j to the total NMOC for the whole airshed will be: 

where xi,j is the weight fraction of i in the source j fingerprint. 
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4.5 Reactivity 

One of the basic assumptions of the CMB approach is that the concentration 

of each component from a particular source remains constant with respect to the 

other components from that source. This does not mean that there can be no 

decay or deposition between source and receptor but only that there be no 

compositionally selective removal. In addition, any significant changes in relative 

composition due to reaction effects must take place in a time frame that is shorter 

than the sampling time and the travel time between source and receptor. Table 

10 shows the reaction rates of typical fitting compounds with the OH radical (koH), 

a relationship which is frequently used as a measure of reactivity. While the 

values of kOH do vary from compound to compound, most are within a factor of 

10, ethane being the significant exception. However, because a statistical fitting 

technique is used, an outlying point ordinarily will not have significant effect on the 

predicted coefficients. (We have found this to be the case by selectively removing 

fitting components with high or low values of kOH from the fitting procedure 

(Wadden et a/., 1986; Scheff and Klevs, 1987)). 

Figures 8-10 partly demonstrate the typical changes in composition which 

can take place in an air mass under reactive conditions (Uno et a/., 1985b). 

Figure 8 shows a series of horizontal sections of a sampling flight over Tokyo at 

about 2:OO in the afternoon on August 6, 1980. Sample 602 was collected over 

the Miura Peninsula but samples 603, 605, and 606 were all taken over Sagami 

Bay. At a first estimate these samples are representative of the same steady-state 

sources, since each sample falls approximately within the prevailing wind 

trajectory, but are separated by advection time. The pattern of concentration 

change (relative to benzene) with advection time based on wind trajectories is 

displayed in Figures 9 and 10. Least-square fitting lines are shown for each 

component. Because the samples were taken over open water there was no 

reinforcement from additional sources, and because of the advective inversion at 

the ocean’s surface, there was little or no loss due to deposition or surface 

reaction. As indicated on the Figures, the ozone concentration increased from 

0.095 ppm to 0.148 ppm, so there was removal of hydrocarbons by reaction with 



246 

Table 10. kOH for Typical Fitting Compounds (Uno eta/. ,  1985a). 

Ethane 
Ethylene 
Propane 
Propylene 
iso-Butane 
n-Butane 
Acetylene 
1 -Butene 
iso-Butene 
iso-Pentane 
1 -Pentene 
n-Pentane 
cis, trans-2-Pent 
3,3-DM-1 -Butene 
2,2-DM-Butane 
2-M-Pentane 
3-M-Pentane 
n-Hexane 
3,3-DM-Pentane 
cyclo-Hexane 
3-M-Hexane 
3-E-Pentane 
n-Heptane 
2,2,4-TM-Pentane 

Component koH' (ppm-' min-') Component koH* (ppm-' min-') 

4.1 x l o 2  Benzene 2.1 x l o 3  
1.2 x l o 4  M-cvclo-Hexane 1.2 x l o 4  
2.8 x l o 3  
3.7 x l o 4  
4.0 x l o3  
4.8 x l o3  
1.0 x l o3  
5.0 x l o 4  
0.3 x l o 4  
5.1 x lo3 
5.3 x l o 4  
7.4 x l o 3  
1.3 x l o 5  
4.0 x l o 4  
2.9 x l o 3  
7.4 x l o 3  
1.0 x l o 4  
0.7 x l o 3  
4.6 x l o 3  
1.0 x l o 4  
9.1 x l o 3  
9.1 x l o 3  
9.1 x l o 3  
5.5 x l o 3  

2,Z-DM-Hexane 
2,3,4-TM-Pentane 
3,M-Heptane 
2,M-Heptane 
3,E-Hexane 
cis-l,3-DM-c-Hexane 
n-Octane 
trans-l,3-DM-c-Hexane 
Toluene 
E-cyclo-Hexane 
3,3-DM-Heptane 
2,3-DM-Heptane 
c-cyclo-Octene 
1 ,S,S-TM-c-Hexane 
t-cyclo-Octane 
cyclo-Octane 
E-Benzene 
p-Xylene 
m-Xylene 
o-Xylene 
Styrene 

6.3 x l o 3  
1.1 x l o 4  
1.1 x l o 4  
1.1 x l o 4  
1.1 x l o 4  
1.4 x l o 4  
1.2 x l o 4  
1.4 x l o 4  
9.0 x l o 3  
1.4 x l o 4  
8.0 x l o 3  
1.2 x l o 4  
1.0 x l o 4  
1.5 x l o 4  
1.0 x l o 4  
1.4 x l o 4  
1.2 x l o 4  
1.9 x l o 4  
3.3 x l o 4  
2.0 x l o 4  
7.8 x l o 4  

'Most of values were taken from Atkinson eta/., 1979; styrene from Bigozzi eta/., 1981. 
When not experimentally available for paraffinic compounds, koH was estimated from an 
empirical equation 
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Figure 8. August 6, 1980 flight path over Tokyo for organic sampling. Arrows 
indicate wind vectors; # sampling points; NO, and 0, concentrations 
are at 350 m altitude (Uno et a/., 1985b). 

0, as well as with the OH-radical. Nonetheless, over 2 or 3 hours there was 

relatively little change in the composition ratios except for propylene and possibly 

ethylene. It is also important to recognize that the multi-variable fitting technique is 

based on the ratio of each component to each of the others, and so will not be 

affected even as much as might be suggested by Figures 9 and 10 where ratios 

are only shown with respect to benzene. The 2 or 3 hour advective time of 

passage from source to receptor is typical of many urban settings. 

Figures 4 and 7 also indicate that reactivity was not a problem for comparing 

refinery emissions with allocated contributions to ambient concentration. In Figure 

4, the mid-flight time is given for each point. However, the data show no 

groupings which reflect time of day. For example, the two points at Q/x = 48 and 

Q/x = 56 kg/h.km are for early morning and noon. If reactivity were very 

important for the refinery fingerprint, this would be reflected in the coefficient but 

not in Q/x, and the noon point should not agree with the rest of the points, and 

particularly not with a point taken around sun-rise. In Figure 7, ambient 
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Figure 9. Hydrocarbon concentration/benzene concentration (C, - j-CJ vs. 
relative advection time. Run 6, August 6, 1980; Advection times from 
back trajectories (Uno et a/., 1985b). 
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vs. relative advection time. Run 6, August 6, 1980; Advection time from 
back-trajectories (Uno et a/., 1985b). 
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temperature ranges are given for each point. Temperature is a useful surrogate 

for ozone-forming potential since ozone concentrations above 0.08 ppm have 

notbeen observed at maximum temperatures ( 77°F (25°C) for Chicago (Wadden 

et a/., 1979). The data do not show the temperature-dependent patterns which 

would be expected if reactivity were an important factor in the CMB prediction. It 

is also notable that all of the samples in this study were collected from noon to 

1:00 p.m., a period when temperature effects and ozone production would have 

had plenty of time to occur. 

The Chicago winter-summer NMOC comparison with the emission inventory 

data in Table 7 also indicates that reactivity effects were not major. With the 

exception of refineries (discussed above), the summer-time CMB predictions were 

consistent with the emission inventory which is intended to be representative of 

warm-weather conditions. In addition, the CMB-estimated contributions from 

gasoline vapor, architectural coatings, graphic arts, and vapor degreasing all 

increased from winter to summer, as would be expected for such temperature- 

dependent emissions. 

As a general comment, in the time/space intervals for which the model is 

applied in urban settings, (1-4 hr, 50-80 km), reactivity does not significantly effect 

the accuracy of prediction. This means that the various source fingerprints are 

not distorted by reaction effects to the extent that the respective source categories 

cannot be separated in the ambient sample. However, application of the 

approach over much longer distances or extended times, or use of fingerprints 

with more reactive materials, may require a more specific accommodation of the 

reactivity effect. 
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Chapter 8 

RECEPTOR MODELING IN THE CONTEXT 
OF AMBIENT AIR QUALITY STANDARD FOR PARTICULATE 

MATTER 

Thompson G. Pace 
Office of Air Quality Planning and Standards 

U.S. Environmental Protection Agency 
Research Triangle Park, NC 2771 1 

1. INTRODUCTION 

The focus of this chapter is a detailed discussion of the source attribution 

process and the model reconciliation process, including a detailed example of 

model reconciliation. It begins with a brief discussion of the National Ambient Air 

Quality Standards (NAAQS) which are established in the United States under the 

Clean Air Act. The chapter compares the air quality management and emission 

limitation approaches of source control and briefly overviews the control strategy 

development process. This chapter is not intended as a reference on the 

technical aspects of the receptor methods, as are described elsewhere in this text. 

Receptor methods, briefly stated, are a family of techniques which examine the 

ambient sample and the conditions of its collection to infer the types and relative 

mix of sources of pollution impacting the sample. Dispersion models, in contrast, 

use information on source emission rates and meteorology to estimate the 

contribution of these sources to daily or annual average conditions. The terms 

"model" and "method" are used interchangeably, even though techniques such as 

scanning electron or optical microscopy are methods, not models. The selection 

of appropriate receptor or dispersion models depends upon several 

considerations discussed below. 

2. AIR QUALITY MANAGEMENT FOR PARTICULATE MATTER 

Air Quality Management is the process of 1) determining what atmospheric 

concentration of a particular pollutant is acceptable in order to protect public 

health and welfare, 2) determining what level of source emissions of that pollutant 
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in a particular airshed can be allowed if the specified concentration is not to be 

exceeded and 3) developing regulations to ensure that emissions are reduced to 

and maintained at or below that level. 

2.1 National Ambient Air Quality Standards 

Section 108 of the Clean Air Act (CAA-42 U.S.C. 7408) directs the 

administrator of the U.S. Environmental Protection Agency (EPA) to identify 

pollutants which may be reasonably expected to endanger public health or welfare 

and to issue air quality criteria for them. Section 109 directs the Administrator to 

propose and promulgate primary and secondary NAAQS to protect public health 

and welfare, respectively for these "criteria" pollutants. Currently, NAAQS have 

been established for lead, sulfur dioxide, ozone, oxides of nitrogen, carbon 

monoxide and particulate matter. 

In 1971, EPA promulgated NAAQS for particulate matter measured as total 

suspended particulate matter (TSP). The primary standards were set at 260 

ug/m3, 24-hour average not to be exceeded more than once per year, and 75 

ug/m3, annual geometric mean. Also, a secondary TSP NAAQS was set at 150 

ug/m3, not to be exceeded more than once per year. On July 1, 1987, EPA 

promulgated revisions to the particulate matter ambient standards which include a 

replacement to the indicator such that only particles smaller than 10 um 

aerodynamic diameter are measured (i.e. PM-10). The 24-hour primary PM-10 

NAAQS was set at 150 ug/m3, expected annual arithmetic mean. The secondary 

NAAQS was set to be identical to the primary standard. 

2.2 The State Implementation Planning (SIP) Process 

The states are responsible for regulating the level of source emissions of 

PM-10 in each airshed through the SIP process. Section 110 of the CAA requires 

the states to submit, for EPA approval, SIPS that provide for attainment and 

maintenance of the PM-10 NAAQS. This is accomplished through the 

development of a SIP control strategy to reduce source emissions in those areas 
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which exceed the PM-10 NAAQS and, in all areas, to ensure that the NAAQS will 

not be exceeded in the future due to growth. 

States that have areas which exceed the PM-10 NAAQS are required to 

adopt and submit a SIP within 9 months after an exceedance of an NAAQS. 

Section 110(a)(2) lists the requirements for such a SIP. EPA has promulgated 

regulations under 40 CFP 51.1 12 requiring that states demonstrate through 

modeling or an adequate alternative that this control strategy will provide for 

attainment and maintenance. This "demonstration of attainment" requires the 

identification of the sources of that pollutant in the airshed and determination of 
each source's impacts on PM-10 ambient concentrations. This process is often 

referred to as "source attribution". The sources may be discrete "point" sources 

(e.g. steel mill refinery) or ubiquitous area sources (e.g. windblown dust). Control 

strategies must be developed which establish emission limits for both types of 

sources. The emission limits are designed to attain the NAAQS and ensure that 

attainment will be maintained for at least ten years. 

In contrast to this "air quality management approach" used in the United 

States for the criteria pollutants, some countries use an emission limitation 

approach that uniformly regulates the emissions from each specific source 

category without particular regard to that pollutant's air quality or ambient pollutant 

concentrations in the airshed in which the source is located. The United States 

applies this concept of uniform emission limits for sources regulated under the 

National Emission Standards for Hazardous Air Pollutants (NESHAPS) program, 

but even then, the ambient concentration estimated for representative sources of 

the hazardous pollutant of concern is considered when the uniform emission limit 

is established. The air quality management approach used for PM-10 necessitates 

a clear understanding of the nature of the PM-10 problem in each airshed of 

concern, including the attribution of the ambient concentration to its component 

sources. Receptor modeling is an important tool in the source attribution process. 
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3. PM-10 SOURCE ATTRIBUTION 

As noted earlier, establishment of emission limits in a control strategy 

requires the attribution of the ambient concentration in an airshed to its 

component sources. Accurate determination of emission limits is dependent on 

this source attribution study. 

Two methods, receptor and dispersion modeling, are the linchpins of the 

control strategy development process. Either used alone can usually provide an 

adequate source attribution and basis for establishing emission limits. However, 

the synergy created by the combined use of receptor and dispersion modeling 

often results in a much improved source attribution study. This section contrasts 

and compares the receptor and dispersion approaches and section 4 will discuss 

the combined use of these models in detail. 

3.1 Receptor Model Selection 

Several considerations related to the nature of sources emitting PM-10 

influence selection of the receptor model(s) for SIP purposes. These include: 1) 

the availability of particle size data for the emissions from predominant sources, 2) 

prior knowledge of the sources, 3) chemical similarity of the sources, 4) the need 

to identify individual sources vis-a-vis source categories, and 5) the time scale of 

interest. The factors affecting the selection of receptor models are summarized in 

Table 1 and discussed below. The chemical mass balance (CMB) is considered 

the most advanced of the receptor methods listed in Table 1. The other methods 

include factor analysis (FA), automated scanning electron microscopy (ASEM), 

and optical microscopy (OM). The FA, ASEM, and OM are not generally 

considered quantitative and FA requires at least 40 samples to complete an 

analysis. The reader is referred to the Receptor Model Technical Series (U.S. 

EPA, 1981a,b; 1983; 1984; 1985a; 1987a; Pace and Watspn, 1987; Watson and 

Pace, 1987) for technical and cost information and U.S. EPA (1987b) for 

applicability information). 
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Table 1. Selecting Feasible Source Apportionment Methods Based on Data 
Availability and Source Characteristics 

Air Shed 
(Specific 

Isolated Air Shed Sources 
Sources Sources Chemical Fingerprints Single (Source Within 

Method Known Unknown Similarity Disimllar Sourca Categories) Categories) 

Chemical 
Mass Y a,b,Y Y Y Y b.Y 
Balance 
CMBI 

Factor X X b.X X X X 
Analysis 
lFAI 

Automated 
Scanning X X b,X X X X b,X 
Electron 
Microscopy 
(ASWMI 

Optical X X b,X X X X b.X 
Microscopy 
lOMI 

Dispersion W 
Model (DMI 

W W w W W 

a 

b 

Initial use of factor analysis may be helpful. 

Useful if a source can be isolated from other similar sourc8s by wind direction. Method usually cannot 
otherwise distinguish between sources in Same category. 

Useful for fine particles larger than 1.0 um. 

Appropriate to use in conjunction with CMB or DM. 

Appropriate lo  use with DM or FA, ASEM or OM. 

c 

X 

Y 

W Appropriate to use. 

3.1.1 Particle Size 

Many researchers have discussed the bimodal distribution of particulate 

matter which results from the tendency of some source categories to emit 

predominantly fine (< 2.5 um) or coarse (>2.5 urn) aerodynamic diameter 

particles. Sources which emit predominantly fine particles include those emitted 

by the combustion of fuels (motor vehicles, boilers, field and forest burning, wood 

stoves, etc.) and industrial processes involving combustion, chemical reaction, or 

condensation of vapors. Sources of coarse particles in the atmosphere include 
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windblown dust from storage piles, agricultural fields, etc., vehicle re-suspended 

road dust, pollens, and fugitive emissions from industrial process sources. 

Various receptor models such as chemical mass balance and factor analysis are 

well suited to analyze sources of either fine or coarse particles. Optical and 

scanning electron microscopy are suitable for coarse and fine particles down to 

about 1 micrometer in size but work better on coarse particles. Most receptor 

models generally work best when the sample is segregated by size range (e.g., 

fine and coarse) because their size ranges are associated with different types of 

sources. 

3.1.2 Prior Knowledae of Sources and Emissions 

In many instances, the sources suspected of contributing to ambient PM-10 

concentrations at a particular site are apparent. However, the relative contribution 

of each source is needed. Any of the methods discussed in this text could be 

used to give source apportionment information if the sources are identifiable, and 

the methods are properly applied. However, the mass balance requires 

knowledge of sources and their emission characteristics. If some sources are 

unknown, FA, ASEM, or OM might prove useful, especially if they are followed by 

a CMB analysis. 

3.1.3 Chemical Similarity 

The availability of "fingerprints" or source profiles for the sources of interest 

will often determine the optimum receptor model to use. A source profile is the 

characteristic chemical or morphological pattern of the emissions from a source 

that is used to distinguish it from other sources (U.S. EPA, 1985b). Some sources 

have fairly distinct fingerprints, while others do not. Since combustion source 

emissions are predominantly composed of carbon, there is very limited chemical 

information upon which to differentiate among the various types of combustion 

sources. Some insights might be gained by examining the optical properties or by 

using radiocarbon techniques (14C/12C ratios) which can distinguish between 

modern or fossil carbon (e.g., wood smoke versus fuel oil). Another common 
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source profile problem is distinguishing among sources whose emissions are 

comprised of soil or distinguishing between flyash and soil. Optical properties can 

be useful for some situations where fingerprints are similar. Also, X-ray diffraction 

(XRD) is very useful to identify various minerals by examining their crystalline 

structure. 

3.1.4 Sources Versus Sou rce C a t e m  

Any of the receptor models listed in Table 1 can be useful in identifying the 

impact of an isolated specific source unless it’s profile is similar to that of the 

background air. Likewise, the techniques can be used to identify many of the 

source categories within an airshed, recognizing the limitations identified in the 

preceding discussion. However, the impact of specific individual sources within an 

airshed which contains multiple sources of the same category may not be reliably 

identifiable except by using wind directional data or by using a dispersion model. 

In some cases, a receptor model can be used to estimate the sum total impact at 

a receptor due to a number of chemically similar sources; then, an emission 

inventory can be used to help estimate the individual source contributions. 

3.1.5 Advantaaes and Disadvantaaes o f Receptor Models 

Receptor models offer a powerful advantage to the source attribution 

process because their results are based on the interpretation of actual measured 

ambient data. However, receptor models are not a panacea for all situations. 

They are limited spatially and temporally to the particular set of samples being 

analyzed. Obviously, they cannot be used to predict the impact of future sources. 

Each type of receptor model has specific advantages and limitations as listed in 

Table 2. More detailed discussion on these models can be found elsewhere in 

this text. 
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Table 2. Source Attribution - Receptor Models 
Advantages and Disadvantages 

Source 
Apportionment 
Tools Advantages Disadvantages 

RECEPTOR MODELS 

Microscooy 
Optical 

SEM 

Automated SEM-XRF 

Chemical 
Enrichment Factors 

Time Series Analysis 

Chemical Mass Balance 

Multivariate Analysis 

Radioisotope Analysis 

PhySical 
X-Ray Diffraction 

Trajectory Analysis 

Use of color, surface texture and optical 
properlies for particle identification. 

Can be used with particles > l u m  

Classifies panicles by size. shape and 
elmental composition, Analytical speed, 
ability to count large numbers of particles 

Provides evidence of a source category's 
impact from elemental ratios. Simple. 

Shows temporal variability. Simple, in- 
expensive. 

Provides quantitative estimates based on 
measured data. Impact uncertainties 
provided 

No prior knowledge of sources needed to 
resolve element patterns. Source 
composition required to interpret results 

Direct vs. "modern" quantitative measure 
of fossil carbon (e.g., coal or oil versus 
wood) 

Direct identification of crystalline 
composition 

Helps identify approximate source 
location 

Limited to particles >2um, semi- 
quantitative. highly dependent on 
operator skill. 

Costly to use on large numbers 01 
panicles, not quantitative if sample 
contains large variation in particle 
size. 

Only a lew labarotories have 
ASEM capability& the 
necessary experience to interpret 
the results. 

Usually semi-quantitative: requires 
source composition data. 

Generally does not provide 
specific source impact information. 

Source composition data required. 
Chemically similar sources cannot 
be independently identified by 
CMB alone. 

Generally semi-quantitative. Large 
data sets rewired. 

Costly. Limited to fossil-"modern" 
carbon apportionment, Few labs 
offer analytical service. 

Coarse particles only, not useful 
for amorphous aerosols. 

Cannot quantitatively estimate 
specific source impacts 
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3.2 Special Considerations for PM-10 Dispersion Modeling 

Technical documentation of the various alternatives for dispersion modeling 

are well established in the U.S. EPA’s Modeling Guideline and will not be 

discussed here (US. EPA, 1986). 

The Modeling Guideline provides a detailed discussion on 1) selection of 

appropriate source and meteorological data for use with dispersion models, 2) 

location of receptor sites, 3) selection of model options, 4) determination of 

urban/rural classification and 5) determination of background air quality. 

For those cases where the techniques in the Modeling Guideline either are 

not available or not applicable, alternative modeling approaches must be 

considered on a case-by-case basis. 

3.2.1 Inwt  Reauirements for DisDersion Models 

Dispersion Models are based on knowledge of each source’s emission 

release conditions (e.g., stack height, exit velocity, temperature) and dispersion 

characteristics (e.g., wind speed, direction, mixing height, atmospheric stability) to 

estimate it’s concentration at a set of locations (receptors) in the airshed. 

Dispersion models can estimate source contributions reliably if the model is 

technically applicable to the conditions being modeled and if the source and 

atmospheric conditions are well characterized. A list of dispersion models 

applicable to PM-10 analysis is given in Table 3. 

3.2.2 Advantaaes and Limitations of Dispersion Models 

Dispersion models are more reliable for estimating longer time-averaged 

concentrations (e.g., annual average) than for estimating short-term 

concentrations (e.g., 24-hour) at specific locations (Core and Pace, 1981) Point 

source models are reasonably reliable in estimating the magnitude of the highest 

concentrations occurring sometime, somewhere within an area. Errors in 

estimating the highest concentrations are typically _f 10 to 40 percent for sources 

that can be adequately characterized. The multiple source urban model RAM 

showed no significant bias in estimating l-hour ground level concentrations for a 
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Table 3. Dispersion Models Applicable to PM-10 Analyses". 

1 TO 24-Hour 
Averaae Annual Averaae Screenina Techniques" 
CRSTER CRSTER PTPLU-2 

MPTER MPTER COMPLEX I 

RAM RAM VALLEY 

ISCST ISCLT 

CDM 2.0 

* For more information concerning the applicability of these models, 
consult the Guideline on Air Quality Models (Revised) (USEPA,1986) 
As noted in this document these models may also be used for TSP 
modeling analyses in conjunction with a suitable TSP emission 
inventory, as a surrogate, where PM-10 data bases are inadequate. 

** These models are considered to be screening techniques for use prior 
to a more refined analysis as outlined in the Guideline on Air Quality 
Models (Revised) (USEPA, 1986). 

13-station monitoring network in St. Louis. The average network cumulative 

frequency distributions of hourly estimated and observed concentrations differed 

by no more than + or - 30 percent over the entire concentration range. However, 

estimates of concentrations that occur at a specific time and site tend to be poorly 

correlated with observed concentrations and are less reliable, should this 

performance attribute be important in a regulatory application (U.S. EPA, 1987b) 

3.3 Model Selection 

Table 4 contains general recommendations for source apportionment based 

on the time scale (annual or 24-hour) of the non-attainment problem and the data 

base available. The choices in the table are in order of preference, with the 

preferred approach listed first. 
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Table 4. Order of Preference for Approaches for PM-10 Source Apportionment 
(USEPA, 1987b). 

Applicable dispersion 
and receptor model 

Applicable dispersion 
model 

Receptor methods 
(at least 2) CMB w. 
corroborating method 

The CMB is recommended as the primary method to be used in regulatory 

applications of receptor models to PM-10 data (US. EPA, 1981b; 1983; 1987a). 

However, there is uncertainty in any source apportionment approach. Therefore, 

if CMB is used for source apportionment (without combining with a DM), it is 

required that at least one other receptor modeling approach be used as a 

corroborating analysis (U.S. EPA, 1987b). This may be FA, OM, ASEM, 

microinventory, trajectory analysis, XRD, or other corroborating approach as 

selected from those discussed in Volume I of the Receptor Model Technical 

Series (US. EPA, 1981a). Other receptor models are discussed in the Digest of 

Ambient Particulate Analysis and Assessment Methods (Throgmorton and Axetell, 

1978). For regulatory applications involving PM-10, it is strongly urged that either 

optical microscopy or ASEM be used to corroborate CMB, along with intensive 

chemical analysis (sulfate, carbon and other elements) of the samples (U.S. EPA, 

1987b). The OM or ASEM should be used instead of CMB if only TSP data are 

available. It is also strongly urged that the CMB be performed on size fractionated 

PM-10 samples, (i.e. fine and coarse fractions, below and above 2.5 urn). This 

greatly increases the resolution of the techniques. 



266 

3.4 Using Receptor and Dispersion Models in Combination 

Several demonstrations have been made where receptor models were used 

to help evaluate the results of dispersion modeling (Core eta/., 1982). This is the 

recommended approach for control strategy development. It is especially useful 

when the emission inventory used in a dispersion model is determined to be 

marginally adequate. The results of the receptor model can be used to carefully 

scrutinize the inventory assumed in the dispersion model to deduce whether 

emissions from certain source categories appear to have been adequately 

characterized. The use of a receptor model, such as CMB, in conjunction with 

dispersion modeling, is highly recommended in such situations. However, the use 

of dispersion and receptor models together often produces different results and 

these results must be reconciled. 

4.0 RECONCILING RECEPTOR AND DISPERSION MODEL RESULTS 

There are at least three generic cases which require model differences to be 

reconciled (Trijonis, 1985). The Protocol for Reconciling Receptors and 

Dispersion Model Results discusses this process (US. €PA, 1987~) .  The first 

case is when the results strongly suggest that at least one of the models has a 

significant error. The second case is when the model estimates are not disparate, 

but the overall uncertainty is judged to be large. Resources devoted to further 

refinement of the models and data bases might significantly reduce the 

uncertainties. The third case, a very common one, includes situations where one 

model is better for some source types, and another is better for other source 

types. Refinement of the final source contribution estimates should be cognizant 

of the suitability of each model to the suspect sources. Trijonis (1985) reports that 

the literature assumes that CMB models are more reliable than dispersion models 

for quantifying the impact of source cateaories. In contrast, the DM can deal 

explicitly with emissions from single, identifiable sources within the same source 

category. However, in order to do so, the DM must rely on several potentially 

uncertain inputs (emissions data, meteorological data, and the transport-diffusion- 

transformation-deposition mechanisms). Because of their fundamentally different 
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approaches, the CMB and DM are complementary in their approach to source 

apportionment and using both can reduce the limitations of each alone. 

4.1 CMB-DM Reconciliation 

The CMB-DM reconciliation process is based on the premise that the 

receptor and dispersion models provide independent estimates of source 

contributions, rely on different data bases, have different underlying assumptions, 

and have different strengths and weaknesses. Generally, other receptor methods 

are used first, then the CMB is performed and, finally, the DM is run. Figure 1 

depicts the flow of information if this order is maintained. At each step, the results 

of the other analyses are used to corroborate the ongoing analysis (U.S. EPA, 

19874). Other receptor methods may be used to corroborate the CMB; These 

methods are discussed elsewhere in this volume. 

The reconciliation of CMB-DM results should follow an eight-step protocol 

involving comparison, reverification of input data, refining the inputs to both 

models, and rerunning the mode@) if necessary. The reconciliation protocol 

described in the remainder of this document assumes that both the dispersion 

model and CMB have been determined to be applicable and that preliminary 

results have been obtained for both models. The reconciliation process ends with 

control strategy development using the dispersion model unless the dispersion 

model is found to be inconsistent with the majority of the physical data. In such 

case, the CMB along with other receptor models would be used with a 

proportional model to develop a control strategy (U.S. EPA, 1987b). 

4.1.1 3 
There are several issues that must be resolved in order to compare CMB 

and DM results: 1) consideration of suitable periods for sampling and analysis, 

with particular emphasis on source emission variability and meteorological 

conditions; 2) the issues of secondary particulate matter and background; and 3) 

grouping of the sources. These issues are discussed in the following paragraphs. 
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Figure 1. Information Flow for Source Apportionment and Control Strategy 
Development. 
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4.1.1 . I  

Attainment of the NAAQS is generally calculated based on ambient data. 

Selection of Samplina Periods for Analvsis and Comparison. 

Ideally, for comparison purposes, the DM would be run for the actual monitoring 

period and CMB analyses would be available for each day during that same 

period. However, this ideal is virtually never achieved for numerous reasons of 

cost and practicality. For example, in assessing potential causes for not meeting 

the annual NAAQS, the DM may have to be run using meteorological data 

representing different years than those on which non-attainment is based. In that 

case, it would be necessary to perform CMB on a subset of days which are 

representative of the measured concentrations during the time period covered by 

the DM but also representative of the overall meteorology during that time period. 

In addition, the number of samples to be compared must reflect the seasonal 

differences in measured concentrations. In CMB applications relating to the 

annual NAAQS, a minimum of five samples in each quarter are considered 

necessary to obtain representative. 

For violations of the 24-hour NAAQS, it is preferable to apply the CMB model 

on the days on which "exceedances" of the NAAQS were observed. In this case, 

one would analyze and compare all observations greater than the level of the 

NAAQS. In order to obtain representative results, a minimum of five samples 

(e.g., the five highest values) should be compared. If there are fewer than five 

observed "exceedances" of the NAAQS, the five highest values overall should be 

used so that the analysis is based upon a representative number of days. If a 

receptor model study is undertaken for a short time period, it must be shown that 

the period covered is generally representative of the types of source activity and 

meteorology that are associated with any exceedances which were not measured 

during the receptor model study period. The source operating levels must be 

similar and dispersion conditions and wind deviation during the shorter period 

must be such that the same sources would be expected to contribute to 

measured concentrations. The receptor modeling is most useful if exceedances 

are measured during the receptor study. 
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Unfortunately, a 24-hour emissions inventory appropriate for specific days 

may not be available or obtainable. Inventories usually contain annual average 

emissions. Thus, associating "dates" with the dispersion model results, which are 

based on annual emissions, may give unreliable results. In such cases, an 

"aggregate" comparison of the analysis results is recommended. To make an 

"aggregate" comparison, select a subset of dispersion model 24-hour estimates 

that has dispersion meteorology similar to that which occurred on the CMB 

analysis days (i.e. days with similar wind velocities and precipitation/cloud cover). 

Then, compare the source contributions for each CMB analysis with the average 

source contributions for the corresponding subset of dispersion modeled days. 

4.1.1.2 

In many cases, the receptor model is used for source apportionment at 

Backaround and Secondary Particulate Matter. 

urban or source oriented sampling sites, and the apportionment will include not 

only the "urban" contribution but also the background component which has been 

transported to the urban area from elsewhere. In such cases, it is usually 

necessary to perform an analysis on a nearby background receptor so that the 

background or regional contributions to ambient PM-10 observed at urban or 
source-oriented sites can be distinguished. This receptor analysis at a 

background site is necessary, for example, to distinguish between locally 

generated soil dust and that transported into the area. Receptor analyses from 

the background and other ambient monitors are then compared. Source 

categories that were identified on both urban and background monitors should be 

noted and estimated contributions of these sources at the study (urban) monitor 

should be reduced by the amount of their impact at the background site. In this 

process, one must carefully select the background days for receptor analysis to 

make sure they are "upwind" and are not impacted by local sources, and 

adjustments must be made to the CMB results prior to CMB-DM comparisons. 

Also, this reduction in urban contributions must be made carefully when 

background sources are chemically similar to sources in the urban area (e.g., soil 
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and re-suspended street dust), especially if the background site has considerable 

impact from localized sources. 

4.1.1.3 GrouDina of Sources. 

CMB is usually only useful for identifying source cateaories contributing to 

ambient PM-10. In contrast, DM can identify contributions from individual sources. 

Thus, source contributions from the CMB and the DM must be grouped in such a 

way that contributions from chemically similar sources can be intercompared. To 

accomplish this, the DM results are usually regrouped into larger "categories" or 

source groups with similar emission chemistries. 

For example, perhaps a monitored sample was obtained from a coking 

operation. From a literature review or from experience, it is determined that the 

following operations at a steel making facility have emissions chemically similar to 

the coke sample: 

Quenching 

Pushing 

Charging 

Finished Coke Storage Pile 

The "coke" source contribution calculated by the CMB would conceivably 

represent all of these specific sources. The DM output should group all of these 

sources together into a "coking" group; alternatively, the DM estimates for these 

sources could be manually grouped in a separate tabulation after the model is 
run 

For purposes of CMB-DM model reconciliation, a little judicious planning can 

make the comparison of CMB with DM results fairly straightforward. This 

comparison can enhance confidence in the models themselves if good agreement 

is found. Grouping of DM sources is performed as follows: 

(a) Review the source profile and CMB source contribution categories to 
determine what sources they really include or represent. For example, 
a "sea salt" source might include salt from ocean spray and also salt 
which was spread for ice anti-skid control (U.S. EPA, 1987a). 



Review the Emission Inventory (El) and decide which DM sources 
collectively comprise each CMB source category. 
Also, identify any un-modeled sources (e.g., continental dust, sea salt, 
etc.) that might be represented by the CMB source category. 

Combine the DM sources into groups that are consistent with CMB 
source categories. 

Identify any sources which were significant contributors in the CMB 
analysis but which were not in the DM emission inventory. 

Add these sources to the El as appropriate. 

Rerun the DM. 

Make sure that the CMB has considered all nontrivial sources which 
were identified in the DM inventory. Rerun the CMB if necessary. 

4.1.1.4 ComDarison of Results. 

The grouping of sources described above allows a comparison of the DM 

and CMB estimates of the fractional or percentage contributions to the total 

calculated PM-10 mass. First, establish an interval of + or - 30 percent around 

the DM results and + or - one standard error (from the CMB output) around the 

CMB results. If these intervals overlap, no further refinement is generally 

warranted. However, if the DM results imply a source group is a major contributor 

and the CMB results imply that it is not (or vice versa), the results must be 

reconciled, even if the comparison criterion (above) is met. If further refinement of 

the models or inputs are needed to meet the criterion, the procedure for doing so 

is described in the following section. Note that the + or - 30 percent interval 

about the DM is only for use in this intercomparison; it is not intended as a 

confidence interval for the DM. 

4.1.2 Protocol SteD 2: Verifv InDut Data in Both Models and Rerun if 
Necessary 

This step ensures that the difference in CMB and DM results is not due to 

trivial or inadvertent problems with data entry. It should focus on the data entry 

process to verify that the models were run using the intended data. The data 
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review should include the ambient and source profile data, emissions data and 

meteorology. If all data are correct, skip to Step 4. 

4.1.3 Protocol Stea 3: Recompare Results 

Any differences found in model estimates due to data entry should not be 

eliminated. Revised model results can now be compared, as discussed in 

Protocol Step 1. If the comparison criteria are not met, the next step is to 

reexamine model inputs, focusing initially on the CMB model. 

4.1.4 Protocol Step 4: Refine CMB Model Inputs 

This is an in-depth review of the CMB model inputs, focused on those 

source groups where large differences occurred between CMB and DM source 

category contribution estimates. Because of the validation that the CMB 

application should have received, it is unlikely that there are any substantive CMB 

model input problems which were not apparent from the preliminary analyses. 

However, insights available through the DM analysis may highlight new 

problems or confirm suspicions that the modeler may have already had about 

weaknesses in the CMB that could not be previously substantiated. Also, it is 

appropriate to review the results of other receptor analyses at this point. This 

review may require modifying the model inputs or addressing collinearity (US. 

EPA, 1987d) 

All measurements have some imprecision or uncertainty about them, and 

there will be some inherent underlying "noise" level in the data set which cannot 

be reduced by a reasonable allocation of time and resources. The user should 

review the CMB validation in light of the DM results (US. EPA, 1987d) If any 

weaknesses become apparent, address them to the extent time and resources 

permit, focusing on the source groups with disparate estimates. Then rerun the 

CMB model, if any refinements were made. It is not appropriate to be satisfied 

that a revision to a parameter will "fix" a discrepancy technical justification is 

required. 
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4.1.5 Protocol Ster, 5: Recompare Results 

Any remaining differences found between CMB and DM model estimates are 

best addressed by closer examination of the dispersion model. If the comparison 

criteria in Step 1 are met, skip to Step 7. 

4.1.6 Protocol SteD 6: Refine Dispersion Model Inputs and Rerun 

This is an in-depth review of the dispersion model, focusing on those source 

groups for which large differences occur between DM and CMB. This review 

should include: 1) the appropriateness of emissions data, which are based on the 

identification of sources and their locations, activity rates, emission factors and 

release heights; 2) meteorological data; and 3) underlying assumptions in the 

model itself and its dispersion, transformation, and removal algorithms. U.S. EPA 

(1984) gives examples of factors that primarily affect individual source-to-monitor 

impacts: 

Erroneous emission data caused by such items as the omission of un- 
known sources from the modeling or the use of inaccurate information. 

The use of inappropriate emission rates, such as the use of total 
particulate matter emission rates which include particle sizes larger 
than PM-10 sample. 

Incorrect information concerning daily source operating parameters. 
For example, which a source may operate at 45 percent capacity on 
an annual basis, its actual mode of operation may be a 90 percent for 
a large number of days a year. 

Neglect or incorrect consideration of downwash from tall stack 
sources. 

Neglect or incorrect consideration of particles re-suspended by the 
wind or mechanical action. 

Building interference causing source-to-receptor (i.e., source to 
monitor) geometry to be incompatible with Gaussian dispersion 
assumptions. 

Local meteorology differing from that modeled. A typical problem is 
wind direction shift or channeling caused by buildings or topographic 
features. 
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Anderson et a/. (1986) suggests that these emissions and meteorological 

data problems can often be satisfactorily resolved by: 

(a) Identifying significant sources of source groups from the CMB results; 

(b) Assigning a "level of confidence" to emission and meteorological 

parameter estimates for each significant source or source group, 

based on engineering estimates. The "confidence level" information 

needed for this analysis may be found in Volume V of the Receptor 

Model Technical Series (US. EPA, 1984) Ideally this analysis should 

be completed before the CMB and DM are run; and 

Revising the emission and meteorology parameter estimates, as 

appropriate. It is not sufficient to know just that a revision to a 

parameter will "fix" a discrepancy. Technical justification is required to 

document all changes that are made. The pattern of discrepancies at 

different receptors may also aid in identifying potential inventory errors. 

For example, large under- or over-prediction by the DM at a receptor 

very close to a source may suggest possible errors in source receptor 

geometry. Large over-prediction at receptors far from a source could 

suggest an erroneous particle size distribution in emission factors. 

Experience with dispersion models and emission inventories will play 

an important role in diagnosing potential inventory problems. 

The dispersion model is then rerun, using the revised input parameters. 

4.1.7 Protocol Step 7: Recompare Results and Evaluate the Dispersion 

The revised dispersion model results are again compared with the CMB 

results to determine whether further modifications to the dispersion model or 

meteorological inputs are warranted. 

Model 
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Anderson et a/. (1986) provides examples of factors that are not typically 

addressed by the dispersion model that may cause systematic biases in model 

results. These factors are addressed in various nonguideline models that are 

currently available. 

0 Heat island effects which cause the actual near-source dispersion of 
elevated emissions to be greater than that modeled. 

Sea/land breeze and convergence zone effects. 

Effects caused by the fumigation of tall stack emissions. 

Effects caused by the development of thermal internal boundary layers 
(TIBL) over areas with varying surface heating characteristics. 

0 

0 

0 

Remedies to these problems might include acquisition of additional 

meteorological data, choice of different model options or modification of 

dispersion algorithms to meet local dispersion conditions and source 

characteristics. Such problem specific model modifications may prove a time and 

cost effective alternative to additional sampling and analysis. These remedies 

should be applied to the extent permitted by time and resource constraints. 

4.1.8 Protocol SteD 8: Final Model Estimates as Basis for Control Strateav 

The reconciliation process should help improve both the initial DM and CMB 

results so that the differences between models are resolved. If this is the case, it 

is recommended that the DM model be used for control strategy development. If, 
however, it is clearly evident that the dispersion model results are inconsistent with 

the majority of the physical data and cannot be made consistent through justifiable 

modifications to the input data, the CMB estimates should be used as the basis 

for control strategy development. It is better to use the results of the method 

believed to provide the best results, rather than average the results of two or more 

methods. 
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4.2 Example Application of Protocol in an Industrial Area 

This section describes an example application of the protocol for a 

nonattainment site located within an industrial area. The example was adapted 

from an actual environmental case study by Anderson et a/. (1986). It was 

modified where necessary to illustrate the use of the protocol. All modifications 

were cognizant of what could and would have actually been done in the 

reconciliation had time and resources permitted (DeCesar, 1987). In this example, 

the causes of the elevated concentrations of PM-10 are not apparent due to the 

large number of point and area sources located relatively close to the monitoring 

site. Based strictly on the emission inventory, stack and fugitive dust emissions 

from a large steel mill as well as traffic generated resuspended road dust appear 

to be potentially large contributors to the particulate matter observed at the 

monitoring site. An investigation, which includes ambient and source data 

collection, OM, pollution rose (a form of trajectory analysis), dispersion modeling 

(DM) and chemical mass balance (CMB) modeling efforts, was conducted in order 

to apportion the source impacts with the level of confidence necessary for making 

control strategy decisions. The results are reconciled using the eight-step process 

previously described. 

The industrial site PM-10 source apportionment example presented in this 

section is compiled primarily from experience gained from assessing source 

impact at a single monitoring site. The purpose of this example is to illustrate use 

of the eight-step reconciliation protocol described in this document. Therefore, 

the identity of the site and details of the OM, CMB, and DM analyses are 

unimportant to the objective of the example and are not presented in detail. 

A combined receptor and dispersion modeling study was implemented with 

the objective of identifying and quantifying impacts of the sources contributing to 

violations of the PM NAAQS recorded at a monitoring site. To supplement the 

emission inventory, pollution concentration roses were prepared using data for 

eight TSP monitoring sites located near the PM-10 monitoring site. The pollution 

roses clearly indicate that the major sources of TSP are located in the quadrant 

south of the PM-I0 monitor. That is, a preponderance of the high 24-hour 
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average TSP measurements correspond with days having resultant winds from the 

south. This preliminary receptor analysis suggests that additional emphasis 

should be placed on characterizing steel mill related contributions because the 

steel mill is the largest source of particulate emissions located nearby and south 

of the monitoring site. 

4.2.1 Receptor Modelina Data Collection Tasks 

The ambient data base consisted primarily of: 1) ambient PM-10 samples 

collected for 1 year on an everySth-day schedule; and 2) hourly measurements of 

wind direction, wind speed, and temperature at the PM-10 monitoring station. The 

PM-10 samples were collected on quartz fiber filters using a size-selective high 

volume (SSHV) sampler. In addition, for 1 month a dichotomous sampler was in 

operation at the monitoring site, and it collected several 24-hour coarse and fine 

fraction samples on Teflon filters. The results of the PM-10 monitoring program 

provided an annual average PM-10 concentration of 65 ug/m3 as well as four 

exceedances of the 24-hour average PM-10 NAAQS of 150 ug/m3. 

A site visit was made to compile a microinventory of emission sources. The 

microinventory procedure consisted of determining the nature, location and spatial 

extent of all fugitive dust sources within one-quarter mile of the PM-10 monitoring 

station. The information was then used to calculate the emission rates for input to 

a dispersion model. Source types included unpaved roads, paved streets, 

railroads, and two coal storage piles. Emission rates were determined using 

published emission factors together with the source area and traffic volumes. 

As part of the site visit, samples of emitted materials were collected from six 

nearby sources that had been identified as potentially important contributors to 

PM-10. The samples were subsequently analyzed to provide source profiles for 

use in the CMB model. The sources which were sampled included: a steel mill 
(blast furnace, coke oven, and basic oxygen furnace); two road shoulders (one 

near the monitoring site and one near an inoperative lead plant); and an 

agricultural processing plant (potash, corn gluten pellets, and soybeans). 
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Two subsets of the ambient PM-10 filters were selected for analysis as 

discussed above. Subset A contained the filters from 20 sampling days which 

were selected to be representative of the annual average conditions at the 

monitoring station. The average PM-I 0 concentration calculated from the filters in 

subset A was 67 ug/m3, which compares well with the annual average calculated 

from all the filters (65 ug/m3). Subset B contained the samples from the 4 days 

on which exceedances of the 24-hour average NAAQS were recorded plus the 

sample from the highest nonexceeding day. This subset was chosen to guide 

control strategy development related to the 24-hour standard. 

Two multi-elemental characterization techniques were applied to the source 

and ambient filters. X-ray fluorescence (XRF) was performed on the Teflon filters, 

and Plasma Emission Spectroscopy (PES) was employed for the quartz filters. 

The following species were analyzed: Na, Mg, Al, Si, K, Ca, Ti, V, Mn, Fe, Zn, Br, 

Pb, EC and SO,. The elemental carbon (EC) content of the samples was 

determined by optical attenuation analysis. In addition to the chemical 

characterization procedures, optical microscopy was applied to several of the 

ambient samples. Optical microscopy was used as a check on the receptor 

modeling source identifications and to aid in the receptor/dispersion model 

reconciliation process. 

Receptor modeling was performed for this study using the Chemical Mass 

Balance (CMB) model (U.S. EPA, 1987a,d). The CMB model requires an input file 

containing the measured ambient concentrations of the elements for which the 

samples were analyzed. This requirement was fulfilled by inputting the results of 

the ambient filter analysis using the format specified by the CMB model. In 

addition, the CMB model requires a file containing the source compositions 

reported as the elemental mass fractions. A source composition file in CMB 

specified format was compiled which contained the elemental composition of the 

nearby sources as well as a number of source profiles from EPA’s Source 

Composition Library (U.S. EPA, 1985b) The emission inventory and the 

microinventory were used to select sources for inclusion in the source 

composition file. 
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4.2.2 DisDersion Modelina Data Preparation 

An emission inventory was compiled for all the point sources in the two 

counties surrounding the PM-10 monitoring site. A total of 140 point sources were 

included in the inventory. The point source inventory was modified for use in 

modeling PM-10 impacts by applying source specific PM-1 O/TSP size fraction 

ratios to the TSP emission factors which were originally contained in the inventory. 

The Industrial Source Complex Short-Term (ISCST) model was used for this 

investigation. ISCST was used because it is applicable to the dispersion 

conditions found in the study area, and it contains several features that improve 

the source apportionment process. Two potentially advantageous features of 

ISCST are the ability to: (1) model microinventoried fugitive dust sources as 

volume sources; and (2) calculate the combined impact for selected groups of 

sources. This latter feature greatly decreases the manipulations necessary to 

transform dispersion and receptor modeling results into comparable formats for 

intercom parison. 

model and the optical microscopy technique. CMB modeling analyses were 

performed on the data obtained from filters contained in subsets A and B 

described in Section 4.2.1. The modeling procedure consists of obtaining a 

solution using the CMB procedures found in reference (Anderson et a/., 1986). 

Two receptor oriented approaches are utilized in this example: the CMB 

Two SSHV samples, two coarse fraction dichotomous samples, and one fine 

fraction dichotomous sample (ambient samples) underwent optical microscopic 

analysis to confirm the CMB source identifications. In addition, the results of the 

particle identification and counting performed as part of the microscopic analysis 

are used to calculate semi-quantitative source contribution estimates. 

As part of the CMB modeling procedure, efforts are made to develop 

information which could be used to confirm or refute the validity of the CMB 

results. This information can be classified into four categories: (1) applicability of 

the model to the situation; (2) evidence of adherence or deviation from model 

assumptions; (3) stability of source impact estimates with respect to minor 

changes in the CMB model fitting parameters; and (4) comparisons with 
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preliminary analyses (e.g., pollution rose, OM and microinventory analyses). By 

evaluating the CMB results on the basis of the above four categories, the CMB 

analyses are determined to be valid. 

Background concentrations are defined as that portion of the measured 

ambient levels that is not attributable to emissions within the study area. To 

estimate the appropriate background concentrations for the dispersion model, an 

eclectic pollution rose' was developed using data from TSP monitoring stations 

located outside the study area. Data were used only from the days having 

persistent winds blowing into the study area from the direction of the background 

TSP stations. An average TSP concentration of 26 ug/m3 was determined to be 

attributed to sources outside the study area. Application of the site-specific PM- 

10/TSP ratio (0.57) yields an average background PM-10 concentration of 15 

ugm3. Background concentrations were also estimated for each wind sector 

using this method. 

4.3 The Eight-Step Reconciliation Process 

4.3.1 SteD 1 - ComDare DM and CMB ResultS 

The dispersion model simulation results for time periods corresponding to 

the PM-10 sampling schedule at the monitoring station were compared with 

measured PM-10 air quality data. This comparison suggests that the ISCST is 

underpredicting PM-I0 concentrations at the monitoring site. Comparison of the 

predicted PM-10 with the measured PM-10 minus estimated PM-10 background 

concentrations provided an indication that the model was underpredicting. 

The source contributions from the DM and CMB were grouped in such a 

way that they could be compared. This was actually done to some extent before 

the ISCST was run by examining the emission inventory. The emission inventory 

contained the name of each plant and a description of each emission source. 

This information was used to develop a preliminary tabulation of the types of 

'The term "eclectic pollution rose" is used to describe a rose developed by 
compositing the data from several monitors surrounding the urban area such that the 
eclectic rose reflects concentrations only when the wind is blowing into the urban area. 
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materials (e.g., specific source chemistry) emitted by each source. The many 

types of emitted materials were then associated with 1 of 17 general categories 

which were determined to be consistent with the source profiles used in the CMB 

analysis. Each of the 140 point Sources and 25 volume sources were assigned a 

code corresponding to one of the categories. Some overlap and "juggling" of 

categories was inevitable but a reasonably good preliminary grouping was made. 

The results are presented in Table 5.  Adjustment to this preliminary grouping may 

be necessary in some cases. 

The source contribution estimates provided by the CMB and ISCST models 

for subset A (annual average) and subset B (samples violating the 24-hour 

NAAQS) are compared in Table 6. The basic oxygen furnace and steel blast 

furnace groups were combined for the same reason. The results of the two 

models display reasonable agreement in two categories: (1) the background 

estimates used by ISCST are approximately equal to the secondary sulfate values 

estimated by CMB; and (2) resuspended road dust is listed as a major source of 

PM-10 by both methods. In addition, the similarities and differences between 

CMB and ISCST are consistent between subsets A and B. Many differences 

between the CMB and ISCST results were evident. For example, ISCST under 

predicted the measured mass and CMB over predicted the measured mass. 

Furthermore, ISCST assigned contributions to several source categories which 

were not identified by the CMB method. Finally, CMB and ISCST estimated 

substantially different impacts for wood-fired boilers, coal combustion, the road 

dust and motor vehicle exhaust combination and the steel mill related emissions 

from coking operations, blast furnace, and basic oxygen furnace. Unfortunately, 

Table 6 cannot reflect conclusions drawn from any OM analysis, because the OM 

analysis is available for only 2 days. 

As a result of this comparison, four cases were identified (based on 

comparison model results as discussed in Step 1 of the Protocol) where additional 

model refinements may be necessary: 
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Table 5. Types of Emissions Assigned to Each Source Group in the Dispersion 
Modeling Analyses 

Group Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

Type of Emission 

Oil and Gas Combustion 

Coal Combination 

Wood-fired Boilers 

Agricultural Products Handling 

Coking Operations 

Coal Handling 

Steel Blast Furnace and BOF 

Paint Production 

Cement and Limestone 

Motor Vehicle Exhaust and Lead 
Processes 

Sand and Bentonite 

Aluminum Production 

Zinc Processing 

Tire Production 

Oil Refining 

Fertilizer 

Road Dust, Soil, and Motor Vehicle 
Exhaust 
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Table 6. Comparison of Initial Results by ISCST and CMB for Subsets A and B 
(fl g/m3). 

(Representing (Average of 5 Highest 
Annual Average) 24-hr Exceedances) 

Subset A Subset B 

Source Cateaories ISCST CMB ISCST CMB 

Oil & Gas Combustion 
Wood-fired Boilers 
Coal Combustion 
Coking Operations 
Blast Furnace 8 
Basic Oxygen Furnace 
Coal Handling 
Agricultural Prod. Handling 
Paint Production 
Cement & Limestone 
Sand & Bentonite 
Aluminum Production 
Zinc Processing 
Oil Refining 
Fertilizer 
Tire Production 
Motor Vehicle Exhaust 
Road Dust & Soil 
Secondary (NH,),SO, 
Backqround 

1.6 
0 2  
0 6  
1 4  
a 
0.6 
0 3  
1 1  

1.9 
1.2 

0.8 
0.6 

15.1 

15.0 

3 2 (1 -4) 

12.0 (3.5) 

2.8 (1.1) 
8 6 (4.2) 

3.8 (1.5) 

2.4 (0.8) 
30.0 (7.2) 
15 0 (2.5) 

2.0 
0.8 
1.2 
4.0 
a 
2.0 
0.6 
1.6 
0.8 
1.9 
1.7 
0.4 
0.6 
1.6 
0.8 
2.2 
2.6 

31.2 

32.0 

5.6 (2.1) 
8.0 (3.2) 
23.2 (8.7) 
33.6 (8.9) 
10.4 (2.7) 

2.4 (0.9) 
79.2 (20.3) 
27.4 (5.0) 

Total 45 4 77.8 89.0 189.8 

Measured 67.0 67 0 162.0 162.0 

a. 

Note: Numbers in parentheses indicate one standard error in the CMB analysis. 

Estimated as a composite by ISCST. 
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The combined contributions of motor vehicle exhaust and resuspend 

road dust, as estimated by CMB and ISCST, were in major 

disagreement. 

A significant disagreement existed between the CMB and ISCST 

estimates of the coal combustion impacts. 

CMB estimated wood-fired boilers to be a much larger contributor to 

PM-10 than did ISCST. 

There was a major disagreement between CMB and ISCST for steel 

mill related impacts (i.e., coking operations, blast furnace and basic 

oxygen furnace source categories). 

Each case is discussed below under the appropriate step in the 

reconciliation process. 

4.3.2 Steps 2 and 3 - Verify Input Data. Rerun Models and ReCOmQar? 
Results 

A review of the input data for both models indicated that they were indeed 

using the data that were intended. None of the four cases were related to 

inadvertent errors in data input. Therefore, the models were not rerun at this 

point. 

4.3.3 Step 4 - Refine CMB Model SDecification 

Operationally, all four cases identified in Step 1 were reviewed at this point. 

Only case 1 was found to be related to the CMB inputs. Thus, discussion of the 

other three cases is included under step 6. Tables 7 and 8 compare the source 

impacts estimated by ISCST, CMB and optical microscopy for the 2 days, October 

1, 1983 and October 25, 1983, when OM analysis was performed. 

Case 1. The combined contributions of motor vehicle exhaust and resuspended 

road dust, as estimated by CMB and ISCST, were in major 

disagreement. 



Table 7. Comparison of the Receptor and Dispersion Model Results for the October 1, 1983 PM,, Samples. 



Table 7. (Continued) 



Table 8. Comparison of the Receptor and Dispersion Model Results for the October 25, 1983 PM,, Samples 

Dispersion Modeling 
Source Groups 

Optical M~C~DDCOPY 
Source Categories 

Wood Combustion 

Coal Combustion Fuel Comb.. Pan. Pvr. Coal 

Optical Microscopy 

Dispersion Fins 
Dichot 
CMB 

Coarse SSHV 
CMB 

Fins Modeled 

Impacts SSHV Dichot . Dichot 

.... I St Mill, Pan. h r  Coal 

CoarM 
Dichot 
CMB 

Steel MIII. Coke 

Steel Steel Mill 

0.4 .. 

Coal Handling 

Agricultural Product Agr. Rod. Handling I Paint Roducts sorav paintino 

.. .. .. 1 .o 0.4 

Cement. Limestone I Cement Handlinrr 

.. .. .. 

... Lead I 

.. .. 6.8 0.6 

Sand. Bentonite Clay Hsndling 

Aluminum Alumina Processing 

Zinc 

.. 

.. 

.. 

. .  

Miac Chemicals I .... 

.. .. 1.8 1 .8 1 2  -: 

2 4  0 6  0.1 

3.0 2.8 1 6  11.8 

5.4 5.8 1 .o 10.6 .. 5.0 

.. .. .. 

.. .. 

CMB Modeling 
Source Types 

.... 

Wood Boiler 

Caal-fired Power Plant 

.. 

.. 

1 .o 

.. 

.... 

Coke Ash 

Blast Furnace 

Basic Oxvaen Furnace .. .. .. .. .. .. 

.. .. .. 3 0  2.2 1 .o 

3.4 2.6 2.6 .. .. .. 

.. .. .. .. .. .. 

.... 

.... .. 

.... .. 

.... 0 6  

.... .. 

.... 

... 

-.. .. .. .. .. .. 
.. .. .. .. .. .. 

.. .. .. .. .. .. 

.. .. .. .. .. .. 

I - : I  - : I  -: 

.... I . : I  - - I  - : I  - : I  - : I  .. 
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The first step taken to reconcile the disagreement between CMB and ISCST 

with respect to the combined impact of vehicle exhaust and road dust was to re- 

examine the comparisons between OM, CMB, and ISCST. This is shown in 

Tables 7 and 8 for the 2 days for which OM data are available. In this case, OM 

was found to agree very well with ISCST. The CMB input data were then 

evaluated for potential errors related to estimating road dust and vehicle exhaust. 

The coarse fraction filter on which the resuspended road dust source sample was 

collected appeared to have lost a substantial fraction of the sample between the 

time it was weighed and the time it was analyzed. Further evaluation of the 

sample indicated that this was indeed true. Thus, the correct mass was used to 

recompute the road dust profile. 

The CMB model was rerun with the revised road dust profile and good 

agreement was now found between CMB and ISCST with respect to the 

combined impacts of road dust and vehicle exhaust. The CMB estimated impacts 

of the other sources remained unchanged by the revised road dust profile. 

Finally, the other source samples were re-weighed and no other cases of 

significant mass loss were identified. 

4.3.4 SteD 5 - RecomDare Results After Rerunnina CMB 

The CMB model was rerun, the results were recompared and no significant 

difference in model estimates remained. 

4.3.5 

Case 2. A significant disagreement exists between the CMB and ISCST estimates 

of the coal combustion impacts. 

The first step taken in reconciling the coal combustion impact estimates was 

to review the ambient and source composition data for errors which could 

potentially invalidate the CMB results. This review uncovered no obvious errors in 

the CMB input data related to coal combustion. The next step was to re-examine 

the comparisons between OM, CMB, and ISCST which are shown in Tables 7 and 

8. These tables show that OM predicts coal combustion impacts in reasonable 

SteD 6 - Refine DisDersion Model Inputs and Rerun 
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agreement with CMB but predicts larger impacts than ISCST. The emission 

inventory was then reviewed with respect to coal combustion sources. The review 

identified four major coal combustion facilities. For the sources closest to the 

receptor, the emission inventory contained a very high value for the efficiency of 

the emission controls. Discussions with the plant personnel revealed that the 

inventory contained an erroneous value and a correct value was obtained. ISCST 

was then rerun with the corrected inventory and much closer agreement was 

found between CMB and ISCST with respect to coal combustion impacts. 

Case 3. CMB estimates for wood-fired boilers were much larger than the ISCST 

estimates. 

The first step in reconciling the CMB and ISCST estimates for the wood-fired 

boiler impacts was to review the CMB input data. The review did not identify any 

obvious errors in the data. Next, the OM results were examined. In this case, OM 

was of little assistance because OM did not specifically identify any impact from 

wood-fired boilers while CMB and ISCST both did. The emission inventory was 

then evaluated in terms of wood-fired boiler sources in the inventory, and a site 

visit was conducted at each of the two plants. The site visits identified the 

possibility that one of the wood-fired boilers, located at a lumber mill, could be 

emitting particulate matter at a much higher rate than was listed in the inventory. 

Therefore, emission testing was conducted at the mill. The emission testing 

demonstrated that the emission inventory had severely underestimated the 

emission rate of the wood-fired boiler located at the lumber mill. ISCST was then 

rerun with the revised emission rate for the lumber mill boiler and good agreement 

was found between CMB and ISCST with respect to the wood-fired boiler source 

category. 

Case 4. There was a big disagreement between CMB and ISCST for steel mill 

related impacts (i.e., coking operations, blast furnace, and basic 

oxygen furnace source categories). 



292 

The steel mill source was of particular concern because there was a big dis- 

agreement between CMB and ISCST estimates for each of the three main PM-10 

emitting activities within the steel mill. This disagreement resulted in the CMB 

predicting that the steel mill is the largest industrial source of the PM-10 levels 

observed at the receptor site while ISCST predicts that the steel mill is a relatively 

minor source. This discrepancy had a potentially big impact on control strategy 

development and therefore it was reconciled very carefully. 

The first step in the reconciliation process was to review the CMB input data. 

The review did not identify any obvious anomalies in the CMB input data. In fact, 

the steel mill related source profiles were judged to be of very good quality due to 

the close agreement which was found between the plasma emission spectroscopy 

analysis of the resuspended samples which were collected on quartz fiber and the 

XRF analysis of those collected on Teflon. The next step was to examine the OM 

estimated impacts for the steel mill. In this case, OM was found to agree much 

better with CMB than with ISCST. The emission inventory was then reviewed with 

respect to steel mill emission rates for similar activities at other steel mills. 

However, the review revealed that the emission inventory did not contain any 

fugitive emissions from the steel plant. This omission was viewed as a potentially 

serious deficiency; therefore, a site visit was conducted to reassess the stack and 

fugitive emission rates at the steel mill. The results of the stack testing were in 

good agreement with the original stack emission rates. However, substantial 

fugitive emissions were found to be associated with the coking operations, blast 

furnace, and basic oxygen furnace. ISCST was then rerun with the new fugitive 

emissions for the steel plant included in the inventory. This resulted in very good 

agreement between CMB and ISCST with respect to the steel mill contribution. 

4.3.6 Steo 7 - Recompare Results and Evaluate the DisDersion Model 

The previous section presented the reconciliation of the CMB and ISCST 

source impact estimates and resulted in a number of revisions to the input data 

used by the models. Following Step 4, the CMB was rerun and after Step 6 ,  the 

ISCST was rerun for subsets A and B using the revised data. The results 
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obtained using the revised data are shown in Table 9. Good agreement now 

exists between the source impacts estimated by CMB and ISCST for subsets A 

and B. Comparison of the ISCST results for subset A with the "observed minus 

background" concentrations was also significantly improved. ISCST was then run 

using 5 years of meteorological data to obtain estimates of the annual average 

PM-10 and the six highest values. The results provided by ISCST are shown in 

Table 10. ISCST predicts that both the annual average and 24-hour PM-10 

NAAQS will be exceeded at the monitoring station. Steel mill related activities are 

the major contributors to PM-10 at the receptor site. The second largest 

contributor is re-suspended road dust. The highest predicted PM-10 

concentrations all occur with persistent south winds, which further substantiates 

the steel mill contributions. 

4.3.7 Steo 8 - Final Model Estimates 

The dispersion model results have been improved after extensive 

intercomparison with the CMB results. Thus, the dispersion model results in Table 

10 can be used for control strategy development. 
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Table 9. Comparison of Final Validation Results by ISCST and CMB for Subsets 
A and B Gg/rn3) 

Source Categories 

Oil & Gas Combustion 
Wood-fired Boilers 
Coal Combustion 
Coking Operations 
Blast Furnace & 
Blast Oxygen Furnace 
Coal Handling 
Agricultural Prod. Handling 
Paint Production 
Cement & Limestone 
Sand & Bentonite 
Aluminum Production 
Zinc Processing 
Oil Refining 
Fertilizer 
Tire Production 
Motor Vehicle Exhaust 
Road Dust & Soil 
Secondary (NH,),SO, 
Background 

(Representing Annual) 

ISCST CMB ISCST CMB 

1.6 2.0 _ _  
3.5 3.4 (1.6) 6.8 5.5 (2.2) 
2 3  2.6 (1.4) 9.2 8.2 (3.0) 

10.1 8.4 (3.7) 19.0 22.0 (8.5) 

14.9 3.8 (1.7) 41 .O 10.4 (2.6) 

(Avg. of 5 24-hr runs) 
Subset A Subset B 

a 11.6 (2.5) a 31.6 (6.9) 

0.3 0.6 _ _  
1 1  1.6 _ _  

0.8 _ _  
1 9  1 9  -- 
1 2  1.7 _ _  

0.4 -- 
0.8 0.6 _- 
0.6 1.6 

0.8 _ _  
2.2 _ _  

15.1 2.2 (0.6) 2.6 2.6 (0.8) 
-- 15.1 (3.4) 31.2 39.2 (8.1) 
-- 15 5 (2.7) -- 28.6 (4.4) 

15.0 32.0 

Total 68.4 62.6 157.0 148.1 

Measured 67.0 67.0 162.0 162.0 

a. 

NOTE: 

Estimated as a composite by the ISCST. 

Numbers in parentheses indicate one standard error in the CMB analysis 
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Table 10. Source Contributions Estimated by ISCST using 5 Years of 
Meteorological Sata (Ir g/m3). 

Annual 24-hr 6th Highest 
Source Categories Average Concentration 

Oil & Gas Combustion 1.4 1.7 
Wood-fired Boilers 3.0 6.0 
Coal Combustion 2.0 7.5 
Coking Operations 8.7 27.6 
Blast Furnace 10.1 38.0 
Basic Oxygen Furnace 2.7 14.8 
Coal Handling 0.3 0.4 
Agricultural Prod. Handling 0.9 0.4 
Paint Production 0.1 1.1 
Cement & Limestone 1.6 2.1 
Sand & Bentonite 1 .o 0.7 
Aluminum Production 0.1 0.2 
Zinc Processing 0.6 0.6 
Oil Refining 0.3 2.1 
Fertilizer 0.1 0.9 
Tire Production 0.4 1.5 
Motor Vehicle Exhaust 12.7 45.4 
Road Dust & Soil -- -_ 
Backaround 15.0 32.0 

Total 61 .O 183.0 
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Chapter 9 

APPLICATION OF RECEPTOR MODELING TO SOLVING LOCAL 
AIR QUALITY PROBLEMS 

John E. Core 
Air Quality Division 

Oregon Department of Environmental Quality 
P.O. Box 1760 

Portland, OR 97207 

Credibility is a most important attribute in solving local air quality problems. 

Credibility is not only important in dealing with those that are the facing potential 

regulation, it is also an essential element of the technical work that forms the basis 

for control programs. In the absence of technical integrity, control strategy issues 

becomes difficult to resolve and subject to increasing degrees of skepticism 

resulting in an absence of community support. Air quality managers must be able 

to convincingly demonstrate their understanding of the relative contributions of 

airshed sources not only as a mean of resolving control strategy issues but, more 

importantly, to assure themselves that their programs make good sense. Unless 

an effective case, demonstrating the magnitude and identity of source impacts can 

be made, considerable doubt as to the likely success of new control programs will 

exist. 

This Chapter describes how Receptor Models have been applied in real- 

world settings to resolve local air quality problems and improve confidence in the 

effectiveness of emission reduction programs. It focuses on case studies where 

receptor modeling techniques have played a major role in reshaping air manager’s 

understanding of local airshed problems. 

1. INTRODUCTION 

Within the past ten years, receptor models have played an increasingly 

important role in air quality management. Receptor modeling application which 

initially focused on particulate matter (TSP and PM,,), have recently expanded to 
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include several new fields. Receptor models have been applied to apportion 

sources causing visibility impairment; to toxic air pollutants, ozone precursors 

(volatile organic compounds) and regional-scale acid deposition aerosols and are 

just beginning to be applied to groundwater pollution studies. The technology has 

been applied in China, Japan, Brazil, Mexico and other countries. Within the 

United States, receptor modeling studies that in 1978 were limited to no more than 

two or three cities are now common place. 

In the field of acid deposition and long range transport research, receptor 

modeling studies conducted at the University of Rhone Island (Rahn and 

Lowenthal, 1984) suggested that the ratio of indium to noncrustal manganese 

could be used as a simple receptor model to indicate the presence of sulfate 

enriched air masses originating from Ohio River Valley. At the same time, other 

researchers at the University of Texas were applying chemical mass balance 

methods to identify sources of acidic deposition in Southern California (Liljestrand, 

1982). More recently, the feasibility of applying receptor modeling technology to 

identify the origin of air masses in the Western States (Watson et a/., 1987) has 

been evaluated as a means of identifying the region of origin of acidic sulfates 

transported over long distances. This work has concluded that the principal 

limitation to be overcome in applying the technology are those related to 

development of the correct experimental design; that the modeling technology was 

sufficiently advanced and that given the proper regional source profile and 

ambient aerosol data sets, it may be feasible to determine the origin of an air 

mass associated with an acid deposition event within reasonable limits of error. 

Although the application of receptor modeling technology has diversified, the 

fundamental framework of the modeling has remained largely unchanged. 

Receptor modeling theory, computer software, source profile development, 

ambient air monitoring and laboratory methods have, however, been refined as 

the understanding of the science has grown. 
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Three key events have caused the rapid growth and acceptance of receptor 

modeling within the regulatory community: 

- The source "profile" or "fingerprint" libraries have become readily 

available to receptor modelers; the libraries have grown substantially 

both in quantity and quality such that national databases have now 

been established by the Environmental Protection Agency; 

- Receptor modeling software that was once available to only a small 

handful of researchers is now widely available to users. EPA's 

implementation of the Chemical Mass Balance model on 

microcomputer systems, documentation and regulatory agency training 

transformed the technology from a research to an air quality 

management tool and; 

- Advancements in the development of automated, multi-element x-ray 

fluorescence and ion chromatography techniques brought the 

sensitivity and cost of laboratory analytical techniques within the reach 

of regulatory agency budgets. 

The advancement of the technology was spurred by EPA's plans to revise 

the national ambient air quality standards for particulate matter and by the need 

for new, more advance control strategy development methods. Following nearly 

ten years of study, EPA in July, 1987 acted to revise the National Ambient Air 

Quality Standard (NAAQS) for particulate matter to a standard defined by the 

collection of aerosols with a 50 % collection efficiency at 10 micrometers, thereby 

triggering the three year timeline specified in the Clean Air Act for submission of 

SIPS. 

Referred to as PM,,, the new NAAQS require that state and local air pollution 

regulatory agencies revise their State Implementation Plans (SIPS) to assure that 

the PM,, standard is attained and maintained throughout the nation. The PM,, 
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SIPS are required to include a technical assessments of PM,, air quality, 

demonstrate the adequacy of proposed control strategies and the legally 

enforceable means through which emission reductions will be made. 

Development of credible emission control strategies requires an in-depth and 

accurate assessment of the relative contributions of airshed sources. The 

assessment must not only be technically defensible, it must also be credible in the 

eyes of elected officials, industry representatives and the public. As noted above, 

credibility is critical. Because of the direct economic and life-style impacts that 

control strategies often have on the community, it is extremely important that 

corroborating evidence be developed to provide independent verification of the 

accuracy of the source contribution assessment. It is within this setting that 

receptor modeling has become an established, accepted science. 

Until quite recently air quality regulatory professionals relied on emission 

inventory estimates of source strengths and dispersion modeling source impacts 

as their sole sources of information. Although the science of urban dispersion 

modeling has grown in sophistication, scope of application and importance, 

dispersion models remain severely limited in their ability to simulate the extreme 

complexity of atmospheric dynamics in mountainous terrain or during the 

extended calm wind episodes that typify PM,, nonattainment area of the Western 

United States. It is exactly for these reasons that receptor modeling has been so 

appealing. Recent advances in receptor modeling methods provide new 

opportunities to advance the accuracy of urban dispersion models by providing an 

independent means though which dispersion modeling results can be verified 

(Core and Cooper, 1982). This ability to independently confirm source 

contribution estimates greatly strengthens one’s ability to demonstrate the 

adequacy of a strategy. The joint application of both forms of modeling to air 

resource management and policy development has important strategy 

development advantages that are explored in this Chapter. 
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2. THE ROLE OF RECEPTOR MODELS IN AIR QUALITY MANAGEMENT 

The adoption of the PM,o National Ambient Air Quality Standard in July of 

1987 ushered in the development of yet another series of control strategies for 

many airshed in the nation. When air quality agencies began adopting Total 

Suspended Particulate (TSP) strategies in the early 19703, the technical basis of 

programs was founded on emission inventory proportional rollback models. In the 

late 1970's, when it became clear that the strategies were not effective in attaining 

the TSP air quality standard and major efforts were made in many communities to 

revise State Implementation Plans (SIPS) based on emission inventory and 
dispersion modeling analysis of source contributions. 

Unfortunately, the effectiveness of particulate control programs was limited 

by failure of the emission inventories to accurately estimate emissions of fugitive 

dust and other area sources, sources now known to be of critical importance in 

many nonattainment areas. In addition, the inability of dispersion models to 

simulate formation of secondary aerosols in the atmosphere was a major problem 

in areas where as much as one-half of the aerosol mass was of secondary origin. 

Thus, in spite of the fact that cumulative air pollution abatement costs have 

exceeded $300 billion over the decade ending in 1987, hundreds of counties 

remained in noncompliance with the TSP NAAQS at the time the standard was 

repealed (Cass and McRae, 1981). 

that have not incorporated receptor modeling analysis have been flawed because 

of limitations inherent in dispersion models. Principal among these are the inability 

of source oriented models to quantify source impacts during short term episodes, 

assess impacts in complex terrain or apportion particulate mass in complex urban 

airsheds. The inability of the models to quantify source impacts to the 

"background" aerosol being transported into an airshed - aerosol that typically 

accounts for 50 % or more of the urban PM,o mass - is another serious limitation. 

inventories to accurately reflect hourly and day-to-day emission variations typical 

of many urban settings. Improvements to currently available dispersion models 

In addition to emission inventory limitations, many of the control strategies 

Many of these constraints are inexorably linked to the inability of emission 
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will require additional research to cope with the complex and often random nature 

of atmospheric dispersion under calm wind conditions, of particle deposition, 

variations in emission variability and secondary aerosol formation pathways. 

As state and local agencies begin development of yet a third series of 

particulate control strategies (this time for PM,,), it has become clear that air 

quality managers must better understand source-receptor relationships if their 

programs are to remain credible. Local governmental officials, industry 

representatives and the public are all aware of the limited success of earlier 

strategies. 

It is also important to understand that those that are affected by source 

emission control strategies have developed a much more sophisticated 

understanding of the science of air quality source impact assessment than was 

found during earlier rounds of control strategies. Members of the regulated 

community as well as concerned public groups are very interested in the technical 

details of source impact assessments conducted by regulatory agencies. In 

Oregon, PM,, advisory groups have actively questioned emission inventory, 

dispersion and receptor modeling assumptions as well as the quality of ambient 

air quality data. In some nonattainment area, interested persons have developed 

their own, independent assessments of source contributions. In working with 

these groups, the common-sense simplicity of receptor modeling fundamentals 

has been well received because the public can understand the technology, the 

results (hopefully) make sense and can be easily validated through comparisons 

with other, independent, information. 

3. CONTROL STRATEGY DEVELOPMENT USING RECEPTOR MODELS 

The task of designing control programs is to determine a set of emission 

limits for sources spread throughout an airshed that will reduce air pollutant 

concentrations measured at specific monitoring sites to levels at or below the 

National Ambient Air Quality Standards. The control strategies must be 

economically cost-effective, legally enforceable, equitable in the eyes of 

community leaders (and the public) and achievable within available resources and 
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the time frames provided in the Clean Air Act. Perhaps most importantly, the 

strategy must be effective in achieving healthful air quality. 

The solution to the control strategy design problem requires data on 

emission strengths, meteorology, ambient air quality and applicable emission 

control technology. This information is used with air quality dispersion and/or 

receptor models to quantify source contributions which, in turn, are used in 

association with information on emission control technology and cost of control to 

determine the relative air quality benefits of the strategy. In the case of particulate 

matter strategies, information on the relative health risks associated with various 

sources can then be used to narrow the number of options. 

Receptor models can play an important part in this process from 

apportioning the sources contributing to nonattainment to tracking the 

effectiveness of a strategy once it has been implemented. 

The first step in strategy development is determination of the 24-hour level 

from which air quality must be improved to meet ambient air quality standards. 

This concentration is referred to as the 24-hour worst-case "design value" which 

represents (based on the past three years of PM,, data) the 1/365th percentile of 

the PM,, distribution. This is the PM,, concentration that will not be exceeded 

more than once per year over a three year period. Once this value is determined, 

air managers must then apportion the design value PM,, mass among the 

contributing sources. Emission growth factors estimating the percentage change 

in emissions from each source category between the current year and the date on 

which standard attainment must be reached (defined by the Clean Air Act as three 

years) are then applied for each category. The end product is an attainment year 

24-hour worst case PM,, design value and source contribution estimates which 

form the basis of the control strategy. A similar process is followed to arrive at the 

attainment year, annual PM,, design value and source apportionment. 

The ability of receptor modeling methods (especially chemical mass balance, 

electron microscopy and analytical methods that can be applied to a single, 24- 

hour sample) to apportion the source contributions based on measurements from 

actual samples with PM,, mass loadings at the current year design value is 
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critically important. First, experience has consistently shown that available 

dispersion models cannot reliably estimate measured PM,, mass concentrations at 

design value levels because they occur during prolonged periods of calm winds. 

Secondly, even if adjustments to the model meteorological data base, emission 

inventories and dispersion assumption are made, they are unlikely to properly 

apportion the aerosol mass among the contribution sources. Recent efforts to 

dispersion model one Oregon PMlo nonattainment area required application of 

three different models (a valley stagnation model, RAM and ISC) over a period of 

many months. This effort underscored the need to validate dispersion modeling 

results against receptor model derived source contributions to assure that the 

dispersion modeling results are reasonable. In several airsheds, Chemical Mass 

Balance receptor modeling pointed out serious area source fugitive dust emission 

inventories errors that had to be corrected before dispersion modeling efforts 

could begin. 

3.1 Oregon’s Receptor Modeling Program 

The State of Oregon Department of Environmental Quality’s receptor 

modeling program began in 1976 when it was realized that the Total Suspended 

Particulate SIP control strategy adopted for Portland in 1970 had failed to attain 

the National Ambient Air Quality Standards and that the airshed’s nonattainment 

status was hindering community economic growth. The Department believed that 

the control strategies in force at the time had minimized emissions from all 

significant sources based on the airshed emission inventory. This included a 

60,000 ton per year reduction in industrial emissions. The Department held the 

firm belief that economic development must be allowed to occur within the 

constraints of healthful air quality. As a result, a major effort was undertaken to 

determine the sources of Portland TSP aerosol. The Portland Aerosol 

Characterization Study (PACS), the first airshed aerosol study to specifically 

designed for receptor modeling applications, was to become the cornerstone of 

this effort (Watson, 1979). 
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3.1.1 Portland Aerosol Characterization Proaram fPACS) 

A new approach to identifying contributing sources was badly needed if a 

new round of emission controls was to be successful. A turning point in 

development of the PACS program was reached when the concept of Chemical 

Element Balance Receptor Modeling was reviewed (Friedlander, 1973). The 

strength of the approach was it was based on actual analysis of aerosols captured 

on filters which were also being used to determine compliance with the NAAQS, 

the approach was conceptually simple and could be applied to single samples to 

characterize short term air quality episodes. Following technical review of a 

number of alternatives, a comprehensive plan based on Receptor Modeling was 

adopted. 

In Portland, certain sources were easily identified using "tracer" elements 

associated with the sources. Automotive exhaust, for example, was by far the 

largest source of lead while a ferromanganese alloy manufacturing facility was 

easily identified through measurements of ambient manganese concentrations on 

TSP filters. 

The overall PACS program consisted of a five step process; (1) identification 

of source contributions to TSP and the fine particle fraction (< 2.0 pm) using the 

Chemical Mass Balance method, (2) dispersion modeling of source contributions 

using emission inventories and meteorological data collected during the one year 

period of ambient sample collection, (3) comparison of the CMB and dispersion 

model predicted source contributions, (4) reconciliation of the CMB and dispersion 

modeling results to validate the dispersion model and (5) application of the 

dispersion model in developing control strategy alternatives. 

After one year of staff work to design the field study, raise funding and 

review meteorological, emission inventory and dispersion modeling adequacy, the 

first step of the PACS program began. Participation by local governments, 

industry and community leaders was solicited to assure that all sectors of the 

community could have confidence in the study results. A public advisory 

committee was formed to help guide the project and review early drafts of the 

project results. 
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PACS was the first field study designed specifically around receptor 

modeling. It was a three year effort that culminated in development of the 

following technologies: 

1. A source testing train designed to collect fine (<2.0 pm) and coarse 

(2.0 - 20 pm) aerosol samples suitable for elemental, ion and carbon 

analysis thereby providing source profiles of all of Portland's major 

emission sources; 

2. The first comprehensive, size resolved "Source Library" of 

particulate emission profiles, many of which are in wide use today; 

3. An expanded, effective variance least squares Chemical Mass 

Balance Model which formed the basis for the EPA CMB 

microcomputer software that is widely used today; 

4. An aerosol chemistry database consisting of measurements of 27 

chemical species on over 2,000 TSP and fine fraction aerosol samples 

collected at six sampling locations over one calendar year. The data 

base has been used by a number of researchers to advance receptor 

modeling technology; 

5. A medium-volume, sequential filter aerosol sampling system 

capable of collecting up to 12, 47 mm filters unattended over any 

preprogrammed period. The sampler pulls ambient air at 4 cfm flow 

rate through an appropriate inlet system to obtain the desired upper 

cut point. A duel port filter system capable of simultaneously collecting 

aerosol on both Teflon and quartz filter substrates is used to 

accommodate both thermal-optical carbon and X-ray fluorescence/ion 

chromatography analytical methods. Because of the excellent 

agreement between the sampler and EPA's reference methods for 
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PM,,, the sampler (when equipped with a Sierra-Anderson 254 inlet) 

has been recently been designated by EPA as an acceptable 

equivalent method. 

6. Development of a conservation of mass, advection-diffusion 

dispersion model (GRID) suitable for use in the complex terrain that 

typifies the Portland area. The model is still in use within the 

Department. 

Perhaps more importantly, the research conducted during the PACS 

program (and the many researchers that participated in the program) became the 

genesis of much of the receptor modeling technology in use today. The concept 

of source/receptor model reconciliation also came out of the PACS program 

(Core, 1982). Key results from the program included: 

1. Recognition that soil and road dust were major contributors to the 

particulate loading, identifying a 19,400 ton per year deficiency in the 

paved road dust emission inventory. 

2. The first understanding that vegetative burning (principally 

residential wood burning) was a major source of particulate accounting 

for as much as 40% of the fine particulate mass on worst-case winter 

days. This work led to the addition of 6,500 ton per year TSP to the 

Portland airshed emission inventory. 

3. The finding that industrial sources (previously thought to be the 

largest contributor to the airshed's nonattainment problem) accounted 

for only 5% of the TSP mass loading. 

The above findings dramatically altered air quality manager's understanding 

of the relative importance of industrial, road dust and residential wood burning in 
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Portland and led to adoption of a new series of control strategies to minimize 

emissions from winter road sanding. The "discovery" of the magnitude of 

emissions from residential wood stoves led to the 1985 adoption of the Oregon 

Wood stove Certification Program which, in turn, was used as the basis for the 

EPA's national wood stove certification program. 

4. RECEPTOR MODEL CASE STUDIES 

Immediately following completion of the Portland Aerosol Characterization 

Study, the technology was applied in two new airshed: 

4.1 Willamette Valley Airshed Study 

The Willamette Valley TSP nonattainment problem had long been believed, 

on the basis of emission inventories and public perception, to be caused by 

smoke generated from agricultural field burning, a practice that has long been the 

subject of thousands of public complaints each year. About 250,000 acres of 

annual and perennial rye, fescue and other varieties of grass seed are burned by 

growers each year with as much as 65,000 acres burned per day. It is not 

uncommon for street lights to be turned on at mid day as the skies are darkened 

by the smoke. To help resolve culpability for TSP air quality standard 

exceedances in the Valley, a receptor modeling study was funded to better define 

field burning's contribution to the problem. 

The findings of the receptor modeling study largely exonerated field burning 

smoke and pointed to fugitive dust as a major contributor to TSP air quality (Core, 

1982). Field burning smoke was, however, shown to be a major source of fine 

fraction aerosol that severely impaired Willamette Valley visibility. As a result of 

the Willamette Valley study, air quality regulators shifted their TSP standard 

attainment strategies to reduction of unpaved road dust emissions, pressures on 

the agricultural community were lessened and air quality manager's perceptions 

as to the source of the Valley's TSP nonattainment problem were dramatically 

changed. 
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Today, pressures to phase out or ban agricultural field burning continue as 

the public’s tolerance of the smoke grows. The issue, however, is not based on 

TSP or PM,, nonattainment but on visibility impairment, nuisance and public health 

effects. 

4.2 Medford Aerosol Characterization Study 

The Medford Aerosol Characterization Study (MACS) was conducted 

concurrent with the Willamette Valley Study to again determine the sources 

contributing to TSP air quality nonattainment. Unlike Portland, relative few of the 

major industrial sources in the Medford airshed had at the time been well 

controlled. This led to the supposition (supported by emission inventory studies) 

that wood products industry emissions were a major contributor to the TSP 

nonattainment problem. Since Medford’s air quality was consistently worst on 

winter days characterized by long periods of stagnation, the usefulness of 

dispersion modeling analysis was questionable without some independent means 

of validating the modeling effort. 

A one year emission inventory, meteorological and receptor - dispersion 

modeling study was undertaken to develop the database necessary to (a) 

apportion TSP and fine fraction source impacts on a winter worst case and annual 

average basis; (b) support development and application of dispersion models and 

(c) reconcile results from the two modeling studies. 

Results from the MACS study were highly useful to the Department in that 

they resolved the major wood products industry emission sources (hogged fuel 

boilers) from other sources with a satisfactory margin of uncertainty; identified 

residential wood stove smoke and fugitive dust sources as significant contributors 

and provided a basis for dispersion model validation (DeCesar and Cooper, 1980). 

strategies for wood stoves and fugitive dust emission would not have been 

adopted and public perceptions that the highly visible plumes from industrial 

emissions were the major cause of TSP nonattainment would have continued. 

Had the Medford Aerosol Characterization Study not been funded, control 
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In each case where receptor models have been applied in Oregon, the 

results have consistently resulted in changes in air quality manager and public 

perceptions of the problem. In every case, results have led to revisions of airshed 

emission inventories, most commonly for fugitive dust sources. 

5. BARRIERS TO PRACTICAL APPLICATIONS OF RECEPTOR MODELS 

Prior to 1983, the greatest barrier to widespread application of receptor 

models by state and local air pollution agencies was the availability of computer 

software, source profile information and technical guidance on the use of receptor 

models. With completion of the EPA-Desert Research Institute Chemical Mass 

Balance program for the IBM PC, distribution of the EPA Source Profile Library 

(USEPA, 1984) and completion of the six volumes of the EPA Receptor Model 

Technical Series, the technology fell into widespread use. 

Although major advancement have been made, the current modeling 

techniques and source profile information still falls short of resolving impacts of 

sources with similar emission profiles (collinear sources). Receptor models still 

cannot be applied to apportionment of secondary aerosols which, in many 

airsheds, makes up the majority of the aerosol mass loading. 

Within the Pacific Northwest, most of the PM,o nonattainment areas are 

impacted by smoke generated by biomass burning including residential wood 

stoves, forestry slash, agricultural burning and land clearing. Apportionment of 

impacts form these sources is very important in developing Northwest control 

strategies yet receptor models are unable to resolve smoke impacts from these 

sources with an adequate level of certainty. 

New efforts to improve the ability of the Chemical Mass Balance model to 

resolve collinear sources have focused on (a) expanding source profiles to include 

more chemical species that may help differentiate the sources, (b) tightening the 

uncertainties associated with measurements of both the source profile and 

ambient aerosol species and (c) modification of the CMB software to permit 
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inclusion of an unlimited number of fitting species in the calculation. Important 

advancements have been made in all three areas: 

Expanded Sou rce Profiles increasing the number of species from 

(typically) 35 or 40 species to 75 species are now available fifteen point 

and 60 area sources common to the Pacific Northwest States. The 

Pacific Northwest Source Profile Library (Core, 1989), was the first 

program of it’s kind to include GC/MS measurement of 25 organic 

(including 11 PAH) compounds in the profiles in an attempt to improve 

the ability of the CMB model to revolve impacts from biomass 

combustion. As both inorganic and organic compound analytical 

technology advances, more species will be included in future emission 

profile studies thereby improving the ability of Receptor Models to 

resolve sources and improving the relative standard errors of the 

source contribution estimates. 

Improvements in Measurement Uncertainties are essential to advancing 

the ability of receptor models to resolve sources. Synthetic data set 

studies conducted as part of the Pacific Northwest Source Profile 

Library Project have shown that inclusion of organic compounds in 

CMB modeling is only useful if the source profile and ambient aerosol 

measurement uncertainties can be reduced from the current relative 

uncertainty level of 80-100 % to less than ten percent. If the organic 

compound uncertainties are markedly greater than those associated 

with the inorganic species, the organics are not influential in fitting 

process and were therefore not helpful in resolving the sources. 

Lowering the relative uncertainties of organic compounds will require 

advancements in analytical techniques to minimize 

extraction/desorption variability and improve system calibration 

reproducability. 
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Modification of ReceDtor Mndelina Software to permit inclusion of an 

unlimited number of fitting species was accomplished with distribution 

of EPA-DRI Version 7.0 CMB software. This improvement and the 

advancement of personal computer speed have eliminated a barrier 

that has long restricted regulatory agency applications. 

An additional barrier has been the lack of availability of commercially 

available air sampling instrumentation suitable for collection of aerosol samples 

used in receptor modeling studies. Since these studies typically require analysis 

of fine ( < 2.5 pm) and coarse (2.5 - 10 pm) fraction aerosol samples concurrently 

on quartz and Teflon filter substrate, the only option that most air regulatory 

agencies have is to operate two collocated dichotomous samplers, one equipped 

with quartz and the other with Teflon filters. Unfortunately, these samplers have 

some distinct disadvantages: 

- Samples are often lost during heavy filter loading conditions (heavy 

concentrations of wood smoke with fog) that are of critical importance 

to control strategy development; 

- Since daily sampling is required in Group I PM,, nonattainment 

areas, at least four dichotomous samplers are actually required to meet 

scheduling needs, increasing the cost of the monitoring program 

greatly. 

For these reasons, few regulatory agencies have designed their PM,, 

monitoring programs to accommodate Receptor Modeling sample analysis 

needs. Those agencies that do, rely on equipment that is not commercially 

available. The backbone of the Oregon PM,, monitoring program, for example, 

relies on a dual-port, programmable sequential filter sampler (discussed above) 

that has been designated by EPA as an equivalent PM,o monitoring method. The 

monitor concurrently collects samples on quartz and filter substrate and 
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sequences to a new set of filters if the pressure drop across the filter drops below 

a preset point. One week of daily samples can be collected automatically, greatly 

reducing servicing costs. The instruments are built by Oregon Department of 

Environmental Quality staff for use in the state. Since they are used on a routine 

basis throughout the monitoring network, samples suitable for organic carbon and 

elemental/ion chromatography analysis are readily available. Sample analysis is 

conducted on a routine basis of all samples that exceed the 24 hour National 

Ambient Air Quality Standard (NAAQS) of 150 pg/m3, assuring that analytical data 

will be available to allow apportionment of all samples exceeding the 24 hour 

NAAQS. 

Because few regulatory agencies have the facilities, staff and experience 

needed to design and construct their own sampling equipment, development of a 

commercially available PM,, reference or equivalent instrument would eliminate an 

major barrier to Receptor Model application. 

The final barrier to applying Receptor Models is one of cost. Many agencies 

do not have the funds needed to collect, analyze and compile aerosol chemistry 

and source profile data needed to support Receptor Modeling activities. 

6. FUTURE APPLICATIONS 

Although particulate matter Receptor Modeling applications will continue to 

dominate the technology, applications to, volatile organic compound, air toxics, 

groundwater pollution, acid deposition and gaseous pollutants apportionment 

show promise. Funding will be needed to expanded source profile libraries for 

toxics, VOCs and gaseous pollutants; analytical and air sampling methods, 

technical guidance and funding. All of these applications parallel the development 

of particulate Receptor Modeling in that major advancements in new applications 

at the regulatory level were not made until all of the above elements were in place. 

Applications to apportioning the sources of volatile organic compounds 

(VOCs) are especially important since they are the principal precursors being 

regulated under state and local ozone control strategies. The success or failure of 
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the strategies is largely dependent on the strength of local VOC emission 

inventories and, therefore, on the reliability of VOC emission factors. Failure of 

many of the nation’s largest metropolitan areas to attain the ozone NAAQS has 

prompted a hard look at the validity of these emission inventories and spurred 

interest in using Receptor Models as an independent means of judging the validity 

of the inventories. Given the serious and widespread nature of the ozone 

nonattainment problem and the potential application of Receptor Models to the 

problem, it is highly likely that future applications will expand in this area. Source 

profile compilations to support Receptor Modeling efforts are being developed 

(Scheff et a/., 1988) and a national databases of concentrations of 320 ambient 

VOC compounds totalling 19 megabytes of data is now available for use (Shah, 

1 988). 

For similar reasons, air toxics applications will also expand in areas where 

there is serious question as to the origin of toxic compounds. Typical research 

studies have focused on apportionment of source contributions of dioxins and 

dibenzofurans (Edgerton, 1988) and toxic organic compounds including benzene, 

trichlorethylene and carbon tetrachloride in urban atmospheres (Scheff et a/. , 
1 988). 

An exciting new application area is that of groundwater pollution. New rare 

earth elemental source tracers have been used to identify the source and extent of 

water pollution in an area containing oil and coal ash deposits downstream of a 

large landfill area (Olmez, 1988). 

As the issues of long range acid deposition and regional haze become more 

volatile, new application for Receptor Models will be seen, expanding relatively 

simple elemental tracer approaches (Rahn and Lowenthal, 1984) to regional, multi- 

element multivariate and mass balance approaches (Gorse et a/. , 1988) while 

inclusion of stable perfluorocarbon isomers emitted for large metropolitan areas 

(McDade and McGown, 1988) will enhance future applications long range 

transport applications. 



31 7 

7. CONCLUSIONS 

The chemical and physical characteristics of air pollutants, whether in 

particulate or gaseous form, hold a wealth of information on their source. 

Determining the characteristic "profiles" of industrial, area sources and urban 

airsheds is the key to unlocking this information. As more information describing 

the nature of these emissions becomes available, applications of Receptor Models 

will grow in scope and breadth beyond particulate matter source apportionment to 

identifying sources of regional haze, acid deposition, air toxics and ozone 

precursors. 

The strength of Receptor Models and their application to air resource 

management lies in the fact that source contribution estimates are based on the 

chemical and morphological properties of pollutants in the atmosphere and how 

these pollutants vary in time and space. These are concepts that can be easily 

understood by air resource managers and the public and can be independently 

verified by other physical measurements. As a result, air quality managers can 

convincingly demonstrate their understanding of the relative contributions of 

airshed sources not only as a mean of resolving control strategy issues but, more 

importantly, to assure themselves that their programs make good sense. It is for 

these reasons that Receptor Modeling has, and will continue to play, an important 

role in air resource management. 

8. REFERENCES 

Cass, G.R., and G.J. McRae, Minimizing the Cost of Air Pollution Control, Environ. 
Sci. Techol. 155:748-757 (1981). 

Core, J.E., Willamette Valley Field and Slash Burning Impact Study, Final Project 
Report to the State of Oregon Department of Environmental Quality (1982). 

Core, J.E., J.A. Cooper, P.L. Hanrahan and W.M. Cox, Particulate Dispersion 
Model Evaluation: A New Approach Using Receptor Models, J. Air Pol. Control 
ASSOC. 32:l 142-1 147 (1982). 



318 

Core, J.E., J.A Houck, J.A. Cooper, Pacific Northwest Source Profile Library 
Project, Final Report (3 Volumes) to US Environmental Protection Agency Region 
X (1989). 

DeCesar, R.T. and J.A. Cooper, Medford Aerosol Characterization Study (MACS), 
Final Report to the State of Oregon Department of Environmental Quality. 1980. 

Edgerton, S.A., Source Apportionment of Dioxins and Dibenzofurans in Ambient 
Air in Ohio, in Receptor Modeling in Air Resource Management, J.Watson, ed., 
Transactions No. 14, Air & Waste Management Association, Pittsburgh, PA, 59-70 
(1988). 

Friedlander, S.K., Chemical Element Balance and Identification of Air Pollution 
Sources, Environ. Sci. Technol. 7:235-245 (1973). 

Gorse, R.A., W.W. Brachaczek, S.M. Japar, G.L. Keeler and W.R. Pierson, Source 
Apportionment of Rural Elemental Carbon Aerosol Using Several Multivariate 
Statistical Analysis Approaches to Receptor Modeling, in Receptor Modeling in Air 
Resource Management, J.Watson, ed., Transactions No. 14, Air & Waste 
Management Association, Pittsburgh, PA, 418-431 (1988). 

Liljestrand, H.M., Acidic Precipitation Source Identification by Chemical Mass 
Balance Methods Employing Fractionation Factors, in Receptor Models Applied to 
Contemporary Pollution Problems, S.L. Dattner and P.K. Hopke, eds, Publication 
No. SP-48, Air Pollution Control Association, Pittsburgh, PA, 21 2-21 3 (1982). 

McDade, C.E., M. R. McGown and J.G. Watson, Identifying Long-Range Tracers 
of Los Angeles Emissions, in Receptor Modeling in Air Resource Management, J. 
Watson, ed., Transactions No. 14, Air & Waste Management Association, 
Pittsburgh, PA, 407-416 (1988). 

Olmez, I., Trace Element Signatures in Groundwater Pollution, in Receptor 
Modeling in Air Resource Management, J.Watson, ed., Transactions No. 14, Air & 
Waste Management Association, Pittsburgh, PA, 3-1 1 (1988). 

Rahn, K.A., and D.H. Lowenthal, Elemental Tracers of Distant Regional Pollution 
Aerosols, Science 223:132-139 (1984). 

Scheff,P.A., P.F. Aronian, R.A. Wadden and B.A. Bates, Development of Volatile 
Organic Carbon Source Fingerprints For Receptor Modeling, in Receptor 
Modeling in Air Resource Management, J.Watson, ed., Transactions No. 14, Air & 
Waste Management Association, Pittsburgh, PA, 84-107 (1988). 

Shah, J.J., VOC Receptor Modeling: Ambient Data Base and a Case Study, in 
Receptor Modeling in Air Resource Management, J.Watson, ed., Transactions No. 
14, Air & Waste Management Association, Pittsburgh, PA, 20-38 (1988). 



319 

US. EPA, Receptor Model Source Composition Library, Environmental Protection 
Agency Report No. EPA 450\4-85-002, U.S. Environmental Protection Agency, 
Research Triangle Park, NC (1984). 

Watson, J.G., Chemical Element Balance Receptor Model Methodology for 
Assessing the Sources of Fine and Total Suspended Particulate Matter in Portland, 
Oregon, Ph.D. Dissertation. Oregon Graduate Center, Beaverton, Oregon (1979). 

Watson, J.G., J. C. Chow and N.F. Robinson, Western States Acid Deposition 
Project Phase I: Volume 4..An Evaluation of Ambient Aerosol Chemistry in the 
Western United States, Final Report to the Western States Acid Deposition Project, 
Report No. SYSAPP-87/064, Systems Applications Inc. San Rafael, CA (1987). 



321 

INDEX 

aerodynamic diameter . . . . . . . . . . . . .  13. 50. 162.164. 167. 169. 176. 256. 259 

ambient particle samplers 
annular denuder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11.35. 36. 39 
dichotomous sampler . . . . . . . . . . . . . .  12.14. 16. 17. 19. 23. 28. 30. 278 
diffusion denuder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34-37 
SCISAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 
SSHV (see size-selective high volume sampler) 
size-selective high volume sampler . . . . . . . . . .  12-1 4. 23. 37-38. 278. 280 
streaker sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 

ammonia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33.35. 37 

annular denuder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11.35.39.42. 44 

artifacts. sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6. 11.33. 38. 161 

atmospheric stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84. 263 

Boston. MA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5. 10 

carbon analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29.30. 96. 308 
14C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12.30. 31. 260 
elemental carbon . . . . . . . . . .  29. 50. 61. 71. 76. 90. 96. 134. 209. 279. 318 
organic carbon . . . . . . . . . . . . .  30. 60. 71. 76. 99. 111. 134. 204. 315. 318 

CCSEM (see computer-controlled scanning electron microscopy) 

chemical mass balance . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2. 3. 7. 30. 39. 45 
83-118. 122. 126. 134. 138. 143. 145. 165. 
188. 195. 203. 204. 208. 213-217. 221. 222. 
229. 230. 232-236. 238-243. 245. 250. 251. 
253. 258-260. 262. 265-283. 285. 290-294. 
296. 297. 300. 301. 305-308. 312-314. 318 

model assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88-93 
modeloutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104 

Chicago. IL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.9. 146. 

Clean Air Act . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255. 256. 301. 305 

cluster analysis . . . . . . . . . .  169. 172-173. 177. 180. 186-187. 206. 208. 211-212 

213. 214. 216. 217. 229-231. 233. 235. 236. 239. 241. 242. 249. 251 



CMB (see chemical mass balance) 

collinearity . . .  72. 92. 104.106. 111. 113. 149. 188.191. 203. 214. 215. 232. 273 

compositing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46. 68. 72.74. 103. 281 

computer-controlled scanning electron microscopy . . . . . . . . . . . .  3. 7. 149-21 1 
data screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169 
particle class balance . . . . . . . . . . . . . . . . . .  165. 187. 203. 204. 210. 211 
particle classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163. 165. 181 
particle size . . . . . . .  48. 115. 118. 152. 160. 164. 166. 258. 259. 262. 275 
sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30. 160. 207 

control strategy development 255. 258. 266-268. 276. 279. 292. 293. 301. 304. 314 

data scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124 

diagnostics. regression . . . . . . .  92. 103. 104. 108. 113. 188. 208. 215. 232. 250 
condition index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189-191. 232 
outlier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174. 177. 180. 182 
pseudoinverse matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107 
singular value decomposition . . . . . . . . . . . . . . . .  92. 105. 119. 120. 121. 

Studentized residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  196. 197 
variance-decomposition proportions . . . . . . . . . . . . . . . . . . . . . . .  190-1 91 

dichotomous sampler . . . . . . . . . . . . . . . . . .  12-14. 16. 17. 19. 23. 28. 31. 278 

diffusion denuder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34. 35 

123. 124. 128-130. 189-191 

dispersion factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84 

dispersion model . . . . . . . . . . . . . . . . . .  241. 259. 261. 266. 267. 270. 274-276. 
278. 279. 281. 290. 292. 293. 295. 306. 307. 309. 311. 317 

eigenvector analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 
(also see factor analysis. principal components analysis) 

El Paso. TX . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159. 161. 165-166. 168. 173. 
187. 189. 191. 197. 199. 200. 202. 203. 209-211 

emission inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145. 216. 228. 233.236. 
241. 249. 261. 264. 266. 272. 277. 279.281. 

291.292. 302.304. 306.307. 309. 31 1 

empirical particle classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163. 164 



323 

Environmental Protection Agency . . . . . . . . . . . . . . . . . . . .  8. 9. 11. 12. 40. 48. 
56. 70. 72. 74. 83. 101. 116. 117. 

250. 252. 253. 255. 256. 296. 297. 301. 318. 319 

EX-TRAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178.182. 209 

expert systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178. 209 

factor analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119. 121. 125. 259. 258 
(see principal components analysis. eigenvector analysis) 

constraints. physical . . . . .  118. 123. 124. 131-133. 135-138. 276. 303. 306 
rotation criteria 

oblimin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123 
promax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123 
quartimax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123 
varimax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123. 127 

SAFER . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119. 130. 135. 139. 141. 143 
self-modeling curve resolution . . . . . . . . . . . . . . . .  10. 119. 123. 130. 146 
singular value decomposition . . .  92. 105. 119. 120. 128-130. 189. 191. 215 
target transformation factor analysis . . . . . . . . . . . . . . . . . . . . . .  1 19. 125 

filters . . . . . . . . . . . .  14. 15. 17. 18. 22. 23. 26. 28-31. 33. 34. 36. 38. 39. 50. 53. 

cellulose filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 
glass fiber filters . . . . . . . . . . . . . . . . . . . . .  27. 28. 33. 160. 161. 166. 167 
nuclepore filters . . . . . . . . . . . . . . . . . . . . . . .  14. 15. 20. 22. 23. 161. 166 
quartz fiber filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  160. 278. 292 
Teflon filters . . . . . . . . . . . . . . . . .  14. 15. 14-18. 20. 29-31. 33. 36. 38.50. 

278. 279. 292. 308. 314 
Whatman 41 filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 

basic feasible region . . . . . . . . . . . . . . . . . . . . . . . . . . .  10. 131-133. 146 

57. 70. 159. 160. 161. 166. 167. 208. 278-280. 307. 308. 314. 315 

gravimetric analysis of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15. 18 

H+ (see hydrogen ion) 

Heidelberg. Germany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.9. 41 

homogeneous particle class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187 

hydrogen ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31.33.34. 39 

ICP (see optical spectroscopy) 

imaging system in SEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151 



324 

impactor . . . . . . . . . . . . . . . . . . . . . . . . . . .  13. 14. 21. 30. 42. 48. 66. 161. 162 
micro-orifice impactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 

INAA (see neutron activation analysis) 

incinerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73. 75. 76. 205. 211 

ion chromatography . . . . .  12. 31. 32. 36.39. 41. 71. 96. 160. 166. 301. 308. 315 

ISCST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  264. 280-283.285. 290-294 

least-squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3. 4. 40. 196. 223. 224 
chi-square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104. 206 
effective variance least squares . . . . . . . . . . . . . . . . . . . . . . . . . .  85. 308 

ridge regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85. 88 

linear programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85. 133 

Los Angeles . . . . . . . . . . . . . . . . . . . . . . . . .  4.83. 115-117. 119. 130. 133-135. 

ordinary weighted least squares . . . . . . . . . . . . . . . . . . . . . . .  85. 88. 196 

139. 143. 146-148. 213. 250. 318 

mass . . . . . . . . . . . . . . . . . . . . . . .  2.7. 9.18. 23. 30. 38. 39. 45. 53. 59. 61. 70. 

134. 136. 143. 145. 147. 149. 150. 152. 160. 163. 165. 
83.85. 91. 98. 100. 104. 105. 112. 114. 115. 117. 131. 

167. 169. 176-178. 180. 187-189. 191. 192. 196. 199. 
202-205. 207. 208. 210. 211. 213. 214. 216. 222. 233. 241. 
242. 245. 250. 251. 253. 258-260. 262. 272. 277. 279. 282. 

290. 296. 297. 300. 301. 303. 305-309. 312. 316. 318 

mass conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2. 187 

Medford. OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  311. 318 

motor vehicles . . . . . . . . . . . . . . . . .  2. 5. 58. 99. 137. 139. 199. 204. 218. 259 

multiple linear regression . . . . . . . . . . . . . . . . . . . . . .  45. 83. 119. 127. 188-189 

NAAQS (see National Ambient Air Quality Standard) 

National Ambient Air Quality Standard . . . . . . . . . . .  12. 255.257. 269. 277.279. 
282. 293. 295. 301. 303. 307. 315. 316 

NESHAPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  257 

neutron activation analysis . . . . . .  9. 12. 15. 17. 25-26. 28. 38. 39. 41. 43. 44. 96 



325 

New Jersey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213, 214, 216, 221 

NH, (see ammonia) 

nitrate.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9, 17, 20, 22, 32-34, 
37-39, 41, 42, 44, 55, 63, 67, 73, 83-87, 90, 
93, 96, 97, 101, 103, 108, 113-118, 129, 131, 

181, 199, 200, 204, 208-210, 212, 213, 221, 
222, 231, 238, 239, 245, 247, 250-253, 262-264, 

272, 290, 295-297, 300, 318, 319 

136, 137, 139, 140, 152, 163, 172, 175, 179, 

NMOC (see non-methane organic carbon) 

non-methane organic carbon . . . . . . . . . . . . . . . . . .  213-214, 216-218, 221-223, 
229, 230, 234, 235, 241-244, 249 

NO, (see nitrate) 

NOx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62, 214, 215, 221, 229 

optical microscopy . . . . . . . . . . . . . . . .  161, 255, 258, 259, 265, 279, 280, 285 

optical spectroscopy 
atomic absorption . . . . . . . . . . . . . . . . . . . . . . . . . . .  12, 26, 96, 160, 166 
Inductively Coupled Plasma (ICP) . . . . . . . . . . . . .  12, 15, 26-29, 38, 39, 41 

outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174, 177, 180, 182 

particle class balance . . . . . . . . . . . . . . . . . . . . . .  165, 187, 203, 204, 210, 211 

particle classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163, 165, 181 

particle size . . . . . . . . . . .  48, 115, 118, 152, 160, 164, 166, 258, 259, 262, 275 

Pasadena, CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10,251 

PCA (see principal components analysis) 

petroleum refineries . . . . . . . . . . . . . .  213-215, 222-223, 229, 231, 234, 236-239 

PIXE.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6, 12, 14, 15, 19-21, 153 



326 

PM-10 (or PM.. or PM10) . . . . . . . . . . . . . . . . . . . . . . .  2. 8. 9. 11.15. 17. 23. 
33. 38. 42-44. 53. 68. 83-85. 97.99. 101. 1 12-1 14. 

116. 117. 119. 130. 133.135. 145. 146. 148. 152. 209. 
256.258. 260. 263.265. 270.272. 274. 277.282. 285. 

292. 293. 297. 299. 301.306. 309. 311. 312. 314. 315 

PM2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53. 98 

pollution rose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  277. 281 

Portland. OR . . . . . . . . . . . . . . . . . . . . . . .  5. 10. 95. 99. 168. 299.306-311. 319 

principal component analysis . . . . . . . . . . . . .  5. 83. 11 2. 1 19. 120-1 22. 124. 147 
(see factor analysis. eigenvector analysis) 

quality assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39. 40. 72-73. 117 

quality control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23. 73. 98 

reconciliation process . . . . . . . . . . . . . . . . . .  255. 267. 276. 279. 281. 285. 292 

refinery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117. 168. 200. 202. 
203. 217. 222. 226-228. 231.233. 235.241. 247. 257 

road dust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69.73. 75. 76. 99. 102. 118. 
137. 139. 141. 142. 199. 204. 260. 277. 

282. 283. 285. 290. 293. 294. 309. 310 

SAFER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119. 130. 135. 139. 141. 143 

scanning electron microscope . . . . . . . . . . . . . . . . . . . . . . .  149. 150. 204. 206 
(also see computer-controlled scanning electron microscopy) 

(see nitrate. sulfate) 
secondary particulate matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  267. 270 

self-modeling curve resolution . . . . . . . . . . . . . . . . . . . .  10. 119. 123. 130. 146 

SEM . . . . . . . . . . . . . . . . . . . . . . . . .  149.151. 160.163. 165. 167. 207. 211. 262 

singular value decomposition . . . . . . . . . . . . . . . . . . . .  92. 105. 119. 120. 121. 
123. 124. 128-130. 189. 190. 191. 215 

SIP (see State Implementation Plan) 

size-selective high volume sampler . . . . . . . . . . . . . . . . . . . . . . . .  49. 278. 280 
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SO; (see sulfate) 

source composition library . . . . . . . . . .  82. 99. 139. 140. 145. 279. 296. 308. 319 

source contributions . . . . . . . . .  85. 89.94. 98. 100. 102.104. 106.108. 110.112. 
122. 127. 143. 195. 226. 266. 271. 280. 282. 302. 305. 313. 317 

source fingerprints (see source profiles) 

source profiles . . . . . . . . . . . . . . . . . . . .  45. 48. 53. 58. 61.64. 69-74. 83. 86-89 
97. 102. 103. 105. 107. 108. 111. 114. 145. 188-191 

195. 196. 202. 214.219. 226. 232. 241. 243. 249 
251. 260. 261. 271. 273. 300. 312. 313. 315-318 

source samplers 
dilution sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48.56. 204-205 
EPA Method 5 . . . . . . . . . . . . . . . . . . . . . . . . .  27.48. 167. 199. 204-205 

source sampling 
high-temperature sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48.53. 56 

dilution sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48.53. 204-205 
EPA Method 5 . . . . . . . . . . . . . . . . . . . . .  27. 48. 167. 199. 204-205 
incinerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75. 76. 206. 207 
plume sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46. 56 
wood combustion . . . . . . . . . . . . . . . . . . . . . . .  53.56.99. 102. 112 

low-temperature sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45. 57 
mobile sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56. 66 

motor vehicles . . . . . . . . .  2. 5. 58. 99. 137. 139. 199. 204. 218. 259 
chase car sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 
diesel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59-64. 103 
dynamometer . . . . . . . . . . . . . . . .  53. 61.63. 66. 218. 219. 221. 222 
tail-pipe emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218 
tunnel sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64. 82 

organic compound sources 
drycleaning . . . . . . . . . . . . . . . . . . . . . .  214. 215. 217. 222. 230-233 
gasoline vapor . . . . . . . . . .  4. 222. 223. 228.232. 234. 235. 239. 249 
petroleum refineries . . . . . .  213.215. 222.223. 229. 231. 234. 236-239 
printing inks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215. 222 
refinery . . . . . . . . . . . . . . . . . . . . . . . .  117. 168. 200. 202. 203. 217. 

solvent 148. 160. 161. 213.215. 218. 221. 222. 227. 228. 232. 236. 252 
vapor degreasing . . . . . . . . . . . . . .  214. 215. 218. 222. 230.235. 249 
wastewater treatment . . . . . . . . . . . . . . . . . . . . . .  214. 215. 230-233 

urban dust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92. 96. 100 

222. 226.228. 231.233. 235.241. 247. 257 

St . Louis. MO . . . . . . . . . . . . . . . . . . . . . . . . . .  .6.9. 25. 26.42. 145. 146. 264 
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State Implementation Plan (SIP) . . . . . . . . . . . . . . . . .  9, 256-258, 295, 297, 306 

sulfate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12, 16, 18, 21, 29, 32-34, 37-39, 
51, 56, 61, 65, 66, 84-86, 90, 93, 96-98, 103, 107, 

108, 111, 121, 125, 128, 129, 137, 146, 150, 151, 167, 
169, 177, 179-181, 184, 204, 207, 223, 228, 238, 245, 
247, 265, 266, 269, 270, 272, 276, 278, 282, 300, 302 

SVD (see singular value decomposition) 

target transformation factor analysis . . . . . . . . . . . . . . . . . . . .  10, 119, 125, 147 

THC (see total hydrocarbons) 

Tokyo, Japan 213, 214, 216, 223, 224, 226-228, 236, 239, 242, 245, 246, 252, 253 

total hydrocarbons . . . . . . . . . . . . . . . .  213, 217, 226, 228, 231, 235, 237, 241 

total suspended particles . . . . . . . . . . . . . . . . . . . . . . . . . .  10, 52, 53, 68, 127, 
161, 165, 166, 187, 196, 199, 200, 203, 209, 256, 

264, 265, 277, 278, 280, 281, 299, 303, 306-312, 319 

total suspended particulate (see total suspended particles) 

TSP (see total suspended particles) 

lTFA (see target transformation factor analysis) 

Tucson.AR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 

VOC (see volatile organic compound) 

volatile organic compound . . . .  2, 7, 105, 117, 118, 213-216, 218, 221, 229, 233, 
242, 251, 252, 300, 315, 316, 318 

Washington, D.C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3, 4, 10, 42, 250 

Willamette Valley, OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  310, 311, 317 

wind velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84, 238 

wood combustion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53-56, 99, 102, 112 

wood-fired boiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74-76, 291 

x-ray diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  261, 262 
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x-rayfluorescence . . . . . . . . . . . . . . . . . . . . . . . .  12. 14. 15. 17. 18. 20.24. 28. 

energy-dispersive (EDXRF) . . . . . . . . . . . . . . . .  12. 18. 19. 21. 23. 38. 39 
particle-induced (PIXE) . . . . . . . . . . . . . . . . . . . .  6. 12. 14. 15. 19-21. 153 
wavelength-dispersive (WDXRF) . . . . . . . . . . . . . . . .  12. 18. 19. 21. 38. 39 

38.41. 43. 44. 54. 72. 96. 150. 153. 158. 160. 
162. 165. 169. 205. 206. 262. 279. 292. 301. 308 

XRD (see x-ray diffraction) 

XRF (see x-ray fluorescence) 


